

Introductory MIS

Managing Information Technology, 7/e
Brown, DeHayes, Hoffer, Martin & Perkins ©2012

Experiencing MIS, 6/e
Kroenke & Boyle ©2016

Using MIS, 8/e
Kroenke & Boyle ©2016

MIS Essentials, 4/e
Kroenke ©2015

Management Information Systems, 14/e
Laudon & Laudon ©2016

Essentials of Management Information
Systems, 11/e
Laudon & Laudon ©2015

IT Strategy, 3/e
McKeen & Smith ©2015

Processes, Systems, and Information:
An Introduction to MIS, 2/e
McKinney & Kroenke ©2015

Information Systems Today, 7/e
Valacich & Schneider ©2016

Introduction to Information Systems, 2/e
Wallace ©2015

Database

Hands-on Database, 2/e
Conger ©2014

Modern Database Management, 12/e
Hoffer, Ramesh & Topi ©2016

Database Systems: Introduction to Databases
and Data Warehouses
Jukic, Vrbsky & Nestorov ©2014

Essentials of Database Management
Hoffer, Topi & Ramesh ©2014

Database Concepts, 7/e
Kroenke & Auer ©2015

Database Processing, 14/e
Kroenke & Auer ©2016

Systems Analysis and Design

Modern Systems Analysis and Design, 7/e
Hoffer, George & Valacich ©2014

Systems Analysis and Design, 9/e
Kendall & Kendall ©2014

Essentials of Systems Analysis and Design, 6/e
Valacich, George & Hoffer ©2015

Decision Support Systems

Business Intelligence, 3/e
Sharda, Delen & Turban ©2014

Decision Support and Business
Intelligence Systems, 10/e
Sharda, Delen & Turban ©2014

Data Communications & Networking

Applied Networking Labs, 2/e
Boyle ©2014

Digital Business Networks
Dooley ©2014

Business Data Networks and Security, 10/e
Panko & Panko ©2015

Electronic Commerce

E-Commerce: Business, Technology,
Society, 11/e
Laudon & Traver ©2015

Enterprise Resource Planning

Enterprise Systems for Management, 2/e
Motiwalla & Thompson ©2012

Project Management

Project Management: Process,
Technology and Practice
Vaidyanathan ©2013

OTHER MIS TITLES Of INTEREST

Kroenke_1292107634_ifc.indd 1 24/09/15 11:51 AM

Database Processing
Fundamentals, Design,

and Implementation

14th EDItIon
Global Edition

This page intentionally left blank

Database Processing
Fundamentals, Design,

and Implementation

14th EDItIon
Global Edition

David M. Kroenke

David J. Auer
Western Washington University

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics
published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or
its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability,
whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be
liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the
information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described
herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

MySQL®, the MySQL Command Line Client®, the MySQL Workbench®, and the MySQL Connector/ODBC® are registered trademarks of Sun
Microsystems, Inc./Oracle Corporation. Screenshots and icons reprinted with permission of Oracle Corporation. This book is not sponsored or endorsed by
or affiliated with Oracle Corporation.

Oracle Database 12c and Oracle Database Express Edition 11g Release 2 2014 by Oracle Corporation. Reprinted with permission. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Mozilla 35.104 and Mozilla are registered trademarks of the Mozilla Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

PHP is copyright The PHP Group 1999–2012, and is used under the terms of the PHP Public License v3.01 available at http://www.php.net/
license/3_01.txt. This book is not sponsored or endorsed by or affiliated with The PHP Group.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of David M. Kroenke and David J. Auer to be identified as the authors of this work has been asserted by them in accordance with the Copyright,
Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Database Processing: Fundamentals, Design, and Implementation, 14/e, ISBN 978-0-13-387670-3, by
David M. Kroenke and David J. Auer., published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the author or publisher any
trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-10763-4
ISBN 13: 978-1-292-10763-9

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Typeset by Integra Software Services Pvt. Ltd. in Mentor Std Light, 10/12 pt.
Printed and bound in Malaysia

Vice President, Business Publishing: Donna Battista
Editor in Chief: Stephanie Wall
Acquisitions Editor: Nicole Sam
Program Manager Team Lead: Ashley Santora
Program Manager: Denise Weiss
Editorial Assistant: Olivia Vignone
Vice President, Product Marketing: Maggie Moylan
Director of Marketing, Digital Services and Products:
 Jeanette Koskinas
Executive Product Marketing Manager: Anne Fahlgren
Field Marketing Manager: Lenny Ann Raper
Senior Strategic Marketing Manager: Erin Gardner
Product Marketing Assistant: Jessica Quazza
Project Manager Team Lead: Jeff Holcomb
Project Manager: Ilene Kahn
Operations Specialist: Diane Peirano
Senior Art Director: Janet Slowik
Text Designer: Integra Software Services Pvt. Ltd.
Cover Designer: Lumina Datamatics, Inc.

Cover Photo: Omelchenko/Shutterstock
Vice President, Director of Digital Strategy &
 Assessment: Paul Gentile
Manager of Learning Applications: Paul Deluca
Digital Editor: Brian Surette
Digital Studio Manager: Diane Lombardo
Digital Studio Project Manager: Robin Lazrus
Digital Studio Project Manager: Alana Coles
Digital Studio Project Manager: Monique Lawrence
Digital Studio Project Manager: Regina DaSilva
Senior Manufacturing Controller, Global Edition: Trudy Kimber
Manager, Media Production, Global Edition: M. Vikram Kumar
Acquisitions Editor, Global Edition: Steven Jackson
Associate Project Editor, Global Edition: Priyanka Shivadas
Full-Service Project Management
 and Composition: Integra Software Services Pvt. Ltd.
Printer/Binder: Vivar, Malaysia
Cover Printer: Vivar, Malaysia
Text Font: 10/12 Mentor Std Light

http://www.php.net/license/3_01.txt
http://www.php.net/license/3_01.txt
http://www.pearsonglobaleditions.com

5

Part 1  ■  Getting Started 33

Chapter 1 Introduction 34
Chapter 2 Introduction to Structured Query Language 68

Part 2  ■  Database Design 165

Chapter 3 The Relational Model and Normalization 166
Chapter 4 Database Design Using Normalization 209
Chapter 5 Data Modeling with the Entity-Relationship Model 228
Chapter 6 Transforming Data Models into Database Designs 280

Part 3  ■  Database Implementation 333

Chapter 7 SQL for Database Construction and Application Processing 334
Chapter 8 Database Redesign 428

Part 4  ■  Multiuser Database Processing 455

Chapter 9 Managing Multiuser Databases 456
Chapter 10 Managing Databases with Microsoft SQL Server 2014, Oracle Database,

and MySQL 5.6 490

Online Chapter: See Page 495 for Instructions
Chapter 10a Managing Databases with Microsoft SQL Server 2014

Online Chapter: See Page 495 for Instructions
Chapter 10B Managing Databases with Oracle Database

Online Chapter: See Page 495 for Instructions
Chapter 10C Managing Databases with MySQL 5.6

Part 5  ■  Database Access Standards 497

Chapter 11 The Web Server Environment 498
Chapter 12 Big Data, Data Warehouses, and Business Intelligence Systems 565

Online Appendices: See Page 610 for Instructions

appendix a Getting Started with Microsoft Access 2013
appendix B Getting Started with Systems Analysis and Design
appendix C E-R Diagrams and the IDEF1X Standard
appendix D E-R Diagrams and the UML Standard
appendix E Getting Started with the MySQL Workbench Data Modeling Tools
appendix F Getting Started with Microsoft Visio 2013
appendix G Data Structures for Database Processing
appendix h The Semantic Object Model
appendix I Getting Started with Web Servers, PHP, and the NetBeans IDE
appendix J Business Intelligence Systems
appendix K Big Data

Brief Contents

This page intentionally left blank

7

Preface 19

Part 1  ■  Getting Started 33

Chapter 1: Introduction 34

Chapter Objectives 34
The Importance of Databases in the Internet and Smartphone World 35
The Characteristics of Databases 37

A Note on Naming Conventions 38  •  A Database Has Data and
Relationships 39  •  Databases Create Information 40

Database Examples 41
Single-User Database Applications 41  •  Multiuser Database Applications 41  •  E-Commerce
Database Applications 42  •  Reporting and Data Mining Database Applications 43

The Components of a Database System 43
Database Applications and SQL 44  •  The DBMS 46  •  The Database 47

Personal Versus Enterprise-Class Database Systems 49
What Is Microsoft Access? 49  •  What Is an Enterprise-Class Database System? 50

Database Design 52
Database Design from Existing Data 52  •  Database Design for New Systems
Development 54  •  Database Redesign 54

What You Need to Learn 55
A Brief History of Database Processing 56

The Early Years 56  •  The Emergence and Dominance of the Relational Model 58
•  Post-Relational Developments 59

Summary  61  •  Key Terms  62  •  Review Questions  63  •  Project Questions  65 

Chapter 2: Introduction to Structured Query Language  68

Chapter Objectives 68
Cape Codd Outdoor Sports 69
Business Intelligence Systems and Data Warehouses 70

The Cape Codd Outdoor Sports Extracted Retail Sales Data 71  •  RETAIL_ORDER Data 72
•  ORDER_ITEM Data 74  •  SKU_DATA Table 74  •  CATALOG_SKU_20## Tables 75
•  The Complete Cape Codd Data Extract Schema 75  •  Data Extracts Are Common 76

SQL Background 76
The SQL SELECT/FROM/WHERE Framework 77

Reading Specified Columns from a Single Table 78  •  Specifying Column Order in SQL Queries
from a Single Table 79

Submitting SQL Statements to the DBMS 80
Using SQL in Microsoft Access 2013 80  •  Using SQL in Microsoft SQL Server
2014 85  •  Using SQL in Oracle Database 88  •  Using SQL in Oracle MySQL 5.6 90

SQL Enhancements for Querying a Single Table 93
Reading Specified Rows from a Single Table 93  •  Reading Specified Columns and Rows from a
Single Table 97  •  Sorting the SQL Query Results 97  •  SQL WHERE Clause Options 100

Contents

8 Contents

Performing Calculations in SQL Queries 107
Using SQL Built-in Aggregate Functions 107  •  SQL Expressions in SQL SELECT Statements 111

Grouping Rows in SQL SELECT Statements 114
Querying Two or More Tables with SQL 119

Querying Multiple Tables with Subqueries 119  •  Querying Multiple Tables with
Joins 122  •  Comparing Subqueries and Joins 127  •  The SQL JOIN ON
Syntax 127  •  Outer Joins 130  •  Using SQL Set Operators 134

Summary  137  •  Key Terms  138  •  Review Questions  139  •  Project Questions  146 
•  Case Questions  149  •  The Queen Anne Curiosity Shop  153  •  Morgan 
Importing 161

Part 2  ■  Database Design 165

Chapter 3: The Relational Model and Normalization  166

Chapter Objectives 166
Relational Model Terminology 168

Relations 168  •  Characteristics of Relations 169  •  Alternative Terminology 171  •  To
Key, or Not to Key—That Is the Question! 172  •  Functional Dependencies 172  •  Finding
Functional Dependencies 174  •  Keys 177

Normal Forms 180
Modification Anomalies 180  •  A Short History of Normal Forms 181  •  Normalization
Categories 182  •  From First Normal Form to Boyce-Codd Normal Form Step by Step 182
•  Eliminating Anomalies from Functional Dependencies with BCNF 187  •  Eliminating
Anomalies from Multivalued Dependencies 196  •  Fifth Normal Form 199  •  Domain/Key
Normal Form 199

Summary  200  •  Key Terms  200  •  Review Questions  201  •  Project Questions  203 
•  Case Questions  204  •  The Queen Anne Curiosity Shop  205  •  Morgan 
Importing  207 

Chapter 4: Database Design Using Normalization  209

Chapter Objectives 209
Assess Table Structure 210
Designing Updatable Databases 211

Advantages and Disadvantages of Normalization 211  •  Functional Dependencies 212
•  Normalizing with SQL 212  •  Choosing Not to Use BCNF 213  •  Multivalued
Dependencies 214

Designing Read-Only Databases 214
Denormalization 215  •  Customized Duplicated Tables 215

Common Design Problems 217
The Multivalue, Multicolumn Problem 218  •  Inconsistent Values 219  •  Missing Values 220
•  The General-Purpose Remarks Column 221

Summary  222  •  Key Terms  222  •  Review Questions  223  •  Project Questions  225 
•  Case Questions  225  •  The Queen Anne Curiosity Shop  226  •  Morgan 
Importing  227 

Chapter 5: Data Modeling with the Entity-Relationship Model  228

Chapter Objectives 228
The Purpose of a Data Model 229
The Entity-Relationship Model 229

Entities 229  •  Attributes 230  •  Identifiers 230  •  Relationships 231  •  Maximum
Cardinality 233  •  Minimum Cardinality 234  •  Entity-Relationship Diagrams and
Their Versions 235  •  Variations of the E-R Model 235  •  E-R Diagrams Using the

 Contents 9

IE Crow’s Foot Model 236  •  Strong Entities and Weak Entities 238  •  ID-Dependent
Entities 238  •  Non-ID-Dependent Weak Entities 239  •  The Ambiguity of the Weak
Entity 240  •  Subtype Entities 240

Patterns in Forms, Reports, and E-R Models 243
Strong Entity Patterns 243  •  ID-Dependent Relationships 247  •  Mixed Identifying and
Nonidentifying Patterns 253  •  The For-Use-By Pattern 256  •  Recursive Patterns 257

The Data Modeling Process 260
The College Report 261  •  The Department Report 261  •  The Department/Major
Report 262  •  The Student Acceptance Letter 264

Summary  266  •  Key Terms  267  •  Review Questions  268  •  Project Questions  270 
•  Case Questions  276  •  The Queen Anne Curiosity Shop  278  •  Morgan 
Importing  279 

Chapter 6: Transforming Data Models into Database Designs  280

Chapter Objectives 280
The Purpose of a Database Design 281
Create a Table for Each Entity 281

Selecting the Primary Key 281  •  Specifying Alternate Keys 284  •  Specifying Column
Properties 284  •  Verify Normalization 291

Create Relationships 292
Relationships Between Strong Entities 292  •  Relationships Using ID-Dependent
Entities 295  •  Relationships with a Weak Non-ID-Dependent Entity 299  •  Relationships in
Mixed Entity Designs 300  •  Relationships Between Supertype and Subtype Entities 302
•  Recursive Relationships 303  •  Representing Ternary and Higher-Order Relationships 304
•  Relational Representation of the Highline University Data Model 306

Design for Minimum Cardinality 309
Actions when the Parent Is Required 310  •  Actions when the Child Is Required 311
•  Implementing Actions for M-O Relationships 312  •  Implementing Actions for O-M
Relationships 313  •  Implementing Actions for M-M Relationships 313  •  Designing Special
Case M-M Relationships 314  •  Documenting the Minimum Cardinality Design 314
•  An Additional Complication 315  •  Summary of Minimum Cardinality Design 316

The View Ridge Gallery Database 316
View Ridge Gallery Database Summary of Requirements 317  •  The View Ridge
Data Model 318  •  Database Design with Data Keys 319  •  Minimum Cardinality
Enforcement for Required Parents 320  •  Minimum Cardinality Enforcement for the Required
Child 321  •  Column Properties for the View Ridge Database Design Tables 323

Summary  325  •  Key Terms  327  •  Review Questions  327  •  Project Questions  329 
•  Case Questions  330  •  The Queen Anne Curiosity Shop  332  •  Morgan 
Importing  332 

Part 3  ■  Database Implementation 333

Chapter 7: SQL for Database Construction and Application 
Processing 334

Chapter Objectives 334
The Importance of Working with an Installed DBMS Product 335
The View Ridge Gallery Database 335
SQL DDL and DML 335
Managing Table Structure with SQL DDL 337

Creating the VRG Database 337  •  Using SQL Scripts 337  •  Using the SQL CREATE TABLE
Statement 338  •  Variations in SQL Data Types and SQL/PSM 339  •  Creating the VRG
Database ARTIST Table 339  •  Creating the VRG Database WORK Table and the 1:N ARTIST-
to-WORK Relationship 342  •  Implementing Required Parent Rows 343  •  Implementing
1:1 Relationships 344  •  Casual Relationships 344  •  Creating Default Values and Data

10 Contents

Constraints with SQL 344  •  Creating the VRG Database Tables 346  •  The SQL ALTER
TABLE Statement 349  •  The SQL DROP TABLE Statement 350  •  The SQL TRUNCATE
TABLE Statement 351  •  The SQL CREATE INDEX Statement 351

SQL DML Statements 352
The SQL INSERT Statement 352  •  Populating the VRG Database Tables 353  •  The SQL
UPDATE Statement 359  •  The SQL MERGE Statement 360  •  The SQL DELETE
Statement 361

Using SQL Views 361
Using SQL Views to Hide Columns and Rows 364  •  Using SQL Views to Display Results of
Computed Columns 366  •  Using SQL Views to Hide Complicated SQL Syntax 366  •  Layering
Built-in Functions 367  •  Using SQL Views for Isolation, Multiple Permissions, and Multiple
Triggers 369  •  Updating SQL Views 370

Embedding SQL in Program Code 371
SQL/Persistent Stored Modules (SQL/PSM) 373  •  Using SQL User-Defined
Functions 373  •  Using SQL Triggers 377  •  Using Stored Procedures 382  •  Comparing
User-Defined Functions, Triggers, and Stored Procedures 386

Summary  386  •  Key Terms  388  •  Review Questions  389  •  Project Questions  398 
•  Case Questions  401  •  The Queen Anne Curiosity Shop  415  •  Morgan 
Importing  422 

Chapter 8: Database Redesign  428

Chapter Objectives 428
The Need for Database Redesign 429
SQL Statements for Checking Functional Dependencies 429

What Is a Correlated Subquery? 430
How Do I Analyze an Existing Database? 435

Reverse Engineering 436  •  Dependency Graphs 437  •  Database Backup and Test
Databases 437

Changing Table Names and Table Columns 438
Changing Table Names 438  •  Adding and Dropping Columns 440  •  Changing a Column
Data Type or Column Constraints 441  •  Adding and Dropping Constraints 442

Changing Relationship Cardinalities 442
Changing Minimum Cardinalities 442  •  Changing Maximum Cardinalities 443

Adding and Deleting Tables and Relationships 446
Forward Engineering 446

Summary  447  •  Key Terms  448  •  Review Questions  448  •  Project Questions  450 
•  Case Questions  451  •  The Queen Anne Curiosity Shop  452  •  Morgan 
Importing 453

Part 4  ■  Multiuser Database Processing 455

Chapter 9: Managing Multiuser Databases 456

Chapter Objectives 456
The Importance of Working with an Installed DBMS Product 457
Database Administration 457

Managing the Database Structure 458
Concurrency Control 459

The Need for Atomic Transactions 460  •  Resource Locking 463  •  Optimistic Versus
Pessimistic Locking 465  •  SQL Transaction Control Language and Declaring Lock
Characteristics 466  •  Implicit and Explicit COMMIT TRANSACTION 467  •  Consistent
Transactions 468  •  Transaction Isolation Level 469  •  SQL Cursors 470

Database Security 472
Processing Rights and Responsibilities 472  •  DBMS Security 473  •  DBMS Security
Guidelines 474  •  Application Security 475  •  The SQL Injection Attack 476

 Contents 11

Database Backup and Recovery 477
Recovery via Reprocessing 477  •  Recovery via Rollback/Rollforward 478

Managing the DBMS 480
Maintaining the Data Repository 481

Summary  482  •  Key Terms  483  •  Review Questions  484  •  Project Questions  485 
•  Case Questions  486  •  The Queen Anne Curiosity Shop  487  •  Morgan 
Importing  488 

Chapter 10: Managing Databases with Microsoft SQL Server 2014, 
Oracle Database, and MySQL 5.6  490

Chapter Objectives 490
Installing the DBMS 491
Using the DBMS Database Administration and Database Development Utilities 492
Creating a Database 492
Creating and Running SQL Scripts 492
Reviewing the Database Structure in the DBMS GUI Utility 493
Creating and Populating the View Ridge Gallery VRG Database Tables 493
Creating SQL Views for the View Ridge Gallery VRG Database 493
Database Application Logic and SQL/Persistent Stored Modules (SQL/PSM) 493
DBMS Concurrency Control 494
DBMS Security 494
DBMS Database Backup and Recovery 494
Other DBMS Topics Not Discussed 494
Choose Your DBMS Product(s)! 494

Summary  495  •  Key Terms  496  •  Project Questions  496 

ONLINE ChAPTER: SEE PAgE 495 fOR INSTRUCTIONS

Chapter 10A: Managing Databases with Microsoft SQL Server 2014

Chapter Objectives
The Microsoft SQL Server 2014 DBMS
Installing Microsoft SQL Server 2014
Microsoft SQL Server 2014 Utilities

SQL CMD and Microsoft PowerShell •  Microsoft SQL CLR •  SQL Server 2014 Management
Studio

Creating a Microsoft SQL Server 2014 Database
Microsoft SQL Server 2014 SQL Statements and SQL Scripts

Using Existing SQL Scripts •  Using a Single SQL Script to Store Multiple SQL Commands
Creating and Implementing the View Ridge Gallery VRG Database in Microsoft
SQL Server 2014

Using SQL Scripts to Create and Populate Database Tables •  Creating the View Ridge
Database Table Structure •  Reviewing Database Structures in the SQL Server GUI
Display •  Indexes •  Populating the VRG Database Tables with Data •  Creating SQL Views

Importing Microsoft Excel Data into a Microsoft SQL Server Database Table
Microsoft SQL Server 2014 Application Logic

Transact-SQL •  User-Defined Functions •  Stored Procedures •  Triggers
Microsoft SQL Server 2014 Concurrency Control

Transaction Isolation Level •  Cursor Concurrency •  Locking Hints
Microsoft SQL Server 2014 Security

SQL Server Database Security Settings
Microsoft SQL Server 2014 Backup and Recovery

Backing Up a Database •  SQL Server Recovery Models •  Restoring a Database •  Database
Maintenance Plans

12 Contents

Topics Not Discussed in This Chapter

Summary  •  Key Terms  •  Review Questions  •  Project Questions  •  Case 
Questions  •  The Queen Anne Curiosity Shop  •  Morgan Importing 

ONLINE ChAPTER: SEE PAgE 495 fOR INSTRUCTIONS 

Chapter 10B: Managing Databases with Oracle Database

Chapter Objectives
The Oracle Corporation Oracle Database

Installing a Loopback Adapter •  Oracle Database, Java, JavaScript, and the Adobe Flash
Player •  Oracle Database Documentation

Installing Oracle Database 12c with the Oracle Universal Installer (OUI)
Installing Oracle Database Express Edition 11g Release 2 (Oracle Database XE)
Oracle Database Database Administration Tools

The Oracle Database 12c Configuration Assistant •  The Oracle Enterprise Manager Database
Express 12c Database Administration Utility •  The Oracle Database XE 11.2 Database
Administration Utility

Oracle Tablespaces
Oracle Database Security

User Privileges •  Creating a User Account •  Creating a Role
Oracle Database Application Development Tools

Oracle SQL*Plus •  Oracle SQL Developer •  Creating a Workspace for the SQL Developer
Files •  Oracle Database Schemas

Creating and Using a Oracle Database Database
Creating a Database in Oracle Database •  Oracle Database SQL Statements and SQL
Scripts •  Using Existing SQL Scripts •  Using a Single SQL Script to Store Multiple SQL
Commands

Implementing the View Ridge Gallery VRG Database in Oracle Database
Using SQL Scripts to Create and Populate Database Tables •  Creating the View Ridge Gallery
VRG Database Table Structure •  Transaction COMMIT in Oracle Database •  Reviewing
Database Structures in the SQL Developer GUI Display •  Indexes •  Populating the VRG
Tables •  Creating SQL Views

Importing Microsoft Excel Data into an Oracle Database Table
Oracle Database Application Logic

Oracle Database PL/SQL •  User-Defined Functions •  Stored Procedures •  Triggers
Oracle Database Concurrency Control

Read-Committed Transaction Isolation Level •  Serializable Transaction Isolation Level •  Read-
Only Transaction Isolation •  Additional Locking Comments

Oracle Database Backup and Recovery
Oracle Recovery Facilities •  Types of Failure

Topics Not Discussed in This Chapter

Summary  •  Key Terms  •  Review Questions  •  Project Questions  •  Case 
Questions  •  The Queen Anne Curiosity Shop  •  Morgan Importing 

ONLINE ChAPTER: SEE PAgE 495 fOR INSTRUCTIONS

Chapter 10C: Managing Databases with MySQL 5.6

Chapter Objectives
The Oracle MySQL 5.6 DBMS
Installing MySQL 5.6

Configuring Non-Windows Versions of MySQL Community Server •  MySQL Storage Engines
The MySQL Utilities

The MySQL Command-Line Client •  The MySQL Workbench GUI Utility •  Creating a
Workspace for the MySQL Workbench Files

 Contents 13

Creating and Using a MySQL Database
Creating a Database in MySQL •  Setting the Active Database in MySQL

MySQL SQL Statements and SQL Scripts
Using Existing SQL Scripts •  Using a Single SQL Script to Store Multiple SQL Commands

Implementing the View Ridge Gallery VRG Database in MySQL 5.6
Using SQL Scripts to Create and Populate Database Tables •  Creating the VRG
Database Table Structure •  Reviewing Database Structures in the MySQL GUI
Display •  Indexes •  Populating the VRG Tables with Data •  Transaction COMMIT in
MySQL •  Creating SQL Views

Importing Microsoft Excel Data into a MySQL 5.6 Database Table
MySQL Application Logic

MySQL SQL/PSM Procedural Statements •  User-Defined Functions •  Stored
Procedures •  Triggers •  A Last Word on MySQL Stored Procedures and Triggers

Concurrency Control
MySQL 5.6 Security

MySQL Database Security Settings
MySQL 5.6 DBMS Backup and Recovery

Backing Up a MySQL Database •  Restoring a MySQL Database
Topics Not Discussed in This Chapter

Summary  •  Key Terms  •  Review Questions  •  Project Questions  •  Case 
Questions  •  The Queen Anne Curiosity Shop  •  Morgan Importing 

Part 5  ■  Database Access Standards 497

Chapter 11: The Web Server Environment  498

Chapter Objectives 498
A Web Database Application for the View Ridge Gallery 500
The Web Database Processing Environment 501
Database Server Access Standards 502
The ODBC Standard 503

ODBC Architecture 504  •  Conformance Levels 505  •  Creating an ODBC Data Source
Name 506

The Microsoft .NET Framework and ADO.NET 512
OLE DB 514  •  ADO and ADO.NET 517  •  The ADO.NET Object Model 518

The Java Platform 522
JDBC 522  •  Java Server Pages (JSP) and Servlets 524  •  Apache Tomcat 525

Web Database Processing with PHP 526
Web Database Processing with PHP and the NetBeans IDE 527  •  Getting Started with
HTML Web Pages 529  •  The index.html Web Page 530  •  Creating the index.html Web
Page 530  •  Using PHP 532

Web Page Examples with PHP 539
Example 1: Updating a Table 540  •  Example 2: Using PHP Data Objects
(PDO) 545  •  Example 3: Invoking a Stored Procedure 545  •  Challenges for Web Database
Processing 551  •  SQL Injection Attacks 552

Extensible Markup Language (XML) 552
The Importance of XML 552  •  XML as a Markup Language 553

Creating XML Documents from Database Data 554
Using the SQL SELECT . . . FOR XML Statement 554

Summary  556  •  Key Terms  557  •  Review Questions  558  •  Project Questions  561 
•  Case Questions  563  •  The Queen Anne Curiosity Shop  563  •  Morgan 
Importing 564

14 Contents

Appendices

ONLINE APPENDICES: SEE PAgE 610 fOR INSTRUCTIONS

Appendix A: getting Started with Microsoft Access 2013
Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use Microsoft Access 2013?
What Will This Appendix Teach Me?
What Is a Table Key?
Relationships Among Tables
Creating a Microsoft Access Database
The Microsoft Office Fluent User Interface

The Ribbon and Command Tabs  •  Contextual Command Tabs  •  Modifying the Quick Access
Toolbar  •  Database Objects and the Navigation Pane

Closing a Database and Exiting Microsoft Access
Opening an Existing Microsoft Access Database
Creating Microsoft Access Database Tables
Inserting Data into Tables—The Datasheet View

Modifying and Deleting Data in Tables in the Datasheet View
Creating Relationships Between Tables
Working with Microsoft Access Queries
Microsoft Access Forms and Reports
Closing a Database and Exiting Microsoft Access 2013

Key Terms  •  Review Questions 

Chapter 12: Big Data, Data Warehouses, and Business 
Intelligence Systems 565

Chapter Objectives 565
Business Intelligence Systems 567
The Relationship Between Operational and BI Systems 567
Reporting Systems and Data Mining Applications 567

Reporting Systems 567  •  Data Mining Applications 568
Data Warehouses and Data Marts 568

Components of a Data Warehouse 569  •  Data Warehouses Versus Data Marts 571
•  Dimensional Databases 573

Reporting Systems 580
RFM Analysis 580  •  OLAP 582

Data Mining 591
Distributed Database Processing 592

Types of Distributed Databases 592  •  Challenges of Distributed Databases 593
Object-Relational Databases 594
Virtualization 595
Cloud Computing 596
Big Data and the Not Only SQL Movement 598

Column Family Databases 598  •  MapReduce 601  •  Hadoop 602

Summary  602  •  Key Terms  603  •  Review Questions  604  •  Project Questions  606 
•  Case Questions  607  •  The Queen Anne Curiosity Shop  608  •  Morgan 
Importing 609

 Contents 15

Appendix B: getting Started with Systems Analysis and Design

Chapter Objectives
What Is the Purpose of This Appendix?
What Is Information?
What Is an Information System?
What Is a Competitive Strategy?
How Does a Company Organize Itself Based on Its Competitive Strategy?
What Is a Business Process?
How Do Information Systems Support Business Processes?
Do Information Systems Include Processes?
Do We Have to Understand Business Processes in Order to Create Information Systems?
What Is Systems Analysis and Design?
What Are the Steps in the SDLC?

The System Definition Step  •  The Requirements Analysis Step  •  The Component Design
Step  •  The Implementation Step  •  The System Maintenance Step

What SDLC Details Do We Need to Know?
What Is Business Process Modeling Notation?
What Is Project Scope?
How Do I Gather Data and Information About System Requirements?
How Do Use Cases Provide Data and Information About System Requirements?
The Highline University Database

The College Report  •  The Department Report  •  The Department/Major Report
•  The Student Acceptance Letter

What Are Business Rules?
What Is a User Requirements Document (URD)?
What Is a Statement of Work (SOW)?

Key Terms  •  Review Questions  •  Project Questions 

Appendix C: E-R Diagrams and the IDEf1X Standard

Chapter Objectives
IDEF1X Entities
IDEF1X Relationships

Nonidentifying Connection Relationships  •  Identifying Connection Relationships  •  Nonspecific
Relationships  •  Categorization Relationships

Domains
Domains Reduce Ambiguity  •  Domains Are Useful  •  Base Domains and Typed Domains

Key Terms  •  Review Questions 

Appendix D: E-R Diagrams and the UML Standard

Chapter Objectives
UML Entities and Relationships
Representation of Weak Entities
Representation of Subtypes
OOP Constructs Introduced by UML
The Role of UML in Database Processing Today

Key Terms  •  Review Questions 

16 Contents

Appendix E: getting Started with the MySQL Workbench Data 
Modeling Tools

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use the MySQL Workbench Data Modeling Tools?
What Will This Appendix Teach Me?
What Won’t This Appendix Teach Me?
How Do I Start the MySQL Workbench?
How Do I Create a Workspace for the MySQL Workbench Files?
How Do I Install the MySQL Connector/ODBC?
How Do I Create Database Designs in the MySQL Workbench?
How Do I Create a Database Model and E-R Diagram in the MySQL Workbench?

Key Terms  •  Review Questions  •  Project Questions 

Appendix f: getting Started with Microsoft Visio 2013

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use Microsoft Visio 2013?
What Will This Appendix Teach Me?
What Won’t This Appendix Teach Me?
How Do I Start Microsoft Visio 2013?
How Do I Create a Database Model Diagram in Microsoft Visio 2013?
How Do I Name and Save a Database Model Diagram in Microsoft Visio 2013?
How Do I Create Entities/Tables in a Database Model Diagram in Microsoft
Visio 2013?
How Do I Create Relationships Between Tables in a Database Model Diagram
in Microsoft Visio 2013?

Key Terms  •  Review Questions  •  Project Questions 

Appendix G: Data Structures for Database Processing

Chapter Objectives
What Is the Purpose of This Appendix?
What Will This Appendix Teach Me?
What Are Flat Files?

Processing Flat Files in Multiple Orders •  A Note on Record Addressing  •  How Can Linked Lists
Be Used to Maintain Logical Record Order? • How Can Indexes Be Used to Maintain Logical
Record Order? •  B-Trees •  Summary of Data Structures

How Can We Represent Binary Relationships?
A Review of Record Relationships •  How Can We Represent Trees? •  How Can We Represent
Simple Networks? •  How Can We Represent Complex Networks? •  Summary of Relationship
Representations

How Can We Represent Secondary Keys?
How Can We Represent Secondary Keys with Linked-Lists? •  How Can We Represent Secondary
Keys with Indexes?

Key Terms  •  Review Questions 

Appendix h: The Semantic Object Model

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use the Semantic Object Model?

 Contents 17

What Will This Appendix Teach Me?
What Are Semantic Objects?
What Semantic Objects Are Used in the Semantic Object Model?

What Are Semantic Object Attributes? •  What Are Object Identifiers? •  What Are Attribute
Domains? •  What Are Semantic Object Views?

What Types of Objects Are Used in the Semantic Object Model?
What Are Simple Objects? •  What Are Composite Objects? •  What Are Compound
Objects? •  How Do We Represent One-to-One Compound Objects as Relational
Structures? •  How Do We Represent One-to-Many and Many-to-One Relationships as Relational
Structures? •  How Do We Represent Many-to-Many Relationship Objects as Relational
Structures? •  What Are Hybrid Objects? •  How Do We Represent Hybrid Object Relationships
as Relational Structures? •  What Are Association Objects? •  What Are Parent/Subtype
Objects? •  What Are Archetype/Version Objects?

Comparing the Semantic Object and the E-R Models

Key Terms  •  Review Questions  

Appendix I: getting Started with Web Servers, PhP, 
and the NetBeans IDE

Chapter Objectives
What Is the Purpose of This Appendix?
How Do I Install a Web Server?
How Do I Set Up IIS in Windows 8.1?
How Do I Manage IIS in Windows 8.1?
How Is a Web Site Structured?
How Do I View a Web Page from the IIS Web Server?
How Is Web Site Security Managed?
What Is the NetBeans IDE?
How Do I Install the NetBeans IDE?
What Is PHP?
How Do I Install PHP?
How Do I Create a Web Page Using the NetBeans IDE
How Do I Manage the PHP Configuration?

Key Terms  •  Review Questions  •  Project Questions 

Appendix J: Business Intelligence Systems

Chapter Objectives
What Is the Purpose of This Appendix?
Business Intelligence Systems
Reporting Systems and Data Mining Applications

Reporting Systems  •  Data Mining Applications
The Components of a Data Warehouse

Data Warehouses and Data Marts  •  Data Warehouses and Dimensional Databases
Reporting Systems

RFM Analysis  •  Producing the RFM Report  •  Reporting System Components  •  Report
Types  •  Report Media  •  Report Modes  •  Report System Functions  •  OLAP

Data Mining
Unsupervised Data Mining  •  Supervised Data Mining  •  Three Popular Data Mining
Techniques  •  Market Basket Analysis  •  Using SQL for Market Basket Analysis

Key Terms  •  Review Questions  •  Project Questions 

18 Contents

Bibliography 611
Glossary 613
Index 628

Appendix K: Big Data

Chapter Objectives
What Is the Purpose of This Appendix?
What Is Big Data?
The Three Vs and the “Wanna Vs”
Big Data and NoSQL Systems
The CAP Theorem
Extensible Markup Language (XML)

XML as a Markup Language  •  XML Schema  •  Creating XML Documents from Database
Data  •  Why Is XML Important?  •  Additional XML Standards

Non-Relational Database Management Systems
Key Value Databases  •  Document Databases  •  Column Family Databases  •  Graph
Databases

Big Data, NoSQL Systems, and the Future

Key Terms  •  Review Questions  •  Project Questions 

19

The 14th Global Edition of Database Processing: Fundamentals, Design, and Implementation refines
the organization and content of this classic textbook to reflect a new teaching and professional
workplace environment. Students and other readers of this book will benefit from new con-
tent and features in this edition.

Preface

New to This Edition

Content and features new to the 14th Global Edition of Database Processing: Fundamentals,
Design, and Implementation include the following:

■■ The SQL topics in Chapter 2 have been reorganized and expanded to provide a
more concise presentation of SQL queries. New material on SQL set operators
(UNION, INTERSECTION, and EXCEPT) has been added to ensure that nearly all
SQL query topics are covered in one chapter (the exception is correlated subqueries,
which are still reserved for Chapter 8).

■■ The material on Big Data and the evolving NoSQL movement is summarized in
Chapter 12 and then expanded upon in a new Appendix K—Big Data. This is an
important topic that is constantly developing and changing, and the new appendix
provides room for an extended discussion of the topic. Material on virtualization and
cloud computing is updated in Chapter 12.

■■ Online chapters on Microsoft SQL Server 2014 (Chapter 10A), Oracle Database
(Chapter 10B), and MySQL 5.6 (Chapter 10C) now have a section on importing data
from Microsoft Excel 2013 worksheets.

■■ The book has been updated to reflect the use of Microsoft SQL Server 2014, the cur-
rent version of Microsoft SQL Server. Although most of the topics covered are back-
ward compatible with Microsoft SQL Server 2012 and Microsoft SQL Server 2008
R2 Express edition, all material in the book now uses SQL Server 2014 in conjunc-
tion with Office 2013 exclusively.

■■ Oracle’s Oracle Database is now updated to Oracle Database 12c, and Oracle
Database Express Edition 11g Release 2 (Oracle Database XE) is introduced as the
preferred Oracle Database product for use on personal computers. The current ver-
sion of the Oracle SQL Developer GUI tool provides a common interface to both
versions of Oracle Database, and we provide detailed examples of how to use it.

■■ Microsoft Windows Server 2012 R2 is the server operating system and Windows
8.1 is the workstation operating system generally discussed and illustrated in the text.
These are the current Microsoft server and workstation operating systems.

■■ We have updated online Appendix I—Getting Started with Web Servers, PHP and the
NetBeans IDE. We are now using the NetBeans IDE instead of the Eclipse PDT
IDE. This provides a better development environment with a much simpler set
of product installations because the Java JDK and NetBeans are installed in one
combined installation. This new material provides a simplified (but still detailed)
introduction to the installation and use of the Microsoft IIS Web server, PHP, the
Java JDK, and the NetBeans in Appendix I. All of these tools are then used for Web
database application development as discussed in Chapter 11.

20 Preface

With today’s technology, it is impossible to utilize a DBMS successfully without first learn-
ing fundamental concepts. After years of developing databases with business users, we have
developed what we believe to be a set of essential database concepts. These are augmented
by the concepts necessitated by the increasing use of the Internet, the World Wide Web, and
commonly available analysis tools. Thus, the organization and topic selection of the 14th
Global Edition are designed to:

■■ Present an early introduction to SQL queries.
■■ Use a “spiral approach” to database design.
■■ Use a consistent, generic Information Engineering (IE) Crow’s Foot E-R diagram

 notation for data modeling and database design.
■■ Provide a detailed discussion of specific normal forms within a discussion of normal-

ization that focuses on pragmatic normalization techniques.
■■ Use current DBMS technology: Microsoft Access 2013, Microsoft SQL Server 2014,

Oracle Database 12c (and alternately Oracle Database Express Edition 11g Release 2),
and MySQL 5.6.

■■ Create Web database applications based on widely used Web development
technology.

■■ Provide an introduction to business intelligence (BI) systems.
■■ Discuss the dimensional database concepts used in database designs for data

 warehouses and online analytical processing (OLAP).
■■ Discuss the emerging and important topics of server virtualization, cloud computing,

Big Data, and the NoSQL (Not only SQL) movement.

These changes have been made because it has become obvious that the basic structure of
the earlier editions (up to and including the 9th edition—the 10th edition introduced many of
the changes we used in the 11th, 12th, and 13th editions and retain in the 14th edition) was
designed for a teaching environment that no longer exists. The structural changes to the book
were made for several reasons:

■■ Unlike the early years of database processing, today’s students have ready access to
data modeling and DBMS products.

■■ Today’s students are too impatient to start a class with lengthy conceptual discussions
on data modeling and database design. They want to do something, see a result, and
obtain feedback.

■■ In the current economy, students need to reassure themselves that they are learning
marketable skills.

Early Introduction of SQL DML

Given these changes in the classroom environment, this book provides an early introduction to
SQL data manipulation language (DML) SELECT statements. The discussion of SQL data defini-
tion language (DDL) and additional DML statements occurs in Chapters 7 and 8. By encounter-
ing SQL SELECT statements in Chapter 2, students learn early in the class how to query data and
obtain results, seeing firsthand some of the ways that database technology will be useful to them.

The text assumes that students will work through the SQL statements and examples with
a DBMS product. This is practical today because nearly every student has access to Microsoft
Access. Therefore, Chapters 1 and 2 and Appendix A—Getting Started with Microsoft Access 2013,
are written to support an early introduction of Microsoft Access 2013 and the use of Microsoft
Access 2013 for SQL queries (Microsoft Access 2013 QBE query techniques are also covered).

If a non–Microsoft Access–based approach is desired, versions of Microsoft SQL Server
2014, Oracle Database, and MySQL 5.6 are readily available for use. Free versions of the
three major DBMS products covered in this book (SQL Server 2014 Express Edition, Oracle
Database Express Edition 11g Release 2 (Oracle Database XE), and MySQL 5.6 Community
Edition) are available for download. Thus, students can actively use a DBMS product by the
end of the first week of class.

fundamentals, Design, and Implementation

 Preface 21

By ThE WAy The presentation and discussion of SQL are spread over four chapters so
students can learn about this important topic in small bites. SQL SELECT

statements are taught in Chapter 2. SQL data definition language (DDL) and SQL data
manipulation language (DML) statements are presented in Chapter 7. Correlated sub-
queries and EXISTS/NOT EXISTS statements are described in Chapter 8, while SQL
transaction control language (TCL) and SQL data control language (DCL) are discussed
in Chapter 9. Each topic appears in the context of accomplishing practical tasks.
Correlated subqueries, for example, are used to verify functional dependency assump-
tions, a necessary task for database redesign.

This box illustrates another feature used in this book: BY THE WAY boxes are used to
separate comments from the text discussion. Sometimes they present ancillary material;
other times they reinforce important concepts.

A Spiral Approach to the Database Design Process

Today, databases arise from three sources: (1) from the need to integrate existing data from
spreadsheets, data files, and database extracts; (2) from the need to develop new information
systems projects; and (3) from the need to redesign an existing database to adapt to changing
requirements. We believe that the fact that these three sources exist presents instructors with
a significant pedagogical opportunity. Rather than teach database design just once from data
models, why not teach database design three times, once for each of these sources? In prac-
tice, this idea has turned out to be even more successful than expected.

Database Design Iteration 1: Databases from Existing Data
Considering the design of databases from existing data, if someone were to email us a set of
tables and say, “Create a database from them,” how would we proceed? We would examine
the tables in light of normalization criteria and then determine whether the new database
was for a production system that allows new data to be inserted for each new transaction,
or for a business intelligence (BI) data warehouse that allow users to only query data for
use in reports and data analysis. Depending on the answer, we would normalize the data,
pulling them apart (for the production transaction processing system), or denormalize the
data, joining them together (for the BI system data warehouse). All of this is important for
students to know and understand.

Therefore, the first iteration of database design gives instructors a rich opportunity
to teach normalization, not as a set of theoretical concepts but rather as a useful toolkit
for making design decisions for databases created from existing data. Additionally, the
construction of databases from existing data is an increasingly common task that is often
assigned to junior staff members. Learning how to apply normalization to the design of
 databases from existing data not only provides an interesting way of teaching normalization,
it is also common and useful!

We prefer to teach and use a pragmatic approach to normalization and present this
approach in Chapter 3. However, we are aware that many instructors like to teach nor-
malization in the context of a step-by-step normal form presentation (1NF, 2NF, 3NF, then
BCNF), and Chapter 3 now includes additional material to provide more support for this
approach as well.

In today’s workplace, large organizations are increasingly licensing standardized soft-
ware from vendors such as SAP, Oracle, and Siebel. Such software already has a database
 design. But with every organization running the same software, many are learning that they
can gain a competitive advantage only if they make better use of the data in those prede-
signed databases. Hence, students who know how to extract data and create read-only data-
bases for reporting and data mining have obtained marketable skills in the world of ERP and
other packaged software solutions.

Database Design Iteration 2: Data Modeling and Database Design
The second source of databases is from new systems development. Although not as com-
mon as in the past, many databases are still created from scratch. Thus, students still need to

22 Preface

learn data modeling, and they still need to learn how to transform data models into database
 designs that are then implemented in a DBMS product.

The IE Crow’s Foot Model as a Design Standard

This edition uses a generic, standard IE Crow’s Foot notation. Your students should have no
trouble understanding the symbols and using the data modeling or database design tool of
your choice.

IDEF1X (which was used as the preferred E-R diagram notation in the 9th edition of
this text) is explained in Appendix C—E-R Diagrams and the IDEF1X Standard, in case your
students will graduate into an environment where it is used or if you prefer to use it in your
classes. UML is explained in Appendix D—E-R Diagrams and the UML Standard, in case you
prefer to use UML in your classes.

By ThE WAy The choice of a data modeling tool is somewhat problematic. Of the two
most readily available tools, Microsoft Visio 2013 has been rewritten as a

very rudimentary database design tool, while Oracle’s MySQL Workbench is a data-
base design tool, not a data modeling tool. MySQL Workbench cannot produce an N:M
relationship as such (as a data model requires) but has to immediately break it into two
1:N relationships (as database design does). Therefore, the intersection table must be
constructed and modeled. This confounds data modeling with database design in just
the way that we are attempting to teach students to avoid.

To be fair to Microsoft Visio 2013, it is true that data models with N:M relationships
can be drawn using the standard Microsoft Visio 2013 drawing tools. Unfortunately,
Microsoft has chosen to remove many of the best database design tools that were in
Microsoft Visio 2010, and Microsoft Visio 2013 lacks the tools that made it a favorite of
Microsoft Access and Microsoft SQL Server users. For a full discussion of these tools,
see Appendix E—Getting Started with the MySQL Workbench Data Modeling Tools,
and Appendix F—Getting Started with Microsoft Visio 2013.

Good data modeling tools are available, but they tend to be more complex and
expensive. Two examples are Visible Systems’ Visible Analyst and CA Technologies’ CA
ERwin Data Modeler. Visible Analyst is available in a student edition (at a modest price),
and a one-year time-limited CA Technologies’ ERwin Data Modeler Community Edition
suitable for class use can be downloaded from http://erwin.com/products/data-modeler/
community-edition. CA Technologies has limited the number of objects that can be
 created by this edition to 25 entities per model and disabled some other features (see
http://erwin.com/content/products/CA-ERwin-r9-Community-Edition-Matrix-na.pdf), but
there is still enough functionality to make this product a possible choice for class use.

Database Design from E-R Data Models

As we discuss in Chapter 6, designing a database from data models consists of three tasks:
 representing entities and attributes with tables and columns; representing maximum cardinal-
ity by creating and placing foreign keys; and representing minimum cardinality via constraints,
triggers, and application logic.

The first two tasks are straightforward. However, designs for minimum cardinality are more
difficult. Required parents are easily enforced using NOT NULL foreign keys and referential
integrity constraints. Required children are more problematic. In this book, however, we simplify
the discussion of this topic by limiting the use of referential integrity actions and by supplement-
ing those actions with design documentation. See the discussion around Figure 6-29.

Although the design for required children is complicated, it is important for students to
learn. It also provides a reason for students to learn about triggers as well. In any case, the dis-
cussion of these topics is much simpler than it was in prior editions because of the use of the
IE Crow’s Foot model and ancillary design documentation.

http://erwin.com/products/data-modeler/community-edition
http://erwin.com/products/data-modeler/community-edition
http://erwin.com/content/products/CA-ERwin-r9-Community-Edition-Matrix-na.pdf

 Preface 23

Database Design Iteration 3: Database Redesign
Database redesign, the third iteration of database design, is both common and difficult. As
stated in Chapter 8, information systems cause organizational change. New information sys-
tems give users new behaviors, and as users behave in new ways, they require changes in their
information systems.

Database redesign is by nature complex. Depending on your students, you may wish to
skip it, and you can do so without loss of continuity. Database redesign is presented after the
discussion of SQL DDL and DML in Chapter 7 because it requires the use of advanced SQL.
It also provides a practical reason to teach correlated subqueries and EXISTS/NOT EXISTS
statements.

Active Use of a DBMS Product

We assume that students will actively use a DBMS product. The only real question becomes
“which one?” Realistically, most of us have four alternatives to consider: Microsoft Access,
Microsoft SQL Server, Oracle Database, and MySQL. You can use any of those products with
this text, and tutorials for each of them are presented for Microsoft Access 2013 (Appendix A),
SQL Server 2014 (Chapter 10A), Oracle Database 12c and Oracle Database Express Edition
11g Release 2 (Chapter 10B), and MySQL 5.6 (Chapter 10C). Given the limitations of class
time, it is probably necessary to pick and use just one of these products. You can often devote a
portion of a lecture to discussing the characteristics of each, but it is usually best to limit student
work to one of them. The possible exception to this is starting the course with Microsoft Access
and then switching to a more robust DBMS product later in the course.

Using Microsoft Access 2013
The primary advantage of Microsoft Access is accessibility. Most students already have a copy,
and, if not, copies are easily obtained. Many students will have used Microsoft Access in their
introductory or other classes. Appendix A—Getting Started with Microsoft Access 2013 is a tuto-
rial on Microsoft Access 2013 for students who have not used it but who wish to use it with
this book.

However, Microsoft Access has several disadvantages. First, as explained in Chapter 1,
Microsoft Access is a combination application generator and DBMS. Microsoft Access con-
fuses students because it confounds database processing with application development. Also,
Microsoft Access 2013 hides SQL behind its query processor and makes SQL appear as an
afterthought rather than a foundation. Furthermore, as discussed in Chapter 2, Microsoft
Access 2013 does not correctly process some of the basic SQL-92 standard statements in its
default setup. Finally, Microsoft Access 2013 does not support triggers. You can simulate trig-
gers by trapping Windows events, but that technique is nonstandard and does not effectively
communicate the nature of trigger processing.

Using Microsoft SQL Server 2014, Oracle Database, or MySQL 5.6
Choosing which of these products to use depends on your local situation. Oracle Database
12c, a superb enterprise-class DBMS product, is difficult to install and administer.
However, if you have local staff to support your students, it can be an excellent choice.
Fortunately, Oracle Database Express Edition 11g Release 2, commonly referred to as
Oracle Database XE, is easy to install, easy to use, and freely downloadable. If you want

By ThE WAy David Kroenke is the creator of the semantic object model (SOM). The
SOM is presented in Appendix H—The Semantic Object Model. The E-R

data model is used everywhere else in the text.

Database Implementation from Database Designs

Of course, to complete the process, a database design must be implemented in a DBMS
 product. This is discussed in Chapter 7, where we introduce SQL DDL for creating tables and
SQL DML for populating the tables with data.

24 Preface

your students to be able to install Oracle Database on their own computers, use Oracle
Database XE. As shown in Chapter 10B, Oracle’s SQL Developer GUI tool (or SQL*Plus
if you are dedicated to this beloved command-line tool) is a handy tool for learning SQL,
triggers, and stored procedures.

Microsoft SQL Server 2014, although probably not as robust as Oracle Database, is easy
to install on Windows machines, and it provides the capabilities of an enterprise-class DBMS
product. The standard database administrator tool is the Microsoft SQL Server Management
Studio GUI tool. As shown in Chapter 10A, SQL Server 2014 can be used to learn SQL, trig-
gers, and stored procedures.

MySQL 5.6, discussed in Chapter 10C, is an open source DBMS product that is receiv-
ing increased attention and market share. The capabilities of MySQL are continually being
upgraded, and MySQL 5.6 supports stored procedures and triggers. MySQL also has excel-
lent GUI tools in the MySQL Workbench and an excellent command-line tool (the MySQL
Command Line Client). It is the easiest of the three products for students to install on their
own computers. It also works with the Linux operating system and is popular as part of the
AMP (Apache–MySQL–PHP) package (known as WAMP on Windows and LAMP on Linux).

By ThE WAy If the DBMS you use is not driven by local circumstances and you do have
a choice, we recommend using Microsoft SQL Server 2014. It has all of the

features of an enterprise-class DBMS product, and it is easy to install and use. Another
option is to start with Microsoft Access 2013 if it is available and switch to SQL Server
2014 at Chapter 7. Chapters 1 and 2 and Appendix A are written specifically to support
this approach. A variant is to use Microsoft Access 2013 as the development tool for
forms and reports running against an SQL Server 2014 database.

If you prefer a different DBMS product, you can still start with Microsoft Access
2013 and switch later in the course. See the detailed discussion of the available DBMS
products in Chapter 10 for a good review of your options.

focus on Database Application Processing

In this edition, we clearly draw the line between application development per se and database
 application processing. Specifically, we have:

■■ Focused on specific database dependent applications:
■■ Web-based, database-driven applications
■■ XML-based data processing
■■ Business intelligence (BI) systems applications

■■ Emphasized the use of commonly available, multiple-OS-compatible application
deve lopment languages.

■■ Limited the use of specialized vendor-specific tools and programming languages as
much as possible.

There is simply not enough room in this book to provide even a basic introduction to pro-
gramming languages used for application development such as the Microsoft .NET languages
and Java. Therefore, rather than attempting to introduce these languages, we leave them
for other classes where they can be covered at an appropriate depth. Instead, we focus on

By ThE WAy Because we only present currently available software products in this
book, we cover My SQL 5.6 instead of MySQL 5.7. However, MySQL 5.7 is

currently in release candidate status, which means that it will be generally available in
the near future. All discussion of MySQL 5.6 in this book will also apply to MySQL 5.7.

 Preface 25

By ThE WAy Although we try to use widely available software as much as possible,
there are, of course, exceptions where we must use vendor-specific tools.

For BI applications, for example, we draw on Microsoft Excel’s PivotTable capabilities
and the Microsoft PowerPivot for Microsoft Excel 2013 add-in and on the Microsoft
SQL Server 2012 R2 Data Mining Add-ins for Microsoft Office. However, either alterna-
tives to these tools are available (OpenOffice.org DataPilot capabilities, the Palo OLAP
Server) or the tools are generally available for download.

Business Intelligence Systems and Dimensional Databases

This edition maintains coverage of business intelligence (BI) systems (Chapter 12 and
Appendix J). The chapter includes a discussion of dimensional databases, which are the
underlying structure for data warehouses, data marts, and OLAP servers. It still covers data
management for data warehouses and data marts and also describes reporting and data min-
ing applications, including OLAP.

Appendix J includes in-depth coverage of two applications that should be particularly in-
teresting to students. The first is RFM analysis, a reporting application frequently used by mail
order and e-commerce companies. The complete RFM analysis is accomplished in Appendix
J through the use of standard SQL statements. This chapter can be assigned at any point after
Chapter 8 and could be used as a motivator to illustrate the practical applications of SQL mid-
course. Finally, Appendix K provides additional material on Big Data and NoSQL databases to
supplement and support Chapter 12.

Overview of the Chapters in the 14th global Edition

Chapter 1 sets the stage by introducing database processing, describing basic components of
database systems, and summarizing the history of database processing. If students are using
Microsoft Access 2013 for the first time (or need a good review), they will also need to study
Appendix A—Getting Started with Microsoft Access 2013 at this point. Chapter 2 presents SQL
SELECT statements. It also includes sections on how to submit SQL statements to Microsoft
Access 2013, SQL Server 2014, Oracle Database, and MySQL 5.6.

The next four chapters, Chapters 3 through 6, present the first two iterations of database
design. Chapter 3 presents the principles of normalization to Boyce-Codd normal form
(BCNF). It describes the problems of multivalued dependencies and explains how to elimi-
nate them. This foundation in normalization is applied in Chapter 4 to the design of data-
bases from existing data.

Chapters 5 and 6 describe the design of new databases. Chapter 5 presents the E-R data
model. Traditional E-R symbols are explained, but the majority of the chapter uses IE Crow’s
Foot notation. Chapter 5 provides a taxonomy of entity types, including strong, ID-dependent,
weak but not ID-dependent, supertype/subtype, and recursive. The chapter concludes with a
simple modeling example for a university database.

Chapter 6 describes the transformation of data models into database designs by converting
entities and attributes to tables and columns, by representing maximum cardinality by creat-
ing and placing foreign keys, and by representing minimum cardinality via carefully designed
DBMS constraints, triggers, and application code. The primary section of this chapter parallels
the entity taxonomy in Chapter 5.

basic tools that are relatively straightforward to learn and immediately applicable to database-
driven applications. We use PHP as our Web development language, and we use the readily
available NetBeans integrated development environment (IDE) as our development tool. The
result is a very focused final section of the book, where we deal specifically with the interface
between databases and the applications that use them.

26 Preface

Chapter 7 presents SQL DDL, DML, and SQL/Persistent Stored Modules (SQL/PSM).
SQL DDL is used to implement the design of an example introduced in Chapter 6. INSERT,
UPDATE, MERGE, and DELETE statements are discussed, as are SQL views. Additionally,
the principles of embedding SQL in program code are presented, SQL/PSM is discussed, and
triggers and stored procedures are explained.

Database redesign, the third iteration of database design, is described in Chapter 8. This
chapter presents SQL statements using correlated subqueries and the SQL EXIST and NOT
EXISTS operators, and uses these statements in the redesign process. Reverse engineering is
described, and basic redesign patterns are illustrated and discussed.

Chapters 9, 10, 10A, 10B, and 10C consider the management of multiuser organi-
zational databases. Chapter 9 describes database administration tasks, including concur-
rency, security, and backup and recovery. Chapter 10 is a general introduction to the online
Chapters 10A, 10B, and 10C, which describe SQL Server 2014, Oracle Database (both
Oracle Database 12c and Oracle Database XE), and MySQL 5.6, respectively. These chapters
show how to use these specific products to create database structures and process SQL state-
ments. They also explain concurrency, security, and backup and recovery with each product.
The discussion in Chapters 10A, 10B, and 10C parallels the order of discussion in Chapter 9
as much as possible, though rearrangements of some topics are made, as needed, to support
the discussion of a specific DBMS product.

By ThE WAy We have maintained or extended our coverage of Microsoft Access,
Microsoft SQL Server, Oracle Database, and MySQL (introduced in Database

Processing: Fundamentals, Design, and Implementation, 11th edition) in this book. In
order to keep the bound book to a reasonable length and to keep the cost of the book
down, we have chosen to provide some material by download from our Web site at www.
pearsonglobaleditions.com/kroenke. There you will find:

■■ Chapter 10A—Managing Databases with Microsoft SQL Server 2014
■■ Chapter 10B—Managing Databases with Oracle Database
■■ Chapter 10C—Managing Databases with MySQL 5.6
■■ Appendix A—Getting Started with Microsoft Access 2013
■■ Appendix B—Getting Started with Systems Analysis and Design
■■ Appendix C—E-R Diagrams and the IDEF1X Standard
■■ Appendix D—E-R Diagrams and the UML Standard
■■ Appendix E—Getting Started with MySQL Workbench Data Modeling Tools
■■ Appendix F—Getting Started with Microsoft Visio 2013
■■ Appendix G—Data Structures for Database Processing
■■ Appendix H—The Semantic Object Model
■■ Appendix I—Getting Started with Web Servers, PHP, and the NetBeans IDE
■■ Appendix J—Business Intelligence Systems
■■ Appendix K—Big Data

Chapters 11 and 12 address standards for accessing databases. Chapter 11 presents
ODBC, OLE DB, ADO.NET, ASP.NET, JDBC, and JavaServer Pages (JSP). It then introduces
PHP (and the NetBeans IDE) and illustrates the use of PHP for the publication of databases
via Web pages. This is followed by a description of the integration of XML and database tech-
nology. The chapter begins with a primer on XML and then shows how to use the FOR XML
SQL statement in SQL Server.

Chapter 12 concludes the text with a discussion of BI systems, dimensional data models,
data warehouses, data marts, server virtualization, cloud computing, Big Data, structured stor-
age, and the Not only SQL movement.

http://www.pearsonglobaleditions.com/kroenke
http://www.pearsonglobaleditions.com/kroenke

 Preface 27

Supplements

This text is accompanied by a wide variety of supplements. Please visit the text’s Web site at www.
pearsonglobaleditions.com/kroenke to access the instructor and student supplements described
below. Please contact your Pearson sales representative for more details. All supplements
were written by David Auer, Scott Vandenberg, Bob Yoder, and Darren Lim.

for Students

Many of the sample databases used in this text are available online in Microsoft Access,
Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6 formats.

for Instructors

At the Instructor Resource Center, www.pearsonglobaleditions.com/Kroenke, instructors can access
a variety of print, digital, and presentation resources available with this text in downloadable
format. Registration is simple and gives instructors immediate access to new titles and new
editions. As a registered faculty member, you can download resource files and receive im-
mediate access to and instructions for installing course management content on your campus
server. In case you ever need assistance, our dedicated technical support team is ready to
help with the media supplements that accompany this text. Visit http://247.pearsoned.com for
answers to frequently asked questions and toll-free user support phone numbers.

The following supplements are available for download to adopting instructors:

■■ Instructor’s Resource Manual
■■ Test Bank
■■ TestGen® Computerized Test Bank
■■ PowerPoint Presentations

Acknowledgments

We are grateful for the support of many people in the development of this 14th edition and
previous editions. Thanks to Rick Mathieu at James Madison University for interesting and in-
sightful discussions on the database course. Professor Doug MacLachlan from the Marketing
Department at the University of Washington was most helpful in understanding the goals,
objectives, and technology of data mining, particularly as it pertains to marketing. Don Nilson,
formerly of the Microsoft Corporation, helped us understand the importance of XML to da-
tabase processing. Kraig Pencil of Western Washington University helped us refine the use of
the book in the classroom. Recently David Auer and Xiaofeng Chen team-taught a database
class together at Western Washington University, and our interaction and discussions with
Professor Chen resulted in several modifications and improvements in this book. Professor
Chen also graciously allowed us to adopt some of his classroom examples for use in the books.
Thanks are also due to Harold Wise of East Carolina University, Barry Flachsbart of Missouri
University of Science and Technology, and Don Malzahn of of Harper College for their com-
ments and SQL code checking. Finally, thanks to Donna Auer for giving us permission to use
her painting Lake Samish (Looking Into Water) as the cover art for this book.

In addition, we wish to thank the reviewers of this edition:

Ann Aksut, Central Piedmont Community College
Allen Badgett, Oklahoma City University
Rich Beck, Washington University
Jeffrey J. Blessing, Milwaukee School of Engineering
Alan Brandyberry, Kent State University
Larry Booth, Clayton State University
Jason Deane, Virginia Polytechnic Institute and State University
Barry Flachsbart, Missouri University of Science and Technology

http://www.pearsonglobaleditions.com/kroenke
http://www.pearsonglobaleditions.com/kroenke
http://www.pearsonglobaleditions.com/Kroenke
http://247.pearsoned.com

28 Preface

Andy Green, Kennesaw State University
Dianne Hall, Auburn University
Jeff Hassett, University of Utah
Barbara Hewitt, Texas A&M, Kingsville
William Hochstettler, Franklin University
Margaret Hvatum, St. Louis Community College
Nitin Kale, University of Southern California, Los Angeles
Darrel Karbginsky, Chemeketa Community College
Johnny Li, South University
Lin Lin, New Jersey Institute of Technology
Mike Morris, Southeastern Oklahoma State University
Jane Perschbach, Texas A&M University—Central Texas
Catherine Ricardo, Iona College
Kevin Roberts, DeVry University
Ioulia Rytikova, George Mason University
Christelle Scharff, Pace University
Julian M. Scher, New Jersey Institute of Technology
Namchul Shin, Pace University
K. David Smith, Cameron University
M. Jane Stafford, Columbia College–Jefferson City
Marcia Williams, Bellevue Community College
Timothy Woodcock, Texas A&M University–Central Texas

Finally, we would like to thank Nicole Sam, our editor; Denise Weiss, our Program
Manager Ilene Kahn, our Project Manager; and Sue Nodine, our Production Project Manager;
for their professionalism, insight, support, and assistance in the development of this project.
We would also like to thank Scott Vandenberg and Bod Yoder (both of Siena College) for their
detailed comments on the final manuscript—this book would not be what it is without their
extensive input. Finally, David Kroenke would like to thank his wife, Lynda, and David Auer
would like to thank his wife, Donna, for their love, encouragement, and patience while this
project was being completed.

David Kroenke
Seattle, Washington

David Auer
Bellingham, Washington

Pearson would like to thank the following people for their work on the Global Edition:

Contributors

Ketil Danielsen, Molde University College
Mathy Paesen, ACE-GROEP T
Nahed Azab, The American University in Cairo

Reviewers

Cindy Baker, American University of Sharja
Neerja Sethi, Nanyang Technological University
Franck Laurence, Conservatoire National des Arts et Métier

29

David M. Kroenke 

about the authors

Work Experience

David M. Kroenke has more than 35 years’ experience in the computer industry. He began
as a computer programmer for the U.S. Air Force, working both in Los Angeles and at the
Pentagon, where he developed one of the world’s first DBMS products while part of a team
that created a computer simulation of World War III. That simulation served a key role for
strategic weapons studies during a 10-year period of the Cold War.

From 1973 to 1978, Kroenke taught in the College of Business at Colorado State
University. In 1977, he published the first edition of Database Processing, a significant and
successful textbook that, more than 30 years later, you now are reading in its 14th edition. In
1978, he left Colorado State and joined Boeing Computer Services, where he managed the
team that designed database management components of the IPAD project. After that, he
joined with Steve Mitchell to form Mitchell Publishing and worked as an editor and author,
developing texts, videos, and other educational products and seminars. Mitchell Publishing
was acquired by Random House in 1986. During those years, he also worked as an indepen-
dent consultant, primarily as a database disaster repairman helping companies recover from
failed database projects.

In 1982, Kroenke was one of the founding directors of the Microrim Corporation. From
1984 to 1987, he served as the Vice President of Product Marketing and Development and
managed the team that created and marketed the DBMS product R:base 5000 as well as
other related products.

For the next five years, Kroenke worked independently while he developed a new data
modeling language called the semantic object model. He licensed this technology to the Wall
Data Corporation in 1992 and then served as the Chief Technologist for Wall Data’s SALSA
line of products. He was awarded three software patents on this technology.

Since 1998, Kroenke has continued consulting and writing. His current interests con-
cern the practical applications of data mining techniques on large organizational databases.
An avid sailor, he wrote Know Your Boat: The Guide to Everything That Makes Your Boat Work,
which was published by McGraw-Hill in 2002.

Consulting

Kroenke has consulted with numerous organizations during his career. In 1978, he worked
for Fred Brooks, consulting with IBM on a project that became the DBMS product DB2. In
1989, he consulted for the Microsoft Corporation on a project that became Microsoft Access.
In the 1990s, he worked with Computer Sciences Corporation and with General Research
Corporation for the development of technology and products that were used to model all
of the U.S. Army’s logistical data as part of the CALS project. Additionally, he has consulted
for Boeing Computer Services, the U.S. Air Force Academy, Logicon Corporation, and other
smaller organizations.

Publications

■■ Database Processing, Pearson Prentice Hall, 14 editions, 1977–present (coauthor with
David Auer, 11th, 12th, 13th, and 14th editions)

30 About the Authors

■■ Database Concepts, Pearson Prentice Hall, seven editions, 2004–present (coauthor
with David Auer, 3rd, 4th, 5th, 6th, and 7th editions)

■■ Using MIS, Pearson Prentice Hall, eight editions, 2006–present (coauthor with
Randall J. Boyle, 8th edition)

■■ Experiencing MIS, Pearson Prentice Hall, six editions, 2007–present (coauthor with
Randall J. Boyle, 6th edition)

■■ MIS Essentials, Pearson Prentice Hall, four editions, 2009–present
■■ Processes, Systems, and Information: An Introduction to MIS, Pearson Prentice Hall, two

editions, 2013–present (coauthor with Earl McKinney)
■■ Essentials of Processes, Systems, and Information, Pearson Prentice Hall, 2013 (coauthor

with Earl McKinney)
■■ Know Your Boat: The Guide to Everything That Makes Your Boat Work, McGraw-Hill, 2002
■■ Management Information Systems, Mitchell Publishing/Random House, three editions,

1987–1992
■■ Business Computer Systems, Mitchell Publishing/Random House, five editions, 1981–1990
■■ Managing Information for Microcomputers, Microrim Corporation, 1984 (coauthor with

Donald Nilson)
■■ Database Processing for Microcomputers, Science Research Associates, 1985 (coauthor

with Donald Nilson)
■■ Database: A Professional’s Primer, Science Research Associates, 1978

Teaching

Kroenke taught in the College of Business at Colorado State University from 1973 to 1978.
He also has taught part time in the Software Engineering program at Seattle University. From
1990 to 1991, he served as the Hanson Professor of Management Science at the University
of Washington. Most recently, he taught at the University of Washington from 2002 to 2008.
During his career, he has been a frequent speaker at conferences and seminars for com-
puter educators. In 1991, the International Association of Information Systems named him
Computer Educator of the Year.

Education

B.S., Economics, U.S. Air Force Academy, 1968
M.S., Quantitative Business Analysis, University of Southern California, 1971
Ph.D., Engineering, Colorado State University, 1977

Personal

Kroenke is married, lives in Seattle, and has two grown children and three grandchildren.
He enjoys skiing, sailing, and building small boats. His wife tells him he enjoys gardening
as well.

David J. Auer 

Work Experience

David J. Auer has more than 30 years’ experience teaching college-level business and in-
formation systems courses and for the past 20 years has worked professionally in the field
of information technology. He served as a commissioned officer in the U.S. Air Force, with
assignments to NORAD and the Alaskan Air Command in air defense operations. He later
taught both business administration and music classes at Whatcom Community College
and business courses for the Chapman College Residence Education Center at Whidbey
Island Naval Air Station. He was a founder of the Puget Sound Guitar Workshop (now in its
41st year of operations). He worked as a psychotherapist and organizational development
consultant for the Whatcom Counseling and Psychiatric Clinic’s Employee Assistance
Program and provided training for the Washington State Department of Social and
Health Services. He taught for Western Washington University’s College of Business and

 About the Authors 31

Economics from 1981 to June 2015, and served as the college’s Director of Information
Systems and Technology Services from 1994 to 2014. Now a Senior Instructor Emeritus
at Western Washington University, he continues his writing projects.

Publications

■■ Database Processing, Pearson Prentice Hall, four editions, 2009–present (coauthor
with David Kroenke)

■■ Database Concepts, Pearson Prentice Hall, five editions, 2007–present (coauthor with
David Kroenke)

■■ Network Administrator: NetWare 4.1, Course Technology, 1997 (coauthor with Ted
Simpson and Mark Ciampa)

■■ New Perspectives on Corel Quattro Pro 7.0 for Windows 95, Course Technology, 1997
 (coauthor with June Jamrich Parsons, Dan Oja, and John Leschke)

■■ New Perspectives on Microsoft Excel 7 for Windows 95—Comprehensive, Course Technology,
1996 (coauthor with June Jamrich Parsons and Dan Oja)

■■ New Perspectives on Microsoft Office Professional for Windows 95—Intermediate, Course
Technology, 1996 (coauthor with June Jamrich Parsons, Dan Oja, Beverly Zimmerman,
Scott Zimmerman, and Joseph Adamski)

■■ Microsoft Excel 5 for Windows—New Perspectives Comprehensive, Course Technology, 1995
(coauthor with June Jamrich Parsons and Dan Oja)

■■ Introductory Quattro Pro 6.0 for Windows, Course Technology, 1995 (coauthor with
June Jamrich Parsons and Dan Oja)

■■ Introductory Quattro Pro 5.0 for Windows, Course Technology, 1994 (coauthor with
June Jamrich Parsons and Dan Oja)

■■ The Student’s Companion for Use with Practical Business Statistics, Irwin, two editions 1991
and 1993

Teaching

Auer taught in the College of Business and Economics at Western Washington University
from 1981 to June 2015. From 1975 to 1981, he taught part time for community col-
leges, and from 1981 to 1984, he taught part time for the Chapman College Residence
Education Center System. During his career, he has taught a wide range of courses in
Quantitative Methods, Production and Operations Management, Statistics, Finance, and
Management Information Systems. In MIS, he has taught Principles of Management
Information Systems, Business Database Development, Computer Hardware and Operating
Systems, Telecommunications, Network Administration, and Fundamentals of Web Site
Development.

Education

B.A., English Literature, University of Washington, 1969
B.S., Mathematics and Economics, Western Washington University, 1978
M.A., Economics, Western Washington University, 1980
M.S., Counseling Psychology, Western Washington University, 1991

Personal

Auer is married, lives in Bellingham, Washington, and has two grown children and four
grandchildren. He is active in his community, where he has been president of his neigh-
borhood association and served on the City of Bellingham Planning and Development
Commission. He enjoys music, playing acoustic and electric guitar, five-string banjo, and a
bit of mandolin.

This page intentionally left blank

The two chapters in Part 1 provide an introduction to database processing.
In Chapter 1, we discuss the importance of databases to support Internet
Web applications and smartphone apps. We then consider the characteris-
tics of databases and describe important database applications. Chapter 1
discusses the various database components, provides a survey of the
knowledge you need to learn from this text, and also summarizes the
 history of database processing.

You will start working with a database in Chapter 2 and use that data-
base to learn how to use Structured Query Language (SQL), a database-
processing language, to query database data. You will learn how to query
both single and multiple tables. Together, these two chapters will give
you a sense of what databases are and how they are processed.

Getting Started

P a r t

1

This chapter discusses the importance of databases in the Internet world,

and then introduces database processing concepts. We will first consider the

 nature and characteristics of databases and then survey a number of important

and interesting database applications. Next, we will describe the components of a

database system and then, in general terms, describe how databases are designed.

After that, we will survey the knowledge that you need to work with databases as

an application developer or as a database administrator. Finally, we conclude this

introduction with a brief history of database processing.

To really understand databases and database technology requires that you ac-

tively use some database product. Fortunately, in today’s computer environment,

easily obtainable versions of most major database products are available, and we

will make use of them. However, this chapter assumes a minimal knowledge of

database use. It assumes that you have used a basic database product such as

Microsoft Access to enter data into a form, to produce a report, and possibly to

Introduction

■■ To define the term database and describe what
is contained within the database

■■ To define the term metadata and provide examples
of metadata

■■ To define and understand database design from existing
data

■■ To define and understand database design as new
systems development

■■ To define and understand database design in database
redesign

■■ To understand the history and development of database
processing

Chapter Objectives
■■ To understand the importance of databases in Internet

Web applications and smartphone apps
■■ To understand the nature and characteristics of databases
■■ To survey some important and interesting database

applications
■■ To gain a general understanding of tables and relationships
■■ To describe the components of a Microsoft Access

database system and explain the functions they perform
■■ To describe the components of an enterprise-class

database system and explain the functions they perform
■■ To define the term database management system (DBMS)

and describe the functions of a DBMS

34

1

 CHAPTER 1 Introduction 35

execute a query. If you have not done these things, you should obtain a copy of

Microsoft Access 2013 and work through the tutorial in Appendix A.

The Importance of Databases in the Internet and Smartphone World

Let’s stop for a moment and consider the incredible information technology available for our
use today.

The Personal Computer (PC) became widely available with the introduction of the
Apple II in 1977 and the IBM Personal Computer (IBM PC) in 1981. PCs were net-
worked into Local Area Networks (LANs) using the Ethernet networking technol-
ogy which was developed at the Xerox Palo Alto Research Center in the early 1970’s and
adopted as a national standard in 1983.

The Internet—the global computer network of networks—was created as the ARPANET
in 1969, and then grew and was used to connect all the LANs (and other types of networks).
The Internet became widely known and used when the World Wide Web (also referred
to as the Web and WWW) became easily accessible in 1993. Everyone got a computer
software application called a Web browser and starting browsing to Web sites. Online retail
Web sites such as Amazon.com (online since 1995) and “brick-and-mortar” stores with an on-
line presence such as Best Buy appeared, and people started extensively shopping online.

In the early 2000s, Web 2.01 Web sites started to appear—Web sites that allowed users
to add content to Web sites that had previously held static content. Web applications such as
Facebook, Wikipedia, and Twitter appeared and flourished.

In a parallel development, the mobile phone or cell phone was demonstrated
and developed for commercial use in the 1970s. After decades of mobile phone and cell
phone network infrastructure development, the smartphone appeared. Apple brought
out the iPhone in 2007. Google created the Android operating system, and the first
Android based smartphone entered the market in 2008. Seven years later, in 2015 (as
this is being written), smartphones and tablet computers (tablets) are widely used, and
thousands of application programs known as apps are widely available and in daily use.
Most Web applications now have corresponding smartphone and tablet apps (you can
“tweet” from either your computer or your smartphone)!

What many people do not understand is that in today’s Web application and smartphone
app environment, most of what they do depends upon databases.

We can define data as recorded facts and numbers. We can initially define a database
(we will give a better definition later in this chapter) as the structure used to hold or store that
data. We process that data to provide information (which we also define in more detail later in
this chapter) for use in the Web applications and smartphone apps.

Do you have a Facebook account? If so, all your posts, your comments, your “likes,” and
other data you provide to Facebook (such as photos) are stored in a database. When your
friend posts an item, it is initially stored in the database and then displayed to you.

Do you have a Twitter account? If so, all your tweets are stored in a database. When your
friend tweets something, it is initially stored in the database and then displayed to you.

Do you shop at Amazon.com? If so, how do you find what you are looking for? You
enter some words in a Search text window on the Amazon home Web page (if you are us-
ing a Web browser) and click the Go button. Amazon’s computers then search Amazon’s
databases and return a formatted report on screen of the items that matched what you
searched for.

The search process is illustrated in Figure 1-1, where we search the Pearson Higher
Education Web site for books authored by David Kroenke. Figure 1-1(a) shows the upper portion

1 The term Web 2.0 was originated by Darcy DiNucci in 1999, and introduced to the world at large in 2004
by publisher Tim O’Reilly. See the Wikipedia article Web 2.0 (accessed January 2015).

Amazon.com
Amazon.com

36 PART 1 Getting Started

The Search catalog
button (a) The Pearson Higher Education Web Site Home Page

The Pearson Higher
Education Web
site Home Page

The Pearson Higher
Education Web site
Advanced Catalog
Search Page

Enter the author
name Kroenke as
the search keyword

The Search button

(b) Entering Author Name Kroenke as The Search Keyword

FIguRE 1-1

Searching a Database in
a Web Browser

The Search Results
Web page

Each block of text is
the data on one book
by Kroenke as found
in the database

(c) Books by Author Kroenke Found in the Database

 CHAPTER 1 Introduction 37

By THE WAy It is much more effective to see this process then to just read about it.
Take a minute, open a Web browser and go to Amazon.com (or any other

online retailer, such as Best Buy, Crutchfield, or REI). Search for something you are in-
terested in, and watch the database search results be displayed for you. You just used
a database.

The use of databases by Web applications and smartphone apps is illustrated in Figure 1-2. In
this figure, people have computers (desktop or notebook) and smartphones, which are examples
of devices used by people, who are referred to as users. On these devices are client applications
(Web browsers, apps) used by people to obtain services such are searching, browsing, on-line
purchasing, and tweeting over the Internet or cell phone networks. These services are provided
by server computers, and these are the computers that hold the databases containing the data
needed by the client applications.

This structure is known as client-server architecture, and it supports most of the Web
applications in use today. The simple fact is that without databases, we could not have the
ubiquitous Web applications and apps that are currently used by so many people.

By THE WAy Even if you are simply shopping in a local grocery store (or a coffee shop
or pizzeria), you are interacting with databases. Businesses use Point of

Sale (POS) systems to record every purchase in a database, to monitor inventory, and,
if you have a sales promotion card from the store (the one you use to get those special
prices for “card holders only”), to keep track of everything you buy for marketing pur-
poses. All the data POS systems gather is stored in, of course, a database.

The Characteristics of Databases

The purpose of a database is to help people keep track of things, and the most commonly
used type of database is the relational database. We will discuss the relational database
model in depth in Chapter 3, so for now we just need to understand a few basic facts about
how a relational database helps people track things of interest to them.

A relational database stores data in tables. A table has rows and columns, like those in
a spreadsheet. A database usually has multiple tables, and each table contains data about
a different type of thing. For example, Figure 1-3 shows a database with two tables: The
STUDENT table holds data about students, and the CLASS table holds data about classes.

Each row of a table has data about a particular occurrence or instance of the thing of
interest. For example, each row of the STUDENT table has data about one of four students:
Cooke, Lau, Harris, and Greene. Similarly, each row of the CLASS table has data about a par-
ticular class. Because each row records the data for a specific instance, rows are also known as
records. Each column of a table stores a characteristic common to all rows. For example, the
first column of STUDENT stores StudentNumber, the second column stores LastName, and so
forth. Columns are also known as fields.

of the Pearson Higher Education Web site Home page. While many Web sites (including
Amazon.com, REI, and Best Buy) have a text box for entering search key words on the Home
page itself for immediate use, at the Pearson site we have to click on a Search catalog button
to access the search function on the Advanced Catalog Search page shown in Figure 1-1(b). On
this page, we enter the author name Kroenke in the Author text box, and then click the Search
button. The Pearson catalog database is searched, and the Web application returns a Search
Results page containing a listing of books authored by David Kroenke (appropriately starting
with the listing for this book), as shown in Figure 1-1(c).

Amazon.com

38 PART 1 Getting Started

Users Personal Computer with
Web Browser client Internet

Cell phone system
data network

Smartphone with
App client

Web Server

App Data Server

Database

DatabaseUsers

FIguRE 1-2

the Internet and Mobile
Device World

This column stores the
ClassName for
each class

This row stores the
data for Sam Cooke

The STUDENT table

The CLASS table

FIguRE 1-3

the StUDENt and CLaSS
tables

By THE WAy A table and a spreadsheet (also known as a worksheet) are very similar in
that you can think of both as having rows, columns, and cells. The details

that define a table as something different from a spreadsheet are discussed in Chapter 3.
For now, the main differences you will see are that tables have column names instead of
identifying letters (for example, Name instead of A) and that the rows are not necessarily
numbered.

Although, in theory, you could switch the rows and columns by putting instances in
the columns and characteristics in the rows, this is never done. Every database in this
text and 99.999999 percent of all databases throughout the world store instances in
rows and characteristics in columns.

A Note on Naming Conventions

In this text, table names appear in capital letters. This convention will help you to distinguish
table names in explanations. However, you are not required to set table names in capital let-
ters. Microsoft Access and similar programs will allow you to write a table name as STUDENT,
student, Student, or stuDent or in some other way.

 CHAPTER 1 Introduction 39

Additionally, in this text column names begin with a capital letter. Again, this is just a con-
vention. You could write the column name Term as term, teRm, or TERM or in any other way.
To ease readability, we will sometimes create compound column names in which the first letter
of each element of the compound word is capitalized. Thus, in Figure 1-3 the STUDENT table
has columns StudentNumber, LastName, FirstName, and EmailAddress. Again, this capitaliza-
tion is just a convenient convention. However, following these or other consistent conventions
will make interpretation of database structures easier. For example, you will always know that
STUDENT is the name of a table and that Student is the name of a column of a table.

A Database Has Data and Relationships

Figure 1-3 illustrates how database tables are structured to store data, but a database is not
complete unless it also shows the relationships among the rows of data. To see why this is im-
portant, examine Figure 1-4. In this figure, the database contains all of the basic data shown in
Figure 1-3 together with a GRADE table. Unfortunately, the relationships among the data are
missing. In this format, the GRADE data are useless. It is like the joke about the sports com-
mentator who announced: “Now for tonight’s baseball scores: 2–3, 7–2, 1–0, and 4–5.” The
scores are useless without knowing the teams that earned them. Thus, a database contains
both data and the relationships among the data.

Figure 1-5 shows the complete database that contains not only the data about students,
classes, and grades but also the relationships among the rows in those tables. For example,
StudentNumber 1, who is Sam Cooke, earned a Grade of 3.7 in ClassNumber 10, which is
Chem101. He also earned a Grade of 3.5 in ClassNumber 40, which is Acct101.

Figure 1-5 illustrates an important characteristic of database processing. Each row in a
table is uniquely identified by a primary key, and the values of these keys are used to create
the relationships between the tables. For example, in the STUDENT table StudentNumber
serves as the primary key. Each value of StudentNumber is unique and identifies a par-
ticular student. Thus, StudentNumber 1 identifies Sam Cooke. Similarly, ClassNumber in
the CLASS table identifies each class. If the numbers used in primary key columns such as

The STUDENT table

The CLASS table

The GRADE table
—but who do these
grades belong to?

FIguRE 1-4

the StUDENt, CLaSS, and
GraDE tables

40 PART 1 Getting Started

StudentNumber and ClassNumber are automatically generated and assigned in the database
itself, then the key is also called a surrogate key.

By comparing Figures 1-6 and 1-3, we can see how the primary keys of STUDENT
and CLASS were added to the GRADE table to provide GRADE with a primary key of
(StudentNumber, ClassNumber) to uniquely identify each row. When more than one column
in a table must be combined to form the primary key, we call this a composite key. More
important, in GRADE StudentNumber and ClassNumber each now serves as a foreign
key. A foreign key provides the link between two tables. By adding a foreign key, we create a
 relationship between the two tables.

Figure 1-6 shows a Microsoft Access 2013 view of the tables and relationships shown
in Figure 1-3. In Figure 1-6, primary keys in each table are marked with key symbols, and
connecting lines representing the relationships are drawn from the foreign keys (in GRADE)
to the corresponding primary keys (in STUDENT and CLASS). The symbols on the relation-
ship line (the number 1 and the infinity symbol) mean that, for example, one student in
STUDENT can be linked to many grades in GRADE.

Databases Create Information

In order to make decisions, we need information upon which to base those decisions. Because we
have already defined data as recorded facts and numbers, we can now define2 information as:

■■ Knowledge derived from data
■■ Data presented in a meaningful context
■■ Data processed by summing, ordering, averaging, grouping, comparing, or other

similar operations

2These definitions are from David M. Kroenke’s books Using MIS, 8th ed. (Upper Saddle River, NJ: Prentice-Hall,
2016) and Experiencing MIS, 6th ed. (Upper Saddle River, NJ: Prentice-Hall, 2016). See these books for a full dis-
cussion of these definitions as well as a discussion of a fourth definition, “a difference that makes a difference.”

The STUDENT table

The CLASS table

The GRADE table with
foreign keys—now
each grade is linked
back to the STUDENT
and CLASS tables

FIguRE 1-5

the Key Database
Characteristic: related
tables

 CHAPTER 1 Introduction 41

Databases record facts and figures, so they record data. They do so, however, in a way that
enables them to produce information. The data in Figure 1-3 can be manipulated to produce
a student’s GPA, the average GPA for a class, the average number of students in a class, and so
forth. In Chapter 2, you will be introduced to a language called Structured Query Language
(SQL) that you can use to produce information from database data.

To summarize, relational databases store data in tables, and they represent the rela-
tionships among the rows of those tables. They do so in a way that facilitates the produc-
tion of information. We will discuss the relational database model in depth in Part 2 of
this book.

The STUDENT
table—the key symbol
shows the primary key

The relationship between STUDENT and
GRADE—the number 1 and the infinity
symbol indicate that one student may be
linked to many grades by StudentNumber

FIguRE 1-6

Microsoft access 2013 View
of tables and relationships

Database Examples

Today, database technology is part of almost every information system. This fact is not surpris-
ing when we consider that every information system needs to store data and the relationships
among those data. Still, the vast array of applications that use this technology is staggering.
Consider, for example, the applications listed in Figure 1-7.

Single-user Database Applications

In Figure 1-7, the first application is used by a single salesperson to keep track of the
customers she has called and the contacts that she’s had with them. Most salespeople do
not build their own contact manager applications; instead, they license products such as
GoldMine or ACT!.

Multiuser Database Applications

The next applications in Figure 1-7 are those that involve more than one user. The
patient-scheduling application, for example, may have 15 to 50 users. These users will
be appointment clerks, office administrators, nurses, dentists, doctors, and so forth.
A database like this one may have as many as 100,000 rows of data in perhaps 5 or 10
different tables.

When more than one user employs a database application, there is always the chance
that one user’s work may interfere with another’s. Two appointment clerks, for example,
might assign the same appointment to two different patients. Special concurrency-control
mechanisms are used to coordinate activity against the database to prevent such conflict. You
will learn about these mechanisms in Chapter 9.

The third row of Figure 1-7 shows an even larger database application. A customer
relationship management (CRM) system is an information system that manages customer
contacts from initial solicitation through acceptance, purchase, continuing purchase, sup-
port, and so forth. CRM systems are used by salespeople, sales managers, customer ser-
vice and support staff, and other personnel. A CRM database in a larger company might

42 PART 1 Getting Started

have 500 users and 10 million or more rows in perhaps 50 or more tables. According to
Microsoft, in 2004 Verizon had an SQL Server customer database that contained more
than 15 terabytes of data. If that data were published in books, a bookshelf 450 miles long
would be required to hold them.

Enterprise resource planning (ERP) is an information system that touches every
 department in a manufacturing company. It includes sales, inventory, production plan-
ning, purchasing, and other business functions. SAP is the leading vendor of ERP applica-
tions, and a key element of its product is a database that integrates data from these various
business functions. An ERP system may have 5,000 or more users and perhaps 100 mil-
lion rows in several hundred tables.

E-Commerce Database Applications

E-commerce is another important database application. Databases are a key component
of e-commerce order entry, billing, shipping, and customer support. Surprisingly, how-
ever, the largest databases at an e-commerce site are not order-processing databases. The
largest databases are those that track customer browser behavior. Most of the prominent
e-commerce companies, such as Amazon.com and Drugstore.com, keep track of the
Web pages and the Web page components that they send to their customers. They also
track customer clicks, additions to shopping carts, order purchases, abandoned shop-
ping carts, and so forth.

E-commerce companies use Web activity databases to determine which items on a Web
page are popular and successful and which are not. They also can conduct experiments to
determine if a purple background generates more orders than a blue one, and so forth. Such
Web usage databases are huge. For example, Drugstore.com adds 20 million rows to its Web
log database each day!

Sales contact
manager

Salesperson

Example
Users

1 2,000 rows

Number
of Users

Typical Size RemarksApplication

Products such as GoldMine and
Act! are database centric.

Patient appointment
(doctor, dentist)

Medical office 15 to 50 100,000 rows Vertical market software vendors
incorporate databases into their
software products.

Customer
relationship
management (CRM)

Sales, marketing,
or customer
service
departments

500 10 million rows Major vendors such as Microsoft
and Oracle PeopleSoft
Enterprise build applications
around the database.

Enterprise resource
planning (ERP)

An entire
organization

5,000 10 million+
rows

SAP uses a database as a
central repository for
ERP data.

E-commerce site Internet users Possibly
millions

1 billion+
rows

Drugstore.com has a database
that grows at the rate of
20 million rows per day!

Digital dashboard Senior managers 500 100,000 rows Extractions, summaries, and
consolidations of operational
databases.

Data mining Business analysts 25 100,000 to
millions+

Data are extracted, reformatted,
cleaned, and filtered for use
by statistical data mining tools.

FIguRE 1-7

Example Database
applications

Amazon.com
Drugstore.com
Drugstore.com

 CHAPTER 1 Introduction 43

Reporting and Data Mining Database Applications

Two other example applications in Figure 1-7 are digital dashboards and data mining
applications. These applications use the data generated by order processing and other
operational systems to produce information to help manage the enterprise. Such applica-
tions do not generate new data, but instead summarize existing data to provide insights to
management. Digital dashboards and other reporting systems assess past and current per-
formance. Data mining applications predict future performance. We will consider such
applications in Chapter 12. The bottom line is that database technology is used in almost
every information system and involves databases ranging in size from a few thousand rows
to many millions of rows.

By THE WAy Do not assume that just because a database is small that its structure is
simple. For example, consider parts distribution for a company that sells

$1 million in parts per year and parts distribution for a company that sells $100 million
in parts per year. Despite the difference in sales, the companies have similar data-
bases. Both have the same kinds of data, about the same number of tables of data,
and the same level of complexity in data relationships. Only the amount of data varies
from one to the other. Thus, although a database for a small business may be small, it
is not necessarily simple.

The Components of a Database System

As shown in Figure 1-8, a database system is typically defined to consist of four compo-
nents: users, the database application, the database management system (DBMS), and the
database. However, given the importance of Structured Query Language (SQL), an
internationally recognized standard language that is understood by all commercial DBMS
products, in database processing and the fact that database applications typically send SQL
statements to the DBMS for processing, we can refine our illustration of a database system to
appear as shown in Figure 1-9.

Starting from the right of Figure 1-9, the database is a collection of related tables and
other structures. The database management system (DBMS) is a computer program
used to create, process, and administer the database. The DBMS receives requests encoded
in SQL and translates those requests into actions on the database. The DBMS is a large, com-
plicated program that is licensed from a software vendor; companies almost never write their
own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify data-
base data by sending SQL statements to the DBMS. Application programs also present data to
users in the format of forms and reports. Application programs can be acquired from software
vendors, and they are also frequently written in-house. The knowledge you gain from this text
will help you write database applications.

Users, the final component of a database system, employ a database application to keep
track of things. They use forms to read, enter, and query data, and they produce reports to
convey information.

Database
Application

Users

DatabaseDBMS

• Create
• Process
• Administer

FIguRE 1-8

the Components
of a Database System

44 PART 1 Getting Started

Database Applications and SQL

Figure 1-9 shows that users interact directly with database applications. Figure 1-10 lists the
basic functions of database applications.

First, an application program creates and processes forms. Figure 1-11 shows a typical
form for entering and processing student enrollment data for the Student-Class-Grade data-
base shown in Figures 1-5 and 1-6. Notice that this form hides the structure of the underlying
tables from the user. By comparing the tables and data in Figure 1-5 to the form in Figure 1-11,
we can see that data from the CLASS table appears at the top of the form, while data from the
STUDENT table is presented in a tabular section labeled Class Enrollment Data.

The goal of this form, like that for all data entry forms, is to present the data in a format
that is useful for the users, regardless of the underlying table structure. Behind the form,
the application processes the database in accordance with the users’ actions. The applica-
tion generates an SQL statement to insert, update, or delete data for any of the tables that
underlie this form.

The second function of application programs is to process user queries. The application
program first generates a query request and sends it to the DBMS. Results are then format-
ted and returned to the user. Applications use SQL statements and pass them to the DBMS
for processing. To give you a taste of SQL, here is a sample SQL statement for processing the
STUDENT table in Figure 1-5:

SELECT LastName, FirstName, EmailAddress

FROM STUDENT

WHERE StudentNumber > 2;

This SQL statement is a query statement, which asks the DBMS to obtain specific data
from a database. In this case, the query asks for the last name, first name, and e-mail address
of all students having a StudentNumber greater than 2. The results of this SQL statement
are shown (as displayed in Microsoft Access 2013) in Figure 1-12. As shown in Figure 1-12,
running this SQL statement will produce the LastName, FirstName, and EmailAddress for
students Harris and Greene.

Database
Application

Users

DatabaseDBMS

• Create
• Process
• Administer

S
Q
L

FIguRE 1-9

the Components of a
Database Systems with SQL

Create and process forms

Basic Functions of Application Programs

Process user queries

Create and process reports

Execute application logic

Control the application itself

FIguRE 1-10

Basic Functions of
application Programs

 CHAPTER 1 Introduction 45

The third function of an application is to create and process reports. This function is
somewhat similar to the second because the application program first queries the DBMS for
data (again using SQL). The application then formats the query results as a report. Figure 1-13
shows a report that displays all the Student-Class-Grade data shown in Figure 1-5 sorted by
ClassNumber and LastName. Notice that the report, like the form in Figure 1-11, is structured
according to the users’ needs, not according to the underlying table structure.

In addition to generating forms, queries, and reports, the application program takes other ac-
tions to update the database in accordance with application-specific logic. For example, suppose
a user using an order entry application requests 10 units of a particular item. Suppose further
that when the application program queries the database (via the DBMS), it finds that only 8 units
are in stock. What should happen? It depends on the logic of that particular application. Perhaps
no units should be removed from inventory, and the user should be notified, or perhaps the 8
units should be removed and 2 more placed on backorder. Perhaps some other action should be
taken. Whatever the case, it is the job of the application program to execute the appropriate logic.

Finally, the last function for application programs listed in Figure 1-10 is to control the
application. This is done in two ways. First, the application needs to be written so that only
logical options are presented to the user. For example, the application may generate a menu
with user choices. In this case, the application needs to ensure that only appropriate choices
are available. Second, the application needs to control data activities with the DBMS. The ap-
plication might direct the DBMS, for example, to make a certain set of data changes as a unit.
The application might tell the DBMS to either make all these changes or none of them. You
will learn about such control topics in Chapter 9.

FIguRE 1-11

an Example Data Entry Form

FIguRE 1-12

Example SQL Query results

46 PART 1 Getting Started

The DBMS

The DBMS, or database management system, creates, processes, and administers the data-
base. A DBMS is a large, complicated product that is almost always licensed from a software
vendor. One DBMS product is Microsoft Access. Other commercial DBMS products are
Oracle Database and MySQL, both from Oracle Corporation; SQL Server, from Microsoft; and
DB2, from IBM. Dozens of other DBMS products exist, but these five have the lion’s share of
the market. Figure 1-14 lists the functions of a DBMS.

A DBMS is used to create a database and to create the tables and other supporting structures
inside that database. As an example of the latter, suppose that we have an EMPLOYEE table with
10,000 rows and that this table includes a column, DepartmentName, that records the name of
the department in which an employee works. Furthermore, suppose that we frequently need to
access employee data by DepartmentName. Because this is a large database, searching through
the table to find, for example, all employees in the accounting department would take a long
time. To improve performance, we can create an index (akin to the index at the back of a book)
for DepartmentName to show which employees are in which departments. Such an index is an
example of a supporting structure that is created and maintained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this, a
DBMS receives SQL and other requests and transforms those requests into actions on the

FIguRE 1-13

Example report

Create database

Functions of a DBMS

Create tables

Create supporting structures (e.g., indexes)

Modify (insert, update, or delete) database data

Read database data

Maintain database structures

Enforce rules

Control concurrency

Perform backup and recovery

FIguRE 1-14

Functions of a DBMS

 CHAPTER 1 Introduction 47

database files. Another DBMS function is to maintain all the database structures. For ex-
ample, from time to time it might be necessary to change the format of a table or another
supporting structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and have a
DBMS enforce them. For example, in the Student-Class-Grade database tables in Figure 1-5,
what would happen if a user mistakenly entered a value of 9 for StudentNumber in the GRADE
table? No such student exists, so such a value would cause numerous errors. To prevent this situ-
ation, it is possible to tell the DBMS that any value of StudentNumber in the GRADE table must
already be a value of StudentNumber in the STUDENT table. If no such value exists, the insert
or update request should be disallowed. The DBMS then enforces these rules, which are called
referential integrity constraints.

The last three functions of a DBMS listed in Figure 1-14 have to do with database admin-
istration. A DBMS controls concurrency by ensuring that one user’s work does not inap-
propriately interfere with another user’s work. This important (and complicated) function is
discussed in Chapter 9. Also, a DBMS contains a security system that ensures that only autho-
rized users perform authorized actions on the database. For example, users can be prevented
from seeing certain data. Similarly, users’ actions can be confined to making only certain types
of data changes on specified data.

Finally, a DBMS provides facilities for backing up database data and recovering it from back-
ups when necessary. The database, as a centralized repository of data, is a valuable organizational
asset. Consider, for example, the value of a book database to a company such as Amazon.com.
Because the database is so important, steps need to be taken to ensure that no data will be lost in
the event of errors, hardware or software problems, or natural or human catastrophes.

The Database

A database is a self-describing collection of integrated tables. Integrated tables are tables that
store both data and the relationships among the data. The tables in Figure 1-5 are integrated
because they store not just student, class, and grade data but also data about the relationships
among the rows of data.

A database is self-describing because it contains a description of itself. Thus, databases
contain not only tables of user data but also tables of data that describe that user data. Such
descriptive data is called metadata because it is data about data. The form and format of
metadata vary from DBMS to DBMS. Figure 1-15 shows generic metadata tables that de-
scribe the tables and columns for the database in Figure 1-5.

You can examine metadata to determine if particular tables, columns, indexes, or other
structures exist in a database. For example, the following statement queries the Microsoft SQL
Server metadata table SYSOBJECTS to determine if a user table (Type = 'U') named CLASS
exists in the database. If it does, then the metadata about the table is displayed.

IF EXISTS

 (SELECT *

 FROM SYSOBJECTS

 WHERE [Name]='CLASS'

 AND Type='U');

Do not be concerned with the syntax of this statement. You will learn what it means and
how to write such statements yourself as we proceed. For now, just understand that this is one
way that database administrators use metadata.

By THE WAy Because metadata is stored in tables, you can use SQL to query it, as just
illustrated. Thus, by learning how to write SQL to query user tables, you

will also learn how to write SQL to query metadata. To do that, you just apply the SQL
statements to metadata tables rather than user tables.

Amazon.com

48 PART 1 Getting Started

In addition to user tables and metadata, databases contain other elements, as shown in
Figure 1-16. These other components will be described in detail in subsequent chapters. For
now, however, understand that indexes are structures that speed the sorting and searching of
database data. User-defined functions, triggers, and stored procedures are programs that are
stored within the database. Triggers are used to maintain database accuracy and consistency
and to enforce data constraints. Stored procedures are used for database administration tasks
and are sometimes part of database applications. You will learn more about these different
elements in Chapters 7, 10, 10A, 10B, and 10C.

Security data define users, groups, and allowed permissions for users and groups. The par-
ticulars depend on the DBMS product in use. Finally, backup and recovery data are used to save

TableName

USER_TABLES Table

STUDENT

PrimaryKey

CLASS

GRADE

StudentNumber

ClassNumber

(StudentNumber, ClassNumber)

NumberColumns

4

4

3

ColumnName

USER_COLUMNS Table

StudentNumber

DataType

LastName

EmailAddress

Integer

Text

Text

ClassNumber

Name

Term

Section

StudentNumber

Grade

ClassNumber

CLASS

CLASS

CLASS

CLASS

GRADE

GRADE

GRADE

TableName

STUDENT

STUDENT

STUDENT

Integer

Text

Text

Integer

Integer

Decimal

Integer

Length (bytes)

4

25

FirstName TextSTUDENT 25

100

4

4

25

12

4

(2, 1)

4

FIguRE 1-15

typical Metadata tables

• Tables of user data
• Metadata
• Indexes
• User-defined functions
• Stored procedures
• Triggers
• Security data
• Backup/recovery data

Discussed in
Chapters 7, 10, 10A, 10B, 10C

Discussed in
Chapters 9, 10, 10A, 10B, 10C

FIguRE 1-16

Database Elements

 CHAPTER 1 Introduction 49

Personal Versus Enterprise-Class Database Systems

We can divide database systems and DBMS products into two classes: personal database sys-
tems and enterprise-class database systems.

What Is Microsoft Access?

We need to clear up a common misconception: Microsoft Access is not just a DBMS. Rather, it
is a personal database system: a DBMS plus an application generator. Although Microsoft
Access contains a DBMS engine that creates, processes, and administers the database, it also
contains form, report, and query components that are the Microsoft Access application gen-
erator. The components of Microsoft Access are shown in Figure 1-17, which illustrates that
the Microsoft Access form, report, and query applications create SQL statements and then
pass them to the DBMS for processing.

Microsoft Access is a low-end product intended for individuals and small workgroups.
As such, Microsoft has done all that it can to hide the underlying database technology from
the user. Users interact with the application through data entry forms like the one shown
in Figure 1-11. They also request reports and perform queries against the database data.
Microsoft Access then processes the forms, produces the reports, and runs the queries.
Internally, the application components hidden under the Microsoft Access cover use SQL to
call the DBMS, which is also hidden under that cover. At Microsoft, the current DBMS en-
gine within Microsoft Access is called the Access Database Engine (ADE). ADE is a Microsoft
Office– specific version of Microsoft’s Joint Engine Technology (JET or Jet) database engine.
Jet was used as the Microsoft Access database engine until Microsoft Office 2007 was re-
leased. Jet itself is still used in the Microsoft Windows operating system, but you seldom hear
about Jet because Microsoft does not sell Jet as a separate product.

Queries

Data Entry Forms

Form-Processing
Application

Report-Generator
Application

Query-Processing
Application

The DBMS can be either the
native Microsoft Access Access

Database Engine (ADE) or a
another DBMS linked via ODBC.

Reports

Users

Database
S
Q
L

DBMS

Microsoft Access
FIguRE 1-17

Components of a Microsoft
access Database System

By THE WAy Although Microsoft Access is the best-known personal database system,
it is not the only one. OpenOffice.org Base is a personal database system

distributed as part of the OpenOffice.org software suite, and the personal database
system LibreOffice Base is distributed as part of the related LibreOffice software suite.

database data to backup devices as well as to recover the database data when needed. You will
learn more about security and backup and recovery data in Chapters 9, 10, 10A, 10B, and 10C.

OpenOffice.org
OpenOffice.org

50 PART 1 Getting Started

By THE WAy With Microsoft Access 2000 and later versions, you can effectively replace
the Microsoft Access database engine (either Jet or ADE) with another

DBMS (typically Microsoft’s enterprise-class DBMS product, Microsoft SQL Server).
Microsoft Access 2013 uses the ODBC standard to make these connections, and ODBC
is discussed in Chapter 11. You would do this if you wanted to process a large database
or if you needed the advanced functions and features of Microsoft SQL Server.

Although hiding the technology is an effective strategy for beginners working on small
databases, it will not work for database professionals who work with applications, such as
most of those described in Figure 1-5. For larger, more complex databases, it is necessary to
understand the technology and components that Microsoft hides.

Nonetheless, because Microsoft Access is included in the Microsoft Office suite, it is of-
ten the first DBMS used by students. In fact, you may have already learned to use Microsoft
Access in other classes you have taken, and in this book we will provide some examples using
Microsoft Access 2013. If you are not familiar with Microsoft Access 2013, you should work
through Appendix A, “Getting Started with Microsoft Access 2013.”

Applications Running
Over Corporate

Network
(Client/Server)

Web Portal with
Reporting

Applications

XML Web Services
Applications

Mobile Apps

E-Commerce
Applications on

Web Server

• Create
• Process
• Administer

Users

DatabaseDBMS

S
Q
L

FIguRE 1-18

Components of an
Enterprise-Class Database
System

What Is an Enterprise-Class Database System?

Figure 1-18 shows the components of an enterprise-class database system. Here, the
applications and the DBMS are not under the same cover as they are in Microsoft Access.
Instead, the applications are separate from each other and separate from the DBMS.

Database Applications in an Enterprise-Class Database System
Earlier in this chapter, we discussed the basic functions of an application program, and
these functions are summarized in Figure 1-10. However, as exemplified by the list in
Figure 1-7, dozens of different types of database applications are available, and database ap-
plications in an enterprise-class database system introduce functions and features beyond
the basics. For example, Figure 1-18 shows applications that connect to the database over
a corporate network. Such applications use the client-server architecture, described earlier in
this chapter, and are called client-server applications. In this situation, the application program

 CHAPTER 1 Introduction 51

is a client that connects to a database server. Client-server applications are often written in
programming languages such as VB.NET, C++, or Java.

A second category of applications in Figure 1-18 is e-commerce and other applica-
tions that run on a Web server. Users connect to such applications via Web browsers
such as Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome. Common Web
servers include Microsoft’s Internet Information Server (IIS) and Apache. Common lan-
guages for Web server applications are PHP, Java, and the Microsoft .NET languages, such
as C#.NET and VB.NET. We will discuss some of the technology for such applications in
Chapter 11.

A third category of applications is reporting applications that publish the results of
database queries on a corporate portal or other Web site. Such reporting applications are
often created using third-party report generation and digital dashboard products from
 vendors such as IBM (Cognos) and MicroStrategy (MicroStrategy 9). We will describe
these applications in Chapter 12.

The fourth category of applications is XML Web services. These applications use a
combination of the XML markup language and other standards to enable program-to-
program communication. In this way, the code that comprises an application is distributed
over several different computers. Web services can be written in Java or any of the .NET
languages. We will discuss this important new class of applications in Chapter 12. The final
category of applications is mobile apps, such as those used on smartphones. While we will
not discuss mobile apps in this book, they are becoming increasingly important in today’s
connected world.

All of these database applications read and write database data by sending SQL state-
ments to the DBMS. These applications may create forms and reports, or they may send their
results to other programs. They also may implement application logic that goes beyond simple
form and report processing. For example, an order entry application uses application logic to
deal with out-of-stock items and backorders.

The DBMS in an Enterprise-Class Database System
As stated earlier, the DBMS manages the database. It processes SQL statements and provides
other features and functions for creating, processing, and administering the database. Figure 1-19
presents the five most prominent DBMS products. The products are shown in order of increasing
power, features, and difficulty of use.

Microsoft Access (really the Microsoft ADE) is the easiest to use and the least power-
ful. Oracle MySQL is a powerful, open source DBMS frequently chosen for Web applica-
tions. Microsoft SQL Server has far more power than its stablemate Microsoft Access—it
can process larger databases faster, and it includes features for multiuser control, backup
and recovery, and other administrative functions. DB2 is a DBMS product from IBM.
Most people would agree that it has faster performance than SQL Server, that it can
handle larger databases, and that it is also more difficult to use. Finally, the fastest and
most capable DBMS is Oracle Database from Oracle Corporation. Oracle Database can
be configured to offer very high performance on exceedingly large databases that operate
24/7, year after year. Oracle Database is also far more difficult to use and administer than
Microsoft SQL Server.

Increasing
power and
features

Microsoft
Access (ADE)

Oracle Corp.
Oracle Database

Increasing
difficulty
of use

IBM
DB2

Microsoft
SQL Server

Oracle Corp.
MySQL

FIguRE 1-19

Common Professional View
of DBMS Products

VB.NET
VB.NET

52 PART 1 Getting Started

By THE WAy DBMS products, whether on a personal computer or a server, do not
 simply run by themselves. Like all other applications, they require that the

computer have an operating system (OS) installed to handle the basic system opera-
tions (writing and reading files, printing, and so on).

Therefore, when you are selecting a DBMS product, you must be aware of which OS
will support the use of that product. Today, the main OS products are Microsoft Windows
(for desktop and notebook computers), Microsoft Windows Server (for servers), Apple
OS X for Mac (previously MacIntosh) desktops and notebooks, and various versions of
Linux (notable for the shareware development environment of the product).

Microsoft DBMS products (Microsoft Access and Microsoft SQL Server) run
only on Microsoft operating systems. Oracle Database products will run on both the
Windows OS and the Linux OS but not on Apple OS X. MySQL is the only DBMS prod-
uct that runs on all of the three operating systems.

Note: Chapter 7 discusses database implementation using SQL. You need that
knowledge before you can understand database redesign.

• From existing data (Chapters 3 and 4)

Types of Database Design Process

• New systems development (Chapters 5 and 6)

• Database redesign (Chapter 8)

Design using normalization principles

Analyze spreadsheets and other data tables

Extract data from other databases

Create data model from application requirements

Integrate two or more databases

Transform data model into database design

Migrate databases to newer databases

Reverse engineer and design new databases using
normalization principles and data model transformation

FIguRE 1-20

types of Database Design
Process

Database Design

Database design (as a process) is the creation of the proper structure of database tables, the
proper relationships between tables, appropriate data constraints, and other structural compo-
nents of the database. Correct database design is both important and difficult. Consequently,
the world is full of poorly designed databases. Such databases do not perform well. They may
require application developers to write overly complex and contrived SQL to get wanted data,
they may be difficult to adapt to new and changing requirements, or they fail in some other way.

Because database design is both important and difficult, we will devote most of the first
half of this text to the topic. As shown in Figure 1-20, there are three types of database design:

■■ Database design from existing data
■■ Database design for new systems development
■■ Database redesign of an existing database

Database Design from Existing Data

The first type of database design involves databases that are constructed from existing data, as
shown in Figure 1-21. In some cases, a development team is given a set of spreadsheets or a
set of text files with tables of data. The team is required to design a database and import the
data from those spreadsheets and tables into a new database.

 CHAPTER 1 Introduction 53

Alternatively, databases can be created from extracts of other databases. This alternative
is especially common in business intelligence (BI) systems, which include reporting and data
mining applications. For example, data from an operational database, such as a CRM or ERP
database, may be copied into a new database that will be used only for studies and analysis. As
you will learn in Chapter 12, such databases are used in facilities called data warehouses
and data marts. The data warehouse and data mart databases store data specifically orga-
nized for research and reporting purposes, and these data often are exported to other analyti-
cal tools, such as SAS’s Enterprise Miner, IBM’s SPSS Data Modeler, or TIBCO’s Spotfire.

When creating a database from existing data, database developers must determine the
appropriate structure for the new database. A common issue is how the multiple files or tables
in the new database should be related. However, even the import of a single table can pose de-
sign questions. Figure 1-22 shows two different ways of importing a simple table of employees
and their departments. Should this data be stored as one table or two?

Spreadsheet
Spreadsheet
Spreadsheet
Spreadsheet

Text
files Text
files Text
files Text

File

Database
Design

Database
Design

Database extraction

Operational
Database

(ERP, CRM)

OR

FIguRE 1-21

Databases Originating from
Existing Data

EmpNum

100

EmpName DeptName

150

200

300

Accounting

MarketingLau

AccountingMcCauley

AccountingGriffin

DeptNum

10

20

10

10

EmpNum

100

EmpName

150

200

300 Griffin

DeptNum

10

20

10

10

DeptName

Accounting

Marketing

DeptNum

10

20

(a) One-Table Design

(b) Two-Table Design

OR?

Jones

Lau

McCauley

Jones

FIguRE 1-22

Data Import: One or two
tables?

54 PART 1 Getting Started

Decisions such as this are not arbitrary. Database professionals use a set of principles, col-
lectively called normalization, or normal forms, to guide and assess database designs. You
will learn those principles and their role in database design in Chapter 3.

Database Design for New Systems Development

A second way that databases are designed is for the development of new information systems.
As shown in Figure 1-23, requirements for a new system, such as desired data entry forms
and reports, user requirements statements, use cases, and other requirements, are analyzed to
create the database design.

In all but the simplest system development projects, the step from user requirements to
database design is too big. Accordingly, the development team proceeds in two steps. First, the
team creates a data model from the requirements statements and then transforms that data
model into a database design. You can think of a data model as a blueprint that is used as a
design aid on the way to a database design (as a product), which is the basis for construct-
ing the actual database in a DBMS product.

Note that we have just given a second meaning to the term database design—previously we
used it to mean the process of designing a database, and now we are using it to mean the annotated
diagram that is the result of that process. The term is used both ways, so be careful that you under-
stand how it is being used in a particular context! In Chapter 5, you will learn about the most
popular data modeling technique: entity-relationship (ER) data modeling. You also will
see how to use the entity-relationship model to represent a variety of common form and report
patterns. Then, in Chapter 6, you will learn how to transform entity-relationship data models
into database designs.

Database Redesign

Database redesign also requires that databases are designed. As shown in Figure 1-24, there
are two common types of database redesign.

In the first, a database is adapted to new or changing requirements. This process
sometimes is called database migration. In the migration process, tables may be cre-
ated, modified, or removed; relationships may be altered; data constraints may be changed;
and so forth.

The second type of database redesign involves the integration of two or more databases.
This type of redesign is common when adapting or removing legacy systems. It is also com-
mon for enterprise application integration, when two or more previously separate informa-
tion systems are adapted to work with each other.

Reports
Database

Design

FormsFormsFormsForms

User
Requirement
Statements

Use Cases and
Other Systems
Development
Documents

Systems Requirements

Data
Model

Data Model
Transformation

FIguRE 1-23

Databases Originating from
New Systems Development

 CHAPTER 1 Introduction 55

Database redesign is complicated. There is no getting around that fact. If this is your first
exposure to database design, your instructor may skip this topic. If this is the case, after you
have gained more experience you should reread this material. In spite of its difficulty, data-
base redesign is important.

To understand database redesign, you need to know SQL statements for defining data-
base structures and more advanced SQL statements for querying and updating a database.
Consequently, we will not address database redesign until Chapter 8, after we present SQL state-
ments and techniques for creating and altering the tables that make up a database in Chapter 7.

Database
Design2

Database1

Database1

Database2

Database
Design3

Database Integration

+

Migration

OR

FIguRE 1-24

Databases Originating from
Database redesign

What you Need to Learn

In your career, you may work with database technology either as a user or as a database adminis-
trator. As a user, you may be a knowledge worker who prepares reports, mines data, and does
other types of data analysis, or you may be a programmer who writes applications that process
the database. Alternatively, you might be a database administrator who designs, constructs,
and manages the database itself. Users are primarily concerned with constructing SQL statements
to store and retrieve the data they want. Database administrators are primarily concerned with the
management of the database. The domains for each of these roles are shown in Figure 1-25.

Web Server
with PHP or

Java Applications

Client
Applications

in C# or VB.NET
• Access Database Engine (ADE)
• SQL Server
• MySQL
• Oracle Database

Web Portal
with Reporting
Applications

Knowledge Worker
and Programmer

Database Administrator

Users

Database
S
Q
L

DBMS

FIguRE 1-25

Working Domains of
Knowledge Workers,
Programmers, and Database
administrators

56 PART 1 Getting Started

Both users and database administrators need all of the knowledge in this text. However,
the emphasis on each topic differs for the two groups. Figure 1-26 shows our opinion as to
the relative importance of each topic to each group. Discuss this table with your instructor.
He or she may have knowledge about your local job market that affects the relative impor-
tance of these topics.

3Lynn A. Karoly and Constantijn W. A. Panis, The 21st Century at Work (Santa Monica, CA: The Rand
Corporation, 2004).

By THE WAy The most exciting and interesting jobs in technology are always those on
the leading edge. If you live in the United States and are concerned about

outsourcing, a study by the Rand Corporation3 indicates that the most secure jobs in
the United States involve the adaptation of new technology to solve business problems
in innovative ways. Working with databases will help you learn problem solving skills,
and 4 of the top 10 jobs recently listed on the CNNMoney Web site use database
knowledge and related skills (See: http://money.cnn.com/pf/best-jobs/).

Importance to Database
Administrator

Importance to Knowledge
Worker and Programmer

Basic SQL

Chapters 11, 12

The relational database model

Design via normalization

Data models

Data model transformation

SQL DDL and constraint enforcement

Database redesign

Database administration

SQL Server, Oracle,
MySQL specifics

Database application technology

1 = Very important; 2 = Important; 3 = Less important Warning: Opinions vary, ask your instructor for his or hers.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapters 10, 10A,
10B, 10C

1

2

2

2

2

3

3

3

3

1

2

2

1

1

1

1

1

1

1

3

Topic Chapter

FIguRE 1-26

Priorities of What You Need
to Know

A Brief History of Database Processing

Database processing emerged around 1970 and has been continuously evolving and chang-
ing since then. This continual change has made it a fascinating and thoroughly enjoyable field
in which to work. Figure 1-27 summarizes the major eras of database processing.

The Early years

Prior to 1970, all data were stored in separate files, most of which were kept on reels of
 magnetic tape. Magnetic disks and drums (magnetic cylinders that are now obsolete) were
exceedingly expensive and very small. Today’s 1.44-megabyte floppy disk (which is now itself

http://money.cnn.com/pf/best-jobs/

 CHAPTER 1 Introduction 57

Era Years Important
Products

Remarks

Emergence of
relational model

Web databases

Open source
DBMS products

Microcomputer
DBMS products

Object-oriented
DBMS

Predatabase

Early database

1978–1985

1995–
present

1995–
present

1982–1992+

1985–2000

Before 1970

1970–1980

DB2, Oracle

IIS, Apache, PHP,
ASP.NET, and Java

MySQL, PostgresQL,
and other products

dBase-II, R:base,
Paradox, Access

Oracle ODBMS and
others

File managers

ADABAS, System2000,
Total, IDMS, IMS

Early relational DBMS
products had substantial
inertia to overcome. In
time, the advantages
weighed out.

Stateless characteristic of
HTTP was a problem at
first. Early applications
were simple one-stage
transactions. Later, more
complex logic developed.

Open source DBMS
products provide much of
the functionality and
features of commercial
DBMS products at
reduced cost.

Amazing! A database on a
micro. All micro DBMS
products were eliminated
by Microsoft Access in
the early 1990s.

Never caught on. Required
relational database to be
converted. Too much work
for perceived benefit.

All data were stored in
separate files. Data
integration was very
difficult. File storage
space was expensive
and limited.

First products to provide
related tables. CODASYL
DBTG and hierarchical
data models (DL/I) were
prevalent.

XML and Web
services

1998–
present

XML, SOAP, WSDL,
UDDI, and other
standards

XML provides tremendous
benefits to Web-based
database applications. Very
important today. May
replace relational databases
during your career. See
Chapter 11 and Appendix K.

Big Data and the
NoSQL
movement

2009–
present

Hadoop, Cassandra,
Hbase, CouchDB,
MongoDB, and other
products

Web applications such as
Facebook and Twitter use
Big Data technologies, often
using Hadoop and related
products. The NoSQL
movement is really a
NoRelationalDB movement
that replaces relational
databases with non-relational
data structures. See
Chapter 12 and Appendix K.

FIguRE 1-27

Database History

58 PART 1 Getting Started

a very limited-use technology) has more capacity than many disks of that era. Memory was ex-
pensive as well. In 1969, we were processing payroll on a computer that had just 32,000 bytes of
memory, while the computer on which this history is being written has 16 gigabytes of memory.

Integrated processing was an important but very difficult problem. An insurance com-
pany, for example, wanted to relate customer account data to customer claim data. Accounts
were stored on one magnetic tape, and claims were stored on another. To process claims, the
data on the two tapes had to be integrated somehow.

The need for data integration drove the development of the first database technology.
By 1973, several commercial DBMS products had emerged. These products were in use by
the mid-1970s. The first edition of this text, copyrighted 1977, featured the DBMS products
ADABAS, System2000, Total, IDMS, and IMS. Of those five, ADABAS, IDMS, and IMS are
still in use, and none of them has substantial market share today.

Those early DBMS products varied in the way that they structured data relationships.
One method, called Data Language/I (DL/I), used hierarchies or trees (see Appendix G)
to represent relationships. IMS, which was developed and licensed by IBM, was based on this
model. IMS had success at many organizations, particularly among large manufacturers, and
is still in limited use today.

Another technique for structuring data relationships used data structures called networks.
The CODASYL Committee (the group that developed the programming language COBOL)
sponsored a subcommittee called the Database Task Group (DBTG). This subcommittee de-
veloped a standard data model that came to bear its name: the CODASYL DBTG model. It
was an unnecessarily complicated model (everyone’s favorite idea made it into the committee’s
design), but several successful DBMS products were developed using it. The most successful was
IDMS, and its vendor, the Cullinane Corporation, was the first software company to be listed on
the New York Stock Exchange. To the best of our knowledge, no IDMS database is in use today.

The Emergence and Dominance of the Relational Model

In 1970, a then little-known IBM engineer named Edgar Frank Codd (better known
as just E. F. Codd) published a paper in the Communications of the ACM4 in which he ap-
plied the concepts of a branch of mathematics called relational algebra to the problem of
“shared data banks,” as databases were then known. The results of this work are now the
relational model for databases, and all relational database DBMS products are built on
this model.

Codd’s work was at first viewed as too theoretical for practical implementation.
Practitioners argued that it was too slow and required so much storage that it would never be
useful in the commercial world. However, the relational model and relational database DBMS
products became adopted as the best way to create and manage databases.

The 1977 edition of this text featured a chapter on the relational model (which
Codd himself reviewed). Many years later, Wayne Ratliff, the creator of the dBase series of
 products for personal computers, stated that he had the idea for dBase while reading that
very chapter.5

By THE WAy Today, there are as many opportunities for innovation as there were for
Wayne Ratliff in 1977. Perhaps you can read Chapter 12 and Appendix K

and join the NoSQL and Big Data movements to help develop alternatives to relational
database technology. Just as in 1977, no product has a lock on the future. Opportunity
awaits you!

5C. Wayne Ratliff, “dStory: How I Really Developed dBASE,” Data Based Advisor, March 1991, p. 94. For more
information of Wayne Ratliff, dBase II, and also his work with FoxPro (now Microsoft Visual FoxPro), see the
Wikipedia article Wayne Ratliff at http://en.wikipedia.org/wiki/Wayne_Ratliff. For the history of dBase, see the
Wikipedia article dBase at http://en.wikipedia.org/wiki/DBASE.

4E. F. Codd, “A Relational Model of Data for Large Shared Databanks,” Communications of the ACM, June
1970, pp. 377–387. A downloadable copy of this paper in PDF format is available at http://dl.acm.org/
citation.cfm?id=362685.

http://en.wikipedia.org/wiki/Wayne_Ratliff
http://en.wikipedia.org/wiki/DBASE
http://dl.acm.org/citation.cfm?id=362685
http://dl.acm.org/citation.cfm?id=362685

 CHAPTER 1 Introduction 59

The relational model, relational algebra, and, later, SQL made sense. They were not need-
lessly complicated; rather, they seemed to boil down the data integration problem to a few
essential ideas. Over time, Codd convinced IBM management to develop relational-model
DBMS products. The result was IBM’s DB2 and its variants, which are still very popular today.

Meanwhile, other companies were considering the relational model as well, and by
1980 several more relational DBMS products had been released. The most prominent and
important of those was Oracle Corporation’s Oracle Database (the product was originally just
named Oracle but was renamed as Oracle Database after Oracle Corporation acquired other
products and needed to distinguish its DBMS product from the others). Oracle Database
achieved success for many reasons, one of which was that it would run on just about any com-
puter and just about any operating system. (Some users complained, “Yes, and equally badly
on all of them.” Another, when asked “Should we sell it to communist Russia?” responded,
“Only as long as they have to take the documentation with it.”)

However, in addition to being able to run on many different types of machines, Oracle
Database had, and continues to have, an elegant and efficient internal design. You will learn
aspects of that design in the concurrency-control section in Chapter 10B. That excellent
design, together with hard-driving and successful sales and marketing, has pushed Oracle
Database to the top of the DBMS market.

Meanwhile, Gordon Moore and others were hard at work at Intel. By the early 1980s, per-
sonal computers were prevalent, and DBMS products were developed for them. Developers
of microcomputer DBMS products saw the advantages of the relational model and developed
their products around it. dBase was the most successful of the early products, but another
product, R:base, was the first to implement true relational algebra and other operations on
the PC. Later, another relational DBMS product named Paradox was developed for personal
computers. Eventually, Paradox was acquired by Borland.

Alas, it all came to an end when Microsoft entered the picture. Microsoft released
Microsoft Access in 1991 and priced it at $99. No other PC DBMS vendor could survive at
that price point. Microsoft Access killed R:base and Paradox, and then Microsoft bought a
dBase “work-alike” product called FoxPro and used it to eliminate dBase. Microsoft has now
stopped upgrading Microsoft FoxPro, now named Microsoft Visual FoxPro, but Microsoft will
continue to support it until 2015.

Thus, Microsoft Access is the only major survivor of that bloodbath of PC DBMS prod-
ucts. Today, the main challenge to Microsoft Access actually comes from the Apache Software
Foundation and the open source software development community, who have taken over de-
velopment of OpenOffice.org, a downloadable suite of free software products that includes
the personal database OpenOffice.org Base and its sister product LibreOffice. LibreOffice is
a related development of OpenOffice that was started when Oracle Corporation acquired
Sun Microsystems in early 2013.

Post-Relational Developments

In the mid-1980s, object-oriented programming (OOP) emerged, and its advantages
over traditional structured programming were quickly recognized. By 1990, some vendors
had developed object-oriented DBMS (OODBMS or ODBMS) products. These prod-
ucts were designed to make it easy to store the data encapsulated in OOP objects. Several
special-purpose OODBMS products were developed, and Oracle added OOP constructs to
Oracle to enable the creation of a hybrid called an object-relational DBMS.

OODBMS never caught on, and today that category of DBMS products is fading away.
There were two reasons for their lack of acceptance. First, using an OODBMS required that
the relational data be converted from relational format to object-oriented format. By the time
OODBMS emerged, billions upon billions of bytes of data were stored in relational format in
organizational databases. No company was willing to undergo the expensive travail of convert-
ing those databases to be able to use the new OODBMS.

Second, object-oriented databases had no substantial advantage over relational databases
for most commercial database processing. As you will see in the next chapter, SQL is not
object oriented. But it works, and thousands of developers have created programs that use it.
Without a demonstrable advantage over relational databases, no organization was willing to
take on the task of converting its data to OODBMS format.

OpenOffice.org
OpenOffice.org

60 PART 1 Getting Started

Meanwhile, the Internet took off. By the mid-1990s, it was clear that the Internet was
one of the most important phenomena in history. It changed, forever, the ways that custom-
ers and businesses relate to each other. Early Web sites were nothing more than online
brochures, but within a few years dynamic Web sites that involved querying and processing
databases began to appear.

However, one substantial problem existed. HTTP is a stateless protocol; a server receives
a request from a user, processes the request, and then forgets about the user and the request.
Many database interactions are multistage. A customer views products, adds one or more to
a shopping cart, views more products, adds more to the shopping cart, and eventually checks
out. A stateless protocol cannot be used for such applications.

Over time, capabilities emerged to overcome this problem. Web application developers
learned to add SQL statements to their Web applications, and soon thousands of databases
were being processed over the Web. You will learn more about such processing in Chapter 11.
An interesting phenomenon was the emergence of open source DBMS products. Open source
products generally make the source code widely available so that a group of programmers not
bound to a single company can contribute to the program. Further, some forms of these prod-
ucts are usually offered as free downloads, although other forms or product support must be
purchased from the company that owns the product.

A good example of this is the MySQL DBMS. MySQL was originally released in 1995 by
the Swedish company MySQL AB. In February 2008, Sun Microsystems bought MySQL AB,
and in January 2013 Oracle Corporation completed its acquisition of Sun Microsystems. This
means that Oracle Corporation now owns two major DBMS products: Oracle Database and
Oracle MySQL. At present, MySQL continues to be available as an open source product, and
the free MySQL Community Server edition can be downloaded from the MySQL Web site.
MySQL has proven to be especially popular with Web site developers who need to run Web
page queries against an SQL DBMS on a Web server running the Linux operating system. We
will work with MySQL in Chapter 10C.

MySQL is not the only open source DBMS product—in fact, as this is being written there
are 87 “free database management systems” listed on the Wikipedia category page for free
database management systems (up from the 84 listed when the previous edition of this book
went to press). Additionally, two of these DBMS have subcategories of related products—
MySQL has 28 subcategories, and PostgreSQL (alternately Postgres) has 16 subcategories.

One interesting outcome of the emergence of open source DBMS products is that
companies that typically sell proprietary (closed source) DBMS products now offer free
versions of their products. For example, Microsoft now offers SQL Server 2014 Express,
and Oracle Corporation makes its Oracle Database Express Edition 11g Release 2
available for free. Although neither of these products is as complete or as powerful (for
 example, in terms of maximum data storage allowed) as some other versions the compa-
nies sell, they are useful for projects that require a small database. They are also ideal for
students learning to use databases and SQL.

In the late 1990s, XML was defined to overcome the problems that occur when HTML is
used to exchange business documents. The design of the XML family of standards not only solved
the problems of HTML, it also meant that XML documents were superior for exchanging views
of database data. In 2002, Bill Gates said that “XML is the lingua-franca of the Internet Age.”
As you will learn in Chapter 11 and Appendix K, however, two key problems that remain are
(1) getting data from a database and putting it into an XML document and (2) taking data
from an XML document and putting it into a database. In fact, this is where future application
programmers can enter the picture.

XML database processing was given a further boost with the definition of XML Web ser-
vice standards such as SOAP (not an acronym), WSDL (Web Services Description Language),
UDDI (Universal Description, Discovery, and Integration), and others. Using Web services, it
is possible to expose nuggets of database processing to other programs that use the Internet
infrastructure. This means, for example, that in a supply chain management application a
vendor can expose portions of its inventory application to its suppliers. Further, it can do so in
a standardized way.

The last row in Figure 1-27 brings us up to the present. Following the development of
XML, the NoSQL (“Not only SQL”) movement and Big Data have emerged in recent

 CHAPTER 1 Introduction 61

years, particularly following a 2009 conference organized around work on open source
distributed databases (discussed in Chapter 12). The NoSQL movement should really be
called a NoRelational movement because the work is really on databases that do not follow the
relational model introduced in this chapter and discussed in Chapter 3. The Big Data move-
ment is based on the need for information systems to handle increasing large sets of data and,
together with NoSQL (nonrelational) databases, is the basis for such applications as Facebook
and Twitter. We will discuss the NoSQL movement and Big Data, together with the associated
topics of distributed databases, virtualization and cloud computing, in Chapter 12.

The NoSQL movement and Big Data bring us to the edge of the IT volcano, where the
magma of new technology is just now oozing from the ground. What happens next will be, in
part, up to you.

Summary

Today’s Internet and smartphone world depends upon data-
bases. Personal computers use Web clients to browse, shop,
and communicate online. Smartphones use apps over cell
phone data networks to do the same. All these applications
rely on databases.

The purpose of a database is to help people keep track of
things. Databases store data in tables in which each table has
data about a different type of thing. Instances of the thing are
stored in the rows of tables, and the characteristics of those
instances are stored in columns. In this text, table names are
written in all capital letters; column names are written in ini-
tial capital letters. Databases store data and the relationships
among the data. Databases store data, but they are structured
so that information can be created from that data.

Figure 1-7 lists many important examples of database
applications. Databases can be processed by a single user
or by many users. Those that support many users require
special concurrency-control mechanisms to ensure that one
user’s work does not conflict with a second user’s work.

Some databases involve just a few users and thousands
of rows of data in a few tables. At the other end of the spec-
trum, some large databases, such as those that support ERP
applications, support thousands of users and include many
millions of rows in several hundred different tables.

Some database applications support e-commerce activi-
ties. Some of the largest databases are those that track users’
responses to Web pages and Web page components. These
databases are used to analyze customers’ responses to differ-
ent Web-based marketing programs.

Digital dashboards, data mining applications, and other
reporting applications use database data that is generated by
transaction processing systems to help manage the enterprise.
Digital dashboards and reporting systems assess past and cur-
rent performance. Data mining applications predict future
performance. The basic components of a database system are
the database, the database management system (DBMS), one
or more database applications, and users. Because Structured
Query Language (SQL) is an internationally recognized lan-
guage for processing databases, it can be considered a fifth
component of a database system.

The functions of database applications are to create
and process forms, to process user queries, and to create
and process reports. Application programs also execute
specific application logic and control the application. Users
provide data and data changes and read data in forms, que-
ries, and reports.

A DBMS is a large, complicated program used to cre-
ate, process, and administer a database. DBMS products are
almost always licensed from software vendors. Specific func-
tions of a DBMS are summarized in Figure 1-14.

A database is a self-describing collection of integrated
tables. A relational database is a self-describing collection
of related tables. Tables are integrated because they store
data about the relationships among rows of data. Tables are
related by storing linking values of a common column. A da-
tabase is self-describing because it contains a description of
its contents within itself, which is known as metadata. Most
DBMS products carry metadata in the form of tables. As
shown in Figure 1-16, databases also contain indexes, trig-
gers, stored procedures, security features, and backup and
recovery data.

Microsoft Access is not just a DBMS, but rather an ap-
plication generator plus a DBMS. The application generator
consists of applications components that create and process
forms, reports, and queries. The default Microsoft Access
DBMS product is called the Access Data Engine (ADE),
which is not licensed as a separate product.

Enterprise database systems do not combine applica-
tions and the DBMS as Microsoft Access does. Instead,
applications are programs separate from each other and
from the DBMS. Figure 1-18 shows four categories of
database applications: client/server applications, Web ap-
plications, reporting applications, and XML Web services
applications.

The five most popular DBMS products, in order of
power, features, and difficulty of use, are Microsoft Access,
MySQL, SQL Server, DB2, and Oracle Database. Microsoft
Access and SQL Server are licensed by Microsoft, DB2 is
licensed by IBM, and Oracle Database and MySQL are
 licensed by Oracle Corporation.

62 PART 1 Getting Started

Database design is both difficult and important. Most
of the first half of this text concerns database design. New
databases arise in three ways: from existing data, from
new systems development, and from database redesign.
Normalization is used to guide the design of databases from
existing data. Data models are used to create a blueprint from
system requirements. The blueprint is later transformed into
a database design. Most data models are created using the
entity-relationship model. Database redesign occurs when
an existing database is adapted to support new or changed
requirements or when two or more databases are integrated.

With regards to database processing, you can have one
of two roles: user or database administrator. You may be a
user of a database/DBMS as a knowledge worker or as an ap-
plication programmer. Alternatively, you might be a database
administrator who designs, constructs, and manages the da-
tabase itself. The domains of each role are shown in Figure
1-25, and the priorities as to what you need to know for each
role are shown in Figure 1-26.

The history of database processing is summarized in
Figure 1-27. In the early years, prior to 1970, database
processing did not exist, and all data were stored in sepa-
rated files. The need for integrated processing drove the

development of early DBMS products. The CODASYL
DBTG and DL/I data models were prevalent. Of the DBMS
products used at that time, only ADABAS and IMS are still
in use.

The relational model rose to prominence in the
1980s. At first, the relational model was judged to be
impractical, but over time relational products such as DB2
and Oracle Database achieved success. During this time,
DBMS products were developed for personal computers
as well. dBase, R:base, and Paradox were all PC DBMS
products that were eventually consumed by the success of
Microsoft Access.

Object-oriented DBMS products were developed in
the 1990s but never achieved commercial success. More
recently, Web-based databases have been developed to sup-
port e-commerce. Open source DBMS products are read-
ily available, forcing commercial DBMS vendors to offer
limited-capacity free versions of their enterprise products.
Features and functions, such as XML and XML Web ser-
vices, have been implemented to overcome the stateless
nature of HTTP. The NoSQL movement, Big Data, virtualiza-
tion, and cloud computing are at the leading edge of current
database processing.

Key Terms

Android operating system
ARPANET
app
Apple II
Apple OS X
Big Data
cell phone
client
client-server architecture
cloud computing
CODASYL DBTG
column
composite key
concurrency
data
Data Language/I (DL/I)
data mart
data model
data warehouse
database
database administrator
database application
database design (as a process)
database design (as a product)
database management system (DBMS)
database migration
database system
device

distributed database
enterprise-class database system
entity-relationship (ER) data modeling
Ethernet networking technology
fields
foreign key
IBM Personal Computer (IBM PC)
index
information
instance
integrated tables
Internet
iPhone
knowledge worker
Linux
Local Area Network (LAN)
Metadata
Microsoft Windows
Microsoft Windows Server
mobile phone
NoSQL movement
normal forms
normalization
object-oriented DBMS (OODBMS or

ODBMS)
object-oriented programming (OOP)
object-relational DBMS
operating system (OS)

Personal Computer (PC)
personal database system
Point of Sale (POS) system
primary key
programmer
record
referential integrity constraints
relational database
relational model
relationship
row
self-describing
server
service
smartphone
Structured Query Language (SQL)
surrogate key
table
tablet computer (tablet)
user
virtualization
Web (the)
Web 2.0
Web browser
Web site
Wide World Web
WWW
XML

 CHAPTER 1 Introduction 63

 1.1 Describe the historic development of Internet and smartphone technology from
the early days of personal computers (PCs) to today’s Internet Web application and
smartphone app based information systems environment.

 1.2 What is a client-server architecture?

 1.3 Read the description of the search process on the Pearson Web site. Using your
own computer, find another retailer Web site (other than any of those discussed or
mentioned in this chapter), and search for something of interest to you. Write up a
description (with screen shots if possible) of your search.

 1.4 What is the purpose of a database?

 1.5 Why is a relational database the most commonly used type of database?

 1.6 Give an example of two related tables other than the example used in this book.
Use the STUDENT and GRADE tables in Figure 1-5 as an example pattern for your
tables. Name the tables and columns using the conventions in this book.

 1.7 For the tables you created in Review Question 1.6, what are the primary keys of each
table? Do you think that any of these primary keys could be surrogate keys? Are any of
these primary keys composite keys?

 1.8 Explain how the two tables you provided in Review Question 1.6 are related. Which
table contains the foreign key, and what is the foreign key?

 1.9 Show your two tables from Review Question 1.6 without the columns that represent
the relationships. Explain how the value of your two tables is diminished without the
relationships.

 1.10 How do databases create information?

 1.11 Give an example of information that could be determined using the two tables you
provided in your answer to Review Question 1.6.

 1.12 Give examples of a single-user database application and a multiuser database appli-
cation other than the ones shown in Figure 1-7.

 1.13 What problem can occur when a database is processed by more than one user?

 1.14 Give an example of a database application that has hundreds of users and a
very large and complicated database. Use an example other than one in
Figure 1-7.

 1.15 Why do popular e-commerce companies track customer browser behavior through
Web activity databases?

 1.16 How can data mining applications support an enterprise?

 1.17 How do digital dashboard and data mining applications differ from transaction pro-
cessing applications?

 1.18 Explain how the complexity of a database is not necessarily related to its size.

 1.19 What are the primary components of a database system?

 1.20 What does a database application do?

 1.21 What is Structured Query Language (SQL), and why is it important?

 1.22 What does DBMS stand for?

 1.23 What are the functions of the DBMS?

Review Questions

64 PART 1 Getting Started

 1.24 Name five DBMS products.

 1.25 How does a DBMS differ from a database?

 1.26 Why is a database considered to be self-describing?

 1.27 What is metadata? How does this term pertain to a database?

 1.28 What advantage is there in storing metadata in tables?

 1.29 List the components of a database other than user tables and metadata.

 1.30 What makes Microsoft Access a personal database system?

 1.31 Describe the components shown in Figure 1-17.

 1.32 What is the function of the application generator in Microsoft Access?

 1.33 Name a personal database management system other than Microsoft Access.

 1.34 What is ADE?

 1.35 Why would someone choose to replace the native Microsoft Access DBMS engine
with SQL Server?

 1.36 Name the different types of database applications in an enterprise-class database
system.

 1.37 What do the different types of database applications in an enterprise-class database
system do?

 1.38 What is the language used by database applications?

 1.39 Describe the differences between the various DBMS products in terms of power, cost,
and ease-of-use?

 1.40 Define database design.

 1.41 Explain two ways that a database can be designed from existing data.

 1.42 What is a data warehouse? What is a data mart?

 1.43 Describe the general process of designing a database for a new information system.

 1.44 When do we use database integration?

 1.45 How is database migration different from database integration?

 1.46 Summarize the various ways that you might work with database technology.

 1.47 Describe the relation between database technology and its user.

 1.48 What is the role of a database administrator?

 1.49 Explain the meaning of the domains in Figure 1-25.

 1.50 How was data stored in the early years?

 1.51 Name the two methods by which early DBMS products structured data relationships.

 1.52 Who was E. F. Codd?

 1.53 What were the early objections to the relational model?

 1.54 Describe the emergence of the relational model.

 1.55 What was the first relational-model DBMS product called?

 1.56 Name three early personal computer DBMS products.

 1.57 What happened to the products in your answer to Review Question 1.56?

 1.58 What was the purpose of OODBMS products? State two reasons that OODBMS
products were not successful.

 CHAPTER 1 Introduction 65

 1.59 What characteristic of HTTP was a problem for database processing applications?

 1.60 What is an open source DBMS product? Which of the five DBMS products that you
named in answering Review Question 1.39 is historically an open source DBMS
product?

 1.61 What has been the response of companies that sell proprietary DBMS products to
the open source DBMS products? Include two examples in your answer.

 1.62 What is XML? What comment did Bill Gates make regarding XML?

 1.63 What is the NoSQL movement? Name two applications that rely on NoSQL databases.

DepartmentName Text (35) Primary Key Yes

Type Key Required RemarksColumn Name

DEPARTMENT

BudgetCode Text (30) No Yes

OfficeNumber Text (15) No Yes

Phone Text (12) No Yes

FIguRE 1-28

Column Characteristics
for the WPC Database
DEPartMENt table

Project Questions

To perform the following projects, you will need a computer that has Microsoft Access in-
stalled. If you have no experience working with Microsoft Access, read Appendix A before
you proceed.

For this set of project questions, we will create a Microsoft Access database for the
Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle, Washington, WPC has
grown into an internationally recognized organization. The company is located in two build-
ings. One building houses the Administration, Accounting, Finance, and Human Resources
departments, and the second houses the Production, Marketing, and Information Systems
departments. The company database contains data about company employees, departments,
company projects, company assets (for example, computer equipment), and other aspects of
company operations.

In the following project questions, we will start by creating the WPC.accdb database with
the following two tables:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
Phone, Email)

 1.64 Create a Microsoft Access database named WPC.accdb.

 1.65 Figure 1-28 shows the column characteristics for the WPC DEPARTMENT table.
Using the column characteristics, create the DEPARTMENT table in the WPC.accdb
database.

 1.66 Figure 1-29 shows the data for the WPC DEPARTMENT table. Using Datasheet view,
enter the data shown in Figure 1-29 into your DEPARTMENT table.

 1.67 Figure 1-30 shows the column characteristics for the WPC EMPLOYEE table. Using
the column characteristics, create the EMPLOYEE table in the WPC.accdb database.

WPC.accdb
WPC.accdb
WPC.accdb
WPC.accdb

66 PART 1 Getting Started

Administration BC-100-10 BLDG01-300 360-285-8100

BudgetCode OfficeNumber PhoneDepartmentName

Legal BC-200-10 BLDG01-200 360-285-8200

Accounting BC-300-10 BLDG01-100 360-285-8300

Finance BC-400-10 BLDG01-140 360-285-8400

Human Resources BC-500-10 BLDG01-180 360-285-8500

Production BC-600-10 BLDG02-100 360-287-8600

Marketing BC-700-10 BLDG02-200 360-287-8700

InfoSystems BC-800-10 BLDG02-270 360-287-8800

EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

EMPLOYEE

FirstName Text (25) No Yes

LastName Text (25) No Yes

Department Text (35) No Yes

Phone Text (12) No No

Email Text (100) No Yes

FIguRE 1-30

Column Characteristics
for the WPC Database
EMPLOYEE table

 1.68 Create the relationship and referential integrity constraint between DEPARTMENT
and EMPLOYEE. Enable enforcing of referential integrity and cascading of data up-
dates, but do not enable cascading of data from deleted records.

 1.69 Figure 1-31 shows the data for the WPC EMPLOYEE table. Using Datasheet view,
enter the first three rows of the data shown in Figure 1-31 into your EMPLOYEE
table.

 1.70 Using the Microsoft Access form wizard, create a data input form for the EMPLOYEE
table and name it WPC Employee Data Form. Make any adjustments necessary to
the form so that all data display properly. Use this form to enter the rest of the data in
the EMPLOYEE table shown in Figure 1-31 into your EMPLOYEE table.

 1.71 Using the Microsoft Access report wizard, create a report named Wedgewood Pacific
Corporation Employee Report that presents the data contained in your EMPLOYEE
table sorted first by employee last name and then by employee first name. Make any
adjustments necessary to the report so that all headings and data display properly.
Print a copy of this report.

 1.72 Using the Microsoft Access form wizard, create a form that has all of the data from
both tables. When asked how you want to view your data, select by DEPARTMENT.
Choose the default options for other questions that the wizard asks. Open your form
and page through your departments.

FIguRE 1-29

WPC Database
DEPartMENt Data

 CHAPTER 1 Introduction 67

 1.73 Using the Microsoft Access report wizard, create a report that has all of the data from
both tables. When asked how you want to view your data, select by DEPARTMENT.
For the data contained in your EMPLOYEE table in the report, specify that it will be
sorted first by employee last name and then by employee first name. Make any ad-
justments necessary to the report so that all headings and data display properly. Print
a copy of this report.

 1.74 Explain, to the level of detail in this chapter, what is going on within Microsoft Access
in Project Questions 1.70, 1.71, 1.72, and 1.73. What subcomponent created the
form and report? Where is the data stored? What role do you think SQL is playing?

[AutoNumber] Mary Jacobs Administration

FirstName LastName DepartmentEmployeeNumber

[AutoNumber] Rosalie Jackson Administration

[AutoNumber] Richard Bandalone Legal

[AutoNumber] Tom Caruthers Accounting

[AutoNumber] Heather Jones Accounting

[AutoNumber] Mary Abernathy Finance

[AutoNumber] George Smith Human Resources

[AutoNumber] Tom Jackson Production

[AutoNumber] George Jones Production

[AutoNumber] Ken Numoto Marketing

[AutoNumber] James Nestor InfoSystems

[AutoNumber] Rick Brown InfoSystems

360-285-8110

Phone

360-285-8120

360-285-8210

360-285-8310

360-285-8320

360-285-8410

360-285-8510

360-287-8610

360-287-8620

360-287-8710

360-287-8820

Mary.Jacobs@WPC.com

Email

Rosalie.Jackson@WPC.com

Richard.Bandalone@WPC.com

Tom.Caruthers@WPC.com

Heather.Jones@WPC.com

Mary.Abernathy@WPC.com

George.Smith@WPC.com

Tom.Jackson@WPC.com

George.Jones@WPC.com

Ken.Numoto@WPC.com

James.Nestor@WPC.com

Rick.Brown@WPC.com

FIguRE 1-31

WPC Database EMPLOYEE
Data

68

In today’s business environment, users typically use data stored in

 databases to produce information that can help them make business decisions. In

Chapter 12, we will take an in-depth look at business intelligence (BI) systems,

which are information systems used to support management decisions by produc-

ing information for assessment, analysis, planning, and control. In this chapter, we

will see how BI systems users use ad-hoc queries, which are essentially questions

that can be answered using database data. For example, in English an ad-hoc

query might be “How many customers in Portland, Oregon, bought our green base-

ball cap?” These queries are called ad-hoc because they are created by the user as

needed rather than programmed into an application.

This approach to database querying has become important enough that some

companies produce dedicated applications to help users who are not familiar with

Introduction to Structured Query
Language

■■ To create SQL queries that use the SQL logical operators
including AND, OR, and NOT

■■ To create SQL queries that use the SQL built-in
aggregate functions of SUM, COUNT, MIN, MAX,
and AVG with and without the SQL GROUP BY clause

■■ To create SQL queries that retrieve data from a single
table while restricting the data based upon data in
another table (subquery)

■■ To create SQL queries that retrieve data from multiple
tables using the SQL join and JOIN ON operations

■■ To create SQL queries that retrieve data from multiple
tables using the SQL OUTER JOIN operation

■■ To create SQL queries that retrieve data from multiple
tables using SQL set operators UNION, INTERSECT,
and EXCEPT

Chapter Objectives
■■ To understand the use of extracted data sets in business

intelligence (BI) systems
■■ To understand the use of ad-hoc queries in business

intelligence (BI) systems
■■ To understand the history and significance of Structured

Query Language (SQL)
■■ To understand the SQL SELECT/FROM/WHERE

framework as the basis for database queries
■■ To create SQL queries to retrieve data from a single table
■■ To create SQL queries that use the SQL SELECT, FROM,

WHERE, ORDER BY, GROUP BY, and HAVING clauses
■■ To create SQL queries that use the SQL DISTINCT, TOP,

and TOP PERCENT keywords
■■ To create SQL queries that use the SQL comparison

operators including BETWEEN, LIKE, IN, and IS NULL

68

2

 CHAPTER 2 Introduction to Structured Query Language 69

database structures create ad-hoc queries. One example is Open Text’s Open Text

Business Intelligence product (formerly known as LiveLink ECM BI Query), which

uses a user-friendly graphical user interface (GUI) to simplify the creation of ad-

hoc queries. Personal databases such as Microsoft Access also have ad-hoc query

tools available. Microsoft Access uses a GUI style called query by example (QBE)
to simplify ad-hoc queries.

However, Structured Query Language (SQL)—the universal query language of

relational DBMS products—is always behind the user-friendly GUIs. In this chapter,

we will introduce SQL by learning how to write and run SQL queries. We will then

return to SQL in Chapter 7 to learn how to use it for other purposes, such as how to

create and add data to the databases themselves.

FIGURE 2-1

The Cape Codd Retail Sales
Web Site Home Page

Cape Codd Outdoor Sports

For our work in this chapter, we will use data from Cape Codd Outdoor Sports (although
based on a real outdoor retail equipment vendor, Cape Codd Outdoor Sports is a fictitious
company). The Cape Codd Outdoor Sports Web site is shown in Figure 2-1. Cape Codd
Outdoor Sports, or just Cape Codd for short, sells recreational outdoor equipment in 15
retail stores across the United States and Canada. It also sells merchandise over the Internet
from a Web storefront application and via mail order based on annual catalogs that are
mailed to all recorded customers in early January of each year. All retail sales are recorded
in a sales database managed by the Oracle Database 12c DBMS, as shown in Figure 2-2.
This type of sales system is commonly known as an online transaction processing
(OLTP) system and is used to record all sales transactions of the company (whether in a
store, on the Web, or from mail order or phone order sales). OLTP systems are the backbone
of businesses as they operate today.

70 PART 1 Getting Started

Point-of-Sale
Application

Store 2
. . .

Sales
Extraction
Database

Oracle
Database
12c Sales
Database

Point-of-Sale
Application

Store 15

Web Storefront
Internet Sales

Mail Order
Sales

Point-of-Sale
Application

Store 1

Internet Customers

Mail Order Customers

Retail Store Sales
Data Extraction

FIGURE 2-2

The Cape Codd Retail Sales
Data Extraction Process

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

Operational
Databases

External
Data

BI Users

FIGURE 2-3

Components of a Data
Warehouse

Business Intelligence Systems and Data Warehouses

You will notice in Figure 2-3 that BI systems typically store their associated data in data ware-
houses, which are database systems that have data, programs, and personnel that specialize
in the preparation of data for BI processing. Data warehouses will be discussed in detail in
Chapter 12, so for now we will simply note that data warehouses vary in scale and scope. They
can be as simple as a sole employee processing a data extract on a part-time basis or as complex
as a department with dozens of employees maintaining libraries of data and programs.

Figure 2-3 shows the components of a typical company-wide data warehouse. Data are read
from operational databases (the databases that store the company’s current day-to-day transac-
tion data), from other internal data, or from external data sources by the Extract, Transform,
and Load (ETL) system. The ETL system then cleans and prepares the data for BI processing.

 CHAPTER 2 Introduction to Structured Query Language 71

This can be a complex process, but the data is then stored in the data warehouse DBMS for
use by BI users who access the data by various BI tools. As described in Chapter 1, the DBMS
used for the data warehouse stores both databases and the metadata for those databases.

The Cape Codd Outdoor Sports Extracted Retail Sales Data

Cape Codd’s marketing department wants to perform an analysis of (1) in-store sales and
(2) catalog content. Accordingly, marketing analysts ask the IT department to extract retail
sales data from the operational database.

To perform the in-store sales marketing study, the marketing analysts do not need all of the
order data. They want just the RETAIL_ORDER, ORDER_ITEM, and SKU_DATA tables and
columns shown in Figure 2-4. Looking at this figure, it is easy to see that columns that would
be needed in an operational sales OLTP database are not included in the extracted data. For
example, the RETAIL_ORDER table does not have CustomerLastName, CustomerFirstName,
and OrderDay columns. Similarly, not all catalog data is needed, but the market analysts do
need similar data from different years to be able to compare the catalog content from year to
year, so the CATALOG_SKU_2014 and CATALOG_SKU_2015 tables shown in Figure 2-4 are
needed. The data types for the columns in these tables are shown in Figure 2-5.

As shown in Figures 2-4 and 2-5, five tables are needed:

■■ RETAIL_ORDER, ORDER_ITEM, and SKU_DATA for retail sales analysis
■■ CATALOG_SKU_2014 and CATALOG_SKU_2015 for catalog content analysis

The RETAIL_ORDER table has data about each retail sales order, the ORDER_ITEM table
has data about each item in an order, and the SKU_DATA table has data about each stock-
keeping unit (SKU). SKU is a unique identifier for each particular item that Cape Codd
sells. Note that these three tables are linked in a relational database structure. The relation-
ships are shown in Figure 2-4, and the primary keys and foreign keys are clearly visible in

The relationship between
RETAIL_ORDER and
ORDER_ITEM— the
number 1 and the infinity
symbol indicate that one
retail order may be linked
to many order items by
OrderNumber

The RETAIL_ORDER
table—the key symbol
shows the primary key

The CATALOG_SKU_ 2014
and CATALOG_SKU_2015
tables are not linked to other
tables in the database

FIGURE 2-4

Cape Codd Extracted Retail
Sales Data Database Tables
and Relationships

By THE WAy A small, specialized data warehouse is referred to as a data mart.
Data marts and their relationship to data warehouses are discussed in

Chapter 12. Note that the DBMS used for the data warehouse may or may not be the
same DBMS product used for the operational databases. For example, operational
databases may be stored in an Oracle Database 12c DBMS, while the data warehouse
uses a Microsoft SQL Server 2014 DBMS.

72 PART 1 Getting Started

Figure 2-6. CATALOG_SKU_2014 and CATALOG_SKU_2015 have data about the content
in the annual printed catalog and the items available for sale on the Cape Codd Web site.
Because some items are added to the Web site after the catalog is printed, an item on the
Web site may not be in the corresponding catalog. Note that these two tables are free stand-
ing, meaning that while they do have primary keys, they are not linked to any other tables via
foreign keys. The data stored in the tables is shown in Figure 2-6.

CATALOG_SKU_20##

Department

CatalogID

SKU

SKU_Description

CatalogPage

Integer

Integer

Character (35)

Character (30)

Integer

DateOnWebSite Date

Table

RETAIL_ORDER

Column Data Type

Integer

Integer

Character (9)

Character (12)OrderMonth

ORDER_ITEM

SKU_DATA

OrderNumber

StoreNumber

StoreZIP

Integer

Character (35)

Character (30)

Character (30)Buyer

SKU

SKU_Description

Department

OrderYear

OrderTotal

Price

OrderNumber

SKU

Quantity

ExtendedPrice

Integer

Currency

Integer

Integer

Integer

Currency

Currency

FIGURE 2-5

Cape Codd Extracted Retail
Sales Data Format

RETAIL_ORDER Data

As shown in Figures 2-4, 2-5, and 2-6, the RETAIL_ORDER table has columns for OrderNumber,
StoreNumber, StoreZIP (the ZIP code of the store selling the order), OrderMonth, OrderYear,
and OrderTotal. We can write this information in the following format, with OrderNumber un-
derlined to show that it is the primary key of the RETAIL_ORDER table:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZIP, OrderMonth, OrderYear,
OrderTotal)

By THE WAy The dataset shown is a small dataset we are using to illustrate the con-
cepts explained in this chapter. A “real world” data extract would produce

a much larger dataset, but our dataset is big enough for our purposes while also keep-
ing the database easily manageable.

 CHAPTER 2 Introduction to Structured Query Language 73

SKU_DATA

ORDER_ITEM

RETAIL_ORDER

(a) The Linked RETAIL_ORDER, ORDER_ITEM and SKU_DATA Tables

FIGURE 2-6

Sample Data in the Cape
Codd Extracted Retail Sales
Database

CATALOG_SKU_2014

CATALOG_SKU_2015

(b) The Non-Linked CATALOG_SKU_2014 and CATALOG_SKU_2015 Tables

74 PART 1 Getting Started

Sample data for RETAIL_ORDER are shown in Figure 2-6. This extract includes only data for
retail store sales—operational data for other types of sales (and returns and other sales-related
transactions) are not copied during the extraction process. Further, the data extraction process
selects only a few columns of the operational data—the Point of Sale (POS) and other sales ap-
plications process far more data than that shown here. The operational database also stores the
data in a different format. For example, the order data in the Oracle Database 12c operational
database contain a column named OrderDate that stores the data in the date format MM/DD/
YYYY (e.g., 10/22/2010 for October 22, 2010). The extraction program used to populate the
retail sales extracted data database converts OrderDate into two separate values of OrderMonth
and OrderYear. This is done because this is the data format that marketing wants. Such filtering
and data transformation are typical of a data extraction process.

ORDER_ITEM Data

As shown in Figures 2-4, 2-5, and 2-6, the ORDER_ITEM table has columns for OrderNumber,
SKU, Quantity, Price, and ExtendedPrice (which equals Quantity × Price). We can write this
information in the following format, with both OrderNumber and SKU underlined to show
that together they are the composite primary key of the ORDER_ITEM table and with them
also italicized to show that they are also foreign keys:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Thus, the ORDER_ITEM table stores an extract of the items purchased in each order. There
is one row in the table for each item in an order, and this item is identified by its SKU. To
understand this table, think about a sales receipt you get from a retail store. That receipt has
data for one order. It includes basic order data such as the date and order total, and it has
one line for each item you purchase. The rows in the ORDER_ITEM table correspond to the
lines on such an order receipt.

The OrderNumber Column in ORDER_ITEM relates each row in ORDER_ITEM to the
corresponding OrderNumber in the RETAIL_ORDER table. SKU identifies the actual item
purchased by its stock-keeping unit number. Further, the SKU column in ORDER_ITEM re-
lates each row in ORDER_ITEM to its corresponding SKU in the SKU_DATA table (discussed
in the next section). Quantity is the number of items of that SKU purchased in that order.
Price is the price of each item, and ExtendedPrice is equal to Quantity × Price.

ORDER_ITEM data are shown in the bottom part of Figure 2-6. The first row relates to
order 1000 and to SKU 201000. For SKU 201000, one item was purchased for $300.00, and
the ExtendedPrice was $300.00. The second row shows the second item in order 1000. There,
1 of item 202000 was purchased for $50.00, and the ExtendedPrice is 1 × $50.00, or $50.00.
This table structure of an ORDER table related to an ORDER_ITEM table is typical for a sales
system with many items in one order. We will discuss it in detail in Chapters 5 and 6, where we
will create a data model of a complete order and then design the database for that data model.

SKU_DATA Table

As shown in Figures 2-4, 2-5, and 2-6, the SKU_DATA table has columns SKU, SKU_
Description, Department, and Buyer. We can write this information in the following format,
with SKU underlined to show that it is the primary key of the SKU_DATA table:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

By THE WAy You would expect the total of ExtendedPrice for all rows for a given order
to equal OrderTotal in the RETAIL_ORDER table. It does not. For order

1000, for example, the sum of ExtendedPrice in the relevant rows of ORDER_ITEM is
$300.00 + $130.00 = $430.00. However, the OrderTotal for order 1000 is $445.00. The
difference occurs because OrderTotal includes tax, shipping, and other charges that do
not appear in the data extract.

 CHAPTER 2 Introduction to Structured Query Language 75

SKU is an integer value that identifies a particular product sold by Cape Codd. For example,
SKU 100100 identifies a yellow, standard-size SCUBA tank, whereas SKU 100200 identifies
the magenta version of the same tank. SKU_Description contains a brief text description of
each item. Department and Buyer identify the department and individual who is responsible
for purchasing the product. As with the other tables, these columns are a subset of the SKU
data stored in the operational database.

CATALOG_SKU_20## Tables

As shown in Figures 2-4, 2-5, and 2-6, all the CATALOG_SKU_20## tables have the same
columns, consisting of CatalogID, SKU, SKU_Description, Department, CatalogPage, and
DateOnWebSite. We can write this information in the following format, with CatalogID un-
derlined to show that it is the primary key of each CATALOG_SKU_20## table:

CATALOG_SKU_20## (CatalogID, SKU, SKU_Description, Department,
CatalogPage, DateOnWebSite)

CatalogID is an integer value that identifies a particular catalog item in the tables. SKU,
SKU_Description, and Department have the same meaning as in the SKU_DATA table.
CatalogPage is an integer that shows on which page in the printed catalog the item appeared,
and DateOnWebSite shows the first date that the item could be seen on the Cape Codd Web
site. As with the other tables, these columns are a subset of the CATALOG_SKU_20## data
stored in the operational database.

Note that in the CATALOG_SKU_2014 table, the row with CatalogID 2014003 has no
value for CatalogPage. Similarly, note that in the CATALOG_SKU_2015 table, in the row with
CatalogID 2015007, there is again no value for CatalogPage. A missing data value like this is
called a null value. We will discuss null values in detail in Chapters 4, but for now understand
that we treat a null value just like any other data value, and we can search for null values in a
table using the same techniques we will use to search for any other data value.

The Complete Cape Codd Data Extract Schema

A database schema is a complete logical view of the database, containing all the tables, all
the columns in each table, the primary key of each table (indicated by underlining the col-
umn names of the primary key columns), and the foreign keys that link the tables together
(indicated by italicizing the column names of the foreign key columns). The schema for the
Cape Codd sales data extract therefore is:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZIP, OrderMonth,
OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
CATALOG_SKU_2014 (CatalogID, SKU, SKU_Description, Department,
CatalogPage, DateOnWebSite)
CATALOG_SKU_2015 (CatalogID, SKU, SKU_Description, Department,
CatalogPage, DateOnWebSite)

Note how the composite primary key for ORDER_ITEM also contains the foreign keys linking
this table to RETAIL_ORDER and SKU_DATA.

By THE WAy In the Review Questions at the end of this chapter, we will extend this
schema to include three additional tables: WAREHOUSE, INVENTORY, and

CATALOG_SKU_2013. Some of the figures in this chapter include these three tables in the
Cape Codd database, but they are not used in our discussion of SQL in the chapter text.

76 PART 1 Getting Started

Data Extracts Are Common

Before we continue, realize that the data extraction process described here is not just an
academic exercise. To the contrary, such extraction processes are realistic, common, and im-
portant BI system operations. Right now, hundreds of businesses worldwide are using their BI
systems to create extract databases just like the one created by Cape Codd.

In the next sections of this chapter, you will learn how to write SQL statements to process
the extracted data via ad-hoc SQL queries, which is how SQL is used to “ask questions”
about the data in the database. This knowledge is exceedingly valuable and practical. Again,
right now, as you read this paragraph, hundreds of people are writing SQL to create informa-
tion from extracted data. The SQL you will learn in this chapter will be an essential asset to
you as a knowledge worker, application programmer, or database administrator. Invest the
time to learn SQL—the investment will pay great dividends later in your career.

SQL Background

SQL was developed by the IBM Corporation in the late 1970s. It was endorsed as a national
standard by the American National Standards Institute (ANSI) in 1986 and by the
International Organization for Standardization (ISO) (and no, that’s not a typo—the
acronym is ISO, not IOS!) in 1987. Subsequent versions of SQL were adopted in 1989 and
1992. The 1992 version is sometimes referred to as SQL-92 and sometimes as ANSI-92 SQL.
In 1999, SQL:1999 (also referred to as SQL3), which incorporated some object-oriented
concepts, was released. This was followed by the release of SQL:2003 in 2003; SQL:2006
in 2006; SQL:2008 in 2008; and, most recently, SQL:2011 in 2011. Each of these added
new features or extended existing SQL features, the most important of which for us are the
SQL standardization of the INSTEAD OF trigger (SQL triggers are discussed in Chapter 7) in
SQL:2008 and the support for Extensible Markup Language (XML) (XML is discussed
in Chapter 11) added in SQL:2009. Our discussions in this chapter and in Chapter 7 mostly
focus on common language features that have been in SQL since SQL-92 but do include some
features from SQL:2003 and SQL:2008. We discuss the SQL XML features in Chapter 11.

SQL is not a complete programming language, like Java or C#. Instead, it is called a data
sublanguage because it has only those statements needed for creating and processing data-
base data and metadata. You can use SQL statements in many different ways. You can submit
them directly to the DBMS for processing. You can embed SQL statements into client/server
application programs. You can embed them into Web pages, and you can use them in report-
ing and data extraction programs. You also can execute SQL statements directly from Visual
Studio.NET and other development tools.

SQL statements are commonly divided into categories, five of which are of interest to us here:

■■ Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures.

■■ Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data.

■■ SQL/Persistent Stored Modules (SQL/PSM) statements, which extend SQL by
adding procedural programming capabilities, such as variables and flow-of-control
statements, that provide some programmability within the SQL framework.

By THE WAy Although there is an SQL standard, that does not mean that SQL is stan-
dardized across DBMS products! Indeed, each DBMS implements SQL in

its own peculiar way, and you will have to learn the idiosyncrasies of the SQL dialect
your DBMS uses.

In this book, we are using Microsoft’s SQL Server 2014 SQL syntax, with some
limited discussion of the different SQL dialects. The Oracle Database 12c SQL syntax
is used in Chapter 10B, and the MySQL SQL 5.6 SQL syntax is used in Chapter 10C.

Studio.NET

 CHAPTER 2 Introduction to Structured Query Language 77

■■ Transaction control language (TCL) statements, which are used to mark trans-
action boundaries and control transaction behavior.

■■ Data control language (DCL) statements, which are used to grant database per-
missions (or to revoke those permissions) to users and groups, so that the users or
groups can perform various operations on the data in the database.

This chapter considers only DML statements for querying data. The remaining DML state-
ments for inserting, modifying, and deleting data are discussed in Chapter 7, where we will
also discuss SQL DDL statements. SQL/PSM is introduced in Chapter 7, and the specific
variations of it used with each DBMS are discussed in detail in Chapter 10A for SQL Server
2014, Chapter 10B for Oracle Database 12c, and Chapter 10C for MySQL. TCL and DCL
statements are covered in Chapter 9.

SQL is ubiquitous, and SQL programming is a critical skill. Today, nearly all DBMS prod-
ucts process SQL, with the only exceptions being some of the emerging NoSQL and Big Data
movement products. Enterprise-class DBMSs such as Microsoft SQL Server 2014, Oracle
Database 12c, Oracle MySQL 5.6, and IBM DB2 require that you know SQL. With these
products, all data manipulation is expressed using SQL.

As explained in Chapter 1, if you have used Microsoft Access, you have used SQL, even
if you didn’t know it. Every time you process a form, create a report, or run a query, Microsoft
Access generates SQL and sends that SQL to Microsoft Access’s internal ADE DBMS engine.
To do more than elementary database processing, you need to uncover the SQL hidden by
Microsoft Access. Further, once you know SQL, you will find it easier to write a query state-
ment in SQL rather than fight with the graphical forms, buttons, and other paraphernalia that
you must use to create queries with the Microsoft Access query-by-example–style GUI.

The SQL SELECT/FROM/WHERE Framework

This section introduces the fundamental statement framework for SQL query statements. After
we discuss this basic structure, you will learn how to submit SQL statements to Microsoft Access,
SQL Server, Oracle Database, and MySQL. If you choose, you can then follow along with the text
and process the SQL statements as they are explained in the rest of this chapter. The basic form
of SQL queries uses the SQL SELECT/FROM/WHERE framework. In this framework:

■■ The SQL SELECT clause specifies which columns are to be listed in the query
results.

■■ The SQL FROM clause specifies which tables are to be used in the query.
■■ The SQL WHERE clause specifies which rows are to be listed in the query results.

Let’s work through some examples so that this framework makes sense to you.

By THE WAy Some authors treat SQL queries as a separate part of SQL rather than as
a part of SQL DML. We note that the SQL/Framework section of the SQL

specification includes queries as part of the “SQL-data statements” class of state-
ments along with the rest of the SQL DML statements and treat them as SQL DML
statements.

By THE WAy The four actions listed for SQL DML are sometimes referred to as CRUD:
create, read, update, and delete. We do not use this term in this book, but

now you know what it means.

78 PART 1 Getting Started

Reading Specified Columns from a Single Table

We begin very simply. Suppose we want to obtain the values that are in the SKU_DATA table.
To do this, we write an SQL SELECT statement that contains all the column names in the
table. An SQL statement to read that data is the following:

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

Using the data in Figure 2-6, when the DBMS processes this statement the result will be:

When SQL statements are executed, the statements transform tables. SQL statements
start with a table, process that table in some way, and then place the results in another table
structure. Even if the result of the processing is just a single number, that number is considered
to be a table with one row and one column. As you will learn at the end of this chapter, some
SQL statements process multiple tables. Regardless of the number of input tables, though, the
result of every SQL statement is a single table.

Notice that SQL statements terminate with a semicolon (;) character. The semicolon
is required by the SQL standard. Although some DBMS products will allow you to omit
the semicolon, some will not, so develop the habit of terminating SQL statements with a
semicolon.

SQL statements can also include an SQL comment, which is a block of text that is used
to document the SQL statement while not executed as part of the SQL statement. SQL com-
ments are enclosed in the symbols /* and */, and any text between these symbols is ignored
when the SQL statement is executed. For example, here is the previous SQL query with an
SQL comment added to document the query by including a query name:

/* *** SQL-Query-CH02-01 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

Because the SQL comment is ignored when the SQL statement is executed, the output
from this query is identical to the SQL query output shown above. We will use similar com-
ments to label the SQL statements in this chapter as an easy way to reference a specific SQL
statement in the text.

SQL provides a shorthand notation for querying all of the columns of a table. The short-
hand is to use an SQL asterisk (*) wildcard character to indicate that we want all the
columns to be displayed:

/* *** SQL-Query-CH02-02 *** */

SELECT *

FROM SKU_DATA;

 CHAPTER 2 Introduction to Structured Query Language 79

The result will again be a table with all rows and all four of the columns in
SKU_DATA:

Specifying Column Order in SQL Queries from a Single Table

Suppose we want to obtain just the values of the Department and Buyer columns of the
SKU_DATA table. In this case, we specify only the column names of the Department and
Buyer columns, and an SQL SELECT statement to read that data is the following:

/* *** SQL-Query-CH02-03 *** */

SELECT Department, Buyer

FROM SKU_DATA;

Using the data in Figure 2-6, when the DBMS processes this statement the result will be:

The order of the column names in the SELECT phrase determines the order of the columns
in the results table. Thus, if we switch Buyer and Department in the SELECT phrase, they will
be switched in the output table as well. Hence, the SQL statement:

/* *** SQL-Query-CH02-04 *** */

SELECT Buyer, Department

FROM SKU_DATA;

By THE WAy In the SQL SELECT statement, the SELECT clause and the FROM clause
are the only required clauses in the statement. We will have a complete

query by simply telling SQL which columns should be read from which table. In the
rest of this chapter, we will discuss other clauses, such as the WHERE clause, that can
be used as part of an SQL SELECT statement. All of these other clauses, however, are
optional.

80 PART 1 Getting Started

produces the following result table:

Submitting SQL Statements to the DBMS

Before continuing the explanation of SQL, it will be useful for you to learn how to submit SQL
statements to specific DBMS products. That way, you can work along with the text by key-
ing and running SQL statements as you read the discussion. The particular means by which
you submit SQL statements depends on the DBMS. Here we will describe the process for
Microsoft Access 2013, Microsoft SQL Server 2014, Oracle Database 12c, and MySQL 5.6.

Using SQL in Microsoft Access 2013

Before you can execute SQL statements, you need a computer that has Microsoft Access in-
stalled, and you need a Microsoft Access database that contains the tables and sample data in
Figure 2-6. Microsoft Access is part of many versions of the Microsoft Office suite, so it should
not be too difficult to find a computer that has it.

Because Microsoft Access is commonly used in classes that use this book as a textbook,
we will look at how to use SQL in Microsoft Access in some detail. Before we proceed, how-
ever, we need to discuss a specific peculiarity of Microsoft Access: the limitations of the default
version of SQL used in Microsoft Access.

Does Not Work with Microsoft Access ANSI-89 SQL
As mentioned previously, our discussion of SQL is based on SQL features present in SQL
standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92 SQL).
Unfortunately, Microsoft Access 2013 still defaults to the earlier SQL-89 version—Microsoft
calls it ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS engine used by
Microsoft Access). ANSI-89 SQL differs significantly from SQL-92, and, therefore, some fea-
tures of the SQL-92 language will not work in Microsoft Access.

Microsoft Access 2013 (and the earlier Microsoft Access 2003, 2007, and 2010 ver-
sions) does contain a setting that allows you to use SQL-92 instead of the default ANSI-89

By THE WAy You can learn SQL without running the queries in a DBMS, so if for some
reason you do not have Microsoft Access, SQL Server, Oracle Database, or

MySQL readily available, do not despair. You can learn SQL without them. Chances are
your instructor, like a lot of us in practice today, learned SQL without a DBMS. It is just
that SQL statements are easier to understand and remember if you can run the SQL
while you read. However, given that there are free downloadable versions of Microsoft
SQL Server 2014 Express edition, Oracle Database Express Edition 11g Release 2, and
MySQL 5.6 Server Community Edition, you can have an installed DBMS to run these
SQL examples even if you have not purchased Microsoft Access 2013. See Chapters
10A, 10B, and 10C for specific instructions for creating databases using each of these
products. The SQL scripts needed to create the Cape Codd Outdoor Sports database
used in this chapter are available at www.pearsonglobaleditions.com/kroenke.

www.pearsonhighered.com/kroenke

 CHAPTER 2 Introduction to Structured Query Language 81

SQL. Microsoft included this option to allow Microsoft Access tools such as forms and re-
ports to be used in application development for Microsoft SQL Server, which supports newer
SQL standards. To set the option in Microsoft Access 2013, click the File command tab and
then click the Options command to open the Access Options dialog box. In the Access
Options dialog box, click the Object Designers button to display the Access Options
Object Designers page, as shown in Figure 2-7.

As shown in Figure 2-7, the SQL Server Compatible Syntax (ANSI 92) options con-
trol which version of SQL is used in a Microsoft Access 2013 database. If you check the This
database check box, you will use SQL-92 syntax in the current database. Or you can check
the Default for new databases check box to make SQL-92 syntax the default for all new
databases you create. When you click the OK button to save the changed SQL syntax option,
the SQL-Syntax Information dialog box shown in Figure 2-8 will be displayed. Read the infor-
mation, and then click the OK button to close the dialog box.

Unfortunately, very few Microsoft Access users or organizations using Microsoft Access
are likely to set the Microsoft Access SQL version to the SQL-92 option, and, in this chapter,
we assume that Microsoft Access is running in the default ANSI-89 SQL mode. One advan-
tage of doing so is that it will help you understand the limitations of Microsoft Access ANSI-89
SQL and how to cope with them.

In the discussion that follows, we use “Does Not Work with Microsoft Access ANSI-
89 SQL” boxes to identify SQL commands and SQL clauses that do not work in Microsoft
Access ANSI-89 SQL. We also identify any workarounds that are available. Remember
that the one permanent workaround is to choose to use the SQL-92 syntax option in the
databases you create!

The Object
Designers button

The SQL Server
Compatible Syntax
(ANSI 92) option
controls the use of
SQL-89 versus
SQL-92 syntax in
Access queries

Use this check box to
use SQL-92 syntax
in just the open
database

Use this check box to
use SQL-92 syntax
when new databases
are created

FIGURE 2-7

The Microsoft Access 2013
Options Object Designers
Page

FIGURE 2-8

The Microsoft Access 2013
SQL-Syntax Information
Dialog Box

82 PART 1 Getting Started

Nonetheless, two versions of the Microsoft Access 2013 Cape Codd Outdoor Sports
database are available at www.pearsonglobaleditions.com/kroenke for your use with this chapter.
The Microsoft Access database file named Cape-Codd.accdb is set to use Microsoft Access ANSI-
89, whereas the Microsoft Access database file name Cape-Codd-SQL-92.accdb is set to use
Microsoft Access SQL-92. Choose the one you want to use (or use them both and compare the
results!). Note that these files contain three additional tables (INVENTORY, WAREHOUSE,
and CATALOG_SKU_2013) that we will not use in this chapter but that you will need for the
Review Questions at the end of the chapter.

Alternatively, of course, you can create your own Microsoft Access database and then
add the tables and data in Figures 2-4, 2-5, and 2-6, as described in Appendix A. If you cre-
ate your own database, look at the Review Questions at the end of the chapter and create the
INVENTORY and WAREHOUSE tables shown there in addition to the RETAIL_ORDER,
ORDER_ITEM, and SKU tables shown in the chapter discussion. This will ensure that what you
see on your monitor matches the screenshots in this chapter. Whether you download the data-
base file or build it yourself, you will need to do one or the other before you can proceed.

Processing SQL Statements in Microsoft Access 2013
To process an SQL statement in Microsoft Access 2013, first open the database in Microsoft
Access as described in Appendix A and then create a new tabbed Query window.

Opening a Microsoft Access Query Window in Design View

1. Click the CREATE command tab to display the Create command groups, as shown
in Figure 2-9.

2. Click the Query Design button.
3. The Query1 tabbed document window is displayed in Design view, along with the

Show Table dialog box, as shown in Figure 2-10.
4. Click the Close button on the Show Table dialog box. The Query1 document

 window now looks as shown in Figure 2-11, with the QUERY TOOLS contextual
command tab and the DESIGN command tab displayed. This window is used
for creating and editing Microsoft Access queries in Design view and is used with
Microsoft Access QBE.

Note that in Figure 2-11 the Select button is selected in the Query Type group on the
Design tab. You can tell this is so because active or selected buttons are always shown in color
on the Ribbon. This indicates that we are creating a query that is the equivalent of an SQL
SELECT statement.

The CREATE
command tab

The Query Design
button

The CATALOG_SKU_
2013, INVENTORY
and WAREHOUSE
tables will be used in
the Chapter 2 Review
Exercises

FIGURE 2-9

The CREATE Command Tab

www.pearsonhighered.com/kroenke
Cape-Codd.accdb
Cape-Codd-SQL-92.accdb

 CHAPTER 2 Introduction to Structured Query Language 83

Also note that in Figure 2-11 the View gallery is available in the Results group of the
Design tab. We can use this gallery to switch between Design view and SQL view. However,
we can also just use the displayed SQL View button to switch to SQL view. The SQL View
button is being displayed because Microsoft Access considers that to be the view you would
most likely choose in the gallery if you used it. Microsoft Access always presents a “most likely
needed” view choice as a button above the View gallery.

For our example SQL query in Microsoft Access, we will use SQL-Query-CH02-01, the
first SQL query earlier in our discussion:

/* *** SQL-Query-CH02-01 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

The Query1 tabbed
document window

The Show Table dialog
box

Click the Close button

FIGURE 2-10

The Show Table Dialog Box

The QUERY TOOLS
tab

The SQL View button

The View gallery
drop-down arrow button

The Select Query Type
button

The Query Type
command group

The DESIGN
command tab

The Query1 tabbed
document window in
Design view

FIGURE 2-11

The QUERY TOOLS
Contextual Command Tab

84 PART 1 Getting Started

Opening a Microsoft Access SQL Query Window and Running a Microsoft Access
SQL Query

1. Click the SQL View button in the Results group on the Design tab. The Query1
window switches to the SQL view, as shown in Figure 2-12. Note the basic SQL com-
mand SELECT; that’s shown in the window. This is an incomplete command, and
running it will not produce any results.

2. Edit the SQL SELECT command to read (do not include the SQL comment line):

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

as shown in Figure 2-13.
3. Click the Run button on the Design tab. The query results appear, as shown in

Figure 2-14. Compare the results shown in Figure 2-14 to the SQL-Query-CH02-01
results shown on the next page.

Because Microsoft Access is a personal database and includes an application generator,
we can save Microsoft Access queries for future use. Enterprise-level DBMS products gener-
ally do not allow us to save queries (although they do allow us to save SQL Views within the
database and SQL query scripts as separate files—we will discuss these methods later).

Saving a Microsoft Access SQL Query

1. To save the query, click the Save button on the Quick Access Toolbar. The Save As
dialog box appears, as shown in Figure 2-15.

2. Type in the query name SQL-Query-CH02-01 and then click the OK button.
The query is saved, and the window is renamed with the query name. As shown
in Figure 2-16, the query document window is now named SQL-Query-CH02-01,
and a newly created SQL-Query-CH02-01 query object appears in a Queries sec-
tion of the Navigation Pane.

3. Close the SQL-Query-CH02-01 window by clicking the document window’s Close
button.

4. If Microsoft Access displays a dialog box asking whether you want to save changes to
the design of the query SQL-Query-CH02-01, click the Yes button.

The Query1 window in
SQL view

The SQL SELECT;
statement—this is an
incomplete statement
and will not run as
written—it is intended
as the start of an SQL
query

FIGURE 2-12

The Query1 Window in SQL
View

The Run button

The complete SQL
query statement

FIGURE 2-13

The SQL Query

 CHAPTER 2 Introduction to Structured Query Language 85

At this point, you should work through each of the other three queries in the preced-
ing discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-
Query-CH02-##, where ## is a sequential number from 02 to 04 that corresponds to the
SQL query label shown in the SQL comment line of each query.

Using SQL in Microsoft SQL Server 2014

Before you can use SQL statements with Microsoft SQL Server, you need access to a computer
that has SQL Server installed and that has a database with the tables and data shown in Figures
2-4, 2-5, and 2-6. Your instructor may have installed SQL Server in your computer lab and
 entered the data for you. If so, follow his or her instructions for accessing that database.

Otherwise, you will need to obtain a copy of SQL Server 2014 and install it on your
computer. At this time, read the material in Chapter 10A about obtaining and installing SQL
Server 2014.

After you have SQL Server 2014 installed, you will need to read the discussion for us-
ing SQL Server in Chapter 10A that explains how to create the Cape Codd database and

The query results

FIGURE 2-14

The SQL Query Results

The Save button

The OK button

The Save As dialog
box

Type the query name
SQL-Query-CH02-01
here

FIGURE 2-15

The Save As Dialog box

The query window is
now named
SQL-Query-CH02-01

The Queries section of
the Navigation Pane

The SQL-Query-
CH02-01 query object

FIGURE 2-16

The Named and Saved
Query

86 PART 1 Getting Started

run the SQL Server scripts for creating and populating the Cape Codd database tables.
The SQL Server 2014 scripts for the Cape Codd database are available on our Web site at
www.pearsonglobaleditions.com/kroenke.

SQL Server 2014 uses the Microsoft SQL Server 2014 Management Studio as the
GUI tool for managing the SQL Server DBMS and the databases controlled by the DBMS.
The Microsoft SQL Server 2014 Management Studio, which we will also refer to as just
the SQL Server Management Studio, is installed as part of the SQL Server 2014 instal-
lation process and is discussed in Chapter 10A. Figure 2-17 shows the execution of SQL-
Query-CH02-01 (note that the SQL comment is not included in the SQL statement as
run—also note that the SQL comment could have been included in the SQL code if we had
chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

Running an SQL Query in SQL Server Management Studio

1. Click the New Query button to display a new tabbed query window.
2. If the Cape Codd database is not displayed in the Available Database box, select it in

the Available Databases drop-down list, and then click the Intellisense Enabled
button to disable Intellisense.

3. Check that the Cape_Codd database is selected in the Available Databases drop-
down list.

4. Type the SQL SELECT command (without the SQL comment line shown above):

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

The SQL query window now appears as shown in Figure 2-17.

The New Query button

The Execute button

The Parse button

The Cape Codd
database

The Cape Codd
database tables

Available Databases
drop-down list-Select
the database here

The SQL query in the
tabbed query window

The IntelliSense
Enabled button

The Results tabbed
window

FIGURE 2-17

Running an SQL Query in
SQL Server Management
Studio

www.pearsonhighered.com/kroenke

 CHAPTER 2 Introduction to Structured Query Language 87

SQL Server 2014 is an enterprise-class DBMS product and, as is typical of such prod-
ucts, does not store queries within the DBMS (it does store SQL Views, which can be con-
sidered a type of query, and we will discuss SQL Views in Chapter 7). However, you can
save queries as SQL script files. An SQL script file is a separately stored plain text file,
and it usually uses a file name extension of .sql. An SQL script can be opened and run as an
SQL command (or set of commands). Often used to create and populate databases, scripts
can also be used to store a query or set of queries. Figure 2-18 shows the SQL query being
saved as an SQL script.

Note that in Figure 2-18 the SQL scripts are shown in a folder named DBP-e14-Cape-
Codd-Database, as described in Chapter 10A. We recommend that you create a folder for

5. At this point you can check the SQL command syntax before actually running the
command by clicking the Parse button. A Results window will be displayed in the
same location shown in Figure 2-17, but with the message “Command(s) completed
successfully” if the SQL command syntax is correct or with an error message if there
is a problem with the syntax.

6. Click the Execute button to run the query. The results are displayed in a results
window, as shown in Figure 2-17.

Note that in Figure 2-17 the Cape Codd database object in the Object Browser in the left
side window of the SQL Server Management Studio has been expanded to show the tables in
the Cape Codd database. Many of the functions of the SQL Server Management Studio are
associated with the objects in the Object Browser and are often accessed by right-clicking the
object to display a shortcut menu.

The Open File button

The Save button

The Save button

The Save File As
dialog box

The DBP-e14-
Cape-Codd-Database
folder

Type the SQL script file
name here

Existing SQL
scripts—these were
used to create and
populate the
Cape_Codd database

FIGURE 2-18

Saving an SQL Query as an
SQL Script in SQL Server
Management Studio

By THE WAy We are using Microsoft SQL Server 2014 running in Microsoft Server 2012
Release 2. When we give specific sequences of steps to follow in the text

or figures in this book, we use the command terminology used by SQL Server 2014
and associated utility programs in Microsoft Server 2012 Release 2. If you are running a
workstation operating system such as Microsoft XP, Microsoft Windows 7, or Microsoft
Windows 8.1, the terminology may vary somewhat.

88 PART 1 Getting Started

each database in the Projects folder. We have created the folder named DBP-e14-Cape-Codd-
Database to store the script files associated with the Cape Codd database.

Saving an SQL Server Query as an SQL Script in SQL Server Management Studio

1. Click the Save button shown in Figure 2-18. The Save File As dialog appears, as
shown in Figure 2-18.

2. Browse to the \Documents\SQL Server Management Studio\Projects\DBP-e14-Cape-Codd-
Database folder.

3. Note that there are already two SQL script names displayed in the dialog box. These
are the SQL scripts that were used to create and populate the Cape Codd database
tables.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.
5. Click the Save button.

To rerun the saved query, you would click the Open File button shown in Figure 2-18 to
open the Open File dialog box, open the SQL script containing the query, and then click the
Execute button.

At this point, you should work through each of the other three queries in the preced-
ing discussion of the SQL SELECT/FROM/WHERE framework. Save each query as SQL-
Query-CH02-##, where ## is a sequential number from 02 to 04 that corresponds to the
SQL query label shown in the SQL comment line of each query. You can then continue work-
ing through the rest of the example SQL statements as you read the chapter.

Using SQL in Oracle Database

Before you can enter SQL statements into Oracle Database, you need access to a computer
that has Oracle Database installed and that has a database with the tables and data shown in
Figures 2-4, 2-5, and 2-6. Your instructor may have installed Oracle Database 12c or Oracle
Database Express Edition 11g Release 2 on a computer in the lab and entered the data for
you. If so, follow his or her instructions for accessing that database.

Otherwise, you will need to obtain a copy of Oracle Database Express Edition 11g
Release 2 and install it on your computer. At this time, read the material in Chapter 10B
about obtaining and installing Oracle Database Express Edition 11g Release 2.

After you have installed Oracle Database, you will need to read the introductory discus-
sion for Oracle Database in Chapter 10B that explains how to create the Cape Codd data-
base. Oracle Database scripts for creating and populating the Cape Codd database tables are
available on our Web site at www.pearsonglobaleditions.com/kroenke.

Although Oracle users have been dedicated to the Oracle SQL*Plus command line tool,
professionals are moving to the new Oracle SQL Developer GUI tool. This application is in-
stalled as part of the Oracle Database 12c installation, but if you are using Oracle Database
Express Edition you will need to download and install SQL Developer separately as discussed
in Chapter 10B. Updated versions are available for free download at www.oracle.com/technology/
software/products/sql/index.html. We will use it as our standard GUI tool for managing the data-
bases created by the Oracle Database DBMS.

Figure 2-19 shows the execution of SQL-Query-CH02-01 (note that the SQL comment
is not included in the SQL statement as run—also note that the SQL comment could have been
included in the SQL code if we had chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

Running an SQL Query in Oracle SQL Developer

1. Click the New Connection button and open the Cape Codd database.
2. Check that the Cape_Codd_Database connection is selected in the Connection

drop-down list in the upper-right corner of the SQL Worksheet.

www.pearsonhighered.com/kroenke
www.oracle.com/technology/software/products/sql/index.html
www.oracle.com/technology/software/products/sql/index.html

 CHAPTER 2 Introduction to Structured Query Language 89

3. In the tabbed SQL Worksheet, type the SQL SELECT command (without the SQL
comment line shown above):

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

as shown in Figure 2-19.
4. Click the Execute button to run the query. The results are displayed in a results

window, as shown in Figure 2-19.

Note that in Figure 2-19, the Cape-Codd-Database object in the Object Browser in the left-
side Connection object browser of the Oracle SQL Developer has been expanded to show the
tables in the Cape Codd database. Many of the functions of SQL Developer are associated
with the objects in the Connections object browser and are often accessed by right-clicking
the object to display a shortcut menu.

The SQL Worksheet

Connections object
browser shows
connected databases

The New Connection
button

The Cape Codd
database

The Cape Codd
database tables

The Execute button

The SQL query in the
SQL Worksheet

The Query Result
tabbed window

FIGURE 2-19

Running an SQL Query in
Oracle SQL Developer

Oracle Database is an enterprise-class DBMS product and, as is typical of such products,
does not store queries within the DBMS (it does store SQL Views, which can be considered a
type of query, and we will discuss SQL Views later in this chapter). However, you can save que-
ries as SQL script files. An SQL script file is a separately stored plain text file, and it usually has
a file name extension of .sql. An SQL script can be opened and run as an SQL command (or set
of commands). Often used to create and populate databases, scripts can also be used to store a
query or set of queries. Figure 2-20 shows the SQL query being saved as an SQL script.

By THE WAy We are using Oracle Database 12c and Oracle Database Express Edition
11g Release 2 running in Microsoft Server 2012 Release 2. When we give

specific sequences of steps to follow in the text or figures in this book, we use the
command terminology used by Oracle Database 12c and associated utility programs
in Microsoft Server 2012 Release 2. If you are running a workstation operating sys-
tem such as Microsoft Windows 7, Microsoft Windows 8.1, Microsoft Windows 10, or
Linux, the terminology may vary somewhat.

90 PART 1 Getting Started

Note that in Figure 2-20 the SQL scripts are shown in a folder named {UserName}\
Documents\SQL Developer\DBP-e14-Cape-Codd-Database as described in Chapter 10B.

We recommend that you create a folder in your Documents folder named SQL Developer
and then create a subfolder for each database in the SQL Developer folder. We have created
a folder named DBP-e14-Cape-Codd-Database to store the script files associated with the Cape
Codd database.

Saving an SQL Script in Oracle SQL Developer

1. Click the Save button shown in Figure 2-20. The Save dialog appears, as shown in
Figure 2-20.

2. Click the Documents button on the Save dialog box to move to the Documents
folder and then browse to the DBP-e14-Cape-Codd-Database folder.

3. Note that there are already two SQL script names displayed in the dialog box. These
are the SQL scripts that were used to create and populate the Cape Codd database
tables, and they are available on our Web site at www.pearsonglobaleditions.com/kroenke.

4. In the File Name text box, type the SQL script file name SQL-Query-CH02-01.sql.
5. Click the Save button.

To rerun the saved query, you would click the SQL Developer Open File button to open
the Open File dialog box, browse to the query file, open the query file, and then click the
Execute button.

At this point, you should work through each of the other three queries in the pre-
ceding discussion of the SQL SELECT/FROM/WHERE framework. Save each query as
SQLQuery-CH02-##, where ## is a sequential number from 02 to 04 that corresponds to
the SQL query label shown in the SQL comment line of each query. You can then continue
working through the rest of the example SQL statements as you read the chapter.

Using SQL in Oracle MySQL 5.6

Before you can use SQL statements with Oracle MySQL 5.6, you need access to a com-
puter that has MySQL installed and that has a database with the tables and data shown

The Save button

The Save dialog box

The DBP-e14-Cape-
Codd-Database folder

Existing SQL scripts—
these were used to
create and populate
the Cape-Codd
database

The Documents
Folder button

The DBP-e14-Cape-
Codd-Database
folder button

Type the SQL script
file name here

The dialog box Save
button

FIGURE 2-20

Saving an Oracle SQL Query
as an SQL Script in Oracle
SQL Developer

www.pearsonhighered.com/kroenke
SQL-Query-CH02-01.sql

 CHAPTER 2 Introduction to Structured Query Language 91

in Figures 2-4, 2-5, and 2-6. Your instructor may have installed MySQL 5.6 in your com-
puter lab and entered the data for you. If so, follow his or her instructions for accessing
that database.

Otherwise, you will need to obtain a copy of MySQL Community Server 5.6 and install it
on your computer. At this time, read the material in Chapter 10C about obtaining and install-
ing MySQL Community Server 5.6.

After you have MySQL Community Sever 5.6 installed, you will need to read the dis-
cussion for MySQL Community Server 5.6 in Chapter 10C that explains how to create the
Cape Codd database and run the MySQL scripts for creating and populating the Cape Codd
database tables. The MySQL 5.6 SQL scripts for the Cape Codd database are available on our
Web site at www.pearsonglobaleditions.com/kroenke.

MySQL uses the MySQL Workbench as the GUI tool for managing the MySQL 5.6
DBMS and the databases controlled by the DBMS. This tool must be installed separately
from the MySQL DBMS, and this is discussed in Chapter 10C. SQL statements are cre-
ated and run in the MySQL Workbench, and Figure 2-21 shows the execution of SQL-
Query-CH02-01 (note that the SQL comment is not included in the SQL statement as
run—also note that the SQL comment could have been included in the SQL code if we had
chosen to include it):

/* *** SQL-Query-CH02-01 *** */

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

Running an SQL Query in the MySQL Workbench

1. To make the Cape Codd database the default schema (active database), right-click
the cape_codd schema (database) object to display the shortcut menu and then
click the Set as Default Schema command.

The SQL Editor
tabbed window

The SQL Editor menu
and toolbar

The Cape Codd
database

The Cape Codd
database tables

The query results in the
Result Grid tabbed
window

The Query tabbed
window—enter your
SQL statement

The Execute SQL
Statement (under the
keyboard cursor)
button

The Navigator

FIGURE 2-21

Running an SQL Query in the
MySQL Workbench

www.pearsonhighered.com/kroenke

92 PART 1 Getting Started

2. In the Query 1 tabbed window in the SQL Editor tabbed window, type the SQL
SELECT command (without the SQL comment line shown above):

SELECT SKU, SKU_Description, Department, Buyer

FROM SKU_DATA;

The SQL query window now appears as shown in Figure 2-21.
3. Click the Execute Current SQL Statement in Connected Server button to run

the query. The results are displayed in a tabbed Query Result window, shown as the
Query 1 Result window in Figure 2-21 (you can have more than one Query Result
window open, and thus they need to be numbered).

Note that in Figure 2-21 the Cape Codd database object in the Object Browser in the left-
side window of the MySQL Workbench has been expanded to show the tables in the Cape Codd
database. Many of the functions of the MySQL Workbench are associated with the objects in the
Object Browser and are often accessed by right-clicking the object to display a shortcut menu.

MySQL 5.6 is an enterprise-class DBMS product and, as is typical of such products, does
not store queries within the DBMS (it does store SQL Views, which can be considered a type
of query, and we will discuss SQL Views later in this chapter). However, you can save MySQL
queries as SQL script files. An SQL script file is a separately stored plain text file, and it
usually uses a file name extension of .sql. An SQL script file can be opened and run as an SQL
command. Figure 2-22 shows the SQL query being saved as an SQL script file.

Note that in Figure 2-22 the query will be saved in a folder named My Documents\MySQL
Workbench\Schemas\DBP-e14-Cape-Codd-Database as described in Chapter 10C. By default,

Click the Save SQL
Script (to a file) button
to open the Save SQL
Script dialog box

The My Documents/
MySQL Workbench/
Schemas/DBP-e14-
Cape-Codd-Database
folder

The Save SQL Script
dialog box

Type the SQL script
File name here

The Save button

FIGURE 2-22

Saving an SQL Query as an
SQL Script in the MySQL
Workbench

By THE WAy We are using MySQL 5.6 Community Server running in Microsoft Server
2012 Release 2. When we give specific sequences of steps to follow in the

text or figures in this book, we use the command terminology used for MySQL 5.6 and
associated utility programs in Microsoft Server 2012 R2. If you are running a worksta-
tion operating system such as Microsoft Windows 7, Microsoft Windows 8.1, or Linux,
the terminology may vary somewhat.

 CHAPTER 2 Introduction to Structured Query Language 93

MySQL Workbench stores files in the user’s Documents folder. We recommend that you
 create a subfolder for each MySQL database. We have created the folder named DBP-e14-
Cape-Codd-Database to store the script files associated with the Cape Codd database.

Saving a MySQL Query in MySQL Workbench

1. Click the Save SQL Script to File button, as shown in Figure 2-22. The Save
Query to File dialog appears, as shown in Figure 2-22.

2. Browse to the Documents\MySQL Workbench\Schemas\DBP-e14-Cape-Codd-Database
folder.

3. In the File name text box, type the SQL query file name SQL-Query-CH02-01.
4. Click the Save button.

To rerun the saved query, you would click the File | Open SQL Script menu command
to open the Open SQL Script dialog box, then select and open the SQL query *.sql files,
and, finally, click the Execute the SQL Statement (under the keyboard cursor) button.

At this point, you should work through each of the other three queries in the pre-
ceding discussion of the SQL SELECT/FROM/WHERE framework. Save each query as
SQLQuery-CH02-##, where ## is a sequential number from 02 to 04 that corresponds to
the SQL query label shown in the SQL comment line of each query. You can then continue
working through the rest of the example SQL statements as you read the chapter.

SQL Enhancements for Querying a Single Table

Now that we know how to run SQL queries in the DBMS product that we are using, we can
return to our discussion of SQL syntax itself. We started our discussion of SQL queries with
SQL statements for processing a single table, and now we will add additional SQL features to
those queries. As we proceed, you will begin to see how powerful SQL can be for querying
databases and for creating information from existing data.

Reading Specified Rows from a Single Table

Now that we know how to designate which columns will be included in the results of an SQL
query, we need to discuss how to control which rows are included in the results.

Notice that in the results to SQL-Query-CH04 some rows are duplicated. The data in
the first and second row, for example, are identical. We can eliminate duplicates by using the
SQL DISTINCT keyword as follows:

/* *** SQL-Query-CH02-05 *** */

SELECT DISTINCT Buyer, Department

FROM SKU_DATA;

The result of this statement, where all of the duplicate rows have been removed, is:

By THE WAy The SQL results shown in this chapter were generated using Microsoft
SQL Server 2014. Query results from other DBMS products will be similar

but may vary a bit.

94 PART 1 Getting Started

We can also control how many rows are displayed by using the SQL TOP
{NumberOfRows} function (SQL Server only). For example, if we want to see only the
rows one through five from SQL-Query-CH02-04, we write:

/* *** SQL-Query-CH02-06 *** */

SELECT TOP 5 Buyer, Department

FROM SKU_DATA;

The result of this statement displays only the first five of the eight rows in the results for SQL-
Query-CH02-04. Note that because we are not using the DISTINCT keyword, we get some
identical, duplicated rows in the result:

The SQL TOP function can also be used to display a percentage of the resulting rows by us-
ing the SQL TOP {Percentage} PERCENT function (SQL Server only). For example, if we
want to see 75 percent of the data from SQL-Query-CH02-04, we write:

/* *** SQL-Query-CH02-07 *** */

SELECT TOP 75 PERCENT Buyer, Department

FROM SKU_DATA;

The result of this statement displays only the first six of the eight rows in the results for SQL-
Query-CH02-04. Note that, again, since we are not using the DISTINCT keyword, we get
some identical, duplicated rows in the result:

The DISTINCT, TOP {NumberOfRows} and TOP {Percentage} PERCENT functions pro-
vide some help in controlling which rows are displayed in a result, but the real power for
controlling rows in the output to the SQL SELECT statement is in the WHERE clause.
Suppose we want all of the columns of the SKU_DATA table, but we want only the rows

By THE WAy The reason that SQL does not automatically eliminate duplicate rows is
that it can be very time consuming to do so. To determine if any rows are

duplicates, every row must be compared with every other row. If there are 100,000
rows in a table, that checking will take a long time. Hence, by default duplicates are
not removed. However, it is always possible to force their removal using the DISTINCT
keyword.

 CHAPTER 2 Introduction to Structured Query Language 95

for the Water Sports department. We can obtain that result by using the SQL WHERE
clause as follows:

/* *** SQL-Query-CH02-08 *** */

SELECT *

FROM SKU_DATA

WHERE Department = 'Water Sports';

The result of this statement will be:

The equal sign (=) that appears in the WHERE clause of SQL-Query-CH02-08 is an SQL
comparison operator. A list of common SQL comparison operators is shown in Figure 2-23.

In an SQL WHERE clause, if the column contains text or date data, the comparison values
must be enclosed in single quotation marks ('{text or date data}'). For example, in the CATALOG_
SKU_2014 table, only the SKUs that were available on the Cape Codd Web site on January 1,
2014, actually appeared in the printed catalog. To see these items, we use the following query:

/* *** SQL-Query-CH02-09 *** */

SELECT *

FROM CATALOG_SKU_2014

WHERE DateOnWebSite = '01-JAN-2014';

Is equal to

Is NOT Equal to

Is less than

Is greater than

Is less than OR equal to

Is greater than OR equal to

Is equal to one of a set of values

Is NOT Equal to one of a set of values

Is within a range of numbers (includes the end points)

Is NOT within a range of numbers (includes the end points)

Matches a set of characters

Does NOT match a set of characters

Is equal to NULL

Is NOT equal to NULL

=

<>

<

>=

IN

NOT IN

BETWEEN

NOT BETWEEN

LIKE

NOT LIKE

IS NULL

IS NOT NULL

>

<=

Operator Meaning

SQL Comparison Operators
FIGURE 2-23

SQL Comparison Operators

96 PART 1 Getting Started

The result of this statement will be:

If the column contains numeric data, however, the comparison values need not be in
quotes. Thus, to find all of the SKU rows with a value greater than 200,000, we would use the
SQL statement (note that no comma is included in the numeric value code):

/* *** SQL-Query-CH02-10 *** */

SELECT *

FROM SKU_DATA

WHERE SKU > 200000;

The result is:

By THE WAy When using a date in the WHERE clause, you can usually enclose it in
single quotes just as you would a character string as shown in SQL-

Query-CH02-09. However, when using Microsoft Access 2013, you must enclose dates
within the # symbol. For example:

/* *** SQL-Query-CH02-09-Access *** */

SELECT *

FROM CATALOG_SKU_2014

WHERE DateOnWebSite = #01/01/14#;

Oracle Database 12c and MySQL 5.6 can also have idiosyncrasies when using date
data in SQL statements, and this is discussed in Chapters 10B and 10C, respectively.

By THE WAy SQL is very fussy about single quotes. It wants the plain, nondirectional
quotes found in basic text editors. The fancy directional quotes produced

by many word processors will produce errors. For example, the data value 'Water
Sports' is correctly stated, but ‘Water Sports’ is not. Do you see the difference?

 CHAPTER 2 Introduction to Structured Query Language 97

Reading Specified Columns and Rows from a Single Table

So far, we have generally selected certain columns and all rows, or we have selected all
columns and certain rows (the exceptions being our discussion of the DISTINCT, TOP
{NumberOfRows}, and TOP {Percentage} PERCENT functions). However, we can combine
these operations to select certain columns and certain rows by naming the columns we want
and then using the SQL WHERE clause. For example, to obtain the SKU_Description and
Department of all products in the Climbing department, we use the SQL query:

/* *** SQL-Query-CH02-11 *** */

SELECT SKU_Description, Department

FROM SKU_DATA

WHERE Department = 'Climbing';

The result is:

SQL does not require that the column used in the WHERE clause also appear in the
SELECT clause column list. Thus, we can specify:

/* *** SQL-Query-CH02-12 *** */

SELECT SKU_Description, Buyer

FROM SKU_DATA

WHERE Department = 'Climbing';

where the qualifying column, Department, does not appear in the SELECT clause column
list. The result is:

Sorting the SQL Query Results

The order of the rows produced by an SQL statement is arbitrary and determined by programs
in the bowels of each DBMS. If you want the DBMS to display the rows in a particular order,
you can add the SQL ORDER BY clause to the SELECT/FROM.WHERE framework. For

By THE WAy Standard practice is to write SQL statements with the SELECT, FROM, and
WHERE clauses on separate lines. This practice is just a coding conven-

tion, however, and SQL parsers do not require it. You could code SQL-Query-CH02-09
all on one line as:

SELECT SKU_Description, Buyer FROM SKU_DATA WHERE Department =

'Climbing';

All DBMS products would process the statement written in this fashion. However, the
standard multiline coding convention makes SQL easier to read, and we encourage
you to write your SQL according to it.

FROM.WHERE

98 PART 1 Getting Started

example, to sort the rows in the ORDER_ITEM table by OrderNumber in ascending order
(the default sorting order), you use the SQL statement:

/* *** SQL-Query-CH02-13 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY OrderNumber;

SQL-Query-CH02-13 will generate the following results:

We can sort by two columns by adding a second column name. For example, to sort first
by OrderNumber and then by Price within OrderNumber, we use the following SQL
query:

/* *** SQL-Query-CH02-14 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY OrderNumber, Price;

The result for this query is:

If we want to sort the data by Price and then by OrderNumber, we would simply reverse
the order of those columns in the ORDER BY clause as follows:

/* *** SQL-Query-CH02-15 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price, OrderNumber;

 CHAPTER 2 Introduction to Structured Query Language 99

This SQL query has the results:

By THE WAy Note to Microsoft Access users: Unlike the SQL Server output shown
here, Microsoft Access displays dollar signs in the output of currency
data.

By default, rows are sorted in ascending order. To sort in descending order, add the SQL
DESC keyword after the column name. Thus, to sort first by Price in descending order and
then by OrderNumber in ascending order, we use the SQL query:

/* *** SQL-Query-CH02-16 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber ASC;

The result is:

Because the default order is ascending, it is not necessary to specify ASC in the last
SQL statement. Thus, the following SQL statement is equivalent to the previous SQL
query:

/* *** SQL-Query-CH02-17 *** */

SELECT *

FROM ORDER_ITEM

ORDER BY Price DESC, OrderNumber;

100 PART 1 Getting Started

and produces the same results:

SQL WHERE Clause Options

SQL includes a number of SQL WHERE clause options that greatly expand SQL’s power and
utility. In this section, we consider three options: compound clauses, ranges, and wildcards.

Compound SQL WHERE Clauses Using Logical Operators
SQL WHERE clauses can include multiple conditions by using the SQL logical operators,
which include the AND, OR, and NOT operators and which are summarized in Figure 2-24

The SQL AND operator requires that each row in the results meets both of the condi-
tions specified in the WHERE clause. For example, to find all of the rows in SKU_DATA that
have both a Department named Water Sports and a Buyer named Nancy Meyers, we can use
the SQL AND operator in our query code:

/* *** SQL-Query-CH02-18 *** */

SELECT *

FROM SKU_DATA

WHERE Department='Water Sports'

 AND Buyer='Nancy Meyers';

The results of this query are:

The SQL OR operator requires that each row in the results meets one or the other or both of
the conditions specified in the WHERE clause. Thus, to find all of the rows of SKU_DATA for ei-
ther the Camping or Climbing departments, we can use the SQL OR operator in the SQL query:

/* *** SQL-Query-CH02-19 *** */

SELECT *

FROM SKU_DATA

WHERE Department='Camping'

 OR Department='Climbing';

Both arguments are TRUE

One or the other or both of the arguments are TRUE

Negates the associated operator

AND

OR

NOT

Operator Meaning

SQL Logical Operators
FIGURE 2-24

SQL Logical Operators

 CHAPTER 2 Introduction to Structured Query Language 101

This SQL query gives us the following results:

The SQL NOT operator negates or reverses a condition set by an AND or OR operator.
For example, to find all of the rows in SKU_DATA that have a Department named Water
Sports but not a Buyer named Nancy Meyers, we can use the SQL NOT operator in our
query code:

/* *** SQL-Query-CH02-20 *** */

SELECT *

FROM SKU_DATA

WHERE Department='Water Sports'

 AND NOT Buyer='Nancy Meyers';

The results of this query are:

Three or more AND and OR conditions can be combined, but in such cases it is often
easiest to use SQL IN and NOT IN comparison operators.

SQL WHERE Clauses Using Sets of Values
When we want to include a set of values in the SQL WHERE clause, we use the SQL IN
operator or the SQL NOT IN operator (Figure 2-23). For example, suppose we want
to obtain all of the rows in SKU_DATA for the set of buyers Nancy Meyers, Cindy Lo,
and Jerry Martin. We could construct a WHERE clause with two AND conditions, but an
easier way to do this is to use the SQL IN operator, which specifies the set of values to be
used in the SQL query:

/* *** SQL-Query-CH02-21 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer IN ('Nancy Meyers', 'Cindy Lo', 'Jerry Martin');

In this format, the set of values is enclosed in parentheses. A row is selected if Buyer is equal to
any one of the values provided. The result is:

102 PART 1 Getting Started

Similarly, if we want to find rows of SKU_DATA for which the buyer is someone other than
Nancy Meyers, Cindy Lo, or Jerry Martin, we would use the SQL NOT IN operator, which
specifies the set of values to be excluded from the SQL query:

/* *** SQL-Query-CH02-18 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer NOT IN ('Nancy Meyers', 'Cindy Lo', 'Jerry Martin');

The result is:

Observe an important difference between the IN and NOT IN operators:

■■ A row qualifies for an IN condition if the column is equal to any of the values in the
parentheses.

■■ A row qualifies for a NOT IN condition if it is not equal to all of the items in the
parentheses.

SQL WHERE Clauses Using Ranges of Values
When we want to include or exclude a range of numerical values in the SQL WHERE clause, we
use the SQL BETWEEN operator or the SQL NOT BETWEEN operator (Figure 2-23).

For example, suppose that we want to find all the rows in the ORDER_ITEM table where
ExtendedPrice ranges from $100.00 to $200.00 including the end points of the range,
$100.00 and $200.00. We could use the SQL query:

/* *** SQL-Query-CH02-23 *** */

SELECT *

FROM ORDER_ITEM

WHERE ExtendedPrice >= 100

 AND ExtendedPrice <= 200

ORDER BY ExtendedPrice;

The SQL query produces the results sorted in order of ascending ExtendedPrice so that we
can easily see the smallest and largest values:

However, rather than specifying the range of values by using a compound SQL WHERE clause,
we can accomplish the same results by using the SQL BETWEEN operator. Note how the SQL
BETWEEN operator is used to create a simple, one-line WHERE clause in this SQL query:

/* *** SQL-Query-CH02-24 *** */

SELECT *

FROM ORDER_ITEM

WHERE ExtendedPrice BETWEEN 100 AND 200

ORDER BY ExtendedPrice;

 CHAPTER 2 Introduction to Structured Query Language 103

The results of SQL-Query-CH02-24 are identical to those from SQL-Query-CH02-23
above, and note again that the specified end values of the range are included in the SQL
query results:

On the other hand, if we want to find all the rows in the ORDER_ITEM table excluding the
ExtendedPrice range from $100.00 to $200.00, we can use the SQL NOT BETWEEN opera-
tor. In this case, the SQL query is:

/* *** SQL-Query-CH02-25 *** */

SELECT *

FROM ORDER_ITEM

WHERE ExtendedPrice NOT BETWEEN 100 AND 200

ORDER BY ExtendedPrice;

This gives us the results (again sorted from lowest to highest ExtendedPrice):

SQL WHERE Clauses That Use Character String Patterns
There are times when we want to uses the SQL WHERE clause to find matching sets or
patterns of character stings. Character strings include the data that we store in a CHAR or
VARCHAR data–type column (CHAR columns use a fixed number of bytes to store the data,
while VARCHAR columns adjust the number of bytes used to fit the actual length of the data)
and are composed of letters, numbers, and special characters. For example, the name Smith is a
character string, as are 360-567-9876 and Joe#34@elsewhere.com. To find rows with values that
match or do not match specifc character string patterns, we use the SQL LIKE operator and
the SQL NOT LIKE operator (Figure 2-23).

To help specify character string patterns, we use two SQL wildcard characters:

■■ The SQL underscore (_) wildcard character, which represents a single, unspec-
ified character in a specific position in the character string.

■■ The SQL percent sign (%) wildcard character, which represents any sequence
of contiguous, unspecified characters (including spaces) in a specific position in the
character string.

For example, suppose we want to find the rows in the SKU_DATA table for all buyers whose
first name is Pete. To find such rows, we use the SQL LIKE operator with the SQL percent
sign (%) wildcard character, as shown in the SQL-Query-CH02-26 query:

/* *** SQL-Query-CH02-26 *** */

SELECT *

FROM SKU_DATA

WHERE Buyer LIKE 'Pete%';

104 PART 1 Getting Started

When used as an SQL wildcard character, the percent symbol (%) stands for any sequence
of characters. When used with the SQL LIKE operator, the character string 'Pete%' means any
sequence of characters that starts with the letters Pete. The result of this SQL query is:

Next, suppose we want to find the rows in SKU_DATA for which the SKU_Description
includes the word Tent somewhere in the description. Because the word Tent could be at the
front, at the end, or in the middle, we need to place a wildcard on both ends of the SQL LIKE
phrase as follows:

/* *** SQL-Query-CH02-27 *** */

SELECT *

FROM SKU_DATA

WHERE SKU_Description LIKE '%Tent%';

This query will find rows in which the word Tent occurs in any place in the SKU_Description.
The result is:

Sometimes we need to search for a particular value in a particular location in the col-
umn. For example, assume SKU values are coded such that a 2 in the third position from
the right has some particular significance; maybe it means that the product is a variation of
another product. For whatever reason, assume that we need to find all SKUs that have a 2 in
the third column from the right. Suppose we try the SQL query:

/* *** SQL-Query-CH02-28 *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE '%2%';

Does Not Work with
Microsoft Access
ANSI-89 SQL

 Microsoft Access ANSI-89 SQL uses wild-
cards, but not the SQL-92 standard wildcards.
Microsoft Access uses the Microsoft Access
asterisk (*) wildcard character instead of a per-
cent sign to represent multiple characters.

Solution: Use the Microsoft Access asterisk (*) wildcard in place of the SQL-92 percent
sign (%) wildcard in Microsoft Access ANSI-89 SQL statements. Thus, the preceding
SQL query would be written as follows for Microsoft Access:

/* *** SQL-Query-CH02-26-Access *** */

SELECT *

FROM SKU_DATA

WHERE Buyer LIKE 'Pete*';

 CHAPTER 2 Introduction to Structured Query Language 105

The result of this query is:

This is not what we wanted. We mistakenly retrieved all rows that had a 2 in any position in
the value of SKU. To find the products we want, we cannot use the SQL wildcard character %.
Instead, we must use the SQL underscore (_) wildcard character, which represents a single,
unspecified character in a specific position. The following SQL statement will find all SKU_
DATA rows with a value of 2 in the third position from the right:

/* *** SQL-Query-CH02-29 *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE '%2__';

Observe that there are two underscores in this SQL query—one for the first position on the right
and another for the second position on the right. This query gives us the result that we want:

Does Not Work with
Microsoft Access
ANSI-89 SQL

 Microsoft Access ANSI-89 SQL uses wild-
cards, but not the SQL-92 standard wildcards.
Microsoft Access uses the Microsoft Access
question mark (?) wildcard character instead
of an underscore (_) to represent a single
character.

Solution: Use the Microsoft Access question mark (?) wildcard in place of
the SQL-92 underscore (_) wildcard in Microsoft Access ANSI-89 SQL

By THE WAy While our example in SQL-Query-CH02-29 is correct, it does oversim-
plify this type of wildcard search a bit. In SQL-Query-CH02-29, SKU is

an INTEGER valued column (with the values automatically converted by the DBMS to
character strings during the query).

If SKU had been a VARCHAR column, the same query would work. But if SKU
had been a CHAR column, the query would not have worked because there would be
extra spaces to the right of the characters used as padding to completely fill the CHAR
length. For example, if we store the value “four” in a CHAR(8) column named Number,
the DBMS will actually store “four____” (“four” plus four spaces). To deal with these
extra spaces, we use the RTRIM function:

WHERE Number LIKE RTRIM('four');

106 PART 1 Getting Started

SQL WHERE Clauses That Use NULL Values
As we discussed earlier in this chapter, a missing data value is called a null value. In relational
databases, null values are indicated with the special marker NULL (written as shown in up-
percase letters). When we want to include or exclude rows that contain NULL values, we use
the SQL IS NULL operator or the SQL IS NOT NULL operator (Figure 2-23). Note
that in this situation the SQL IS keyword is equivalent to an is equal to comparison operator.
However, the is equal to comparison operator is never used with NULL values, and the IS NULL
and IS NOT NULL operators are never used with values other than NULL.

For example, suppose that we want to find all the SKUs in the CATALOG_SKU_2015
table that were not included in the printed catalog. Because SKUs that were not in the catalog
have a CatalogPage value of NULL, we can use the IS NULL operator to find them. Thus, we
can use the SQL query:

/* *** SQL-Query-CH02-30 *** */

SELECT *

FROM CATALOG_SKU_2015

WHERE CatalogPage IS NULL;

This query gives us the result that we want:

By THE WAy The SQL wildcard percent sign (%) and underscore (_) characters are
specified in the SQL-92 standard. They are accepted by all DBMS products

except Microsoft Access. So, why does Microsoft Access use the asterisk (*) character
instead of the percent sign (%) and the question mark (?) instead of the underscore?
These differences exist because Microsoft Access is, as we noted earlier, using the
SQL-89 standard (which Microsoft calls ANSI-89 SQL). In that standard, the asterisk
(*) and the question mark (?) are the correct wildcard characters. Switch a Microsoft
Access database to SQL-92 (which Microsoft calls ANSI-92 SQL) in Access Options
dialog box, and the percent sign (%) and underscore (_) characters will work.

Note that there are additional wildcard characters that can be used in Microsoft
Access character string patterns. For more information on both ANSI-89 and ANSI-
92 versions of Microsoft Access wildcard characters, see https://support.office.com/
en-US/Article/Access-wildcard-character-reference-af00c501-7972-40ee-8889-
e18abaad12d1?ui=en-US&rs=en-US&ad=US.

statements. Thus, the preceding SQL query would be written as follows for Microsoft
Access:

/* *** SQL-Query-CH02-29-Access *** */

SELECT *

FROM SKU_DATA

WHERE SKU LIKE '*2??';

Furthermore, Microsoft Access can sometimes be fussy about stored trailing spaces in
a text field. You may have problems with a WHERE clause like this:

WHERE SKU LIKE '10?200';

Solution: Use the right trim function RTRIM to eliminate trailing spaces:

WHERE RTRIM(SKU) LIKE '10?200';

https://support.office.com/en-US/Article/Access-wildcard-character-reference-af00c501-7972-40ee-8889-e18abaad12d1?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-US/Article/Access-wildcard-character-reference-af00c501-7972-40ee-8889-e18abaad12d1?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-US/Article/Access-wildcard-character-reference-af00c501-7972-40ee-8889-e18abaad12d1?ui=en-US&rs=en-US&ad=US

 CHAPTER 2 Introduction to Structured Query Language 107

Similarly, if we want to find all the SKUs in the CATALOG_SKU_2015 table that were, we
can use the IS NOT NULL operator to find them. This gives us the SQL query:

/* *** SQL-Query-CH02-31 *** */

SELECT *

FROM CATALOG_SKU_2015

WHERE CatalogPage IS NOT NULL;

This query gives us the results:

Count the number of rows in the table

Count the number of rows in the table where column
{Name} IS NOT NULL

Calculate the sum of all values (numeric columns only)

Calculate the average of all values (numeric columns only)

Calculate the minimum value of all values

Calculate the maximum value of all values

COUNT(*)

COUNT
({Name})

SUM

MAX

AVG

MIN

Function Meaning

SQL Built-in Aggregate Functions
FIGURE 2-25

SQL Built-in Aggregate
Functions

Performing Calculations in SQL Queries

It is possible to perform certain types of calculations in SQL query statements. One group of
calculations involves the use of SQL built-in functions. Another group involves simple arith-
metic operations on the columns in the SELECT statement. We will consider each in turn.

Using SQL Built-in Aggregate Functions

There are five standard SQL built-in aggregate functions for performing arithmetic on
table columns: SUM, AVG, MIN, MAX, and COUNT. These SQL built-in aggregate func-
tions are summarized in Figure 2-25. Some DBMS products extend these standard built-in
functions by providing additional functions. Here we will focus only on the five standard
SQL built-in aggregate functions.

Suppose we want to know the sum of OrderTotal for all of the orders in RETAIL_ORDER.
We can obtain that sum by using the SQL built-in SUM function:

/* *** SQL-Query-CH02-32 *** */

SELECT SUM(OrderTotal)

FROM RETAIL_ORDER;

108 PART 1 Getting Started

The result will be:

Recall that the result of an SQL statement is always a table. In this case, the table has one
cell (the intersection of one row and one column that contains the sum of OrderTotal). But
because the OrderTotal sum is not a column in a table, the DBMS has no column name to
provide. The preceding result was produced by Microsoft SQL Server 2014, and it names the
column '(No column name)'. Other DBMS products take other, equivalent actions.

This result is ugly. We would prefer to have a meaningful column name, and SQL allows us
to assign one using the SQL AS keyword. We can use the AS keyword in the query as follows:

/* *** SQL-Query-CH02-33 *** */

SELECT SUM(OrderTotal) AS OrderSum

FROM RETAIL_ORDER;

The result of this modified query will be:

This result has a much more meaningful column label. The name OrderSum is arbitrary—
we are free to pick any name that we think would be meaningful to the user of the result. We
could pick OrderTotal_Total, OrderTotalSum, or any other label that we think would be useful.

The utility of the built-in functions increases when you use them with an SQL WHERE
clause. For example, we can write the SQL query:

/* *** SQL-Query-CH02-34 *** */

SELECT SUM(ExtendedPrice) AS Order3000Sum

FROM ORDER_ITEM

WHERE OrderNumber=3000;

The result of this query is:

The SQL built-in functions can be mixed and matched in a single statement. For exam-
ple, we can create the following SQL statement:

/* *** SQL-Query-CH02-35 *** */

SELECT SUM(ExtendedPrice) AS OrderItemSum,

 AVG(ExtendedPrice) AS OrderItemAvg,

 MIN(ExtendedPrice) AS OrderItemMin,

 MAX(ExtendedPrice) AS OrderItemMax

FROM ORDER_ITEM;

The result of this query is:

 CHAPTER 2 Introduction to Structured Query Language 109

The SQL built-in COUNT function sounds similar to the SUM function, but it produces
very different results. The COUNT function counts the number of rows, whereas the SUM
function adds the values in a column. For example, we can use the SQL built-in COUNT func-
tion to determine how many rows are in the ORDER_ITEM table:

/* *** SQL-Query-CH02-36 *** */

SELECT COUNT(*) AS NumberOfRows

FROM ORDER_ITEM;

The result of this query is:

This result indicates that there are seven rows in the ORDER_ITEM table. Notice that we
need to provide an asterisk (*) after the COUNT function when we want to count rows.
COUNT is the only built-in function whose parameter can be the asterisk (as used in
SQL-Query-CH02-36) or a column name (as used in SQL-Query-CH02-37 that follows).
When used with a column name, it counts the number of rows that contain valid data—
that is, data other than the NULL value.

The COUNT, MIN, and MAX functions can be used on any type of data, but the SUM and
AVG functions can only be used with numeric data. Also note that the SQL DISTINCT key-
word can be used with any of the SQL aggregate functions (except in Microsoft Access), but it
is most commonly used with the COUNT function.

The COUNT function can produce some surprising results. For example, suppose you
want to count the number of departments in the SKU_DATA table. First, we use the fol-
lowing query:

/* *** SQL-Query-CH02-37 *** */

SELECT COUNT(Department) AS DeptCount

FROM SKU_DATA;

The result of SQL-Query-CH02-37 is:

However, this is the number of rows in the SKU_DATA table, not the number of unique values
of Department, as shown in Figure 2-6. If we want to count the unique values of Department,
we need to use the SQL DISTINCT keyword as follows:

/* *** SQL-Query-CH02-38 *** */

SELECT COUNT(DISTINCT Department) AS DeptCount

FROM SKU_DATA;

The result of SQL-Query-CH02-38 gives us the correct result:

110 PART 1 Getting Started

When using the COUNT function with a column name, the result is the number of rows
that have valid data other that the NULL value. Thus, if we count the number of rows with page
numbers in the CATALOG_SKU_2015 table, we should get eight rows as a result instead of
nine because one SKU did not appear in the catalog. We can do this with the SQL query:

/* *** SQL-Query-CH02-39 *** */

SELECT COUNT(CatalogPage) AS NumberOfSKUinCatalog2015

FROM CATALOG_SKU_2015;

The result of SQL-Query-CH02-39 gives us the expected result:

You should be aware of two limitations to SQL built-in functions. First, except for group-
ing (defined later), you cannot combine table column names with an SQL built-in function.
For example, what happens if we run the following SQL query?

/* *** SQL-Query-CH02-40 *** */

SELECT Department, COUNT(*)

FROM SKU_DATA;

The result in SQL Server 2014 is:

This is the specific SQL Server 2014 error message. However, you will receive an equivalent
message from Microsoft Access 2013, Oracle Database, or MySQL 5.6.

 Microsoft Access does not support the
DISTINCT keyword as part of the COUNT ex-
pression, so although the SQL command with
COUNT(Department) will work, the SQL command
with COUNT(DISTINCT Department) will fail.

Solution: Use an SQL subquery structure (discussed later in this chapter) with the
DISTINCT keyword in the subquery itself. This SQL query works:

/* *** SQL-Query-CH02-38-Access *** */

SELECT COUNT(*) AS DeptCount

FROM (SELECT DISTINCT Department

 FROM SKU_DATA) AS DEPT;

Note that this query is a bit different from the other SQL queries using subqueries we
show in this text because this subquery is in the FROM clause instead of (as you’ll
see) the WHERE clause. Basically, this subquery builds a new temporary table named
DEPT containing only distinct Department values, and the query counts the number of
those values.

Does Not Work with
Microsoft Access
ANSI-89 SQL

 CHAPTER 2 Introduction to Structured Query Language 111

The second problem with the SQL built-in aggregate functions that you should un-
derstand is that you cannot use them in an SQL WHERE clause. This is because the SQL
WHERE clause operates on rows (choosing which rows will be displayed), while the aggregate
functions operate on columns (each function calculates a single value based on all the attribute
values stored in a column). Thus, you cannot use the following SQL statement:

/* *** SQL-Query-CH02-41 *** */

SELECT *

FROM RETAIL_ORDER

WHERE OrderTotal > AVG(OrderTotal);

An attempt to use such a statement will also result in an error statement from the DBMS:

Again, this is the specific SQL Server 2014 error message, but other DBMS products will
give you an equivalent error message. The desired result of the above query can be computed
using an SQL subquery (discussed later in this chapter). The desired result can also be ob-
tained using a sequence of SQL views, which will be discussed in Chapter 7.

SQL Expressions in SQL SELECT Statements

It is possible to do basic arithmetic in SQL statements. For example, suppose we want to com-
pute the values of extended price, perhaps because we want to verify the accuracy of the data
in the ORDER_ITEM table. To compute the extended price, we can use the SQL expression
Quantity * Price in the SQL query:

/* *** SQL-Query-CH02-42 *** */

SELECT OrderNumber, SKU, (Quantity * Price) AS EP

FROM ORDER_ITEM

ORDER BY OrderNumber, SKU;

The result is:

An SQL expression is basically a formula or set of values that determines the exact re-
sults of an SQL query. We can think of an SQL expression as anything that follows an actual
or implied is equal to (=) comparison operator (or any other comparison operator, such as
greater than (>), less than (<), and so on) or that follows certain SQL comparison operator
keywords, such as LIKE and BETWEEN. Thus, the SELECT clause in the preceding query

112 PART 1 Getting Started

includes the implied is equal to (=) sign as EP = Quantity * Price. For another example, in
the WHERE clause:

WHERE Buyer IN ('Nancy Meyers', 'Cindy Lo', 'Jerry Martin');

the SQL expression consists of the enclosed set of three text values following the IN keyword.
Now that we know how to use an SQL expression to calculate the value of extended price,

we can compare this computed value to the value of ExtendedPrice that is already stored in
ORDER_ITEM by using the SQL query:

/* *** SQL-Query-CH02-43 *** */

SELECT OrderNumber, SKU,

 (Quantity * Price) AS EP, ExtendedPrice

FROM ORDER_ITEM

ORDER BY OrderNumber, SKU;

The result of this statement now allows us to visually compare the two values to ensure that the
stored data are correct:

Expressions can also be used in the SQL WHERE clause (but they may not include SQL
built-in aggregate functions—see SQL-Query-CH02-41 above). For example, if we want to test
whether (Quantity * Price) is equal to ExtendedPrice and then display the OrderNumber and
SKU only when (Quantity * Price) is not equal to ExtendedPrice, we use the SQL query:

/* *** SQL-Query-CH02-44 *** */

SELECT OrderNumber, SKU

FROM ORDER_ITEM

WHERE (Quantity * Price) <> ExtendedPrice

ORDER BY OrderNumber, SKU;

The result of this statement is the empty set that contains no values. In terms of SQL-
Query-CH02-44, this means that there are no rows where (Quantity * Price) is not equal to
ExtendedPrice, which means that all the values are correct.

By THE WAy The parentheses shown enclosing the expression Quantity * Price are not
required and do not affect the calculation, but they are useful to help us

see the expression in the SQL query syntax.

 CHAPTER 2 Introduction to Structured Query Language 113

Another use for SQL expressions in SQL statements is to perform character string manip-
ulation. Suppose we want to combine (using the concatenation operator, which is the plus sign
[+] in SQL Server 2014) the Buyer and Department columns into a single column named
Sponsor. To do this, we can use the SQL statement:

/* *** SQL-Query-CH02-45 *** */

SELECT SKU, SKU_Description,

 (Buyer+' in '+Department) AS Sponsor

FROM SKU_DATA

ORDER BY SKU;

The result will include a column named Sponsor that contains the combined text values:

The result of SQL-Query-CH02-45 is ugly because of the extra spaces in each row. We
can eliminate these extra spaces by using more advanced functions. The syntax and use of
such functions vary from one DBMS to another, however, and a discussion of the features
of each product will take us away from the point of this discussion. To learn more, search
on string functions in the documentation for your specific DBMS product. Just to illustrate

By THE WAy The concatenation operator, like many SQL syntax elements, varies from
one DBMS product to another. Oracle Database uses a double vertical

bar (||) as the concatenation operator, and SQL-Query-CH02-45 is written for Oracle
Database as:

/* *** SQL-Query-CH02-45-Oracle-Database *** */

SELECT SKU, SKU_Description,

 (Buyer||' in '||Department) AS Sponsor

FROM SKU_DATA

ORDER BY SKU;

MySQL uses the concatenation string function CONCAT() as the concatenation opera-
tor with the elements to be concatenated separated by commas with the parentheses,
and SQL-Query-CH02-45 is written for MySQL as:

/* *** SQL-Query-CH02-45-MySQL *** */

SELECT SKU, SKU_Description,

 CONCAT(Buyer,' in ',Department) AS Sponsor

FROM SKU_DATA

ORDER BY SKU;

114 PART 1 Getting Started

the possibilities, however, here is an SQL Server 2014 statement using the RTRIM function
(which also works in Microsoft Access, Oracle Database, and MySQL) that strips the tailing
blanks off the right-hand side of Buyer and Department:

/* *** SQL-Query-CH02-46 *** */

SELECT SKU, SKU_Description,

 RTRIM(Buyer)+' in '+RTRIM(Department) AS Sponsor

FROM SKU_DATA

ORDER BY SKU;

The result of this query is much more visually pleasing:

This group of rows is
for the Water Sports
department

This SKU did not
appear in the catalog

This group of rows is
for the Camping
department

This group of rows is
for the Climbing
department

FIGURE 2-26

Department Groups in the
CATALOG_SKU_2014 Table

Grouping Rows in SQL SELECT Statements

In SQL queries, rows can be grouped together according to common values using the SQL
GROUP BY clause. This is a powerful feature, but it can be difficult to understand.

To illustrate how grouping works, imagine that you are on the Cape Codd sales analysis
team, and your boss asks you the question: “How many products from each department were
there in the printed Cape Codd 2014 catalog?”

By simply looking at the data in the CATALOG_SKU_2014 table shown in Figure 2-26,
you can easily see that the rows fall into three groups based on the values of Department. These
groups are Water Sports (rows 1-5), Camping (rows 6-7) and Climbing (rows 8-9). A quick
count of the rows in each group shows that Water Sports has 5 rows, Camping has 2 rows
and Climbing has 2 rows. Checking the values of CatalogPage, you can see that only the value
for row 3 is NULL, which means that all SKUs except SKU 100400 appeared in the 2014
catalog. Therefore, Water Sports had 4 items in the Cape Codd 2104 catalog, Camping had 2
items, and Climbing had 2 items.

 CHAPTER 2 Introduction to Structured Query Language 115

If you need to prepare a report for your boss, you could put this information into a spread-
sheet, as shown in Figure 2-27. This spreadsheet clearly shows the data grouped by Department,
with the corresponding (in alphabetical order) Camping, Climbing, and Water Sports groups.

To create the grouped data output shown in Figure 2-27 in an SQL query, we use the SQL
GROUP BY clause in an SQL SELECT statement. This is shown in SQL-Query-CH02-47:

/* *** SQL-Query-CH02-47 *** */

SELECT Department, COUNT(SKU) AS NumberOfCatalogItems

FROM CATALOG_SKU_2014

GROUP BY Department;

The result for this query is:

The results for SQL-Query-CH02-47 display the correct grouping by Department, but
there is an error in the NumberOfCatalogItems for the Water Sports department. This is
because SKU 100400 is included in the count but did not appear in the catalog. To fix this
problem, we revise the SQL query by adding a WHERE clause to include only the rows for
SKUs that have a CatalogPage number value:

/* *** SQL-Query-CH02-48 *** */

SELECT Department, COUNT(SKU) AS NumberOfCatalogItems

FROM CATALOG_SKU_2014

WHERE CatalogPage IS NOT NULL

GROUP BY Department;

This change gives us the correct results:

Now imagine that your boss asks you the question: “How many products from each
department were there in the printed Cape Codd 2014 catalog where the department had
three or more listed products?” We can easily answer this question: only the Water Sports

Data is now grouped
by Department

This is the Camping
group

This is the Climbing
group

This is the Water
Spots group

FIGURE 2-27

Grouping Data into
Department Groups

116 PART 1 Getting Started

department had 3 or more catalog items. Water Sports had 4 catalog items, while Camping
and Climbing only had 2 each. To get the correct answer from the grouped data output in
an SQL query we use the SQL HAVING clause in an SQL SELECT statement. Noting
that 3 or more is mathematically equivalent to more than 2, we can write the needed SQL
HAVING clause for the SQL query. This is shown in SQL-Query-CH02-49 (note that we use
COUNT(SKU) in the HAVING clause, not the alias NumberOfCatalogItems):

/* *** SQL-Query-CH02-49 *** */

SELECT Department, COUNT(SKU) AS NumberOfCatalogItems

FROM CATALOG_SKU_2014

WHERE CatalogPage IS NOT NULL

GROUP BY Department

HAVING COUNT(SKU) > 2;

The result for this query is exactly the result we wanted:

Note that SQL built-in aggregate functions can be used in the SQL HAVING clause
because they are working on the set of column values in each group. Earlier we noted that those
functions cannot be used in the WHERE clause because the WHERE clause is applied to each
single row. It is easy to get confused between the SQL WHERE clause and the SQL HAVING
clause. The best way to understand the difference is to remember that:

■■ The SQL WHERE clause specifies which rows will be used to determine the groups.
■■ The SQL HAVING clause specifies which groups will be used in the final result.

Nonetheless, be aware that there is a potential ambiguity in statements that include both
WHERE and HAVING clauses. The results vary depending on whether the WHERE condi-
tion is applied before or after the HAVING. To eliminate this ambiguity, the WHERE clause is
always applied before the HAVING clause.

We can include more than one column in a GROUP BY expression. For example,
 imagine that your boss asks you the question: “How many SKUs is each buyer in each depart-
ment responsible for?” To answer this question, we will have to group first by Department and
then by Buyer. Therefore, we use the SQL statement:

/* *** SQL-Query-CH02-50 *** */

SELECT Department, Buyer,

 COUNT(SKU) AS Dept_Buyer_SKU_Count

FROM SKU_DATA

GROUP BY Department, Buyer;

This groups rows according to the value of Department first, then according to Buyer, and then
counts the number of rows for each combination of Department and Buyer. The result is:

each.To

 CHAPTER 2 Introduction to Structured Query Language 117

When using the GROUP BY clause, any and all column names in the SELECT clause that
are not used by or associated with an SQL built-in function must appear in the GROUP BY
clause. In SQL-Query-CH02-51 below, the column name SKU is not used in the GROUP BY
clause, and therefore the query produces an error:

/* *** SQL-Query-CH02-51 *** */

SELECT Department, SKU,

 COUNT(SKU) AS Dept_SKU_Count

FROM SKU_DATA

GROUP BY Department;

The resulting error message is:

This is the specific SQL Server 2014 error message, but other DBMS products will give you
an equivalent error message. Statements like this one are invalid because there are many
 values of SKU for each Department group. The DBMS has no place to put those multiple
values in the result. If you do not understand the problem, try to process this statement by
hand. It cannot be done.

Of course, the SQL ORDER BY clause can also be used with SQL queries using the SQL
GROUP BY clauses, as shown in the following query:

/* *** SQL-Query-CH02-52 *** */

SELECT Department, COUNT(SKU) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU < > 302000

GROUP BY Department

HAVING COUNT(SKU) > 1

ORDER BY Dept_SKU_Count;

The result is:

Notice that one of the rows of the Climbing department has been removed from the
count because it did not meet the WHERE clause condition and that the Climbing depart-
ment itself is removed from the final results because it did not meet the HAVING clause
requirement. Without the ORDER BY clause, the rows would be presented in arbitrary order
of Department. With it, the order is as shown. In general, to be safe, always place the WHERE
clause before the GROUP BY clause. Some DBMS products do not require that placement,
but others do.

118 PART 1 Getting Started

Does Not Work with
Microsoft Access
ANSI-89 SQL

Microsoft Access does not properly recog-
nize the alias Dept_SKU_Count in the ORDER
BY clause and creates a parameter query that
 requests an input value of as yet nonexistent

Dept_SKU_Count! However, it doesn’t matter whether you enter parameter values or
not—click the OK button and the query will run. The results will be basically correct,
but they will not be sorted correctly.

Solution: Use the Microsoft Access QBE GUI to modify the query structure. The cor-
rect QBE structure is shown in Figure 2-28. The resulting Microsoft Access ANSI-89
SQL is:

/* *** SQL-Query-CH02-52-Access-A *** */

SELECT SKU_DATA.Department, COUNT(SKU) AS Dept_SKU_Count

FROM SKU_DATA

WHERE (((SKU_DATA.SKU)< >302000))

GROUP BY SKU_DATA.Department

HAVING COUNT(SKU) > 1

ORDER BY COUNT(SKU);

which can be edited down to:

/* *** SQL-Query-CH02-52-Access-B *** */

SELECT Department, COUNT(SKU) AS Dept_SKU_Count

FROM SKU_DATA

WHERE SKU< >302000

GROUP BY Department

HAVING COUNT(SKU) > 1

ORDER BY COUNT(SKU);

Edit the query in the
QBE GUI interface so
that it appears as
shown here

FIGURE 2-28

Editing the SQL Query in the
Microsoft Access 2013 QBE
GUI Interface

SKU_DATA.Department
SKU_DATA.SKU
SKU_DATA.Department

 CHAPTER 2 Introduction to Structured Query Language 119

Querying Two or More Tables with SQL

So far in this chapter we’ve worked with only one table. Now we will conclude by describing
SQL statements for querying two or more tables.

Imagine that your boss asks you the question: “What is the total revenue generated by
SKUs managed by the Water Sports department?” We can compute the total revenue as
the sum of ExtendedPrice, but we have a problem. ExtendedPrice is stored in the ORDER_
ITEM table, and Department is stored in the SKU_DATA table. We need to process data in
two tables, and all of the SQL presented so far operates on a single table at a time.

SQL provides two different techniques for querying data from multiple tables:

■■ The SQL subquery
■■ The SQL join

As you will learn, although both work with multiple tables, they are used for slightly dif-
ferent purposes.

Querying Multiple Tables with Subqueries

We will begin our discussion of multiple table queries with the SQL subquery. To under-
stand how a subquery works, let’s return to the problem of how we can obtain the sum of
ExtendedPrice for items managed by the Water Sports department. Looking at the ORDER_
ITEM table data structure in Figure 2-4, we can see that if we somehow knew the SKU val-
ues for the Water Sports items, we could use them in a WHERE clause with the IN keyword.

Looking at the SKU_DATA table data in Figure 2-6, we can determine that the SKU
values for items in Water Sports are 100100, 100200, 101100, and 101200. Knowing
those values, we can obtain the sum of their ExtendedPrice with the following SQL query:

/* *** SQL-Query-CH02-53 *** */

SELECT SUM(ExtendedPrice) AS WaterSportsRevenue

FROM ORDER_ITEM

WHERE SKU IN (100100, 100200, 101100, 101200);

The result is:

But, in general, we do not know the necessary SKU values ahead of time. However, we do
have a way to obtain them by using an SQL query on the data in the SKU_DATA table.
To obtain the SKU values for the Water Sports department, we use the SQL statement:

/* *** SQL-Query-CH02-54 *** */

SELECT SKU

FROM SKU_DATA

WHERE Department = 'Water Sports'

The result of this SQL statement is the set of SKU numbers that we need:

120 PART 1 Getting Started

Now we need only combine the last two SQL statements to obtain the result we want. We
replace the list of values in the WHERE clause of the first SQL query with the second SQL
statement as follows:

/* *** SQL-Query-CH02-55 *** */

SELECT SUM(ExtendedPrice) AS WaterSportsRevenue

FROM ORDER_ITEM

WHERE SKU IN

 (SELECT SKU

 FROM SKU_DATA

 WHERE Department = 'Water Sports');

The result of the query is the same result we obtained before when we knew which specific
values of SKU to use:

In SQL-Query-CH02-55, the second SELECT statement, the one enclosed in parentheses, is
called an SQL subquery. An SQL subquery is an SQL query statement used to determine
a set of values that are provided (or returned) to the SQL query (often referred to as the top
level query) that used (or called) the subquery. A subquery is often described as a nested
query or a query within a query.

It is important to note that SQL queries using subqueries still function like a single table
query in the sense that only the columns of the top level query can be displayed in the query
results. For example, in SQL-Query-CH02-55 above, because the Department column is in
the SKU_DATA table (the table used in the subquery itself), the values of the Department
column cannot be displayed in the final results.

We can use multiple subqueries to process three or even more tables. For example,
suppose we want to know the names of the buyers who manage any product purchased in
January 2015. First, note that Buyer data is stored in the SKU_DATA table and OrderMonth
and OrderYear data are stored in the RETAIL_ORDER table.

Now, we can use an SQL query with two subqueries to obtain the desired data as follows:

/* *** SQL-Query-CH02-56 *** */

SELECT DISTINCT Buyer, Department

FROM SKU_DATA

WHERE SKU IN

 (SELECT SKU

 FROM ORDER_ITEM

 WHERE OrderNumber IN

 (SELECT OrderNumber

 FROM RETAIL_ORDER

 WHERE OrderMonth='January'

 AND OrderYear = 2015));

The result of this statement is:

 CHAPTER 2 Introduction to Structured Query Language 121

To understand this statement, work from the bottom up. The bottom SELECT statement
obtains the list of OrderNumbers of orders sold in January 2015. The middle SELECT statement
obtains the SKU values for items sold in orders in January 2015. Finally, the top-level SELECT
query obtains Buyer and Department for all of the SKUs found in the middle SELECT statement.

Any parts of the SQL language that you learned earlier in this chapter can be applied to a
table generated by a subquery, regardless of how complicated the SQL looks. For example, in
SQL-Query-CH02-56 we apply the DISTINCT keyword on the results to eliminate duplicate
rows. We can also apply the GROUP BY and ORDER BY clauses as follows:

/* *** SQL-Query-CH02-57 *** */

SELECT Buyer, Department, COUNT(SKU) AS Number_Of_SKU_Sold

FROM SKU_DATA

WHERE SKU IN

 (SELECT SKU

 FROM ORDER_ITEM

 WHERE OrderNumber IN

 (SELECT OrderNumber

 FROM RETAIL_ORDER

 WHERE OrderMonth='January'

 AND OrderYear=2015))

GROUP BY Buyer, Department

ORDER BY Number_Of_SKU_Sold;

The result is:

Does Not Work with
Microsoft Access
ANSI-89 SQL

This query fails in Microsoft Access ANSI-89
SQL for the same reason previously described
on page 86.

Solution: See the solution described in the “Does Not Work with Microsoft Access
ANSI-89 SQL” box on page 86. The correct Microsoft Access ANSI-89 SQL statement
for this query is:

/* *** SQL-Query-CH02-57-Access *** */

SELECT Buyer, Department, COUNT(*) AS Number_Of_SKU_Sold

FROM SKU_DATA

WHERE SKU IN

 (SELECT SKU

 FROM ORDER_ITEM

 WHERE OrderNumber IN

 (SELECT OrderNumber

 FROM RETAIL_ORDER

 WHERE OrderMonth='January'

 AND OrderYear=2011))

GROUP BY Buyer, Department

ORDER BY COUNT(*) ASC;

122 PART 1 Getting Started

Querying Multiple Tables with Joins

Subqueries are very powerful, but as noted, they do have a serious limitation: the selected data
can come only from the top-level table. Therefore, we cannot use a subquery to display data
obtained from more than one table. To do so, we must use an SQL join instead.

In an SQL join operation, the SQL JOIN operator is used to combine two or more
tables by concatenating (sticking together) the rows of one table with the rows of another
table. If the JOIN operator is actually used as part of the SQL statement syntax, we refer to
the join operation as an explicit join. If the JOIN operator itself does not appear in the SQL
statement, we refer to the join operation as an implicit join.

Consider how we might combine the data in the RETAIL_ORDER and ORDER_ITEM
tables. We can concatenate the rows of one table with the rows of the second table with
the following SQL statement, where we simply list the names of the tables we want to
combine:

/* *** SQL-Query-CH02-58 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM;

This is known as a CROSS JOIN, and the result is what is mathematically known as the
Cartesian product of the rows in the tables, which means that this statement will just stick
every row of one table together with every row of the second table. For the data in Figure 2-6,
the result is:

Because there are 3 rows of retail order and 7 rows of order items, there are 3 times 7, or
21, rows in this table. Notice that the retail order with OrderNumber 1000 has been com-
bined with all seven of the rows in ORDER_ITEM, the retail order with OrderNumber2000
has been combined with all seven of the same rows, and, finally, the retail order with
OrderNumber 3000 has again been combined with all seven rows.

This is illogical—what we really need to do is to select only those rows for which the
OrderNumber of RETAIL_ORDER (primary key) matches the OrderNumber in ORDER_
ITEM (foreign key). This is known as an inner join, and this is easy to do—we simply add an

 CHAPTER 2 Introduction to Structured Query Language 123

SQL WHERE clause to the query requiring that the values in the two columns are equal to
each other as follows:

/* *** SQL-Query-CH02-59 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM

WHERE RETAIL_ORDER.OrderNumber = ORDER_ITEM.OrderNumber;

The result is:

The use of the matching primary and foreign keys in the SQL WHERE clause is shown in
Figure 2-29. While this query is technically correct, it will be easier to read if we sort the
 results using an ORDER BY clause:

/* *** SQL-Query-CH02-60 *** */

SELECT *

FROM RETAIL_ORDER, ORDER_ITEM

WHERE RETAIL_ORDER.OrderNumber=ORDER_ITEM.OrderNumber

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

The result is:

SQL WHERE clause

OrderNumber is the
foreign key in
ORDER_ITEM

OrderNumber is the
primary key of
RETAIL_ORDER

FIGURE 2-29

Using Primary Key and
Foreign Key Values in the
SQL WHERE Clause in an
SQL Join

RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
RETAIL_ORDER.OrderNumber
ORDER_ITEM.SKU

124 PART 1 Getting Started

Looking at the statement syntax in SQLQuery-CH02-60, note that the SQL JOIN key-
word is not used anywhere in the SQL statement—therefore, this is an implicit inner join.

If you compare this result with the data in Figure 2-6, you will see that only the appropri-
ate order items are associated with each retail order. You also can tell that this has been done
by noticing that, in each row, the value of OrderNumber from RETAIL_ORDER (the first col-
umn) equals the value of OrderNumber from ORDER_ITEM (the seventh column). This was
not true for our first result.

You can think of the join operation working as follows. Start with the first row in RETAIL_
ORDER. Using the value of OrderNumber in this first row (1000 for the data in Figure 2-6), ex-
amine the rows in ORDER_ITEM. When you find a row in ORDER_ITEM where OrderNumber
is also equal to 1000, join all the columns of the first row of RETAIL_ORDER with the columns
from the row you just found in ORDER_ITEM.

For the data in Figure 2-6, the first row of ORDER_ITEM has OrderNumber equal to
1000, so you join the first row of RETAIL_ORDER with the columns from the first row in
ORDER_ITEM to form the first row of the join. The result is:

Now, still using the OrderNumber value of 1000, look for a second row in ORDER_ITEM
that has OrderNumber equal to 1000. For our data, the second row of ORDER_ITEM has
such a value. So, join FirstName and LastName from the first row of RETAIL_ORDER to the
second row of ORDER_ITEM to obtain the second row of the join as follows:

Continue in this way, looking for matches for the OrderNumber value of 1000. At this
point, no more OrderNumber values of 1000 appear in the sample data, so now you move
to the second row of RETAIL_ORDER, obtain the new value of OrderNumber (2000), and
begin searching for matches for it in the rows of ORDER_ITEM. In this case, the third row has
such a match, so you combine those rows with the previous result to obtain the new result:

You continue until all rows of RETAIL_ORDER have been examined. The final result is:

Actually, that is the theoretical result. But remember that row order in an SQL query
can be arbitrary, as is shown in the results to SQL-Query-CH02-59 above. To ensure that you

 CHAPTER 2 Introduction to Structured Query Language 125

get the above result, you need to add an ORDER BY clause to the query, as shown in SQL-
Query-CH02-60 above.

You may have noticed that we introduced a new variation in SQL statement syntax in
the previous two queries, where the terms RETAIL_ORDER.OrderNumber, ORDER_ITEM.
OrderNumber, and ORDER_ITEM.SKU were used. The new syntax is simply TableName.
ColumnName, and it is used to specify exactly which table each column is linked to.
RETAIL_ORDER.OrderNumber simply means the OrderNumber from the RETAIL_ORDER
table. Similarly, ORDER_ITEM.OrderNumber refers to the OrderNumber in the ORDER_
ITEM table, and ORDER_ITEM.SKU refers to the SKU column in the ORDER_ITEM table.
You can always qualify a column name with the name of its table like this. We have not done
so previously because we were working with only one table, but the SQL statements shown
previously would have worked just as well with syntax like SKU_DATA.Buyer rather than just
Buyer or ORDER_ITEM.Price instead of Price.

The process of creating a result table by joining two tables via an SQL join operation
is called joining the two tables. When the tables are joined using an inner join with an
is equal to condition (like the one on OrderNumber), this join is called an equijoin. When
people say join, 99.99999 percent of the time they mean an equijoin.

We can use a join to obtain data from two or more tables. For example, using the data
in Figure 2-6, suppose we want to show the name of the Buyer and the ExtendedPrice of
the sales of all SKU items managed by that Buyer. The following SQL query will obtain
that result:

/* *** SQL-Query-CH02-61 *** */

SELECT Buyer, SKU_DATA.SKU, SKU_Description,

 OrderNumber, ExtendedPrice

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU;

The result is:

Again, the result of every SQL statement is just a single table, so we can apply any of the
SQL syntax you learned for a single table to this result. For example, we can use the GROUP
BY and ORDER BY clauses to obtain the total revenue from each SKU managed by each
buyer, as shown in the following SQL query:

/* *** SQL-Query-CH02-62 *** */

SELECT Buyer, SKU_DATA.SKU, SKU_Description,

 SUM(ExtendedPrice) AS BuyerSKURevenue

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

GROUP BY Buyer, SKU_DATA.SKU, SKU_Description

ORDER BY BuyerSKURevenue DESC;

RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
ORDER_ITEM.OrderNumber
ORDER_ITEM.SKU
TableName.ColumnName
TableName.ColumnName
RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
ORDER_ITEM.SKU
SKU_DATA.Buyer
ORDER_ITEM.Price
SKU_DATA.SKU
SKU_DATA.SKU
ORDER_ITEM.SKU
SKU_DATA.SKU
SKU_DATA.SKU
ORDER_ITEM.SKU
SKU_DATA.SKU

126 PART 1 Getting Started

The result is:

You may have noticed that in SQL-Query-CH02-62 the GROUP BY clause used group-
ings on Buyer, SKU, and SKU_Description. Given the matching values of SKU and SKU
Description, this may seem unnecessary. In fact, however, SQL syntax requires that any col-
umn name entered in the SELECT clause that is not used in an aggregate function must also
be entered in the GROUP BY clause. To demonstrate this, we will run SQL-Query-CH02-62
without SKU_Description in the GROUP BY clause as SQL-Query-CH02-63:

/* *** SQL-Query-CH02-63 *** */

SELECT Buyer, SKU_DATA.SKU, SKU_Description,

 SUM(ExtendedPrice) AS BuyerSKURevenue

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

GROUP BY Buyer, SKU_DATA.SKU

ORDER BY BuyerSKURevenue DESC;

The result is an error message (this one is for SQL Server 2014):

Does Not Work with
Microsoft Access
ANSI-89 SQL

This query fails in Microsoft Access ANSI-89
SQL for the same reason previously described
on page 86.

Solution: See the solution described in the “Does Not Work with Microsoft Access
ANSI-89 SQL” box on page 86. The correct Microsoft Access ANSI-89 SQL statement
for this query is:

/* *** SQL-Query-CH02-62-Access *** */

SELECT Buyer, SKU_DATA.SKU, SKU_Description,

 Sum(ORDER_ITEM.ExtendedPrice) AS BuyerSKURevenue

FROM SKU_DATA, ORDER_ITEM

WHERE SKU_DATA.SKU=ORDER_ITEM.SKU

GROUP BY Buyer, SKU_DATA.SKU, SKU_Description

ORDER BY Sum(ExtendedPrice) DESC;

SKU_DATA.SKU
SKU_DATA.SKU
ORDER_ITEM.SKU
SKU_DATA.SKU
SKU_DATA.SKU
ORDER_ITEM.ExtendedPrice
SKU_DATA.SKU
ORDER_ITEM.SKU
SKU_DATA.SKU

 CHAPTER 2 Introduction to Structured Query Language 127

We can extend this implicit join syntax to join three or more tables. For example, sup-
pose we want to obtain the Buyer, SKU, SKU_Description, OrderNumber, OrderMonth, and
ExtendedPrice for all purchases of items managed by each buyer. To retrieve that data, we
need to join all three tables together, as shown in this SQL query:

/* *** SQL-Query-CH02-64 *** */

SELECT Buyer, SKU_DATA.SKU, SKU_Description,

 RETAIL_ORDER.OrderNumber, OrderMonth, ExtendedPrice

FROM SKU_DATA, ORDER_ITEM, RETAIL_ORDER

WHERE SKU_DATA.SKU = ORDER_ITEM.SKU

 AND ORDER_ITEM.OrderNumber=RETAIL_ORDER.OrderNumber;

The result is:

Comparing Subqueries and Joins

Subqueries and joins both process multiple tables, but they differ slightly. As mentioned
earlier, a subquery can be used only to retrieve data from the top table, whereas a join can
be used to obtain data from any number of tables. Thus, a join can do everything a subquery
can do and more. So why learn subqueries? For one, if you just need data from a single table,
you might use a subquery because it is easier to write and understand. This is especially true
when processing multiple tables.

In Chapter 8, however, you will learn about a type of subquery called a correlated sub-
query. A correlated subquery can do work that is not possible with joins. Thus, it is important
for you to learn about both joins and subqueries, even though right now it appears that joins
are uniformly superior. If you’re curious, ambitious, and courageous, jump ahead and read the
discussion of correlated subqueries in Chapter 8.

The SQL JOIN ON Syntax

So far, we have learned to code SQL joins using implicit join syntax. However, there is another
way to code join statements. In this second case, we create explicit joins using the SQL JOIN
ON syntax. The following query is the equivalent of SQL-Query-CH02-60:

/* *** SQL-Query-CH02-65 *** */

SELECT *

FROM RETAIL_ORDER JOIN ORDER_ITEM

 ON RETAIL_ORDER.OrderNumber = ORDER_ITEM.OrderNumber

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

SKU_DATA.SKU
RETAIL_ORDER.OrderNumber
SKU_DATA.SKU
ORDER_ITEM.SKU
ORDER_ITEM.OrderNumber
RETAIL_ORDER.OrderNumber
RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
RETAIL_ORDER.OrderNumber
ORDER_ITEM.SKU

128 PART 1 Getting Started

The result is:

While these two join syntaxes are functionally equivalent, the implicit join syntax is early
SQL standard syntax and is considered to have been replaced by the explicit SQL JOIN
ON join syntax as of the 1992 SQL-92 standard. Most people think that the SQL JOIN
ON syntax is easier to understand than the first. Note that when using the SQL JOIN ON
syntax:

■■ The SQL JOIN keyword is placed between the table names in the SQL FROM
clause, where it replaces the comma that previously separated the two table
names, and

■■ The SQL ON keyword now leads into an SQL ON clause, which
includes the statement of matching key values that was previously in an SQL
WHERE clause.

■■ The SQL WHERE clause is no longer used as part of the join, which makes it
easier to read the actual restrictions on the rows in the query in the WHERE
clause itself.

Note that the JOIN ON syntax still requires a statement of primary key to foreign key equiva-
lence, as shown in Figure 2-30. Also note that the SQL ON clause does not replace the SQL
WHERE clause, which can still be used to determine which rows will be displayed. For exam-
ple, we can use the SQL WHERE clause to limit the records shown to those for the OrderYear
of 2014:

/* *** SQL-Query-CH02-66 *** */

SELECT *

FROM RETAIL_ORDER JOIN ORDER_ITEM

 ON RETAIL_ORDER.OrderNumber = ORDER_ITEM.OrderNumber

WHERE OrderYear = '2014'

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

The result is:

You can use the SQL JOIN ON syntax as an alternate format for joins of three or more
tables as well. If, for example, you want to obtain a list of the order data, order line data, and
SKU data, you can use the following SQL statement:

RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
RETAIL_ORDER.OrderNumber
ORDER_ITEM.SKU

 CHAPTER 2 Introduction to Structured Query Language 129

/* *** SQL-Query-CH02-67 *** */

SELECT RETAIL_ORDER.OrderNumber, StoreNumber, OrderYear,

 ORDER_ITEM.SKU, SKU_Description, Department

FROM RETAIL_ORDER JOIN ORDER_ITEM

 ON RETAIL_ORDER.OrderNumber = ORDER_ITEM.OrderNumber

 JOIN SKU_DATA

 ON ORDER_ITEM.SKU=SKU_DATA.SKU

WHERE OrderYear = '2014'

ORDER BY RETAIL_ORDER.OrderNumber, ORDER_ITEM.SKU;

The result is:

SQL ON clause

OrderNumber is the
primary key of
RETAIL_ORDER

OrderNumber is the
foreign key in
ORDER_ITEM

FIGURE 2-30

Using Primary Key and
Foreign Key Values in the
SQL ON Clause in an SQL
Join

You can make that statement even simpler by using the SQL AS keyword to create table
aliases as well as for naming output columns:

/* *** SQL-Query-CH02-68 *** */

SELECT RO.OrderNumber, StoreNumber, OrderYear,

 OI.SKU, SKU_Description, Department

FROM RETAIL_ORDER AS RO JOIN ORDER_ITEM AS OI

 ON RO.OrderNumber = OI.OrderNumber

 JOIN SKU_DATA AS SD

 ON OI.SKU = SD.SKU

WHERE OrderYear = '2014'

ORDER BY RO.OrderNumber, OI.SKU;

The result again is:

RETAIL_ORDER.OrderNumber
ORDER_ITEM.SKU
RETAIL_ORDER.OrderNumber
ORDER_ITEM.OrderNumber
ORDER_ITEM.SKU
SKU_DATA.SKU
RETAIL_ORDER.OrderNumber
ORDER_ITEM.SKU
RO.OrderNumber
OI.SKU
RO.OrderNumber
OI.OrderNumber
OI.SKU
SD.SKU
RO.OrderNumber
OI.SKU

130 PART 1 Getting Started

One final note on SQL joins: Although so far we have created SQL joins by using matching
primary key and foreign key values, SQL joins are not restricted to these matches. In fact, any
matching columns in two tables can be the basis for joins regardless of whether the columns
are key columns or not. For example, imagine that your boss asks you the question: “Who are
the buyers responsible for products in the Cape Codd 2014 catalog?”

In this case, the data on products in the 2014 catalog is in the CATALOG_SKU_2014
table, and the data on buyers is in the SKU_DATA table. A quick glance at Figure 2-4 shows that
these two tables are not linked by a primary key to foreign key relationship—in fact, CATALOG_
SKU_2014 is a freestanding table and not linked to any other table in the database.

Nonetheless, we can get the results we want with the SQL query:

/* *** SQL-Query-CH02-69 *** */

SELECT CatalogID, CS2014.SKU, CS2014.SKU_description, Buyer

FROM CATALOG_SKU_2014 AS CS2014 JOIN SKU_DATA AS SD

 ON CS2014.SKU = SD.SKU

WHERE CatalogPage IS NOT NULL

ORDER BY CatalogID;

This query uses an explicit join on SKU, even though SKU is not a key in the CATALOG_
SKU_2014 table. The results are exactly what we need to answer the question:

Outer Joins

The SQL joins we have used so far have been inner joins, where only rows that have matching
values in the joined tables are displayed in the results. Suppose that we would like to see how

By THE WAy Oracle Database and MySQL create aliases in a similar manner, but Oracle
Database does not allow use of the SQL AS keyword. In Oracle Database,

the table name is just followed immediately by the alias to be used. This is shown in
SQL-Query-CH02-68-Oracle:

/* *** SQL-Query-CH02-68-Oracle *** */

SELECT RO.OrderNumber, StoreNumber, OrderYear,

 OI.SKU, SKU_Description, Department

FROM RETAIL_ORDER RO JOIN ORDER_ITEM OI

 ON RO.OrderNumber = OI.OrderNumber

 JOIN SKU_DATA SD

 ON OI.SKU = SD.SKU

WHERE OrderYear = '2014'

ORDER BY RO.OrderNumber, OI.SKU;

CS2014.SKU
CS2014.SKU
CS2014.SKU
SD.SKU
RO.OrderNumber
OI.SKU
RO.OrderNumber
OI.OrderNumber
OI.SKU
SD.SKU
RO.OrderNumber
OI.SKU

 CHAPTER 2 Introduction to Structured Query Language 131

product sales at Cape Codd Outdoor Sports are related to the buyers—are the buyers acquir-
ing products that sell? We can start with the SQL-Query-CH02-70:

/* *** SQL-Query-CH02-70 *** */

SELECT OI.OrderNumber, Quantity,

 SD.SKU, SKU_Description, Department, Buyer

FROM ORDER_ITEM AS OI JOIN SKU_DATA AS SD

 ON OI.SKU=SD.SKU

ORDER BY OI.OrderNumber, SD.SKU;

This produces the result set:

This result is correct, but it shows the names of only five of the eight SKU items in the SKU_
ITEM table. What happened to the other three SKU items and their associated buyers? Look
closely at the data in Figure 2-6, and you will see that the three SKU items and their buyers that do
not appear in the results (SKU 100100 with buyer Pete Hansen, SKU 301000 with buyer Jerry
Martin, and SKU 302000 with buyer Jerry Martin) are SKU items that have never been sold as part
of a retail order. Therefore, the primary key values of these three SKU items do not match any for-
eign key value in the ORDER_ITEM, and because they have no match, they do not appear in the
result of this join statement. What can we do about this case when we are creating an SQL query?

Consider the STUDENT and LOCKER tables in Figure 2-31(a), where we have drawn
the two tables to highlight the relationships between the rows in each table. The STUDENT
table shows the student number (StudentPK), the name of the student (StudentName), and the
student's locker number (LockerFK) for students at a university. The LOCKER table shows the
LockerPK (locker number) and LockerType (full size or half size) of lockers at the recreation
center on campus. If we run a standard join using SQL JOIN ON syntax between these two
tables as shown in SQL-Query-CH02-71, we get a table of students who have lockers assigned to
them together with their assigned locker. This result is shown in Figure 2-31(b).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH02-71 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK, LockerType

FROM STUDENT JOIN LOCKER

 ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY StudentPK;

The type of SQL join is known as an SQL inner join, and we can also run the query us-
ing the SQL INNER JOIN phrase. This is shown in SQL-Query-CH02-72, which produces
exactly the same result shown in Figure 2-31(b).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH02-72 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK, LockerType

FROM STUDENT INNER JOIN LOCKER

 ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY StudentPK;

OI.OrderNumber
SD.SKU
OI.SKU
SD.SKU
OI.OrderNumber
SD.SKU
STUDENT.LockerFK
LOCKER.LockerPK
STUDENT.LockerFK
LOCKER.LockerPK

132 PART 1 Getting Started

(c) LEFT OUTER JOIN of the STUDENT and LOCKER Tables

All rows from STUDENT
are shown, even where
there is no matching
LockerFK=LockerPK
value

All rows from
LOCKER are shown,
even where there is no
matching
LockerFK=LockerPK
value

(d) RIGHT OUTER JOIN of the STUDENT and LOCKER Tables

(a) The STUDENT and LOCKER Tables Aligned to Show Row Relationships

FIGURE 2-31

Types of JOINS

(b) INNER JOIN of the STUDENT and LOCKER Tables

Only the rows where
LockerFK=LockerPK
are shown—Note that
some StudentPK and
some LockerPK
values are not in the
results

Now, suppose we want to show all the rows already in the join, but also want to show
any rows (students) in the STUDENT table that are not included in the inner join. This
means that we want to see all students, including those who have not been assigned a locker.
To do this, we use the SQL outer join, which is designed for this very purpose. And

 CHAPTER 2 Introduction to Structured Query Language 133

because the table we want is listed first in the query and is thus on the left side of the
table listing, we specifically use an SQL left outer join, which uses the SQL LEFT
JOIN syntax. This is shown in SQL-Query-CH02-73, which produces the results
shown in Figure 2-31(c).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH02-73 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK, LockerType

FROM STUDENT LEFT OUTER JOIN LOCKER

 ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY StudentPK;

In the results shown in Figure 2-31(c), note that all the rows from the STUDENT table
are now included and that rows that have no match in the LOCKER table are shown with
NULL values. Looking at the output, we can see that the students Adams and Buchanan have
no linked rows in the LOCKER table. This means that Adams and Buchanan have not been
assigned a locker in the recreation center.

If we want to show all the rows already in the join, but now also any rows in the LOCKER
table that are not included in the inner join, we specifically use an SQL right outer join,
which uses the SQL RIGHT JOIN syntax because the table we want is listed second in the
query and is thus on the right side of the table listing. This means that we want to see all lockers,
including those that have not been assigned to a student. This is shown in SQL-Query-CH02-74,
which produces the results shown in Figure 2-31(d).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH02-74 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK, LockerType

FROM STUDENT RIGHT OUTER JOIN LOCKER

 ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY LockerPK;

In the results shown in Figure 2-31(d), note that all the rows from the LOCKER table are
now included and that rows that have no match in the STUDENT table are shown with NULL
values. Looking at the output, we can see that the lockers numbered 70, 80, and 90 have no
linked rows in the STUDENT table. This means that these lockers are currently unassigned to
a student and available for use.

In terms of our question about SKUs and buyers, this means that we can use an SQL
OUTER JOIN and specifically an SQL RIGHT OUTER JOIN to obtain the desired results:

/* *** SQL-Query-CH02-75 *** */

SELECT OI.OrderNumber, Quantity,

 SD.SKU, SKU_Description, Department, Buyer

FROM ORDER_ITEM AS OI RIGHT OUTER JOIN SKU_DATA AS SD

 ON OI.SKU=SD.SKU

ORDER BY OI.OrderNumber, SD.SKU;

This produces the following results, which clearly show the SKUs and their associated
buyers that have not been part of a retail order (in particular, note that we haven’t sold

STUDENT.LockerFK
LOCKER.LockerPK
STUDENT.LockerFK
LOCKER.LockerPK
OI.OrderNumber
SD.SKU
OI.SKU
SD.SKU
OI.OrderNumber
SD.SKU

134 PART 1 Getting Started

any of the 300000 range SKUs, which are climbing equipment—perhaps management
should look into that):

Using SQL Set Operators

Mathematicians use the term set theory to describe mathematical operations on sets, where
a set is defined as a group of distinct items. A relational database table meets the definition of a
set, so it is little wonder that SQL includes a group of set operators for use with SQL queries.

Venn diagrams are the standard method of visualizing sets and their relationships. As
shown in Figure 2-32:

■■ A set is represented by a labeled circle, as shown in Figure 2-32(a).
■■ A subset is a portion of a set that is contained entirely within the set, as shown in

Figure 2-32(b).
■■ The union of two sets is shown in Figure 2-32(c), and represents the two sets

 together to get a set that contains all values in both sets. This is equivalent to an OR
logical operation (A OR B).

■■ The intersection of two sets is shown in Figure 2-32(d), and represents the area
common to both sets. This is equivalent to an AND logical operation (A AND B).

■■ The complement of set B in set A is shown in Figure 2-32(e), and represents every-
thing in set A that is not in set B. This is equivalent to a logical operation using NOT
(A NOT B)

SQL provides SQL set operators for each of these set operations, and these are shown
in Figure 2-33. Note that in order to use SQL set operators, the table columns involved in the
operations must be the same number in each SELECT component, and corresponding col-
umns must have the same or compatible (e.g., CHAR and VARCHAR) data types!

To illustrate SQL set operations, imagine that your boss asks you the question: “What
products were available for sale (by either catalog or Web site) in 2014 and 2015?” Looking
at Figure 2-6(b), we can see that to answer this question we must combine all the data in

By THE WAy It is easy to forget that inner joins will drop nonmatching rows. Some years
ago, one of the authors had a very large organization as a consulting cli-

ent. The client had a budgetary-planning application that included a long sequence of
complicated SQL statements. One of the joins in that sequence was an inner join that
should have been an outer join. As a result, some 3,000 employees dropped out of the
budgetary calculations. The mistake was discovered only months later when the actual
salary expense exceeded the budget salary expense by a large margin. The mistake
was an embarrassment all the way to the board of directors.

 CHAPTER 2 Introduction to Structured Query Language 135

A B
The Union is the entire
area of both sets

(c) The Union of Two Sets

A B

The Intersection is the
middle are common
to both sets

(d) The Intersection Two Sets

A

B

(b) A Subset

A B
The Complement is
the area in A that is not
in B

(e) The Complement of Two Sets

The result is all the row values in one or both tables

The result is all the row values common to both tables

The result is all the row values in the first table but not the
second

UNION

INTERSECT

EXCEPT

Operator Meaning

SQL Set Operators
FIGURE 2-33

SQL Set Operators

A

(a) A Set

FIGURE 2-32

Venn Diagrams

136 PART 1 Getting Started

the CATALOG_SKU_2014 and CATALOG_SKU_2015 tables. We do this using the SQL
UNION operator, as shown in SQL-Query-CH02-76:

/* *** SQL-Query-CH02-76 *** */

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2014

UNION

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2015;

This produces the following results, which clearly show all the SKUs available for sale in both years:

Now imagine that your boss asks you the question: “What products were available for sale
(by either catalog or Web site) in both 2014 and 2015?” Looking at the Venn diagrams in Figure
2-32 and table data in Figure 2-6(b), we can see that to answer to this question we must find
the data in the CATALOG_SKU_2014 and CATALOG_SKU_2015 tables that appears in both
tables. We do this using the SQL INTERSECT operator (note that MySQL does not support
this operator), as shown in SQL-Query-CH02-77:

/* *** SQL-Query-CH02-77 *** */

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2014

INTERSECT

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2015;

By THE WAy If we compare the output of SQL-Query-CH02-76 to the data in the
CATALOG-SKU_2014 and CATALOG_SKU_2015, we will note that there

are no duplicate rows in the query output. For example, SKU 201000, the Half-Dome
Tent, is in each table, but only appears once in the query output. If, for some reason,
we wanted the duplicated rows to be displayed in the query output as well, we would
simply add the SQL ALL keyword to the query:

/* *** SQL-Query-CH02-76-ALL *** */

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2014

UNION ALL

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2015;

 CHAPTER 2 Introduction to Structured Query Language 137

This produces the following results, which clearly show all the SKUs available for sale in
both years:

Finally, imagine that your boss asks you the question: “What products were available for
sale (by either catalog or Web site) in 2014 but not in 2015?” the Venn diagrams in Figure
2-32 and table data in Figure 2-6(b), we can see that to answer this question we must find
the data in the CATALOG_SKU_2014 table that did not also appear in the CATALOG_
SKU_2015 table. We do this using the SQL EXCEPT operator (note that Oracle Database
calls this the SQL MINUS operator, and MySQL does not support this operation) as shown
in SQL-Query-CH02-78:

/* *** SQL-Query-CH02-78 *** */

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2014

EXCEPT

SELECT SKU, SKU_Description, Department

FROM CATALOG_SKU_2015;

This produces the following results, which clearly show the SKUs that were available for sale
in only the 2014 catalog:

This completes our discussion of SQL query statements. We have covered the needed
SQL syntax to allow you to write ad-hoc SQL queries on one or more tables, displaying only
the specific row, column, or calculated values that you want to see. In Chapter 7, we will
 return to SQL to discuss SQL DDL, some other parts of SQL DML, and SQL/PSM. In Chapter
8, we will also return to SQL to discuss correlated subqueries.

Summary

Wow! That was a full chapter!
Structured Query Language (SQL) was developed by

IBM and has been endorsed by the ANSI SQL-92 and
following standards. SQL is a data sublanguage that can
be embedded into full programming languages or sub-
mitted directly to the DBMS. Knowing SQL is critical for
knowledge workers, application programmers, and database
administrators.

All DBMS products process SQL. Microsoft Access
hides SQL, but SQL Server, Oracle Database, and MySQL
require that you use it.

We are primarily interested in five categories of SQL
statements: DML, DDL, SQL/PSM statements, TCL, and
DCL. DML statements include statements for querying
data and for inserting, updating, and deleting data. This
chapter addresses only DML query statements. Additional

138 PART 1 Getting Started

DML statements, DDL, and SQL/PSM are discussed in
Chapter 7. TCL and DCL are discussed in Chapter 9.

The examples in this chapter are based on three tables ex-
tracted from the operational database at Cape Codd Outdoor
Sports. Such database extracts are common and important.
Sample data for the three tables is shown in Figure 2-6.

The basic structure of an SQL query statement is
SELECT/FROM/WHERE. The columns to be selected are
listed after SELECT, the table(s) to process is (are) listed
after FROM, and any restrictions on data values are listed
after WHERE. In a WHERE clause, character and date
data values must be enclosed in single quotes. Numeric
data need not be enclosed in quotes. You can submit SQL
statements directly to Microsoft Access, SQL Server, Oracle
Database, and MySQL, as described in this chapter.

This chapter explained the use of the following SQL
clauses: SELECT, FROM, WHERE, ORDER BY, GROUP
BY, and HAVING. By default, the WHERE clause is ap-
plied before the HAVING clause. This chapter explained
the use of the following SQL keywords: DISTINCT, TOP, and
TOP PERCENT. We discussed SQL comparison operators,
including the SQL keywords IN, NOT IN, BETWEEN, NOT
BETWEEN, LIKE, NOT LIKE, IS NULL, and IS NOT NULL.
We used the SQL wildcard characters % (* for Microsoft

Access) and _ (? for Microsoft Access). We learned the SQL
logical operators AND, OR, and NOT. We used the SQL built-
in aggregate functions COUNT, SUM, AVG, MIN, and MAX.
We discussed the SQL alias operator AS, and the SQL set op-
erators UNION, UNION ALL, INTERSECT, and EXCEPT. You
should know how to mix and match these features to obtain
the results you want.

You can query multiple tables using subqueries and
joins. Subqueries are nested queries that use the SQL com-
parison operators IN and NOT IN. An SQL SELECT expres-
sion is placed inside parentheses. Using a subquery, you
can display data from the top table only. An implicit join is
created by specifying multiple table names in the FROM
clause. An SQL WHERE clause is used to obtain an equijoin.
In most cases, equijoins are the most sensible option. Joins
can display data from multiple tables. In Chapter 8, you will
learn another type of subquery that can perform work that
is not possible with joins.

Since the SQL-92 standard, the explicit SQL JOIN ON
syntax has been considered the proper syntax for SQL joins.
Rows that have no match in the join condition are dropped
from the join results when using a regular, or INNER, join. To
keep such rows, use a LEFT OUTER or RIGHT OUTER join
rather than an INNER join.

Key Terms

/* and */
ad-hoc queries
American National Standards Institute

(ANSI)
AVG
business intelligence (BI) systems
Cartesian product
character strings
complement
correlated subquery
COUNT
CROSS JOIN
CRUD
data control language (DCL)
data definition language (DDL)
data manipulation language (DML)
data mart
data sublanguage
data warehouse
data warehouse DBMS
empty set
equijoin
explicit join
Extensible Markup Language (XML)
Extract, Transform, and Load (ETL)

system
graphical user interface (GUI)

implicit join
inner join
International Organization

for Standardization (ISO)
intersection
joining two tables
MAX
Microsoft Access asterisk (*) wildcard

character
Microsoft Access question mark (?)

wildcard character
MIN
NULL
null value
online transaction processing (OLTP)
query by example (QBE)
schema
set
set operators
set theory
SQL ALL keyword
SQL AND operator
SQL AS keyword
SQL asterisk (*) wildcard character
SQL BETWEEN operator
SQL built-in aggregate functions
SQL comment

SQL comparison operator
SQL DESC keyword
SQL DISTINCT keyword
SQL EXCEPT operator
SQL expression
SQL FROM clause
SQL GROUP BY clause
SQL HAVING clause
SQL IN operator
SQL inner join
SQL INNER JOIN phrase
SQL INTERSECT operator
SQL IS keyword
SQL IS NOT NULL operator
SQL IS NULL operator
SQL join operation
SQL JOIN keyword
SQL JOIN operator
SQL JOIN ON syntax
SQL LEFT JOIN syntax
SQL left outer join
SQL LIKE operator
SQL logical operators
SQL MINUS operator
SQL NOT BETWEEN operator
SQL NOT IN operator
SQL NOT LIKE operator

 CHAPTER 2 Introduction to Structured Query Language 139

SQL NOT operator
SQL ON clause
SQL ON keyword
SQL OR operator
SQL ORDER BY clause
SQL outer join
SQL percent sign (%) wildcard character
SQL query
SQL RIGHT JOIN syntax
SQL right outer join
SQL script file
SQL SELECT clause

SQL SELECT/FROM/WHERE
framework

SQL Server Compatible Syntax
(ANSI 92)

SQL set operators
SQL TOP {NumberOfRows}

function
SQL TOP {Percentage} PERCENT

function
SQL underscore (_) wildcard character
SQL UNION operator
SQL WHERE clause

SQL/Persistent Stored Modules
(SQL/PSM)

SQL subquery
stock-keeping unit (SKU)
Structured Query Language (SQL)
subset
SUM
TableName.ColumnName syntax
top level query
transaction control language (TCL)
union
Venn diagram

 2.1 What is an online transaction processing (OLTP) system? What is a business intel-
ligence (BI) system? What is a data warehouse?

 2.2 What is an ad-hoc query?

 2.3 What does SQL stand for, and what is SQL?

 2.4 What does SKU stand for? What is an SKU?

 2.5 Summarize how data were altered and filtered in creating the Cape Codd data
extraction.

 2.6 Explain, in general terms, the relationships among the RETAIL_ORDER, ORDER_
ITEM, and SKU_DATA tables. What is the relationship of these tables to the
CATALOG_SKU_2014 and CATALOG_SKU_2015 tables?

 2.7 Summarize the background of SQL.

 2.8 What is SQL-92? How does it relate to the SQL statements in this chapter?

 2.9 What features have been added to SQL in versions subsequent to SQL-92?

 2.10 Why is SQL described as a data sublanguage?

 2.11 What does DML stand for? What are DML statements?

 2.12 What does DDL stand for? What are DDL statements?

 2.13 What is the SQL SELECT/FROM/WHERE framework?

 2.14 Explain how Microsoft Access uses SQL.

 2.15 Explain how enterprise-class DBMS products use SQL.

The Cape Codd Outdoor Sports sale extraction database has been modified to include three ad-
ditional tables: the INVENTORY table, the WAREHOUSE table, and the CATALOG_SKU_2013
table. The table schemas for these tables, together with the RETAIL_ORDER, ORDER_ITEM,
SKU_DATA, CATALOG_SKU_2014, and CATALOG_SKU_2015 tables, are as follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth,
OrderYear, OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager,
Squarefeet)

Review Questions

TableName.ColumnName

140 PART 1 Getting Started

INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand,
QuantityOnOrder)
CATALOG_SKU_2013 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)
CATALOG_SKU_2014 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)
CATALOG_SKU_2015 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)

The eight tables in the revised Cape Codd database schema are shown in Figure 2-34.
The column characteristics for the WAREHOUSE table are shown in Figure 2-35, the col-
umn characteristics for the INVENTORY table are shown in Figure 2-36, and the column
characteristics for the CATALOG_SKU_2013 table are shown in Figure 2-37. The data
for the WAREHOUSE table are shown in Figure 2-38, the data for the INVENTORY table
are shown in Figure 2-39, and the data for the CATALOG_SKU_2013 table is shown in
Figure 2-40.

WarehouseID Integer Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

WAREHOUSE

WarehouseCity Character (30) Yes

WarehouseState Character (2) Yes

Manager Character (35) No

No

No

No

SquareFeet Integer No No

FIGURE 2-35

Column Characteristics for
the Cape Codd Database
WAREHOUSE Table

The INVENTORY
table

The WAREHOUSE
table

FIGURE 2-34

The Cape Codd Database
with the WAREHOUSE,
INVENTORY, and CATALOG_
SKU_2013 Tables

 CHAPTER 2 Introduction to Structured Query Language 141

WarehouseID Integer Primary Key,
Foreign Key

Yes REF: WAREHOUSE

REF: SKU_DATA

Type Key Required RemarksColumn Name

INVENTORY

SKU Integer Primary Key,
Foreign Key

Yes

SKU_Description Character (35) No Yes

QuantityOnHand Integer No No

QuantityOnOrder Integer No No

FIGURE 2-36

Column Characteristics
for the Cape Codd
Database INVENTORY
Table

CatalogID Integer Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

CATALOG_SKU_2013

SKU Integer Yes

SKU_Description Character (35) Yes

Department Character (30) No Yes

CatalogPage Integer No

No

No

No

DateOnWebPage Date No No

FIGURE 2-37

Column Characteristics
for the Cape Codd
Database CATALOG_
SKU_2013 Table

100 125,000

SquareFeetWarehouseID

200 100,000

300 150,000

400

Atlanta

Chicago

Bangor

Seattle 130,000

GA

WarehouseState

IL

ME

WA

WarehouseCity

Dave Jones

Manager

Lucille Smith

Bart Evans

Dale Rogers

500 San Francisco 200,000CA Grace Jefferson

FIGURE 2-38

Cape Codd Database
WAREHOUSE Table Data

You will need to create and setup a database named Cape_Codd for use with the
Cape Codd review questions. You may have already created this database as suggested in
Chapter 2 and used it to run the SQL queries discussed in the chapter. If you haven’t, you
need to do so now.

A Microsoft Access database named Cape_Codd.accdb is available on our Web site (www
.pearsonhighered.com/kroenke) that contains all the tables and data for the Cape Codd Outdoor
Sports sales data extract database. Also available on our Web site are SQL scripts for creat-
ing and populating the tables for the Cape_Codd database in Microsoft SQL Server, Oracle
Database, and MySQL.

Cape_Codd.accdb
www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke

142 PART 1 Getting Started

100

200

300

400

100

200

300

400

Light Fly Climbing Harness 300

Light Fly Climbing Harness 250

Light Fly Climbing Harness 0

Light Fly Climbing Harness 0

Locking Carabiner, Oval 1000

Locking Carabiner, Oval 1250

Locking Carabiner, Oval 500

301000

301000

301000

301000

302000

302000

302000

302000 Locking Carabiner, Oval 0

250

250

250

250

0

00

500

1000

400

100

200

300

400

100

200

300

400

Dive Mask, Med Clear 250

Half-Dome Tent 2

Half-Dome Tent 10

Half-Dome Tent 250

Half-Dome Tent 0

Half-Dome Tent Vestibule 10

Half-Dome Tent Vestibule 1

Half-Dome Tent Vestibule 100

Half-Dome Tent Vestibule 0

101200

201000

201000

201000

201000

202000

202000

202000

202000

250

100

250

0

250

250

250

0

200

400

100

200

300

400

100

200

300

Std. Scuba Tank, Magenta 250

Dive Mask, Small Clear 0

Dive Mask, Small Clear 0

Dive Mask, Small Clear 300

Dive Mask, Small Clear 450

Dive Mask, Med Clear 100

Dive Mask, Med Clear 50

Dive Mask, Med Clear 475

100200

101100

101100

101100

101100

101200

101200

101200

0

500

500

200

0

500

500

0

Std. Scuba Tank, Yellow 250

SKU_Description QuantityOnHand

Std. Scuba Tank, Yellow 100

Std. Scuba Tank, Yellow 100

100

WarehouseID

200

300

400

100

200

300

Std. Scuba Tank, Yellow 200

Std. Scuba Tank, Magenta 200

Std. Scuba Tank, Magenta 75

Std. Scuba Tank, Magenta 100

100100

SKU

100100

100100

100100

100200

100200

100200

0

QuantityOnOrder

50

0

0

30

75

100

FIGURE 2-39

Cape Codd Database
INVENTORY Table Data

 CHAPTER 2 Introduction to Structured Query Language 143

If you are using the Microsoft Access 2013 Cape_Codd.accdb database, simply copy it to
an appropriate location in your Documents folder. Otherwise, you will need to use the discus-
sion and instructions necessary for setting up the Cape_Codd database in the DBMS product
you are using:

■■ For Microsoft SQL Server 2014, see online Chapter 10A.
■■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online

Chapter 10B.
■■ For MySQL 5.6 Community Server, see online Chapter 10C.

Once you have setup your Cape_Codd database, create an SQL script named Cape-Codd-
CH02-RQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your answer):

 2.16 There is an intentional flaw in the design of the INVENTORY table used in these
exercises. This flaw was purposely included in the INVENTORY tables so you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.
Specifically, why did we include it?

Use only the INVENTORy table to answer Review Questions 2.17 through 2.39:

 2.17 Write an SQL statement to display SKU and SKU_Description.

 2.18 Write an SQL statement to display SKU_Description and SKU.

 2.19 Write an SQL statement to display WarehouseID.

 2.20 Write an SQL statement to display unique WarehouseIDs.

 2.21 Write an SQL statement to display all of the columns without using the SQL asterisk
(*) wildcard character.

 2.22 Write an SQL statement to display all of the columns using the SQL asterisk (*) wild-
card character.

 2.23 Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

20130001 100100

CatalogID SKU

20130002 100500

20130003 100600

20130004 101100

20130005 101200

Std. Scuba Tank, Yellow

SKU_Description

Std. Scuba Tank, Light Green

Std. Scuba Tank, Dark Green

Dive Mask, Small Clear

Water Sports

Department CatalogPage DateOnWebSite

Water Sports

Water Sports

Water Sports

Dive Mask, Med Clear Water Sports

20130006 201000

20130007 202000

Half-dome Tent Camping

Half-dome Tent Vestibule Camping

20130008 301000

20130009 302000

Light Fly Climbing Harness Climbing

Locking Carabiner, Oval Climbing

23

NULL

NULL

24

24

45

47

76

78

2013-01-01

2013-07-01

2013-07-01

2013-01-01

2013-01-01

2013-01-01

2013-01-01

2013-01-01

2013-01-01

FIGURE 2-40

Cape Codd Database
CATALOG_SKU_2013
Table Data

Cape_Codd.accdb
Cape-Codd-CH02-RQ.sql
Cape-Codd-CH02-RQ.sql

144 PART 1 Getting Started

 2.24 Write an SQL statement to display the SKU and SKU_Description for products
 having QuantityOnHand equal to 0.

 2.25 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products that have a QuantityOnHand equal to 0. Sort the results in ascending order
by WarehouseID.

 2.26 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products that have a QuantityOnHand greater than 0. Sort the results in descending
order by WarehouseID and in ascending order by SKU.

 2.27 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than
0. Sort the results in descending order by WarehouseID and in ascending order by SKU.

 2.28 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0.
Sort the results in descending order by WarehouseID and in ascending order by SKU.

 2.29 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Do not use the BETWEEN keyword.

 2.30 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Use the BETWEEN keyword.

 2.31 Write an SQL statement to show a unique SKU and SKU_Description for all prod-
ucts having an SKU description starting with 'Half-Dome'.

 2.32 Write an SQL statement to show a unique SKU and SKU_Description for all prod-
ucts having a description that includes the word 'Climb'.

 2.33 Write an SQL statement to show a unique SKU and SKU_Description for all prod-
ucts having a 'd' in the third position from the left in SKU_Description.

 2.34 Write an SQL statement that uses all of the SQL built-in functions on the
QuantityOnHand column. Include meaningful column names in the result.

 2.35 Explain the difference between the SQL built-in functions COUNT and SUM.

 2.36 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results
in descending order of TotalItemsOnHand.

 2.37 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand
from the sum, and name the sum TotalItemsOnHandLT3 and display the results in
descending order of TotalItemsOnHandLT3.

 2.38 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand
from the sum, and name the sum TotalItemsOnHandLT3. Show the WarehouseID
only for warehouses having fewer than 2 SKUs in their TotalItemsOnHandLT3.
Display the results in descending order of TotalItemsOnHandLT3.

 2.39 In your answer to Review Question 2.38, was the WHERE clause or the HAVING
clause applied first? Why?

Use both the INVENTORy and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:

 2.40 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

 CHAPTER 2 Introduction to Structured Query Language 145

 2.41 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

 2.42 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

 2.43 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

 2.44 Write an SQL statement to produce a single column called ItemLocation that com-
bines the SKU_Description, the phrase “is located in,” and WarehouseCity. Do not be
concerned with removing leading or trailing blanks.

 2.45 Write an SQL statement to show the SKU, SKU_Description, and WarehouseID for
all items stored in a warehouse managed by 'Lucille Smith'. Use a subquery.

 2.46 Write an SQL statement to show the SKU, SKU_Description, and WarehouseID for
all items stored in a warehouse managed by 'Lucille Smith'. Use a join, but do not use
JOIN ON syntax.

 2.47 Write an SQL statement to show the SKU, SKU_Description, and WarehouseID for all
items stored in a warehouse managed by 'Lucille Smith'. Use a join using JOIN ON syntax.

 2.48 Write an SQL statement to show the WarehouseID and average QuantityOnHand of
all items stored in a warehouse managed by 'Lucille Smith'. Use a subquery.

 2.49 Write an SQL statement to show the WarehouseID and average QuantityOnHand of
all items stored in a warehouse managed by 'Lucille Smith'. Use a join, but do not use
JOIN ON syntax.

 2.50 Write an SQL statement to show the WarehouseID and average QuantityOnHand
of all items stored in a warehouse managed by 'Lucille Smith'. Use a join using
JOIN ON syntax.

 2.51 Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState,
Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager
of 'Lucille Smith'. Use a join using JOIN ON syntax.

 2.52 Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder, and
the sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name
the sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand
as TotalItemsOnHand. Use only the INVENTORY table in your SQL statement.

 2.53 Explain why you cannot use a subquery in your answer to Review Question 2.52.

 2.54 Explain how subqueries and joins differ.

 2.55 Write an SQL statement to join WAREHOUSE and INVENTORY and include
all rows of WAREHOUSE in your answer, regardless of whether they have any
INVENTORY. Run this statement.

Use both the CATALOG_SKU_2013 and CATALOG_SKU_2014 tables to answer Review
Questions 2.56 through 2.60 (for MySQL, 2.56 and 2.57 only):

 2.56 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in either the Cape Codd 2013 catalog (either in the printed catalog
or on the Web site) or the Cape Codd 2014 catalog (either in the printed catalog or on
the Web site) or both.

 2.57 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in either the Cape Codd 2013 catalog (only in the printed catalog
itelf) or the Cape Codd 2014 catalog (only in the printed catalog itself) or both.

146 PART 1 Getting Started

 2.58 Write an SQL statement to display the SKU, SKU_Description, and Department
of all SKUs that appear in both the Cape Codd 2013 catalog (either in the printed
catalog or on the Web site) and the Cape Codd 2014 catalog (either in the printed
catalog or on the Web site).

 2.59 Write an SQL statement to display the SKU, SKU_Description, and Department of
all SKUs that appear in both the Cape Codd 2013 catalog (only in the printed cata-
log itelf) and the Cape Codd 2014 catalog (only in the printed catalog itself) or both.

 2.60 Write an SQL statement to display the SKU, SKU_Description, and Department of
all SKUs that appear in only the Cape Codd 2013 catalog (either in the printed cata-
log or on the Web site) and not in the Cape Codd 2014 catalog (either in the printed
catalog or on the Web site).

Project Questions

For this set of project questions, we will extend the Microsoft Access 2013 database for the
Wedgewood Pacific Corporation (WPC) that we created in Chapter 1. Founded in 1957 in
Seattle, Washington, WPC has grown into an internationally recognized organization. The
company is located in two buildings. One building houses the Administration, Accounting,
Finance, and Human Resources departments, and the second houses the Production,
Marketing, and Information Systems departments. The company database contains data
about company employees, departments, company projects, company assets such as com-
puter equipment, and other aspects of company operations.

In the following project questions, we have already created the WPC.accdb database with
the following two tables (see Chapter 1 Project Questions):

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone,
Email)

Now we will add in the following two tables:

PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-41. The
column characteristics for the PROJECT table are shown in Figure 2-42, and the column

The PROJECT
table

The ASSIGNMENT
table

FIGURE 2-41

The WPC Database
with the PROJECT and
ASSIGNMENT Tables

WPC.accdb

 CHAPTER 2 Introduction to Structured Query Language 147

ProjectID Integer Primary Key DBMS supplied

Type Key Required RemarksColumn Name

Name Character (50) No Yes

Department Character (35) Foreign Key Yes REF: DEPARTMENT

MaxHours Number (8,2) No Yes

StartDate Date No No

EndDate Date No No

Surrogate Key

PROJECTFIGURE 2-42

Column Characteristics
for the WPC Database
PROJECT Table

1000 2015 Q3 Product Plan Marketing

Name DepartmentProjectID

1100 2015 Q3 Portfolio Analysis Finance

1200 2015 Q3 Tax Preparation Accounting

1300 2015 Q4 Product Plan Marketing

1400 2015 Q4 Portfolio Analysis Finance

135.00

MaxHours

120.00

145.00

150.00

10-MAY-15

StartDate

07-JUL-15

10-AUG-15

10-AUG-15

15-JUN-15

EndDate

25-JUL-15

15-OCT-15

15-SEP-15

140.00 05-OCT-15

FIGURE 2-43

Sample Data for the WPC
Database PROJECT Table

characteristics for the ASSIGNMENT table are shown in Figure 2-44. Data for the PROJECT
table are shown in Figure 2-43, and the data for the ASSSIGNMENT table are shown in
Figure 2-45.

 2.61 Figure 2-42 shows the column characteristics for the WPC PROJECT table. Using
the column characteristics, create the PROJECT table in the WPC.accdb database.

 2.62 Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. In the Edit Relationship dialog box, enable enforcing of referential
integrity and cascading of data updates, but do not enable cascading of data from
deleted records. We will define cascading actions in Chapter 6.

 2.63 Figure 2-43 shows the data for the WPC PROJECT table. Using the Datasheet view,
enter the data shown in Figure 2-43 into your PROJECT table.

 2.64 Figure 2-44 shows the column characteristics for the WPC ASSIGNMENT table.
Using the column characteristics, create the ASSIGNMENT table in the WPC.accdb
database.

ProjectID Integer Primary Key,
Foreign Key

Yes REF: PROJECT

Type Key Required RemarksColumn Name

EmployeeNumber Integer Primary Key,
Foreign Key

Yes REF: EMPLOYEE

HoursWorked Number (6,2) No No

ASSIGNMENTFIGURE 2-44

Column Characteristics
for the WPC Database
ASSIGNMENT Table

WPC.accdb
WPC.accdb

148 PART 1 Getting Started

 2.65 Create the relationship and referential integrity constraint between ASSIGNMENT
and EMPLOYEE. In the Edit Relationship dialog box, enable enforcing of referential
integrity, but do not enable either cascading updates or the cascading of data from
deleted records.

 2.66 Create the relationship and referential integrity constraint between ASSIGNMENT
and PROJECT. In the Edit Relationship dialog box, enable enforcing of referential
integrity and cascading of deletes, but do not enable cascading updates.

 2.67 Figure 2-45 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-45 into your ASSIGNMENT table.

 2.68 In Project Question 2.63, the table data was entered after referential integrity
constraints were created in Project Question 2.62. In Project Question 2.67, the
table data was entered after referential integrity constraints were created in Project
Questions 2.65 and 2.66. Why was the data entered after the referential integrity
constraints were created instead of before the constraints were created?

 2.69 Using Microsoft Access SQL, create and run queries to answer the following ques-
tions. Save each query using the query name format SQL-Query-02-##, where the
sign is replaced by the letter designator of the question. For example, the first
query will be saved as SQL-Query-02-A.

A. What projects are in the PROJECT table? Show all information for each
project.

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

C. What projects in the PROJECT table started before August 1, 2015? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the
information for each project.

1000 1 30.0

EmployeeNumber HoursWorkedProjectID

1000 8 75.0

1000 10 55.0

1100 4 40.0

1100 6 45.0

1100 1 25.0

1200 2 20.0

1200 4 45.0

1200 5 40.0

1300 1 35.0

1300 8 80.0

1300 10 50.0

1400 4 15.0

1400 5 10.0

1400 6 27.5

FIGURE 2-45

Sample Data for the WPC
Database ASSIGNMENT
Table

 CHAPTER 2 Introduction to Structured Query Language 149

E. Who are the employees assigned to each project? Show ProjectID, EmployeeNumber,
LastName, FirstName, and Phone.

F. Who are the employees assigned to each project? Show ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

H. Who are the employees assigned to projects run by the marketing depart-
ment? Show ProjectID, Name, Department, and Department Phone. Show
EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by
ProjectID, in ascending order.

I. How many projects are being run by the marketing department? Be sure to as-
sign an appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

K. What is the average MaxHours of projects being run by the marketing depart-
ment? Be sure to assign an appropriate column name to the computed results.

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

M. Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT us-
ing the JOIN ON syntax. Run this statement.

N. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include
all rows of EMPLOYEE in your answer, regardless of whether they have an
ASSIGNMENT. Run this statement.

 2.70 Using Microsoft Access QBE, create and run new queries to answer the questions
in Project Question 2.69. Save each query using the query name format QBE-
Query-02-##, where the ## sign is replaced by the letter designator of the question.
For example, the first query will be saved as QBE-Query-02-A.

Marcia’s Dry Cleaning Case Questions

Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner
in a well-to-do suburban neighborhood. Marcia makes her business stand out from the
competition by providing superior customer service. She wants to keep track of each of her
customers and their orders. Ultimately, she wants to notify them that their clothes are ready
via e-mail. To provide this service, she has developed an initial database with several tables.
Three of those tables are the following:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign keys are
shown in italics. The database that Marcia has created is named MDC, and the three tables
in the MDC database schema are shown in Figure 2-46.

Case Questions

150 PART 1 Getting Started

The column characteristics for the tables are shown in Figures 2-47, 2-48, and 2-49.
The relationship between CUSTOMER and INVOICE should enforce referential integrity, but
not cascade updates nor deletions, while the relationship between INVOICE and INVOICE_
ITEM should enforce referential integrity and cascade both updates and deletions. The data
for these tables are shown in Figures 2-50, 2-51, and 2-52.

You will need to create and setup a database named MDC_CH02 for use with these case
questions. A Microsoft Access 2013 database named MDC_CH02.accdb, and SQL scripts for
creating the MDC_CH02 database in Microsoft SQL Server, Oracle Database, and MySQL
are available on our Web site at www.pearsonglobaleditions.com/kroenke.

If you are using the Microsoft Access 2013 MDC_CH02.accdb database, simply copy
it to an appropriate location in your Documents folder. Otherwise, you will need to use the

The CUSTOMER
table

The INVOICE
table

The INVOICE_ITEM
table

FIGURE 2-46

The MDC Database

CustomerID Integer Primary Key Yes Surrogate Key

Use Varchar

Type Key Required RemarksColumn Name

FirstName Character (25) No Yes

LastName Character (25) No Yes

Phone Character (12) No No

Email Character (100) No No

CUSTOMERFIGURE 2-47

Column Characteristics
for the MDC Database
CUSTOMER Table

InvoiceNumber Integer Primary Key Yes Surrogate Key

REF: CUSTOMER

Type Key Required RemarksColumn Name

DateIn Date No Yes

DateOut Date No No

TotalAmount Number (8,2) No No

CustomerNumber Integer Foreign Key Yes

INVOICEFIGURE 2-48

Column Characteristics
for the MDC Database
INVOICE Table

MDC_CH02.accdb
www.pearsonhighered.com/kroenke
MDC_CH02.accdb

 CHAPTER 2 Introduction to Structured Query Language 151

InvoiceNumber Integer Primary Key,
Foreign Key

Yes REF: INVOICE

Type Key Required RemarksColumn Name

ItemNumber Integer Primary Key Yes Sequential number,
but not a surrogate
key

Item Character (50) No Yes

Quantity Integer No Yes

UnitPrice Number (8,2) No Yes

INVOICE_ITEMFIGURE 2-49

Column Characteristics
for the MDC Database
INVOICE_ITEM Table

1 Nikki Kaccaton

FirstName LastNameCustomerID

2 Brenda Catnazaro

3 Bruce LeCat

4 Betsy Miller

5 George Miller

723-543-1233

Phone

723-543-2344

723-543-3455

725-654-3211

Nikki.Kaccaton@somewhere.com

Email

Brenda.Catnazaro@somewhere.com

Bruce.LeCat@somewhere.com

Betsy.Miller@somewhere.com

725-654-4322 George.Miller@somewhere.com

6 Kathy Miller

7 Betsy Miller

723-514-9877 Kathy.Miller@somewhere.com

723-514-8766 Betsy.Miller@elsewhere.com

FIGURE 2-50

Sample Data for the MDC
Database CUSTOMER Table

2015001

InvoiceNumber

2015002

2015003

2015004

2015005

2015006

2015007

2015008

2015009

04-Oct-15

DateIn

04-Oct-15

06-Oct-15

06-Oct-15

07-Oct-15

11-Oct-15

11-Oct-15

12-Oct-15

12-Oct-15

06-Oct-15

DateOut

06-Oct-15

08-Oct-15

08-Oct-15

11-Oct-15

13-Oct-15

13-Oct-15

14-Oct-15

14-Oct-15

$158.50

TotalAmount

$25.00

$49.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

1

CustomerNumber

2

1

4

6

3

3

7

5

FIGURE 2-51

Sample Data for the MDC
Database INVOICE Table

discussion and instructions necessary for setting up the MDC_CH02 database in the DBMS
product you are using:

■■ For Microsoft SQL Server 2014, see online Chapter 10A.
■■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online

Chapter 10B.
■■ For MySQL 5.6 Community Server, see online Chapter 10C.

152 PART 1 Getting Started

2015001 1

ItemNumber ItemInvoiceNumber

2015001 2

2015001 3

2015001 4

2015001 5

2

Quantity

5

2

10

10

2015001 6

2015002 1

2015003 1

2015003 2

1

10

5

4

2015004 1

2015005 1

2015005 2

2015006 1

2015006 2

7

2

2

5

10

2015006 3

2015006 4

2015007 1

2015008 1

10

10

2

3

2015008 2

2015008 3

2015008 4

12

8

2015009 1

Blouse

Dress Shirt

Formal Gown

Slacks-Mens

Slacks-Womens

Suit-Mens

Dress Shirt

Slacks-Mens

Slacks-Womens

Dress Shirt

Blouse

Dress Shirt

Blouse

Dress Shirt

Slacks-Mens

Slacks-Womens

Blouse

Blouse

Dress Shirt

Slacks-Mens

Slacks-Womens

Suit-Mens 3

$3.50

UnitPrice

$2.50

$10.00

$5.00

$6.00

$9.00

$2.50

$5.00

$6.00

$2.50

$3.50

$2.50

$3.50

$2.50

$5.00

$6.00

$3.50

$3.50

$2.50

$5.00

$9.00

$6.0010

FIGURE 2-52

Sample Data for the MDC
Database INVOICE_ITEM
Table

Once you have setup your MDC_CH02 database, create an SQL script named MDC-
CH02-CQ.sql, and use it to record and store SQL statements that answer each of the follow-
ing questions (if the question requires a written answer, use an SQL comment to record your
answer):

A. Show all data in each of the tables.

B. List the LastName, FirstName, and Phone of all customers.

C. List the LastName, FirstName, and Phone for all customers with a FirstName of
'Nikki'.

D. List the LastName, FirstName, Phone, DateIn, and DateOut of all orders in excess of
$100.00.

E. List the LastName, FirstName, and Phone of all customers whose first name starts
with 'B'.

F. List the LastName, FirstName, and Phone of all customers whose last name includes
the characters 'cat'.

MDC-CH02-CQ.sql
MDC-CH02-CQ.sql

 CHAPTER 2 Introduction to Structured Query Language 153

G. List the LastName, FirstName, and Phone for all customers whose second and third
digits (from the left) of their phone number are 23. For example, any phone number
with an area code of “723” would meet the criteria.

H. Determine the maximum and minimum TotalAmount.

I. Determine the average TotalAmount.

J. Count the number of customers.

K. Group customers by LastName and then by FirstName.

L. Count the number of customers having each combination of LastName and
FirstName.

M. Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a subquery. Present the results sorted
by LastName in ascending order and then FirstName in descending order.

N. Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join, but do not use JOIN ON syntax.
Present results sorted by LastName in ascending order and then FirstName in de-
scending order.

O. Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join using JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending
order.

P. Show the LastName, FirstName, and Phone of all customers who have had an
order with an Item named 'Dress Shirt'. Use a subquery. Present results sorted by
LastName in ascending order and then FirstName in descending order.

Q. Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named 'Dress Shirt'. Use a join, but do not use JOIN ON syntax. Present re-
sults sorted by LastName in ascending order and then FirstName in descending order.

R. Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named 'Dress Shirt'. Use a join using JOIN ON syntax. Present results
sorted by LastName in ascending order and then FirstName in descending order.

S. Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named 'Dress Shirt'. Use a combination of a join using JOIN ON syntax
and a subquery. Present results sorted by LastName in ascending order and then
FirstName in descending order.

T. Show the LastName, FirstName, Phone, and TotalAmount of all customer orders
that included an Item named 'Dress Shirt'. Also show the LastName, FirstName, and
Phone of all other customers. Present results sorted by TotalAmount in ascending order,
then LastName in ascending order, and then FirstName in descending order.

The Queen Anne
Curiosity Shop

The Queen Anne Curiosity Shop is an upscale home furnishings store in a well-to-do urban neigh-
borhood. It sells both antiques and current-production household items that complement or
are useful with the antiques. For example, the store sells antique dining room tables and new
tablecloths. The antiques are purchased from both individuals and wholesalers, and the new
items are purchased from distributors. The store’s customers include individuals, owners of bed-
and-breakfast operations, and local interior designers who work with both individuals and small
businesses. The antiques are unique, though some multiple items, such as dining room chairs,
may be available as a set (sets are never broken). The new items are not unique, and an item may
be reordered if it is out of stock. New items are also available in various sizes and colors (for ex-
ample, a particular style of tablecloth may be available in several sizes and in a variety of colors).

154 PART 1 Getting Started

Assume that The Queen Anne Curiosity Shop designs a database with the following
tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP,
Phone, Email)
ITEM (ItemID, ItemDescription, CompanyName, PurchaseDate, ItemCost,
ItemPrice)
SALE (SaleID, CustomerID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

CustomerID in SALE must exist in CustomerID in CUSTOMER
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerID of CUSTOMER, ItemID of ITEM, SaleID of SALE, and
SaleItemID of SALE_ITEM are all surrogate keys with values as follows:

CustomerID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1

The database that The Queen Anne Curiosity Shop has created is named QACS, and the
four tables in the QACS database schema are shown in Figure 2-53.

The column characteristics for the tables are shown in Figures 2-54, 2-55, 2-56, and
2-57. The relationships CUSTOMER-to-SALE and ITEM-to-SALE_ITEM should enforce ref-
erential integrity, but not cascade updates nor deletions, while the relationship between SALE
and SALE_ITEM should enforce referential integrity and cascade both updates and deletions.
The data for these tables are shown in Figures 2-58, 2-59, 2-60, and 2-61.

You will need to create and setup a database named QACS_CH02 for use with
The Queen Anne Curiosity Shop project questions. A Microsoft Access 2013 database
named QACS_CH02.accdb, and SQL scripts for creating the QACS_CH02 database
in Microsoft SQL Server, Oracle Database, and MySQL are available on our Web site at
www.pearsonglobaleditions.com/kroenke.

If you are using the Microsoft Access 2013 QACS_CH02.accdb database, simply copy
it to an appropriate location in your Documents folder. Otherwise, you will need to use the
discussion and instructions necessary for setting up the QACS_CH02 database in the DBMS
product you are using:

■■ For Microsoft SQL Server 2014, see online Chapter 10A.
■■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online

Chapter 10B.
■■ For MySQL 5.6 Community Server, see online Chapter 10C.

The ITEM table

The CUSTOMER table

The SALE table

The SALE_ITEM table

FIGURE 2-53

The QACS Database

QACS_CH02.accdb
www.pearsonhighered.com/kroenke

 CHAPTER 2 Introduction to Structured Query Language 155

CustomerID Integer Primary Key Yes Surrogate Key

State No

ZIP No

Phone Yes

Email Yes Use Varchar

Type Key Required RemarksColumn Name

LastName Character (25) No Yes

FirstName Character (25) No Yes

Address Character (35) No No

City Character (35)

Character (2)

Character (10)

Character (12)

Character (100)

No

No

No

No

No

No

CUSTOMERFIGURE 2-54

Column Characteristics
for the QACS Database
CUSTOMER Table

SaleID Integer Yes REF: SALE

REF: ITEM

Type Key RequiredColumn Name

SaleItemID Integer Primary Key Yes

ItemID Integer Foreign Key Yes

ItemPrice Number (9,2) No No

Remarks

Sequential number,
but not a surrogate
key

Primary Key,
Foreign Key

SALE_ITEMFIGURE 2-56

Column Characteristics for
the QACS Database SALE_
ITEM Table

SaleID Integer Primary Key Yes

Type Key RequiredColumn Name

CustomerID Integer Foreign Key Yes

SaleDate Date No Yes

SubTotal Number (15,2) No No

Tax Number (15,2) No No

Total Number (15,2) No No

Remarks

Surrogate Key

REF: CUSTOMER

SALEFIGURE 2-55

Column Characteristics for
the QACS Database SALE
Table

156 PART 1 Getting Started

Once you have setup your QACS_CH02 database, create an SQL script named QACS-
CH02-CQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your
answer):

A. Show all data in each of the tables.

B. List the LastName, FirstName, and Phone of all customers.

C. List the LastName, FirstName, and Phone for all customers with a FirstName of
'John'.

D. List the LastName, FirstName, Phone, SaleDate, and Total of all sales in excess of
$100.00.

E. List the LastName, FirstName, and Phone of all customers whose first name starts
with 'D'.

F. List the LastName, FirstName, and Phone of all customers whose last name includes
the characters 'ne'.

G. List the LastName, FirstName, and Phone for all customers whose eighth and ninth
digits (starting from the left) of their phone number are 56. For example, a phone
number ending in “567” would meet the criteria.

H. Determine the maximum and minimum sales Total.

I. Determine the average sales Total.

J. Count the number of customers.

K. Group customers by LastName and then by FirstName.

L. Count the number of customers having each combination of LastName and
FirstName.

M. Show the LastName, FirstName, and Phone of all customers who have had an or-
der with Total greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

N. Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a join, but do not use JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending
order.

ItemID Integer Primary Key Yes

Type Key RequiredColumn Name

ItemDescription Character (255) Yes

CompanyName Character (100) No

No

Yes

Yes

Yes

Yes

PurchaseDate Date No

ItemCost Number (9,2) No

ItemPrice Number (9,2) No

Remarks

Surrogate Key

Use Varchar

ITEMFIGURE 2-57

Column Characteristics for
the QACS Database ITEM
Table

1 Shire Robert

LastName FirstNameCustomerID

2 Goodyear Katherine

3 Bancroft Chris

4 Griffith John

5 Tierney Doris

6225 Evanston Ave N

Address

7335 11th Ave NE

12605 NE 6th Street

335 Aloha Street

14510 NE 4th Street

6

7

8

9

10

Anderson

Svane

Walsh

Enquist

Anderson

Donna 1410 Hillcrest Parkway

Seattle

City

Seattle

Bellevue

Seattle

Bellevue

Mt. Vernon

98103

98105

98005

98109

98005

98273

206-524-2433

206-524-3544

425-635-9788

206-524-4655

425-635-8677

360-538-7566

Rober.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

Chris.Bancroft@somewhere.com

John.Griffith@somewhere.com

Doris.Tierney@somewhere.com

Donna.Anderson@elsewhere.com

State ZIP Phone Email

Jack 3211 42nd Street Seattle 98115 206-524-5766 Jack.Svane@somewhere.com

Denesha 6712 24th Avenue NE Redmond 98053 425-635-7566 Denesha.Walsh@somewhere.com

Craig 534 15th Street Bellingham 98225 360-538-6455 Craig.Enquist@elsewhere.com

Rose 6823 17th Ave NE Seattle 98105 206-524-6877 Rose.Anderson@elsewhere.com

WA

WA

WA

WA

WA

WA

WA

WA

WA

WA

FIGURE 2-58

Sample Data for the QACS
Database CUSTOMER Table

157

158 PART 1 Getting Started

O. Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a join using JOIN ON syntax. Present results
sorted by LastName in ascending order and then FirstName in descending order.

P. Show the LastName, FirstName, and Phone of all customers who who have bought
an Item named 'Desk Lamp'. Use a subquery. Present results sorted by LastName in
ascending order and then FirstName in descending order.

Q. Show the LastName, FirstName, and Phone of all customers who have bought an
Item named 'Desk Lamp'. Use a join, but do not use JOIN ON syntax. Present results
sorted by LastName in ascending order and then FirstName in descending order.

R. Show the LastName, FirstName, and Phone of all customers who have bought an
Item named 'Desk Lamp'. Use a join using JOIN ON syntax. Present results sorted by
LastName in ascending order and then FirstName in descending order.

S. Show the LastName, FirstName, and Phone of all customers who have bought an
Item named 'Desk Lamp'. Use a combination of a join in JOIN ON syntax and a sub-
query. Present results sorted by LastName in ascending order and then FirstName in
descending order.

1 1

CustomerID SaleDateSaleID

2 2

3 3

4 4

5 1

SubTotal

6

7

8

9

10

11

12

13

14

15

5

6

2

5

7

8

5

9

10

2

Tax Total

$3,790.50

$1,083.00

$54.15

$48.74

$270.75

$812.25

$270.75

$3,249.00

$379.05

$15,432.75

$270.75

$54.15

$4,873.50

$3,980.03

$866.40

$290.50

$83.00

$4.15

$3.74

$20.75

$62.25

$20.75

$249.00

$29.05

$1,182.75

$20.75

$4.15

$373.50

$305.03

$66.40

$3,500.00

$1,000.00

$50.00

$45.00

$250.00

$750.00

$250.00

$3,000.00

$350.00

$14,250.00

$250.00

$50.00

$4,500.00

$3,675.00

$800.00

12/14/2014

12/15/2014

12/15/2014

12/23/2014

1/5/2015

1/10/2015

1/12/2015

1/15/2015

1/25/2015

2/4/2015

2/4/2015

2/7/2015

2/7/2015

2/11/2015

2/11/2015

FIGURE 2-59

Sample Data for the QACS
Database SALE Table

 CHAPTER 2 Introduction to Structured Query Language 159

1

SaleID

1

2

3

4

5

6

7

1 1

ItemIDSaleItemID

2 2

1 3

1 4

1 5

1 6

1 7

1 8

8 1 9

8 2 10

9 1 11

10 1 19

10 2 21

10 3 22

12 1 24

13 1 20

14 1 12

14 2 14

15 1 23

11 1 17

$3,000.00

$500.00

$1,000.00

$50.00

$45.00

$250.00

$750.00

$250.00

$1,250.00

$1,750.00

$350.00

$5,000.00

$8,500.00

$750.00

$50.00

$4,500.00

$3,200.00

$475.00

$800.00

$250.00

ItemPrice
FIGURE 2-60

Sample Data for the QACS
Database SALE_ITEM Table

T. Show the LastName, FirstName, and Phone of all customers who have bought an
Item named 'Desk Lamp'. Use a combination of a join in JOIN ON syntax and a
subquery that is different from the combination used for question S. Present results
sorted by LastName in ascending order and then FirstName in descending order.

U. Show the LastName, FirstName, Phone, and Item for customers who have bought
an Item named 'Desk Lamp'. Also show the LastName, FirstName, and Phone of all
the other customers. Present results sorted by Item in ascending order, then LastName
in ascending order, and then FirstName in descending order.

160 PART 1 Getting Started

1 Antique Desk European Specialties

Andrew Lee

Linens and Things

Linens and Things

ItemDescription CompanyNameItemID

2 Antique Desk Chair

3 Dining Table Linens

4 Candles

5 Candles

PurchaseDate

6

7

8

9

10

11

12

13

14

15

Desk Lamp

Dining Table Linens

Book Shelf

Antique Chair

Antique Chair

Antique Candle Holder

Antique Desk

Antique Desk

Antique Desk Chair

Antique Desk Chair

ItemCost

$3,000.00

ItemPrice

$500.00

$1,000.00

$50.00

$45.00

$250.00

$750.00

$250.00

$1,250.00

$1,750.00

$350.00

$3,200.00

$3,500.00

$475.00

$565.00

$1,800.00

$300.00

$600.00

$30.00

$27.00

$150.00

$450.00

$150.00

$750.00

$1,050.00

$210.00

$1,920.00

$2,100.00

$285.00

$339.00

Linens and Things

Lamps and Lighting

Linens and Things

Denise Harrion

New York Brokerage

New York Brokerage

European Specialties

European Specialties

European Specialties

Specialty Antiques

Specialty Antiques

16 Desk Lamp $250.00$150.00General Antiques

17 Desk Lamp $250.00$150.00General Antiques

18 Desk Lamp $240.00$144.00Lamps and Lighting

19 Antique Dining Table $5,000.00$3,000.00Denesha Walsh

20 Antique Sideboard $4,500.00$2,700.00Chris Bancroft

21 Dining Table Chairs $8,500.00$5,100.00Specialty Antiques

22 Dining Table Linens $750.00$450.00Linens and Things

23 Dining Table Linens $800.00$480.00Linens and Things

24 Candles $50.00$30.00Linens and Things

25 Candles $60.00$36.00Linens and Things

11/7/2014

11/10/2014

11/14/2014

11/14/2014

11/14/2014

11/14/2014

11/14/2014

11/21/2014

11/21/2014

11/21/2014

11/28/2014

1/5/2015

1/5/2015

1/6/2015

1/6/2015

1/6/2015

1/6/2015

1/6/2015

1/10/2015

1/11/2015

1/11/2015

1/12/2015

1/12/2015

1/17/2015

1/17/2015

FIGURE 2-61

Sample Data for the QACS
Database ITEM Table

 CHAPTER 2 Introduction to Structured Query Language 161

The ITEM
table

The SHIPMENT
table

The SHIPMENT_ITEM
table

FIGURE 2-62

The MI Database

ItemID Integer Primary Key Yes Surrogate Key

Use Varchar

Type Key Required RemarksColumn Name

Description Character (255) No Yes

PurchaseDate Date No Yes

Store Character (50) No Yes

City Character (35) No Yes

Quantity Integer No Yes

LocalCurrencyAmount Number (18,2) No Yes

ExchangeRate Number (12,6) No Yes

ITEM

FIGURE 2-63

Column Characteristics for
the MI Database ITEM Table

Morgan
Importing

James Morgan owns and operates Morgan Importing, which purchases antiques and
home furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and
then sells these items in the United States. James tracks the Asian purchases and subse-
quent shipments of these items to Los Angeles by using a database to keep a list of items
purchased, shipments of the purchased items, and the items in each shipment. His data-
base includes the following tables:

ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity,
LocalCurrencyAmount, ExchangeRate)
SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber,
DepartureDate, ArrivalDate, InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)

In the database schema above, the primary keys are underlined and the foreign keys are
shown in italics. The database that James has created is named MI, and the three tables in the
MI database schema are shown in Figure 2-62.

The column characteristics for the tables are shown in Figures 2-63, 2-64, and 2-65. The
data for the tables are shown in Figures 2-66, 2-67, and 2-68. The relationship between ITEM

162 PART 1 Getting Started

and SHIPMENT_ITEM should enforce referential integrity, and although it should cascade up-
dates, it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT_
ITEM should enforce referential integrity and cascade both updates and deletions.

You will need to create and setup a database named MI_CH02 for use with the Morgan
Importing case questions. A Microsoft Access 2013 database named MI_CH02.accdb, and
SQL scripts for creating the MI_CH02 database in Microsoft SQL Server, Oracle Database,
and MySQL are available on our Web site at www.pearsonglobaleditions.com/kroenke.

If you are using the Microsoft Access 2013 MDC_CH02.accdb database, simply copy
it to an appropriate location in your Documents folder. Otherwise, you will need to use the

ShipmentID Integer Primary Key Yes Surrogate Key

Type Key Required RemarksColumn Name

ShipperName Character (35) No Yes

ShipperInvoiceNumber Integer No Yes

DepartureDate Date No No

ArrivalDate Date No No

InsuredValue Number (12,2) No No

SHIPMENTFIGURE 2-64

Column Characteristics
for the MI Database
SHIPMENT Table

1 QE Dining Set 07-Apr-15

Description PurchaseDateItemID

2 Willow Serving
Dishes

15-Jul-15

3 Large Bureau 17-Jul-15

Eastern
Treasures

Store

Jade
Antiques

Eastern
Sales

Manila

City

Singapore

4 Brass Lamps 20-Jul-15 Jade
Antiques

Singapore

Singapore

2

Quantity

75

40

8

403405

LocalCurrencyAmount

102

50

2000

0.01774

ExchangeRate

0.5903

0.5903

0.5903

FIGURE 2-66

Sample Data for the MI
Database ITEM Table

ShipmentID Integer Primary Key,
Foreign Key

Yes

Sequential number,
but not a surrogate
key

Type Key Required RemarksColumn Name

ShipmentItemID Integer Primary Key Yes

ItemID Integer Foreign Key Yes

Value Number (12,2) No Yes

REF: SHIPMENT

REF: ITEM

SHIPMENT_ITEMFIGURE 2-65

Column Characteristics
for the MI Database
SHIPMENT_ITEM Table

MI_CH02.accdb
www.pearsonhighered.com/kroenke

 CHAPTER 2 Introduction to Structured Query Language 163

discussion and instructions necessary for setting up the MI_CH02 database in the DBMS
product you are using:

■■ For Microsoft SQL Server 2014, see online Chapter 10A.
■■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online

Chapter 10B.
■■ For MySQL 5.6 Community Server, see online Chapter 10C.

Once you have setup your MI_CH02 database, create an SQL script named MI-
CH02-CQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your
answer):

A. Show all data in each of the tables.

B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.

C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments
that have an insured value greater than $10,000.00.

D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers
whose name starts with 'AB'.

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all ship-
ments that departed in December.

F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all ship-
ments that departed on the tenth day of any month.

G. Determine the maximum and minimum InsuredValue.

1 ABC Trans-Oceanic 2008651

ShipperName ShipperInvoiceNumberShipmentID

2 ABC Trans-Oceanic 2009012

3 Worldwide 49100300

4 International 399400

5 Worldwide 84899440

10-Dec-14

DepartureDate

10-Jan-15

05-May-15

02-Jun-15

10-Jul-15

6 International 488955 05-Aug-15

15-Mar-15

ArrivalDate

20-Mar-15

17-Jun-15

17-Jul-15

28-Jul-15

11-Sep-15

$15,000.00

InsuredValue

$12,000.00

$20,000.00

$17,500.00

$25,000.00

$18,000.00

FIGURE 2-67

Sample Data for the MI
Database SHIPMENT Table

3 1 1

ShipmentItemID ItemIDShipmentID

$15,000.00

Value

4 1 4

4 2 3

4 3 2

$1,200.00

$9,500.00

$4,500.00

FIGURE 2-68

Sample Data for the MI
Database SHIPMENT_ITEM
Table

164 PART 1 Getting Started

H. Determine the average InsuredValue.

I. Count the number of shipments.

J. Show ItemID, Description, Store, and a calculated column named USCurrencyAmount
that is equal to LocalCurrencyAmountt multiplied by the ExchangeRate for all rows
of ITEM.

K. Group item purchases by City and Store.

L. Count the number of purchases having each combination of City and Store.

M. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have
an item with a value of $1,000.00 or more. Use a subquery. Present results sorted
by ShipperName in ascending order and then DepartureDate in descending order.

N. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that
have an item with a value of $1,000.00 or more. Use a join. Present results sorted
by ShipperName in ascending order and then DepartureDate in descending order.

O. Show the ShipperName, ShipmentID, and DepartureDate of the shipments for
items that were purchased in Singapore. Use a subquery. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

P. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that
have an item that was purchased in Singapore. Use a join, but do not use JOIN
ON syntax. Present results sorted by ShipperName in ascending order and then
DepartureDate in descending order.

Q. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that
have an item that was purchased in Singapore. Use a join using JOIN ON syntax.
Present results sorted by ShipperName in ascending order and then DepartureDate
in descending order.

R. Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and
Value for items that were purchased in Singapore. Use a combination of a join and
a subquery. Present results sorted by ShipperName in ascending order and then
DepartureDate in descending order.

S. Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and
Value for items that were purchased in Singapore. Also show the ShipperName,
ShipmentID, and DepartureDate for all other shipments. Present results sorted
by Value in ascending order, then ShipperName in ascending order, and then
DepartureDate in descending order.

The four chapters in Part 2 discuss database design principles and
 techniques. Chapters 3 and 4 describe the design of databases that arise
from existing data sources, such as spreadsheets, text files, and data-
base extracts. We begin in Chapter 3 by defining the relational model and
discussing normalization, a process that transforms relations with modi-
fication problems. Then, in Chapter 4, we use normalization principles to
guide the design of databases from existing data.

Chapters 5 and 6 examine the design of databases that arise from
the development of new information systems. Chapter 5 describes
the entity-relationship data model, a tool used to create plans for
 constructing database designs. As you will learn, such data models are
developed by analysis of forms, reports, and other information systems
requirements. Chapter 6 concludes this part by describing techniques
for transforming entity-relationship data models into database designs.

Database Design

P a r t

2

As we discussed in Chapter 1, databases arise from three sources: from existing

data, from the development of new information systems, and from the redesign of

existing databases. In this chapter and the next, we consider the design of databases

from existing data, such as data from spreadsheets or extracts of existing databases.

The premise of Chapters 3 and 4 is that you have received one or more tables

of data from some source that are to be stored in a new database. The question is:

Should this data be stored as is, or should it be transformed in some way before

it is stored? For example, consider the two tables in the top part of Figure 3-1.

These are the SKU_DATA and ORDER_ITEM tables extracted from the Cape Codd

Outdoor Sports database as used in the database in Chapter 2.

You can design the new database to store this data as two separate tables, or

you can join the tables together and design the database with just one table. Each

alternative has advantages and disadvantages. When you make the decision to use

one design, you obtain certain advantages at the expense of certain costs. The pur-

pose of this chapter is to help you understand those advantages and costs.

Such questions do not seem difficult, and you may be wondering why we

need two chapters to answer them. In truth, even a single table can have surpris-

ing complexity. Consider, for example, the table in Figure 3-2, which shows sample

The Relational Model
and Normalization

■■ To be able to identify possible insertion, deletion, and
update anomalies in a relation

■■ To be able to place a relation into BCNF normal form
■■ To understand the special importance of domain/key

normal form
■■ To be able to identify multivalued dependencies
■■ To be able to place a relation in fourth normal form

Chapter Objectives
■■ To understand basic relational terminology
■■ To understand the characteristics of relations
■■ To understand alternative terminology used in describing

the relational model
■■ To be able to identify functional dependencies,

determinants, and dependent attributes
■■ To identify primary, candidate, and composite keys

166

3

 CHAPTER 3 The Relational Model and Normalization 167

data extracted from a corporate database. This simple table has three columns: the

buyer’s name, the SKU of the products that the buyer purchases, and the names of

the buyer’s college major(s). Buyers manage more than one SKU, and they can have

multiple college majors.

To understand why this is an odd table, suppose that Nancy Meyers is assigned a

new SKU, say 101300. What addition should we make to this table? Clearly, we need

to add a row for the new SKU, but if we add just one row, say the row ('Nancy Meyers',

101300, 'Art'), it will appear that she manages product 101300 as an Art major, but not

as an Info Systems major. To avoid such an illogical state, we need to add two rows:

('Nancy Meyers', 101300, 'Art') and ('Nancy Meyers', 101300, 'Info Systems').

ORDER_ITEM

SKU_DATA

SKU_ITEM

FiguRE 3-1

How Many tables?

PRODUCT_BUYERFiguRE 3-2

PrODUCt_BUYEr—a Very
Strange table

168 PART 2 Database Design

This is a strange requirement. Why should we have to add two rows of data

simply to record the fact that a new SKU has been assigned to a buyer? Further, if

we assign the product to Pete Hansen instead, we would only have to add one row,

but if we assigned the product to a buyer who had four majors, we would have to

add four new rows.

The more one thinks about the table in Figure 3-2, the more strange it becomes.

What changes should we make if SKU 101100 is assigned to Pete Hansen? What

changes should we make if SKU 100100 is assigned to Nancy Meyers? What

should we do if all the SKU values in Figure 3-2 are deleted? Later in this chapter,

you will learn that these problems arise because this table has a problem called a

multivalued dependency. Even better, you will learn how to remove that problem.

Tables can have many different patterns; some patterns are susceptible to

 serious problems and other patterns are not. Before we can address this question,

however, you need to learn some basic terms.

1E. F. Codd, “A Relational Model of Data for Large Shared Databanks,” Communications of the ACM, June
1970, pp. 377–387. A downloadable copy of this paper in PDF format is available at http://dl.acm.org/
citation.cfm?id=362685.

Relation

Important Relational Terms

Functional dependency

Determinant

Candidate key

Composite key

Primary key

Surrogate key

Foreign key

Referential integrity constraint

Normal form

Multivalued dependency

FiguRE 3-3

Important relational Model
terms

Relational Model Terminology

Figure 3-3 lists the most important terms used by the relational model. By the time you finish
Chapters 3 and 4, you should be able to define each of these terms and explain how each per-
tains to the design of relational databases. Use this list of terms as a check on your comprehension.

Relations

So far, we have used the terms table and relation interchangeably. In fact, a relation is a special
case of a table. This means that all relations are tables, but not all tables are relations. Codd
defined the characteristics of a relation in his 1970 paper that laid the foundation for the
relational model.1 Those characteristics are summarized in Figure 3-4.

http://dl.acm.org/citation.cfm?id=362685
http://dl.acm.org/citation.cfm?id=362685

 CHAPTER 3 The Relational Model and Normalization 169

Characteristics of Relations

A relation has a specific definition, as shown in Figure 3-4, and for a table to be a relation,
the criteria of this definition must be met. First, the rows of the table must store data about an
entity and the columns of the table must store data about the characteristics of those entities.
Next, the names of the columns are unique; no two columns in the same relation may have
the same name.

Further, in a relation, all of the values in a column are of the same kind. If, for example,
the second column of the first row of a relation has FirstName, then the second column of
every row in the relation has FirstName. This is an important requirement that is known as
the domain integrity constraint, where the term domain means a grouping of data that
meets a specific type definition. For example, FirstName would have a domain of names such
as Albert, Bruce, Cathy, David, Edith, and so forth, and all values of FirstName must come from the
names in that domain. The EMPLOYEE table shown in Figure 3-5 meets these criteria and is
a relation.

Rows contain data about an entity.

Characteristics of Relations

Columns contain data about attributes of the entities.

All entries in a column are of the same kind.

Each column has a unique name.

Cells of the table hold a single value.

The order of the columns is unimportant.

The order of the rows is unimportant.

No two rows may be identical.

FiguRE 3-4

Characteristics of relations

Each cell of a relation has only a single value or item; multiple entries are not allowed.
The table in Figure 3-6 is not a relation because the Phone values of employees Caruthers and
Bandalone store multiple phone numbers.

By THE WAy
In Figure 3-4 and in this discussion, we use the term entity to mean
some identifiable thing. A customer, a salesperson, an order, a part, and

a lease are all examples of what we mean by an entity. When we introduce the entity-
relationship model in Chapter 5, we will make the definition of entity more precise. For
now, just think of an entity as some identifiable thing that users want to track.

Columns in different relations may have the same name. In Chapter 2,
for example, two relations had a column named SKU. When there is

risk of confusion, we precede the column name with the relation name followed
by a period. Thus, the name of the SKU column in the SKU_DATA relation is
SKU_DATA.SKU, and column C1 of relation R1 is named R1.C1. Because relation
names are unique within a database and because column names are unique within
a relation, the combination of relation name and column name uniquely identifies
every column in the database.

By THE WAy

170 PART 2 Database Design

In a relation, the order of the rows and the order of the columns are immaterial. No
 information can be carried by the ordering of rows or columns. The table in Figure 3-7 is not
a relation because the entries for employees Caruthers and Caldera require a particular row
arrangement. If the rows in this table were rearranged, we would not know which employee
has the indicated Fax and Home numbers.

Finally, according to the last characteristic in Figure 3-4, for a table to be a relation, no
two rows can be identical. As you learned in Chapter 2, some SQL statements do produce
tables with duplicate rows. In such cases, you can use the DISTINCT keyword to force unique-
ness. Such row duplication occurs only as a result of SQL manipulation. Tables that you design
to be stored in the database should never contain duplicate rows.

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102Legal RB@somewhere.com
FiguRE 3-5

Sample EMPLOYEE relation

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102,
834-1191,
834-1192

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102,
834-3191

Legal RB@somewhere.com

FiguRE 3-6

Nonrelational table—
Multiple Entries per Cell

Do not fall into a common trap. Even though every cell of a relation must
have a single value, this does not mean that all values must have the same

length. The table in Figure 3-8 is a relation even though the length of the Comment col-
umn varies from row to row. It is a relation because, even though the comments have
different lengths, there is only one comment per cell.

By THE WAy

 CHAPTER 3 The Relational Model and Normalization 171

Alternative Terminology

As defined by Codd, the columns of a relation are called attributes and the rows of a rela-
tion are called tuples (rhymes with “couples”). Most practitioners, however, do not use these
academic-sounding terms and instead use the terms column and row. Also, even though a table
is not necessarily a relation, most practitioners mean relation when they say table. Thus, in most
conversations the terms relation and table are synonymous. In fact, for the rest of this book table
and relation will be used synonymously.

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera Legal EC@somewhere.com 834-3101

834-9911

Home: 723-8795

834-9912Fax:

700 Richard Bandalone

Home:

TC@somewhere.com

Fax:

723-7654

834-3102Legal RB@somewhere.com

FiguRE 3-7

Nonrelational table—Order
of rows Matters and Kind
of Column Entries Differs
in Email

100 Jerry Johnson

FirstName LastNameEmployeeNumber

200 Mary Abernathy

300 Liz Smathers

400 Tom Caruthers

500 Tom Jackson

Accounting

Department

Finance

Finance

Accounting

JJ@somewhere.com

Email

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

834-1101

Phone

834-2101

834-2102

834-1102

834-4101Production TJ@somewhere.com

600 Eleanore Caldera

700 Richard Bandalone

Legal EC@somewhere.com 834-3101

834-3102Legal RB@somewhere.com

Joined the
Accounting
Department in
March after
completing his
MBA. Will take the
CPA exam this fall.

Comment

Is a full-time
consultant to Legal
on a retainer basis.

FiguRE 3-8

relation with Variable-
Length Column Values

172 PART 2 Database Design

Additionally, a third set of terminology can be used. Some practitioners use the terms file,
field, and record for the terms table, column, and row, respectively. These terms arose from tradi-
tional data processing and are common in connection with legacy systems. Sometimes people
mix and match these terms. You might hear someone say, for example, that a relation has a cer-
tain column and contains 47 records. These three sets of terms are summarized in Figure 3-9.

To Key, or Not to Key—That is the Question!

Again as defined by Codd, the rows of a relation must be unique (no two rows may be identi-
cal), but there is no requirement for a designated primary key in the relation. You will recall that
in Chapter 1, we described a primary key as a column (or columns) with a set of values that
uniquely identify each row.

However, the requirement that no two rows be identical implies that a primary key can be
defined for the relation. Further, in the “real world” of databases, every relation (or table as
they are more often referred to in daily use), does have a defined primary key.

To understand how to designate or assign a primary key for a relation, we need to learn
about the different types of keys used in relational databases, and this means we need to learn
about functional dependencies, which are the foundation upon which keys are built. We will
then discuss specifically how to assign primary keys in relations.

Functional Dependencies

Functional dependencies are the heart of the database design process, and it is vital for you
to understand them. We will first explain the concept in general terms and then examine two
examples. We will then be able to define exactly what is a functional dependency.

We begin with a short excursion into the world of algebra. Suppose you are buying boxes
of cookies and someone tells you that each box costs $5.00. With this fact, you can compute
the cost of several boxes with the formula:

CookieCost = NumberOfBoxes × $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends on NumberOfBoxes. Such a statement tells us the character
of the relationship between CookieCost and NumberOfBoxes, even though it doesn’t give
us the formula. More formally, we can say that CookieCost is functionally dependent on
NumberOfBoxes. Such a statement can be written as:

NumberOfBoxes S CookieCost

This expression can be read as “NumberOfBoxes determines CookieCost.” The variable on the
left, here NumberOfBoxes, is called the determinant.

Using another formula, we can compute the extended price of a part order by multiply-
ing the quantity of the item times its unit price, or:

ExtendedPrice = Quantity × UnitPrice

In this case, we say that ExtendedPrice is functionally dependent on Quantity and
UnitPrice, or:

(Quantity, UnitPrice) S ExtendedPrice

Here the determinant is the composite (Quantity, UnitPrice).

FiguRE 3-9

three Sets of Equivalent
terms

File Field Record

Relation Attribute Tuple

Table Column Row

 CHAPTER 3 The Relational Model and Normalization 173

Functional Dependencies That Are Not Equations
In general, a functional dependency exists when the value of one or more attributes
determines the value of another attribute. Many functional dependencies exist that do not
involve equations.

Consider an example. Suppose you know that a sack contains either red, blue, or yellow
objects. Further, suppose you know that the red objects weigh 5 pounds, the blue objects weigh 5
pounds, and the yellow objects weigh 7 pounds. If a friend looks into the sack, sees an object, and
tells you the color of the object, you can tell her the weight of the object. We can formalize this as:

ObjectColor S Weight

Thus, we can say that Weight is functionally dependent on ObjectColor and that ObjectColor
determines Weight. The relationship here does not involve an equation, but the functional
dependency holds. Given a value for ObjectColor, you can determine the object’s weight.

If we also know that the red objects are balls, the blue objects are cubes, and the yellow
objects are cubes, we can also say:

ObjectColor S Shape

Thus, ObjectColor determines Shape. We can put these two together to state:

ObjectColor S (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table:

This table meets all of the conditions listed in Figure 3-4, and therefore it is a relation. You may
be thinking that we performed a trick or sleight of hand to arrive at this relation, but, in truth,
the only reason for having relations is to store instances of functional dependencies. If there were
a formula by which we could take ObjectColor and somehow compute Weight and Shape,
then we would not need the table. We would just make the computation. Similarly, if there
were a formula by which we could take EmployeeNumber and compute EmployeeName
and HireDate, then we would not need an EMPLOYEE relation. However, because there is
no such formula, we must store the combinations of EmployeeNumber, EmployeeName, and
HireDate in the rows of a relation.

Object Color Weight Shape

Red

Blue

5

5

Ball

Cube

Yellow 7 Cube

Perhaps the easiest way to understand functional dependencies is:
If I tell you one specific fact, can you respond with a unique

associated fact?
Using the table above, if I tell you that that the ObjectColor is Red, can you uniquely

tell me the associated Shape? Yes, you can and it is Ball. Therefore, ObjectColor deter-
mines Shape, and a functional dependency exists with ObjectColor as the determinant.

Now, if I tell you that that the Shape is Cube, can you uniquely tell me the associ-
ated ObjectColor? No, you cannot because it could be either Blue or Yellow. Therefore,
Shape does not determine ObjectColor, and ObjectColor is not functionally dependent
on Shape.

By THE WAy

174 PART 2 Database Design

Composite Functional Dependencies
The determinant of a functional dependency can consist of more than one attribute. For ex-
ample, a grade in a class is determined by both the student and the class, or:

(StudentNumber, ClassNumber) S Grade

In this case, the determinant is called a composite determinant.
Notice that both the student and the class are needed to determine the grade. In gen-

eral, if (A, B) S C, then neither A nor B will determine C by itself. However, if A S (B, C),
then it is true that A S B and A S C (this is known as the decomposition rule). Work
through examples of your own for both of these cases so that you understand why this is
true. Also note that if A S B and A S C, then it is true that A S (B, C) (this is known as
the union rule).

Finding Functional Dependencies

To fix the idea of functional dependency in your mind, consider what functional dependen-
cies exist in the SKU_DATA and ORDER_ITEM tables in Figure 3-1.

Functional Dependencies in the SKu_DATA Table
To find functional dependencies in a table, we must ask “Does any column determine
the value of another column?” For example, consider the values of the SKU_DATA table
in Figure 3-1:

Consider the last two columns. If we know the value of Department, can we determine
a unique value of Buyer? No, we cannot, because a Department may have more than one
Buyer. In these sample data, 'Water Sports' is associated with Pete Hansen and Nancy Meyers.
Therefore, Department does not functionally determine Buyer.

What about the reverse? Does Buyer determine Department? In every row, for a given
value of Buyer, do we find the same value of Department? Every time Jerry Martin appears,
for example, is he paired with the same department? The answer is yes. Further, every
time Cindy Lo appears, she is paired with the same department. The same is true for the
other buyers. Therefore, assuming that these data are representative, Buyer does determine
Department, and we can write:

Buyer S Department

Does Buyer determine any other column? If we know the value of Buyer, do we know the
value of SKU? No, we do not, because a given buyer has many SKUs assigned to him or her.

 CHAPTER 3 The Relational Model and Normalization 175

As stated, for the Buyer S Department functional dependency, a Buyer is
paired with one and only one value of Department. Notice that a buyer can

appear more than once in the table, but, if so, that buyer is always paired with the same
department. This is true for all functional dependencies. If A S B, then each value of
A will be paired with one and only one value of B. A particular value of A may appear
more than once in the relation, but, if so, it is always paired with the same value of B.
Note, too, that the reverse is not necessarily true. If A S B, then a value of B may be
paired with many values of A.

By THE WAy

What about the other columns? It turns out that if we know the value of SKU, we also
know the values of all of the other columns. In other words:

SKU S SKU_Description

because a given value of SKU will have just one value of SKU_Description. Next,

SKU S Department

because a given value of SKU will have just one value of Department. And, finally,

SKU S Buyer

because a given value of SKU will have just one value of Buyer.
We can combine these three statements as:

SKU S (SKU_Description, Department, Buyer)

For the same reasons, SKU_Description determines all of the other columns, and we can
write:

SKU_Description S (SKU, Department, Buyer)

In summary, the functional dependencies in the SKU_DATA table are:

SKU S (SKU_Description, Department, Buyer)
SKU_Description S (SKU, Department, Buyer)
Buyer S Department

You cannot always determine functional dependencies from sample data.
You may not have any sample data, or you may have just a few rows that

are not representative of all of the data conditions. In such cases, you must ask the
users who are experts in the application that creates the data. For the SKU_DATA
table, you would ask questions such as, “Is a Buyer always associated with the same
Department?” and “Can a Department have more than one Buyer?” In most cases,
answers to such questions are more reliable than sample data. When in doubt, trust
the users.

By THE WAy

Does Buyer determine SKU_Description? No, because a given value of Buyer occurs with
many values of SKU_Description.

176 PART 2 Database Design

Functional Dependencies in the ORDER_iTEM Table
Now consider the ORDER_ITEM table in Figure 3-1. For convenience, here is a copy of the
data in that table:

What are the functional dependencies in this table? Start on the left. Does OrderNumber
determine another column? It does not determine SKU because several SKUs are associ-
ated with a given order. For the same reasons, it does not determine Quantity, Price, or
ExtendedPrice.

What about SKU? SKU does not determine OrderNumber because several
OrderNumbers are associated with a given SKU. It does not determine Quantity or
ExtendedPrice for the same reason.

What about SKU and Price? From this data, it does appear that

SKU S Price

but that might not be true in general. In fact, we know that prices can change after an order
has been processed. Further, an order might have special pricing due to a sale or promotion.
To keep an accurate record of what the customer actually paid, we need to associate a particu-
lar SKU price with a particular order. Thus:

(OrderNumber, SKU) S Price

Considering the other columns, Quantity, Price, and ExtendedPrice do not determine any-
thing else. You can decide this by looking at the sample data. You can reinforce this conclusion
by thinking about the nature of sales. Would a Quantity of 2 ever determine an OrderNumber
or an SKU? This makes no sense. At the grocery store, if I tell you I bought two of something,
you have no reason to conclude that my OrderNumber was 1010022203466 or that I
bought carrots. Quantity does not determine OrderNumber or SKU.

Similarly, if I tell you that the price of an item was $3.99, there is no logical way to con-
clude what my OrderNumber was or that I bought a jar of green olives. Thus, Price does not
determine OrderNumber or SKU. Similar comments pertain to ExtendedPrice. It turns out
that no single column is a determinant in the ORDER_ITEM table.

What about pairs of columns? We already know that

(OrderNumber, SKU) S Price

Examining the data, (OrderNumber, SKU) determines the other two columns as well. Thus:

(OrderNumber, SKU) S (Quantity, Price, ExtendedPrice)

This functional dependency makes sense. It means that given a particular order and a par-
ticular item on that order, there is only one quantity, one price, and one extended price.

Notice, too, that because ExtendedPrice is computed from the formula ExtendedPrice =
(Quantity * Price) we have:

(Quantity, Price) S ExtendedPrice

 CHAPTER 3 The Relational Model and Normalization 177

In summary, the functional dependencies in ORDER_ITEM are:

(OrderNumber, SKU) S (Quantity, Price, ExtendedPrice)
(Quantity, Price) S ExtendedPrice

No single skill is more important for designing databases than the ability to identify func-
tional dependencies. Make sure you understand the material in this section. Work through
Review Questions 3.58 and 3.59, the Regional Labs case questions, and The Queen Anne
Curiosity Shop and Morgan Importing project questions at the end of the chapter. Ask your
instructor for help if necessary. You must understand functional dependencies and be able to
work with them.

When Are Determinant Values unique?
In the previous section, you may have noticed an irregularity. Sometimes the determinants of
a functional dependency are unique in a relation, and sometimes they are not. Consider the
SKU_DATA relation, with determinants SKU, SKU_Description, and Buyer. In SKU_DATA,
the values of both SKU and SKU_Description are unique in the table. For example, the SKU
value 100100 appears just once. Similarly, the SKU_Description value 'Half-dome Tent' oc-
curs just once. From this, it is tempting to conclude that values of determinants are always
unique in a relation. However, this is not true.

For example, Buyer is a determinant, but it is not unique in SKU_DATA. The buyer
'Cindy Lo' appears in two different rows. In fact, for these sample data all of the buyers occur
in two different rows.

In truth, a determinant is unique in a relation only if it determines every other column in
the relation. For the SKU_DATA relation, SKU determines all of the other columns. Similarly,
SKU_Description determines all of the other columns. Hence, they both are unique.
Buyer, however, only determines the Department column. It does not determine SKU or
SKU_Description.

The determinants in ORDER_ITEM are (OrderNumber, SKU) and (Quantity, Price).
Because (OrderNumber, SKU) determines all of the other columns, it will be unique in the
relation. The composite (Quantity and Price) only determines ExtendedPrice. Therefore, it
will not be unique in the relation.

This fact means that you cannot find the determinants of all functional dependencies sim-
ply by looking for unique values. Some of the determinants will be unique, but some will not be.
Instead, to determine if column A determines column B, look at the data and ask, “Every time
a value of column A appears, is it matched with the same value of Column B?” If so, it can be a
determinant of B. Again, however, sample data can be incomplete, so the best strategies are to
think about the nature of the business activity from which the data arise and to ask the users.

Keys

The relational model has more keys than a locksmith. There are candidate keys, composite
keys, primary keys, surrogate keys, and foreign keys. In this section, we will define each of
these types of keys. Because key definitions rely on the concept of functional dependency,
make sure you understand that concept before reading on.

In general, a key is a combination of one or more columns that is used to identify particu-
lar rows in a relation. Keys that have two or more columns are called composite keys.

Candidate Keys
A candidate key is a determinant that determines all of the other columns in a relation. The
SKU_DATA relation has two candidate keys: SKU and SKU_Description. Buyer is a determi-
nant, but it is not a candidate key because it determines only Department.

The ORDER_ITEM table has just one candidate key: (OrderNumber, SKU). The other
determinant in this table, (Quantity, Price), is not a candidate key because it determines only
ExtendedPrice.

Candidate keys identify a unique row in a relation. Given the value of a candidate
key, we can find one and only one row in the relation that has that value. For example,
given the SKU value of 100100, we can find one and only one row in SKU_DATA.

178 PART 2 Database Design

Similarly, given the OrderNumber and SKU values (2000, 101100), we can find one and
only one row in ORDER_ITEM.

Primary Keys
When designing a database, one of the candidate keys is selected to be the primary key.
This term is used because this key will be defined to the DBMS, and the DBMS will use it as
its primary means for finding rows in a table. A table has only one primary key. The primary
key can have one column, or it can be a composite.

In this text, to clarify discussions we will sometimes indicate table structure by
showing the name of a table followed by the names of the table’s columns enclosed in
parentheses. When we do this, we will underline the column(s) that comprise the pri-
mary key. For example, we can show the structure of SKU_DATA and ORDER_ITEM as
follows:

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

This notation indicates that SKU is the primary key of SKU_DATA and that (OrderNumber,
SKU) is the primary key of ORDER_ITEM.

In order to function properly, a primary key, whether it is a single column or a composite
key, must have unique data values inserted into every row of the table. While this fact may
seem obvious, it is significant enough to be named the entity integrity constraint and is a
fundamental requirement for the proper functioning of a relational database.

What do you do if a table has no candidate keys? In that case, define the
primary key as the collection of all of the columns in the table. Because

there are no duplicate rows in a stored relation, the combination of all of the columns
of the table will always be unique. Again, although tables generated by SQL manipula-
tion may have duplicate rows, the tables that you design to be stored should never be
constructed to have data duplication. Thus, the combination of all columns is always a
candidate key.

By THE WAy

Surrogate Keys
A surrogate key is an artificial column that is added to a table to serve as the primary key.
The DBMS assigns a unique value to a surrogate key when the row is created. The assigned
value never changes. Surrogate keys are used when the primary key is large and unwieldy. For
example, consider the relation RENTAL_PROPERTY:

RENTAL_PROPERTY (Street, City, State/Province, Zip/PostalCode, Country,
Rental_Rate)

The primary key of this table is (Street, City, State/Province, Zip/PostalCode, Country). As we
will dicuss further in Chapter 6, for good performance a primary key should be short and, if
possible, numeric. The primary key of RENTAL_PROPERTY is neither.

In this case, the designers of the database would likely create a surrogate key. The struc-
ture of the table would then be:

RENTAL_PROPERTY (PropertyID, Street, City, State/Province, Zip/PostalCode,
Country, Rental_Rate)

The DBMS can then be used to assign a numeric value to PropertyID when a row is created
(exactly how this is done depends upon which DBMS product is being used). Using that key
will result in better performance than using the original key. Note that surrogate key values

 CHAPTER 3 The Relational Model and Normalization 179

are artificial and have no meaning to the users. In fact, surrogate key values are normally hid-
den in forms and reports.

Foreign Keys
A foreign key is a column or composite of columns that is the primary key of a table other
than the one in which it appears. The term arises because it is a key of a table foreign to the one
in which it appears. In the following two tables, DEPARTMENT.DepartmentName is the pri-
mary key of DEPARTMENT and EMPLOYEE.DepartmentName is a foreign key. In this text,
we will show foreign keys in italics:

DEPARTMENT (DepartmentName, BudgetCode, ManagerName)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
DepartmentName)

Foreign keys express relationships between rows of tables. In this example, the foreign key
EMPLOYEE.DepartmentName stores the relationship between an employee and his or her
department.

Consider the SKU_DATA and ORDER_ITEM tables. SKU_DATA.SKU is the primary
key of SKU_DATA, and ORDER_ITEM.SKU is a foreign key.

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Notice that ORDER_ITEM.SKU is both a foreign key and also part of the primary key of
ORDER_ITEM. This condition sometimes occurs, but it is not required. In the example above,
EMPLOYEE.DepartmentName is a foreign key, but it is not part of the EMPLOYEE primary
key. You will see some uses for foreign keys later in this chapter and the next, and you will
study them at length in Chapter 6.

In most cases, we need to ensure that the values of a foreign key match a valid value of
a primary key. For the SKU_DATA and ORDER_ITEM tables, we need to ensure that all of
the values of ORDER_ITEM.SKU match a value of SKU_DATA.SKU. To accomplish this, we
create a referential integrity constraint, which is a statement that limits the values of the
foreign key. In this case, we create the constraint:

SKU in ORDER_ITEM must exist in SKU in SKU_DATA

This constraint stipulates that every value of SKU in ORDER_ITEM must match a value of
SKU in SKU_DATA.

While we have defined a referential integrity constraint to require a
 corresponding primary key value in the linked table, the technical

definition of the referential integrity constraint allows for one other option—that the
foreign key cell in the table is empty and does not have a value.2 If a cell in a table
does not have a value, it is said to have a null value (we will discuss null values in
Chapter 4).

It is difficult to imagine a foreign key having null values in a real database when the
referential integrity constraint is actually in use, and we will stick with our basic defini-
tion of the referential integrity constraint in this book. At the same time, be aware that
the complete, formal definition of the referential integrity constraint does allow for null
values in foreign key columns.

By THE WAy

2For example, see the Wikipedia article on referential integrity at http://en.wikipedia.org/wiki/Referential_integrity.

http://en.wikipedia.org/wiki/Referential_integrity

180 PART 2 Database Design

3For more information and discussion, see the Wikipedia article on database integrity at http://en.wikipedia.org/
wiki/Database_integrity and the articles linked to that article.

We have defined three constraints so far in our discussion:

■■ The domain integrity constraint
■■ The entity integrity constraint
■■ The referential integrity constraint

The purpose of these three constraints, taken as a whole, is to create database
 integrity, which means that the data in our database will be useful, meaningful data.3

By THE WAy

Normal Forms

All relations are not equal. Some are easy to process, and others are problematic. Relations are
categorized into normal forms based on the kinds of problems that they have. Knowledge of
these normal forms will help you create appropriate database designs. To understand normal
forms, we need first to define modification anomalies.

Modification Anomalies

Consider the EQUIPMENT_REPAIR relation in Figure 3-10, which stores data about manu-
facturing equipment and equipment repairs. Suppose we delete the data for repair number
2100. When we delete this row (the second one in Figure 3-10), we remove not only data
about the repair but also data about the machine itself. We will no longer know, for example,
that the machine was a Lathe and that its AcquisitionCost was 4750.00. When we delete one
row, the structure of this table forces us to lose facts about two different things, a machine and
a repair. This condition is called a deletion anomaly.

Now suppose we want to enter the first repair for a piece of equipment. To enter re-
pair data, we need to know not just RepairNumber, RepairDate, and RepairCost but also
ItemNumber, EquipmentType, and AcquisitionCost. If we work in the repair department, this
is a problem because we are unlikely to know the value of AcquisitionCost. The structure of
this table forces us to enter facts about two entities when we just want to enter facts about one.
This condition is called an insertion anomaly.

Finally, suppose we want to change existing data. If we alter a value of RepairNumber,
RepairDate, or RepairCost, there is no problem. But if we alter a value of ItemNumber,
EquipmentType, or AcquisitionCost, we may create a data inconsistency. To see why, suppose
we update the last row of the table in Figure 3-10 using the data (100, 'Drill Press', 5500,
2500, '08/17/15', 275).

Figure 3-11 shows the table after this erroneous update. The drill press has two differ-
ent AcquisitionCosts. Clearly, this is an error. Equipment cannot be acquired at two different
costs. If there were, say, 10,000 rows in the table, however, it might be very difficult to detect
this error. This condition is called an update anomaly.FiguRE 3-10

the EQUIPMENt_rEPaIr
relation

http://en.wikipedia.org/wiki/Database_integrity
http://en.wikipedia.org/wiki/Database_integrity

 CHAPTER 3 The Relational Model and Normalization 181

A Short History of Normal Forms

When Codd defined the relational model, he noticed that some tables had modification
anomalies. In his second paper,4 he defined first normal form, second normal form, and third
normal form. He defined first normal form (1NF) as the set of conditions for a relation shown
in Figure 3-4. Any table meeting the conditions in Figure 3-4 is therefore a relation in 1NF.

This definition, however, brings us back to the “To Key or Not to Key” discussion. Codd’s
set of conditions for a relation does not require a primary key, but one is clearly implied by the
condition that all rows must be unique. Thus, there are various opinions on whether or not a
relation has to have a defined primary key to be in 1NF.5

For practical purposes, we will define 1NF as it is used in this book as a table that:

1. Meets the set of conditions for a relation, and
2. Has a defined primary key.6

Codd also noted that some tables (or, interchangeably in this book, relations) in 1NF had
modification anomalies. He found that he could remove some of those anomalies by apply-
ing certain conditions. A relation that met those conditions, which we will discuss later in this
chapter, was said to be in second normal form (2NF). He also observed, however, that
relations in 2NF could also have anomalies, and so he defined third normal form (3NF),
which is a set of conditions that removes even more anomalies and which we will also discuss
later in this chapter. As time went by, other researchers found still other ways that anomalies
can occur, and the conditions for Boyce-Codd Normal Form (BCNF) were defined.

These normal forms are defined so that a relation in BCNF is in 3NF, a relation in 3NF
is in 2NF, and a relation in 2NF is in 1NF. Thus, if you put a relation into BCNF, it is automati-
cally in the lesser normal forms.

Normal forms 2NF through BCNF concern anomalies that arise from functional de-
pendencies. Other sources of anomalies were found later. They led to the definition of

5For a review of some of the discussion, see the Wikipedia article First normal form at http://en.wikipedia.org/
wiki/First_normal_form.
6Some definitions of 1NF also state that there can be “no repeating groups.” This refers to the multivalue, mul-
ticolumn problem we discuss in Chapter 4, and also deal with in our discussion of multivalued dependencies later
is this chapter.

4E. F. Codd and A. L. Dean, “Proceedings of 1971 ACM-SIGFIDET Workshop on Data Description,” Access
and Control, San Diego, California, November 11–12, 1971 ACM 1971.

Notice that the EQUIPMENT_REPAIR table in Figures 3-10 and 3-11
 duplicates data. For example, the AcquisitionCost of the same item of

equipment appears several times. Any table that duplicates data is susceptible to up-
date anomalies like the one in Figure 3-11. A table that has such inconsistencies is said
to have data integrity problems.

As we will discuss further in Chapter 4, to improve query speed we sometimes
design a table to have duplicated data. Be aware, however, that any time we design a
table this way, we open the door to data integrity problems.

By THE WAy

FiguRE 3-11

the EQUIPMENt_rEPaIr
relation after an Incorrect
Update

http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/First_normal_form

182 PART 2 Database Design

fourth normal form (4NF) and fifth normal form (5NF), both of which we will discuss
later in this chapter. So it went, with researchers chipping away at modification anomalies,
each one improving on the prior normal form.

In 1982, Ronald Fagin published a paper that took a different tack.7 Instead of looking
for just another normal form, Fagin asked, “What conditions need to exist for a relation to
have no anomalies?” In that paper, he defined domain/key normal form (DK/NF). Fagin
ended the search for normal forms by showing that a relation in DK/NF has no modification
anomalies and, further, that a relation that has no modification anomalies is in DK/NF. DK/
NF is discussed in more detail later in this chapter.

Normalization Categories

As shown in Figure 3-12, normalization theory can be divided into three major categories.
Some anomalies arise from functional dependencies, some arise from multivalued depen-
dencies, and some arise from data constraints and odd conditions.

2NF, 3NF, and BCNF are all concerned with anomalies that are caused by functional
dependencies. A relation that is in BCNF has no modification anomalies from functional
dependencies. It is also automatically in 2NF and 3NF, and, therefore, we will focus on trans-
forming relations into BCNF. However, it is instructive to work through the progression of
normal forms from 1NF to BCNF in order to understand how each normal form deals with
anomalies, and we will do this later in this chapter.8

As shown in the second row of Figure 3-12, some anomalies arise because of another
kind of dependency called a multivalued dependency. Those anomalies can be eliminated by
placing each multivalued dependency in a relation of its own, a condition known as 4NF. You
will see how to do that in the last section of this chapter.

The third source of anomalies is esoteric. These problems involve specific, rare, and even
strange data constraints. Accordingly, we will not discuss them in this text.

From First Normal Form to Boyce-Codd Normal Form Step by Step

As we discussed earlier in this chapter, a table is in 1NF if and only if (1) it meets the
definition of a relation in Figure 3-4, and (2) it has a defined primary key. From Figure 3-4 this
means that the following must hold: The cells of a table must be a single value, and nei-
ther repeating groups nor arrays are allowed as values; all entries in a column must be of
the same data type; each column must have a unique name, but the order of the columns
in the table is not significant; no two rows in a table may be identical, but the order of the
rows is not significant. To this, we add the requirement of having a primary key defined
for the table.

8See C. J. Date, An Introduction to Database Systems, 8th ed. (New York: Addison-Wesley, 2003) for a complete
discussion of normal forms.

7R. Fagin, “A Normal Form for Relational Databases That Is Based on Domains and Keys,” ACM Transactions
on Database Systems, September 1981, pp. 387–414.

Source of Anomaly Normal Forms Design Principles

Data constraints and oddities

Functional dependencies

Multivalued dependencies

5NF, DK/NF

1NF, 2NF,
3NF, BCNF

4NF

DK/NF: Make every constraint a
logical consequence of candidate
keys and domains.

BCNF: Design tables so that every
determinant is a candidate key.

4NF: Move each multivalued
dependency to a table of its own.

FiguRE 3-12

Summary of Normalization
theory

 CHAPTER 3 The Relational Model and Normalization 183

Second Normal Form
When Codd discovered anomalies in 1NF tables, he defined 2NF to eliminate some of these
anomalies. A relation is in 2NF if and only if it is in 1NF and all non-key attributes are determined
by the entire primary key. This means that if the primary key is a composite primary key, then no
non-key attribute can be determined by an attribute or set of attributes that make up only part
of the key. Thus, if you have a relation R (A, B, N, O, P) with the composite key (A, B), then
none of the non-key attributes N, O, or P can be determined by just A or just B.

Note that the only way a non-key attribute can be dependent on part of the primary key
is if there is a composite primary key. This means that relations with single-attribute primary keys are
automatically in 2NF.

For example, consider the STUDENT_ACTIVITY relation:

STUDENT_ACTIVITY (StudentID, Activity, ActivityFee)

The STUDENT_ACTIVITY relation is in 1NF, and is shown with sample data in Figure
3-13. Note that STUDENT_ACTIVITY has the composite primary key (StudentID, Activity),
which allows us to determine the fee a particular student will have to pay for a particular ac-
tivity. However, because fees are determined by activities, Fee is also functionally dependent
on just Activity itself, and we can say that ActivityFee is partially dependent on the key of
the table. The set of functional dependencies is therefore:

(StudentID, Activity) S (ActivityFee)
(Activity) S (ActivityFee)

Thus, there is a non-key attribute determined by part of the composite primary key, and
the STUDENT_ACTIVITY relation is not in 2NF. What do we do in this case? We will have to
move the columns of the functional dependency based on the partial primary key attribute
into a separate relation while leaving the determinant in the original relation as a foreign key.
We will end up with two relations:

STUDENT_ACTIVITY (StudentID, Activity)
ACTIVITY_FEE (Activity, ActivityFee)

The Activity column in STUDENT_ACTIVITY becomes a foreign key. The new relations
are shown in Figure 3-14. Now, are the two new relations in 2NF? Yes. STUDENT_ACTIVITY
still has a composite primary key but now has no attributes that are dependent on only a part
of this composite key. ACTIVITY_FEE has a set of attributes (just one each in this case) that
are dependent on the entire primary key.

Third Normal Form
However, the conditions necessary for 2NF do not eliminate all anomalies. To deal with ad-
ditional anomalies, Codd defined 3NF. A relation is in 3NF if and only if it is in 2NF and there

STUDENT_ACTIVITYFiguRE 3-13

the 1NF StUDENt_aCtIVItY
relation

184 PART 2 Database Design

are no non-key attributes determined by another non-key attribute. The technical name for a non-key
attribute determined by another non-key attribute is transitive dependency.9 We can
therefore restate the definition of 3NF: A relation is in 3NF if and only if it is in 2NF and it has
no transitive dependencies. Thus, in order for our relation R (A, B, N, O, P) to be in 3NF, none of
the non-key attributes N, O, or P can be determined by N, O, or P.

For example, consider the relation STUDENT_HOUSING (StudentID, Building, Fee)
shown in Figure 3-15. The STUDENT_HOUSING relation is in 2NF, and the table schema is:

STUDENT_HOUSING (StudentID, Building, HousingFee)

Here we have a single-attribute primary key, StudentID, so the relation is in 2NF because
there is no possibility of a non-key attribute being dependent on only part of the primary key.
Furthermore, if we know the student, we can determine the building where he or she is resid-
ing, so:

(StudentID) S Building

However, the building fee is independent of which student is housed in the building, and,
in fact, the same fee is charged for every room in a building. Therefore, Building determines
HousingFee:

(Building) S (HousingFee)

Thus, a non-key attribute (HousingFee) is functionally determined by another non-key
attribute (Building), and the relation is not in 3NF.

9In terms of functional dependencies, a transitive dependency is defined as: IF A S B and B S C, THEN
A S C.

STUDENT_HOUSINGFiguRE 3-15

the 2NF StUDENt_
HOUSING relation

STUDENT_ACTIVITY ACTIVITY_FEEFiguRE 3-14

the 2NF StUDENt_
aCtIVItY and aCtIVItY_FEE
relations

 CHAPTER 3 The Relational Model and Normalization 185

To put the relation into 3NF, we will have to move the columns of the functional depen-
dency into a separate relation while leaving the determinant in the original relation as a for-
eign key. We will end up with two relations:

STUDENT_HOUSING (StudentID, Building)
BUILDING_FEE (Building, HousingFee)

The Building column in STUDENT_HOUSING becomes a foreign key. The two relations
are now in 3NF (work through the logic yourself to make sure you understand 3NF) and are
shown in Figure 3-16.

Boyce-Codd Normal Form
Some database designers normalize their relations to 3NF. Unfortunately, there are still anom-
alies due to functional dependences in 3NF. Together with Raymond Boyce, Codd defined
BCNF to fix this situation. A relation is in BCNF if and only if it is in 3NF and every determinant
is a candidate key.

For example, consider the relation STUDENT_ADVISOR shown in Figure 3-17, where
a student (StudentID) can have one or more majors (Major), a major can have one or more
faculty advisors (AdvisorName), and a faculty member advises in only one major area. Note
that the figure shows two students (StudentIDs 700 and 800) with double majors (both stu-
dents show Majors of Math and Psychology) and two Subjects (Math and Psychology) with
two Advisors.

Because students can have several majors, StudentID does not determine Major. Moreover,
because students can have several advisors, StudentID does not determine AdvisorName.
Therefore, StudentID by itself cannot be a key. However, the composite key (StudentID,
Major) determines AdvisorName, and the composite key (StudentID, AdvisorName) de-
termines Major. This gives us (StudentID, Major) and (StudentId, AdvisorName) as two

STUDENT_HOUSING HOUSING_FEEFiguRE 3-16

the 3NF StUDENt_HOUSING
and HOUSING_FEE relations

STUDENT_ADVISORFiguRE 3-17

the 3NF StUDENt_aDVISOr
relation

186 PART 2 Database Design

candidate keys. We can select either of these as the primary key for the relation. Thus, two
STUDENT_ADVISOR schemas with different candidate keys are possible:

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

and

STUDENT_ADVISOR (StudentID, Major, AdvisorName)

Note that STUDENT_ADVISOR is in 2NF because it has no non-key attributes in the
sense that every attribute is a part of at least one candidate key. This is a subtle condition, based
on the fact that technically the definition of 2NF states that no non-prime attribute can be par-
tially dependent on a candidate key, where a non-prime attribute is an attribute that is not
contained in any candidate key. Furthermore, STUDENT_ADVISOR is in 3NF because there
are no transitive dependencies in the relation.

The two candidate keys for this relation are overlapping candidate keys because
they share the attribute StudentID. When a table in 3NF has overlapping candidate keys, it
can still have modification anomalies based on functional dependencies. In the STUDENT_
ADVISOR relation, there will be modification anomalies because there is one other func-
tional dependency in the relation. Because a faculty member can be an advisor for only one
major area, AdvisorName determines Major. Therefore, AdvisorName is a determinant but
not a candidate key.

Suppose that we have a student (StudentID = 300) majoring in psychology (Major =
Psychology) with faculty advisor Perls (AdvisorName = Perls). Further, assume that this row
is the only one in the table with the AdvisorName value of Perls. If we delete this row, we will
lose all data about Perls. This is a deletion anomaly. Similarly, we cannot insert the data to rep-
resent the Economics advisor Keynes until a student majors in Economics. This is an insertion
anomaly. Situations like this led to the development of BCNF.

What do we do with the STUDENT_ADVISOR relation? As before, we move the func-
tional dependency creating the problem to another relation while leaving the determinant in
the original relation as a foreign key. In this case, we will create the relations:

STUDENT_ADVISOR (StudentID, AdvisorName)
ADVISOR_MAJOR (AdvisorName, Major)

The AdvisorName column in STUDENT_ADVISOR is the foreign key, and the two final
relations are shown in Figure 3-18.

Note that a relation in 3NF may also already be in BCNF. The only way a relation in 3NF
can have problems actually requiring further normalization work to get it into BCNF is if it has
overlapping composite candidate keys. If the relation (1) does not have composite candidate keys, or
(2) has non-overlapping composite candidate keys, then it is already in BCNF once it is in 3NF.

STUDENT_ADVISOR ADVISOR_MAJORFiguRE 3-18

the BCNF StUDENt_
aDVISOr and aDVISOr_
MaJOr relations

 CHAPTER 3 The Relational Model and Normalization 187

Eliminating Anomalies from Functional Dependencies with BCNF

Most modification anomalies occur because of problems with functional dependencies. You
can eliminate these problems by progressively testing a relation for 1NF, 2NF, 3NF, and BCNF
using the definitions of these normal forms given previously. We will refer to this as the “Step-
by-Step” method.

You can also eliminate such problems by simply designing (or redesigning) your tables
so that every determinant is a candidate key. This condition, which, of course, is the definition
of BCNF, will eliminate all anomalies due to functional dependencies. We will refer to this
method as the “Straight-to-BCNF” or “general normalization” method.

We prefer the “Straight-to-BCNF” general normalization strategy and will use it exten-
sively, but not exclusively, in this book. However, this is merely our preference—either method
produces the same results, and you (or your professor) may prefer the “Step-by-Step” method.

The general normalization method is summarized in Figure 3-19. Identify every func-
tional dependency in the relation, and then identify the candidate keys. If there are de-
terminants that are not candidate keys, then the relation is not in BCNF and is subject to
modification anomalies. To put the relation into BCNF, follow the procedure in step 3. To fix
this procedure in your mind, we will illustrate it with five different examples. We will also
compare it to the “Step-by-Step” approach.

1. Identify every functional dependency.

Process for Putting a Relation into BCNF

2. Identify every candidate key.

3. If there is a functional dependency that has a
 determinant that is not a candidate key:

 A. Move the columns of that functional
 dependency into a new relation.
 B. Make the determinant of that functional
 dependency the primary key of the new relation.
 C. Leave a copy of the determinant as a foreign
 key in the original relation.
 D. Create a referential integrity constraint between
 the original relation and the new relation.

4. Repeat step 3 until every determinant of every
 relation is a candidate key.

Note: In step 3, if there is more than one such functional dependency,
start with the one with the most columns.

FiguRE 3-19

Process for Putting a
relation into BCNF

Our process rule that a relation is in BCNF if and only if every determinant
is a candidate key is summed up in a variation of a widely known phrase:

I swear to construct my tables so that all non-key columns are dependent on the
key, the whole key and nothing but the key, so help me Codd!

This phrase actually is a very good way to remember the order of the normal forms:

I swear to construct my tables so that all non-key columns are dependent on

■■ the key, [This is 1NF]
■■ the whole key, [This is 2NF]
■■ and nothing but the key, [This is 3NF and BCNF]

so help me Codd!

By THE WAy

188 PART 2 Database Design

Normalization Example 1
Consider the SKU_DATA table:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

As discussed earlier, this table has three functional dependencies:

SKU S (SKU_Description, Department, Buyer)
SKU_Description S (SKU, Department, Buyer)
Buyer S Department

Normalization Example 1: The “Step-by-Step” Method

Both SKU and SKU_Description are candidate keys. Logically, SKU makes more sense as the
primary key because it is a surrogate key, so our relation, which is shown in Figure 3-20, is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Checking the relation against Figure 3-4, and noting that it has a defined primary key, we
find that SKU_DATA is in 1NF.

Is the SKU_DATA relation in 2NF? A relation is in 2NF if and only if it is in 1NF and all
non-key attributes are determined by the entire primary key. Because the primary key SKU is a single
attribute key, all the non-key attributes are therefore dependent on the entire primary key.
Thus, the SKU_DATA relation is in 2NF.

Is the SKU_DATA relation in 3NF? A relation is in 3NF if and only if it is in 2NF and there
are no non-key attributes determined by another non-key attribute. Because we seem to have two non-
key attributes (SKU_Description and Buyer) that determine non-key attributes, the relation is
not in 3NF!

However, this is where things get a bit tricky. A non-key attribute is an attribute that is nei-
ther (1) a candidate key itself nor (2) part of a candidate key. SKU_Description, therefore, is
not a non-key attribute (sorry about the double negative). The only non-key attribute is Buyer!

Therefore, we must remove only the functional dependency

Buyer S Department

The goal of the normalization process is to create relations that are in
BCNF. It is sometimes stated that the goal is to create relations that are

in 3NF, but after the discussion in this chapter, you should understand why BCNF is
preferred to 3NF.

Note that there are some problems that are not resolved by even BCNF, and these
will require relations in 4NF. We will explain when we need to use 4NF after we discuss
our examples of normalizing to BCNF.

By THE WAy

SKU_DATAFiguRE 3-20

the SKU_Data relation

 CHAPTER 3 The Relational Model and Normalization 189

We will now have two relations:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Is SKU_DATA_2 in 3NF? Yes, it is—there are no non-key attributes that determine an-
other non-key attribute.

Is the SKU_DATA_2 relation in BCNF? A relation is in BCNF if and only if it is in 3NF
and every determinant is a candidate key. The determinants in SKU_DATA_2 are SKU and
SKU_Description:

SKU S (SKU_Description, Buyer)
SKU_Description S (SKU, Buyer)

Both determinants are candidate keys (they both determine all the other attributes in the
relation). Thus, every determinant is a candidate key, and the relationship is in BCNF.

At this point, we need to check the BUYER relation to determine if it is in BCNF. Work
through the steps yourself for BUYER to check your understanding of the “Step-by-Step”
method. You will find that BUYER is in BCNF, and therefore our normalized relations, as
shown with the sample data in Figure 3-21, are:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Both of these tables are now in BCNF and will have no anomalies due to functional de-
pendencies. For the data in these tables to be consistent, however, we also need to define a
referential integrity constraint (note that this is step 3D in Figure 3-19):

SKU_DATA_2.Buyer must exist in BUYER.Buyer

This statement means that every value in the Buyer column of SKU_DATA_2 must also
exist as a value in the Buyer column of BUYER.

SKU_DATA_2

BUYER

FiguRE 3-21

the Normalized SKU_Data_2
and BUYEr relations

190 PART 2 Database Design

Normalization Example 1: The “Straight-to-BCNF” Method

Now let’s rework this example using the “Straight-to-BCNF” method. SKU and SKU_
Description determine all of the columns in the table, so they are candidate keys. Buyer is a
determinant, but it does not determine all of the other columns, and hence it is not a candi-
date key. Therefore, SKU_DATA has a determinant that is not a candidate key and is therefore
not in BCNF. It will have modification anomalies.

To remove such anomalies, in step 3A in Figure 3-19, we move the columns of functional
dependency whose determinant is not a candidate key into a new table. In this case, we place
Buyer and Department into a new table:

BUYER (Buyer, Department)

Next, in step 3B in Figure 3-19, we make the determinant of the functional dependency the
primary key of the new table. In this case, Buyer becomes the primary key:

BUYER (Buyer, Department)

Next, following step 3C in Figure 3-19, we leave a copy of the determinant as a foreign key in
the original relation. Thus, SKU_DATA becomes SKU_DATA_2:

SKU_DATA_2 (SKU, SKU_Description, Buyer)

The resulting tables are thus:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

where SKU_DATA_2.Buyer is a foreign key to the BUYER table.
Both of these tables are now in BCNF and will have no anomalies due to functional de-

pendencies. For the data in these tables to be consistent, however, we also need to define the
referential integrity constraint in step 3D in Figure 3-19:

SKU_DATA_2.Buyer must exist in BUYER.Buyer

This statement means that every value in the Buyer column of SKU_DATA_2 must also exist
as a value in the Buyer column of BUYER. Sample data for the resulting tables is the same as
shown in Figure 3-21.

Note that both the “Step-by-Step” method and the “Straight-to-BCNF” method produced
exactly the same results. Use the method you prefer; the results will be the same. To keep this
chapter reasonably short, we will use only the “Straight-to-BCNF” method for the rest of the
normalization examples.

Normalization Example 2
Now consider the EQUIPMENT_REPAIR relation in Figure 3-10. The structure of the
table is:

EQUIPMENT_REPAIR (ItemNumber, EquipmentType, AcquisitionCost,
RepairNumber, RepairDate, RepairCost)

Examining the data in Figure 3-10, the functional dependencies are:

ItemNumber S (EquipmentType, AcquisitionCost)
RepairNumber S (ItemNumber, EquipmentType, AcquisitionCost, RepairDate,
RepairCost)

Both ItemNumber and RepairNumber are determinants, but only RepairNumber
is a candidate key. Accordingly, EQUIPMENT_REPAIR is not in BCNF and is subject to

 CHAPTER 3 The Relational Model and Normalization 191

modification anomalies. Following the procedure in Figure 3-19, we place the columns of the
problematic functional dependency into a separate table, as follows:

EQUIPMENT_ITEM (ItemNumber, EquipmentType, AcquisitionCost)

and remove all but ItemNumber from EQUIPMENT_REPAIR (and rearrange the columns so
that the primary key RepairNumber is the first column in the relation) to create:

REPAIR (RepairNumber, ItemNumber, RepairDate, RepairCost)

We also need to create the referential integrity constraint:

REPAIR.ItemNumber must exist in EQUIPMENT_ITEM.ItemNumber

Data for these two new relations are shown in Figure 3-22.

EQUIPMENT_ITEM

REPAIR

FiguRE 3-22

the Normalized EQUIPMENt_
ItEM and rEPaIr relations

There is another, more intuitive way to think about normalization. Do you
remember your eighth-grade English teacher? She said that every para-

graph should have a single theme. If you write a paragraph that has two themes, you
should break it up into two paragraphs, each with a single theme.

The problem with the EQUIPMENT_REPAIR relation is that it has two themes: one
about repairs and a second about items. We eliminated modification anomalies by
breaking that single table with two themes into two tables, each with a single theme.
Sometimes, it is helpful to look at a table and ask, “How many themes does it have?” If
it has more than one, then redefine the table so that it has a single theme.

By THE WAy

Normalization Example 3
Consider now the Cape Codd database ORDER_ITEM relation with the structure:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

with functional dependencies:

(OrderNumber, SKU) S (Quantity, Price, ExtendedPrice)
(Quantity, Price) S ExtendedPrice

192 PART 2 Database Design

This table is not in BCNF because the determinant (Quantity, Price) is not a candi-
date key. We can follow the same normalization practice as illustrated in examples 1 and
2, but in this case, because the second functional dependency arises from the formula
ExtendedPrice = (Quantity * Price), we reach a silly result.

To see why, we follow the procedure in Figure 3-19 to create tables such that every
determinant is a candidate key. This means that we move the columns Quantity, Price, and
ExtendedPrice to tables of their own, as follows:

EXTENDED_PRICE (Quantity, Price, ExtendedPrice)
ORDER_ITEM_2 (OrderNumber, SKU, Quantity, Price)

Notice that we left both Quantity and Price in the original relation as a composite for-
eign key. These two tables are in BCNF, but the values in the EXTENDED_PRICE table are
ridiculous. They are just the results of multiplying Quantity by Price. The simple fact is that
we do not need to create a table to store these results. Instead, any time we need to know
ExtendedPrice we will just compute it. In fact, we can define this formula to the DBMS and
let the DBMS compute the value of ExtendedPrice when necessary. You will see how to do
this with Microsoft SQL Server 2014, Oracle’s Oracle Database, and MySQL 5.6 in Chapters
10A, 10B, and 10C, respectively.

Using the formula, we can remove ExtendedPrice from the table. The resulting table is
in BCNF:

ORDER_ITEM_2 (OrderNumber, SKU, Quantity, Price)

Note that Quantity and Price are no longer foreign keys. The ORDER_ITEM_2 table with
sample data now appears as shown in Figure 3-23.

Normalization Example 4
Consider the following table that stores data about student activities:

STUDENT_ACTIVITY (StudentID, StudentName, Activity, ActivityFee, AmountPaid)

where StudentID is a student identifier, StudentName is student name, Activity is the name
of a club or other organized student activity, ActivityFee is the cost of joining the club or
participating in the activity, and AmountPaid is the amount the student has paid toward the
ActivityFee. Figure 3-24 shows sample data for this table.

StudentID is a unique student identifier, so we know that:

StudentID S StudentName

However, does the functional dependency exist?

StudentID S Activity

ORDER_ITEM_2FiguRE 3-23

the Normalized OrDEr_
ItEM_2 relation

 CHAPTER 3 The Relational Model and Normalization 193

It does if a student belongs to just one club or participates in just one activity, but it does not
if a student belongs to more than one club or participates in more than one activity. Looking
at the data, student Davis with StudentID 200 participates in both Skiing and Swimming,
so StudentID does not determine Club. StudentID does not determine ActivityFee or
AmountPaid, either.

Now consider the StudentName column. Does StudentName determine StudentID? Is,
for example, the value 'Jones' always paired with the same value of StudentID? No, there are
two students named 'Jones', and they have different StudentID values. StudentName does not
determine any other column in this table, either.

Considering the next column, Activity, we know that many students can belong to a
club. Therefore, Activity does not determine StudentID or StudentName. Does Activity de-
termine ActivityFee? Is the value 'Skiing', for example, always paired with the same value of
ActivityFee? From these data, it appears so, and using just this sample data, we can conclude
that Activity determines ActivityFee.

However, this data is just a sample. Logically, it is possible for students to pay different
costs, perhaps because they select different levels of activity participation. If that were the
case, then we would say that

(StudentID, Activity) S ActivityFee

To find out, we need to check with the users. Here, assume that all students pay the same
fee for a given activity. The last column is AmountPaid, and it does not determine anything.

So far, we have two functional dependencies:

StudentID S StudentName
Activity S ActivityFee

Are there other functional dependencies with composite determinants? No single column
determines AmountPaid, so consider possible composite determinants for it. AmountPaid is
dependent on both the student and the club the student has joined. Therefore, it is deter-
mined by the combination of the determinants StudentID and Activity. Thus, we can say

(StudentID, Activity) S AmountPaid

So far we have three determinants: StudentID, Activity, and (StudentID, Activity). Are any
of these candidate keys? Do any of these determinants identify a unique row? From the data, it
appears that (StudentID, Activity) identifies a unique row and is a candidate key. Again, in real
situations, we would need to check this assumption out with the users.

STUDENT_ACTIVITY_PAYMENT is not in BCNF because columns StudentID and
Activity are both determinants but neither is a candidate key. StudentID and Activity are only
part of the candidate key (StudentID, Activity).

STUDENT_ACTIVITYFiguRE 3-24

Sample Data for the
StUDENt_aCtIVItY
relation

194 PART 2 Database Design

To normalize this table, we need to construct tables so that every determinant is a candi-
date key. We can do this by creating a separate table for each functional dependency as we
did before. The result is:

STUDENT (StudentID, StudentName)
ACTIVITY (Activity, ActivityFee)
PAYMENT (StudentID, Activity, AmountPaid)

with referential integrity constraints:

PAYMENT.StudentID must exist in STUDENT.StudentID

and

PAYMENT.Activity must exist in ACTIVITY.Activity

These tables are in BCNF and will have no anomalies from functional dependencies. The
sample data for the normalized tables are shown in Figure 3-25.

Normalization Example 5
Now consider a normalization process that requires two iterations of step 3 in the pro-
cedure in Figure 3-19. To do this, we will extend the SKU_DATA relation by adding the
budget code of each department. We call the revised relation SKU_DATA_3 and define
it as follows:

SKU_DATA_3 (SKU, SKU_Description, Department, DeptBudgetCode, Buyer)

Sample data for this relation are shown in Figure 3-26. SKU_DATA_3 has the following func-
tional dependencies:

SKU S (SKU_Description, Department, DeptBudgetCode, Buyer)
SKU_Description S (SKU, Department, DeptBudgetCode, Buyer)
Buyer S (Department, DeptBudgetCode)
Department S DeptBudgetCode
DeptBudgetCode S Department

Both StudentID and Activity are part of the candidate key (StudentID,
Activity). This, however, is not good enough. A determinant must have all of

the same columns to be the same as a candidate key.

By THE WAy

STUDENT

ACTIVITY

PAYMENTFiguRE 3-25

the Normalized StUDENt,
aCtIVItY, and PaYMENt
relations

 CHAPTER 3 The Relational Model and Normalization 195

Of the five determinants, both SKU and SKU_Description are candidate keys, but Buyer,
Department, and DeptBudgetCode are not candidate keys. Therefore, this relation is not in BCNF.

To normalize this table, we must transform this table into two or more tables that are in BCNF.
In this case, there are two problematic functional dependencies. According to the note at the end
of the procedure in Figure 3-19, we take the functional dependency whose determinant is not a
candidate key and has the largest number of columns first. In this case, we take the columns of

Buyer S (Department, DeptBudgetCode)

and place them in a table of their own.
Next, we make the determinant the primary key of the new table, remove all columns

except Buyer from SKU_DATA_3, and make Buyer a foreign key of the new version of SKU_
DATA_3, which we will name SKU_DATA_4. We can also now assign SKU as the primary
key of SKU_DATA_4. The results are:

BUYER (Buyer, Department, DeptBudgetCode)
SKU_DATA_4 (SKU, SKU_Description, Buyer)

We also create the referential integrity constraint:

SKU_DATA_4.Buyer must exist in BUYER.Buyer

The functional dependencies from SKU_DATA_4 are:

SKU S (SKU_Description, Buyer)
SKU_Description S (SKU, Buyer)

Because every determinant of SKU_DATA_4 is also a candidate key, the relationship is
now in BCNF. Looking at the functional dependencies from BUYER we find:

Buyer S (Department, DeptBudgetCode)
Department S DeptBudgetCode
DeptBudgetCode S Department

BUYER is not in BCNF because neither of the determinants Department and DeptBudgetCode
are candidate keys. In this case, we must move (Department, DeptBudgetCode) into a table
of its own. Following the procedure in Figure 3-19 and breaking BUYER into two tables
(DEPARTMENT and BUYER_2) gives us a set of three tables:

DEPARTMENT (Department, DeptBudgetCode)
BUYER_2 (Buyer, Department)
SKU_DATA_4 (SKU, SKU_Description, Buyer)

SKU_DATA_3FiguRE 3-26

Sample Data for the SKU_
Data_3 relation

196 PART 2 Database Design

with referential integrity constraints:

SKU_DATA_4.Buyer must exist in BUYER_2.Buyer
BUYER_2.Department must exist in DEPARTMENT.Department

The functional dependencies from all three of these tables are:

Department S DeptBudgetCode
DeptBudgetCode S Department
Buyer S Department
SKU S (SKU_Description, Buyer)
SKU_Description S (SKU, Buyer)

At last, every determinant is a candidate key, and all three of the tables are in BCNF. The re-
sulting relations from these operations are shown in Figure 3-27.

Eliminating Anomalies from Multivalued Dependencies

All of the anomalies in the last section were due to functional dependencies, and when we
normalize relations to BCNF, we eliminate these anomalies. However, anomalies can also
arise from another kind of dependency: the multivalued dependency. A multivalued de-
pendency occurs when a determinant is matched with a particular set of values.

Examples of multivalued dependencies are:

EmployeeName S S EmployeeDegree
EmployeeName S S EmployeeSibling
PartKitName S S Part

In each case, the determinant is associated with a set of values, and example data for each
of these multivalued dependencies are shown in Figure 3-28. Such expressions are read as
“EmployeeName multidetermines EmployeeDegree” and “EmployeeName multidetermines
EmployeeSibling” and “PartKitName multidetermines Part.” Note that multideterminants are
shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BA. Employee Greene has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Greene has sibling Nikki, and
employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike Repair has parts
Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in Figure 3-28.

DEPARTMENT

BUYER_2

SKU_DATA_4

FiguRE 3-27

the Normalized
DEPartMENt, BUYEr_2,
and SKU_Data_4 relations

 CHAPTER 3 The Relational Model and Normalization 197

Unlike functional dependencies, the determinant of a multivalued dependency
can never be the primary key. In all three of the tables in Figure 3-28, the primary
key consists of the composite of the two columns in each table. For example, the pri-
mary key of the EMPLOYEE_DEGREE table is the composite key (EmployeeName,
EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 3-28 has modification anomalies. However, if A S S B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies.

For example, consider the situation if we combine the employee data in Figure 3-28
into a single EMPLOYEE_DEGREE_SIBLING table with three columns (EmployeeName,
EmployeeDegree, EmployeeSibling), as shown in Figure 3-29.

Now, what actions need to be taken if employee Jones earns an MBA? We must add three
rows to the table. If we do not, if we only add the row ('Jones', 'MBA', 'Fred'), it will appear as
if Jones is an MBA with her brother Fred, but not with her sister Sally or her other brother
Frank. However, suppose Greene earns an MBA. Then we need only add one row ('Greene',

EMPLOYEE_DEGREE

EMPLOYEE_SIBLING

PARTKIT_PARTFiguRE 3-28

three Examples of
Multivalued Dependencies

EMPLOYEE_DEGREE_SIBLINGFiguRE 3-29

EMPLOYEE_DEGrEE_
SIBLING relation with two
Multivalued Dependencies

198 PART 2 Database Design

PARTKIT_PART_PRICEFiguRE 3-30

PartKIt_Part_PrICE
relation with a Functional
Dependency and a
Multivalued Dependency

'MBA', 'Nikki'). But, if Chau earns an MBA, we need to add two rows. These are insertion
anomalies. There are equivalent modification and deletion anomalies as well.

In Figure 3-29, we combined two multivalued dependencies into a single table and
obtained modification anomalies. Unfortunately, we will also get anomalies if we combine a
multivalued dependency with any other column, even if that other column has no multival-
ued dependency.

Figure 3-30 shows what happens when we combine the multivalued dependency

PartKitName S S Part

with the functional dependency

PartKitName S PartKitPrice

For the data to be consistent, we must repeat the value of price for as many rows as
each kit has parts. For this example, we must add three rows for the Bike Repair kit and
four rows for the First Aid kit. The result is duplicated data that can cause data integrity
problems.

Now you also know the problem with the relation in Figure 3-2. Anomalies exist in that
table because it contains two multivalued dependencies:

BuyerName S S SKU_Managed
BuyerName S S CollegeMajor

Fortunately, it is easy to deal with multivalued dependencies: Put them into a table of
their own. None of the tables in Figure 3-28 has modification anomalies because each table
consists of only the columns in a single, multivalued dependency. Thus, to fix the table in
Figure 3-2, we must move BuyerName and SKU_Managed into one table and BuyerName
and CollegeMajor into a second table:

PRODUCT_BUYER_SKU (BuyerName, SKU_Managed)
PRODUCT_BUYER_MAJOR (BuyerName, CollegeMajor)

The results are shown in Figure 3-31. If we want to maintain strict equivalence between these
tables, we would also add the referential integrity constraint:

PRODUCT_BUYER_SKU.BuyerName must be identical to PRODUCT_BUYER_
MAJOR.BuyerName

 CHAPTER 3 The Relational Model and Normalization 199

This referential integrity constraint may not be necessary, depending on the requirements of
the application.

Notice that when you put multivalued dependencies into a table of their own, they disap-
pear. The result is just a table with two columns, and the primary key (and sole candidate key)
is the composite of those two columns. When multivalued dependencies have been isolated
in this way, the table is said to be in fourth normal form (4NF).

The hardest part of multivalued dependencies is finding them. Once you know they exist
in a table, just move them into a table of their own. Whenever you encounter tables with odd
anomalies, especially anomalies that require you to insert, modify, or delete different num-
bers of rows to maintain integrity, check for multivalued dependencies.

PRODUCT_BUYER_SKU PRODUCT_BUYER_MAJORFiguRE 3-31

Placing the two Multivalued
Dependencies in Figure 3-2
into Separate relations

You will sometimes hear people use the term normalize in phrases like,
“that table has been normalized” or “check to see if those tables are nor-

malized.” Unfortunately, not everyone means the same thing with these words. Some
people do not know about BCNF, and they will use it to mean tables in 3NF, which is a
lesser form of normalization, one that allows for anomalies from functional dependen-
cies that BCNF does not allow. Others use it to mean tables that are both BCNF and
4NF. Others may mean something else. The best choice is to use the term normalize to
mean tables that are in both BCNF and 4NF.

By THE WAy

Fifth Normal Form

There is a fifth normal form (5NF), also known as Project-Join Normal Form (PJ/NF),
which involves an anomaly where a table can be split apart but not correctly joined back
together. However, the conditions under which this happens are complex, and generally if
a relation is in 4NF it is in 5NF. We will not deal with 5NF in this book. For more informa-
tion about 5NF, start with the works cited earlier in this chapter and the Wikipedia article at
http://en.wikipedia.org/wiki/Fifth_normal_form.

Domain/Key Normal Form

As discussed earlier in this chapter, in 1982 Ronald Fagin published a paper that defined do-
main/key normal form (DK/NF). Fagin asked, “What conditions need to exist for a relation to
have no anomalies?” He showed that a relation in DK/NF has no modification anomalies and,
further, that a relation that has no modification anomalies is in DK/NF.

But what does this mean? Basically, DK/NF requires that all the constraints on the data
values be logical implications of the definitions of domains and keys. To the level of detail in
this text, and to the level of detail experienced by 99 percent of all database practitioners, this
can be restated as follows: Every determinant of a functional dependency must be a candidate
key. This, of course, is simply our definition of BCNF, and, for practical purposes, relations in
BCNF are in DK/NF as well.

http://en.wikipedia.org/wiki/Fifth_normal_form

200 PART 2 Database Design

Summary

Databases arise from three sources: from existing data, from
new systems development, and from the redesign of existing
databases. This chapter and the next are concerned with
databases that arise from existing data. Even though a table
is a simple concept, certain tables can lead to surprisingly
difficult processing problems. This chapter uses the concept
of normalization to understand and possibly solve those
problems. Figure 3-3 lists terms you should be familiar with.

A relation is a special case of a table; all relations are
tables, but not all tables are relations. Relations are tables
that have the properties listed in Figure 3-4. Three sets
of terms are used to describe relation structure: (relation,
attribute, tuple); (table, column, row); and (file, field, and
record). Sometimes these terms are mixed and matched.
In practice, the terms table and relation are commonly used
synonymously, and we will do so for the balance of this text.

In a functional dependency, the value of one attri-
bute, or attributes, determines the value of another. In the
 functional dependency A S B, attribute A is called the
 determinant. Some functional dependencies arise from
equations, but many others do not. The purpose of a data-
base is, in fact, to store instances of functional dependencies
that do not arise from equations.

Determinants that have more than one attribute are
called composite determinants. If A S (B, C), then A S B
and A S C (decomposition rule). However, if (A, B) S C,
then, in general, neither A S C nor B S C. It is true that if
A S B and A S C, then A S (B, C) (union rule).

If A S B, the values of A may or may not be unique in
a relation. However, every time a given value of A appears,
it will be paired with the same value of B. A determinant is
unique in a relation only if it determines every other attri-
bute of the relation. You cannot always rely on determining
functional dependencies from sample data. The best idea is
to verify your conclusions with the users of the data.

A key is a combination of one or more columns used
to identify one or more rows. A composite key is a key with

two or more attributes. A determinant that determines ev-
ery other attribute is called a candidate key. A relation may
have more than one candidate key. One of them is selected
to be used by the DBMS for finding rows and is called the
primary key. A surrogate key is an artificial attribute used
as a primary key. The value of a surrogate key is supplied by
the DBMS and has no meaning to the user. A foreign key is a
key in one table that references the primary key of a second
table. A referential integrity constraint is a limitation on data
values of a foreign key that ensures that every value of the
foreign key has a match to a value of a primary key.

The three kinds of modification anomalies are insert,
update, and delete. Codd and others defined normal forms
for describing different table structures that lead to anoma-
lies. A table that meets the conditions listed in Figure 3-4 is
in 1NF. Some anomalies arise from functional dependen-
cies. Three forms, 2NF, 3NF, and BCNF, are used to treat
such anomalies.

In this text, we are only concerned with the best of these
forms, BCNF. If a relation is in BCNF, then no anomalies
from functional dependencies can occur. A relation is in
BCNF if every determinant is a candidate key.

Relations can be normalized using either a “Step-by-Step”
method or a “Straight-to-BCNF” method. Which method to
use is a matter of personal preference, and both methods pro-
duce the same results.

Some anomalies arise from multivalued dependen-
cies. A multidetermines B, or A S S B, if A determines
a set of values. If A multidetermines B, then any relation
that contains A, B, and one or more other columns will
have modification anomalies. Anomalies due to multi-
valued dependencies can be eliminated by placing the
multivalued dependency in a table of its own. Such tables
are in 4NF.

There is a 5NF, but generally tables in 4NF are in 5NF.
DK/NF has been defined, but in practical terms the defini-
tion of DK/NF is the same as the definition of BCNF.

Key Terms

attribute
Boyce-Codd Normal Form (BCNF)
candidate key
composite determinant
composite key
data integrity problems
database integrity
decomposition rule
deletion anomaly

determinant
domain
domain integrity constraint
domain/key normal form (DK/NF)
entity
entity integrity constraint
fifth normal form (5NF)
first normal form (1NF)
foreign key

fourth normal form (4NF)
functional dependency
functionally dependent
insertion anomaly
key
multivalued dependency
non-prime attribute
normal forms
null value

 CHAPTER 3 The Relational Model and Normalization 201

overlapping candidate key
partially dependent
primary key
Project-Join Normal Form (PJ/NF)
referential integrity constraint

relation
second normal form (2NF)
surrogate key
third normal form (3NF)
transitive dependency

tuple
union rule
update anomaly

 3.1 When do you redesign an existing database?

 3.2 What is the basic premise of this chapter?

 3.3 Does the domain integrity constraint prevent two columns in a table from having the
same name?

 3.4 Define each of the terms listed in Figure 3-3.

 3.5 Describe the characteristics of a table that make it a relation. Define the term domain,
and explain the significance of the domain integrity constraint to a relation.

 3.6 Give an example of two tables that are not relations.

 3.7 Suppose that two columns in two different tables have the same column name. What
convention is used to give each a unique name?

 3.8 Which values in the column Email in Figure 3-7 violate the domain integrity constraint?

 3.9 How many tuples and attributes are present in Figure 3-8?

 3.10 Explain the difference between functional dependencies that arise from equations
and those that do not.

 3.11 Explain the intuitive meaning of the functional dependency

PartNumber S PartWeight

 3.12 Explain the following statement: “The only reason for having relations is to store in-
stances of functional dependencies.”

 3.13 Explain the meaning of the expression

(FirstName, LastName) S Phone

 3.14 What is a composite determinant?

 3.15 Can the definition of DK/NF be the same as the definition of BCNF?

 3.16 How can anomalies arising from multivalued dependencies be eliminated?

 3.17 For the SKU_DATA table in Figure 3-1, explain why Buyer determines Department
but Department does not determine Buyer.

 3.18 For the SKU_DATA table in Figure 3-1, explain why

SKU_Description S (SKU, Department, Buyer)

 3.19 If it is true that

PartNumber S PartWeight

does that mean that PartNumber will be unique in a relation?

Review Questions

202 PART 2 Database Design

 3.20 Under what conditions will a determinant be unique in a relation?

 3.21 What is the best test for determining whether a determinant is unique?

 3.22 What are keys that have two or more columns called?

 3.23 What is a candidate key?

 3.24 What is a primary key? Explain the significance of the entity integrity constraint to a
primary key.

 3.25 How is a candidate key a determinant?

 3.26 Can a primary key be a surrogate key?

 3.27 How can the sum of two columns be used as a surrogate key?

 3.28 When would you use a surrogate key?

 3.29 What is a foreign key? Explain the significance of the referential integrity constraint to a
foreign key.

 3.30 The term domestic key is not used. If it were used, however, what do you think it would
mean?

 3.31 Name three types of constraints.

 3.32 Illustrate deletion, modification, and insertion anomalies on the STUDENT_ACTIVITY
relation in Figure 3-24.

 3.33 Explain why duplicated data lead to data integrity problems.

 3.34 Which rows in Figure 3-6 are not in 1NF?

 3.35 Which normal forms are concerned with functional dependencies?

 3.36 What conditions are required for a relation to be in 2NF?

 3.37 What conditions are required for a relation to be in 3NF?

 3.38 What conditions are required for a relation to be in BCNF?

 3.39 If a relation is in BCNF, what can we say about it with regard to 2NF and 3NF?

 3.40 What normal form is concerned with multivalued dependencies?

 3.41 Can an update cause data inconsistency in a DK/NF table?

 3.42 Summarize the three categories of normalization theory.

 3.43 In general, how can you transform a relation not in BCNF into ones that are in BCNF?

 3.44 What is a referential integrity constraint? Define the term, and give an example of its
use. Are null values allowed in foreign key columns with a referential integrity con-
straint? How does the referential integrity constraint contribute to database integrity?

 3.45 Explain the role of referential integrity constraints in normalization.

 3.46 Do relations StudID_SocialSecurityNumber and SocialSecurityNumber_StudName
contain a transitive dependency?

 3.47 In normalization example 3, why is the EXTENDED_PRICE relation “silly”?

 3.48 In normalization example 4, under what conditions is the functional dependency

(StudentID, Activity) S ActivityFee

more accurate than

Activity S ActivityFee

 3.49 If a determinant is part of a candidate key, is that good enough for BCNF?

 CHAPTER 3 The Relational Model and Normalization 203

 3.50 In normalization example 5, why are the following two tables not correct?

DEPARTMENT (Department, DeptBudgetCode, Buyer)
SKU_DATA_4 (SKU, SKU_Description, Department)

 3.51 How does a multivalued dependency differ from a functional dependency?

 3.52 Consider the relation:

PERSON (Name, Sibling, ShoeSize)

Assume that the following functional dependencies exist:

Name S S Sibling
Name S ShoeSize

Describe deletion, modification, and insertion anomalies for this relation.

 3.53 Why is BCNF referred to as the best of the forms?

 3.54 Consider the relation:

PERSON_2 (Name, Sibling, ShoeSize, Hobby)

Assume that the following functional dependencies exist:

Name S S Sibling
Name S ShoeSize
Name S S Hobby

Describe deletion, modification, and insertion anomalies for this relation.

 3.55 What must we know in order to find functional dependencies in a table?

 3.56 What is a multivalued dependency?

 3.57 How do the conditions for DK/NF correspond to the conditions for BCNF?

Project Questions

 3.58 Consider the table:

STAFF_MEETING (EmployeeName, ProjectName, Date)

The rows of this table record the fact that an employee from a particular project
attended a meeting on a given date. Assume that a project meets at most once per
day. Also, assume that only one employee represents a given project but that employ-
ees can be assigned to multiple projects.

A. State the functional dependencies in STAFF_MEETING.

B. Transform this table into one or more tables in BCNF. State the primary keys,
candidate keys, foreign keys, and referential integrity constraints.

C. Is your design in part B an improvement over the original table? What advan-
tages and disadvantages does it have?

204 PART 2 Database Design

 3.59 Consider the table:

STUDENT (StudentNumber, StudentName, Dorm, RoomType, DormCost,
Club, ClubCost, Sibling, Nickname)

Assume that students pay different dorm costs depending on the type of room they
have but that all members of a club pay the same cost. Assume that students can have
multiple nicknames.

A. State any multivalued dependencies in STUDENT.

B. State the functional dependencies in STUDENT.

C. Transform this table into two or more tables such that each table is in BCNF and
in 4NF. State the primary keys, candidate keys, foreign keys, and referential integ-
rity constraints.

Regional Labs Case Questions

Regional Labs is a company that conducts research and development work on a contract
basis for other companies and organizations. Figure 3-32 shows data that Regional Labs
collects about projects and the employees assigned to them. This data is stored in a relation
(table) named PROJECT:

PROJECT (ProjectID, EmployeeName, EmployeeSalary)

A. Assuming that all functional dependencies are apparent in this data, which of the
following are true?
1. ProjectID S EmployeeName
2. ProjectID S EmployeeSalary
3. (ProjectID, EmployeeName) S EmployeeSalary
4. EmployeeName S EmployeeSalary
5. EmployeeSalary S ProjectID
6. EmployeeSalary S (ProjectID, EmployeeName)

Case Questions

100-A Eric Jones

EmployeeNameProjectID

100-A Donna Smith

100-B Donna Smith

200-A Eric Jones

200-B Eric Jones

64,000.00

EmployeeSalary

70,000.00

70,000.00

64,000.00

64,000.00

200-C Eric Parks

200-C Donna Smith

200-D Eric Parks

58,000.00

70,000.00

58,000.00

FiguRE 3-32

Sample Data for regional
Labs

 CHAPTER 3 The Relational Model and Normalization 205

B. What is the primary key of PROJECT?

C. Are all the non-key attributes (if any) dependent on the primary key?

D. In what normal form is PROJECT?

E. Describe two modification anomalies that affect PROJECT.

F. Is ProjectID a determinant? If so, based on which functional dependencies in
part A?

g. Is EmployeeName a determinant? If so, based on which functional dependencies in
part A?

H. Is (ProjectID, EmployeeName) a determinant? If so, based on which functional de-
pendencies in part A?

i. Is EmployeeSalary a determinant? If so, based on which functional dependencies in
part A?

J. Does this relation contain a transitive dependency? If so, what is it?

K. Redesign the relation to eliminate modification anomalies.

The Queen Anne
Curiosity Shop

Figure 3-33 shows typical sales data for the Queen Anne Curiosity Shop, and
Figure 3-34 shows typical purchase data.

A. Using these data, state assumptions about functional dependencies among the col-
umns of data. Justify your assumptions on the basis of these sample data and also on
the basis of what you know about retail sales.

B. Given your assumptions in part A, comment on the appropriateness of the following
designs:

1. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem, Price, Tax, Total)

2. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem, Price, Tax, Total)

Shire Robert Antique Desk 3,000.00

500.00

50.00

250.00

250.00

350.00 29.05

145.25

103.75

20.75

62.25

20.75

3.74

4.15

83.00

41.50

249.00

750.00

45.00

1,000.00

3,249.00

541.50

1,083.00

1,353.75

1,895.25

379.05

54.15

48.74

270.75

270.75

812.25

1,250.00

1,750.00

Antique Desk Chair

Dining Table Linens

Candles

Candles

Desk Lamp

Dining Table Linens

Book Shelf

Antique Chair

Antique Chair

Antique Candle Holders

206-524-2433

206-524-2433

206-524-4655

206-524-2433

206-524-3544

425-635-9788

425-635-8677

425-635-8677

360-538-7566

206-524-3544

206-524-3544

Robert

Katherine

Chris

John

Robert

Doris

Doris

Donna

Katherine

Katherine

Shire

Shire

Tierney

Tierney

Anderson

Goodyear

Goodyear

Goodyear

Bancroft

Griffith

Total

14-Dec-15

14-Dec-15

15-Dec-15

15-Dec-15

23-Dec-15

10-Jan-16

12-Jan-16

15-Jan-16

15-Jan-16

25-Jan-16

5-Jan-16

LastName FirstName Phone InvoiceDate InvoiceItem Price Tax

FiguRE 3-33

Sample Sales Data for the
Queen anne Curiosity Shop

206 PART 2 Database Design

3. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem, Price, Tax, Total)

4. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem, Price, Tax, Total)

5. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem, Price, Tax, Total)

6. CUSTOMER (LastName, FirstName, Phone, Email)
and
SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

7. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate)
and
SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

8. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
InvoiceItem)
and
SALE (InvoiceDate, Item, Price, Tax, Total)

C. Modify what you consider to be the best design in part B to include surrogate ID
columns called CustomerID and SaleID. How does this improve the design?

PurchasePrice PurchaseDate Vendor Phone

Antique Desk

Antique Desk

Antique Desk Chair

Antique Chair

European Specialties

European Specialties

European Specialties

European Specialties

Linens and Things

Linens and Things

Linens and Things

Linens and Things

Harrison, Denise

Lee, Andrew

Lee, Andrew

New York Brokerage

New York Brokerage

Lamps and Lighting

Lamps and Lighting

Antique Chair

Dining Table Linens

Dining Table Linens

Candles

Candles

Floor Lamp

Desk Lamp

Book Shelf

Antique Desk

Antique Candle Holders

Antique Candle Holders

7-Nov-15

7-Nov-15

7-Nov-15

7-Nov-15

14-Nov-15

14-Nov-15

14-Nov-15

14-Nov-15

21-Nov-15

21-Nov-15

21-Nov-15

28-Nov-15

28-Nov-15

28-Nov-15

28-Nov-15

1,800.00

1,750.00

210.00

200.00

600.00

30.00

300.00

450.00

27.00

150.00

150.00

1,050.00

750.00

300.00

1,000.00

206-325-7866

206-325-7866

206-325-7866

206-325-7866

206-325-6755

206-325-6755

206-325-8977

206-325-8977

206-325-9088

206-325-9088

206-325-6755

206-325-6755

425-746-4322

425-746-5433

425-746-5433

PurchaseItem

FiguRE 3-34

Sample Purchase Data for
the Queen anne Curiosity
Shop

 CHAPTER 3 The Relational Model and Normalization 207

D. Modify the design in part C by breaking SALE into two relations named SALE and
SALE_ITEM. Modify columns and add additional columns as you think necessary.
How does this improve the design?

E. Given your assumptions, comment on the appropriateness of the following designs:

1. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor,
Phone)

2. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor,
Phone)

3. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor,
Phone)

4. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor,
Phone)

5. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate)
and
VENDOR (Vendor, Phone)

6. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate,Vendor)
and
VENDOR (Vendor, Phone)

7. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor)
and
VENDOR (Vendor, Phone)

F. Modify what you consider to be the best design in part E to include surrogate ID col-
umns called PurchaseID and VendorID. How does this improve the design?

g. The relations in your design from part D and part F are not connected. Modify the
database design so that sales data and purchase data are related.

Morgan
Importing

A. James Morgan keeps a table of data about the stores from which he purchases. The
stores are located in different countries and have different specialties. Consider the
following relation:

STORE (StoreName, City, Country, OwnerName, Specialty)

Explain the conditions under which each of the following is true:
1. StoreName S City
2. City S StoreName
3. City S Country
4. (StoreName, Country) S (City, OwnerName)
5. (City, Specialty) S StoreName
6. OwnerName S S StoreName
7. StoreName S S Specialty

B. With regard to the relation in part A:

1. Specify which of the dependencies in part A seem most appropriate for a small
import–export business.

2. Given your assumptions in B.1, transform the STORE table into a set of tables
that are in both 4NF and BCNF. Indicate the primary keys, candidate keys, for-
eign keys, and referential integrity constraints.

208 PART 2 Database Design

C. Consider the relation:

SHIPMENT (ShipmentNumber, ShipperName, ShipperContact, ShipperFax,
DepartureDate, ArrivalDate, CountryOfOrigin, Destination, ShipmentCost,
InsuranceValue, Insurer)

1. Write a functional dependency that expresses the fact that the cost of a shipment
between two cities is always the same.

2. Write a functional dependency that expresses the fact that the insurance value is
always the same for a given shipper.

3. Write a functional dependency that expresses the fact that the insurance value is
always the same for a given shipper and country of origin.

4. Describe two possible multivalued dependencies in SHIPMENT.

5. State what you believe are reasonable functional dependencies for the
SHIPMENT relation for a small import–export business.

6. State what you believe are reasonable multivalued dependencies for the
SHIPMENT relation.

7. Using your assumptions in 5 and 6, transform SHIPMENT into a set of tables
in BCNF and 4NF. Indicate the primary keys, candidate keys, foreign keys, and
referential integrity constraints.

209

In Chapter 3, we defined the relational model, described modification anomalies,

and discussed normalization using BCNF and 4NF. In this chapter, we apply those

concepts to the design of databases that are created from existing data.

The premise of this chapter, as it was in Chapter 3, is that you have received,

from some source, one or more tables of data that are to be stored in a new data-

base. The question is, should that data be stored as is, or should it be transformed

in some way before it is stored? Normalization theory plays an important role, as

you will see.

■■ To recognize and be able to correct common design
problems:
■■ The multivalue, multicolumn problem
■■ The inconsistent values problem
■■ The missing values problem
■■ The general-purpose remarks column problem

■■ To design updatable databases to store data received
from another source

■■ To use SQL to access table structure
■■ To understand the advantages and disadvantages of

normalization
■■ To understand denormalization
■■ To design read-only databases to store data from

updatable databases

Chapter Objectives

Database Design Using
Normalization

4

210 Part 2 Database Design

• Examine data values and interview users to determine:

Multivalued dependencies

Functional dependencies

Candidate keys

Primary keys

Foreign keys

• Assess validity of assumed referential integrity constraints

• Count rows and examine columns

Guidelines for Assessing Table Structure
FIgure 4-1

Guidelines for Assessing
Table Structure

assess table Structure

When someone gives you a set of tables and asks you to construct a database to store them,
your first step should be to assess the tables’ structure and content. General guidelines for as-
sessing a table’s structure are summarized in Figure 4-1.

As shown in Figure 4-1, you should examine the data and determine the functional de-
pendencies, multivalued dependencies, candidate keys, and each table’s primary key. Also,
look for possible foreign keys. Again, you can base your conclusions on sample data, but that
data might not have all of the possible data cases. Therefore, verify your assumptions and
conclusions with the users.

For example, suppose you receive data for the following SKU_DATA and BUYER tables
(with the primary keys logically determined at this point):

SKU_DATA (SKU, SKU_Description, Buyer)
BUYER (Buyer, Department)

Begin by counting the number of rows in each table using the SQL COUNT(*) function.
Then, to determine the number and type of the table’s columns, use an SQL SELECT * state-
ment. If your table has thousands or millions of rows, however, a full query will take consider-
able time. One way to limit the results of this query is to use the SQL TOP {NumberOfRows}
function as discussed in Chapter 2. For example, to obtain all columns for the first 5 rows of
the SKU_DATA table, you would code:

/* *** SQL-Query-CH04-01 *** */

SELECT TOP 5 *

FROM SKU_DATA;

This query will show you all columns and data for 5 rows, as shown in the following results.
If you want the top 50 rows, just use TOP 50 instead of TOP 5, and so on. At this point you should
confirm the primary key and determine the data type of each of the columns in the table.

With regard to foreign keys, it is risky to assume that referential integrity constraints have
been enforced on the data. Instead, check it yourself. Suppose that, after investigation, you
confirm that SKU is the primary key of SKU_DATA and that Buyer is the primary key of

 CHaPter 4 Database Design Using Normalization 211

BUYER. You also think that SKU_DATA.Buyer is likely a foreign key to BUYER.Buyer. The
question is whether the following referential integrity constraint holds:

SKU_DATA.Buyer must exist in BUYER.Buyer

You can use SQL to determine whether this is true. The following query will return any values
of the foreign key that violate the constraint:

/* *** SQL-Query-CH04-02 *** */

SELECT Buyer

FROM SKU_DATA

WHERE Buyer NOT IN

 (SELECT BUYER.Buyer

 FROM SKU_DATA JOIN BUYER

 ON SKU_DATA.Buyer = BUYER.Buyer);

The subquery finds all values of Buyer for which there is a match between SKU_DATA.Buyer
and BUYER.Buyer. If there is any value of Buyer that is not in this subquery, then that value
will be displayed in the results of the main query. All such values violate the referential integ-
rity constraint. In the following actual results of the query on the data in our dataset as shown
in Figure 3-21 (where SKU_DATA appears with the table name SKU_DATA_2), we get an
empty set—there are no values returned in response to the query—which means that there
are no foreign key values that violate the referential integrity constraint.

After you have assessed the input tables, your next steps depend on whether you are creat-
ing an updatable database or a read-only database. We will consider updatable databases first.

Designing updatable Databases

Updatable databases are typically the operational databases of a company, such as the online
transaction processing (OLTP) system discussed for Cape Codd Outdoor Sports at the
beginning of Chapter 2. If you are constructing an updatable database, then you need to be
concerned about modification anomalies and inconsistent data. Consequently, you must care-
fully consider normalization principles. Before we begin, let’s first review the advantages and
disadvantages of normalization.

advantages and Disadvantages of Normalization

Figure 4-2 summarizes the advantages and disadvantages of normalization. On the posi-
tive side, normalization eliminates modification anomalies and reduces data duplication.

Eliminate modification anomalies

Reduce duplicated data

• Eliminate data integrity problems

• Save file space

Single table queries will run faster

• Disadvantages

More complicated SQL required for multitable subqueries and joins

Extra work for DBMS can mean slower applications

• Advantages

Advantages and Disadvantages of NormalizationFIgure 4-2

Advantages and
Disadvantages of
Normalization

212 Part 2 Database Design

On the negative side, normalization requires application programmers to write more
complex SQL. To recover the original data, they must write subqueries and joins to connect
data stored in separate tables. Also, with normalized data, the DBMS must read two or more
tables, and this can mean slower application processing.

Functional Dependencies

As we discussed in Chapter 3, we can eliminate anomalies due to functional dependencies
by placing all tables in BCNF. Most of the time, the problems of modification anomalies are so
great that you should put your tables into BCNF. There are exceptions, however, as you will see.

Normalizing with SQL

As we explained in Chapter 3, a table is in BCNF if all determinants are candidate keys. If any
determinant is not a candidate key, we must break the table into two or more tables. Consider an
example. Suppose you are given the EQUIPMENT_REPAIR table in Figure 4-3 (the same table
shown in Figure 3-10). In Chapter 3, we found that ItemNumber is a determinant but not a candi-
date key. Consequently, we created the EQUIPMENT_ITEM and REPAIR tables shown in Figure
4-4. In these tables, ItemNumber is a determinant and a candidate key of EQUIPMENT_ITEM,
and RepairNumber is a determinant and primary key of REPAIR; thus both tables are in BCNF.

Now, as a practical matter, how do we transform the data in the format in Figure 4-3 to
that in Figure 4-4? To answer that question, we need to use the SQL INSERT statement.
You will learn the particulars of the INSERT statement in Chapter 7. For now, we will use one
version of it to illustrate the practical side of normalization.

First, we need to create the structure for the two new tables in Figure 4-4. If you are using
Microsoft Access, you can follow the procedure in Appendix A to create the tables. Later, in Chapter
7, you will learn how to create tables using SQL, a process that works for all DBMS products.

Once the tables are created, you can fill them using the SQL INSERT command. To fill
the ITEM table, we use:

/* *** SQL-INSERT-CH04-01 *** */

INSERT INTO EQUIPMENT_ITEM

 SELECT DISTINCT ItemNumber, EquipmentType, AcquisitionCost

 FROM EQUIPMENT_REPAIR;

EQUIPMENT_REPAIRFIgure 4-3

The EQUIPMENT_REPAIR
Table

By tHe Way Why do we say reduce data duplication rather than eliminate data duplica-
tion? The answer is that we cannot eliminate all duplicated data because

we must duplicate data in foreign keys. We cannot eliminate Buyer, for example, from
the SKU_DATA table because we would then not be able to relate BUYER and SKU_
DATA rows. Values of Buyer are thus duplicated in the BUYER and SKU_DATA tables.

This observation leads to a second question: If we only reduce data duplication, how
can we claim to eliminate inconsistent data values? Data duplication in foreign keys will not
cause inconsistencies because referential integrity constraints prohibit them. As long as we
enforce such constraints, the duplicate foreign key values will cause no inconsistencies.

Reduced data duplication eliminates the possibility of data integrity problems due to inconsis-
tent data values. It also saves file space.

 CHaPter 4 Database Design Using Normalization 213

Notice that we must use the DISTINCT keyword because the combination (ItemNumber,
EquipmentType, AcquisitionCost) is not unique in the EQUIPMENT_REPAIR table. Once we
have created the rows in EQUIPMENT_ITEM, we can then use the following INSERT com-
mand to fill the rows of REPAIR:

/* *** SQL-INSERT-CH04-02 *** */

INSERT INTO REPAIR

 SELECT RepairNumber, ItemNumber, RepairDate, RepairCost

 FROM EQUIPMENT_REPAIR;

As you can see, the SQL statements for normalizing tables are relatively simple. After
this transformation, we should probably remove the EQUIPMENT_REPAIR table. For
now, you can do this using the graphical tools in Microsoft Access, Microsoft SQL Server,
Oracle Database, or MySQL. In Chapter 7, you will learn how to remove tables using the
SQL DROP TABLE statement. You will also learn how to use SQL to create the refer-
ential integrity constraint:

REPAIR.ItemNumber must exist in ITEM.ItemNumber

If you want to try out this example, download the Microsoft Access 2013 database
Equipment-Repair-Database.accdb from the text’s Web site at www.pearsonglobaleditions.com/
kroenke. This database has the EQUIPMENT_REPAIR table with data. Create the new
tables (see Appendix A) and then do the normalization by executing the SQL INSERT
statements illustrated.

This process can be extended to any number of tables. We will consider richer examples
of it in Chapter 7. For now, however, you should have the gist of the process.

Choosing Not to use BCNF

Although in most cases the tables in an updatable database should be placed in BCNF, in some
situations BCNF is just too pure. The classic example of unneeded normalization involves U.S.
ZIP codes and similar postal codes in other countries (although, in fact, ZIP codes do not always
determine city and state). Consider the following table for customers in the United States:

CUSTOMER (CustomerID, LastName, FirstName, Street, City, State, ZIP)

The functional dependencies of this table are:

CustomerID S (LastName, FirstName, Street, City, State, ZIP)
ZIP S (City, State)

EQUIPMENT_ITEM

REPAIR

FIgure 4-4

The Normalized
EQUIPMENT_ITEM and
REPAIR Relations

http://www.pearsonglobaleditions.com/kroenke
http://www.pearsonglobaleditions.com/kroenke

214 Part 2 Database Design

This table is not in BCNF because ZIP is a determinant that is not a candidate key. We can
normalize this table as follows:

CUSTOMER_2 (CustomerID, LastName, FirstName, Street, ZIP)
ZIP_CODE (ZIP, City, State)

with referential integrity constraint:

CUSTOMER_2.ZIP must exist in ZIP_CODE.ZIP

The tables CUSTOMER_2 and ZIP_CODE are in BCNF, but consider these tables in light of
the advantages and disadvantages of normalization listed in Figure 4-2. Normalization eliminates
modification anomalies, but how often does ZIP code data change? How often does the post of-
fice change the city and state assigned to a ZIP code value? Almost never. The consequences on
every business and person would be too severe. So, even though the design allows anomalies to
occur, in practice, they will not occur because the data never change. Consider the second ad-
vantage: Normalization reduces data duplication and hence improves data integrity. In fact, data
integrity problems can happen in the single-table example if someone enters the wrong value for
City, State, or ZIP. In that case, the database will have inconsistent ZIP values. But normal business
processes will cause ZIP code errors to be noticed, and they will be corrected without a problem.

Now consider the disadvantages of normalization. Two separate tables will require ap-
plication programs to use more complex SQL. They also require the DBMS to process two
tables, which may make the applications slow. Weighing the advantages and disadvantages,
most practitioners would say that the normalized data are just too pure. ZIP code data would
therefore be left in the original table.

In summary, when you design an updatable database from existing tables, examine every
table to determine if it is in BCNF. If it is not, then the table is susceptible to modification anoma-
lies and inconsistent data. In almost all cases, transform the table into tables that are in BCNF.
However, if the data are never modified and if data inconsistencies will be easily corrected via
the normal operation of business activity, then you may choose not to place the table into BCNF.

Multivalued Dependencies

Unlike functional dependencies, the anomalies from multivalued dependencies are so seri-
ous that multivalued dependencies should always be eliminated. Unlike BCNF, there is no
gray area. Just place the columns of a multivalued dependency in tables of their own.

As shown in the last section, using SQL statements to create and populate normalized
tables is not difficult. It does mean that application programmers will have to write subque-
ries and joins to re-create the original data. Writing subqueries and joins, however, is nothing
compared with the complexity of code that must be written to handle the anomalies due to
multivalued dependencies.

Some experts might object to such a hard and fast rule, but it is justifiable. Although
there may be a few rare, obscure, and weird cases in which multivalued dependencies are not
problematic, such cases are not worth remembering. Until you have years of database design
experience, always eliminate multivalued dependencies from any updatable table.

Designing read-Only Databases

Read-only databases are used in business intelligence (BI) systems for producing in-
formation for assessment, analysis, planning, and control, as we discussed for Cape Codd
Outdoor Sports in Chapter 2, and will return to again when we discuss BI in depth in Chapter
12 and Appendix J. Read-only databases are commonly used in a data warehouse, which we
also introduced in Chapter 2. The extracted sales data that we used for Cape Codd Outdoor
Sports in Chapter 2 is a small, but typical example of a read-only database. Because such da-
tabases are updated by carefully controlled and timed procedures, the design guidelines and
design priorities are different than those for operational databases that are frequently updated.

In the course of your career, you will likely be given tables of data and asked to create a
read-only database. In fact, this task is commonly assigned to beginning database administrators.

 CHaPter 4 Database Design Using Normalization 215

For several reasons, normalization is seldom an advantage for a read-only database. For
one, if a database is never updated, then no modification anomalies can occur. Hence, consid-
ering Figure 4-2, the only reason to normalize a read-only database is to reduce data duplica-
tion. However, with no update activity, there is no risk of data integrity problems, so the only
remaining reason to avoid duplicated data is to save file space.

Today, however, file space is exceedingly cheap, nearly free. So unless the database is enor-
mous, the cost of storage is minimal. It is true that the DBMS will take longer to find and process
data in large tables, so data might be normalized to speed up processing. But even that advan-
tage is not clear-cut. If data are normalized, then data from two or more tables may need to be
read, and the time required for the join may overwhelm the time savings of searching in small
tables. In almost all cases, normalization of the tables in a read-only database is a bad idea.

Denormalization

Often the data for a read-only database are extracted from operational databases. Because
such databases are updatable, they are probably normalized. Hence, you will likely receive the
extracted data in normalized form. In fact, if you have a choice, ask for normalized data. For
one, normalized data are smaller in size and can be transmitted to you more quickly. Also, if
the data are normalized, it will be easier for you to reformat the data for your particular needs.

According to the last section, you probably do not want to leave the data in normalized
form for a read-only database. If that is the case, you will need to denormalize, or join, the
data prior to storage.

Consider the example in Figure 4-5. This is a copy of the normalized STUDENT,
ACTIVITY, and PAYMENT data in Figure 3-25. Suppose that you are creating a read-only
database that will be used to report amounts due for student activity payments. If you store
the data in this three-table form, every time someone needs to compare AmountPaid with
ActivityFee, he or she must join the three tables together. To do this, that person will need
to know how to write a three-table join, and the DBMS will need to perform the join every
time the report is prepared.

You can reduce the complexity of the SQL required to read these data and also reduce
DBMS processing by joining the tables once and storing the joined result as a single table.
First use the techniques discussed in Chapter 7 to create a new table named STUDENT_
ACTIVITY_PAYMENT_DATA that will hold the results. The following SQL statement will join
the three tables together and store them in STUDENT_ACTIVITY_PAYMENT_DATA:

/* *** SQL-INSERT-CH04-03 *** */

INSERT INTO STUDENT_ACTIVITY_PAYMENT_DATA

 SELECT STUDENT.StudentID, StudentName,

 ACTIVITY.Activity, ActivityFee,

 AmountPaid

 FROM STUDENT, PAYMENT, ACTIVITY

 WHERE STUDENT.StudentID = PAYMENT.StudentID

 AND PAYMENT.Activity = ACTIVITY.Activity;

As shown in Figure 4-6, the STUDENT_ACTIVITY_PAYMENT_DATA table that results from this
join has the same data as the original STUDENT_ACTIVITY table as shown in Figure 3-24.

As you can see, denormalization is simple. Just join the data together and store the
joined result as a table. By doing this when you place the data into the read-only database,
you save the application programmers from having to code joins for each application, and
you also save the DBMS from having to perform joins and subqueries every time the users
run a query or create a report.

Customized Duplicated tables

Because there is no danger of data integrity problems in a read-only database and because the
cost of storage today is miniscule, read-only databases are often designed with many copies of
the same data, each copy customized for a particular application.

216 Part 2 Database Design

For example, suppose a company has a large PRODUCT table with the columns listed in
Figure 4-7. The columns in this table are used by different business processes. Some are used
for purchasing, some are used for sales analysis, some are used for displaying parts on a Web
site, some are used for marketing, and some are used for inventory control.

The values of some of these columns, such as those for the picture images, are large. If
the DBMS is required to read all of these data for every query, processing is likely to be slow.
Accordingly, the organization might create several customized versions of this table for use
by different applications. In an updatable database, so much duplicated data would risk
severe data integrity problems, but for a read-only database, there is no such risk.

Suppose for this example that the organization designs the following tables:

PRODUCT_PURCHASING (SKU, SKU_Description, VendorNumber,
VendorName, VendorContact_1, VendorContact_2, VendorStreet, VendorCity,
VendorState, VendorZIP)

PRODUCT_USAGE (SKU, SKU_Description, QuantitySoldPastYear,
QuantitySoldPastQuarter, QuantitySoldPastMonth)

PRODUCT_WEB (SKU, DetailPicture, ThumbnailPicture,
MarketingShortDescription, MarketingLongDescription, PartColor)

PRODUCT_INVENTORY (SKU, PartNumber, SKU_Description, UnitsCode,
BinNumber, ProductionKeyCode)

You can create these tables using the graphical design facilities of Access or another DBMS.
Once the tables are created, they can be filled using INSERT commands similar to those al-
ready discussed. The only tricks are to watch for duplicated data and to use DISTINCT where
necessary. See Review Question 4.10.

STUDENT_ACTIVITY_PAYMENT_DATAFIgure 4-6

The Denormalized
STUDENT_ACTIVITY_
PAYMENT_DATA Relation

STUDENT

ACTIVITY

PAYMENTFIgure 4-5

The Normalized STUDENT,
ACTIVITY, and PAYMENT
Relations

 CHaPter 4 Database Design Using Normalization 217

• SKU (Primary Key)

Product

• PartNumber (Candidate key)

• SKU_Description (Candidate key)

• VendorNumber

• VendorName

• VendorContact_1

• VendorContact_2

• VendorStreet

• VendorCity

• VendorState

• VendorZip

• QuantitySoldPastYear

• QuantitySoldPastQuarter

• QuantitySoldPastMonth

• DetailPicture

• ThumbNailPicture

• MarketingShortDescription

• MarketingLongDescription

• PartColor

• UnitsCode

• ProductionKeyCode

• BinNumber

FIgure 4-7

Columns in the PRODUCT
Table

Common Design Problems

Although normalization and denormalization are the primary considerations when designing
databases from existing data, there are four additional practical problems to consider. These
are summarized in Figure 4-8.

The multivalue, multicolumn problem

Practical Problems in Designing
Databases from Existing Data

Inconsistent values

Missing values

General-purpose remarks column

FIgure 4-8

Practical Problems in
Designing Databases from
Existing Data

218 Part 2 Database Design

the Multivalue, Multicolumn Problem

The table in Figure 4-7 illustrates the first common problem. Notice the columns
VendorContact_1 and VendorContact_2. These columns store the names of two contacts at the
part vendor. If the company wanted to store the names of three or four contacts using this strat-
egy, it would add columns VendorContact_3, VendorContact_4, and so forth.

Consider another example for an employee parking application. Suppose the
EMPLOYEE_AUTO table includes basic employee data plus columns for license numbers for
up to three cars. The following is the typical table structure:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName, Email,
Auto1_LicenseNumber, Auto2_LicenseNumber, Auto3_LicenseNumber)

Other examples of this strategy are to store employees’ children’s names in columns such as
Child_1, Child_2, Child_3, and so forth, for as many children as the designer of the table
thinks appropriate, to store a picture of a house in a real estate application in columns labeled
Picture_1, Picture_2, Picture_3, and so forth.

Storing multiple values in this way is convenient, but it has two serious disadvantages. The
more obvious one is that the number of possible items is fixed. What if there are three contacts
at a particular vendor? Where do we put the third name if only columns VendorContact_1
and VendorContact_2 are available? Or, if there are only three columns for child names,
where do we put the name of the fourth child? And so forth.

The second disadvantage occurs when querying the data. Suppose we have the following
EMPLOYEE table:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName, Email,
Child_1, Child_2, Child_3, . . . {other data})

Further, suppose we want to know the names of employees who have a child with the first
name Gretchen. If there are three child name columns as shown in our EMPLOYEE table, we
must write:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH04-03 *** */

SELECT *

FROM EMPLOYEE

WHERE Child_1 = 'Gretchen'

 OR Child_2 = 'Gretchen'

 OR Child_3 = 'Gretchen';

Of course, if there are seven child names . . . well, you get the picture.
These problems can be eliminated by using a second table to store the multivalued attri-

bute. For the employee–child case, the tables are:

EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, . . . {other data})
CHILD (EmployeeNumber, ChildFirstName, . . . {other data})

Using this second structure, employees can have an unlimited number of children, and stor-
age space will be saved for employees who have no children at all. Additionally, to find all of
the employees who have a child named Gretchen, we can code:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH04-04 *** */

 CHaPter 4 Database Design Using Normalization 219

SELECT *

FROM EMPLOYEE

WHERE EmployeeNumber IN

 (SELECT EmployeeNumber

 FROM CHILD

 WHERE ChildFirstName = 'Gretchen');

This second query is easier to write and understand and will work regardless of the number of
children that an employee has. Another advantage of the new design is that we avoid storing a
large number of NULLs in the database. For example, if employees can have up to three cars,
but 99% of employees only have one car, then a lot of space will be wasted storing NULLs for
those employees’ nonexistent second and third cars.

The alternate design does require the DBMS to process two tables, and if the tables are
large and performance is a concern, one can argue that the original design is better. In such
cases, storing multiple values in multiple columns may be preferred. Another, less valid objec-
tion to the two-table design is as follows: “We only need space for three cars because univer-
sity policy restricts each employee to registering no more than three cars.” The problem with
this statement is that databases often outlive policies. Next year that policy may change, and, if
it does, the database will need to be redesigned. As we will discuss in Chapter 8, database re-
design is tricky, complex, and expensive. It is better to avoid the need for a database redesign.

By tHe Way A few years ago, people argued that only three phone number columns
were needed per person: Home, Office, and Fax. Later they said, “Well,

OK, maybe we need four: Home, Office, Fax, and Mobile.” Today, who would want
to guess the maximum number of phone numbers a person might have? Rather than
guess, just store Phone in a separate table; such a design will allow each person to
have from none to an unlimited number of phone numbers.

By tHe Way The multivalue, multicolumn problem is just another form of a multivalued
dependency. For the parking application, for example, rather than store

multiple rows in EMPLOYEE for each auto, multiple named columns are created in the
table. The underlying problem is the same, however.

You are likely to encounter the multivalue, multicolumn problem when creating data-
bases from nondatabase data. It is particularly common in spreadsheet and text data files.
Fortunately, the preferred two-table design is easy to create, and the SQL for moving the data
to the new design is easy to write.

Inconsistent Values

Inconsistent values are a serious problem when creating databases from existing data.
Inconsistencies occur because different users or different data sources may use slightly dif-
ferent forms of the same data value. These slight differences may be hard to detect and will
create inconsistent and erroneous information.

One of the hardest such problems occurs when different users have coded the same en-
tries differently. One user may have coded a SKU_Description as Corn, Large Can; another may
have coded the same item as Can, Corn, Large; and another may have coded the entry as Large
Can Corn. Those three entries all refer to the same SKU, but they will be exceedingly difficult
to reconcile. These examples are not contrived; such problems frequently occur, especially
when combining data from different database, spreadsheet, and file sources.

A related, but simpler, problem occurs when entries are misspelled. One user may enter
Coffee; another may enter Coffeee. They will appear as two separate products.

220 Part 2 Database Design

Inconsistent data values are particularly problematic for primary and foreign key col-
umns. Relationships will be missing or wrong when foreign key data are coded inconsistently
or misspelled.

Two techniques can be used to find such problems. One is the same as the check for ref-
erential integrity shown on page 179. This check will find values for which there is no match
and will find misspellings and other inconsistencies.

Another technique is to use GROUP BY on the suspected column. For example, if we
suspect that there are inconsistent values in the SKU_Description column in the SKU_
DATA table (and note that here we are discussing and using the original SKU_DATA table
with four columns as shown in Figure 2-6, not the three-column version discussed in this
chapter on page 178, even though the query would actually run correctly on either version
of the table), we can use the SQL query:

/* *** SQL-Query-CH04-05 *** */

SELECT SKU_Description, COUNT(*) as SKU_Description_Count

FROM SKU_DATA

GROUP BY SKU_Description;

The result of this query for the SKU_DATA values we have been using is:

In this case, there are no inconsistent values, but if there were, they would stand out. If the
list resulting from the select is too long, groups can be selected that have just one or two ele-
ments using HAVING. Neither check is foolproof. Sometimes, you just have to read the data.

When working with such data, it is important to develop an error reporting and tracking
system to ensure that inconsistencies that users do find are recorded and fixed. Users grow
exceedingly impatient with data errors that persist after they have been reported.

Missing Values

Missing values are a third problem that occurs when creating databases from existing data.
A missing value, or null value (which typically appears in a database table in all upper case
letters as NULL), is a value that has never been provided. It is not the same as a blank value be-
cause a blank value is a value that is known to be blank. A null value is not known to be anything.

The problem with null values is ambiguity. A null value can indicate one of three condi-
tions: The value is inappropriate; the value is appropriate but unknown; or the value is appro-
priate and known, but no one has entered it into the database. Unfortunately, we cannot tell
from a null value which of these conditions is true.

Consider, for example, a null value for the column DateOfLastChildbirth in a PATIENT
table. If a row represents a male patient, then the null occurs because the value is inappropriate;
a male cannot give birth. Alternatively, if the patient is a female, but the patient has never been
asked for the data, then the value is appropriate but unknown. Finally, the null value could also
mean that a date value is appropriate and known, but no one has recorded it into the database.

You can use the SQL comparison operator IS NULL, as discussed in Chapter 2, to check
for null values. For example, to find the number of null values of Quantity in the ORDER_
ITEM table, you can code:

 CHaPter 4 Database Design Using Normalization 221

/* *** SQL-Query-CH04-06 *** */

SELECT COUNT (*) as QuantityNullCount

FROM ORDER_ITEM

WHERE Quantity IS NULL;

The result of this query for the ORDER_ITEM values we have been using is:

In this case, there are no NULL values, but if there were, we would know how many, and then
we could use a SELECT * statement to find the data of any row that has a NULL value.

When creating a database from existing data, if you try to define a column that has null
values as the primary key, the DBMS will generate an error message. You will have to remove
the nulls before creating the primary key. Also, you can tell the DBMS that a given column is
not allowed to have null values, and when you import the data, if any row has a null value in that
column, the DBMS will generate an error message. The particulars depend on the DBMS in use.
See Chapter 10A for Microsoft SQL Server 2014, Chapter 10B for Oracle Corporation’s Oracle
Database, and Chapter 10C for MySQL 5.6. You should form the habit of checking for null
 values in all foreign keys. Any row with a null foreign key will not participate in the relationship.
That may or may not be appropriate—you will need to ask the users to find out. Also, null values
can be problematic when implementing referential integrity while creating and populating a
new database. We will discuss the implications allowing null values in foreign keys in Chapter 7.

A final warning about null values: Users who provide you with data will have often used
other terms or data values when they should have used NULLs. Search for column values
such as “unknown,” “NULL,” the empty string, a string of blanks, or a nonsensical value (e.g., a
 negative number for a salary), and you may find additional places that should use NULL.

the general-Purpose remarks Column

The general-purpose remarks column problem is common, serious, and very difficult to solve.
Columns with names such as Remarks, Comments, and Notes often contain important data
that are stored in an inconsistent, verbal, and verbose manner. Learn to be wary of columns
with any such names.

To see why, consider customer data for a company that sells expensive items such as
airplanes, rare cars, boats, or paintings. In a typical setting, someone has used a spreadsheet
to track customer data. That person used a spreadsheet not because it was the best tool for
such a problem, but rather because he or she had a spreadsheet program and knew how to
use it (although perhaps “thought he or she knew how to use it” would be more accurate).

The typical spreadsheet has columns like LastName, FirstName, Email, Phone, Address,
and so forth. It almost always includes a column titled Remarks, Comments, Notes, or
something similar. The problem is that needed data are usually buried in such columns and
nearly impossible to dig out. Suppose you want to create a database for a customer contact
application for an airplane broker. Assume your design contains the two tables:

CONTACT (ContactID, ContactLastName, ContactFirstName,
Address, . . . {other data}, Remarks, AirplaneModelID)
AIRPLANE_MODEL (AirplaneModelID, AirplaneModelName,
AirplaneModelDescription, . . . {other airplane model data})

where CONTACT.AirplaneModelID is a foreign key to AIRPLANE_MODEL.
AirplaneModelID. You want to use this relationship to determine who owns, has owned, or is
interested in buying a particular model of airplane.

In the typical situation, the data for the foreign key have been recorded in the Remarks
column. If you read the Remarks column data in CONTACT, you will find entries like:
'Wants to buy a Piper Seneca II', 'Owner of a Piper Seneca II', and 'Possible buyer for a
turbo Seneca'. All three of these rows should have a value of AirplaneModelID (the foreign

222 Part 2 Database Design

key in CONTACT) that equals the value of AIRPLANE_MODEL.AirplaneModelID for the
AirplaneModelName of 'Piper Seneca II', but without the proper foreign key value, you would
pull your hair out making that determination.

Another problem with general-purpose remarks columns is that they are used incon-
sistently and contain multiple data items. One user may have used the column to store the
name of the spouse of the contact, another may have used it to store airplane models as just
described, and a third may have used it to store the date the customer was last contacted. Or
the same user may have used it for all three purposes at different times!

The best solution in this case is to identify all of the different purposes of the remarks
column, create new columns for each of those purposes, and then extract the data and store
it in the new columns as appropriate. However, this solution can seldom be automated.

In practice, all solutions require patience and hours of labor. Learn to be wary of such
columns, and don’t take such jobs on a fixed-price basis!

Summary

When constructing a database from existing data, the first
step is to assess the structure and content of the input ta-
bles. Count the number of rows and use the SQL SELECT
TOP {NumberOfRows} * phrase to learn the columns in
the data. Then examine the data and determine functional
dependencies, multivalued dependencies, candidate keys,
each table’s primary key, and foreign keys. Check out the
validity of possible referential integrity constraints.

Design principles differ depending on whether an
updatable or read-only database is being constructed. If the
former, then modification anomalies and inconsistent data
are concerns. The advantages of normalization are elimina-
tion of modification anomalies, reduced data duplication,
and the elimination of data inconsistencies. The disadvan-
tages are that more complex SQL will be required and ap-
plication performance may be slower.

For updatable databases, most of the time the problems
of modification anomalies are so great that all tables should
be placed in BCNF. SQL for normalization is easy to write.
In some cases, if the data will be updated infrequently and if
inconsistencies are readily corrected by business processes,
then BCNF may be too pure and the tables should not be
normalized. The problems of multivalued dependencies are
so great that they should always be removed.

Read-only databases are created for reporting, query-
ing, and data mining applications. Creating such a database
is a task commonly assigned to beginners. When designing

read-only databases, normalization is less desired. If input
data is normalized, it frequently needs to be denormalized
by joining it together and storing the joined result. Also,
sometimes many copies of the same data are stored in tables
customized for particular applications.

Four common problems occur when creating databases
from existing data. The multivalue, multicolumn design sets a
fixed number of repeating values and stores each in a column
of its own. Such a design limits the number of items allowed
and results in awkward SQL query statements. A better design
results from putting multiple values in a table of their own.

Inconsistent values result when data arise from differ-
ent users and applications. Inconsistent foreign key values
create incorrect relationships. Data inconsistencies can be
detected using SQL statements, as illustrated in this chap-
ter. A null value is not the same as a blank. A null value
is not known to be anything. Null values are a problem
because they are ambiguous. They can mean that a value
is inappropriate, unknown, or known but not yet entered
into the database.

The general-purpose remarks column is a column that
is used for different purposes. It collects data items in an
inconsistent and verbose manner. Such columns are espe-
cially problematic if they contain data needed for a foreign
key. Even if they do not, they often contain data for several
different columns. Automated solutions are not possible,
and the correction requires patience and labor.

Key Terms

business intelligence (BI) system
comments column
data warehouse
denormalize
empty set
inconsistent values

multivalue/multicolumn problem
notes column
null value (NULL)
online transaction processing (OLTP)

system
remarks column

SQL COUNT(*) function
SQL DROP TABLE statement
SQL INSERT statement
SQL SELECT * statement
SQL TOP {NumberOfRows}

function

 CHaPter 4 Database Design Using Normalization 223

 4.1 Summarize the premise of this chapter.

 4.2 When you receive a set of tables, what steps should you take to assess their structure
and content?

 4.3 Show SQL statements to count the number of rows and to list the top 15 rows of the
RETAIL_ORDER table.

 4.4 Suppose you receive the following two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, DepartmentName)

and you conclude that EMPLOYEE.DepartmentName is a foreign key to
DEPARTMENT.DepartmentName. Show SQL for determining whether the follow-
ing referential integrity constraint has been enforced:

DepartmentName in EMPLOYEE must exist in DepartmentName in
DEPARTMENT

 4.5 Summarize how database design principles differ with regards to the design of up-
datable databases and the design of read-only databases. What types of systems typi-
cally use updatable and read-only databases?

 4.6 Describe two advantages of normalized tables.

 4.7 Why do we say that data duplication is only reduced? Why is it not eliminated?

 4.8 If data duplication is only reduced, how can we say that the possibility of data incon-
sistencies has been eliminated?

 4.9 Describe two disadvantages of normalized tables.

 4.10 Suppose you are given the table:

EMPLOYEE_DEPARTMENT (EmployeeNumber, EmployeeLastName,
EmployeeFirstName, Email, DepartmentName, BudgetCode)

and you wish to transform this table into the two tables:

DEPARTMENT (DepartmentName, BudgetCode)
EMPLOYEE (EmployeeNumber, EmployeeLastName, EmployeeFirstName,
Email, DepartmentName)

Write the SQL statements needed for filling the EMPLOYEE and DEPARTMENT
tables with data from EMPLOYEE_DEPARTMENT.

 4.11 Summarize the reasons explained in this chapter for not placing ZIP code values
into BCNF.

 4.12 Describe a situation, other than the one for ZIP codes, in which one would choose
not to place tables into BCNF. Justify your decision not to use BCNF.

 4.13 According to this text, under what situations should you choose not to remove multi-
valued dependencies from a relation?

Review Questions

224 Part 2 Database Design

 4.14 Compare the difficulty of writing subqueries and joins with the difficulty of dealing
with anomalies caused by multivalued dependencies.

 4.15 Do you create an updatable or a read-only database for data mining applications?

 4.16 Why is normalization less desired in the case of a read-only database?

 4.17 For read-only databases, how persuasive is the argument that normalization reduces
file space?

 4.18 What is denormalization?

 4.19 Suppose you are given the DEPARTMENT and EMPLOYEE tables in Review
Question 4.10 and asked to denormalize them into the EMPLOYEE_DEPARTMENT
relation. Show the design of the EMPLOYEE_DEPARTMENT relation. Write an SQL
statement to fill this table with data.

 4.20 Why won’t there be data integrity problems in a read-only database?

 4.21 How is customized duplicated table an example for denormalization?

 4.22 List four common design problems when creating databases from existing
data.

 4.23 Give an example of a multivalue, multicolumn table other than one discussed in this
chapter.

 4.24 Explain the problems caused by multivalue, multicolumn tables.

 4.25 Show how to represent the relation in your answer to Review Question 4.23 with two
tables.

 4.26 Show how the tables in your answer to Review Question 4.25 solve the problems you
identified in Review Question 4.24.

 4.27 Explain the following statement: “The multivalue, multicolumn problem is just an-
other form of multivalued dependency.” Show how this is so.

 4.28 What is the difference between ensuring integrity and ensuring consistency?

 4.29 Why are inconsistent values in foreign keys particularly troublesome?

 4.30 Describe two ways to identify inconsistent values. Are these techniques certain to
find all inconsistent values? What other step can be taken?

 4.31 What is a null value? How is it a problem?

 4.32 How does a null value differ from a blank value?

 4.33 What are three interpretations of null values? Use an example in your answer that is
different from the one in this book.

 4.34 Show SQL for determining the number of null values in the column
EmployeeFirstName of the table EMPLOYEE.

 4.35 How does a spreadsheet containing columns with names such as Remarks or
Comments, used to track a company’s customer data, cause a problem? What is this
problem called?

 4.36 Give an example in which the general-purpose remarks column makes it difficult to
obtain values for a foreign key.

 4.37 Give an example in which the general-purpose remarks column causes difficul-
ties when multiple values are stored in the same column. How is this problem
solved?

 4.38 Does the referential integrity constraint apply to a null value?

 CHaPter 4 Database Design Using Normalization 225

Project Questions

The Elliot Bay Sports Club owns and operates three sports club facilities in Houston, Texas.
Each facility has a large selection of modern exercise equipment, weight rooms, and rooms
for yoga and other exercise classes. Elliot Bay offers 3-month and 1-year memberships.
Members can use the facilities at any of the three club locations.

Elliot Bay maintains a roster of personal trainers who operate as independent consul-
tants. Approved trainers can schedule appointments with clients at Elliot Bay facilities as long
as their client is a member of the club. Trainers also teach yoga, Pilates, and other classes.
Answer the following questions, assuming you have been provided the following three tables
of data (PT stands for personal trainer):

PT_SESSION (Trainer, Phone, Email, Fee, ClientLastName, ClientFirstName,
ClientPhone, ClientEmail, Date, Time)
CLUB_MEMBERSHIP (ClientNumber, ClientLastName, ClientFirstName,
ClientPhone, ClientEmail, MembershipType, EndingDate, Street, City,
State, Zip)
CLASS (ClassName, Trainer, StartDate, EndDate, Time, DayOfWeek, Cost)

 4.39 Identify possible multivalued dependencies in these tables.

 4.40 Identify possible functional dependencies in these tables.

 4.41 Determine whether each table is either in BCNF or in 4NF. State your assumptions.

 4.42 Modify each of these tables so that every table is in BCNF and 4NF. Use the assump-
tions you made in your answer to question 4.41.

 4.43 Using these tables and your assumptions, recommend a design for an updatable
database.

 4.44 Add a table to your answer to question 4.43 that would allow Elliot Bay to assign
members to particular classes. Include an AmountPaid column in your new table.

 4.45 Recommend a design for a read-only database that would support the following needs:

a. Enable trainers to ensure that their clients are members of the club.

B. Enable the club to assess the popularity of various trainers.

C. Enable the trainers to determine if they are assisting the same client.

D. Enable class instructors to determine if the attendees to their classes have paid.

Marcia’s Dry Cleaning Case Questions

Marcia Wilson, the owner of Marcia’s Dry Cleaning, is in the process of creating databases to
support the operation and management of her business. For the past year, she and her staff
have been using a cash register system that collects the following data:

SALE (InvoiceNumber, DateIn, DateOut, Total, Phone, FirstName, LastName)

Unfortunately, during rush times, not all of the data are entered, and there are many null
values in Phone, FirstName, and LastName. In some cases, all three are null; in other cases,

Case Questions

226 Part 2 Database Design

one or two are null. InvoiceNumber, DateIn, and Total are never null. DateOut has a few null
values. Also, occasionally during a rush, phone number and name data have been entered
incorrectly. To help create her database, Marcia purchased a mailing list from a local business
bureau. The mailing list includes the following data:

HOUSEHOLD (Phone, FirstName, LastName, Street, City, State, Zip,
Apartment)

In some cases, a phone number has multiple names. The primary key is thus the com-
posite (Phone, FirstName, LastName). There are no null values in Phone, FirstName, and
LastName, but there are some null values in the address data.

There are many names in SALE that are not in HOUSEHOLD, and there are many
names in HOUSEHOLD that are not in SALE.

a. Design an updatable database for storing customer and sales data. Explain how to
deal with the problems of missing data. Explain how to deal with the problems of
incorrect phone and name data.

B. Design a read-only database for storing customer and sales data. Explain how to deal
with the problems of missing data. Explain how to deal with the problems of incor-
rect phone and name data.

The Queen Anne
Curiosity Shop

the Queen anne Curiosity Shop project questions in Chapter 3 asked you to create a
set of relations to organize and link the Queen anne Curiosity Shop typical sales data
shown in Figure 3-33 and the typical purchase data shown in Figure 3-34. the set of
relations may look like the following:

CUSTOMER (CustomerID, LastName, FirstName, Phone, Email)
SALE (SaleID, CustomerID, InvoiceDate, PreTaxTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, PurchaseID, SalePrice)
PURCHASE (PurchaseID, PurchaseItem, PurchasePrice, PurchaseDate,
VendorID)
VENDOR (VendorID, Vendor, Phone)

use these relations and the data in Figures 3-33 and 3-34 to answer the following
questions.

a. Follow the procedure shown in Figure 4-1 to assess these data.
1. List all functional dependencies.
2. List any multivalued dependencies.
3. List all candidate keys.
4. List all primary keys
5. List all foreign keys.
6. State any assumptions you make as you list these components.

B. List questions you would ask the owners of the Queen Anne Curiosity Shop to verify
your assumptions.

C. If there are any multivalued dependencies, create the tables needed to eliminate
these dependencies.

D. Do these data have the multivalue, multicolumn problem? If so, how will you deal with it?

e. Do these data have the inconsistent data problem? If so, how will you deal with it?

F. Do these data have a null value data problem? If so, how will you deal with it?

g. Do these data have the general-purpose remarks problem? If so, how will you deal
with it?

 CHaPter 4 Database Design Using Normalization 227

FIgure 4-9

Spreadsheet from Morgan
Imports

Morgan
Importing

Phillip Morgan, the owner of Morgan Importing, makes periodic buying trips to various
countries. During the trips, he keeps notes about the items he purchases and basic data about
their shipments. He hired a college student as an intern, and she transformed his notes into
the spreadsheets in Figure 4-9. These are just sample data. Phillip has purchased hundreds of
items over the years, and they have been shipped in dozens of different shipments.

Phillip wants to enter the information age, so he has decided to develop a database of his
inventory. He wants to keep track of the items he has purchased, their shipments, and eventu-
ally customers and sales. To get started, he has asked you to create a database for the data in
Figure 4-9.

a. Follow the procedure shown in Figure 4-1 to assess these data.
1. List all functional dependencies.
2. List any multivalued dependencies.
3. List all candidate keys.
4. List all primary keys
5. List all foreign keys.
6. State any assumptions you make as you list these components.

B. List questions you would ask Phillip to verify your assumptions.

C. If there are any multivalued dependencies, create the tables needed to eliminate
these dependencies.

D. The relationship between shipment and item data could possibly be inferred by
matching values in the From cells to values in the City cells. Describe two problems
with that strategy.

e. Describe a change to this spreadsheet that does express the shipment–item
relationship.

F. Assume that Phillip wishes to create an updatable database from these data. Design
tables you think are appropriate. State all referential integrity constraints.

g. Assume that Phillip wishes to create a read-only database from these data. Design
tables you think are appropriate. State all referential integrity constraints.

H. Do these data have the multivalue, multicolumn problem? If so, how will you deal
with it?

I. Do these data have the inconsistent data problem? If so, how will you deal with it?

J. Do these data have a null value data problem? If so, how will you deal with it?

K. Do these data have the general-purpose remarks problem? If so, how will you deal
with it?

In this chapter and the next, we consider the design of databases that arise

from the development of new information systems. As you will learn, such da-

tabases are designed by analyzing requirements and creating a data model, or

blueprint, of a database that will meet those requirements. The data model is then

transformed into a database design.

This chapter addresses the creation of data models using the entity-relationship

data model, the most popular modeling technique. This chapter consists of three

major sections. First, we explain the major elements of the entity-relationship model

and briefly describe several variations on that model. Next, we examine a number

of patterns in forms, reports, and data models that you will encounter when data

modeling. We then illustrate the data modeling process using the example of a

small database at a university. Before starting, however, you need to understand the

purpose of a data model.

Data Modeling with the
Entity-Relationship Model

■■ To understand and be able to use strong entity patterns
■■ To understand and be able to use the ID-dependent

association pattern
■■ To understand and be able to use the ID-dependent

multivalued attribute pattern
■■ To understand and be able to use the ID-dependent

archetype/instance pattern
■■ To understand and be able to use the line-item pattern
■■ To understand and be able to use the for-use-by

pattern
■■ To understand and be able to use recursive patterns
■■ To understand the iterative nature of the data modeling

process
■■ To be able to apply the data modeling process

Chapter Objectives
■■ To understand the two-phase data modeling/database

design process
■■ To understand the purpose of the data modeling process
■■ To understand entity-relationship (E-R) diagrams
■■ To be able to determine entities, attributes, and

relationships
■■ To be able to create entity identifiers
■■ To be able to determine minimum and maximum

cardinalities
■■ To understand variations of the E-R model
■■ To understand and be able to use ID-dependent and

other weak entities
■■ To understand and be able to use supertype/subtype

entities

228

5

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 229

Data modeling occurs in the requirements analysis step of the systems
 development life cycle (SDLC) in the systems analysis and design process. For

an introduction to systems analysis and design and to the SDLC, see Appendix B.

2T. J. Teorey, D. Yang, and J. P. Fry, “A Logical Design Methodology for Relational Databases Using the
Extended Entity-Relationship Model,” ACM Computing Surveys, June 1986, pp. 197–222.

1Peter P. Chen, “The Entity-Relationship Model—Towards a Unified View of Data,” ACM Transactions on
Database Systems, January 1976, pp. 9–36. For information on Peter Chen, see http://en.wikipedia.org/wiki/
Peter_Chen, and for a copy of the article, see http://www2.cis.gsu.edu/dmcdonald/cis8040/Chen.pdf.

The Purpose of a Data Model

A data model is a plan, or blueprint, for a database design—it is a generalized, non-DBMS-specific
design. By analogy, consider the construction of your dorm or apartment building. The con-
tractor did not just buy some lumber, call for the concrete trucks, and start work. Instead, an
architect constructed plans and blueprints for that building long before construction began. If,
during the planning stage, it was determined that a room was too small or too large, the blue-
print could be changed simply by redrawing the lines. If, however, the need for change occurs
after the building is constructed, the walls, electrical system, plumbing, and so on, will need to
be rebuilt, at great expense and loss of time. It is easier, simpler, and faster to change the plan
than it is to change a constructed building.

The same argument applies to data models and databases. Changing a relationship dur-
ing the data modeling stage is just a matter of changing the diagram and related documen-
tation. Changing a relationship after the database and applications have been constructed,
however, is much more difficult. Data must be migrated to the new structure, SQL statements
will need to be changed, forms and reports will need to be altered, and so forth.

By THE WAy Books on systems analysis and design often identify three design stages:

■■ Conceptual design (conceptual schema)
■■ Logical design (logical schema)
■■ Physical design (physical schema)

The data model we are discussing is equivalent to the conceptual design as defined in
these books.

The Entity-Relationship Model

Dozens of different tools and techniques for constructing data models have been defined
over the years. They include the hierarchical data model, the network data model, the ANSI/
SPARC data model, the entity-relationship data model, the semantic object model, and many
others. Of these, the entity-relationship data model has emerged as the standard data model,
and we will consider only that data model in this chapter.

The entity-relationship data model is commonly known as the entity-relationship (E-R)
model and was first published by Peter Chen in 1976.1 In this paper, Chen set out the basic
elements of the model. Subtypes (discussed later) were added to the E-R model to create the
extended E-R model,2 and today it is the extended E-R model that most people mean when
they use the term E-R model. In this text, we will use the extended E-R model.

Entities

An entity is something that users want to track. It is something that is readily identified in the
users’ work environment. Example entities are EMPLOYEE Mary Lai, CUSTOMER 12345,
SALES-ORDER 1000, SALESPERSON Wally Smith, and PRODUCT A4200. Entities of a

http://en.wikipedia.org/wiki/Peter_Chen
http://en.wikipedia.org/wiki/Peter_Chen
http://www2.cis.gsu.edu/dmcdonald/cis8040/Chen.pdf

230 PART 2 Database Design

given type are grouped into an entity class. Thus, the EMPLOYEE entity class is the collec-
tion of all EMPLOYEE entities. In this text, entity classes are shown in capital letters.

It is important to understand the differences between an entity class and an entity in-
stance. An entity class is a collection of entities and is described by the structure of the entities
in that class. An entity instance of an entity class is the occurrence of a particular entity,
such as CUSTOMER 12345. An entity class usually has many instances of an entity. For ex-
ample, the entity class CUSTOMER has many instances—one for each customer represented
in the database. The CUSTOMER entity class and two of its instances are shown in Figure 5-1.

Attributes

Entities have attributes that describe their characteristics. Examples of attributes are
EmployeeNumber, EmployeeName, Phone, and Email. In this text, attributes are written in
both uppercase and lowercase letters. The E-R model assumes that all instances of a given
entity class have the same attributes.

Figure 5-2 shows two different ways of displaying the attributes of an entity. Figure 5-2(a)
shows attributes in ellipses that are connected to the entity. This style was used in the original
E-R model, prior to the advent of data modeling software products. Figure 5-2(b) shows the
rectangle style that is commonly used by data modeling software products today.

Identifiers

Entity instances have identifiers, which are attributes that name, or identify, entity
 instances. For example, EMPLOYEE instances can be identified by EmployeeNumber,
SocialSecurityNumber, or EmployeeName. EMPLOYEE instances are not likely to be iden-
tified by attributes such as Salary or HireDate because these attributes are not normally
used in a naming role. Similarly, customers can be identified by CustomerNumber or
CustomerName, and sales orders can be identified by OrderNumber.

The identifier of an entity instance consists of one or more of the entity’s attributes.
Identifiers that consist of two or more attributes are called composite identifiers.
Examples are (AreaCode, LocalNumber), (ProjectName, TaskName), and (FirstName,
LastName, DateOfHire).

CUSTOMER Entity

CustomerNumber
CustomerName
Street
City
State
Zip
ContactName
Email

Two CUSTOMER Instances

99890
Jones Brothers
434 10th Street
Boston
MA
01234
Fritz Billingsley
Fritz@JB.com

1234
Ajax Manufacturing
123 Elm Street
Memphis
TN
32455
Peter Schwartz
Peter@ajax.com

CUSTOMER

FIguRE 5-1

CUSTOMER Entity and Two
Entity Instances

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 231

As shown in Figure 5-3, entities are portrayed in three levels of detail in a data model. As
shown in Figure 5-3(a), sometimes the entity and all of its attributes are displayed. In such
cases, the identifier of the attribute is shown at the top of the entity and a horizontal line is
drawn under the identifier. However, in a large data model, so much detail can make the data
model diagrams unwieldy. In those cases, the entity diagram is abbreviated by showing just
the identifier, as in Figure 5-3(b), or by showing just the name of the entity in a rectangle, as
shown in Figure 5-3(c). All three techniques are used in practice; the more abbreviated form
in Figure 5-3(c) is used to show the big picture and overall entity relationships. The more
detailed view in Figure 5-3(a) is frequently used during database design. Most data modeling
software products have the ability to show all three displays.

Relationships

Entities can be associated with one another in relationships. The E-R model contains both
relationship classes and relationship instances.3 Relationship classes are associations
among entity classes, and relationship instances are associations among entity instances.
In the original E-R model, relationships could have attributes. Today, that feature is less
 common, and we will not use it.

EMPLOYEE

EMPLOYEE

(b) Attributes in Rectangle(a) Attributes in Ellipses

EmployeeNumber

EmployeeName

Phone

Email

HireDate
ReviewDate

EmployeeName
Phone
Email
HireDate
ReviewDate

EmployeeNumber

FIguRE 5-2

Variations on Entity
Diagram Attribute
Displays in E-R Models

3For brevity, we sometimes drop the word instance when the context makes it clear that an instance rather
than a class is involved.

By THE WAy Notice the correspondence of identifiers and keys. The term identifier is
used in a data model, and the term key (which we have already introduced

in our discussion of relational databases in Chapter 3) is used in a database design.
Thus, entities have identifiers, and tables (or relations) have keys. Identifiers serve the
same role for entities that keys serve for tables.

EMPLOYEE

EmployeeNumber

(a) Entity with All
 Attributes

(b) Entity with Identifier
 Attribute Only

(c) Entity with No
 Attributes

EMPLOYEE

EMPLOYEE

EmployeeName
Phone
Email
HireDate
ReviewDate

EmployeeNumber

FIguRE 5-3

Variations on Level of Entity
Attribute Displays

232 PART 2 Database Design

Relationships are given names that describe the nature of the relationship, as shown
in Figure 5-4. In Figure 5-4(a), the Qualification relationship shows which employees have
which skills. In Figure 5-4(b), the Assignment relationship shows which combinations of
clients, architects, and projects have been created. To avoid unnecessary complexity, in this
chapter we will show the names of relationships only if there is a chance of ambiguity.

EMPLOYEE SKILL

Qualification

(a) Example Binary Relationship

CLIENT ARCHITECT

PROJECT

Assignment

(b) Example Ternary Relationship

FIguRE 5-4

Binary Versus Ternary
Relationships

By THE WAy Your instructor may believe that it is important to always show the name
of a relationship. If so, be aware that you can name a relationship from the

perspective of either of the entities or both. For example, you can name the relationship
between DEPARTMENT and EMPLOYEE as Department Consists Of; or you can name
it as Employee Works In; or you can name it both ways, using a slash between the two
names, Department Consists Of/Employee Works In. Relationship names are a neces-
sity when there are two different relationships between the same two entities.

A relationship class can involve two or more entity classes. The number of entity classes in
the relationship is the degree of the relationship. In Figure 5-4(a), the Qualification relationship
is of degree two because it involves two entity classes: EMPLOYEE and SKILL. In Figure 5-4(b),
the Assignment relationship is of degree three because it involves three entity classes: CLIENT,
ARCHITECT, and PROJECT. Relationships of degree two are referred to as binary relation-
ships. Similarly, relationships of degree three are called ternary relationships.

When transforming a data model into a relational database design, relationships of all
degrees are treated as combinations of binary relationships. The Assignment relationship
in Figure 5-4(b), for example, is decomposed into three binary relationships (can you spot
them?). Most of the time, this strategy is not a problem. However, some nonbinary relation-
ships need additional work, as you will learn in Chapter 6. All data modeling software prod-
ucts require you to express relationships as binary relationships.

By THE WAy At this point, you may be wondering, “What’s the difference between an
entity and a table?” So far, they seem like different terms for the same

thing. The principle difference between an entity and a table is that you can express
a relationship between entities without using foreign keys. In the E-R model, you can
specify a relationship just by drawing a line connecting two entities. Because you are
doing logical data modeling and not physical database design, you need not worry
about primary and foreign keys, referential integrity constraints, and the like. Most data

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 233

In the entity-relationship model, relationships are classified by their cardinality, a word
that means “count.” The maximum cardinality is the maximum number of entity instances
that can participate in a relationship instance. The minimum cardinality is the minimum
number of entity instances that must participate in a relationship instance.

Maximum Cardinality

In Figure 5-5, the maximum cardinality is shown inside the diamond that represents the relation-
ship. The three parts of this figure show the three basic maximum cardinalities in the E-R model.

Figure 5-5(a) shows a one-to-one (abbreviated 1:1) relationship. In a 1:1 relation-
ship, an entity instance of one type is related to at most one entity instance of the other type.
The Employee_Identity relationship in Figure 5-5(a) associates one EMPLOYEE instance
with one BADGE instance. According to this diagram, no employee has more than one badge,
and no badge is assigned to more than one employee.

The Computer_Assignment relationship in Figure 5-5(b) illustrates a one-to-many
 (abbreviated 1:N) relationship. Here a single instance of EMPLOYEE can be associated
with many instances of COMPUTER, but a COMPUTER instance is associated with at most
one instance of EMPLOYEE. According to this diagram, an employee can be associated with
several computers, but a computer is assigned to just one employee.

The positions of the 1 and the N are significant. The 1 is close to the line connecting
EMPLOYEE, which means that the 1 refers to the EMPLOYEE side of the relationship.
The N is close to the line connecting COMPUTER, which means that the N refers to the
COMPUTER side of the relationship. If the 1 and the N were reversed and the relationship
was written N:1, an EMPLOYEE would have one COMPUTER, and a COMPUTER would be
assigned to many EMPLOYEEs.

When discussing one-to-many relationships, the terms parent and child are sometimes
used. The parent is the entity on the 1 side of the relationship, and the child is the entity on

modeling products will allow you to consider such details if you choose to, but they do
not require it.

This characteristic makes entities easier to work with than tables, especially early
in a project when entities and relationships are fluid and uncertain. You can show rela-
tionships between entities before you even know what the identifiers are. For example,
you can say that a DEPARTMENT relates to many EMPLOYEEs before you know any of
the attributes of either EMPLOYEE or DEPARTMENT. This characteristic enables you to
work from the general to the specific. First, identify the entities, then think about rela-
tionships, and, finally, determine the attributes.

EMPLOYEE 1:1

Employee_Identity

Computer_Assignment

Qualification

BADGE

(a) One-to-One Relationship

EMPLOYEE 1:N COMPUTER

(b) One-to-Many Relationship

EMPLOYEE N:M SKILL

(c) Many-to-Many Relationship

FIguRE 5-5

Three Types of Maximum
Cardinality

234 PART 2 Database Design

the many side of the relationship. Thus, in a 1:N relationship between DEPARTMENT and
EMPLOYEE, DEPARTMENT is the parent and EMPLOYEE is the child (one DEPARTMENT
has many EMPLOYEEs).

Figure 5-5(c) shows a many-to-many (abbreviated N:M) relationship. According
to the Qualification relationship, an EMPLOYEE instance can be associated with many SKILL
instances, and a SKILL instance can be associated with many EMPLOYEE instances. This re-
lationship documents the fact that an employee may have many skills and a skill may be held
by many employees.

Sometimes students wonder why we do not write many-to-many relationships as N:N or
M:M. The reason is that cardinality in one direction may be different than the cardinality in the
other direction. In other words, in an N:M relationship, N need not equal M. An EMPLOYEE
can have five skills, for example, but one of those skills can have three employees. Writing the
relationship as N:M highlights the possibility that the cardinalities may be different.

Sometimes the maximum cardinality is an exact number. For example, for a sports
team, the number of players on the roster is limited to some fixed number, say, 15. In
that case, the maximum cardinality between TEAM and PLAYER would be set to 15
rather than to the more general N.

EMPLOYEE 1:1

Employee_Identity

Computer_Assignment

Qualification

BADGE

(a) Mandatory-to-Mandatory (M-M) Relationship

EMPLOYEE 1:N COMPUTER

(b) Optional-to-Optional (O-O) Relationship

EMPLOYEE N:M SKILL

(c) Optional-to-Mandatory (O-M) Relationship

FIguRE 5-6

Examples of Three Types of
Minimum Cardinality

By THE WAy Relationships like those in Figure 5-5 are sometimes called HAS-A
 relationships. This term is used because each entity instance has a rela-

tionship to a second entity instance. An employee has a badge, and a badge has an
employee. If the maximum cardinality is greater than one, then each entity has a set
of other entities. An employee has a set of skills, for example, and a skill has a set of
employees who have that skill.

Minimum Cardinality

The minimum cardinality is the number of entity instances that must participate in a relation-
ship. Generally, minimums are stated as either zero or one. If zero, then participation in the
relationship is optional. If one, then at least one entity instance must participate in the rela-
tionship, which is called mandatory participation. In E-R diagrams, an optional relationship
is represented by a small circle on the relationship line; a mandatory relationship is repre-
sented by a hash mark or line across the relationship line.

To better understand these terms, consider Figure 5-6. In the Employee_Identity rela-
tionship in Figure 5-6(a), the hash marks indicate that an EMPLOYEE is required to have a
BADGE, and a BADGE must be allocated to an EMPLOYEE. Such a relationship is referred

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 235

to as a mandatory-to-mandatory (M-M) relationship because entities are required on
both sides. The complete specification for the Employee_Identity relationship is that it is a 1:1,
M-M relationship.

In Figure 5-6(b), the two small circles indicate that the Computer_Assignment relation-
ship is an optional-to-optional (O-O) relationship. This means that an EMPLOYEE need
not have a COMPUTER and a COMPUTER need not be assigned to an EMPLOYEE. The
Computer_Assignment relationship is thus a 1:N, O-O relationship.

Finally, in Figure 5-6(c), the combination of a circle and a hash mark indicates an
optional-to-mandatory (O-M) relationship. Here an EMPLOYEE must be assigned to at
least one SKILL, but a SKILL may not necessarily be related to any EMPLOYEE. The complete
specification for the Qualification relationship is thus an N:M, O-M relationship. The positions
of the circle and the hash mark are important. Because the circle is next to EMPLOYEE, it
means that the employee is optional in the relationship.

4Integrated Definition for Information Modeling (IDEF1X), Federal Information Processing Standards Publication
184, 1993.

By THE WAy Sometimes when interpreting diagrams like Figure 5-6(c) students become
confused about which entity is optional and which is required. An easy

way to clarify this situation is to imagine that you are standing in the diamond on the
relationship line. Imagine looking toward one of the entities. If you see an oval in that
direction, then that entity is optional; if you see a hash mark, then that entity is required.
Thus, in Figure 5-6(c), if you stand on the diamond and look toward SKILL, you see
a hash mark. This means that SKILL is required in the relationship. If you then turn
around and look toward EMPLOYEE, you see a circle. This means that EMPLOYEE is
optional in the relationship.

A fourth option, a mandatory-to-optional (M-O) relationship, is not shown
in Figure 5-6. But if we exchange the circle and the hash mark in Figure 5-6(c), then
Qualification becomes an M-O relationship. In that case, an EMPLOYEE need not have a
SKILL, but a SKILL must have at least one EMPLOYEE.

As with maximum cardinalities, in rare cases the minimum cardinality is a specific
 number. To represent the relationship between PERSON and MARRIAGE, for example, the
minimum cardinality would be 2:Optional.

Entity-Relationship Diagrams and Their Versions

The diagrams in Figures 5-5 and 5-6 are sometimes referred to as entity-relationship (E-R)
diagrams. The original E-R model specified that such diagrams use diamonds for relationships,
rectangles for entities, and connected ellipses for attributes, as shown in Figure 5-2. You may still
see examples of such E-R diagrams, and it is important for you to be able to interpret them.

For two reasons, however, this original notation is seldom used today. First, there are a
number of different versions of the E-R model, and these versions use different symbols.
Second, data modeling software products use different techniques. For example, Computer
Associates’ ERwin product uses one set of symbols, and Microsoft Visio uses a second set.

Variations of the E-R Model

At least three different versions of the E-R model are in use today. One of them, the
Information Engineering (IE) model, was developed by James Martin in 1990. This
model uses crow’s feet to show the many side of a relationship, and it is called the IE
Crow’s Foot model. It is easy to understand, and we will use it throughout this text. In
1993, the National Institute of Standards and Technology announced another version of
the E-R model as a national standard. This version is called Integrated Definition 1,
Extended (IDEF1X).4 This standard incorporates the basic ideas of the E-R model but

236 PART 2 Database Design

uses different graphical symbols. Although this model is a national standard, it is difficult
to understand and use. As a national standard, however, it is used in government, and thus
it may become important to you. Therefore, the fundamentals of the IDEF1X model are
described in Appendix C.

Meanwhile, to add further complications, a new object-oriented development meth-
odology called the Unified Modeling Language (UML) adopted the E-R model but
 introduced its own symbols while putting an object-oriented programming spin on it. UML
notation is summarized in Appendix D.

DEPARTMENT 1:N EMPLOYEE

(a) Original E-R Model Version

DEPARTMENT EMPLOYEE

Minimum
cardinality (O-M)

Maximum
cardinality (1:N)

(b) Crow’s Foot Version

FIguRE 5-7

Two Versions of a 1:N O-M
Relationship

By THE WAy In addition to differences due to different versions of the E-R model, there
also are differences due to software products. For example, two products

that both implement the IE Crow’s Foot model may do so in different ways. The result is a
mess. When creating a data model diagram, you need to know not just the version of the
E-R model you are using but also the idiosyncrasies of the data modeling product you use.

E-R Diagrams using the IE Crow’s Foot Model

Figure 5-7 shows two versions of a one-to-many, optional-to-mandatory relationship. Figure 5-7(a)
shows the original E-R model version. Figure 5-7(b) shows the crow’s foot model using common
crow’s foot symbols. Notice that the relationship is drawn as a dashed line. The reason for this will
be explained later in this chapter. For now, notice the crow’s foot symbol used to show the
many side of the relationship.

The crow’s foot model uses the notation shown in Figure 5-8 to indicate the relationship
cardinality. The symbol closest to the entity shows the maximum cardinality, and the other sym-
bol shows the minimum cardinality. A hash mark indicates one (and therefore also mandatory),
a circle indicates zero (and thus optional), and the crow’s foot symbol indicates many. Note that,
as indicated in Figure 5-8, we can read the symbols in either purely numeric (“exactly one”) or
semi-numeric (“Mandatory-One”) terms, and which reading is used is a matter of preference.

Thus, the diagram in Figure 5-7(b) means that a DEPARTMENT has one or more
EMPLOYEEs (the symbol shows many and mandatory), and an EMPLOYEE belongs to zero
or one DEPARTMENTs (the symbol shows one and optional).

A 1:1 relationship would be drawn in a similar manner, but the line connecting to each entity
should be similar to the connection shown for the one side of the 1:N relationship in Figure 5-7(b).

Figure 5-9 shows two versions of an N:M, optional-to-mandatory relationship. Modeling
N:M relationships presents some complications. According to the original E-R model diagram
shown in Figure 5-9(a), an EMPLOYEE must have at least one SKILL and may have several.
At the same time, although a SKILL may or may not be held by any EMPLOYEE, a SKILL
may also be held by several EMPLOYEEs. The crow’s foot version in Figure 5-9(b) shows the

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 237

N:M maximum cardinalities using the notation in Figure 5-8. The crow’s foot symbols again
indicate the minimum cardinalities for the N:M relationship.

Except for Appendices C and D, for the rest of this text, we will use the IE Crow’s Foot
model for E-R diagrams. There are no completely standard symbols for the crow’s foot nota-
tion, and we explain our symbols and notation when we first use them. You can obtain various
modeling products that will produce crow’s foot models, and they are easily understood and
related to the original E-R model. Be aware that those other products may use the oval, hash
mark, crow’s foot, and other symbols in slightly different ways. Further, your instructor may
have a favorite modeling tool for you to use. If that tool does not support crow’s feet, you will
have to adapt the data models in this text to your tool.

Meaning

Mandatory—One

Mandatory—Many

Optional—One

Optional—Many

Numeric Meaning

Exactly one

One or more

Zero or one

Zero or more

Symbol
FIguRE 5-8

Crow’s Foot Notation

By THE WAy A number of modeling products are available, and each will have its own
idiosyncrasies. CA Technologies produces ERwin, a commercial data mod-

eling product that handles both data modeling and database design tasks. You can
download the CA ERwin Data Modeler Community Edition, which is suitable for class
use, from CA. You can use ERwin to produce either crow’s foot or IDEF1X data models.

You can also try ER-Assistant, which is free and downloadable from Software
Informer.

Microsoft Visio 2013 is also a possibility. A trial version is available from the Microsoft
Web site. See Appendix F for a full discussion of using Microsoft Visio 2013 for data models.

Finally, Oracle is continuing development of the MySQL Workbench, as described in
this book in Chapters 2 and 10C, and a free (but somewhat limited) version is available

EMPLOYEE SKILL

SKILL

Minimum
cardinality (O-M)

Maximum
cardinality (N:M)

N:M

(a) Original E-R Model Version

EMPLOYEE

(b) Crow’s Foot Version

FIguRE 5-9

Two Versions of an N:M O-M
Relationship

238 PART 2 Database Design

Strong Entities and Weak Entities

A strong entity is an entity that represents something that can exist on its own. For example,
PERSON is a strong entity—we consider people to exist as individuals in their own right.
Similarly, AUTOMOBILE is a strong entity. In addition to strong entities, the original version of
the E-R model included the concept of a weak entity, which is defined as any entity whose
existence depends on the presence of another entity.

ID-Dependent Entities

The E-R model includes a special type of weak entity called an ID-dependent entity. An
 ID-dependent entity is an entity whose identifier includes the identifier of another entity.
Consider, for example, an entity for a student apartment in a building, as shown in Figure 5-10(a).

The identifier of such an entity is a composite (BuildingName, ApartmentNumber),
where BuildingName is the identifier of the entity BUILDING. ApartmentNumber by itself
is insufficient to tell someone where you live. If you say you live in apartment number 5, they
must ask you, “In what building?” Therefore, APARTMENT is ID-dependent on BUILDING.

Figure 5-10 shows three different ID-dependent entities. In addition to APARTMENT
(which is ID-dependent on BUILDING), the entity PRINT in Figure 5-10(b) is ID-dependent
on PAINTING, and the entity EXAM in Figure 5-10(c) is ID-dependent on PATIENT.

In each of these cases, the ID-dependent entity cannot exist unless the parent (the entity
on which it depends) also exists. Thus, the minimum cardinality from the ID-dependent
 entity to the parent is always one.

However, whether the parent is required to have an ID-dependent entity depends on
the application requirements. In Figure 5-10, both APARTMENT and PRINT are optional,

BuildingName

Street
City
State/Province
Zip/PostalCode

BUILDING

APARTMENT

BuildingName
ApartmentNumber

NumberBedrooms
NumberBaths
MonthlyRent

PaintingName

Description
Dimensions
Year
Artist

PAINTING

PRINT

PaintingName
CopyNumber

Condition
PurchasePrice
DatePurchased

PatientName

Phone
Email

PATIENT

EXAM

PatientName
ExamDate

Weight
Height
BloodPressure

(a) APARTMENT Is
ID-Dependent on
BUILDING

(b) PRINT Is
ID-Dependent
on PAINTING

(c) EXAM Is
ID-Dependent
on PATIENT

FIguRE 5-10

Example ID-Dependent
Entities

at the MySQL development Web site. (If you are using a Microsoft operating system, you
should install the MySQL Workbench by downloading and running the MySQL Installer for
Windows). Although it is better at database designs than data models, it is a very useful
tool, and the database designs it produces can be used with any DBMS, not just MySQL.
See Appendix E for a full discussion of using MySQL Workbench for database designs.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 239

but EXAM is required. These restrictions arise from the nature of the application and not
from any logical requirement.

As shown in Figure 5-10, in our E-R models we use an entity with rounded corners to rep-
resent the ID-dependent entity. We also use a solid line to represent the relationship between
the ID-dependent entity and its parent. This type of a relationship is called an identifying re-
lationship. A relationship drawn with a dashed line (refer to Figure 5-7) is used between strong
entities and is called a nonidentifying relationship because there are no ID-dependent enti-
ties in the relationship (ID-dependent entities may participate in other, nonidentifying relation-
ships in addition to their identifying relationships—Figure 5-33 shows an example).

ID-dependent entities pose restrictions on the processing of the database that is con-
structed from them. Namely, the row that represents the parent entity must be created before
any ID-dependent child row can be created. Further, when a parent row is deleted, all child
rows must be deleted as well.

ID-dependent entities are common. Another example is the entity VERSION in the re-
lationship between PRODUCT and VERSION, where PRODUCT is a software product and
VERSION is a release of that software product. The identifier of PRODUCT is ProductName,
and the identifier of VERSION is (ProductName, ReleaseNumber). Yet another example is
EDITION in the relationship between TEXTBOOK and EDITION. The identifier of TEXTBOOK
is Title, and the identifier of EDITION is (Title, EditionNumber).

By THE WAy The parent entity of a child ID-dependent entity is sometimes referred
to as an owner entity. For example, a BUILDING is the owner of the

APARTMENTs within it.

Non-ID-Dependent Weak Entities

All ID-dependent entities are weak entities. But, according to the original E-R model,
some entities that are weak are not ID-dependent. Consider the AUTO_MODEL and
VEHICLE entity classes in the database of a car manufacturer, such as Ford or Honda, as
shown in Figure 5-11.

In Figure 5-11(a), each VEHICLE is assigned a sequential number as it is manufactured.
So, for the manufacturer’s “Super SUV” AUTO_MODEL, the first VEHICLE manufactured
gets a ManufacturingSeqNumber of 1, the next gets a ManufacturingSeqNumber of 2, and so
on. This is clearly an ID-dependent relationship because ManufacturingSeqNumber is based
on the Manufacturer and Model.

Now let’s assign VEHICLE an identifier that is independent of the Manufacturer and
Model. We will use a VIN (vehicle identification number), as shown in Figure 5-11(b). Now
the VEHICLE has a unique identifier of its own and does not need to be identified by its rela-
tion to AUTO_MODEL.

This is an interesting situation. VEHICLE has an identity of its own and therefore is not
 ID-dependent. Yet the VEHICLE is an AUTO_MODEL, and if that particular AUTO_MODEL
did not exist, the VEHICLE itself would never have existed. Therefore, VEHICLE is now a weak
but non-ID-dependent entity.

Consider your car—let’s say it is a Ford Mustang just for the sake of this discussion.
Your individual Mustang is a VEHICLE, and it exists as a physical object and is identi-
fied by the VIN that is required for each licensed automobile. It is not ID-dependent on
AUTO_MODEL, which in this case is Ford Mustang, for its identity. However, if the Ford
Mustang had never been created as an AUTO_MODEL—a logical concept that was first
designed on paper—your car would never have been built because no Ford Mustangs
would ever have been built! Therefore, your physical individual VEHICLE would not
exist without a logical AUTO_MODEL of Ford Mustang, and in a data model (which is
what we’re talking about), a VEHICLE cannot exist without a related AUTO_MODEL.
This makes VEHICLE a weak but non-ID-dependent entity. Most data modeling tools
cannot model non-ID-dependent entities. So, to indicate such situations, we will use a
nonidentifying relationship with a note added to the data model indicating that the en-
tity is weak, as shown in Figure 5-11(b).

240 PART 2 Database Design

The Ambiguity of the Weak Entity

Unfortunately, an ambiguity is hidden in the definition of a weak entity, and this ambiguity is
interpreted differently by different database designers (as well as different textbook authors).
The ambiguity is that in a strict sense, if a weak entity is defined as any entity whose presence
in the database depends on another entity, then any entity that participates in a relationship
having a minimum cardinality of one to a second entity is a weak entity. Thus, in an academic
database, if a STUDENT must have an ADVISER, then STUDENT is a weak entity because a
STUDENT entity cannot be stored without an ADVISER.

This interpretation seems too broad to some people. A STUDENT is not physically de-
pendent on an ADVISER (unlike an APARTMENT to a BUILDING), and a STUDENT is not
logically dependent on an ADVISER (despite how it might appear to either the student or the
adviser), and, therefore, STUDENT should be considered a strong entity.

To avoid such situations, some people interpret the definition of weak entity more
narrowly. They say that to be a weak entity an entity must logically depend on another en-
tity. According to this definition, APARTMENT is a weak entity, but STUDENT is not. An
APARTMENT cannot exist without a BUILDING in which it is located. However, a STUDENT
can logically exist without an ADVISER, even if a business rule requires it.

We agree with the latter approach. Characteristics of ID-dependent and non-ID-
dependent weak entities, as used in this book, are summarized in Figure 5-12.

Subtype Entities

The extended E-R model introduced the concept of subtypes. A subtype entity is a special case
of another entity called its supertype. Students, for example, may be classified as undergrad-
uate or graduate students. In this case, STUDENT is the supertype, and UNDERGRADUATE
and GRADUATE are the subtypes.

Alternatively, a student could be classified as a freshman, sophomore, junior, or senior.
In that case, STUDENT is the supertype, and FRESHMAN, SOPHOMORE, JUNIOR, and
SENIOR are the subtypes.

AUTO_MODEL

Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

VEHICLE

Manufacturer
Model
ManufacturingSeqNumber

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

(a) ID-Dependent Entity

VEHICLE

VIN

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

AUTO_MODEL

Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

(b) Non-ID-Dependent
Weak Entity

Note: VEHICLE is a weak but not
ID-dependent entity.

FIguRE 5-11

Non-ID-Dependent Weak
Entity Example

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 241

As illustrated in Figure 5-13, in our E-R models we use a circle with a line under it as a
subtype symbol to indicate a supertype–subtype relationship. Think of this as a symbol for an
optional (the circle), 1:1 (the line) relationship. In addition, we use a solid line to represent an
ID-dependent subtype entity because each subtype is ID-dependent on the supertype. Also
note that none of the line end symbols shown in Figure 5-8 are used on the connecting lines.

In some cases, an attribute of the supertype indicates which of the subtypes is appropri-
ate for a given instance. An attribute that determines which subtype is appropriate is called
a discriminator. In Figure 5-13(a), the attribute named isGradStudent (which has only the
values Yes and No) is the discriminator. In our E-R diagrams, the discriminator is shown next
to the subtype symbol, as illustrated in Figure 5-13(a). Not all supertypes have a discriminator.
Where a supertype does not have a discriminator, application code must be written to deter-
mine which subtype an entity belongs to.

Subtypes can be exclusive or inclusive (also referred to as disjoint and partial, respectively).
With exclusive subtypes, a supertype instance is related to at most one subtype. With in-
clusive subtypes, a supertype instance can relate to one or more subtypes. In Figure 5-13(a),
the X in the circle means that the UNDERGRADUATE and GRADUATE subtypes are exclu-
sive. Thus, a STUDENT can be either an UNDERGRADUATE or a GRADUATE but not both.
Figure 5-13(b) shows that a STUDENT can join either the HIKING_CLUB or the SAILING_
CLUB or both. These subtypes are inclusive (note there is no X in the circle). Because a super-
type may relate to more than one subtype, inclusive subtypes do not have a discriminator.

Some models include another dimension to subtypes, called the total or partial distinction:
For example, in Figure 5-13(b), can there be students who are in neither club? If so, the subtype/
supertype relationship is partial; if not, it is total. To indicate a total requirement, we would
put a hash mark on the relationship line just below the supertype entity to indicate that the
supertype is mandatory in the relationship.

A weak entity is an entity whose existence depends on another entity.

Weak Entity Summary

An ID-dependent entity is a weak entity whose identifier includes the identifier of
another entity.

Identifying relationships are used to represent ID-dependent entities.

Some entities are weak but not ID-dependent. Using data modeling tools, they are
shown with nonidentifying relationships, with separate documentation indicating
they are weak.

FIguRE 5-12

Summary of ID-Dependent
and Non-ID-Dependent
Weak Entities

STUDENT

StudentID

LastName
FirstName
isGradStudent

STUDENT

StudentID

LastName
FirstName

isGradStudent

GRADUATE

StudentID

UndergraduateGPA
ScoreOnGMAT

UNDERGRADUATE

StudentID

HighSchoolGPA
ScoreOnSAT

(a) Exclusive Subtypes with Discriminator

HIKING_CLUB

StudentID

DateDuesPaid
AmountPaid

SAILING_CLUB

StudentID

DateDuesPaid
AmountPaid

(b) Inclusive Subtypes

FIguRE 5-13

Examples of Subtype
Entities

242 PART 2 Database Design

The elements of the entity-relationship model and their IE Crow’s Foot representation are
summarized in Figure 5-14. The identifier and attributes are shown only in the first example.
Note that, for 1:1 and 1:N nonidentifying relationships, a relationship to a parent entity may
be optional. For identifying relationships, the parent is always required.

By THE WAy The relationships that connect supertypes and subtypes are called IS-A rela-
tionships because a subtype is the same entity as the supertype. Because this

is so, the identifier of a supertype and all its subtypes must be the same; they all represent
different aspects of the same entity. Contrast this with HAS-A relationships, in which an
entity has a relationship to another entity but the identifiers of the two entities are different.

DEPARTMENT

DepartmentName

BudgetCode
OfficeNumber

A B

DEPARTMENT entity; DepartmentName is identifier; BudgetCode and OfficeNumber
are attributes.

1:1, nonidentifying relationship. A relates to zero or one B; B relates to exactly one
A. Identifier and attributes not shown.

1:N, nonidentifying relationship. A relates to one or many Bs; B relates to zero or
one A. Identifier and attributes not shown.

Many-to-many, nonidentifying relationship. A relates to zero or more Bs; B relates to
one or more As. Identifier and attributes not shown.

1:N identifying relationship. A relates to zero, one, or many Bs. B relates to exactly
one A. Identifier and attributes not shown. For identifying relationships, the child
must always relate to exactly one parent. The parent may relate to a combination of
minimum and maximum cardinalities.

A is supertype, C and D are exclusive subtypes. Discriminator not shown. Identifier
and attributes not shown.

A B

A B

A

A

B

DC

A is supertype, C and D are inclusive subtypes. Identifier and attributes not shown.
A

DC

FIguRE 5-14

IE Crow’s Foot Symbol
Summary

The most important (some would say the only) reason for creating subtypes in a data model
is to avoid value-inappropriate nulls. Undergraduate students take the SAT exam and report that
score, whereas graduate students take the GMAT and report their score on that exam. Thus, the
SAT score would be NULL in all STUDENT entities for graduates, and the GMAT score would
be NULL for all undergraduates. Such null values can be avoided by creating subtypes.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 243

Patterns in Forms, Reports, and E-R Models

A data model is a representation of how users view their world. Unfortunately, you cannot
walk up to most computer users and ask questions like, “What is the maximum cardinality
between the EMPLOYEE and SKILL entities?” Few users would have any idea of what you
mean. Instead, you must infer the data model indirectly from user documents and from us-
ers’ conversations and behavior.

One of the best ways to infer a data model is to study the users’ forms and reports. From
such documents, you can learn about entities and their relationships. In fact, the structure of
forms and reports determines the structure of the data model, and the structure of the data
model determines the structure of forms and reports. This means that you can examine a
form or report and determine the entities and relationships that underlie it.

You can also use forms and reports to validate the data model. Rather than showing
the data model to the users for feedback, an alternative is to construct a form or report that
reflects the structure of the data model and obtain user feedback on that form or report. For
example, if you want to know if an ORDER has one or many SALESPERSONs, you can show
the users a form that has a space for entering just one salesperson’s name. If the user asks,
“Where do I put the name of the second salesperson?” then you know that orders have at least
two and possibly many salespeople. Sometimes, when no appropriate form or report exists,
teams create a prototype form or report for the users to evaluate.

All of this means that you must understand how the structure of forms and reports deter-
mines the structure of the data model and the reverse. Fortunately, many forms and reports
fall into common patterns. If you learn how to analyze these patterns, you will be well on your
way to understanding the logical relationship between forms and reports and the data model.
Accordingly, in the next sections, we will discuss the most common patterns in detail.

Strong Entity Patterns

Three relationships are possible between two strong entities: 1:1, 1:N, and N:M. When model-
ing such relationships, you must determine both the maximum and minimum cardinality.
The maximum cardinality often can be determined from forms and reports. In most cases, to
determine the minimum cardinality, you will have to ask the users.

1:1 Strong Entity Relationships
Figure 5-15 shows a data entry form and a report that indicate a one-to-one relationship be-
tween the entities CLUB_MEMBER and LOCKER. The Club Member Locker form in Figure
5-15(a) shows data for an athletic club member, and it lists just one locker for that member.
This form indicates that a club member has at most one locker. The report in Figure 5-15(b)
shows the lockers in the club and indicates the member who has been allocated that locker.
Each locker is assigned to one club member.

The form and report in Figure 5-15 thus suggest that a CLUB_MEMBER has one
LOCKER and a LOCKER is assigned to one CLUB_MEMBER. Hence, the relationship
 between them is 1:1. To model that relationship, we draw a nonidentifying relationship
(meaning neither entity is ID-dependent) between the two entities, as shown in Figure 5-16.
We then set the maximum cardinality to 1:1. You can tell that this is a nonidentifying relation-
ship because the relationship line is dashed. Also, the absence of a crow’s foot indicates that
the relationship is 1:1.

Regarding minimum cardinality, every club member shown in the form has a locker and
every locker shown in the report is assigned to a club member, so it appears that the relation-
ship is mandatory to mandatory. However, this form and report are just instances; they may
not show every possibility. If the club allows social, nonathletic memberships, then not every
club member will have a locker. Furthermore, it is unlikely that every locker is occupied; there
are likely some lockers that are unused and nonallocated. Accordingly, Figure 5-16 shows this
relationship as optional to optional, as indicated by the small circles on the relationship lines.

By THE WAy How do you recognize strong entities? You can use two major tests. First,
does the entity have an identifier of its own? If it shares a part of its identi-

fier with another entity, then it is an ID-dependent entity and is therefore weak. Second,

244 PART 2 Database Design

CLUB_MEMBER

MemberNumber

MemberName
Phone
Email

LOCKER

LockerNumber

LockerRoom
LockerSize

FIguRE 5-16

Data Model for the 1:1
Relationship in Figure 5-15

(b) Club Locker Report

(a) Club Membership Data Entry Form

FIguRE 5-15

Form and Report Indicating
a 1:1 Relationship

does the entity seem to be logically different from and separate from the other entities?
Does it stand alone, or is it part of something else? In this case, a CLUB_MEMBER and
a LOCKER are two very different, separate things; they are not part of each other or of
something else. Hence, they are strong.

Note also that a form or report shows only one side of a relationship. Given entities
A and B, a form can show the relationship from A to B, but it cannot show the relation-
ship from B to A at the same time. To learn the cardinality from B to A, you must exam-
ine a second form or report, ask the users, or take some other action.

Finally, it is seldom possible to infer minimum cardinality from a form or report.
Generally, you must ask the users.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 245

1:N Strong Entity Relationships
Figure 5-17 shows a form that lists the uniforms issued to the club members. A club
member may have many uniforms, so the maximum cardinality from CLUB_MEMBER to
CLUB_UNIFORM is N. But what about the opposite direction? To determine if a uniform
relates to one or N club members, we need to examine a form or report that shows the
relationship from a uniform to a club member. Alternatively, we can talk to the people at
the club who manage the uniforms. We cannot ignore the issue because we need to know
whether the relationship is 1:N or N:M.

In such a case, we must ask the users or at least make a determination by thinking
about the nature of the business setting. Can a uniform be shared by more than one
club member at one time? Because team uniforms have numbers on them to identify
the team members, and because this number is generally issued for an entire season
(think about your favorite baseball, basketball, or football team), this seems unlikely.
Therefore, we can reasonably assume that a CLUB_UNIFORM relates to just one
CLUB_MEMBER. Thus, we conclude the relationship is 1:N. Figure 5-18 shows the
resulting data model. Note that the many side of the relationship is indicated by the
crow’s foot next to CLUB_UNIFORM.

Considering minimum cardinality, it seems reasonable that a CLUB_MEMBER may not
be on a team and, therefore, is not required to have a uniform. Similarly, it seems reasonable
that some uniforms may not be issued during a particular season. We will definitely need
to confirm this by asking the users. Figure 5-18 depicts the situation in which a CLUB_
MEMBER does not have to have a CLUB_UNIFORM and where a CLUB_UNIFORM does
not have to be issued to a CLUB_MEMBER.

(a) CLUB MEMBER UNIFORM Form

FIguRE 5-17

Form and Report Indicating
a 1:N Relationship

(b) CLUB MEMBER UNIFORM Report

246 PART 2 Database Design

N:M Strong Entity Relationships
Figure 5-19(a) shows a form with data about a supplier and the parts it is prepared to supply.
Figure 5-19(b) shows a report that summarizes parts and lists the companies that can supply
those parts. In both cases, the relationship is many: A COMPANY supplies many PARTs, and a
PART is supplied by many COMPANYs. Thus, the relationship is N:M.

(a) Suppliers Form

FIguRE 5-19

Form and Report Indicating
an N:M Relationship

CLUB_MEMBER

MemberNumber

Phone
Email

CLUB_UNIFORM

UniformID

Sport
UniformType
UniformSize
UniformNumber

FIguRE 5-18

Data Model for the 1:N
Relationship in Figure 5-17

(b) PART Report

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 247

Figure 5-20 shows a data model that extends the data model in Figure 5-18 to in-
clude this new relationship. A supplier is a company, so we show the supplier entity as a
COMPANY.

Because not all companies are suppliers, the relationship from COMPANY to PART must
be optional. However, every part must be supplied from somewhere, so the relationship from
PART to COMPANY is mandatory.

In summary, the three types of strong entity relationships are 1:1, 1:N, and N:M. You can
infer the maximum cardinality in one direction from a form or report. You must examine a
second form or report to determine the maximum cardinality in the other direction. If no
form or report that shows the relationship is available, you must ask the users. Generally, it is
not possible to determine minimum cardinality from forms and reports.

ID-Dependent Relationships

Three principal patterns use ID-dependent entities: multivalued attribute, archetype/
instance (also called version/instance), and association. Because the association pattern is
often confused with the N:M strong entity relationships just discussed, we will look at that
pattern first.

The Association Pattern and the Associative Entity
An association pattern is subtly and confusingly similar to an N:M strong relationship. To
see why, examine the report in Figure 5-21 and compare it with the report in Figure 5-19(b).

CompanyName

City
Country
Volume

COMPANY

PART

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

FIguRE 5-20

Data Model for the N:M
Relationship in Figure 5-19

FIguRE 5-21

Report Indicating an
Association Pattern

248 PART 2 Database Design

What is the difference? If you look closely, you’ll see that the only difference is that the
report in Figure 5-21 contains Price, which is the price quotation for a part from a particular
supplier. The first line of this report indicates that the part Cedar Shakes is supplied by Bristol
Systems for $14.00.

Price is neither an attribute of COMPANY nor an attribute of PART. It is an attribute
of the combination of a COMPANY with a PART. Figure 5-22 shows the appropriate data
model for such a case.

Here a third entity, QUOTATION, has been created to hold the Price attribute. This
 entity, which links the other two entities in the data model, is called an associative
entity (or association entity). The identifier of QUOTATION is the combination of
PartNumber and CompanyName. Note that PartNumber is the identifier of PART and
CompanyName is the identifier of COMPANY. Hence, QUOTATION is ID-dependent on
both PART and COMPANY.

In Figure 5-22, then, the relationships between PART and QUOTATION and between
COMPANY and QUOTATION are both identifying. This fact is shown in Figure 5-22 by the
solid, nondashed lines that represent these relationships.

As with all identifying relationships, the parent entities are required. Thus, the mini-
mum cardinality from QUOTATION to PART is one, and the minimum cardinality from
QUOTATION to COMPANY also is one. The minimum cardinality in the opposite direc-
tion is determined by business requirements. Here a PART must have a QUOTATION, but a
COMPANY need not have a QUOTATION.

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

QUOTATION

PartNumber
CompanyName

Price

FIguRE 5-22

Association Pattern Data
Model for the Report in
Figure 5-21

By THE WAy Consider the differences between the data models in Figure 5-20 and
Figure 5-22. The only difference between the two is that in the latter the

relationship between COMPANY and PART has an attribute, Price. Remember this
example whenever you model an N:M relationship. Is there a missing attribute that per-
tains to the combination and not just to one of the entities? If so, you are dealing with
an association, ID-dependent pattern and not an N:M, strong entity pattern.

Associations can occur among more than two entity types. Figure 5-23, for example,
shows a data model for the assignment of a particular client to a particular architect for
a particular project. The attribute of the assignment is HoursWorked. This data model
shows how the ternary relationship in Figure 5-4(b) can be modeled as a combination of
three binary relationships.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 249

The Multivalued Attribute Pattern
In the E-R model as used today,5 attributes must have a single value. If the COMPANY entity
has PhoneNumber and Contact attributes, then a company can have at most one value for
phone number and at most one value for contact.

In practice, however, companies can have more than one phone number and one con-
tact. Consider, for example, the data entry form in Figure 5-24. This particular company has
three phone numbers; other companies might have one or two or four or whatever. We need
to create a data model that allows companies to have multiple phones, and placing the attri-
bute PhoneNumber in COMPANY will not do it.

Figure 5-25 shows the solution. Instead of including PhoneNumber as an attribute
of COMPANY, we create an ID-dependent entity, PHONE, that contains the attribute
PhoneNumber. The relationship from COMPANY to PHONE is 1:N, so a company can
have multiple phone numbers. Because PHONE is an ID-dependent entity, its identifier
includes both CompanyName and PhoneNumber.

We can extend this strategy for as many multivalued attributes as necessary. The
COMPANY data entry form in Figure 5-26 has multivalued Phone and multivalued Contact
attributes. In this case, we just create a separate ID-dependent entity for each multivalued at-
tribute, as shown in Figure 5-27.

ASSIGNMENT

ClientName
ArchitectName
ProjectName

HoursWorked

ArchitectName

Office
Email

ARCHITECT

ClientName

Email
Phone

CLIENT

ProjectName

StartDate
Budget

PROJECT

FIguRE 5-23

Association Pattern Data
Model for the Ternary
Relationship in Figure 5-4

FIguRE 5-24

Data Entry Form with a
Multivalued Attribute

5The original E-R model allowed for multivalued attributes. Over time, that feature has been ignored, and
today most people assume that the E-R model requires single-valued attributes. We will do so in this text.

250 PART 2 Database Design

FIguRE 5-26

Data Entry Form with
Separate Multivalued
Attributes

CompanyName

City
Country
Volume

COMPANY

PHONE

CompanyName
PhoneNumber

FIguRE 5-25

Data Model for the Form
with a Multivalued Attribute
in Figure 5-24

CompanyName

City
Country
Volume

COMPANY

PHONE

CompanyName
PhoneNumber

CONTACT

CompanyName
Contact

FIguRE 5-27

Data Model for the Form
with Separate Multivalued
Attributes in Figure 5-26

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 251

In Figure 5-27, PhoneNumber and Contact are independent. PhoneNumber is the
phone number of the company and not necessarily the phone number of a contact. If
PhoneNumber is not a general company phone number, but rather the phone number of a
particular person at that company, then the data entry form would appear as in Figure 5-28.
Here, for example, Alfred has one phone number and Jackson has another.

In this case, the attributes PhoneNumber and Contact belong together. Accordingly, we
place them into a single ID-dependent entity, as shown in Figure 5-29. Notice that the identi-
fier of PHONE_CONTACT is Contact and CompanyName. This arrangement means that a
given Contact name can appear only once per company. Contacts can share phone numbers,
however, as shown for employees Lynda and Swee. If the identifier of PHONE_CONTACT
was PhoneNumber and CompanyName, then a phone number could occur only once per
company, but contacts could have multiple numbers. Work through these examples to ensure
that you understand them.

In all of these examples, the child requires a parent, which is always the case for ID-
dependent entities. The parent may or may not require a child, depending on the application.
A COMPANY may or may not require a PHONE or a CONTACT. You must ask the users to
determine whether the ID-dependent entity is required.

Multivalued attributes are common, and you need to be able to model them effectively.
Review the models in Figures 5-25, 5-27, and 5-29, and be certain that you understand their
differences and what those differences imply.

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

CompanyName
Contact

PhoneNumber

FIguRE 5-29

Data Model for the Form
with Composite Multivalued
Attributes in Figure 5-28

FIguRE 5-28

Data Entry Form with
Composite Multivalued
Attributes

252 PART 2 Database Design

The Archetype/Instance Pattern
The archetype/instance pattern (also called version/instance) occurs when one entity represents
a manifestation or an instance of another entity. You have already seen one example of arche-
type/instance in the example of PAINTING and PRINT in Figure 5-10. The painting is the
archetype, and the prints made from the painting are the instances of that archetype.

Other examples of archetype/instances are shown in Figure 5-30. One familiar example
concerns classes and sections of classes. The class is the archetype, and the sections of the
class are instances of that archetype. Other examples involve designs and instances of designs.
A yacht manufacturer has various yacht designs, and each yacht is an instance of a particular
design archetype. In a housing development, a contractor offers several different house mod-
els, and a particular house is an instance of that house model archetype.

As with all ID-dependent entities, the parent entity is required. The child entities
(here SECTION, YACHT, and HOUSE) may or may not be required, depending on
 application requirements.

Logically, the child entity of every archetype/instance pattern is an ID-dependent entity. All
three of the examples in Figure 5-30 are accurate representations of the logical structure of the
underlying data. However, sometimes users will add additional identifiers to the instance entity
and in the process change the ID-dependent entity to a weak entity that is not ID-dependent
(note that ID-dependent entities are drawn with rounded corners, while non-ID-dependent weak enti-
ties are drawn with square corners to distinguish them from each other).

For example, although you can identify a SECTION by class name and section, colleges
and universities often will add a unique identifier to SECTION, such as ReferenceNumber. In
that case, SECTION is no longer an ID-dependent entity, but it is still existence dependent on
CLASS. Hence, as shown in Figure 5-31, SECTION is weak but not ID-dependent.

A similar change may occur to the YACHT entity. Although the manufacturer of a yacht
may refer to it by specifying the hull number of a given design, the local tax authority may refer
to it by State and LicenseNumber. If we change the identifier of YACHT from (HullNumber,
DesignName) to (LicenseNumber, State), then YACHT is no longer ID-dependent; it becomes
a weak, non-ID-dependent entity.

Similarly, although the home builder may think of a home as the third house con-
structed according to the Cape Codd design, everyone else will refer to it by its address.
When we change the identifier of HOUSE from (HouseNumber, ModelName) to (Street,
City, State, ZIP), then HOUSE becomes a weak, non-ID-dependent entity. All of these
changes are shown in Figure 5-31.

ClassName

NumberHours
Description

CLASS

SECTION

ClassName
SectionNumber

ClassDays
Time
Professor

DesignName

Description
Length
Beam
NumberStateRooms
NumberHeads

YACHT_DESIGN

YACHT

DesignName
HullNumber

LicenseNumber
State
DateManufactured
DateSold
SalesPrice

ModelName

Description
NumberBedrooms
SquareFootage
GarageSize

HOUSE_MODEL

HOUSE

ModelName
HouseNumber

Street
City
State
Zip

FIguRE 5-30

Three Archetype/Instance
Pattern Examples

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 253

ClassName

NumberHours
Description

CLASS

DesignName

Description
Length
Beam
NumberStateRooms
NumberHeads

YACHT_DESIGN

ModelName

Description
NumberBedrooms
SquareFootage
GarageSize

HOUSE_MODEL

ReferenceNumber

ClassDays
Time
Professor
SectionNumber

SECTION

LicenseNumber
State

HullNumber
DateManufactured
DateSold
SalesPrice

YACHT

Street
City
State
Zip

SECTION, YACHT,
and HOUSE are
weak, but not
ID-dependent,
entities.

HouseNumber

HOUSE

FIguRE 5-31

Three Archetype/
Instance Patterns Using
Non-ID-Dependent
Relationships

By THE WAy Data modelers continue to debate the importance of weak, non-ID-
dependent entities. Everyone agrees that they exist, but not everyone

agrees that they are important.
First, understand that existence dependence influences the way we write database

applications. For the CLASS/SECTION example in Figure 5-31, we must insert a new
CLASS before we can add a SECTION for that class. Additionally, when we delete a
CLASS, we must delete all of the SECTIONs for that CLASS as well. This is one reason
that some data modelers believe that weak, non-ID-dependent entities are important.

Skeptics say that although weak, non-ID-dependent entities may exist, they are
not necessary. They say that we can obtain the same result by calling SECTION strong
and making CLASS required. Because CLASS is required, the application will need to
insert a CLASS before a SECTION is created and delete dependent SECTIONs when
deleting a CLASS. So, according to that viewpoint, there is no practical difference be-
tween a weak, non-ID-dependent entity and a strong entity with a required relationship.

Others disagree. Their argument goes something like this: The requirement that a
SECTION must have a CLASS comes from a logical necessity. It has to be that way—it
comes from the nature of reality. The requirement that a strong entity must have a
 relationship to another strong entity arises from a business rule. Initially, we say that an
ORDER must have a CUSTOMER (both strong entities), and then the application re-
quirements change and we say that we can have cash sales, meaning that an ORDER
no longer has to have a CUSTOMER. Business rules frequently change, but logical ne-
cessity never changes. We need to model weak, non-ID-dependent entities so that we
know the strength of the required parent rule.

And so it goes. You, with the assistance of your instructor, can make up your own
mind. Is there a difference between a weak, non-ID-dependent entity and a strong
 entity with a required relationship? In Figure 5-31, should we call the entities SECTION,
YACHT, and HOUSE strong, as long as their relationships are required? We think not—
we think there is a difference. Others think differently, however.

Mixed Identifying and Nonidentifying Patterns

Some patterns involve both identifying and nonidentifying relationships. The classic example
is the line-item pattern, but there are other instances of mixed patterns as well. We begin with
line items.

254 PART 2 Database Design

The Line-Item Pattern
Figure 5-32 shows a typical sales order, or invoice. Such forms usually have data about the
order itself, such as the order number and order date, data about the customer, data about the
salesperson, and then data about the items on the order. A data model for a typical sales order
or invoice is shown in Figure 5-33.

In Figure 5-33, CUSTOMER, SALESPERSON, and SALES_ORDER are all strong en-
tities, and they have the nonidentifying relationships you would expect. The relationship
from CUSTOMER to SALES_ORDER is 1:N, and the relationship from SALESPERSON
to SALES_ORDER also is 1:N. According to this model, a SALES_ORDER must have
a CUSTOMER and may or may not have a SALESPERSON. All of this is readily
understood.

The interesting relationships concern the line items on the order. Examine the data
grid in the form in Figure 5-32. Some of the data values belong to the order itself, but
other data values belong to items in general. In particular, Quantity and ExtendedPrice
belong to the SALES_ORDER, but ItemNumber, Description, and UnitPrice belong
to ITEM. The lines on an order do not have their own identifier. No one ever says,
“Give me the data for line 12.” Instead, they say, “Give me the data for line 12 of order
12345.” Hence, the identifier of a line is a composite of the identifier of a particular
line and the identifier of a particular order. Thus, entries for line items are always
 ID-dependent on the order in which they appear. In Figure 5-33, ORDER_LINE_ITEM
is ID-dependent on SALES_ORDER. The identifier of the ORDER_LINE_ITEM entity is
(SalesOrderNumber, LineNumber).

Now, and this is the part that is sometimes confusing for some students, ORDER_ LINE_
ITEM is not existence dependent on ITEM. It can exist even if no item has yet been assigned to
it. Further, if an ITEM is deleted, we do not want the line item to be deleted with it. The dele-
tion of an ITEM may make the value of ItemNumber and other data invalid, but it should not
cause the line item itself to disappear.

Now consider what happens to a line item when an order is deleted. Unlike with the
deletion of an item, which only causes data items to become invalid, the deletion of the order
removes the existence of the line item. Logically, a line item cannot exist if its order is deleted.
Hence, line items are existence dependent on orders.

Work through each of the relationships in Figure 5-33 and ensure that you understand
their type and their maximum and minimum cardinalities. Also understand the implications
of this data model. For example, do you see why this sales order data model is unlikely to be
used by a company in which salespeople are on commission?

FIguRE 5-32

Data Entry Form for a
Sales Order

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 255

CustomerID

LastName
FirstName
Address
City
State
ZIP
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber
LineNumber

Quantity
UnitPrice
ExtendedPrice

ItemNumber

UnitPrice
Description

ITEM

FIguRE 5-33

Data Model for the Sales
Order in Figure 5-32

RecipeName

Description
NumberServed

RECIPE

IngredientName

Description
AmountOnHand
StorageLocation

INGREDIENT

INGREDIENT_USE

RecipeName
IngredientNumber

Amount
Instructions

FIguRE 5-34

Mixed Relationship Pattern
for Baking Recipes

Other Mixed Patterns
Mixed identifying and nonidentifying relationships occur frequently. Learn to look for a
mixed pattern when a strong entity has a multivalued composite group and when one of the
elements in the composite group is an identifier of a second strong entity.

Consider, for example, baking recipes. Each recipe calls for a certain amount of a specific
ingredient, such as flour, sugar, or butter. The ingredient list is a multivalued composite group,
but one of the elements of that group, the name of the ingredient, is the identifier of a strong
entity. As shown in Figure 5-34, the recipe and the ingredients are strong entities, but the
amount and instructions for using each ingredient are ID-dependent on RECIPE.

256 PART 2 Database Design

Or consider employees’ skill proficiencies. The name of the skill (which is currently not
listed in EMPLOYEE_SKILL, but will be added as a foreign key in the conversion to a database
design in Chapter 6), the proficiency levels, and the courses taken by the employee are a mul-
tivalued group, but the skill itself is a strong entity, as shown in Figure 5-35. Dozens of other
examples are possible.

Before continuing, compare the models in Figures 5-33, 5-34, and 5-35 with the asso-
ciation pattern in Figure 5-22. Make sure that you understand the differences and why the
model in Figure 5-22 has two identifying relationships and the models in Figures 5-33, 5-34,
and 5-35 have just one.

The For-use-By Pattern

As stated earlier in this chapter, the major reason for using subtypes in a database design
is to avoid value-inappropriate nulls. Some forms suggest the possibility of such nulls when
they show blocks of data fields that are grayed out and labeled “For Use by someone/something
Only.” For example, Figure 5-36 shows two sections shaded in a darker color, one for com-
mercial fishers and another for sport fishers. The presence of these shaded sections indicates
the need for subtype entities.

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

EMPLOYEE_SKILL

EmployeeNumber
SkillNumber

ProficiencyLevel
CourseTaken

FIguRE 5-35

Mixed Relationship Pattern
for Employee Skills

Resident Fishing License
2015 Season

License No:
03-1123432

Name:

Street:

City: State: Zip:

For Use by Commercial Fishers Only For Use by Sport Fishers Only

Vessel Number: Number Years at

This Address:

Vessel Name: Prior Year License

Number:

Vessel Type:

Tax ID:

FIguRE 5-36

Data Entry Form Suggesting
the Need for Subtypes

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 257

The data model for this form is shown in Figure 5-37. Observe that each grayed-out
 section has a subtype. Notice that the subtypes differ not only in their attributes, but that one
has a relationship that the other does not have. Sometimes the only differences between sub-
types are differences in the relationships they have.

The nonidentifying relationship from VESSEL to COMMERCIAL_LICENSE is shown
as 1:N, mandatory to mandatory. In fact, this form does not have sufficient data for us to
conclude that the maximum cardinality from VESSEL to COMMERCIAL_LICENSE is N.
This fact was determined by interviewing users and learning that one boat is sometimes
used by more than one commercial fisher. The minimum cardinalities indicate a com-
mercial fisher must have a vessel and that only vessels that are used for licenses are to be
stored in this database.

The point of this example is to illustrate how forms often suggest the need for subtypes.
Whenever you see a grayed-out or otherwise distinguished section of a form with the words
“For use by . . . ,” think “subtype.”

Recursive Patterns

A recursive relationship, also called a unary relationship, occurs when an entity type
has a relationship to itself. The classic examples of recursive relationships occur in manufac-
turing applications, but there are many other examples as well. As with strong entities, three
types of recursive relationships are possible: 1:1, 1:N, and N:M. Let’s consider each.

1:1 Recursive Relationships
Suppose you are asked to construct a database for a railroad, and you need to make a model
of a freight train. You know that one of the entities is BOXCAR, but how are BOXCARs
 related? To answer that question, envision a train, as shown in Figure 5-38. Except for the
first boxcar, each has one boxcar in front, and, except for the last boxcar, each boxcar has one
boxcar in back. Thus, the relationship is 1:1 between boxcars, with an optional relationship
for the first and last cars.

SPORT_LICENSE

NumberYearsAtAddress
PriorYearLicenseNumber

COMMERCIAL_LICENSE

TaxID

VesselNumber

VesselName
VesselType

VESSEL

LicenseNo

LicenseNoLicenseNo

Name
Address
City
State
Zip

FISHING_LICENSEFIguRE 5-37

Data Model for Form in
Figure 5-36

First Boxcar
Relationship

Next Boxcar
Relationship

Next Boxcar
Relationship

FIguRE 5-38

Freight Train Relationships

258 PART 2 Database Design

Figure 5-39 shows a data model in which each BOXCAR has a 1:1 relationship to the
BOXCAR behind. The BOXCAR entity at the head of the train has a 1:1 relationship to
ENGINE. (This model assumes a train has just one engine. To model trains with multiple en-
gines, create a second recursive relationship among engines. Construct that relationship just
like the Boxcar behind relationship.)

Note that the 1:1 relationship between the ENGINE entity and the BOXCAR entity is
optional—optional (O-O). This is because the BOXCAR entity represents all the BOXCARs
in the train. While the first BOXCAR must be connected directly to the ENGINE, the sec-
ond BOXCAR is not connected to the engine. Therefore, the relationship from ENGINE to
BOXCAR is optional because the ENGINE does not have to be directly connected to each
BOXCAR, and the relationship from BOXCAR to ENGINE is optional because each BOXCAR
does not have to be connected to the ENGINE.

Also note that several years ago we would have also needed a CABOOSE entity to bring
up the rear of the train. Today, railroads are permitted to use an end-of-train marker light on the
last freight car, and there are few cabooses to be seen.

An alternative model is to use the relationship to represent the BOXCAR ahead. Either
model works. Other examples of 1:1 recursive relationships are the succession of U.S. presidents,
the succession of deans in a college of business, and the order of passengers on a waiting list.

1:N Recursive Relationships
The classic example of a 1:N recursive relationship occurs in organizational charts, in which
an employee has a manager who may, in turn, manage several other employees. Figure 5-40
shows an example organizational chart. Note that the relationship between employees is 1:N.

Figure 5-41 shows a data model for the managerial relationship. The crow’s foot
indicates that a manager may manage more than one employee. The relationship is

By THE WAy If you are a casual observer of trains, you may be thinking that a freight
train of all boxcars is unrealistic—what about the refrigerator cars, flat cars,

tank cars, and so on? However, as any railfan or trainspotter (the British term) knows,
unit trains consisting of only one type of freight car are common. Examples are unit
trains of grain cars carrying wheat, hopper cars carrying coal, tanker cars carrying oil
products, and container cars transporting the ubiquitous shipping containers.

Railroad
BoxCarType
Capacity

Boxcar Behind

EngineNumber

Railroad
Type
EngineModel
HorsePower

ENGINE

BoxCarNumber

First Boxcar

BOXCAR

FIguRE 5-39

Data Model for a 1:1
Recursive Relationship

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 259

optional to optional because one manager (the president) has no manager and because
some employees manage no one.

Another example of a 1:N recursive relationship concerns maps. For example, a world
map has a relationship to many continent maps, each continent map has a relationship to
many nation maps, and so forth. A third example concerns biological parents where the rela-
tionship from PERSON to PERSON is shown by tracing either mother or father (but not both).

N:M Recursive Relationships
N:M recursive relationships occur frequently in manufacturing applications, where they are
used to represent bills of materials. Figure 5-42 shows an example.

The key idea of a bill of materials is that one part is composed of other parts. A child’s
red wagon, for example, consists of a handle assembly, a body, and a wheel assembly, each of
which is a part. The handle assembly, in turn, consists of a handle, a bolt, a washer, and a nut.
The wheel assembly consists of wheels, axles, washers, and nuts. The relationship among the
parts is N:M because a part can be made up of many parts and because a part (such as wash-
ers and nuts) can be used in many parts.

The data model for a bill of materials is shown in Figure 5-43. Notice that each part has an
N:M relationship to other parts. Because a part need not have any component parts and because
a part need not have any parts that contain it, the minimum cardinality is optional to optional.

EmployeeName

Other Data . . .

EMPLOYEE

Manages

FIguRE 5-41

Data Model for the
Management Structure
in Figure 5-40 as a 1:N
Recursive Relationship

Sarah

RobinJohn Bob

AndieArthurTae Jonathan RobynKyle Alex

FIguRE 5-40

Organizational Chart
Relationships

Child’s Red
Wagon

Body
Handle

Assembly
Wheel

Assembly

NutBoltHandle Washer AxleWheel

FIguRE 5-42

Bill of Materials

260 PART 2 Database Design

PartName

Other Data . . .

PARTFIguRE 5-43

Data Model for the Bill of
Materials in Figure 5-42 as an
N:M Recursive Relationship

The Data Modeling Process

During the data modeling process, the development team analyzes user requirements and
constructs a data model from forms, reports, data sources, and user interviews. The process
is always iterative; a model is constructed from one form or report and then supplemented
and adjusted as more forms and reports are analyzed. Periodically, users are asked for ad-
ditional information, such as that needed to assess minimum cardinality. Users also review
and validate the data model. During that review, prototype databases evidencing data model
constructs may need to be constructed to help users see how the database would work
(Microsoft Access 2013 is often used for this purpose).

To give you an idea of the iterative nature of data modeling, we will consider the develop-
ment of a simple data model for a university. As you read this example, strive to appreciate
how the model evolves as more and more requirements are analyzed. For a more detailed
version of this data modeling exercise, combined with an overview of the systems analysis and
design process, see Appendix B.

By THE WAy What would happen to the data model if the diagram showed how many
of each part are used? Suppose, for example, that the wheel assembly

requires four washers and the handle assembly requires just one. The data model in
Figure 5-43 will not be correct for this circumstance. In fact, adding Quantity to this
N:M relationship is analogous to adding Price to the N:M relationship in Figure 5-22.
See Project Question 5.63.

N:M recursive relationships can be used to model directed networks, such as the flow of docu-
ments through organizational departments or the flow of gas through a pipeline. They also can be
used to model the succession of parents, in which mothers, fathers, and stepparents are included.

If recursive structures seem hard to comprehend, don’t fret. They may seem strange at first,
but they are not difficult. Work through some data examples to gain confidence. Make up a train
and see how the model in Figure 5-38 applies, or change the example in Figure 5-40 from
 employees to departments and see how the model in Figure 5-41 needs to be adjusted. Once
you have learned to identify recursive patterns, you’ll find it easy to create models for them.

By THE WAy One of the authors worked on a large data model for the U.S. Army’s
logistical system. The model contained more than 500 different entity

types, and it took a team of seven people more than a year to develop, document,
and validate it. On some occasions, the analysis of a new requirement indicated that
the model had been conceived incorrectly, and days of work had to be redone. The
most difficult aspect of the project was managing complexity. Knowing which entities
related to which; whether an entity had already been defined; and whether a new entity
was strong, weak, a supertype, or a subtype required a global understanding of the
model. Memory was of poor help because an entity created in July could be a subtype
of an entity created hundreds of entities earlier in February. To manage the model, the
team used many different administrative tools. Keep this example in mind as you read
through the development of the Highline University data model.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 261

College of Business
Mary B. Jefferson, Dean

Phone: 232-1187
Campus Address:

Business Building, Room 100

Chairperson

Jackson, Seymour P.

HeuTeng, Susan

Brammer, Nathaniel D.

Tuttle, Christine A.

Barnes, Jack T.

Phone

232-1841

232-1414

236-0011

236-9988

236-1184

Total Majors

318

211

247

184

212

Department

Accounting

Finance

Info Systems

Management

Production

FIguRE 5-44

Highline University Sample
College Report

CollegeName

DeanName
Phone
Building
Room

COLLEGE DEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors

FIguRE 5-45

Data Model for the College
Report in Figure 5-44

Suppose the administration at a hypothetical university named Highline University
wants to create a database to track colleges, departments, faculty, and students. To do this, a
data modeling team has collected a series of reports as part of its requirements determination.
In the next sections, we will analyze these reports to produce a data model.

The College Report

Figure 5-44 shows an example report from Highline University about one college within the uni-
versity, the College of Business. This example is one instance of this report; Highline University
has similar reports about other colleges, such as the College of Engineering and the College of
Social Sciences. The data modeling team needs to gather enough examples to form a representa-
tive sample of all the college reports. Here assume that the report in Figure 5-44 is representative.

Examining the report, we find data specific to the college—such as the name, dean,
telephone number, and campus address—and also facts about each department within the
college. These data suggest that the data model should have COLLEGE and DEPARTMENT
entities with a relationship between them, as shown in Figure 5-45.

The relationship in Figure 5-45 is nonidentifying. This relationship is used because
DEPARTMENT is not ID-dependent and, logically, a DEPARTMENT is independent of
a COLLEGE. We cannot tell from the report in Figure 5-44 whether a department can
belong to many colleges. To answer this question, we need to ask the users or look at
other forms and reports.

Assume that we know from the users that a department belongs to just one college, and
the relationship is thus 1:N from COLLEGE to DEPARTMENT. The report in Figure 5-44
does not show us the minimum cardinalities. Again, we must ask the users. Assume we learn
from the users that a college must have at least one department and a department must be
assigned to exactly one college.

The Department Report

The Department Report shown in Figure 5-46 contains departmental data along with a list of
the professors who are assigned to that department. This report contains data concerning the
department’s campus address. Because these data do not appear in the DEPARTMENT entity
in Figure 5-45, we need to add them, as shown in Figure 5-47(a). This is typical of the data
modeling process. That is, entities and relationships are adjusted as additional forms, reports,
and other requirements are analyzed.

262 PART 2 Database Design

Figure 5-47(a) also adds the relationship between DEPARTMENT and PROFESSOR.
We initially model this as an N:M relationship because a professor might have a joint ap-
pointment. The data modeling team must further investigate the requirements to determine
whether joint appointments are allowed. If not, the relationship can be redefined as a non-
identifying 1:N, as shown in Figure 5-47(b).

Another possibility regarding the N:M relationship is that some attribute about the
combination of a professor and a department is missing. If so, then an association pattern is
more appropriate. At Highline, suppose the team finds a report that describes the title and
employment terms for each professor in each department. Figure 5-47(c) shows an entity
for such a report, named APPOINTMENT. As you would expect from the association pattern,
APPOINTMENT is ID-dependent on both DEPARTMENT and PROFESSOR.

A chairperson is a professor, so another improvement on the model is to remove the
Chairperson data from DEPARTMENT and replace it with a chairperson relationship. This
has been done in Figure 5-47(d). In the Chairs/Chaired By relationship, a professor can be the
chair of zero or one departments, and a department must have exactly one professor as chair.

With the Chairs/Chaired By relationship, the attribute Chairperson is no longer
needed in DEPARTMENT, so it is removed. Normally, a chairperson has his or her office
in the department office; if this is the case, Phone, Building, and Room in DEPARTMENT
duplicate Phone, Building, and OfficeNumber in PROFESSOR. Consequently, it might be
possible to remove Phone, Building, and Room from DEPARTMENT. However, a professor
may have a different phone from the official department phone, and the professor may also
have an office outside of the department’s office. Because of this possibility, we will leave
Phone, Building, and Room in DEPARTMENT.

The Department/Major Report

Figure 5-48 shows a report of a department and the students who major in that depart-
ment. This report indicates the need for a new entity called STUDENT. Because stu-
dents are not ID-dependent on departments, the relationship between DEPARTMENT
and STUDENT is nonidentifying, as shown in Figure 5-49. We cannot determine the
 minimum cardinality from Figure 5-48, but assume that interviews with users indicate
that a STUDENT must have a MAJOR, but no MAJOR need have any students. Also, using
the contents of this report as a guide, attributes StudentNumber, StudentName, and Phone
are placed in STUDENT.

There are two subtleties in this interpretation of the report in Figure 5-48. First, observe
that Major’s Name was changed to StudentName when the attribute was placed in STUDENT.
This was done because StudentName is more generic. Major’s Name has no meaning outside
the context of the Major relationship. Additionally, the report heading in Figure 5-48 has an
ambiguity. Is the phone number for the department a value of DEPARTMENT.Phone or a
value of PROFESSOR.Phone? The team needs to investigate this further with the users. Most
likely, it is a value of DEPARTMENT.Phone.

Information Systems Department
College of Business

Chairperson:
Phone:
Campus Address:

Brammer, Nathaniel D
236-0011
Social Science Building, Room 213

Office

Social Science, 219

Social Science, 308

Social Science, 207

Phone

232-7713

232-5791

232-9112

Professor

Jones, Paul D.

Parks, Mary B

Wu, Elizabeth

FIguRE 5-46

Highline University Sample
Department Report

DEPARTMENT.Phone
PROFESSOR.Phone
DEPARTMENT.Phone

ProfessorName

Building
OfficeNumber
Phone

PROFESSOR

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

CollegeName

DeanName
Phone
Building
Room

COLLEGE

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

DepartmentName
ProfessorName

DepartmentName
ProfessorName

Phone
TotalMajors
Building
Room

Chairs/Chaired By

APPOINTMENT

Title
Terms

(a) Data Model Using an N:M Relationship

(c) Data Model Using an Association Pattern

(b) Data Model Using a 1:N Relationship

(d) Data Model Using an Association Pattern
and 1:1 Relationship

DEPARTMENT

DepartmentName

Chairperson
Phone
TotalMajors
Building
Room

FIguRE 5-47

Alternate Data Models
for the DEPARTMENT-to-
PROFESSOR Relationship

263

264 PART 2 Database Design

The Student Acceptance Letter

Figure 5-50 shows the acceptance letter that Highline sends to its incoming students. The
data items in this letter that need to be represented in the data model are shown in boldface.
In addition to data concerning the student, this letter also contains data regarding the stu-
dent’s major department as well as data about the student’s adviser.

We can use this letter to add an Advises/Advised By relationship to the data model.
However, which entity should be the parent of this relationship? Because an adviser is a pro-
fessor, it is tempting to make PROFESSOR the parent. However, a professor acts as an adviser
within the context of a particular department. Therefore, Figure 5-51 shows APPOINTMENT
as the parent of STUDENT. To produce the report in Figure 5-50, the professor’s data can
be retrieved by accessing the related APPOINTMENT entity and then accessing that entity’s
PROFESSOR parent. This decision is not cut and dried, however. One can make a strong ar-
gument that the parent of the relationship should be PROFESSOR.

According to this data model, a student has at most one adviser. Also, a student must have
an adviser, but no professor (via APPOINTMENT) need advise any students. These constraints
cannot be determined from any of the reports shown and will need to be verified with the users.
The acceptance letter uses the title Mr. in the salutation. Therefore, a new attribute called Title
is added to STUDENT. Observe that this Title is different from the one in APPOINTMENT. This
difference will need to be documented in the data model to avoid confusion. The acceptance
letter also shows the need to add new home address attributes to STUDENT.

The acceptance letter reveals a problem. The name of the student is Fred Parks, but we
have allocated only one attribute, StudentName, in STUDENT. It is difficult to reliably disen-
tangle first and last names from a single attribute, so a better model is to have two attributes:
StudentFirstName and StudentLastName. Similarly, note that the adviser in this letter is

Student Major List
Information Systems Department

Chairperson: Brammer, Nathaniel D

Student Number

12345

48127

37512

Phone

237-8713

237-8924

237-9035

Phone: 236-0011

Major’s Name

Jackson, Robin R.

Lincoln, Fred J.

Madison, Janice A.

FIguRE 5-48

Highline University Sample
Department Student Report

Chairs/Chairs By
CollegeName

DeanName
Phone
Building
Room

COLLEGE

StudentNumber

DepartmentName
ProfessorName

StudentName
Phone

STUDENT

ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

FIguRE 5-49

Data Model with STUDENT
Entity

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 265

Elizabeth Johnson. So far, all professor names have been in the format Johnson, Elizabeth. To
accommodate both forms of name, ProfessorName in PROFESSOR must be changed to the
two attributes ProfessorFirstName and ProfessorLastName. A similar change is necessary for
DeanName. These changes are shown in Figure 5-52, which is the final form of this data model.

This section should give you a feel for the nature of a data modeling project. Forms and
reports are examined in sequence, and the data model is adjusted as necessary to accommo-
date the knowledge gained from each new form or report. It is very typical to revise the data
model many, many times throughout the data modeling process. See Project Question 5.64
for yet another possible revision.

Mr. Fred Parks
123 Elm Street
Los Angeles, CA 98002

Dear Mr. Parks:

You have been admitted as a major in the Accounting Department at Highline
University, starting in the Fall Semester, 2015. The office of the Accounting
Department is located in the Business Building, Room 210.

Your adviser is professor Elizabeth Johnson, whose telephone number is 232-
8740 and whose office is located in the Business Building, Room 227. Please
schedule an appointment with your adviser as soon as you arrive on campus.

Congratulations and welcome to Highline University!

Sincerely,

Jan P. Smathers
President

JPS/rkp

FIguRE 5-50

Highline University Sample
Student Acceptance Letter

CollegeName

DeanName
Phone
Building
Room

COLLEGE

ProfessorName

DepartmentName
ProfessorName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Chairs/Chaired By

Advises/Advised By

StudentNumber

Title
StudentName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

Major

FIguRE 5-51

Data Model with
Advises Relationship

266 PART 2 Database Design

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Title
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

ProfessorFirstName
ProfessorLastName

DepartmentName
ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs/Chairs By

Advises/Advised By

FIguRE 5-52

Final Highline University
Data Model

Summary

When databases are developed as part of a new informa-
tion systems project, the database design is accomplished
in two phases. First, a data model is constructed from forms,
reports, data sources, and other requirements. The data
model is then transformed into a database design. A data
model is a blueprint for a database design. Like blueprints
for buildings, data models can be altered as necessary, with
little effort. Once the database is constructed, however, such
alterations are time consuming and very expensive.

The most prominent data model in use today is the
entity-relationship, or E-R, data model. It was invented by
Peter Chen and extended by others to include subtypes. An
entity is something that users want to track. An entity class is
a collection of entities of the same type and is described by
the structure of the entities in the class. An entity instance
is one entity of a given class. Entities have attributes that
describe their characteristics. Identifiers are attributes that
name entity instances. Composite identifiers consist of two
or more attributes.

The E-R model includes relationships, which are asso-
ciations among entities. Relationship classes are associations
among entity classes, and relationship instances are asso-
ciations among entity instances. Today, relationships are not

allowed to have attributes. Relationships can be given names
so that they can be identified.

The degree of a relationship is the number of entity
types that participate in the relationship. Binary relation-
ships have only two entity types. In practice, relationships
of degrees greater than two are decomposed into multiple
binary relationships.

The main difference between an entity and a table is
that you can express an entity relationship without specifying
foreign keys. Working with entities reduces complexity and
makes it easier to revise the data model as work progresses.

Relationships are classified according to their cardi-
nality. Maximum cardinality is the maximum number of
instances that can participate in a relationship instance.
Minimum cardinality is the least number of entities that
must participate in a relationship.

Relationships commonly have one of three maximum
cardinalities: 1:1, 1:N, or N:M. In rare instances, a maxi-
mum cardinality might be a specific number, such as 1:15.
Relationships commonly have one of four basic minimum
cardinalities: optional to optional, mandatory to optional,
optional to mandatory, or mandatory to mandatory. In rare
cases, the minimum cardinality is a specific number.

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 267

Unfortunately, many variations of the E-R model are in
use. The original version represented relationships with dia-
monds. The Information Engineering version uses a line with
a crow’s foot, the IDEF1X version uses another set of symbols,
and UML uses yet another set. To add further complication,
many data modeling products have added their own sym-
bols. In this text, we will use the IE Crow’s Foot model with
symbols, as summarized in Figure 5-14. Other models and
techniques are summarized in Appendices B, C, D, and H.

An ID-dependent entity is an entity whose identifier
includes the identifier of another entity. Such entities use
an identifying relationship. In such relationships, the parent
is always required, but the child (the ID-dependent entity)
may or may not be required, depending on application re-
quirements. Identifying relationships are shown with solid
lines in E-R diagrams.

A weak entity is an entity whose existence depends
on the presence of another entity. All ID-dependent enti-
ties are weak. Additionally, some entities are weak but not
ID-dependent. Some people believe such entities are not
important; others believe they are.

A subtype entity is a special case of another entity
called its supertype. Subtypes may be exclusive or inclusive.
Exclusive subtypes sometimes have discriminators, which
are attributes that specify a supertype’s subtype. The most

Key Terms

association entity
association pattern
associative entity
attribute
binary relationship
cardinality
child
composite identifier
crow’s foot symbol
data model
degree
discriminator
entity
entity class
entity instance
entity-relationship (E-R) diagrams
entity-relationship (E-R) model
exclusive subtype
extended E-R model
HAS-A relationship
ID-dependent entity

identifier
identifying relationship
IE Crow’s Foot model
inclusive subtype
Information Engineering (IE)

model
Integrated Definition 1, Extended

(IDEF1X)
IS-A relationship
mandatory
mandatory-to-mandatory (M-M)

relationship
mandatory-to-optional (M-O)

relationship
many-to-many (N:M) relationship
maximum cardinality
minimum cardinality
nonidentifying relationship
one-to-many (1:N) relationship
one-to-one (1:1) relationship
optional

optional-to-mandatory (O-M)
relationship

optional-to-optional (O-O)
relationship

owner entity
parent
recursive relationship
relationship
relationship class
relationship instance
requirements analysis
strong entity
subtype
supertype
systems analysis and design
systems development life cycle

(SDLC)
ternary relationship
unary relationship
Unified Modeling Language (UML)
weak entity

important (and perhaps only) reason for creating subtypes
in a data model is to avoid value-inappropriate nulls.

A relationship between an entity and itself is a recur-
sive relationship. Recursive relationships can be 1:1, 1:N,
or N:M.

Relationships among nonsubtype entities are called
HAS-A relationships. Relationships among supertype/sub-
type entities are called IS-A relationships.

The elements of a data model are constructed by ana-
lyzing forms, reports, and data sources. Many forms and
reports fall into common patterns. In this text, we discussed
the 1:1, 1:N, and N:M strong entity patterns. We also dis-
cussed three patterns that use ID-dependent relationships:
association, multivalued attribute, and version/instance.
Some forms involve mixed identifying and nonidentifying
patterns. Line items are the classic example of mixed forms,
but there are other examples as well.

The for-use-by pattern indicates the need for subtypes.
In some cases, subtypes differ because they have different
attributes, but they also can differ because they have dif-
ferent relationships. The data modeling process is iterative.
Forms and reports are analyzed, and the data model is cre-
ated, modified, and adjusted as necessary. Sometimes the
analysis of a form or report will require that earlier work be
redone. C’est la vie!

268 PART 2 Database Design

 5.1 Describe the two phases in designing databases that arise from the development of
new information systems.

 5.2 In general terms, explain how a data model could be used to design a database for a
small video rental store.

 5.3 Explain how a data model is like a building blueprint. What is the advantage of mak-
ing changes during the data modeling stage?

 5.4 Name the basic elements of the entity-relationship model.

 5.5 Define entity. Give an example of an entity (other than one presented in this chapter).

 5.6 What is an entity class? Give an example of an entity class and an instance of an entity.

 5.7 List the terms in database design that are equivalent to those in data modeling.

 5.8 What are the factors to be considered when deciding an entity’s identifier?

 5.9 Why do we have composite identifiers?

 5.10 Define relationship. Give an example of a relationship (other than one presented in
this chapter). Name your relationship.

 5.11 Why is it necessary to have relationships between entities?

 5.12 What is the degree of a relationship? Give an example of a relationship of degree
three (other than one presented in this chapter).

 5.13 What is a ternary relationship?

 5.14 Explain the difference between an entity and a table. Why is this difference important?

 5.15 How can relationships of different degrees be transformed into a relational database
design?

 5.16 When designing an E-R model, what is the best strategy to follow?

 5.17 Give examples of 1:1, 1:N, and N:M relationships (other than those presented in this
chapter). Draw two E-R diagrams for each of your examples: one using the traditional
diamond notation and one using IE Crow’s Foot notation.

 5.18 Give an example for which the maximum cardinality must be an exact number other
than those presented in this chapter).

 5.19 Give examples of M-M, M-O, O-M, and O-O relationships (other than those pre-
sented in this chapter). Draw two E-R diagrams for each of your examples: one using
the traditional diamond notation and one using IE Crow’s Foot notation.

 5.20 Explain, in general terms, how the traditional E-R model, the IE Crow’s Foot version, the
IDEF1X version, and the UML version differ. Which version is used primarily in this text?

 5.21 Explain how the notations shown in Figure 5-7 differ.

 5.22 The E-R diagram for an interior design firm has two entities, PROJECT and
CUSTOMER. Assign relationships between them, with both maximum and mini-
mum cardinalities, such that a customer can request for one or more than one proj-
ect and any specific project belongs to only one customer.

 5.23 What is an ID-dependent entity? Give an example of an ID-dependent entity (other
than one presented in this chapter).

 5.24 Explain how to determine the minimum cardinality of both sides of an ID-dependent
relationship.

 5.25 What rules exist when creating an instance of an ID-dependent entity? What rules
exist when deleting the parent of an ID-dependent entity?

Review Questions

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 269

 5.26 How can you identify an ID-dependent entity?

 5.27 Explain why the relationship between BUILDING and APARTMENT discussed on
page 206 is an identifying relationship.

 5.28 What are the ways to represent ID-dependent entities in E-R models?

 5.29 What distinguishes a weak entity from a strong entity that has a required relationship
to another entity?

 5.30 Define subtype and supertype. Give an example of a subtype–supertype relationship
(other than one presented in this chapter).

 5.31 Explain the difference between exclusive subtypes and inclusive subtypes. Give an
example of each.

 5.32 How can you differentiate between an ID-dependent entity and a weak, non-ID-
dependent entity?

 5.33 Design an E-R model for an event planner, using subtype entities to indicate the fee
for planning different types of events such as business conferences, weddings, exposi-
tions and exhibitions.

 5.34 How do you design the E-R model in the above question without using subtype entities?

 5.35 Describe the relationship between the structure of forms and reports and the data model.

 5.36 Explain two ways forms and reports are used for data modeling.

 5.37 Explain why the form and report in Figure 5-15 indicate that the underlying relation-
ship is 1:1.

 5.38 Why is it not possible to infer minimum cardinality from the form and report in
Figure 5-15?

 5.39 Describe two tests for determining if an entity is a strong entity.

 5.40 Why does the form in Figure 5-17 not indicate that the underlying relationship is
1:N? What additional information is required to make that assertion?

 5.41 Design an E-R model with two entities, FASHION DESIGNER and SHOW. Also
specify the possible weak entities in the model.

 5.42 How can you assess minimum cardinality for the entities in the form in Figure 5-17?

 5.43 Explain why the form and report in Figure 5-19 indicate that the underlying
 relationship is N:M.

 5.44 Design an E-R model for a fitness club that enrolls members in a variety of classes
run by different trainers.

 5.45 Explain how the association pattern differs from the N:M strong entity pattern. What
characteristic of the report in Figure 5-21 indicates that an association pattern is needed?

 5.46 In general terms, explain how to differentiate an N:M strong entity pattern from an
association pattern.

 5.47 Design an E-R diagram that consists of two entities and a multivalued attribute.

 5.48 How do the forms in Figures 5-26 and 5-28 differ? How does this difference affect
the data model?

 5.49 Describe, in general terms, the archetype/instance pattern. Why is an ID-dependent
relationship needed for this pattern? Use the CLASS/SECTION example shown in
Figure 5-30 in your answer.

 5.50 Design an E-R diagram that has an ID-dependent entity. How can you change it to a
weak but non ID-dependent entity?

 5.51 Summarize the two sides in the argument about the importance of weak but not ID-
dependent entities.

 5.52 Give an example of the line-item pattern as it could be used to describe the contents of a
shipment. Assume that the shipment includes the names and quantities of various items
as well as each item’s insured value. Place the insurance value per item in an ITEM entity.

270 PART 2 Database Design

 5.53 What entity type should come to mind when you see the words “For use by” in a form?

 5.54 Give examples of 1:1, 1:N, and N:M recursive relationships (other than those pre-
sented in this chapter).

 5.55 Explain why the data modeling process must be iterative. Use the Highline University
example.

Project Questions

Answer the following questions using IE Crow’s Foot notation.

 5.56 Examine the subscription form shown in Figure 5-53. Using the structure of this
form, do the following:

A. Create a model with one entity. Specify the identifier and attributes.

B. Create a model with two entities, one for customer and a second for subscrip-
tion. Specify identifiers, attributes, relationship name, type, and cardinalities.

C. Under what conditions do you prefer the model in A to that in B?

D. Under what conditions do you prefer the model in B to that in A?

 5.57 Examine the list of email messages in Figure 5-54. Using the structure and example
data items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and all entities.

B. Modify your answer to A to include entities SENDER and SUBJECT. Specify
the identifiers and attributes of entities and the types and cardinalities of the
relationships. Explain which cardinalities can be inferred from Figure 5-54 and
which need to be checked out with users.

C. The email address in the From column in Figure 5-54 is in two different styles.
One style has the true email address; the second style (e.g., Tom Cooper) is the
name of an entry in the user’s email directory. Create two categories of SENDER
based on these two styles. Specify identifiers and attributes.

 5.58 Examine the list of stock quotes in Figure 5-55. Using the structure and example data
items in this list, do the following:

A. Create a single-entity data model for this list. Specify the identifier and attributes.

1 year (6 issues) for just $18—20% off the newsstand price.
(Outside the U.S. $21/year—U.S. funds, please)

Subscription Form

2 years (12 issues) for just $34—save 24%
(Outside the U.S. $40/2 years—U.S. funds, please)

Name

Address

City

My payment is enclosed.
Please start my subscription with current issue next issue

Please bill me.

State Zip

.

FIguRE 5-53

Subscription Form

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 271

FIguRE 5-54

Email List

FIguRE 5-55

Stock Quotations

B. Modify your answer to A to include the entities COMPANY and INDEX. Specify
the identifier and attributes of the entities and the types and cardinalities of the
relationships. Explain which cardinalities can be inferred from Figure 5-55 and
which need to be checked out with users.

C. The list in Figure 5-55 is for a quote on a particular day at a particular time of
day. Suppose that the list were changed to show closing daily prices for each of
these stocks and that it includes a new column: QuoteDate. Modify your model
in B to reflect this change.

D. Change your model in C to include the tracking of a portfolio. Assume the port-
folio has an owner name, a phone number, an email address, and a list of stocks
held. The list includes the identity of the stock and the number of shares held.
Specify all additional entities, their identifiers and attributes, and the type and
cardinality of each relationship.

E. Change your answer to part D to keep track of portfolio stock purchases and
sales in a portfolio. Specify entities, their identifiers and attributes, and the type
and cardinality of each relationship.

272 PART 2 Database Design

 5.59 Figure 5-56 shows the specifications for single-stage air compressor products.
Note that there are two product categories that are based on Air Performance: The
A models are at 125 pounds per square inch of pressure, and the C models are at
150 pounds per square inch of pressure. Using the structure and example data items
in this list, do the following:

A. Create a set of exclusive subtypes to represent these compressors. The supertype
will have attributes for all single-stage compressors, and the subtypes will have at-
tributes for products having the two different types of Air Performance. Assume
that there might be additional products with different types of Air Performance.
Specify the entities, identifiers, attributes, relationships, type of category cluster,
and possible determinant.

B. Figure 5-57 shows a different model for the compressor data. Explain the enti-
ties, their types, the relationship, its type, and its cardinality. How well do you
think this model fits the data shown in Figure 5-56?

C. Compare your answer in part A with the model in Figure 5-56. What are the es-
sential differences between the two models? Which do you think is better?

FIguRE 5-56

Air Compressor
Specifications

Model

HP
Tank Gal
ApproxShipWeight
Length
Width
Height

SS_COMPRESSOR
AIR_PERFORMANCE_TYPE

Model
AirPerformance

PumpRPM
CFMDisp
Del’dAir

2

FIguRE 5-57

Alternative Model for Air
Compressor Data

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 273

D. Suppose you had the job of explaining the differences in these two models to a
highly motivated, intelligent end user. How would you accomplish this?

 5.60 Figure 5-58 shows a listing of movie times at theaters in Seattle, Washington. Using
the data in this figure as an example, do the following:

A. Create a model to represent this report using the entities MOVIE, THEATER, and
SHOW_TIME. Assume that theaters may show multiple movies. Although this
report is for a particular day, your data model should allow for movie times on
different days as well. Specify the identifiers of the entities and their attributes.
Name the relationships and the type and cardinality of each relationship. Explain
which cardinalities you can logically deduce from Figure 5-58 and which need
to be checked out with users. Assume that distance is an attribute of THEATER.

B. This report was prepared for a user who is located near downtown Seattle.
Suppose that it is necessary to produce this same report for these theaters, but
for a user located in a Seattle suburb, such as Bellevue, Renton, Redmond, or
Tacoma. In this case, distance cannot be an attribute of THEATER. Change your
answer in A for this situation. Specify the entity identifiers and attributes. Name
the relationships and identify the type and cardinality of each relationship.

C. Suppose that you want to make this data model national. Change your answer
to B so that it can be used for other metropolitan areas. Change your answer in

FIguRE 5-58

Movie Time Listing

274 PART 2 Database Design

A for this situation. Specify the entity identifiers and attributes. Name the rela-
tionships and identify the type and cardinality of each relationship.

D. Modify your answer to C to include the leading cast members. Assume that the
role of a cast member is not to be modeled. Specify the identifiers of new entities
and their attributes. Name the relationships and identify the type and cardinality
of each relationship.

E. Modify your answer to C to include the leading cast members. Assume that the
role of a cast member is specified. Specify the identifiers of new entities and
their attributes. Name the relationships and identify the type and cardinality of
each relationship.

 5.61 Consider the three reports in Figure 5-59. The data are samples of data that would
appear in the reports like these.

A. Make a list of as many potential entities as these reports suggest.

FIguRE 5-59

Cereal Product Reports

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 275

B. Examine your list to determine whether any entities are synonyms. If so, consoli-
date your list.

C. Construct an IE Crow’s Foot model showing relationships among your entities. Name
each relationship and specify cardinalities. Indicate which cardinalities you can jus-
tify on the basis of these reports and which you will need to check out with the users.

 5.62 Consider the CD cover in Figure 5-60.

A. Specify identifiers and attributes for the entities CD, ARTIST, ROLE, and SONG.

B. Construct a crow’s foot model showing relationships among these four entities. Name
each relationship and specify cardinalities. Indicate which cardinalities you can justify
on the basis of the CD cover and which you will need to check out with the users.

C. Consider a CD that does not involve a musical, so there is no need for ROLE.
However, the entity SONG_WRITER is needed. Create a crow’s foot model for CD,
ARTIST, SONG, and SONG_WRITER. Assume that an ARTIST can either be a group
or an individual. Assume that some artists record individually and as part of a group.

D. Combine the models you developed in your answers to B and C. Create new
entities if necessary, but strive to keep your model as simple as possible. Specify
identifiers and attributes of new entities, name new relationships, and indicate
their cardinalities.

 5.63 Consider the data model in Figure 5-43. How should this model be altered if the
users want to keep track of how many of each part are used? Suppose, for example,
that the wheel assembly requires four washers and the handle assembly requires just
one and the database must store these quantities. (Hint: Adding Quantity to this N:M
relationship is analogous to adding Price to the N:M relationship in Figure 5-22.)

 5.64 The data model in Figure 5-52 uses the attribute Room in COLLEGE and
DEPARTMENT but uses OfficeNumber in PROFESSOR. These attributes have the
same kind of data, even though they have different names. Examine Figure 5-46 and
explain how this situation came to be. Do you think having different names for the
same attribute types is rare? Do you think it is a problem? Why or why not?

West Side Story
Based on a conception of Jerome Robbins

Book by ARTHUR LAURENTS
Music by LEONARD BERNSTEIN
Lyrics by STEPHEN SONDHEIM

Entire Original Production Directed
and Choreographed by JEROME ROBBINS

HIGHLIGHTS FROM THE COMPLETE RECORDING

Maria
Tony
Anita
Riff
and MARILYN HORNE singing “Somewhere”

Jet Song
(Riff, Action, Baby John, A-rab, Chorus)
Something's Coming
(Tony)
Maria
(Tony)
Tonight
(Maria, Tony)
America
(Anita, Rosalia, Chorus)
Cool
(Riff, Chorus)
One Hand, One Heart
(Tony, Maria)
Tonight (Ensemble)
(Entire Cast)
I Feel Pretty
(Maria, Chorus)
Somewhere
(A Girl)
Gee Officer Krupke
(Action, Snowboy, Diesel, A-rab, Baby John, Chorus)
A Boy Like That
(Anita, Maria)
I Have a Love
(Maria, Anita)
Taunting Scene
(Orchestra)
Finale
(Maria, Tony)

[3'13]

[2'33]

[2'56]

[5'27]

[4'47]

[4'37]

[5'38]

[3'40]

[3'22]

[2'34]

[4'18]

[2'05]

[3'30]

[1'21]

[2'40]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.KIRI TE KANAWA

. JOSE CARRERAS
. TATIANA TROYANOS

. KURT OLLMAN

Rosalia
Consuela
Fancisca
Action

. Louise Edeiken
. Stella Zambalis
. Angelina Reaux

. David Livingston
Bernardo

Diesel
Baby John
A-rab
Snowboy

. Marty Nelson
. Stephen Bogardus

 Peter Thom
.Todd Lester

. . . .Richard Harrell

Originally produced on Broadway by Robert E. Griffith and Harold S. Prince
by arrangement with Roger L. Stevens

Orchestration by Leonard Bernstein with Sid Ramin and Irwin Kostal

FIguRE 5-60

CD Cover

276 PART 2 Database Design

X

NAME

ADDRESS

ADDRESS

VIOLATION DATE

VIOLATIONS

OFFICERS
SIGNATURE

DRIVERS
SIGNATUREXX

This is a warning, no further action is required.

You are released to take this vehicle to a place of repair.
Continued operation on the roadway is not authorized.

CORRECT VIOLATION(S) IMMEDIATELY. Return this signed card
for proof of compliance within 15/30 days. (if this box checked)

PERSONNEL
NUMBER

DIST DETACH

MO

LOCATION

NOFOSELIM

DAY YEAR
TIME
HOUR:

CITY

DRIVERS LICENSE

VEHICLES LICENSE

VIN

REGISTERED

OWNER

EPYTRAEYROLOCETATS MAKE

STATE BIRTH DATE HGT WGT EYESM

F

STATE
ZIP
CODE

TSRIFTSAL

WRITER’S PATROL CORRECTION NOTICE

Kroenke
5053 88 Ave SE

Mecer Island Wa 98040
00000
AAA000 Wa

11 7 2015 935 2 17
17 E Enumckum SR410

Writing text while driving

S Scott 850

90 900Saab
Wa 2/2746 6 165Bl

David M
FIguRE 5-61

Writer’s Patrol Traffic
Citation

Writer’s Patrol Case Questions

Consider the Writer’s Patrol traffic citation shown in Figure 5-61. The rounded corners on
this form provide graphical hints about the boundaries of the entities represented.

A. Draw an E-R data model based on the traffic citation form. Use five entities, and use
the data items on the form to specify identifiers and attributes for those entities. Use
the IE Crow’s Foot E-R model for your diagram.

B. Specify relationships among the entities. Name the relationships and specifiy the
relationship types and cardinalities. Justify the decisions you make regarding mini-
mum and maximum cardinalities, indicating which cardinalities can be inferred
from data on the form and which need to be checked out with systems users.

Highline university Mentor Program Case Questions

Highline University is a four-year undergraduate school located in the Puget Sound region
of Washington State. A discussion of the design of a college information system for Highline
University appears in this chapter on pages 228–234 as an example of creating data models,
and a variant of that discussion is used in Appendix B.

In this set of case questions, we will consider a different information system for Highline
University, one that will be used by the Highline University Mentor Program. The Highline
University Mentor Program recruits business professionals as mentors for Highline University
students. The mentors are unpaid volunteers who work together with the students’ advisers to
ensure that the students in the mentoring program learn needed and relevant management skills.
In this case study, you will develop a data model for the Mentor Program Information System.

Case Questions

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 277

Highline University, like many colleges and universities in the Pacific Northwest (see
the Wikipedia article on Pacific_Northwest), is accredited by the Northwest Commission on
Colleges and Universities (NWCCU—see the NWCCU Web site). Like all the colleges and
universities accredited by the NWCCU, Highline University must be reaccredited at approxi-
mately five-year intervals. Additionally, the NWCCU requires annual status-update reports.

Highline University is made up of five colleges: the College of Business, the College of
Social Sciences and Humanities, the College of Performing Arts, the College of Sciences and
Technology, and the College of Environmental Sciences. Jan Smathers is the president of
Highline University, and Dennis Endersby is the provost (a provost is a vice president of aca-
demics; the deans of the colleges report to the provost). Highline University is a fictional uni-
versity and should not be confused with Highline Community College located in Des Moines,
Washington. Any resemblance between Highline University and Highline Community
College is unintentional and purely coincidental.

A. Draw an E-R data model for the Highline University Mentor Program Information
System (MPIS). Use the IE Crow’s Foot E-R model for your E-R diagrams. Justify the
decisions you make regarding minimum and maximum cardinalities.

Your model should track students, advisers, and mentors. Additionally, Highline
University needs to track alumni because the program administrators view alumni
as potential mentors.
1. Create separate entities for students, alumni, faculty advisers, and mentors.

■■ At Highline University, all students are required to live on campus and are
assigned Highline University ID numbers and email accounts in the format
FirstName.LastName@students.hu.edu. The student entity should track student last
name, student first name, student University ID number, student email ad-
dress, dorm name, dorm room number, and dorm phone number.

■■ At Highline University, all faculty advisers have on-campus offices and are
assigned Highline University ID numbers and email accounts in the format
FirstName.LastName@hu.edu. The faculty entity should track faculty last name,
faculty first name, faculty University ID number, faculty email address, de-
partment, office building name, office building room number, and office
phone number.

■■ Highline University alumni live off campus and were previously assigned
Highline University ID numbers. Alumni have private email accounts in the
format FirstName.LastName@somewhere.com. The alumni entity should track
 alumnus last name, alumnus first name, alumnus former student number,
email address, home address, home city, home state, home ZIP code, and
phone number.

■■ Highline University mentors work for companies and use their company
address, phone, and email address for contact information. They do not have
Highline University ID numbers as mentors. Email addresses are in the for-
mat FirstName.LastName@companyname.com. The mentor entity should track
mentor last name, mentor first name, mentor email address, company name,
company address, company city, company state, company ZIP code, and
company phone number.

2. Create relationships between entities based on the following facts:
■■ Each student is assigned one and only one faculty adviser and must have an

adviser. One faculty member may advise several students, but faculty mem-
bers are not required to advise students. Only the fact of this assignment is
to be recorded in the data model—not possible related data (such as the date
the adviser was assigned to the student).

■■ Each student may be assigned one and only one mentor, but students are not
required to have a mentor. One mentor may mentor several students, and a per-
son may be listed as a mentor before he or she is actually assigned students to
mentor. Only the fact of this assignment is to be recorded in the data model—not
possible related data (such as the date the mentor was assigned to the student).

mailto:FirstName.LastName@companyname.com

278 PART 2 Database Design

■■ Each mentor is assigned to work and coordinate with one and only one
faculty member, and each mentor must work with a faculty member. One
faculty member may work with several mentors, but faculty members are
not required to work with mentors. Only the fact of this assignment is to be
recorded in the data model—not possible related data (such as the date the
faculty member was assigned to the mentor).

■■ Each mentor may be an alumnus, but mentors are not required to be alumni.
Alumni cannot, of course, be required to become mentors.

B. Revise the E-R data model you created in part A to create a new E-R data model
based on the fact that students, faculty, alumni, and mentors are all a PERSON. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make
regarding minimum and maximum cardinalities. Note that:
■■ A person may be a current student, an alumnus, or both because Highline

University does have alumni return for further study.
■■ A person may be a faculty member or a mentor but not both.
■■ A person may be a faculty member and an alumnus.
■■ A person may be a mentor and an alumnus.
■■ A current student cannot be a mentor.
■■ Each mentor may be an alumnus, but mentors are not required to be alumni.
■■ Alumni cannot, of course, be required to become mentors.

C. Extend and modify the E-R data model you created in part B to allow more data
to be recorded in the MPIS system. Use the IE Crow’s Foot E-R model for your E-R
 diagrams. Justify the decisions you make regarding minimum and maximum cardi-
nalities. The MPIS needs to record:
■■ The date a student enrolled at Highline University, the date the student gradu-

ated, and the degree the student received.
■■ The date an adviser was assigned to a student and the date the assignment

ended.
■■ The date an adviser was assigned to work with a mentor and the date the assign-

ment ended.
■■ The date a mentor was assigned to a student and the date the assignment ended.

D. Write a short discussion of the differences between the three data models you have
created. How does data model B differ from data model A, and how does data
model C differ from data model B? What additional features of the E-R data model
were introduced when you created data models B and C?

The Queen Anne
Curiosity Shop

The Queen Anne Curiosity Shop wants to expand its database applications beyond the current
recording of sales. The company still wants to maintain data on customers, employees, vendors,
sales, and items, but it wants to (a) modify the way it handles inventory and (b) simplify the stor-
age of customer and employee data.

Currently, each item is considered unique, which means the item must be sold as a
whole, and multiple units of the item in stock must be treated as separate items in the ITEM
table. The Queen Anne Curiosity Shop management wants the database modified to include
an inventory system that will allow multiple units of an item to be stored under one ItemID.
The system should allow for a quantity on hand, a quantity on order, and an order due date.
If the identical item is stocked by multiple vendors, the item should be orderable from any of
these vendors. The SALE_ITEM table should then include Quantity and ExtendedPrice col-
umns to allow for sales of multiple units of an item.

The Queen Anne Curiosity Shop management has noticed that some of the fields
in CUSTOMER and EMPLOYEE store similar data. Under the current system, when
an employee buys something at the store, his or her data has to be reentered into the

 CHAPTER 5 Data Modeling with the Entity-Relationship Model 279

CUSTOMER table. The managers would like to have the CUSTOMER and EMPLOYEE
tables redesigned using subtypes.

A. Draw an E-R data model for the Queen Anne Curiosity Shop database schema
shown in Chapter 3’s The Queen Anne Curiosity Shop Project Questions. Use the IE
Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make regard-
ing minimum and maximum cardinalities.

B. Extend and modify the E-R data model by adding only the Queen Anne Curiosity
Shop’s inventory system requirements. Use the IE Crow’s Foot E-R model for your
E-R diagrams. Create appropriate identifiers and attributes for each entity. Justify the
decisions you make regarding minimum and maximum cardinalities.

C. Extend and modify the E-R data model by adding only the Queen Anne Curiosity
Shop’s need for more efficient storage of CUSTOMER and EMPLOYEE data. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Create appropriate identifiers
and attributes for each entity. Justify the decisions you make regarding minimum
and maximum cardinalities.

D. Combine the E-R data models from parts B and C to meet all of the Queen Anne
Curiosity Shop’s new requirements, making additional modifications as needed. Use
the IE Crow’s Foot E-R model for your E-R diagrams.

E. Describe how you would go about validating your data model in part D.

6If you are not familiar with the concept of a procurement system, see the Wikipedia article on Procurement.

Morgan
Importing

James Morgan of Morgan Importing has decided to expand his business and needs to staff
and support a procurement system6 to acquire the items sold at Morgan Importing. Suppose that
you have been hired to create and implement a database application to support a procure-
ment information system. Data in this procurement information system will include:

■■ The purchasing agents employed at Morgan Importing.
■■ The receiving clerks employed at Morgan Importing.
■■ The stores where the purchasing agents buy items.
■■ The purchases themselves at the store.
■■ The shippers used to ship the purchases to Morgan Importing.
■■ The shipments made by the shippers.
■■ The receipt of the shipments at Morgan Importing by the receiving clerks.

James Morgan and his wife Susan often make purchases themselves while traveling to vari-
ous countries (and, therefore, even though they are not purchasing agents per se, they need
to be listed as purchasing agents in the system when data is entered). Purchases may be
made at the stores themselves or by Internet or phone. Sometimes several items are pur-
chased from a store on a single visit, but do not assume that all of the items are placed on the
same shipment. Shipping must track each item in a shipment and assign a separate insur-
ance value to each item. Receiving must track the arrival date and time of a shipment, who
accepted receipt of the shipment on behalf of Morgan Importing, and the condition of each
item upon receipt.

A. Using your knowledge, create a data model for the Morgan Importing procurement
information system. Name each entity, describe its type, and indicate all attributes
and identifiers. Name each relationship, describe its type, and specify minimum
and maximum cardinalities.

B. List any item in your answer to A that you believe should be checked out with James
Morgan and/or his employees.

This chapter explains the transformation of entity-relationship data models

into relational database designs. This transformation consists of three primary

tasks: (1) replacing entities and attributes with tables and columns; (2) repre-

senting relationships and maximum cardinalities by placing foreign keys; and

(3) representing minimum cardinality by defining actions to constrain activities

on values of primary and foreign keys. Steps 1 and 2 are relatively easy to un-

derstand and accomplish; step 3 may be easy or difficult, depending on the

 minimum cardinality type. In this chapter, we will create database designs, and

we will implement a database design in Chapter 7 when we build a database

 using SQL DDL and DML.

Database design occurs in the component design step of the systems
 development life cycle (SDLC) in the systems analysis and design pro-

cess. For an introduction to systems analysis and design and to the SDLC, see

Appendix B.

Transforming Data Models
into Database Designs

■■ To be able to represent weak entities as tables
■■ To be able to represent supertype/subtypes as

tables
■■ To be able to represent recursive relationships as

tables
■■ To be able to represent ternary relationships as tables
■■ To be able to implement referential integrity actions

required by minimum cardinalities

Chapter Objectives
■■ To understand how to transform data models into

database designs
■■ To be able to identify primary keys and understand when

to use a surrogate key
■■ To understand the use of referential integrity constraints
■■ To understand the use of referential integrity actions
■■ To be able to represent ID-dependent, 1:1, 1:N, and N:M

relationships as tables

280

6

 CHAPTER 6 Transforming Data Models into Database Designs 281

The Purpose of a Database Design

A database design is a set of database specifications that can actually be implemented as
a database in a DBMS. The data model we discussed in Chapter 5 is a generalized, non-DBMS-
specific design. A database design, on the other hand, is a DBMS-specific design intended to be
implemented in a DBMS product such as Microsoft SQL Server 2014 or Oracle Database.

Since each DBMS product has its own way of doing things, even if based on the same re-
lational database model and the same SQL standards, each database design must be created
for a particular DBMS product. The same data model will result in slightly different database
designs depending upon the intended DBMS product.

By THE WAy Books on systems analysis and design often identify three design stages:

■■ Conceptual design (conceptual schema)
■■ Logical design (logical schema)
■■ Physical design (physical schema)

The database design we are discussing is basically equivalent to the logical design,
which is defined in these books as the conceptual design implemented in a specific
DBMS product. The physical design deals with aspects of the database encountered
when it is actually implemented in the DBMS (as we will discuss in Chapter 10A for
Microsoft SQL Server 2014, in Chapter 10B for Oracle Database, and in Chapter 10C
for MySQL 5.6), such as physical record and file structure and organization, index-
ing, and query optimization. However, our discussion of database design will include
data type specifications, which is often considered a physical design issue in systems
analysis and design.

Create a Table for Each Entity

We begin the database design by creating a table for each entity using the steps shown in
Figure 6-1. In most cases, the table is assigned the same name as the entity. Each attribute of
the entity becomes a column of the table. The identifier of the entity becomes the primary
key of the table. The example in Figure 6-2 shows the creation of the EMPLOYEE table from
the EMPLOYEE entity. In this text, to differentiate entities from tables, we will show entities
with shadowed boxes and tables with nonshadowed boxes. This notation will help clarify our
discussion, but be aware that it is not standard notation across the industry.

Be certain that you understand the difference between these similar-looking graphics.
The shadowed rectangle in Figure 6-2(a) represents a logical structure that has no physical
existence. It is a blueprint. The nonshadowed rectangle in Figure 6-2(b) represents a database
table. It is the same as the following notation that we used in Chapters 3 and 4:

EMPLOYEE (EmployeeNumber, EmployeeName, Phone, Email, HireDate,
ReviewDate, EmpCode)

Note, too, the key symbol next to EmployeeNumber. It documents the fact that
EmployeeNumber is the table key, just as the underline does in the notation used in
Chapters 3 and 4.

Selecting the Primary Key

The selection of the primary key is important. The DBMS will use the primary key to facilitate
searching and sorting of table rows, and some DBMS products use it to organize table storage.
DBMS products almost always create indexes and other data structures using the values of the
primary key.

282 PART 2 Database Design

3. Specify logic for enforcing minimum cardinality:

– O-O relationships

– M-O relationships

– O-M relationships

– M-M relationships

2. Create relationships by placing foreign keys

– Relationships between strong entities (1:1, 1:N, N:M)

– Identifying relationships with ID-dependent entities (intersection tables,
 association patterns, multivalued attributes, archetype/instance patterns)

– Relationships between a strong entity and a weak but non-ID-dependent
 entity (1:1, 1:N, N:M)

– Mixed relationships

– Relationships between supertype/subtype entities

– Recursive relationships (1:1, 1:N, N:M)

1. Create a table for each entity:

– Specify the primary key (consider surrogate keys, as appropriate)

– Specify alternate keys

– Specify properties for each column:

 • Null status

 • Data type

 • Default value (if any)

 • Data constraints (if any)

– Verify normalization

Transforming a Data Model into a Database Design
FiguRE 6-1

Steps for Transforming a
Data Model into a Database
Design

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

(a) EMPLOYEE Entity (b) EMPLOYEE Table

FiguRE 6-2

Transforming an Entity to
a Table

 CHAPTER 6 Transforming Data Models into Database Designs 283

The ideal primary key is short, numeric, and fixed. EmployeeNumber in Figure 6-2 meets
all of these conditions and is acceptable. Beware of primary keys such as EmployeeName,
Email, (AreaCode, PhoneNumber), (Street, City, State, ZIP), and other long character col-
umns. In cases like these, when the identifier is not short, numeric, or fixed, consider using
another candidate key as the primary key. If there are no additional candidate keys, or if none
of them is any better, consider using a surrogate key.

A surrogate key is a DBMS-supplied identifier of each row of a table. Surrogate key
values are unique within the table, and they never change. They are assigned when the row
is created, and they are destroyed when the row is deleted. Surrogate key values are the best
possible primary keys because they are designed to be short, numeric, and fixed. Because of
these advantages, some organizations have gone so far as to require that surrogates be used for
the primary key of every table.

Before endorsing such a policy, however, consider two disadvantages of surrogate keys.
First, their values have no meaning to a user. Suppose you want to determine the department
to which an employee is assigned. If DepartmentName is a foreign key in EMPLOYEE, then
when you retrieve an employee row, you obtain a value such as 'Accounting' or 'Finance'. That
value may be all that you need to know about department.

Alternatively, if you define the surrogate key DepartmentID as the primary key of
DEPARTMENT, then DepartmentID will also be the foreign key in EMPLOYEE. When
you retrieve a row of EMPLOYEE, you will get back a number such as 123499788 for the
DepartmentID, a value that has no meaning to you at all. You have to perform a second query
on DEPARTMENT to obtain DepartmentName.

The second disadvantage of surrogate keys arises when data are shared among different da-
tabases. Suppose, for example, that a company maintains three different SALES databases, one
for each of three different product lines. Assume that each of these databases has a table called
SALES_ORDER that has a surrogate key called ID. The DBMS assigns values to IDs so they are
unique within a particular table within a database. It does not, however, assign ID values so they
are unique across the three different databases. Thus, it is possible for two different SALES_
ORDER rows, in two different databases, to have the same ID value.

This duplication is not a problem until data from the different databases are merged.
When that happens, to prevent duplicates, ID values will need to be changed. However, if ID
values are changed, then foreign key values may need to be changed as well, and the result is a
mess, or at least a lot of work to prevent a mess.

It is, of course, possible to construct a scheme using different starting values for surrogate
keys in different databases. Such a policy ensures that each database has its own range of
surrogate key values. This requires careful management and procedures, however; and if the
starting values are too close to one another, the ranges will overlap and duplicate surrogate key
values will still result.

By THE WAy Some database designers take the position that, for consistency, if one
table has a surrogate key, all of the tables in the database should have a

surrogate key. Others think that such a policy is too rigid; after all, there are good data
keys, such as ProductSKU (which would use SKU codes discussed in Chapter 2). If
such a key exists, it should be used instead of a surrogate key. Your organization may
have standards on this issue that you should follow.

Be aware that DBMS products vary in their support for surrogate keys.
Microsoft Access 2013, Microsoft SQL Server 2014, and MySQL 5.6 provide them.
Microsoft SQL Server 2014 allows the designer to pick the starting value and in-
crement of the key, and MySQL 5.6 allows the designer to pick the starting value.
Oracle’s Oracle Database, however, does not provide direct support for surrogate
keys, but you can obtain the essence of them in a rather backhanded way, as dis-
cussed in Chapter 10B.

We use surrogate keys unless there is some strong reason not to. In addition to the
advantages described here, the fact that they are fixed simplifies the enforcement of
minimum cardinality, as you will learn in the last section of this chapter.

284 PART 2 Database Design

Specifying Alternate Keys

The next step in creating a table is to specify the alternate keys. As discussed in Chapter 3, a
candidate key is an identifier of the unique rows in a table. There may be several candidate
keys in a table, and we ultimately choose one of them to be the primary key of the table. Each
of the remaining candidate keys then becomes an alternate key (AK) (note that they can
still be also referred to as candidate keys, in the sense that they uniquely identify the rows in the
tables and could be used as the primary key if we choose to). Figure 6-3 illustrates the use of
alternate keys, using alternative key (AK) notation.

Figure 6-3(a) shows EMPLOYEE with a primary key of EmployeeNumber and a
candidate, or alternate, key of Email. In Figure 6-3(b), CustomerNumber is the primary
key of CUSTOMER, and both the composite (Name, City) and Email are candidate keys.
In these diagrams, the symbol AKn.m means the nth alternate key and the mth column
of that alternate key. In the EMPLOYEE table, Email is labeled AK1.1 because it is the
first alternate key and the first column of that key. CUSTOMER has two alternate keys.
The first is a composite of two columns, which are labeled AK1.1 and AK1.2. The no-
menclature Name (AK1.1) means that Name is the first column of the first alternate
key, and City (AK1.2) means that City is the second column of the first alternate key. In
CUSTOMER, Email is marked as AK2.1 because it is the first (and only) column of the
second alternate key.

Specifying Column Properties

The next step in the creation of a relation is to specify the column properties. Four properties
are shown in Figure 6-1: null status, data type, default value, and data constraints.

Null Status
Null status refers to whether the column can have a null value. Typically, null sta-
tus is specified by using the phrase NULL if nulls are allowed and NOT NULL if not.
Thus, NULL does not mean that the column is always null; it means that null values
are allowed. Because of this possible confusion, some people prefer the term NULL
ALLOWED rather than NULL. Figure 6-4 shows the null status of each of the columns
in the EMPLOYEE table.

EmployeeNumber

EmployeeName
Phone
Email (AK1.1)
HireDate
ReviewDate
EmpCode

EMPLOYEE

CustomerNumber

Name (AK1.1)
City (AK1.2)
Phone
Email (AK2.1)

CUSTOMER

(a) (b)

FiguRE 6-3

Representing Alternate Keys

EmployeeNumber: NOT NULL

EmployeeName: NOT NULL
Phone: NULL
Email: NULL (AK1.1)
HireDate: NOT NULL
ReviewDate: NULL
EmpCode: NULL

EMPLOYEEFiguRE 6-4

Table Display Showing Null
Status

 CHAPTER 6 Transforming Data Models into Database Designs 285

By THE WAy The EMPLOYEE table in Figure 6-4 contains a subtlety. EmployeeNumber,
the primary key, is marked NOT NULL, but Email, the alternate key, is

marked NULL. It makes sense that EmployeeNumber should not be allowed to be
null. If it were, and if more than one row had a null value, then EmployeeNumber
would not identify a unique row. Why, however, if (1) an alternate key is a candidate
key and (2) a candidate key must uniquely identify a row, should Email be allowed to
have null values?

The answer is that alternate keys often are used just to ensure uniqueness.
Marking Email as a (possibly null) alternate key means that Email need not have a
value, but, if it has one, then that value will be unique and different from all other values
of Email in the EMPLOYEE table.

This answer is dissatisfying because it means that alternate keys used in this man-
ner are not truly alternate primary keys, and thus neither are they true candidate keys!
Alas, that’s the way it is. Just know that primary keys can never be null but that alter-
nate keys can be.

Data Type
The next step is to define the data type for each column. For a database design, data types
are DBMS specific. Unfortunately, each DBMS provides a different set of data types. For
example, to record currency values, Microsoft Access has a data type called Currency and
Microsoft SQL Server has a data type called Money, but Oracle Database has no data type
for currency. Instead, with Oracle, you use the numeric data type for currency values.

Once you know which DBMS you will be using to create the database, use that DBMS
product’s data types in your design. Figure 6-5 illustrates the display of data types in a table using
the data types for SQL Server (e.g., Char, Varchar, and Date are Microsoft SQL Server data types).
A summary of data types for Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6
is shown in Figure 6-6.

In fact, with many data modeling products, such as CA Technologies’ ERwin, you can
specify the DBMS you will use and the data modeling product will supply the appropriate set
of data types. Other products are DBMS specific. For example, Oracle’s MySQL Workbench is
intended to design databases for MySQL and therefore uses MySQL-specific data types.

If you do not know which DBMS product you will be using or if you want to preserve
independence from a particular DBMS, you can specify the data types in a generic way.
The SQL standard defines many standard data types. Typical character string data types are
CHAR(n) for a fixed-length character string of length n, VARCHAR(n) for a variable-length
character string having a maximum length of n, and NVARCHAR(n) for a variable-length
Unicode character string having a maximum length n. Date/Time data types include DATE
and TIME, while numeric data types include INTEGER (or INT), FLOAT, NUMERIC(m,n) and
DECIMAL(m,n) [for NUMERIC and DECIMAL, the designation (m,n) means having a maxi-
mum length of m digits with n digits displayed to the right of the decimal place]. If you work
for a larger organization, that company probably has its own generic data standards. If so, you
should use those data standards.

EmployeeNumber: Int

EmployeeName: Varchar(50)
Phone: Char(15)
Email: Nvarchar(100) (AK1.1)
HireDate: Date
ReviewDate: Date
EmpCode: Char(18)

EMPLOYEEFiguRE 6-5

Table Display Showing
Data Types

286 PART 2 Database Design

Bit

Numeric Data Types

Tinyint

Smallint

Int

Bigint

Decimal (p[,s])

Numeric (p[,s])

Smallmoney

Money

Float (n)

Real

Date and Time
Data Types

Date

Time

Smalldatetime

1-bit integer. Values of only 0, 1 or NULL.

Description

1-byte integer. Range is from 0 to 255.

2-byte integer. Range is from −2(15) (−32,768) to +2(15) −1 (+32,767).

4-byte integer. Range is from −2(31) (−2,147,483,468) to +2(31) −1
(+2,147,483,467).

8-byte integer. Range is from −2(63) (−9,223,372,036,854,775,808) to +2(63) −1
(+9,223,372,036,854,775,807).

Fixed precision (p) and scale (s) numbers. Range is from −1038 +1 to 1038 –1
with maximum precision (p) of 38. Precision ranges from 1 through
38, and default precision is 18. Scale (s) indicates the number of digits
to the right of the decimal place. Default scale value is 0, and scale
values range from 0 to p, where 0 <= s <= p.

Numeric works identically to Decimal.

4-byte money. Range is from −214,748.3646 to +214,748.3647 with
accuracy of one ten-thousandth of a monetary unit. Use decimal
point to separate digits.

9-byte money. Range is from −922,337,203,685,477.5808 to
+922,337,203,685,477.5807 with accuracy of one ten-thousandth of
a monetary unit. Use decimal point to separate digits.

n-bit storage of the mantissa in scientific floating point notation. The
value of n ranges from 1 to 53, and the default is 53.

Equivalent to Float (24).

Description

3-bytes fixed. Default format YYYY-MM-DD. Range is from January 1, 1
(0001-01-01) through December 31, 9999 (9999-12-31).

5-bytes fixed is default with 100 nanosecond precision (.0000000).
Default format is HH:MM:SS.NNNNNNN. Range is from 00:00:00.0000000
through 23:59:59.9999999.

4-bytes fixed. Restricted date range, and rounds time to nearest
second. Range is from January 1, 1900 00:00:00 AM (1900-01-01
00:00:00) through June 6, 2079 23:59.59 PM (2079-06-06 23:59.59).

Datetime 8-bytes fixed. Basically combines Date and Time, but spans less dates
and has less time precision (rounds to .000, .003 or .007 seconds).
Use DATETIME2 for more precision. Date range is from January 1,
1753 (1753-01-01) through December 31, 9999 (9999-12-31).

Datetime2 8-bytes fixed. Combines Date and Time with full precision. Use
instead of DATETIME. Range is from January 1, 1 00:00:00.0000000 AM
(0001-01-01 00:00:00.0000000) through December 31, 9999
23:59.59.9999999 PM (9999-12-31 23:59.59.9999999).

FiguRE 6-6

SQL Data Types in DBMS
Products

(a) Common Data Types in SQL Server 2014

 CHAPTER 6 Transforming Data Models into Database Designs 287

FiguRE 6-6

Continued

10-byte fixed-length default with 100 nanosecond precision (.0000000).
Uses 24 hour clock, based on Coordinated Universal Time (UTC).
UTC is a refinement of Greenwich Mean Time (GMT), based on the prime
meridian at Greenwich, England, which defines when midnight
(00:00:00.0000000) occurs. Offset is the time zone difference from the
Greenwich time zone. Default format is YYYY-MM-DD
HH:MM:SS.NNNNNNN (+|−)HH:MM. Range is from January 1,
1 00:00:00.0000000 AM (0001-01-01 00:00:00.0000000) through
December 31, 9999 23:59.59.9999999 PM (9999-12-31 23:59.59.9999999)
with an offset of −14:59 to +14:59. Use for 24 hour time.

Description

Datetimeoffset

String Data Types

Timestamp

Other Data Types

Varbinary (n | max)

See documentation.

Char (n)

Varchar (n | max)

Text

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through 8000.

n-byte variable-length string data (non-Unicode). Range of n is from 1
through 8000. Max creates a maximum +2(31) −1 bytes (2 GBytes).

Nchar (n)

Nvarchar (n | max)

Ntext

(n x 2)-byte fixed-length Unicode string data. Range of n is from 1 through 4000.

(n x 2)-byte variable-length Unicode string data. Range of n is from 1
through 4000. Max creates a maximum +2(31) −1 bytes (2 GBytes).

Description

Variable-length binary data. Range of n is from 1 through 8000. Max
creates a maximum +2(31) −1 bytes (2 GBytes).

Use VARCHAR(max). See documentation.

Use NVARCHAR(max). See documentation.

Binary (n) n-byte fixed-length binary data. Range of n is from 1 through 8000.

Uniqueidentifier 16-byte Globally Unique Identifier (GUID). See documentation.

Image

Cursor

hierarchyid

XML

Table

Sql_variant

Use VARBINARY(max). See documentation.

See documentation.

See documentation.

See documentation.

Use for storing XML data. See documentation.

See documentation.

Date and Time
Data Types

Description

(a) continued - Common Data Types in SQL Server 2014

(continued)

(b) Common Data Types in Oracle Database

Synonym for INTEGER, implemented as NUMBER(38,0).

Synonym for INTEGER, implemented as NUMBER(38,0).

When specified as a data type, it is implemented as NUMBER(38,0).

SMALLINT

INT

INTEGER

NUMBER (p[,s]) 1 to 22 bytes. Fixed precision (p) and scale (s) numbers. Range is from –1038

+1 to 1038 – 1 with maximum precision (p) of 38. Precision ranges
from 1 through 38, and default precision is 18. Scale (s) indicates the
number of digits to the right of the decimal place. Default scale value
is 0, and scale values range from –84 to 127, where s can be greater than p.

DescriptionNumeric Data Types

288 PART 2 Database Design

FiguRE 6-6

Continued

DescriptionNumeric Data Types

FLOAT (p)

BINARY_FLOAT

BINARY_LONG

RAW (n)

LONG RAW

BLOB

BFILE

Date and Time
Data Types

DATE

TIMESTAMP (p)

TIMESTAMP (p)
WITH TIME ZONE

TIMESTAMP (p)
WITH LOCAL TIME
ZONE

1 to 22 bytes. Implemented as NUMBER(p). The value of p ranges
from 1 to 126 bits.

4-byte 32-bit floating point number.

8-byte 64-bit floating point number.

n-byte fixed-length raw binary data. Range of n is from 1 through
2000.

Raw variable-length binary data. Maximum is 2 GBytes.

Maximum [(4-GByte – 1)x(database block size)] binary large object.

See documentation.

Description

7-bytes fixed. Default format is set explicitly with the
NLS_DATE_FORMAT parameter. Range is from January 1, 4712 BC
through December 31, 9999 AD. It contains the fields YEAR, MONTH,
DAY, HOUR, MINUTE and SECOND (no fractional seconds). It does not
include a time zone.

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 7 to 11-bytes fixed, based on precision. Default
format is set explicitly with the NLS_TIMESTAMP_FORMAT parameter.
Range is from January 1, 4712 BC through December 31, 9999 AD.
It contains the fields YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. It contains fractional seconds. It does not include a
time zone.

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 13-bytes fixed. Default format is set explicitly
with the NLS_TIMESTAMP_FORMAT parameter. Range is from January 1,
4712 BC through December 31, 9999 AD. It contains the fields YEAR,
MONTH, DAY, TIMEZONE_HOUR, TIMEZONE_MINUTE and
TIMEZONE_SECOND. It contains fractional seconds. It includes a
time zone.

Basically the same as TIMESTAMP WITH TIME ZONE, with the
following modifications: (1) Data is stored with times based on the
database time zone, and (2) Users view data in session time zone.

See documentation.

Description

INTERVAL YEAR
[p(year)] TO MONTH

String Data Types

INTERVAL DAY
[p(day)] TO SECOND
[p(seconds)]

See documentation.

CHAR
(n[BYTE | CHAR])

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through
2000. BYTE and CHAR refer to the semantic usage. See documentation.

NCHAR (n) (n x 2)-byte fixed-length Unicode string data. Up to (n x 3)-bytes for UTF8
encoding. Maximum size is from 2000 bytes.

VARCHAR2
(n[BYTE | CHAR])

n-byte variable-length string data (non-Unicode). Range of n is from 1
through 4000 BYTEs or CHARACTERs. BYTE and CHAR refer to the
semantic usage. See documentation.

(b) continued - Common Data Types in Oracle Database

 CHAPTER 6 Transforming Data Models into Database Designs 289

DescriptionString Data Types

Other Data Types

ROWID

NVARCHAR2 (n)

LONG

CLOB

Variable-length Unicode string data. Up to (n x 3)-bytes for UTF8 encoding.
Maximum size is from 4000 bytes.

Variable-length string data (non-Unicode) with maximum a maximum
2(31–1) bytes (2 GBytes). See documentation.

Description

See documentation.

Maximum [(4-GByte – 1)x(database block size)] character large object
(non-Unicode). Supports fixed-length and variable length character sets.

NCLOB Maximum [(4-GByte – 1)x(database block size)] Unicode character
large object. Supports fixed-length and variable length character sets.

HTTPURIType See documentation.

UROWID

SDO_GEOMETRY

XMLType

See documentation.

Use for storing XML data. See documentation.

See documentation.

FiguRE 6-6

Continued

(continued)

(c) Common Data Types in MySQL 5.6

(b) continued - Common Data Types in Oracle Database

FLOAT (M, D)

DOUBLE (M, P)

M = Display width D = Number of significant digits
Small (single-precision) floating-point number:

Normal (double-precision) floating-point number:

NumericData Type Description

BIT (M)

TINYINT

TINYINT UNSIGNED

BOOLEAN

M = 1 to 64.

Range is from –128 to 127.

Range is from 0 to 255.

0 = FALSE; 1 = TRUE.

SMALLINT

SMALLINT
UNSIGNED

MEDIUMINT

MEDIUMINT
UNSIGNED

INT or INTEGER

INT UNSIGNED or
INTEGER UNSIGNED

BIGINT

BIGINT UNSIGNED

FLOAT (P)

Range is from –32,768 to 32,767.

Range is from 0 to 65,535.

Range is from –8,388,608 to 8,388,607.

Range is from 0 to 16,777,215.

Range is from –2,147,483,648 to 2,147,483,647.

Range is from 0 to 4,294,967,295.

Range is from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Range is from 0 to 1,844,674,073,709,551,615.

P = Precision; Range is from 0 to 24.

M = Display width P = Precision; Range is from 25 to 53.

FIXED (M[,D]) D = Number of decimals.

DEC (M[,D]) or
DECIMAL (M[,D]) or

Fixed-point number:
M = Total number of digits

290 PART 2 Database Design

Default Value
A default value is a value supplied by the DBMS when a new row is created. The value can be
a constant, such as the string 'New Hire' for the EmpCode column in EMPLOYEE, or it can be
the result of a function, such as the date value of the computer’s clock for the HireDate column.

In some cases, default values are computed using more complicated logic. The default
value for a price, for example, might be computed by applying a markup to a default cost and
then reducing that marked-up price by a customer’s discount. In such a case, an application
component or a trigger (discussed in Chapter 7) will be written to supply such a value.

It is possible to use the data modeling tool to record default values, but such values often
are shown in separate design documentation. Figure 6-8, for example, shows one way that
default values are documented.

FiguRE 6-6

Continued

Date and Time
Data Types

Description

DATE

DATETIME

TIMESTAMP

TIME

YEAR (M)

YYYY-MM-DD : Range is from 1000-01-01 to 9999-12-31.

YYYY-MM-DD HH:MM:SS.

Range is from 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

See documentation.

HH:MM:SS : Range is from 00:00:00 to 23:59:59.

M = 2 or 4 (default).

IF M = 2, then range is from 1970 to 2069 (70 to 69).

IF M = 4, then range is from 1901 to 2155.

String Data Types Description

CHAR (M)

VARCHAR (M)

BLOB (M)

TEXT (M)

M = 0 to 255.

M = 1 to 255.

BLOB = Binary Large Object: maximum 65,535 characters.

Maximum 65,535 characters.

TINYBLOB
MEDIUMBLOB
LONGBLOB
TINYTEXT
MEDIUMTEXT
LONGTEXT

ENUM (‘value1’,
‘value2’, . . .)

SET (‘value1’,
‘value2’, . . .)

See documentation.

An enumeration. Only one value, but chosen from list. See documentation.

A set. Zero or more values, all chosen from list. See documentation.

(c) continued - Common Data Types in MySQL 5.6

By THE WAy The fact that a design tool is dedicated to one DBMS product does not
mean that it cannot be used to design databases for other DBMSs. For ex-

ample, an SQL Server database can be designed in MySQL Workbench, and most of the
design will be correct. You will, however, have to understand the relevant differences in
the DBMS products and make adjustments when creating the actual database.

Figure 6-7 shows the EMPLOYEE table showing both data type and null status. The display
becomes crowded, however, and from now on we will show tables with just column names.
With most products, you can turn such displays on or off depending on the work you are doing.

 CHAPTER 6 Transforming Data Models into Database Designs 291

EmployeeNumber: Int NOT NULL

EmployeeName: Varchar(50) NOT NULL
Phone: Char(15) NULL
Email: Nvarchar(100) NULL (AK1.1)
HireDate: Date NOT NULL
ReviewDate: Date NULL
EmpCode: Char(18) NULL

EMPLOYEEFiguRE 6-7

Table Display Showing Null
Status and Data Types

ITEM

Column

ItemNumber

Default Value

Surrogate key

CategoryITEM None

ItemPrefixITEM If Category = ‘Perishable’ then ‘P’
If Category = ‘Imported’ then ‘I’
If Category = ‘One-off’ then ‘O’
Otherwise = ‘N’

ApprovingDeptITEM If ItemPrefix = ‘I’ then
 ‘SHIPPING/PURCHASING’
Otherwise = ‘PURCHASING’

ShippingMethodITEM If ItemPrefix = ‘P’ then ‘Next Day’
Otherwise = ‘Ground’

Table
FiguRE 6-8

Sample Documentation for
Default Values

Data Constraints
Data constraints are limitations on data values. There are several different types.
Domain constraints limit column values to a particular set of values. For example,
EMPLOYEE.EmpCode could be limited to 'New Hire', 'Hourly', 'Salary', or 'Part Time'.
Range constraints limit values to a particular interval of values. EMPLOYEE.HireDate,
for example, could be limited to dates between January 1, 1990, and December 31, 2025.

An intrarelation constraint limits a column’s values in comparison with other
columns in the same table. The constraint that EMPLOYEE.ReviewDate be at least three
months after EMPLOYEE.HireDate is an intrarelation constraint. An interrelation
constraint limits a column’s values in comparison with other columns in other tables.
An example for the CUSTOMER table is that CUSTOMER.Name must not be equal to
BAD_CUSTOMER.Name, where BAD_CUSTOMER is a table that contains a list of cus-
tomers with credit and balance problems.

Referential integrity constraints, which we discussed in Chapter 3, are one type of inter-
relation constraint. Because they are so common, sometimes they are documented only when
they are not enforced. For example, to save work, a design team might say that every foreign
key is assumed to have a referential integrity constraint to the table that it references and that
only exceptions to this rule are documented.

Verify Normalization

The last task in step 1 of Figure 6-1 is to verify table normalization. When data models are
developed using forms and reports as guides, they generally result in normalized entities. This
occurs because the structures of forms and reports usually reflect how users think about their
data. Boundaries of a form, for example, often show the range of a functional dependency. If
this is hard to understand, think of a functional dependency as a theme. A well-designed form
or report will bracket themes using lines, colors, boxes, or other graphical elements. Those
graphical hints will have been used by the data modeling team to develop entities, and the
result will be normalized tables.

292 PART 2 Database Design

MemberNumber

MemberName
Phone
Email

CLUB_MEMBER

LockerNumber

LockerRoom
LockerSize
MemberNumber (FK) (AK1.1)

LOCKER

(a) With Foreign Key in LOCKER

MemberNumber

MemberName
Phone
Email
LockerNumber (FK) (AK1.1)

CLUB_MEMBER

LockerNumber

LockerRoom
LockerSize

LOCKER

(b) With Foreign Key in CLUB_MEMBER

FiguRE 6-9

The Two Alternatives for
the Transformation of a 1:1
Relationship Between Strong
Entities

All of this, however, should be verified. You need to ask whether the resulting tables are
in BCNF and whether all multivalued dependencies have been removed. If not, the tables
should probably be normalized. However, as we discussed in Chapter 4, sometimes normal-
ization is undesirable. Thus, you should also examine your tables to determine if any normal-
ized ones should be denormalized.

Create Relationships

The result of step 1 is a set of complete, but independent, tables. The next step is to create relation-
ships. In general, we create relationships by placing foreign keys into tables. The way in which this
is done and the properties of the foreign key columns depend on the type of relationship. In this
section, we consider each of the relationships described in Chapter 5: nonidentifying relationships
between strong entities, identifying relationships between ID-dependent entities, relationships in
mixed entity patterns, relationships between a supertype and its subtypes, and recursive relation-
ships. We conclude this section with a discussion of special cases of ternary relationships.

Relationships Between Strong Entities

As you learned in Chapter 5, nonidentifying relationships between strong entities are character-
ized by their maximum cardinality. There are three types of these relationships: 1:1, 1:N, and N:M.

1:1 Relationships Between Strong Entities
After the tables corresponding to the strong entities have been designed, a 1:1 relationship be-
tween these entities can be represented in one of two ways. You can place the primary key of the
first table in the second as a foreign key, or you can place the primary key of the second table in the
first as a foreign key. Figure 6-9 shows the representation of the 1:1 nonidentifying relationship be-
tween CLUB_MEMBER and LOCKER. In Figure 6-9(a), MemberNumber is placed in LOCKER
as a foreign key. In Figure 6-9(b), LockerNumber is placed in CLUB_MEMBER as a foreign key.

Either of these designs will work. If you have a club member’s number and want his
or her locker, then, using the design in Figure 6-9(a), you can query the LOCKER table for
the given value of MemberNumber. But if you have the LockerNumber and want the club
member’s data, then, still using the design in Figure 6-9(a), you can query the LOCKER table
for the LockerNumber, obtain the MemberNumber, and use that value to query the CLUB_
MEMBER table for the rest of the club member’s data.

Follow a similar procedure to verify that the design in Figure 6-8(b) works as well. However,
one data constraint applies to both designs. Because the relationship is 1:1, a given value of a for-
eign key can appear only once in the table. For example, in the design in Figure 6-9(a), a given

 CHAPTER 6 Transforming Data Models into Database Designs 293

value of MemberNumber can appear just once; each value must be unique in the LOCKER
table. If a value of MemberNumber were to appear in two rows, then a member would be as-
signed to two lockers, and the relationship would not be 1:1.

To cause the DBMS to enforce the required uniqueness of the foreign key value, we define
the foreign key column as unique. This can be done either directly in the column definition
of the foreign key (in which case there is no designation in the table diagram) or by defining
the foreign key as an alternate key. This latter technique, though common, is a bit confusing
because, logically, MemberNumber is not an alternate key for LOCKER. We are just using the
fact that alternate keys are unique to document the uniqueness of the foreign key in a 1:1 rela-
tionship. Depending on the database design software being used, the alternate key designation
may appear in the database design of the tables and the relationship, and this is illustrated in
Figure 6-9(a). A similar technique is used on the foreign key LockerNumber in Figure 6-9(b).

Figure 6-9 shows the minimum cardinalities of the relationship as optional-optional
(O-O), and in this case either of the designs in Figure 6-9 will work, though the design team
many prefer one over the other. However, if the minimum cardinalities of the relationship
are either mandatory-optional (M-O) or optional-mandatory (O-M), then one design will be
greatly preferred, as you will learn in the section on minimum cardinality design later in this
chapter. Also, application requirements may mean that one design is faster than the other.

To summarize, to represent a 1:1 strong entity relationship, place the key of one table in
the other table. Enforce the maximum cardinality by defining the foreign key as unique (or
as an alternate key).

1:N Relationships Between Strong Entities
After the tables corresponding to the strong entities have been designed, a 1:N relationship
between the entities is represented by placing the primary key of the table on the one side into
the table on the many side as a foreign key. Recall from Chapter 5 that the term parent is used to
refer to the table on the one side, and the term child is used to refer to the table on the many side.
Using this terminology, you can summarize the design of 1:N relationships by saying, “Place the
primary key of the parent in the child as a foreign key.” This is illustrated in Figure 6-10.

Figure 6-10(a) shows an E-R diagram for the 1:N relationship between the CLUB_
MEMBER and CLUB_UNIFORM entities. The relationship is represented in the database
design in Figure 6-10(b) by placing the primary key of the parent (MemberNumber) in the
child (CLUB_UNIFORM) as a foreign key. Because parents have many children (the relation-
ship is 1:N), there is no need to make the foreign key unique.

For 1:N relationships between strong entities, that’s all there is to it. Just remember: “Place
the primary key of the parent in the child as a foreign key.”

MemberNumber

MemberName
Phone
Email

CLUB_MEMBER

UniformID

Sport
UniformType
UniformSize
UniformNumber

CLUB_UNIFORM

(a) 1:N Relationship Between Strong Entities

MemberNumber

CLUB_MEMBER

UniformID

Sport
UniformType
UniformSize
UniformNumber
MemberNumber (FK)

CLUB_UNIFORM

(b) Placing the Primary Key of the Parent in the Child as a Foreign Key

MemberName
Phone
Email

FiguRE 6-10

Transformation of a 1:N
Relationship Between Strong
Entities

294 PART 2 Database Design

N:M Relationships Between Strong Entities
Again, we must first create the database design tables from the data model entities and then
create the relationship. However, the situation for N:M relationships is more complicated.
The problem is that there is no place in either table in an N:M relationship in which to place
the foreign key. Consider the example in Figure 6-11(a), which shows a relationship between
COMPANY and PART that specifies which companies can supply which parts. A COMPANY
may supply many PARTs, and a PART may be supplied by many different COMPANY(ies).

Suppose we try to represent this relationship by placing the primary key of one table as a
foreign key in the second table, as we did for 1:N relationships. Say we place the primary key
of PART in COMPANY as follows:

COMPANY (CompanyName, City, Country, Volume, PartNumber)
PART (PartNumber, PartName, SalesPrice, ReOrderQuantity, QuantityOnHand)

With this design, a given PartNumber may appear in many rows of COMPANY so that many
companies can supply the part. But how do we show that a company can supply many parts?
There is only space to show one part. We do not want to duplicate the entire row for a company
just to show a second part; such a strategy would result in unacceptable data duplication and data
integrity problems. Therefore, this is not an acceptable solution, and a similar problem will occur
if we try to place the primary key of COMPANY, CompanyName, into PART as a foreign key.

The solution is to create a third table, called an intersection table1. Such a table shows
the correspondences of a given company and a given part. It holds only the primary keys of

City
Country
Volume

COMPANY

PartNumber

FK???

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

(a) The Foreign Key Has No Place in Either Table

CompanyName

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

(b) Foreign Keys Placed in ID-Dependent Intersection Table

CompanyName (FK)
PartNumber (FK)

COMPANY_PART_INT

FiguRE 6-11

Transformation of a N:M
Relationship Between Strong
Entities

1While we use the term intersection table in this book, this table structure is known by many other names. In
fact, Wikipedia lists 11 alternate names, including intersection table, junction table, bridge table, and association
table. While we reserve the term association table for an association relationship (as explained later in this chap-
ter), your instructor may prefer one of the other terms for this table structure. For more information, see the
Wikipedia article Junction table at http://en.wikipedia.org/wiki/Junction_table.

http://en.wikipedia.org/wiki/Junction_table

 CHAPTER 6 Transforming Data Models into Database Designs 295

the two tables as foreign keys, and this combination of keys serves as the composite primary
key of the intersection table itself. The intersection holds only the key data; it contains no
other user data. For the example in Figure 6-11(a) we create the following intersection table:

COMPANY_PART_INT (CompanyName, PartNumber)

The COMPANY_PART_INT table has one row for each company–part combina-
tion. Notice that both columns are part of the composite primary key (CompanyName,
PartNumber), and that each column is also a foreign key to a different table. Because both
columns are keys of other tables, intersection tables are always ID-dependent on both of their
parent tables and the relationships with the parent tables are identifying relationships.

Thus, the database design in Figure 6-11(a) is drawn with an ID-dependent COMPANY_
PART_INT intersection table and identifying relationship lines. Like all ID-dependent tables,
the parent tables are required—COMPANY_PART_INT requires both a COMPANY and
PART. The parents may or may not require an intersection table row, depending on applica-
tion requirements. In Figure 6-11(b), a COMPANY need not supply a PART, but a PART must
be supplied by at least one COMPANY.

By THE WAy The problem for the data models of N:M relationships between strong
entities is that they have no direct representation. N:M relationships must

always be decomposed into two 1:N relationships using an intersection table in the
database design. This is why products like MySQL Workbench are unable to represent
N:M relationships in a data model. These products force you to make the transforma-
tion to two 1:N relationships ahead of time, during modeling. As stated in Chapter 5,
however, most data modelers consider this requirement to be a nuisance because it
adds complexity to data modeling when the whole purpose of data modeling is to re-
duce complexity to the logical essentials.

Relationships using iD-Dependent Entities

Figure 6-12 summarizes the four uses for ID-dependent entities. We have already de-
scribed the first use shown in Figure 6-12: the representation of N:M relationships. As
shown in Figure 6-11, an ID-dependent intersection table is created to hold the foreign
keys of the two tables participating in the relationship, and identifying 1:N relationships
are created between each table and the intersection table.

The other three uses shown in Figure 6-12 were discussed in Chapter 5, and here we will
describe the creation of tables and relationships for each of these three uses.

Association Relationships
As we discussed in Chapter 5, an association relationship is subtly close to an N:M relationship
between two strong entities. The only difference between the two types of relationships is that
an association relationship has one or more attributes that pertain to the relationship between
the entities, and not to either of the entities themselves. These attributes must be added to what
would otherwise be the intersection table in the N:M relationship. In Chapter 5, we described
this added entity as an associative entity (or association entity). (Figure 6-13(a) shows the

Representing N:M relationships

Four Uses for ID-Dependent Entities

Representing association relationships

Storing multivalued attributes

Representing archetype/instance relationships

FiguRE 6-12

Four Uses for ID-Dependent
Entities

296 PART 2 Database Design

association relationship data model created in Figure 5-22. In this example, the association of
a company and a part carries an attribute named Price, which is stored in an associative entity
named QUOTATION.

The representation of such a relationship is straightforward: Start by creating an intersec-
tion table that is ID-dependent on both of its parents, and then convert it to an association
table by adding the non-identifier attributes from the associative entity to that table. The
result for the example in Figure 6-13(a) is the association table:

QUOTATION (CompanyName, PartNumber, Price)

This table appears in the database design in Figure 6-13(b). Like all ID-dependent rela-
tionships, the parents of an association table are required. The parents may or may not require
the rows of the association table, depending on application requirements. In Figure 6-13(b),
a COMPANY need not have any QUOTATION rows, but a PART must have at least one
QUOTATION row.

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

PartNumber
CompanyName

Price

QUOTATION

(a) Association Pattern Data Model from Figure 5-22

CompanyName

City
Country
Volume

COMPANY

PartNumber

PartName
SalesPrice
ReOrderQuantity
QuantityOnHand

PART

PartNumber (FK)
CompanyName (FK)

Price

QUOTATION

(b) Association Pattern Database Design

FiguRE 6-13

Using ID-Dependent
Entities in an Association
Relationship

 CHAPTER 6 Transforming Data Models into Database Designs 297

By THE WAy The table that represents the association entity looks very much like an
intersection table; the only difference is the presence of the Price attribute.

Because of the attribute, the need for association tables, such as QUOTATION, will
appear in user requirements. Somewhere there will be a form or a report that has the
attribute Price. However, the need for intersection tables never appears in the users’
world. Such tables are an artifact of the relational model, and no form, report, or other
user requirement will indicate the need for one.

Intersection tables complicate the construction of applications. They must be
processed to obtain related rows, but they never directly appear on a form or report.
In Microsoft Access, they are frustratingly difficult to mangle into the form and report
design tools. You will see more about this in later chapters. In any case, for now un-
derstand the key difference between association and intersection tables: Association
tables have user data, but intersection tables do not.

As shown in Figure 6-14, associative entities sometimes connect more than two entity
types. Figure 6-14(a) shows the association relationship among the CLIENT, ARCHITECT,
and PROJECT entities from the data model we created in Figure 5-23. When there are several
participants in the association, the strategy just shown is simply extended. The association
table will have the key of each of its parents, as shown in Figure 6-14(b). In this case, the
ASSIGNMENT table has three foreign keys and one nonkey attribute, HoursWorked.

In both of these examples, it is only coincidence that the association tables have only one
nonkey attribute. In general, an association table can have as many nonkey attributes as nec-
essary to meet user requirements.

Multivalued Attributes
The third use for ID-dependent entities is to represent multivalued entity attributes, as
 illustrated in Figure 6-15. Figure 6-15(a) is a copy of Figure 5-29. Here COMPANY has a mul-
tivalued composite, (Contact, PhoneNumber), that is represented by the ID-dependent entity
PHONE_CONTACT.

As shown in Figure 6-15(b), representing the PHONE_CONTACT entity is straight-
forward. Just replace it with a table and replace each of its attributes with a column. In this
 example, the CompanyName attribute is both a part of the primary key and a foreign key.

Like all ID-dependent tables, PHONE_CONTACT must have a parent row in COMPANY.
However, a COMPANY row may or may not have a required PHONE_CONTACT, depending
on application requirements.

By THE WAy As you can see from these examples, it is not much work to transform an
ID-dependent entity into a table. All that is necessary is to transform the

entity into a table and copy the attributes into columns.
Why is it so simple? There are two reasons. First, all identifying relationships are

1:N. If they were 1:1, there would be no need for the ID-dependent relationship. The
attributes of the child entity could just be placed in the parent entity. Second, given
that the relationship is 1:N, the design principle is to place the key of the parent into the
child. However, the definition of an ID-dependent relationship is that part of its identi-
fier is an identifier of its parent. Thus, by definition, the key of the parent is already in
the child. Hence, it is not necessary to create a foreign key; that work has already been
done during data modeling.

Archetype/instance Pattern
As illustrated in Figure 6-16, the fourth use for ID-dependent entities and identifying relationships
is the archetype/instance pattern (also referred to as the version/instance pattern). Figure 6-16(a),
which is a copy of Figure 5-30, shows the CLASS/SECTION archetype/instance example from
Chapter 5, and Figure 6-16(b) shows the relational design.

298 PART 2 Database Design

ASSIGNMENT

HoursWorked

(a) Association Pattern Data Model from Figure 5-23

(b) Association Pattern Database Design

ClientName
ArchitectName
ProjectName

ArchitectName

Office
Email

ARCHITECT

ClientName

Email
Phone

CLIENT

ProjectName

StartDate
Budget

PROJECT

ASSIGNMENT

ClientName (FK)
ArchitectName (FK)
ProjectName (FK)

HoursWorked

ArchitectName

Office
Email

ARCHITECT

ClientName

CLIENT

ProjectName

StartDate
Budget

PROJECT

Email
Phone

FiguRE 6-14

Transformation of
ID-Dependent Entities in an
Association Relationship
Among Three Entities

As noted in the previous chapter, however, sometimes the instances of an archetype/
instance pattern are given identifiers of their own. In that case, the instance entity becomes
a weak but not ID-dependent entity. When this occurs, the relationship must be trans-
formed using the rules of a 1:N relationship between a strong entity and a weak but non-ID-
dependent entity. However, this transformation is the same as a 1:N relationship between
two strong entities. This just means that the primary key of the parent table should be placed
in the child table as a foreign key. Figure 6-17(a) shows a copy of the data model in Figure
5-31 in which SECTION has been given the identifier ReferenceNumber. In the relational
database design in Figure 6-17(b), ClassName (the primary key of the parent CLASS table)
has been placed in SECTION (the child table) as a foreign key.

 CHAPTER 6 Transforming Data Models into Database Designs 299

Keep in mind, however, that even though SECTION is no longer ID-dependent, it is still
weak. SECTION requires a CLASS for its existence. This means that a SECTION must always
have a CLASS as its parent, and this restriction arises from logical necessity, not just from applica-
tion requirements. The fact that SECTION is weak should be recorded in design documentation.

Relationships with a Weak Non-iD-Dependent Entity

As you learned in Chapter 5, a relationship between a strong entity and a weak but non-ID-
dependent entity behaves just the same as a relationship between two strong entities. The
relationship is a nonidentifying relationship, and, again, these relationships are characterized
by their maximum cardinality. The previous discussion of 1:1, 1:N, and N:M relationships be-
tween strong entities also applies to these types of relationships between a strong entity and a
weak but non-ID-dependent entity.

For example, what happens when the identifier of the parent of an ID-dependent entity is
replaced with a surrogate key? Consider the example of BUILDING and APARTMENT, in which
the identifier of APARTMENT is the composite of an apartment number and a building identifier.

CompanyName

City
Country
Volume

COMPANY

(a) Data Model with Multivalued
Attributes from Figure 5-29

PHONE_CONTACT

CompanyName
Contact

PhoneNumber

CompanyName

City
Country
Volume

COMPANY

(b) Database Design to
Store Multivalued Attributes

PHONE_CONTACT

CompanyName (FK)
Contact

PhoneNumber

FiguRE 6-15

Transformation of
ID-Dependent Entities that
Store Multivalued Attributes

ClassName

NumberHours
Description

CLASS

SECTION

ClassName
SectionNumber

ClassDays
Time
Professor

(a) Data Model with Archetype/Instance
Pattern from Figure 5-30

ClassName

NumberHours
Description

CLASS

SECTION

ClassName (FK)
SectionNumber

ClassDays
Time
Professor

(b) Database Design for
Archetype/Instance Pattern

FiguRE 6-16

Transformation of
ID-Dependent Entities in an
Archetype/Instance Pattern

300 PART 2 Database Design

Suppose that the identifier of BUILDING is (Street, City, State/Province, Country). In this
case, the identifier of APARTMENT is (Street, City, State/Province, Country, ApartmentNumber).
This design can be improved by replacing the long BUILDING identifier with a surrogate key.
Suppose that we replace the key of BUILDING with BuildingID, a surrogate.

Now, with a surrogate key for BUILDING, what is the key of APARTMENT? When we
place the key of the parent in the child, we obtain (BuildingID, ApartmentNumber). But
this combination has no meaning to the user. What does an identifier of (10045898, '5C')
mean to a user? Nothing! The key became meaningless when Street, City, State/Province, and
Country were replaced by BuildingID in BUILDING.

We can improve the design by using the following principle: When replacing the identi-
fier of the parent of an ID-dependent entity with a surrogate key, replace the identifier of
the ID-dependent entity with its own surrogate key. The resulting table will be weak but not
ID-dependent (we will used this principle later in this chapter as we create a database design
for the View Ridge Gallery–you can see the changes in Figures 6-38 and 6-39, where WORK
becomes a weak but not ID-dependent table in the relationship with ARTIST).

Relationships in Mixed Entity Designs

As you might guess, the design of mixed entity patterns is a combination of strong entity and
ID-dependent entity designs. Consider the example of employees and skills in Figure 6-18.
Figure 6-18(a) is a copy of Figure 5-35. Here the entity EMPLOYEE_SKILL is ID dependent
on EMPLOYEE, but it has a nonidentifying relationship to SKILL.

The database design of the E-R model for the data model in Figure 6-18(a) is shown
in Figure 6-18(b). Notice that EmployeeNumber is both a part of the primary key of
EMPLOYEE_SKILL and also a foreign key to EMPLOYEE. The 1:N nonidentifying relation-
ship between SKILL and EMPLOYEE_SKILL is represented by placing the key of SKILL,
which is Name, in EMPLOYEE_SKILL. Note that EMPLOYEE_SKILL.Name is a foreign key
but not part of the primary key of EMPLOYEE_SKILL.

A similar strategy is used to transform the SALES_ORDER data model in Figure 6-19.
Figure 6-19(a) is a copy of the SALES_ORDER data model originally shown in Figure 5-33.
In Figure 6-19(b), the ID-dependent table, ORDER_LINE_ITEM, has SalesOrderNumber as
part of its primary key and as a foreign key. It has ItemNumber as a foreign key only.

ClassName

NumberHours
Description

CLASS

ReferenceNumber

ClassDays
Time
Professor
SectionNumber

SECTION

ReferenceNumber

ClassDays
Time
Professor
SectionNumber
ClassName (FK)

SECTION is weak,
but not ID-dependent.

SECTION

ClassName

NumberHours
Description

CLASS

(b) Database Design for
Non-ID-Dependent Weak Entity

(a) Data Model with Non-ID-Dependent
Weak Entity from Figure 5-31

FiguRE 6-17

Transformation of the
Archetype/Instance Pattern
Using Non-ID-Dependent
Weak Entities

 CHAPTER 6 Transforming Data Models into Database Designs 301

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

(b) Database Design for
Mixed Entity Pattern

EMPLOYEE_SKILL

EmployeeNumber (FK)
SkillNumber

ProficiencyLevel
CourseTaken
Name (FK)

EmployeeNumber

EmployeeName
Phone
Email
HireDate
ReviewDate
EmpCode

EMPLOYEE

Name

Description
SalaryRange

SKILL

(a) Data Model with Mixed Entity
Pattern from Figure 5-35

EMPLOYEE_SKILL

EmployeeNumber
SkillNumber

ProficiencyLevel
CourseTaken

FiguRE 6-18

Transformation of the
Mixed Entity Pattern

CustomerID

LastName
FirstName
Address
City
State
Zip
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber
LineNumber

Quantity
UnitPrice
ExtendedPrice

ItemNumber

UnitPrice
Description

ITEM

CustomerID

LastName
FirstName
Address
City
State
Zip
Phone

CUSTOMER

SalespersonID

SalespersonLastName
SalespersonFirstName
SalespersonCode

SALESPERSON

SalesOrderNumber

Date
Subtotal
Tax
Total
CustomerID (FK)
SalespersonID (FK)

SALES_ORDER

ORDER_LINE_ITEM

SalesOrderNumber (FK)
LineNumber

Quantity
UnitPrice
ExtendedPrice
ItemNumber (FK)

(a) Data Model of SALES_ORDER
Pattern from Figure 5-33

(b) Database Design for the
SALES_ORDER Pattern

ItemNumber

UnitPrice
Description

ITEM

FiguRE 6-19

Transformation of the
SALES_ORDER Pattern

302 PART 2 Database Design

Relationships Between Supertype and Subtype Entities

Representing relationships between supertype entities and their subtypes is easy. Recall
that these relationships are also called IS-A relationships because a subtype and its
 supertype are representations of the same underlying entity. A MANAGER (subtype) is
an EMPLOYEE (supertype), and a SALESCLERK (subtype) is also an EMPLOYEE (super-
type). Because of this equivalence, the keys of all subtype tables are identical to the key of
the supertype table.

Figure 6-20(a) shows the data model in Figure 5-13(a), an example for two subtypes
of STUDENT. Notice that the key of STUDENT is StudentID and that the key of each of the
subtypes also is StudentID. UNDERGRADUATE.StudentID and GRADUATE.StudentID are
both primary keys and foreign keys to their supertype.

While we are showing the transformation of a set of exclusive subtypes (with the
discriminator attribute isGradStudent), the transformation of a set of inclusive subtypes
is done exactly the same way. Note that discriminator attributes cannot be represented in
relational designs. In Figure 6-20(b), we can do nothing with isGradStudent except note in
the design documentation that isGradStudent determines subtype. Application programs
will need to be written to use isGradStudent to determine which subtype pertains to a
given STUDENT.

GRADUATE

StudentID (FK)

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID (FK)

HighSchoolGPA
ScoreOnSAT

(b) Database Design for the
Supertype/Subtype Relationship

isGradStudent

GRADUATE

StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID

HighSchoolGPA
ScoreOnSAT

(a) Data Model of the Supertype/Subtype
Relationship from Figure 5-20(a)

FiguRE 6-20

Transformation of the
Supertype/Subtype Entities

By THE WAy The design transformation process for all HAS-A relationships can be sum-
marized by the phrase, “Place the primary key of the parent in the child

as a foreign key.” For strong entities, a 1:1 relationship can have either entity as the
parent, and therefore the foreign key can go in either table. For 1:N relationships, the
primary key of the parent goes in the child as the foreign key. For N:M relationships,
decompose the model into two 1:N relationships by defining an intersection table and
place the parent key of the parent in the child as a foreign key for each.

For identifying relationships, the primary key of the parent is already in the child, so
there is nothing more to do. For mixed relationships, on the identifying side, the primary
key of the parent is already in the child. On the nonidentifying side, place the primary
key of the parent in the child. In short, if you’re going to memorize just a few rules for
creating relationships, the first one is “HAS-A: Place the primary key of the parent in the
child as the foreign key.”

 CHAPTER 6 Transforming Data Models into Database Designs 303

Recursive Relationships

The representation of recursive relationships is just an extension of the techniques used for
representing relationships between strong entities. These techniques may be a bit difficult to
comprehend at first because they appear strange, but they involve principles that you have
already learned.

1:1 Recursive Relationships
Consider the 1:1 recursive BOXCAR relationship in Figure 6-21(a), which is the same data
model we developed in Figure 5-39. To represent the relationship, we create a foreign key
in BOXCAR that contains the identifier of the boxcar behind, as shown in Figure 6-21(b).
Because the relationship is 1:1, we make the foreign key unique by defining it as unique
(shown here as an alternate key). This restriction enforces the fact that a boxcar can have at
most one boxcar behind it.

Notice that both sides of the relationship are optional. This occurs because the last
car on the train has no other car behind it and because the first car on the train is behind
no other car. If the data structure were circular, this restriction would not be necessary.
For example, if you wanted to represent the sequence of names of the calendar months
and you wanted December to lead to January, then you could have a 1:1 recursive struc-
ture with required children.

By THE WAy If you find the concept of recursive relationships confusing, try this trick.
Assume that you have two entities, BOXCAR_AHEAD and BOXCAR_

BEHIND, each having the same attributes. Notice that there is a 1:1 relationship be-
tween these two entities. Replace each entity with its table. Like all 1:1 strong entity
relationships, you can place the key of either table as a foreign key in the other table.
For now, place the key of BOXCAR_BEHIND into BOXCAR_AHEAD.

Now realize that BOXCAR_BEHIND only duplicates data that reside in BOXCAR_
AHEAD. The data are unnecessary. So, discard BOXCAR_BEHIND and you will have
the same design as shown in Figure 6-21(b).

BoxCarNumber

Boxcar Behind

Capacity
Type

BOXCAR

First Boxcar

BoxCarNumber

Boxcar Behind

Railroad
BoxCarType
Capacity
BoxCarNumberBehind (FK) (AK 1.1)

BOXCAR

(a) Data Model for a 1:1 Recursive
Relationship in Figure 5-38

(b) Database Design for a 1:1
Recursive Relationship

EngineNumber

Railroad
Type
EngineModel
HorsePower

ENGINE

First Boxcar

EngineNumber

Railroad
Type
EngineModel
HorsePower

ENGINEFiguRE 6-21

Transformation of 1:1
Recursive Relationships

304 PART 2 Database Design

1:N Recursive Relationships
As with all 1:N relationships, 1:N recursive relationships are represented by placing the
primary key of the parent in the child as a foreign key. Consider the Manages relation-
ship in Figure 6-22(a), which is the data model we developed in Figure 5-41. In this case,
we place the name of the manager in each employee’s row. Thus, in Figure 6-22(b), the
EmployeeNameMgr has been added to the EMPLOYEE table.

Notice that both the parent and the child are optional. This is true because the lowest-
level employees manage no one and because the highest-level person, the CEO or other most
senior person, has no manager. If the data structure were circular, this would not be the case.

N:M Recursive Relationships
The trick for representing N:M recursive relationships is to decompose the N:M relationship
into two 1:N relationships. We do this by creating an intersection table, just as we did for N:M
relationships between strong entities.

Figure 6-23(a) is the data model we developed in Figure 5-43. It shows the solution to
an example for a bill-of-materials problem. Each part has potentially many subordinate parts,
and each part can be used as a component in potentially many other parts. To represent this
relationship, create an intersection table that shows the correspondence of a part/part use.
You can model upward or downward. If the former, the intersection table will carry the cor-
respondence of a part and where that part is used. If the latter, the intersection table will carry
the correspondence of a part and the parts that it contains. Figure 6-23(b) shows the intersec-
tion table for modeling downward in the bill of materials.

EmployeeName

Other Data...

EMPLOYEE

Manages

(a) Data Model for a 1:N Recursive
Relationship in Figure 5-41

EmployeeName

Other_Data_...
EmployeeNameMgr (FK)

EMPLOYEE

Manages

(b) Database Design for a 1:N
Recursive Relationship

FiguRE 6-22

Transformation of 1:N
Recursive Relationships

By THE WAy Again, if you find this to be confusing, assume that you have two different
tables, one called PART and a second called CONTAINED_PART. Create

the intersection table between the two tables. Note that CONTAINED_PART duplicates
the attributes in PART and is thus unnecessary. Eliminate the table and you will have
the design in Figure 6-23(b).

Representing Ternary and Higher-Order Relationships

As we discussed in Chapter 5, ternary and higher-order relationships can be represented
by multiple binary relationships, and such a representation usually works without any prob-
lems. However, in some cases, there are constraints that add complexity to the situation. For
example, consider the ternary relationship among the entities ORDER, CUSTOMER, and
SALESPERSON. Assume that the relationship from CUSTOMER to ORDER is 1:N and that
the relationship from SALESPERSON to ORDER also is 1:N. We can represent the three-part
relationship among ORDER:CUSTOMER:SALESPERSON as two separate binary relation-
ships: one between ORDER and CUSTOMER and a second between SALESPERSON and
CUSTOMER. The design of the tables will be:

CUSTOMER (CustomerNumber, {nonkey data attributes})
SALESPERSON (SalespersonNumber, {nonkey data attributes})
ORDER (OrderNumber, {nonkey data attributes}, CustomerNumber, SalespersonNumber)

 CHAPTER 6 Transforming Data Models into Database Designs 305

Suppose, however, that the business has a rule that each CUSTOMER can place or-
ders only with a particular SALESPERSON. In this case, the ternary relationship
ORDER:CUSTOMER:SALESPERSON is constrained by an additional binary 1:N relationship
between SALESPERSON and CUSTOMER. To represent the constraint, we need to add the
key of SALESPERSON to CUSTOMER. The three tables will now be:

CUSTOMER (CustomerNumber, {nonkey data attributes}, SalespersonNumber)
SALESPERSON (SalespersonNumber, {nonkey data attributes})
ORDER (OrderNumber, {nonkey data attributes}, CustomerNumber, SalespersonNumber)

The constraint that a particular CUSTOMER is sold to by a particular SALESPERSON means
that only certain combinations of CustomerNumber and SalespersonNumber can exist together
in ORDER. Unfortunately, this constraint cannot be expressed in a relational model. It must be
documented in the design, however, and enforced by program code, as shown in Figure 6-24.

A constraint that requires one entity to be combined with another entity is called a MUST
constraint. Other similar constraints are the MUST NOT constraint and the MUST COVER

PartName

Other Data

PART

PartName

Other_Data_...

PART

PART_PART_INT

PartName (FK)
ContainsPartName (FK)

Contains_Part Is_Contained_In_Part

(b) Database Design for an N:M
Recursive Relationship

(a) Data Model for an N:M
Recursive Relationship

in Figure 5-43

FiguRE 6-23

Transformation of N:M
Recursive Relationships

CustomerNumber Other nonkey data SalespersonNumber
1000
2000
3000

10
20
30

CUSTOMER Table

Binary MUST Constraint

10
20
30

Other nonkey data

SALESPERSON Table

SalespersonNumber

Other nonkey dataOrderNumber SalespersonNumber CustomerNumber
100
200
300
400
500

1000
2000
1000
3000
2000

10
20
10
30

ORDER Table

Only 20 is allowed here

FiguRE 6-24

Ternary Relationship with
a MUST Constraint

306 PART 2 Database Design

constraint. In a MUST NOT constraint, the binary relationship indicates combinations
that are not allowed to occur in the ternary relationship. For example, the ternary relationship
PRESCRIPTION:DRUG:CUSTOMER shown in Figure 6-25 can be constrained by a binary
relationship in the ALLERGY table that lists the drugs that a customer is not allowed to take.

In a MUST COVER constraint, the binary relationship indicates all combinations
that must appear in the ternary relationship. For example, consider the relationship AUTO_
REPAIR:REPAIR:TASK in Figure 6-26. Suppose that a given REPAIR consists of a number
of TASKs, all of which must be performed for the REPAIR to be successful. In this case, in
the table AUTO_REPAIR, when a given AUTO_REPAIR has a given REPAIR, then all of the
TASKs for that REPAIR must appear as rows in that table.

None of the three types of binary constraints discussed here can be represented in the rela-
tional design. Instead, they are documented in the design and implemented in application code.

Relational Representation of the Highline university Data Model

Let’s consider the data model we created for Highline University in Chapter 5. Our final data
model for Highline University is shown in Figure 6-27.

Using the principles we have discussed in this chapter, we can turn this into a relational da-
tabase design, and the resulting database design is a straightforward application of the principles
described in this chapter. The database design for Highline University is shown in Figure 6-28.

You should review Figure 6-28 to ensure that you understand the representation of every
relationship. Note that there are actually two foreign key references to a DepartmentName
primary key column in STUDENT. The first is DepartmentName (FK), which is the foreign
key linking to the DepartmentName primary key in DEPARTMENT. This relationship has the
referential integrity constraint:

DepartmentName in STUDENT must exist in DepartmentName in DEPARTMENT

10
20
30
45
70
90

DrugNumber Other nonkey data

DRUG Table

PrescriptionNumber Other nonkey data DrugNumber CustomerNumber
100
200
300
400
500

1000
2000
1000
3000
2000

45
10
70
20

PRESCRIPTION Table

Neither 20 nor 45 can appear here

CustomerNumber Other nonkey data
1000
1000
2000
2000
3000
3000
3000

10
20
20
45
30
45
70

DrugNumber

ALLERGY Table

Binary MUST NOT Constraint

FiguRE 6-25

Ternary Relationship with
a MUST NOT Constraint

 CHAPTER 6 Transforming Data Models into Database Designs 307

Other nonkey dataTaskNumber
1001
1002
1003
2001
2002
3001
4001

10
10
10
20
20
30
40

RepairNumber

TASK Table

Binary MUST COVER Constraint

10
20
30
40

RepairNumber Other nonkey data

REPAIR Table

InvoiceNumber Other nonkey dataRepairNumber TaskNumber

100
100
100
200
200

1001
1002
1003
2001

10
10
10
20
20

AUTO_REPAIR Table

2002 must appear here

FiguRE 6-26

Ternary Relationship with
a MUST COVER Constraint

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Title
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone

STUDENT

ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSORDEPARTMENT

DepartmentName

Phone
TotalMajors
Building
Room

APPOINTMENT

Title
Terms

Major

Chairs/Chairs By

Advises/Advised By

DepartmentName
ProfessorFirstName
ProfessorLastName

FiguRE 6-27

Data Model for Highline
University in Figure 5-52

308 PART 2 Database Design

CollegeName

DeanFirstName
DeanLastName
Phone
Building
Room

COLLEGE

StudentNumber

Major

Adviser

Title
DepartmentName (FK)
StudentFirstName
StudentLastName
HomeStreet
HomeCity
HomeState
HomeZip
Phone
ProfessorDepartment (FK)
ProfessorFirstName (FK)
ProfessorLastName (FK)

STUDENT

DepartmentName

Phone
TotalMajors
Room
CollegeName (FK)
ProfessorFirstName (FK) (AK1.1)
ProfessorLastName (FK) (AK1.2)

DEPARTMENT

ProfessorFirstName
ProfessorLastName

Building
OfficeNumber
Phone

PROFESSOR
Chairs/Chaired By

APPOINTMENT

DepartmentName (FK)
ProfessorFirstName (FK)
ProfessorLastName (FK)

Title
Terms

FiguRE 6-28

Database Design for
Highline University

The second is ProfessorDepartment (FK), which is part of the composite foreign key
(ProfessorDepartment, ProfessorFirstName, ProfessorLastName). This foreign key links to the
primary key (DepartmentName, ProfessorFirstName, ProfessorLastName) in APPOINTMENT
and has the referential integrity constraint:

(ProfessorDepartment, ProfessorFirstName, ProfessorLastName) in STUDENT
must exist in (DepartmentName, ProfessorFirstName, ProfessorLastName) in
APPOINTMENT

Note that we had to change DepartmentName in APPOINTMENT to
ProfessorDepartment in STUDENT because we cannot have two columns named
DepartmentName in STUDENT and we had already used DepartmentName as the for-
eign key linking to DEPARTMENT.

This illustrates that a foreign key does not have to have the same name as the primary key
it links to. As long as the referential integrity constraints are correctly specified, the foreign key
name can be whatever we want it to be.

In addition to the two referential integrity constraints above our database design, we will
also have the following:

CollegeName in DEPARTMENT must exist in CollegeName in COLLEGE
(ProfessorFirstName, ProfessorLastName) in DEPARTMENT must exist in
(ProfessorFirstName, ProfessorLastName) in PROFESSOR
DepartmentName in APPOINTMENT must exist in DepartmentName in
DEPARTMENT
(ProfessorFirstName, ProfessorLastName) in APPOINTMENT must exist in
(ProfessorFirstName, ProfessorLastName) in PROFESSOR

 CHAPTER 6 Transforming Data Models into Database Designs 309

Design for Minimum Cardinality

The third and last step of transforming data models into database designs is to create a
plan for enforcing minimum cardinality. Unfortunately, this step can be considerably more
complicated than the first two design steps. Relationships that have required children
entities are particularly problematic because we cannot enforce such constraints with da-
tabase structures. Instead, as you will see, we must design procedures for execution by the
DBMS or by applications.

Relationships can have one of four minimum cardinalities: parent optional and child
optional (O-O), parent mandatory and child optional (M-O), parent optional and
child mandatory (O-M), or parent mandatory and child mandatory (M-M). As far
as enforcing minimum cardinality is concerned, no action needs to be taken for O-O relation-
ships, and we need not consider them further. The remaining three relationships pose restric-
tions on insert, update, and delete activities.

Figure 6-29 summarizes the actions needed to enforce minimum cardinality. Figure
6-29(a) shows needed actions when the parent row is required (M-O and M-M relation-
ships), and Figure 6-29(b) shows needed actions when the child row is required (O-M
and M-M relationships). In these figures and the accompanying discussion, the term
action means minimum cardinality enforcement action. We use the shorter term
action for ease of discussion.

To discuss these rules, we will use the database design for storing data on several com-
panies shown in Figure 6-30. In this diagram, we have a 1:N, M-O relationship between
COMPANY and DEPARTMENT and between DEPARTMENT and EMPLOYEE and a
1:N, M-M relationship between COMPANY and PHONE_CONTACT. In the COMPANY-
to-DEPARTMENT relationship, COMPANY (on the 1 side of the relationship) is the
parent entity and DEPARTMENT (on the N side of the relationship) is the child entity.
In the DEPARMENT-to-EMPLOYEE relationship, DEPARTMENT (on the 1 side of the

Child Required Action on Parent Action on Child

Insert Get a child.
Prohibit.

None.

Modify key or
foreign key

Update the foreign key of
(at least one) child.
Prohibit.

If not last child, OK.
If last child, prohibit
or find a replacement.

Delete None. If not last child, OK.
If last child, prohibit
or find a replacement.

(b) Actions When the Child Is Required

Parent Required Action on Parent Action on Child

Insert None. Get a parent.
Prohibit.

Modify key or
foreign key

Change children’s foreign
key values to match new
value (cascade update).
Prohibit.

OK, if new foreign
key value matches
existing parent.
Prohibit.

Delete Delete children
(cascade delete).
Prohibit.

None.

(a) Actions When the Parent Is Required

FiguRE 6-29

Summary of Actions to
Enforce Minimum Cardinality

310 PART 2 Database Design

relationship) is the parent entity and EMPLOYEE (on the N side of the relationship) is the
child entity. In the COMPANY-to-PHONE_CONTACT relationship, COMPANY (on the 1
side of the relationship) is the parent entity and PHONE_CONTACT (on the N side of the
relationship) is the child entity.

Actions when the Parent is Required

When the parent is required, we need to ensure that every row of the child table has a valid,
non-null value of the foreign key. To accomplish this, we must restrict actions to update or
delete the parent’s primary key and actions to create or modify the child’s foreign key. We will
consider actions on the parent first.

Actions on the Parent Row when the Parent is Required
According to Figure 6-29(a), when a new parent is created, nothing needs to be done. No
child row can yet be dependent upon the new row. In our example, we can create a new
DEPARTMENT and not worry about minimum cardinality enforcement in EMPLOYEE.

However, consider what happens if we attempt to change the value of an existing parent
row’s primary key. If that row has children, then those children have a foreign key value that
matches the current primary key value. If the primary key of the parent changes, then any
existing children will become orphans; their foreign key values will no longer match a par-
ent row. To prevent the creation of orphans, either the foreign key values must be changed to
match the new value of the parent’s primary key or the modification to the parent’s primary
key must be prohibited.

In our example, if a DEPARTMENT attempts to change its DepartmentName from 'Info Sys'
to 'Information Systems', then any child rows in EMPLOYEE that have a foreign key value of 'Info
Sys' will no longer match a parent and will be orphans. To prevent orphans, either the values of
the foreign key in EMPLOYEE must also be changed to 'Information Systems' or the update to
the primary key in DEPARTMENT must be prohibited. The policy of propagating a change from
the parent’s primary key to the children’s foreign key is called cascading updates.

Now consider what happens when there is an attempt to delete a parent. If that
row has children and if the deletion is allowed, then the children will become orphans.
Hence, when such a delete attempt is made, either the children must be deleted as
well or the deletion must be prohibited. Deleting the children along with the parent
is called cascading deletions. In our example, when an attempt is made to delete
a DEPARTMENT, either all related rows in EMPLOYEE must be deleted as well or the
deletion must be disallowed.

CompanyName

City
Country
Volume

COMPANY

PHONE_CONTACT

CompanyName (FK)
Contact

PhoneNumber

DEPARTMENT

EmployeeNumber

EmployeeName
Phone
Email (AK1.1)
HireDate
ReviewDate
EmpCode
DepartmentName (FK)

EMPLOYEE

CompanyName (FK)
DepartmentName

Budgetcode
MailStop

FiguRE 6-30

Database Design for Data on
Several Companies

 CHAPTER 6 Transforming Data Models into Database Designs 311

By THE WAy Generally, cascading deletions are not chosen for relationships between
strong entities. The deletion of a DEPARTMENT row should not force the

deletion of EMPLOYEE rows. Instead, the deletion should be disallowed. To remove a
DEPARTMENT row, the EMPLOYEE rows would be reassigned to a new DEPARTMENT
and then the DEPARTMENT row would be deleted.

However, cascading deletions are almost always chosen for weak child entities.
For example, when you delete a COMPANY, you should always delete all of the weak
PHONE_NUMBER rows that depend on that COMPANY.

Actions on the Child Row when the Parent is Required
Now consider actions on the child row. If the parent is required, then when a new child row is
created, the new row must have a valid foreign key value. When we create a new EMPLOYEE, for
example, if DEPARTMENT is required, then the new EMPLOYEE row must have a valid value
for DepartmentName. If not, the insert must be disallowed. Usually there is a default policy for
assigning parents to a new row. In our example, when a new row is added to EMPLOYEE, the
default policy could be to add the new employee to the department named 'Human Resources'.

With regards to modifications to the foreign key, the new value must match a value of the
primary key in the parent. In EMPLOYEE, if we change DepartmentName from 'Accounting'
to 'Finance', then there must already be a DEPARTMENT row with the primary key value of
'Finance'. If not, the modification must be prohibited.

If the parent row is required, there are no restrictions on the deletion of the child row. The
child can go away without consequence on the parent.

By THE WAy When the parent has a surrogate key, the enforcement actions for update
are different between the parent and the child. On the parent side, the sur-

rogate key will never change, and hence update actions can be ignored. On the child
side, however, the foreign key can change if the child switches to a new parent. Hence,
on the parent side, you can ignore actions when the key is a surrogate. On the child side,
however, you must consider update actions even when the parent’s key is a surrogate.

Actions when the Child is Required

When the child is required, we need to ensure that there is at least one child row for the par-
ent at all times. The last child cannot leave the parent. For example, in the DEPARTMENT-
to-EMPLOYEE relationship, if a DEPARTMENT requires an EMPLOYEE, then the last
EMPLOYEE cannot leave the DEPARTMENT. This has ramifications on actions on the child,
as shown in Figure 6-29(b).

Enforcing required children is much more difficult than enforcing required parents. To
enforce a required parent, we just need to check for a match between primary key and for-
eign key values. To enforce a required child, we must count the number of children that a par-
ent has. This difference forces us to write code to enforce required children. To begin, consider
the required child actions from the perspective of the parent.

Actions on the Parent Row when the Child is Required
If the child is required, then we cannot create a new parent without also creating a relation-
ship to a child. This means that either we must find an existing child row and change its for-
eign key to match that of the new parent or we must create a new child row at the same time
the parent is created. If neither action can be taken, then the insertion of the new parent must
be prohibited. These rules are summarized in the first row of Figure 6-29(b).

If the child is required, then to modify the parent’s primary key, either the key of at least
one child must also be changed or the update must be disallowed. This restriction never ap-
plies to parents with surrogate keys because their values never change.

Finally, if the child is required and the parent is deleted, no action need be taken.
Because it is the child that is required, and not the parent, the parent can disappear without
any consequence.

312 PART 2 Database Design

Actions on the Child Row when the Child is Required
As shown in Figure 6-29(b), if the child is required, then no special action needs to be taken
when inserting a new child. The child comes into existence without influencing any parent.

However, there are restrictions on updating the foreign key of a required child. In particu-
lar, if the child is the last child of its current parent, then the update cannot occur. If it were to
occur, the current parent would be childless, and that is not allowed. Thus, a procedure must
be written to determine the number of children of the current parent. If that number is two or
greater, then the child foreign key value can be changed. Otherwise the update is prohibited.

A similar restriction pertains to the deletion of required children. If the child is the last
child to the parent, then the deletion is not allowed. Otherwise, the child can be deleted with-
out restriction.

implementing Actions for M-O Relationships

Figure 6-31 summarizes the application of the actions in Figure 6-29 for each type of mini-
mum cardinality. As stated earlier, O-O relationships pose no restrictions and need not be
considered.

M-O relationships require that the actions in Figure 6-29(a) be enforced. We need to
make sure that every child has a parent and that operations on either parent or child rows
never create orphans.

Fortunately, these actions are easy to enforce using facilities available in most DBMS
products. It turns out that we can enforce these actions with just two limitations. First, we need
to define a referential integrity constraint that ensures that every foreign key value has a match
in the parent table. Second, we make the foreign key column NOT NULL. With these two
restrictions, all of the actions in Figure 6-29(a) will be enforced.

Consider the DEPARTMENT-to-EMPLOYEE example. If we define the referential integ-
rity constraint

DepartmentName in EMPLOYEE must exist in DepartmentName in DEPARTMENT

then we know that every value of DepartmentName in EMPLOYEE will match a value in
DEPARTMENT. If we then make DepartmentName required, we know that every row in
EMPLOYEE will have a valid DEPARTMENT.

Almost every DBMS product has facilities for defining referential integrity constraints.
You will learn how to write SQL statements for that purpose in the next chapter. In those
statements, you will have the option of declaring whether updates and deletions are to cas-
cade or are to be prohibited. Once you have defined the constraint and made the foreign key
NOT NULL, the DBMS will take care of all of the actions in Figure 6-29(a) for you.

Relationship
Minimum
Cardinality

Action to Apply

NothingO-O

Remarks

M-O Parent-required actions
[Figure 6-28(a)]

Child-required actions
[Figure 6-28(b)]

Easily enforced by DBMS;
define referential integrity
constraint and make foreign
key NOT NULL.

O-M Difficult to enforce. Requires
use of triggers or other
application code.

Parent-required actions
and child-required actions
[Figures 6-28(a) and 6-28(b)]

M-M Very difficult to enforce. Requires
a combination of complex
triggers. Triggers can lock each
other out. Many problems!

FiguRE 6-31

Actions to Apply to Enforce
Minimum Cardinality

 CHAPTER 6 Transforming Data Models into Database Designs 313

By THE WAy Recall that, in a 1:1 relationship between strong entities, the key of either
table can be placed in the other table. If the minimum cardinality of such

a relationship is either M-O or O-M, it is generally best to place the key in the optional
table. This placement will make the parent required, which is easier to enforce. With a
required parent, all you have to do is define the referential integrity constraint and set
the foreign key to NOT NULL. However, if you place the foreign key so that the child is
required, let the work begin! You will have your hands full, as you are about to see.

implementing Actions for O-M Relationships

Unfortunately, if the child is required, the DBMS does not provide much help. No easy mech-
anism is available to ensure that appropriate child foreign keys exist nor is there any easy way
to ensure that valid relationships stay valid when rows are inserted, updated, or deleted. You
are on your own.

In most cases, required children constraints are enforced using triggers, which are
modules of code that are invoked by the DBMS when specific events occur. Almost all DBMS
products have triggers for insert, update, and delete actions. Triggers are defined for these ac-
tions on a particular table. Thus, you can create a trigger on CUSTOMER INSERT or a trigger
on EMPLOYEE UPDATE, and so forth. You will learn more about triggers in Chapter 7.

To see how you would use triggers to enforce required children, consider Figure 6-29(b)
again. On the parent side, we need to write a trigger on insert and update on the parent row.
These triggers either create the required child or they steal an existing child from another par-
ent. If they are unable to perform one of these actions, they must cancel the insert or update.

On the child side, a child can be inserted without problem. Once a child gets a parent,
however, it cannot leave that parent if it is the last or only child. Hence, we need to write up-
date and delete triggers on the child that have the following logic: If the foreign key is null, the
row has no parent, and the update or delete can proceed. If the foreign key does have a value,
however, check whether the row is the last child. If the row is the last child, then the trigger
must do one of the following:

■■ Delete the parent.
■■ Find a substitute child.
■■ Disallow the update or delete.

None of these actions will be automatically enforced by the DBMS. Instead, you must
write code to enforce these rules. You will see generic examples of such code in the next
chapter and real examples for Microsoft SQL Server 2014 in Chapter 10A, Oracle Database
in Chapter 10B, and MySQL 5.6 in Chapter 10C.

implementing Actions for M-M Relationships

It is very difficult to enforce M-M relationships. All of the actions in both Figure 6-29(a) and
Figure 6-29(b) must be enforced simultaneously. We have a needy parent and a needy child,
and neither will let go of the other.

Consider, for example, what would happen if we change the relationship between
DEPARTMENT and EMPLOYEE in Figure 6-30 to M-M, and the effect that would have on
the creation of new rows in DEPARTMENT and EMPLOYEE. On the DEPARTMENT side,
we must write an insert department trigger that tries to insert a new EMPLOYEE for the new
DEPARTMENT. However, the EMPLOYEE table will have its own insert trigger. When we try to
insert the new EMPLOYEE, the DBMS calls the insert employee trigger, which will prevent the
insertion of an EMPLOYEE unless it has a DEPARTMENT row. But the new DEPARTMENT row
does not yet exist because it is trying to create the new EMPLOYEE row, which does not exist
because the new DEPARTMENT row does not yet exist, and ’round and ’round we go!

Now consider a deletion in this same M-M relationship. Suppose we want to delete a
DEPARTMENT. We cannot delete a DEPARTMENT that has any EMPLOYEE children. So,
before deleting the DEPARTMENT, we must first reassign (or delete) all of the employees
in that department. However, when we try to reassign the last EMPLOYEE, an EMPLOYEE

314 PART 2 Database Design

update trigger will be fired that will not allow the last employee to be reassigned. (The trigger
is programmed to ensure that every DEPARTMENT has at least one EMPLOYEE.) We have a
stalemate; the last employee cannot get out of the department, and the department cannot be
deleted until all employees are gone!

This problem has several solutions, but none is particularly satisfying. In the next chapter, we
will show one solution using SQL Views. That solution is complicated and requires careful pro-
gramming that is difficult to test and fix. The best advice is to avoid M-M relationships if you can.
If you cannot avoid them, budget your time with foreknowledge that a difficult task lies ahead.

Designing Special Case M-M Relationships

Not all M-M relationships are as bad as the last section indicates. Although M-M relation-
ships between strong entities generally are as complicated as described, M-M relationships
between strong and weak entities are often easier. For example, consider the relationship
between COMPANY and PHONE_CONTACT in Figure 6-30. Because PHONE_CONTACT
is an ID-dependent weak entity, it must have a COMPANY parent. In addition, assume that
application requirements indicate that each COMPANY row must have at least one row in
PHONE_CONTACT. Hence, the relationship is M-M.

However, transactions are almost always initiated from the side of the strong entity. A data
entry form will begin with a COMPANY and then, somewhere in the body of the form, the
data from the PHONE_CONTACT table will appear. Hence, all insert, update, and deletion
activity on PHONE_CONTACT will come as a result of some action on COMPANY. Given this
situation, we can ignore the Action on Child columns in Figure 6-29(a) and Figure 6-29(b) be-
cause no one will ever try to insert, modify, or delete a new PHONE_CONTACT except in the
context of inserting, modifying, or deleting a COMPANY.

Because the relationship is M-M, however, we must take all of the actions in the Action on
Parent columns of both Figure 6-29(a) and Figure 6-29(b). With regards to inserts on parents,
we must always create a child. We can meet this need by writing a COMPANY INSERT trig-
ger that automatically creates a new row of PHONE_CONTACT with null values for Contact
and PhoneNumber.

With regard to updates and deletions, all we need to do is to cascade all of the remaining
actions in Figure 6-29(a) and Figure 6-29(b). Changes to COMPANY.CompanyName will be
propagated to PHONE_CONTACT.CompanyName. The deletion of a COMPANY will auto-
matically delete that company’s PHONE_CONTACT rows. This makes sense; if we no longer
want data about a company, we certainly no longer want its contact and phone data.

By THE WAy Because of the difficulty of enforcing M-M relationships, developers look
for special circumstances to ease the task. Such circumstances usually

exist for relationships between strong and weak entities, as described. For relation-
ships between strong entities, such special circumstances may not exist. In this case,
the M-M cardinality is sometimes just ignored. Of course, this cannot be done for
applications such as financial management or operations that require careful records
management, but for an application such as airline reservations, where seats are
overbooked anyway, it might be better to redefine the relationship as M-O.

Documenting the Minimum Cardinality Design

Because enforcing minimum cardinality can be complicated and because it often involves the
creation of triggers or other procedures, clear documentation is essential. Because the design
for the enforcement of required parents is easier than that for required children, we will use
different techniques for each.

Documenting Required Parents
Database modeling and design tools such as CA Technologies ERwin and Oracle’s MySQL
Workbench allow you to define referential integrity (RI) actions on each table. These
definitions are useful for documenting the actions necessary for a required parent. According
to Figure 6-29(a), three design decisions are necessary for required parents: (1) determining

 CHAPTER 6 Transforming Data Models into Database Designs 315

By THE WAy In theory, referential integrity actions can be used to document the actions
to be taken to enforce required children as well as required parents. When

they are used for both purposes, however, they become confusing and ambiguous. In
an M-M relationship, for example, a child may have one set of rules for insert because
of its required parent and another set of rules for insert because it is a required child.
The insert referential integrity action will be overloaded with these two purposes, and
its meaning will be ambiguous at best. Hence, in this text, we will use referential in-
tegrity actions only for documenting required parents. We will use another technique,
described next, for documenting required children.

whether updates to the parent’s primary key should cascade or be prohibited; (2) determin-
ing whether deletions of the parent should cascade or be prohibited; and (3) identifying how
a parent row is to be selected on the insert of a child.

Documenting Required Children
One easy and unambiguous way for defining the actions to enforce a required child is to use
Figure 6-29(b) as a boilerplate document. Create a copy of this figure for each relationship that
has a required child and fill in the specific actions for insert, update, and delete operations.

For example, consider Figure 6-32, which shows the O-M relationship between
DEPARTMENT and EMPLOYEE. A given department must have at least one employee, but
an employee does not have to be assigned to a specific department. For example, the com-
pany may have an employee who is an expediter (whose job is to solve problems throughout
the company and in whichever department is experiencing a problem) who is not formally
assigned to a department. DEPARTMENT has a surrogate key, DepartmentID, and other
 columns as shown in Figure 6-32.

Because the DEPARTMENT-to-EMPLOYEE relationship has a required child, we
will fill out the table in Figure 6-29(b). Figure 6-33 shows the result. Here trig-
gers are described for DEPARTMENT insert, EMPLOYEE modification (update), and
EMPLOYEE deletion. DEPARTMENT modification (update) actions are unneeded be-
cause DEPARTMENT has a surrogate key.

An Additional Complication

You should be aware of an additional complication that is beyond the scope of this text. A table
can participate in many relationships. In fact, there can be multiple relationships between the

DepartmentID

DepartmentName
Budgetcode
MailStop

DEPARTMENT

EmployeeNumber

EmployeeName
Phone
Email (AK1.1)
HireDate
ReviewDate
EmpCode
DepartmentID (FK)

EMPLOYEE

FiguRE 6-32

DEPARTMENT-to-EMPLOYEE
O-M Relationship

316 PART 2 Database Design

same two tables. You need to specify a design for the minimum cardinality of every relation-
ship. The minimum cardinality of each relationship will vary. Some will be O-M, some will
be M-O, and some will be M-M. Some of the relationships will require triggers, which may
mean that you have several sets of insert, update, and delete triggers per table. This array of
triggers is not only complicated to write and test, the actions of different triggers may interfere
with one another during execution. You will need more experience and knowledge to design,
implement, and test such complex arrays of trigger code and DBMS constraints. For now, just
be aware that these problems exist.

Summary of Minimum Cardinality Design

Figure 6-34 summarizes the design for relationship minimum cardinality. It shows each type
of relationship, the design decisions that need to be made, and the documentation that should
be created. Use this figure as a guide.

Relationship
Minimum
Cardinality

Design Decisions to Be Made Design Documentation

M-O • Update cascade or prohibit?
• Delete cascade or prohibit?
• Policy for obtaining parent on insert of child

• Policy for obtaining child on insert of parent
• Primary key update cascade or prohibit?
• Policy for update of child foreign key
• Policy for deletion of child

Referential integrity (RI) actions plus documentation for
policy on obtaining parent for child insert.

O-M Use Figure 6-28(b) as a boilerplate.

All decisions for M-O and O-M above, plus how
to process trigger conflict on insertion of first
instance of parent/child and deletion of last
instance of parent/child.

M-M For mandatory parent, RI actions plus documentation for
policy on obtaining parent for child insert. For mandatory
child, use Figure 6-28(b) as a boilerplate. Add
documentation on how to process trigger conflict.

FiguRE 6-34

Summary of Design
Decisions for Minimum
Cardinality

The View Ridge gallery Database

We conclude this chapter with an example database design problem. This design will be
used throughout the rest of the text, so take the time to understand it. This particular problem
was chosen because it has typical relationships and moderate complexity. It has enough chal-
lenges to make it interesting, but not so many as to make it overwhelming.

EMPLOYEE Is
Required Child

Action on DEPARTMENT Action on EMPLOYEE

Insert Trigger to create row in
EMPLOYEE when inserting
DEPARTMENT. Disallow
DEPARTMENT insert if EMPLOYEE
data are not available.

Not possible, surrogate
key.

None.

Modify key or
foreign key

Trigger needed:
If not last EMPLOYEE, OK.
If last EMPLOYEE, prohibit
or assign another EMPLOYEE

None.Delete Trigger needed:
If not last EMPLOYEE, OK.
If last EMPLOYEE, prohibit
or assign another EMPLOYEE

FiguRE 6-33

Actions to Enforce the
O-M Relationship Between
DEPARTMENT and
EMPLOYEE

 CHAPTER 6 Transforming Data Models into Database Designs 317

View Ridge gallery Database Summary of Requirements

The View Ridge Gallery (View Ridge or VRG) is a small art gallery that sells contemporary
European and North American fine art, including lithographs, high-quality reproduction
prints, original paintings and other artwork, and photographs. All of the lithographs, prints,
and photos are signed and numbered, and the original art is usually signed. View Ridge also
provides art framing services. It creates a custom frame for each artwork (rather than selling
standardized, premade frames) and is known for its excellent collection of frame stock. The
View Ridge Gallery Web site is shown in Figure 6-35.

View Ridge emphasizes reproduction artworks of European Impressionist, Abstractionist,
and Modernist artists such as Wassily Kandinsky and Henri Matisse. For original art, View
Ridge concentrates on Northwest School artists, such as Mark Tobey, Morris Graves, Guy
Anderson, and Paul Horiuchi, and produces shows of contemporary artists who work in the
Northwest School tradition or in Northwest Maritime art. The price of new reproduction
prints ranges up to $1,000, and prices for contemporary artists range from $500 to $10,000.
The price of art from the Northwest School artists varies considerably, depending on the
artwork itself. Small pencil, charcoal, or watercolor sketches may sell for as little as $2,000,
whereas major works can range from $10,000 to $100,000. Very occasionally, View Ridge
may carry Northwest School art priced up to $500,000, but art priced above $250,000 is
more likely to be sold at auction by a major art auction house.

View Ridge has been in business for 30 years and has one full-time owner, three sales-
people, and two workers who make frames, hang art in the gallery, and prepare artwork for
shipment. View Ridge holds openings and other gallery events to attract customers to the gal-
lery. View Ridge owns all of the art that it acquires and sells—even the sale of contemporary
artwork is treated as a purchase by View Ridge that then is resold to a customer. View Ridge
does not take items on a consignment basis.

Note that this is not a sales order database as illustrated in Figure 6-19. Rather, it is an art
work acquisitions database, designed to record each acquisition of a piece of art work by the View
Ridge Gallery, and then to record the details of the sale of the piece of art. This system is necessary
because a single piece of art may be acquired and resold more than once, and the View Ridge
Gallery needs a database designed to meet these specialized data and information requirements.

The View Ridge Gallery does sell other products and services besides art work. For ex-
ample, framing services, selected books on art and artists, and specialized post cards are all

FiguRE 6-35

View Ridge Gallery Web Site
Home Page

318 PART 2 Database Design

available at the View Ridge Gallery. For these, products and services, however, there is a sale
order system that interfaces will interface with the acquisition database.

The requirements for the View Ridge acquisition application are summarized in Figure
6-36. First, both the owner and the salespeople want to keep track of customers’ names, ad-
dresses, phone numbers, and email addresses. They also want to know which artists have
appeal to which customers. The salespeople use this information to determine whom to
contact when new art arrives and to personalize verbal and email communications with
their customers.

When the gallery purchases new art, data about the artist, the nature of the work, the
acquisition date, and the acquisition price are recorded. Also, on occasion, the gallery repur-
chases art from a customer and resells it; thus, a work may appear in the gallery multiple
times. When art is repurchased, the artist and work data are not reentered, but the most re-
cent acquisition date and price are recorded. In addition, when art is sold, the purchase date,
sales price, and identity of the purchasing customer are stored in the database.

Salespeople want to examine past purchase data so they can devote more time to the
most active buyers. They also sometimes use the purchase records to identify the location of
artworks they have sold in the past.

For marketing purposes, View Ridge wants its database application to provide a list of
artists and works that have appeared in the gallery. The owner also would like to be able to de-
termine how fast an artist’s work sells and at what sales margin. The database application also
should display current inventory on a Web page that customers can access via the Internet.

The View Ridge Data Model

Figure 6-37 shows a data model for the View Ridge database. This model has two strong enti-
ties: CUSTOMER and ARTIST. In addition, the entity WORK is ID-dependent on ARTIST,
and the entity TRANS is ID-dependent on WORK. There is also a nonidentifying relationship
from CUSTOMER to TRANS.

Note that we are using the entity name TRANS instead of TRANSACTION. We are doing
this because transaction is a DBMS reserved word in most (if not all) DBMS products. Using
DBMS reserved words such as table, column, or other names can create problems. Similarly,
we cannot use the reserved word tran. The word trans, however, is not a DBMS reserved word,
and we can use it without problems. We will discuss this problem more when we discuss
Microsoft SQL Serve 201 in Chapter 10A, Oracle Database in Chapter 10B, and MySQL 5.6
in Chapter 10C.

In the View Ridge data model, an artist may be recorded in the database even if none of his
or her works has appeared in the gallery. This is done to record customer preferences for artists
whose works might appear in the future. Thus, an artist may have from zero to many works.

The identifier of WORK is the composite (Title, Copy) because, in the case of lithographs
and photos, there may be many copies of a given title. Also, the requirements indicate that a
work may appear in the gallery many times, so there is a need for potentially many TRANS

Track customers and their interest in specific artists

Summary of View Ridge Gallery Database Requirements

Record the gallery’s purchases

Record customer’s purchases

Report how fast an artist’s works have sold and at what margin

Show the artists represented by the gallery on a Web page

Show current inventory on a Web page

Show all the works of art that have appeared in the gallery on Web pages

FiguRE 6-36

Summary of View
Ridge Gallery Database
Requirements

 CHAPTER 6 Transforming Data Models into Database Designs 319

entities for each WORK. Each time a work appears in the gallery, the acquisition date and
price must be recorded. Thus, each WORK must have at least one TRANS row.

A customer may purchase many works; this is recorded in the 1:N relationship from
CUSTOMER to TRANS. Note that this relationship is optional in both directions. Finally, there
is an N:M relationship between CUSTOMERs and ARTISTs. This is an N:M relationship be-
tween strong entities—the team searched in vain for a missing attribute that would indicate an
association pattern rather than an N:M relationship.

Database Design with Data Keys

A database design for the data model in Figure 6-37 is shown in Figure 6-38. This design
uses data keys, and every primary key except the composite (ARTIST.LastName, ARTIST.
FirstName) has problems. The keys for WORK and TRANS are huge, and the key for
CUSTOMER is doubtful; many customers may not have an email address. Because of these
problems, this design cries out for surrogate keys.

Surrogate Key Database Design
The database design for the View Ridge database using surrogate keys is shown in
Figure 6-39. Notice that two identifying relationships (TRANS-to-WORK) and (WORK-
to-ARTIST) have been changed to nonidentifying relationships represented by dashed
lines. This was done because once ARTIST has a surrogate key, there is no need to keep
ID-dependent keys in WORK and TRANS. Realize that WORK and TRANS are both weak
entities even though they are no longer ID-dependent.

LastName
FirstName

Nationality
DateOfBirth
DateDeceased

ARTIST

EmailAddress

LastName
FirstName
EncryptedPassword
Street
City
State
ZIPorPostalCode
Country
AreaCode
PhoneNumber

CUSTOMER

DateAcquired

AcquisitionPrice
AskingPrice
DateSold
SalesPrice

TRANS

PURCHASES/SOLD TO ACQUIRED CREATES/CREATED BY

HAS INTEREST IN/ADMIRED BY

Title
Copy

Medium
Description

WORK

FiguRE 6-37

View Ridge Gallery Data
Model

LastName
FirstName

Nationality
DateOfBirth
DateDeceased

ARTISTEmailAddress

LastName
FirstName
EncryptedPassword
Street
City
State
ZIPorPostalCode
Country
AreaCode
PhoneNumber

CUSTOMER

LastName (FK)
FirstName (FK)
DateAcquired
Title (FK)
Copy (FK)

AcquisitionPrice
AskingPrice
DateSold
SalesPrice
EmailAddress (FK)

TRANS

PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

LastName (FK)
FirstName (FK)
Title
Copy

Medium

WORK

LastName (FK)
FirstName (FK)
EmailAddress (FK)

CUSTOMER_ARTIST_INT

FiguRE 6-38

Initial View Ridge Gallery
Database Design

320 PART 2 Database Design

Notice that (LastName, FirstName) in ARTIST has been defined as an alternate key. This
notation indicates that (LastName, FirstName) has a UNIQUE constraint, which ensures that
artists are not duplicated in the database. Similarly, (Title, Copy) in WORK is defined as an
alternate key so that a given work cannot appear more than once.

The foreign key placement is a straightforward application of the techniques described
in this chapter, but note that the foreign key CustomerID in TRANS can have null values. This
specification allows the creation of a TRANS row when a work is acquired, before any cus-
tomer has purchased the work. All other foreign keys are required.

Minimum Cardinality Enforcement for Required Parents

According to Figure 6-29(a), for each relationship that involves a required parent, we need to
decide:

■■ Whether to cascade or prohibit updates of the parent’s primary key
■■ Whether to cascade or prohibit deletions of the parent
■■ How to obtain a parent when a new child is created

Because there is no consistent means of documenting these actions in commercial database de-
sign products, we will use the templates in Figure 6-29 to document our decisions. Figure 6-40
summarizes the relationships in the View Ridge database design.

Because all tables have surrogate keys, there is no need for any update cascade behav-
ior for any parent. However, some update actions on child tables must be restricted. For
example, once a WORK (child) is assigned to an ARTIST (parent), it is never to change to
another parent. Because this database is used to record purchases and sales, View Ridge

ArtistID

LastName (AK1.1)
FirstName (AK1.2)
Nationality
DateOfBirth
DateDeceased

ARTIST
CustomerID

LastName
FirstName
EmailAddress (AK1.1)
EncryptedPassword
Street
City
State
ZIPorPostalCode
Country
AreaCode
PhoneNumber

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
AskingPrice
DateSold
SalesPrice
WorkID (FK)
CustomerID (FK)

TRANS

PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

WorkID

Title (AK1.1)
Copy (AK1.2)
Medium
Description
ArtistID (FK)

WORK

CustomerID (FK)
ArtistID (FK)

CUSTOMER_ARTIST_INT

FiguRE 6-39

Final View Ridge Gallery
Database Design

Parent Child

Relationship Cardinality

ARTIST

WORK

CUSTOMER

CUSTOMER

ARTIST

TRANS

TRANS

CUSTOMER_ARTIST_INT

CUSTOMER_ARTIST_INT

WORK

Nonidentifying

Nonidentifying

Identifying

Identifying

Type

Nonidentifying

1:N

1:N

1:N

1:N

MAX

1:N

M-M

O-O

M-O

M-O

MIN

M-O

FiguRE 6-40

Summary of View
Ridge Database Design
Relationships

 CHAPTER 6 Transforming Data Models into Database Designs 321

management never wants to delete any data that are related to a transaction. From time to
time, it may remove prior year’s data in bulk, but it will do that using bulk data transfer and
not as part of any application.

Hence, any CUSTOMER, WORK, or ARTIST row that is related to a TRANS row is never
to be deleted. Note, however, that rows of CUSTOMERs who have never made a purchase and
rows of ARTISTs whose works have never been carried in the gallery can be deleted. If either
a CUSTOMER or ARTIST is deleted under these circumstances, the deletion will cascade to
rows in the intersection table CUSTOMER_ARTIST_INT.

Finally, referential integrity actions are necessary for obtaining a parent WORK when a
TRANS record is created and a parent ARTIST when a WORK record is created. In both cases,
the policy will be for the application program to provide the ID of the required parent at the
time the WORK or TRANS record is created.

All these actions are documented in Figure 6-41, where each part is based on the tem-
plate for required children shown in Figure 6-29(a). Note that there is no diagram for the
CUSTOMER-to-TRANS relationship because that is an O-O relationship without a required
parent (or child).

Minimum Cardinality Enforcement for the Required Child

As shown in the summary in Figure 6-40, TRANS is the only required child in the database de-
sign in Figure 6-39. The actions to enforce that required child are documented in Figure 6-42,
which is based on the template in Figure 6-29(b).

According to this document, an INSERT trigger on WORK will be written to create
the required child. This trigger will be fired whenever a work is first introduced at the gal-
lery. At that time, a new TRANS row will be created to store the values for DateAcquired
and AcquisitionPrice.

WORK
Is Required
Parent

Action on WORK
(Parent)

Action on TRANS
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit—WORK uses a
surrogate key.

Prohibit—WORK uses a
surrogate key.

Delete Prohibit—data about a work
and its related transaction is
never deleted (business rule).

None.

(b) For the WORK-to-TRANS Relationship

ARTIST
Is Required
Parent

Action on ARTIST
(Parent)

Action on WORK
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit—ARTIST uses a
surrogate key.

Prohibit—ARTIST uses a
surrogate key.

Delete Prohibit if WORK exists—
data about a work and its
related transaction is never
deleted (business rule).
Allow if no WORK exists
(business rule).

None.

(a) For the ARTIST-to-WORK Relationship

FiguRE 6-41

Actions to Enforce Minimum
Cardinality for Required
Parents

322 PART 2 Database Design

CUSTOMER
Is Required
Parent

Action on CUSTOMER
(Parent)

Action on
CUSTOMER_ARTIST_INT
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit—CUSTOMER
uses a surrogate key.

Prohibit—CUSTOMER
uses a surrogate key.

Delete Prohibit if a transaction
related to this CUSTOMER
exists—data related to a
transaction is never deleted
(business rule).
Allow if no transaction
related to this CUSTOMER
exists—(business rule)—
cascade delete children.

None.

(c) For the CUSTOMER-to-CUSTOMER_ARTIST_INT Relationship

ARTIST
Is Required
Parent

Action on ARTIST
(Parent)

Action on
CUSTOMER_ARTIST_INT
(Child)

Insert None. Get a parent.

Modify key or
foreign key

Prohibit—ARTIST uses a
surrogate key.

Prohibit—ARTIST uses a
surrogate key.

Delete Prohibit if a transaction
related to a work by this
ARTIST exists—data related
to a transaction is never
deleted (business rule).
Allow if no transaction related
to a work by this ARTIST
exists—(business rule)—
cascade delete children.

None.

(d) For the ARTIST-to-CUSTOMER_ARTIST_INT Relationship

TRANS
Is Required
Child

Action on WORK
(Parent)

Action on TRANS
(Child)

Insert INSERT trigger on WORK
to create row in TRANS.
TRANS will be given data
for DateAcquired and
AcquisitionPrice. Other
columns will be null.

Will be created by
INSERT trigger on WORK.

Modify key or
foreign key

Prohibit—surrogate key. Prohibit—TRANS must
always refer to the WORK
associated with it.

Delete Prohibit—data related to a
transaction is never deleted
(business rule).

Prohibit—data related to a
transaction is never deleted
(business rule).

FiguRE 6-42

Actions to Enforce Minimum
Cardinality for Required
Children for the WORK-to-
TRANS Relationship

FiguRE 6-41

Continued

 CHAPTER 6 Transforming Data Models into Database Designs 323

Changes to the primary key in WORK will not occur because it has a surrogate key.
Changes to the foreign key in TRANS will not be allowed because a TRANS never switches to
another work. As stated earlier, the gallery has the policy that no transaction or related data
will ever be deleted. Consequently, deletions of either WORK or TRANS are not allowed.

Column Properties for the View Ridge Database Design Tables

As we discussed at the beginning of this chapter, besides naming the columns in each table, we
must specify the column properties summarized in Figure 6-1 for each column: null status, data
type, default value (if any), and data constraints (if any). These are shown in Figure 6-43, where
surrogate keys are shown using the SQL Server IDENTITY({StartValue}, {Increment})

(b) Column Characteristics for the WORK Table

Column Name

WorkID

Title

Copy

Medium

Description

ArtistID

Type

Int

Char (35)

Char (12)

Char (35)

Varchar
(1000)

Int

Key

Primary Key

Alternate Key

Alternate Key

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NOT NULL

Remarks

Surrogate Key
IDENTITY (500,1)

Unique (AK1.1)

Unique (AK1.2)

DEFAULT
value =
‘Unknown
provenance’

WORK

(a) Column Characteristics for the ARTIST Table

Column Name

ArtistID

LastName

FirstName

Nationality

DateOfBirth

DateDeceased

Type

Int

Char (25)

Char (25)

Char (30)

Numeric (4)

Numeric (4)

Key

Primary Key

Alternate Key

Alternate Key

No

No

No

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NULL

Remarks

Surrogate Key
IDENTITY (1,1)

Unique (AK1.1)

Unique (AK1.2)

IN (‘Canadian’,
‘English’,
‘French’,
‘German’,
‘Mexican’,
‘Russian’,
‘Spanish’,
‘United States’)

(DateOfBirth <
DateDeceased)
(BETWEEN 1900
and 2999)

(BETWEEN 1900
and 2999)

ARTIST

FiguRE 6-43

Column Properties for the
View Ridge Database Design

(c) Column Characteristics for the TRANS Table

Column Name

TransactionID

AcquisitionPrice

AskingPrice

DateSold

SalesPrice

WorkID

Type

Int

Numeric (8,2)

Numeric (8,2)

Date

Numeric (8,2)

Int

Key

Primary Key

No

No

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NULL

NULL

NULL

(DateAcquired <= DateSold)

(SalesPrice > 0)
AND (SalesPrice <= 500000)

NOT NULL

CustomerID Int Foreign Key NULL

Remarks

Surrogate Key
IDENTITY (100,1)

DateAcquired Date No NOT NULL

TRANS

Column Name

CustomerID

Type

Int

Key

Primary Key

NULL Status

NOT NULL

Remarks

Surrogate Key
IDENTITY (1000,1)

LastName

FirstName

Street

City

State

ZIPorPostalCode

Country

AreaCode

PhoneNumber

Char (25) No NOT NULL

Char (25) No NOT NULL

Char (30) No NULL

Char (35) No NULL

Char (2) No NULL

Char (9) No NULL

Char (50) No NULL

Char (3) No NULL

Char (8) No NULL

EmailAddress Varchar (100) Alternate Key NULL

EncryptedPassword Varchar(50) No NULL

Unique (AK 1.1)

(d) Column Characteristics for the CUSTOMER Table

CUSTOMER

Column Name

ArtistID

Type

Int

Key

Primary Key,
Foreign Key

NULL Status

NOT NULL

Remarks

CustomerID Int Primary Key,
Foreign Key

NOT NULL

(e) Column Characteristics for the CUSTOMER_ARTIST_INT Table

CUSTOMER_ARTIST_INT

FiguRE 6-43

Continued

324

 CHAPTER 6 Transforming Data Models into Database Designs 325

property to specify the values the surrogate key will use. We will describe how to implement
surrogate keys in our discussion of Microsoft SQL Server 2014 in Chapters 7 and 10A, for
Oracle Database in Chapter 10B, and for MySQL 5.6 in Chapter 10C.

With this step, we have completed our database design for the View Ridge Gallery data-
base, and now we are ready to create it as an actual, functioning database in a DBMS product.
We will do so in many of the following chapters, so be certain that you understand the View
Ridge Gallery database design we have built.

Summary

This chapter discusses the process of transforming a data
model (as discussed in Chapter 5) into a database design.
Figure 6-44 summarizes the various aspects of data models
and database designs, how they relate to each other, and
how they relate to the systems analysis and design process in
general and to the systems development life cycle (SDLC) in
particular. For more information about systems analysis and
design and the SDLC, see Appendix B.

Transforming a data model into a database design re-
quires three major tasks: replacing each entity with a table
and each attribute with a column; representing relation-
ships and maximum cardinality by placing foreign keys;
and representing minimum cardinality by defining actions
to constrain activities on values of primary and foreign keys.

During database design, each entity is replaced by a
table. The attributes of the entity become columns of the
table. The identifier of the entity becomes the primary key
of the table, and candidate keys in the entity become candi-
date keys in the table. A good primary key is short, numeric,
and fixed. If a good primary key is not available, a surrogate
key may be used instead. Some organizations choose to use
surrogate keys for all of their tables. An alternate key is the
same as a candidate key and is used to ensure unique values
in a column. The notation AKn.m refers to the nth alternative
key and the mth column in that key.

Four properties need to be specified for each table
column: null status, data type, default value, and data con-
straints. A column can be NULL or NOT NULL. Primary
keys are always NOT NULL; alternate keys can be NULL.
Data types depend on the DBMS to be used. Generic
data types include CHAR(n), VARCHAR(n), DATE, TIME,
INTEGER, FLOAT, NUMERIC and DECIMAL. A default
value is a value to be supplied by the DBMS when a new
row is created. It can be a simple value or the result of a
function. Sometimes triggers are needed to supply values of
more complicated expressions.

Data constraints include domain constraints, range
constraints, intrarelation constraints, and interrelation con-
straints. Domain constraints specify a set of values that a
column may have; range constraints specify an interval of
allowed values; intrarelation constraints involve compari-
sons among columns in the same table; and interrelation

constraints involve comparisons among columns in different
tables. A referential integrity constraint is an example of an
interrelation constraint.

Once the tables, keys, and columns have been de-
fined, they should be checked against normalization crite-
ria. Usually the tables will already be normalized, but they
should be checked in any case. Also, it may be necessary to
denormalize some tables.

The second step in database design is to create relation-
ships by placing foreign keys appropriately. For 1:1 strong
relationships, the key of either table can go in the other table as
a foreign key; for 1:N strong relationships, the key of the parent
must go in the child; and for N:M strong relationships, a new
table, called an intersection table, is constructed that has the
keys of both tables. Intersection tables never have nonkey data.

Four uses for ID-dependent entities are N:M relation-
ships, association relationships, multivalued attributes, and
archetype/instance relationships. An association relationship
differs from an intersection table because the ID-dependent
entity has nonkey data. In all ID-dependent entities, the key
of the parent is already in the child. Therefore, no foreign
key needs to be created. When an instance entity of the
archetype/instance pattern is given a non-ID-dependent
identifier, it changes from an ID-dependent entity to a weak
entity. The tables that represent such entities must have the
key of the parent as a foreign key. They remain weak enti-
ties, however. When the parent of an ID-dependent entity is
given a surrogate key, the ID-dependent entity is also given a
surrogate key. It remains a weak entity, however.

Mixed entities are represented by placing the key of the
parent of the nonidentifying relationship into the child. The
key of the parent of the identifying relationship will already
be in the child. Subtypes are represented by copying the
key from the supertype into the subtype(s) as a foreign key.
Recursive relationships are represented in the same ways
that 1:1, 1:N, and N:M relationships are represented. The
only difference is that the foreign key references rows in the
table in which it resides.

Ternary relationships are decomposed into binary rela-
tionships. However, sometimes binary constraints must be
documented. Three such constraints are MUST, MUST NOT,
and MUST COVER.

326 PART 2 Database Design

The third step in database design is to create a plan for
enforcing minimum cardinality. Figure 6-29 shows the ac-
tions that need to be taken to enforce minimum cardinality
for required parents and required children. The actions in
Figure 6-29(a) must be taken for M-O and M-M relation-
ships; the actions in Figure 6-29(b) must be taken for O-M
and M-M relationships.

Enforcing mandatory parents can be done by defining
the appropriate referential integrity constraint and by setting
the foreign key to NOT NULL. The designer must specify
whether updates to the parent’s primary key will cascade or
be prohibited, whether deletions to the parent will cascade
or be prohibited, and what policy will be used for finding a
parent when a new child is created.

Enforcing mandatory children is difficult and
requires the use of triggers or application code. The

particular actions that need to be taken are shown in
Figure 6-29(b). Enforcing M-M relationships can be
very difficult. Particular challenges concern the creation
of the first parent/child rows and the deletion of the
last parent/child rows. The triggers on the two tables
interfere with one another. M-M relationships between
strong and weak entities are not as problematic as those
between strong entities.

In this text, the actions to enforce required parents are
documented using referential integrity actions on the table
design diagrams. The actions to enforce required children
are documented by using Figure 6-29(b) as a boilerplate
document. An additional complication is that a table can
participate in many relationships. Triggers written to en-
force the minimum cardinality on one relationship may
interfere with triggers written to enforce the minimum

SDLC Stage

Data Structure

Relationships:

SA&D Reference

Recursive

Software Tools:
(used in this book)

Data Model
(Chapter 5)

Database Design
(Chapter 6)

Requirements Analysis Component Design

Conceptual Design/Schema

Entity

Relationship

Generic

Yes

Yes

Yes

Yes

NO - See N:M Relationships

Yes (Associative Entity)

Yes
Depends on Data Modeling Software

Yes

Microsoft Visio 2013

Logical Design/Schema

Physical Design (Data Types)

Table (Relation)

Relationship with Foreign Keys

DBMS Specific

Yes

Yes

Yes

Yes

Yes

No - See Intersection Table

Yes
Depends on Data Modeling Software

Yes

MySQL Workbench

Level of Generality

Relationship Structure

SuperType/SubType

Association Table with
two 1: N ID-Dependent Relationships

Intersection Table with
two 1:N ID-Dependent Relationships

N:M

1:N ID-Dependent

1:N

1:1

FiguRE 6-44

Summary of the Database
Design Process

 CHAPTER 6 Transforming Data Models into Database Designs 327

Key Terms

action
alternate key (AK)
association entity
associative entity
association table
candidate key
cascading deletion
cascading update
component design
data constraint
database design
DBMS reserved word
default value

domain constraint
interrelation constraint
intersection table
intrarelation constraint
minimum cardinality enforcement

action
MUST constraint
MUST COVER

constraint
MUST NOT constraint
null status
parent mandatory and child

 mandatory (M-M)

parent mandatory and child
optional (M-O)

parent optional and child mandatory
(O-M)

parent optional and child optional (O-O)
range constraint
referential integrity (RI) action
SQL Server IDENTITY ({StartValue},

{Increment}) property
surrogate key
systems analysis and design
systems development life cycle (SDLC)
trigger

 6.1 What happens during database design?

 6.2 What is the difference between the logical and physical design of a database?

 6.3 What is an alternate key?

 6.4 What are the three characteristics of an ideal primary key?

 6.5 What is the difference between primary keys and identifiers?

 6.6 When should you use a surrogate key?

 6.7 Why are surrogate keys the best possible primary keys?

 6.8 What is the difference between an alternate key and a candidate key?

 6.9 Name the keys that cannot have a null status.

 6.10 Name four column properties.

 6.11 Explain why alternate keys can be null.

 6.12 Describe two situations when you can specify the data types in a generic way.

 6.13 What is a default value?

 6.14 What is a domain constraint? Give an example.

 6.15 List the typical character string data types.

 6.16 What is an intrarelation constraint? Give an example.

 6.17 What is an interrelation constraint? Give an example.

 6.18 What is to be verified before normalizing a table?

Review Questions

cardinality on another relationship. This problem is be-
yond the scope of this text, but be aware that it exists. The
principles for enforcing minimum cardinality are summa-
rized in Figure 6-34.

A database design for the View Ridge Gallery is shown
in Figures 6-39, 6-40, 6-41, 6-42, and 6-43. You should un-
derstand this design because it will be used throughout the
remainder of this book.

328 PART 2 Database Design

 6.19 Describe two ways to represent a 1:1 strong entity relationship. Give an example
other than one in this chapter.

 6.20 Describe the difference between an O-M relationship and an M-M relationship.

 6.21 Describe how to represent an N:M strong entity relationship. Give an example other
than one in this chapter.

 6.22 What is the trick for representing N:M recursive relationships?

 6.23 What is the difference between the table that represents an ID-dependent associa-
tion entity and an intersection table?

 6.24 List some of the alternate names for intersection table.

 6.25 Describe how to represent an association entity relationship. Give an example other
than one in this chapter.

 6.26 In a company, one person can be the point-of-contact for many of its clients.
Represent the point-of-contact/clients relationship using a simple, logical design.

 6.27 Describe how to represent a archetype/instance entity relationship. Give an example
other than one in this chapter.

 6.28 What happens when an instance entity is given a non-ID-dependent identifier? How
does this change affect relationship design?

 6.29 What happens when the parent in an ID-dependent relationship is given a surrogate
key? What should the key of the child become?

 6.30 Describe how to represent a mixed entity relationship. Give an example other than
one in this chapter.

 6.31 Describe how to represent a supertype/subtype entity relationship. Give an example
other than one in this chapter.

 6.32 Describe two ways to represent a 1:1 recursive relationship. Give an example other
than one in this chapter.

 6.33 Describe how to represent a 1:N recursive relationship. Give an example other than
one in this chapter.

 6.34 Describe how to represent an N:M recursive relationship. Give an example other
than one in this chapter.

 6.35 In general, how are ternary relationships represented? Explain how a binary con-
straint may affect such a relationship.

 6.36 Describe a MUST constraint. Give an example other than one in this chapter.

 6.37 Describe a MUST NOT constraint. Give an example other than one in this chapter.

 6.38 Describe a MUST COVER constraint. Give an example other than one in this chapter.

 6.39 Explain, in general terms, what needs to be done to enforce minimum cardinality.

 6.40 Why doesn’t an O-O relationship require you to take an action as far as enforcing
minimum cardinality is concerned?

 6.41 Explain the need for each of the actions in Figure 6-29(b).

 6.42 Explain the two restrictions needed for implementing the actions for M-O
relationships.

 6.43 Explain what must be done for the DBMS to enforce required parents.

 6.44 What design decisions must be made to enforce required parents?

 6.45 Explain why the DBMS cannot be used to enforce required children.

 6.46 What happens on the child side, when we write a trigger to insert a child?

 CHAPTER 6 Transforming Data Models into Database Designs 329

Project Questions

 6.51 Answer Project Question 5.56 if you have not already done so. Design a database
for your model in Project Question 5.56. Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for a required parent, if any, and the
form in Figure 6-29(b) for a required child, if any.

 6.52 Answer Project Question 5.57 if you have not already done so. Design a database for
your model in Project Question 5.57(c). Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for required parents, if any, and the
form in Figure 6-29(b) for required children, if any.

 6.53 Answer Project Question 5.58 if you have not already done so. Design a database for
your model in Project Question 5.58(d). Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for required parents, if any, and the
form in Figure 6-29(b) for required children, if any.

 6.54 Answer Project Question 5.59 if you have not already done so. Design databases for
your model in Project Question 5.59(a) and for the model in Figure 5-57. Your designs
should include a specification of tables and attributes as well as primary, candidate,
and foreign keys. Also specify how you will enforce minimum cardinality. Document
your minimum cardinality enforcement using referential integrity actions for required
parents, if any, and the form in Figure 6-29(b) for required children, if any.

 6.55 Answer Project Question 5.60 if you have not already done so. Design a database for
your model in Project Question 5.60(e). Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for required parents, if any, and the
form in Figure 6-29(b) for required children, if any.

 6.56 Answer Project Question 5.61 if you have not already done so. Design a database for
your model in Project Question 5.61(c). Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for required parents, if any, and the
form in Figure 6-29(b) for required children, if any.

 6.57 Answer Project Question 5.62 if you have not already done so. Design a database for
your model in Project Question 5.62(d). Your design should include a specification
of tables and attributes as well as primary, candidate, and foreign keys. Also specify
how you will enforce minimum cardinality. Document your minimum cardinality
enforcement using referential integrity actions for required parents, if any, and the
form in Figure 6-29(b) for required children, if any.

 6.47 Explain why the enforcement of M-M relationships is particularly difficult.

 6.48 Explain the need for each of the design decisions in Figure 6-34.

 6.49 Explain the implications of each of the minimum cardinality specifications in
Figure 6-40.

 6.50 Name the four properties to be specified for each table column.

330 PART 2 Database Design

Writer’s State Patrol Case Questions

Answer the Writer’s State Patrol Case Questions in Chapter 5 if you have not already done
so. Design a database for your data model from Chapter 5.

A. Convert this data model to a database design. Specify tables, primary keys, and for-
eign keys. Using Figure 6-43 as a guide, specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as a Crow’s Foot E-R diagram
similar to the one in Figure 6-39.

E. Document your minimum cardinality enforcement using referential integrity ac-
tions for required parents, if any, and the form in Figure 6-29(b) for required chil-
dren, if any.

San Juan Sailboat Charters Case Questions

San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC
does not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want
to earn income from their boats when they are not using them, and SJSBC charges the
owners a fee for this service. SJSBC specializes in boats that can be used for multiday or
weekly charters. The smallest sailboat available is 28 feet in length, and the largest is 51
feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is provided
at the time of the charter. Most of the equipment is provided by the owners, but some is
provided by SJSBC. The owner-provided equipment includes equipment that is attached to
the boat, such as radios, compasses, depth indicators and other instrumentation, stoves, and
refrigerators. Other owner-provided equipment, such as sails, lines, anchors, dinghies, life
preservers, and equipment in the cabin (dishes, silverware, cooking utensils, bedding, and
so on), is not physically attached to the boat. SJSBC provides consumable supplies, such as
charts, navigation books, tide and current tables, soap, dish towels, toilet paper, and similar
items. The consumable supplies are treated as equipment by SJSBC for tracking and account-
ing purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much of
the equipment is expensive, and those items not physically attached to the boat can be easily
damaged, lost, or stolen. SJSBC holds the customer responsible for all of the boat’s equipment
during the period of the charter.

SJSBC likes to keep accurate records of its customers and charters, and customers are
required to keep a log during each charter. Some itineraries and weather conditions are more
dangerous than others, and the data from these logs provide information about the customer
experience. This information is useful for marketing purposes as well as for evaluating a cus-
tomer’s ability to handle a particular boat and itinerary.

Sailboats need maintenance. Note that two definitions of boat are (1) “break out
another thousand” and (2) “a hole in the water into which one pours money.” SJSBC is
required by its contracts with the boat owners to keep accurate records of all maintenance
activities and costs.

A data model of a proposed database to support an information system for SJSBC is
shown in Figure 6-45. Note that, because the OWNER entity allows for owners to be com-
panies are well as individuals, SJSBC can be included as an equipment owner (note that the

Case Questions

 CHAPTER 6 Transforming Data Models into Database Designs 331

cardinalities in the diagram allow SJSBC to own equipment while not owning any boats).
Also note that this model relates EQUIPMENT to CHARTER rather than BOAT even when
the equipment is physically attached to the boat. This is only one possible way to handle
EQUIPMENT, but it is satisfactory to the managers of SJSBC.

A. Convert this data model to a database design. Specify tables, primary keys, and for-
eign keys. Using Figure 6-43 as a guide, specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as a Crow’s Foot E-R diagram
similar to the one in Figure 6-39.

E. Document your minimum cardinality enforcement using referential integrity ac-
tions for required parents, if any, and the form in Figure 6-29(b) for required chil-
dren, if any.

EQUIPMENT

ItemIDTabNumber

ItemNumber
ItemSerialNumber
ItemMake
ItemModel
NumberOfItems
ItemCost

OWNER

OwnerID

CompanyName
LastName
FirstName
Address
City
State
ZIP
Phone
Email
BankName
BankAccountNumber

BOAT

CoastGuardRegNumber

BoatName
BoatMake
BoatModel
BoatType
Length
Beam
NumberOfBerths

SCHEDULED_MAINTENANCE

MaintenanceID

MaintenanceItem
RequiredDate
ScheduledDate
CompletedDate
Cost

CUSTOMER

CustomerID

LastName
FirstName
Address
City
State
ZIP
Phone
Email
CreditCardNumber

LOG
CharterID
EntryNumber

EntryDate
EntryTime
EntryLocation
Weather
DepartingFrom
SailingTo

CHARTER

CharterID

DepartureDate
ReturnDate
NumberInParty
BoatCost
EquipmentCost
TotalCost

FiguRE 6-45

Data Model for San Juan
Sailboat Charters

332 PART 2 Database Design

Morgan
Importing

if you have not already done so, complete the Morgan importing project at the end of
Chapter 5.

A. Convert this data model to a database design. Specify tables, primary keys, and for-
eign keys. Using Figure 6-43 as a guide, specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as a Crow’s Foot E-R diagram
similar to the one in Figure 6-39.

E. Document your minimum cardinality enforcement using referential integrity ac-
tions for required parents, if any, and the form in Figure 6-29(b) for required
 children, if any.

The Queen Anne
Curiosity Shop

if you have not already done so, complete the Queen Anne Curiosity Shop project at
the end of Chapter 5.

A. Convert this data model to a database design. Specify tables, primary keys, and for-
eign keys. Using Figure 6-43 as a guide, specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as a Crow’s Foot E-R diagram
similar to the one in Figure 6-39.

E. Document your minimum cardinality enforcement using referential integrity ac-
tions for required parents, if any, and the form in Figure 6-29(b) for required chil-
dren, if any.

In Chapter 5, we discussed how to create a data model for a new database,
and in Chapter 6, we demonstrated how to transform that data model into a
database design that we can use to build an actual database in a relational
DBMS. We used the View Ridge Gallery (VRG) database as our example
in Chapter 6 and finished with a complete set of specifications for the
VRG database. In Part 3, we will implement the VRG database design in
Microsoft SQL Server 2014 (with versions for Oracle Database and MySQL
5.6 shown in Chapters 10B and 10C, respectively).

Part 3 consists of two chapters. Chapter 7 presents SQL data definition
language statements for constructing database components and describes
the SQL data manipulation statements for inserting, updating, and deleting
data. You will also learn how to construct and use SQL views. The chapter
concludes with an introduction to embedding SQL statements in applica-
tion programs and SQL/Persistent Stored Modules (SQL/PSM), which leads
to a discussion of SQL triggers and stored procedures.

Chapter 8 presents the use of SQL statements to redesign databases. It
presents SQL correlated subqueries and then introduces SQL statements
using the SQL EXISTS and NOT EXISTS keywords. Both of these ad-
vanced SQL statements are needed for database redesign. Chapter 8
also describes database reverse engineering, surveys common database
redesign problems, and shows how to use SQL to solve database redesign
problems.

Database
Implementation

3
P a r t

In Chapter 2, we introduced SQL and classified SQL statements into five

categories:

■■ Data definition language (DDL) statements, which are used for creating
tables, relationships, and other database structures.

■■ Data manipulation language (DML) statements, which are used for query-
ing, inserting, updating, and deleting data.

■■ SQL/Persistent Stored Modules (SQL/PSM) statements, which extend
SQL by adding procedural programming capabilities, such as variables and
flow-of-control statements, that provide some programmability within the
SQL framework.

■■ Transaction control language (TCL) statements, which are used to mark
transaction boundaries and control transaction behavior.

■■ Data control language (DCL) statements, which are used to grant database
permissions (or to revoke those permissions) to users and groups so the us-
ers or groups can perform various operations on the data in the database

In Chapter 2, we discussed only DML query statements. This chapter describes and

illustrates SQL DDL statements for constructing databases; SQL DML statements for

inserting, modifying, and deleting data; and SQL statements to create and use SQL

views. We also discuss how to embed SQL statements into application programs and

SQL for Database Construction
and Application Processing

■■ To understand how SQL is used in application
programming

■■ To understand SQL/Persistent Stored Modules
(SQL/PSM)

■■ To understand how to create and use functions
■■ To understand how to create and use triggers
■■ To understand how to create and use stored procedures

Chapter Objectives
■■ To create and manage table structures using SQL

statements
■■ To understand how referential integrity actions are

implemented in SQL statements
■■ To create and execute SQL constraints
■■ To understand several uses for SQL views
■■ To use SQL statements to create, use, and manage views

334

7

 CHAPTER 7 SQL for Database Construction and Application Processing 335

SQL/PSM and how to use SQL/PSM to create functions, triggers, and stored proce-

dures. SQL TCL and SQL DCL statements are discussed in Chapter 9.

In this chapter, we use a DBMS product to create the database that we

 designed, by creating a database design based on a data model, in Chapter 6.

We are now in the implementation step of the systems development life cycle
(SDLC) in the systems analysis and design process. This is the SDLC step that we

have been working toward all along—building and implementing the database and

management information system application that uses that database. (For an intro-

duction to systems analysis and design and to the SDLC, see Appendix B—Getting

Started with Systems Analysis and Design.)

The knowledge in this chapter is important whether you become a database

administrator or an application programmer. Even if you will not construct SQL user-

defined functions, triggers, or stored procedures yourself, it is important that you

know what they are, how they work, and how they influence database processing.

The Importance of Working with an Installed DBMS Product

In order to fully understand the DBMS concepts and features we discuss and illustrate in the
chapter, you need to work with them in an installed DBMS product. This hands-on experience
is necessary so that you move from an abstract understanding of these concepts and features
to a practical knowledge of them and how they are used and implemented.

The topics in this chapter, as well as topics in Chapters 9 and 10 outline this material as it
relates to the three major DBMS products discussed in this text.

The specific information you need to download, install, and use these DBMS products
is found in three online chapters available at www.pearsonglobaleditions.com/kroenke/. Microsoft
SQL Server 2014 is discussed in online Chapter 10A, Oracle Database 12c and Oracle
Database Express Edition 11g Release 2 are discussed in online Chapter 10B, and MySQL
5.6 is discussed in online Chapter 10C. As described in the introductory Chapter 10, por-
tions of these chapters parallel the discussion in this chapter and illustrate the actual use of
the concepts and features in each DBMS product.

To get the most out of this chapter, you should download and install the DBMS product(s)
of your choice and then follow your work in each section of this chapter by working thorough
the corresponding sections of the chapter for your DBMS product.

The View Ridge Gallery Database

In Chapter 6, we introduced the View Ridge Gallery, a small art gallery that sells contem-
porary North American and European fine art and provides art framing services. We also
developed a data model and database design for a database for the View Ridge Gallery. Our
final database design for the View Ridge Gallery is shown in Figure 7-1. You should review
the database design, table column characteristics, and relationship specifications as described
in Chapter 6. In this chapter, we will use SQL to build a database for the View Ridge Gallery
named VRG based on that design. The SQL Scripts needed to create the VRG database are
available at www.pearsonglobaleditions.com/kroenke.

SQL DDL and DML

Figure 7-2 summarizes the new SQL DDL and DML statements described in this chapter.
We begin with SQL DDL statements for managing table structures, including CREATE
TABLE, ALTER TABLE, DROP TABLE, and TRUNCATE TABLE. Using these statements,
we will build the table structure for the View Ridge database. Then we present the four
SQL DML statements for managing data: INSERT, UPDATE, DELETE, and MERGE.

www.pearsonhighered.com/kroenke
http://www.pearsonglobaleditions.com/kroenke

336 PART 3 Database Implementation

ArtistID

LastName (AK1.1)
FirstName (AK1.2)
Nationality
DateOfBirth
DateDeceased

ARTIST
CustomerID

LastName
FirstName
EmailAddress (AK1.1)
EncryptedPassword
Street
City
State
ZIPorPostalCode
Country
AreaCode
PhoneNumber

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
AskingPrice
DateSold
SalesPrice
WorkID (FK)
CustomerID (FK)

TRANS

PURCHASES/SOLD_TO ACQUIRED CREATES/CREATED_BY

HAS_INTEREST_IN ADMIRED_BY

WorkID

Title (AK1.1)
Copy (AK1.2)
Medium
Description
ArtistID (FK)

WORK

CustomerID (FK)
ArtistID (FK)

CUSTOMER_ARTIST_INT

FIGuRE 7-1

Final VrG Database Design
for the View ridge Gallery

• SQL Data Definition Language (DDL)

SQL Elements Discussed in Chapter 7

 — CREATE TABLE

 — ALTER TABLE

 — DROP TABLE

 — TRUNCATE TABLE

• SQL Data Manipulation Language (DML)

 — INSERT

 — UPDATE

 — DELETE

 — MERGE

• SQL Views

 — CREATE VIEW

 — ALTER VIEW

 — DROP VIEW

• SQL/Persistent Stored Modules (SQL/PSM)

 — Functions

 — Triggers

 — Stored Procedures

FIGuRE 7-2

Chapter 7 SQL Elements

 CHAPTER 7 SQL for Database Construction and Application Processing 337

Next, we will discuss the SQL statements used to create, use, and manage SQL views. We
will end the chapter with a discussion of SQL/Persistent Stored Modules (SQL/PSM) and
of functions, triggers, and stored procedures.

Managing Table Structure with SQL DDL

The SQL CREATE TABLE statement is used to construct tables, define columns and
column constraints, and create relationships. Most DBMS products provide graphical tools
for performing these tasks, and you may be wondering why you need to learn SQL to per-
form the same work. There are four reasons. First, creating tables and relationships with SQL
is quicker than with graphical tools. Once you know how to use the SQL CREATE TABLE
statement, you will be able to construct tables faster and more easily than by fussing around
with buttons and graphical gimmickry. Second, some applications, particularly those for
reporting, querying, and data mining, require you to create the same table repeatedly. You
can do this efficiently if you create an SQL script text file with the necessary SQL CREATE
TABLE statements. You then just execute the SQL script when you need to re-create a table.
Third, some applications require you to create temporary tables during application work.
The discussion of RFM reports in Appendix J shows one such application. The only way to
create tables from program code is to use SQL. Finally, SQL DDL is standardized and DBMS
independent. With the exception of some data types, the same CREATE TABLE statement
will work with SQL Server, Oracle Database, DB2, or MySQL.

Creating the VRG Database

Of course, before you can create any tables, you have to create the database. The SQL-92 and
subsequent standards include an SQL statement for creating databases, but it is seldom used.
Instead, most developers use special commands or graphical tools for creating a database.
These techniques are DBMS specific, and we describe them in context for SQL Server 2014
in Chapter 10A, for Oracle Database in Chapter 10B, for MySQL 5.6 in Chapter 10C, and
for Microsoft Access 2013 in Appendix A.

At this point, we highly recommend that you read the section on creating a new database
in the DBMS product you are using and use the appropriate steps to create a new database
for the View Ridge Gallery named VRG. For illustrative purposes, we will use Microsoft SQL
Server 2014 in this chapter, and our SQL code will be the correct code for Microsoft SQL
Server 2014. The correct SQL statements for other DBMS products will be similar, but they
will vary slightly. The correct SQL statements for Oracle Database and MySQL 5.6 can be
found in Chapters 10B and 10C, respectively. Figure 7-3 shows the VRG database in the
Microsoft SQL Server 2014 Management Studio.

using SQL Scripts

Each DBMS product has a GUI utility program that is used to create, edit, and store SQL
script files. An SQL script file or SQL script is a separately stored plain text file, and it
usually uses a file name extension of .sql. An SQL script can be opened and run as an SQL
command (or set of commands). SQL scripts are used to create and populate databases
and to store a query or set of queries. They are also used to store the SQL statements to
create SQL elements that we will discuss later in this chapter: SQL views and SQL/PSM
functions, triggers, and stored procedures. We recommend that you use SQL scripts to edit
and store any work you do in SQL in this chapter (as well as any SQL work in general).

The GUI utilities that we will use to create SQL scripts are:

■■ Microsoft SQL Server 2014 Management Studio for use with Microsoft
SQL Server 2014 (see Chapter 10A for a discussion of Microsoft SQL Server 2014
Management Studio).

■■ Oracle SQL Developer for use with Oracle Database 12c and Oracle Database
Express Edition 11g Release 2 (see Chapter 10B for a discussion of Oracle SQL
Developer).

338 PART 3 Database Implementation

■■ Oracle MySQL Workbench for use with Oracle MySQL 5.6 (see Chapter 10C
for a discussion of Oracle MySQL Workbench).

When the Microsoft SQL Server 2014 Management Studio is installed, a new folder
named SQL Server Management Studio is created in your Documents (or My Documents)
folder. We recommend that you create a subfolder named Projects and use the Projects folder
as the default location for SQL script files. Further, for each database, create a new folder in
the Projects folder. For example, we will create a folder named View-Ridge-Gallery-Database to
store the script files associated with the View Ridge Gallery database.

By default, Oracle SQL Developer stores *.sql files in an obscure location within its
own application files. We recommend that you create a subfolder in your Documents
(or My Documents) folder named SQL Developer and then create a subfolder for each
 database in the SQL Developer folder. For example, we will create a folder named View-
Ridge-Gallery-Database to store the script files associated with the View Ridge Gallery
database.

By default, MySQL Workbench stores files in the user’s Documents (or My Documents)
folder. We recommend that you create a subfolder in your Documents (or My Documents)
folder named MySQL Workbench and then create subfolders labeled EER Models and Schemas.
Within each of these subfolders, create a sub-subfolder for each MySQL database. For
 example, we will create a folder named View-Ridge-Gallery-Database to store the script files as-
sociated with the View Ridge Gallery database.

using the SQL CREATE TABLE Statement

The basic format of the SQL CREATE TABLE statement is:

CREATE TABLE (

 three-part column definition,

 three-part column definition,

 . . .

 optional table constraints

 . . .

);

The Object Explorer

The VRG database
object folders—when
database objects such
as tables are created,
they will be visible
in these folders

The VRG database
object

FIGuRE 7-3

the VrG Database in SQL
Server 2014 Management
Studio

 CHAPTER 7 SQL for Database Construction and Application Processing 339

The parts of the three-part column definition are the column name, the column data
type, and, optionally, a constraint on column values. Thus, we can restate the CREATE TABLE
format as:

CREATE TABLE (

 ColumnName DataType OptionalConstraint,

 ColumnName DataType OptionalConstraint,

 . . .

 Optional table constraint

 . . .

);

The column and table constraints we consider in this text are PRIMARY KEY,
FOREIGN KEY, NOT NULL, NULL, UNIQUE, and CHECK. Additionally, the
DEFAULT keyword (DEFAULT is not considered a column constraint) can be used to
set initial values. Finally, most variants of SQL support a property to implement surrogate
primary keys. For example, SQL Server 2014 uses the IDENTITY({StartValue},{Increment})
property. Oracle Database, MySQL, and Microsoft Access use somewhat different techniques
for creating surrogate keys.

If you are using those products, see the discussion of surrogate keys for Oracle Database
in Chapter 10B, MySQL 5.6 in Chapter 10C, or Microsoft Access 2013 in Appendix A. We
will explain each of these constraints, keywords, and properties as we meet them in the con-
text of our discussion in this chapter.

Variations in SQL Data Types and SQL/PSM

Even though Microsoft Access reads standard SQL and the SQL used by SQL Server 2014, the
results may be a bit different. For example, Microsoft Access ANSI-89 SQL converts both the
Char and Varchar SQL data types to a fixed Text data type.

Each DBMS product also has its own variant of SQL and SQL procedural program-
ming language extensions, which are additions that allow SQL to function similarly to a
procedural programming language (e.g., IF . . . THEN . . . ELSE structures). In the ANSI/ISO SQL
standard, these procedural programming language extensions are known as SQL/Persistent
Stored Modules (SQL/PSM). Some vendors have given their SQL variants specific names.
Microsoft’s SQL Server version of SQL is called Transact-SQL (T-SQL), whereas Oracle’s
Oracle Database version of SQL is called Procedural Language/SQL (PL/SQL). MySQL's
variant, even though it, too, contains procedural extensions based on SQL/PSM, has no special
name and is just called SQL in the MySQL documentation. We will point out specific SQL
syntax differences as we encounter them in our discussion. For more on T-SQL, see the SQL
Server 2014 Books Online section Transact-SQL Reference at http://msdn.microsoft.com/en-us/
library/bb510741.aspx. For more on PL/SQL, see the Oracle Database PL/SQL User’s Guide
and Reference 12c at http://docs.oracle.com/database/121/nav/portal_booklist.htm. For more on
SQL in MySQL, see the MySQL 5.6 Reference Manual Chapter 13 on SQL Statement Syntax
at http://dev.mysql.com/doc/refman/5.6/en/.

One source of variation in DBMS SQL stems from the different data types implemented
by each vendor. The SQL standard defines a set of data types, and the variations in DBMS data
types was discussed in Figure 6-5.

Creating the VRG Database ARTIST Table

We will start by considering two of the tables in the VRG database design we developed at
the end of Chapter 6, the ARTIST table and the WORK table. These tables are shown in
Figure 7-1, and Figures 7-4 and 7-5 show the column properties for these tables. Three new
features are shown in these figures.

http://msdn.microsoft.com/en-us/library/bb510741.aspx
http://msdn.microsoft.com/en-us/library/bb510741.aspx
http://docs.oracle.com/database/121/nav/portal_booklist.htm
http://dev.mysql.com/doc/refman/5.6/en

340 PART 3 Database Implementation

The first is the Microsoft SQL Server IDENTITY ({StartValue}, {Increment})
 property, which is used to specify surrogate keys. In the ARTIST table, the expression
IDENTITY (1, 1) means that ArtistID is to be a surrogate key with values starting at 1 and in-
cremented by 1. Thus, the value of ArtistID for the second row in ARTIST will be (1 + 1) = 2.
In the WORK table, the expression IDENTITY (500, 1) means that WorkID is to be a surrogate
key with values starting at 500 and incremented by 1. Thus, the value of WorkID for the sec-
ond row in WORK will be (500 + 1) = 501.

The second new feature is the designation of (LastName, FirstName) in ARTIST as an
alternative key. This indicates that (LastName, FirstName) is a candidate key for the ARTIST
table. Alternative keys are defined using the UNIQUE constraint.

The third new feature is the use of the DEFAULT column constraint in the Description
column of the WORK table. The DEFAULT constraint is used to set a value that will be in-
serted into each row unless some other value is specified.

Figure 7-6 describes in tabular form the M-O relationship between ARTIST and WORK
shown in Figure 7-1, and Figure 7-7 (based on the template in Figure 6-29(a)) details the
referential integrity actions that will be needed to enforce the minimum cardinalities in the
ARTIST-to-WORK relationship.

Figure 7-8 shows the SQL CREATE TABLE statement for constructing the ARTIST table. (All
of the SQL in this chapter runs on SQL Server. If you are using a different DBMS, you may need to
make adjustments, so consult the chapter or appendix for the DBMS you are using.) The format
of the CREATE TABLE statement is the name of the table followed by a list of all column defini-
tions and constraints enclosed in parentheses and ending with the ubiquitous SQL semicolon (;).

Column Name

ArtistID

LastName

FirstName

Nationality

DateOfBirth

DateDeceased

Type

Int

Char (25)

Char (25)

Char (30)

Numeric (4,0)

Numeric (4,0)

Key

Primary Key

Alternate Key

Alternate Key

No

No

No

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NULL

Remarks

Surrogate Key
IDENTITY (1,1)

AK1.1

AK1.2

ARTIST

FIGuRE 7-4

Column Characteristics for
the VrG Database artISt
table

Column Name

WorkID

Title

Copy

Medium

Description

ArtistID

Type

Int

Char (35)

Char (12)

Char (35)

Varchar (1000)

Int

Key

Primary Key

No

No

No

No

Foreign Key

NULL Status

NOT NULL

NOT NULL

NOT NULL

NULL

NULL

NOT NULL

Remarks

Surrogate Key
IDENTITY (500,1)

DEFAULT
value =
‘Unknown
provenance’

WORK

FIGuRE 7-5

Column Characteristics for
the VrG Database WOrK
table

 CHAPTER 7 SQL for Database Construction and Application Processing 341

As stated earlier, SQL has several column and table constraints: PRIMARY KEY, NULL,
NOT NULL, UNIQUE, FOREIGN KEY, and CHECK. The PRIMARY KEY constraint is used
to define the primary key of the table. Although it can be used as a column constraint, be-
cause it has to be used as a table constraint to define compound primary keys, we prefer to
always use it as a table constraint, as shown in Figure 7-8. The NULL and NOT NULL column
constraints are used to set the NULL status of a column, indicating whether data values are re-
quired in that column. The UNIQUE constraint is used to indicate that the values of a column
or columns must not use repeated values. The FOREIGN KEY constraint is used to define
referential integrity constraints, and the CHECK constraint is used to define data constraints.

In the first section of the CREATE TABLE statement for the ARTIST table, each column is
defined by giving its name, data type, and null status. If you do not specify the null status using
NULL or NOT NULL, then NULL is assumed.

In this database, DateOfBirth and DateDeceased are years. YearOfBirth and
YearDeceased would have been better column names, but that is not how the gallery person-
nel refer to them. Because the gallery is not interested in the month and day of an artist’s birth
and death, those columns are defined as Numeric (4, 0), which means a four-digit number
with zero places to the right of the decimal point.

The last two expressions in the SQL table definition statement in Figure 7-8 are constraints
that define the primary key and a candidate, or alternate, key. As stated in Chapter 6, the
primary purpose of an alternate key is to ensure uniqueness of column values. Thus, in SQL,
alternate keys are defined using the UNIQUE constraint.

The format of such constraints is the word CONSTRAINT followed by a constraint name
provided by the developer followed by a keyword indicating the type of constraint (PRIMARY

Parent Child

Relationship Cardinality

ARTIST WORK

Type

Nonidentifying

MAX

1:N

MIN

M-O

FIGuRE 7-6

the VrG Database artISt-
to-WOrK relationship

ARTIST
Is Required Parent

Action on ARTIST
(Parent)

Action on WORK
(Child)

Insert None Get a parent

Modify key or
Foreign key

Prohibit—ARTIST uses a
surrogate key

Allow foreign key
updates if parent primary
key exists

Delete Prohibit if WORK exists—
 data related to a
 transaction is never deleted
 (business rule)
Allow if no WORK exists
 (business rule)

None

FIGuRE 7-7

actions to Enforce Minimum
Cardinality for the VrG
Database artISt-to-WOrK
relationship

CREATE TABLE ARTIST (
ArtistID Int NOT NULL IDENTITY(1,1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
Nationality Char(30) NULL,
DateOfBirth Numeric(4,0) NULL,
DateDeceased Numeric(4,0) NULL,
CONSTRAINT ArtistPK PRIMARY KEY(ArtistID),
CONSTRAINT ArtistAK1 UNIQUE(LastName, FirstName)
);

FIGuRE 7-8

SQL Statements to Create
the Initial Version of the VrG
Database artISt table

342 PART 3 Database Implementation

KEY or UNIQUE in this example) and then one or more columns in parentheses. For exam-
ple, the following partial SQL statement defines a constraint named MyExample that ensures
that the combination of first and last name is unique:

CONSTRAINT MyExample UNIQUE (FirstName, LastName),

As stated in Chapter 6, primary key columns must be NOT NULL, but altermate keys can be
NULL or NOT NULL.

By THE WAy SQL originated in the era of punched card data processing (“What is a
punched card?” you ask? See the Wikipedia article Punched card for a full

explanation). Punched cards had only uppercase letters, so there was no need to think
about case sensitivity. When cards were replaced by regular keyboards, DBMS ven-
dors chose to ignore the difference between uppercase and lowercase letters. Thus,
CREATE TABLE, create table, and CReatE taBle are all the same in SQL. NULL, null,
and Null are all the same as well.

Notice that the last line of the SQL statement in Figure 7-8 is a closed parenthesis fol-
lowed by a semicolon. These characters could be placed on the line above, but dropping them
to a new line is a style convention that makes it easy to determine the boundaries of CREATE
TABLE statements. Also notice that column descriptions and constraints are separated by
commas but that there is no comma after the last one.

By THE WAy Many organizations have developed SQL coding standards of their own.
Such standards specify not only the format of SQL statements but also

conventions for naming constraints. For example, in the figures in this chapter, we use
the suffix PK on the names of all primary key constraints and the suffix FK for all foreign
key constraints. Most organizations have standards that are more comprehensive. You
should follow your organization’s standards, even if you disagree with them. Consistent
SQL coding improves organizational efficiency and reduces errors.

Creating the VRG Database WORK Table and the 1:N
ARTIST-to-WORK Relationship

Figure 7-9 shows SQL statements for creating the ARTIST and WORK tables and their
relationship. Note that the column name Description is written as [Description] because
Description is a Microsoft SQL Server 2014 reserved keyword (see Chapter 10A on Microsoft
SQL Server 2014), and we must use the square brackets ([and]) to create a delimited iden-
tifier. This is the same reason that in Chapter 6 we decided to use the table name TRANS
instead of TRANSACTION.

The only new syntax in Figure 7-9 is the FOREIGN KEY constraint at the end of WORK.
Such constraints are used to define referential integrity constraints. The FOREIGN KEY con-
straint in Figure 7-9 is equivalent to the following referential integrity constraint:

ArtistID in WORK must exist in ArtistID in ARTIST

Note that the foreign key constraint contains two SQL clauses that implement the
minimum cardinality enforcement requirements of Figure 7-7. The SQL ON UPDATE
clause specifies whether updates should cascade form ARTIST to WORK, and the SQL ON
DELETE clause specifies whether deletions in ARTIST should cascade to WORK.

The expression ON UPDATE NO ACTION indicates that updates to the primary key for
a table that has children should be prohibited (this is the standard setting for surrogate keys
that should never change). The expression ON UPDATE CASCADE would indicate that up-
dates should cascade. ON UPDATE NO ACTION is the default.

 CHAPTER 7 SQL for Database Construction and Application Processing 343

Similarly, the expression ON DELETE NO ACTION indicates that deletions of rows that
have children should be prohibited. The expression ON DELETE CASCADE would indicate
that deletions should cascade. ON DELETE NO ACTION is the default.

In the present case, the ON UPDATE NO ACTION is meaningless because the primary
key of ARTIST is a surrogate and will never be changed. The ON UPDATE action would need
to be specified for nonsurrogate data keys, however, and we show the option here so you will
know how to code it.

CREATE TABLE ARTIST (
ArtistID Int NOT NULL IDENTITY(1,1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
Nationality Char(30) NULL,
DateOfBirth Numeric(4,0) NULL,
DateDeceased Numeric(4,0) NULL,
CONSTRAINT ArtistPK PRIMARY KEY(ArtistID),
CONSTRAINT ArtistAK1 UNIQUE(LastName, FirstName)
);

CREATE TABLE WORK (
WorkID Int NOT NULL IDENTITY(500,1),
Title Char(35) NOT NULL,
Copy Char(12) NOT NULL,
Medium Char(35) NULL,
[Description] Varchar(1000) NULL DEFAULT 'Unknown provenance',
ArtistID Int NOT NULL,
CONSTRAINT WorkPK PRIMARY KEY(WorkID),
CONSTRAINT WorkAK1 UNIQUE(Title, Copy),
CONSTRAINT ArtistFK FOREIGN KEY(ArtistID)

REFERENCES ARTIST(ArtistID)
ON UPDATE NO ACTION
ON DELETE NO ACTION

);

FIGuRE 7-9

SQL Statements to Create
the VrG Database artISt-
to-WOrK 1:N relationship

By THE WAy Note that you must define parent tables before child tables. In this case,
you must define ARTIST before WORK. If you try to reverse the order of

definition, the DBMS will generate an error message on the FOREIGN KEY constraint
because it will not yet know about the ARTIST table.

Similarly, you must delete tables in the opposite order. You must DROP (described
later in this chapter) a child before a parent. Better SQL parsers would sort out all of
this so that statement order would not matter, but, alas, that’s not the way it’s done!
Just remember the following: Parents are first in and last out.

Implementing Required Parent Rows

In Chapter 6, you learned that to enforce a required parent constraint, you must define the
referential integrity constraint and set the foreign key to NOT NULL in the child table. The
SQL CREATE TABLE statement for the WORK table in Figure 7-9 does both. In this case,
ARTIST is the required parent table, and WORK is the child. Thus, ArtistID in the WORK
table is specified as NOT NULL (using the NOT NULL column constraint), and the ArtistFK
FOREIGN KEY table constraint is used to define the referential integrity constraint. Together,
these specifications thus cause the DBMS to enforce the required parent.

If the parent were not required, then we would specify ArtistID in WORK as NULL. In
that case, WORK would not need to have a value for ArtistID and thus not need a parent.
However, the FOREIGN KEY constraint would still ensure that all values of ArtistID in WORK
would be present in the ArtistID in ARTIST.

344 PART 3 Database Implementation

Implementing 1:1 Relationships

SQL for implementing 1:1 relationships is almost identical to that for 1:N relationships, as just
shown. The only difference is that the foreign key must be declared as unique. For example,
if the relationship were 1:1 between ARTIST and WORK (i.e., each artist could have only one
work at the View Ridge Gallery), then in Figure 7-9 we would add the following constraint to
the WORK table:

CONSTRAINT UniqueWork UNIQUE (ArtistID)

Note that the ARTIST-to-WORK relationship in Figure 7-1 is of course not 1:1, so we will
not specify this constraint to our current SQL statements. As before, if the parent is required,
then the foreign key should be set to NOT NULL. Otherwise, it should be NULL.

Casual Relationships

Sometimes it is appropriate to create a foreign key column but not specify a FOREIGN KEY
constraint. In that case, the foreign key value may or may not match a value of the primary key
in the parent. If, for example, you define the column DepartmentName in EMPLOYEE but
do not specify a FOREIGN KEY constraint, then a row may have a value of DepartmentName
that does not match a value of DepartmentName in the DEPARTMENT table.

Such relationships, which we call casual relationships, occur frequently in applica-
tions that process tables with missing data. For example, you might buy consumer data that
include names of consumers’ employers. Assume that you have an EMPLOYER table that
does not contain all of the possible companies for which the consumers might work. You want
to use the relationship if you happen to have the values, but you do not want to require having
those values. In that case, create a casual relationship by placing the key of EMPLOYER in the
consumer data table but do not define a FOREIGN KEY constraint.

Figure 7-10 summarizes the techniques for creating relationships using FOREIGN KEY,
NULL, NOT NULL, and UNIQUE constraints in 1:N, 1:1, and casual relationships.

Creating Default Values and Data Constraints with SQL

Figure 7-11 shows an example set of default value and example data constraints for the VRG
database. The Description column in the WORK table is given the default value of 'Unknown
provenance'. The ARTIST and TRANS tables are assigned various data constraints.

In the ARTIST table, Nationality is limited to the values in the domain constraint shown,
and DateOfBirth is limited by the intrarelation constraint (within the same table) that
DateOfBirth occurs before DateDeceased. Further, DateOfBirth and DateDeceased, which as

Relationship Type

1:N relationship, parent optional Specify FOREIGN KEY constraint. Set
foreign key NULL.

CREATE TABLE Constraints

1:N relationship, parent required Specify FOREIGN KEY constraint. Set
foreign key NOT NULL.

1:1 relationship, parent optional Specify FOREIGN KEY constraint.
Specify foreign key UNIQUE constraint.
Set foreign key NULL.

1:1 relationship, parent required Specify FOREIGN KEY constraint.
Specify foreign key UNIQUE constraint.
Set foreign key NOT NULL.

Casual relationship Create a foreign key column, but do not
specify FOREIGN KEY constraint. If
relationship is 1:1, specify foreign key
UNIQUE.

FIGuRE 7-10

Summary of relationship
Definitions Using the SQL
CrEatE taBLE Statement

 CHAPTER 7 SQL for Database Construction and Application Processing 345

noted earlier are years, are limited to the domain defined by specifying that the first digit be a
1 or a 2 and the remaining three digits be any decimal numbers. Thus, they can have any value
between 1000 and 2999. SalesPrice in the TRANS table is limited by a range constraint to a
value greater than 0 but less than or equal to $500,000, and PurchaseDate is limited by an in-
trarelation constraint that the DateSold be no earlier than the DateAcquired (i.e., DateAcquired
is less than or equal to DateSold).

Figure 7-11 shows no interrelation constraints between tables. Although the SQL-92
specification defined facilities for creating such constraints, no DBMS vendor has imple-
mented those facilities. Such constraints must be implemented in triggers. An example of this
is shown later in this chapter. Figure 7-12 shows the SQL statements to create the ARTIST and
WORK tables modified with the appropriate default values and data constraints.

Implementing Default Values
Default values are created by specifying the DEFAULT keyword in the column definition just
after the NULL/NOT NULL specification. Note how in Figure 7-12 the Description column
in the WORK table is given the default value of 'Unknown provenance' using this technique.

Implementing Data Constraints
The data constraints are created using the SQL CHECK constraint. The format for the
CHECK constraint is the word CONSTRAINT followed by a developer-provided constraint
name followed by the word CHECK and then by the constraint specification in parentheses.
Expressions in CHECK constraints are akin to those used in the WHERE clause of SQL state-
ments. Thus, the SQL IN keyword is used to provide a list of valid values. The SQL NOT IN
keyword also can be used for negatively expressed domain constraints (not shown in this ex-
ample). The SQL LIKE keyword is used for the specification of decimal places. Range checks
are specified using comparison operators such as the less than (<) and greater than (>)
symbols. Because interrelation constraints are unsupported, comparisons can only be made
as intrarelation constraints between columns in the same table.

Table

WORK Description

Column

‘Unknown
provenance’

Default Value Constraint

ARTIST Nationality IN (‘Candian’, ‘English’,
‘French’, ‘German’, ‘Mexican’,
‘Russian’, ‘Spainish’,
‘United States’.

ARTIST DateOfBirth Less than DateDeceased.

ARTIST DateOfBirth Four digits—1 or 2 is first digit,
0 to 9 for remaining three digits.

ARTIST DateDeceased Four digits—1 or 2 is first digit,
0 to 9 for remaining three digits.

TRANS SalesPrice Greater than 0 and less than
or equal to 500,000.

TRANS DateAcquired Less than or equal to DateSold.

FIGuRE 7-11

Default Values and Data
Constraints for the VrG
Database

By THE WAy DBMS products are inconsistent in their implementation of CHECK con-
straints. The ValidBirthYear and ValidDeathYear constraints in Figure 7-12,

for example, will not work with Oracle Database. However, Oracle Database implements
other types of constraints with or without the LIKE keyword. Unfortunately, you must
learn the peculiarities of the DBMS you use to know how best to implement constraints.

346 PART 3 Database Implementation

CREATE TABLE ARTIST (
ArtistID Int NOT NULL IDENTITY(1,1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
Nationality Char(30) NULL,
DateOfBirth Numeric(4,0) NULL,
DateDeceased Numeric(4,0) NULL,
CONSTRAINT ArtistPK PRIMARY KEY(ArtistID),
CONSTRAINT ArtistAK1 UNIQUE(LastName, FirstName),
CONSTRAINT NationalityValues CHECK

(Nationality IN ('Canadian', 'English', 'French',
'German', 'Mexican', 'Russian', 'Spanish',
'United States')),

CONSTRAINT BirthValuesCheck CHECK (DateOfBirth < DateDeceased),
CONSTRAINT ValidBirthYear CHECK

(DateOfBirth LIKE '[1-2][0-9][0-9][0-9]'),
CONSTRAINT ValidDeathYear CHECK

(DateDeceased LIKE '[1-2][0-9][0-9][0-9]')
);

CREATE TABLE WORK (
WorkID Int NOT NULL IDENTITY(500,1),
Title Char(35) NOT NULL,
Copy Char(12) NOT NULL,
Medium Char(35) NULL,
[Description] Varchar(1000) NULL DEFAULT 'Unknown provenance',
ArtistID Int NOT NULL,
CONSTRAINT WorkPK PRIMARY KEY(WorkID),
CONSTRAINT WorkAK1 UNIQUE(Title, Copy),
CONSTRAINT ArtistFK FOREIGN KEY(ArtistID)

REFERENCES ARTIST(ArtistID)
ON UPDATE NO ACTION
ON DELETE NO ACTION

);

FIGuRE 7-12

SQL Statements to Create
the artISt and WOrK
tables with Default Values
and Data Constraints

Creating the VRG Database Tables

Figure 7-13 shows SQL for creating all of the tables in the VRG database documented at
the end of Chapter 6. Read each line and be certain that you understand its function and
purpose. Notice that deletions cascade for the relationships between CUSTOMER and
CUSTOMER_ARTIST_INT and between ARTIST and CUSTOMER_ARTIST_INT.

Any DBMS reserved words used as table or column names need to be enclosed in
square brackets ([and]) and thus converted to delimited identifiers. We have already
decided to use the table name TRANS instead of TRANSACTION so we do not use the
transaction reserved word. The table name WORK is also a potential problem; the word
work is a reserved word in most DBMS products, as are the column names Description
in the WORK table and State in the TRANS table. Enclosing such terms in brackets
signifies to the SQL parser that these terms have been provided by the developer and
are not to be used in the standard way. Ironically, SQL Server can process the word
WORK without problem, but Oracle Database cannot, whereas SQL Server chokes
on the word TRANSACTION, but Oracle Database has no problem with it. Because
Figure 7-13 shows Microsoft SQL Server 2014 T-SQL statements, we use WORK (no
brackets), [Description], and [State].

You can find a list of reserved words in the documentation for the DBMS product that
you use, and we deal with some specific cases in the chapters dedicated to Microsoft SQL
Server 2014, Oracle Database, and MySQL 5.6. Be assured that if you use any keyword
from the SQL syntax, such as SELECT, FROM, WHERE, LIKE, ORDER, ASC, or DESC, for

 CHAPTER 7 SQL for Database Construction and Application Processing 347

CREATE TABLE ARTIST (
ArtistID Int NOT NULL IDENTITY(1,1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
Nationality Char(30) NULL,
DateOfBirth Numeric(4,0) NULL,
DateDeceased Numeric(4,0) NULL,
CONSTRAINT ArtistPK PRIMARY KEY(ArtistID),
CONSTRAINT ArtistAK1 UNIQUE(LastName, FirstName),
CONSTRAINT NationalityValues CHECK

(Nationality IN ('Canadian', 'English', 'French',
'German', 'Mexican', 'Russian', 'Spanish',
'United States')),

CONSTRAINT BirthValuesCheck CHECK (DateOfBirth < DateDeceased),
CONSTRAINT ValidBirthYear CHECK

(DateOfBirth LIKE '[1-2][0-9][0-9][0-9]'),
CONSTRAINT ValidDeathYear CHECK

(DateDeceased LIKE '[1-2][0-9][0-9][0-9]')
);

CREATE TABLE WORK (
WorkID Int NOT NULL IDENTITY(500,1),
Title Char(35) NOT NULL,
Copy Char(12) NOT NULL,
Medium Char(35) NULL,
[Description] Varchar(1000) NULL DEFAULT 'Unknown provenance',
ArtistID Int NOT NULL,
CONSTRAINT WorkPK PRIMARY KEY(WorkID),
CONSTRAINT WorkAK1 UNIQUE(Title, Copy),
CONSTRAINT ArtistFK FOREIGN KEY(ArtistID)

REFERENCES ARTIST(ArtistID)
ON UPDATE NO ACTION
ON DELETE NO ACTION

);

CREATE TABLE CUSTOMER (
CustomerID Int NOT NULL IDENTITY(1000,1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
Street Char(30) NULL,
City Char(35) NULL,
[State] Char(2) NULL,
ZIPorPostalCode Char(9) NULL,
Country Char(50) NULL,
AreaCode Char(3) NULL,
PhoneNumber Char(8) NULL,
EmailAddress Varchar(100) NULL,
CONSTRAINT CustomerPK PRIMARY KEY(CustomerID),
CONSTRAINT EmailAK1 UNIQUE(EmailAddress)
);

CREATE TABLE TRANS (
TransactionID Int NOT NULL IDENTITY(100,1),
DateAcquired Date NOT NULL,
AcquisitionPrice Numeric(8,2) NOT NULL,
AskingPrice Numeric(8,2) NULL,
DateSold Date NULL,
SalesPrice Numeric(8,2) NULL,
CustomerID Int NULL,
WorkID Int NOT NULL,

FIGuRE 7-13

SQL Statements to
Create the VrG
Database table Structure

348 PART 3 Database Implementation

Running the SQL statements in Figure 7-13 (or the specific variant for Oracle Database
in Chapter 10B or for MySQL 5.6 in Chapter 10C) with your DBMS will generate all of the
tables, relationships, and constraints for the VRG database. Figure 7-14 shows the completed
table structure in SQL Server 2014 as a database diagram. It is far easier to create these
tables and relationships using SQL code than by using GUI displays, which are discussed for
Microsoft SQL Server in Chapter 10A, for Oracle Database in Chapter 10B, and for MySQL
5.6 in Chapter 10C.

CONSTRAINT TransPK PRIMARY KEY(TransactionID),
CONSTRAINT TransWorkFK FOREIGN KEY(WorkID)

REFERENCES WORK(WorkID)
ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT TransCustomerFK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT SalesPriceRange CHECK
((SalesPrice > 0) AND (SalesPrice <=500000)),

CONSTRAINT ValidTransDate CHECK (DateAcquired <= DateSold)
);

CREATE TABLE CUSTOMER_ARTIST_INT(
ArtistID Int NOT NULL,
CustomerID Int NOT NULL,
CONSTRAINT CAIntPK PRIMARY KEY(ArtistID, CustomerID),
CONSTRAINT CAInt_ArtistFK FOREIGN KEY(ArtistID)

REFERENCES ARTIST(ArtistID)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT CAInt_CustomerFK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE CASCADE

);

FIGuRE 7-13

Continued

By THE WAy Every now and then, the DBMS might generate bizarre syntax-error mes-
sages. For example, suppose you define a table with the name ORDER.

When you submit the statement SELECT * FROM ORDER;, you will get very strange
messages back from the DBMS because ORDER is an SQL reserved word.

If you do receive odd messages back from statements that you know are coded
correctly, think about reserved words. If a term might be reserved, enclose it in brack-
ets and see what happens when you submit it to the DBMS. No harm is done by en-
closing SQL terms in brackets.

If you want to torture your DBMS, you can submit queries like:

SELECT [SELECT] FROM [FROM] WHERE [WHERE] < [NOT FIVE];

Most likely, you have better ways to spend your time, however. Without a doubt,
the DBMS has better ways to spend its time!

table or column names, you will have problems. Enclose such words in square brackets.
And, of course, your life will be easier if you can avoid using such terms for tables or col-
umns altogether.

 CHAPTER 7 SQL for Database Construction and Application Processing 349

The SQL ALTER TABLE Statement

The SQL ALTER TABLE statement is an SQL DDL statement that is used to change the
structure of an existing table. It can be used to add, remove, or change columns. It also can be
used to add or remove constraints.

Microsoft access 2013 aNSI-89 SQL,
 unfortunately, does not support a number of
standard SQL features we have examined in
this discussion. However, you run a basic

SQL CrEatE taBLE statement in aNSI-89 SQL and then use the Microsoft access
GUI display to finish building the tables and relationships. Specifically:

1. although Microsoft access supports a Number data type, it does not support the
() extension to specify the number of digits and the number of digits to the
right of the decimal place.

Solution: You can set these values in the table Design view after the column is
created.

2. although Microsoft access does support an autoNumber data type, it starts
at 1 and increments by 1. Further, autoNumber be used as an SQL data type.

Solution: Set autoNumber data type manually after the table is created. any
other numbering system must be supported manually or by application code.

3. Microsoft access aNSI-89 SQL does not support the UNIQUE and CHECK col-
umn constraints nor the DEFaULt keyword.

Solution: Equivalent constraints and initial values can be set in the GUI table
Design view.

4. Microsoft access does completely support foreign key CONStraINt phrases.
although the basic referential integrity constraint can be created using SQL, the
ON UPDatE and ON DELEtE clauses are not supported.

Solution: ON UPDatE and ON DELEtE actions can be set manually after the
relationship is created.

5. Unlike SQL Server, Oracle Database, and MySQL, Microsoft access does not sup-
port SQL scripts.

Solution: You can still create tables by using the SQL CrEatE command and
insert data by using the SQL INSErt command (discussed later in this chapter),
but you must do so one command at a time.

Does Not Work with
Microsoft Access
ANSI-89 SQL

FIGuRE 7-14

Microsoft SQL Server 2014
VrG Database Diagram

350 PART 3 Database Implementation

Adding and Dropping Columns
The following statement will add a column named MyColumn to the CUSTOMER table by
using the SQL ADD clause in the SQL ALTER TABLE statement:

/* *** SQL-ALTER-TABLE-CH07-01 *** */

ALTER TABLE CUSTOMER

 ADD MyColumn Char(5) NULL;

You can drop an existing column by using the SQL DROP COLUMN clause in the SQL
ALTER TABLE statement:

/* *** SQL-ALTER-TABLE-CH07-02 *** */

ALTER TABLE CUSTOMER

 DROP COLUMN MyColumn;

Note the asymmetry in syntax; the keyword COLUMN is used in the DROP COLUMN
clause but not in the ADD clause. You can also use the ALTER TABLE statement to change
column properties, as you will see in the next three chapters.

Adding and Dropping Constraints
The ALTER TABLE statement can be used with an SQL ADD CONSTRAINT clause to
add a constraint as follows:

/* *** SQL-ALTER-TABLE-CH07-03 *** */

ALTER TABLE CUSTOMER

 ADD CONSTRAINT MyConstraint CHECK

 (LastName NOT IN ('RobertsNoPay'));

You can also use the ALTER TABLE statement with an SQL DROP CONSTRAINT clause
to DROP a constraint:

/* *** SQL-ALTER-TABLE-CH07-04 *** */

ALTER TABLE CUSTOMER

 DROP CONSTRAINT MyConstraint;

By THE WAy The SQL ALTER TABLE statement can be used to add or drop any of
the SQL constraints. You can use it to create primary keys and alternate

keys, to set null status, to create referential integrity constraints, and to create data
constraints. In fact, another SQL coding style uses CREATE TABLE only to declare
the table’s columns; all constraints are added using ALTER TABLE. We do not use that
style in this text, but be aware that it does exist and that your employer might require it.

The SQL DROP TABLE Statement

It is very easy to remove a table in SQL. In fact, it is far too easy. The following SQL DROP
TABLE statement will drop the TRANS table and all of its data:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH07-01 *** */

DROP TABLE TRANS;

Because this simple statement drops the table and all of its data, be very careful when using it.
Do not code this statement on the wrong table!

 CHAPTER 7 SQL for Database Construction and Application Processing 351

The DBMS will not drop a table that is the parent in a FOREIGN KEY constraint. It will not
do so even if there are no children or even if you have coded DELETE CASCADE. Instead, to drop
such a table, you must first either drop the foreign key constraint or drop the child table. Then you
can delete the parent table. As mentioned earlier, parent tables must be first in and last out.

The following statements are needed to drop the CUSTOMER table:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH07-02 *** */

DROP TABLE CUSTOMER_ARTIST_INT;

DROP TABLE TRANS;

DROP TABLE CUSTOMER;

Alternatively, you could drop CUSTOMER with:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH07-05 *** */

ALTER TABLE CUSTOMER_ARTIST_INT

 DROP CONSTRAINT Customer_Artist_Int_CustomerFK;

ALTER TABLE TRANS

 DROP CONSTRAINT TransactionCustomerFK;

/* *** SQL-DROP-TABLE-CH07-03 *** */

DROP TABLE CUSTOMER;

The SQL TRuNCATE TABLE Statement

The SQL TRUNCATE TABLE statement was officially added in the SQL:2008 standard,
so it is one of the latest additions to SQL. It is used to remove all data from a table while leaving
the table structure itself in the database. The SQL TRUNCATE TABLE statement does not use an
SQL WHERE clause to specify conditions for the data deletion—all the data in the table is always
removed when TRUNCATE is used. Although similar to the SQL DELETE statement discussed
later in this chapter, there are two important differences between the two commands. First, the
DELETE statement does allow the use of the SQL WHERE CLAUSE. Second, the TRUNCATE
resets any surrogate key values back to the initial value, while the DELETE statement does not.

The following statement could be used to remove all the data in the CUSTOMER_
ARTIST_INT table:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-TRUNCATE-TABLE-CH07-01 *** */

TRUNCATE TABLE CUSTOMER_ARTIST_INT;

The TRUNCATE TABLE statement cannot be used with a table that is referenced by a
foreign key constraint because this could create foreign key values that have no correspond-
ing primary key value. Thus, while we can use TRUNCATE TABLE with the CUSTOMER_
ARTIST_INT table, we cannot use it with the CUSTOMER table.

The SQL CREATE INDEX Statement

An index is a special data structure that is created to improve database performance. SQL
Server automatically creates an index on all primary and foreign keys. A developer can also
direct SQL Server to create an index on other columns that are frequently used in WHERE
clauses or on columns that are used for sorting data when sequentially processing a table for
queries and reports. Indexing concepts are discussed in Appendix G.

SQL DDL includes an SQL CREATE INDEX statement to create indexes, an SQL
ALTER INDEX statement to modify existing database indexes, and an SQL DROP
INDEX statement to remove indexes from the database. Because each DBMS product

352 PART 3 Database Implementation

implements indexing in different ways, we discuss the specific implementation of indexing in
each DMBS as part of our detailed discussions of each DBMS product:

■■ Microsoft SQL Server 2014 in Chapter 10A
■■ Oracle Database in Chapter 10B
■■ MySQL 5.6 in Chapter 10C

By THE WAy Books on systems analysis and design often identify three design stages:

■■ Conceptual design (conceptual schema)
■■ Logical design (logical schema)
■■ Physical design (physical schema)

The creation and use of indexes is a part of the physical design, which is defined in these
books as the aspects of the database that are actually implemented in the DBMS. Besides
indexes, this includes physical record and file structure and organization and query opti-
mization. We discuss some of these issues for Microsoft SQL Server 2104 in Chapter 10A,
for Oracle Database in Chapter 10B, and for MySQL 5.6 in Chapter 10C.

SQL DML Statements

At this point, you have learned how to query tables using SQL SELECT statements (in
Chapter 2), and you should know how to create, alter, and drop tables, columns, and con-
straints. You do not yet know, however, how to use SQL statements to insert, modify, and
delete data. We consider those statements next.

The SQL INSERT Statement

The SQL INSERT statement is used to add rows of data to a table. The statement has a
number of different options.

The SQL INSERT Statement using Column Names
The standard version of the INSERT statement is to name the table, name the columns for
which you have data, and then list the data in the following format:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH07-01 *** */

INSERT INTO ARTIST

 (LastName, FirstName, Nationality, DateOfBirth, DateDeceased)

 VALUES ('Miro', 'Joan', 'Spanish', 1893, 1983);

Note that both column names and values are enclosed in parentheses and that DBMS popu-
lated surrogate keys are not included in the statement. If you are providing data for all of the
columns, if that data is in the same order as the columns in the table, and if you have no sur-
rogate keys, then you can omit the column list.

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH07-02 *** */

INSERT INTO ARTIST VALUES

 ('Miro', 'Joan', 'Spanish', 1893, 1983);

Further, you need not provide the values in the same order as the columns in the table. If
for some reason you want to provide Nationality first, you can revise the column names and
the data value, as shown in the following example:

 CHAPTER 7 SQL for Database Construction and Application Processing 353

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH07-03 *** */

INSERT INTO ARTIST

 (Nationality, LastName, FirstName, DateOfBirth, DateDeceased)

 VALUES ('Spanish', 'Miro', 'Joan', 1893, 1983);

If you have partial values, just code the names of the columns for which you have data.
For example, if you have only LastName, FirstName, and Nationality for an artist, you would
use the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH07-04 *** */

INSERT INTO ARTIST

 (LastName, FirstName, Nationality)

 VALUES ('Miro', 'Joan', 'Spanish');

You must, of course, have values for all NOT NULL columns.

Bulk INSERT
One of the most often used forms of INSERT uses an SQL SELECT statement to provide val-
ues. Suppose you have the names, nationalities, birth dates, and dates deceased of a number
of artists in a table named IMPORTED_ARTIST. In this case, you can add those data to the
ARTIST table with the following statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH07-05 *** */

INSERT INTO ARTIST

 (LastName, FirstName, Nationality, DateOfBirth, DateDeceased)

 SELECT LastName, FirstName, Nationality,

 DateOfBirth, DateDeceased

 FROM IMPORTED_ARTIST;

Note that the SQL keyword VALUES is not used with this form of insert. This syntax
should seem familiar. We used it for normalization and denormalization examples in
Chapters 3 and 4.

Populating the VRG Database Tables

Now that we know how to use the SQL INSERT statement to add rows of data to a table, we can
put data into the VRG database. Sample data for the VRG database is shown in Figure 7-15
(note that the rows of the CUSTOMER table have been split apart in Figure 7-15(a) for ease of
presentation on the page—they are not split in the database).

However, we need to be careful about exactly how we enter these data into the VRG
 database. Notice that in the SQL CREATE TABLE statements in Figure 7-13 CustomerID,
ArtistID, WorkID, and TransactionID are all surrogate keys with values automatically inserted by
the DBMS. This will produce sequential numbers. For example, if we insert the ARTIST table
data shown in Figure 7-15(b) using the automatic ArtistID numbering from IDENTITY(1, 1),
the ArtistID numbers for the nine artists will be (1, 2, 3, 4, 5, 6, 7, 8, 9). But in Figure 7-11(b),
the ArtistID numbers are (1, 2, 3, 4, 5, 11, 17, 18, 19).

This happens because the View Ridge Gallery data shown in Figure 7-15 is sample
data, not the complete data for the VRG database. Therefore, the primary key numbers for
CustomerID, ArtistID, WorkID, and TransactionID in the data set are not sequential.

This, of course, raises the question of how to override DBMS mechanisms that provide
automatic surrogate key numbering. The answer to this question varies among DBMS
products (as does the method for generating the surrogate values). A discussion of this topic

354 PART 3 Database Implementation

Janes Jeffrey

LastName FirstName

Smith David

Twilight Tiffany

Smathers Fred

Frederickson Mary Beth

Jeffrey.Janes@somewhere.com

EmailAddress

David.Smith@somewhere.com

Tiffany.Twilight@somewhere.com

Fred.Smathers@somewhere.com

MaryBeth.Frederickson@somewhere.com

Warning Selma

Wu Susan

Selma.Warning@somewhere.com

Susan.Wu@somewhere.com

ng76tG9E

EncryptedPassword

ttr67i23

gr44t5uz

mnF3D00Q

Nd5qr4Tv

CAe3Gh98

Ues3thQ2

Gray Donald

Johnson Lynda

1000

CustomerID

1001

1015

1033

1034

1036

1037

1040

1041

1051 Wilkens Chris

Donald.Gray@somewhere.com

NULL

Chris.Wilkens@somewhere.com

NULL

NULL

45QZjx59

(a) CUSTOMER Table Data

1000 Janes Jeffrey

LastName FirstName StreetCustomerID

1001 Smith David

1015 Twilight Tiffany

1033 Smathers Fred

1034 Frederickson Mary Beth

1036 Warning Selma

1037 Wu Susan

1040 Gray Donald

1041 Johnson Lynda

1051 Wilkens Chris

123 W. Elm St

813 Tumbleweed Lane

88 1st Avenue

10899 88th Ave

25 South Lafayette

205 Burnaby

105 Locust Ave

55 Bodega Ave

117 C Street

87 Highland Drive

Renton

City

Loveland

Langley

Bainbridge Island

Denver

Vancouver

Atlanta

Bodega Bay

Washington

Olympia

WA

State

CO

WA

WA

CO

BC

GA

CA

DC

WA

98055

ZIPorPostalCode

81201

98260

98110

80201

V6Z 1W2

30322

94923

20003

98508

1000 Janes Jeffrey

LastName FirstName CountryCustomerID

1001 Smith David

1015 Twilight Tiffany

1033 Smathers Fred

1034 Frederickson Mary Beth

1036 Warning Selma

1037 Wu Susan

1040 Gray Donald

1041 Johnson Lynda

1051 Wilkens Chris

USA

USA

USA

USA

USA

Canada

USA

USA

USA

USA

425

AreaCode

970

360

206

303

604

404

707

202

360

543-2345

PhoneNumber

654-9876

765-5566

876-9911

513-8822

988-0512

653-3465

568-4839

438-5498

876-8822
FIGuRE 7-15

Sample Data for
the VrG Database

 CHAPTER 7 SQL for Database Construction and Application Processing 355

1 Miro Joan

LastName FirstNameArtistID

2 Kandinsky Wassily

3 Klee Paul

4 Matisse Henri

5 Chagall Marc

Spanish

Nationality

Russian

German

French

1893

DateOfBirth

1866

1879

1869

French 1887

11 Sargent John Singer

17 Tobey Mark

United States 1856

United States 1890

1983

DateDeceased

1944

1940

1954

1985

1925

1976

18 Horiuchi Paul

19 Graves Morris

United States

United States

1906

1920

1999

2001

(b) ARTIST Table Data

CustomerIDArtistID

17 1033

17 1040

17 1051

18 1000

18 1015

18 1033

18 1040

18 1051

19 1000

19 1015

19 1033

19 1036

19 1040

19 1051

1 1001

CustomerIDArtistID

1 1034

2 1001

2 1034

4 1001

4 1034

5 1001

5 1034

5 1036

11 1001

11 1015

11 1036

17 1000

17 1015

(c) CUSTOMER_ARTIST_INT Table Data

FIGuRE 7-15

Continued

(continued)

Title MediumWorkID

511 Surf and Bird High Quality Limited Print

500 Memories IV Casein rice paper collage

521 The Tilled Field High Quality Limited Print

522 La Lecon de Ski High Quality Limited Print

523 On White II High Quality Limited Print

31 × 24.8 in.

Description

Northwest School Expressionist style

Early Surrealist style

Surrealist style

Unique

Copy

142/500

788/1000

353/500

18

ArtistID

19

1

1

2Bauhaus style of Kandinsky 435/500

524 Woman with a Hat High Quality Limited Print

537 The Woven World Color lithograph

A very colorful Impressionist piece 596/750 4

17Signed 17/750

548 Night Bird Watercolor on Paper

551 Der Blaue Reiter High Quality Limited Print

552 Angelus Novus High Quality Limited Print

50 × 72.5 cm.—Signed

“The Blue Rider”—Early Pointilism influence

Bauhaus style of Klee

Unique

236/1000

659/750

19

2

3

553 The Dance High Quality Limited Print

554 I and the Village High Quality Limited Print

555 Claude Monet Painting High Quality Limited Print

561 Sunflower Watercolor and ink

562 The Fiddler High Quality Limited Print

An Impressionist masterpiece

Shows Belarusian folk-life themes and symbology

Shows French Impressionist influence of Monet

33.3 × 16.1 cm.—Signed

734/1000

834/1000

684/1000

Unique

4

5

11

19

5Shows Belarusian folk-life themes and symbology 251/1000

563 Spanish Dancer High Quality Limited Print

564 Farmer’s Market #2 High Quality Limited Print

American realist style—From work in Spain 583/750 11

17Northwest School Abstract Expressionist style 267/500

(d) WORK Table Data

FIGuRE 7-15

Continued

356

Title MediumWorkID Description Copy ArtistID

565 Farmer’s Market #2 High Quality Limited Print

566 Into Time High Quality Limited Print

570 Untitled Number 1 Monotype with tempera

Northwest School Abstract Expressionist style

Northwest School Abstract Expressionist style

4.3 × 6.1 in.—Signed

268/500

323/500

Unique

17

18

17

571 Yellow covers blue Oil and collage

578 Mid Century Hibernation High Quality Limited Print

580 Forms in Progress I Color aquatint

581 Forms in Progress II Color aquatint

585 The Fiddler High Quality Limited Print

71 × 78 in.—Signed

Northwest School Expressionist style

19.3 × 24.4 in.—Signed

19.3 × 24.4 in.—Signed

Unique

362/500

Unique

18

19

17

17

5Shows Belarusian folk-life themes and symbology

Unique

586 Spanish Dancer High Quality Limited Print

587 Broadway Boggie High Quality Limited Print

American Realist style—From work in Spain

252/1000

11

17Northwest School Abstract Expressionist style

588/750

588 Universal Field High Quality Limited Print

589 Color Floating in Time High Quality Limited Print

590 Blue Interior Tempera on card

Northwest School Abstract Expressionist style

Northwest School Abstract Expressionist style

43.9 × 28 in.

433/500

114/500

487/500

17

18

17

593 Surf and Bird Gouache 1926.5 × 29.75 in.—Signed

Unique

594 Surf and Bird High Quality Limited Print

596 Surf and Bird High Quality Limited Print

595 Surf and Bird High Quality Limited Print

Northwest School Expressionist style

Northwest School Expressionist style

Northwest School Expressionist style

Unique

366/500

366/500

366/500

19

19

19

(d) continued - WORK Table Data

FIGuRE 7-15

Continued

(continued)

357

358 PART 3 Database Implementation

104

105

115

121

125

126

127

128

11/17/2011

11/17/2011

3/3/2012

9/21/2012

11/21/2012

11/21/2012

11/21/2012

11/21/2012

$250.00

$200.00

$1,500.00

$15,000.00

$125.00

$200.00

$125.00

$125.00

$250.00

$500.00

$3,000.00

$30,000.00

$250.00

$400.00

$500.00

$250.00

1/18/2012

12/12/2012

6/7/2012

11/28/2012

12/18/2012

12/22/2012

3/16/2013

$200.00

$400.00

$2,750.00

$27,500.00

$200.00

$400.00

$225.00

1001

1034

1033

1015

1001

1034

1036

523

524

537

548

551

552

553

554

NULL NULL NULL

225

226

227

228

229

241

251

252

253

254

6/8/2014

6/8/2014

6/8/2014

6/8/2014

6/8/2014

8/29/2014

10/25/2014

10/27/2014

10/27/2014

10/27/2014

$125.00

$200.00

$250.00

$250.00

$250.00

$2,500.00

$25,000.00

$250.00

$250.00

$250.00

$250.00

$400.00

$500.00

$500.00

$500.00

$5,000.00

$50,000.00

$500.00

$500.00

$500.00

9/27/2014

9/27/2014

9/27/2014

$225.00

$475.00

$4,750.00

1051

1051

1015

585

586

587

588

589

590

593

594

595

596

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

NULL NULL NULL

129

151

152

153

154

155

156

161

171

175

181

201

202

11/21/2012

5/7/2013

5/18/2013

5/18/2013

5/18/2013

5/18/2013

5/18/2013

6/28/2013

8/23/2013

9/29/2013

10/11/2013

2/28/2014

2/28/2014

$125.00

$10,000.00

$125.00

$200.00

$250.00

$250.00

$250.00

$7,500.00

$35,000.00

$40,000.00

$250.00

$2,000.00

$2,000.00

$250.00

$20,000.00

$250.00

$400.00

$500.00

$500.00

$500.00

$15,000.00

$60,000.00

$75,000.00

$500.00

$3,500.00

$3,500.00

3/16/2013

6/28/2013

8/15/2013

8/15/2013

9/28/2013

9/27/2013

9/29/2013

9/29/2013

12/18/2013

4/26/2014

4/26/2014

$225.00

$17,500.00

$225.00

$350.00

$400.00

$400.00

$13,750.00

$55,000.00

$72,500.00

$3,250.00

$3,250.00

1036

1036

1001

1001

1040

1040

1033

1000

1036

1040

1040

555

561

562

563

564

565

566

570

571

500

578

580

581

NULL NULL NULL

NULL NULL NULL

(e) TRANS Table Data

DateAcquired AcquisitionPriceTransactionID AskingPrice DateSoldID SalesPrice CustomerID WorkID

100

101

102

103

11/4/2011

11/7/2011

11/17/2011

11/17/2011

$30,000.00

$250.00

$125.00

$250.00

$45,000.00

$500.00

$250.00

$500.00

12/14/2011

12/19/2011

1/18/2012

12/12/2012

$42,500.00

$500.00

$200.00

$400.00

1000

1015

1001

1034

500

511

521

522

FIGuRE 7-15

Continued

 CHAPTER 7 SQL for Database Construction and Application Processing 359

specific to each DBMS product used in this book, and the complete set of SQL INSERT state-
ments needed to enter the VRG data, can be found for SQL Server 2014 in Chapter 10A,
for Oracle Database in Chapter 10B, and for MySQL 5.6 in Chapter 10C. At this point, we
recommend that you read the appropriate section for the DBMS product you are using and
populate the VRG database in your DBMS.

The SQL uPDATE Statement

The SQL UPDATE statement is used to change values of existing rows. For example,
the following statement will change the value of City to 'New York City' for the View Ridge
Gallery customer whose CustomerID is 1000 (Jeffrey Janes):

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-01 *** */

UPDATE CUSTOMER

 SET City = 'New York City'

 WHERE CustomerID = 1000;

To change the value of both City and State, we would use the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-02 *** */

UPDATE CUSTOMER

 SET City = 'New York City', State = 'NY'

 WHERE CustomerID = 1000;

The DBMS will enforce all referential integrity constraints when processing UPDATE
commands. For the VRG database, all keys are surrogate keys, but for tables with data keys,
the DBMS will cascade or disallow (NO ACTION) updates according to the specification in
the FOREIGN KEY constraint. Also, if there is a FOREIGN KEY constraint, the DBMS will
enforce the referential integrity constraint on updates to a foreign key.

Bulk updates
It is quite easy to make bulk updates with the UPDATE statement. It is so easy, in fact, that it is
dangerous. Consider the SQL UPDATE statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-03 *** */

UPDATE CUSTOMER

 SET City = 'New York City';

This statement will change the value of City for every row of the CUSTOMER table. If we had in-
tended to change just the value for customer 1000, we would have an unhappy result— every cus-
tomer would have the value 'New York City' (data recovery methods are discussed in Chapter 9).

You can also perform bulk updates using an SQL WHERE clause that finds multiple
rows. If, for example, we wanted to change the AreaCode for every customer who lives in
Denver, we would code:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-04 *** */

UPDATE CUSTOMER

 SET AreaCode = '303'

 WHERE City = 'Denver';

360 PART 3 Database Implementation

updating using Values from Other Tables
The SQL UPDATE statement can set a column equal to the value of a column in a different
table. The VRG database has no appropriate example for this operation, so suppose instead
that we have a table named TAX_TABLE with columns (Tax, City), where Tax is the appropri-
ate tax rate for the City.

Now suppose we have a table named PURCHASE_ORDER that includes the columns
TaxRate and City. We can update all rows for purchase orders in the city of Bodega Bay with
the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-05 *** */

UPDATE PURCHASE_ORDER

 SET TaxRate =

 (SELECT Tax

 FROM TAX_TABLE

 WHERE TAX_TABLE.City = 'Bodega Bay')

 WHERE PURCHASE_ORDER.City = 'Bodega Bay';

More likely, we want to update the value of the tax rate for a purchase order without specifying
the city. Say we want to update the TaxRate for purchase order number 1000. In that case, we
use the slightly more complex SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH07-06 *** */

UPDATE PURCHASE_ORDER

 SET TaxRate =

 (SELECT Tax

 From TAX_TABLE

 WHERE TAX_TABLE.City = PURCHASE_ORDER.City)

 WHERE PURCHASE_ORDER.Number = 1000;

SQL SELECT statements can be combined with UPDATE statements in many different ways.
We need to move on to other topics, but try these and other variations of UPDATE on your own.

The SQL MERGE Statement

The SQL MERGE statement (not available in Microsoft Access 2013) was introduced in
SQL:2003 and, like the previously discussed SQL TRUNCATE TABLE statement, is one of the
newest additions to SQL. The SQL MERGE statement essentially combines the SQL INSERT
and SQL UPDATE statements into one statement that can either insert or update data depend-
ing upon whether some condition is met.

For example, suppose that before VRG staff insert data into the ARTIST table, they
carefully research data about each artist and store it in a table named ARTIST_DATA_
RESEARCH. Data on new artists is initially stored in ARTIST_DATA_RESEARCH, along with
corrections to data on artists already in ARTIST. The VRG business rule is that ARTIST names
are never changed after they have been entered, but if errors in Nationality, DateOfBirth, or
DateDeceased are discovered, these errors will be corrected. In this case, new ARTIST data
can be inserted and ARTIST data updated by using the following SQL MERGE statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-MERGE-CH07-01 *** */

MERGE INTO ARTIST AS A USING ARTIST_DATA_RESEARCH AS ADR

 ON (A.LastName = ADR.LastName

 AND

 A.FirstName = ADR.FirstName)

TAX_TABLE.City
PURCHASE_ORDER.City
TAX_TABLE.City
PURCHASE_ORDER.City
PURCHASE_ORDER.Number
A.LastName
ADR.LastName
A.FirstName
ADR.FirstName

 CHAPTER 7 SQL for Database Construction and Application Processing 361

 WHEN MATCHED THEN

 UPDATE SET

 A.Nationality = ADR.Nationality,

 A.DateOfBirth = ADR.DateOfBirth,

 A.DateDeceased = ADR.DateDeceased

 WHEN NOT MATCHED THEN

 INSERT (LastName, FirstName, Nationality,

 DateOfBirth, DateDeceased);

The SQL DELETE Statement

The SQL DELETE statement is also quite easy to use. The following SQL statement will
delete the row for a customer with a CustomerID of 1000:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DELETE-CH07-01 *** */

DELETE FROM CUSTOMER

WHERE CustomerID = 1000;

Of course, if you omit the WHERE clause, you will delete every customer row, so be care-
ful with this command as well. Note that the DELETE statement without the WHERE clause
is the logical equivalent of the SQL TRUNCATE TABLE statement previously discussed.
However, the two statements use different methods to remove the data from the table and are
not identical. For example, the DELETE statement may fire a trigger (as discussed later in this
chapter), but the TRUNCATE TABLE statement never fires triggers. Further, the TRUNCATE
resets any surrogate key values back to the initial value, while the DELETE statement does not.

The DBMS will enforce all referential integrity constraints when processing DELETE
commands. For example, in the VRG database, you will be unable to delete a CUSTOMER
row if that row has any TRANS children. Further, if a row with no TRANS children is de-
leted, any existing CUSTOMER_ARTIST_INT children will be deleted as well. This latter
action occurs because of the CASCADE DELETE specification on the relationship between
CUSTOMER and CUSTOMER_ARTIST_INT.

using SQL Views

An SQL view is a virtual table that is constructed from other tables or views. A view has no
data of its own but obtains data from tables or other views. Views are constructed from SQL
SELECT statements using the SQL CREATE VIEW statement, and view names are then
used just as table names would be in the FROM clause of other SQL SELECT statements.

SQL views are a very important part of application development for both Web client–
based applications and smartphone apps, as shown in Figure 7-16. The design principle is
that when an application requests information from a server to be displayed in the user’s cli-
ent program, the request should be as simple as possible. In Appendix B, we define data as
recorded facts and numbers. Based on this definition, we can now define information1 as:

■■ Knowledge derived from data.
■■ Data presented in a meaningful context.
■■ Data processed by summing, ordering, averaging, grouping, comparing, or other

 similar operations.

1These definitions are from David M. Kroenke and Randall J. Boyle’s books Using MIS (8th ed., Upper Saddle
River, NJ: Prentice-Hall, 2016) and Experiencing MIS (6th ed., Upper Saddle River: Prentice-Hall, 2016). See
these books for a full discussion of these definitions, as well as a discussion of a fourth definition, “a difference
that makes a difference.”

A.Nationality
ADR.Nationality
A.DateOfBirth
ADR.DateOfBirth
A.DateDeceased
ADR.DateDeceased

362 PART 3 Database Implementation

In general, application programmers prefer that the work of transforming database data into
the information that will be used in and presented by the application be done by the DBMS
itself. SQL views are the main DBMS tool for this work. The basic principle is that all summing,
averaging, grouping, comparing, and similar operations should be done in SQL views and that it is
the final result as it appears in the SQL view that is passed to the application program for use.
This is the process illustrated in Figure 7-16.

In the SQL-92 standard, the only limitation on the SQL statements that are used to create
views was that they could not contain an ORDER BY clause. In this case, the sort order must
be provided by the SELECT statement that processes the view.

However, the methodology for how views are actually implemented varies by DBMS
product. For example, Oracle Database and MySQL allow views to include ORDER BY,
whereas SQL Server will only allow ORDER BY if the SQL phrase TOP 100 PERCENT is
included in the SELECT clause of an SQL query statement. In this case, the included ORDER
BY clause determines a default sorting order, which may be modified by including another
ORDER BY clause in the SELECT statement that processes the view.

Smartphone
App

Web
Application

SQL View SQL View SQL View SQL View

Database
Table

Database
Table

Database
Table

Database
Table

Database
Table

FIGuRE 7-16

SQL Views as the Basis
for application Data

By THE WAy Views are a standard and popular SQL construct. Microsoft Access, how-
ever, does not support them. Instead, in Microsoft Access, you can create

a view-equivalent query, name it, and then save it. You can then process the query in
the same ways that we process views in the following discussion. SQL Server, Oracle
Database, and MySQL all support views, and they are an important structure with
many uses. Do not conclude from Microsoft Access’s lack of support that views are
unimportant. Read on, and, if possible, use SQL Server, Oracle Database, or MySQL to
process the statements in this section.

We will begin our discussion of SQL views by defining a view named CustomerNameView
on the CUSTOMER table that displays the customer’s LastName and FirstName data, but re-
labeling as CustomerLastName and CustomerFirstName:

/* *** SQL-CREATE-VIEW-CH07-01 *** */

CREATE VIEW CustomerNameView AS

 SELECT LastName AS CustomerLastName,

 FirstName AS CustomerFirstName

 FROM CUSTOMER;

 CHAPTER 7 SQL for Database Construction and Application Processing 363

Note that the results from executing this statement will be only a system message stating the
action completed. With GUI utilities such as SQL Server Management Studio, an appropri-
ately named object will also be created.2

Once the view is created, it can be used in the FROM clause of SELECT statements just
like a table. The following obtains a list of customer names in sorted order:

/* *** SQL-Query-View-CH07-01 *** */

SELECT *

FROM CustomerNameView

ORDER BY CustomerLastName, CustomerFirstName;

The result for the sample data in Figure 7-15 is:

Note that the number of columns returned in the result depends on the number of columns
in the view, not on the number of columns in the underlying table. In this example, the SELECT
clause produces just two columns because CustomerNameView itself has just two columns.

Also notice that the columns LastName and FirstName in the CUSTOMER table
have been renamed to CustomerLastName and CustomerFirstName in the view. Because
of this, the ORDER BY phrase in the SELECT statement uses CustomerLastName and
CustomerFirstName, not LastName and FirstName. Also, the DBMS uses the labels
CustomerLastName and CustomerFirstName when producing results.

2The current versions of SQL Server, Oracle Database, and MySQL all process the CREATE VIEW statements
as written here without difficulty. However, an earlier version of SQL Server, SQL Server 2000, has a quirk: To
create views, you have to remove the semicolon from the CREATE VIEW statement. We have no idea why SQL
Server 2000 accepts a semicolon for all other SQL statements but will not accept one for SQL statements that
create views. If by chance you are still using SQL Server 2000, be aware that you must remove the semicolon
when writing CREATE VIEW statements. Even better, upgrade your version of SQL Server—Microsoft stopped
supporting SQL Server 2000 in April 2013, and important security updates are no longer being provided.

By THE WAy If you need to change an SQL view after you have created it, use the SQL
ALTER VIEW statement. For example, if you wanted to reverse the or-

der of LastName and FirstName in the CustomerNameView, you would use the SQL
statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-VIEW-CH07-01 *** */

ALTER VIEW CustomerNameView AS

 SELECT FirstName AS CustomerFirstName,

 LastName AS CustomerLastName,

 FROM CUSTOMER;

364 PART 3 Database Implementation

Figure 7-17 lists the uses for SQL views. SQL views can hide columns or rows. They also
can be used to display the results of computed columns, to hide complicated SQL syntax, and
to layer the use of built-in functions to create results that are not possible with a single SQL
statement. Additionally, SQL views can provide an alias for table names and thus hide the
true table names from applications and users. SQL views also are used to assign different pro-
cessing permissions and different triggers to different views of the same table. We will show
examples for each of these.

using SQL Views to Hide Columns and Rows

SQL views can be used to hide columns to simplify results or to prevent the display of sensitive
data. For example, suppose the users at the View Ridge Gallery want a simplified list of cus-
tomers that has just names and phone numbers. The following SQL statement defines a view,
BasicCustomerDataView, which will produce that list:

/* *** SQL-CREATE-VIEW-CH07-02 *** */

CREATE VIEW CustomerBasicDataView AS

 SELECT LastName AS CustomerLastName,

 FirstName AS CustomerFirstName,

 AreaCode, PhoneNumber

 FROM CUSTOMER;

To use this view, we can run the SQL statement:

/* *** SQL-Query-View-CH07-02 *** */

SELECT *

FROM CustomerBasicDataView

ORDER BY CustomerLastName, CustomerFirstName;

Hide columns or rows.

Uses of SQL Views

Display results of computations.

Hide complicated SQL syntax.

Layer built-in functions.

Provide level of isolation between table data and users’ view of data.

Assign different processing permissions to different views of the same table.

Assign different triggers to different views of the same table.

FIGuRE 7-17

Uses of SQL Views

By THE WAy If you are using Oracle Database or MySQL 5.6, you can also use the SQL
CREATE OR REPLACE VIEW statement in place of the SQL CREATE

VIEW syntax. This allows you to modify the stored view without using the SQL ALTER
VIEW syntax.

 CHAPTER 7 SQL for Database Construction and Application Processing 365

The result is:

If the management of the View Ridge Gallery wants to hide the columns AcquisitionPrice
and SalesPrice in TRANS, it can define a view that does not include those columns. One use
for such a view is to populate a Web page.

SQL views also can hide rows by providing a WHERE clause in the view definition. The
next SQL statement defines a view of customer name and phone data for all customers with
an address in Washington State:

/* *** SQL-CREATE-VIEW-CH07-03 *** */

CREATE VIEW CustomerBasicDataWAView AS

 SELECT LastName AS CustomerLastName,

 FirstName AS CustomerFirstName,

 AreaCode, PhoneNumber

 FROM CUSTOMER

 WHERE State='WA';

To use this view, we can run the SQL statement:

/* *** SQL-Query-View-CH07-03 *** */

SELECT *

FROM CustomerBasicDataWAView

ORDER BY CustomerLastName, CustomerFirstName;

The result is:

As desired, only customers who live in Washington are shown in this view. This limitation
is not obvious from the results because State is not included in the view. This characteristic
is good or bad, depending on the use of the view. It is good if this view is used in a setting in
which only Washington customers matter; it is bad if the view miscommunicates that these
customers are the only View Ridge Gallery customers.

366 PART 3 Database Implementation

using SQL Views to Display Results of Computed Columns

Another purpose of views is to show the results of computed columns without requiring the
user to enter the computation expression. For example, the following view combines the
AreaCode and PhoneNumber columns and formats the result:

/* *** SQL-CREATE-VIEW-CH07-04 *** */

CREATE VIEW CustomerPhoneView AS

 SELECT LastName AS CustomerLastName,

 FirstName AS CustomerFirstName,

 ('(' + AreaCode + ')' + PhoneNumber) AS CustomerPhone

 FROM CUSTOMER;

When the view user executes the SQL statement:

/* *** SQL-Query-View-CH07-04 *** */

SELECT *

FROM CustomerPhoneView

ORDER BY CustomerLastName, CustomerFirstName;

the results3 will be:

Placing computations in views has two major advantages. First, it saves users from having
to know or remember how to write an expression to get the results they want. Second, it en-
sures consistent results. If each developer who uses a computation writes his or her own SQL
expression, that developer may write it differently and obtain inconsistent results.

using SQL Views to Hide Complicated SQL Syntax

Another use of SQL views is to hide complicated SQL syntax. Using a view, developers need
not enter a complex SQL statement when they want a particular result. Also, such views give
the benefits of complicated SQL statements to developers who do not know how to write such
statements. This use of views also ensures consistency.

For example, suppose that the View Ridge Gallery salespeople want to see which cus-
tomers are interested in which artists. To display these interests, two joins are necessary: one
to join CUSTOMER to CUSTOMER_ARTIST_INT and another to join that result to ARTIST.

3As you might expect, different DBMS products use different operators for the concatenation operation in
the CustomerPhoneView definition. For example, in Oracle Database, the plus sign (+) must be replaced by
double vertical bars (||) for string concatenation, while MySQL uses the CONCAT() string function. See the
example in Chapter 2 and the documentation for your DBMS for more details.

 CHAPTER 7 SQL for Database Construction and Application Processing 367

We can code an SQL statement that constructs these joins and define it as an SQL view to
create the CustomerInterestsView:

/* *** SQL-CREATE-VIEW-CH07-05 *** */

CREATE VIEW CustomerInterestsView AS

 SELECT C.LastName AS CustomerLastName,

 C.FirstName AS CustomerFirstName,

 A.LastName AS ArtistName

 FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

 ON C.CustomerID = CAI.CustomerID

 JOIN ARTIST AS A

 ON CAI.ArtistID = A.ArtistID;

Notice the aliasing of C.LastName to CustomerLastName and A.LastName to
ArtistLastName. We must use at least one of these column aliases, for without them the
resulting table has two columns named LastName. The DBMS would not be able to distin-
guish one LastName from the other and would generate an error when an attempt is made
to create such a view.

This is a complicated SQL statement to write, but once the view is created, the
result of this statement can be obtained with a simple SELECT statement. For ex-
ample, the following statement shows the results sorted by CustomerLastName and
CustomerFirstName:

/* *** SQL-Query-View-CH07-05 *** */

SELECT *

FROM CustomerInterestsView

ORDER BY CustomerLastName, CustomerFirstName;

Figure 7-18 displays the fairly large result set. Clearly, using the view is much simpler
than constructing the join syntax. Even developers who know SQL well will appreciate having
a simpler SQL view with which to work.

Layering Built-in Functions

Recall from Chapter 2 that you cannot use a computation or a built-in function as part of an
SQL WHERE clause. You can, however, construct a view that computes a variable and then
write an SQL statement on that view that uses the computed variable in a WHERE clause. To
understand this, consider the SQL view definition for the ArtistWorkNetView:

/* *** SQL-CREATE-VIEW-CH07-06 *** */

CREATE VIEW ArtistWorkNetView AS

 SELECT LastName AS ArtistLastName,

 FirstName AS ArtistFirstName,

 W.WorkID, Title, Copy, DateSold,

 AcquisitionPrice, SalesPrice,

 (SalesPrice – AcquisitionPrice) AS NetProfit

 FROM TRANS AS T JOIN WORK AS W

 ON T.WorkID = W.WorkID

 JOIN ARTIST AS A

 ON W.ArtistID = A.ArtistID;

C.LastName
C.FirstName
A.LastName
C.CustomerID
CAI.CustomerID
CAI.ArtistID
A.ArtistID
C.LastName
A.LastName
W.WorkID
T.WorkID
W.WorkID
W.ArtistID
A.ArtistID

368 PART 3 Database Implementation

This SQL view joins TRANS, WORK, and ARTIST and creates the computed column
NetProfit. We can now use NetProfit in an SQL WHERE clause in a query as follows:

/* *** SQL-Query-View-CH07-06 *** */

SELECT ArtistLastName, ArtistFirstName,

 WorkID, Title, Copy, DateSold, NetProfit

FROM ArtistWorkNetView

WHERE NetProfit > 5000

ORDER BY DateSold;

Here we are using the named result of a computation in a WHERE clause, something that is
not allowed in a single SQL statement (the results of a computation can be used in a WHERE
clause, but not by name). The result of the SQL SELECT statement is:

FIGuRE 7-18

result of SELECt on
CustomerInterestsView

 CHAPTER 7 SQL for Database Construction and Application Processing 369

Such layering can be continued over many levels. We can define another view with an-
other computation on the computation in the first view. For example, note that in the results
above, the Horiuchi work Memories IV has been acquired and sold more than once by the
View Ridge Gallery, and then consider the SQL view ArtistWorkTotalNetView, which will
calculate the total net profit from all sales of each work:

/* *** SQL-CREATE-VIEW-CH07-07 *** */

CREATE VIEW ArtistWorkTotalNetView AS

 SELECT ArtistLastName, ArtistFirstName,

 WorkID,Title, Copy,

 SUM(NetProfit) AS TotalNetProfit

 FROM ArtistWorkNetView

 GROUP BY ArtistLastName, ArtistFirstName,

 WorkID, Title, Copy;

Now we can use TotalNetProfit in an SQL WHERE clause on the ArtistWorkTotalNet
view as follows:

/* *** SQL-Query-View-CH07-07 *** */

SELECT *

FROM ArtistWorkTotalNetView

WHERE TotalNetProfit > 5000

ORDER BY TotalNetProfit;

In this SELECT, we are using an SQL view on an SQL view and a built-in function on a
computed variable in the WHERE clause. The results are as follows:

using SQL Views for Isolation, Multiple Permissions, and Multiple Triggers

SQL views have three other important uses. First, they can isolate source data tables from ap-
plication code. To see how, suppose we define the view:

/* *** SQL-CREATE-VIEW-CH07-08 *** */

CREATE VIEW CustomerTableBasicDataView AS

 SELECT *

 FROM CUSTOMER;

This view assigns the alias CustomerTableBasicDataView to the CUSTOMER table, and
when we query this view we can simply select all the data in the view:

/* *** SQL-Query-View-CH07-08 *** */

SELECT *

FROM CustomerTableBasicDataView;

The result, as expected, is the data in the CUSTOMER table itself. If all application code
uses the CustomerTableBasicDataView as the data source in SQL statements, then the true
source of the data is hidden from application programmers:

370 PART 3 Database Implementation

Such table isolation provides flexibility to the database administration staff. For example,
suppose that at some future date the source of customer data is changed to a different table
(perhaps one that is imported from a different database) named NEW_CUSTOMER. In this
situation, all the database administrator needs to do is redefine CustomerTableBasicDataView
using the SQL ALTER VIEW statement as follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-VIEW-CH07-08 *** */

ALTER VIEW CustomerTableBasicDataView AS

 SELECT *

 FROM NEW_CUSTOMER;

All of the application code that uses CustomerTableBasicDataView will now run on the new
data source without any problem (assuming that the column names, data types, and other
table characteristics have not been changed).

Another important use for SQL views is to give different sets of processing permissions to
the same table. We will discuss security in more detail in Chapters 9, 10, 10A, 10B, and 10C,
but for now understand that it is possible to limit insert, update, delete, and read permissions
on tables and views.

For example, an organization might define a view of CUSTOMER called CustomerTableReadView
with read-only permissions on CUSTOMER and a second view of CUSTOMER called
CustomerTableUpdateView with both read and update permissions. Applications that need not up-
date the customer data would work with CustomerTableReadView, whereas those that need to
update these data would work with CustomerTableUpdateView.

The final use of SQL views is to enable the definition of multiple sets of triggers on
the same data source. This technique is commonly used for enforcing O-M and M-M
relationships. In this case, one view has a set of triggers that prohibits the deletion of a
required child and another view has a set of triggers that deletes a required child as well
as the parent. The views are assigned to different applications, depending on the author-
ity of those applications.

updating SQL Views

Some views can be updated; others cannot. The rules by which this is determined are both
complicated and dependent on the DBMS in use. To understand why this is so, consider the
following two update requests on views previously defined in our discussion of SQL views:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-VIEW-CH07-01 *** */

UPDATE CustomerTableBasicDataView

 SET Phone = '543-3456'

 WHERE CustomerID = 1000;

and

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-VIEW-CH07-02 *** */

 CHAPTER 7 SQL for Database Construction and Application Processing 371

UPDATE ArtistWorkTotalNetView

 SET TotalNetProfit = 23000

 WHERE ArtistLastName = 'Tobey';

The first request can be processed without a problem because
CustomerTableBasicDataView is just an alias for the CUSTOMER table. The second
update, however, makes no sense at all. TotalNetProfit is a sum of a computed column.
Nowhere in the actual tables in the database is there any such column to be updated, nor is
it possible for the DBMS to decide how to divide up the total profit among the various sales.

Figure 7-19 shows general guidelines to determine if a view is updatable. Again, the spe-
cifics depend on the DBMS product in use. In general, the DBMS must be able to associate
the column(s) to be updated with a particular row in a particular table. A way to approach
this question is to ask yourself, “What would I do if I were the DBMS and I were asked to
update this view? Would the request make sense, and, if so, do I have sufficient data to make
the update?” Clearly, if the entire table is present and there are no computed columns, the
view is updatable. Also, the DBMS will mark the view as updatable if it has an INSTEAD OF
trigger defined for it, as described later.

However, if any of the required columns are missing, the view clearly cannot be used
for inserts. It may be used for updates and deletes, however, as long as the primary key (or,
for some DBMS products, a candidate key) is present in the view. Multi-table views may be
updatable on the most subordinate table. Again, this can be done only if the primary key or
candidate key for that table is in the view. We will revisit this topic for Microsoft SQL Server
2014 in Chapter 10A, Oracle Database in Chapter 10B, and MySQL 5.6 in Chapter 10C.

View based on a single table with no computed columns and all non-null columns
present in the view.

Updatable Views

View based on any number of tables, with or without computed columns, and
INSTEAD OF trigger defined for the view.

Possibly Updatable Views

Based on a single table, primary key in view, some required columns missing from
view, update and delete may be allowed. Insert is not allowed.

Based on multiple tables, updates may be allowed on the most subordinate table in
the view if rows of that table can be uniquely identified.

FIGuRE 7-19

Guidelines for Updating SQL
Views

Embedding SQL in Program Code

SQL statements can be embedded in application programs, user-defined functions, triggers,
and stored procedures. Before we discuss those subjects, however, we need to explain the
placement of SQL statements in program code.

In order to embed SQL statements in program code, two problems must be solved. The
first problem is that some means of assigning the results of SQL statements to program variables
must be available. Many different techniques are used. Some involve object-oriented programs,
whereas others are simpler. For example, in Oracle’s PL/SQL the following statement (part of a
larger program that has declared variables to be used within the program) assigns the count of the
number of rows in the CUSTOMER table to the user-defined variable named rowCount:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-01 *** */

SELECT Count(*) INTO rowCount

FROM CUSTOMER;

372 PART 3 Database Implementation

MySQL SQL uses the same syntax. In SQL Server T-SQL, all user-defined variables must
use the @ (“at” symbol) as the first character, and therefore the code in T-SQL uses the user-
defined variable named @rowCount:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-02 *** */

SELECT @rowCount = Count(*)

FROM CUSTOMER;

In either case, the execution of this code will place the number of rows in CUSTOMER into
the program variable rowCount or @rowCount.

The second problem to solve concerns a paradigm mismatch between SQL and applica-
tion programming languages. SQL is table oriented; SQL SELECT statements start with one
or more tables and produce a table as output. Programs, however, start with one or more vari-
ables, manipulate them, and store the result in a variable. Because of this difference, an SQL
statement like the following makes no sense:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-03 *** */

SELECT LastName INTO CustomerLastName

FROM CUSTOMER;

If there are 100 rows in the CUSTOMER table, there will be 100 values of LastName. The
program variable CustomerLastName, however, is expecting to receive just one value.

To avoid this problem, the results of SQL statements are treated as pseudofiles. When
an SQL statement returns a set of rows, a cursor, which is a pointer to a particular row, is es-
tablished. The application program can then place the cursor on the first, last, or some other
row of the SQL statement output table. With the cursor placed, values of columns for that row
can be assigned to program variables. When the application is finished with a particular row,
it moves the cursor to the next, prior, or some other row and continues processing.

The typical pattern for using a cursor is as follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH07-04 *** */

DECLARE SQLCursor CURSOR FOR (SELECT * FROM CUSTOMER);

/* Opening SQLcursor executes (SELECT * FROM CUSTOMER) */

OPEN SQLcursor;

MOVE SQLcursor to first row of (SELECT * FROM CUSTOMER);

 WHILE (SQLcursor not past the last row) LOOP

 SET CustomerLastName = LastName;

 . . . other statements . . .

 REPEAT LOOP UNTIL DONE;

CLOSE SQLcursor

. . . other processing . . .

In this way, the rows of an SQL SELECT are processed one at a time. You will see many
examples of these techniques and others like them in the chapters that follow.

A typical and useful example of embedding SQL statements in an application is
the use of SQL in Web database applications. We will discuss this topic in detail in
Chapter 11, where we will provide several examples of SQL statements embedded in
the PHP scripting language. For now, try to gain an intuitive understanding of how SQL
is embedded in program code as we discuss how SQL application code is embedded
within databases themselves.

 CHAPTER 7 SQL for Database Construction and Application Processing 373

SQL/Persistent Stored Modules (SQL/PSM)

As discussed previously in this chapter, each DBMS product has its own variant or extension
of SQL, including features that allow SQL to function similarly to a procedural programming
language. The ANSI/ISO standard refers to these as SQL/Persistent Stored Modules (SQL/PSM).
Microsoft SQL Server calls its version of SQL Transact-SQL (T-SQL), and Oracle Database calls its
version of SQL Procedural Language/SQL (PL/SQL). The MySQL variant also includes SQL/PSM
components, but it has no special name and is just called SQL in the MySQL documentation.

SQL/PSM provides the program variables and cursor functionality previously discussed.
It also includes control-of-flow language such as BEGIN . . . END blocks, IF . . . THEN . . . ELSE
logic structures and LOOPs as well as the ability to provide usable output to users.

The most important feature of SQL/PSM, however, is that it allows the code that implements
these features in a database to be contained in that database. The SQL code can be written as one
of three module types: user-defined functions, triggers, and stored procedures. Thus the name:
Persistent—the code remains available for use over time—Stored—the code is stored for reuse in the
database—Modules—the code is written as a user-defined function, trigger, or stored procedure.

using SQL user-Defined Functions

A user-defined function (also known as a stored function) is a stored set of SQL state-
ments that:

■■ is called by name from another SQL statement,
■■ may have input parameters passed to it by the calling SQL statement, and
■■ returns an output value to the SQL statement that called the function.

The logical process flow of a user-defined function is illustrated in Figure 7-20. SQL/PSM
user-defined functions are very similar to the SQL built-in aggregate functions (COUNT,
SUM, AVG, MAX, and MIN) that we discussed and used in Chapter 2, except that, as the
name implies, we create them ourselves to perform specific tasks that we need to do.

Depending upon DBMS product implementation, user-defined functions may be written as:

■■ a scalar-valued function which returns a single value based on a row,
■■ a table-valued function which returns a table of values, or
■■ an aggregate function which returns a single value based on a column grouping

(similar to the SQL built-in aggregate functions such as SUM).

In this section, we will only discuss scalar-valued functions.
A common problem that can be solved using a scalar-valued user-defined function is

needing a name in the format LastName, FirstName (including the comma!) in a report when
the database stores the basic data in two fields named FirstName and LastName. Using the
data in the VRG database, we could, of course, simply include the code to do this in an SQL
statement (similar to SQL-Query-CH02-45 in Chapter 2—see the “By the Way” discussion
on page 81 for a discussion of Oracle Database and MySQL concatenation methods) such as:

/* *** SQL-Query-CH07-01 *** */

SELECT RTRIM(LastName)+', '+RTRIM(FirstName) AS CustomerName,

 AreaCode, PhoneNumber, EmailAddress

FROM CUSTOMER

ORDER BY CustomerName;

INPUT
(parameter values)

from calling
SQL statement

OUTPUT
(result value)

to calling
SQL statement

PROCESS
(parameter values)

to create
(result value)

FIGuRE 7-20

User-Defined Function
Logical Process Flow

374 PART 3 Database Implementation

This produces the desired results, but at the expense of working out some cumbersome
coding:

CREATE FUNCTION dbo.NameConcatenation

-- These are the input parameters
(
@FirstName CHAR(25),
@LastName CHAR(25)
)

RETURNS VARCHAR(60)
AS
BEGIN

-- This is the variable that will hold the value to be returned
DECLARE @FullName VARCHAR(60);

-- SQL statements to concatenate the names in the proper order
SELECT @FullName = RTRIM(@LastName) + ', ' + RTRIM(@FirstName);

-- Return the concatentate name
RETURN @FullName;

END;

FIGuRE 7-21

User-Defined Function
to Concatenate FirstName
and LastName

The alternative is to create a user-defined function to store this code. Not only does
this make it easier to use, but it also makes it available for use in other SQL statements.
Figure 7-21 shows a user-defined function written in T-SQL for use with Microsoft SQL
Server 2014, and the SQL code for the function uses, as we would expect, specific syntax
requirements for Microsoft SQL Server’s T-SQL 2014:

■■ The function is created and stored in the database by using the SQL CREATE
FUNCTION statement.

■■ The function name starts with dbo, which is a Microsoft SQL Server schema name (SQL
Server schemas are discussed in Chapter 10A). This use of a schema name appended
to a database object name is common in Microsoft SQL Server.

■■ The variable names of both the input parameters and the returned output value
start with @.

■■ The concatenation syntax is T-SQL syntax.

The Oracle Database version of this function, which uses Oracle’s PL/SQL, is discussed
in Chapter 10B, and the MySQL version, which uses the MySQL SQL/PSM standards, is dis-
cussed in Chapter 10C.

 CHAPTER 7 SQL for Database Construction and Application Processing 375

Now that we have created and stored the user-defined function, we can use it in
SQL-Query-CH07-02:

/* *** SQL-Query-CH07-02 *** */

SELECT dbo.NameConcatenation(FirstName, LastName) AS CustomerName,

 AreaCode, PhoneNumber, EmailAddress

FROM CUSTOMER

ORDER BY CustomerName;

Now we have a function that produces the results we want, which of course are identical
to the results for SQL-Query-CH07-01 above:

The advantage of having a user-defined function is that we can now use it whenever we
need to without having to re-create the code. For example, our previous query used data in
the View Ridge Gallery CUSTOMER table, but we could just as easily use the function with
the data in the ARTIST table:

/* *** SQL-Query-CH07-03 *** */

SELECT dbo.NameConcatenation(FirstName, LastName) AS ArtistName,

 DateofBirth, DateDeceased

FROM ARTIST

ORDER BY ArtistName;

This query produces the expected result:

dbo.NameConcatenation
dbo.NameConcatenation

376 PART 3 Database Implementation

We can even use the function multiple times in the same SQL statement, as shown in
SQL-Query-CH07-04, which is a variant on the SQL query we used to create the SQL view
CustomerInterestView in our discussion of SQL views:

/* *** SQL-Query-CH07-04 *** */

SELECT dbo.NameConcatenation(C.FirstName, C.LastName) AS CustomerName,

 dbo.NameConcatenation(A.FirstName, A.LastName) AS ArtistName

FROM CUSTOMER AS C JOIN CUSTOMER_ARTIST_INT AS CAI

 ON C.CustomerID = CAI.CustomerID

 JOIN ARTIST AS A

 ON CAI.ArtistID = A.ArtistID

ORDER BY CustomerName, ArtistName;

This query produces the expected large result that is shown in Figure 7-22, where we see
that both CustomerName and ArtistName display the names in the LastName, FirstName
syntax produced by the NameConcatenation user-defined function. Compare the results in this
figure to those in Figure 7-18, which presents essentially the same results, but without the for-
matting provided by the NameConcatenation function.

FIGuRE 7-22

result of SQL Query Using
the NameConcatenation
User-Defined Function

dbo.NameConcatenation
C.FirstName
C.LastName
dbo.NameConcatenation
A.FirstName
A.LastName
C.CustomerID
CAI.CustomerID
CAI.ArtistID
A.ArtistID

 CHAPTER 7 SQL for Database Construction and Application Processing 377

using SQL Triggers

A trigger is a stored program that is executed by the DBMS whenever a specified event occurs.
Triggers for Oracle Database are written in Java or in Oracle’s PL/SQL. Microsoft SQL Server
triggers are written in Microsoft .NET Common Language Runtime (CLR) languages, such
as Visual Basic.NET, or Microsoft’s T-SQL. MySQL triggers are written in MySQL’s variant of
SQL. In this chapter, we will discuss triggers in a generic manner without considering the
particulars of those languages. We will discuss triggers written in DBMS-specific SQL variants
for T-SQL in Chapter 10A, for PL/SQL in Chapter 10B, and for MySQL SQL in Chapter 10C.

A trigger is attached to a table or a view. A table or a view may have many triggers, but a
trigger is associated with just one table or view. A trigger is invoked by an SQL DML INSERT,
UPDATE, or DELETE request on the table or view to which it is attached. Figure 7-23 sum-
marizes the triggers available for SQL Server 2014, Oracle Database, and MySQL 5.6.

Oracle Database 12c and Oracle Database Express Edition 11g Release 2 both support
three kinds of triggers: BEFORE, INSTEAD OF, and AFTER. As you would expect, BEFORE
triggers are executed before the DBMS processes the insert, update, or delete request.
INSTEAD OF triggers are executed in place of any DBMS processing of the insert, update, or
delete request. AFTER triggers are executed after the insert, update, or delete request has been
processed. All together, nine trigger types are possible: BEFORE (INSERT, UPDATE, DELETE);
INSTEAD OF (INSERT, UPDATE, DELETE); and AFTER (INSERT, UPDATE, DELETE).

Since SQL Server 2005, SQL Server supports DDL triggers (triggers on such SQL DDL
statements as CREATE, ALTER, and DROP) as well as DML triggers. We will only deal with
the DML triggers here, which for SQL Server 2014 are INSTEAD OF and AFTER triggers on
INSERT, UPDATE, and DELETE. (Microsoft includes the FOR keyword, but this is a synonym
for AFTER in Microsoft syntax.) Thus, we have six possible trigger types.

MySQL 5.6 supports only BEFORE and AFTER triggers—thus, like SQL Server 2014,
it supports only six trigger types. Other DBMS products support triggers differently. See the
documentation of your product to determine which trigger types it supports.

When a trigger is invoked, the DBMS makes the data involved in the requested action
available to the trigger code. For an insert, the DBMS will supply the values of columns for the
row that is being inserted. For deletions, the DBMS will supply the values of columns for the
row that is being deleted. For updates, it will supply both the old and the new values.

The way in which this is done depends on the DBMS product. For now, assume that new
values are supplied by prefixing a column name with the expression new:. Thus, during an
insert on CUSTOMER, the variable new:LastName is the value of LastName for the row be-
ing inserted. For an update, new:LastName has the value of LastName after the update takes
place. Similarly, assume that old values are supplied by prefixing a column name with the ex-
pression old:. Thus, for a deletion, the variable old:LastName has the value of LastName for the
row being deleted. For an update, old:LastName has the value of Name prior to the requested
update. This, in fact, is the strategy used by Oracle PL/SQL and MySQL SQL—you will see the
equivalent SQL Server strategy in Chapter 10A.

INSERT Oracle Database Oracle Database
SQL Server

UPDATE Oracle Database Oracle Database
SQL Server

DELETE Oracle Database Oracle Database
SQL Server

BEFORE INSTEAD OFTrigger Type

DML Action

Oracle Database
SQL Server
MySQL

Oracle Database
SQL Server
MySQL

Oracle Database
SQL Server
MySQL

AFTER

MySQL

MySQL

MySQL

FIGuRE 7-23

Summary of SQL triggers
by DBMS Product

Basic.NET

378 PART 3 Database Implementation

Triggers have many uses. In this chapter, we consider the four uses summarized in
Figure 7-24:

■■ Providing default values
■■ Enforcing data constraints
■■ Updating SQL views
■■ Performing referential integrity actions

using Triggers to Provide Default Values
Earlier in this chapter, you learned to use the SQL DEFAULT keyword to provide initial col-
umn values. DEFAULT works only for simple expressions, however. If the computation of a
default value requires complicated logic, then an INSERT trigger must be used instead.

For example, suppose that there is a policy at View Ridge Gallery to set the value of
AskingPrice equal either to twice the AcquisitionPrice or to the AcquisitionPrice plus the aver-
age net gain for sales of this art in the past, whichever is greater. The AFTER trigger in Figure
7-25 implements this policy. Note that the code in Figure 7-25, although resembling Oracle
Database PL/SQL, is generic pseudocode. You will learn how to write specific code for SQL Server
in Chapter 10A, for Oracle Database in Chapter 10B, and for MySQL in Chapter 10C.

After declaring program variables, the trigger reads the TRANS table to find out how
many TRANS rows exist for this work. Because this is an AFTER trigger, the new TRANS row
for the work will have already been inserted. Thus, the count will be one if this is the first
time the work has been in the gallery. If so, the new value of SalesPrice is set to twice the
AcquisitionPrice.

If the user variable rowCount is greater than one, then the work has been in the gallery before.
To compute the average gain for this work, the trigger uses the ArtistWorkNetView described
on page 335 to compute SUM(NetProfit) for this work. The sum is placed in the variable sum-
NetProfit. Notice that the WHERE clause limits the rows to be used in the view to this particular
work. The average is then computed by dividing this sum by rowCount minus one.

You may be wondering, why not use AVG(NetProfit) in the SQL statement? The answer is
that the default SQL average function would have counted the new row in the computation of
the average. We do not want that row to be included, so we subtract one from rowCount when
the average is computed. Once the value of avgNetProfit has been computed, it is compared
with twice the AcquisitionPrice; the larger result is used for the new value of AskingPrice.

using Triggers to Enforce Data Constraints
A second purpose of triggers is to enforce data constraints. Although SQL CHECK constraints
can be used to enforce domain, range, and intrarelation constraints, no DBMS vendor has
implemented the SQL-92 features for interrelation CHECK constraints. Consequently, such
constraints are implemented in triggers.

Suppose, for example, that the gallery has a special interest in Mexican painters and
never discounts the price of their works. Thus, the SalesPrice of a work must always be at
least the AskingPrice. To enforce this rule, the gallery database has an insert and update trig-
ger on TRANS that checks to see if the work is by a Mexican painter. If so, the SalesPrice is
checked against the AskingPrice. If it is less than the AskingPrice, the SalesPrice is reset to the
AskingPrice. This, of course, must happen when the artwork is actually being sold, and the
customer charged the full amount! This is not a postsale accounting adjustment.

Provide default values.

Uses of SQL Triggers

Enforce data constraints.

Update views.

Perform referential integrity actions.

FIGuRE 7-24

Uses for SQL triggers

 CHAPTER 7 SQL for Database Construction and Application Processing 379

Figure 7-26 shows generic trigger code that implements this rule. This trigger will be fired
after any insert or update on a TRANS row. The trigger first checks to determine if the work is
by a Mexican artist. If not, the trigger is exited. Otherwise, the SalesPrice is checked against the
AskingPrice; if it is less than the AskingPrice, the SalesPrice is set equal to the AskingPrice.

This trigger will be called recursively; the update statement in the trigger will cause an
update on TRANS, which will cause the trigger to be called again. The second time, however,
the SalesPrice will be equal to the AskingPrice, no more updates will be made, and the recur-
sion will stop.

using Triggers to update Views
As stated earlier, the DBMS can update some views but not others, depending on the way the
view is constructed. Applications can sometimes update the views that the DBMS cannot up-
date by applying logic that is particular to a given business setting. In this case, the application-
specific logic for updating the view is placed in an INSTEAD OF trigger.

CREATE TRIGGER TRANS_AskingPriceInitialValue

/* *** EXAMPLE CODE - DO NOT RUN *** */

 AFTER INSERT ON TRANS

DECLARE
 rowCount Int;
 sumNetProfit Numeric(10,2);
 avgNetProfit Numeric(10,2);
BEGIN
 /* First find if work has been here before */

 SELECT Count(*) INTO rowCount
 FROM TRANS AS T
 WHERE new:WorkID = T.WorkID;

 IF (rowCount = 1)
 THEN
 /* This is first time work has been in gallery */

 new:AskingPrice = 2 * new:AcquisitionPrice;

 ELSE
 IF rowCount > 1
 THEN
 /* Work has been here before */

 SELECT SUM(NetProfit) into sumNetProfit
 FROM ArtistWorkNetView AWNV
 WHERE AWNV.WorkID = new.WorkID
 GROUP BY AWNV.WorkID;

 avgNetProfit = sumNetProfit / (rowCount – 1);

 /* Now choose larger value for the new AskingPrice */

 IF ((new:AcquisitionPrice + avgNetProfit)
 > (2 * new:AcquisitionPrice))
 THEN
 new:AskingPrice = (new:AcquisitionPrice + avgNetProfit);
 ELSE
 new:AskingPrice = (2 * new:AcquisitionPrice);
 END IF;
 ELSE
 /* Error, rowCount cannot be less than 1 */
 /* Do something! */
 END IF;

 END IF;
END;

FIGuRE 7-25

trigger Code to Insert
a Default Value

380 PART 3 Database Implementation

When an INSTEAD OF trigger is declared on a view, the DBMS performs no action
other than to call the trigger. Everything else is up to the trigger. If you declare an INSTEAD
OF INSERT trigger on view MyView and if your trigger does nothing but send an email mes-
sage, then that email message becomes the result of an INSERT on the view. INSERT MyView
means “send an email” and nothing more.

More realistically, consider the SQL view CustomerInterestsView on page 335 and the
result of that view in Figure 7-18. This view is the result of two joins across the intersection
table between CUSTOMER and ARTIST. Suppose that this view populates a grid on a user
form, and further suppose that users want to make customer name corrections, when neces-
sary, on this form. If such changes are not possible, the users will say something like, “But, hey,
the name is right there. Why can’t I change it?” Little do they know the trials and tribulations
the DBMS went through to display those data!

In any case, if, for example, the customer LastName value happens to be unique within the
database, the view has sufficient information to update the customer’s last name. Figure 7-27
shows generic trigger code for such an update. The code just counts the number of customers that
have the old value of LastName. If only one customer has that value, then the update is made;
otherwise, an error message is generated. Notice that the update activity is on one of the tables that
underlie the view. The view, of course, has no real data. Only actual tables can be updated.

CREATE TRIGGER TRANS_CheckSalesPrice

/* *** EXAMPLE CODE - DO NOT RUN *** */

 AFTER INSERT, UPDATE ON TRANS

DECLARE

 artistNationality Char (30);

BEGIN
 /* First determine if work is by a Mexican artist */

 SELECT Nationality into artistNationality
 FROM ARTIST AS A JOIN WORK AS W
 ON A.ArtistID = W.ArtistID
 WHERE W.WorkID = new:WorkID;

 IF (artistNationality <> 'Mexican')
 THEN
 Exit Trigger;
 ELSE

 /* Work is by a Mexican artist - enforce constraint */

 IF (new:SalesPrice < new:AskingPrice)
 THEN

 /* Sales Price is too low, reset it */

 UPDATE TRANS
 SET SalesPrice = new:AskingPrice
 WHERE TransactionID = new:TransactionID;

 /* Note: The above update will cause a recursive call on this */
 /* trigger. The recursion will stop the second time through */
 /* because SalesPrice will be = AskingPrice. */

 /* At this point send a message to the user saying what’s been */
 /* done so that the customer has to pay the full amount */

 ELSE
 /* new:SalesPrice >= new:AskingPrice */

Exit Trigger;
 END IF;

 END IF;
END;

FIGuRE 7-26

trigger Code to Enforce
an Interrelation Data
Constraint

 CHAPTER 7 SQL for Database Construction and Application Processing 381

using Triggers to Implement Referential Integrity Actions
The fourth use of triggers is to implement referential integrity actions. Consider, for example,
the 1:N relationship between DEPARTMENT and EMPLOYEE. Assume that the relationship
is M-M and that EMPLOYEE.DepartmentName is a foreign key to DEPARTMENT.

To enforce this constraint, we will construct two views, both based on EMPLOYEE. The
first view, DeleteEmployeeView, will delete an EMPLOYEE row only if that row is not the last
child in the DEPARTMENT. The second view, DeleteEmployeeDepartmentView, will delete
an EMPLOYEE row, and if that row is the last EMPLOYEE in the DEPARTMENT, it will also
delete the DEPARTMENT row.

An organization would make the view DeleteEmployeeView available to ap-
plications that do not have permission to delete a row in DEPARTMENT. The view
DeleteEmployeeDepartmentView would be given to applications that have permission to
delete both employees and departments that have no employees. At the same time, the orga-
nization would disallow all deletions directly on the EMPLOYEE and DEPARTMENT tables.

Both of the views DeleteEmployeeView and DeleteEmployeeDepartmentView have the
identical structure:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-CREATE-VIEW-CH07-09 *** */

CREATE VIEW DeleteEmployeeView AS

 SELECT *

 FROM EMPLOYEE;

CREATE TRIGGER CustomerInterestView_UpdateCustomerLastName

/* *** EXAMPLE CODE - DO NOT RUN *** */

 INSTEAD OF UPDATE ON CustomerInterestView

DECLARE

 rowCount Int;

BEGIN

 SELECT COUNT(*) into rowCount
 FROM CUSTOMER
 WHERE CUSTOMER.LastName = old:LastName

 IF (rowCount = 1)
 THEN

 /* If get here, then only one customer has this last name. */
 /* Make the name change. */

 UPDATE CUSTOMER
 SET CUSTOMER.LastName = new:LastName
 WHERE CUSTOMER.LastName = old:LastName;

 ELSE

 IF (rowCount > 1)
 THEN

 /* Send a message to the user saying cannot update because */
 /* there are too many customers with this last name. */

 ELSE
 /* Error, if rowcount <= 0 there is an error! */
 /* Do something! */
 END IF;

 END IF;
END;

FIGuRE 7-27

trigger Code to Update
an SQL View

EMPLOYEE.DepartmentName

382 PART 3 Database Implementation

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-CREATE-VIEW-CH07-10 *** */

CREATE VIEW DeleteEmployeeDepartmentView AS

 SELECT *

 FROM EMPLOYEE;

The trigger on DeleteEmployeeView, shown in Figure 7-28, determines if the employee is the
last employee in the department. If not, the EMPLOYEE row is deleted. If, however, the employee
is the last employee in the department, nothing is done. Note again that the DBMS does nothing
when an INSTEAD OF trigger is declared on the deletion. All activity is up to the trigger. If the
employee is the last employee, then this trigger does nothing, which means that no change will be
made to the database because the DBMS left all processing tasks to the INSTEAD OF trigger.

The trigger on DeleteEmployeeDepartment, shown in Figure 7-29, treats the employee
deletion a bit differently. First, the trigger checks to determine if the employee is the last em-
ployee in the department. If so, the EMPLOYEE is deleted, and then the DEPARTMENT itself
is deleted. Notice that the row in EMPLOYEE is deleted in either case.

Triggers such as those in Figures 7-28 and 7-29 are used to enforce the referential integ-
rity actions for O-M and M-M relationships, as described at the end of Chapter 6 (note that a
full implementation of those actions would also have to deal with insertions of departments).
You will learn how to write them for SQL Server 2014 in Chapter 10A, Oracle Database in
Chapter 10B, and for MySQL 5.6 in Chapter 10C.

using Stored Procedures

A stored procedure is a program that is stored within the database and compiled when
used. In Oracle Database, stored procedures can be written in PL/SQL or in Java. With
Microsoft SQL Server 2014, stored procedures are written in T-SQL or a .NET CLR language,
such as Visual Basic.NET, C#.NET, or C++.NET. With MySQL, stored procedures are written
in MySQL’s variant of SQL.

CREATE TRIGGER EMPLOYEE_DeleteCheck

/* *** EXAMPLE CODE - DO NOT RUN *** */

 INSTEAD OF DELETE ON DeleteEmployeeView

DECLARE

 rowCount Int;

BEGIN

 /* First determine if this is the last employee in the department */

 SELECT Count(*) into rowCount
 FROM EMPLOYEE
 WHERE EMPLOYEE.EmployeeNumber = old:EmployeeNumber;

 IF (rowCount > 1)
 THEN

 /* Not last employee, allow deletion */

 DELETE EMPLOYEE
 WHERE EMPLOYEE.EmployeeNumber = old:EmployeeNumber;

 ELSE

 /* Send a message to user saying that the last employee */
 /* in a department cannot be deleted. */

 END IF;

END;

FIGuRE 7-28

trigger Code to Delete
all but Last Child

Basic.NET

 CHAPTER 7 SQL for Database Construction and Application Processing 383

Stored procedures can receive input parameters and return results. Unlike trig-
gers, which are attached to a given table or view, stored procedures are attached to the
database. They can be executed by any process using the database that has permission
to use the procedure. Differences between triggers and stored procedures are summa-
rized in Figure 7-30.

Stored procedures are used for many purposes. Although database administrators use
them to perform common administration tasks, their primary use is within database applica-
tions. They can be invoked from application programs written in languages such as COBOL,
C, Java, C#, or C++. They also can be invoked from Web pages (as we will see in Chapter 11)
using VBScript, JavaScript, or PHP. Ad hoc users can run them from DBMS management
products such as SQL*Plus or SQL Developer in Oracle Database, SQL Server Management
Studio in SQL Server, or the MySQLWorkbench in MySQL.

Advantages of Stored Procedures
The advantages of using stored procedures are listed in Figure 7-31. Unlike application code,
stored procedures are never distributed to client computers. They always reside in the data-
base and are processed by the DBMS on the database server. Thus, they are more secure than
distributed application code, and they also reduce network traffic. Increasingly, stored proce-
dures are the preferred mode of processing application logic over the Internet or corporate in-
tranets. Another advantage of stored procedures is that their SQL statements can be optimized
by the DBMS compiler.

When application logic is placed in a stored procedure, many different application pro-
grammers can use that code. This sharing results not only in less work but also in standardized
processing. Further, the developers best suited for database work can create the stored pro-
cedures while other developers, say, those who specialize in Web-tier programming, can do
other work. Because of these advantages, it is likely that stored procedures will see increased
use in the future.

CREATE TRIGGER EMPLOYEE_DEPARTMENT_DeleteCheck

/* *** EXAMPLE CODE - DO NOT RUN *** */

 INSTEAD OF DELETE ON DeleteEmployeeDepartmentView

DECLARE

 rowCount Int;

BEGIN

 /* First determine if this is the last employee in the department */

 SELECT Count(*) into rowCount
 FROM EMPLOYEE
 WHERE EMPLOYEE.EmployeeNumber = old:EmployeeNumber;

 IF (rowCount = 1)
 THEN

 /* Last employee in Department, delete Department */

 DELETE DEPARTMENT
 WHERE DEPARTMENT.DepartmentName = old:DepartmentName;

 END IF;

 /* Delete Employee row regardless of whether Department is deleted */

 DELETE EMPLOYEE
 WHERE EMPLOYEE.EmployeeNumber = old:EmployeeNumber;

END;

FIGuRE 7-29

trigger Code to Delete
Last Child and Parent
When Necessary

384 PART 3 Database Implementation

The WORK_AddWorkTransaction Stored Procedure
Figure 7-32 shows a stored procedure that records the acquisition of a work in the VRG da-
tabase. Again, this code is generic, but the code style in Figure 7-32 is closer to that used in
Microsoft SQL Server T-SQL rather than the Oracle Database PL/SQL style that was used for
the trigger examples in the prior section. If you compare the pseudocode examples in both
sections, you can gain a sense of the differences between code written in PL/SQL and T-SQL.

The WORK_addWorkTransaction procedure receives five input parameters and returns
none. In a more realistic example, a return parameter would be passed back to the caller to
indicate the success or failure of the operation. That discussion takes us away from database
concepts, however, and we will omit it here. This code does not assume that the value of
ArtistID that is passed to it is a valid ID. Instead, the first step in the stored procedure is to
check whether the ArtistID value is valid. To do this, the first block of statements counts the
number of rows that have the given ArtistID value. If the count is zero, then the ArtistID value
is invalid, and the procedure writes an error message and returns.

Otherwise,4 the procedure then checks to determine if the work has been in the View Ridge
Gallery before. If so, the WORK table will already contain a row for this ArtistID, Title, and Copy.

Module of code that is called by the DBMS when INSERT, UPDATE,
or DELETE commands are issued.

Assigned to a table or view.

Depending on the DBMS, may have more than one trigger per table or view.

Triggers may issue INSERT, UPDATE, and DELETE commands and
thereby may cause the invocation of other triggers.

Module of code that is called by a user or database administrator.

Assigned to a database, but not to a table or a view.

Can issue INSERT, UPDATE, DELETE, and MERGE commands.

Trigger

Triggers Versus Stored Procedures

Stored Procedure

Used for repetitive administration tasks or as part of an application.

FIGuRE 7-30

triggers Versus Stored
Procedures

4This code does not check for more than one row having the given ArtistID because ArtistID is a surrogate key.

Greater security.

Advantages of Stored Procedures

Decreased network traffic.

SQL can be optimized.

Code sharing.

Less work.

Standardized processing.

Specialization among developers.

FIGuRE 7-31

advantages of Stored
Procedures

 CHAPTER 7 SQL for Database Construction and Application Processing 385

CREATE PROCEDURE WORK_AddWorkTransaction

/* *** EXAMPLE CODE - DO NOT RUN *** */

 (
 @ArtistID Int, /* Artist must already exist in database */
 @Title Char(25),
 @Copy Char(8),
 @Description Varchar(1000),
 @AcquisitionPrice Numeric (6,2)
)

/* Stored procedure to record the acquisition of a work. If the work has */
/* never been in the gallery before, add a new WORK row. Otherwise, use */
/* the existing WORK row. Add a new TRANS row for the work and set */
/* DateAcquired to the system date. */

AS
BEGIN

 DECLARE @rowCount AS Int
 DECLARE @WorkID AS Int

 /* Check that the ArtistID is valid */

 SELECT @rowCount = COUNT(*)
 FROM ARTIST AS A
 WHERE A.ArtistID = @ArtistID

 IF (@rowCount = 0)
 /* The Artist does not exist in the database */
 BEGIN
 Print 'No artist with id of ' + Str(@artistID)
 Print 'Processing terminated.'
 RETURN
 END

 /* Check to see if the work is in the database */

 SELECT @rowCount = COUNT(*)
 FROM WORK AS W
 WHERE W.ArtistID = @ArtistID and
 W.Title = @Title and
 W.Copy = @Copy

 IF (@rowCount = 0)
 /* The Work is not in database, so put it in. */
 BEGIN
 INSERT INTO WORK (Title, Copy, Description, ArtistID)
 VALUES (@Title, @Copy, @Description, @ArtistID)
 END

 /* Get the work surrogate key WorkID value */

 SELECT @WorkID = W.WorkID
 FROM WORK AS W
 WHERE W.ArtistID = @ArtistID
 AND W.Title = @Title
 AND W.Copy = @Copy

 /* Now put the new TRANS row into database. */

 INSERT INTO TRANS (DateAcquired, AcquisitionPrice, WorkID)
 VALUES (GetDate(), @AcquisitionPrice, @WorkID)

 RETURN
END

FIGuRE 7-32

Stored Procedure
to record the
acquisition of a
Work

386 PART 3 Database Implementation

If no such row exists, the procedure creates a new WORK row. Once that has been done, it then
uses a SELECT to obtain a value for the WorkID value. If the WORK row was just created, this
statement is necessary to obtain the new value of the WorkID surrogate key. If the work was not
created, the SELECT on WorkID is necessary to obtain the WorkID of the existing row. Once a
value of WorkID has been obtained, the new row is inserted into TRANS. Notice that the system
function GetDate() is used to supply a value for DateAcquired in the new row.

This procedure illustrates how SQL is embedded in stored procedures. It is not complete
because we need to do something to ensure that either all updates originating in the stored
procedures are made to the database or none of them are. You will learn how to do this in
Chapter 9. For now, just concentrate on how SQL can be used as part of a database application.

Comparing user-Defined Functions, Triggers, and Stored Procedures

User-defined functions, triggers, and stored procedures are all modules of programming code
that are stored and used with a database. They differ in their intended use and in their ability
to perform specific actions within the database. Figure 7-33 summarizes these three compo-
nents of SQL/PSM.

Can accept parameters Yes

User-Defined Functions

Can return a result value or values Yes

Can be used in SELECT statements Yes

Can use SELECT statements Yes

Can use INSERT statements No

No

Triggers

No

No

Yes

Yes

Can use UPDATE statements No

Can use DELETE statements No

Yes

Yes

Yes

Stored Procedures

Yes

No

Yes

Yes

Yes

Yes

Can call a User-Defined Function Yes

Can invoke a Trigger

Can invoke a Stored Procedure

Is stored as a database-wide object

Is stored as a table-specific object

No

Yes

Yes
(Indirectly via INSERT,
UPDATE, or DELETE)

Yes

Yes
(Indirectly via INSERT,
UPDATE, or DELETE)

No

Yes

No

Yes Yes

No Yes

Yes No

FIGuRE 7-33

Comparison of User-Defined
Functions, triggers, and
Stored Procedures

Summary

This chapter discusses the process of implementing a data-
base in a DBMS product from a database design (as discussed
in Chapter 6). Figure 7-34 summarizes the various aspects of
data models, database designs, and how they relate to each
other, as well as how they relate to the systems analysis and
design process in general and to the systems development
life cycle (SDLC) in particular. For more information about
systems analysis and design and the SDLC, see Appendix B.

SQL DDL statements are used to manage the structure
of tables. This chapter presented four SQL DDL state-
ments: CREATE TABLE, ALTER TABLE, DROP TABLE, and
TRUNCATE TABLE. SQL is preferred over graphical tools
for creating tables because it is faster, it can be used to cre-
ate the same table repeatedly, tables can be created from
program code, and it is standardized and (mostly) DBMS
independent.

 CHAPTER 7 SQL for Database Construction and Application Processing 387

The IDENTITY (N, M) data type is used to create
surrogate keys in Microsoft SQL Server 2014, where N
is the starting value and M is the increment to be added.
The SQL CREATE TABLE statement is used to define
the name of the table, its columns, and constraints on
columns. There are five types of constraints: PRIMARY
KEY, UNIQUE, NULL/NOT NULL, FOREIGN KEY, and
CHECK.

The purposes of the first three constraints are obvi-
ous. FOREIGN KEY is used to create referential integrity
constraints; CHECK is used to create data constraints.
Figure 7-10 summarizes techniques for creating relation-
ships using SQL constraints.

Simple default values can be assigned using the
DEFAULT keyword. Some data constraints are defined using

CHECK constraints. Domain, range, and intratable con-
straints can be defined. Although SQL-92 defined facilities
for interrelation CHECK constraints, those facilities were
not implemented by DBMS vendors. Instead, interrelation
constraints are enforced using triggers.

The ALTER statement is used to add and remove col-
umns and constraints. The DROP statement is used to drop
tables. In SQL DDL, parents need to be created first and
dropped last.

The DML SQL statements are INSERT, UPDATE,
DELETE, and MERGE. Each statement can be used on a single
row, on a group of rows, or on the entire table. Because of their
power, both UPDATE and DELETE need to be used with care.

An SQL view is a virtual table that is constructed from
other tables and views. SQL SELECT statements are used to

SDLC Stage

SA&D Reference

Data Structure

Level of Generality

Implementation

Database Implementation
(Chapter 7)

Physical Design
(File and records, etc.)

Table

DBMS and OS Specific

Relationships:

1:1

1:N

1:N ID-Dependent

N:M

Yes

Yes

Yes

No - See Intersection Table

Recursive Yes

Component Design

Database Design
(Chapter 6)

Logical Design/Schema

Physical Design
(Data Types)

Table (Relation)

DBMS Specific

Yes

Yes

Yes

No - See Intersection Table

Yes

Requirements Analysis

Data Model
(Chapter 5)

Conceptual Design/Schema

Entity

Relationship Structure Foreign KeysRelationship with
Foreign Keys

Relationship

Generic

Yes

Yes

Yes

Yes

YesYesIntersection Table with
two 1:N ID-Dependent
Relationships

No - See N:M Relationships

YesYesAssociation Table with
two 1:N ID-Dependent
Relationships

Yes (Associative Entity)

Yes

Software Tools:
(used in this book)

MySQL Workbench Microsoft SQL Server Management Studio
Oracle SQL Developer

MySQL Workbench

Microsoft Visio 2013

SuperType/SubType No
Use 1:1 Relationships with

Column Values

Yes
Depends on Data

Modeling Software

Yes
Depends on Data

Modeling Software

FIGuRE 7-34

Summary of the Database
Design and Implementation
Process

388 PART 3 Database Implementation

Key Terms

aggregate function
casual relationship
CHECK constraint
cursor
data control language (DCL)
data definition language (DDL)
data manipulation language (DML)
data model
database design
DEFAULT keyword
FOREIGN KEY constraint
IDENTITY({StartValue}, {Increment})

property
implementation
index
interrelation constraint

intrarelation constraint
Microsoft SQL Server 2014

Management Studio
NOT NULL constraint
NULL constraint
Oracle MySQL Workbench
Oracle SQL Developer
PRIMARY KEY constraint
procedural programming language
Procedural Language/SQL (PL/SQL)
psuedofile
scalar-valued function
SQL/Persistent Stored Modules

(SQL/PSM)
SQL ADD clause
SQL ADD CONSTRAINT clause

SQL ALTER INDEX statement
SQL ALTER TABLE statement
SQL ALTER VIEW statement
SQL CREATE FUNCTION statement
SQL CREATE INDEX statement
SQL CREATE TABLE statement
SQL CREATE VIEW statement
SQL CREATE OR REPLACE VIEW

statement
SQL DELETE statement
SQL DROP COLUMN clause
SQL DROP CONSTRAINT clause
SQL DROP INDEX statement
SQL DROP TABLE statement
SQL INSERT statement
SQL MERGE statement

define views. The only restriction is that a view definition
may not include an ORDER BY clause.

Views are used to hide columns or rows and to show the
results of computed columns. They also can hide complicated
SQL syntax, such as that used for joins and GROUP BY que-
ries, and layer computations and built-in functions so that
computations can be used in WHERE clauses. Some organiza-
tions use views to provide table aliases. Views also can be used
to assign different sets of processing permissions to tables and
to assign different sets of triggers as well. The rules for deter-
mining whether a view can be updated are both complicated
and DBMS specific. Guidelines are shown in Figure 7-23.

SQL statements can be embedded in program code in
functions, triggers, stored procedures, and application code.
To do so, there must be a way to associate SQL table columns
with program variables. Also, there is a paradigm mismatch
between SQL and programs. Most SQL statements return
sets of rows; an application expects to work on one row at
a time. To resolve this mismatch, the results of SQL state-
ments are processed as pseudofiles using a cursor. Web
database applications are a good example of SQL statements
 embedded in application program code.

SQL/PSM is the portion of the SQL standard that pro-
vides for storing reusable modules of program code within
a database. SQL/PSM specifies that SQL statements will be
embedded in user-defined functions, triggers, and stored
procedures in a database. It also specifies SQL variables,
cursors, control-of-flow statements, and output procedures.

A user-defined function accepts input parameter
 values from an SQL statement, processes the parameter
values, and returns a result value back to the calling state-
ment. User-defined functions may be written to return
a single value based on row values (a scalar-valued func-
tion), a table of values based on row values (a table-valued

function), or a single value based on grouped column val-
ues (an aggregate function).

A trigger is a stored program that is executed by the
DBMS whenever a specified event occurs on a specified table
or view. In Oracle, triggers can be written in Java or in a pro-
prietary Oracle language called PL/SQL. In SQL Server, trig-
gers can be written in a propriety SQL Server language called
TRANSACT-SQL, or T-SQL, and in Microsoft CLR languages,
such as Visual Basic .NET, C# .NET, and C++ .NET. With
MySQL, triggers can be written in MySQL’s variant of SQL.

Possible triggers are BEFORE, INSTEAD OF, and AFTER.
Each type of trigger can be declared for insert, update, and
delete actions, so nine types of triggers are possible. Oracle
supports all nine trigger types, SQL Server supports only
INSTEAD OF and AFTER triggers, and MySQL supports
the BEFORE and AFTER triggers. When a trigger is fired,
the DBMS supplies old and new values for the update. New
values are provided for inserts and updates, and old values
are provided for updates and deletions. How these values are
provided to the trigger depends on the DBMS in use.

Triggers have many uses. This chapter discussed four:
setting default values, enforcing interrelation data constraints,
updating views, and enforcing referential integrity actions.

A stored procedure is a program that is stored within
the database and compiled when used. Stored procedures
can receive input parameters and return results. Unlike trig-
gers, their scope is database-wide; they can be used by any
process that has permission to run the stored procedure.

Stored procedures can be called from programs written
in the same languages used for triggers. They also can be
called from DBMS SQL utilities. The advantages of using
stored procedures are summarized in Figure 7-31.

A summary and comparison of user-defined functions,
triggers, and stored procedures is shown in Figure 7-33.

 CHAPTER 7 SQL for Database Construction and Application Processing 389

 7.1 What does DDL stand for? List the SQL DDL statements.

 7.2 What does DML stand for? List the SQL DML statements.

 7.3 Explain the meaning of the following expression: IDENTITY (4000, 5).

For this set of Review Questions, we will create and use a database with a set of
tables that will allow us to compare variations in SQL CREATE TABLE and SQL INSERT
statements. The purpose of these questions is to illustrate different situations that call
for specific uses of various SQL CREATE TABLE and SQL INSERT options.

The database will be named CH07_RQ_TABLES and will contain the following six
tables:

CUSTOMER_01 (EmailAddress, LastName, FirstName)
CUSTOMER_02 (CustomerID, EmailAddress, LastName, FirstName)
CUSTOMER_03 (CustomerID, EmailAddress, LastName, FirstName)
CUSTOMER_04 (CustomerID, EmailAddress, LastName, FirstName)
SALE_01 (SaleID, DateOfSale, EmailAddress, SaleAmount)
SALE_02 (SaleID, DateOfSale, CustomerID, SaleAmount)

EmailAddress is a text column containing an email address, and is therefore not
a surrogate key. CustomerID is a surrogate key that starts at 1 and increments by 1.
SaleID is a surrogate key that starts at 20150001 and increases by 1.

The CH07_RQ_TABLES database has the following referential integrity constraints:

EmailAddress in SALE_01 must exist in EmailAddress in CUSTOMER_01
CustomerID in SALE_02 must exist in CustomerID in CUSTOMER_04

The relationship from SALE_01 to CuSTOMER_01 is N:1, O-M.
The relationship from SALE_02 to CuSTOMER_04 is N:1, O-M.
The column characteristics for these tables are shown in Figures 7-35

(CuSTOMER_01), 7-36 (CuSTOMER_02, CuSTOMER_03, and CuSTOMER_04), 7-37
(SALE_01), and 7-38 (SALE_02). The data for these tables are shown in Figures 7-39
(CuSTOMER_01), 7-40 (CuSTOMER_02), 7-41 (CuSTOMER_04), 7-42 (SALE_01), and
7-43 (SALE_02).

 7.4 If you are using Microsoft SQL Server, Oracle Database, or MySQL, create a folder
in your Documents folder to save and store the *.sql scripts containing the SQL

Review Questions

SQL ON DELETE clause
SQL ON UPDATE clause
SQL script
SQL script file
SQL TRUNCATE TABLE statement
SQL UPDATE statement

SQL view
stored procedure
systems analysis and design
systems development life cycle (SDLC)
table-valued function
transaction control language (TCL)

Transact-SQL (T-SQL)
trigger
UNIQUE constraint
user-defined function (stored

function)

Column Name

EmailAddress

LastName

FirstName

Type

Varchar (100)

Varchar (25)

Varchar (25)

Key

Primary Key

No

No

Required

Yes

Yes

Yes

Remarks
FIGuRE 7-35

Column Characteristics
for the CH07_rQ_taBLES
Database CUStOMEr_01
table

390 PART 3 Database Implementation

statements that you are asked to create in the following Review Questions about the
CH07_RQ_TABLES database.

■■ For SQL Server Management Studio, create a folder named CH07-RQ-TABLES-
Database in the Projects folder in your SQL Server Management Studio folder.

■■ For Oracle SQL Developer, create a folder named CH07-RQ-TABLES-Database in
your SQL Developer folder.

■■ For SQL Workbench, create a folder named CH07-RQ-TABLES-Database in the
Schemas folder in your MySQL Workbench folder.

If you are using Microsoft Access 2013, create a folder named CH07-Databases in your DBP-
e14-Access-2013-Databases folder.

 7.5 Create a database named CH07_RQ_TABLES.

Column Name

SaleID

EmailAddress

SaleAmount

Type

Integer

Varchar (100)

Numeric (7,2)

Key

Primary Key

Foreign Key

No

Required

Yes Surrogate Key:
Initial value=1
Increment=1

Yes REF: CUSTOMER_01

DateOfSale Date No Yes

Yes

Remarks
FIGuRE 7-37

Column Characteristics
for the CH07_rQ_taBLES
Database SaLE_01 table

Column Name

CustomerID

LastName

FirstName

Type

Integer

Varchar (25)

Varchar (25)

Key

Primary Key

No

No

Required

Yes Surrogate Key:
Initial value=1
Increment=1

Yes

EmailAddress Varchar (100) No Yes

Yes

Remarks
FIGuRE 7-36

Column Characteristics
for the CH07_rQ_taBLES
Database CUStOMEr_02,
CUStOMEr_03, and
CUStOMEr_04 tables

Column Name

SaleID

CustomerID

SaleAmount

Type

Integer

Integer

Numeric (7,2)

Key

Primary Key

Foreign Key

No

Required

Yes Surrogate Key:
Initial value=1
Increment=1

Yes REF: CUSTOMER_04

DateOfSale Date No Yes

Yes

Remarks
FIGuRE 7-38

Column Characteristics
for the CH07_rQ_taBLES
Database SaLE_02 table

EmailAddress

Robert.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

Chris.Bancroft@somewhere.com

LastName

Shire

Goodyear

Bancroft

FirstName

Robert

Katherine

Chris

FIGuRE 7-39

Data for the CH07_rQ_
taBLES Database
CUStOMEr_01 table

folder.If
folder.If

 CHAPTER 7 SQL for Database Construction and Application Processing 391

 7.6 If you are using Microsoft SQL Server, Oracle Database, or MySQL, create and save
an SQL script named CH07-RQ-TABLES-Tables-Data-and-Views.sql to hold the answers
to Review Questions 7.7–7.40. Use SQL script commenting (/* and */ symbols) to write
your answers to Review Questions that require written answers as comments.

If you are running Microsoft Access 2013, create and save a Microsoft Notepad
text file named CH07-RQ-TABLES-Tables-Data-and-Views.txt to hold the answers to
Review Questions 7.7–7.40. After you run each SQL statement in Microsoft Access
2013, copy your SQL statement to this file.

 7.7 Write and run an SQL CREATE TABLE statement to create the CUSTOMER_01 table.

EmailAddressCustomerID

Robert.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

Chris.Bancroft@somewhere.com

LastName

Shire

Goodyear

Bancroft

1

2

3

FirstName

Robert

Katherine

Chris

FIGuRE 7-40

Data for the CH07_rQ_
taBLES Database
CUStOMEr_02 table

EmailAddressCustomerID

Robert.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

Chris.Bancroft@somewhere.com

John.Griffith@somewhere.com

Doris.Tiemey@somewhere.com

Donna.Anderson@elsewhere.com

LastName

Shire

Goodyear

Bancroft

17

23

46

47

48

49

FirstName

Robert

Katherine

Chris

Griffith John

Tiemey Doris

Anderson Donna

FIGuRE 7-41

Data for the CH07_rQ_
taBLES Database
CUStOMEr_04 table

EmailAddressDateOfSaleSaleID

Robert.Shire@somewhere.com

Chris.Bancroft@somewhere.com

Robert.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

SaleAmount

234.00

56.50

123.00

2015-01-14

2015-01-14

2015-01-16

2015-01-17

20150001

20150002

20150003

20150004 34.25

FIGuRE 7-42

Data for the CH07_rQ_
taBLES Database SaLE_01
table

CustomerIDDateOfSaleSaleID

17

46

17

23

49

46

47

SaleAmount

234.00

56.50

123.00

2015-01-14

2015-01-14

2015-01-16

2015-01-17

2015-01-18

2015-01-21

2015-01-23

20150001

20150002

20150003

20150004

20150005

20150006

20150007

34.25

345.00

567.35

78.50

FIGuRE 7-43

Data for the CH07_rQ_
taBLES Database SaLE_02
table

CH07-RQ-TABLES-Tables-Data-and-Views.sql
CH07-RQ-TABLES-Tables-Data-and-Views.txt

392 PART 3 Database Implementation

 7.8 Write and run an SQL CREATE TABLE statement to create the CUSTOMER_02 table.

 7.9 Are there any significant differences between the CUSTOMER_01 and CUSTOMER_02
tables? If so, what are they?

 7.10 Write and run an SQL CREATE TABLE statement to create the CUSTOMER_03 table.

 7.11 Are there any significant differences between the CUSTOMER_02 and CUSTOMER_03
tables? If so, what are they?

 7.12 Write and run an SQL CREATE TABLE statement to create the CUSTOMER_04 table.

 7.13 Are there any significant differences between the CUSTOMER_03 and CUSTOMER_04
tables? If so, what are they?

 7.14 Write and run an SQL CREATE TABLE statement to create the SALE_01 table.
Note that the foreign key is EmailAddress, which references CUSTOMER_01.
EmailAddress. In this database, CUSTOMER_01 and SALE_01 records are never
 deleted, so that there will be no ON DELETE referential integrity action. However, you
will need to decide how to implement the ON UPDATE referential integrity action.

 7.15 In Review Question 7.14, how did you implement the ON UPDATE referential integ-
rity action? Why?

 7.16 Are there any significant differences between the CUSTOMER_01 and SALE_01
tables? If so, what are they?

 7.17 Could we have created the SALE_01 table before creating the CUSTOMER_01
table? If not, why not?

 7.18 Write and run an SQL CREATE TABLE statement to create the SALE_02 table. Note
that the foreign key is CustomerID, which references CUSTOMER_04.CustomerID.
In this database, CUSTOMER_04 and SALE_02 records are never deleted, so that
there will be no ON DELETE referential integrity action. However, you will need to
decide how to implement the ON UPDATE referential integrity action.

 7.19 In Review Question 7.18, how did you implement the ON UPDATE referential integ-
rity action? Why?

 7.20 Are there any significant differences between the SALE_01 and SALE_02 tables? If
so, what are they?

 7.21 Could we have created the SALE_02 table before creating the CUSTOMER_04
table? If not, why not?

 7.22 Write and run a set of SQL INSERT statements to populate the CUSTOMER_01 table.

 7.23 Write and run a set of SQL INSERT statements to populate the CUSTOMER_02
table. Do not use a bulk INSERT command.

 7.24 Are there any significant differences between the sets of SQL INSERT statements used
to populate the CUSTOMER_01 and CUSTOMER_02 tables? If so, what are they?

 7.25 Write and run an SQL INSERT statement to populate the CUSTOMER_03 table.
Use a bulk INSERT command and the data in the CUSTOMER_01 table.

 7.26 Are there any significant differences between the sets of SQL INSERT statements used
to populate the CUSTOMER_02 and CUSTOMER_03 tables? If so, what are they?

 7.27 Write and run a set of SQL INSERT statements to populate rows 1 thorugh 3 in the
CUSTOMER_04 table. Note that this question involves non-sequential surrogate key
values and is based on techniques for Microsoft SQL Server 2014 in Chapter 10A, for
Oracle Database in Chapter 10B, or for MySQL 5.6 in Chapter 10C, depending upon
which DBMS product you are using.

 7.28 Are there any significant differences between the sets of SQL INSERT statements
used to populate the CUSTOMER_02 table and rows 1-3 of the CUSTOMER_04
table? If so, what are they?

 CHAPTER 7 SQL for Database Construction and Application Processing 393

 7.29 Write and run a set of SQL INSERT statements to populate rows 4 through 6
in the CUSTOMER_04 table. Note that this question involves sequential sur-
rogate key values and is based on techniques for Microsoft SQL Server 2014
in Chapter 10A, for Oracle Database in Chapter 10B, or for MySQL 5.6 in
Chapter 10C, depending upon which DBMS product you are using.

 7.30 Are there any significant differences between the sets of SQL INSERT statements
used to populate the CUSTOMER_02 table and rows 4-6 of the CUSTOMER_04
table? If so, what are they?

 7.31 Write and run a set of SQL INSERT statements to populate the SALE_01 table.

 7.32 Are there any significant differences between the sets of SQL INSERT statements used
to populate the CUSTOMER_01 table and the SALE_01 table? If so, what are they?

 7.33 Could we have populated the SALE_01 table before populating the CUSTOMER_01
table? If not, why not?

 7.34 Write and run a set of SQL INSERT statements to populate the SALE_02 table.

 7.35 Are there any significant differences between the sets of SQL INSERT statements used
to populate the SALE_01 table and the SALE_02 table? If so, what are they?

 7.36 Could we have populated the SALE_02 table before populating the CUSTOMER_04
table? If not, why not?

 7.37 Write and run an SQL INSERT statement to insert the following record into the
SALE_02 table:

What was the result of running this statement? Why did this result occur?

 7.38 Write an SQL statement to create a view named Customer01DataView based on the
CUSTOMER_01 table. In the view, include the values of EmailAddress, LastName as
CustomerLastName, and FirstName as CustomerFirstName. Run this statement to
create the view, and then test the view by writing and running an appropriate SQL
SELECT statement.

 7.39 Write an SQL statement to create a view named Customer04DataView based on the
CUSTOMER_04 table. In the view, include the values of Customer ID, LastName as
CustomerLastName, FirstName as CustomerFirstName, and EmailAddress in that
order. Run this statement to create the view, and then test the view by writing and
running an appropriate SQL SELECT statement.

 7.40 Write an SQL statement to create a view named CustomerSalesView based on
the the CUSTOMER_04 and SALE_02 tables. In this view, include the values of
Customer ID, LastName as CustomerLastName, FirstName as CustomerFirstName,
EmailAddress, SaleID, DateOfSale, and SaleAmount in that order. Run this statement
to create the view, and then test the view by writing and running an appropriate SQL
SELECT statement.

For this set of Review Questions, we will create and use a database for the
Wedgewood Pacific Corporation (WPC) that is similar to the Microsoft Access
database we created and used in Chapters 1 and 2. Founded in 1957 in Seattle,
Washington, WPC has grown into an internationally recognized organization.
The company is located in two buildings. One building houses the Administration,
Accounting, Finance, and Human Resources departments, and the second houses
the Production, Marketing, and Information Systems departments. The company
database contains data about employees; departments; projects; assets, such as
computer equipment; and other aspects of company operations.

394 PART 3 Database Implementation

The database will be named WPC and will contain the following four tables:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
Phone, Email)
PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

EmployeeNumber is a surrogate key that starts at 1 and increments by 1. ProjectID is a
surrogate key that starts at 1000 and increases by 100. DepartmentName is the text name of
the department and is therefore not a surrogate key.

The WPC database has the following referential integrity constraints:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT
Department in PROJECT must exist in DepartmentName in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber
in EMPLOYEE

The relationship from EMPLOYEE to ASSIGNMENT is 1:N, M-O and the relationship
from PROJECT to ASSIGNMENT is 1:N, M-O.

The database also has the following business rules:

■■ If an EMPLOYEE row is to be deleted and that row is connected to any
ASSIGNMENT, the EMPLOYEE row deletion will be disallowed.

■■ If a PROJECT row is deleted, then all the ASSIGNMENT rows that are connected to
the deleted PROJECT row will also be deleted.

The business sense of these rules is as follows:

■■ If an EMPLOYEE row is deleted (e.g., if the employee is transferred), then someone
must take over that employee’s assignments. Thus, the application needs someone to
reassign assignments before deleting the employee row.

■■ If a PROJECT row is deleted, then the project has been canceled, and it is unneces-
sary to maintain records of assignments to that project.

The column characteristics for these tables are shown in Figures 1-28 (DEPARTMENT),
1-30 (EMPLOYEE), 2-42 (PROJECT), and 2-44 (ASSIGNMENT). The data for these tables
are shown in Figures 1-29 (DEPARTMENT), 1-31 (EMPLOYEE), 2-43 (PROJECT), and
2-45 (ASSIGNMENT).

If at all possible, you should run your SQL solutions to the following questions against
an actual database. Because we have already created this database in Microsoft Access, you
should use an SQL-oriented DBMS such as Microsoft SQL Server 2014, Oracle Database, or
MySQL 5.6 in these exercises. Create a database named WPC, and create a folder in your My
Documents folder to save and store the *.sql scripts containing the SQL statements that you are
asked to create in the remaining questions pertaining to the WPC database in this section and
the following Project Questions section.

■■ For the SQL Server Management Studio, create a folder named WPC-Database in the
Projects folder structure in your SQL Server Management Studio folder.

■■ In the Oracle SQL Developer folder structure in your SQL Developer folder, create a
folder named WPC-Database.

■■ For the MySQL Workbench, create a folder named WPC-Database in the Schemas
folder in your MySQL Workbench folder.

If that is not possible, create a new Microsoft Access database named WPC-CH07.accdb,
and use the SQL capabilities in these exercises. In all the exercises, use the data types appro-
priate for the DBMS you are using.

Write and save an SQL script named WPC-Create-Tables.sql that includes the answers to
Review Questions 7.41–7.50. Use SQL script commenting (/* and */ symbols) to write your an-
swers to Review Questions 7.45 and 7.46 as comments so that they cannot be run! Test and

WPC-CH07.accdb
WPC-Create-Tables.sql

 CHAPTER 7 SQL for Database Construction and Application Processing 395

run your SQL statements for Review Questions 7.41, 7.42, 7.43, and 7.44 only. After the ta-
bles are created, run your answers to Review Questions 7.47–7.50. Note that after these four
statements have been run the table structure is exactly the same as it was before you ran them.

 7.41 Write a CREATE TABLE statement for the DEPARTMENT table.

 7.42 Write a CREATE TABLE statement for the EMPLOYEE table. Email is required and is
an alternate key, and the default value of Department is Human Resources. Cascade
updates but not deletions from DEPARTMENT to EMPLOYEE.

 7.43 Write a CREATE TABLE statement for PROJECT table. The default value for MaxHours
is 100. Cascade updates but not deletions from DEPARTMENT to EMPLOYEE.

 7.44 Write a CREATE TABLE statement for the ASSIGNMENT table. Cascade only dele-
tions from PROJECT to ASSIGNMENT; do not cascade either deletions or updates
from EMPLOYEE to ASSIGNMENT.

 7.45 Modify your answer to Review Question 7.43 to include the constraint that StartDate
be prior to EndDate.

 7.46 Write an alternate SQL statement that modifies your answer to Review Question 7.44
to make the relationship between EMPLOYEE and ASSIGNMENT a 1:1 relationship.

 7.47 Write an ALTER statement to add the column AreaCode to EMPLOYEE. Assume that
AreaCode is not required.

 7.48 Write an ALTER statement to remove the column AreaCode from EMPLOYEE.

 7.49 Write an ALTER statement to make Phone an alternate key in EMPLOYEE.

 7.50 Write an ALTER statement to drop the constraint that Phone is an alternate key in
EMPLOYEE.

Create SQL scripts to answer Review Questions 7.51–7.56. Write the answer to Review
Question 7.55 as an SQL text comment, but include it in your script. Write the answer
to Review Question 7.56 as an SQL comment so that it cannot be run.

 7.51 Write INSERT statements to add the data shown in Figure 1-29 to the DEPARTMENT
table. Run these statements to populate the DEPARTMENT table. (Hint: Write
and test an SQL script, and then run the script. Save the script as WPC-Insert-
DEPARTMENT-Data.sql for future use.)

 7.52 Write INSERT statements to add the data shown in Figure 1-31 to the EMPLOYEE
table. Run these statements to populate the EMPLOYEE table. (Hint: Write and test
an SQL script, and then run the script. Save the script as WPC-Insert-EMPLOYEE-
Data.sql for future use.)

 7.53 Write INSERT statements to add the data shown in Figure 2-43 to the PROJECT table.
Run these statements to populate the PROJECT table. (Hint: Write and test an SQL script,
and then run the script. Save the script as WPC-Insert-PROJECT-Data.sql for future use.)

 7.54 Write INSERT statements to add the data shown in Figure 2-45 to the ASSIGNMENT
table. Run these statements to populate the ASSIGNMENT table. (Hint: Write
and test an SQL script, and then run the script. Save the script as WPC-Insert-
ASSIGNMENT-Data.sql for future use.)

 7.55 Why were the tables populated in the order shown in Review Questions 7.51–7.54?

 7.56 Assume that you have a table named NEW_EMPLOYEE that has the columns
Department, Email, FirstName, and LastName, in that order. Write an INSERT state-
ment to add all of the rows from the table NEW_EMPLOYEE to EMPLOYEE. Do not
attempt to run this statement!

Create and run an SQL script named WPC-Update-Data.sql to answer Review
Questions 7.57–7.62. Write the answer to Review Question 7.62 as an SQL comment
so that it cannot be run.

 7.57 Write an UPDATE statement to change the phone number of the employee with
EmployeeNumber 11 to 360-287-8810. Run this SQL statement.

WPC-Insert-DEPARTMENT-Data.sql
WPC-Insert-DEPARTMENT-Data.sql
WPC-Insert-EMPLOYEE-Data.sql
WPC-Insert-EMPLOYEE-Data.sql
WPC-Insert-PROJECT-Data.sql
WPC-Insert-ASSIGNMENT-Data.sql
WPC-Insert-ASSIGNMENT-Data.sql
WPC-Update-Data.sql

396 PART 3 Database Implementation

 7.58 Write an UPDATE statement to change the department of the employee with
EmployeeNumber 5 to Finance. Run this SQL statement.

 7.59 Write an UPDATE statement to change the phone number of the employee with
EmployeeNumber 5 to 360-287-8420. Run this SQL statement.

 7.60 Combine your answers to Review Questions 7.58 and 7.59 into one SQL statement.
Run this statement.

 7.61 Write an UPDATE statement to set the HoursWorked to 60 for every row in
ASSIGNMENT having the value 10 for EmployeeNumber. Run this statement.

 7.62 Assume that you have a table named NEW_EMAIL, which has new values of
Email for some employees. NEW_EMAIL has two columns: EmployeeNumber
and NewEmail. Write an UPDATE statement to change the values of Email in
EMPLOYEE to those in the NEW_EMAIL table. Do not run this statement.

Create and run an SQL script named WPC-Delete-Data.sql to answer Review
Questions 7.63 and 7.64. Write the answers to Review Questions 7.63 and 7.64 as SQL
comments so that they cannot be run.

 7.63 Write one DELETE statement that will delete all data for project '2015 Q3 Product
Plan' and all of its rows in ASSIGNMENT. Do not run this statement.

 7.64 Write a DELETE statement that will delete the rows for employees with last name
'Smith'. Do not run this statement. What happens if one of these employees has rows
in ASSIGNMENT?

 7.65 What is an SQL view? What purposes do views serve?

 7.66 What is the limitation on SELECT statements used in SQL views?

Create and run an SQL script named WPC-Create-Views.sql to answer Review
Questions 7.67–7.72.

 7.67 Write an SQL statement to create a view named EmployeePhoneView that shows the
values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE.FirstName as
EmployeeFirstName, and EMPLOYEE.Phone as EmployeePhone. Run this statement
to create the view, and then test the view by writing and running an appropriate SQL
SELECT statement.

 7.68 Write an SQL statement to create a view named FinanceEmployeePhoneView that
shows the values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE
.FirstName as EmployeeFirstName, and EMPLOYEE.Phone as EmployeePhone for
employees who work in the Finance department. Run this statement to create the view,
and then test the view by writing and running an appropriate SQL SELECT statement.

 7.69 Write an SQL statement to create a view named CombinedNameEmployeePhoneView
that shows the values of EMPLOYEE.LastName, EMPLOYEE.FirstName, and
EMPLOYEE.Phone as EmployeePhone but that combines EMPLOYEE.LastName
and EMPLOYEE.FirstName into one column named EmployeeName that displays
the employee name first name first. Run this statement to create the view, and
then test the view by writing and running an appropriate SQL SELECT statement.

 7.70 Write an SQL statement to create a view named EmployeeProjectAssignmentView
that shows the values of EMPLOYEE.LastName as EmployeeLastName, EMPLOYEE
.FirstName as EmployeeFirstName, EMPLOYEE.Phone as EmployeePhone, and
PROJECT.Name as ProjectName. Run this statement to create the view, and then test
the view by writing and running an appropriate SQL SELECT statement.

 7.71 Write an SQL statement to create a view named DepartmentEmployee-
ProjectAssignmentView that shows the values of EMPLOYEE.LastName as
EmployeeLastName, EMPLOYEE.FirstName as EmployeeFirstName, EMPLOYEE
.Phone as EmployeePhone, DEPARTMENT.DepartmentName, Department.PHONE
as DepartmentPhone, and PROJECT.Name as ProjectName. Run this statement to

WPC-Delete-Data.sql
WPC-Create-Views.sql
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.Phone
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.FirstName
EMPLOYEE.Phone
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.Phone
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.FirstName
EMPLOYEE.Phone
PROJECT.Name
EMPLOYEE.LastName
EMPLOYEE.FirstName
EMPLOYEE.Phone
EMPLOYEE.Phone
DEPARTMENT.DepartmentName
Department.PHONE
PROJECT.Name

 CHAPTER 7 SQL for Database Construction and Application Processing 397

create the view, and then test the view by writing and running an appropriate SQL
SELECT statement.

 7.72 Write an SQL statement to create a view named ProjectHoursToDateView that
shows the values of PROJECT.ProjectID, PROJECT.Name as ProjectName, PROJECT
.MaxHours as ProjectMaxHours and the sum of ASSIGNMENT.HoursWorked as
ProjectHoursWorkedToDate. Run this statement to create the view, and then test the
view by writing and running an appropriate SQL SELECT statement.

 7.73 Describe how views are used to provide aliases for tables. Why is this useful?

 7.74 Explain how views can be used to improve data security.

 7.75 Explain how views can be used to provide additional trigger functionality.

 7.76 Give an example of a view that is clearly updatable.

 7.77 Give an example of a view that is clearly not updatable.

 7.78 Summarize the general idea for determining whether a view is updatable.

 7.79 If a view is missing required items, what action on the view is definitely not allowed?

 7.80 Explain the paradigm mismatch between SQL and programming languages.

 7.81 How is the mismatch in your answer to Review Question 7.80 corrected?

 7.82 Describe the SQL/PSM component of the SQL standard. What are PL/SQL and
T-SQL? What is the MySQL equivalent?

 7.83 What is a user-defined function?

using the WPC database, create an SQL script named WPC-Create-Function-and-
View.sql to answer Review Questions 7.84 and 7.85.

 7.84 Create and test a user-defined function named LastNameFirst that combines two pa-
rameters named FirstName and LastName into a concatenated name field formatted
LastName, FirstName (including the comma and space).

 7.85 Create and test a view called EmployeeDepartmentDataView that contains the
employee name concatenated and formatted as LastName, FirstName in a field
named EmployeeName, EMPLOYEE.Department, DEPARTMENT.OfficeNumber,
DEPARTMENT.Phone as DepartmentPhone, and EMPLOYEE.Phone as EmployeePhone.
Run this statement to create the view, and then test the view by writing and running
an appropriate SQL SELECT statement.

 7.86 What is a trigger?

 7.87 What is the relationship between a trigger and a table or view?

 7.88 Name nine possible trigger types.

 7.89 Explain, in general terms, how new and old values are made available to a trigger.

 7.90 Describe four uses for triggers.

 7.91 Assume that the View Ridge Gallery will allow a row to be deleted from WORK if the
work has never been sold. Explain, in general terms, how to use a trigger to accom-
plish such a deletion. (Hint: Check transactions.)

 7.92 Assume that the Wedgewood Pacific Corporation will allow a row to be deleted from
EMPLOYEE if the employee has no project assignments. Explain, in general terms,
how to use a trigger to accomplish such a deletion. (Hint: Check assignments.)

 7.93 What are stored procedures? How do they differ from triggers?

 7.94 Summarize how to invoke a stored procedure.

 7.95 Summarize the key advantages of stored procedures.

PROJECT.ProjectID
PROJECT.Name
PROJECT.MaxHours
PROJECT.MaxHours
ASSIGNMENT.HoursWorked
WPC-Create-Function-and-View.sql
WPC-Create-Function-and-View.sql
EMPLOYEE.Department
DEPARTMENT.OfficeNumber
DEPARTMENT.Phone
EMPLOYEE.Phone

398 PART 3 Database Implementation

EmployeeNumber
SerialNumber

DateAssigned
DateReassigned

EmployeeNumber

FirstName
LastName
Department
Phone
Email

EMPLOYEE

SerialNumber

Make
Model
ProcessorType
ProcessorSpeed
MainMemory
DiskSize

COMPUTER

COMPUTER_ASSIGNMENT

FIGuRE 7-44

WPC Database Design
Extension

ColumnName

SerialNumber

Make

Model

ProcessorType

ProcessorSpeed

DiskSize

Type

Integer

Char (12)

Char (24)

Char (24)

Numeric (3,2)

Char (15)

Key

Primary Key

No

No

No

No

No

Required

Yes

Yes

Yes

No

Yes

Yes

Remarks

Between 2.0
and 5.0

MainMemory Char (15) No Yes

Must be “Dell”
or “HP” or
“Other”

COMPUTERFIGuRE 7-45

Column Characteristics
for the WPC Database
COMPUtEr table

Project Questions

These Project Questions extend the Wedgewood Pacific Corporation database you cre-
ated and used in the Review Questions with two new tables named COMPUTER and
COMPUTER_ASSIGNMENT.

The data model for these modifications is shown in Figure 7-44. The column character-
istics for the COMPUTER table are shown in Figure 7-45, and those for the COMPUTER_
ASSIGNMENT table are shown in Figure 7-46. Data for the COMPUTER table are shown in
Figure 7-47, and data for the COMPUTER_ASSIGNMENT table are shown in Figure 7-48.

 7.96 Describe the relationships in terms of type (identifying or nonidentifying) and maxi-
mum and minimum cardinality.

 7.97 Explain the need for each of the foreign keys.

 7.98 Define referential integrity actions (such as ON UPDATE CASCADE) for the
COMPUTER-to-COMPUTER_ASSIGNMENT relationship only. Explain the need for
these actions.

 CHAPTER 7 SQL for Database Construction and Application Processing 399

ColumnName

SerialNumber

EmployeeNumber

DateAssigned

DateReassigned

Type

Integer

Integer

Date

Date

Key

Primary Key,
Foreign Key

Primary Key,
Foreign Key

No

No

Required

Yes

Yes

Yes

No

Remarks

REF: COMPUTER

REF: EMPLOYEE

COMPUTER_ASSIGNMENTFIGuRE 7-46

Column Characteristics
for the WPC Database
COMPUtEr_aSSIGNMENt
table

Make ModelSerialNumber ProcessorType ProcessorSpeed MainMemory DiskSize

3.30

3.30

3.30

3.30

3.30

3.30

3.60

3.60

3.60

3.60

3.60

3.60

HP

HP

HP

HP

HP

HP

Dell

Dell

Dell

Dell

Dell

Dell

Pavilion 500qe

Pavilion 500qe

Pavilion 500qe

Pavilion 500qe

Pavilion 500qe

Pavilion 500qe

OptiPlex 9020

OptiPlex 9020

OptiPlex 9020

OptiPlex 9020

OptiPlex 9020

OptiPlex 9020

9871234

9871245

9871256

9871267

9871278

9871289

6541001

6541002

6541003

6541004

6541005

6541006

Intel i5-4590

Intel i5-4590

Intel i5-4590

Intel i5-4590

Intel i5-4590

Intel i5-4590

Intel i7-4790

Intel i7-4790

Intel i7-4790

Intel i7-4790

Intel i7-4790

Intel i7-4790

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

8.0 Gbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

1.0 Tbytes

FIGuRE 7-47

WPC Database
COMPUtEr table Data

 7.99 Assume that COMPUTER_ASSIGNMENT in the EMPLOYEE-to-COMPUTER_
ASSIGNMENT relationship is now mandatory (i.e., every employee must have at
least one computer). Use Figure 6-29(b) as a boilerplate to define triggers for en-
forcing the required child between EMPLOYEE and COMPUTER_ASSIGNMENT.
Define the purpose of any necessary triggers.

 7.100 Explain the interaction between the trigger in your answer to Project Question 7.99
and the COMPUTER-to-COMPUTER_ASSIGNMENT relationship. What, if any, cas-
cading behavior do you want to occur? Explain how you can test to find out if it works
the way that you want it to.

using the WPC database, create an SQL script named WPC-Create-New-Tables.sql to
answer Project Question 7.101.

 7.101 Write CREATE TABLE statements for the COMPUTER and COMPUTER_
ASSIGNMENT tables in Figure 7-44 using the column characteristics shown in
Figures 7-45 and 7-46. Write CHECK constraints to ensure that Make is Dell, HP, or
Other. Also, write constraints to ensure that ProcessorSpeed is between 2.0 and 5.0
(these are units of Gigahertz). Run these statements on your WPC database to extend
the database structure.

WPC-Create-New-Tables.sql

400 PART 3 Database Implementation

using the WPC database, create an SQL script named WPC-Insert-New-Data.sql to
answer Project Question 7.102.

 7.102 Using the sample data for the COMPUTER table shown in Figure 7-47 and the
COMPUTER_ASSIGNMENT table shown in Figure 7-48, write INSERT statements
to add this data to these tables in the WPC database. Run these INSERT statements
to populate the tables.

using the WPC database, create an SQL script named WPC-Create-New-Views-And-
Functions.sql to answer Project Questions 7.103–7.108.

 7.103 Create a view of COMPUTER named ComputerView that displays SerialNumber
and then Make and Model combined as one attribute named ComputerType. Place
a colon and a space between Make and Model in the format: Dell: OptiPlex 9020. Do
not create a user-defined function to perform this task. Run the statement to create
the view, and then test the view with an appropriate SQL SELECT statement.

 7.104 Create a view called ComputerMakeView that shows the Make and average Processor
Speed for all computers. Run the statement to create the view, and then test the view
with an appropriate SQL SELECT statement.

 7.105 Create a view called ComputerUserView that has all of the data of COMPUTER and
ASSIGNMENT. Run the statement to create the view, and then test the view with an
appropriate SQL SELECT statement.

 7.106 Create an SQL SELECT statement to use the view you created called ComputerView to show
the computer SerialNumber, ComputerType, and Employee name. Run this statement.

 7.107 Create and test a user-defined function named ComputerMakeAndModel to concat-
enate Make and Model to form the {Make}: {Model} character string as you did without
a function in Project Question 7.103.

 7.108 Create a view of COMPUTER named ComputerMakeAndModelView that displays
SerialNumber and then uses the ComputerMakeAndModel function you created in

EmployeeNumberSerialNumber DateAssigned DateReassigned

21-Oct-15

21-Oct-15

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

11

12

4

5

8

9

11

12

1

2

3

6

7

10

9871234

9871245

9871256

9871267

9871278

9871289

6541001

6541002

6541003

6541004

6541005

6541006

9871234

9871245

15-Sep-15

15-Sep-15

15-Sep-15

15-Sep-15

15-Sep-15

15-Sep-15

21-Oct-15

21-Oct-15

21-Oct-15

21-Oct-15

21-Oct-15

21-Oct-15

21-Oct-15

21-Oct-15

FIGuRE 7-48

WPC Database
COMPUtEr_aSSIGNMENt
table Data

WPC-Insert-New-Data.sql
WPC-Create-New-Views-And-Functions.sql
WPC-Create-New-Views-And-Functions.sql

 CHAPTER 7 SQL for Database Construction and Application Processing 401

Project Question 7.107 to display an attribute named ComputerType. Test the view
with an appropriate SQL SELECT statement.

 7.109 Suppose you want to use a trigger to automatically place a DateReassigned value in
an old row of the COMPUTER_ASSIGNMENT table whenever a new row is inserted
into COMPUTER_ASSIGNMENT to record a new computer assignment of an exist-
ing computer. Describe, in general terms, the trigger logic.

 7.110 Suppose you want to use a stored procedure to store a new row in COMPUTER. List
the minimum list of parameters that need to be in the procedure. Describe, in gen-
eral terms, the logic of the stored procedure.

Heather Sweeney Designs Case Questions

Heather Sweeney is an interior designer who specializes in home kitchen design. Her
company is named Heather Sweeney Designs. Heather offers a variety of seminars at home
shows, kitchen and appliance stores, and other public locations. The seminars are free; she of-
fers them as a way of building her customer base. She earns revenue by selling books and vid-
eos that instruct people on kitchen design. She also offers custom-design consulting services.

After someone attends a seminar, Heather wants to leave no stone unturned in attempt-
ing to sell that person one of her products or services. She would therefore like to develop a
database to keep track of customers, the seminars they have attended, the contacts she has
made with them, and the purchases they have made. She wants to use this database to con-
tinue to contact her customers and offer them products and services.

The database will be named HSD. For reference, the SQL statements shown here are built
from the HSD database design in Figure 7-49, the column characteristics specifications shown
in Figure 7-50, and the referential integrity constraint specifications detailed in Figure 7-51.

Case Questions

CUSTOMER

CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR

SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT

CustomerID (FK)

ContactDate
ContactType
SeminarID (FK)

INVOICE

InvoiceNumber

InvoiceDate
CustomerID (FK)
PaymentType
Subtotal
Shipping
Tax
Total

LINE_ITEM

InvoiceNumber

ProductNumber (FK)
Quantity
UnitPrice
Total

PRODUCT

ProductNumber

ProductType
ProductDescription
UnitPrice
QuantityOnHand

SEMINAR_CUSTOMER

SeminarID (FK)

LineNumber

ContactNumber

CustomerID (FK)

FIGuRE 7-49

Database Design for the
HSD Database

402 PART 3 Database Implementation

Column Name Data Type
(Length)

Key Required Default Value Remarks

CustomerID Integer Primary Key Yes DBMS Supplied
Surrogate Key:
Initial Value=1
Increment=1

LastName Char (25) No Yes None

FirstName Char (25) No Yes None

EmailAddress Varchar (100) Alternate Key Yes None

EncryptedPassword Varchar (50)

StreetAddress Char(35)

No No None

No No None

Phone Char (12) No Yes None

City Char (35) No No Dallas

State Char (2) No No TX

ZIP Char (10) No No 75201

Format: ###-###-####

AK1.1

Format: AA

Format: #####-####

(b) CUSTOMER

Column Name Data Type
(Length)

Key Required Default Value Remarks

SeminarID Integer Primary Key,
Foreign Key

Yes None REF: SEMINAR

REF: CUSTOMERCustomerID Integer Primary Key,
Foreign Key

Yes None

(c) SEMINAR_CUSTOMER

Column Name Data Type
(Length)

Key Required Default Value Remarks

SeminarID Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial Value=1
Increment=1

Format: yyyy-mm-dd

Format: 00:00:00.00

SeminarDate Date No Yes None

SeminarTime Time No Yes None

Location Varchar (100) No Yes None

SeminarTitle Varchar (100) No Yes None

(a) SEMINAR

FIGuRE 7-50

Database Column
Specifications for the HSD
Database

 CHAPTER 7 SQL for Database Construction and Application Processing 403

Column Name Data Type
(Length)

Key Required Default Value Remarks

CustomerID Integer Primary Key,
Foreign Key

Yes None REF: CUSTOMER

This is not quite a
Surrogate Key—for each
ContactNumber:
Start=1
Increment=1
Application logic will
be needed to supply the
correct value

ContactNumber Integer Primary Key Yes None

ContactDate Date No Yes None

ContactType Char (30) No Yes None

SeminarID Integer Foreign Key No None REF: SEMINAR

Format: yyyy-mm-dd

(d) CONTACT

Column Name Data Type
(Length)

Key Required Default Value Remarks

InvoiceNumber Integer Primary Key Yes DBMS
supplied

Surrogate Key:
Initial Value=35000
Increment=1

InvoiceDate Date No Yes None

CustomerID Integer Foreign Key Yes None

Format: yyyy-mm-dd

REF: CUSTOMER

PaymentType Char (25) No Yes Cash

Subtotal Numeric (9,2) No No None

Shipping Numeric (9,2) No No None

Tax Numeric (9,2) No No None

Total Numeric (9,2) No No None

(e) INVOICE

FIGuRE 7-50

Continued

(continued)

404 PART 3 Database Implementation

Column Name Data Type
(Length)

Key Required Default Value Remarks

InvoiceNumber Integer Primary Key,
Foreign Key

Yes None REF: INVOICE

LineNumber Integer Primary Key Yes None

ProductNumber Char (35) Foreign Key Yes None

This is not quite a
Surrogate Key—for
each InvoiceNumber:
Start=1
Increment=1
Application logic will be
needed to supply
the correct value

REF: PRODUCT

Quantity Integer No No None

UnitPrice Numeric (9,2) No No None

Total Numeric (9,2) No No None

(f) LINE_ITEM

Column Name Data Type
(Length)

Key Required Default Value Remarks

ProductNumber Char (35) Primary Key Yes None

ProductType Char (24) No Yes None

ProductDescription Varchar (100) No Yes None

UnitPrice Numeric (9,2) No Yes None

QuantityOnHand Integer No Yes None

(g) PRODUCT

FIGuRE 7-50

Continued
The SQL statements to create the HSD database for Heather Sweeney Designs are

shown in Figure 7-52 in Microsoft SQL Server syntax. The SQL statements to populate the
HSD database are shown in Figure 7-53, again in Microsoft SQL Server syntax.

Write SQL statements and answer questions for this database as follows:

A. Create a database named HSD in your DBMS.

B. Create a folder in your My Documents folder to save and store *.sql scripts containing the
SQL statements that you are asked to create in the remaining questions in this section.

■■ For the SQL Server Management Studio, create a folder named HSD-Database in
the Projects folder structure in your SQL Server Management Studio folder.

■■ In the Oracle SQL Developer folder structure in your SQL Developer folder, create
a folder named HSD-Database.

 CHAPTER 7 SQL for Database Construction and Application Processing 405

Relationship Referential
Integrity Constraint

Cascading
Behavior

Parent Child On Update On Delete

SEMINAR SEMINAR_CUSTOMER SeminarID in SEMINAR_
CUSTOMER must exist in
SeminarID in SEMINAR

No No

CUSTOMER SEMINAR_CUSTOMER CustomerID in SEMINAR_
CUSTOMER must exist in
CustomerID in CUSTOMER

No No

SEMINAR CONTACT SeminarID in CONTACT must
exist in SeminarID in SEMINAR

No No

CUSTOMER CONTACT CustomerID in CONTACT
must exist in CustomerID in
CUSTOMER

No Yes

CUSTOMER INVOICE CustomerID in INVOICE
must exist in CustomerID in
CUSTOMER

No No

INVOICE LINE_ITEM InvoiceNumber in LINE_ITEM
must exist in InvoiceNumber in
INVOICE

No Yes

PRODUCT LINE_ITEM ProductNumber in LINE_ITEM
must exist in ProductNumber in
PRODUCT

Yes No

FIGuRE 7-51

referential Integrity
Constraint Enforcement
for the HSD Database

■■ For the SQL Workbench, create a folder named HSD-Database in the Schemas
folder in your MySQL Workbench folder.

C. Write an SQL script named HSD-Create-Tables.sql based on Figure 7-52 to create the
tables and relationships for the HSD database. Save this script, and then execute the
script to create the HSD tables.

D. Write an SQL script named HSD-Insert-Data.sql based on Figure 7-53 to insert the
data for the HSD database. Save this script, and then execute the script to populate
the HSD tables.

using the HSD database, create an SQL script named HSD-CQ-CH07.sql to answer
questions E–Q. Include your answer to part Q, but be sure to put it in comment
marks so that it is interpreted as a comment by the DBMS and cannot actually
be run!

E. Write SQL statements to list all columns for all tables.

F. Write an SQL statement to list LastName, FirstName, and Phone for all customers
who live in Dallas.

G. Write an SQL statement to list LastName, FirstName, and Phone for all customers
who live in Dallas and have a LastName that begins with the letter T.

HSD-Create-Tables.sql
HSD-Insert-Data.sql

406 PART 3 Database Implementation

CREATE TABLE SEMINAR(
SeminarID Int NOT NULL IDENTITY (1, 1),
SeminarDate Date NOT NULL,
SeminarTime Time NOT NULL,
Location Varchar(100) NOT NULL,
SeminarTitle Varchar(100) NOT NULL,
CONSTRAINT SEMINAR_PK PRIMARY KEY(SeminarID)
);

CREATE TABLE CUSTOMER(
CustomerID Int NOT NULL IDENTITY (1, 1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
EmailAddress Varchar(100) NOT NULL,
EncryptedPassword Varchar(50) NULL,
Phone Char(12) NOT NULL,
StreetAddress Char(35) NULL,
City Char(35) NULL DEFAULT 'Dallas',
[State] Char(2) NULL DEFAULT 'TX',
ZIP Char(10) NULL DEFAULT '75201',
CONSTRAINT CUSTOMER_PK PRIMARY KEY(CustomerID),
CONSTRAINT CUSTOMER_EMAIL UNIQUE(EmailAddress)
);

CREATE TABLE SEMINAR_CUSTOMER(
SeminarID Int NOT NULL,
CustomerID Int NOT NULL,
CONSTRAINT S_C_PK PRIMARY KEY(SeminarID, CustomerID),
CONSTRAINT S_C_SEMINAR_FK FOREIGN KEY(SeminarID)

REFERENCES SEMINAR(SeminarID)
ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT S_C_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

CREATE TABLE CONTACT(
CustomerID Int NOT NULL,
ContactNumber Int NOT NULL,
ContactDate Date NOT NULL,
ContactType Varchar(30) NOT NULL,
SeminarID Int NULL,
CONSTRAINT CONTACT_PK PRIMARY KEY(CustomerID, ContactNumber),
CONSTRAINT CONTACT_ContactType CHECK (ContactType IN

('Seminar', 'FormLetterSeminar',
'WebAccountCreation', 'WebPurchase',
'EmailAccountMessage', 'EmailSeminarMessage',
'EmailPurchaseMessage', 'EmailMessageExchange',
'PhoneConversation')),

CONSTRAINT CONTACT_SEMINAR_FK FOREIGN KEY(SeminarID)
REFERENCES SEMINAR(SeminarID)

ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT CONTACT_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE CASCADE

);

FIGuRE 7-52

SQL Statements to Create
the HSD Database

 CHAPTER 7 SQL for Database Construction and Application Processing 407

CREATE TABLE PRODUCT(
ProductNumber Char(35) NOT NULL,
ProductType Char(24) NOT NULL,
ProductDescription Varchar(100) NOT NULL,
UnitPrice Numeric(9,2) NOT NULL,
QuantityOnHand Int NULL,
CONSTRAINT PRODUCT_PK PRIMARY KEY(ProductNumber),
CONSTRAINT PRODUCT_ProductType CHECK (ProductType IN

('Video', 'Video Companion', 'Book'))
);

CREATE TABLE INVOICE(
InvoiceNumber Int NOT NULL IDENTITY (35000, 1),
InvoiceDate Date NOT NULL,
CustomerID Int NOT NULL,
PaymentType Char(25) NOT NULL DEFAULT 'Cash',
SubTotal Numeric(9,2) NULL,
Shipping Numeric(9,2) NULL,
Tax Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT INVOICE_PK PRIMARY KEY (InvoiceNumber),
CONSTRAINT INVOICE_PaymentType CHECK (PaymentType IN

('VISA', 'MasterCard', 'American Express',
'PayPal', 'Check', 'Cash')),

CONSTRAINT INVOICE_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

CREATE TABLE LINE_ITEM(
InvoiceNumber Int NOT NULL,
LineNumber Int NOT NULL,
ProductNumber Char(35) NOT NULL,
Quantity Int NOT NULL,
UnitPrice Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT LINE_ITEM_PK PRIMARY KEY (InvoiceNumber, LineNumber),
CONSTRAINT L_I_INVOICE_FK FOREIGN KEY(InvoiceNumber)

REFERENCES INVOICE(InvoiceNumber)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT L_I_PRODUCT_FK FOREIGN KEY(ProductNumber)
REFERENCES PRODUCT (ProductNumber)

ON UPDATE CASCADE
ON DELETE NO ACTION

);

FIGuRE 7-52

Continued

/***** CUSTOMER DATA **/

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Nancy', 'Nancy.Jacobs@somewhere.com', 'nf46tG9E', '817-871-8123',
'1440 West Palm Drive', 'Fort Worth', 'TX', '76110');

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Chantel', 'Chantel.Jacobs@somewhere.com', 'b65TG03f', '817-871-8234',
'1550 East Palm Drive', 'Fort Worth', 'TX', '76112');

INSERT INTO CUSTOMER VALUES(
'Able', 'Ralph', 'Ralph.Able@somewhere.com', 'm56fGH08', '210-281-7987',
'123 Elm Street', 'San Antonio', 'TX', '78214');

INSERT INTO CUSTOMER VALUES(
'Baker', 'Susan', 'Susan.Baker@elsewhere.com', 'PC93fEk9', '210-281-7876',
'456 Oak Street', 'San Antonio', 'TX', '78216');

INSERT INTO CUSTOMER VALUES(
'Eagleton', 'Sam', 'Sam.Eagleton@elsewhere.com', 'bnvR44W8', '210-281-7765',
'789 Pine Street', 'San Antonio', 'TX', '78218');

INSERT INTO CUSTOMER VALUES(
'Foxtrot', 'Kathy', 'Kathy.Foxtrot@somewhere.com', 'aa8tY4GL', '972-233-6234',
'11023 Elm Street', 'Dallas', 'TX', '75220');

INSERT INTO CUSTOMER VALUES(
'George', 'Sally', 'Sally.George@somewhere.com', 'LK8G2tyF', '972-233-6345',
'12034 San Jacinto', 'Dallas', 'TX', '75223');

INSERT INTO CUSTOMER VALUES(
'Hullett', 'Shawn', 'Shawn.Hullett@elsewhere.com', 'bu78WW3t', '972-233-6456',
'13045 Flora', 'Dallas', 'TX', '75224');

INSERT INTO CUSTOMER VALUES(
'Pearson', 'Bobbi', 'Bobbi.Pearson@elsewhere.com', 'kq6N2O0p', '512-974-3344',
'43 West 23rd Street', 'Auston', 'TX', '78710');

INSERT INTO CUSTOMER VALUES(
'Ranger', 'Terry', 'Terry.Ranger@somewhere.com', 'bv3F9Qc4', '512-974-4455',
'56 East 18th Street', 'Auston', 'TX', '78712');

INSERT INTO CUSTOMER VALUES(
'Tyler', 'Jenny', 'Jenny.Tyler@somewhere.com', 'Yu4be77Z', '972-233-6567',
'14056 South Ervay Street', 'Dallas', 'TX', '75225');

INSERT INTO CUSTOMER VALUES(
'Wayne', 'Joan', 'Joan.Wayne@elsewhere.com', 'JW4TX6g', '817-871-8245',
'1660 South Aspen Drive', 'Fort Worth', 'TX', '76115');

/***** SEMINAR **/

INSERT INTO SEMINAR VALUES(
'12-OCT-2014', '11:00 AM', 'San Antonio Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'26-OCT-2014', '04:00 PM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'02-NOV-2014', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'22-MAR-2015', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'23-MAR-2015', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'05-APR-2015', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

FIGuRE 7-53

SQL Statements to Populate
the HSD Database

408

 CHAPTER 7 SQL for Database Construction and Application Processing 409

/***** SEMINAR_CUSTOMER DATA **/

INSERT INTO SEMINAR_CUSTOMER VALUES(1, 1);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 2);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 3);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 4);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 5);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 8);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 9);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 10);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 11);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 12);

/***** CONTACT DATA ***/

-- 'Nancy.Jacobs@somewhere.com'
INSERT INTO CONTACT VALUES(1, 1, '12-OCT-2014', 'Seminar', 1);
-- 'Chantel.Jacobs@somewhere.com'
INSERT INTO CONTACT VALUES(2, 1, '12-OCT-2014', 'Seminar', 1);
-- 'Ralph.Able@somewhere.com'
INSERT INTO CONTACT VALUES(3, 1, '12-OCT-2014', 'Seminar', 1);
-- 'Susan.Baker@elsewhere.com'
INSERT INTO CONTACT VALUES(4, 1, '12-OCT-2014', 'Seminar', 1);
-- 'Sam.Eagleton@elsewhere.com'
INSERT INTO CONTACT VALUES(5, 1, '12-OCT-2014', 'Seminar', 1);

-- 'Nancy.Jacobs@somewhere.com',
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(1, 2, '15-OCT-2014', 'EmailSeminarMessage');
-- 'Chantel.Jacobs@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(2, 2, '15-OCT-2014', 'EmailSeminarMessage');
-- 'Ralph.Able@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(3, 2, '15-OCT-2014', 'EmailSeminarMessage');
-- 'Susan.Baker@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(4, 2, '15-OCT-2014', 'EmailSeminarMessage');
-- 'Sam.Eagleton@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(5, 2, '15-OCT-2014', 'EmailSeminarMessage');

-- 'Nancy.Jacobs@somewhere.com',
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(1, 3, '15-OCT-2014', 'FormLetterSeminar');
-- 'Chantel.Jacobs@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(2, 3, '15-OCT-2014', 'FormLetterSeminar');
-- 'Ralph.Able@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(3, 3, '15-OCT-2014', 'FormLetterSeminar');

FIGuRE 7-53

Continued

(continued)

410 PART 3 Database Implementation

FIGuRE 7-53

Continued

-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(6, 2, '30-OCT-2014', 'EmailSeminarMessage');
-- 'Sally.George@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(7, 2, '30-OCT-2014', 'EmailSeminarMessage');
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(8, 2, '30-OCT-2014', 'EmailSeminarMessage');

-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(6, 3, '30-OCT-2014', 'FormLetterSeminar');
-- 'Sally.George@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(7, 3, '30-OCT-2014', 'FormLetterSeminar');
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(8, 3, '30-OCT-2014', 'FormLetterSeminar');

-- 'Bobbi.Pearson@elsewhere.com'
INSERT INTO CONTACT VALUES(9, 1, '02-NOV-2014', 'Seminar', 3);
-- 'Terry.Ranger@somewhere.com'
INSERT INTO CONTACT VALUES(10, 1, '02-NOV-2014', 'Seminar', 3);

-- 'Bobbi.Pearson@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(9, 2, '06-NOV-2014', 'EmailSeminarMessage');
-- 'Terry.Ranger@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(10, 2, '06-NOV-2014', 'EmailSeminarMessage');

-- 'Bobbi.Pearson@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(9, 3, '06-NOV-2014', 'FormLetterSeminar');
-- 'Terry.Ranger@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(10, 3, '06-NOV-2014', 'FormLetterSeminar');

-- 'Susan.Baker@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate , ContactType)

VALUES(4, 3, '15-OCT-2014', 'FormLetterSeminar');
-- 'Sam.Eagleton@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate , ContactType)

VALUES(5, 3, '15-OCT-2014', 'FormLetterSeminar');

-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT VALUES(6, 1, '26-OCT-2014', 'Seminar', 2);
-- 'Sally.George@somewhere.com'
INSERT INTO CONTACT VALUES(7, 1, '26-OCT-2014', 'Seminar', 2);
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO CONTACT VALUES(8, 1, '26-OCT-2014', 'Seminar', 2);

-- 'Ralph.Able@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(3, 4, '20-FEB-2015', 'WebAccountCreation');
-- 'Ralph.Able@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(3, 5, '20-FEB-2015', 'EmailAccountMessage');

 CHAPTER 7 SQL for Database Construction and Application Processing 411

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 4, '25-FEB-2015', 'WebAccountCreation');

-- 'Sally.George@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(7, 5, '25-FEB-2015', 'EmailAccountMessage');
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(8, 4, '07-MAR-2015', 'WebAccountCreation');
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(8, 5, '07-MAR-2015', 'EmailAccountMessage');

-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT VALUES(6, 6, '22-MAR-2015', 'Seminar', 4);
-- 'Sally.George@somewhere.com'
INSERT INTO CONTACT VALUES(7, 6, '22-MAR-2015', 'Seminar', 4);
-- 'Jenny.Tyler@somewhere.com'
INSERT INTO CONTACT VALUES(11, 1, '22-MAR-2015', 'Seminar', 4);
-- 'Joan.Wayne@elsewhere.com'
INSERT INTO CONTACT VALUES(12, 1, '22-MAR-2015', 'Seminar', 4);

-- 'Sally.George@somewhere.com'

-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(6, 4, '22-FEB-2015', 'WebAccountCreation');
-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)

VALUES(6, 5, '22-FEB-2015', 'EmailAccountMessage');

/***** PRODUCT DATA ***/

INSERT INTO PRODUCT VALUES(
'VK001', 'Video', 'Kitchen Remodeling Basics',14.95, 50);

INSERT INTO PRODUCT VALUES(
'VK002', 'Video', 'Advanced Kitchen Remodeling', 14.95, 35);

INSERT INTO PRODUCT VALUES(
'VK003', 'Video', 'Kitchen Remodeling Dallas Style', 19.95, 25);

INSERT INTO PRODUCT VALUES(
'VK004', 'Video', 'Heather Sweeney Seminar Live in Dallas on 25-OCT-13', 24.95, 20);

INSERT INTO PRODUCT VALUES(
'VB001', 'Video Companion', 'Kitchen Remodeling Basics', 7.99, 50);

INSERT INTO PRODUCT VALUES(
'VB002', 'Video Companion', 'Advanced Kitchen Remodeling I',7.99, 35);

INSERT INTO PRODUCT VALUES(
'VB003', 'Video Companion', 'Kitchen Remodeling Dallas Style', 9.99, 25);

INSERT INTO PRODUCT VALUES(
'BK001', 'Book', 'Kitchen Remodeling Basics For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK002', 'Book', 'Advanced Kitchen Remodeling For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK003', 'Book', 'Kitchen Remodeling Dallas Style For Everyone', 24.95, 75);

FIGuRE 7-53

Continued

(continued)

412 PART 3 Database Implementation

FIGuRE 7-53

Continued

/***** INVOICE DATA **/

/***** Invoice 35000 **/
-- 'Ralph.Able@somewhere.com'
INSERT INTO INVOICE VALUES(

'15-Oct-14', 3, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35000, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35000, 2, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35001 **/
-- 'Susan.Baker@elsewhere.com'
INSERT INTO INVOICE VALUES(

'25-Oct-14', 4, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35001, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35001, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35001, 3, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35002 **/
-- 'Sally.George@somewhere.com'
INSERT INTO INVOICE VALUES(

'20-Dec-14', 7, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35002, 1, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35003 **/
-- 'Susan.Baker@elsewhere.com'
INSERT INTO INVOICE VALUES(

'25-Mar-15', 4, 'MasterCard', 64.85, 5.95, 3.70, 74.50);
INSERT INTO LINE_ITEM VALUES(35003, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35003, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35003, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35004 ***/
-- 'Kathy.Foxtrot@somewhere.com'
INSERT INTO INVOICE VALUES(

'27-Mar-15', 6, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35004, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35004, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35004, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35004, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35004, 5, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35005 ***/
-- 'Sally.George@somewhere.com'
INSERT INTO INVOICE VALUES(

'27-Mar-15', 7, 'MasterCard', 94.80, 5.95, 5.40, 106.15);
INSERT INTO LINE_ITEM VALUES(35005, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35005, 4, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35006 ***/
-- 'Bobbi.Pearson@elsewhere.com'
INSERT INTO INVOICE VALUES(

'31-Mar-15', 9, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35006, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35006, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35006, 3, 'VB001', 1, 7.99, 7.99);

 CHAPTER 7 SQL for Database Construction and Application Processing 413

/***** Invoice 35007 ***/
-- 'Jenny.Tyler@somewhere.com'
INSERT INTO INVOICE VALUES(

'03-Apr-15', 11, 'MasterCard', 109.78, 5.95, 6.26, 121.99);
INSERT INTO LINE_ITEM VALUES(35007, 1, 'VK003', 2, 19.95, 39.90);
INSERT INTO LINE_ITEM VALUES(35007, 2, 'VB003', 2, 9.99, 19.98);
INSERT INTO LINE_ITEM VALUES(35007, 3, 'VK004', 2, 24.95, 49.90);

/***** Invoice 35008 ***/
-- 'Sam.Eagleton@elsewhere.com'
INSERT INTO INVOICE VALUES(

'08-Apr-15', 5, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35008, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35008, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35008, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35009 ***/
-- 'Nancy.Jacobs@somewhere.com'
INSERT INTO INVOICE VALUES(

'08-Apr-15', 1, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35009, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35009, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35009, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35010 ***/
-- 'Ralph.Able@somewhere.com'
INSERT INTO INVOICE VALUES(

'23-Apr-15', 3, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35010, 1, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35011 ***/
-- 'Bobbi.Pearson@elsewhere.com'
INSERT INTO INVOICE VALUES(

'07-May-15', 9, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35011, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35011, 2, 'VB002', 1, 7.99, 7.99);

/***** Invoice 35012 ***/
-- 'Shawn.Hullett@elsewhere.com'
INSERT INTO INVOICE VALUES(

'21-May-15', 8, 'MasterCard', 54.89, 5.95, 3.13, 63.97);
INSERT INTO LINE_ITEM VALUES(35012, 1, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35012, 2, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35012, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35013 ***/
-- 'Ralph.Able@somewhere.com'
INSERT INTO INVOICE VALUES(

'05-Jun-15', 3, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35013, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35013, 2, 'VB002', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35013, 3, 'BK002', 1, 24.95, 24.95);

FIGuRE 7-53

Continued

(continued)

414 PART 3 Database Implementation

H. Write an SQL statement to list the INVOICE.InvoiceNumber for sales that include
the Heather Sweeney Seminar Live in Dallas on 25-OCT-13 video. Use a subquery.
(Hint: The correct solution uses three tables in the query because the question asks
for INVOICE.InvoiceNumber. Otherwise, there is a possible solution with only two
tables in the query.)

I. Answer part H but use JOIN ON syntax. (Hint: The correct solution uses three tables
in the query because the question asks for INVOICE.InvoiceNumber. Otherwise,
there is a possible solution with only two tables in the query.)

J. Write an SQL statement to list the FirstName, LastName, and Phone of customers
(list each name only once) who have attended the Kitchen on a Big D Budget semi-
nar. Sort the results by LastName in descending order, and then by FirstName in
descending order.

K. Write an SQL statement to list the FirstName, LastName, Phone, ProductNumber,
and Description of customers (list each combination of name and video product only
once) who have purchased a video product. Sort the results by LastName in descend-
ing order, then by FirstName in descending order, and then by ProductNumber in
descending order. (Hint: Video products have a ProductNumber that starts with VK.)

L. Write an SQL statement to show the sum of SubTotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
SumOfSubTotal.

M. Write an SQL statement to show the average of Subtotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
AverageOfSubTotal.

N. Write an SQL statement to show both the sum and the average of Subtotal (this is the
money earned by HSD on products sold exclusive of shipping costs and taxes) for
INVOICE as SumOfSubTotal and AverageOfSubTotal respectively.

FIGuRE 7-53

Continued

/***** Invoice 35014 ***/
-- 'Jenny.Tyler@somewhere.com'
INSERT INTO INVOICE VALUES(

'05-Jun-15', 11, 'MasterCard', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35014, 1, 'VK002', 2, 14.95, 29.90);
INSERT INTO LINE_ITEM VALUES(35014, 2, 'VB002', 2, 7.99, 15.98);

/***** Invoice 35015 ***/
-- 'Joan.Wayne@elsewhere.com'
INSERT INTO INVOICE VALUES(

'05-Jun-15', 12, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35015, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35015, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35015, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35015, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35015, 5, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35016 ***/
-- 'Ralph.Able@somewhere.com'
INSERT INTO INVOICE VALUES(

'05-Jun-15', 3, 'VISA', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35016, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35016, 3, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 4, 'VB002', 1, 7.99, 7.99);

/***/

INVOICE.InvoiceNumber
INVOICE.InvoiceNumber
INVOICE.InvoiceNumber

 CHAPTER 7 SQL for Database Construction and Application Processing 415

O. Write an SQL statement to modify PRODUCT UnitPrice for ProductNumber
VK004 to $34.95 instead of the current UnitPrice of $24.95.

P. Write an SQL statement to undo the UnitPrice modification in part O.

Q. Do not run your answer to the following question in your actual database!
Write the fewest number of DELETE statements possible to remove all the data in
your database but leave the table structures intact.

using the HSD database, create an SQL script named HSD-Create-Views-and-
Functions.sql to answer questions R–T.

R. Write an SQL statement to create a view called InvoiceSummaryView that contains
INVOICE.InvoiceNumber, INVOICE.InvoiceDate, LINE_ITEM.LineNumber, LINE_
ITEM.ProductNumber, PRODUCT.ProductDescription and LINE_ITEM.UnitPrice.
Run the statement to create the view, and then test the view with an appropriate SQL
SELECT statement.

S. Create and test a user-defined function named LastNameFirst that combines two pa-
rameters named FirstName and LastName into a concatenated name field formatted
LastName, FirstName (including the comma and space).

T. Write an SQL statement to create a view called CustomerInvoiceSummaryView
that contains INVOICE.InvoiceNumber, INVOICE.InvoiceDate, the concatenated
customer name using the LastNameFirst function, CUSTOMER.EmailAddress, and
INVOICE.Total. Run the statement to create the view, and then test the view with an
appropriate SQL SELECT statement.

The Queen Anne
Curiosity Shop

Assume that the Queen Anne Curiosity Shop designs a database with the following tables:

CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,
EncryptedPassword, Address, City, State, ZIP, Phone)
EMPLOYEE (EmployeeID, LastName, FirstName, Phone, Email)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,
Address, City, State, ZIP, Phone, Fax, Email)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice,
VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

CustomerID in SALE must exist in CustomerID in CUSTOMER
VendorID in ITEM must exist in VendorID in VENDOR
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerID of CUSTOMER, EmployeeID of EMPLOYEE, VendorID of
VENDOR, ItemID of ITEM, and SaleID of SALE are all surrogate keys with values as follows:

CustomerID Start at 1 Increment by 1
EmployeeID Start at 1 Increment by 1
VendorID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1

INVOICE.InvoiceNumber
INVOICE.InvoiceDate
LINE_ITEM.LineNumber
LINE_ITEM.UnitPrice
INVOICE.InvoiceNumber
INVOICE.InvoiceDate
CUSTOMER.EmailAddress
INVOICE.Total

416 PART 3 Database Implementation

A vendor may be an individual or a company. If the vendor is an individual, the
CompanyName field is left blank, while the ContactLastName and ContactFirstName fields
must have data values. If the vendor is a company, the company name is recorded in the
CompanyName field, and the name of the primary contact at the company is recorded in the
ContactLastName and ContactFirstName fields.

A. Specify NULL/NOT NULL constraints for each table column.

B. Specify alternate keys, if any.

C. State relationships as implied by foreign keys, and specify the maximum and mini-
mum cardinalities of each relationship. Justify your choices.

D. Explain how you will enforce the minimum cardinalities in your answer to part C.
Use referential integrity actions for required parents, if any. Use Figure 6-29(b) as a
boilerplate for required children, if any.

E. Create a database named QACS in your DBMS.

F. Create a folder in your My Documents folder to save and store *.sql scripts contain-
ing the SQL statements that you are asked to create in the remaining questions in
this section.

■■ For the SQL Server Management Studio, create a folder named QACS-Database
in the Projects folder structure in your SQL Server Management Studio folder.

■■ In the Oracle SQL Developer folder structure in your SQL Developer folder, create
a folder named QACS-Database.

■■ For the SQL Workbench, create a folder named QACS-Database in the Schemas
folder in your MySQL Workbench folder.

using the QACS database, create an SQL script named QACS-Create-Tables.sql
to answer parts G and H. your answer to part H should be in the form of an SQL
comment in the script.

G. Write CREATE TABLE statements for each of the tables using your answers to parts
A–D, as necessary. Set the surrogate key values as shown above. Use FOREIGN KEY
constraints to create appropriate referential integrity constraints. Set UPDATE and
DELETE behavior in accordance with your referential integrity action design. Run
these statements to create the QACS tables.

H. Explain how you would enforce the data constraint that SALE_ITEM.UnitPrice be
equal to ITEM.ItemPrice, where SALE_ITEM.ItemID = ITEM.ItemID.

using the QACS database, create an SQL script named QACS-Insert-Data.sql to
answer part I.

I. Write INSERT statements to insert the data shown in Figures 7-54, 7-55, 7-56, 7-57,
7-58, and 7-59.

using the QACS database, create an SQL script named QACS-DML-CH07.sql to
answer parts J and K.

J. Write an UPDATE statement to change values of ITEM.ItemDescription from Desk
Lamp to Desk Lamps.

K. Create and INSERT new data records to record a SALE and the SALE_ITEMs for that
sale. Then write a DELETE statement(s) to delete that SALE and all of the items on
that SALE. How many DELETE statements did you have to use? Why?

QACS-Create-Tables.sql
SALE_ITEM.UnitPrice
ITEM.ItemPrice
SALE_ITEM.ItemID
ITEM.ItemID
QACS-Insert-Data.sql
QACS-DML-CH07.sql
ITEM.ItemDescription

LastName FirstNameCustomerID Address City State ZIP Phone Email

1

2

3

4

5

6

7

8

9

10

Shire

Goodyear

Bancroft

Griffith

Tiemey

Anderson

Svane

Walsh

Enquist

Anderson

Robert

Katherine

Chris

John

Doris

Donna

Jack

Denesha

Craig

Rose

6225 Evanston Ave N

7335 11th Ave NE

12605 NE 6th Street

335 Aloha Street

14510 NE 4th Street

1410 Hillcrest Parkway

3211 42nd Street

6712 24th Avenue NE

534 15th Street

6823 17th Ave NE

Seattle

Seattle

Bellevue

Seattle

Bellevue

Mt. Vemon

Seattle

Redmond

Bellingham

Seattle

WA

WA

WA

WA

WA

WA

WA

WA

WA

WA

98103

98105

98005

98109

98005

98273

98115

98053

98225

98105

206-524-2433

206-524-3544

425-635-9788

206-524-4655

425-635-8677

360-538-7566

206-524-5766

425-635-7566

360-538-6455

206-524-6877

Robert.Shire@somewhere.com

Katherine.Goodyear@somewhere.com

Chris.Bancroft@somewhere.com

John.Griffith@somewhere.com

Doris.Tiemey@somewhere.com

Donna.Anderson@elsewhere.com

Jack.Svane@somewhere.com

Denesha.Walsh@somewhere.com

Craig.Enquist@elsewhere.com

Rose.Anderson@elsewhere.com

FIGuRE 7-54

Sample Data for the QaCS
Database CUStOMEr table

417

418 PART 3 Database Implementation

EmployeeID

1

2

3

4

5

Stuart

Stuart

Stuart

Orange

Griffith

Anne

George

Mary

William

John

206-527-0010

206-527-0011

206-527-0012

206-527-0013

206-527-0014

Anne.Stuart@QACS.com

George.Stuart@QACS.com

Mary.Stuart@QACS.com

William.Orange@QACS.com

John.Griffith@QACS.com

LastName FirstName Phone Email

FIGuRE 7-55

Sample Data for the QaCS
Database EMPLOYEE table

using the QACS database, create an SQL script named QACS-Create-Views-and-
Functions.sql to answer parts L–Q.

L. Write an SQL statement to create a view called SaleSummaryView that con-
tains SALE.SaleID, SALE.SaleDate, SALE_ITEM.SaleItemID, SALE_ITEM.ItemID,
ITEM.ItemDescription, and ITEM.ItemPrice. Run the statement to create the view,
and then test the view with an appropriate SQL SELECT statement.

M. Create and test a user-defined function named LastNameFirst that combines two pa-
rameters named FirstName and LastName into a concatenated name field formatted
LastName, FirstName (including the comma and space).

N. Write an SQL statement to create a view called CustomerSaleSummaryView that con-
tains SALE.SaleID, SALE.SaleDate, CUSTOMER.LastName, CUSTOMER.FirstName,
SALE_ITEM.SaleItemID, SALE_ITEM.ItemID, ITEM.ItemDescription, and ITEM
.ItemPrice. Run the statement to create the view, and then test the view with an appro-
priate SQL SELECT statement.

O. Write an SQL statement to create a view called
CustomerLastNameFirstSaleSummaryView that contains SALE.SaleID, SALE
.SaleDate, the concatenated customer name using the LastNameFirst function,
SALE_ITEM.SaleItemID, SALE_ITEM.ItemID, ITEM.ItemDescription, and ITEM
.ItemPrice. Run the statement to create the view, and then test the view with an ap-
propriate SQL SELECT statement.

P. Write an SQL statement to create a view called CustomerSaleHistoryView that:

(1) Includes all columns of CustomerSaleSummaryView except SALE_ITEM
.SaleItemID, SALE_ITEM.ItemID, and ITEM.ItemDescription.

(2) Groups orders by SALE.SaleID, CUSTOMER.LastName, CUSTOMER.FirstName,
and SALE.SaleDate in that order;

(3) Sums and averages SALE_ITEM.ItemPrice for each order for each customer. Run
the statement to create the view, and then test the view with an appropriate SQL
SELECT statement.

Q. Write an SQL statement to create a view called CustomerSaleCheckView that uses
CustomerSaleHistoryView and that shows any customers and sales for which the
sum of item prices for the sale is not equal to SALE.SubTotal. Run the statement to
create the view, and then test the view with an appropriate SQL SELECT statement.

R. Explain, in general terms, how you would use triggers to enforce minimum cardinal-
ity actions as required by your design. You need not write the triggers; just specify
which triggers you need and describe, in general terms, their logic.

QACS-Create-Views-and-Functions.sql
QACS-Create-Views-and-Functions.sql
SALE.SaleID
SALE.SaleDate
SALE_ITEM.SaleItemID
SALE_ITEM.ItemID
ITEM.ItemDescription
ITEM.ItemPrice
SALE.SaleID
SALE.SaleDate
CUSTOMER.LastName
CUSTOMER.FirstName
SALE_ITEM.SaleItemID
SALE_ITEM.ItemID
ITEM.ItemDescription
ITEM.ItemPrice
ITEM.ItemPrice
SALE.SaleID
SALE.SaleDate
SALE.SaleDate
SALE_ITEM.SaleItemID
SALE_ITEM.ItemID
ITEM.ItemDescription
ITEM.ItemPrice
ITEM.ItemPrice
SALE.SaleID
CUSTOMER.LastName
CUSTOMER.FirstName
SALE.SaleDate
SALE_ITEM.ItemPrice
SALE.SubTotal

VendorID CompanyName ContactLastName ContactFirstName Address City State ZIP Phone Fax Email

1

2

3

4

5

6

7

8

9

10

Linens and Things

European Specialties

Lamps and Lighting

NULL

NULL

New York Brokerage

NULL

NULL

Specialty Antiques

General Antiques

Huntington

Tadema

Swanson

Lee

Hamison

Smith

Walsh

Bancroft

Nelson

Gamer

Anne

Ken

Sally

Andrew

Denise

Mark

Denesha

Chris

Fred

Patty

Seattle

Seattle

Seattle

Kirkland

Kirkland

Seattle

Redmond

Bellevue

San Francisco

San Francisco

WA

WA

WA

WA

WA

WA

WA

WA

CA

CA

98107

98107

98109

98033

98033

98109

98053

98005

94110

94110

206-325-6755

206-325-7866

206-325-8977

425-746-5433

425-746-4322

206-325-9088

425-635-7566

425-635-9788

415-422-2121

415-422-3232

206-329-9675

206-329-9786

206-329-9897

NULL

NULL

206-329-9908

NULL

425-639-9978

415-423-5212

415-429-9323

LAT@business.com

ES@business.com

LAL@business.com

Andrew.Lee@somewhere.com

Denise.Hamison@somewhere.com

NYB@business.com

Denesha.Walsh@somewhere.com

Chris.Bancroft@somewhere.com

SA@business.com

GA@business.com

1515 NW Market Street

6123 15th Avenue NW

506 Prospect Street

1102 3rd Street

533 10th Avenue

621 Roy Street

6712 24th Avenue NE

12605 NE 6th Street

2512 Lucky Street

2515 Lucky Street

FIGuRE 7-56

Sample Data for the QaCS
Database VENDOr table

419

420 PART 3 Database Implementation

ItemID ItemDescription PurchaseDate ItemCost ItemPrice VendorID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Antique Desk

Antique Desk Chair

Dining Table Linens

Candles

Candles

Desk Lamp

Dining Table Linens

Book Shelf

Antique Chair

Antique Chair

Antique Candle Holders

Antique Desk

Antique Desk

Antique Desk Chair

Antique Desk Chair

Desk Lamp

Desk Lamp

Desk Lamp

Antique Dining Table

Antique Sideboard

Dining Table Chairs

Dining Table Linens

Dining Table Linens

Candles

Candles

2014-11-07

2014-11-10

2014-11-14

2014-11-14

2014-11-14

2014-11-14

2014-11-14

2014-11-21

2014-11-21

2014-11-21

2014-11-28

2015-01-05

2015-01-05

2015-01-06

2015-01-06

2015-01-06

2015-01-06

2015-01-06

2015-01-10

2015-01-11

2015-01-11

2015-01-12

2015-01-12

2015-01-17

2015-01-17

$1,800.00

$300.00

$600.00

$30.00

$27.00

$150.00

$450.00

$150.00

$750.00

$1,050.00

$210.00

$1,920.00

$2,100.00

$285.00

$339.00

$150.00

$150.00

$144.00

$3,000.00

$2,700.00

$5,100.00

$450.00

$480.00

$30.00

$36.00

$3,000.00

$500.00

$1,000.00

$50.00

$45.00

$250.00

$750.00

$250.00

$1,250.00

$1,750.00

$350.00

$3,200.00

$3,500.00

$475.00

$565.00

$250.00

$250.00

$240.00

$5,000.00

$4,500.00

$8,500.00

$750.00

$800.00

$50.00

$60.00

2

4

1

1

1

3

1

5

6

6

2

2

2

9

9

10

10

3

7

8

9

1

1

1

1

FIGuRE 7-57

Sample Data for the QaCS
Database ItEM table

 CHAPTER 7 SQL for Database Construction and Application Processing 421

SaleID CustomerID EmployeeID SaleDate SubTotal Tax

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

1

5

6

2

5

7

8

5

9

10

2

1

1

1

3

5

5

4

1

5

1

5

4

2

3

2

2014-12-14

2014-12-15

2014-12-15

2014-12-23

2015-01-05

2015-01-10

2015-01-12

2015-01-15

2015-01-25

2015-02-04

2015-02-04

2015-02-07

2015-02-07

2015-02-11

2015-02-11

$3,500.00

$100.00

$50.00

$45.00

$250.00

$750.00

$250.00

$3,000.00

$350.00

$14,250.00

$250.00

$50.00

$4,500.00

$3,675.00

$800.00

$290.50

$83.00

$4.15

$3.74

$20.75

$62.25

$20.75

$249.00

$29.05

$1,182.75

$20.75

$4.15

$373.50

$305.03

$66.40

Total

$3,790.50

$1,083.00

$54.15

$48.74

$270.75

$812.25

$270.75

$3,249.00

$379.05

$15,432.75

$270.75

$54.15

$4,873.50

$3,980.03

$866.40

FIGuRE 7-58

Sample Data
for the QaCS
Database SaLE
table

ItemPriceSaleID

1

1

2

3

4

5

6

7

8

8

9

10

10

10

11

12

13

14

14

15

SaleItemID

1

2

1

1

1

1

1

1

1

2

1

1

2

3

1

1

1

1

2

1

ItemID

1

2

3

4

5

6

7

8

9

10

11

19

21

22

17

24

20

12

14

23

$3,000.00

$500.00

$1,000.00

$50.00

$45.00

$250.00

$750.00

$250.00

$1,250.00

$1,750.00

$350.00

$5,000.00

$8,500.00

$750.00

$250.00

$50.00

$4,500.00

$3,200.00

$475.00

$800.00

FIGuRE 7-59

Sample Data for the QaCS
Database SaLE_ItEM table

422 PART 3 Database Implementation

Morgan
Importing

Suppose that you have designed a database for Morgan Importing that has the following tables:

EMPLOYEE (EmployeeID, LastName, FirstName, Department, Phone, Fax,
EmailAddress)
STORE (StoreName, City, Country, Phone, Fax, EmailAddress, Contact)
ITEM (ItemID, StoreName, PurchasingAgentID, PurchaseDate,
ItemDescription, Category, PriceUSD)
SHIPPER (ShipperID, ShipperName, Phone, Fax, EmailAddress, Contact)
SHIPMENT (ShipmentID, ShipperID, PurchasingAgentID,
ShipperInvoiceNumber, Origin, Destination, ScheduledDepartureDate,
ActualDepartureDate, EstimatedArrivalDate)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, InsuredValue)
SHIPMENT_RECEIPT (ReceiptNumber, ShipmentID, ItemID,
ReceivingAgentID, ReceiptDate, ReceiptTime, ReceiptQuantity,
isReceivedUndamaged, DamageNotes)

A. Do you think STORE should have a surrogate key? If so, create it and make required
adjustments in the design. If not, explain why not or make any other adjustments to
STORE and other tables that you think are appropriate.

B. Specify NULL/NOT NULL constraints for each table column.

C. Specify alternate keys, if any.

D. State relationships as implied by foreign keys, and specify the maximum and mini-
mum cardinality of each relationship. Justify your choices.

E. Explain how you will enforce the minimum cardinalities in your answer to part D.
Use referential integrity actions for required parents, if any. Use Figure 6-29(b) as a
boilerplate for required children, if any.

F. Create a database named MI in your DBMS.

G. Create a folder in your My Documents folder to save and store *.sql scripts containing
the SQL statements that you are asked to create in the remaining questions in this
section.

■■ For the SQL Server Management Studio, create a folder named MI-Database in
the Projects folder structure in your SQL Server Management Studio folder.

■■ In the Oracle SQL Developer folder structure in your SQL Developer folder, create
a folder named MI-Database.

■■ For the SQL Workbench, create a folder named MI-Database in the Schemas
folder in your MySQL Workbench folder.

using the MI database, create an SQL script named MI-Create-Tables.sql to answer
parts H and I. your answer to part I should be in the form of an SQL comment in the
script.

H. Write CREATE TABLE statements for each of the tables using your answers to
parts A–E, as necessary. If you decided to use a StoreID surrogate key, set the
first value to 1000 and increment by 50. Set the first value of EmployeeID
and ShipperID to 1 and increment it by 1. Set the first value of ItemID to 500
and increment it by 5. Set the first value of ShipmentID to 100 and incre-
ment it by 1. ReceiptNumber should start at 200001 and increment by 1. Use
FOREIGN KEY constraints to create appropriate referential integrity constraints.
Set UPDATE and DELETE behavior in accordance with your referential integrity
action design. Set the default value of InsuredValue to 100. Write a constraint
that STORE.Country be limited to seven countries (Hong Kong, India, Japan,
Peru, Philippines, Singapore, United States).

MI-Create-Tables.sql
STORE.Country

 CHAPTER 7 SQL for Database Construction and Application Processing 423

101 Morgan James

Jessica

David

Teri

LastName FirstNameEmployeeID

102 Morgan

103 Williams

104 Gilbertson

105 Wright

Department

106 Douglas

Phone

310-208-1499

Fax EmailAddress

310-208-1499

310-208-1498

310-208-1498

310-208-1497

310-208-1497

James.Morgan@morganimporting.com

Jessica.Morgan@morganimporting.com

David.Williams@morganimporting.com

Teri.Gilbertson@morganimporting.com

James.Wright@morganimporting.com

Tom.Douglas@morganimporting.com

310-208-1401

310-208-1402

310-208-1434

310-208-1435

310-208-1456

310-208-1457

James

Tom

Executive

Executive

Purchasing

Purchasing

Receiving

Receiving

FIGuRE 7-60

Sample Data for the MI
Database EMPLOYEE table

I. Explain how you would enforce the rule that SHIPMENT_ITEM.InsuredValue be at
least as great as ITEM.PriceUSD.

using the MI database, create an SQL script named MI-Insert-Data.sql to answer part J.

J. Write INSERT statements to insert the data shown in Figures 7-60, 7-61, 7-62,
7-63, 7-64, 7-65, and 7-66.

using the MI database, create an SQL script named MI-DML-CH07.sql to answer
parts K and L.

K. Write an UPDATE statement to change values of STORE.City from New York City
to NYC.

L. Create and INSERT new data records to record a SHIPMENT and the
SHIPMENT_ITEMs for that SHIPMENT. Then write a DELETE statement(s) to delete
that SHIPMENT and all of the items on that SHIPMENT. How many DELETE state-
ments did you have to use? Why?

using the MI database, create an SQL script named MI-Create-Views-and-
Functions.sql to answer parts M–R.

M. Write an SQL statement to create a view called PurchaseSummaryView that shows
only ITEM.ItemID, ITEM.PurchaseDate, ITEM.ItemDescription, and ITEM.PriceUSD.
Run the statement to create the view, and then test the view with an appropriate SQL
SELECT statement.

N. Create and test a user-defined function named StoreContactAndPhone that combines
two parameters named StoreContact and ContactPhone into a concatenated data field
formatted StoreContact: ContactPhone (including the colon and space).

O. Write an SQL statement to create a view called StorePurchaseHistoryView
that shows STORE.StoreName, STORE.Phone, STORE.Contact, ITEM.ItemID,
ITEM.PurchaseDate, ITEM.ItemDescription, and ITEM.PriceUSD. Run the state-
ment to create the view, and then test the view with an appropriate SQL SELECT
statement.

P. Write an SQL statement to create a view called StoreContactPurchaseHistoryView
that shows STORE.StoreName, the concatenated result of STORE.Phone and
STORE.Contact from the StoreContactAndPhone function, ITEM.ItemID,
ITEM.PurchaseDate, ITEM.ItemDescription, and ITEM.PriceUSD. Run the state-
ment to create the view, and then test the view with an appropriate SQL SELECT
statement.

SHIPMENT_ITEM.InsuredValue
ITEM.PriceUSD
STORE.City
MI-Create-Views-and-Functions.sql
MI-Create-Views-and-Functions.sql
ITEM.ItemID
ITEM.PurchaseDate
ITEM.ItemDescription
ITEM.PriceUSD
STORE.StoreName
STORE.Phone
STORE.Contact
ITEM.PurchaseDate
ITEM.ItemDescription
ITEM.PriceUSD
STORE.StoreName
STORE.Phone
STORE.Contact
ITEM.PurchaseDate
ITEM.ItemDescription
ITEM.PriceUSD

424

City CountryStoreName Phone Fax EmailAddressStoreID Contact

65-543-1239

63-2-654-2349

65-543-3459

51-14-765-4569

852-876-5679

91-11-987-6789

800-432-8769

Singapore

Manila

Singapore

Lima

Hong Kong

New Delhi

New York City

Singapore

Philippines

Singapore

Peru

People’s Republic of China

India

United States

Eastern Sales

Eastern Treasures

Jade Antiques

Andes Treasures

Eastern Sales

Eastern Treasures

European Imports

1000

1050

1100

1150

1200

1250

1300

65-543-1233

63-2-654-2344

65-543-3455

51-14-765-4566

852-876-5677

91-11-987-6788

800-432-8766

Sales@EasternSales.com.sg

Sales@EasternTreasures.com.ph

Sales@JadeAntiques.com.sg

Sales@AndesTreasures.com.pe

Sales@EasternSales.com.hk

Sales@EasternTreasures.com.in

Sales@EuropeanImports.com.sg

Jeremy

Gracielle

Swee Lai

Juan Carlos

Sam

Deepinder

Marcello

FIGuRE 7-61

Sample Data for the MI
Database StOrE table

 CHAPTER 7 SQL for Database Construction and Application Processing 425

PurchaseDate ItemDescriptionStoreID Category PriceUSDPurchasingAgentIDItemID

$ 13,415.00

$ 13,300.00

$ 38,500.00

$ 3,200.00

$ 14,300.00

$ 88,545.00

$ 22,135.00

$ 147,575.00

$ 12,040.00

$ 1,200.00

$ 5,375.00

$ 4,500.00

$ 9,500.00

$ 1,200.00

12/10/2014

12/12/2014

12/15/2014

12/16/2014

4/7/2015

5/18/2015

5/19/2015

5/20/2015

5/20/2015

6/14/2015

6/16/2015

7/15/2015

7/17/2015

7/20/2015

101

102

104

104

102

103

103

104

104

102

101

104

103

104

Antique Large Bureaus

Porcelain Lamps

Gold Rim Design China

Gold Rim Design Serving Dishes

QE Dining Set

Misc Linen

Large Masks

Willow Design China

Willow Design Serving Dishes

Woven Goods

Antique Leather Chairs

Willow Design Serving Dishes

Large Bureau

Brass Lamps

1050

1050

1200

1200

1050

1100

1000

1100

1100

1150

1150

1100

1000

1100

500

505

510

515

520

525

530

535

540

545

550

555

560

565

Furniture

Lamps

Tableware

Tableware

Furniture

Linens

Decorations

Tableware

Tableware

Decorations

Furniture

Tableware

Furniture

Lamps

FIGuRE 7-62

Sample Data for the MI
Database ItEM table

Phone FaxShipperName EmailAddress ContactShipperID

800-234-5656

800-123-8898

800-123-4567

800-234-5659

800-123-8899

800-123-4569

Sales@ABCTransOceanic.com

Sales@International.com

Sales@worldwide.com

Jonathan

Marylin

Jose

ABC Trans-Oceanic

International

Worldwide

1

2

3

FIGuRE 7-63

Sample Data for the MI
Database SHIPPEr table

Q. Write an SQL statement to create a view called StoreHistoryView that sums the
PriceUSD column of StorePurchaseHistoryView for each store into a column
named TotalPurchases. Run the statement to create the view, and then test the view
with an appropriate SQL SELECT statement. (Hint: Assume unique store names.)

R. Write an SQL statement to create a view called MajorSources that uses
StoreHistoryView and selects only those stores that have TotalPurchases greater than
100000. Run the statement to create the view, and then test the view with an appro-
priate SQL SELECT statement.

S. Explain, in general terms, how you would use triggers to enforce minimum cardinal-
ity actions as required by your design. You need not write the triggers; just specify
which triggers you need and describe, in general terms, their logic.

ShipperInvoiceNumber OriginShipperID Destination ActualDepartureDateScheduledDepartureDate EstimatedArrivalDatePurchasingAgentIDShipmentID

10-Dec-14

12-Jan-15

05-May-15

04-Jun-15

10-Jul-15

09-Aug-15

10-Dec-14

10-Jan-15

05-May-15

02-Jun-15

10-Jul-15

05-Aug-15

15-Mar-15

20-Mar-15

17-Jun-15

17-Jul-15

28-Jul-15

11-Sep-15

2010651

2011012

49100300

399400

84899440

488955

103

104

103

104

103

104

Manila

Hong Kong

Manila

Singapore

Lima

Singapore

1

1

3

2

3

2

100

101

102

103

104

105

Los Angeles

Seattle

Los Angeles

Portland

Los Angeles

Portland

FIGuRE 7-64

Sample Data for the MI
Database SHIPMENt table

426

 CHAPTER 7 SQL for Database Construction and Application Processing 427

PurchaseItemID InsuredValueShipmentItemIDShipmentID

500

505

510

515

520

525

530

535

540

545

550

555

560

565

$15,000.00

$15,000.00

$40,000.00

$3,500.00

$15,000.00

$90,000.00

$25,000.00

$150,000.00

$12,500.00

$12,500.00

$5,500.00

$4,500.00

$10,000.00

$1,500.00

1

2

1

2

1

1

2

3

4

1

2

1

2

3

100

100

101

101

102

103

103

103

103

104

104

105

105

105

FIGuRE 7-65

Sample Data for the MI
Database SHIPMENt_ItEM
table

200001 100 500

505

510

515

200002 100

200003 101

200004 101

200005 102

200006

200007

200008

200009

200010

200011

200012

200013

200014

103

103

103

103

104

104

105

105

105

10:00 AM 3

10:00 AM

3:30 PM

3:30 PM

10:15 AM

2:20 AM

2:20 AM

2:20 AM

2:20 AM

9:00 PM

9:00 PM

2:45 PM

2:45 PM

2:45 PM

50

100

10

1

1000

100

100

10

100

5

4

1

10

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

One leg on one
chair broken.

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Base of one lamp
scratched

17-Mar-15

17-Mar-15

23-Mar-15

23-Mar-15

19-Jun-15

20-Jul-15

20-Jul-15

20-Jul-15

20-Jul-15

29-Jul-15

29-Jul-15

14-Sep-15

14-Sep-15

14-Sep-15

520

525

530

535

540

545

550

555

560

565

105

105

105

105

106

106

106

106

106

105

105

106

106

106

ShipmentID ItemIDReceiptNumber ReceivingAgentID ReceiptDate ReceiptTime ReceiptQuantity isReceivedUndamaged DamageNotes

FIGuRE 7-66

Sample Data for the MI
Database SHIPMENt_
rECEIPt table

As stated in Chapter 1, database design and implementation is needed for three

reasons. Databases can be created (1) from existing data (such as spreadsheets

and databases tables), (2) for a new systems development project, or (3) for a data-

base redesign. We have discussed the first two sources in Chapters 2 through 7. In

this chapter, we will discuss the last source: database redesign.

We begin with a discussion of the need for database redesign, and then we will

describe two important SQL statements: correlated subqueries and EXISTS. These

statements play an important role when analyzing data prior to redesign. They also

can be used for advanced queries and are important in their own right. After that

discussion, we will turn to a variety of common database redesign tasks.

Database Redesign

■■ To be able to change table names
■■ To be able to change table columns
■■ To be able to change relationship cardinalities
■■ To be able to change relationship properties
■■ To be able to add and delete relationships

Chapter Objectives
■■ To understand the need for database redesign
■■ To be able to use correlated subqueries
■■ To be able to use the SQL EXISTS and NOT EXISTS

comparison operators in correlated subqueries
■■ To understand reverse engineering
■■ To be able to use dependency graphs

428

8

 CHAPTER 8 Database Redesign 429

The Need for Database Redesign

You may be wondering, “Why do we have to redesign a database? If we build it correctly the
first time, why would we ever need to redesign it?” This question has two answers. First, it is
not easy to build a database correctly the first time, especially databases that arise from the
 development of new systems. Even if we obtain all of the users’ requirements and build a
correct data model, the transformation of that data model into a correct database design is
difficult. For large databases, the tasks are daunting and may require several stages of devel-
opment. During those stages, some aspects of the database will need to be redesigned. Also,
inevitably, mistakes will be made that must be corrected.

The second answer to this question is the more important one. Reflect for a moment
on the relationship between information systems and the organizations that use them. It is
tempting to say that they influence each other; that is, that information systems influence or-
ganizations and that organizations influence information systems.

In truth, however, the relationship is much stronger than that. Information systems and
organizations do not just influence each other; they create each other. When a new informa-
tion system is installed, the users can behave in new ways. As the users behave in those new
ways, they will want changes to the information system to accommodate their new behaviors.
As those changes are made, the users will have more new behaviors, they will request more
changes to the information system, and so forth, in a never-ending cycle.

We are now in the system maintenance step of the systems development life cycle
(SDLC) in the systems analysis and design process. This is the SDLC step where we face
the fact that revising an information system is a natural step in using and maintaining that
information system. (For an introduction to systems analysis and design and to the SDLC, see
Appendix B.) The system maintenance step may therefore result in the need for a redesigned
and reimplemented system and thus start a new iteration of the SDLC. This circular process
means that changes to an information system are not the sad consequence of a poor implemen-
tation, but rather a natural outcome of information system use. Therefore, the need for change
to information systems never goes away; it neither can nor should be removed by better require-
ments definition, better initial design, better implementation, or anything else. Instead, change
is part and parcel of information systems use. Thus, we need to plan for it. In the context of data-
base processing, this means we need to know how to perform database redesign.

SQL Statements for Checking Functional Dependencies

Database redesign is not terribly difficult if the database has no data. The serious difficulties
arise when we have to change a database that has data and when we want to make changes
with minimum impact on existing data. Telling the users that the system now works the way
they want but that all of their data were lost while making the change is not acceptable.

Often, we need to know whether certain conditions or assumptions are valid in the data
before we can proceed with a change. For example, we may know from user requirements
that Department functionally determines DeptPhone, but we may not know whether that
functional dependency is correctly represented in all of the data.

Recall from Chapter 3 that if Department determines DeptPhone, every value of
Department must be paired with the same value of DeptPhone. If, for example, Accounting
has a DeptPhone value of 834-1100 in one row, it should have that value in every row in
which it appears. Similarly, if Finance has a DeptPhone of 834-2100 in one row, it should
have that value in all rows in which it appears. Figure 8-1 shows data that violate this assump-
tion. In the third row, the DeptPhone for Finance is different than for the other rows; it has too
many zeroes. Most likely, someone made a keying mistake when entering DeptPhone. Such
errors are typical.

Now, before we make a database change, we need to find all such violations and correct
them. For the small table shown in Figure 8-1, we can just look at the data, but what if the
EMPLOYEE table has 4,000 rows? Two SQL statements are particularly helpful in this regard:
correlated subqueries and their cousins, the SQL EXISTS and NOT EXISTS keywords. We will
consider each of these in turn.

430 PART 3 Database Implementation

What Is a Correlated Subquery?

A correlated subquery looks very much like the noncorrelated subqueries we discussed in
Chapter 2, but, in actuality, correlated subqueries are very different. To understand the differ-
ence, consider the following noncorrelated subquery, which is like those in Chapter 2:

/* *** SQL-Query-CH08-01 *** */

SELECT A.FirstName, A.lastName

FROM ARTIST AS A

WHERE A.ArtistID IN

 (SELECT W.ArtistID

 FROM WORK AS W

 WHERE W.Title = 'Blue Interior');

The DBMS can process such subqueries from the bottom up; that is, it can first find all
of the values of ArtistID in WORK that have the title 'Blue Interior' and then process the up-
per query using that set of values. There is no need to move back and forth between the two
SELECT statements. The result of this query is the artist Mark Tobey, as we would expect
based on the data in Figure 7-15:

Searching for Multiple Rows with a Given Title
Now, to introduce correlated subqueries, suppose that someone at View Ridge Gallery pro-
poses that the Title column of WORK be an alternate key. If you look at the data in Figure
7-15(d), you can see that although there is only one copy of 'Blue Interior', there are two or
more copies of other titles, such as 'Surf and Bird'. Therefore, Title cannot be an alternate key,
and we can determine this by simply looking at the dataset.

However, if the WORK table had 10,000 or more rows, this would be difficult to deter-
mine. In that case, we need a query that examines the WORK table and displays the Title and
Copy of any works that share the same title.

If we were asked to write a program to perform such a query, our logic would be as fol-
lows: Take the value of Title from the first row in WORK and examine all of the other rows in
the table. If we find a row that has the same title as the one in the first row, we know there are
duplicates, so we print the Title and Copy of the first work. We continue searching for dupli-
cate title values until we come to the end of the WORK table.

Then we take the value of Title in the second row and compare it with all other rows in
the WORK table, printing out the Title and Copy of any duplicate works. We proceed in this
way until all rows of WORK have been examined.

100 Johnson

LastNameEmployeeNumber

200 Abernathy

300 Smathers

400 Caruthers

500 Jackson

834-1100

DeptPhone

834-2100

834-21000

834-1100

834-4100

600 Caldera

700 Bandalone

834-3100

834-3100

Accounting

Department

Finance

Finance

Accounting

Production

Legal

Legal

JJ@somewhere.com

EmailAddress

MA@somewhere.com

LS@somewhere.com

TC@somewhere.com

TJ@somewhere.com

EC@somewhere.com

RB@somewhere.com

FIGuRE 8-1

Table Showing Constraint
Assumption Violation

 CHAPTER 8 Database Redesign 431

A Correlated Subquery That Finds Rows with the Same Title
The following correlated subquery performs the action just described:

/* *** SQL-Query-CH08-02 *** */

SELECT W1.Title, W1.Copy

FROM WORK AS W1

WHERE W1.Title IN

 (SELECT W2.Title

 FROM WORK AS W2

 WHERE W1.Title = W2.Title

 AND W1.WorkID <> W2.WorkID);

The result of this query for the data in Figure 7-15(d) is:

Looking at these results, it is easy to see the nonunique, duplicated Title data that prevents
Title from being used as an alternate key. When you are interpreting these results, note that a
value of Unique in the Copy column indicates the original piece of art itself, which is by defini-
tion unique. Numbers such as 142/500 indicate one numbered print from a set of numbered
reproduction prints of that artwork.

This subquery, which is a correlated subquery, looks deceptively similar to a regular, non-
correlated subquery. To the surprise of many students, this subquery and the one above are
drastically different. Their similarity is only superficial.

Before learning why, first notice the notation in the correlated subquery. The WORK
table is used in both the upper and the lower SELECT statements. In the upper statement, it is
given the alias W1; in the lower SELECT statement, it is given the alias W2.

In essence, when we use this notation, it is as if we have made two copies of the WORK table.
One copy is called W1, and the second copy is called W2. Therefore, in the last two lines of the
correlated subquery, values in the W1 copy of WORK are compared with values in the W2 copy.

What Is the Difference Between Regular and Correlated Subqueries?
Now consider what makes this subquery so different. Unlike with a regular, noncorrelated
subquery, the DBMS cannot run the bottom SELECT by itself, obtain a set of Titles, and
then use that set to execute the upper query. The reason for this appears in the last two
lines of the query:

 WHERE W1.Title = W2.Title

 AND W1.WorkID <> W2.WorkID);

In these expressions, W1.Title (from the top SELECT statement) is being compared
with W2.Title (from the bottom SELECT statement). The same is true for W1.WorkID and

432 PART 3 Database Implementation

W2.WorkID. Because of this fact, the DBMS cannot process the subquery portion indepen-
dent of the upper SELECT.

Instead, the DBMS must process this statement as a subquery that is nested within the
main query. The logic is as follows: Take the first row from W1. Using that row, evaluate
the second query. To do that, for each row in W2, compare W1.Title with W2.Title and
W1.WorkID with W2.WorkID. If the titles are equal and the values of WorkID are not equal,
return the value of W2.Title to the upper query. Do this for every row in W2.

Once all of the rows in W2 have been evaluated for the first row in W1, move to the sec-
ond row in W1 and evaluate it against all the rows in W2. Continue in this way until all rows
of W1 have been compared with all of the rows of W2.

If this is not clear to you, write out two copies of the WORK data from Figure 7-15(d)
on a piece of scratch paper. Label one of them W1 and the second W2, and then work
through the logic as described. From this, you will see that correlated subqueries always
require nested processing.

A Common Trap
By the way, do not fall into the following common trap:

/* *** SQL-Query-CH08-03 *** */

SELECT W1.Title, W1.Copy

FROM WORK AS W1

WHERE W1.WorkID IN

 (SELECT W2.WorkID

 FROM WORK AS W2

 WHERE W1.Title = W2.Title

 AND W1.WorkID <> W2.WorkID);

The logic here seems correct, but it is not. Compare SQL-Query-CH08-03 to SQL-
Query-CH08-02, and note the differences between the two SQL statements. The result of SQL-
Query-CH08-03 when run on the View Ridge Gallery data in Figure 7-15(d) is an empty set:

In fact, no row will ever be displayed by this query, regardless of the underlying data (see if you can
figure out why this is so before continuing to the next paragraph).

The bottom query will indeed find all rows that have the same title and different
WorkIDs. If one is found, it will produce the W2.WorkID of that row. But that value will then
be compared with W1.WorkID. These two values will always be different because of the condition

W1.WorkID <> W2.WorkID

No rows are returned because the values of the two unequal WorkIDs are used in the IN
instead of the values of the two equal Titles.

using Correlated Subqueries to Check Functional Dependencies
Correlated subqueries can be used to your advantage during database redesign. As men-
tioned, one application of correlated subqueries is to verify functional dependencies. For
example, suppose we have EMPLOYEE data like that in Figure 8-1 in a database and that we
want to know whether the data conform to the functional dependency:

Department S DeptPhone

If so, every time a given value of Department occurs in the table, that value will be matched
with the same value of DeptPhone.

 CHAPTER 8 Database Redesign 433

The following correlated subquery will find any rows that violate this assumption:

/* *** SQL-Query-CH08-04 *** */

SELECT E1.EmployeeNumber, E1.Department, E1.DeptPhone

FROM EMPLOYEE AS E1

WHERE E1.Department IN

 (SELECT E2.Department

 FROM EMPLOYEE AS E2

 WHERE E1.Department = E2.Department

 AND E1.DeptPhone <> E2.DeptPhone);

The results of this query for the data in Figure 8-1 are:

A listing like this can readily be used to find and fix any rows that violate the functional
dependency.

SQL Correlated Subquiries using the EXISTS and NOT EXISTS
Comparison Operators
In Chapter 2, we discussed a set of SQL comparison operators, and these are summarized in
Figure 2-23. To this set we will now add the SQL EXISTS comparison operator and the
SQL NOT EXISTS comparison operator, as shown in Figure 8-2. When we use the EXIST
or NOT EXISTS operator in a query, we are creating another form of correlated subquery.

These operators simply test whether or not there are any values returned by the subquery,
which indicates there are values meeting the conditions of the subquery. If one or more values
are returned, then values from the subquery are used to run the top-level query. If there are no
values returned, the top-level query produces an empty set as the result.

For example, we can rewrite the SQL-Query-CH08-4 correlated subquery using the SQL
EXISTS keyword as follows:

/* *** SQL-Query-CH08-05 *** */

SELECT E1.EmployeeNumber, E1.Department, E1.DeptPhone

FROM EMPLOYEE AS E1

WHERE EXISTS

 (SELECT E2.Department

 FROM EMPLOYEE AS E2

 WHERE E1.Department = E2.Department

 AND E1.DeptPhone <> E2.DeptPhone);

Because using EXISTS creates a form of a correlated subquery, the processing of the
SELECT statements is nested. The first row of E1 is input to the subquery. If the subquery

Operator Meaning

SQL Comparison Operators

EXISTS Is a non-empty set of values

NOT EXISTS Is an empty set

FIGuRE 8-2

SQL Comparison Operators
EXISTS and NOT EXISTS

434 PART 3 Database Implementation

finds any row in E2 for which the department names are the same and the department
phone numbers are different, then the EXISTS is true (returns a non-empty set of values) and
the Department and DeptPhone for the first row are selected. Next, the second row of E1
is input to the subquery, the SELECT is processed, and the EXISTS is evaluated. If true, the
Department and DeptPhone of the second row are selected. This process is repeated for all of
the rows in E1.

The results of SQL-Query-CH08-05 are identical to the previous results from
SQL-Query-CH08-04:

using NOT EXISTS in a Double Negative
The SQL EXISTS operator will be true (will return a non-empty set of values) if any row in the
subquery meets the condition. The SQL NOT EXISTS operator will be true (will return an empty
set) only if all rows in the subquery fail to meet the condition. Consequently, the double use of
NOT EXISTS can be used to find rows that do not not match a condition. And, yes, the word not is
supposed to be there twice—this is a double negative.

Because of the logic of a double negative, if a row does not not match any row, then it
matches every row! For example, suppose that at View Ridge the users want to know the name of
any artist that every customer is interested in. We can proceed as follows:

■■ First, produce the set of all customers who are interested in a particular artist.
■■ Then take the complement of that set, which will be the customers who are not inter-

ested in that artist.
■■ If that complement is an empty set, then all customers are interested in the given

artist.

By THE WAy The doubly nested NOT EXISTS pattern is famous in one guise or another
among SQL practitioners. It is often used as a test of SQL knowledge in job

interviews and in bragging sessions, and it can be used to your advantage when as-
sessing the desirability of certain database redesign possibilities, as you will see in the
last section of this chapter. Therefore, even though this example involves some serious
study, it is worth your while to understand it.

The Double NOT EXISTS Query
The following SQL statement implements the strategy just described:

/* *** SQL-Query-CH08-06 *** */

SELECT A.FirstName, A.LastName

FROM ARTIST AS A

WHERE NOT EXISTS

 (SELECT C.CustomerID

 FROM CUSTOMER AS C

 WHERE NOT EXISTS

 (SELECT CAI.CustomerID

 FROM CUSTOMER_ARTIST_INT AS CAI

 WHERE C.CustomerID = CAI.CustomerID

 AND A.ArtistID = CAI.ArtistID));

 CHAPTER 8 Database Redesign 435

The result of this query is an empty set, indicating that there is no artist that every customer is
interested in:

Let’s see how this works. The bottom SELECT (the third SELECT in the SQL statement)
finds all of the customers who are interested in a particular artist. As you read this SELECT
(the last SELECT in the query), keep in mind that this is a correlated subquery; this SELECT
is nested inside the query on CUSTOMER, which is nested inside the query on ARTIST.
C.CustomerID is coming from the SELECT on CUSTOMER in the middle, and A.ArtistID is
coming from the SELECT on ARTIST at the top.

Now the NOT EXISTS in the sixth line of the query will find the customers who are not
interested in the given artist. If all customers are interested in the given artist, the result of the
middle SELECT will be null. If the result of the middle SELECT is null, the NOT EXISTS in the
third line of the query will be true, and the name of that artist will be produced, just as we want.

Consider what happens for artists who do not qualify in this query. Suppose that every
customer except Tiffany Twilight is interested in the artist Joan Miro. (This is not the case for
the data in Figure 7-15, but assume that it were true.) Now, for the preceding query, when
Miro’s row is considered, the bottom SELECT will retrieve every customer except Tiffany
Twilight. In this case, because of the NOT EXISTS in the sixth line of the query, the middle
SELECT will produce the CustomerID for Tiffany Twilight (because her row is the only one
that does not appear in the bottom SELECT). Now, because there is a result from the middle
SELECT, the NOT EXISTS in the top SELECT is false, and the name Joan Miro will not be
included in the output of the query. This is correct because there is a customer who is not
interested in Joan Miro.

Again, take some time to study this pattern. It is a famous one, and if you become a data-
base professional, you will certainly see it again in one form or another. In fact, you will not not
see it again!

How Do I Analyze an Existing Database?

Before we proceed with a discussion of database redesign, reflect for a moment on what this
task means for a real company whose operations are dependent on the database. Suppose, for
example, that you work for a company such as Amazon.com. Further suppose that you have
been tasked with an important database redesign assignment, say to change the primary key
of the vendor table.

To begin, you may wonder, why would Amazon want to do this? It could be that in
the early days, when it only sold books, Amazon used company names for vendors. But,
as Amazon began to sell more types of products, company name was no longer sufficient.
Perhaps there are too many duplicates, and Amazon may have decided to switch to an
Amazon-created VendorID.

Now, what does it mean to switch primary keys? Besides adding the new data to the cor-
rect rows, what else does it mean? Clearly, if the old primary key has been used as a foreign
key, all of the foreign keys need to be changed as well. So we need to know all of the relation-
ships in which the old primary key was used. But what about views? Do any views use the old
primary key? If so, they will need to be changed. What about triggers and stored procedures?
Do any of them use the old primary key? Not to mention any application code that may break
when the old key is removed.

Now, to create a nightmare, what happens if you get partway through the change process
and something fails? Suppose you encounter unexpected data and receive errors from the
DBMS while trying to add the new primary key. Amazon cannot change its Web site to dis-
play, “Sorry, our database is broken—come back tomorrow (we hope)!”

This nightmare brings up many topics, most of which relate to systems analysis and de-
sign (see Appendix B for a brief introduction to systems analysis and design). But with regard

436 PART 3 Database Implementation

to database processing, three principles become clear. First, as carpenters say, “Measure twice
and cut once.” Before we attempt any structural changes to a database, we must clearly under-
stand the current structure and contents of the database, and we must know what depends on
what. Second, before we make any structural changes to an operational database, we must test
those changes on a realistically sized test database that has all of the important test data cases.
Finally, if at all possible, we need to create a complete backup of the operational database
prior to making any structural changes. If all goes awry, the backup can be used to restore the
database while problems are corrected. We will consider each of these important topics next.

Reverse Engineering

Reverse engineering is the process of reading a database schema and producing a data model
from that schema. The data model produced is not truly a logical model because entities will
be generated for every table, including entities for intersection tables that have no non-key
data and should not appear in a logical model at all. The model generated by reverse engi-
neering is a thing unto itself, a table-relationship diagram that is dressed in entity-relationship
clothes. In this text, we will call it the reverse engineered (RE) data model.

Figure 8-3 shows the RE data model of the View Ridge Gallery VRG database produced
by the MySQL Workbench from a MySQL 5.6 version of the VRG database created in
Chapter 7. Note that due to the limitations of the MySQL Workbench, this is a physical data-
base design rather than a logical data model. Nonetheless, it illustrates the reverse engineer-
ing technique we are discussing.

We used the MySQL Workbench because of its general availability. The MySQL Workbench,
as discussed in Appendix E, uses standard IE Crow’s Foot database modeling notation.
Figure 6-37 shows the VRG data model, and Figure 6-39 shows the VRG database design.

If you compare these to the VRG RE data model in Figure 8-3, you will see that the
MySQL Workbench came close to duplicating the VRG database design rather than the VRG
data model. The MySQL Workbench:

■■ Contains the final primary keys and foreign keys, rather than the data model entity
indentifiers.

■■ Contains the customer_artist_int table, rather than the N:M relationship between
CUSTOMER and ARTIST shown in the data model.

■■ Contains wrong minimum cardinality values. All of the many sides of the 1:N relation-
ships should be optional except for the WORK-to-TRANS relationship, based on the
VRG database design.

All in all, however, this is a reasonable representation of the View Ridge Gallery database de-
sign. For more information about using the MySQL Workbench, see Appendix E.

FIGuRE 8-3

Reverse-Engineered
VRG Data Model

 CHAPTER 8 Database Redesign 437

Although the MySQL Workbench produces only a database design and not a data model,
some other design software, such as CA Technologies’ ERwin, can create both logical (data
model) and physical (database design) versions of the database structure. In addition to tables
and views, some data modeling products will capture constraints, triggers, and stored proce-
dures from the database (in fact, the MySQL Workbench can capture some of these, although
we have not included them in Figure 8-3).

These constructs are not interpreted, but their text is imported into the data model. With
some products, the relationship of the text to the items it references also is obtained. The rede-
sign of constraints, triggers, and stored procedures is beyond the scope of our discussion here.
You should realize that they, too, are part of the database, however, and are subject to redesign.

Dependency Graphs

Before making changes to database structures, it is vitally important to understand the depen-
dencies of those structures. What changes will affect what? For example, consider changing
the name of a table. Where is the table name used? In which triggers? In which stored pro-
cedures? In which relationships? Because of the need to know all of the dependencies, many
database redesign projects begin by making a dependency graph.

The term graph arises from the mathematical topic of graph theory. Dependency graphs
are not graphical displays like bar charts; rather, they are diagrams that consist of nodes and
arcs (or lines) that connect those nodes.

Figure 8-4 shows a partial dependency graph that was drawn using the results of
the RE model but manually interpreting views and triggers we developed in Chapter 7.
For simplicity, this graph does not show the views and triggers of CUSTOMER, nor does
it show CUSTOMER_ARTIST_INT and related structures. Also, the stored procedure
WORK_AddWorkTransaction is not shown, nor are the constraints.

Even this partial diagram reveals the complexity of dependencies among database con-
structs. You can see that it would be wise to tread lightly, for example, when changing any-
thing in the TRANS table. The consequences of such a change need to be assessed against two
relationships, two triggers, and two views. Again, measure twice and cut once!

Database Backup and Test Databases

Because of the potential damage that can be done to a database during redesign, a complete
backup of the operational database should be made prior to making any changes. Equally
important, it is essential that any proposed changes be thoroughly tested. Not only must struc-
tural changes proceed successfully, but all triggers, stored procedures, and applications must
also run correctly on the revised database.

Table
View
Trigger

ARTIST

TRANS_CheckSalesPrice

WORK

ArtistWorkNetView

ArtistWorkTotalNetView

TRANS

TRANS_AskingPriceInitialValue

CUSTOMER

FIGuRE 8-4

Example Dependency
Graph (Partial)

438 PART 3 Database Implementation

Typically, at least three different copies of the database schema are used in the redesign
process. One is a small test database that can be used for initial testing. The second is a large
test database, which may even be a full copy of the operational database. Sometimes, there are
several large test databases. Finally, there is the operational database.

A means must be created to restore all test databases to their original state during the
testing process. In that way, the test can be rerun as necessary against the same starting point.
Depending on the facilities of the DBMS, backup and recovery or other means are used to
restore the database after a test run.

Obviously, for enterprises with very large databases, it is not possible to have a test
database that is a copy of the operational database. Instead, smaller test databases need
to be created, but those test databases must have all the important data characteristics
of the operational database; otherwise, they will not provide a realistic test environment.
The construction of such test databases is in itself a difficult and challenging job. In fact,
many interesting career opportunities are available for developing test databases and
database test suites.

Finally, for organizations that have very large databases, it may not be possible to make
a complete copy of the operational database prior to making structural changes. In this case,
the database is backed up in pieces, and the changes are made in pieces as well. This task is
very difficult and requires great knowledge and expertise. It also requires weeks or months of
planning. You may participate as a junior member of a team to make such a change, but you
should have years of database experience before you attempt to make structural changes to
such large databases. Even then, it is a daunting task.

Changing Table Names and Table Columns

In this section, we will consider alterations to tables and their columns. To accomplish these
changes, we will use only SQL statements. Many DBMS products have features to facilitate
changing structures other than SQL. For example, some products have graphical design tools
that simplify this process. But such features are not standardized, and you should not depend
on them. The statements shown in this chapter will work with any enterprise-class DBMS
product, and most will work with Microsoft Access as well.

Changing Table Names

At first glance, changing a table name seems like an innocent and easy operation. A review
of Figure 8-3, however, shows that the consequences of such a change are greater than you
would think. If, for example, we want to change the name of the table WORK to WORK_
VERSION2, several tasks are necessary. The constraint that defines the relationship from
WORK to TRANS must be altered, ArtistWorkNetView view must be redefined, and then the
TRANS_CheckSalesPrice trigger must be rewritten to use the new name.

Oracle Database and MySQL have an SQL RENAME {Name01} TO {Name02} statement
that can be used to rename tables, while Microsoft SQL Server uses the system stored proce-
dure sp_rename to accomplish the same task. However, while the table name itself is changed,
other objects that use that table name, such as triggers and stored procedures, will not be
modified! Therefore, these methods of renaming a table are useful only in certain situations.
Instead, we will use the following strategy for making table name changes. First, create the
new table with all attendant structures and then drop the old one once everything is working
with the new table. If the table to be renamed is too large to be copied, other strategies will
have to be used, but they are beyond the scope of this discussion.

This strategy has one serious problem, however. WorkID is a surrogate key. When we create
the new table, the DBMS will create new values of WorkID in the new table. The new values will
not necessarily match the values in the old table, which means values of the foreign key TRANS.
WorkID will be wrong. The easiest way to solve this problem is to first create the new version of the
WORK table and not define WorkID as a surrogate key. Then fill the table with the current values
of WORK, including the current values of WorkID. Then change WorkID to a surrogate key.

 CHAPTER 8 Database Redesign 439

First, we create the table by submitting an SQL CREATE TABLE WORK_VERSION2
statement to the DBMS. We make WorkID an integer, but not a surrogate key. We also must
give new names to the WORK constraints. The prior constraints still exist, and if new names
are not used, the DBMS will issue a duplicate constraint error when processing the CREATE
TABLE statements. Examples of new constraint names are:

/* *** EXAMPLE CODE – DO NOT RUN *** */

CONSTRAINT WorkV2PK PRIMARY KEY (WorkID),

CONSTRAINT WorkV2AK1 UNIQUE (Title, Copy),

CONSTRAINT ArtistV2FK FOREIGN KEY(ArtistID)

 REFERENCES ARTIST(ArtistID)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

Next, copy the data into the new table with the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH08-01 *** */

INSERT INTO WORK_VERSION2

 (WorkID, Copy, Title, Medium, Description, ArtistID)

 SELECT WorkID, Copy, Title, Medium, Description, ArtistID

 FROM WORK;

At this point, alter the WORK_VERSION2 table to make WorkID a surrogate key. In
Microsoft SQL Server, the easiest way to do that is to open the graphical table designer
and redefine WorkID as an IDENTITY column (there is no standard SQL for making this
change). Set the Identity Seed value [this is the same as the {StartValue} value that we have
used when discussing the Microsoft SQL Server 2014 IDENTITY({StartValue}, {Increment})
property] to the original value of 500, and Microsoft SQL Server will set the next new
value of WorkID to be the maximum largest value of WorkID plus one. A different strategy
is used for surrogate keys with Oracle Database and MySQL, and these topics will be dis-
cussed in Chapters 10B and 10C, respectively.

Now all that remains is to define the two triggers. This can be done by copying the text of
the old triggers and changing the name WORK to WORK_VERSION2.

At this point, tests should be run against the database to verify that all changes have
been made correctly. After that, stored procedures and applications that use WORK can be
changed to run against the new table name.1 If all is correct, then the foreign key constraint
TransWorkFK and the WORK table can be dropped with the following:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-01 *** */

ALTER TABLE TRANS

 DROP CONSTRAINT TransWorkFK;

/* *** SQL-DROP-TABLE-CH08-01 *** */

DROP TABLE WORK;

1The timing is important. The WORK_VERSION2 table was created from WORK. If triggers, stored proce-
dures, and applications continue to run against WORK while the verification of WORK_VERSION2 is under
way, then WORK_VERSION2 will be out of date. Some action will need to be taken to bring it up to date
before switching the stored procedures and applications over to WORK_VERSION2.

440 PART 3 Database Implementation

The TransWorkFK constraint then can be added back to TRANS using the new name for
the work table:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-02 *** */

ALTER TABLE TRANS

 ADD CONSTRAINT TransWorkFK FOREIGN KEY(WorkID)

 REFERENCES WORK_VERSION2(WorkID)

 ON UPDATE NO ACTION

 ON DELETE NO ACTION;

Clearly, there is more to changing a table name than you would think. You now can see
why some organizations do not allow programmers or users to employ the true name of a
table. Instead, views are described that serve as table aliases, as explained in Chapter 7. If this
were done here, only the views that define the aliases would need to be changed when the
source table name is changed as long as the view references all the columns in the table using
the asterisk (*) wild card. However, if the view references the columns by name and if any col-
umn name has been changed, then more work will be needed to revise the view.

Adding and Dropping Columns

Adding null columns to a table is straightforward. For example, to add the null column
DateCreated to WORK, we simply use the ALTER TABLE statement as follows:

/* *** SQL-ALTER-TABLE-CH08-03 *** */

ALTER TABLE WORK

 ADD DateCreated Date NULL;

If there are other column constraints, such as DEFAULT or UNIQUE, include them with
the column definition, just as you would if the column definition were part of a CREATE
TABLE statement. However, if you include a DEFAULT constraint, be aware that the default
value will be applied to all new rows, but existing rows will have null values.

Suppose, for example, that you want to set the default value of DateCreated to 1/1/1900
to signify that the value has not yet been entered. In this case, you would use the ALTER
TABLE statement:

/* *** SQL-ALTER-TABLE-CH08-04 *** */

ALTER TABLE WORK

 ADD DateCreated Date NULL DEFAULT '01/01/1900';

This statement causes DateCreated for new rows in WORK to be set to 1/1/1900 by de-
fault. To set existing rows, you would need to execute the following query:

/* *** SQL-UPDATE-CH08-01 *** */

UPDATE WORK

 SET DateCreated ='01/01/1900'

 WHERE DateCreated IS NULL;

Adding NOT NuLL Columns
To add a new NOT NULL column, first add the column as NULL. Then use an UPDATE state-
ment like that just shown to give the column a value in all rows. After the update, the following
SQL ALTER TABLE ALTER COLUMN statement can be executed to change DateCreated
from NULL to NOT NULL.

/* *** SQL-ALTER-TABLE-CH08-05 *** */

ALTER TABLE WORK

 ALTER COLUMN DateCreated Date NOT NULL;

 CHAPTER 8 Database Redesign 441

Note that this statement will fail if DateCreated has not been given values in all rows.

Dropping Columns
Dropping non-key columns is easy. For example, eliminating the DateCreated column from
WORK can be done with the following:

/* *** SQL-ALTER-TABLE-CH08-06 *** */

ALTER TABLE WORK

 DROP COLUMN DateCreated;

To drop a foreign key column, the constraint that defines the foreign key must first be
dropped. Making such a change is equivalent to dropping a relationship, and that topic is
discussed later in this chapter.

To drop the primary key, the primary key constraint first needs to be dropped. To drop
that, however, all foreign keys that use the primary key must first be dropped. Thus, to drop
the primary key of WORK and replace it with the composite primary key (Title, Copy,
ArtistID), the following steps are necessary:

■■ Drop the constraint WorkFK from TRANS.
■■ Drop the constraint WorkPK from WORK.
■■ Create a new WorkPK constraint using (Title, Copy, ArtistID).
■■ Create a new WorkFK constraint referencing (Title, Copy, ArtistID) in TRANS.
■■ Drop the column WorkID.

It is important to verify that all changes have been made correctly before dropping WorkID.
Once it is dropped, there is no way to recover it except by restoring the WORK table from a backup.

Changing a Column Data Type or Column Constraints

To change a column data type or to change column constraints, the column is redefined using
the ALTER TABLE ALTER COLUMN command. However, if the column is being changed from
NULL to NOT NULL, then all rows must have a value in that column for the change to succeed.

Also, some data type changes may cause data loss. Changing Char(50) to Date, for exam-
ple, will cause loss of any text field that the DBMS cannot successfully transform into a date
value. Or, alternatively, the DBMS may simply refuse to make the column change. The results
depend on the DBMS product in use.

Generally, converting numeric to Char or Varchar will succeed. Also, converting
Date or Money or other more specific data types to Char or Varchar will usually succeed.
Converting Char or Varchar back to Date, Money, or Numeric is risky, and it may or may
not be possible.

In the View Ridge schema, if DateOfBirth had been defined as Char(4), then a risky
but sensible data type change would be to modify DateOfBirth in the ARTIST table to
Numeric(4,0).

This would be a sensible change because all of the values in this column are numeric.
Recall the check constraint that was used to define DateOfBirth (refer to Figure 7-13). The
following makes that change and simplifies the CHECK constraint.

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-07 *** */

ALTER TABLE ARTIST

 ALTER COLUMN DateOfBirth Numeric(4,0) NULL;

ALTER TABLE ARTIST

 ADD CONSTRAINT NumericBirthYearCheck

 CHECK (DateOfBirth > 1900 AND DateOfBirth < 2100);

The prior check constraints on DateOfBirth should now be deleted.

442 PART 3 Database Implementation

Adding and Dropping Constraints

As already shown, constraints can be added and removed using the ALTER TABLE ADD
CONSTRAINT and ALTER TABLE DROP CONSTRAINT statements.

Changing Relationship Cardinalities

Changing cardinalities is a common database redesign task. Sometimes, the need is to change
minimum cardinalities from zero to one or from one to zero. Another common task is to
change the maximum cardinality from 1:1 to 1:N or from 1:N to N:M. Another possibility,
which is less common, is to decrease maximum cardinality from N:M to 1:N or from 1:N to
1:1. This latter change can be made only with data loss, as you will see.

Changing Minimum Cardinalities

The action to be taken in changing minimum cardinalities depends on whether the change is
on the parent side or on the child side of the relationship.

Changing Minimum Cardinalities on the Parent Side
If the change is on the parent side, meaning that the child will or will not be required to have
a parent, making the change is a matter of changing whether null values are allowed for the
foreign key that represents the relationship. For example, suppose that in the 1:N relationship
from DEPARTMENT to EMPLOYEE the foreign key DepartmentNumber appears in the
EMPLOYEE table. Changing whether an employee is required to have a department is simply
a matter of changing the null status of DepartmentNumber.

If the change is from a minimum cardinality of zero to one, then the foreign key, which
would have been null, must be changed to NOT NULL. Changing a column to NOT NULL can
be done only if all the rows in the table have a value. In the case of a foreign key, this means that
every record must already be related. If not, all records must be changed so that all have a relation-
ship before the foreign key can be made NOT NULL. In the previous example, every employee
must be related to a department before DepartmentNumber can be changed to NOT NULL.

Depending on the DBMS product in use, the foreign key constraint that defines the rela-
tionship may have to be dropped before the change is made to the foreign key. Then the foreign
key constraint can be re-added. The following SQL will work for the preceding example:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-08 *** */

ALTER TABLE EMPLOYEE

 DROP CONSTRAINT DepartmentFK;

ALTER TABLE EMPLOYEE

 ALTER COLUMN DepartmentNumber Int NOT NULL;

ALTER TABLE EMPLOYEE

 ADD CONSTRAINT DepartmentFK FOREIGN KEY (DepartmentNumber)

 REFERENCES DEPARTMENT (DepartmentNumber)

 ON UPDATE CASCADE;

Also, cascade behavior for UPDATE and DELETE must be specified when changing the
minimum cardinality from zero to one. In this example, updates are to cascade, but deletions
will not (recall that the default behavior is NO ACTION).

Changing the minimum cardinality from one to zero is simple. Just change
DepartmentNumber from NOT NULL to NULL. You also may want to change the cascade
behavior on updates and deletions, if appropriate.

Changing Minimum Cardinalities on the Child Side
As noted in Chapter 6, the only way to enforce a minimum cardinality other than zero on the
child side of a relationship is to write triggers or application code that enforce the constraint.

 CHAPTER 8 Database Redesign 443

So, to change the minimum cardinality from zero to one, it is necessary to write the appropriate
triggers. Design the trigger behavior using Figure 6-29, and then write the triggers. To change
the minimum cardinality from one to zero, just drop the triggers that enforce that constraint.

In the DEPARTMENT-to-EMPLOYEE relationship example, to require each
DEPARTMENT to have an EMPLOYEE means that triggers would need to be written on
INSERT of DEPARTMENT and on UPDATE and DELETE of EMPLOYEE. The trigger code in
DEPARTMENT ensures that an EMPLOYEE is assigned to the new DEPARTMENT, and the
trigger code in EMPLOYEE ensures that the employee being moved to a new department or
the employee being deleted is not the last employee in the relationship to its parent.

This discussion assumes that the required child constraint is enforced by triggers. If the
required child constraint is enforced by application programs, then all of those programs also
must be changed. Dozens of programs may need to be changed, which is one reason why it is
better to enforce such constraints using triggers rather than application code.

Changing Maximum Cardinalities

The only difficulty when increasing cardinalities from 1:1 to 1:N or from 1:N to N:M is pre-
serving existing relationships. This can be done, but it requires a bit of manipulation, as you
will see. When reducing cardinalities, relationship data will be lost. In this case, a policy must
be created for deciding which relationships to lose.

Changing a 1:1 Relationship to a 1:N Relationship
Figure 8-5 shows a 1:1 relationship between EMPLOYEE and PARKING_PERMIT. As we dis-
cussed in Chapter 6, the foreign key can be placed in either table for a 1:1 relationship. The
action taken depends on whether EMPLOYEE is to be the parent entity in the 1:N relation-
ship or whether PARKING_PERMIT is to be the parent.

If EMPLOYEE is to be the parent (employees are to have multiple parking per-
mits), then the only change necessary is to drop the constraint that PARKING_PERMIT.
EmployeeNumber be unique. The relationship will then be 1:N.

If PARKING_PERMIT is to be the parent (e.g., if parking permits are to be allocated to
many employees, say, for a carpool), then the foreign key and appropriate values must be
moved from PARKING_PERMIT to EMPLOYEE. The following SQL will accomplish this:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-09 *** */

ALTER TABLE EMPLOYEE

 ADD PermitNumber Int NULL;

/* *** SQL-UPDATE-CH08-02 *** */

UPDATE EMPLOYEE

 SET EMPLOYEE.PermitNumber =

 (SELECT PP.PermitNumber

 FROM PARKING_PERMIT AS PP

 WHERE PP.EmployeeNumber = EMPLOYEE.EmployeeNumber);

Once the foreign key has been moved over to EMPLOYEE, the EmployeeNumber col-
umn of PARKING_PERMIT should be dropped. Next, create a new foreign key constraint to
define referential integrity. So multiple employees can relate to the same parking permit, the
new foreign key must not have a UNIQUE constraint.

EmployeeNumber: NOT NULL

LastName: NOT NULL
FirstName: NOT NULL
Phone: NOT NULL
EmailAddress: NOT NULL

EMPLOYEE

PermitNumber: NOT NULL

DateIssued: NOT NULL
LotNumber: NOT NULL
EmployeeNumber: NOT NULL (FK) (AK1.1)

PARKING_PERMITFIGuRE 8-5

The Employee-to-
Parking_Permit 1:1
Relationship

444 PART 3 Database Implementation

Changing a 1:N Relationship to an N:M Relationship
Suppose that View Ridge Gallery decides that it wants to record multiple purchasers for a
given transaction. It may be that some of its art is co-owned between a customer and a bank or
trust account, for example; or perhaps it may want to record the names of both owners when
a couple purchases art. For whatever reason, this change will require that the 1:N relationship
between CUSTOMER and TRANS be changed to an N:M relationship.

Changing a 1:N relationship to an N:M relationship is surprisingly easy.2 Just create the
new intersection table with appropriate foreign key constraints, fill it with data, and drop the
old foreign key column. Figure 8-6 shows the View Ridge database design with a new inter-
section table to support the N:M relationship.

We need to create this table and then copy the values of TransactionID and CustomerID
from TRANS for rows in which CustomerID is not null. First, create the new intersection table
using the following SQL:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-CREATE-TABLE-CH08-01 *** */

CREATE TABLE CUSTOMER_TRANSACTION_INT(

 CustomerID Int NOT NULL,

 TransactionID Int NOT NULL,

 CONSTRAINT CustomerTransaction_PK

 PRIMARY KEY(CustomerID, TransactionID),

 CONSTRAINT Customer_Transaction_Int_Trans_FK

 FOREIGN KEY (TransactionID) REFERENCES TRANS(TransactionID),

 CONSTRAINT Customer_Transaction_Int_Customer_FK

 FOREIGN KEY (CustomerID) REFERENCES CUSTOMER(CustomerID)

);

ArtistID

LastName (AK1.1)
FirstName (AK1.2)
Nationality
DateOfBirth
DateDeceased

ARTIST

CustomerID

LastName
FirstName
EmailAddress (AK1.1)
EncryptedPassword
Street
City
State
ZIPorPostalCode
Country
AreaCode
PhoneNumber

CUSTOMER

TransactionID

DateAcquired
AcquisitionPrice
AskingPrice
DateSold
SalesPrice
WorkID (FK)

TRANS

WorkID

Title (AK1.1)
Copy (AK1.2)
Medium
Description
ArtistID (FK)

WORK

ArtistID (FK)
CustomerID (FK)

CUSTOMER_ARTIST_INT

CUSTOMER_TRANSACTION_INT

CustomerID (FK)
TransactionID (FK)

FIGuRE 8-6

View Ridge Gallery Database
Design with New N:M
Relationship

2Making the data change is easy. Dealing with the consequences of the data change with regard to views,
triggers, stored procedures, and application code will be more difficult. All of these will need to be rewritten
to join across a new intersection table. All forms and reports also will need to be changed to portray multiple
customers for a transaction; this will mean changing text boxes to grids, for example. All of this work is time
consuming and, hence, expensive.

 CHAPTER 8 Database Redesign 445

Note that there is no cascade behavior for updates because CustomerID is a surrogate
key. There is no cascade behavior for deletions because of the business policy never to delete
data that involve transactions. The next task is to fill the table with data from the TRANS table
using the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-INSERT-CH08-02 *** */

INSERT INTO CUSTOMER_TRANSACTION_INT (CustomerID, TransactionID)

 SELECT CustomerID, TransactionID

 FROM TRANS

 WHERE CustomerID IS NOT NULL;

Once all of these changes have been made, the CustomerID column of TRANS can be
dropped.

Reducing Cardinalities (with Data Loss)
It is easy to make the structural changes to reduce cardinalities. To reduce an N:M re-
lationship to 1:N, we just create a new foreign key in the relation that will be the child
and fill it with data from the intersection table. To reduce a 1:N relationship to 1:1, we
just make the values of the foreign key of the 1:N relationship unique and then define a
unique constraint on the foreign key. In either case, the most difficult problem is deciding
which data to lose.

Consider the reduction of N:M to 1:N. Suppose, for example, that the View Ridge Gallery
decides to keep just one artist interest for each customer. Thus, the relationship will then be
1:N from ARTIST to CUSTOMER. Accordingly, we add a new foreign key column ArtistID to
CUSTOMER and set up a foreign key constraint to ARTIST on that customer. The following
SQL will accomplish this:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-10 *** */

ALTER TABLE CUSTOMER

 ADD ArtistID Int NULL;

ALTER TABLE CUSTOMER

 ADD CONSTRAINT ArtistInterestFK FOREIGN KEY (ArtistID)

 REFERENCES ARTIST(ArtistID);

Updates need not cascade because of the surrogate key, and deletions cannot cascade
because the customer may have a valid transaction and ought not to be deleted just because
an artist interest goes away.

Now, which of a customer’s potentially many artist interests should be preserved in the
new relationship? The answer depends on the business policy at the gallery. Here suppose we
decide simply to take the first artist interest:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH08-03 *** */

UPDATE CUSTOMER

 SET ArtistID =

 (SELECT TOP 1 ArtistID

 FROM CUSTOMER_ARTIST_INT AS CAI

 WHERE CUSTOMER.CustomerID = CAI.CustomerID);

The SQL Top 1 phrase is used to return the first qualifying row.

446 PART 3 Database Implementation

All views, triggers, stored procedures, and application code need to be changed to
account for the new 1:N relationship. Then the constraints defined on CUSTOMER_
ARTIST_INT can be dropped. Finally, the table CUSTOMER_ARTIST_INT can be dropped.

To change a 1:N to a 1:1 relationship, we just need to remove any duplicate values of
the foreign key of the relationship and then add a unique constraint on the foreign key. See
Review Question 8.51.

Adding and Deleting Tables and Relationships

Adding new tables and relationships is straightforward. Just add the tables and relationships
using CREATE TABLE statements with FOREIGN KEY constraints, as shown before. If an
existing table has a child relationship to the new table, add a FOREIGN KEY constraint using
the existing table.

For example, if a new table, COUNTRY, were added to the View Ridge database with the
primary key Name and if CUSTOMER.Country is to be used as a foreign key in the new table,
a new FOREIGN KEY constraint would be defined in CUSTOMER:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH08-11 *** */

ALTER TABLE CUSTOMER

 ADD CONSTRAINT CountryFK FOREIGN KEY (Country)

 REFERENCES COUNTRY(Name)

 ON UPDATE CASCADE;

Deleting relationships and tables is just a matter of dropping the foreign key constraints
and then dropping the tables. Of course, before this is done, dependency graphs must be
constructed and used to determine which views, triggers, stored procedures, and application
programs will be affected by the deletions.

As described in Chapter 4, another reason to add new tables and relationships or to
compress existing tables into fewer tables is for normalization and denormalization. We will
not address that topic further in this chapter, except to say that normalization and denormal-
ization are common tasks during database redesign.

Forward Engineering

You can use a variety of different data modeling products to make database changes on
your behalf. To do so, you first reverse engineer the database, make changes to the RE data
model, and then invoke the forward engineering functionality of the data modeling tool.

We will not consider forward engineering here because it hides the SQL that you need to
learn. Also, the specifics of the forward engineering process are product dependent.

Because of the importance of making data model changes correctly, many professionals
are skeptical about using an automated process for database redesign. Certainly, it is neces-
sary to test the results thoroughly before using forward engineering on operational data. Some
products will show the SQL they are about to execute for review before making the changes
to the database.

Database redesign is one area in which automation may not be the best idea. Much
depends on the nature of the changes to be made and the quality of the forward engineering
features of the data modeling product. Given the knowledge you have gained in this chapter,
you should be able to make most redesign changes by writing your own SQL. There is nothing
wrong with that approach!

 CHAPTER 8 Database Redesign 447

Summary

Database design and implementation is needed for three
reasons. Databases can be created (1) from existing data
(such as spreadsheets and databases tables), (2) for a new
systems development project, or (3) for a database redesign.
Database redesign is part of the system maintenance step of
the SDLC and is necessary both to fix mistakes made during
the initial database design and also to adapt the database to
changes in system requirements. Such changes are common
because information systems and organizations do not just
influence each other—they create each other. Thus, new in-
formation systems cause changes in systems requirements.

Correlated subqueries and SQL EXISTS and NOT
EXISTS comparison operators are important tools. They can
be used to answer advanced queries. They also are useful dur-
ing database redesign for determining whether specified data
conditions exist. For example, they can be used to determine
whether possible functional dependencies exist in the data.

A correlated subquery appears deceptively similar to a
regular subquery. The difference is that a regular subquery
can be processed from the bottom up. In a regular subquery,
results from the lowest query can be determined and then
used to evaluate the upper-level queries. In contrast, in a
correlated subquery, the processing is nested; that is, a row
from an upper-level query statement is compared with rows
in a lower-level query. The key distinction of a correlated
subquery is that the lower-level SELECT statements use col-
umns from upper-level statements.

The SQL EXISTS and NOT EXISTS keywords create
specialized forms of correlated subqueries. When these are
used, the upper-level query produces results, depending on
the existence or nonexistence of rows in lower-level queries.
An EXISTS condition is true if any row in the subquery
meets the specified conditions; a NOT EXISTS condition is
true only if all rows in the subquery do not meet the speci-
fied condition. NOT EXISTS is useful for queries that involve
conditions that must be true for all rows, such as a “customer
who has purchased all products.” The double use of NOT
EXISTS is a famous SQL pattern that often is used to test a
person’s knowledge of SQL.

Before redesigning a database, the existing database
needs to be carefully examined to avoid making the data-
base unusable by partially processing a database change.
The rule is to measure twice and cut once. Reverse en-
gineering is used to create a data model of the existing
database. This is done to better understand the database
structure before proceeding with a change. The data model
produced, called a reverse engineered (RE) data model, is
not a true data model but is a thing unto itself. Most data
modeling tools can perform reverse engineering. The RE
data model almost always has missing information; such
models should be carefully reviewed.

All of the elements of a database are interrelated.
Dependency graphs are used to portray the dependency of

one element on another. For example, a change in a table
can potentially affect relationships, views, indexes, triggers,
stored procedures, and application programs. These impacts
need to be known and accounted for before making data-
base changes.

A complete backup must be made to the operational da-
tabase prior to any database redesign changes. Additionally,
such changes must be thoroughly tested, initially on small
test databases and later on larger test databases that may
even be duplicates of the operational databases. The rede-
sign changes are made only after such extensive testing has
been completed.

Database redesign changes can be grouped into differ-
ent types. One type involves changing table names and table
columns. Changing a table name has a surprising number
of potential consequences. A dependency graph should be
used to understand these consequences before proceeding
with the change. Non-key columns are readily added and
deleted. Adding a NOT NULL column must be done in
three steps: First, add the column as NULL; then add data
to every row; and then alter the column constraint to NOT
NULL. To drop a column used as a foreign key, the foreign
key constraint must first be dropped.

Column data types and constraints can be changed
using the ALTER TABLE ALTER COLUMN statement.
Changing the data type to Char or Varchar from a more spe-
cific type, such as Date, is usually not a problem. Changing
a data type from Char or Varchar to a more specific type can
be a problem. In some cases, data will be lost or the DBMS
may refuse the change.

Constraints can be added or dropped using the ADD
CONSTRAINT and DROP CONSTRAINT with the SQL
ALTER TABLE statement. Use of this statement is easier if the
developers have provided their own names for all constraints.

Changing minimum cardinalities on the parent side of
a relationship is simply a matter of altering the constraint
on the foreign key from NULL to NOT NULL or from NOT
NULL to NULL. Changing minimum cardinalities on the
child side of a relationship can be accomplished only by
adding or dropping triggers that enforce the constraint.

Changing maximum cardinality from 1:1 to 1:N is
simple if the foreign key resides in the correct table. In that
case, just remove the unique constraint on the foreign key
column. If the foreign key resides in the wrong table for this
change, move the foreign key to the other table and do not
place a unique constraint on that table.

Changing a 1:N relationship to an N:M relationship
requires building a new intersection table and moving the
primary key and foreign key values to the intersection table.
This aspect of the change is relatively simple. It is more dif-
ficult to change all of the views, triggers, stored procedures,
application programs, and forms and reports to use the new
intersection table.

448 PART 3 Database Implementation

Reducing cardinalities is easy, but such changes may
result in data loss. Prior to making such reductions, a policy
must be determined to decide which data to keep. Changing
N:M to 1:N involves creating a foreign key in the child table
and moving one value from the intersection table into that
foreign key. Changing 1:N to 1:1 requires first eliminating
duplicates in the foreign key and then setting a uniqueness
constraint on that key. Adding and deleting relationships can
be accomplished by defining new foreign key constraints or
by dropping existing foreign key constraints.

Most data modeling tools have the capacity to perform
forward engineering, which is the process of applying data
model changes to an existing database. If forward engineer-
ing is used, the results should be thoroughly tested before
using it on an operational database. Some tools will show the
SQL that they will execute during the forward engineering
process. Any SQL generated by such tools should be care-
fully reviewed. All in all, there is nothing wrong with writing
database redesign SQL statements by hand rather than us-
ing forward engineering.

Key Terms

correlated subquery
dependency graph
reverse engineered (RE) data model

SQL EXISTS comparison operator
SQL NOT EXISTS comparison

operator

systems analysis and design
systems development life cycle (SDLC)
system maintenance

 8.1 Review the three sources of database design and implementation.

 8.2 What does SDLC stand for?

 8.3 Explain the following statement in your own words: “Information systems and organi-
zations create each other.” How does this relate to database redesign?

 8.4 Suppose that a table contains two non-key columns: AdviserName and AdviserPhone.
Further suppose that you suspect that AdviserPhone S AdviserName. Explain how
to examine the data to determine if this supposition is true.

 8.5 How is a regular subquery different from a correlated subquery?

 8.6 Explain the following statement: “The processing of correlated subqueries is nested,
whereas that of regular subqueries is not.”

 8.7 How do you find rows that violate the functional dependency?

 8.8 Why is it risky to change a database that has data?

 8.9 Explain what is wrong with the correlated subquery SQL-Query-CH08-03 on
page 400.

 8.10 Write a correlated subquery to determine whether the data support the supposition
in Review Question 8.4.

 8.11 How does SQL NOT EXISTS differ from noncorrelated subquery?

 8.12 What is the effect of using NOT EXISTS in a double negative?

 8.13 Explain how the words any and all pertain to the SQL EXISTS and NOT EXISTS com-
parison operators.

 8.14 Explain the processing of SQL-Query-CH08-06 on page 402.

 8.15 Using the View Ridge Gallery database, write a query that will display the names of
any customers who are interested in all artists.

Review Questions

 CHAPTER 8 Database Redesign 449

 8.16 Explain how the query in your answer to Review Question 8.15 works.

 8.17 What are the three principles to be followed when you are analyzing an existing
database?

 8.18 Why is a reverse engineered data model not a logical model?

 8.19 Why is it important to carefully evaluate the results of reverse engineering?

 8.20 What is a dependency graph? What purpose does it serve?

 8.21 What do you test for after a database has been redesigned?

 8.22 How many copies of the database schema are used at the least in the redesign pro-
cess? What do enterprises with large databases use?

 8.23 Explain two different types of test databases that should be used when testing data-
base redesign changes.

 8.24 Explain the problems that can occur when changing the name of a table.

 8.25 Describe the process of changing a table name.

 8.26 Considering Figure 8-4, describe the tasks that need to be accomplished to change
the name of the table WORK to WORK_VERSION2.

 8.27 How do programmers change a table name without using the true name of a table?

 8.28 Explain what would happen to the existing data in a table after the following statement?

ALTER TABLE T1

 ALTER COLUMN C1 CHAR(10) DFAULT 'xxxxx';

 8.29 Show an SQL statement to add an integer column C1 to the table T2. Assume that
C1 is NULL.

 8.30 Extend your answer to Review Question 8.29 to add C1 when C1 is to be NOT NULL.

 8.31 Explain the first step to be followed when you are dropping a foreign key column.

 8.32 Why should all the rows in a table have a value when you are changing the mini-
mum cardinality on the parent side from zero to one?

 8.33 Why does converting column data type Char to numeric fail?

 8.34 Explain how data type changes cause data loss.

 8.35 Write an SQL statement to change a column C1 to Char(10) NOT NULL. What con-
ditions must exist in the data for this change to be successful?

 8.36 Explain how to change the minimum cardinality when a child that was required to
have a parent is no longer required to have one.

 8.37 Explain how to change the minimum cardinality when a child that was not required
to have a parent is now required to have one. What condition must exist in the data
for this change to work?

 8.38 Explain how to change the minimum cardinality when a parent that was required to
have a child is no longer required to have one.

 8.39 Explain how to change the minimum cardinality when a parent that was not required
to have a child is now required to have one.

 8.40 Describe how to change the maximum cardinality from 1:1 to 1:N. Assume that the
foreign key is on the side of the new child in the 1:N relationship.

 8.41 Describe how to change the maximum cardinality from 1:1 to 1:N. Assume that the
foreign key is on the side of the new parent in the 1:N relationship.

450 PART 3 Database Implementation

 8.42 Assume that tables T1 and T2 have a 1:1 relationship. Assume that T2 has the foreign
key. Show the SQL statements necessary to move the foreign key to T1. Make up your
own names for the primary and foreign keys.

 8.43 Explain what happens when the required child constraint is enforced by application
programs.

 8.44 Suppose that tables T1 and T2 have a 1:N relationship. Show the SQL statements
necessary to fill an intersection T1_T2_INT. Make up your own names for the pri-
mary and foreign keys.

 8.45 Explain the risks involved in reducing maximum cardinalities.

 8.46 Using the tables in your answer to Review Question 8.44, show the SQL statements
necessary to change the relationship back to 1:N. Assume that the first row in the
qualifying rows of the intersection table is to provide the foreign key. Use the keys and
foreign keys from your answer to Review Question 8.44.

 8.47 Using the results of your answer to Review Question 8.46, explain what must be
done to convert this relationship to 1:1. Use the keys and foreign keys from your
 answer to Review Question 8.46.

 8.48 In general terms, what must be done to add a new relationship?

 8.49 Suppose that tables T1 and T2 have a 1:N relationship, with T2 as the child. Show the
SQL statements necessary to remove table T1. Make your own assumptions about the
names of keys and foreign keys.

 8.50 What is forward engineering?

Project Questions

 8.51 Suppose that the table EMPLOYEE has a 1:N relationship to the table PHONE_
NUMBER. Further suppose that the primary key of EMPLOYEE is EmployeeID
and the columns of PHONE_NUMBER are PhoneNumberID (a surrogate key),
AreaCode, LocalNumber, and EmployeeID (a foreign key to EMPLOYEE). Alter this
design so that EMPLOYEE has a 1:1 relationship to PHONE_NUMBER. For employ-
ees having more than one phone number, keep only the first one.

 8.52 Suppose that the table EMPLOYEE has a 1:N relationship to the table PHONE_
NUMBER. Further suppose that the key of EMPLOYEE is EmployeeID and the
columns of PHONE_NUMBER are PhoneNumberID (a surrogate key), AreaCode,
LocalNumber, and EmployeeID (a foreign key to EMPLOYEE). Write all SQL state-
ments necessary to redesign this database so that it has just one table. Explain the
difference between the result of Project Question 8.51 and the result of this question.

 8.53 Consider the following table:

TASK (EmployeeID, EmpLastName, EmpFirstName, Phone, OfficeNumber,
ProjectName, Sponsor, WorkDate, HoursWorked)

Also consider the following possible functional dependencies:

EmployeeID S (EmpLastName, EmpFirstName, Phone, OfficeNumber)
ProjectName S Sponsor

A. Write SQL statements to display the values of any rows that violate these func-
tional dependencies.

 CHAPTER 8 Database Redesign 451

Marcia’s Dry Cleaning Case Questions

Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner
in a well-to-do suburban neighborhood. Marcia makes her business stand out from the
competition by providing superior customer service. She wants to keep track of each of her
customers and their orders. Ultimately, she wants to notify them that their clothes are ready
via email. Suppose that you have designed a database for Marcia’s Dry Cleaning that has
the following tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,
TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,
ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

Assume that all relationships have been defined, as implied by the foreign keys in this table
list, and that the appropriate referential integrity constraints are in place. If you want to run
these solutions in a DBMS product, first create a version of the MDC database described
in the Case Questions in Chapter 10A for Microsoft SQL Server 2014, Chapter 10B for
Oracle Database, and Chapter 10C for MySQL 5.6. Name the database MDC_CH08.

A. Create a dependency graph that shows dependencies among these tables. Explain
how you need to extend this graph for views and other database constructs, such as
triggers and stored procedures.

B. Using your dependency graph, describe the tasks necessary to change the name of
the INVOICE table to CUST_INVOICE.

C. Write all SQL statements to make the name change described in part B.

D. Suppose that Marcia decides to allow multiple customers per order (e.g., for
 customers’ spouses). Modify the design of these tables to accommodate this change.

E. Code SQL statements necessary to redesign the database, as described in your
 answer to part D.

F. Suppose that Marcia considers changing the primary key of CUSTOMER to
(FirstName, LastName). Write correlated subqueries to display any data that indi-
cate that this change is not justifiable.

G. Suppose that (FirstName, LastName) can be made the primary key of
CUSTOMER. Make appropriate changes to the table design with this new
 primary key.

H. Code all SQL statements necessary to implement the changes described in part G.

Case Questions

B. If no data violate these functional dependencies, can we assume that they are
valid? Why or why not?

C. Assume that these functional dependencies are true and that the data have been
corrected, as necessary, to reflect them. Write all SQL statements necessary to re-
design this table into a set of tables in BCNF and 4NF. Assume that the table has
data values that must be appropriately transformed to the new design.

452 PART 3 Database Implementation

The Queen Anne
Curiosity Shop

Assume that the Queen Anne Curiosity Shop designs a database with the tables
described at the end of Chapter 7:

CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,
EncryptedPassword, Address, City, State, ZIP, Phone)
EMPLOYEE (EmployeeID, LastName, FirstName, Phone, Email)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,
Address, City, State, ZIP, Phone, Fax, Email)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice,
VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

VendorID in ITEM must exist in VendorID in VENDOR
CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerID of CuSTOMER, EmployeeID of EMPLOyEE, ItemID of ITEM,
SaleID of SALE, and SaleItemID of SALE_ITEM are all surrogate keys with values as
follows:

CustomerID Start at 1 Increment by 1
EmployeeID Start at 1 Increment by 1
VendorID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1

A vendor may be an individual or a company. If the vendor is an individual,
the CompanyName field is left blank, while the ContactLastName and
ContactFirstName fields must have data values. If the vendor is a company,
the company name is recorded in the CompanyName field, and the name of
the primary contact at the company is recorded in the ContactLastName and
ContactFirstName fields.

If you want to run these solutions in a DBMS product, first create a version of the
of the QACS database described in Chapter 7 and name it QACS_CH08.

A. Create a dependency graph that shows dependencies among these tables. Explain
how you need to extend this graph for views and other database constructs, such as
triggers and stored procedures.

B. Using your dependency graph, describe the tasks necessary to change the name of
the SALE table to CUSTOMER_SALE.

C. Write all SQL statements to make the name change described in part B.

D. Suppose that the Queen Anne Curiosity Shop owners decide to allow multiple cus-
tomers per order (e.g., for customers’ spouses). Modify the design of these tables to
accommodate this change.

 CHAPTER 8 Database Redesign 453

E. Code SQL statements necessary to redesign the database, as described in your an-
swer to part D.

F. Suppose that the Queen Anne Curiosity Shop owners are considering changing the
primary key of CUSTOMER to (FirstName, LastName). Write correlated subqueries
to display any data that indicate that this change is not justifiable.

G. Suppose that (FirstName, LastName) can be made the primary key of CUSTOMER.
Make appropriate changes to the table design with this new primary key.

H. Code all SQL statements necessary to implement the changes described in part G.

Morgan
Importing

Assume that Morgan has created a database with the tables described at the end of
Chapter 7 (note that STORE uses the surrogate key StoreID):

EMPLOYEE (EmployeeID, LastName, FirstName, Department, Phone,
Fax, EmailAddress)
STORE (StoreID, StoreName, City, Country, Phone, Fax, EmailAddress,
Contact)
PURCHASE_ITEM (PurchaseItemID, StoreID, PurchasingAgentID,
PurchaseDate, ItemDescription, Category, PriceUSD)
SHIPMENT (ShipmentID, ShipperID, PurchasingAgentID,
ShipperInvoiceNumber, Origin, Destination, ScheduledDepartureDate,
ActualDepartureDate, EstimatedArrivalDate)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, PurchaseItemID,
InsuredValue)
SHIPPER (ShipperID, ShipperName, Phone, Fax, Email, Contact)
SHIPMENT_RECEIPT (ReceiptNumber, ShipmentID, PurchaseItemID,
ReceivingAgent, ReceiptDate, ReceiptTime, ReceiptQuantity, isReceivedUn-
damaged, DamageNotes)

Assume that all relationships have been defined as implied by the foreign keys in
this table list.

James Morgan wants to modify the database design of the Morgan Importing
procurement information system (MIPIS) to separate the items in PuRCHASE_ITEM
in a separate table named ITEM. This will allow each item to be tracked as a unique
entity throughout its acquisition and sale. The schema for the ITEM table is:

ITEM (ItemID, ItemDescription, Category)

PuRCHASE_ITEM will then be replaced by two tables named INVOICE and
INVOICE_LINE_ITEM, linked in a modified sales order configuration as shown in
Figure 8-7 (compare this figure to Figure 6-18(b)).

Similarly, the shipping part of the MIPIS will be modified by changes to the
SHIPMENT_ITEM tables as follows:

SHIPMENT_LINE_ITEM (ShipmentID, ShipmentLineNumber, ItemID,
InsuredValue)

If you want to run these solutions in a DBMS product, first create a version of the
MI database described in Chapter 7 and name it MI_CH08.

A. Create a dependency graph that shows dependencies among the original set of
tables. Explain how you need to extend this graph for views and other database con-
structs, such as stored procedures.

454 PART 3 Database Implementation

EmployeeID

LastName
FirstName
Department
Phone
Fax
EmailAddress

EMPLOYEE STORE

InvoiceNumber

InvoiceDate
StoreID(FK)
PurchasingAgentID(FK)
SubtotalUSD
TaxUSD
TotalUSD

INVOICE

INVOICE_LINE_ITEM

InvoiceNumber(FK)
LineNumber

ItemID(FK)
Quantity
UnitPriceUSD
ExtendedPriceUSD

StoreID

StoreName
City
Country
Phone
Fax
EmailAddress
Contact

ItemID

ItemDescription
Category

ITEM

FIGuRE 8-7

The Morgan Importing MIPIS
Modified SALES_ORDER
Configuration

B. Using your dependency graph, describe the tasks necessary to create and populate
the ITEM table.

C. Write all SQL statements to make the name change described in part B.

D. Using your dependency graph, describe the tasks necessary to change the name of
the SHIPMENT_ITEM table to SHIPMENT_LINE_ITEM and the needed changes
to column names.

E. Write all SQL statements to make the name change described in part B.

F. Using your dependency graph, describe the tasks necessary to convert the sales or-
der component of the MIPIS to the new configuration.

G. Code SQL statements to implement your redesign recommendations in your answer
to part D.

The five chapters in Part 4 introduce and discuss the major problems of
multiuser database processing and describe the features and functions
for solving those problems offered by three important DBMS products.
We begin in Chapter 9 with a description of database administration and
the major tasks and techniques for multiuser database management.
The next three chapters illustrate the implementation of these concepts
using Microsoft SQL Server 2014 (Chapter 10A), Oracle Corporation’s
Oracle Database (Chapter 10B), and Oracle Corporation’s MySQL 5.6
(Chapter 10C).

Multiuser Database
Processing

4
P a r t

Although multiuser databases offer great value to the organizations that

create and use them, they also pose difficult problems for those same organiza-

tions. For one, multiuser databases are complicated to design and develop because

they support many overlapping user views.

Additionally, as discussed in the last chapter, requirements change over time,

and those changes necessitate other changes to the database structure. Such

structural changes must be carefully planned and controlled so that a change made

for one group does not cause problems for another. In addition, when users process

a database concurrently, special controls are needed to ensure that the actions of

one user do not inappropriately influence the results for another. This topic is both

important and complicated, as you will see.

In large organizations, processing rights and responsibilities need to be de-

fined and enforced. What happens, for example, when an employee leaves the

firm? When can the employee’s records be deleted? For the purposes of payroll

processing, records can be deleted after the last pay period. For the purposes of

Managing Multiuser Databases

■■ To learn the four 1992 ANSI standard isolation levels
■■ To understand the need for security and specific tasks

for improving database security
■■ To know the difference between recovery via

reprocessing and recovery via rollback/rollforward
■■ To understand the nature of the tasks required for

recovery using rollback/rollforward
■■ To know basic administrative and managerial DBA

functions

Chapter Objectives
■■ To understand the need for and importance of database

administration
■■ To understand the need for concurrency control, security,

and backup and recovery
■■ To learn about typical problems that can occur when

multiple users process a database concurrently
■■ To understand the use of locking and the problem of

deadlock
■■ To learn the difference between optimistic and

pessimistic locking
■■ To know the meaning of an ACID transaction

456

9

 CHAPTER 9 Managing Multiuser Databases 457

quarterly reporting, they can be deleted at the end of the quarter. For the purposes

of end-of-year tax record processing, they can be deleted at the end of the year.

Clearly, no department can unilaterally decide when to delete that data. Similar

comments pertain to the insertion and changing of data values. For these and other

reasons, security systems need to be developed that enable only authorized users

to take authorized actions at authorized times.

Databases have become key components of organizational operations and

even key components of an organization’s value. Unfortunately, database failures

and disasters do occur. Thus, effective backup and recovery plans, techniques, and

procedures are essential.

Finally, over time, the DBMS itself will need to be changed to improve per-

formance by incorporating new features and releases and to conform to changes

made in the underlying operating system. All of this requires attentive management.

To ensure that these problems are addressed and solved, most organizations

have a database administration office. We begin with a description of the tasks of

that office. We then describe the combination of software and manual practices

and procedures that are used to perform those tasks. In Chapter 10, we introduce

Chapter 10A, 10B, and 10C, which are the three chapters that discuss and illustrate

the features and functions of Microsoft SQL Server 2014, Oracle Database, and

MySQL 5.6, respectively, for dealing with these issues.

The Importance of Working with an Installed DBMS Product

In order to fully understand the DBMS concepts and features we discuss and illustrate in the
chapter, you need to work with them in an installed DBMS product. This hands-on experience
is necessary so that you move from an abstract understanding of these concepts and features
to a practical knowledge of them and how they are used and implemented. The informa-
tion you need to download, install, and use the DBMS products discussed in this book is
in Chapter 10 (introduction to the DBMS products), Chapter 10A (Microsoft SQL Server
2014), Chapter 10B (Oracle Database) and Chapter 10C (MySQL 5.6). Portions of these
chapters parallel the discussion in this chapter and illustrate the actual use of the concepts
and features in each DBMS product.

To get the most out of this chapter, you should download and install the DBMS product(s)
of your choice and then follow along as you work in each section of this chapter by working
thorough the corresponding sections of the chapter for your DBMS product.

Database Administration

The terms data administration and database administration are both used in practice.
In some cases, the terms are considered to be synonymous; in other cases, they have different
meanings. Most commonly, the term data administration refers to a function that applies to an
entire organization; it is a management-oriented function that concerns corporate data pri-
vacy and security issues. In contrast, the term database administration refers to a more technical
function that is specific to a particular database, including the applications that process that
database. This chapter addresses database administration.

Databases vary considerably in size and scope, ranging from single-user personal databases
to large interorganizational databases, such as airline reservation systems. All of these databases
have a need for database administration, though the tasks to be accomplished vary in complexity.
For personal databases, individuals follow simple procedures for backing up their data, and they
keep minimal records for documentation. In this case, the person who uses the database also
performs the database administration functions, even though he or she is probably unaware of it.

458 PART 4 Multiuser Database Processing

For multiuser database applications, database administration becomes both more im-
portant and more difficult. Consequently, it generally has formal recognition. For some ap-
plications, one or two people are given this function on a part-time basis. For large Internet
or intranet databases, database administration responsibilities are often too time consuming
and too varied to be handled even by a single full-time person. Supporting a database with
dozens or hundreds of users requires considerable time as well as both technical knowledge
and diplomatic skills. Such support usually is handled by an office of database administration.
The manager of the office is often known as the database administrator. In this case, the
acronym DBA refers to either the office or the manager.

The overall responsibility of the DBA is to facilitate the development and use of the data-
base. Usually, this means balancing the conflicting goals of protecting the database and maxi-
mizing its availability and benefit to users. Specific tasks are shown in Figure 9-1. We consider
each of these tasks in the following sections.

Managing the Database Structure

Managing the database structure includes participating in the initial database design and
implementation as well as controlling and managing changes to the database. Ideally, the
DBA is involved early in the development of the database and its applications; participates
in the requirements study; helps evaluate alternatives, including the DBMS to be used; and
helps design the database structure. For large organizational applications, the DBA usually is
a manager who supervises the work of technically oriented database design personnel.

Creating the database involves several different tasks. First, the database is created and disk
space is allocated for database files and logs. Then tables are generated, indexes are created, and
stored procedures and triggers are written. We will discuss examples of all of these tasks in the
next three chapters. Once the database structures are created, the database is filled with data.

Configuration Control
After a database and its applications have been implemented, changes in requirements are
inevitable, as described in Chapter 8. Such changes can arise from new needs, from changes
in the business environment, from changes in policy, and from changes in business processes
that evolve with system use. When changes to requirements necessitate changes to the da-
tabase structure, great care must be used because changes to the database structure seldom
involve just one application.

Hence, effective database administration includes procedures and policies by which
users can register their needs for changes, the entire database community can discuss the
impacts of the changes, and a global decision can be made whether to implement proposed
changes. Because of the size and complexity of a database and its applications, changes some-
times have unexpected results. Thus, the DBA must be prepared to repair the database and
to gather sufficient information to diagnose and correct the problem that caused the damage.
The database is most vulnerable to failure after its structure has been changed.

Summary of Database Administration Tasks

• Manage database structure

• Control concurrent processing

• Manage processing rights and responsibilities

• Develop database security

• Provide for database recovery

• Manage the DBMS

• Maintain the data repository

FIguRE 9-1

Summary of Database
administration tasks

 CHAPTER 9 Managing Multiuser Databases 459

Documentation
The DBA’s final responsibility in managing the database structure is documentation. It is ex-
tremely important to know what changes have been made, how they were made, and when they
were made. A change in the database structure may cause an error that is not revealed for six
months; without proper documentation of the change, diagnosing the problem is next to impos-
sible. Considerable work may be required to identify the point at which certain symptoms first
appeared. For this reason, it also is important to maintain a record of the test procedures and
test runs made to verify a change. If standardized test procedures, test forms, and recordkeeping
methods are used, recording the test results does not have to be time consuming.

Although maintaining documentation is tedious and unfulfilling, the effort pays off when
disaster strikes and the documentation is the difference between a quick problem solution
and a confused muddle of activity. Today, several products are emerging that ease the burden
of documentation. Many CASE tools, for example, can be used to document logical database
designs. Version-control software can be used to track changes. Data dictionaries provide re-
ports and other outputs that present database data structures.

Another reason for carefully documenting changes in the database structure is so that
historical data are used properly. If, for example, marketing wants to analyze three-year-old
sales data that have been in the archives for two years, it will be necessary to know what
structure was current at the time the data were last active. Records that show the changes in
the structure can be used to answer that question. A similar situation arises when a six-month-
old backup copy of data must be used to repair a damaged database (although this should
not happen, it sometimes does). The backup copy can be used to reconstruct the database to
the state it was in at the time of the backup. Then transactions and structural changes can be
made in chronological order to restore the database to its current state. Figure 9-2 summarizes
the DBA’s responsibilities for managing the database structure.

Participate in Database and
Application Development

• Assist in the requirements analysis stage
 and data model creation

• Play an active role in database design and
 creation

Facilitate Changes to Database Structure

• Seek communitywide solutions

• Assess impact on all users

• Provide configuration control forum

• Be prepared for problems after changes are
 made

• Maintain documentation

FIguRE 9-2

Summary of DBa’s
responsibilities for
Managing Database
Structure

Concurrency Control

Concurrency control measures are taken to ensure that one user’s work does not inappropri-
ately influence another user’s work. In some cases, these measures ensure that a user gets the
same result when processing with other users that he or she would have received if processing
alone. In other cases, it means that the user’s work is influenced by other users but in an an-
ticipated way. For example, in an order entry system, a user should be able to enter an order
and get the same result, regardless of whether there are no other users or hundreds of other

460 PART 4 Multiuser Database Processing

users. In contrast, a user who is printing a report of the most current inventory status may
want to obtain in-process data changes from other users, even if there is a danger that those
changes may later be canceled.

Unfortunately, no concurrency control technique or mechanism is ideal for every circum-
stance. All involve trade-offs. For example, a program can obtain very strict concurrency control
by locking the entire database, but no other programs will be able to do anything while it runs.
This is strict protection, but at a high cost. As you will see, other measures are available that are
more difficult to program or enforce but that allow more throughput. Still other measures are
available that maximize throughput but have a low level of concurrency control. When design-
ing multiuser database applications, you will need to choose among these trade-offs.

The Need for Atomic Transactions

In most database applications, users submit work in the form of transactions, which are also
known as logical units of work (LUWs). A transaction (or LUW) is a series of actions to be
taken on the database so that either all of them are performed successfully or none of them is
performed at all, in which case the database remains unchanged. Such a transaction is some-
times called atomic because it is performed as a unit.

Consider the following sequence of database actions that could occur when recording a
new order:

1. Change a customer’s row, increasing AmountDue.
2. Change a salesperson’s row, increasing CommissionDue.
3. Insert a new order row into the database.

Suppose that the last step failed, perhaps because of insufficient file space. Imagine the
confusion if the first two changes were made but the third one was not. The customer would
be billed for an order never received, and a salesperson would receive a commission on an
order that was never sent to the customer. Clearly, these three actions need to be taken as a
unit—either all of them should be done or none of them should be done.

Figure 9-3 compares the results of performing these activities as a series of independent
steps (Figure 9-3(a)) and as an atomic transaction (Figure 9-3(b)). Notice that when the steps
are carried out atomically and one fails, no changes are made in the database. Also note that
the commands Start Transaction, Commit Transaction, and Rollback Transaction are issued
by the application program to mark the boundaries of the transaction logic. You will learn
more about these commands later in this chapter and in Chapter 10A, 10B, and 10C.

Concurrent Transaction Processing
When two transactions are being processed against a database at the same time, they are
termed concurrent transactions. Although it may appear to the users that concurrent
transactions are being processed simultaneously, this cannot be true because the CPU of the
machine processing the database can execute only one instruction at a time. Usually, transac-
tions are interleaved, which means that the operating system switches CPU services among
tasks so that some portion of each transaction is carried out in a given interval. This switching
among tasks is done so quickly that two people seated at browsers side by side, processing the
same database, may believe that their two transactions are completed simultaneously; in real-
ity, however, the two transactions are interleaved.

Figure 9-4 shows two concurrent transactions. User A’s transaction reads Item 100,
changes it, and rewrites it in the database. User B’s transaction takes the same actions but
on Item 200. The CPU processes User A’s transactions until it encounters an I/O interrupt
or some other delay for User A. The operating system shifts control to User B. The CPU now
processes User B’s transactions until an interrupt, at which point the operating system passes
control back to User A. To the users, the processing appears to be simultaneous, but it is inter-
leaved, or concurrent.

The Lost update Problem
The concurrent processing illustrated in Figure 9-4 poses no problems because the users are
processing different data. But suppose that both users want to process Item 100. For example,

 CHAPTER 9 Managing Multiuser Databases 461

CUSTOMER

CNum OrderNum Description AmtDue
123 1000 400 Baseballs $2400

Name Commission Due
Total-
Sales

JONES $3200 $320

SALESPERSON

ORDER

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

OrderNum

FULL

(a) Errors Introduced Without Transaction

Before

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $9700

SALESPERSON

ORDER

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

After

START

1. Add new-order data to
 CUSTOMER.

2. Add new-order data to
 SALESPERSON.

3. Insert new ORDER.

STOP

123 8000 250 Basketballs $6500

Action

CNum OrderNum AmtDue

Commission Due
$970

OrderNum

FIguRE 9-3

transaction Processing
Example

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

(b) Atomic Transaction Prevents Errors

CUSTOMER

Description
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FULL

Begin Transaction
 Change CUSTOMER data
 Change SALESPERSON data
 Insert ORDER data
If no errors then
 Commit Transactions
Else
 Rollback Transaction
End If

CNum OrderNum AmtDue

Commission Due
$320

ORDER

OrderNum

CNum OrderNum AmtDue

Commission Due
$320

ORDER

OrderNum

Before AfterTransaction

462 PART 4 Multiuser Database Processing

1. Read item 100 for A.
2. Read item 200 for B.
3. Change item 100 for A.
4. Write item 100 for A.
5. Change item 200 for B.
6. Write item 200 for B.

1. Read item 100.
2. Change item 100.
3. Write item 100.

Order of processing at database server

User A

1. Read item 200.
2. Change item 200.
3. Write item 200.

User BFIguRE 9-4

Concurrent-Processing
Example

User A wants to order five units of Item 100, and User B wants to order three units of the
same item. Figure 9-5 illustrates the problem.

User A reads a copy of Item 100’s record into memory. According to the record, there are
10 items in inventory. Then User B reads another copy of Item 100’s record into a different
section of memory. Again, according to the record, there are 10 items in inventory. Now User
A takes five, decrements the count of items in its copy of the data to five, and rewrites the
record for Item 100. Then User B takes three, decrements the count in its copy of the data to
seven, and rewrites the record for Item 100. The database now shows, incorrectly, that there
are seven Item 100s in inventory. To review: We started with 10 in inventory, User A took 5,
User B took 3, and the database shows that 7 are in inventory. Clearly, this is a problem.

Both users obtained data that were correct at the time they obtained them. But
when User B read the record, User A already had a copy that it was about to update. This
situation is called the lost update problem or the concurrent update problem. A
similar problem is the inconsistent read problem. With this problem, User A reads
data that have been processed by a portion of a transaction from User B. As a result, User
A reads incorrect data.

One remedy for the inconsistencies caused by concurrent processing is to prevent mul-
tiple applications from obtaining copies of the same record when the record is about to be
changed. This remedy is called resource locking.

1. Read item 100 (for A).
2. Read item 100 (for B).
3. Set item count to 5 (for A).
4. Write item 100 for A.
5. Set item count to 7 (for B).
6. Write item 100 for B.

1. Read item 100
 (item count is 10).
2. Reduce count of items by 5.
3. Write item 100.

Order of processing at database server

Note: The change and write in steps 3 and 4 are lost.

User A User B

1. Read item 100
 (item count is 10).
2. Reduce count of items by 3.
3. Write item 100.

FIguRE 9-5

Lost Update Problem

 CHAPTER 9 Managing Multiuser Databases 463

Resource Locking

One way to prevent concurrent processing problems is to disallow sharing by locking data that
are retrieved for update. Figure 9-6 shows the order of processing using a lock command.

Because of the lock, User B’s transaction must wait until User A is finished with the Item
100 data. Using this strategy, User B can read Item 100’s record only after User A has com-
pleted the modification. In this case, the final item count stored in the database is two, as it
should be. (We started with 10, User A took 5, and User B took 3, leaving 2.)

Lock Terminology
Locks can be placed either automatically by the DBMS or by a command issued to the DBMS
from the application program. Locks placed by the DBMS are called implicit locks; those
placed by command are called explicit locks. Today, almost all locking is implicit. The pro-
gram declares the behavior it wants, and the DBMS places locks accordingly. You will learn
how to do that later in this chapter.

In the preceding example, the locks were applied to rows of data. Not all locks are ap-
plied at this level, however. Some DBMS products lock groups of rows within a table, some
lock entire tables, and some lock the entire database. The size of a lock is referred to as lock
granularity. Locks with large granularity are easy for the DBMS to administer but frequently
cause conflicts. Locks with small granularity are difficult to administer (the DBMS has to track
and check many more details), but conflicts are less common.

Locks also vary by type. An exclusive lock locks the item from any other access. No other
transaction can read or change the data. A shared lock locks the item from change but not from
read; that is, other transactions can read the item as long as they do not attempt to alter it.

Serializable Transactions
When two or more transactions are processed concurrently, the results in the database should
be logically consistent with the results that would have been achieved had the transactions
been processed in an arbitrary, serial fashion. A scheme for processing concurrent transac-
tions in this way is said to be serializable.

Serializability can be achieved by a number of different means. One way is to process
the transaction using two-phase locking. With this strategy, transactions are allowed to
obtain locks as necessary, but once the first lock is released, no other lock can be obtained.

 1. Lock item 100 for A.
 2. Read item 100 for A.
 3. Lock item 100 for B; cannot,
 so place B in wait state.
 4. Set item count to 5 for A.
 5. Write item 100 for A.
 6. Release A’s lock on item 100.
 7. Place lock on item 100 for B.
 8. Read item 100 for B.
 9. Set item count to 2 for B.
10. Write item 100 for B.
11. Release B’s lock on item 100.

1. Lock item 100.
2. Read item 100.
3. Reduce count by 5.
4. Write item 100.

Order of processing at database server

User A User B

1. Lock item 100.
2. Read item 100.
3. Reduce count by 3.
4. Write item 100.

B’s transaction

A’s transaction

FIguRE 9-6

Concurrent Processing
with Explicit Locks

464 PART 4 Multiuser Database Processing

By THE WAy Even if all the applications do not lock resources in the same order, dead-
lock will be prevented for those that do. Sometimes this policy is imple-

mented with an organizational programming standard such as “Whenever processing
rows from tables in a parent–child relationship, lock the parent row before the child
rows.” This policy will at least reduce the likelihood of deadlock and thus save the
DBMS from having to recover from some deadlocked transactions.

Transactions thus have a growing phase, during which the locks are obtained, and a
shrinking phase, during which the locks are released.

A special case of two-phase locking is used with a number of DBMS products. With it,
locks are obtained throughout the transaction, but no lock is released until the COMMIT or
ROLLBACK command is issued. This strategy is more restrictive than two-phase locking re-
quires, but it is easier to implement.

Consider an order-entry transaction that processes data in the CUSTOMER,
SALESPERSON, and ORDER tables. To avoid concurrency problems, the order entry transac-
tion issues locks on CUSTOMER, SALESPERSON, and ORDER as needed; makes all data-
base changes; and then releases all locks.

Deadlock
Although locking solves one problem, it introduces another. Consider what can happen when
two users want to order two items from inventory. Suppose that User A wants to order some
paper, and if she can get the paper, she wants to order some pencils. Then suppose that User B
wants to order some pencils, and if he can get the pencils, he wants to order some paper. The
order of processing is shown in Figure 9-7.

In this figure, Users A and B are locked in a condition known as deadlock or sometimes
as the deadly embrace. Each user is waiting for a resource that the other has locked. This
problem can be solved either by preventing the deadlock from occurring or by allowing the
deadlock to occur and then breaking it.

Deadlock can be prevented in several ways. One way is to require users to issue all lock
requests at one time. In Figure 9-7, if User A had locked both the paper and the pencil records
at the beginning, deadlock would not occur. A second way to prevent deadlock is to require all
application programs to lock resources in the same order.

1. Lock paper for user A.
2. Lock pencils for user B.
3. Process A’s requests; write paper record.
4. Process B’s requests; write pencil record.
5. Put A in wait state for pencils.
6. Put B in wait state for paper.

1. Lock paper.
2. Take paper.
3. Lock pencils.

Order of processing at database server

** Locked **

User A User B

1. Lock pencils.
2. Take pencils.
3. Lock paper.

FIguRE 9-7

Deadlock Example

Almost every DBMS has algorithms for breaking deadlock, when it does occur. First, the
DBMS must detect that it has occurred. Then the typical solution is to cancel one of the trans-
actions and remove its changes from the database. You will see variants of this with Microsoft
SQL Server, Oracle Database, and MySQL in the next three chapters.

 CHAPTER 9 Managing Multiuser Databases 465

Optimistic Versus Pessimistic Locking

Locks can be invoked in two basic styles. With optimistic locking, the assumption is made
that no conflict will occur. Data are read, the transaction is processed, updates are issued, and
then a check is made to see if conflict occurred. If not, the transaction is finished. If conflict
did occur, the transaction is repeated until it processes with no conflict. With pessimistic
locking, the assumption is made that conflict will occur. Locks are issued, the transaction is
processed, and then the locks are freed.

Figures 9-8 and 9-9 show examples of each style for a transaction that is reducing the
quantity of the pencil row in PRODUCT by 5. Figure 9-8 shows optimistic locking. First, the
data are read and the current value of Quantity of pencils is saved in the variable OldQuantity.
The transaction is then processed, and assuming that all is OK, a lock is obtained on
PRODUCT. (In fact, the lock might be only for the pencil row or it might be at a larger level of
granularity, but the principle is the same.) After obtaining the lock, an SQL statement is issued
to update the pencil row with a WHERE condition that the current value of Quantity equals
OldQuantity. If no other transaction has changed the Quantity of the pencil row, then this
UPDATE will be successful. If another transaction has changed the Quantity of the pencil row,
the UPDATE will fail. In either case, the lock is released. If the transaction failed, the process is
repeated until the transaction finishes with no conflict.

Figure 9-9 shows the logic for the same transaction using pessimistic locking. Here a lock
is obtained on PRODUCT before any work is begun. Then values are read, the transaction is
processed, the UPDATE occurs, and PRODUCT is unlocked.

The advantage of optimistic locking is that locks are held for much less time than with
pessimistic locking because locks are obtained only after the transaction has finished. If the
transaction is complicated or if the client is slow (due to transmission delays, the client doing
other work, or the user getting a cup of coffee or shutting down without exiting the browser),
optimistic locking can dramatically improve throughput. This advantage will be especially
true if the lock granularity is large—say, the entire PRODUCT table.

The disadvantage of optimistic locking is that if there is a lot of activity on the pencil row, the
transaction may have to be repeated many times. Thus, transactions that involve a lot of activity
on a given row (purchasing a popular stock, for example) are poorly suited for optimistic locking.

In general, the Internet is a wild and woolly place, and users are likely to take unex-
pected actions, such as abandoning transactions in the middle. So, unless Internet users have
been prequalified (by enrolling in an online brokerage stock purchase plan, for example),

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

LOCK PRODUCT;

SELECT

FROM

WHERE

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-01 *** */

PRODUCT.Name, PRODUCT.Quantity

PRODUCT

PRODUCT.Name = Pencil ;

UPDATE

SET

WHERE

 AND

UNLOCK PRODUCT;

{check to see if update was successful;

if not, repeat transaction}

PRODUCT

PRODUCT.Quantity = NewQuantity

PRODUCT.Name = Pencil

PRODUCT.Quantity = OldQuantity;

FIguRE 9-8

Optimistic Locking

466 PART 4 Multiuser Database Processing

optimistic locking is the better choice in that environment. On intranets, however, the deci-
sion is more difficult. Optimistic locking is probably still preferred unless some characteristic
of the application causes substantial activity on particular rows or if application requirements
make reprocessing transactions particularly undesirable.

SQL Transaction Control Language and Declaring
Lock Characteristics

As you can see, concurrency control is a complicated subject; determining the level,
type, and placement of the lock is difficult. Sometimes, too, the optimum locking strategy
depends on which transactions are active and what they are doing. For these and other
reasons, database application programs do not generally explicitly issue locks as shown in
Figures 9-8 and 9-9. Instead, they mark transaction boundaries using SQL Transaction
Control Language (TCL) and then declare the type of locking behavior they want the
DBMS to use. In this way, the DBMS can place and remove locks and even change the level
and type of locks dynamically.

Figure 9-10 shows the pencil transaction with transaction boundaries marked with the
SQL TCL standard commands for controlling transactions:

■■ The SQL BEGIN TRANSACTION statement,
■■ The SQL COMMIT TRANSACTION statement, and
■■ The SQL ROLLBACK TRANSACTION statement.

The SQL BEGIN TRANSACTION statement explicitly marks the start of a new transaction,
while the SQL COMMIT TRANSACTION statement makes any database changes made
by the transaction permanent and marks the end of the transaction. If there is a need to
undo the changes made during the transaction due to an error in the process, the SQL
ROLLBACK TRANSACTION statement is used to undo all transaction changes and return
the database to the state it was in before the transaction was attempted. Thus, the SQL
ROLLBACK TRANSACTION statement also marks the end of the transaction, but with a
very different outcome.

These boundaries are the essential information that the DBMS needs to enforce
the different locking strategies. If the developer now declares via a system parameter
that he or she wants optimistic locking, the DBMS will implicitly set locks for that lock-
ing style. If, however, the developer declares pessimistic locking, the DBMS will set the
locks differently.

LOCK

SELECT

FROM

WHERE

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

UPDATE

SET

WHERE

UNLOCK

{no need to check if update was successful}

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-02 *** */

PRODUCT;

PRODUCT.Name, PRODUCT.Quantity

PRODUCT

PRODUCT.Name = Pencil ;

PRODUCT

PRODUCT.Quantity = NewQuantity

PRODUCT.Name = Pencil ;

PRODUCT;

FIguRE 9-9

Pessimistic Locking

 CHAPTER 9 Managing Multiuser Databases 467

BEGIN TRANSACTION;

SELECT

FROM

WHERE

Set NewQuantity = PRODUCT.Quantity – 5;

{process transaction – take exception action if NewQuantity < 0, etc.}

UPDATE

SET

WHERE

{continue processing transaction} . . .

IF {transaction has completed normally} THEN

 COMMIT TRANSACTION;

ELSE

 ROLLBACK TRANSACTION;

END IF;

Continue processing other actions not part of this transaction . . .

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-03 *** */

PRODUCT.Name, PRODUCT.Quantity

PRODUCT

PRODUCT.Name = Pencil ;

PRODUCT

PRODUCT.Quantity = NewQuantity

PRODUCT.Name = Pencil ;

FIguRE 9-10

Marking transaction
Boundaries

By THE WAy As usual, each DBMS product implements these SQL statements in a
slightly different way. Microsoft SQL Server does not require the SQL

keyword TRANSACTION, allows the abbreviation TRANS, and also allows the use
of the SQL WORK keyword with COMMIT and ROLLBACK. Oracle Database uses
SET TRANSACTION with COMMIT and ROLLBACK. MySQL does not use the SQL
keyword TRANSACTION, while it allows (but does not require) use of the SQL WORK
keyword in its place.

Also note that the SQL BEGIN TRANSACTION statement is not the same as the
SQL BEGIN statement used in SQL/PSM control-of-flow statements (as discussed
in Chapters 7, 10A, 10B, and 10C). Thus, you may have to use a different syntax
for marking transactions within a trigger or stored procedure. For example, MySQL
marks the beginning of transactions in a BEGIN . . . END block with the SQL START
TRANSACTION statement. As usual, be sure to consult the documentation for the
DBMS product you are using.

Implicit and Explicit COMMIT TRANSACTION

Some DBMS products allow and implement an implicit COMMIT TRANSACTION when-
ever a SQL DML statement is run. For example, suppose we run a transaction using the SQL
UPDATE command:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-01 *** */

UPDATE CUSTOMER

 SET AreaCode = '425'

 WHERE ZIPCode = '98050';

468 PART 4 Multiuser Database Processing

Microsoft SQL Server 2014 and MySQL 5.6 will, by default, automatically commit the
changes to the database after the transaction is complete. You do not have to use a COMMIT
statement to make the database changes permanent. This is an implicit COMMIT setting.

On the other hand, Oracle Database does not provide a mechanism for implicit
COMMITs, and an explicit COMMIT statement must be run to make the changes to the da-
tabase permanent (Oracle Database uses COMMIT instead of COMMIT TRANSACTION).
Thus, we would have to run the SQL UPDATE as:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-02 *** */

UPDATE CUSTOMER

 SET AreaCode = '425'

 WHERE ZIPCode = '98050';

COMMIT;

Note that this statement applies only to the Oracle Database DBMS itself. Some Oracle
Database utilities do implement the ability to automatically issue COMMIT statements, and
thus it can appear to the user that there is an implicit COMMIT. We will discuss this in detail
when we work with Oracle Database in Chapter 10B.

Consistent Transactions

Sometimes, you will see the acronym ACID applied to transactions. An ACID transaction
is one that is atomic, consistent, isolated, and durable. Atomic and durable are easy to define.
As you just learned, an atomic transaction is one in which either all of the database actions
occur or none of them does. A durable transaction is one in which all committed changes
are permanent. Once a durable change is committed, the DBMS takes responsibility for en-
suring that the change will survive system failures.

The terms consistent and isolated are not as definitive as the terms atomic and durable.
Consider a transaction with just one SQL UPDATE statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH09-03 *** */

BEGIN TRANSACTION;

UPDATE CUSTOMER

 SET AreaCode = '425'

 WHERE ZIPCode = '98050';

COMMIT TRANSACTION;

Suppose that there are 500,000 rows in the CUSTOMER table and that 500 of them
have ZIPCode equal to '98050'. It will take some time for the DBMS to find those 500 rows.
During that time, other transactions may attempt to update the AreaCode or ZIPCode fields
of CUSTOMER. If the SQL statement is consistent, such update requests will be disallowed.
Hence, the update shown in SQL-UPDATE-CH09-03 will apply to the set of rows as they
existed at the time the SQL statement started. Such consistency is called statement-level
consistency.

Now, consider a transaction (SQL-Code-Example-CH09-01) that contains two SQL
UPDATE statements as part (with possible other transaction actions) of a transaction marked
by SQL transaction boundaries:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-04 *** */

BEGIN TRANSACTION;

 CHAPTER 9 Managing Multiuser Databases 469

 /* *** SQL-UPDATE-CH09-03 *** */

 UPDATE CUSTOMER

 SET AreaCode = '425'

 WHERE ZIPCode = '98050';

 — Other transaction work

 /* *** SQL-UPDATE-CH09-04 *** */

 UPDATE CUSTOMER

 SET Discount = 0.05

 WHERE AreaCode = '425';

 — Other transaction work

COMMIT TRANSACTION;

In this context, what does consistent mean? Statement-level consistency means that
each statement independently processes rows consistently, but that changes from other us-
ers to these rows might be allowed during the interval between the two SQL statements.
Transaction-level consistency means that all rows affected by either of the SQL state-
ments are protected from changes during the entire transaction.

Observe that transaction-level consistency is so strong that, for some implementations
of it, a transaction will not see its own changes. In this example, the SQL statement SQL-
Update-CH09-04 may not see rows changed by the SQL statement SQL-Update-CH09-03.

Thus, when you hear the term consistent, look further to determine which type of consis-
tency is meant. Be aware as well of the potential trap of transaction-level consistency.

Transaction Isolation Level

The term isolated has several different meanings. To understand those meanings, we need first
to define several new terms that describe various problems that can occur when we read data
from a database, which are summarized in Figure 9-11.

■■ A dirty read occurs when a transaction reads a row that has been changed but for
which the change has not yet been committed to the database. The danger of a dirty
read is that the uncommitted change can be rolled back. If so, the transaction that
made the dirty read will be processing incorrect data.

■■ A nonrepeatable read occurs when a transaction rereads data it has previously
read and finds modifications or deletions caused by a committed transaction.

■■ A phantom read occurs when a transaction rereads data and finds new rows that
were inserted by a committed transaction since the prior read.

In order to deal with these potential data read problems, the SQL standard defines four
transaction isolation levels or isolation levels that control which of these problems are
allowed to occur. Using these SQL defined isolation levels, the application programmer can

Dirty Read The transaction reads a row that has been
changed, but the change has not been committed.
If the change is rolled back, the transaction has
incorrect data.

Nonrepeatable Read The transaction rereads data that has been
changed, and finds updates or deletions due to
committed transactions.

Phantom Read The transaction rereads data and finds new rows
inserted by a committed transaction.

Data Read Problem Type Definition
FIguRE 9-11

Summary of Data read
Problems

470 PART 4 Multiuser Database Processing

Problem
Type

Isolation Level

Read
Uncommitted

Read
Committed

Repeatable
Read

Dirty Read

Nonrepeatable
Read

Phantom Read

Possible

Possible

Possible

Not Possible

Possible

Possible

Not Possible

Not Possible

Possible

Not Possible

Not Possible

Not Possible

Serializable

FIguRE 9-12

Summary of transaction
Isolation Levels

declare the type of isolation level he or she wants, and the DBMS will create and manage
locks to achieve that level of isolation.

These transaction isolation levels are summarized in Figure 9-12 and can be defined as:

■■ The read-uncommitted isolation level allows dirty reads, nonrepeatable reads,
and phantom reads to occur.

■■ The read-committed isolation level allows nonrepeatable reads and phantom
reads but disallows dirty reads.

■■ The repeatable-read isolation level allows phantom reads but disallows both
dirty reads and nonrepeatable reads.

■■ The serializable isolation level will not allow any of these three data read
 problems to occur.

Generally, the more restrictive the level, the less the throughput, though much depends on
the workload and how the application programs are written. Moreover, not all DBMS products
support all of these levels. As usual, the support of SQL transaction isolation levels varies between
DBMS products, and you will learn how Microsoft SQL Server 2014, Oracle Database, and
MySQL 5.6 support isolation levels in Chapter 10A, Chapter 10B, and Chapter 10C, respectively.

SQL Cursors

An SQL cursor or cursor is a pointer into a set of rows. SQL cursors are usually defined in
an SQL DECLARE CURSOR statement that defines the cursor by using an SQL SELECT
statement. For example, the following DECLARE CURSOR statement defines a cursor named
TransCursor that operates over the set of rows indicated by the included SELECT statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-05 *** */

DECLARE CURSOR TransCursor AS

 SELECT *

 FROM TRANS

 WHERE PurchasePrice > 10000;

As was explained in Chapter 7, after an application program opens a cursor, it can place
the cursor somewhere in the result set. Most commonly, the cursor is placed on the first or last
row, but other possibilities exist.

A transaction can open several cursors—either sequentially or simultaneously.
Additionally, two or more cursors may be open on the same table; either directly on the table
or through an SQL view on that table. Because cursors require considerable memory, having
many cursors open at the same time for, say, a thousand concurrent transactions will consume
exorbitant memory. One way to reduce cursor burden is to define reduced-capability cursors
and use them when a full-capability cursor is not needed.

Figure 9-13 lists four SQL cursor types used in the Microsoft SQL Server 2014 environment
(cursor types for other systems are similar). The simplest cursor is the forward only cursor.

 CHAPTER 9 Managing Multiuser Databases 471

With it, the application can move only forward through the records. Changes made by other
 cursors in this transaction and by other transactions will be visible only if they occur to rows
ahead of the cursor.

The next three types of cursors are called scrollable cursors because the application
can scroll forward and backward through the records. A static cursor takes a snapshot of
a relation and processes that snapshot. Changes made using this cursor are visible; changes
from other sources are not visible.

A keyset cursor combines some of the features of static cursors with some of the features
of dynamic cursors. When the cursor is opened, a primary key value is saved for each row.
When the application positions the cursor on a row, the DBMS uses the key value to read the
current value of the row. Inserts of new rows by other cursors (in this transaction or in other
transactions) are not visible. If the application issues an update on a row that has been deleted by
a different cursor, the DBMS creates a new row with the old key value and places the updated
values in the new row (assuming that all required fields are present). Unless the isolation level
of the transaction is a dirty read, only committed updates and deletions are visible to the cursor.

A dynamic cursor is a fully featured cursor. All inserts, updates, deletions, and changes
in row order are visible to a dynamic cursor. As with keyset cursors, unless the isolation level
of the transaction is a dirty read, only committed changes are visible.

The amount of overhead and processing required to support a cursor is different for each
type of cursor. In general, the cost goes up as we move down the cursor types shown in Figure
9-13. To improve DBMS performance, the application developer should create cursors that

CursorType

Forward only

Description Comments

Static

Keyset

Dynamic Changes of any type and from
any source are visible.

Application can only move
forward through the recordset.

Application sees the data as
they were at the time the
cursor was opened.

When the cursor is opened, a
primary key value is saved
for each row in the recordset.
When the application
accesses a row, the key is
used to fetch the current
values for the row.

Changes made by other cursors
in this transaction or in other
transactions will be visible only
if they occur on rows ahead of
the cursor.

Changes made by this cursor
are visible. Changes from
other sources are not visible.
Backward and forward
scrolling allowed.

All inserts, updates, deletions,
and changes in recordset order
are visible. If the isolation level
is dirty read, then uncommitted
changes are visible. Otherwise,
only committed changes are
visible.

Updates from any source are
visible. Inserts from sources
outside this cursor are not visible
(there is no key for them in the
keyset). Inserts from this cursor
appear at the bottom of the
recordset. Deletions from any
source are visible. Changes in
row order are not visible. If the
isolation level is read-uncommitted,
then uncommitted updates and
deletions are visible; otherwise only
committed updates and deletions
are visible.

FIguRE 9-13

Summary of SQL
Cursor types

472 PART 4 Multiuser Database Processing

Sales
personnel

Management
personnel

System
administrator

Insert, change,
query

Insert, change,
query

Grant rights,
modify structure

Insert, query

Insert, change,
query

Grant rights,
modify structure

Query

Insert, change,
query

Grant rights,
modify structure

Query

Insert, change,
query

Grant rights,
modify structure

CUSTOMER TRANSACTION WORK ARTIST
FIguRE 9-14

Processing rights at
View ridge Gallery

are just powerful enough to do the job. It is also very important to understand how a particu-
lar DBMS implements cursors and whether cursors are located on the server or on the client.
In some cases, it might be better to place a dynamic cursor on the client than to have a static
cursor on the server. No general rule can be stated because performance depends on the
implementation used by the DBMS product and the application requirements.

A word of caution: If you do not specify the isolation level of a transaction or do not spec-
ify the type of cursors you open, the DBMS will use a default level and default types. These
defaults may be perfect for your application, but they also may be terrible. Thus, even though
these issues can be ignored, their consequences cannot be avoided. You must learn the capa-
bilities of your DBMS product.

By THE WAy You may be wondering what good it does to say that the system admin-
istrator cannot process the data when that person has the ability to grant

processing rights. He or she can just grant the right to change data to himself or
herself. Although this is true, the granting of those rights will leave an audit trail in the
 database log. Clearly, this limitation is not foolproof, but it is better than just allowing
the system administrator (or DBA) full access to all rights in the database.

Database Security

The goal of database security is to ensure that only authorized users can perform authorized
activities at authorized times. This goal is difficult to achieve, and to make any progress at all,
the database development team must determine the processing rights and responsibilities of
all users during the project’s requirements specification phase. These security requirements
can then be enforced using the security features of the DBMS and additions to those features
written into the application programs.

Processing Rights and Responsibilities

Consider, for example, the needs of View Ridge Gallery. The View Ridge database has three
types of users: sales personnel, management personnel, and system administrators. View
Ridge designed processing rights for each as follows: Sales personnel are allowed to enter new
customer and transaction data, to change customer data, and to query any of the data. They
are not allowed to enter new artist or work data. They are never allowed to delete data.

Management personnel are allowed all of the permissions of sales personnel, plus they
are allowed to enter new artist and work data and to modify transaction data. Even though
management personnel have the authority to delete data, they are not given that permission
in this application. This restriction is made to prevent the possibility of accidental data loss.

The system administrator can grant processing rights to other users, and he or she can
change the structure of the database elements such as tables, indexes, stored procedures, and
the like. The system administrator is not given rights to process the data. Figure 9-14 summa-
rizes these processing rights.

 CHAPTER 9 Managing Multiuser Databases 473

The permissions in this table are not given to particular people, but rather are given to
groups of people. Sometimes these groups are termed roles because they describe people
acting in a particular capacity. The term user groups is also used. Assigning permission to
roles (or user groups) is typical but not required. It would be possible to say, for example, that
the user identified as “Benjamin Franklin” has certain processing rights. Note, too, that when
roles are used, it is necessary to have a way to allocate users to roles. When “Mary Smith” signs
on to the computer, there must be some way to determine which role or roles she has. We will
discuss this further in the next section.

In this discussion, we have used the phrase processing rights and responsibilities.
As this phrase implies, responsibilities go with processing rights. If, for example, the manager
modifies transaction data, the manager has the responsibility to ensure that these modifica-
tions do not adversely affect the gallery’s operation, accounting, and so forth.

Processing responsibilities cannot be enforced by the DBMS or by the database applica-
tions. Instead, they are encoded in manual procedures and explained to users during systems
training. These are topics for a systems development text, and we will not consider them
further here—except to reiterate that responsibilities go with rights. Such responsibilities must be
documented and enforced.

According to Figure 9-1, the DBA has the task of managing processing rights and respon-
sibilities. As this implies, these rights and responsibilities will change over time. As the data-
base is used and as changes are made to the applications and to the structure of the DBMS,
the need for new or different rights and responsibilities will arise. The DBA is a focal point for
the discussion of such changes and for their implementation.

Once processing rights have been defined, they can be implemented at many levels: operat-
ing system, network, Web server, DBMS, and application. In the next two sections, we will con-
sider DBMS and application implementation. The other levels are beyond the scope of this text.

DBMS Security

The terminology, features, and functions of DBMS security depend on the DBMS product in
use. Basically, all such products provide facilities that limit certain actions on certain objects to
certain users. A general model of DBMS security is shown in Figure 9-15.

A USER can be assigned to one or more ROLEs (or USER GROUPs), and a ROLE can
have one or more USERs. An OBJECT is an element of a database, such as a table, view, or
stored procedure. PERMISSION is an association entity among USER, ROLE, and OBJECT.
Hence, the relationships from USER to PERMISSION, ROLE to PERMISSION, and OBJECT
to PERMISSION are all 1:N, O-M.

Permissions can be managed using SQL Data Control Language (DCL) statements:

■■ The SQL GRANT statement is used to assign permissions to users and groups so
that the users or groups can perform various operations on the data in the database.

■■ The SQL REVOKE statement is used to take existing permissions away from us-
ers and groups.

USER

OBJECT

ROLE

Accounting
Tellers
Shop Managers
Unknown Public

Eleanore Wu
James Johnson
Richard Ent Eleanore Wu can execute MonthEnd Stored Procedure.

James Johnson can alter all tables.

Accounting can update CUSTOMER table.

PERMISSION

FIguRE 9-15

a Model of DBMS Security

474 PART 4 Multiuser Database Processing

• Run DBMS behind a firewall, but plan as though the firewall has been breached

• Apply the latest operating system and DBMS service packs and fixes

• Use the least functionality possible
 • Support the fewest network protocols possible
 • Delete unnecessary or unused system stored procedures
 • Disable default logins and guest users, if possible
 • Unless required, never allow users to log on to the DBMS interactively

• Protect the computer that runs the DBMS
 • No user allowed to work at the computer that runs the DBMS
 • DBMS computer physically secured behind locked doors
 • Visits to the room containing the DBMS computer should be
 recorded in a log

• Manage accounts and passwords
 • Use a low privilege user account for the DBMS service
 • Protect database accounts with strong passwords
 • Monitor failed login attempts
 • Frequently check group and role memberships
 • Audit accounts with null passwords
 • Assign accounts the lowest privileges possible
 • Limit DBA account privileges

• Planning
 • Develop a security plan for preventing and detecting security problems
 • Create procedures for security emergencies and practice them

FIguRE 9-16

Summary of DBMS
Security Guidelines

While these statements can be used in SQL scripts and with SQL command line utilities, we
will find it much easier to use the GUI DBMS administration utilities provided for use with each
of the major DBMS products and will illustrate how to use these utilities for Microsoft SQL Server
2014 in Chapter 10A, Oracle Database in Chapter 10B, and for MySQL 5.6 in Chapter 10C.

When a user signs on to the database, the DBMS limits the user’s actions to the permis-
sions defined for that user and to the permissions for roles to which that user has been assigned.
Determining whether someone actually is who he or she claims to be is a difficult task in gen-
eral. All commercial DBMS products use some version of username and password verification,
even though such security is readily circumvented if users are careless with their identities.

Users can enter their username (also called the login name) and password, or, in
some applications, the name and password is entered on the user’s behalf. For example, the
Windows username and password can be passed directly to the DBMS. In other cases, an ap-
plication program provides the username and password. Internet applications usually define
a group such as “Unknown Public” and assign anonymous users to that group when they sign
on. In this way, companies, such as Dell, need not enter every potential customer into their
security system by username and password.

Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6 security systems are
variations of the model in Figure 9-15. You will learn about them in Chapters 10A, 10B,
and 10C, respectively.

DBMS Security guidelines

Guidelines for improving security in database systems are listed in Figure 9-16. First, the
DBMS must always be run behind a firewall. However, the DBA should plan security with
the assumption that the firewall has been breached. The DBMS, the database, and all applica-
tions should be secure even if the firewall fails.

DBMS vendors, including IBM, Oracle, and Microsoft, are constantly adding product
features to improve security and reduce vulnerability. Consequently, organizations using

 CHAPTER 9 Managing Multiuser Databases 475

DBMS products should continually check the vendors’ Web sites for service packs and fixes;
any service packs or fixes that involve security features, functions, and processing should be
installed as soon as possible.

The installation of new service packs and fixes is not quite as simple as described here.
The installation of a service pack or fix can break some applications, particularly some licensed
software that requires specific service packs and fixes to be installed (or not installed). It may be
necessary to delay installation of DBMS service packs until vendors of licensed software have
upgraded their products to work with the new versions. Sometimes just the possibility that a
licensed application might fail after a DBMS service pack or fix is applied is sufficient reason to
delay the fix. However, the DBMS is still vulnerable during this period. Pick your regret!

Additionally, database features and functions that are not required by the applications should
be removed or disabled from the DBMS. For example, if TCP/IP is used to connect to the DBMS,
other communications protocols should be removed. This action reduces the pathways by which
unauthorized activity can reach the DBMS. Further, all DBMS products are installed with system-
stored procedures that provide services such as starting a command file, modifying the system
registry, initiating email, and the like. Any of these stored procedures that are not needed should
be removed. If all users are known to the DBMS, default logins and guest user accounts should be
removed as well. Finally, unless otherwise required, users should never be allowed to log on to the
DBMS in interactive mode. They should always access the database via an application.

In addition, the computer(s) that runs the DBMS must be protected. No one other than
authorized DBA personnel should be allowed to work at the keyboard of the computer that
runs the DBMS. The computer running the DBMS should be physically secured behind
locked doors, and access to the facility housing the computer should be controlled. Visits to
the DBMS computer room should be recorded in a log.

Accounts and passwords should be assigned carefully and continually managed. The
DBMS itself should run on an account that has the lowest possible operating system privi-
leges. In that way, if an intruder were to gain control of the DBMS, the intruder would have
limited authority on that local computer or network. Additionally, all accounts within the
DBMS should be protected by strong passwords. Such passwords have at least 15 charac-
ters and contain upper- and lowercase letters; numbers; special characters, such as +, @, #,
***; and unprintable key combinations (certain Alt + key combinations).

The DBA should frequently check the accounts that have been assigned to groups and
roles to ensure that all accounts and roles are known, are authorized, and have the correct
permissions. Further, the DBA should audit accounts with null passwords. The users of such
 accounts should be required to protect those accounts with strong passwords. Also, as a gen-
eral rule, accounts should be granted the lowest privileges possible.

As stated, the privileges for the DBA should normally not include the right to process the
users’ data. If the DBA grants himself or herself that privilege, the unauthorized grant opera-
tion will be visible in the database log.

In the spring of 2003, the Slammer worm invaded thousands of sites running Microsoft
SQL Server. Microsoft had previously released a patch to SQL Server that prevented this attack.
Sites that had installed the patch had no problems. The moral: Install security patches to your
DBMS as promptly as possible. Create a procedure for regularly checking for such patches.

Finally, the DBA should participate in security planning. Procedures for both prevent-
ing and detecting security problems should be developed. Furthermore, procedures should
be developed for actions to be taken in case of a security breach. Such procedures should be
practiced. The importance of security in information systems has increased dramatically in
recent years. DBA personnel should regularly search for security information on the Web in
general and at the DBMS vendor’s Web site.

Application Security

Although DBMS products such as Oracle Database, Microsoft SQL Server, and MySQL do pro-
vide substantial database security capabilities, those capabilities are generic. If the application
 requires specific security measures, such as “No user can view a row of a table or of a join of a table
that has an employee name other than his or her own,” the DBMS facilities will not be adequate.
In these cases, the security system must be augmented by features in database applications.

476 PART 4 Multiuser Database Processing

For example, as you will learn in Chapter 11, application security in Internet applica-
tions is often provided on the Web server. Executing application security on this server means
that sensitive security data need not be transmitted over the network.

To understand this better, suppose that an application is written so that when users click
a particular button on a browser page, the following query is sent to the Web server and then
to the DBMS:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-06 *** */

SELECT *

FROM EMPLOYEE;

This statement will, of course, return all EMPLOYEE rows. If the application security
policy permits employees to access only their own data, then a Web server could add the fol-
lowing WHERE clause to this query:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-07 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = '<% = SESSION(("EmployeeName"))%>';

An expression like this one will cause the Web server to fill the employee’s name into the
WHERE clause. For a user signed in under the name 'Benjamin Franklin', the statement that
results from this expression is:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-08 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = 'Benjamin Franklin';

Because the name is inserted by a program on the Web server, the browser user does not
know that it is occurring and cannot interfere with it even if he or she did.

Such security processing can be done as shown here on a Web server, but it also can be
done within the application programs themselves or written as stored procedures or triggers
to be executed by the DBMS at the appropriate times.

This idea can be extended by storing additional data in a security database that is accessed
by the Web server or by stored procedures and triggers. That security database could contain,
for example, the identities of users paired with additional values of WHERE clauses. For
 example, suppose that the users in the personnel department can access more than just their
own data. The predicates for appropriate WHERE clauses could be stored in the security data-
base, read by the application program, and appended to SQL SELECT statements as necessary.

Many other possibilities exist for extending DBMS security with application processing. In
general, however, you should use the DBMS security features first. Only if they are inadequate for
the requirements should you add to them with application code. The closer the security enforce-
ment is to the data, the less chance there is for infiltration. Also, using the DBMS security features
is faster and cheaper and probably results in higher-quality results than developing your own.

The SQL Injection Attack

Whenever data from the user are used to modify an SQL statement, an SQL injection attack
is possible. For example, in the prior section, if the value of EmployeeName used in the SELECT
statement is not obtained via a secure means, such as from the operating system rather than
from a Web form, there is the chance that the user can inject SQL into the statement.

 CHAPTER 9 Managing Multiuser Databases 477

For example, suppose that users are asked to enter their names into a Web form textbox.
Suppose that a user enters the value 'Benjamin Franklin' OR TRUE for his or her name. The SQL
statement generated by the application will then be the following:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Code-Example-CH09-09 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = 'Benjamin Franklin' OR TRUE;

Of course, the value TRUE is true for every row, so every row of the EMPLOYEE table will be
returned! Thus, any time user input is used to modify an SQL statement, that input must be
carefully edited to ensure that only valid input has been received and that no additional SQL
syntax has been entered.

Despite being a well-known hacker attack, the SQL injection attack can still be very
effective if not defended against. On March 29, 2011, the LizaMoon1 attack struck and af-
fected more than 1.5 million URLs!

Database Backup and Recovery

Computer systems fail. Hardware breaks. Programs have bugs. Human procedures contain
errors, and people make mistakes. All of these failures can and do occur in database applica-
tions. Because a database is shared by many people and because it often is a key element of an
organization’s operations, it is important to recover it as soon as possible.

Several problems must be addressed. First, from a business standpoint, business func-
tions must continue. During the failure, customer orders, financial transactions, and packing
lists must be completed somehow, even manually. Later, when the database application is
operational again, the data from those activities must be entered into the database. Second,
computer operations personnel must restore the system to a usable state as quickly as possible
and as close as possible to what it was when the system crashed. Third, users must know what
to do when the system becomes available again. Some work may need to be reentered, and
users must know how far back they need to go.

When failures occur, it is impossible simply to fix the problem and resume process-
ing. Even if no data are lost during a failure (which assumes that all types of memory are
 nonvolatile—an unrealistic assumption), the timing and scheduling of computer processing
are too complex to be accurately re-created. Enormous amounts of overhead data and pro-
cessing would be required for the operating system to be able to restart processing precisely
where it was interrupted. It is simply not possible to roll back the clock and put all of the elec-
trons in the same configuration they were in at the time of the failure. Two other approaches
are possible: recovery via reprocessing and recovery via rollback/rollforward.

Recovery via Reprocessing

Because processing cannot be resumed at a precise point, the next best alternative is to go
back to a known point and reprocess the workload from there. The simplest form of this type
of recovery is to periodically make a copy of the database (called a database save) and to
keep a record of all transactions that have been processed since the save. Then, when there is
a failure, the operations staff can restore the database from the save and then reprocess all the
transactions. Unfortunately, this simple strategy is normally not feasible. First, reprocessing
transactions takes the same amount of time as processing them in the first place did. If the
computer is heavily scheduled, the system may never catch up.

Second, when transactions are processed concurrently, events are asynchronous. Slight
variations in human activity, such as a user reading an email before responding to an

1For more information, see http://en.wikipedia.org/wiki/LizaMoon.

http://en.wikipedia.org/wiki/LizaMoon

478 PART 4 Multiuser Database Processing

Database
with Changes

Before Images

Database
Without Changes

Undo

(a) Rollback

Database
Without Changes
(Save)

After Images

Database
with Changes

Redo

(b) Rollforward

FIguRE 9-17

Undo and redo transactions

application prompt, can change the order of the execution of concurrent transactions.
Therefore, whereas Customer A got the last seat on a flight during the original processing,
Customer B may get the last seat during reprocessing. For these reasons, reprocessing is nor-
mally not a viable form of recovery from failure in concurrent processing systems.

Recovery via Rollback/Rollforward

A second approach is to periodically make a copy of the database (the database save) and to keep
a log of the changes made by transactions against the database since the save. Then, when there
is a failure, one of two methods can be used. Using the first method, called rollforward, the
database is restored using the saved data, and all valid transactions since the save are reapplied.
(We are not reprocessing the transactions because the application programs are not involved in
the rollforward. Instead, the processed changes, as recorded in the log, are reapplied.)

The second method is rollback. With this method, we undo changes made by errone-
ous or partially processed transactions by undoing the changes they have made in the data-
base. Then the valid transactions that were in process at the time of the failure are restarted.

Both of these methods require that a log of the transaction results be kept. This log con-
tains records of the data changes in chronological order. Transactions must be written to the
log before they are applied to the database. That way, if the system crashes between the time a
transaction is logged and the time it is applied, at worst there is a record of an unapplied trans-
action. If, however, the transactions were to be applied before they were logged, it would be
possible (as well as undesirable) to change the database but have no record of the change. If
this happened, an unwary user might reenter an already completed transaction. In the event
of a failure, the log is used both to undo and to redo transactions, as shown in Figure 9-17.

To undo a transaction, the log must contain a copy of every database record (or page)
before it was changed. Such records are called before images. A transaction is undone by
applying before images of all of its changes to the database.

To redo a transaction, the log must contain a copy of every database record (or page) after
it was changed. These records are called after images. A transaction is redone by applying

 CHAPTER 9 Managing Multiuser Databases 479

after images of all of its changes to the database. Possible data items in a transaction log are
shown in Figure 9-18.

In this example log, each transaction has a unique name for identification purposes.
Furthermore, all of the images for a given transaction are linked together with pointers. One
pointer points to the previous change made by this transaction (the reverse pointer), and
the other points to the next change made by this transaction (the forward pointer). A zero in
the pointer field means that this is the end of the list. The DBMS recovery subsystem uses
these pointers to locate all of the records for a particular transaction. Figure 9-18 shows an
example of the linking of log records.

Other data items in the log are the time of the action; the type of operation (START marks
the beginning of a transaction and COMMIT terminates a transaction, releasing all locks that
were in place); the object acted on, such as record type and identifier; and, finally, the before
images and the after images.

Given a log with before images and after images, the undo and redo actions are straight-
forward. To undo the transaction in Figure 9-19, the recovery processor simply replaces each
changed record with its before image. For rollforward, the after images are applied in forward
time order; for rollback, the before images are applied in reverse time order.

When all of the before images have been restored, the transaction is undone. To redo a
transaction, the recovery processor starts with the version of the database at the time the trans-
action started and applies all of the after images. As stated, this action assumes that an earlier
version of the database is available from a database save.

Restoring a database to its most recent save and reapplying all transactions may require
considerable processing. To reduce the delay, DBMS products sometimes use checkpoints.
A checkpoint is a point of synchronization between the database and the transaction log.
To perform a checkpoint, the DBMS refuses new requests, finishes processing outstanding
requests, and writes its buffers to disk. The DBMS then waits until the operating system noti-
fies it that all outstanding write requests to the database and to the log have been successfully
completed. At this point, the log and the database are synchronized. A checkpoint record is
then written to the log. Later, the database can be recovered from the checkpoint and only
after images for transactions that started after the checkpoint need be applied.

Checkpoints are inexpensive operations, and it is feasible to take three or four (or
more) per hour. In this way, no more than 15 or 20 minutes of processing need to be re-
covered. Most DBMS products perform automatic checkpoints, making human interven-
tion unnecessary.

T
ra

ns
ac

tio
n

ID

R
ev

er
se

 P
o

in
te

r

T
yp

e
o

f
O

p
er

at
io

n

O
b

je
ct

B
ef

o
re

 Im
ag

e

OT1

OT1

OT2

OT1

OT1

CT1

OT1

OT2

CT1

CT1

0

1

0

2

4

0

5

3

6

9

2

4

8

5

7

9

0

0

10

0

11:42

11:43

11:46

11:47

11:47

11:48

11:49

11:50

11:51

11:51

START

MODIFY

START

MODIFY

INSERT

START

COMMIT

COMMIT

MODIFY

COMMIT

CUST 100

SP AA

ORDER 11

SP BB

(old value)

(old value)

(old value)

(new value)

(new value)

(value)

(new value)

1

2

3

4

5

6

7

8

9

10

R
el

at
iv

e
R

ec
o

rd
 N

um
b

er

T
im

e

F
o

rw
ar

d
 P

o
in

te
r

A
ft

er
 Im

ag
e

FIguRE 9-18

Example transaction Log

480 PART 4 Multiuser Database Processing

(a) Processing with Problem

Before images of
CUSTOMER and
SALESPERSON
records

Database with
ORDER
transaction
removed

Database with
new CUSTOMER,
SALESPERSON,
and ORDER
records

(b) Recovery Processing

Accept order data from browser.
Read CUSTOMER and SALESPERSON records.
Change CUSTOMER and SALESPERSON records.
Rewrite CUSTOMER record.
Rewrite SALESPERSON record.
Insert new ORDER record.

****CRASH****

(Log records written here)

Recovery Processor
(Applies before images of
CUSTOMER and SALESPERSON
and removes new ORDER record)

FIguRE 9-19

recovery Example

You will see specific examples of backup and recovery techniques for Microsoft SQL
Server, Oracle Database, and MySQL in the next three chapters. For now, you only need to
understand the basic ideas and to realize that it is the responsibility of the DBA to ensure that
adequate backup and recovery plans have been developed and that database saves and logs
are generated as required.

Managing the DBMS

In addition to managing data activity and the database structure, the DBA must manage the
DBMS itself. The DBA should compile and analyze statistics concerning the system’s perfor-
mance and identify potential problem areas. Keep in mind that the database is serving many user
groups. The DBA needs to investigate all complaints about the system’s response time, accuracy,
ease of use, and so forth. If changes are needed, the DBA must plan and implement them.

The DBA must periodically monitor the users’ activity on the database. DBMS products
include features that collect and report statistics. For example, some of these reports may
indicate which users have been active, which files—and perhaps which data items—have
been used, and which access methods have been employed. Error rates and types also can
be captured and reported. The DBA analyzes these data to determine whether a change to
the database design is needed to improve performance or to ease the users’ tasks. If change is
necessary, the DBA will ensure that it is accomplished.

The DBA should analyze run-time statistics on database activity and performance. When
a performance problem is identified (by either a report or a user’s complaint), the DBA

 CHAPTER 9 Managing Multiuser Databases 481

must determine whether a modification of the database structure or system is appropriate.
Examples of possible structural modifications are establishing new keys, purging data, delet-
ing keys, and establishing new relationships among objects.

When the vendor of the DBMS being used announces new product features, the DBA
must consider them in light of the overall needs of the user community. If the DBA decides
to incorporate the new DBMS features, the developers must be notified and trained in their
use. Accordingly, the DBA must manage and control changes in the DBMS as well as in the
database structure.

Other changes in the system for which the DBA is responsible vary widely, depending on
the DBMS product as well as on other software and hardware in use. For example, changes in
other software (such as the operating system or the Web server) may mean that some DBMS
features, functions, or parameters must be changed. The DBA must therefore also tune the
DBMS product with other software in use.

The DBMS options (such as transaction isolation levels) are initially chosen when little is
known about how the system will perform in the particular user environment. Consequently,
operational experience and performance analysis over a period of time may reveal that
changes are necessary. Even if the performance seems acceptable, the DBA may want to alter
the options and observe the effect on performance. This process is referred to as tuning, or
optimizing, the system. Figure 9-20 summarizes the DBA’s responsibilities for managing the
DBMS product.

Maintaining the Data Repository

Consider a large and active Internet database application, such as those used by e-commerce
companies—for instance, an application that is used by a company that sells clothing over the
Internet. Such a system may involve data from several different databases, dozens of different
Web pages, and hundreds, or even thousands, of users.

Suppose that the company using this application decides to expand its product line to
include the sale of sporting goods. Senior management of this company might ask the DBA to
develop an estimate of the time and other resources required to modify the database applica-
tion to support this new product line.

To respond to this request, the DBA needs accurate metadata about the database, about
the database applications and application components, about the users and their rights and
privileges, and about other system elements. The database does carry some of this metadata
in system tables, but this metadata is inadequate to answer the questions posed by senior
management. The DBA needs additional metadata about COM and ActiveX objects, script
procedures and functions, Active Server Pages (ASPs), style sheets, document type definitions,
and the like. Furthermore, although DBMS security mechanisms document users, groups,
and privileges, they do so in a highly structured, and often inconvenient, form.

For all of these reasons, many organizations develop and maintain data repositories,
which are collections of metadata about databases, database applications, Web pages, users,
and other application components. The repository may be virtual in that it is composed of
metadata from many different sources: the DBMS, version-control software, code libraries,

• Generate database application performance
 reports

• Investigate user performance complaints

• Assess need for changes in database structure
 or application design

• Modify database structure

• Evaluate and implement new DBMS features

• Tune the DBMS

FIguRE 9-20

Summary of the DBa’s
responsibilities for
Managing the DMBS

482 PART 4 Multiuser Database Processing

Web page generation and editing tools, and so forth. Or the data repository may be an inte-
grated product from a CASE tool vendor or from a company such as Microsoft or Oracle.

Either way, the time for the DBA to think about constructing such a facility is long before
senior management asks questions. In fact, the repository should be constructed as the system
is developed and should be considered an important part of the system deliverables. If such
a facility is not constructed, the DBA will always be playing catch-up—trying to maintain the
existing applications, adapting them to new needs, and somehow gathering together the
metadata to form a repository.

The best repositories are active repositories—they are part of the systems development
process in that metadata is created automatically as the system components are created. Less
desirable, but still effective, are passive repositories, which are filled only when someone
takes the time to generate the needed metadata and place it in the repository.

The Internet has created enormous opportunities for businesses to expand their cus-
tomer bases and increase their sales and profitability. The databases and database applica-
tions that support these companies are an essential element of that success. Unfortunately, the
growth of some organizations will be stymied by their inability to grow their applications or
adapt them to changing needs. Often, building a new system is easier than adapting an exist-
ing one. Building a new system that integrates with an old one while it replaces that old one
can be very difficult.

Summary

Multiuser databases pose difficult problems for the orga-
nizations that create and use them, and most organiza-
tions have created an office of database administration
to ensure that such problems are solved. In this text, the
term database administrator refers to the person or office
that is concerned with a single database. The term data
administrator is used to describe a management function
that is concerned with the organization’s data policy and
security. Major functions of the database administrator
are listed in Figure 9-1.

The database administrator (DBA) participates in the
initial development of database structures and in provid-
ing configuration control when requests for changes arise.
Keeping accurate documentation of the structure and
changes to the databases is an important DBA function.

The goal of concurrency control is to ensure that one
user’s work does not inappropriately influence another
user’s work. No single concurrency control technique is
ideal for all circumstances. Trade-offs need to be made be-
tween the level of protection and throughput. A transaction,
or logical unit of work (LUW), is a series of actions taken
against the database that occurs as an atomic unit; either all
of them occur or none of them does. The activity of concur-
rent transactions is interleaved on the database server. In
some cases, updates can be lost if concurrent transactions
are not controlled. Another concurrency problem concerns
inconsistent reads.

To avoid concurrency problems, database elements
are locked. Implicit locks are placed by the DBMS; explicit

locks are issued by the application program. The size of
the locked resource is called lock granularity. An exclu-
sive lock prohibits other users from reading the locked
resource; a shared lock allows other users to read the
locked resource but not update it. Two transactions that
run concurrently and generate results that are consistent
with the results that would have occurred if they had run
separately are referred to as serializable transactions. Two-
phase locking, in which locks are acquired in a growing
phase and released in a shrinking phase, is one scheme
for serializability. A special case of two-phase locking is
to acquire locks throughout the transaction but to not free
any lock until the transaction is finished.

Deadlock, or the deadly embrace, occurs when two
transactions are each waiting on a resource that the other
transaction holds. Deadlock can be prevented by requir-
ing transactions to acquire all locks at the same time. Once
deadlock occurs, the only way to cure it is to abort one
of the transactions (and back out of partially completed
work). Optimistic locking assumes that no transaction con-
flict will occur and deals with the consequences if it does.
Pessimistic locking assumes that conflict will occur and so
prevents it ahead of time with locks. In general, optimistic
locking is preferred for the Internet and for many intranet
applications.

Most application programs do not explicitly declare
locks. Instead, they use SQL Transaction Control Language
(TCL) to mark transaction boundaries with BEGIN,
COMMIT, and ROLLBACK transaction statements and

 CHAPTER 9 Managing Multiuser Databases 483

declare the concurrent behavior they want. The DBMS
then places locks for the application that will result in the
desired behavior.

An ACID transaction is one that is atomic, con-
sistent, isolated, and durable. Durable means that data-
base changes are permanent. Consistency can mean either
 statement-level or transaction-level consistency. With
transaction-level consistency, a transaction may not see its
own changes. The SQL standard defines four SQL transac-
tion isolation levels: read uncommitted, read committed,
repeatable read, and serializable. The characteristics of
each are summarized in Figure 9-12.

An SQL cursor is a pointer into a set of records. Four
cursor types are prevalent: forward only, static, keyset, and
dynamic. Developers should select isolation levels and cur-
sor types that are appropriate for their application workload
and for the DBMS product in use.

The goal of database security is to ensure that only autho-
rized users can perform authorized activities at authorized
times. To develop effective database security, the processing
rights and responsibilities of all users must be determined.

DBMS products provide security facilities. Most in-
volve the declaration of users, groups, objects to be pro-
tected, and permissions or privileges on those objects.
Almost all DBMS products use some form of username
and password security. Security guidelines are listed in
Figure 9-16. DBMS security can be augmented by appli-
cation security.

In the event of system failure, the database must be
restored to a usable state as soon as possible. Transactions
in process at the time of the failure must be reapplied or
restarted. Although in some cases recovery can be done
by reprocessing, the use of logs and rollback and roll-
forward is almost always preferred. Checkpoints can be
taken to reduce the amount of work that needs to be done
after a failure.

In addition to these tasks, the DBA manages the DBMS
product itself, measuring database application performance
and assessing the need for changes in database structure or
DBMS performance tuning. The DBA also ensures that new
DBMS features are evaluated and used as appropriate. Finally,
the DBA is responsible for maintaining the data repository.

Key Terms

ACID transaction
active repository
after image
atomic
before image
checkpoint
concurrent transaction
concurrent update problem
consistent
cursor
data administration
data repository
database administration
database administrator
database save
DBA
deadlock
deadly embrace
dirty read
durable
dynamic cursor
exclusive lock
explicit lock
forward only cursor
growing phase
implicit lock
inconsistent read problem
isolated

isolation level
keyset cursor
lock
lock granularity
log
logical unit of work (LUW)
login name
lost update problem
nonrepeatable read
optimistic locking
passive repository
pessimistic locking
phantom read
processing rights and

responsibilities
read-committed isolation level
read-uncommitted isolation level
recovery via reprocessing
recovery via rollback/rollforward
repeatable-read isolation level
resource locking
role
rollback
rollforward
scrollable cursor
serializable
serializable isolation level
shared lock

shrinking phase
SQL BEGIN TRANSACTION

statement
SQL COMMIT TRANSACTION

statement
SQL cursor
SQL Data Control Language (DCL)
SQL DECLARE CURSOR

statement
SQL GRANT statement
SQL REVOKE statement
SQL ROLLBACK TRANSACTION

statement
SQL START TRANSACTION

statement
SQL Transaction Control Language

(TCL)
SQL WORK keyword
SQL injection attack
statement-level consistency
static cursor
strong password
transaction
transaction isolation level
transaction-level consistency
two-phase locking
user group
username

484 PART 4 Multiuser Database Processing

 9.1 Briefly describe five difficult problems for organizations that create and use mul-
tiuser databases.

 9.2 Explain the difference between a database administrator and a data administrator.

 9.3 How do changes in the database structure impact the entire database community?

 9.4 Summarize the DBA’s responsibilities for managing database structure.

 9.5 What is configuration control? Why is it necessary?

 9.6 Explain the meaning of the word inappropriately in the phrase “one user’s work does
not inappropriately influence another user’s work.”

 9.7 Name a few products that have emerged to make documentation easier?

 9.8 Define an atomic transaction, and explain why atomicity is important.

 9.9 Explain the difference between concurrent transactions and simultaneous transac-
tions. How many CPUs are required for simultaneous transactions?

 9.10 Give an example, other than the one in this text, of the lost update problem.

 9.11 Explain the difference between an explicit and an implicit lock.

 9.12 How are locks with large granularity different from small granularity?

 9.13 Explain the difference between an exclusive lock and a shared lock.

 9.14 Explain two-phase locking.

 9.15 Describe the special case of two-phase locking that is used with a number of DBMS
products.

 9.16 In general, how should the boundaries of a transaction be defined?

 9.17 What is deadlock? How can it be avoided? How can it be resolved once it occurs?

 9.18 Explain the difference between optimistic and pessimistic locking.

 9.19 Explain the benefits of marking transaction boundaries, declaring lock characteris-
tics, and letting the DBMS place locks.

 9.20 What is SQL Transaction Control Language (TCL)? Explain the use of the SQL BEGIN
TRANSACTION, COMMIT TRANSACTION, and ROLLBACK TRANSACTION
statements. Why does MySQL also use the SQL START TRANSACTION statement?

 9.21 Explain the meaning of the expression ACID transaction.

 9.22 Define and differentiate between statement-level consistency and transaction-level
consistency.

 9.23 What are the disadvantages that can exist with transaction-level consistency?

 9.24 What is the purpose of transaction isolation levels?

 9.25 What is a dirty read?

 9.26 What is a nonrepeatable read?

 9.27 What is the relation between transaction isolation level and throughput?

 9.28 What is a phantom read?

 9.29 Explain the term SQL cursor.

 9.30 Explain why a transaction may have many cursors. Also, how is it possible that a
transaction may have more than one cursor on a given table?

 9.31 What is the advantage of using different types of cursors?

Review Questions

 CHAPTER 9 Managing Multiuser Databases 485

 9.32 Which of the SQL cursor types is the simplest? Why?

 9.33 How does a forward-only cursor differ from a static cursor?

 9.34 Explain keyset cursors. Give an example of their use.

 9.35 Explain dynamic cursors. Give an example of their use.

 9.36 What happens if you do not declare the transaction isolation level and the cursor
type to the DBMS? Is this good or bad?

 9.37 What is SQL Data Control Language (DCL)? Explain the necessity of defining pro-
cessing rights and responsibilities. How are such responsibilities enforced, and what
is the role of SQL DCL in enforcing them?

 9.38 Explain the relationships among USER, ROLE, PERMISSION, and OBJECT for a
 generic database security system.

 9.39 Should the DBA assume a firewall when planning security?

 9.40 Explain the term least functionality.

 9.41 Explain how to protect the computer that runs the DBMS.

 9.42 Why should the DBMS run on an account that has the lowest possible operating sys-
tem privileges?

 9.43 What are the purposes of security planning?

 9.44 Describe the advantages and disadvantages of DBMS-provided and application-
provided security.

 9.45 What is an SQL injection attack, and how can it be prevented?

 9.46 Explain how a database could be recovered via reprocessing. Why is this generally
not feasible?

 9.47 Define rollback and rollforward.

 9.48 Why is it important to write to the log before changing the database values?

 9.49 Describe the rollback process. Under what conditions should it be used?

 9.50 Describe the rollforward process. Under what conditions should it be used?

 9.51 What is a checkpoint?

 9.52 Summarize the DBA’s responsibilities for managing the DBMS.

 9.53 What is a data repository? A passive data repository? An active data repository?

 9.54 Explain why a data repository is important. What is likely to happen if one is not
available?

Project Questions

 9.56 Visit www.oracle.com, and search for “Oracle Security Guidelines.” Read articles at
three of the links you find, and summarize them. How does the information you find
compare with that in Figure 9-15?

 9.57 Visit www.msdn.microsoft.com, and search for “SQL Server Security Guidelines.” Read
articles at three of the links you find, and summarize them. How does the informa-
tion you find compare with that in Figure 9-15?

 9.58 Visit www.mysql.com, and search for “MySQL Security Guidelines.” Read articles at
three of the links you find, and summarize them. How does the information you find
compare with that in Figure 9-15?

http://www.oracle.com
http://www.msdn.microsoft.com
http://www.mysql.com

486 PART 4 Multiuser Database Processing

 9.59 Use Google (www.google.com) or another search engine, and search the Web for
“Database Security Guidelines.” Read articles at three of the links you find, and sum-
marize them. How does the information you find compare with that in Figure 9-15?

 9.60 Search the Web for “distributed two-phase locking.” Find a tutorial on that topic, and
explain, in general terms, how this locking algorithm works.

 9.61 Answer the following questions for the View Ridge Gallery VRG database discussed
in Chapter 7 with the tables shown in Figures 7-13 and 7-14 and the data shown in
Figure 7-15.

A. Suppose that you are developing a stored procedure to record an artist who has
never been in the gallery before, a work for that artist, and a row in the TRANS
table to record the date acquired and the acquisition price. How will you declare
the boundaries of the transaction? What transaction isolation level will you use?

B. Suppose that you are writing a stored procedure to change values in the
CUSTOMER table. What transaction isolation level will you use?

C. Suppose that you are writing a stored procedure to record a customer’s purchase.
Assume that the customer’s data are new. How will you declare the boundaries of
the transaction? What isolation level will you use?

D. Suppose that you are writing a stored procedure to check the validity of the in-
tersection table. Specifically, for each customer, your procedure should read the
customer’s transaction and determine the artist of that work. Given the artist,
your procedure should then check to ensure that an interest has been declared
for that artist in the intersection table. If there is no such intersection row, your
procedure should create one. How will you set the boundaries of your transac-
tion? What isolation level will you use? What cursor types (if any) will you use?

Marcia’s Dry Cleaning Case Questions

Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in a
well-to-do suburban neighborhood. Marcia makes her business stand out from the competi-
tion by providing superior customer service. She wants to keep track of each of her custom-
ers and their orders. Ultimately, she wants to notify them that their clothes are ready via
email. Suppose that Marcia has hired you as a database consultant to develop a database for
Marcia’s Dry Cleaning that has the following tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, EmailAddress)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,
TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity,
UnitPrice, ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

Assume that all relationships have been defined, as implied by the foreign keys in this table
list, and that the appropriate referential integrity constraints are in place.

A. Assume that Marcia’s has the following personnel: two owners, a shift manager, a
part-time seamstress, and two salesclerks. Prepare a two- to three-page memo that
addresses the following points:

1. The need for database administration.

2. Your recommendation as to who should serve as database administrator. Assume that
Marcia’s is not sufficiently large to need or afford a full-time database administrator.

Case Questions

http://www.google.com

 CHAPTER 9 Managing Multiuser Databases 487

3. Using Figure 9-1 as a guide, describe the nature of database administration
 activities at Marcia’s. As an aggressive consultant, keep in mind that you can rec-
ommend yourself for performing some of the DBA functions.

B. For the employees described in part A, define users, groups, and permissions on
data in these four tables. Use the security scheme shown in Figure 9-15 as an
 example. Create a table like that in Figure 9-14. Don’t forget to include yourself.

C. Suppose that you are writing a stored procedure to create new records in
SERVICE for new services that Marcia’s will perform. Suppose that you know
that while your procedure is running, another stored procedure that records new
or modifies existing customer orders and order line items can also be running.
Additionally, suppose that a third stored procedure that records new customer
data also can be running.

1. Give an example of a dirty read, a nonrepeatable read, and a phantom read
among this group of stored procedures.

2. What concurrency control measures are appropriate for the stored procedure
that you are creating?

3. What concurrency control measures are appropriate for the two other stored
procedures?

The Queen Anne
Curiosity Shop

Assume that the owners of the Queen Anne Curiosity Shop have hired you as a
database consultant to develop an operational database having the same tables
described at the end of Chapter 7:

CUSTOMER (CustomerID, LastName, FirstName, Address, EmailAddress,
EncryptedPassword, City, State, ZIP, Phone)
EMPLOYEE (EmployeeID, LastName, FirstName, Phone, Email)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,
Address, City, State, ZIP, Phone, Fax, Email)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice,
VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM
VendorID in ITEM must exist in VendorID in VENDOR

Assume that CustomerID of CuSTOMER, EmployeeID of EMPLOyEE, ItemID of
ITEM, SaleID of SALE, and SaleItemID of SALE_ITEM are all surrogate keys with
values as follows:

CustomerID Start at 1 Increment by 1
EmployeeID Start at 1 Increment by 1
VendorID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1

488 PART 4 Multiuser Database Processing

A vendor may be an individual or a company. If the vendor is an individual, the
CompanyName field is left blank, while the ContactLastName and ContactFirstName
fields must have data values. If the vendor is a company, the company name is
recorded in the CompanyName field, and the name of the primary contact at the
company is recorded in the ContactLastName and ContactFirstName fields.

A. Assume that the Queen Anne Curiosity Shop personnel are the two owners, an of-
fice administrator, one full-time salesperson, and two part-time salespeople. The two
owners and the office administrator want to process data in all tables. Additionally,
the full-time salesperson can enter purchase and sales data. The part-time employ-
ees can only read sales data. Prepare a three- to five-page memo for the owner that
addresses the following issues:

1. The need for database administration at the Queen Anne Curiosity Shop.
2. Your recommendation as to who should serve as database administrator. Assume

that the Queen Anne Curiosity Shop is not sufficiently large that it needs or can
afford a full-time database administrator.

3. Using Figure 9-1 as a guide, describe the nature of database administration activi-
ties at the Queen Anne Curiosity Shop. As an aggressive consultant, keep in mind
that you can recommend yourself for performing some of the DBA functions.

B. For the employees described in part A, define users, groups, and permissions on
data in these six tables. Use the security scheme shown in Figure 9-15 as an exam-
ple. Create a table like that in Figure 9-14. Don’t forget to include yourself.

C. Suppose that you are writing a stored procedure to record new purchases. Suppose
that you know that while your procedure is running, another stored procedure that
records new customer sales and sale line items can also be running. Additionally, sup-
pose that a third stored procedure that records new customer data also can be running.

1. Give an example of a dirty read, a nonrepeatable read, and a phantom read
among this group of stored procedures.

2. What concurrency control measures are appropriate for the stored procedure
that you are creating?

3. What concurrency control measures are appropriate for the two other stored
procedures?

Morgan
Importing

Assume that Morgan has hired you as a database consultant to develop an operational
database having the same tables described at the end of Chapter 7 (note that STORE
uses the surrogate key StoreID):

EMPLOYEE (EmployeeID, LastName, FirstName, Department, Phone,
Fax, EmailAddress)
STORE (StoreID, StoreName, City, Country, Phone, Fax, EmailAddress,
Contact)
ITEM (ItemID, StoreName, PurchasingAgentID, PurchaseDate,
ItemDescription, Category, PriceUSD)
SHIPPER (ShipperID, ShipperName, Phone, Fax, EmailAddress, Contact)
SHIPMENT (ShipmentID, ShipperID, PurchasingAgentID,
ShipperInvoiceNumber, Origin, Destination, ScheduledDepartureDate,
ActualDepartureDate, EstimatedArrivalDate)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, InsuredValue)
SHIPMENT_RECEIPT (ReceiptNumber, ShipmentID, ItemID,
ReceivingAgentID, ReceiptDate, ReceiptTime, ReceiptQuantity,
isReceivedUndamaged, DamageNotes)

 CHAPTER 9 Managing Multiuser Databases 489

A. Assume that Morgan personnel are the owner (Morgan), an office administrator, one
full-time salesperson, and two part-time salespeople. Morgan and the office admin-
istrator want to process data in all tables. Additionally, the full-time salesperson can
enter purchase and shipment data. The part-time employees can read only ship-
ment data; they are not allowed to see InsuredValue, however. Prepare a three- to
five-page memo for the owner that addresses the following issues:

1. The need for database administration at Morgan.
2. Your recommendation as to who should serve as database administrator. Assume

that Morgan is not sufficiently large that it needs or can afford a full-time data-
base administrator.

3. Using Figure 9-1 as a guide, describe the nature of database administration
 activities at Morgan. As an aggressive consultant, keep in mind that you can rec-
ommend yourself for performing some of the DBA functions.

B. For the employees described in part A, define users, groups, and permissions
on data in these five tables. Use the security scheme shown in Figure 9-15 as an
 example. Create a table like that in Figure 9-14. Don’t forget to include yourself.

C. Suppose that you are writing a stored procedure to record new purchases. Suppose
that you know that while your procedure is running, another stored procedure that
records shipment data can be running, and a third stored procedure that updates
shipper data can also be running.

1. Give an example of a dirty read, a nonrepeatable read, and a phantom read
among this group of stored procedures.

2. What concurrency control measures are appropriate for the stored procedure
that you are creating?

3. What concurrency control measures are appropriate for the two other stored
procedures?

This chapter is an overview of the material that is covered in depth for three

enterprise-class DBMS products in three separate online chapters:

■■ Microsoft SQL Server 2014 in online Chapter 10A
■■ Oracle’s Oracle Database in online Chapter 10B
■■ Oracle’s MySQL 5.6 in online Chapter 10C

These chapters have been placed online to allow us to include more material

relevant to each separate DBMS product than the length of this book would

otherwise allow. The online chapters are available at the Database Processing:

Fundamentals, Design, and Implementation (14th edition) companion Web site,

accessible at www.pearsonglobaleditions.com/kroenke.

The online material (which also includes all the Appendices to this book) is in

PDF format and requires that you have a PDF reader installed. If you need a PDF

reader, we suggest you download and install the current version of the free Adobe

Reader from https://acrobat.adobe.com/us/en/products/pdf-reader.html.

Managing Databases with Microsoft SQL Server
2014, Oracle Database, and MySQL 5.6

■■ To understand the purpose and role of stored procedures
and to create simple stored procedures

■■ To understand the purpose and role of triggers and to
create simple triggers

■■ To understand how the DBMS implements concurrency
control

■■ To understand how the DBMS implements server and
database security

■■ To understand the fundamental features of the DBMS
backup and recovery facilities

Chapter Objectives
■■ To install the DBMS software
■■ To use the DBMS database administration and database

development graphical utilities
■■ To create a database in the DBMS
■■ To submit both SQL DDL and DML via the DBMS

utilities
■■ To understand the implementation and use of SQL/

Persistent Stored Modules (SQL/PSM) in the DBMS
■■ To understand the purpose and role of user-defined

functions and to create simple user-defined functions

490

10

www.pearsonhighered.com/kroenke
https://acrobat.adobe.com/us/en/products/pdf-reader.html

 CHAPTER 10 Managing Databases with Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6 491

The material in these chapters describes the basic features and functions

of Microsoft SQL Server 2014 in Chapter 10A, Oracle Database 12c (and Oracle

Database Express Edition 11g Release 2) in Chapter 10B, and MySQL 5.6 in

Chapter 10C. The discussion in these chapters uses the View Ridge Gallery data-

base from Chapter 7, and it parallels the discussion of SQL DDL, DML, and SQL/

PSM in Chapter 7 and the discussion of database administration tasks in Chapter 9.

These DBMS products are large and complicated systems. In these chapters,

we will only be able to scratch the surface of what each is capable of. Your goal

should be to learn sufficient basics so you can continue learning on your own or in

other classes.

The topics and techniques discussed in these chapters will usually also apply

to earlier versions of each software product. For example, the material on Microsoft

SQL Server 2014 will also apply to SQL Server 2012, to SQL Server 2008 R2, and

even to the earlier SQL Server 2005, though the exact functions of the earlier ver-

sions vary a bit from SQL Server 2014. Similarly, the material on Oracle Database

12c will usually work with Oracle Database 11g Release 2, and the material on

MySQL 5.6 will work with MySQL 5.5.

Installing the DBMS

In this section of each online chapter, we will discuss the various versions of each DBMS
available, recommend which version you should use, and cover important points about
DBMS installation and setup. Each of these DBMS products has a freely available version
that is easy to download and install and that can be used with most of the material in this
book (the exception being some of the business intelligence (BI) topics in Appendix J).

For example, Microsoft SQL Server 2014 is available in the Microsoft SQL Server
2014 Express Advanced package (downloadable from http://msdn.microsoft.com/en-us/
evalcenter/dn434042.aspx), and MySQL 5.6 is available in the MySQL Community Server
5.6 (downloadable from http://dev.mysql.com/downloads/mysql/.html, but if you are using a
Windows operating system, you should download and use the MySQL Installer 5.6 for
Windows from http://dev.mysql.com/downloads/windows/installer/5.6.html).

Oracle Database presents a more complex situation. The current version of Oracle
Database is Oracle Database 12c. If you have Oracle Database 12c available to you in
a computer lab or other situation where it has been installed for your use in a class or
work setting, you will be able to use it for the work in this book. Otherwise, you should
download and use the current version of Oracle Database Express Edition, which is the
Oracle Database Express Edition 11g Release 2 package (downloadable from
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index
.html). The Oracle SQL Developer GUI utility discussed later in this chapter will work
well with both versions of Oracle Database and will allow you to complete nearly all the
exercises in this book.

Installing and using one of these DBMS products (or, at a minimum, having
Microsoft Access 2013) is a necessity for getting the most out of your study of the
material in this book—using the material in a real DBMS is an important part of your
learning process.

Of course, in order to use a DBMS product, you first have to install it and configure it on
your computer. Therefore, we discuss what you need to know to be able to successfully install
and use each DBMS product in the relevant online chapter.

http://msdn.microsoft.com/en-us/evalcenter/dn434042.aspx
http://msdn.microsoft.com/en-us/evalcenter/dn434042.aspx
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/windows/installer/5.6.html
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html

492 PART 4 Multiuser Database Processing

Using the DBMS Database Administration and Database Development Utilities

Each of these DBMS products has one or more utility programs that you will use for database
administration tasks and for database development. Examples of these utilities are:

■■ Microsoft SQL Server 2014 uses the Microsoft SQL Server 2014 Management
Studio.

■■ Oracle Database 12c and Oracle Database Express Edition 11g Release 2 use
Oracle SQL Developer.

■■ MySQL 5.6 uses the MySQL Workbench.

In each online chapter, we discuss the appropriate utility programs for each DBMS product
and show you how to use them.

Creating a Database

The first step in working with a specific database in a DBMS is to actually create that data-
base. However, this step is a bit more complicated than it might seem because each DBMS
product has different terminology for what we just called a database!

■■ In Microsoft SQL Server 2014, we create a database (that was easy!).
■■ In Oracle Database 12c and Oracle Database Express Edition 11g Release 2 we may

(but it is not required that we) create a tablespace to store the tables and other ob-
jects that make up what we are referring to as a database.

■■ In MySQL 5.6, we create a schema.

In each online chapter for the specific DBMS product, we tell you exactly what in that
DBMS product constitutes what we have been calling a database and the steps to create and
name it. In each case, we end up with a usable database named Cape_Codd for use with
the Chapter 2 SQL queries, and a second usable database named VRG for the View Ridge
Gallery database project.

Creating and Running SQL Scripts

Now that we have created the Cape_Codd and VRG databases, we need to create the table
and relationship structure of the database and then populate the tables with data. We prefer
to do this with SQL scripts, as we have discussed in Chapter 2 on SQL queries and in Chapter
7 on SQL DDL. Therefore, we discuss how to create, store, retrieve, and run SQL scripts using
one of the DBMS utilities:

■■ For Microsoft SQL Server 2014, we use the Microsoft SQL Server 2014
Management Studio.

■■ For Oracle Database 12c and Oracle Database Express Edition 11g Release 2, we
use Oracle SQL Developer.

■■ For MySQL 5.6, we use the MySQL Workbench.

Further, each DBMS product has its own variant of SQL and SQL/Persistent Stored
Modules (SQL/PSM):

■■ For Microsoft SQL Server 2014, we have Transact-SQL (T-SQL).
■■ For Oracle Database 12c and Oracle Database Express Edition 11g Release 2, we

have Procedural Language/SQL (PL/SQL).
■■ For MySQL 5.6, there is no separate variant name and we just use SQL and SQL/PSM.

We discuss each of these in the context of its parent DBMS product in the separate online
chapters.

 CHAPTER 10 Managing Databases with Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6 493

Reviewing the Database Structure in the DBMS GUI Utility

Besides giving us a good SQL editor to create and run SQL scripts, each DBMS product has
also built its GUI utilities with the capability to work with database objects such as tables in a
GUI mode (similar to what we do in Microsoft Access 2013). We discuss how to use specific
GUI utilities to do this:

■■ For Microsoft SQL Server 2014, we use the Microsoft SQL Server 2014
Management Studio.

■■ For Oracle Database 12c and Oracle Database Express Edition 11g Release 2 we use
Oracle SQL Developer.

■■ For MySQL 5.6, we use the MySQL Workbench.

Creating and Populating the View Ridge Gallery VRG Database Tables

Having created the VRG database and knowing how to use SQL scripts, we turn to actually
creating the VRG tables, referential integrity constraints, and indexes that form the basic
structure of the database itself. As you might expect, each DBMS product has its own variation
on exactly how this should be done. A good example of these differences is how each DBMS
product handles surrogate keys:

■■ In Microsoft SQL Server 2014, we use the T-SQL IDENTITY property.
■■ For Oracle Database 12c and Oracle Database Express Edition 11g Release 2, we

use the PL/SQL SEQUENCE object.
■■ For MySQL 5.6, we use the MySQL AUTO_INCREMENT property.

Once the database structure is created, we discuss how to populate the tables with data.
Because the VRG data as provided in Figure 7-15 contains noncontinuous surrogate key
 values, we discuss how to handle this situation when inputting data into tables.

Creating SQL Views for the View Ridge Gallery VRG Database

In Chapter 7, we discussed the use of SQL views in a database. We now show how to create
and use them in each specific DBMS.

Database Application Logic and SQL/Persistent Stored Modules (SQL/PSM)

In order to be used in an application (such as a Web site application), a database must be
accessible from that application, and several application-related problems (such as creating
and storing application variables) must be overcome. While this can be done within an ap-
plication programming language such as Java; a Microsoft .NET language such as C#.NET,
C++.NET, or VB.NET; or the PHP Web scripting language (discussed in Chapter 11), we base
our main discussion on how application logic can be embedded in SQL/Persistent Stored
Modules (SQL/PSM)—user-defined functions, triggers, and stored procedures.

For each specific DBMS product, we examine and explain various SQL/PSM constructs
and features:

■■ Variables
■■ Parameters
■■ Control-of-flow statements

■■ BEGIN . . . END blocks
■■ IF . . . THEN . . . ELSE structures
■■ WHILE (looping) structures
■■ RETURN {value} statements

VB.NET

494 PART 4 Multiuser Database Processing

■■ Cursor structures and statements
■■ SQL transaction control statements
■■ Output statements

We then use these elements to build DBMS SQL/PSM-specific user-defined func-
tions, stored procedures, and triggers, and we cover these topics in a depth far beyond
our coverage in Chapter 7. We build and run several stored procedures and triggers,
explaining both the application use of the trigger or stored procedure and additional
programming elements that are useful when creating user-defined functions, stored
 procedures, and triggers.

DBMS Concurrency Control

We discussed the concept of concurrency control in Chapter 9. As you would expect,
each DBMS product implements concurrency transaction isolation level and locking
 behavior in its own way, which we examine for each specific DBMS product in the appropri-
ate online chapter.

DBMS Security

We discussed security in general terms in Chapter 9. For each specific DBMS product, we
summarize how those general ideas pertain to that product, examine the specific server and
database security options available, and create users with specific security privileges. We
cover these topics in a depth far beyond our coverage in Chapter 7, and when we are done
creating the needed database users for the VRG database, we are ready to use these users to
provide the needed database security for our Web database applications in Chapter 11.

DBMS Database Backup and Recovery

As explained in Chapter 9, databases and associated log files should be backed up peri-
odically. When backups are available, it is possible to recover a failed database by restoring it
from a prior database save and applying changes in the log. Again, we cover these topics in a
depth far beyond our coverage in Chapter 7, and we examine and discuss the specific backup
and recovery features and methods of the specific DBMS.

Other DBMS Topics Not Discussed

Each online chapter covers essential topics for a specific DBMS product, but we cannot pos-
sibly cover everything about each DBMS in this book and online chapters. Therefore, we
briefly discuss some of the important topics not covered in the chapter and point you toward
information about those topics.

Choose Your DBMS Product(s)!

Please see the online chapter for the DBMS product(s) you want to install and use. Download
the appropriate online chapter, and study it, as it will be your guide to implementing the
concepts discussed in this book in a DBMS, and to really learn these concepts, you need to
actually use them in a DBMS.

 CHAPTER 10 Managing Databases with Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6 495

CHAPTER 10A: MANAGING DATABASES WITH
MICROSOFT SQL SERVER 2014

CHAPTER 10B: MANAGING DATABASES WITH
ORACLE DATABASE

AND

CHAPTER 10C: MANAGING DATABASES WITH MySQL 5.6

ARE AVAILABLE ONLINE ON THE

DATABASE PROCESSING:

FUNDAMENTALS, DESIGN, AND IMPLEMENTATION (14th EDITION)

COMPANION WEBSITE AT

www.pearsonglobaleditions.com/kroenke

Summary

There are online chapters available at the Database Processing:
Fundamentals, Design, and Implementation (14th Edition)
Companion Web site, accessible at www.pearsonglobaleditions
.com/kroenke.

These chapters have been placed online to allow us
to include more material relevant to each separate DBMS
product than the length of this book would otherwise allow.
The online materials are in PDF format and require that
you have a PDF reader installed. If you need a PDF reader,
we suggest you download and install the current version of
the free Adobe Reader from https://acrobat.adobe.com/us/en/
products/pdf-reader.html.

The material in these chapters describes the basic fea-
tures and functions of Microsoft SQL Server 2014 in Chapter
10A, Oracle Database 12c and Oracle Database Express
Edition 11g Release 2 in Chapter 10B, and Oracle MySQL
5.6 in Chapter 10C. The discussion in these chapters uses
the Cape_Codd database for Chapter 2 and the View Ridge
Gallery VRG database from Chapter 7, and it parallels the dis-
cussion of SQL DDL, DML, and SQL/PSM in Chapter 7 and
the discussion of database administration tasks in Chapter 9.

Topics in each online chapter written to cover each spe-
cific DBMS product include:

■■ Installing the DBMS
■■ Using the DBMS Database Administration and

Database Development Utilities
■■ Creating a Database
■■ Creating and Running SQL Scripts
■■ Reviewing the Database Structure in the DBMS

GUI Utility
■■ Creating and Populating the View Ridge Gallery

VRG Database Tables
■■ Creating SQL Views for the View Ridge Gallery

VRG Database
■■ Database Application Logic and SQL/Persistent

Stored Modules (SQL/PSM)
■■ DBMS Concurrency Control
■■ DBMS Security
■■ DBMS Database Backup and Recovery
■■ Other DBMS Topics Not Discussed

These chapters build on the material presented in
Chapter 7, but coverage of these topics is at a depth far
beyond the Chapter 7 coverage. Please see the online
chapter for the DBMS product you want to install and
use.

www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke
https://acrobat.adobe.com/us/en/products/pdf-reader.html
https://acrobat.adobe.com/us/en/products/pdf-reader.html

496 PART 4 Multiuser Database Processing

 10.1 Determine which DBMS product or products you will be using while working
through the material in this book.

 10.2 Based on your answer to Project Question 10.1, download Chapter 10A, Chapter 10B,
and/or Chapter 10C as appropriate from the Database Processing: Fundamentals, Design,
and Implementation (14th Edition) Companion Website at www.pearsonglobaleditions.com/
kroenke.

 10.3 Based on your answer to Project Question 10.1 and the discussions in Chapter 10A,
Chapter 10B, and/or Chapter 10C, download and install the DBMS software that
you will be using while working through the material in this book. When you have
 completed this Project Question, you should have available for your use a working
installation of the DBMS product or products you want to use.

Project Questions

Key Terms

locking behavior
Microsoft Access 2013
Microsoft SQL Server 2014
Microsoft SQL Server 2014 Express

Advanced
Microsoft SQL Server 2014

Management Studio
MySQL 5.6
MySQL AUTO_INCREMENT property

MySQL Community Server 5.6
MySQL Installer 5.6 for Windows
MySQL Workbench
Oracle Database Express Edition 11g

Release 2
Oracle Database 12c
Oracle SQL Developer
PL/SQL SEQUENCE object
Procedural Language/SQL (PL/SQL)

schema
stored procedures
tablespace
Transact-SQL (T-SQL)
transaction isolation level
triggers
T-SQL IDENTITY property
user-defined functions

www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke

The two chapters in this section examine standards for database
 application processing. We begin in Chapter 11 by discussing data-
base access standards, including ODBC, ADO.NET, and ASP.NET in
Microsoft’s .NET Framework and the Java-based JDBC and Java Server
Pages (JSP) technologies. Even though some of these standards are
no longer on the leading edge of database processing, many applica-
tions still use them, and you will likely encounter them in your career. In
fact, ODBC is making a comeback as relational DBMS products need
to interconnect to BigData structured storage products (discussed in
Chapter 12), and ODBC is an established standard that can handle
the task. Chapter 11 then describes the use of the popular PHP script-
ing language to create Web pages that access the View Ridge Gallery
 database. This is followed by a discussion of the confluence of database
processing and document processing in an introduction to XML.

Chapter 12 discusses business intelligence (BI) systems, the data
warehouse and data mart databases that support BI systems, and
BigData structured storage.

Database Access
Standards

5
P a r t

498

We have now learned how to design and implement databases. Specifically, we

have used the VRG database we have designed and implemented for the View Ridge

Gallery as our example throughout most of this book. We started by creating the VRG

data model and the VRG database design in Chapter 6 and then implemented that da-

tabase design in SQL Server 2014 in Chapter 7. We used it as the basis of our discus-

sion of database redesign in Chapter 8 and of database administration in Chapter 9.

Databases, however, do not exist in isolation. Rather, they are created as part of

an information system and are used to store the data that the system processes to

provide information to the people who use it, as discussed at the beginning of our

work in Chapter 1.

In one way or another, today we are usually working with the World Wide
Web (WWW or W3 or Web), which is now so ubiquitous and commonly used that

 everyone takes it for granted. Application clients running in a Web browser such

as Microsoft Internet Explorer, Google Chrome, or Mozilla Firefox are the norm,

and allow users to shop online and communicate with their friends by posts on

Facebook or tweets on Twitter.

The Web Server Environment

■■ To understand the nature of JSP and know the
differences between JSP and ASP.NET

■■ To understand HTML and PHP
■■ To be able to construct Web database applications pages

using PHP
■■ To understand the importance of XML
■■ To learn the basic concepts involved in using the SQL

SELECT . . . FOR XML statement

Chapter Objectives
■■ To understand the nature and characteristics of the data

environment that surrounds Internet technology database
applications

■■ To learn the purpose, features, and facilities of ODBC
■■ To understand the characteristics of the Microsoft .NET

Framework
■■ To understand the nature and goals of OLE DB
■■ To learn the characteristics and object model of ADO.NET
■■ To understand the characteristics of JDBC and the four

types of JDBC drivers

498

11

 CHAPTER 11 The Web Server Environment 499

The WWW is not a communications network itself. Instead, the WWW runs on

the Internet, a system of interconnected smaller networks that now spans the Earth

and allows computer communication worldwide.

We no longer need a computer to use the Web. In addition to using the Web on

their computers, people are using a mobile phone (or cell phone) over a cellular
network provided by vendors such as Verizon, T-Mobile, AT&T, and Sprint. The

emerging smartphone makes use of the data packages available from cellular

 providers to access the WWW, making smartphones very portable computers.

Another emerging form factor is the tablet, of which the Apple iPad is the best

example (although many other tablets running the Google Android operating sys-
tem (OS) are also available). Tablets connecting to the Internet provide another link

in the interconnected life style we are living today.

Figure 11-1 illustrates how people use these devices today, in what is technically

known as client server architecture. Users actually want some sort of service,

such as shopping online or communicating on Facebook. To get this service, a user

has a hardware device (computer, smartphone, or tablet) that runs a software client
application that provides the user with an interface for a desired service. A Web

browser is often the client for a service such as Facebook or Twitter (a smartphone

app is also a client for these services). A service is provided by a special computer

called a server (because it provide the service). For example, Twitter uses servers

to receive, store, and broadcast tweets. The client and the server communicate

over the Internet or a cellular data network (which itself will connect to the Internet

at some point). Internet hardware such as routers running networking software are

responsible for the connections between the client and the server.

USERS

DEVICES
running

SERVICE CLIENT
software

INTERNET HARDWARE
running

NETWORKING
software

SERVERS
running

SERVICE SERVER
software

DATABASES

FIGuRE 11-1

Client Server architecture

500 PART 5 Database Access Standards

And supporting all the client server applications are databases. Every applica-

tion needs to store, update, read, and delete data, and, as we have learned, that is

the purpose of a database. Databases do not exist for their own sake—they exist to

be used by applications needing the data they hold and maintain.

In this chapter, we will discuss and demonstrate exactly how databases are

used to support the services that users want. This chapter begins by discussing

some traditional standard interfaces and some current tools for accessing database

servers. ODBC, or the Open Database Connectivity standard, was developed in the

early 1990s to provide a product-independent interface to relational and other tabu-

lar data. Today, it is finding new life because of the new nonrelational databases be-

ing developed to deal with the Big Data environment (which we will discuss in detail

in Chapter 12 and Appendix K—Big Data). In the mid-1990s, Microsoft announced

OLE DB, which is an object-oriented interface that encapsulates data-server func-

tionality. Microsoft then developed Active Data Objects (ADO), which is a set of

objects for utilizing OLE DB that is designed for use by any language, including

VBScript and JScript/JavaScript. This technology was used in Active Server Pages

(ASP), which were the basis of Web database applications. In 2002, Microsoft intro-

duced the .NET Framework, which included ADO.NET (the successor to ADO) and

ASP.NET (the successor to ASP) components. Today, the .NET Framework is the

basis for all application development using Microsoft technology.

As an alternative to the Microsoft technologies, Sun Microsystems developed

the Java platform, which includes the Java programming language, Java Database

Connectivity (JDBC), and Java Server Pages (JSP), in the 1990s. Sun Microsystems

was purchased by Oracle Corporation in 2010, and the Java platform is now part of

the Oracle family.

Although the .NET and Java technologies are important development platforms,

additional technologies have been developed by other companies and open source

projects. We will use two of these independently developed tools in this chapter: the

NetBeans integrated development environment (IDE) and the PHP scripting language.

This chapter also considers one of the most important recent developments in infor-

mation systems technology. It discusses the confluence of two information technology

subject areas: database processing and document processing. For more than 20 years,

these two subject areas developed independently of one another. With the advent of

the Internet, however, they crashed together in what some industry pundits called a

technology train wreck. The result is still being sorted out, with new products, product

features, technology standards, and development practices emerging every month.

A Web Database Application for the View Ridge Gallery

Now that we have created the VRG database, we will use it in this chapter as the basis for
developing a Web database application for the View Ridge Gallery. We will call this Web
 database application the View Ridge Gallery Information System (VRGIS), and the VRGIS
will provide both reporting and data input capabilities for the gallery. A screen shot of the
VRGIS was used in Figure 6-35 to illustrate our introduction of the View Ridge Gallery. But
before we build the VRGIS, we need to understand the underlying basis and process for
 developing Web database applications.

 CHAPTER 11 The Web Server Environment 501

Web Page Request Database Request Data Request

COMPUTERS
running

WEB CLIENT software

SERVERS
running

WEB SERVER software

SERVERS
running

DBMS software

DATABASES

DBMS
Database Languages:

SQL and SQL/PSM

Web Page
Programing Languages:

PHP

Web Browser
Scripting Languages:

JavaScript

FIGuRE 11-2

three-tier architecture

The Web Database Processing Environment

The environment in which today’s Web database applications reside is rich and complicated.
As shown in Figure 11-2, users use Web browsers on their computers to request Web pages
from Web servers, which in turn request information from database servers, which use a
DBMS to obtain the data from their databases. Various programming languages are used in
the process of creating the Web page code that is returned to the Web browser, which formats
the Web page and displays it for the user. The final Web page coded may include:

■■ Scripting language code, such as JavaScript, which runs on the user’s computer.
■■ Code generated by Web server programming languages, such as PHP, which

 controls the code content returned to the Web browser.
■■ Output from databases generated by Web servers sending requests for DBMS

 operations using SQL and SQL/PSM.

While we will not discuss scripting languages in this text, you are undoubtedly familiar
with their actions. A very familiar example is the “Does not match” message you see every
time a Web form requires you to reenter some data such as an email address or new password
for validation and you don’t retype it exactly. This type of error checking is performed locally
on your computer by a Web page scripting language such as JavaScript.

We will discuss the interaction between the Web server and the DBMS, In a Web-based
database processing environment, if the Web server and the DBMS can run on the same
computer, the system has two-tier architecture. (One tier is for the Web browsers, and one
is for the Web server/DBMS computer.) Alternatively, the Web server and DBMS can run on
different computers, in which case the system has three-tier architecture, as illustrated in
Figure 11-2. High-performance applications might use many Web server computers, and in
some systems several computers can run the DBMS as well. In the latter case, if the DBMS
computers are processing the same databases, the system is referred to as a distributed database.
Distributed databases are discussed later in this chapter.

As shown in Figure 11-3, a typical Web server needs to create Web pages that involve
data from dozens of different sources, each with different data types. So far in this text, we
have considered only relational databases, but as you can see from this figure, there are many
other data types as well.

Consider the problems that the developer of Web server applications has when integrat-
ing these data. The developer may need to connect to:

■■ A relational database created in Microsoft SQL Server or Oracle Database.
■■ A nonrelational database, such as Apache Cassandra or Neo Technology’s Neo4j.
■■ File-based data, such as found in spreadsheets such as Microsoft Excel.
■■ Email directories.

Each one of these products has a different programming interface that the developer must
learn. Further, these products evolve; thus, new features and functions will be added over time
that will increase the developer’s challenge.

502 PART 5 Database Access Standards

Web
Server

Relational Databases:
Oracle Database,
Microsoft SQL Server,
MySQL, Microsoft Access,
IBM DB2 . . .

Nonrelational Databases:
Dynamo,
Apache Cassandra,
MongoDB, Neo4J . . .

VSAM, ISAM, Other
File Processors

E-mail, Spreadsheets,
Other Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

DBMS

FIGuRE 11-3

the Variety of Data types in
Web Database applications

Database Server Access Standards

To solve the problem of communicating with different products, several standard inter-
faces have been developed for accessing database servers. Every DBMS product has an
 application programming interface (API). An API is a collection of objects, methods,
and properties for executing DBMS functions from program code. Unfortunately, each
DBMS has its own API, and APIs vary from one DBMS product to another. To save program-
mers from having to learn to use many different interfaces, the computer industry has devel-
oped standards for database access.

The Open Database Connectivity (ODBC) standard was developed in the early
1990s to provide a DBMS-independent means for processing relational database data. In
the mid-1990s, Microsoft announced OLE DB, which is an object-oriented interface that
encapsulates data-server functionality. OLE DB was designed not just for access to relational
databases, but also for accessing many other types of data as well. As a Component Object
Model (COM) interface, OLE DB is readily accessible to programmers through the use of
programming languages such as C, C#, and Java. However, OLE DB is not as accessible to
users of Visual Basic (VB) and scripting languages. Therefore, Microsoft developed Active
Data Objects (ADO), which is a set of objects for utilizing OLE DB that is designed for use
by any language, including Visual Basic (VB), VBScript, and JScript. ADO has now been fol-
lowed by ADO.NET (pronounced “A-D-O-dot-NET”), which is an improved version of ADO
developed as part of Microsoft’s .NET (pronounced “dot-NET”) initiative and a component of
the .NET Framework.

ADO technology is used to build Web pages as part of Microsoft’s Active Server Pages
(ASP), which are then used to create Web-based database applications. ASP is a combination
of Hypertext Markup Language (HTML) and VBScript or JScript that can read and write data-
base data and transmit it over public and private networks using Internet protocols. ASP runs
on Microsoft’s Web server product, Internet Information Services (IIS). When ADO.NET
was introduced, Microsoft also introduced ASP.NET. ASP.NET is the successor to ASP and is
the preferred Web page technology in the .NET Framework.

Of course, there are other connectivity methods and standards besides those propagated by
Microsoft. The main alternatives to ADO.NET technology are based on or associated with Oracle
Corporation’s Java platform and include the Java programming language, Java Database
Connectivity (JBDC), Java Data Objects (JDO), and JavaServer Pages (JSP).

 CHAPTER 11 The Web Server Environment 503

JSP technology is a combination of HTML and Java that accomplishes the same function
as ASP.NET by compiling pages into Java servlets. JSP may connect to databases using JDBC.
JSP is often used with Apache Tomcat, which implements JSP in an open source Web server
(and is often used in conjunction with the open source Apache Web server).

However, the defining characteristic of the Java-related technology is that you must use
Java as the programming language. You cannot even use JavaScript, Java’s somewhat-related
scripting language cousin. If you know (or want to learn) Java, this is fine.

Although the Microsoft .NET Framework and the Oracle Corporation’s Java platform are
the two major players in Web database application development, other options are available.
One such product is PHP, which is an open source Web page programming language, and
another favorite combination of Web developers is the Apache Web server with the MySQL
DBMS and the PHP language. This combination is called AMP (Apache-MySQL-PHP).
When running on the Linux operating system, it is referred to as LAMP; when running on
the Windows operating system, it is referred to as WAMP. And because PHP works with all
DBMS products, we will use it in this book. Other possibilities include the Perl and Python
languages (both of which can be the “P” in AMP, LAMP, or WAMP) and the Ruby language
with its Web development framework called Ruby on Rails.

Web
Server

Native
Interfaces

ODBC
Nonrelational Databases:
Dynamo,
Apache Cassandra,
MongoDB, Neo4J . . .

VSAM, ISAM, Other
File Processors

E-mail, Spreadsheets,
Other Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
MySQL, Microsoft Access,
IBM DB2 . . .

DBMS

FIGuRE 11-4

role of the ODBC Standard

The ODBC Standard

The ODBC standard was created to address the data access problem that concerns relational
databases and data sources that are table-like, such as spreadsheets. As shown in Figure 11-4,
ODBC is an interface between the Web server (or other database application) and the DBMS.
It consists of a set of standards by which SQL statements can be issued and results and error
messages can be returned. As shown in Figure 11-4, developers can call the DBMS using
native DBMS interfaces (which are APIs) if they want to (sometimes they do this to improve
performance), but the developer who does not have the time or desire to learn many different
DBMS native libraries can use the ODBC instead.

The ODBC standard is an interface by which application programs can access and pro-
cess databases and tabular data in a DBMS-independent manner. This means, for example,
that an application that uses the ODBC interface could process an Oracle Database database,
an SQL Server database, a spreadsheet, or any other ODBC-compliant database without

504 PART 5 Database Access Standards

making any coding changes. The goal is to allow a developer to create a single application that
can access databases supported by different DBMS products without needing to be changed
or even recompiled.

ODBC was developed by a committee of industry experts from the X/Open and SQL
Access Group committees. Several such standards were proposed, but ODBC emerged as the
winner, primarily because it had been implemented by Microsoft and is an important part of
Windows. Microsoft’s initial interest in support of such a standard was to allow products such
as Microsoft Excel to access database data from a variety of DBMS products without having to
be recompiled. Of course, Microsoft’s interests have changed since the introduction of OLE
DB and ADO.NET.

ODBC Architecture

Figure 11-5 shows the components of the ODBC standard. The application program, driver
manager, and DBMS drivers all reside on the application server computer. The drivers send
requests to data sources, which reside on the database server. According to the standard, an
ODBC data source is the database and its associated DBMS, operating system, and net-
work platform. An ODBC data source can be a relational database; it can also be a file server,
such as BTrieve, or even a spreadsheet.

The application issues requests to create a connection with a data source; to issue SQL
statements and receive results; to process errors; and to start, commit, and roll back transac-
tions. ODBC provides a standard means for each of these requests, and it defines a standard
set of error codes and messages.

The ODBC driver manager serves as an intermediary between the application and
the DBMS drivers. When the application requests a connection, the driver manager deter-
mines the type of DBMS that processes a given ODBC data source and loads that driver into
memory (if it is not already loaded). The driver manager also processes certain initialization
requests and validates the format and order of ODBC requests that it receives from the appli-
cation. For Windows, the driver manager is provided by Microsoft.

An ODBC driver processes ODBC requests and submits specific SQL statements to a
given type of data source. Each data source type has a different driver. For example, there are
drivers for SQL Server, for Oracle Database, for MySQL, for Microsoft Access, and for all of
the other products whose vendors have chosen to participate in the ODBC standard. Drivers
are supplied by DBMS vendors and by independent software companies.

It is the responsibility of the driver to ensure that standard ODBC commands execute
correctly. In some cases, if the data source is itself not SQL compliant, the driver may need to
perform considerable processing to fill in for a lack of capability at the data source. In other
cases, when the data source supports full SQL, the driver need only pass the request through
for processing by the data source. The driver also converts data source error codes and mes-
sages into the ODBC standard codes and messages.

ODBC identifies two types of drivers: single tier and multiple tier. An ODBC single-tier
driver processes both ODBC calls and SQL statements. An example of a single-tier driver is
shown in Figure 11-6(a). In this example, the data are stored in Xbase files (the format used

DBMS Driver1 DBMS1

DBMS Driver2

DBMS Driver3

DBMS2

DBMS3

Driver
ManagerApplication

Application Server Data Sources

Application can process a database using any of the three
DBMS products.

DB

DB

DB

FIGuRE 11-5

ODBC architecture

 CHAPTER 11 The Web Server Environment 505

by FoxPro, dBase, and others). Because Xbase file managers do not process SQL, it is the job of
the driver to translate the SQL request into Xbase file-manipulation commands and to trans-
form the results back into SQL form.

An ODBC multiple-tier driver processes ODBC calls but passes the SQL requests
directly to the database server. Although it may reformat an SQL request to conform to the
dialect of a particular data source, it does not process the SQL. An example of the use of a
multiple-tier driver is shown in Figure 11-6(b).

Conformance Levels

The creators of the ODBC standard faced a dilemma. If they chose to describe a standard for a
minimal level of capability, many vendors would be able to comply. But if they did so, the stan-
dard would represent only a small portion of the complete power and expressiveness of ODBC
and SQL. However, if the standard addressed a very high level of capability, only a few vendors
would be able to comply with the standard, and it would become unimportant. To deal with
this dilemma, the committee wisely chose to define levels of conformance to the standard. The
committee defined two types of conformance: ODBC conformance and SQL conformance.

ODBC Conformance Level
ODBC conformance levels are concerned with the features and functions that are made
available through the driver’s API. As previously discussed, a driver API is a set of functions
that the application can call to receive services. Figure 11-7 summarizes the three levels of
ODBC conformance that are addressed in the standard. In practice, almost all drivers provide
at least Level 1 API conformance, so the core API level is not too important.

An application can call a driver to determine which level of ODBC conformance it
provides. If the application requires a level of conformance that is not present, it can termi-
nate the session in an orderly fashion and generate appropriate messages to the user. Or the
 application can be written to use higher-level conformance features if they are available and
to work around the missing functions if a higher level is not available.

For example, drivers at the Level 2 API must provide a scrollable cursor. Using confor-
mance levels, an application could be written to use cursors if they are available; but if they
are not, to work around the missing feature, the application would select needed data using
very restrictive WHERE clauses. Doing this would ensure that only a few rows were returned
at a time to the application, and it would process those rows using a cursor that it maintained
itself. Performance would likely be slower in the second case, but at least the application
would be able to successfully execute.

Single-Tier
Driver

File
Input/
Output

Commands

DB
Driver
ManagerApplication

Web Server

Data
Server

Computer

Database Files

DBMS
Driver

SQL
Commands

DB
Driver
ManagerApplication

Web Server

Database
Server

Computer

DBMS

(a) ODBC Single-Tier Driver

(b) ODBC Multiple-Tier Driver

FIGuRE 11-6

ODBC Driver types

506 PART 5 Database Access Standards

SQL Conformance Level
ODBC SQL conformance levels specify which SQL statements, expressions, and data
types a driver can process. Three SQL conformance levels are defined, as summarized in
Figure 11-8. The capability of the minimum SQL grammar is very limited, and most drivers
support at least the core SQL grammar.

As with ODBC conformance levels, an application can call the driver to determine what
level of SQL conformance it supports. With that information, the application can then deter-
mine which SQL statements can be issued. If necessary, the application can then terminate
the session or use alternative, less-powerful means of obtaining the data.

Creating an ODBC Data Source Name

An ODBC data source is an ODBC data structure that identifies a database and the DBMS
that processes it. Data sources identify other types of data, such as spreadsheets and other
nondatabase tabular data stores, but we are not concerned with that use here.

The three types of data sources are file, system, and user. A file data source is a file that
can be shared among database users. The only requirement is that the users have the same
DBMS driver and privilege to access the database. The data source file can be emailed or
otherwise distributed to possible users. A system data source is one that is local to a single
computer. The operating system and any user on that system (with proper privileges) can use
a system data source. A user data source is available only to the user who created it.

In general, the best choice for Internet applications is to create a system data source on
the Web server. Browser users then access the Web server, which, in turn, uses the system
data source to set up a connection with the DBMS and the database.

Connect to data sources

Prepare and execute SQL statements

Commit or roll back transactions

Retrieve error information

Retrieve data from a result set

Core API

Core API

Connect to data sources with driver-specific information

Send and receive partial results

Retrieve information about driver options, capabilities, and functions

Retrieve catalog information

Level 1 API

Core and Level 1 API

Browse possible connections and data sources

Retrieve native form of SQL

Process a scrollable cursor

Call a translation library

Level 2 API

FIGuRE 11-7

Summary of ODBC
Conformance Levels

 CHAPTER 11 The Web Server Environment 507

As our first step in developing the VRGIS, we need to create a system data source for the
VRG database so that we can use it in the Web database processing application. We created
the VRG database in SQL Server 2014, and the system data source will provide a connec-
tion to the SQL Server 2014 DBMS. To create a system data source in a Windows operating
 system, you use the ODBC Data Source Administrator.1

1Important: If you are using a 64-bit Windows operating system, be aware that there are two different ODBC
Data Source Administrator programs provided—one for 32-bit applications and one for 64-bit applications. The
ODBC Data Source Administrator used if you follow the steps in the text is the 64-bit version. However, if you
are running a 32-bit program in the Web application set (e.g., a 32-bit DBMS such as the 32-bit version of SQL
Server 2014 Express Advanced), then you must use the 32-bit version of the ODBC Data Source Administrator.
In the 64-bit version of Windows 7, this is the odbcad32.exe program located at C:\Windows\sysWOW64\
odbcad32.exe. In Windows 8, Windows 8.1, Windows Server 2012, and Windows Server 2012 R2, the pro-
grams are, fortunately, clearly labeled as either 32-bit or 64-bit. Nonetheless, if everything seems to be set up
correctly yet the Web pages are not displaying properly, then this is likely to be the problem.

Core SQL Grammar

Outer joins

UPDATE and DELETE using cursor positions

Literals for date, time, and timestamp

Scalar functions such as SUBSTRING, ABS

Extended SQL Grammar

Batch SQL statements

Stored procedures

CREATE TABLE, DROP TABLE

Simple SELECT (does not include subqueries)

INSERT, UPDATE, DELETE

CHAR, VARCHAR, LONGVARCHAR data types

Simple expressions (A > B + C)

Minimum SQL Grammar

Minimum SQL Grammar

ALTER TABLE, CREATE INDEX, DROP INDEX

CREATE VIEW, DROP VIEW

Full SELECT (includes subqueries)

GRANT, REVOKE

Core SQL Grammar

Aggregate functions such as SUM, COUNT, MAX, MIN, AVG

DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL, FLOAT,
DOUBLE PRECISION data types

FIGuRE 11-8

Summary of SQL
Conformance Levels

508 PART 5 Database Access Standards

Opening the ODBC Data Source Administrator in Windows Server 2012 R2

1. Click the Start button, and then click the All Programs button.
2. Click the Administrative Tools folder to open it.
3. Click the Data Sources (ODBC) program.

We can now use the ODBC Data Source Administrator to create a system data source
named VRG for use with SQL Server 2014:

Creating the VRG System Data Source

1. In the ODBC Data Source Administrator, click the System DSN tab, and then click
the Add button.

2. In the Create New Data Source dialog box, we need to connect to SQL Server 2014,
so we select the SQL Server Native Client 11.0, as shown in Figure 11-9.

3. Click the Finish button. The Create New Data Source to SQL Server dialog box
appears.

4. In the Create New Data Source to SQL Server dialog box, enter the information
shown for the VRG in Figure 11-10(a) (note that the database server is selected from
the Server drop-down list), and then click the Next button.
■■ NOTE: If the name of the installed SQL server instance, preceded by the name

of the computer on which it is installed, does not appear in the Server drop-down
list, enter it manually as ComputerName\SQLServerName. If the SQL Server
instance is the default installation (always named MSSQLSERVER) of SQL Server
on the computer, enter only ComputerName.

5. As shown in Figure 11-10(b), in the next page of the Create a New Data Source
to SQL Server dialog box, click the radio button that selects SQL Server authen-
tication, and then enter the Login ID of VRG-User and the Password of VRG-
User+password that we created in Chapter 9. After these data have been
entered, click the Next button.
■■ NOTE: If the Login ID and Password are not correct, an error message will ap-

pear. Make sure you have correctly created the SQL Server login as discussed in
Chapter 9 and have entered the correct data here.

Select the System
DSN tab

The Create New Data
Source dialog box

Click the Add button

Select the SQL Server
Native Client 11.0

Click the Finish button

 . . .

FIGuRE 11-9

the Create New Data
Source Dialog Box

 CHAPTER 11 The Web Server Environment 509

Click this check box
for SQL Server
authentication

Type in the user Login
ID here

Type in the associated
user Password here

The Next button

(b) Selecting the User Login ID Authentication Method

The Create a New
Data Source to SQL
Server dialog box

Type in the name for
this system DSN: VRG

Type in a description

The drop-down list
arrow button—
select the SQL
server from the
drop-down list—if
the list is empty,
type in the name
of the server itself,
not the SQL Server
instance name

(a) Naming the ODBC Data Source

FIGuRE 11-10

the Create New Data Source
to SQL Server Dialog Box

(continued)

510 PART 5 Database Access Standards

The Next button

Click this check box to
manually select the
default database

If necessary, select
the correct database
from the drop-down
list displayed clicking
this drop-down list
arrow

(c) Selecting the Default Database

The Finish button

(d) Additional Setting Options

FIGuRE 11-10

Continued

 CHAPTER 11 The Web Server Environment 511

The Test Data Source
button

(e) Testing the Data Source

The OK button

(f) The Successfully Tested Data Source

FIGuRE 11-10

Continued

512 PART 5 Database Access Standards

6. As shown in Figure 11-10(c), click the check box to change the default database, set
the default database to VRG, and then click the Next button.

7. As shown in Figure 11-10(d), another group of settings is displayed. There is no need
to change any of these settings, so click the Finish button to close the Create a New
Data Source to SQL Server dialog box.

8. The ODBC Microsoft SQL Server Setup dialog box is displayed, as shown in Figure
11-10(e). This dialog box is used to summarize the settings to be created for the new
ODBC data source. Click the Test Data Source . . . button to test the settings.

9. As shown in Figure 11-10(f), the SQL Server ODBC Data Source Test dialog box ap-
pears, showing that the tests completed successfully. Click the OK button to exit the
dialog box and create the ODBC data source.

10. The completed VRG system data source is shown in Figure 11-11. Click the OK
button to close the ODBC Data Source Administrator.

We will use the VRG DSN later in this chapter to process the SQL Server database
 created in Chapter 10. Similarly, if you are using either the Oracle or MySQL DBMS, you
should create an appropriate system data source for use with your Oracle or MySQL version
of the View Ridge Gallery database.

The VRG system data
source

FIGuRE 11-11

the Completed VrG
System Data Source

The Microsoft .NET Framework and ADO.NET

The .NET Framework is Microsoft’s comprehensive application development platform.
Web database applications tools are included in the .NET Framework. Originally released
as the .NET Framework 1.0 in January 2002, the current version is the .NET Framework
4.5, which itself has been updated to .NET Framework 4.5.1 to support Windows 8.1 and
Windows Server 2012 R2.

As shown in Figure 11-12, the .NET Framework can best be visualized as a set of build-
ing blocks stacked on top of each other. Each additional block adds additional functionality
to the components already existing in previous blocks, and if earlier components need to be
updated, this is done by service packs to the older blocks. Thus, .NET Framework 2.0 SP2 and
.NET Framework SP2 were included as part of .NET Framework 3.5 SP1, and upgrades to all
portions of the .NET Framework are included in .NET Framework 4.0, .NET Framework 4.5,
and .NET Framework 4.5.1.

 CHAPTER 11 The Web Server Environment 513

Although Figure 11-12 does not show every feature of the .NET Framework 3.5 SP1, the
basic structure is easy to see. The .NET Framework 2.0 is now the basic layer and contains the
most basic features. These include the Common Language Runtime (CLT) and the Base
Class Library, which support all of the programming languages (e.g., VB.NET and Visual
C#.NET) used with the .NET Framework. This layer also includes the ADO.NET and ASP.NET
components, which are needed for Web database applications.

The .NET Framework 3.0 added a set of components that are not of interest to us here.
We are more concerned with the features added in .NET Framework 3.5 and 3.5 SP1, not-
ing that these features were upgraded, but not replaced, by .NET Framework 4.0. Note that
several extensions to ADO.NET were included in .NET Framework 3.5 and 3.5 SP1, such as
the ADO.NET Entity Framework, which supports Microsoft’s emerging Entity Data
Model (EDM) data modeling technology, as well as the Language Integrated Query
(LINQ) component, which allows SQL queries to be programmed directly into application
programs in a simple manner.

Besides updating existing features, the .NET Framework 4.0 added features needed for
parallel processing on clustered servers. These include Parallel LINQ (PLINQ) and Task
Parallel Library (TPL), but these parallel processing features are beyond the scope of this
book. The .NET Framework 4.5 again updated many existing features and added functional-
ity for Windows 8 Apps, including .NET for Windows Store Apps, Portable Class
Libraries, and the Managed Extensibility Framework (MEF). For more information
on .NET Framework 4.5, see the Microsoft MSDN Web page What’s New in the .NET Framework
4.5 at http://msdn.microsoft.com/en-us/library/ms171868.aspx. .Net Framework 4.5.1 is a minor
update and is distributed with Windows 8.1 and Windows Server 2012 R2.

Now that we understand the basic structure of the .NET Framework, we can look at some
of the pieces in detail.

• Language Integrated Query (LINQ)
• ADO.NET Entity Framework
• ADO.NET Data Services
• ADO.NET AJAX

3.5

• Windows Presentation Foundation (WPF)
• Windows Communication Foundation (WCF)
• Windows Workflow Foundation (WWF)

3.0

• .NET for Windows Store Apps
• Portable Class Libraries
• Managed Extensibility Framework (MEF)

4.5
4.5.1

• ASP.NET
• ADO.NET
• Base Class Library
• Common Language Runtime

2.0

• Parallel LINQ (PLINQ)
• Task Parallel Library (TPL)

4.0

FIGuRE 11-12

the Microsoft .NEt
Framework Structure

VB.NET
http://msdn.microsoft.com/en-us/library/ms171868.aspx

514 PART 5 Database Access Standards

OLE DB

ODBC has been a tremendous success and has greatly simplified some database development
tasks. However, it does have some disadvantages, and in particular one substantial disadvantage
that Microsoft addressed by creating OLE DB. Figure 11-13 shows the relationship among
OLE DB, ODBC, and other data types. OLE DB is one of the foundations of data access in the
Microsoft world. As such, it is important to understand the fundamental ideas of OLE DB, even
if you will only work with the ADO.NET interface that lies on top of it because, as you will see,
OLE DB remains as a data provider to ADO.NET. In this section, we present essential OLE DB
concepts and use them to introduce some important object-oriented programming topics.

OLE DB provides an object-oriented interface to data of almost any type. DBMS vendors
can wrap portions of their native libraries in OLE DB objects to expose their product’s func-
tionality through this interface. OLE DB can also be used as an interface to ODBC data sources.
Finally, OLE DB was developed to support the processing of nonrelational data as well.

OLE DB is an implementation of the Microsoft Object Linking and Embedding (OLE)
object standard. OLE DB objects are Component Object Model (COM) objects and support all
required interfaces for such objects. Fundamentally, OLE DB breaks the features and functions
of a DBMS up into COM objects. Some objects support query operations; others perform up-
dates; others support the creation of database schema constructs, such as tables, indexes, and
views; and still others perform transaction management, such as optimistic locking.

This characteristic overcomes a major disadvantage of ODBC. With ODBC, a vendor
must create an ODBC driver for almost all DBMS features and functions in order to par-
ticipate in ODBC at all. This is a large task that requires a substantial investment. With OLE
DB, however, a DBMS vendor can implement portions of a product. One could, for example,
implement only the query processor, participate in OLE DB, and hence be accessible to cus-
tomers using ADO.NET. Later, the vendor could add more objects and interfaces to increase
OLE DB functionality.

Web
Server

Native
Interfaces DBMS

ODBC

O
L
E

D
B

Nonrelational
Databases

VSAM, ISAM,
Other File
Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
MySQL, Microsoft Access,
IBM DB2 . . .

FIGuRE 11-13

the role of OLE DB

By THE WAy The Microsoft Entity Data Model (EDM) is similar in concept to the Semantic
Object Model discussed in Appendix H of this book. A discussion of the

EDM can be found at http://msdn.microsoft.com/en-us/library/aa697428(VS.80).aspx.

http://msdn.microsoft.com/en-us/library/aa697428(VS.80).aspx

 CHAPTER 11 The Web Server Environment 515

This text does not assume that you are an object-oriented programmer, so we need to
develop a few concepts. In particular, you need to understand objects, abstractions, methods,
properties, and collections. An abstraction is a generalization of something. ODBC inter-
faces are abstractions of native DBMS access methods. When we abstract something, we lose
detail, but we gain the ability to work with a broader range of types.

For example, a recordset is an abstraction of a relation. In this abstraction, a recordset is
defined to have certain characteristics that will be common to all recordsets. Every recordset,
for instance, has a set of columns, which in this abstraction is called Fields. Now, the goal of ab-
straction is to capture everything important but to omit details that are not needed by users of
the abstraction. Thus, Oracle relations may have some characteristics that are not represented
in a recordset; the same might be true for relations in SQL Server, in DB2, and in other DBMS
products. These unique characteristics will be lost in the abstraction, but if the abstraction is a
good one, no one will care.

Moving up a level, a rowset is the OLE DB abstraction of a recordset. Now, why does
OLE DB need to define another abstraction? Because OLE DB addresses data sources that
are not tables but that do have some of the characteristics of tables. Consider all of the email
addresses in your personal email file. Are those addresses the same as a relation? No, but they
do share some of the characteristics that relations have. Each address is a semantically related
group of data items. Like rows of a table, it is sensible to go to the first one, move to the next
one, and so forth. But, unlike relations, they are not all of the same type. Some addresses are
for individuals; others are for mailing lists. Thus, any action on a recordset that depends on
everything in the recordset being the same kind of thing cannot be used on a rowset.

Working from the top down, OLE DB defines a set of data properties and behaviors for row-
sets. Every rowset has those properties and behaviors. Furthermore, OLE DB defines a recordset
as a subtype of a rowset. Recordsets have all of the properties and behaviors that rowsets have,
plus they have some that are uniquely characteristic of recordsets.

Abstraction is both common and useful. You will hear of abstractions of transaction
management or abstractions of querying or abstractions of interfaces. This simply means that
certain characteristics of a set of things are formally defined as a type.

An object-oriented programming object is an abstraction that is defined by its properties
and methods. For example, a recordset object has an AllowEdits property and a RecordsetType
property and an EOF property. These properties represent characteristics of the recordset
abstraction. An object also has actions that it can perform that are called methods. A recordset
has methods such as Open, MoveFirst, MoveNext, and Close. Strictly speaking, the definition of
an object abstraction is called an object class or just a class. An instance of an object class, such
as a particular recordset, is called an object. All objects of a class have the same methods and the
same properties, but the values of the properties vary from object to object.

The last term we need to address is collection. A collection is an object that contains a group of
other objects. A recordset has a collection of other objects called Fields. The collection has proper-
ties and methods. One of the properties of all collections is Count, which is the number of objects
in the collection. Thus, recordset.Fields.Count is the number of fields in the collection. In OLE DB,
collections are named as the plural of the objects they collect. Thus, there is a Fields collection of
Field objects, an Errors collection of Error objects, a Parameters collection of Parameters, and so
forth. An important method of a collection is an iterator, which is a method that can be used to
process each member of the collection or otherwise identify the items in the collection.

Goals of OLE DB
The major goals for OLE DB are listed in Figure 11-14. First, as mentioned, OLE DB breaks
DBMS functionality and services into object pieces. This partitioning means great flexibility
for both data consumers (users of OLE DB functionality) and data providers (vendors of
products that deliver OLE DB functionality). Data consumers take only the objects and func-
tionality they need; a wireless device for reading a database can have a very slim footprint.
Unlike with ODBC, data providers need only implement a portion of DBMS functionality.
This partitioning also means that data providers can deliver capabilities in multiple interfaces.

This last point needs expansion. An object interface is a packaging of objects. An
 interface is specified by a set of objects and the properties and methods that they expose. An
object need not expose all of its properties and methods in a given interface. Thus, a recordset

516 PART 5 Database Access Standards

object would expose only read methods in a query interface but would expose create, update,
and delete methods in a modification interface.

How the object supports the interface, or the implementation, is completely hidden
from the user. In fact, the developers of an object are free to change the implementation
whenever they want. Who will know? But they may not ever change the interface without
incurring the justifiable disdain of their users!

OLE DB defines standardized interfaces. Data providers, however, are free to add inter-
faces on top of the basic standards. Such extensibility is essential for the next goal, which is to
provide an object interface to any data type. Relational databases can be processed through
OLE DB objects that use ODBC or that use the native DBMS drivers. OLE DB includes
 support for the other types as indicated in Figure 11-13.

The net result of these design goals is that data need not be converted from one form to
another, nor need they be moved from one data source to another. The Web server shown in
Figure 11-13 can utilize OLE DB to process data in any of the formats, right where the data re-
side. This means that transactions may span multiple data sources and may be distributed on
different computers. The OLE DB provision for this is the Microsoft Transaction Server
(MTS); however, discussion of the MTS is beyond the scope of this text.

OLE DB Terminology
As shown in Figure 11-15, OLE DB has two types of data providers. Tabular data providers
present their data via rowsets. Examples are DBMS products, spreadsheets, and ISAM file pro-
cessors, such as dBase and FoxPro. Additionally, other types of data, such as email, can also be
presented in rowsets. Tabular data providers bring data of some type into the OLE DB world.

A service provider, in contrast, is a transformer of data. Service providers accept OLE
DB data from an OLE DB tabular data provider and transform it in some way. Service providers

Query

Create object interfaces for DBMS functionality pieces

Update

Transaction management

Other DBMS functionality

Increase flexibility

Allow data consumers to use only the objects they need

Allow data providers to expose pieces of DBMS functionality

Providers can deliver functionality in multiple interfaces

Interfaces are standardized and extensible

Object interface over any type of data

Relational database

ODBC or native

Nonrelational database

VSAM and other files

E-mail

Other

Do not force data to be converted or moved from where they are

FIGuRE 11-14

the Goals of OLE DB

 CHAPTER 11 The Web Server Environment 517

are both consumers and providers of transformed data. An example of a service provider is one
that obtains data from a relational DBMS and then transforms them into XML documents.
Both data and service providers process rowset objects. A rowset is equivalent to what we called
a cursor in Chapter 9, and in fact the two terms are frequently used synonymously.

For database applications, rowsets are created by processing SQL statements. The results
of a query, for example, are stored in a rowset. OLE DB rowsets have dozens of different meth-
ods, which are exposed via the interfaces listed in Figure 11-16.

IRowSet provides object methods for forward-only sequential movement through a row-
set. When you declare a forward-only cursor in OLE DB, you are invoking the IRowSet inter-
face. The IAccessor interface is used to bind program variables to rowset fields.

The IColumnsInfo interface has methods for obtaining information about the columns in
a rowset. IRowSet, IAccessor, and IColumnsInfo are the basic rowset interfaces. Other inter-
faces are defined for more advanced operations such as scrollable cursors, update operations,
direct access to particular rows, explicit locks, and so forth.

ADO and ADO.NET

Because OLE DB is an object-oriented interface, it is particularly suited to object-oriented
 languages such as VB.NET and Visual C#.NET. Many database application developers,
however, program in scripting languages such as VBScript or JScript (Microsoft’s version
of JavaScript). To meet the needs of these programmers, Microsoft developed Active Data
Objects (ADO) as a cover over OLE DB objects, as shown in Figure 11-17. ADO has enabled
programmers to use almost any language to access OLE DB functionality.

Tabular data provider

Examples: DBMS, spreadsheets, ISAMs, e-mail

Service provider

Transforms data through OLE DB interfaces

Both a consumer and a provider of data

Examples: query processors, XML document creator

Exposes data via rowsets

FIGuRE 11-15

two types of OLE DB Data
Providers

Methods for sequential iteration through a rowset

IRowSet

IAccessor

IColumnsInfo

Methods for determining information about the columns in the rowset

Other interfaces

Scrollable cursors

Methods for setting and determining bindings between rowset
and client program variables

Create, update, delete rows

Directly access particular rows (bookmarks)

Explicitly set locks

Additional capabilities

FIGuRE 11-16

rowset Interfaces

VB.NET

518 PART 5 Database Access Standards

ADO is a simple object model that overlies the more complex OLE DB object model.
ADO can be called from scripting languages, such as JScript and VBScript, and it can also be
called from more powerful languages, such as Visual Basic .NET, Visual C#.NET, Visual C++.
NET, and even Java. Because ADO is easier to understand and use than OLE DB, ADO was
(and still is) often used for database applications.

ADO.NET is a new, improved, and greatly expanded version of ADO that was developed
as part of Microsoft’s .NET initiative. It incorporates the functionality of ADO and OLE DB
but adds much more. In particular, ADO.NET facilitates the transformation of XML docu-
ments (discussed later in this chapter) to and from relational database constructs. ADO.NET
also provides the ability to create and process in-memory databases called datasets. Figure
11-18 shows the role of ADO.NET.

The ADO.NET Object Model

Now we need to look at ADO.NET in more detail. As shown in Figure 11-19, an ADO.NET
Data Provider is a class library that provides ADO.NET services. Microsoft supplied
ADO.NET Data Providers are available for ODBC, OLE DB, SQL Server, Oracle Database, and

Web
Server

Native
Interfaces DBMS

A
D
O

ODBC

O
L
E

D
B

Nonrelational
Databases

VSAM, ISAM,
Other File
Processors

E-mail, Other
Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

Relational Databases:
Oracle Database,
Microsoft SQL Server,
MySQL, Microsoft Access,
IBM DB2 . . .

FIGuRE 11-17

the role of aDO

DBMSADO.NET

Web
Applications

Windows
Applications

XML Web
Services

DB

FIGuRE 11-18

the role of aDO.NEt

 CHAPTER 11 The Web Server Environment 519

EDM applications, which means that ADO.NET works not only with the ODBC and OLE DB
data access methods we have discussed in this chapter but directly with SQL Server, Oracle
Database, and .NET language applications that use EDM as well. ADO Data Providers from
other vendors are available through http://msdn.microsoft.com/en-us/data/dd363565.

A simplified version of the ADO.NET object model is shown in Figure 11-20. The ADO.NET
object classes are grouped into Data Providers and DataSets.

The ADO.NET Connection object is responsible for connecting to the data source. It is
basically the same as the ADO Connection object, except that ODBC is not used as a data source.

DBMS

ADO.NET Data Provider

ADO.NET Data Providers:

• OLE DB
• SQL Server Client
• Oracle Database Client
• Others . . .

Data
Reader

Command

Connection

Data
Adaptor

XML
Document

DB

Or Other
OLE DB
Data Source

Dataset

Application Application

FIGuRE 11-19

Components of an
aDO.NEt Data Provider

ADO.NET

Data Providers Data ConsumersDataSet

DataTableCollectionConnection

Data Adapter

Command

Data Reader

DataRelationCollection

Relationships

DataTable

Columns

Rows

Constraints

FIGuRE 11-20

the aDO.NEt Object
Model

http://msdn.microsoft.com/en-us/data/dd363565

520 PART 5 Database Access Standards

The ADO.NET DataSet is a representation of the data stored in the computer memory
as a set of data separate from the one in the DBMS. The DataSet is distinct and disconnected
from the DBMS data. This allows commands to be run against the DataSet instead of the
actual data. DataSet data can be constructed from data in multiple databases, and they can
be managed by different DBMS products. The DataSet contains the DataTableCollection and
the DataRelationCollection. A more detailed version of the ADO.NET dataset object model is
shown in Figure 11-21.

The DataTableCollection mimics DBMS tables with DataTable objects.
DataTable objects include a DataColumnCollection, a DataRowCollection, and
Constraints. Data values are stored in DataRow collections in three forms: original val-
ues, current values, and proposed values. Each DataTable object has a PrimaryKey
property to enforce row uniqueness. The Constraints collection uses two constraints. The
ForeignKeyConstraint supports referential integrity, and the UniqueConstraint sup-
ports data integrity.

The DataRelationCollection stores DataRelations, which act as the relational links
between tables. Note again that referential integrity is maintained by the ForeignKeyConstraint
in the Constraints collection. Relationships among DataSet tables can be processed just as re-
lationships in a database can be processed. A relationship can be used to compute the values
of a column, and DataSet tables can also have views.

The ADO.NET Command object shown in Figures 11-19 and 11-20 is used as an SQL
statement or stored procedure and is run on data in the DataSet. The ADO.NET DataAdapter
object is the link between a Connection object and a DataSet object. The DataAdapter uses
four Command objects: the SelectCommand object, the InsertCommand object, the
UpdateCommand object, and the DeleteCommand object. The SelectCommand object
gets data from a DBMS and places it in a DataSet. The other commands send changes in the
DataSet back to the DBMS data.

DataSet

DataRelationCollection

DataRelation

Extended Properties

DataTableCollection

DataTable

DataRowCollection

Constraints

DataColumnCollection

PrimaryKey

DataRow

Constraint

DataColumn

ExtendedProperties

ChildRelations

ParentRelations

Extended Properties

DataView

FIGuRE 11-21

the aDO.NEt DataSet
Object Model

 CHAPTER 11 The Web Server Environment 521

The ADO.NET DataReader is similar to a cursor that provides read-only, forward-
only data transfers from a data source and can be used only through an Execute method
of a Command.

Looking ahead to our discussion of XML later in this chapter, we see some advantages of
ADO.NET over ADO. Once a DataSet is constructed, its contents can be formatted as an XML
document with a single command. Similarly, an XML Schema document for the DataSet
can also be produced with a single command. This process works in reverse as well. An XML
Schema document can be used to create the structure of a DataSet, and the DataSet data can
then be filled by reading an XML document.

By THE WAy As Microsoft developed .NET technology, it became clear that a general-
ized means was needed to define and process database views and related

structures. Microsoft could have defined a new proprietary technology for this purpose,
but thankfully it did not. Instead, it recognized that the concepts, techniques, and facili-
ties used to manage regular databases can be used to manage in-memory databases as
well. The benefit to you is that all of the concepts and techniques that you have learned
to this point for processing regular databases can also be used to process datasets.

You may be wondering, “Why is all of this necessary? Why do we need an in-
memory database?” The answer lies in database views like that shown in the XML dis-
cussion in Appendix K and, specifically, in Figure K-19. There is no standardized way to
describe and process such data structures. Because it involves two multivalued paths
through the data, SQL cannot be used to describe the data. Instead, we must execute
two SQL statements and somehow patch the results to obtain the view.

Views like that shown in Figure K-19 have been processed for many years, but
only by private, proprietary means. Every time such a structure needs to be processed,
a developer designs programs for creating and manipulating the data in memory and
for saving them to the database. Object-oriented programmers define a class for this
data structure and create methods to serialize (transfer from memory representation
to persistent disk storage) objects of this class into the database. Other programmers
use other means. The problem is that every time a different view is designed, a different
scheme must be designed and developed to process the new view.

DataSets do have a downside, and a serious one for some applications. Because DataSet
data are disconnected from the regular database, only optimistic locking can be used. The
data are read from the database, placed into the DataSet, and processed there. No attempt
is made to propagate changes in the DataSet back to the database. If, after processing, the
application later wants to save all of the DataSet data into a regular database, it needs to use
optimistic locking. If some other application has changed the data, either the DataSet will
need to be reprocessed or the data change will be forced onto the database, causing the lost
update problem.

Thus, DataSets cannot be used for applications in which optimistic locking is problem-
atic. For such applications, the ADO.NET Command object should be used instead. But for
applications in which conflict is rare or for those in which reprocessing after conflict can be
accommodated, DataSets provide significant value.

By THE WAy Combining Oracle Database with ASP.NET applications is somewhat
complex and beyond the scope of this discussion. A good starting point

is the Oracle Database 2 Day + .NET Developer’s Guide for Oracle Database 11g
R2 at http://docs.oracle.com/cd/E11882_01/appdev.112/e10767/toc.htm. In particular,
see Chapter 7: Using ASP.NET with Oracle Database at http://docs.oracle.com/cd/
E11882_01/appdev.112/e10767/using_aspnt.htm.

http://docs.oracle.com/cd/E11882_01/appdev.112/e10767/toc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e10767/using_aspnt.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e10767/using_aspnt.htm

522 PART 5 Database Access Standards

The Java Platform

Having looked at the Microsoft .NET Framework in some detail, we will now turn our atten-
tion to the Java platform and look at its components.

JDBC

Originally, and contrary to many sources, JDBC did not stand for Java Database Connectivity.
According to Sun Microsystems—the inventor of Java and the original source of many Java-
oriented products—JDBC was not an acronym; it just stood for JDBC. At this point in time,
however, we can even find the name Java Database Connectivity (JDBC) on Oracle’s Web site
(Oracle Corporation purchased Sun Microsystems in January of 2010—see www.oracle.com/
technetwork/java/javase/tech/index-jsp-136101.html)! Still, because we use acronyms in this book
after introducing the full term, we will use JDBC.

A JDBC driver is available for almost every conceivable DBMS product. Oracle maintains
a directory of them available through www.oracle.com/technetwork/java/javase/jdbc/index.html—click
on the Industry Support link at the bottom of the page. Some of the drivers are free, and almost
all of them have an evaluation edition that can be used for free for a limited period of time. The
JDBC driver for MySQL is the MySQL Connector/J, which is available at http://dev.mysql.com/
downloads/connector/j/.

Driver Types
As summarized in Figure 11-22, there are four defined JDBC driver types. Type 1 drivers are
JDBC–ODBC bridge drivers, which provide an interface between Java and regular ODBC driv-
ers. Most ODBC drivers are written in C or C++. For reasons unimportant to us here, there are
incompatibilities between Java and C/C++. Bridge drivers resolve these incompatibilities and
allow access to ODBC data sources from Java. Because we use ODBC in the chapter, if you are
using MySQL, you will want to download the MySQL Connector/ODBC driver. The MySQL
Connector/ODBC is available from http://dev.mysql.com/downloads/connector/odbc/. Note that the

Driver Type

1

2

3

4

Characteristics

JDBC–ODBC bridge. Provides a Java APl that interfaces to
an ODBC driver. Enables processing of ODBC data sources
from Java.

A Java APl that connects to the native-library of a DBMS
product. The Java program and the DBMS must reside on the
same machine, or the DBMS must handle the intermachine
communication, if not.

A Java APl that connects to a DBMS-independent network
protocol. Can be used for servlets and applets.

A Java APl that connects to a DBMS-dependent network
protocol. Can be used for servlets and applets.

Summary of JDBC Driver Types
FIGuRE 11-22

Summary of JDBC
Driver types

By THE WAy The only way to use Oracle Database XML facilities is to write in Java, an
 object-oriented programming language. Further, the only way to process

ADO.NET is from one of the .NET languages, all of which, like Visual Basic .NET, are
object-oriented languages. Thus, if you do not yet know object-oriented design and
programming and if you want to work in the emerging world of database processing, you
should run, not walk, to your nearest object-oriented design and programming class!

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/odbc/

 CHAPTER 11 The Web Server Environment 523

MySQL connector for Windows operating systems is included in the MySQL Installer for
Windows discussed in Chapter 10C.

Drivers of Types 2 through 4 are written entirely in Java; they differ only in how they
connect to the DBMS. Type 2 drivers connect to the native API of the DBMS. For example,
they call Oracle Database using the standard (non-ODBC) programming interface to Oracle
Database. Drivers of Types 3 and 4 are intended for use over communications networks. A
Type 3 driver translates JDBC calls into a DBMS-independent network protocol. This protocol
is then translated into the network protocol used by a particular DBMS. Finally, Type 4 drivers
translate JDBC calls into DBMS-specific network protocols.

To understand how drivers Types 2 through 4 differ, you must first understand the
difference between a servlet and an applet. As you probably know, Java was designed to
be portable. To accomplish portability, Java programs are not compiled into a particu-
lar machine language, but instead are compiled into machine-independent bytecode.
Oracle, Microsoft, and others have written bytecode interpreters for each machine
environment (Intel Pentium, Intel Core, Alpha, and so on). These interpreters are re-
ferred to as Java virtual machines.

To run a compiled Java program, the machine-independent bytecode is interpreted
by the virtual machine at run time. The cost of this, of course, is that bytecode interpreta-
tion constitutes an extra step, so such programs can never be as fast as programs that are
compiled directly into machine code. This may or may not be a problem, depending on
the application’s workload.

An applet is a Java bytecode program that runs on the application user’s computer.
Applet bytecode is sent to the user via HTTP and is invoked using the HTTP protocol on the
user’s computer. The bytecode is interpreted by a virtual machine, which is usually part of
the browser. Because of portability, the same bytecode can be sent to a Windows, a UNIX, or
an Apple computer.

A servlet is a Java program that is invoked via HTTP on the Web server computer. It
responds to requests from browsers. Servlets are interpreted and executed by a Java virtual
machine running on the server.

Because they have a connection to a communications protocol, Type 3 and Type 4 drivers
can be used in either applet or servlet code. Type 2 drivers can be used only in situations
where the Java program and the DBMS reside on the same machine or where the Type 2
driver connects to a DBMS program that handles the communications between the computer
running the Java program and the computer running the DBMS.

Thus, if you write code that connects to a database from an applet (two-tier architecture),
only a Type 3 or Type 4 driver can be used. In these situations, if your DBMS product has a
Type 4 driver, use it; it will be faster than a Type 3 driver.

In three-tier or n-tier architecture, if the Web server and the DBMS are running on
the same machine, you can use any of the four types of drivers. If the Web server and the
DBMS are running on different machines, Type 3 and Type 4 drivers can be used without a
problem. Type 2 drivers can also be used if the DBMS vendor handles the communications
between the Web server and the DBMS. The MySQL Connector/J is a Type 4 driver.

using JDBC
Unlike ODBC, JDBC does not have a separate utility for creating a JDBC data source. Instead,
all of the work to define a connection is done in Java code via the JDBC driver. The coding
pattern for using a JDBC driver is as follows:

1. Load the driver.
2. Establish a connection to the database.
3. Create a statement.
4. Do something with the statement.

To load the driver, you must first obtain the driver library and install it in a directory. You
need to ensure that the directory is named in the CLASSPATH both for the Java compiler
and for the Java virtual machine. The name of the DBMS product to be used and the name
of the database are provided at step 2. Figure 11-23 summarizes the JDBC components.

524 PART 5 Database Access Standards

Note that Java is used to create the application shown in the figure, and because Java
is an object-oriented programming language, we see a set of objects in the application
that are similar to those we have discussed for ADO.NET. The application creates a JDBC
Connection object, JDBC Statement objects, a JDBC ResultSet object, and a
JDBC ResultSetMetaData object. Calls from these objects are routed via the JDBC
DriverManager to the proper driver. Drivers then process their databases. Notice that
the Oracle database in this figure could be processed either via a JDBC–ODBC bridge or
via a pure JDBC driver.

MySQL
Database

MySQL Driver

Oracle
Database

SQL Server Database Oracle Database

Oracle Database Driver

JDBC–ODBC Bridge

ODBC Driver

Driver
ManagerConnection

Statement CallableStatement

Application

PreparedStatementResultSet

ResultSetMetaData

FIGuRE 11-23

JDBC Components

By THE WAy Most of this technology arose in the UNIX operating system world (see the
Wikipedia article UNIX). UNIX is case sensitive, and almost everything you

enter here also is case sensitive. Thus, jdbc and JDBC are not the same.

Prepared Statement objects and Callable Statement objects can be used to
invoke compiled queries and stored procedures in the database. Their use is similar to the
use of ADO.NET Command objects discussed previously in this chapter. It is possible to
receive values back from procedures as well. Start at www.oracle.com/technetwork/java/javase/
documentation/index.html for more information.

Java Server Pages (JSP) and Servlets

Java Server Pages (JSP) technology provides a means to create dynamic Web pages using
HTML (and XML) and the Java programming language. With Java, the capabilities of a com-
plete object-oriented language are directly available to the Web page developer. This is similar
to what can be done using ASP.NET using the Microsoft .NET languages.

Because Java is machine independent, JSP is also machine independent. With JSP, you
are not locked into using Windows and IIS. You can run the same JSP page on a Linux server,
on a Windows server, and on others as well. The official specification for JSP can be found at
www.oracle.com/technetwork/java/javaee/jsp/index.html.

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html

 CHAPTER 11 The Web Server Environment 525

JSP pages are transformed into standard Java language and then compiled just like a
regular program. In particular, they are transformed into Java servlets, which means that JSP
pages are transformed into subclasses of the HTTPServlet class behind the scenes. JSP code
thus has access to the HTTP request and response objects and also to their methods and to
other HTTP functionality.

Apache Tomcat

The Apache Web server does not support servlets. However, the Apache Foundation and Sun
cosponsored the Jakarta Project that developed a servlet processor named Apache Tomcat
(now in version 8.0.23). You can obtain the source and binary code of Tomcat from the
Apache Tomcat Web site at http://tomcat.apache.org/.

Tomcat is a servlet processor that can work in conjunction with Apache or as a stand-
alone Web server. Tomcat has limited Web server facilities, however, so it is normally used
in stand-alone mode only for testing servlets and JSP pages. For commercial production
applications, Tomcat should be used in conjunction with Apache. If you are running Tomcat
and Apache separately on the same Web server, they need to use different ports. The default
port for a Web server is 80, and Apache normally uses it. When used in stand-alone mode,
Tomcat is usually configured to listen to port 8080, though this, of course, can be changed.

Figure 11-24 shows the process by which JSP pages are compiled. When a request for a
JSP page is received, a Tomcat (or other) servlet processor finds the compiled version of the
page and checks to determine whether it is current. It does this by looking for an uncompiled
version of the page having a creation date and time later than the compiled page’s creation
date and time. If the page is not current, the new page is parsed and transformed into a Java
source file, and that source file is then compiled. The servlet is then loaded and executed. If
the compiled JSP page is current, then it is loaded into memory, if not already there, and then
executed. If it is in memory, it is simply executed.

Load the JSP Servlet

Parse JSP and
Create Java
Source File

Compile Java
Source File

JSP
Servlet

Current?

Yes

Yes

Execute the JSP
Servlet

JSP Page Response

JSP
Servlet in
Memory?

No

No

JSP Page RequestFIGuRE 11-24

JSP Compilation Process

http://tomcat.apache.org/

526 PART 5 Database Access Standards

In this book, we will take a vendor-neutral approach and use technologies that can be
used with any operating system or DBMS. We will use the PHP language. PHP, which is
an abbreviation for PHP: Hypertext Processor (and which was previously known as
the Personal Hypertext Processor), is a scripting language that can be embedded in Web pages.
Although PHP started as purely a scripting language, it now also has object-oriented program-
ming elements, but we will not cover those in this book.

PHP is extremely popular. In January 2013, there were about 244 million PHP
Web sites,2 and the February 2015 TIOBE Programming Community Index ranked PHP
as the seventh most popular programming language (following, in order, C, Java, C++,
Objective C, C#, and JavaScript).3 PHP is easy to learn and can be used in most Web
server environments and with most databases. As an added bonus, it is an open source
product available for free download from the PHP Web site (www.php.net and http://windows
.php.net/download/ for the Windows versions).

Although Microsoft would probably prefer that you use ASP.NET for Web applica-
tions, there is still good information on using PHP in a Microsoft environment on the
Microsoft Web site (e.g., see Running PHP on IIS at http://php.iis.net). Both Oracle DBMS
products—Oracle Database and MySQL—enthusiastically support PHP. Oracle publishes
the Oracle Database 2 Day + PHP Developer’s Guide (available in both HTML and PDF

3See www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
2See www.php.net/usage.php.

Web Database Processing with PHP

At this point in our discussion, it is time to build an actual Web database application and
apply both some of the knowledge from this chapter and some new techniques yet to be dis-
cussed. We have already created an ODBC data source for the View Ridge Gallery database,
and now we will use it to look at Web database processing. Although we have introduced
technologies such as ADO.NET, ASP.NET, Java, and JSP, these technologies are complex sub-
jects and beyond the scope of this book. Further, these technologies tend to become vendor
 specific—you are either working in a Microsoft-centric world with .NET technologies and
ASPs or an Oracle Corporation-centic world with Java and JSPs.

By THE WAy Before working your way through this chapter, you should install and set
up the software we will be using—the Microsoft IIS Web server, the Java

JRE, PHP, and the NetBeans IDE—on your computer if you do not have the software
 available for your use in a computer lab or similar facility. Installing and setting up
this software correctly, which is complex but straightforward, is described in detail in
Appendix I. We strongly suggest that you read Appendix I now and make sure your
computer is completely set up before continuing with the material in this chapter. Then
try out each of our examples on your computer to get the most out of this discussion.

By THE WAy The downside of such automatic compilation is that if you make syntax
 errors and forget to test your pages, the first user to access your page will

receive the compiler errors!
Unlike common gateway interface (CGI) files (see the Wikipedia article Common_

Gateway_Interface) and some other Web server programs, only one copy of a JSP page
can be in memory at a time. Further, pages are executed by one of Tomcat’s threads,
not by an independent process. This means that much less memory and processor
time are required to execute a JSP page than to execute a comparable CGI script.

http://www.php.net
http://windows.php.net/download/
http://windows.php.net/download/
http://php.iis.net
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.php.net/usage.php

 CHAPTER 11 The Web Server Environment 527

format at https://docs.oracle.com/database/121/nav/portal_5.htm), which is an excellent refer-
ence for using PHP with Oracle Database 11g Release 2. Because PHP is often the P in
AMP, LAMP, and WAMP, many books are available that discuss the combination of PHP
and MySQL, and the MySQL Web site contains basic documentation on using PHP with
MySQL (e.g., see http://dev.mysql.com/doc/refman/5.6/en/apis-php-info.html).

Web Database Processing with PHP and the NetBeans IDE

To start, we need a Web server to store the Web pages that we will build and use. We could
use the Apache HTTP Server (available from the Apache Software Foundation at www
.apache.org). This is the most widely used Web server, and there is a version that will run on
just about every operating system in existence. However, because we have been using the
Windows operating system for the DBMS products shown in this book, we will build a Web
site using the Microsoft IIS Web server. One advantage of using this Web server for users of
the Windows 8 and the Windows Server 2012 R2 operating systems is that IIS is included
with the operating system: IIS version 8.5 is included with both Windows 8 and Windows
Server 2012 R2. IIS is installed but not operational by default, but it can easily be made op-
erational at any time. This means that any user can practice creating and using Web pages on
his or her own workstation as well as working on a networked Web server. See Appendix I for
a detailed discussion of setting up IIS.

By THE WAy This discussion of Web database processing has been written to be as widely
applicable as possible. With minor adjustments to the following steps, you

should be able to use the Apache Web server if you have it available. Whenever possible,
we have chosen to use products and technologies that are available for many operating
systems.

When IIS is installed, it creates an inetpub folder on the C: drive as C:\inetpub.
Within the inetpub folder is the wwwroot folder, which is where IIS stores the most basic
Web pages used by the Web server. Figure 11-25 shows this directory structure in Windows
Server 2012 R2 after IIS has been installed, with the files in the wwwroot folder displayed
in the file pane.

The C: drive

The inetpub folder

The wwwroot folder

The iisstart.htm file

FIGuRE 11-25

the IIS wwwroot Folder in
Windows Server 2012 r2

https://docs.oracle.com/database/121/nav/portal_5.htm
http://dev.mysql.com/doc/refman/5.6/en/apis-php-info.html
http://www.apache.org
http://www.apache.org

528 PART 5 Database Access Standards

IIS is managed using a program called Internet Information Services Manager as
shown in Figure 11-26 for Windows Server 2012 R2. The location of the program icon varies
depending on the operating system.

■■ For Windows 7, open Control Panel, then open System and Security, and then
open Administrative Tools. The shortcut icon for Internet Information Services
Manager is located in Administrative Tools.

■■ For Windows Server 2008 R2, use Start | Administrative Tools | Internet
Information Services (IIS) Manager.

■■ For Windows 8.1, click [Windows Key]∙X to open the Quick Access
Menu, then click Control Panel to open the Control Panel. In the Control
Panel, open System and Security, and then open Administrative Tools.
The shortcut icon for Internet Information Services Manager is located in
Administrative Tools.

■■ For Windows Server 2012 R2, click [Windows Key]∙X to open the Quick
Access Menu, then click Control Panel to open the Control Panel. In the
Control Panel, open System and Security, and then open Administrative
Tools. The shortcut icon for Internet Information Services Manager is located in
Administrative Tools.

Note that the files shown in the Default Web Site folder in Figure 11-26 are
the same files that are in the wwwroot folder in Figure 11-25—they are the default files
created by IIS when it is installed. In Windows 7, Windows 8, Windows Server 2008
R2, and Windows Server 2012 R2, the file iisstart.htm generates the Web page that
Internet Explorer (or any other Web browser) contacting this Web server over the
Internet will display.

To test the Web server installation, open your Web browser, type in the URL http://
localhost, and press the Enter key. For Windows Server 2012 R2, the Web page shown in
Figure 11-27 (in the Microsoft IE 10 Web browser) appears. If the appropriate Web page isn’t
displayed in your Web browser, your Web server is not properly installed.

Now we will set up a small Web site that can be used for Web database processing of the
View Ridge Gallery VRG database. First, we will create a new folder named DBP (Database
Processing) under the wwwroot folder. This new folder will be used to hold all the Web

The Default Web Site
location maps to the
wwwroot folder

The iisstart.htm file

The Content View
pane is selected

FIGuRE 11-26

Managing IIS with the
Internet Information
Services Manager in
Windows Server 2012 r2

 CHAPTER 11 The Web Server Environment 529

pages developed in discussions and exercises in this book. Second, we will create a subfolder
of DBC named VRG. This folder will hold the VRG Web site. You create these folders using
Windows Explorer.

Getting Started with HTML Web Pages

The most basic Web pages are created using Hypertext Markup Language (HTML). The
term hypertext refers to the fact that you can include links to other objects, such as Web pages,
maps, pictures, and even audio and video files in a Web page, and when you click the link,
you are immediately taken to that other object and it is displayed in your Web browser. HTML
itself is a standard set of HTML syntax rules and HTML document tags that can be in-
terpreted by Web browsers to create specific onscreen displays.

Tags are usually paired, with a specific beginning tag and a matching ending tag that includes
the slash character (/). Thus, a paragraph of text is tagged as <p>{paragraph text here}</p>, and a
main heading is tagged as <h1>{heading text here}</h1>. Some tags do not need a separate end tag
because they are essentially self-contained. For example, to insert a horizontal line on a Web page,
you use the horizontal rule tag <hr />. Note that such single, self-contained tags must include the
slash character as part of the tag (in HTML 5 these tags can optionally be written without the slash
[the horizontal rule tag is just <hr>], but we prefer to use the older form in this book).

The rules of HTML are defined as standards by the World Wide Web Consortium
(W3C), and the details of current and proposed standards can be found at www.w3c.org (this
site also has several excellent tutorials on HTML4). The W3C Web site has current standards
for HTML and Extensible Markup Language (XML) (which we will discuss later in this
chapter). A full discussion of these standards is beyond the scope of this text; this chapter uses
the current HTML 5.0 standard.

In this chapter, we will create a simple HTML home page for the View Ridge
Gallery Web site and place it in the VRG folder. We will discuss some of the numer-
ous available Web page editors shortly, but all you really need to create Web pages is a

4To learn more about HTML, go to the Web site of the World Wide Web Consortium (W3C) at www.w3.org.
For good HTML tutorials, see David Raggett’s “Getting Started with HTML” tutorial at www.w3.org/MarkUp/
Guide, his “More Advanced Features” tutorial at www.w3.org/MarkUp/Guide/Advanced.html, and his “Adding a
Touch of Style” tutorial at www.w3.org/MarkUp/Guide/Style.html.

This Web page is
generated by the
iisstart.htm file

FIGuRE 11-27

the Default IIS Web
Page for IIS 8 in Windows
Server 2012 r2

http://www.w3c.org
http://www.w3.org
http://www.w3.org/MarkUp/Guide
http://www.w3.org/MarkUp/Guide
http://www.w3.org/MarkUp/Guide/Advanced.html
http://www.w3.org/MarkUp/Guide/Style.html

530 PART 5 Database Access Standards

simple text editor. For this first Web page, we will use the Microsoft Notepad ASCII text
editor, which has the advantage of being supplied with every version of the Windows
operating system.

The index.html Web Page

The name for the file we are going to create is index.html. We need to use the name
index.html because it is a special name as far as Web servers are concerned. The file name
index.html is one of only a few file names that most Web servers automatically display when a
URL request is made without a specific file reference, and thus it will become the new default
display page for our Web database application. However, note the phrase “most Web servers”
in the last sentence. Although Apache, IIS 7.0, IIS 7.5, and IIS 8 (as shown in Figure 11-28)
are configured to recognize index.html, IIS 5.1 is not. If you are using Windows XP and IIS
5.1, you need to add index.html to the list of recognized files using the Internet Information
Services management program.

Creating the index.html Web Page

Now we can create the index.html Web page, which consists of the basic HTML statements
shown in Figure 11-29. Figure 11-30 shows the HTML code in Microsoft Notepad.

The Features View
Default Document
settings page

The index.html
filename is already
listed

The Features View
pane is selected

FIGuRE 11-28

the index.html File in
the Windows Server 2012
r2 IIS Manager

By THE WAy In the HTML code for index.html, the HTML code segment:

<!DOCTYPE html>

is an HTML/XML document type declaration (DTD), which is used to check and
 validate the contents of the code that you write. DTDs are discussed later in this
 chapter. For now, just include the code as it is written.

If we now use either the URL http://localhost/DBP/VRG (if the Web server is on the same
computer we are working on) or the URL http://{Web server DNS Name or IP Number}/DBP/VRG
(if the Web server is on another computer), we get the Web page shown in Figure 11-31.

 CHAPTER 11 The Web Server Environment 531

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>View Ridge Gallery Demonstration Pages Home Page</title>

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Processing (14th Edition)

</h1>
<h2 style="text-align: center; font-weight: bold">

David M. Kroenke
</h2>
<h2 style="text-align: center; font-weight: bold">

David J. Auer
</h2>
<hr />
<h2 style="text-align: center; color: blue">

Welcome to the View Ridge Gallery Home Page
</h2>
<hr />
<p>Chapter 11 Demonstration Pages From Figures in the Text:</p>
<p>Example 1:

Display the ARTIST Table (LastName, FirstName, Nationality)

</p>
<hr />

</body>
</html>

FIGuRE 11-29

the HtML Code for the
index.html File in the
Folder

The index.html HTML
code—note how
indentation is used to
keep the code
organized and
readable

FIGuRE 11-30

the HtML Code for the
index.html File in Microsoft
Notepad

532 PART 5 Database Access Standards

using PHP

Now that we have our basic Web site set up, we will expand its capabilities with a Web
 development environment that allows us to connect Web pages to our database. Several tech-
nologies allow us to do this. Developers using Microsoft products usually work with the .NET
framework and use ASP.NET technology. Developers who use the Apache Web server may
prefer creating JSP files in the JavaScript scripting language or using the Java programming
language in the Java Enterprise Edition (Java EE) environment.

The PHP Scripting Language
In this chapter, we will use PHP, which is available as this is being written in several versions,
including 5.4.41, 5.525, and 5.6.9 (we are using a version of 5.6), and available for free
download from the PHP Web site (www.php.net). See Appendix I for a complete discussion of
installing and testing PHP on your computer. You should download the latest version of PHP
available for your operating system and install it on your computer. In addition to Appendix
I, documentation is available on the PHP Web site, and good discussion can also be found by
searching the Web for “PHP installation.” Setting up PHP usually requires several steps (not
just running an installation routine), so take some time and be sure you have PHP running
correctly. Also be sure to enable PHP Data Objects (PDO)—this is not done automatically.

The NetBeans Integrated Development Environment (IDE)
Although a simple text editor such as Microsoft Notepad is fine for simple Web pages, as
we start creating more complex pages, we will move to an integrated development

This URL of http://
localhost/DBP/VRG
indicates that the Web
server is on your
computer itself.

FIGuRE 11-31

the VrG index.html
Web Page

By THE WAy If you are working on a single computer, with the DBMS, Web server, and
development tools all installed together, you will see a consistent user

interface. It may be Windows XP, Windows Vista, or a version of Linux. This is, in fact,
typical of small development platforms and allows you to easily test each application
component as you create it.

In a larger production environment, however, the Web server and database server
(which may or may not be the same physical server) are separate from the devel-
oper’s workstation. In this case you, as the developer, will see different user interfaces
 depending on which computer you are using.

We are illustrating this latter setup in this chapter. Our Web server (IIS) and DBMS
server (SQL Server 2014) are on one server running Windows Server 2012 R2. Our
development tools (the IE 8 Web browser and the NetBeans IDE) are on a separate
workstation running Windows 8.1. Thus, you will see the differences in the user inter-
face depending on whether the work is being done on the server (e.g., in Figures 11-25,
11-26, and 11-28) or on the workstation (e.g., Figure 11-31).

http://www.php.net

 CHAPTER 11 The Web Server Environment 533

environment (IDE). An IDE is intended to be a complete development framework, with all
the tools you need in one place. An IDE gives you the most robust and user-friendly means of
creating and maintaining your Web pages.

If you are working with Microsoft products, you will most likely use Visual Studio (or the
Visual Studio Community 2013 edition, available for free from www.visualstudio.com/en-us/
products/visual-studio-community-vs.aspx). In fact, if you have installed SQL Server 2014 Express
Advanced or any non-Express version of the product, you have already installed some Visual
Studio components. These are installed to support SQL Server Reporting Services, and they
are sufficient for creating basic Web pages. If you are working with JavaScript or Java, you
might prefer the Eclipse IDE (downloadable from www.netbeans.org).

For this chapter, we will again turn to the open source development community and
use the NetBeans IDE. NetBeans provides a framework that can be modified by add-in
modules for many purposes. For PHP, we can use NetBeans with the PHP plugin, which is
specifically intended to provide a PHP development environment within the NetBean IDE.
For more information on installing and using PHP and the NetBeans IDE, see Appendix I.

Figure 11-32 shows the index.html file as created in the NetBeans IDE. Compare this
version with the Notepad version in Figure 11-30.

The ReadArtist.php File
Now that we have our basic Web site set up, we will start to integrate PHP into the Web
pages. First, we will create a page to read data from a database table and display the results
in a Web page. Specifically, we will create a Web page in the VRG folder named ReadArtist.
php to run the SQL query:

SELECT LastName, FirstName, Nationality FROM ARTIST;

This page displays the result of the query, without the table’s surrogate key of ArtistID, in
a Web page. The HTML and PHP code for ReadArtist.php is shown in Figure 11-33, and the
same code is shown in NetBeans in Figure 11-34.

Now if you use the URL http://localhost/DBP/VRG in your Web browser and then click the
Example 1: Display the ARTIST Table (No surrogate key) link on that page, the Web
page shown in Figure 11-35 is displayed.

The ReadArtist.php code blends HTML (executed on the user’s workstation) and
PHP statements (executed on the Web server). In Figure 11-33, the statements included
between the ?php and ? tags are program code that is to be executed on the Web server

The DBP-e14-VRG
project—Eclipse
organizes work into
projects

The index.html HTML
code—note how color
coding has been
added to indentation
to keep the code
organized and
readable

FIGuRE 11-32

the HtML Code for the
index.html File in the
NetBean’s IDE

http://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
http://www.netbeans.org

534 PART 5 Database Access Standards

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>ReadArtist</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "VRG";
$User = "VRG-User";
$Password = "VRG-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

// Test connection
if (!$Conn)
{

exit ("ODBC Connection Failed: " . $Conn);
}
// Create SQL statement
$SQL = "SELECT LastName, FirstName, Nationality FROM ARTIST";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);

}
?>

<!-- Page Headers -->
<h1>

The View Ridge Gallery ARTIST Table
</h1>
<hr />
<h2>

ARTIST
</h2>

<?php

// Table headers
echo "<table class='output' border='1'>

<tr>
<th>LastName</th>
<th>FirstName</th>
<th>Nationality</th>

</tr>";

// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['LastName'] . "</td>";
echo "<td>" . $RecordSetRow['FirstName'] . "</td>";
echo "<td>" . $RecordSetRow['Nationality'] . "</td>";
echo "</tr>";
}

echo "</table>";

FIGuRE 11-33

the HtML and PHP
Code for readartist
.php

 CHAPTER 11 The Web Server Environment 535

// Close connection
odbc_close($Conn);

?>

<hr />
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

FIGuRE 11-33

Continued

The ReadArtist.php
code—PHP code is
enclosed in the <?php
and ?> symbols, which
are displayed in red
in Eclipse

FIGuRE 11-34

the HtML and PHP
Code for readartist.php
in the Netbeans IDE

This URL of http://
localhost/DBP/VRG
indicates that the Web
server is on your
computer itself.

Click to return to the
View Ridge Gallery
Home Page

FIGuRE 11-35

the results of
readartist.php

536 PART 5 Database Access Standards

computer. All the rest of the code is HTML that is generated and sent to the browser client.
In Figure 11-33, the statements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">

 <title>ReadArtist</title>

 <style type="text/css">

 h1 {text-align: center; color: blue}

 h2 {font-family: Ariel, sans-serif; text-align:

left; color: blue}

 p.footer {text-align: center}

 table.output {font-family: Ariel, sans-serif}

 </style>

 </head>

<body>

are normal HTML code. When sent to the browser, these statements set the title of the
browser window to ReadArtist PHP Page; define styles to be used by the headings,5 the
results table, and the footer; and cause other HTML-related actions. The next group of
statements are included between and, thus, are PHP code that will be executed on the
Web server. Also note that all PHP statements, like SQL statements, must end with a
semicolon (;).

Creating a Connection to the Database
In the HTML and PHP code in Figure 11-33, the following PHP code is embedded in the
HTML code to create and test a connection to the database:

<?php

 // Get connection

 $DSN = "VRG";

 $User = "VRG-User";

 $Password = "VRG-User+password";

 $Conn = odbc_connect($DSN, $User, $Password);

 // Test connection

 if (!$Conn)

 {

 exit ("ODBC Connection Failed: " . $Conn);

 }

After it runs, the variable $Conn can be used to connect to the ODBC data source VRG. Note
that all PHP variables start with the dollar sign symbol ($).

5Styles are used to control the visual presentation of the Web page and are defined in the HTML section
 between the <style> and </style> tags. For more information about styles, see David Raggett’s “Adding a
Touch of Style” tutorial at www.w3.org/MarkUp/Guide/Style.html.

http://www.w3.org/MarkUp/Guide/Style.html

 CHAPTER 11 The Web Server Environment 537

The connection is used to open the VRG ODBC data source. Here the user ID of
VRG-User and the password of VRG-User+password that we created in Chapter 10A for
Microsoft SQL Server 2014 are being used to authenticate to the DBMS. If you are using
Oracle Database or MySQL, use the ODBC data source name, username, and user pass-
word as you created it for your database. Note that the user ID and password are sent to the
 database server only to get data and are never seen in either (1) the resulting Web page as
displayed in the user’s Web browser or (2) the underlying HTML code. There is no security
problem here!

The test of the connection is contained in the code segment:

 // Test connection

 if (!$Conn)

 {

 exit ("ODBC Connection Failed: " . $Conn);

 }

In English, this statement says, “IF the connection Conn does not exist, THEN print the er-
ror message 'ODBC Connection Failed' followed by the contents of the variable $Conn.”
Note that the code (!$Conn) means NOT $Conn—in PHP the exclamation point symbol (!)
means NOT.

At this point, a connection has been established to the DBMS via the ODBC data source,
and the database is open. The $Conn variable can be used whenever a connection to the
database is needed.

Creating a RecordSet
Given the connection with an open database, the following code segment from Figure 11-33
will store an SQL statement in the variable $SQL and then use the PHP odbc_exec command
to run that SQL statement against the database to retrieve the query results and store them in
the variable $RecordSet:

// Create SQL statement

$SQL = "SELECT LastName, FirstName, Nationality FROM ARTIST";

// Execute SQL statement

$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset

if (!$RecordSet)

 {

 exit ("SQL Statement Error: " . $SQL);

 }

?>

Note that you need to test the results to be sure the PHP command executed correctly.

By THE WAy Be sure to use comments to document your Web pages. PHP code seg-
ments with two forward slashes (//) in front of them are comments. This

symbol is used to define single-line comments. In PHP, comments can also be inserted
in blocks between the symbols /* and */, whereas in HTML comments must be inserted
between the symbols <!-- and -->.

538 PART 5 Database Access Standards

Displaying the Results
Now that the RecordSet name $RecordSet has been created and populated, we can process
the $RecordSet collection with the following code:

 <!-- Page Headers -->

 <H1>

 The View Ridge Gallery ARTIST Table

 </H1>

 <hr />

 <H2>

 ARTIST

 </H2>

<?php

 // Table headers

 echo "<table class='output' border='1'>

 <tr>

 <th>LastName</th>

 <th>FirstName</th>

 <th>Nationality</th>

 </tr>";

 // Table data

 while($RecordSetRow = odbc_fetch_array($RecordSet))

 {

 echo "<tr>";

 echo "<td>" . $RecordSetRow['LastName'] . "</td>";

 echo "<td>" . $RecordSetRow['FirstName'] . "</td>";

 echo "<td>" . $RecordSetRow['Nationality'] . "</td>";

 echo "</tr>";

 }

 echo "</table>";

The HTML section defines the page headers, and the PHP section defines how to display
the SQL results in a table format. Note the use of the PHP command echo to allow PHP to use
HTML syntax within the PHP code section. Also note that a loop is executed to iterate through
the rows of the RecordSet using the PHP variable $RecordSetRow.

Disconnecting from the Database
Now that we have finished running the SQL statement and displaying the results, we can end
our ODBC connection to the database with the code:

 // Close connection

 odbc_close($Conn);

?>

The basic page we have created here illustrates the basic concepts of using ODBC
and PHP to connect to a database and process data from that database in a Web database

 CHAPTER 11 The Web Server Environment 539

6For more information on PHP, see the PHP documentation at www.php.net/docs.php.

Web Page Examples with PHP

The following three examples extend our discussion of using PHP Web pages in Web da-
tabase applications. These examples focus mainly on the use of PHP and not as much on
the graphics, presentation, or workflow. If you want a flashy, better-behaving application,
you should be able to modify these examples to obtain that result. Here, just learn how
PHP is used.

All of these examples process the View Ridge Gallery database. In all of them we use
the VRG database in each DBMS as we constructed it for SQL Server 2014 in Chapter
10A, Oracle Database in Chapter 10B, and MySQL 5.6 in Chapter10C. For simplicity,
we connect to each using an ODBC system data source—VRG for SQL Server, VRG-Oracle
for Oracle, and VRG-MySQL for MySQL. And if we use the same username and password
in each DBMS, we need to only change the ODBC data source name to switch between
DBMSs! That is amazing, and exactly what the originators of ODBC hoped for when they
created the ODBC specification.

Note, however, that although we are using ODBC functions, PHP actually provides a spe-
cific set for most DBMS products. These sets are generally more efficient than ODBC, and if
you are working with a specific DBMS, you will want to explore the PHP function set for it.7
As an example of this, note that we connected to the database using:

// Get connection

$DSN = "VRG";

$User = "VRG-User";

$Password = "VRG-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

If we are using MySQL, however, we can use:

// Get connection

$Host = "localhost";

$User = "VRG-User";

$Password = "VRG-User+password";

$Database = "VRG";

$Conn = mysqli_connect($Host, $User, $Password, $Database);

Similarly, SQL Server uses the sqlsrv_connect function (using the Microsoft PHP driver de-
scribed in footnote 7), and Oracle uses the oci_connect function.

PHP 5.3.x and later versions also support object-oriented programming and a new data
abstraction layer called PHP Data Objects (PDO) that provides a common syntax for access-
ing DBMS products. There is a lot of power in PHP, and we will barely scratch the surface here.

7Microsoft has created an updated set of functions for SQL Server. If you are going to use the SQL Server–
specific functions, you should download the Microsoft Drivers for PHP for SQL Server version 3.1 from
the Microsoft SQL 2012 Feature Pack Web page at www.microsoft.com/en-us/download/details.aspx?id=20098,
which also includes the documentation.

processing application. We can now build on this foundation by studying PHP command
syntax and incorporating additional PHP features into our Web pages.6

http://www.php.net/docs.php
http://www.microsoft.com/en-us/download/details.aspx?id=20098

540 PART 5 Database Access Standards

However, before proceeding with our examples, we need to add some links to our VRG
home page. The necessary code is shown in Figure 11-36. If you are working through these
examples (and you should be), be sure to make these changes.

Example 1: updating a Table

The previous example of a PHP Web page just read data. This next example shows how to
update table data by adding a row to a table with PHP. Figure 11-37 shows a data entry form
that will capture artist name and nationality and create a new row. This form has three data
entry fields: the First Name and Last Name fields are text boxes where the user types in the
artist’s name, and the Nationality field has been implemented as a drop-down list to control

<p>Chapter 10 Demonstration Pages From Figures in the Text:</p>
<p>Example 1:

Display the ARTIST Table (LastName, FirstName, Nationality)

</p>

<!-- ************ New text starts here ************ -->
<p>Example 2:

Add a New Artist to the ARTIST Table

</p>
<p>Example 3:

Add a New Customer to the CUSTOMER Table

</p>
<p>Example 4:

Display the ARTIST Table Using PHP PDO

</p>

<!-- ************ New text ends here ************ -->
<hr />

FIGuRE 11-36

Modifications to
the VrG index.html
Home Page

The artist name is
entered in the Last
Name and First Name
text boxes

The artist nationality is
selected from the
drop-down list

The Add New Artist
button is used to
submit the data

The Reset Values
button is used to clear
the data in the form

FIGuRE 11-37

the add New
artist Form

 CHAPTER 11 The Web Server Environment 541

The New Artist
Added message is
displayed along with
the artist data

Click this link to see
the ARTIST table with
the new artist data

FIGuRE 11-38

the New artist
acknowledgment
Page

The Guy Anderson
data

FIGuRE 11-39

the artist table with
the New artist

the possible values and to make sure they are spelled correctly. When the user clicks the
Add New Artist button, the artist is added to the database; and if the results are successful,
the acknowledgment Web page in Figure 11-38 is displayed. The Display the ARTIST Table
(LastName, FirstName, Nationality) link will invoke the ReadArtist.php page, which will display
the ARTIST table with the new row, as shown in Figure 11-39. We have tested these pages by
adding the American artist Guy Anderson (born 1906, deceased 1998), who is a member
of the Northwest School.

This processing necessitates two PHP pages. The first, shown in Figure 11-40, is the data
entry form with three fields: artist last name, artist first name, and artist nationality.

It also contains the form tag:

<form action="InsertNewArtist.php" method="POST">

This tag defines a form section on the page, and the section will be set up to obtain data
entry values. This form has only one data entry value: the table name. The POST method
refers to a process that causes the data in the form (here the last name, the first name,
and the selected nationality) to be delivered to the PHP server so they can be used in an
array variable named $_POST. Note that $_POST is an array and thus can have multiple
values. An alternative method is GET, but POST can carry more data, and this distinction

542 PART 5 Database Access Standards

<p>
<input type="submit" value="Add New Artist" />
<input type="reset" value="Reset Values" />

</p>
</form>

<hr />
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>NewArtistForm</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>

<form action="InsertNewArtist.php" method="POST">
<!-- Page Headers -->
<h1>

The View Ridge Gallery New Artist Form
</h1>
<hr />

<p>

Enter artist name:
</p>
<table>

<tr>
<td> Last Name: </td>
<td>

<input type="text" name="LastName" size="25" />
</td>

</tr>
<tr>

<td> First Name: </td>
<td>

<input type="text" name="FirstName" size="25" />
</td>

</tr>
</table>
<p>

Select artist nationality:
</p>
<select name="Nationality">

<option value="Canadian">Canadian</option>
<option value="English">English</option>
<option value="French">French</option>
<option value="German">German</option>
<option value="Mexican">Mexican</option>
<option value="Russian">Russian</option>
<option value="Spanish">Spanish</option>
<option value="United States">United States</option>

</select>

FIGuRE 11-40

the HtML Code
for NewartistForm
.html

 CHAPTER 11 The Web Server Environment 543

is not too important to us here. The second parameter of the form tag is action, which is set
to InsertNewArtist.php. This parameter tells the Web server that when it receives the re-
sponse from this form it should store the data values in the $_POST array and pass control
to the InsertNewArtist.php page.

The rest of the page is standard HTML, with the addition of the <select> . . . </select>
structure for creating a drop-down list in the form. Note that the name for the selected
value is Nationality.

When the user clicks the Add New Artist button, these data are to be processed by the
InsertNewArtist.php page. Figure 11-41 shows the InsertNewArtist.php, the page that will
be invoked when the response is received from the form. Note that the variable values for
the INSERT statement are obtained from the $_POST[] array. First, we create short variable

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>InsertNewArtist</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "VRG";
$User = "VRG-User";
$Password = "VRG-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

// Test connection
if (!$Conn)

{
exit ("ODBC Connection Failed: " . $Conn);

}
// Create short variable names
$LastName = $_POST["LastName"];
$FirstName = $_POST["FirstName"];
$Nationality = $_POST["Nationality"];

// Create SQL statement
$SQL = "INSERT INTO ARTIST(LastName, FirstName, Nationality) ";
$SQL .= "VALUES('$LastName', '$FirstName', '$Nationality')";

// Execute SQL statement
$Result = odbc_exec($Conn, $SQL);

// Test existence of result
echo "<h1>

The View Ridge Gallery ARTIST Table
</h1>
<hr />";

if ($Result){
echo "<h2>

New Artist Added:
</h2>

FIGuRE 11-41

the HtML and PHP
Code for InsertNewartist
.php

(continued)

544 PART 5 Database Access Standards

names for the $_POST version of the name, and then we use these short variable names to
create the SQL INSERT statement. Thus:

// Create short variable names

$LastName = $_POST["LastName"];

$FirstName = $_POST["FirstName"];

$Nationality = $_POST["Nationality"];

// Create SQL statement

$SQL = "INSERT INTO ARTIST(LastName, FirstName, Nationality) ";

$SQL .= "VALUES('$LastName', '$FirstName', '$Nationality')";

Note the use of the PHP concatenation operator (.=) (a combination of a period
and an equal sign) to combine the two sections of the SQL INSERT statement. As another
example, to create a variable named $AllOfUs with the value me, myself, and I, we would use:

$AllOfUs = "me, ";

$AllOfUs .= "myself, ";

$AllOfUs .= "and I";

Most of the code is self-explanatory, but make sure you understand how it works.

<table>
<tr>";
echo "<td>Last Name:</td>";
echo "<td>" . $LastName . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>First Name:</td>";
echo "<td>" . $FirstName . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Nationality:</td>";
echo "<td>" . $Nationality . "</td>";
echo "</tr>";

echo "</table>
";
}
else {

exit ("SQL Statement Error: " . $SQL);
}

// Close connection
odbc_close($Conn);

?>

<hr />
<p class="footer">

Display the ARTIST Table (LastName, FirstName, Nationality)

</p>
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

FIGuRE 11-41

Continued

 CHAPTER 11 The Web Server Environment 545

Example 2: using PHP Data Objects (PDO)

Our next example is an exercise in using PHP Data Objects (PDO). Here we are re-creating the
ReadArtist.php page but using PDO to do it. We call the new Web page ReadArtistPDO.php,
and it is shown in Figure 11-42. The PHP code to create the page is shown in Figure 11-43,
and you should compare this PHP code to the PHP code for ReadArtist.php in Figure 11-33.

PHP PDO will become important as newer versions of PHP are released. The power
of PHP PDO is that the only line of PHP code that needs to be changed when using a
different DBMS product is the one that establishes the connection to the database. In
Figure 11-43, this is the line:

$PDOconnection = new PDO("odbc:$DSN", $User, $Password);

Example 3: Invoking a Stored Procedure

We created a stored procedure named InsertCustomerAndInterest for the SQL Server 2014,
Oracle Database, and MySQL 5.6 versions of the VRG database in Chapters 10A, 10B, and
10C, respectively. In all cases, the stored procedure accepts a new customer’s last name, first
name, area code, local number, and email and the nationality of all artists in whom the cus-
tomer is interested. It then creates a new row in CUSTOMER and adds appropriate rows to
the CUSTOMER_ARTIST_INT table.

To invoke the stored procedure using a PHP page using PDO, we create a Web form
page to collect the necessary data, as shown in Figure 11-44. Then, when the user clicks
the Add New Customer button, we want to invoke a PHP page that uses PDO to call the
stored procedure with the form data as the input parameters. So that the user can verify
that the new data have been entered correctly, the PHP code then queries a view that joins
customer names with artist names and nationalities. The result is shown in Figure 11-45. In
this case, we are adding Richard Baxendale, with phone number 206-876-7733 and email
address Richard.Baxendale@elsewhere.com. Richard is interested in United States artists.

Figure 11-46 shows the code for the NewCustomerAndInterestsForm.html page used to
generate the data-gathering form. The form invokes the InsertNewCustomerAndInterestsPDO.
php page code shown in Figure 11-47.

FIGuRE 11-42

the results of
readartistPDO.php

546 PART 5 Database Access Standards

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>ReadArtistPDO</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue;}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "VRG";
$User = "VRG-User";
$Password = "VRG-User+password";

$PDOconnection = new PDO("odbc:$DSN", $User, $Password);

// Test connection
if (!$PDOconnection)

{
exit ("ODBC Connection Failed: " . $PDOconnection);

}

// Create SQL statement
$SQL = "SELECT LastName, FirstName, Nationality FROM ARTIST";

// Execute SQL statement
$RecordSet = $PDOconnection->query($SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);

}
?>

<!-- Page Headers -->
<h1>

The View Ridge Gallery Artist Table
</h1>
<hr />
<h2>

ARTIST
</h2>

<?php

// Table headers
echo "<table class='output' border='1'

<tr>
<th>LastName</th>
<th>FirstName</th>
<th>Nationality</th>

</tr>";

//Table data
while($RecordSetRow = $RecordSet->fetch())

{
echo "<tr>";

echo "<td>" . $RecordSetRow['LastName'] . "</td>";
echo "<td>" . $RecordSetRow['FirstName'] . "</td>";
echo "<td>" . $RecordSetRow['Nationality'] . "</td>";

echo "</tr>";
}

echo "</table>";

FIGuRE 11-43

the HtML and
PHP Code for
readartistPDO
.php

 CHAPTER 11 The Web Server Environment 547

// Close connection
$PDOconnection = null;

?>

<hr />
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

The customer data is
entered in the Last
Name, First Name,
Email Address,
Area Code, and
Phone text boxes

The artist nationality is
selected from the
drop-down list

The Reset Values
button is used to clear
the data in the form

The Add New
Customer button is
used to submit
the data

FIGuRE 11-44

the New Customer
and Interests Form

FIGuRE 11-43

Continued

The New Customer
and Artist Interests
Added message is
displayed along with
the customer and
artist interest data

FIGuRE 11-45

the added New Customer
and artist Interests
acknowledgment Page

548 PART 5 Database Access Standards

In Figure 11-47, note that the PDO statements take the form of:

$Variable01 = $Variable02->{PDO command}()

For example, in the PDO statement

$RecordSet = $PDOconnection->query()

we are using the PDO command query to send the contents of the variable $SQL to the da-
tabase through the connection named $PDOconnection and then storing the results in the
variable $RecordSet. Note that although PDO standardizes the PDO command set itself, the
exact SQL statements used by various DBMS products will vary, and even PHP code using
PDO has to be modified for those differences. For example, SQL Server uses EXEC to call a
stored procedure, whereas MySQL uses CALL.

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>NewCustomerAndInterestsForm</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>

<form action="InsertNewCustomerAndInterestsPDO.php" method="POST">
<!-- Page Headers -->
<h1>

The View Ridge Gallery New Customer Form
</h1>
<hr />

<p>

Enter customer data:
</p>
<table>

<tr>
<td> Last Name: </td>
<td>

<input type="text" name="LastName" size="25" />
</td>

</tr>
<tr>

<td> First Name: </td>
<td>

<input type="text" name="FirstName" size="25" />
</td>

</tr>
<tr>

<td> Email Address: </td>
<td>

<input type="text" name="EmailAddress" size="100" />
</td>

</tr>
<tr>

<td> Area Code: </td>
<td>

<input type="text" name="AreaCode" size="3" />
</td>

</tr>

FIGuRE 11-46

the HtML Code for
NewCustomer
andInterestsForm
.html

 CHAPTER 11 The Web Server Environment 549

<tr>
<td> Phone: </td>
<td>

<input type="text" name="PhoneNumber" size="8" />
</td>

</tr>
</table>
<p>

Select artist nationality:
</p>
<select name="Nationality">

<option value="Canadian">Canadian</option>
<option value="English">English</option>
<option value="French">French</option>
<option value="German">German</option>
<option value="Mexican">Mexican</option>
<option value="Russian">Russian</option>
<option value="Spanish">Spanish</option>
<option value="United States">United States</option>

</select>

<p>

<input type="submit" value="Add New Customer" />
<input type="reset" value="Reset Values" />

</p>
</form>

<hr />
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

FIGuRE 11-46

Continued

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>NewCustomerAndInterestsPDO</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "VRG";
$User = "VRG-User";
$Password = "VRG-User+password";

$PDOConnection = new PDO("odbc:$DSN", $User, $Password);

// Test connection
if (!$PDOConnection)
{

exit ("ODBC Connection Failed: " . $PDOConnection);
}

FIGuRE 11-47

the HtML and
PHP Code for
InsertNewCustomer
andInterestsPDO
.php

(continued)

FIGuRE 11-47

Continued

550

// Test existence of $Result
if (!$Result)

{
exit ("SQL Statement Error: " . $SQL);

}

// Execute SQL statement
$RecordSet = $PDOConnection->exec($SQL);

// Test existence of $ResultSet
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);

}

echo "<h1>
The View Ridge Gallery CUSTOMER Table

</h1>
<hr />";

echo "<h2>
New Customer and Artist Interests Added:

</h2>
<table>

<tr>";
echo "<td>Last Name:</td>";
echo "<td>" . $LastName . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>First Name:</td>";
echo "<td>" . $FirstName . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Email Address:</td>";
echo "<td>" . $EmailAddress . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Area Code:</td>";
echo "<td>" . $AreaCode . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Phone Number:</td>";
echo "<td>" . $PhoneNumber . "</td>";
echo "</tr>";

// Create short variable names
$LastName = $_POST["LastName"];
$FirstName = $_POST["FirstName"];
$EmailAddress = $_POST["EmailAddress"];
$AreaCode = $_POST["AreaCode"];
$PhoneNumber = $_POST["PhoneNumber"];
$Nationality = $_POST["Nationality"];

// Create SQL statement to call the Stored Procedure
$SQLSP = "EXEC InsertCustomerAndInterests ";
$SQLSP .= "'$LastName', '$FirstName', '$EmailAddress',
$SQLSP .= "'$AreaCode','$PhoneNumber', ";
$SQLSP .= "'$Nationality'";

// Create SQL statement to retrieve additions to
// CUSTOMER_ARTIST_INT table
$SQL = "SELECT * FROM CustomerInterestsView ";
$SQL .= "WHERE CustomerLastName = '$LastName' ";
$SQL .= "AND CustomerFirstName = '$FirstName'";

// Execute SQL Stored Procedure statement
$Result = $PDOConnection->exec($SQLSP);

 CHAPTER 11 The Web Server Environment 551

// Table headers
echo "<table class='output' border='1'>

<tr>
<th>CustomerLastName</th>
<th>CustomerFirstName</th>
<th>ArtistName</th>

</tr>";

// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['CustomerLastName'] . "</td>";
echo "<td>" . $RecordSetRow['CustomerFirstName'] . "</td>";
echo "<td>" . $RecordSetRow['ArtistName'] . "</td>";
echo "</tr>";
}

echo "</table>";

// Close connection
$PDOConnection = null;

?>

<hr />
<p class="footer">

Return to View Ridge Gallery Home Page

</p>
<hr />

</body>
</html>

echo "<tr>";
echo "<td>Artist Nationality:</td>";
echo "<td>" . $Nationality . "</td>";
echo "</tr>";

echo "</table>
<hr />";

FIGuRE 11-47

Continued

This PHP page is very straightforward, but it is interesting because it includes two SQL
statements. First, we use an SQL CALL statement to invoke the stored procedure and pass the
necessary parameters to it. Then we use an SQL SELECT statement to retrieve the values we
need for the construction of our Web page acknowledging the addition of a new customer.
The rest of the page reuses the same elements we have used in the previous examples.

It is also interesting that in this page we have made use of both an SQL view
(CustomerInterestsView) and an SQL stored procedure (InsertCustomerAndInterests). This
page illustrates the power of both these SQL structures and how we can use them in a Web
database processing environment.

These examples give you an idea of the uses of PHP. The best way to learn more is to write
some pages yourself. This chapter has shown all the basic techniques that you will need. You
have worked hard to get to this point, and if you are able to understand enough to create some
of your own pages, you have come very far indeed since Chapter 1.

Challenges for Web Database Processing

Web database application processing is complicated by an important characteristic of HTTP.
Specifically, HTTP is stateless; it has no provision for maintaining sessions between requests.
Using HTTP, a client at a browser makes a request of a Web server. The server services the
client request, sends results back to the browser, and forgets about the interaction with that cli-
ent. A second request from that same client is treated as a new request from a new client. No
data are kept to maintain a session or connection with the client.

552 PART 5 Database Access Standards

This characteristic poses no problem for serving content, either static Web pages or
responses to queries of a database. However, it is not acceptable for applications that require
multiple database actions in an atomic transaction. Recall from Chapter 9 that in some cases,
a group of database actions needs to be grouped into a transaction, with all of them commit-
ted to the database or none of them committed to the database. In this case, the Web server or
other program must augment the base capabilities of HTTP.

For example, IIS provides features and functions for maintaining data about sessions
between multiple HTTP requests and responses. Using these features and functions, the
application program on the Web server can save data to and from the browser. A particular
session will be associated with a particular set of data. In this way, the application program
can start a transaction, conduct multiple interactions with the user at the browser, make
intermediate changes to the database, and commit or roll back all changes when ending
the transaction. Other means are used to provide for sessions and session data with Apache.

In some cases, the application programs must create their own methods for tracking session
data. PHP does include support for sessions—see the PHP documentation for more information.

The particulars of session management are beyond the scope of this chapter. However,
you should be aware that HTTP is stateless, and, regardless of the Web server, additional code
must be added to database applications to enable transaction processing.

SQL Injection Attacks

When we create Web pages that allow data inserts, updates, or deletes on a database, we may cre-
ate a vulnerability that allows an SQL injection attack. An SQL injection attack attempts to issue
hacker-modified SQL commands to the DBMS. For example, suppose that a Web page is used to
update a user’s phone number and thus requires the user to input the new phone number. The
Web application would then use PHP code to create and run an SQL statement such as:

// Create SQL statement

$varSQL = "UPDATE CUSTOMER SET PHONE = '$NewPhone' ";

$varSQL .= "WHERE CustomerID = '$CustomerID'";

// Execute SQL statement

$RecordSet = odbc_exec($Conn, $varSQL);

If the input value of NewPhone is not carefully checked, it may be possible for an attacker to
use an input value such as:

678-345-1234; DELETE FROM CUSTOMER;

If this input value is accepted and the SQL statement is run, we may lose all data in the
CUSTOMER table if the Web application has DELETE permissions on the CUSTOMER
table. Therefore, Web database applications must be very carefully constructed to provide for
data checking and to ensure that only necessary database permissions are granted.

Extensible Markup Language (XML)

XML is a standard means for defining the structure of documents and for transmitting documents
from one computer to another. XML is important for database processing because it provides
a standardized means of submitting data to a database and for receiving results back from the
database. XML is a large, complicated subject that requires several books to explain fully. Here we
touch on the fundamentals and further explain why XML is important for database processing.

The Importance of XML

Database processing and document processing need each other. Database processing needs
document processing for transmitting database views; document processing needs database
processing for storing and manipulating data. However, even though these technologies need

 CHAPTER 11 The Web Server Environment 553

each other, it took the popularity of the Internet to make that need obvious. As Web sites
evolved, organizations wanted to use Internet technology to display and update data from
organizational databases. Web developers began to take a serious interest in SQL, database
performance, database security, and other aspects of database processing.

As the Web developers invaded the database community, database practitioners wondered,
“Who are these people, and what do they want?” Database practitioners began to learn about
Hypertext Markup Language (HTML), the language used to mark up documents for display by
Web browsers. At first, the database community scoffed at HTML because of its limitations, but
it soon learned that HTML was the output of a more robust document markup language called
Standard Generalized Markup Language (SGML). SGML was clearly important, just as
important to document processing as the relational model was to database processing. Obviously,
this powerful language had some role to play in the display of database data, but what role?

In the early 1990s, the two communities began to meet, and the result of their work is a
series of standards that concerns a language called Extensible Markup Language (XML).
XML is a subset of SGML, but additional standards and capabilities have been added to XML,
and today XML technology is a hybrid of document processing and database processing. In
fact, as XML standards evolved, it became clear that the communities had been working on
different aspects of the same problem for many years. They even used the same terms but
with different meanings. You will see later in this chapter how the term schema is used in XML
for a concept that is completely different from the use of schema in the database world.

XML provides a standardized yet customizable way to describe the content of documents.
As such, it can be used to describe any database view but in a standardized way. As you will learn
in Appendix K, SQL views have certain limitations, which can be overcome by using XML views.

In addition, when used with the XML Schema standard, XML documents can automati-
cally be generated from database data. Further, database data can automatically be extracted
from XML documents. Even more, there are standardized ways of defining how document
components are mapped to database schema components, and vice versa.

Meanwhile, the rest of the computing community began to take notice of XML. SOAP,
which originally meant Simple Object Access Protocol, was defined as an XML-based
standard for providing remote procedure calls over the Internet. Initially, SOAP assumed the
use of HTTP as a transport mechanism. When Microsoft, IBM, Oracle Corporation, and other
large companies joined forces in support of the SOAP standard, this assumption was removed,
and SOAP was generalized to become a standard protocol for sending messages of any type
using any protocol. With this change, SOAP no longer meant Simple Object Access Protocol,
so now SOAP is just a name and not an acronym.

Today, XML is used for many purposes. One of the most important is its use as a standard-
ized means to define and communicate documents for processing over the Internet. XML
plays a key role in Microsoft’s .NET initiative, and in 2001, Bill Gates called XML the “lingua
franca of the Internet age.”

As you read the rest of this chapter and more information on XML in Appendix K, keep in
mind that this area is an important part of database processing. Standards, products, and product
capabilities are frequently changing. You can keep abreast of these changes by checking the fol-
lowing Web sites: www.w3c.org, www.xml.org, http://msdn.microsoft.com, www.oracle.com, www.ibm.com,
and www.mysql.com. Learning as much as you can about XML and database processing is one of
the best ways you can prepare yourself for a successful career in database processing.

XML as a Markup Language

As a markup language, XML is significantly better than HTML in several ways. For one, XML
provides a clean separation between document structure, content, and materialization. XML
has facilities for dealing with each, and they cannot be confounded, as they are with HTML.

Additionally, XML is standardized, but as its name implies, the standards allow for exten-
sion by developers. With XML, you are not limited to a fixed set of elements such as <title>,
<H1>, and <p>; you can create your own.

Third, XML eliminates the inconsistent tag use that is possible (and popular) with HTML.
For example, consider the following HTML:

<H2>Hello World</H2>

http://www.w3c.org
http://www.xml.org
http://www.oracle.com
http://www.ibm.com
http://www.mysql.com

554 PART 5 Database Access Standards

Although the tag can be used to mark a level-two heading in an outline, it can be used for other
purposes, too, such as causing “Hello World” to be displayed in a particular font size, weight, and
color. Because a tag has potentially many uses, we cannot rely on tags to discern the structure of
an HTML page. Tag use is too arbitrary; it may mean a heading, or it may mean nothing at all.

As you will see, the structure of an XML document can be formally defined. Tags are de-
fined in relationship to one another. In XML, if we find the tag <street>, we know exactly what
data we have, where those data belong in the document, and how that tag relates to other tags.

Creating XML Documents from Database Data

SQL Server, Oracle Database, and MySQL have facilities for generating XML documents from da-
tabase data. The Oracle Database XML features require the use of Java. Because we do not assume
that you are a Java programmer, we will not discuss those features further in this chapter. If you are
a Java programmer, you can learn more about Oracle Database’s XML features at www.oracle.com.

The facilities in SQL Server, Oracle Database, and MySQL are undergoing rapid develop-
ment. In the case of SQL Server, version 7.0 added the expression FOR XML to SQL SELECT
syntax. That expression was carried forward to SQL Server 2000. In 2002, the SQL Server
group extended the SQL Server capabilities with the SQLXML class library. SQLXML, which
was produced by the SQL Server group, is different from ADO.NET. All of these features and
functions were merged together in SQL Server 2005 and are carried forward in SQL Server
2008, 2008 R2, 2012, and now 2012 R2.

using the SQL SELECT . . . FOR XML Statement

SQL Server 2014 uses the SQL SELECT . . . FOR XML statement to work with XML.
Consider the following SQL statement:

/* *** SQL-Query-CH11-01 *** */

SELECT *

FROM ARTIST

 FOR XML RAW;

Figure 11-48(a) shows an example of a FOR XML RAW query in the Microsoft SQL
Server Management Studio. The results of the query are displayed in a single cell.

The SQL FOR XML
RAW query

The SQL FOR XML
RAW query results—
click this cell to display
the results in a
separate window

(a) FOR XML RAW Query

FIGuRE 11-48

FOr XML raW
Examples

http://www.oracle.com

 CHAPTER 11 The Web Server Environment 555

The SQL FOR XML
RAW query results

(b) FOR XML RAW Results in the Microsoft SQL Server Management Studio

<row ArtistID="1" LastName="Miro" FirstName="Joan"
Nationality ="Spanish" DateOfBirth= "1893" DateDeceased="1983" />

<row ArtistID="2" LastName="Kandinsky" FirstName="Wassily"
Nationality ="Russian" DateOfBirth="1866" DateDeceased ="1944" />

<row ArtistID="3" LastName="Klee" FirstName="Paul"
Nationality ="German" DateOfBirth="1879" DateDeceased="1940" />

<row ArtistID="4" LastName="Matisse" FirstName="Henri"
Nationality ="French" DateOfBirth="1869" DateDeceased="1954" />

<row ArtistID="5" LastName="Chagall" FirstName="Marc"
Nationality ="French" DateOfBirth="1887" DateDeceased="1985" />

<row ArtistID="11" LastName="Sargent" FirstName ="John Singer"
Nationality ="United States" DateOfBirth ="1856" DateDeceased ="1925" />

<row ArtistID="17" LastName="Tobey" FirstName ="Mark"
Nationality ="United States" DateOfBirth="1890" DateDeceased ="1976" />

<row ArtistID="18" LastName="Horiuchi" FirstName="Paul"
Nationality ="United States" DateOfBirth="1906" DateDeceased ="1999" />

<row ArtistID="19" LastName="Graves" FirstName="Morris"
Nationality ="United States" DateOfBirth="1920" DateDeceased ="2001" />

<row ArtistID="20" LastName="Anderson" FirstName ="Guy"
Nationality ="United States" />

(c) FOr XML raW results in XML Document

FIGuRE 11-48

Continued

Clicking this cell displays the results as shown in Figure 11-48(b). As expected, each
column is placed as an attribute of the element named row. The complete output, edited
as it would appear in an XML document (and with extra spaces in the attribute values
removed), is shown in Figure 11-48(c). We will discuss the FOR XML clause in depth in
Appendix K.

556 PART 5 Database Access Standards

Summary

Today, database applications reside in rich and complicated
environments. In addition to relational databases, there are
nonrelational databases, VSAM and other file-processing
data, email, and other types of data. To ease the job of the
application programmer, various standards have been de-
veloped. The ODBC standard is for relational databases; the
OLE DB standard is for relational databases and other data
sources. ADO was developed to provide easier access to OLE
DB data for the non-object-oriented programmer.

ODBC, or the Open Database Connectivity standard,
provides an interface by which database applications can
access and process relational data sources in a DBMS-
independent manner. ODBC was developed by an industry
committee and has been implemented by Microsoft and
many other vendors. ODBC consists of an applications pro-
gram, a driver manager, DBMS drivers, and data source
components. Single- and multiple-tier drivers are defined.
The three data source names are file, system, and user. System
data sources are recommended for Web servers. The process
of defining a system data source name involves specifying the
type of driver and the identity of the database to be processed.

The Microsoft .NET Framework is Microsoft’s compre-
hensive application development framework. The current
version is .NET Framework 4.5 SP1, which is built on top
of the .NET Framework 2.0 and .NET Framework 3.0 (and
their service pack updates). It includes ADO.NET, ASP.
NET, CLR, and the Base Class Library. Enhancements spe-
cific to .NET Framework 3.5 include the ADO.NET Entity
Framework, which supports the EDM (Entity Data Model).
The .NET Framework 4.0 added Parallel LINQ (PLINQ)
and the Task Parallel Library (TPL). The .NET Framework
4.5 added support for Windows 8 Apps, including .NET
for Windows Store Apps, Portable class libraries, and the
Managed Extensibility Framework (MEF).

OLE DB is one of the foundations of the Microsoft data
access world. It implements the Microsoft OLE and COM
standards, and it is accessible to object-oriented programs
through those interfaces. OLE DB breaks the features and
functions of a DBMS into objects, thus making it easier for
vendors to implement portions of functionality. Key ob-
ject terms are abstraction, methods, properties, and collections. A
rowset is an abstraction of a recordset, which, in turn, is an
abstraction of a relation. Objects are defined by properties
that specify their characteristics and by methods, which
are the actions they can perform. A collection is an object
that contains a group of other objects. An interface is a set
of objects and the properties and methods they expose in
that interface. Objects may expose different properties and
methods in different interfaces. An implementation is how
an object accomplishes its tasks. Implementations are hid-
den from the outside world and may be changed without
affecting the users of the objects. An interface ought not to
be changed ever.

Tabular data providers present data in the form of row-
sets. Service providers transform data into another form;
such providers are both consumers and providers of data. A
rowset is equivalent to a cursor. Basic rowset interfaces are
IRowSet, IAccessor, and IColumnsInfo. Other interfaces are
defined for more advanced capabilities.

ADO.NET is a new, improved, and greatly expanded
version of ADO that was developed for the Microsoft .NET
initiative. ADO.NET incorporates all of the functionality
of ADO but adds much more. In particular, ADO.NET fa-
cilitates the transformation of XML documents to and from
database data.

A .NET data provider is a library of classes that provides
ADO.NET services. A data provider data reader provides fast,
forward-only access to data. A Command object can be pro-
cessed to execute SQL and also to invoke stored procedures
in a manner similar to but improved from that in ADO. The
major new concept of ADO.NET is the DataSet. A DataSet is
an in-memory database that is disconnected from any regu-
lar database but that has all the important characteristics of a
regular database. DataSets can have multiple tables, relation-
ships, referential integrity rules, referential integrity actions,
views, and the equivalent of triggers. DataSet tables may have
surrogate key columns (called auto-increment columns) and
primary keys and may be declared unique.

DataSets are disconnected from the database(s) from
which they are constructed, and they may be constructed
from several different databases and possibly managed by
different DBMS products. After a DataSet is constructed, an
XML document of its contents and an XML Schema of its
structure are easily produced. Further, the process works in
reverse as well. XML Schema documents can be read to cre-
ate the structure of the DataSet, and XML documents can be
read to fill the DataSet.

DataSets are needed to provide a standardized, non-
proprietary means to process database views. They are es-
pecially important for the processing of views with multiple
multivalued paths. The potential downside of DataSets is
that because they are disconnected, any updates against the
databases they access must be performed using optimistic
locking. In the case of conflict, either the DataSet must be
reprocessed or the data change must be forced onto the da-
tabase, causing the lost update problem.

JDBC is an alternative to ODBC and ADO that provides
database access to programs written in Java. A JDBC driver
is available for almost every conceivable DBMS product.
Sun defines four driver types. Type 1 drivers provide a
bridge between Java and ODBC. Types 2, 3, and 4 are writ-
ten entirely in Java. Type 2 drivers rely on the DBMS prod-
uct for intermachine communication, if any. Type 3 drivers
translate JDBC calls into a DBMS-independent network
protocol. Type 4 drivers translate JDBC calls into a DBMS-
dependent network protocol.

 CHAPTER 11 The Web Server Environment 557

An applet is a compiled Java bytecode program that is
transmitted to a browser via HTTP and is invoked using the
HTTP protocol. A servlet is a Java program that is invoked
on the server to respond to HTTP requests. Type 3 and Type
4 drivers can be used for both applets and servlets. Type
2 drivers can be used only in servlets, and only then if the
DBMS and Web server are on the same machine or if the
DBMS vendor handles the intermachine communication
between the Web server and the database server.

There are four steps when using JDBC: (1) load the
driver, (2) establish a connection to the database, (3) create a
statement, and (4) execute the statement.

Java Server Pages (JSP) technology provides a means
to create dynamic Web pages using HTML (and XML)
and Java. JSP pages provide the capabilities of a full object-
oriented language to the page developer. Neither VBScript
nor JavaScript can be used in a JSP page. JSP pages are com-
piled into machine-independent bytecode.

JSP pages are compiled as subclasses of the
HTTPServlet class. Consequently, small snippets of code can
be placed in a JSP page as well as complete Java programs.
To use JSP, the Web server must implement the Java Servlet
2.1+ and JSP 1.0+ specifications. Apache Tomcat, an open
source product from the Jakarta Project, implements these
specifications. Tomcat can work in conjunction with Apache
or as a stand-alone Web server for testing purposes.

When using Tomcat (or any other JSP processor), the
JDBC drivers and JSP pages must be located in specified
directories. When a JSP page is requested, Tomcat ensures
that the most recent page is used. If an uncompiled newer
version is available, Tomcat will automatically cause it
to be parsed and compiled. Only one JSP page can be
in memory at a time, and JSP requests are executed as a
thread of the servlet processor, not as a separate process.
The Java code in a JSP page can invoke a compiled Java
bean, if desired.

PHP (PHP: Hypertext Processor) is a scripting language
that can be embedded in Web pages. PHP is extremely
popular and easy to learn, and it can be used in most Web
server environments and with most databases.

For creating complex pages, you need an integrated
development environment (IDE). An IDE gives you the most
robust and user-friendly means of creating and maintaining
Web pages. Microsoft Visual Studio, NetBeans for Java us-
ers, and the open source Eclipse IDE are all good IDEs. The
NetBeans IDE provides a framework that can be modified
by plug-in modules.

PHP now includes object-oriented features and PHP
Data Objects (PDO), which simplify connecting Web pages
to databases.

The confluence of database processing and document
processing is one of the most important developments in in-
formation systems technology today. Database processing and
document processing need each other. Database processing
needs document processing for the representation and mate-
rialization (rendering Web pages for a specific device) of data-
base views. Document processing needs database processing
for the permanent storage of data.

SGML is as important to document processing as the
relational model is to database processing. XML is a series
of standards that were developed jointly by the database
processing and document processing communities. XML
provides a standardized yet customizable way to describe
the contents of documents. XML documents can be auto-
matically generated from database data, and database data
can be automatically extracted from XML documents.

Although XML can be used to materialize Web pages,
this is one of its least important uses. More important is its
use for describing, representing, and materializing database
views. XML is on the leading edge of database processing;
see www.w3.org and www.xml.org for the latest developments.

XML is a better markup language than HTML, primar-
ily because XML provides a clear separation between docu-
ment structure, content, and materialization. Also, XML tags
are not ambiguous.

SQL Server, Oracle Database, and MySQL can produce
XML documents from database data. The Oracle Database
facilities require the use of Java; see www.oracle.com for more
information. SQL Server supports an add-on expression to
the SQL SELECT statement, the FOR XML expression.

Key Terms

?php and ?
.NET for Windows Store Apps
.NET Framework
abstraction
Active Data Objects (ADO)
Active Server Pages (ASP)
ADO.NET
ADO.NET Command object
ADO.NET Connection object

ADO.NET Data Provider
ADO.NET DataAdapter object
ADO.NET DataReader
ADO.NET DataSet
ADO.NET Entity Framework
AMP
Apache Tomcat
Apache Web server
app

Apple iPad
applet
application program interface (API)
ASP.NET
Base Class Library
bytecode interpreter
Callable Statement object
cell phone
cellular network

http://www.w3.org
http://www.xml.org
http://www.oracle.com

558 PART 5 Database Access Standards

client
client server architecture
collection
Common Language Runtime (CLT)
Component Object Model (COM)
Constraints
current values
cursor
data consumer
data provider
DataColumnCollection
DataRelationCollection
DataRelations
DataRowCollection
DataTable object
DataTableCollection
Default Web Site folder
DeleteCommand object
device
document type declaration (DTD)
Entity Data Model (EDM)
Extensible Markup Language (XML)
file data source
ForeignKeyConstraint
Google Android Operating System (OS)
Google Chrome
HTML document tags
HTML syntax rules
http://localhost
Hypertext Markup Language (HTML)
iisstart.htm
implementation
index.html
inetpub folder
InsertCommand object
integrated development environment

(IDE)
interface
Internet
Internet Information Services (IIS)

Internet Information Services
Manager

Java Data Objects (JDO)
Java Database Connectivity (JBDC)
Java platform
Java programming language
Java virtual machine
JavaScript
JavaServer Pages (JSP)
JDBC Connection object
JDBC DriverManager
JDBC ResultSet object
JDBC ResultSetMetaData object
JDBC Statement object
LAMP
Language Integrated Query (LINQ)
Managed Extensibility Framework

(MEF)
method
Microsoft Internet Explorer
Microsoft Transaction Manager (MTS)
mobile phone
Mozilla Firefox
NetBeans IDE
object
object class
Object Linking and Embedding (OLE)
ODBC conformance levels
ODBC data source
ODBC Data Source Administrator
ODBC driver
ODBC driver manager
ODBC multiple-tier driver
ODBC single-tier driver
ODBC SQL conformance levels
OLE DB
Open Database Connectivity (ODBC)
original values
Parallel LINQ (PLINQ)
PHP

PHP concatenation operator (.=)
PHP Data Objects (PDO)
PHP plugin
PHP: Hypertext Processor
Portable Class Libraries
POST method
Prepared Statement objects
PrimaryKey property
properties
proposed values
recordset
routers
rowset
SelectCommand object
server
service
service provider
servlet
Simple Object Access Protocol
smartphone
SOAP
SQL injection attack
SQL SELECT . . . FOR XML statement
Standard Generalized Markup

Language (SGML)
system data source
tablet
tabular data providers
Task Parallel Library (TPL)
three-tier architecture
two-tier architecture
UniqueConstraint
UpdateCommand object
user data source
WAMP
Web browser
World Wide Web (WWW or W3 or

Web)
World Wide Web Consortium (W3C)
wwwroot folder

 11.1 Describe why the data environment is complicated.

 11.2 Explain how ODBC, OLE DB, and ADO are related.

 11.3 Explain the author’s justification for describing Microsoft standards. Do you agree?

 11.4 Name the components of the ODBC standard.

 11.5 What role does the driver manager serve? Who supplies it?

 11.6 What role does the DBMS driver serve? Who supplies it?

Review Questions

 CHAPTER 11 The Web Server Environment 559

 11.7 What is a single-tier driver?

 11.8 What is a multiple-tier driver?

 11.9 Do the uses of the term tier in the three-tier architecture and its use in ODBC have
anything to do with each other?

 11.10 Why are conformance levels important?

 11.11 Summarize the three ODBC API conformance levels.

 11.12 Summarize the three SQL grammar conformance levels.

 11.13 Explain how the three types of data sources differ.

 11.14 Which data source type is recommended for Web servers?

 11.15 What are the two tasks to be accomplished when setting up an ODBC data source
name?

 11.16 What is the Microsoft .NET Framework? What basic elements does it include?

 11.17 What is the current version of the .NET Framework, and what new features does it
include?

 11.18 Why is OLE DB important?

 11.19 What disadvantage of ODBC does OLE DB overcome?

 11.20 Define abstraction, and explain how it relates to OLE DB.

 11.21 Give an example of abstraction involving rowset.

 11.22 Define object properties and methods.

 11.23 What is the difference between an object class and an object?

 11.24 Explain the role of data consumers and data providers.

 11.25 What is an interface?

 11.26 What is the difference between an interface and an implementation?

 11.27 Explain why an implementation can be changed but an interface should not be
changed.

 11.28 Summarize the goals of OLE DB.

 11.29 Explain the difference between a tabular data provider and a service provider.
Which transforms OLE DB data into XML documents?

 11.30 In the context of OLE DB, what is the difference between a rowset and a cursor?

 11.31 What is ADO.NET?

 11.32 What is a data provider?

 11.33 What is a data reader?

 11.34 How can ADO.NET be used to process a database without using DataReaders or
DataSets?

 11.35 What is an ADO.NET DataSet?

 11.36 How do ADO.Net DataSets differ conceptually from databases?

 11.37 List the primary structures of an ADO.NET DataSet as described in this chapter.

 11.38 How do ADO.NET DataSets solve the problem of views with multivalued paths?

 11.39 What is the chief disadvantage of ADO.NET DataSets? When is this likely to be a
problem?

560 PART 5 Database Access Standards

 11.40 Why, in database processing, is it important to become an object-oriented
programmer?

 11.41 What is an ADO.NET Connection?

 11.42 What is a DataAdapter?

 11.43 What is the purpose of the SelectCommand property of a DataAdapter?

 11.44 How is a data table relationship constructed in ADO.NET?

 11.45 How is referential integrity defined in ADO.NET? What referential integrity actions
are possible?

 11.46 Explain how original, current, and proposed values differ.

 11.47 How does an ADO.NET DataSet allow for trigger processing?

 11.48 What is the purpose of the UpdateCommand property of a DataAdapter?

 11.49 What are the purposes of the InsertCommand and DeleteCommand of a
DataAdapter?

 11.50 Explain the flexibility inherent in the use of the InsertCommand, UpdateCommand,
and DeleteCommand properties.

 11.51 What is the one major requirement for using JDBC?

 11.52 What does JDBC stand for?

 11.53 What are the four JDBC driver types?

 11.54 Explain the purpose of Type 1 JDBC drivers.

 11.55 Explain the purpose of Types 2, 3, and 4 JDBC drivers.

 11.56 Define applet and servlet.

 11.57 Explain how Java accomplishes portability.

 11.58 List the four steps of using a JDBC driver.

 11.59 What is the purpose of Java Server Pages?

 11.60 Describe the differences between ASP and JSP.

 11.61 Explain how JSP pages are portable.

 11.62 What is the purpose of Tomcat?

 11.63 Describe the process by which JSP pages are compiled and executed. Can a user ever
access an obsolete page? Why or why not?

 11.64 Why are JSP programs preferable to CGI programs?

 11.65 What is Hypertext Markup Language (HTML), and what function does it serve?

 11.66 What are HTML document tags, and how are they used?

 11.67 What is the World Wide Web Consortium (W3C)?

 11.68 Why is index.hmtl a significant file name?

 11.69 What is PHP, and what function does it serve?

 11.70 How is PHP code designated in a Web page?

 11.71 How are comments designated in PHP code?

 11.72 How are comments designated in HMTL code?

 11.73 What is an integrated development environment (IDE), and how is it used?

 CHAPTER 11 The Web Server Environment 561

 11.74 What is the NetBeans IDE?

 11.75 Show a snippet of PHP code for creating a connection to a database. Explain the
meaning of the code.

 11.76 Show a snippet of PHP code for creating a RecordSet. Explain the meaning of the
code.

 11.77 Show a snippet of PHP code for displaying the contents of a RecordSet. Explain the
meaning of the code.

 11.78 Show a snippet of PHP code for disconnecting from the database. Explain the mean-
ing of the code.

 11.79 With respect to http, what does stateless mean?

 11.80 Under what circumstances does statelessness pose a problem for database
processing?

 11.81 In general terms, how are sessions managed by database applications when using
http?

 11.82 What are PHP Data Objects (PDO)?

 11.83 What is the significance of PDOs?

 11.84 Show two snippets of PHP Code that compare creating a connection to a database in
standard PHP and in PDO. Discuss the similarities and differences in the code.

 11.85 Why do database processing and document processing need each other?

 11.86 How are HTML, SGML, and XML related?

 11.87 Explain the phrase standardized but customizable.

 11.88 What is SOAP? What did it stand for originally? What does it stand for today?

 11.90 What are the problems in interpreting a tag such as in HTML?

 11.91 What requirement is necessary for processing XML documents with Oracle?

 11.92 Explain how SQL Server 2014 produces XML output using the FOR XML RAW
clause.

Project Questions

 11.93 In this exercise, you will create a Web page in the DBP folder and link it to the VRG
Web page in the VRG folder.

A. Figure 11-49 shows the HTML code for a Web page for the DBP folder. Note
that the page is called index.html, the same name as the Web page in the VRG
folder. This is not a problem because the files are in different folders. Create the
index.html Web page in the DBP folder.

B. Figure 11-50 shows some additional HTML to be added near the end of the
code for the VRG Web page in the file index.html in the VRG folder. Update the
VRG index.html file with the code.

C. Try out the pages. Type http://localhost/DBP into your Web browser to display
the DBP home page. From there, you should be able to move back and forth be-
tween the two pages by using the hyperlinks on each page. Note: You may need
to click the Refresh button on your Web browser when using the VRG home
page to get the hyperlink back to the DBP home page to work properly.

562 PART 5 Database Access Standards

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<title>DBP-e14 Home Page</title>

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Processing (14th Edition) Home Page

</h1>
<hr />
<h3 style="text-align: center">

Use this page to access Web-based materials from Chapter 11 of:
</h3>
<h2 style="text-align: center; color: blue">

Database Processing (14th Edition)
</h2>
<p style="text-align: center; font-weight: bold">

David M. Kroenke
</p>
<p style="text-align: center; font-weight: bold">

David J. Auer
</p>
<hr />
<h3>Chapter 11 Demonstration Pages From Figures in the Text:</h3>
<p>

View Ridge Gallery Demonstration Pages

</p>
<hr />

</body>
</html>

FIGuRE 11-49

the HtML Code for
the index.html File in
the DBP Folder

<p>Example 4:

Display the ARTIST Table Using PHP PDO

</p>
<hr />

<!-- ************ NEW CODE STARTS HERE *********** -->
<p style="text-align: center">

Return to the Database Processing Home Page

</p>
<hr />

<!-- ************ NEW CODE ENDS HERE ************* -->
</body>

</html>

FIGuRE 11-50

HtML Modifications
for the index.html File
in the VrG Folder

 CHAPTER 11 The Web Server Environment 563

Marcia’s Dry Cleaning Case Question

If you have not already done so, create and populate the Marcia’s Dry Cleaning (MDC)
database for the DBMS you are using as described in:

■■ Chapter 10A for Microsoft SQL Server 2014
■■ Chapter 10B for Oracle Database
■■ Chapter 10C for Oracle MySQL 5.6

A. Add a new folder to the DBP Web site named MDC. Create a Web page for Marcia’s
Dry Cleaning in this folder, using the file name index.html. Link this page to the
DBP Web page.

B. Create an appropriate ODBC data source for your database.

C. Add a new column Status to the INVOICE table. Assume that Status can have the
values ['Waiting', 'In-process', 'Finished', 'Pending'].

D. Create a view called CustomerInvoiceView that has the columns LastName,
FirstName, Phone, InvoiceNumber, DateIn, DateOut, Total, and Status.

E. Code a PHP page to display CustomerInvoiceView. Using your sample database,
demonstrate that your page works.

F. Code two HTML/PHP pages to receive a date value AsOfDate and to display rows of
CustomerInvoiceView for orders having DateIn greater than or equal to AsOfDate.
Using your sample database, demonstrate that your pages work.

G. Code two HTML/PHP pages to receive customer Phone, LastName, and FirstName
and to display rows for customers having that Phone, LastName, and FirstName.
Using your sample database, demonstrate that your pages work.

H. Write a stored procedure that receives values for InvoiceNumber and NewStatus
and that sets the value of Status to NewStatus for the row having the given value
of InvoiceNumber. Generate an error message if no row has the given value of
InvoiceNumber. Using your sample database, demonstrate that your stored proce-
dure works.

I. Code two HTML/PHP pages to invoke the stored procedure created in part H. Using
your sample database, demonstrate that your page works.

Case Questions

The Queen Anne
Curiosity Shop

If you have not already done so, answer the questions for the Queen Anne Curiosity
Shop (QACS) at the end of Chapter 7 (pages 383–389) and for the DBMS you are using
as described in:

■■ Chapter 10A for Microsoft SQL Server 2014
■■ Chapter 10B for Oracle Database
■■ Chapter 10C for Oracle MySQL 5.6

A. Add a new folder to the DBP Web site named QACS. Create a Web page for the
Queen Anne Curiosity Shop in this folder, using the file name index.html. Link this
page to the DBP Web page.

B. Create an appropriate ODBC data source for your database.

C. Code a PHP page to display the data in the CUSTOMER table. Using your sample
database, demonstrate that your page works.

564 PART 5 Database Access Standards

D. Create a view called CustomerPurchasesView that has the columns CustomerID,
LastName, FirstName, SaleID, SaleDate, SaleItemID, ItemID, ItemDescription, and
ItemPrice.

E. Code a PHP page to display CustomerPurchasesView. Using your sample database,
demonstrate that your page works.

F. Code two HTML/PHP pages to receive a date value AsOfDate and display rows of
the CustomerPurchasesView for purchases having SaleDate greater than or equal to
AsOfDate. Using your sample database, demonstrate that your pages work.

G. Write a stored procedure that receives values for SaleItemID and NewItemPrice and
sets the value of ItemPrice to NewItemPrice for the row having the given value of
SaleItemID. Generate an error message if no row has the given value of SaleItemID.
Using your sample database, demonstrate that your stored procedure works.

H. Code two HTML/PHP pages to invoke the stored procedure created in part G. Using
your sample database, demonstrate that your page works.

Morgan
Importing

If you have not already done so, answer the questions for Morgan Importing (MI) at the
end of Chapter 7 (pages 390–395) and for the DBMS you are using as described in:

■■ Chapter 10A for Microsoft SQL Server 2014
■■ Chapter 10B for Oracle Database
■■ Chapter 10C for Oracle MySQL 5.6

A. Add a new folder to the DBP Web site named MI. Create a Web page for Morgan
Importing in this folder, using the file name index.html. Link this page to the DBP
Web page.

B. Create an appropriate ODBC data source for your database.

C. Create a view called StorePurchasesView that has the columns StoreName, City,
Country, Email, Contact, PurchaseDate, ItemDescription, Category, and PriceUSD.

D. Code a PHP page to display StorePurchasesView. Using your sample database, dem-
onstrate that your page works.

E. Code two HTML/PHP pages to receive a date value AsOfDate and display rows
of StorePurchases for purchases having PurchaseDate greater than or equal to
AsOfDate. Using your sample database, demonstrate that your pages work.

F. Code two HTML/PHP pages to receive values of Country and Category and display
rows of StorePurchases having values for input Country and Category values. Using
your sample database, demonstrate that your pages work.

G. Write a stored procedure that receives values for PurchaseItemID and NewPriceUSD
and sets the value of PriceUSD to NewPriceUSD for the row having the given value
of PurchaseItemID. Generate an error message if no row has the given value of
PurchaseItemID. Using your sample database, demonstrate that your stored proce-
dure works.

H. Code two HTML/PHP pages to invoke the stored procedure created in part G. Using
your sample database, demonstrate that your page works.

565

This chapter introduces topics that build on the fundamentals you have

learned in the other chapters of this book. Now that we have designed and built

a database, we are ready to put it to work. In Chapter 11, we built a Web data-

base application for the View Ridge Gallery (VRG) Information System, and in this

 chapter, we will look at business intelligence (BI) systems applications. Additionally,

this chapter looks at the problems associated with the rapidly expanding amount of

data that is being stored and used in enterprise information systems and some of

the technology that is being used to address those problems.

These problems are generally included in the need to deal with Big Data (also

often written as big data), which is the current term for the enormous datasets

generated by Web applications such as search tools (for example, Google and

Bing) and Web 2.0 social networks (for example, Facebook, LinkedIn, and Twitter).

Although these new and very visible Web applications are highlighting the problems

of dealing with large datasets, these problems were already present in other areas,

such as scientific research and business operations.1

Big Data, Data Warehouses, and
Business Intelligence Systems

■■ To learn the basic concepts of online analytical
processing (OLAP) and data mining

■■ To learn the basic concepts of distributed
databases and object-relational databases

■■ To learn the basic concepts of virtual machines
■■ To learn the basic concepts of cloud computing

Chapter Objectives
■■ To learn the basic concepts of Big Data, structured

storage, and the MapReduce process
■■ To learn the basic concepts of data warehouses and

data marts
■■ To learn the basic concepts of dimensional databases
■■ To learn the basic concepts of business intelligence (BI)

systems

12

565

1 For more information, see the Wikipedia article on Big Data at http://en.wikipedia.org/wiki/Big_data.

http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Big_data

566 ParT 5 Database Access Standards

Just how big is Big Data? Figure 12-1 defines some commonly used terms

for data storage capacity. Note that computer storage is calculated based on

binary numbers (base 2), not the usual decimal (base 10) numbers we are more

familiar with. Therefore, a kilobyte is 1,024 bytes instead of the 1,000 bytes we

would otherwise expect.

If we consider the desktop and notebook computers generally in use as this

book is being written (early 2015), a quick check online of available computers

shows notebooks being sold with hard drives up to 750 GB in capacity, whereas

some desktops are available with 2 TB. That is just for one computer. Facebook is

reported to handle more than 40 billion photos in its database.2 If a typical digital

photo is about 2 MB in size, that would require about 9.3 PB of storage!

As another measure of Big Data, Amazon.com reported that on November 29,

2010, orders for 13.7 million products were placed. This is an average of 158 prod-

uct orders per second.3 Amazon.com also reported that, on the peak day of the

2010 holiday season, its worldwide fulfillment network shipped more than 9 million

items to 178 countries. This volume of both primary business transactions (item

sales) and supporting transactions (shipping, tracking, and financial transactions)

truly requires Amazon.com to handle Big Data.

The need to deal with larger and larger datasets has grown over time. We will look

at some of the components of this growth. We will start with the need for business

analysts to have large datasets available for analysis by business intelligence (BI) appli-

cations and briefly look at BI systems, particularly online analytical processing (OLAP),

and the data warehouse structures that were designed for their use. We will then look

at distributed databases, object-relational databases, clustered servers, and finally the

evolving NoSQL non-relational systems.

Symbol Approximate Value
for Reference

Name Actual Value

KB

MB

GB

TB

PB

EB

ZB

YB

About 103

About 106

About 109

About 1012

About 1015

About 1018

About 1021

About 1024

Byte

Kilobyte

Megabyte

Gigabyte

Terabyte

Petabyte

Exabyte

Zettabyte

Yottabyte

8 bits [Store one character]

210 = 1,024 bytes

220 = 1,024 KB

230 = 1,024 MB

240 = 1,024 GB

250 = 1,024 TB

260 = 1,024 PB

270 = 1,024 EB

280 = 1,024 ZB

Figure 12-1

Storage Capacity Terms

3Amazon.com, “Third-Generation Kindle Now the Bestselling Product of All Time on Amazon Worldwide.”
News release, December 27, 2010. Available at http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=
irol-newsArticle&ID=1510745&highlight= (accessed February 2015).

2Wikipedia article on Big Data at http://en.wikipedia.org/wiki/Big_data (accessed February 2013).

Amazon.com
Amazon.com
Amazon.com
http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-newsArticle&ID=1510745&highlight=
http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-newsArticle&ID=1510745&highlight=
http://en.wikipedia.org/wiki/Big_data

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 567

Operational
Applications

(Order Entry,
Manufacturing,

Purchasing,
Inventory,

Etc.)

Business Intelligence Applications

Operational
DBMS

BI
DBMS

Functional
Users

Operational
Database

Extract of
Operational
Database

Purchased
Data

Management
& Management
Support Users

Reporting Data Mining

Figure 12-2

Relationship Between
Operational and BI Systems

The relationship Between Operational and Bi Systems

Figure 12-2 summarizes the relationship between operational and business intelligence systems.
Operational systems—such as sales, purchasing, and inventory control systems— support
primary business activities. They use a DBMS to both read data from and store data in the
 operational database. They are also known as transactional systems or online transaction
processing (OLTP) systems because they record the ongoing stream of business transactions.

Instead of supporting the primary business activities, BI systems support management’s
analysis and decision-making activities. BI systems obtain data from three possible sources.
First, they read and process data existing in the operational database—they use the operational
DBMS to obtain such data, but they do not insert, modify, or delete operational data. Second,
BI systems process data that are extracted from operational databases. In this situation, they
manage the extracted database using a BI DBMS, which may be the same as or different from
the operational DBMS. Finally, BI systems read data purchased from data vendors.

Business intelligence Systems

Business intelligence (BI) systems are information systems that assist managers and
other professionals in the analysis of current and past activities and in the prediction of future
events. Unlike transaction processing systems, they do not support operational activities, such
as the recording and processing of orders. Instead, BI systems are used to support manage-
ment assessment, analysis, planning, control, and, ultimately, decision making.

reporting Systems and Data Mining applications

BI systems fall into two broad categories: reporting systems and data mining applications.
Reporting systems sort, filter, group, and make elementary calculations on operational
data. Data mining applications, in contrast, perform sophisticated analyses on data, analy-
ses that usually involve complex statistical and mathematical processing. The characteristics
of BI applications are summarized in Figure 12-3.

reporting Systems

Reporting systems filter, sort, group, and make simple calculations. All reporting analyses can
be performed using standard SQL, though extensions to SQL, such as those used for online
analytical processing (OLAP), are sometimes used to ease the task of report production.

Reporting systems summarize the current status of business activities and compare that
status with past or predicted future activities. Report delivery is crucial. Reports must be

568 ParT 5 Database Access Standards

delivered to the proper users on a timely basis in the appropriate format. For example, reports
may be delivered on paper, via a Web browser, or in some other format.

Data Mining applications

Data mining applications use sophisticated statistical and mathematical techniques to per-
form what-if analyses, to make predictions, and to facilitate decision making. For example,
data mining techniques can analyze past cell phone usage and predict which customers are
likely to switch to a competing phone company. Or data mining can be used to analyze past
loan behavior to determine which customers are most (or least) likely to default on a loan.

Report delivery is not as important for data mining systems as it is for reporting systems.
First, most data mining applications have only a few users, and those users have sophisticated
computer skills. Second, the results of a data mining analysis are usually incorporated into
some other report, analysis, or information system. In the case of cell phone usage, the charac-
teristics of customers who are in danger of switching to another company may be given to the
sales department for action. Or the parameters of an equation for determining the likelihood
of a loan default may be incorporated into a loan approval application.

• Reporting

– Filter, sort, group, and make simple calculations

– Summarize current status

– Compare current status to past or predicted status

– Classify entities (customers, products, employees, etc.)

– Report delivery crucial

• Data Mining

– Often employ sophisticated statistical and mathematical techniques

– Used for:

• What-if analyses

• Predictions

• Decisions

– Results often incorporated into some other report or system

Characteristics of Business Intelligence Applications
Figure 12-3

Characteristics of Business
Intelligence Applications

Data Warehouses and Data Marts

According to Figure 12-2, some BI systems read and process operational data directly from
the operational database. Although this is possible for simple reporting systems and small da-
tabases, such direct reading of operational data is not feasible for more complex applications
or larger databases. Those larger applications usually process a separate database constructed
from an extract of the operational database.

Operational data are difficult to read for several reasons. For one, querying data for
BI applications can place a substantial burden on the DBMS and unacceptably slow the
performance of operational applications. Additionally, operational data have problems
that limit their use for BI applications. Further, the creation and maintenance of BI
systems require programs, facilities, and expertise that are not normally available from

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 569

operations. Because of these problems, many organizations have chosen to develop data
warehouses and data marts to support BI applications.

Components of a Data Warehouse

To overcome the problems just described, many organizations have created data ware-
houses, which are database systems that have data, programs, and personnel that specialize
in the preparation of data for BI processing. Data warehouse databases differ from opera-
tional databases because the data warehouse data is frequently denormalized. Further, that
data is never inserted, updated, or deleted by users, but only by data warehouse administra-
tors. Data warehouses vary in scale and scope. They can be as simple as a sole employee
processing a data extract on a part-time basis or as complex as a department with dozens of
employees maintaining libraries of data and programs.

Figure 12-4 shows the components of a data warehouse. Data are read from operational
databases by the Extract, Transform, and Load (ETL) system. The ETL system then
cleans and prepares the data for BI processing. This can be a complex process.

First, the data may be problematic, which we will discuss in the next section. Second, data
may need to be changed or transformed for use in a data warehouse. For example, the opera-
tional systems may store data about countries using standard two-letter country codes, such as US
(United States) and CA (Canada). However, applications using the data warehouse may need to
use the country names in full. Thus, the data transformation {CountryCode ➔CountryName}
will be needed before the data can be loaded into the data warehouse.

The ETL stores the extracted data in a data warehouse database using a data warehouse
DBMS, which can be different from the organization’s operational DBMS. For example, an
organization might use Oracle Database for its operational processing but use Microsoft SQL
Server 2014 for its data warehouse. Other organizations might use Microsoft SQL Server
2014 for operational processing and data management programs from statistical package
vendors such as SAS (SAS Analytics) or IBM (IBM SPSS Statistics) in the data warehouse.

Metadata concerning the data’s source, format, assumptions and constraints, and other
facts are kept in a data warehouse metadata database. The data warehouse DBMS
 extracts and provides data to BI tools, such as data mining programs.

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

Operational
Databases

External
Data

BI Users

Figure 12-4

Components of a Data
Warehouse

By THe Way Once problematic operational data have been cleaned in the ETL system,
the corrected data can also be used to update the operational system to fix

the original data problems.

570 ParT 5 Database Access Standards

Problems with Operational Data
Most operational databases have problems that limit their usefulness to all but the simplest BI
applications. Figure 12-5 lists the major problem categories.

First, although data that are critical for successful operations must be complete and
accurate, data that are only marginally necessary need not be. For example, some opera-
tional systems gather customer demographic data during the ordering process. However,
because such data are not needed to fill, ship, or bill orders, the quality of the demo-
graphic data suffers.

Problematic data are termed dirty data. Examples are a value of “G” for customer
sex and a value of “213” for customer age. Other examples are a value of “999-999-
9999” for a U.S. phone number, a part color of “gren,” and an e-mail address of
“WhyMe@somewhereelseintheuniverse.who.” All of these values pose problems for
reporting and data mining purposes.

Purchased data often contain missing elements. In fact, most data vendors state the
percentage of missing values for each attribute in the data they sell. An organization buys
such data because, for some uses, some data are better than no data at all. This is especially
true for data items whose values are difficult to obtain, such as the number of adults in a
household, household income, dwelling type, and the education of the primary income
earner. Some missing data are not too much of a problem for reporting applications. For data
mining applications, however, a few missing or erroneous data points can actually be worse
than no data at all because they bias the analysis.

Inconsistent data, the third problem in Figure 12-5, is particularly common for data
that have been gathered over time. When an area code changes, for example, the phone num-
ber for a given customer before the change will differ from the customer’s phone number
after the change. Part codes can change, as can sales territories. Before such data can be used,
they must be recoded for consistency over the period of the study.

Some data inconsistencies occur because of the nature of the business activity. Consider
a Web-based order entry system used by customers around the world. When the Web server
records the time of order, which time zone does it use? The server’s system clock time is
irrelevant to an analysis of customer behavior. Any standard time such as Universal Time
Coordinate (UTC) time is also meaningless. Somehow, Web server time must be adjusted to
the time zone of the customer.

Another problem is nonintegrated data. Suppose, for example, that an organization
wants to report on customer orders and payment behavior. Unfortunately, order data are
stored in a Microsoft Dynamics CRM system, whereas payment data are recorded in an

• Dirty data

• Missing values

• Inconsistent data

• Data not integrated

• Wrong format

– Too fine

– Not fine enough

• Too much data

– Too many attributes

– Too much volume

Problems of Using Transaction
Data for Business Intelligence

Figure 12-5

Problems of Using
Transaction Data for
Business Intelligence

mailto:WhyMe@somewhereelseintheuniverse.who

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 571

Oracle PeopleSoft financial management database. To perform the analysis, the data must
somehow be integrated.

The next problem is that data can be inappropriately formatted. First, data can be too
fine. For example, suppose that we want to analyze the placement of graphics and controls on
an order entry Web page. It is possible to capture the customers’ clicking behavior in what is
termed click-stream data. However, click-stream data include everything the customer does.
In the middle of the order stream, there may be data for clicks on the news, e-mail, instant
chat, and the weather. Although all of this data might be useful for a study of consumer com-
puter behavior, it will be overwhelming if all we want to know is how customers respond to an
ad located on the screen. Because the data are too fine, the data analysts must throw millions
and millions of clicks away before they can proceed.

Data can also be too coarse. A file of order totals cannot be used for a market basket
analysis, which identifies items that are commonly purchased together. Market basket analy-
ses require item-level data; we need to know which items were purchased with which others.
This doesn’t mean the order total data are useless; they can be adequate for other analyses,
but they just won’t do for a market basket analysis.

If the data are too fine, they can be made coarser by summing and combining. An analyst
and a computer can sum and combine such data. If the data are too coarse, however, they can-
not be separated into their constituent parts.

The final problem listed in Figure 12-5 concerns the issue of too much data. We can
have an excess of columns, rows, or both. To illustrate the problem of too many columns
(a synonym for attributes), suppose that we want to know the attributes that influence cus-
tomers’ responses to a promotion. Between customer data stored within the organization and
customer data that can be purchased, we might have a hundred or more different attributes,
or columns, to consider. How do we select among them? Because of a phenomenon called the
curse of dimensionality, the more attributes there are, the easier it is to build a model that
fits the sample data but that is worthless as a predictor. For this and other reasons, the number
of attributes should be reduced, and one of the major activities in data mining concerns the
efficient and effective selection of variables.

Finally, we may have too many instances, or rows, of data. Suppose that we want to
analyze click-stream data on CNN.com. How many clicks does this site receive per month?
Millions upon millions! To meaningfully analyze such data, we need to reduce the number of
instances. A good solution to this problem is statistical sampling. However, developing a reli-
able sample requires specialized expertise and information system tools.

Purchasing Data from Vendors
Data warehouses often include data that are purchased from outside sources. A typical
example is customer credit data. Figure 12-6 lists some of the consumer data than can be
purchased from the KBM Group in their AmeriLINK database of consumer data. An amaz-
ing, and from a privacy standpoint frightening, amount of data is available just from this one
vendor.

Data Warehouses Versus Data Marts

You can think of a data warehouse as a distributor in a supply chain. The data warehouse
takes data from the data manufacturers (operational systems and purchased data), cleans
and processes them, and locates the data on the shelves, so to speak, of the data ware-
house. The people who work in a data warehouse are experts at data management, data
cleaning, data transformation, and the like. However, they are not usually experts in a
given business function.

A data mart is a collection of data that is smaller than that in the data warehouse and
that addresses a particular component or functional area of the business. A data mart is like
a retail store in a supply chain. Users in the data mart obtain data that pertain to a particular
business function from the data warehouse. Such users do not have the data management ex-
pertise that data warehouse employees have, but they are knowledgeable analysts for a given
business function. Figure 12-7 illustrates these relationships.

This data warehouse takes data from the data producers and distributes the data to three
data marts. One data mart analyzes click-stream data for the purpose of designing Web pages.

CNN.com

572 ParT 5 Database Access Standards

The second analyzes store sales data and determines which products tend to be pur-
chased together. This information is used to train salespeople on the best way to up-sell cus-
tomers. The third data mart analyzes customer order data for the purpose of reducing labor
for item picking from the warehouse. A company such as Amazon.com, for example, goes to
great lengths to organize its warehouses to reduce picking expenses.

• Name, Address, Phone

• Age, Gender

• Ethnicity, Religion

• Income

• Education

• Marital Status, Life Stage

• Height, Weight, Hair and Eye Color

AmeriLINK Data Categories

• Spouse’s Name, Birth Date, etc.

• Kids’ Names and Birth Dates

• Home Ownership

• Vehicles

• Magazine Subscriptions

• Voter Registration

• Catalog Orders

• Hobbies

• Attitudes

Figure 12-6

AmeriLINK Sells Data on
230∙ Million Americans

Web Sales Data Mart

BI Tools
for Web click-stream

analysis

Data
Warehouse

DBMS

Data
Producers

Data
Warehouse
Metadata

Data
Warehouse
Database

Web
Log
Data

Store Sales Data Mart

BI Tools
for store

management

Store
Sales
Data

Inventory Data Mart

BI Tools
for inventory
management

Inventory
History
Data

Web page
design features

Market basket
analysis for sales
training

Inventory layout
for optimal item
picking

Figure 12-7

Data Warehouses and Data
Marts

Amazon.com

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 573

When the data mart structure shown in Figure 12-7 is combined with the data ware-
house architecture shown in Figure 12-4, the combined system is known as an enterprise
data warehouse (EDW) architecture. In this configuration, the data warehouse main-
tains all enterprise BI data and acts as the authoritative source for data extracts provided to the
data marts. The data marts receive all their data from the data warehouse—they do not add or
maintain any additional data.

Of course, it is expensive to create, staff, and operate data warehouses and data marts, and
only large organizations with deep pockets can afford to operate a system such as an EDW.
Smaller organizations operate subsets of this system. For example, they may have just a single
data mart for analyzing marketing and promotion data.

Dimensional Databases

The databases in a data warehouse or data mart are built to a different type of database design
than the normalized relational databases used for operational systems. The data warehouse
databases are built in a design called a dimensional database that is designed for efficient
data queries and analysis. A dimensional database is used to store historical data rather than
just the current data stored in an operational database. Figure 12-8 compares operational da-
tabases and dimensional databases.

Because dimensional databases are used for the analysis of historical data, they must be
designed to handle data that change over time. For example, a customer may have moved
from one residence to another in the same city or may have moved to a completely different
city and state. This type of data arrangement is called a slowly changing dimension, and
in order to track such changes, a dimensional database must have a date dimension or
time dimension as well.

The Star Schema
Rather than using the normalized database designs used in operational databases, a di-
mensional database uses a star schema. A star schema, so named because, as shown
in Figure 12-9, it visually resembles a star, has a fact table at the center of the star and
dimension tables radiating out from the center. The fact table is always fully normalized,
but dimension tables may be non-normalized.

Operational Database Dimensional Database

Data are inserted, updated, and

deleted by users

Used for structured transaction

data processing

Current data are used

Data are loaded and updated

systematically, not by users

Used for unstructured analytical

data processing

Current and historical data are

used

Figure 12-8

Characteristics of
Operational and Dimensional
Databases

PRODUCT
(Dimension Table)

PRODUCT_SALES
(Fact Table)

TIME
(Dimension Table)

CUSTOMER
(Dimension Table)

Figure 12-9

The Star Schema

574 ParT 5 Database Access Standards

To illustrate a star schema for a dimensional database, we will build a (very) small data
warehouse for Heather Sweeney Designs (HSD), a Texas company specializing in products for
kitchen-remodeling services. HSD puts on seminars to attract customers and sell books and
videos in addition to doing actual design work. For more information about Heather Sweeney
Designs, see the Chapter 7 Heather Sweeney Designs Case Questions on pages 369–383. A
database design for HSD is shown in Figure 12-10, and a Microsoft SQL Server 2014 database
diagram for the HSD database is shown in Figure 12-11. In addition, the Chapter 7 Heather
Sweeney Designs Case Questions show the HSD database column specifications in Figure
7-50, HSD database referential integrity constraint enforcement in Figure 7-51, the SQL state-
ments to create the HSD database in Figure 7-52, and the SQL statements to populate the HSD
database in Figure 7-53. The HSD database is the operational database for Heather Sweeney
Designs. All production data is stored in the HSD database, and that data provides the source
data that we will load into a dimensional database for BI work at Heather Sweeney Designs.

The actual dimensional database for BI use is named HSD_DW, and it is shown in Figure
12-12. Note that we use an underscore in the database name instead of a hyphen—DBMS sys-
tems seem to prefer the use of the hyphen (which, for example, is recognized in SQL Server
2014 in a GO statement) over the use of a underscore (which the SQL Server 2014 GO state-
ment does not recognize). The SQL statements needed to create the tables in the HSD_DW
database are shown in Figure 12-13, and the data for the HSD_DW database are shown in
Figure 12-14. Compare the HSD_DW dimensional database model in Figure 12-12 to the
HSD database diagram shown in Figure 12-11, and note how data in the HSD database have
been used in the HSD_DW schema.

CUSTOMER
CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID (FK)
ContactNumber

ContactDate
ContactType
SeminarID (FK)

INVOICE
InvoiceNumber

InvoiceDate
CustomerID (FK)
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber (FK)
LineNumber

ProductNumber (FK)
Quantity
UnitPrice
Total

PRODUCT
ProductNumber

ProductType
ProductDescription
UnitPrice
QuantityOnHand

SEMINAR_CUSTOMER
SeminarID (FK)
CustomerID (FK)

Figure 12-10

The HSD Database Design

By THe Way There is a more complex version of the star schema called the snowflake
schema. In the snowflake schema, each dimension table is normalized,

which may create additional tables attached to the dimension tables.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 575

By THe Way You do not need to create the HSD database in order to create and
use the HSD_DW database used in this chapter. However, because the

HSD_DW database uses data extracted from the HSD database, it is worthwhile
to study and understand the structure of the HSD database and data contained in
the HSD database in order to appreciate how we transform that data for use in the
HSD_DW database.

Figure 12-11

The HSD Database Diagram

PRODUCT dimension
table

PRODUCT_SALES
fact table

TIMELINE dimension
table

CUSTOMER
dimension table

Figure 12-12

The HSD_DW Star Schema

576 ParT 5 Database Access Standards

Figure 12-13

The HSD_DW SQL
Statements

A fact table is used to store measures of business activity, which are quantitative or
factual data about the entity represented by the fact table. For example, in the HSD_DW
 database, the fact table is PRODUCT_SALES:

PRODUCT_SALES (TimeID, CustomerID, ProductNumber, Quantity,

UnitPrice, Total)

In this table:

■■ Quantity is quantitative data that record how many of the item were sold.
■■ UnitPrice is quantitative data that record the dollar price of each item sold.
■■ Total (= Quantity * UnitPrice) is quantitative data that record the total dollar value of

the sale of this item.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 577

The measures in the PRODUCT_SALES table are for units of product per day. We do not use
individual sale data (which would be based on InvoiceNumber), but rather data summed for
each customer for each day. For example, if you could compare the HSD database INVOICE
data for Ralph Able for 6/5/15, you would see that Ralph made two purchases on that date
(InvoiceNumber 35013 and InvoiceNumber 35016). In the HSD_DW database, however,
these two purchases are summed into the PRODUCT_SALES data for Ralph (CustomerID = 3)
for 6/5/15 (TimeID = 42160).

(d) PRODUCT_SALES Fact Table

(a) TIMELINE Dimension Table

(b) CUSTOMER Dimension Table

(c) PRODUCT Dimension Table

Figure 12-14

The HSD_DW Table Data

578 ParT 5 Database Access Standards

A dimension table is used to record values of attributes that describe the fact measures in
the fact table, and these attributes are used in queries to select and group the measures in the
fact table. Thus, CUSTOMER records data about the customers referenced by CustomerID in
the SALES table, TIMELINE provides data that can be used to interpret the SALES event in
time (which month? which quarter?), and so on. A query to summarize product units sold by
Customer (CustomerName) and Product (ProductName) would be:

/* *** SQL-Query-CH12-01 *** */

SELECT C.CustomerID, C.CustomerName,

 P.ProductNumber, P.ProductName,

 SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER AS C, PRODUCT_SALES AS PS, PRODUCT AS P

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

GROUP BY C.CustomerID, C.CustomerName,

 P.ProductNumber, P.ProductName

ORDER BY C.CustomerID, P.ProductNumber;

The results of this query are shown in Figure 12-15.
In Chapter 6, we discussed how an N:M relationship is created in a database as two 1:N

relationships by use of an intersection table. We also discussed how additional attributes can
be added to the intersection table in an association relationship.

In a star schema, the fact table is an association table—it is an intersection table for the
relationships between the dimension tables with additional measures also stored in it. And, as
with all other intersection and association tables, the key of the fact table is a composite key
made up of all the foreign keys to the dimension tables.

illustrating the Dimensional Model
When you think of the word dimension, you might think of “two dimensional” or “three dimen-
sional.” And the dimensional models can be illustrated by using a two-dimensional matrix and
a three-dimensional cube. Figure 12-16 shows the SQL query results from Figure 12-15 dis-
played as a two-dimensional matrix of Product (using ProductNumber) and Customer (using
CustomerID), with each cell showing the number of units of each product purchased by each
customer. Note how ProductNumber and CustomerID define the two dimensions of the ma-
trix: CustomerID labels what would be the x-axis, and ProductNumber labels the y-axis.

Figure 12-17 shows a three-dimensional cube with the same ProductNumber and
CustomerID dimensions, but now with the added Time dimension on the z-axis. Now in-
stead of occupying a two-dimensional box, the total quantity of products purchased by each
customer on each day occupies a small three-dimensional cube, and all these small cubes
combine to form a large cube.

As human beings, we can visualize two-dimensional matrices and three-dimensional
cubes. Although we cannot visualize models with four, five, and more dimensions, BI systems
and dimensional databases can handle such models.

Multiple Fact Tables and Conformed Dimensions
Data warehouse systems build dimensional models, as needed, to analyze BI questions, and
the HSD_DW star schema in Figure 12-12 would be just one schema in a set of schemas.
Figure 12-18 shows an extended HSD_DW schema.

By THe Way The TimeID values are the sequential serial values used in Microsoft Excel
to represent dates. Starting with 01-JAN-1900 as date value 1, the date

value is increased by 1 for each calendar day. Thus, 05-JUN-2015 = 42160. For more
information, search “Date formats” in the Excel help system.

C.CustomerID
C.CustomerName
P.ProductNumber
P.ProductName
PS.Quantity
C.CustomerID
PS.CustomerID
P.ProductNumber
PS.ProductNumber
C.CustomerID
C.CustomerName
P.ProductNumber
P.ProductName
C.CustomerID
P.ProductNumber

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 579

Figure 12-15

The HSD_DW Query Results

580 ParT 5 Database Access Standards

In Figure 12-18, a second fact table named SALES_FOR_RFM has been added:

SALES_FOR_RFM (TimeID, CustomerID, InvoiceNumber, PreTaxTotalSale)

This table shows that fact table primary keys do not need to be composed solely of for-
eign keys that link to dimension tables. In SALES_FOR_RFM, the primary key includes the
InvoiceNumber attribute. This attribute is necessary because the composite key (TimeID,
CustomerID) will not be unique and thus cannot be the primary key. Note that SALES_FOR_
RFM links to the same CUSTOMER and TIMELINE dimension tables as PRODUCT_SALES.
This is done to maintain consistency within the data warehouse, and when a dimension table
links to two or more fact tables, it is called a conformed dimension.

Why would we add a fact table named SALES_FOR_RFM? To explain that, we need to
discuss reporting systems.

Each cell shows the
total quantity of each
product that has been
purchased by each
customer

Figure 12-16

The Two-Dimensional
ProductNumber–CustomerID
Matrix

BK001

BK002

VB001

VB002

VB003

VK001

VK002

VK003

VK004

Each cell will
show the total
quantity of each
product that has
been purchased
by each customer
on a specific date

P
ro

d
u

ct
N

u
m

b
er

1 32 4 65 7 98 10 1211

CustomerID

Time

1

1

Figure 12-17

The Three-Dimensional
Time–ProductNumber–
CustomerID Cube

reporting Systems

The purpose of a reporting system is to create meaningful information from disparate data
sources and to deliver that information to the proper users on a timely basis. As stated earlier,
reporting systems differ from data mining because they create information using the simple
operations of sorting, filtering, grouping, and making simple calculations. We begin this sec-
tion with a description of a typical reporting problem: RFM analysis.

rFM analysis

RFM analysis is a way of analyzing and ranking customers according to their purchasing
patterns. It is a simple technique that considers how recently (R score) a customer ordered,
how frequently (F score) a customer orders, and how much money (M score) the customer
spends per order. RFM is summarized in Figure 12-19.

To produce an RFM score, we need only two things: customer data and sales data for each
purchase (the date of the sale and the total amount of the sale) made by each customer. If you

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 581

look at the SALES_FOR_RFM table and its associated CUSTOMER and TIMELINE dimen-
sion tables in Figure 12-18, you see that we have exactly those data: The SALES_FOR_RFM
table is the starting point for RFM analysis in the HSD_DW BI system.

To produce an RFM score, customer purchase records are first sorted by the date of their
most recent (R) purchase. In a common form of this analysis, the customers are divided into
five groups, and a score of 1 to 5 is given to customers in each group. Thus, the 20 percent of
the customers having the most recent orders are given an R score of 1, the 20 percent of the
customers having the next most recent orders are given an R score of 2, and so forth, down to
the last 20 percent, who are given an R score of 5.

The customer records are then sorted on the basis of how frequently they order. The 20
percent of the customers who order most frequently are given an F score of 1, the next 20 per-
cent most frequently ordering customers are given a score of 2, and so forth, down to the least
frequently ordering customers, who are given an F score of 5.

Finally, the customers are sorted again according to the amount of their orders. The 20
percent who have placed the most expensive orders are given an M score of 1, the next 20
percent are given an M score of 2, and so forth, down to the 20 percent who spend the least,
who are given an M score of 5.

Figure 12-20 shows sample RFM data for Heather Sweeney Designs. (Note that these
data have not been calculated and are for illustrative purposes only.) The first customer, Ralph
Able, has a score of {1 1 2}, which means that he has ordered recently and orders frequently.

SALES_FOR_RFM
Fact Table

CUSTOMER
Dimension Table

TIMELINE Dimension
Table

Figure 12-18

The Extended HSD_DW
Star Schema

• Simple report-based customer classification scheme

RFM Analysis

• Score customers on recentness, frequency, and
 monetary size of orders

• Typically, divide each criterion into 5 groups and
 score from 1 to 5

Figure 12-19

RFM Analysis

582 ParT 5 Database Access Standards

His M score of 2 indicates, however, that he does not order the most expensive goods. From
these scores, the salespeople can surmise that Ralph is a good customer but that they should
attempt to up-sell Ralph to more expensive goods.

Susan Baker (RFM score of {2 2 3}) is above average in terms of how frequently she shops
and how recently she has shopped, but her purchases are average in value. Sally George (RFM
score of {3 3 3}) is truly in the middle. Jenny Tyler (RFM score of {5 1 1}) is a problem. Jenny
has not ordered in some time, but, in the past, when she did order, she ordered frequently and
her orders were of the highest monetary value. These data suggest that Jenny might be going
to another vendor. Someone from the sales team should contact her immediately. However,
no one on the sales team should be talking to Chantel Jacobs (RFM score of {5 5 5}). She has
not ordered for some time, she doesn’t order frequently, and when she does order, she only
buys inexpensive items and not many of them.

OLaP

OLAP provides the ability to sum, count, average, and perform other simple arithmetic opera-
tions on groups of data. OLAP systems produce OLAP reports. An OLAP report is also called
an OLAP cube. This is a reference to the dimensional data model, and some OLAP products
show OLAP displays using three axes, like a geometric cube. The remarkable characteristic
of an OLAP report is that it is dynamic: The format of an OLAP report can be changed by the
viewer, hence the term online in the name online analytical processing.

OLAP uses the dimensional database model discussed earlier in this chapter, so it is not
surprising to learn that an OLAP report has measures and dimensions. A measure is a dimen-
sional model fact—the data item of interest that is to be summed or averaged or otherwise
processed in the OLAP report. For example, sales data may be summed to produce Total Sales
or averaged to produce Average Sales. The term measure is used because you are dealing with
quantities that have been or can be measured and recorded. A dimension, as you have already
learned, is an attribute or a characteristic of a measure. Purchase date (TimeID), customer
location (City), and sales region (ZIP or State) are all examples of dimensions, and in the
HSD_DW database, you saw how the time dimension is important.

In this section, we will generate an OLAP report by using an SQL query from the HSD_DW
database and a Microsoft Excel PivotTable.

Each customer is
ranked for R (recent),
F (frequent), and
M (money)
characteristics—1 is
highest (best) and 5 is
lowest (worst) score

Figure 12-20

The RFM Score Report

By THe Way We use Microsoft SQL Server 2014 and Microsoft Excel 2013 to illustrate
this discussion of OLAP reports and PivotTables. For other DBMS prod-

ucts, such as MySQL, you can use the DataPilot feature of the Calc spreadsheet ap-
plication in the OpenOffice.org product suite.

There are three ways we can proceed:

■■ Manually copy and format an SQL query as a formatted table in a Microsoft Excel
worksheet:

■■ Copy the SQL query results into an Excel worksheet.
■■ Add column names to the results.
■■ Format the query results as an Excel table (optional).
■■ Select the Excel range containing the results with column names.
■■ Create the PivotTable.

OpenOffice.org

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 583

■■ or connect to a DBMS data source using the Microsoft Excel Get External Data
Command:

■■ Click the Get External Data command on the DATA command tab.
■■ Select an Microsoft SQL Server 2014 database as the data source.
■■ Specify that the data should go into a Microsoft Excel table.
■■ Create the PivotTable.

■■ or use the Microsoft PowerPivot for Excel 2013 add-in feature to connect to a DBMS
data source and then create the PivotTable.

The purpose of our OLAP report is to analyze the sales of Heather Sweeney Designs prod-
ucts based on selected dimensions in the HSD_DW database. For example, we might want to see
how product sales vary based on the city the customer lives in. We begin by writing an SQL query
to gather the required information from the dimensional database. We then use the results of this
query if we copy the data into an Excel worksheet. The SQL query, as used in SQL Server 2014 is:

/* *** SQL-Query-CH12-02 *** */

SELECT C.CustomerID, CustomerName, C.City,

 P.ProductNumber, P.ProductName,

 T.[Year], T.QuarterText,

 SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIMELINE T

WHERE C.CustomerID = PS.CustomerID

 AND P.ProductNumber = PS.ProductNumber

 AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

 P. ProductNumber, P.ProductName,

 T.QuarterText, T.[Year]

ORDER BY C.CustomerName, T.[Year], T.QuarterText;

However, because SQL Server 2014 (and other SQL-based DBMS products, such as
Oracle Database and MySQL) can store views but not queries, we need to create and use
an SQL view if we are going to use an Excel data connection. The SQL query to create the
HSDDWProductSalesView, as used in SQL Server 2014 is:

/* *** SQL-CREATE-VIEW-CH12-01 *** */

CREATE VIEW HSDDWProductSalesView AS

SELECT C.CustomerID, C.CustomerName, C.City,

 P.ProductNumber, P.ProductName,

 T.[Year], T.QuarterText,

 SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIMELINE T

WHERE C.CustomerID = PS.CustomerID

 AND P.ProductNumber = PS.ProductNumber

 AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

 P. ProductNumber, P.ProductName,

 T.QuarterText, T.[Year];

We can now use the HSDDWProductSalesView when we connect to the database
as the data source for an OLAP report. We will do this using the standard Microsoft
Excel 2013 tools on the DATA command tab, and Figure 12-21(a) shows our starting
point, a blank Microsoft Excel 2013 workbook (named DBP-e13-HSD-BI.xlsx) with the
Microsoft SQL Server 2012 SP1 Data Mining Add-Ins for Office (downloadable from

C.CustomerID
C.City
P.ProductNumber
P.ProductName
T.QuarterText
PS.Quantity
C.CustomerID
PS.CustomerID
P.ProductNumber
PS.ProductNumber
T.TimeID
PS.TimeID
C.CustomerID
C.CustomerName
C.City
P.ProductName
T.QuarterText
C.CustomerName
T.QuarterText
C.CustomerID
C.CustomerName
C.City
P.ProductNumber
P.ProductName
T.QuarterText
PS.Quantity
C.CustomerID
PS.CustomerID
P.ProductNumber
PS.ProductNumber
T.TimeID
PS.TimeID
C.CustomerID
C.CustomerName
C.City
P.ProductName
T.QuarterText
DBP-e13-HSD-BI.xlsx

584 ParT 5 Database Access Standards

The DATA command
tab

The Get External
Data drop-down
gallery arrow button

The Get External
Data gallery

The From Other
Sources button

The From SQL
Server button

(a) The Get External Data Command

Figure 12-21

OLAP Reports

The Data
Connection
Wizard dialog box

The Connect to
Database Server
page

The Next button

Enter the SQL
Server 2014
server name here

(b) The Data Connection Wizard Dialog Box—Connect to Database Server Page

Select the Use
Windows
Authentication
radio button if
necessary

By THe Way The Microsoft SQL Server 2012 SP1 PowerPivot for Microsoft Excel 2010
add-in is downloadable from www.microsoft.com/en-us/download/details

.aspx?id=29074). PowerPivot provides additional tools and the ability to work with
larger datasets than can be handled by Microsoft Excel 2013 itself. It is a useful tool
and well worth looking into. Again, there is no version specifically updated for SQL
Server 2014 and Excel 2013, but the provided tools do work with the newer versions.

www.microsoft.com/en-us/download/details.aspx?id=35578)). There is currently no updated
version for SQL Server 2014, but this version does work with SQL Server 2014.

www.microsoft.com/en-us/download/details.aspx
www.microsoft.com/en-us/download/details.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=29074

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 585

The Data Connection
Wizard dialog box

The Select Database
and Table page

Select the HSD_DW
database from this drop-
down list

Check the Connect to
a specific table
checkbox

Select the
HSDDWProductSalesView
in this list of database
objects

The Next button
(c) The Data Connection Wizard Dialog Box—Select

Database and Table Page

The Data Connection
Wizard dialog box

The Save Data
Connection File
and Finish page

The Finish button

(d) The Data Connection Wizard Dialog Box—Save Data
Connection File and Finish Page

(continued)Figure 12-21

Continued

586 ParT 5 Database Access Standards

The Import Data
dialog box

Select the Table
radio button if
necessary

Select the
Existing
worksheet radio
button if necessary

The OK button

(e) The Import Data Dialog Box

The TABLE
TOOLS
contextual
command tab

The INSERT
command tab

The ANALYZE
command tab

The HSD_DW
database data is
now in the worksheet

Name the worksheet
HSDDWProductSalesView

(f) The HSDDWProductSalesView Data in the Worksheet

Figure 12-21

Continued

To connect to the HSD_DW data, we click the Get External Data drop-down gallery
arrow button on the DATA command tab. As shown in Figure 12-21(a), this displays the Get
External Data gallery. Here we click the From Other Sources button, which gives us a list of
data sources that includes SQL Server.

Clicking the From SQL Server button starts the Data Connection Wizard
shown in Figure 12-21(b). In the Connect to Database Server page of the wizard, we
select the SQL Server we want to use and ours means of authentication and then click
the Next button.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 587

The Create
PivotTable dialog
box

This is the
imported data in
the table in the
worksheet

Select the New
Worksheet radio
button if necessary

The OK button

(h) The Create Pivot Table Dialog Box

The INSERT
command tab

The PivotTable
command button

(g) The PivotTable Command

Figure 12-21

Continued

(continued)

588 ParT 5 Database Access Standards

The PivotTable Fields
List pane—select the
report elements to
be displayed here

The PivotTable report
area—the Pivot Table
will be displayed in this
area, which can be
extended as necessary
to accommodate the
PivotTable

(i) The PivotTable in the New Worksheet

The PivotTable Field
List pane—the
elements have been
selected and are now
displayed here

The PivotTable report

The PivotTable
worksheet has been
named the
HSD-DW-BI-Pivot-
Table

(j) The ProductNumber by City OLAP Report

Figure 12-21

Continued

By THe Way If the Microsoft SQL Server 2014 instance is on your local machine (your own
computer) and is installed as the default (unnamed) instance, type in only

your computer name. For example, WS12-001 in Figure 12-21(b) is our computer, and we
have installed Microsoft SQL Server 2014 on it as a default instance; we simply type in
WS12-001.

If you are connecting to a non-default, named instance of Microsoft SQL Server
2014, type in both the computer name and the SQL Server 2014 instance name. For
example, if we installed an additional version of Microsoft SQL Server 2014 such as
SQL Server 2014 Express Advanced on our computer, we would type in WS12-001\
SQLEXPRESS to connect to this named instance.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 589

As shown in Figure 12-21(c), in the Select Database and Table page of the wizard,
we select the HSD_DW database and HSDDWProductSalesView as the source of
our data—note how useful the SQL-CREATE-VIEW-CH12-01 statement and the resulting
HSDDWProductSalesView view are in making it easy to get exactly the data we want for
the PivotTable. After selecting the database and view, we click the Next button to display the
Save Data Connection File and Finish wizard page as shown in Figure 12-21(d). This
step simply saves the data connection we have created for future use, and there is nothing we
need to do on this page, so we click the Finish button.

As shown in Figure 12-21(e), the Import Data dialog box is displayed. Because we
want to store our data in a worksheet in our Microsoft Excel workbook before we create the
PivotTable, the correct selections are shown here. Click the OK button.

In Figure 12-21(f), we see the data formatted as a table in the worksheet, which we now
name as HSSDWProductSalesView. Microsoft Excel has opened the ANALYZE com-
mand tab in the TABLE TOOL contextual command tab, but we actually need the INSERT
command tab at this point. Click the INSERT command tab to display the commands on the
INSERT command tab as shown in Figure 12-21(g).

On the INSERT command tab, click the PivotTable button. The Create Pivot Table
dialog box is displayed, as shown in Figure 12-21(h). The correct table range is selected, and
we select the New Worksheet radio button because we want the PivotTable in a new, sepa-
rate worksheet. Click the OK button to create the PivotTable structure, as shown in Figure
12-21(i). Selecting the appropriate fields in the PivotTable Fields pane then creates the
PivotTable itself, as seen in Figure 12-21(j).

In Figure 12-21(j), the measure is quantity sold, and the dimensions are ProductNumber
and City. This report shows how quantity varies by product and city. For example, four copies
of VB003 (Kitchen Remodeling Dallas Style Video Companion) were sold in Dallas, but none
were sold in Austin.

We generated the OLAP report in Figure 12-21(j) by using a simple SQL query (run us-
ing the Microsoft PowerPivot for Microsoft Excel add-in) and Microsoft Excel, but many DBMS
and BI products include more powerful and sophisticated tools. For example, Microsoft SQL
Server 2014 includes SQL Server Analysis Services.4 It is possible to display OLAP cubes in
many ways besides with Excel. Some third-party vendors provide more sophisticated graphi-
cal displays, and OLAP reports can be delivered just like any of the other reports described for
report management systems.

The distinguishing characteristic of an OLAP report is that the user can alter the format
of the report. Figure 12-22 shows an alteration in which the user added two additional di-
mensions, customer and year, to the horizontal display. Quantity sold is now broken out by
customer and, in one case, by year. With an OLAP report, it is possible to drill down into the
data—that is, to further divide the data into more detail. In Figure 12-22, for example, the user
has drilled down into the San Antonio data to display all customer data for that city and to
display year sales data for Ralph Able.

In an OLAP report, it is also possible to change the order of the dimensions. Figure 12-23
shows city quantities as vertical data and ProductID quantities as horizontal data. This OLAP
report shows quantity sold by city and by product, customer, and year.

Both displays are valid and useful, depending on the user’s perspective. A product
manager might like to see product families first (ProductID) and then location data
(city). A sales manager might like to see location data first and then product data. OLAP
reports provide both perspectives, and the user can switch between them while viewing
a report.

Unfortunately, all of this flexibility comes at a cost. If the database is large, doing the nec-
essary calculating, grouping, and sorting for such dynamic displays will require substantial

4Up to this point in this book, we have been able to do everything in this book using Microsoft SQL Server
2014 Express Edition. Unfortunately, Microsoft SQL Server 2014 Express Edition does not include SQL
Server Analysis Services, so you will have to use the Microsoft SQL Server 2014 Standard Edition or better if
you want to use the SQL Server Analysis Services. Although OLAP reports can be done without SQL Server
Analysis Services, Server Analysis Services adds a lot of functionality, and the Microsoft SQL Server 2012
SP1 Data Mining Add-ins for Microsoft Office (used in this text) will not function without it.

590 ParT 5 Database Access Standards

The City = San
Antonio data are
also showing customer
data

The Customer =
Able, Ralph data are
also showing year
data

Figure 12-22

OLAP ProductNumber by
City, Customer, and Year
Report

The city variable is
on the column
designator

The ProductID
variable is on the
primary row designator

The Customer =
Able, Ralph data are
also showing year
data

The ProductID =
VB001 data are also
showing Customer
data

Figure 12-23

OLAP City by
ProductNumber,
Customer, and Year Report

computing power. Although standard, commercial DBMS products do have the features and
functions required to create OLAP reports, they are not designed for such work. They are
designed to provide rapid response to transaction processing applications, such as those for
order entry or manufacturing planning.

Accordingly, special-purpose products called OLAP servers have been developed to
perform OLAP analyses. As shown in Figure 12-24, an OLAP server reads data from an op-
erational database, performs preliminary calculations, and stores the results of those calcula-
tions in an OLAP database. For performance and security reasons, the OLAP server and the
DBMS usually run on separate computers. The OLAP server would normally be located in
the data warehouse or a data mart.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 591

Data
Mining

Artificial Intelligence
Machine Learning

Data
Management
Technology

Statistics/
Mathematics

Cheap Computer
Processing and

Storage

Sophisticated
Marketing, Finance,
and Other Business

Professionals

Huge
Databases

Figure 12-25

Convergence of Disciplines
for Data Mining

Transaction
Processing

Applications
Transaction
Processing

Applications
Transaction
Processing

Applications
Transaction
Processing

Applications

OLAP
ReportsOLAP

ReportsOLAP
ReportsOLAP

ReportsOLAP
ReportsOLAP

Reports

DBMS

OLAP Server

Transaction
Processing
Database

OLAP
Database

Database
Extract

Figure 12-24

Role of the OLAP Server
and OLAP Database

Data Mining

Instead of the basic calculations, filtering, sorting, and grouping used in reporting applica-
tions, data mining involves the application of sophisticated mathematical and statistical tech-
niques to find patterns and relationships that can be used to classify data and predict future
outcomes. As shown in Figure 12-25, data mining represents the convergence of several
phenomena. Data mining techniques have emerged from the statistical and mathematics
disciplines and from the artificial intelligence and machine-learning communities. In fact,
data mining terminology is an odd combination of terms used by these different disciplines.

Data mining techniques take advantage of developments for processing enormous da-
tabases that have emerged in the past dozen or so years. Of course, all these data would not
have been generated were it not for fast and inexpensive computers, and without such com-
puters, the new techniques would be impossible to compute.

Most data mining techniques are sophisticated and difficult to use. However, such tech-
niques are valuable to organizations, and some business professionals, especially those in
finance and marketing, have developed expertise in their use. Almost all data mining tech-
niques require specialized software. Popular data mining products are Enterprise Miner from
SAS Corporation, SPSS Modeler from IBM, and Insightful Miner from Insightful Corporation.

592 ParT 5 Database Access Standards

However, there is a movement to make data mining available to more users. For example,
Microsoft has created the Microsoft SQL Server 2012 SP1 Data Mining Add-ins for Microsoft
Office—this package runs with both Microsoft Office 2010 and Microsoft Office 2013.5
Figure 12-26 shows Microsoft Excel 2013 with the Data Mining command tab and com-
mand groups. With this add-in, data stored in Microsoft Excel are sent to SQL Server Analysis
Services for processing, and the results are returned to Microsoft Excel for display.

The Data Mining
command tab

The Cluster Analysis
button

The connection to
SQL Server 2014
Analysis Services
will be shown here

The data table is in the
HSDDWProductSalesView
worksheet

Figure 12-26

The Excel Data Mining
Command Tab

Distributed Database Processing

One of the first solutions to increase the amount of data that could be stored by a DBMS sys-
tem was to simply spread the data among several database servers instead of just one. A group
of associated servers are known as a server cluster,6 and the database shared between them
is called a distributed database. A distributed database is a database that is stored and
processed on more than one computer. Depending on the type of database and the process-
ing that is allowed, distributed databases can present significant problems. Let us consider the
types of distributed databases.

Types of Distributed Databases

A database can be distributed by partitioning, which means breaking the database into
pieces and storing the pieces on multiple computers; by replication, which means storing
copies of the database on multiple computers; or by a combination of replication and parti-
tioning. Figure 12-27 illustrates these alternatives.

Figure 12-27(a) shows a nondistributed database with four pieces labeled W, X, Y, and Z.
In Figure 12-27(b), the database has been partitioned but not replicated. Portions W and X
are stored and processed on Computer 1, and portions Y and Z are stored and processed on
Computer 2. Figure 12-27(c) shows a database that has been replicated but not partitioned.
The entire database is stored and processed on Computers 1 and 2. Finally, Figure 12-27(d)
shows a database that is partitioned and replicated. Portion Y of the database is stored and
processed on Computers 1 and 2.

5For more information and to download the Microsoft SQL Server 2012 SP1 Data Mining Add-ins for
Microsoft Office package, go to www.microsoft.com/en-us/download/details.aspx?id=35578. Note, however, that
these add-ins will not work with Microsoft SQL Server 2014 Express Edition—you have to have a version of
SQL Server with SQL Server Analysis Services.
6For more information on computer clusters, see the Wikipedia article at http://en.wikipedia.org/wiki/
Server_cluster.

http://en.wikipedia.org/wiki/Server_cluster
http://en.wikipedia.org/wiki/Server_cluster
http://www.microsoft.com/en-us/download/details.aspx?id=35578

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 593

Single Processing Computer

DBMS/OS

WAP1

AP2
X
Y
Z

(a) Nonpartitioned, Nonreplicated
Alternative

Communication
Line

DB

DBMS/OS

Computer 1

AP1 W
X

DB1

DBMS/OS

Computer 2

AP2 Y
Z

DB2

(b) Partitioned, Nonreplicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1

AP2
X
Y
Z

DBMS/OS

Computer 2

WAP1

AP2
X
Y
Z

DB (Copy 1)

DB (Copy 2)

(c) Nonpartitioned, Replicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1
X
Y

DBMS/OS

Computer 2

AP2 Y
Z

DB1

DB2
DB

(d) Partitioned, Replicated Alternative

Figure 12-27

Types of Distributed
Databases The portions to be partitioned or replicated can be defined in many different ways.

A database that has five tables (for example, CUSTOMER, SALESPERSON, INVOICE,
LINE_ITEM, and PART) could be partitioned by assigning CUSTOMER to portion W,
SALESPERSON to portion X, INVOICE and LINE_ITEM to portion Y, and PART to portion Z.
Alternatively, different rows of each of these five tables could be assigned to different comput-
ers, or different columns of each of these tables could be assigned to different computers.

Databases are distributed for two major reasons: performance and control. Having a
database on multiple computers can improve throughput, either because multiple computers
are sharing the workload or because communications delays can be reduced by placing the
partitions closer to their users. Distributing the database can improve control by segregating
different portions of the database to different computers, each of which can have its own set of
authorized users and permissions.

Challenges of Distributed Databases

Significant challenges must be overcome when distributing a database, and those challenges
depend on the type of distributed database and the activity that is allowed. In the case of a
fully replicated database, if only one computer is allowed to make updates on one of the cop-
ies, then the challenges are not too great. All update activity occurs on that single computer,
and copies of that database are periodically sent to the replication sites. The challenge is to
ensure that only a logically consistent copy of the database is distributed (no partial or uncom-
mitted transactions, for example) and to ensure that the sites understand that they are pro-
cessing data that might not be current because changes could have been made to the updated
database after the local copy was made.

If multiple computers can make updates to a replicated database, then difficult
problems arise. Specifically, if two computers are allowed to process the same row at the
same time, they can cause three types of error: They can make inconsistent changes, one

594 ParT 5 Database Access Standards

computer can delete a row that another computer is updating, or the two computers can
make changes that violate uniqueness constraints.

To prevent these problems, some type of record locking is required. Because multiple
computers are involved, standard record locking does not work. Instead, a far more compli-
cated locking scheme, called distributed two-phase locking, must be used. The specifics
of the scheme are beyond the scope of this discussion; for now, just know that implementing
this algorithm is difficult and expensive. If multiple computers can process multiple replicas
of a distributed database, then significant problems must be solved.

If the database is partitioned but not replicated [Figure 12-27(b)], then problems will oc-
cur if any transaction updates data that span two or more distributed partitions. For example,
suppose the CUSTOMER and SALESPERSON tables are placed on a partition on one com-
puter and that INVOICE, LINE_ITEM, and PART tables are placed on a second computer.
Further suppose that when recording a sale all five tables are updated in an atomic transac-
tion. In this case, a transaction must be started on both computers, and it can be allowed to
commit on one computer only if it can be allowed to commit on both computers. In this case,
distributed two-phase locking also must be used.

If the data are partitioned in such a way that no transaction requires data from both parti-
tions, then regular locking will work. However, in this case, the databases are actually two sepa-
rate databases, and some would argue that they should not be considered a distributed database.

If the data are partitioned in such a way that no transaction updates data from both partitions
but that one or more transactions read data from one partition and update data on a second parti-
tion, then problems might or might not result with regular locking. If dirty reads are possible, then
some form of distributed locking is required; otherwise, regular locking should work.

If a database is partitioned and at least one of those partitions is replicated, then locking
requirements are a combination of those just described. If the replicated portion is updated, if
transactions span the partitions, or if dirty reads are possible, then distributed two-phase lock-
ing is required; otherwise, regular locking might suffice.

Distributed processing is complicated and can create substantial problems. Except in the
case of replicated, read-only databases, only experienced teams with a substantial budget and
significant time to invest should attempt distributed databases. Such databases also require
data communications expertise. Distributed databases are not for the faint of heart.

Object-relational Databases

Object-oriented programming (OOP) is a technique for designing and writing com-
puter programs. Today, most new program development is done using OOP techniques. Java,
C++, C#, and Visual Basic.NET are object-oriented programming languages.

Objects are data structures that have both methods, which are computer programs that
perform some task, and properties, which are data items particular to an object. All objects of
a given class have the same methods, but each has its own set of values for its data items. When
using OOP, the properties of the object are created and stored in main memory. Storing the values
of properties of an object permanently is called object persistence. Many different techniques
have been used for object persistence. One of them is to use some variation of database technology.

Although relational databases can be used for object persistence, using this method
requires substantial work on the part of the programmer. The problem is that, in general, ob-
ject data structures are more complicated than the rows of a table. Typically, several, or even
many, rows of several different tables are required to store object data. This means the OOP
programmer must design a mini-database just to store objects. Usually, many objects are in-
volved in an information system, so many different mini-databases need to be designed and
processed. This method is so undesirable that it is seldom used.

In the early 1990s, several vendors developed special-purpose DBMS products for stor-
ing object data. These products, which were called object-oriented DBMSs (OODBMSs),
never achieved commercial success. The problem was that by the time they were introduced,
billions of bytes of data were already stored in relational DBMS format, and no organization
wanted to convert its data to OODBMS format to be able to use an OODBMS. Consequently,
such products failed in the marketplace.

Basic.NET

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 595

However, the need for object persistence did not disappear. Some vendors, most notably
Oracle Corporation, added features and functions to their relational DBMS products to create
object-relational databases. These features and functions are basically add-ons to a rela-
tional DBMS that facilitate object persistence. With these features, object data can be stored
more readily than with a purely relational database. However, an object-relational database
can still process relational data at the same time.7

Although OODBMSs have not achieved commercial success, OOP is here to stay, and
modern programming languages are object-based. This is important because these are the
programming languages that are being used to create the latest technologies that are deal-
ing with Big Data.

9See the Wikipedia article on comparison of platform virtual machines at http://en.wikipedia.org/wiki/
Comparison_of_platform_virtual_machines

7To learn more about object-relational databases, see the Wikipedia article at http://en.wikipedia.org/wiki/
Object-relational_database.
8For more information on computer virtualization, see the Wikipedia article on virtualization at http://
en.wikipedia.org/wiki/Virtualization.

Although there are
utilization spikes, the
CPU is averaging
only 4% use

Although there may
be utilization spikes,
only 19% of the
available main memory
is being used

CPU utilization spikes

Figure 12-28

The Underutilization of
Computer Resources

Virtualization

One major development in computing occurred when systems administrators realized that the
hardware resources (CPU, memory, input/output from/to disk storage) were very underutilized.
For example, as shown in Figure 12-28, most of the time the CPU is not busy, and there may be
a lot of available memory not being used by the CPU for application processing.

This realization led to the idea of sharing the hardware resources with more than one
computer. But how could that possibly be done—how can more than one computer share
hardware resources?

The answer was to have one physical computer host one or more virtual computers, more
commonly known as virtual machines. To do this, the actual computer hardware, now called
the host machine, runs an application program known as a virtual machine manager or
hypervisor. The hypervisor creates and manages the virtual machines and controls the interac-
tion between the virtual machine and the physical hardware.8 For example, if a virtual machine
has been allocated two Gigabytes of main memory for its use, the hypervisor is responsible for
making sure the actual physical memory is allocated and available to the virtual machine.

Although there are many variants on exactly how virtual machines are implemented,9
Figure 12-29 illustrates two standard generic physical/virtual machine setups. Figure 12-29(a)
shows the situation where the host machine is not dedicated solely to hosting virtual machines

http://en.wikipedia.org/wiki/Comparison_of_platform_virtual_machines
http://en.wikipedia.org/wiki/Comparison_of_platform_virtual_machines
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Object-relational_database
http://en.wikipedia.org/wiki/Object-relational_database

596 ParT 5 Database Access Standards

Virtual
Machine 3

Virtual
Machine 2

Virtual
Machine 1

Computer Hardware

Computer Operating System

Virtual
Machine 4

Hypervisor

The hypervisor runs as
the only application—
there are no other user
applications running on
this hardware

(b) Dedicated Hardware

but also runs other user applications. This is typical of a desktop computer where the user wants
to use, for example, a spreadsheet application (such as Microsoft Excel 2013) and a word process-
ing application (such as Microsoft Word 2013) while being able to host virtual machines at the
same time. This can be done using a product such as VMware Workstation (see www.vmware.com/
products/workstation/overview.html), which is available for the Windows and Linux operating systems.

Figure 12-29(b) shows the situation where the host machine is dedicated to hosting
virtual machines but does not run other user applications. This is typical of network servers
where the goal is to maximize overall utilization of the hardware resources by sharing them
among many servers but there are no users running applications on the host machine.

One of the advantages of virtual machines is that in many products you can run various
operating systems in different virtual machines and none of them has to be the same operat-
ing system that is running on the underlying hardware and supporting the hypervisor. Thus,
a desktop running Microsoft Windows 8.1 can run the Linux and FreeBSD operating systems
in virtual machines. Figure 12-30 shows a desktop computer running Microsoft Windows 8.1
supporting a virtual machine running the Microsoft Server 2012 R2 operating system. This
virtual machine has Microsoft SQL Server 2014 installed and is, in fact, one of the virtual
machines that we used to obtain all the SQL Server 2014 screenshots.

(a) Shared Hardware

Virtual
Machine 1

Computer Hardware

Computer Operating System

User App 1 User App 2

Virtual
Machine 2

Hypervisor

The hypervisor runs
a user application

User applications
besides the hypervisor
and the virtual
machines it supports
can be run on the
computer

Figure 12-29

The Virtual Machine
Environment

Cloud Computing

For many years, systems administrators and database administrators knew exactly where their
servers (physical or virtual) were located—in a dedicated, secure machine room on the com-
pany premises. With the advent of the Internet, companies started offering hosting services

www.vmware.com/products/workstation/overview.html
www.vmware.com/products/workstation/overview.html

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 597

on servers (physical or virtual) that were located somewhere else—in a location (sometimes
known but sometimes unknown) away from the company premises. And as long as these host-
ing companies provide the services we want (and at a price we want to pay), we really don’t
care about exactly where the hosting servers are located.

This configuration of servers and services hosted for us over the Internet is known as cloud
computing. As shown in Figure 12-31, our Internet customer sees us by our presentation at
our company Web site and related e-commerce services on the Internet at www.ourcompany.com.
They don’t care whether the servers that provide the services they want (being able to see and
buy the latest versions of our Class A Widget) are located physically at our company or some-
where else “in the cloud” as long as those services are available to them and work reliably.

Hosting services in the cloud has become an established and lucrative business. Hosting
companies range from Web site hosting companies such as eNom and Yahoo! Small Business
to companies that offer complete business support packages such as Microsoft Office 365
and Google Business Solutions to companies that make various components such as complete
virtual servers, file storage, DBMS services, and much more.

In this last category, significant players include Microsoft with Windows Azure
(http://azure.microsoft.com/en-us/) and Amazon.com with Amazon Web Services (AWS)
(http://aws.amazon.com/). Of course, there are others, but these two provide a good starting
point. Windows Azure, like any Microsoft product, is Microsoft centric and not currently as
expansive in its product offerings as AWS.

Of particular interest in AWS are the EC2 service, which provides complete virtual
servers, the DynamoDB database service, which provides a NoSQL data store (discussed
later in this chapter), and the RDS (Relational DBMS Service), which provides online
instances of Microsoft SQL Server, Oracle Database, and MySQL database services.

At this point, we will use RDS to illustrate how we can use online database services
similar to what we have been doing in this book. We have created one RDS instance of SQL
Server Express (it is actually SQL Server 2014 Express) named kamssqlex01. Although hosted
by AWS, if we connect to this DB instance with normal SQL Server management tools, it will
appear to us just like any other SQL Server instance we are running.

Figure 12-32 illustrates this by showing the kamssqlex01 database instance in the
Microsoft SQL Server Management Studio. We have created and populated the VRG data-
base discussed in Chapter 7 and Chapter 10A and have run an example query against the
database. Everything we see here is exactly the same as if the database was located on our
own desktop computer or local database server. This shows how easy it is to set up computing
resources hosted “in the cloud,” and there is no doubt that we will see more and more use of
cloud computing.

The hypervisor is
VMware Workstation 11

The virtual machine
WS12R2-10A-002 is
running the Microsoft
Windows Server
2012 R2 operating
system

Microsoft SQL
Server 2014
running on virtual
machine
WS12R2-CH10A-002

The host machine is
running the Microsoft
Windows 8.1 operating
system

Figure 12-30

SQL Server 2014 Running in
a Microsoft Windows Server
2012 R2 Virtual Machine

www.ourcompany.com
Amazon.com
http://azure.microsoft.com/en-us/
http://aws.amazon.com/

598 ParT 5 Database Access Standards

Big Data and the Not Only SQL Movement

We have used the relational database model and SQL throughout this book. However, there
is another school of thought that has led to what was originally known as the NoSQL move-
ment but now is usually referred as the Not only SQL movement.10 It has been noted that
most, but not all, DBMSs associated with the NoSQL movement are nonrelational DBMSs.11

A NoSQL DBMS is often a distributed, replicated database, as described earlier in this
chapter, and used where this type of a DBMS is needed to support large datasets. There have
been several classification systems proposed for grouping and classifying NoSQL databases.
For our purposes, we will adopt and use a set of four categories of NoSQL databases:12

■■ key-value—examples are Dynamo and MemcacheDB
■■ document—examples are Couchbase and MongoDB
■■ column family—examples are Apache Cassandra and HBase
■■ graph—examples are Neo4J and AllegroGraph

NoSQL databases are used by widely recognized Web applications—both Facebook and
Twitter use the Apache Software Foundation’s Cassandra database. In this chapter, we discuss
column family databases, and we discuss the other three types in Appendix K–Big Data.

Column Family Databases

The basis for much of the development of column family databases was a structured storage
mechanism developed by Google named Bigtable, and column family databases are now
widely available, with a good example being the Apache Software Foundation’s Cassandra
project. Facebook did the original development work on Cassandra and then turned it over to
the open source development community in 2008.

A generalized column family database storage system is shown in Figure 12-33. The
structured storage equivalent of a relational DBMS (RDBMS) table has a very different con-
struction. Although similar terms are used, they do not mean the same thing that they mean in
a relational DBMS.

www.ourcompany.com

Our
company

as
perceived

by our
customers

Hosted Email Server

Customer Computer

Customer Notebook
Computer

Customer Tablet

Hosted Web Server

Hosted Database Server

Hosted E-Commerce Server

Figure 12-31

The Cloud Computing
Environment

10For a good overview, see the Wikipedia article on NoSQL available at http://en.wikipedia.org/wiki/NoSQL.
11See the Wikipedia article on NoSQL at http://en.wikipedia.org/wiki/NoSQL.
12Wikipedia article on NoSQL (accessed February 22, 2015).

http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/NoSQL
http://www.ourcompany.com

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 599

The VRG database
showing the tables

The kamssqlex01 DB
instance is Microsoft
SQL Server 2014
Express at AWS

An example SQL
query and results

Figure 12-32

The kamssqlex01 SQL
Server 2014 Express DB
Instance in the SQL Server
Management Studio

Name: LastName

Value: Able

Timestamp: 40324081235

(a) A Column

Figure 12-33

A Generalized Structured
Storage System

Name: LastName

Value: Able

Name: FirstName

Value: Ralph

Timestamp: 40324081235

CustomerNameSuper Column Name:

Super Column Values:

(b) A Super Column

Timestamp: 40324081235

(continued)

The smallest unit of storage is called a column, but it is really the equivalent of an RDBMS
table cell (the intersection of an RDBMS row and column). A column consists of three ele-
ments: the column name, the column value or datum, and a timestamp to record when the value
was stored in the column. This is shown in Figure 12-33(a) by the LastName column, which
stores the LastName value Able.

Columns can be grouped into sets referred to as super columns. This is shown in Figure
12-33(b) by the CustomerName super column, which consists of a FirstName column and a
LastName column and which stores the CustomerName value Ralph Able.

Columns and super columns are grouped to create column families, which are the
structured storage equivalent of RDBMS tables. In a column family, we have rows of
grouped columns, and each row has a RowKey, which is similar to the primary key
used in an RDBMS table. However, unlike an RDBMS table, a row in a column family
does not have to have the same number of columns as another row in the same column

600 ParT 5 Database Access Standards

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

Name: LastName

Value: Jacobs

Timestamp: 40335091055

Name: FirstName

Value: Nancy

Timestamp: 40335091055

Name: LastName

Value: Baker

Timestamp: 40340103518

Name: FirstName

Value: Susan

Timestamp: 40340103518

Name: PhoneNumber

Value: 281–7987

Timestamp: 40335091055

Name: Areacode

Value: 210

Timestamp: 40335091055

Name: PhoneNumber

Value: 871–8123

Timestamp: 40335091055

Name: Areacode

Value: 817

Timestamp: 40335091055

Name: PhoneNumber

Value: 281–7876

Timestamp: 40340103518

Name: Areacode

Value: 210

Timestamp: 40340103518

Customer Name

Customer Name Customer Phone

Customer Phone

CustomerPhone

Customer Name

Super Column
Family Name:

Rowkey001

Rowkey002

Rowkey003

(d) A Super Column Family

Customer

Figure 12-33

Continued

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

Customer
Column
Family
Name:

RowKey001

Name: LastName

Value: Jacobs

Timestamp: 40335091055

Name: Phone

Value: 817-871-8123

Timestamp: 40335091055

Name: City

Value: Fort Worth

Timestamp: 40335091055

Name: FirstName

Value: Nancy

Timestamp: 40335091055

RowKey002

Name: EmailAddress

Value: Susan.Baker@ elsewhere.com

Timestamp: 40340103518

Name: LastName

Value: Baker

Timestamp: 40340103518

RowKey003

(c) A Column Family

family. This is illustrated in Figure 12-33(c) by the Customer column family, which con-
sists of three rows of data on customers.

Figure 12-33(c) clearly illustrates the difference between structured storage column
families and RDBMS tables: Column families can have variable columns and data stored
in each row in a way that is impossible in an RDBMS table. This storage column structure is
definitely not in 1NF as defined in Chapter 2, let alone BCNF! For example, note that the first
row has no Phone or City columns, while the third row not only has no FirstName, Phone, or
City columns but also contains an EmailAddress column that does not exist in the other rows.

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 601

Finally, all the column families are contained in a keyspace, which provides the set of
RowKey values that can be used in the data store. RowKey values from the keyspace are shown
being used in Figure 12-33(c) to identify each row in a column family. While this structure
may seem odd at first, in practice it allows for great flexibility because columns to contain new
data may be introduced at any time without modifying an existing table structure.

As shown in Figure 12-33(d), a super column family is similar to a column family but
uses super columns (or a combination of columns and super columns) instead of columns.
Of course, there is more to column family database storage than discussed here, but now you
should have an understanding of the basic principles of column family databases.

Mapreduce

While structured storage provides the means to store data in a Big Data system, the data them-
selves are often analyzed using the MapReduce process. Because Big Data involve extremely
large datasets, it is difficult for one computer to process data by itself. Therefore, a set of
clustered computers are used with a distributed processing system similar to the distributed
database system discussed previously in this chapter.

The MapReduce process is used to break a large analytical task into smaller tasks, assign
each smaller task to a separate computer in the cluster, gather the results of each of those
tasks, and combine them into the final product of the original tasks. The term Map refers to
the work done on each individual computer, and the term Reduce refers to combining the in-
dividual results into the final result.

A commonly used example of the MapReduce process is counting how many times
each word is used in a document. This is illustrated in Figure 12-34, where we can see how
the original document is broken into sections and then each section is passed to a separate
computer in the cluster for processing by the Map process. The output from each of the Map
processes is then passed to one computer, which uses the Reduce process to combine the
results from each Map process into the final output, which is the list of words and how many
times each appears in the document. Most NoSQL database systems support MapReduce and
other, similar processes.

Computer 01:
List individual words and count

how many times each word appears

MAP

Computer 02:
List individual words and count

how many times each word appears

Computer 03:
List individual words and count

how many times each word appears

Computer N:
List individual words and count

how many times each word appears

INPUT: DOCUMENT

Document
Section 01

Document
Section 02

Document
Section 03

Document
Section N

Computer:
Combine lists of individual words and

total counts of how many times
each word appears

REDUCE

OUTPUT: WORD COUNT

A
And
Boy
Dog
.
.
.
The
Shown
Sun
Way

56
85
15
27

.

.

.
67
12
12

7

Figure 12-34

MapReduce

602 ParT 5 Database Access Standards

Hadoop

Another Apache Software Foundation project that is becoming a fundamental Big Data
development platform is the Hadoop Distributed File System (HDFS), which pro-
vides standard file services to clustered servers so their file systems can function as one
distributed file system. Hadoop originated as part of Cassandra, but the Hadoop project
has spun off a nonrelational data store of its own called HBase and a query language
named Pig.

Further, all the major DBMS players are supporting Hadoop. Microsoft is planning a
Microsoft Hadoop distribution and has teamed up with HP and Dell to offer the SQL Server
Parallel Data Warehouse. Oracle Corporation has developed the Oracle Big Data
Appliance that uses Hadoop. A search of the Web on the term “MySQL Hadoop” quickly
reveals that a lot is being done by the MySQL team as well.

The usefulness and importance of these Big Data products to organizations such
as Facebook demonstrate that we can look forward to the development of not only im-
provements to the relational DBMSs but also a very different approach to data storage
and information processing. Big Data and products associated with Big Data are rapidly
changing and evolving, and you should expect many developments in this area in the
near future.

By THe Way The NoSQL world is an exciting one, but you should be aware that, if you
want to participate in it, you will need to sharpen your OOP programming

skills. Whereas we can develop databases in Microsoft Access, Microsoft SQL Server,
Oracle Database, and MySQL using management and applications development tools
that are very user friendly (Microsoft Access itself, Microsoft SQL Server Management
Studio, Oracle SQL Developer, and MySQL Workbench), application development in
the NoSQL world is currently done in programming languages.

This, of course, may change, and we look forward to seeing the future develop-
ments in the NoSQL realm. For now, you’ll need to sign up for that programming
course!

Summary

Business intelligence (BI) systems assist managers and other
professionals in the analysis of current and past activities
and in the prediction of future events. BI applications are of
two major types: reporting applications and data mining ap-
plications. Reporting applications make elementary calcula-
tions on data; data mining applications use sophisticated
mathematical and statistical techniques.

BI applications obtain data from three sources: operational
databases, extracts of operational databases, and purchased
data. BI systems sometimes have their own DBMS, which may
or may not be the operational DBMS. Characteristics of report-
ing and data mining applications are listed in Figure 12-3.

Direct reading of operational databases is not feasible
for all but the smallest and simplest BI applications and
databases for several reasons. Querying operational data can
unacceptably slow the performance of operational systems,
operational data have problems that limit their usefulness
for BI applications, and BI system creation and maintenance

require programs, facilities, and expertise that are normally
not available for an operational database.

Problems with operational data are listed in Figure
12-5. Because of these, many organizations have chosen
to create and staff data warehouses and data marts. Data
warehouses extract and clean operational data and store the
revised data in data warehouse databases. Organizations
may also purchase and manage data obtained from data
vendors. Data warehouses maintain metadata that describes
the source, format, assumptions, and constraints about the
data they contain. A data mart is a collection of data that
is smaller than that held in a data warehouse and that ad-
dresses a particular component or functional area of the
business. In Figure 12-7, the data warehouse distributes
data to three smaller data marts. Each data mart services the
needs of a different aspect of the business.

Operational databases and dimensional databases have
different characteristics, as shown in Figure 12-8. Dimensional

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 603

databases use a star schema with a fully normalized fact table
that connects to dimension tables that may be non-normal-
ized. Dimensional databases must deal with slowly changing
dimensions, and therefore a time dimension is important in
a dimensional database. Fact tables hold measures of interest,
and dimension tables hold attribute values used in queries.
The star schema can be extended with additional fact tables,
dimension tables, and conformed dimensions.

The purpose of a reporting system is to create meaning-
ful information from disparate data sources and to deliver
that information to the proper users on a timely basis.
Reports are produced by sorting, filtering, grouping, and
making simple calculations on the data. RFM analysis is a
typical reporting application. Customers are grouped and
classified according to how recently they have placed an
order (R), how frequently they order (F), and how much
money (M) they spend on orders. The result of an RFM
analysis is three scores. In a typical analysis, the scores range
from 1 to 5. An RFM score of {1 1 4} indicates that the cus-
tomer has purchased recently and purchases frequently but
does not purchase large-dollar items.

Online analytical processing (OLAP) is a generic cat-
egory of reporting applications that enable users to dynami-
cally restructure reports. A measure is the data item of inter-
est. A dimension is a characteristic of a measure. An OLAP
cube is an arrangement of measures and dimensions. With
OLAP, users can drill down and change the order of dimen-
sions. Because of the high processing requirements, some
organizations designate separate computers to function as
OLAP servers.

Data mining is the application of mathematical and sta-
tistical techniques to find patterns and relationships and to
classify and predict. Data mining has arisen in recent years
because of the confluence of factors shown in Figure 12-25.

A distributed database is a database that is stored and
processed on more than one computer. A replicated data-
base is one in which multiple copies of some or all of the
database are stored on different computers. A partitioned
database is one in which different pieces of the database are
stored on different computers. A distributed database can be
replicated and partitioned.

Distributed databases pose processing challenges. If a
database is updated on a single computer, then the chal-
lenge is simply to ensure that the copies of the database are
logically consistent when they are distributed. However, if
updates are to be made on more than one computer, the
challenges become significant. If the database is partitioned
and not replicated, then challenges occur if transactions span
data on more than one computer. If the database is replicated
and if updates occur to the replicated portions, then a special
locking algorithm called distributed two-phase locking is
required. Implementing this algorithm can be difficult and
expensive.

Objects consist of methods and properties or data val-
ues. All objects of a given class have the same methods,
but they have different property values. Object persistence
is the process of storing object property values. Relational
databases are difficult to use for object persistence. Some
specialized products called object-oriented DBMSs were
developed in the 1990s but never received commercial
acceptance. Oracle Database and others have extended the
capabilities of their relational DBMS products to provide
support for object persistence. Such databases are referred
to as object-relational databases.

The NoSQL movement (now often read as “not only
SQL”) is built upon the need to meet the Big Data stor-
age needs of companies such as Amazon.com, Google,
and Facebook. The tools used to do this are nonrelational
DBMSs known as structured storage. Early examples were
Dynamo and Bigtable; a more recent popular example is
Cassandra. These products use a non-normalized table
structure built on columns, super columns, and column
families tied together by rowkey values from a keyspace.
Data processing of the very large datasets found in Big
Data is often done by the MapReduce process, which
breaks a data processing task into many parallel tasks done
by many computers in the cluster and then combines
these results to produce a final result. An emerging prod-
uct that is supported by Microsoft and Oracle Corporation
is the Hadoop Distributed File System (HDFS), with its
spinoffs HBase, a nonrelational storage component, and
Pig, a query language.

Key Terms

AllegroGraph
Amazon Web Services (AWS)
Big Data
Bigtable
business intelligence (BI) system
Cassandra
click-stream data
cloud computing
column family [NoSQL database

category]

conformed dimension
Couchbase
curse of dimensionality
data mart
data mining application
data warehouse
data warehouse metadata database
date dimension
dimension table
dimensional database

distributed database
distributed two-phase locking
dirty data
document [NoSQL database category]
drill down
Dynamo
DynamoDB database service
EC2 service
enterprise data warehouse (EDW)

architecture

Amazon.com

604 ParT 5 Database Access Standards

Extract, Transform, and Load (ETL)
System

F score
fact table
graph [NoSQL database category]
Hadoop Distributed File System

(HDFS)
HBase
host machine
hypervisor
key-value [NoSQL database category]
M score
MapReduce
measure
MemcacheDB
method
Microsoft Azure
MongoDB

Neo4J
nonintegrated data
NoSQL
Not only SQL
object
object-oriented DBMS (OODBMS)
object-oriented programming (OOP)
object persistence
object-relational database
OLAP cube
OLAP report
OLAP server
online analytical processing (OLAP)
online transaction processing (OLTP)

system
operational system
Oracle Big Data Appliance
partitioning

Pig
PivotTable
property
R score
RDS (Relational DBMS Service)
replication
reporting system
RFM analysis
server cluster
slowly changing dimension
SQL Server Parallel Data Warehouse
star schema
super column family
time dimension
transactional system
virtual computer
virtual machine
virtual machine manager

 12.1 What are BI systems?

 12.2 How do BI systems differ from transaction processing systems?

 12.3 Name and describe the two main categories of BI systems.

 12.4 What are the three sources of data for BI systems?

 12.5 Explain the difference in processing between reporting and data mining applications.

 12.6 Describe three reasons why direct reading of operational data is not feasible for BI
applications.

 12.7 Summarize the problems with operational databases that limit their usefulness for BI
applications.

 12.8 What are dirty data? How do dirty data arise?

 12.9 Why is server time not useful for Web-based order entry BI applications?

 12.10 What is click-stream data? How is it used in BI applications?

 12.11 Why are data warehouses necessary?

 12.12 Why do the authors describe the data in Figure 12-6 as “frightening”?

 12.13 Give examples of data warehouse metadata.

 12.14 Explain the difference between a data warehouse and a data mart. Use the analogy of
a supply chain.

 12.15 What is the enterprise data warehouse (EDW) architecture?

 12.16 Describe the differences between operational databases and dimensional databases.

 12.17 What is a star schema?

 12.18 What is a fact table? What type of data is stored in fact tables?

 12.19 What is a measure?

Review Questions

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 605

 12.20 What is a dimension table? What type of data is stored in dimension tables?

 12.21 What is a slowly changing dimension?

 12.22 Why is the time dimension important in a dimensional model?

 12.23 What is a conformed dimension?

 12.24 State the purpose of a reporting system.

 12.25 What do the letters RFM stand for in RFM analysis?

 12.26 Describe, in general terms, how to perform an RFM analysis.

 12.27 Explain the characteristics of customers having the following RFM scores: {1 1 5},
{1 5 1}, {5 5 5}, {2 5 5}, {5 1 2}, {1 1 3}.

 12.28 What does OLAP stand for?

 12.29 What is the distinguishing characteristic of OLAP reports?

 12.30 Define measure, dimension, and cube.

 12.31 Give an example, other than one in this text, of a measure, two dimensions related to
your measure, and a cube.

 12.32 What is drill down?

 12.33 Explain how the OLAP report in Figure 12-23 differs from that in Figure 12-22.

 12.34 What is the purpose of an OLAP server?

 12.35 Define distributed database.

 12.36 Explain one way to partition a database that has three tables: T1, T2, and T3.

 12.37 Explain one way to replicate a database that has three tables: T1, T2, and T3.

 12.38 Explain what must be done when fully replicating a database but allowing only one
computer to process updates.

 12.39 If more than one computer can update a replicated database, what three problems
can occur?

 12.40 What solution is used to prevent the problems in Review Question 12.39?

 12.41 Explain what problems can occur in a distributed database that is partitioned but not
replicated.

 12.42 What organizations should consider using a distributed database?

 12.43 Explain the meaning of the term object persistence.

 12.44 In general terms, explain why relational databases are difficult to use for object
persistence.

 12.45 What does OODBMS stand for, and what is its purpose?

 12.46 According to this chapter, why were OODBMSs not successful?

 12.47 What is an object-relational database?

 12.48 What is virtualization?

 12.49 What is cloud computing?

 12.50 What is Big Data?

 12.51 Based on Figure 12-1, what is the relationship between 1 MB of storage and 1 EB of
storage?

 12.52 What is the NoSQL movement? What are the four categories of NoSQL databases
used in this book?

606 ParT 5 Database Access Standards

 12.53 What were the first two nonrelational data stores to be developed, and who devel-
oped them?

 12.54 What is Cassandra, and what is the history of the development of Cassandra to its
current state?

 12.55 As illustrated in Figure 12-33, what is column family database storage, and how are
column family database storage systems organized? How do structured storage sys-
tems compare to RDBMS systems?

 12.56 Explain MapReduce processing.

 12.57 What is Hadoop, and what is the history of the development of Hadoop to its current
state? What are HBase and Pig?

Project Questions

 12.58 Based on the discussion of the Heather Sweeney Designs operational database
(HSD) and dimensional database (HSD_DW) in the text, answer the following
questions.

a. Using the SQL statements shown in Figure 12-13, create the HSD_DW database
in a DBMS.

B. What possible transformations of data were made before HSD_DW was loaded
with data? List some possible transformations, showing the original format of the
HSD data and how they appear in the HSD_DW database.

C. Write the complete set of SQL statements necessary to load the transformed data
into the HSD_DW database.

D. Populate the HSD_DW database using the SQL statements you wrote to answer
part C.

e. Figure 12-35 shows the SQL code to create the SALES_FOR_RFM fact table
shown in Figure 12-18. Using those statements, add the SALES_FOR_RFM table
to your HSD_DW database.

F. What possible transformations of data are necessary to load the SALES_FOR_
RFM table? List some possible transformations, showing the original format of
the HSD data and how they appear in the HSD_DW database.

Figure 12-35

The HSD_DW
SALES_FOR_RFM SQL
CREATE TABLE Statement

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 607

g. Write an SQL query similar to SQL-Query-CH12-02 on page 551 that uses the
total dollar amount of each day’s product sales as the measure (instead of the
number of products sold each day).

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

i. Create the SQL view you wrote to answer part H in your HSD_DW database.

J. Create a Microsoft Excel 2013 workbook named HSD-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part G (copy the results of the
query into a worksheet in the HSD-DW-BI-Exercises.xlsx workbook and then
format this range as a worksheet table) or your SQL view from part I (create an
Excel data connection to the view), create an OLAP report similar to the OLAP
report shown in Figure 12-32. (Hint: If you need help with the needed Microsoft
Excel actions, search in the Microsoft Excel help system for more information.)

L. Heather Sweeney is interested in the effects of payment type on sales in dollars.

1. Modify the design of the HSD_DW dimensional database to include a
PAYMENT_TYPE dimension table.

2. Modify the HSD_DW database to include the PAYMENT_TYPE dimension
table.

3. What data will be used to load the PAYMENT_TYPE dimension table? What
data will be used to load foreign key data into the PRODUCT_SALES fact
table? Write the complete set of SQL statements necessary to load these data.

4. Populate the PAYMENT_TYPE and PRODUCT_SALES tables using the SQL
statements you wrote to answer part 3.

5. Create the SQL queries or SQL views needed to incorporate the PaymentType
attribute.

6. Create a Microsoft Excel 2013 OLAP report to show the effect of payment
type on product sales in dollars.

Marcia’s Dry Cleaning Case Questions

If you have not already done so, create and populate the Marcia’s Dry Cleaning (MDC) data-
base for the DBMS you are using as described in:

■■ Chapter 10A for Microsoft SQL Server 2014
■■ Chapter 10B for Oracle Database
■■ Chapter 10C for MySQL 5.6

a. You need about 20 INVOICE transactions with supporting INVOICE_ITEMs in the
database. Write the needed SQL statements for any needed additional INVOICE
transactions, and insert the data into your MDC database.

B. Design a data warehouse star schema for a dimensional database named MDC_DW.
The fact table measure will be ExtendedPrice.

C. Create the MDC_DW database in your DBMS product.

D. What transformations of data will need to be made before the MDC_DW database
can be loaded with data? List all the transformations, showing the original format of
the MDC data and how it appears in the MDC_DW database.

Case Questions

HSD-DW-BI-Exercises.xlsx
HSD-DW-BI-Exercises.xlsx

608 ParT 5 Database Access Standards

e. Write the complete set of SQL statements necessary to load the transformed data
into the MDC_DW database.

F. Populate the MDC_DW database using the appropriate MDC data or transforma-
tions of that data.

g. Write an SQL query similar to SQL-Query-CH12-02 on page 551 that uses the
ExtendedPrice as the measure.

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

i. Create the SQL view you wrote to answer part H in your MDC_DW database.

J. Create the Microsoft Excel 2013 workbook named MDC-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the MDC-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
12-21(j). (Hint: If you need help with the needed Microsoft Excel actions, search in
the Microsoft Excel help system for more information.)

L. Describe how an RFM analysis could be useful in Marcia’s business.

The Queen Anne
Curiosity Shop
Project Questions

if you have not already implemented the Queen anne Curiosity Shop database shown
in Chapter 7 in a DBMS product, create and populate the QaCS database now in the
DBMS of your choice (or as assigned by your instructor).

a. You need about 30 PURCHASE transactions in the database. Write the needed SQL
statements for any needed additional PURCHASE transactions, and insert the data
into your QACS database.

B. Design a data warehouse star schema for a dimensional database named QACS_DW.
The fact table measure will be ItemPrice.

C. Create the QACS_DW database in a DBMS product.

D. What transformations of data will need to be made before the QACS_DW database
can be loaded with data? List all the transformations, showing the original format of
the QACS database and how it appears in the QACS_DW database.

e. Write the complete set of SQL statements necessary to load the transformed data
into the QACS_DW database.

F. Populate the QACS_DW database using the appropriate QACS database data or
transformations of that data.

g. Write an SQL query similar to SQL-Query-CH12-02 on page 551 that uses retail
price as the measure.

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

i. Create the SQL view you wrote to answer part H in your QACS_DW database.

J. Create a Microsoft Excel 2013 workbook named QACS-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the QACS-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
12-21(j). (Hint: If you need help with the needed Microsoft Excel actions, search in
the Microsoft Excel help system for more information.)

L. Describe how an RFM analysis could be useful to the Queen Anne Curiosity Shop.

MDC-DW-BI-Exercises.xlsx
MDC-DW-BI.xlsx
QACS-DW-BI-Exercises.xlsx
QACS-DW-BI.xlsx

 CHaPTer 12 Big Data, Data Warehouses, and Business Intelligence Systems 609

Morgan
Importing

if you have not already implemented the Morgan importing database shown in
Chapter 7 in a DBMS product, create and populate the Mi database now in the DBMS
of your choice (or as assigned by your instructor).

James Morgan wants to analyze shipper performance based on the difference
between a shipment’s scheduled departure date and the actual departure date. This
value will be named DepartureDelay, with the values measured in days. The values
of Days can be positive (the shipment departed later than the scheduled departure
date), zero (the shipment departed on the scheduled departure date), or negative (the
shipment departed before the scheduled departure date).

Since Morgan importing purchasing agents are responsible for contacting the
shippers and arranging the shipments, James also wants an analysis of purchasing
agents’ performance based on the same measure.

a. You need about 30 SHIPMENT transactions in the database. Write the needed SQL
statements for any needed additional SHIPMENT transactions, and insert the data
into your MI database.

B. Design a data warehouse star schema for a dimensional database named MI_
DW. The fact table measure will be DepartureDelay (the difference between
ScheduledDepartureDate and ActualDepartureDate). Dimension tables
will be TIMELINE, SHIPMENT, SHIPPER, and PURCHASING_AGENT
(PURCHASING_AGENT is a subset of EMPLOYEE containing data on only the
employees who are purchasing agents).

C. Create the MI_DW database in a DBMS product.

D. What transformations of data will need to be made before the MI_DW database can
be loaded with data? List all the transformations, showing the original format of the
MI database and how it appears in the MI_DW database.

e. Write the complete set of SQL statements necessary to load the transformed data
into the MI_DW database.

F. Populate the MI_DW database using the appropriate MI database data or transfor-
mations of that data.

g. Write an SQL query similar to SQL-Query-CH12-02 text on page 551 that uses
DepartureDelay as the measure.

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

i. Create the SQL view you wrote to answer part H in your MI_DW database.

J. Create a Microsoft Excel 2013 workbook named MI-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the MI-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
12-21(j). (Hint: If you need help with the needed Microsoft Excel actions, search in
the Microsoft Excel help system for more information.)

MI-DW-BI-Exercises.xlsx
MI-DW-BI.xlsx

Appendix A

Getting Started with Microsoft Access 2013

Appendix B

Getting Started with Systems Analysis and Design

Appendix C

E-R Diagrams and the IDEF1X Standard

Appendix D

E-R Diagrams and the UML Standard

Appendix E

Getting Started with the MySQL Workbench Data Modeling Tools

Appendix F

Getting Started with Microsoft Visio 2013

Appendix G

Data Structures for Database Processing

Appendix H

The Semantic Object Model

Appendix I

Getting Started with Web Servers, PHP, and the NetBeans IDE

Appendix J

Business Intelligence Systems

Appendix K

Big Data

Online Appendices

Complete versions of these appendices are available on this textbook’s Web site.

Go to www.pearsonglobaleditions.com/kroenke and select the Companion Website for this book.

610

http://www.pearsonglobaleditions.com/kroenke

 611

Coar, K. A. L. Apache Server for Dummies. Foster City, CA: IDG Books, 1997.
Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.”

Communications of the ACM 13 (June 1970).
Codd, E. F. “Extending the Relational Model to Capture More Meaning.”

Transactions on Database Systems 4 (December 1979).
Date, C. J. An Introduction to Database Systems, 8th ed. Upper Saddle

River, NJ: Pearson Education, 2003.
Embley, D. W. “NFQL: The Natural Forms Query Language.” ACM

Transactions on Database Systems 14 (June 1989).
Eswaran, K. P., J. N. Gray, R. A. Lorie, and I. L. Traiger. “The Notion

of Consistency and Predicate Locks in a Database System.”
Communications of the ACM 19 (November 1976).

Fagin, R. “A Normal Form for Relational Databases That Is Based on
Domains and Keys.” Transactions on Database Systems 6 (September
1981).

Fagin, R. “Multivalued Dependencies and a New Normal Form
for Relational Databases.” Transactions on Database Systems 2
(September 1977).

Hammer, M., and D. McLeod. “Database Description with SDM:
A Semantic Database Model.” Transactions on Database Systems 6
(September 1981).

Keuffel, W. “Battle of the Modeling Techniques.” DBMS Magazine
(August 1996).

Kroenke, D. “Waxing Semantic: An Interview.” DBMS Magazine
(September 1994).

Moriarty, T. “Business Rule Analysis.” Database Programming and Design
(April 1993).

Muller, R. J. Database Design for Smarties: Using UML for Data Modeling.
San Francisco: Morgan Kaufmann, 1999.

Nijssen, G., and T. Halpin. Conceptual Schema and Relational Database
Design: A Fact-Oriented Approach. Upper Saddle River, NJ: Prentice
Hall, 1989.

Nolan, R. Managing the Data Resource Function. St. Paul: West Publishing,
1974.

Ratliff, C. Wayne, “dStory: How I Really Developed dBASE.” Data Based
Advisor (March 1991).

Rogers, D. “Manage Data with Modeling Tools.” VB Tech Journal
(December 1996).

Ross, R. Principles of the Business Rule Approach. Boston: Addison-Wesley,
2003.

Zloof, M. M. “Query by Example.” Proceedings of the National Computer
Conference, AFIPS 44 (May 1975).

Useful Books

Atkinson, Paul, and Robert Vieira. Beginning Microsoft SQL Server 2012
Programming. Indianapolis: John Wiley & Sons, Inc., 2012.

Ben-Gan, Itzik, Dejan Sarka, and Ron Talmage. Querying Microsoft SQL
Server 2012: Exam 70-461 Training Kit. Sebastopol: O’Reilly Media,
Inc., 2012.

Berry, M., and G. Linoff. Data Mining Techniques for Marketing, Sales, and
Customer Support. New York: Wiley, 1997.

Bordoloi, Bijoy, and Douglas Bock. Oracle SQL. Upper Saddle River:
Prentice Hall, 2004.

Bordoloi, Bijoy, and Douglas Bock. SQL for SQL Server. Upper Saddle
River: Prentice Hall, 2004.

Web Links

News
CNET News.com: www.news.com
Wired: www.wired.com
ZDNet: www.zdnet.com

Data Mining
IBM SPSS Software: http://www-01.ibm.com/software/analytics/spss
KDnuggets: www.kdnuggets.com
SAS Enterprise Miner: www.sas.com/technologies/analytics/datamining/miner
Microsoft SQL Server 2012 Data Mining Add-Ins for Office 2010:

http://www.microsoft.com/en-us/download/details.aspx?id=29061

DBMS and Other Vendors
Oracle Database 12c: www.oracle.com/database/index.html
Oracle Database Express Edition 11g Release 2: www.oracle.com/

technetwork/database/database-technologies/express-edition/overview/
index.html?ssSourceSiteId=ocomen

SQL Server 2014: www.microsoft.com/en-us/sqlserver/default.aspx
SQL Server 2014 Express Edition: http://www.microsoft.com/en-us/

server-cloud/products/sql-server-editions/sql-server-express.aspx
MySQL: www.mysql.com
Eclipse IDE: www.eclipse.org
PHP: http://us.php.net
NetBeans: www.netbeans.org/index.html
Microsoft Visual Studio Express Editions: www.microsoft.com/Express/

Standards
JDBC: www.oracle.com/technetwork/java/javase/jdbc/index.html and

http://en.wikipedia.org/wiki/JDBC
ODBC: http://en.wikipedia.org/wiki/Open_Database_Connectivity
World Wide Web Consortium (W3C): www.w3.org
XML: www.w3.org/XML, www.xml.org, and http://en.wikipedia.org/wiki/XML

Online Publications
Database Journal: http://www.databasejournal.com

Classic Articles and References

ANSI X3. American National Standard for Information Systems—Database
Language SQL. ANSI, 1992.

Bruce, T. Designing Quality Databases with IDEF1X Information Models.
New York: Dorset House, 1992.

Chamberlin, D. D., et al. “SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control.” IBM Journal of Research and
Development 20 (November 1976).

Chen, P. “The Entity-Relationship Model: Toward a Unified Model of
Data.” ACM Transactions on Database Systems 1 (March 1976).

Chen, P. Entity-Relationship Approach to Information Modeling. E-R Institute,
1981.

Bibliography

News.com
www.news.com
www.wired.com
www.zdnet.com
www.kdnuggets.com
www.sas.com/technologies/analytics/datamining/miner
www.oracle.com/database/index.html
www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
www.microsoft.com/en-us/sqlserver/default.aspx
www.mysql.com
www.eclipse.org
http://us.php.net
www.netbeans.org/index.html
www.microsoft.com/Express
http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/Open_Database_Connectivity
www.w3.org
www.w3.org/XML
www.xml.org
http://en.wikipedia.org/wiki/XML
http://www.databasejournal.com
http://www-01.ibm.com/software/analytics/spss
http://www.microsoft.com/en-us/download/details.aspx?id=29061
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

612 Bibliography

Kendall, Kenneth E., and Julie E. Kendall. Systems Analysis and Design,
9th ed. Upper Saddle River: Prentice Hall, 2014.

Loney, K. Oracle Database 11g: The Complete Reference. Berkeley, CA:
Osborne/McGraw-Hill, 2008.

Muench, S. Building Oracle XML Applications. Sebastopol, CA: O’Reilly,
2000.

Muller, R. J. Database Design for Smarties: Using UML for Data Modeling.
San Francisco: Morgan Kaufmann, 1999.

Mundy, J., W. Thornthwaite, and R. Kimball. The Microsoft Data
Warehouse Toolkit. Indianapolis, IN: Wiley, 2006.

Nixon, Robin. Learning PHP, MySQL, Javascript, CSS & HTML5, 3rd ed.
Sebastopol: O’Reilly Media, Inc., 2014.

Perry, James, and Gerald Post. Introduction to Oracle 10g. Upper Saddle
River: Prentice Hall, 2007.

Perry, James, and Gerald Post. Introduction to SQL Server 2005. Upper
Saddle River: Prentice Hall, 2007.

Pyle, D. Data Preparation for Data Mining. San Francisco: Morgan
Kaufmann, 1999.

Sarka, Dejan, Matija Lah, and Grega Jerkic. Implementing a Data
Warehouse with Microsoft SQL Server 2012: Exam 70-463 Training Kit.
Sebastopol: O’Reilly Media, Inc., 2012.

Thomas, Orin, Peter Ward, and Bob Taylor. Administering Microsoft
SQL Server 2012 Databases: Exam 70-462 Training Kit. Sebastopol:
O’Reilly Media, Inc., 2012.

Celko, J. SQL for Smarties, 2nd ed. San Francisco: Morgan Kaufmann,
2000.

Celko, J. SQL Puzzles and Answers. San Francisco: Morgan Kaufmann,
1997.

Conger, Steve. Hands-On Database: An Introduction to Database Design and
Development. Upper Saddle River: Prentice Hall, 2012.

Fields, D. K., and M. A. Kolb. Web Development with Java Server Pages.
Greenwich, CT: Manning Press, 2000.

Garcia-Molina, Hector, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems: The Complete Book, 2nd ed. Upper Saddle River: Prentice Hall,
2009.

Harold, E. R. XML: Extensible Markup Language. New York: IDG Books
Worldwide, 1998.

Hoffer, Jeffrey A., V. Ramesh, and Heikki Topi. Modern
Database Management, 11th ed. Upper Saddle River: Prentice
Hall, 2013.

Jorgensen, Adam, Steven Wort, Ross LoFortre, and Brian Knight.
Professional Microsoft SQL Server 2012 Administration. Indianapolis:
John Wiley & Sons, Inc., 2012.

Jukić , Nenad, Susan Vrbsky, and Svetlozar Nestrorov. Database Systems:
Introduction to Databases and Data Warehouses. Upper Saddle River:
Prentice Hall, 2013.

Kay, M. XSLT: Programmer’s Reference. Birmingham, United Kingdom:
WROX Press, 2000.

 613

It uses four command objects: SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand.

ADO.NET DataReader. An ADO.NET object that is similar to a
read-only, forward only cursor and that can be used only by an
ADO.NET Command object’s Execute method.

ADO.NET DataSet. A representation of data from a database that is
stored in computer memory for immediate use. It is distinct and
disconnected from the data in the database.

ADO.NET Entity Framework. An extension to ADO.NET that sup-
ports the Microsoft EDM. See also Entity Data Model (EDM).

After image. A record of a database entity (normally a row or a page)
after a change. Used in recovery to perform rollforwards.

Aggregate function. A built-in or user-defined SQL function that
operates on a set of column values and returns a single value.

Alert. In reporting systems, a type of report that is triggered by an
event.

AllegroGraph. A nonrelational graph DBMS product.
Alternate key (AK). In entity-relationship models, a synonym for

candidate key.
Amazon Web Services (AWS). A cloud computing environment

provided by Amazon.com.
American National Standards Institute (ANSI). The American

standards organization that creates and publishes the SQL stan-
dards. See also Structured Query Language (SQL).

AMP. An abbreviation for Apache, MySQL, and PHP/Pearl/Python.
See also Apache Web Server, PHP.

Android operating system. An operating system (OS) developed
by Google and widely used on tablets and smartphones.

Anomaly. An undesirable consequence of a data modification. The
term is used in normalization discussions. With an insertion
anomaly, facts about two or more different themes must be added
to a single row of a relation. With a deletion anomaly, facts about
two or more themes are lost when a single row is deleted.

Apache Tomcat. An application server that works in conjunction
with the Apache Web server. See also Apache Web server.

Apache Web server. A popular Web server that runs on most oper-
ating systems, particularly Windows and Linux.

API. See application program interface (API).
App. A short term for application; normally applied to applications

running on tablets and smartphones.
Apple II. A pioneering PC introduced in 1977 by Apple Inc.
Apple iPad. A pioneering tablet computer introduced in 2010 by

Apple Inc.
Apple OS X. A personal computer operating system developed by

Apple Inc. and used on Apple personal computers.
Applet. A compiled, machine-independent Java bytecode program

that is run by the Java virtual machine embedded in a browser.
Application. A business computer system that processes a portion of

a database to meet a user’s information needs. It consists of menus,
forms, reports, queries, Web pages, and application programs.

Application program. A custom-developed program for processing
a database. It can be written in a standard procedural language,
such as Java, C#, Visual Basic .NET, or C++, or in a language
unique to the DBMS, such as PL/SQL or T-SQL.

.NET Framework. Microsoft’s comprehensive application develop-
ment platform. It includes such components as ADO.NET, ASP.NET,
and .NET for Windows Store Apps.

.NET for Windows Store Apps. An extension to the .NET
framework that supports the applications (apps) developed for
Microsoft Windows 8 devices.

<?php and ?>. The symbols used to indicate blocks of PHP code in
Web pages.

/* and */. The symbols used to indicate a comment line in an SQL
script in SQL Server 2014, Oracle Database 12c, and MySQL 5.6.

<?php and ?>. The symbols used to indicate blocks of PHP code in
Web pages.

Abstraction. A generalization of something that hides some
 unimportant details but enables work with a wider class of types.
A recordset is an abstraction of a relation. A rowset is an abstrac-
tion of a recordset.

ACID transaction. ACID stands for “atomic, consistent, isolated, and
durable.” An atomic transaction is one in which all of the database
changes are committed as a unit; either all are done or none
is. A consistent transaction is one in which all actions are taken
against rows in the same logical state. An isolated transaction is one
that is protected from changes by other users. A durable transac-
tion is one that is permanent after it is committed to the database,
regardless of subsequent failures. There are different levels of
consistency and isolation. See also statement-level consistency,
transaction isolation level, transaction-level consistency.

Action. As used in this book, a shorter term for minimum cardinality en-
forcement action. See also minimum cardinality enforcement action.

Active Data Objects (ADO). An implementation of OLE DB that
is accessible via object- and non-object-oriented languages. It is
used primarily as a scripting-language (JScript, VBScript) inter-
face to OLE DB.

Active repository. Parts of the systems development processes
where metadata is created automatically as the system compo-
nents are created. See also data repository.

Active Server Pages (ASP). A file containing markup language,
server script, and client script that is processed by the Active
Server Processor in Microsoft Internet Information Server (IIS).

Ad-hoc query. A query created by a user as and when needed, as
compared to a predefined and stored query.

ADO.NET. A data access technology that is part of Microsoft’s .NET
initiative. ADO.NET provides the capabilities of ADO but with a
different object structure. ADO.NET also includes new capabili-
ties for the processing of datasets. See also ADO.NET DataSet.

ADO.NET Command object. The ADO.NET object that mimics
an SQL statement or stored procedure. It is run against the data
in the DataSet.

ADO.NET Connection object. The ADO.NET object responsible
for connecting to a data source.

ADO.NET Data Provider. A class library that provides ADO.NET
services. There are Data Providers for ODBC, OLE.DB, SQL
Server, and EDM applications.

ADO.NET DataAdapter object. The ADO.NET object that is the
connector between a Connection object and a DataSet object.

Glossary

Although this section defines many of the key terms in the book, it is not meant to be exhaustive. Terms related to a specific DBMS product,
for example, should be referenced in Chapter 10A for Microsoft SQL Server 2014, Chapter 10B for Oracle Database, and Chapter 10C for
MySQL 5.6. These references can be found in the index. Similarly, SQL concepts are included, but details of SQL commands and syntax should
be referenced in the chapter that discusses those details.

ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
Amazon.com
ADO.NET
ASP.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
OLE.DB
ADO.NET
ADO.NET

614 Glossary

Boyce-Codd normal form (BCNF). A relation in which every
determinant is a candidate key.

Business intelligence (BI) systems. Information systems that assist
managers and other professionals in the analysis of current and past
activities and in the prediction of future events. Two major catego-
ries of BI systems are reporting systems and data mining systems.

Bytecode interpreter. For an application written in Java, the pro-
gram used by a specific operating system to execute the applica-
tion. Bytecode interpreters are known as Java virtual machines.
See also Java virtual machine.

Callable Statement object. A JDBC object used to invoke data-
base compiled queries and stored procedures.

Candidate key. An attribute or group of attributes that identifies a
unique row in a relation. One of the candidate keys is chosen to
be the primary key.

Cardinality. In a binary relationship, the maximum or minimum
number of elements allowed on each side of the relationship.
The maximum cardinality can be 1:1, 1:N, N:1, or N:M. The mini-
mum cardinality may be optional-optional, optional-mandatory,
mandatory-optional, or mandatory-mandatory.

Cartesian product. The SQL operation of paring each and every
row in one table with each and every row in another table. The
Cartesian product is the first step in an SQL join operation.

Cascading deletion. A referential integrity action specifying that
when a parent row is deleted, related child rows should be
 deleted as well.

Cascading update. A referential integrity action specifying that
when the key of a parent row is updated, the foreign keys of
matching child rows should be updated as well.

Cassandra. A nonrelational unstructured data store from the
Apache Software Foundation.

Casual relationship. A relationship that is created without a foreign
key constraint. This is useful if the tables are missing data values.

Categorization cluster. In IDEF1X, a group of mutually exclusive
category entities. See also complete category cluster.

Category entity. In IDEF1X, a subtype that belongs to a category
cluster.

Cell phone. A term for a mobile phone, which is a device that connects
to the telephone system via radio signals. See also mobile phone.

Cellular network. A wireless telephone network divided into geo-
graphical areas named cells.

Character strings. Database data composed of letters, numbers
and special characters such as @, #, $, and %.

CHECK constraint. In SQL, a constraint that specifies what data
values are allowed in a particular column.

Checkpoint. The point of synchronization between a database and
a transaction log. All buffers are force-written to external storage.
The term is sometimes used in other ways by DBMS vendors.

Child. An entity or row on the many side of a one-to-many
relationship.

Class attributes. In the uniform modeling language (UML), attri-
butes that pertain to the class of all entities of a given type.

Click-stream data. Data about a customer’s clicking behavior on a
Web page; such data are often analyzed by e-commerce companies.

Client. In client-server architecture, the software that resides on
the user’s computer, tablet, or smartphone. See also client-server
architecture.

Client-server architecture. A computer application architecture
that divides the application into two parts: the client, which resides
on the users’ device, and the server, which resides on a centralized
server computer.

Cloud computing. The use of networks, such as the Internet, to de-
liver services to users, where users are unconcerned about exactly
where the servers delivering the services are located. Thus, the
servers are said to be “in the cloud.”

Cluster analysis. A form of unsupervised data mining in which
statistical techniques identify groups of entities that have similar
characteristics.

Application program interface (API). A set of program proce-
dures or functions that can be called to invoke a set of services.
The API includes the names of the procedures and functions and
a description of the name, purpose, and data type of parameters
to be provided. For example, a DBMS product can provide a
library of functions to call for database services. The names of pro-
cedures and their parameters constitute the API for that library.

Archetype/version object. A two-object structure that repre-
sents multiple versions of a standardized item; for example,
a SOFTWARE-PRODUCT (the archetype) and PRODUCT-
RELEASE (the version of the archetype). The identifier of the ver-
sion always includes the identifier of the archetype object.

ARPANET. A network forerunner of the Internet that was created by
the Advanced Research Projects Agency at the Department of
Defense in 1969.

ASP. See Active Server Pages (ASP).
ASP.NET. The updated version of ASP for the .NET Framework. See

also Active Server Pages (ASP), .NET Framework.
Association entity. As used in a data model, an entity that links two

other entities and also contains attributes that apply to the rela-
tionship between those two entities rather than to either entity
itself. See also associative entity.

Association object. An object that represents the combination of at
least two other objects and that contains data about that combina-
tion. It is often used in contracting and assignment applications.

Association pattern. In database design, a table pattern where an
intersection table contains additional attributes beyond the attri-
butes that make up the composite primary key.

Association table. As used in a database design, a table that links
two other tables and also contains columns that apply to the rela-
tionship between those two tables rather than to either table itself.

Associative entity. As used in a data model, an entity that links two
other entities and also contains attributes that apply to the rela-
tionship between those two entities rather than to either entity
itself. See also association entity.

Asterisk (*) wildcard character. A character used in Microsoft
Access 2013 queries to represent one or more unspecified
 characters. See also SQL percent sign (%) wildcard character.

Atomic. A set of actions that is completed as a unit. Either all of the
actions are completed or none of them is.

Atomic transaction. A group of logically related database opera-
tions that is performed as a unit. Either all of the operations are
performed or none of them is.

Attribute. (1) A column of a relation; also called a column, field, or data
item. (2) A property in an entity.

Authorization rules. A set of processing permissions that describes
which users or user groups can take particular actions against
particular portions of the database.

AUTO_INCREMENT attribute. In MySQL, the data attribute used
to create surrogate keys.

AutoNumber. In Access 2013, the data type used to create surrogate
keys.

AVG. In SQL, a function that computes the average of a set of
 numbers. See also SQL built-in functions.

Base Class Library. A component of the Microsoft .NET Framework
that provides support for the programming languages used with
the .NET Framework.

Base domain. In IDEF1X, a domain definition that stands alone.
Other domains may be defined as subsets of a base domain.

Before image. A record of a database entity (normally a row or a
page) before a change. Used in recovery to perform rollback.

Big Data. The established term for the enormous datasets created by
Web applications, such as search tools (e.g., Google and Bing), and
by Web 2.0 social networks, such as Facebook, LinkedIn, and Twitter.

Bigtable. A nonrelational unstructured data store developed by Google.
BI. See business intelligence (BI) systems.
Binary relationship. A relationship between exactly two entities or

tables.

ASP.NET

 Glossary 615

Connection relationship. In IDEF1X, a HAS-A relationship.
Consistency. Two or more concurrent transactions are consistent if

the result of their processing is the same as it would have been if
they had been processed in some serial order.

Consistent. In an ACID transaction, either statement-level or trans-
action-level consistency. See also ACID transaction, consistency,
statement-level consistency, transaction-level consistency.

Consistent backup. A backup file from which all uncommitted
changes have been removed.

Constraints. A part of the ADO.NET DataTableCollection.
Control-of-flow statements. Procedural program statements that

direct the execution of the program depending upon an exist-
ing condition. Control-of-flow statements include, for example,
IF . . . THEN . . . ELSE logic and DO WHILE logic.

Correlated subquery. A type of subquery in which an element in
the subquery refers to an element in the containing query. A sub-
query that requires nested processing.

Couchbase. A nonrelational document DBMS product.
COUNT. In SQL, a function that counts the number of rows in a

query result. See also SQL built-in functions.
Crow’s foot model. Formally known as the Information

Engineering (IE) Crow’s Foot model, it is a system of symbols used
to construct E-R diagrams in data modeling and database design.

Crow’s foot symbol. A symbol in the IE Crow’s Foot E-R model that
indicates a many side of the relationship. It visually resembles a
bird’s foot, thus the name crow’s foot.

CRUD. An acronym for create, read, update, and delete. It is used to
describe the four actions done to data by a DBMS.

Curse of dimensionality. In data mining applications, the phenom-
enon that the more attributes there are, the easier it is to build a
model that fits the sample data but that is worthless as a predictor.

Cursor. An indicator of the current position in a pseudofile for an
SQL SELECT that has been embedded in a program; it shows the
identity of the current row.

Cursor type. A declaration on a cursor that determines how the
DBMS places implicit locks. Four types of cursor discussed in this
text are forward only, snapshot, keyset, and dynamic.

Data. The values stored in database tables.
Data administration. The enterprise-wide function that concerns

the effective use and control of the organization’s data assets. Data
administration may be handled by an individual, but it is usually
handled by a group. Specific functions include setting data stan-
dards and policies and providing a forum for conflict resolution.
See also database administrator (DBA).

Data constraint. A limitation on a data value. See also domain
constraint, interrelation constraint, intrarelation constraint, range
constraint

Data consumer. A user of OLE DB functionality.
Data control language (DCL). A language used to describe the

permissions granted in a database. SQL DCL is that portion of
SQL that is used to grant and revoke database permissions.

Data definition language (DDL). A language used to describe the
structure of a database. SQL DDL is that portion of SQL that is
used to create, modify, and drop database structures.

Data dictionary. A user-accessible catalog of database and application
metadata. The contents of an active data dictionary are automati-
cally updated by the DBMS whenever changes are made in the
database or application structure. The contents of a passive data
dictionary must be updated manually when changes are made.

Data integrity. The state of a database in which all constraints are
fulfilled. Usually refers to interrelation constraints in which the
value of a foreign key is required to be present in the table having
that foreign key as its primary key.

Data integrity problems. A table that has inconsistencies that
create insert, update, or deletion anomalies is said to have data
integrity problems.

Data Language/I (DL/I). An early DBMS product that used hierar-
chies or trees to represent data.

CODASYL DBTG. The Conference on Database Systems Languages
(CODASYL) Database Task Group (DBTG). The network database
model was created by this group.

Collection. An object that contains a group of other objects. Examples
are the ADO Names, Errors, and Parameters collections.

Column. A logical group of bytes in a row of a relation or a table. The
meaning of a column is the same for every row of the relation.

Column family [NoSQL database category]. A nonrelational
database structure based on columns of data. The structure may
be based on columns, super columns, column families, and su-
per column families.

COM. See Component Object Model (COM).
Command-line utility. A character user interface program that

presents a command prompt to the user. The user then types a
command and presses the Enter key for execution. Each major
DBMS product has a command-line utility.

Commit. A command issued to the DBMS that makes database
modifi cations permanent. After the command has been processed,
 database changes are written to the database and to a log so they
will survive system crashes and other failures. A commit is usually
used at the end of an atomic transaction. Contrast this with rollback.

Common Language Runtime (CLT). A component of the
Microsoft .NET Framework that provides support for the pro-
gramming languages used with the .NET Framework.

Complete category cluster. A category cluster in which all pos-
sible category entities are defined. The generic entity must also be
one of the category entities.

Compliment. In mathematical set theory, the result of a logical op-
eration using the NOT logical operator. See also set theory.

Component design. The third step in the systems development life
cycle (SDLC) model. The system is designed based on specific
hardware and software. The database design is created in this
step. See also systems development life cycle (SDLC).

Component Object Model (COM). A Microsoft specification for
the development of object-oriented programs.

Composite determinant. In functional dependencies, a determi-
nant consisting of two or more attributes.

Composite identifier. In data modeling, an identifier consisting of
two or more attributes.

Composite key. In database design, a key with two or more
attributes.

Composite primary key. In database design and actual databases,
a primary key with two or more attributes.

Computed value. A column of a table that is computed from other
column values. Values are not stored but are computed when they
are to be displayed.

Concurrency. A condition in which two or more transactions are
processed against the database at the same time. In a single CPU
system, the changes are interleaved; in a multi-CPU system, the
transactions may be processed simultaneously, and the changes
on the database server are interleaved.

Concurrent processing. The sharing of the CPU among several
transactions. The CPU is allocated to each transaction in a round
robin or in some other fashion for a certain period of time.
Operations are performed so quickly that they appear to users to be
simultaneous. In local area networks (LANs) and other distributed
applications, concurrent processing is used to refer to the (possibly
simultaneous) processing of applications on multiple computers.

Concurrent transactions. Two transactions that are being pro-
cessed at the same time.

Concurrent update problem. An error condition in which one us-
er’s data changes are overwritten by another user’s data changes.
Same as lost update problem.

Confidence. In market basket analysis, the probability of a custom-
er’s buying one product, given that the customer has purchased
another product.

Conformed dimension. In a dimensional database design, a di-
mension table that has relationships to two or more fact tables.

ADO.NET

616 Glossary

DataRelationCollection. The ADO.NET structure that stores
DataRelations.

DataRowCollection. An ADO.NET DataTable object.
Dataset. In ADO.NET, an in-memory collection of tables that is

not connected to any database. Datasets have relationships, ref-
erential integrity constraints, referential integrity actions, and
other important database characteristics. They are processed by
ADO.NET objects. A single dataset may be materialized as tables,
as an XML document, or as an XML Schema.

DataTable object. The ADO.NET structure that mimics a relational
database table.

DataTableCollection. The ADO.NET structure that stores
DataTables.

Date dimension. In a dimensional database, a dimension that stores
date and time values. See also dimensional database.

DBA. See database administrator (DBA).
DBMS. See database management system (DBMS).
DBMS reserved word. A word that has a special meaning in the

DBMS and should not be used as a table, column, or other name
in a database.

DDL. See data definition language (DDL).
Deadlock. A condition that can occur during concurrent process-

ing in which each of two (or more) transactions is waiting to
access data that the other transaction has locked. Also called a
deadly embrace.

Deadly embrace. See deadlock.
Decision support system (DSS). One or more applications de-

signed to help managers make decisions. An earlier name for
business intelligence (BI).

Decision tree analysis. A form of unsupervised data mining that
classifies entities of interest into two or more groups according to
values of attributes that measure the entities’ past history.

DEFAULT keyword. In SQL, the word used to specify a default
value for an attribute.

Default value. A value assigned to an attribute if there is no other
value assigned to it when a new row is created in a table.

Default namespace. In an XML Schema document, the namespace
that is used for all unlabeled elements.

Default Web Site folder. On a Web server, the folder (or directory)
at the base of the Web site structure.

Degree. For relationships in the entity-relationship model, the num-
ber of entities participating in the relationship. In almost all cases,
such relationships are of degree two.

Deletion anomaly. In a relation, the situation in which the re-
moval of one row of a table deletes facts about two or more
themes.

Delimited identifier. A reserved word placed in special symbols to
distinguish it from the DBMS reserved word so it can be used as a
table, column, or other name in a database.

Denormalize. To intentionally create a set of database tables that are
not normalized to BCNF and 4NF.

Dependency graph. A network of nodes and lines that represents
the logical dependencies among tables, views, triggers, stored
procedures, indexes, and other database constructs.

Determinant. One or more attributes that functionally determine
another attribute or attributes. In the functional dependency
(A, B) S C, the attributes (A, B) are the determinant.

Device. Any equipment, such as a personal computer, that is con-
nected to the Internet.

Differential backup. A backup file that contains only changes made
since a prior backup.

Digital dashboard. In reporting systems, a display that is custom-
ized for a particular user. Typically, a digital dashboard has links
to many different reports.

Dimension table. In a star schema dimensional database, the tables
that connect to the central fact table. Dimension tables hold at-
tributes used in the organizing queries in analyses such as those
of OLAP cubes.

Data manipulation language (DML). A language used to describe
the processing of a database. SQL DML is that portion of SQL that
is used to query, insert, update, and modify data.

Data mart. A facility similar to a data warehouse but with a restricted
domain. Often, the data are restricted to particular types, business
functions, or business units.

Data mining application. Business intelligence systems that use
sophisticated statistical and mathematical techniques to perform
what-if analyses, to make predictions, and to facilitate decisions.
Contrast with reporting systems.

Data model. A model of the users’ data requirements usually
 expressed in terms of the entity-relationship model.

Data provider. A provider of OLE DB functionality. Examples are
tabular data providers and service data providers.

Data repository. Collections of metadata about databases,
 database applications, Web pages, users, and other application
components.

Data sublanguage. A language for defining and processing a data-
base to be embedded in programs written in another language,
in most cases a procedural language such as Java, C#, Visual
Basic, or C++. A data sublanguage is an incomplete programming
 language because it contains only constructs for data access.

Data warehouse. A store of enterprise data that is designed to
 facilitate management decision making. A data warehouse in-
cludes not only data but also metadata, tools, procedures, training,
personnel information, and other resources that make access to
the data easier and more relevant to decision makers.

Data warehouse DBMS. The DBMS product used by the data
warehouse. See also data warehouse.

Data warehouse metadata. In a data warehouse, metadata con-
cerning the data, its source, its format, its assumptions and con-
straints, and other facts about the data.

Data warehouse metadata database. The database used to store
the data warehouse metadata.

Database. A self-describing collection of integrated records.
Database administration. The function that concerns the effective

use and control of a particular database and its related applications.
Database administrator (DBA). The person or group responsible

for establishing policies and procedures to control and protect a
database. The database administrator works within guidelines set
by data administration to control the database structure, manage
data changes, and maintain DBMS programs.

Database application. An application that uses a database to store
the data needed by the application.

Database data. The portion of a database that contains data of inter-
est and use to the application end users. See also data.

Database design. A diagram that represents that database as it will
be implemented in a DBMS product.

Database integrity. The result of implementing domain integrity,
entity integrity, and referential integrity in a database.

Database management system (DBMS). A set of programs used
to define, administer, and process the database and its applications.

Database migration. Adapting a database to new or changing
requirements.

Database redesign. The process of changing the structure of a
 database to adapt the database to changing requirements or to fix
it so it has the structure it should have had in the first place.

Database save. A copy of database files that can be used to restore
the database to some previous consistent state.

Database schema. (1) The logical design of a database struc-
ture. (2) In MySQL, the functional equivalent of a database in
Microsoft Access or Microsoft SQL Server.

Database system. An information system composed of users, data-
base applications, a database management system (DBMS), and
a database.

DataColumnsCollection. An ADO.NET DataTable object.
DataRelations. Act as relational links between tables in an ADO.NET

DataRelationCollection.

ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET
ADO.NET

 Glossary 617

Entity class. In the entity-relationship model, a collection of entities
of a given type; for example, EMPLOYEE and DEPARTMENT.
The class is described by its attributes.

Entity Data Model (EDM). An emerging Microsoft data modeling
technology that is part of the .NET Framework.

Entity instance. A particular occurrence of an entity; for example,
Employee 100 and the Accounting Department. An entity in-
stance is described by values of its attributes.

Entity integrity constraint. The constraint that the primary key
column or columns must have unique values so that each row can
be uniquely identified.

Entity-relationship (E-R) data modeling. Creating a data model
using E-R diagrams. See also entity-relationship (E-R) diagram

Entity-relationship (E-R) diagram. A graphic used to represent
entities and their relationships. In the traditional E-R model,
entities are shown as squares or rectangles, and relationships
are shown as diamonds. The cardinality of the relationship is
shown inside the diamond. In the crow’s foot model, entities
are shown in rectangles, and relationships are shown by lines
between the rectangles. Attributes are generally listed within
the rectangle. The many side of many relationships is repre-
sented by a crow’s foot.

Entity-relationship (E-R) data modeling. A set of constructs and
conventions used to create data models. The things in the users’
world are represented by entities, and the associations among
those things are represented by relationships. The results are usu-
ally documented in an entity-relationship (E-R) diagram.

Ethernet networking technology. A commonly used network
standard.

Equijoin. The process of joining relation A containing attribute A1
with B containing attribute B1 to form relation C, so for each row
in C, A1 = B1. Both A1 and B1 are represented in C.

E-R diagram. See entity-relationship (E-R) diagram.
Exclusive lock. A lock on a data resource such that no other transac-

tion can either read or update that resource.
Exclusive subtype. A subtype in which a supertype instance is re-

lated to at most one subtype in a set of possible subtypes.
Existence-dependent entity. Same as a weak entity. An entity

that cannot appear in the database unless an instance of one or
more other entities also appears in the database. A subclass of
existence-dependent entities is ID-dependent entities.

Explicit join. An SQL join statement that used the SQL JOIN ON
syntax. See also SQL JOIN ON syntax.

Explicit lock. A lock requested by command from an application
program.

Extended E-R model. The entity-relationship (E-R) model ex-
tended with subtypes. See also entity-relationship (E-R) model

Extensible Markup Language (XML). See XML (Extensible
Markup Language).

Extensible Style Language. See XSLT (Extensible Style Language:
Transformations).

Extract. A portion of an operational database downloaded to a local
area network (LAN) or personal computer for local processing.
Extracts are created to reduce communication cost and time
when querying and creating reports from data created by transac-
tion processing.

Extract, Transform, and Load (ETL) system. The portion of a
data warehouse that converts operational data to data warehouse
data.

F score. In RFM analysis, the “how frequently” score, which reflects
how often a customer makes a purchase. See also RFM analysis.

Fact table. In a dimensional database, the central table that contains
numerical values.

Field. (1) A logical group of bytes in a record such as Name or
PhoneNumber. (2) In the relational model, a synonym for attribute.

Fifth normal form (5NF). A normal form necessary to eliminate an
anomaly where a table can be split apart but not correctly joined
back together. Also know as Project-Join Normal Form (PJ/NF).

Dimensional database. A database design that is used for data
warehouses and is designed for efficient queries and analysis. It
contains a central fact table connected to one or more dimension
tables.

Dirty data. In a business intelligence system, data with errors.
Examples are a value of “G” for customer sex and a value of “213”
for customer age. Other examples are a value of “999-999-9999”
for a U.S. phone number, a part color of “gren,” and an email ad-
dress of “WhyMe@somewhereelseintheuniverse.who.” Dirty data
pose problems for reporting and data mining applications.

Dirty read. Reading data that have been changed but not yet com-
mitted to the database. Such changes may later be rolled back
and removed from the database.

Discriminator. In the entity-relationship model, an attribute of a
supertype entity that determines which subtype pertains to the
supertype.

Distributed database. A database that exists, either by partitioning
or replication, on more than one database server.

Distributed two-phase locking. A locking mechanism used with
distributed databases.

DK/NF. See domain/key normal form.
DML. See data manipulation language (DML).
Document [NoSQL database category]. A nonrelational data-

base structure based on data stored as documents. The structure
is commonly based on Extensible Markup Language (XML) or
JavaScript Object Notation (JSON).

Document Object Model (DOM). An API that represents an XML
document as a tree. Each node of the tree represents a piece of the
XML document. A program can directly access and manipulate a
node of the DOM representation.

Document type declaration (DTD). A set of markup elements
that defines the structure of an XML document.

DOM. See Document Object Model (DOM).
Domain. A named set of all possible values that an attribute can have.

Domains can be defined by listing allowed values or by defining a
rule for determining allowed values.

Domain integrity constraint. Also called a domain constraint, a data
constraint that limits data values to a particular set of values. See
also data constraint, interrelation constraint, intrarelation con-
straint, range constraint.

Domain/key normal form (DK/NF). A relation in which all con-
straints are logical consequences of domains and keys.

Drill down. User-directed disaggregation of data used to break
higher-level totals into components.

DTD. See document type declaration (DTD).
Durable. In an ACID transaction, the database changes are perma-

nent. See also ACID transaction.
Dynamic cursor. A fully featured cursor. All inserts, updates, dele-

tions, and changes in row order are visible to a dynamic cursor.
Dynamic report. In reporting systems, a report that reads the most

current data at the time of the report’s creation. Contrast with
static report.

Dynamo. A nonrelational unstructured data store developed by
Amazon.com.

DynamoDB database service. A nonrelational key-value DBMS
product.

Empty set. In an SQL query, a query response that contains no re-
cords, indicating that there is no data in the database that matches
the query.

Enterprise-class database system. A DBMS product capable of
supporting the operating requirement of large organizations.

Enterprise data warehouse (EDW) architecture. A data ware-
house architecture that links specialized data marts to a central
data warehouse for data consistency and efficient operations.

Entity. (1) In the entity-relationship model, a representation of some-
thing that users want to track. See also entity class, entity instance.
(2) In a generic sense, something that users want to track. In the
relational model, an entity is stored in one row of a table.

mailto:WhyMe@somewhereelseintheuniverse.who
Amazon.com

618 Glossary

Hypervisor. The software that creates, controls, and communicates
with virtual machines.

IBM Personal Computer (IBM PC). A personal computer devel-
oped by the IBM Corporation.

ID-dependent entity. An entity whose identifier contains the iden-
tifier of a second entity. For example, APPOINTMENT is ID-
dependent on CLIENT, where the identifier of APPOINTMENT
is (Date, Time, ClientNumber) and the identifier of CLIENT is
ClientNumber. An ID-dependent entity is weak, meaning that it
cannot logically exist without the existence of that second entity.
Not all weak entities are ID-dependent, however.

IDEF1X (Integrated Definition 1, Extended). A version of the
entity-relationship model, adopted as a national standard but
difficult to understand and use. Most organizations use a simpler
E-R version like the crow’s foot model.

Identifier. An attribute that names, or identifies, an entity.
Identifying connection relationship. In IDEF1X, a 1:1 or 1:N

HAS-A relationship in which the child entity is ID-dependent on
the parent.

Identifying relationship. A relationship that is used when the child
entity is ID-dependent upon the parent entity.

IDENTITY ({StartValue}, {Increment}) property. For Microsoft
SQL Server 2014, the attribute that is used to create a surrogate key.

IE Crow’s Foot model. James Martin’s version of the Information
Engineering (IE) model for diagramming data models, which
uses a crow’s foot symbol to indicate the many side of a relation-
ship. See also Information Engineering (IE) model.

IIS. See Internet Information Server (IIS).
iisstart.htm. The default Web page used by the Microsoft Internet

Information Server Web server. See also Internet Information
Server (IIS).

Implementation. In object-oriented programming, a set of objects
that instantiates a particular object-oriented interface.

Implicit join. In SQL statements, a join that does not use the SQL
JOIN ON syntax. See also SQL JOIN ON syntax.

Implicit lock. A lock that is automatically placed by the DBMS.
Inclusive subtype. In data modeling and database design, a sub-

type that allows a supertype entity to be associated with more
than one subtype.

Inconsistent backup. A backup file that contains uncommitted
changes.

Inconsistent read problem. In a transaction, a series of reads of
a set of rows in which some of the rows have been updated by a
second transaction and some of the rows have not been updated
by that second transaction. Can be prevented by two-phase lock-
ing and other strategies.

Index. Data created by the DBMS to improve access and sorting
performance. Indexes can be constructed for a single column or
groups of columns. They are especially useful for columns used by
WHERE clauses, for conditions in joins, and for sorting.

index.html. A default Web page name provided by most Web servers.
Inetpub folder. In Windows operating systems, the root folder for

the IIS Web server.
Information. (1) Knowledge derived from data, (2) data presented in

a meaningful context, or (3) data processed by summing, order-
ing, averaging, grouping, comparing, or other similar operations.

Information Engineering (IE) model. An E-R model developed by
James Martin.

Inner join. Synonym for join. Contrast with outer join.
InsertCommand object. The ADO.NET DataAdapter object used

to insert new data from a DataSet back to the actual DBMS data.
Insertion anomaly. In a relation, the condition that exists when, to

add a complete row to a table, one must add facts about two or
more logically different themes.

Instance. A specific occurrence of an object of interest.
Instance failure. A failure in the operating system or hardware that

causes the DBMS to fail.

File data source. An ODBC data source stored in a file that can be
emailed or otherwise distributed among users.

First normal form (1NF). Any table that fits the definition of a
relation.

Flat file. A file that has only a single value in each field. The meaning
of the columns is the same in every row. Typically, the file has no
indices, and fields are delimited by commas or tab characters.

Foreign key. An attribute that is a key of one or more relations other
than the one in which it appears. Used to represent relationships.

FOREIGN KEY constraint. In SQL, the constraint used to create
relationships and referential integrity between tables.

Fourth normal form (4NF). A relation in Boyce-Codd normal form
in which there are no multivalued dependencies or in which all
attributes participate in a single multivalued dependency.

Functional dependency. A relationship between attributes in
which one attribute or group of attributes determines the value of
another. The expression X S Y means that given a value of X, we
can determine the value of Y. A given value of X may appear in a
relation more than once, but if so, it is always paired with the same
value of Y. Also, if X S (Y, Z), then X S Y and X S Z. However, if
(X, Y) S Z, then, in general, X Not S Z and Y Not S Z.

Functionally dependent. The term that describes the right-hand
side of a functional dependency. The right-hand side values of
a functional dependency are said to be functionally dependent
upon the left-hand side values of the functional dependency. In
the expression X S Y, Y is functionally dependent upon X. See also
functional dependency

Generic entity. In IDEF1X, an entity that has one or more category
clusters. The generic entity takes the role of a supertype for the
category entities in the category cluster.

Google Chrome. Google’s Web browser.
Graph [NoSQL database category]. A nonrelational database

structure based on graph theory. The structure is based on nodes,
properties, and edges.

Graphical user interface (GUI). A user interface that uses graphi-
cal elements for interaction with a user.

Granularity. The size of the database resource that is locked. Locking
the entire database is large granularity; locking a column of a par-
ticular row is small granularity.

Growing phase. The first stage in two-phase locking in which locks
are acquired but not released.

Hadoop. See Hadoop Distributed File System (HDFS).
Hadoop Distributed File System (HDFS). An open source file

distribution system that provides standard file services to clus-
tered servers so their file systems can function as one distributed
file system.

HBase. A nonrelational unstructured data store developed as part
of the Apache Software Foundation’s Hadoop project. See also
Hadoop Distributed File System (HDFS).

HAS-A relationship. A relationship between two entities or objects
that are of different logical types; for example, EMPLOYEE HAS-
A(n) AUTO. Contrast this with an IS-A relationship.

Host machine. For networking, any device connected to the network.
For Web site, the server that stores and serves the Web pages.

HTML. See Hypertext Markup Language (HTML).
HTML document tags. The tags in HTML documents that indicate

the structure of the document.
HTML syntax rules. The standards that are used to create HTML

documents.
HTTP. See Hypertext Transfer Protocol (HTTP).
http://localhost. For a Web server, a reference to the user’s

computer.
Hypertext Markup Language (HTML). A standardized set of text

tags for formatting text, locating images and other nontext files,
and placing links or references to other documents.

Hypertext Transfer Protocol (HTTP). A standardized means for
using TCP/IP to communicate over the Internet.

iisstart.htm
index.html
ADO.NET
http://localhost

 Glossary 619

with the operating system, or included as part of a Java develop-
ment environment.

JavaScript. A proprietary scripting language originally created by
Netscape but now owned by Oracle Corporation. The Microsoft
version is called JScript; the standard version is called ECMA-
262. These are easily learned interpreted languages that are
used for both Web server and Web client application processing.
Sometimes written as Java Script.

JavaServer Pages (JSP). A combination of HTML and Java that is
compiled into a Java servlet that is a subclass of the HttpServlet
class. Java code embedded in a JSP has access to HTTP objects
and methods. JSPs are used similarly to ASPs, but they are com-
piled rather than interpreted, as ASP pages are.

JDBC. See Java Database Connectivity (JDBC).
JDBC Connection Object. One of a set of objects created by a Java

application to connect to a database using JDBC. See also Java, Java
Database Connectivity (JDBC).

JDBC DriverManager. The JDBC application that routes pro-
gram calls for JDBC objects to the proper JDBC driver to con-
nect to the database. See also Java, Java Database Connectivity
(JDBC).

JDBC ResultSet object. One of a set of objects created by a Java
application to connect to a database using JDBC. See also Java, Java
Database Connectivity (JDBC).

JDBC ResultSetMetaData Object. One of a set of objects created
by a Java application to connect to a database using JDBC. See also
Java, Java Database Connectivity (JDBC).

JDBC Statement Object. One of a set of objects created by a Java
application to query or update a database using JDBC. See also
Java, Java Database Connectivity (JDBC).

Joining the two tables. In SQL, the process of combining data
rows from two tables. See SQL join operation.

JScript. A proprietary scripting language owned by Microsoft. The
Netscape/Oracle version is called JavaScript; the standard version
is called ECMAScript-262. These are easily learned interpreted
languages used for both Web server and Web client application
processing.

JSP. See JavaServer Pages (JSP).
Key. (1) A group of one or more attributes identifying a unique row in

a relation. Because relations may not have duplicate rows, every
relation must have at least one key, which is the composite of all
of the attributes in the relation. A key is sometimes called a logi-
cal key. (2) With some relational DBMS products, an index on a
column used to improve access and sorting speed. It is sometimes
called a physical key.

Key-value [NoSQL database category]. A nonrelational data-
base structure based on data values identified by key values.

Keyset cursor. An SQL cursor that combines some of the features
of static cursors with some of the features of dynamic cursors. See
also cursor, cursor type.

Knowledge worker. An information system user who prepares re-
ports, mines data, and does other types of data analysis.

Labeled namespace. In an XML Schema document, a namespace
that is given a name (label) within the document. All elements
preceded by the name of the labeled namespace are assumed to
be defined in that labeled namespace.

LAMP. A version of AMP that runs on Linux. See also AMP.
Language Integrated Query (LINQ). A Microsoft .NET

Framework component that allows SQL queries to be run directly
from application programs.

LEFT OUTER join. A join that includes all the rows of the first table
listed in the SQL statement (the “left” table) regardless of whether
they have a matching row in the other table.

Lift. In market basket analysis, confidence divided by the base prob-
ability of an item purchase.

Linux. An open-source personal computer operating system (OS) as-
sociated with one of its main creators, Linus Torvalds.

Integrated Definition 1, Extended (IDEF1X). A version of the
E-R model issued by the National Institute of Standards and
Technology in 1993. See also Entity-relationship (E-R) model.

Integrated development environment (IDE). An application
that provides a programmer or application developer with a com-
plete set of development tools in one package.

Integrated tables. Database tables that store both data and the rela-
tionships among the data.

Interface. (1) The means by which two or more programs call each
other; the definition of the procedural calls between two or more
programs. (2) In object-oriented programming, the design of
a set of objects that includes the objects’ names, methods, and
attributes.

International Organization for Standardization (ISO). The in-
ternational standards organization that works on SQL standards,
among others.

Internet. The network that connects the entire Earth, and the basis
for much of modern computing.

Internet Information Server (IIS). A Microsoft product that oper-
ates as an HTTP server.

Internet Information Services Manager. The application used to
manage Microsoft’s IIS Web server.

Intersection. A set theory operation similar to a logical AND opera-
tion. See also set theory.

Intersection table. A table (relation) used to represent a many-to-
many relationship. It contains the keys of the tables (relations) in
the relationship. The relationships from the parent tables to the
intersection tables must have a minimum cardinality of either
mandatory-optional or mandatory-mandatory.

Interrelation constraint. A data constraint between two tables. See
also data constraint, domain integrity constraint, intrarelation con-
straint, range constraint.

Intrarelation constraint. A data constraint within one table. See
also data constraint, domain integrity constraint, interrelation con-
straint, range constraint.

iPhone. A smartphone built by Apple Inc.
IS-A relationship. A relationship between a supertype and a sub-

type. For example, EMPLOYEE and ENGINEER have an IS-A
relationship.

Isolated. One of the four qualities needed for an ACID transaction:
The four qualities are atomic, consistent, isolated and durable. See
also ACID transaction, transaction isolation level.

Isolation level. See transaction isolation level.
Java. An object-oriented programming language that has better

memory management and bounds checking than C++. It is used
primarily for Internet applications, but it also can be used as a
general-purpose programming language. Java compilers gener-
ate Java bytecode that is interpreted on client computers. Many
believe that Microsoft C# is a near-copy of Java.

Java Data Objects (JDO). Part of the Oracle Corporation’s Java
Platform. See also Java, Java Platform.

Java Database Connectivity (JDBC). A standard interface by
which application programs written in Java can access and pro-
cess SQL databases (or table structures such as spreadsheets and
text tables) in a DBMS-independent manner. While originally it
did not stand for Java Database Connectivity, it does now and is
an acronym. See also Java, Java Platform.

Java platform. The complete set of Java tools provided by Oracle
Corporation. See also Java.

Java Programming Language. See Java, Java Platform.
Java Runtime Environment (JRE). Part of the Oracle Corporation’s

Java Platform that must be installed on individual computers to
enable the use of Java applications. See also Java, Java Platform.

Java servlet. See servlet.
Java virtual machine. A Java bytecode interpreter that runs on a

particular machine environment; for example, Intel or AMD.
Such interpreters are usually embedded in browsers, included

620 Glossary

Media failure. A failure that occurs when the DBMS is unable to
write to or read from a disk. Usually caused by a disk head crash
or other disk failure.

MemcachDB. A nonrelational key-value DBMS product.
Metadata. Data concerning the structure of data that are used

to describe tables, columns, constraints, indexes, and so forth.
Metadata is data about data.

Method. A program attached to an object-oriented programming
(OOP) object. A method can be inherited by lower-level OOP
objects.

Microsoft Access 2013. Microsoft’s personal database product.
Microsoft Internet Explorer. Microsoft’s Web browser.
Microsoft SQL Server 2014 Management Studio. The GUI

utility that is used with Microsoft SQL Server 2014.
Microsoft Transaction Manager (MTS). Part of Microsoft’s OLE

DB. See also OLE DB.
Microsoft Windows. A Microsoft operating system (OS) for per-

sonal computers.
Microsoft Windows PowerShell. A Microsoft command-line utility.
Microsoft Windows Server. A Microsoft operating system (OS) for

server computers.
MIN. In SQL, a function that determines the smallest value in a set of

numbers. See also SQL built-in functions.
Minimum cardinality. (1) In a binary relationship in the entity-rela-

tionship model, the minimum number of entities required on each
side of a relationship. (2) In a binary relationship in the relational
model, the minimum number of rows required on each side of a
relationship. Common values of minimum cardinality for both defi-
nitions are optional to optional (O-O), mandatory to optional (M-O),
optional to mandatory (O-M), and mandatory to mandatory (M-M).

Minimum cardinality enforcement actions. Activities that must
be taken to preserve minimum cardinality restrictions.

Mobile phone. A handheld device that connects to the telephone
system via radio signals. See also cell phone.

Modification anomaly. In a relation, the situation that exists when the
storage of one row records facts about two or more entities or when
the deletion of one row removes facts about two or more entities.

MongoDB. A nonrelational document DBMS product.
Mozilla Firefox. Mozilla’s open source Web browser.
Multivalued dependency. A condition in a relation with three or

more attributes in which independent attributes appear to have re-
lationships they do not have. Formally, in a relation R (A, B, C), hav-
ing key (A, B, C) where A is matched with multiple values of B (or
of C or both), B does not determine C, and C does not determine
B. An example is the relation EMPLOYEE (EmpNumber, EmpSkill,
DependentName), where an employee can have multiple values of
EmpSkill and DependentName. EmpSkill and DependentName
do not have any relationship, but they do appear to in the relation.

MUST constraint. A constraint that requires one entity to be com-
bined with another entity.

MUST COVER constraint. The binary relationship indicates all
combinations that must appear in the ternary relationship.

MUST NOT constraint. The binary relationship indicates combina-
tions that are not allowed to occur in the ternary relationship.

MySQL AUTO_INCREMENT property. In MySQL, the method
used to generate surrogate primary key values of sequenced
numbers.

MySQL Workbench. The GUI utility used with MySQL 5.6.
Natural join. A join of a relation A having attribute A1 with relation

B having attribute B1, where A1 equals B1. The joined relation,
C, contains either column A1 or B1 but not both. Contrast this
with equijoin.

Neo4J. A nonrelational graph DBMS product.
NetBeans IDE. An open-source GUI integrated development envi-

ronment (IDE) from Oracle Corporation.
Neural networks. A form of supervised data mining that estimates

complex mathematical functions for making predictions. The
name is a misnomer. Although there is some loose similarity

Local Area Network (LAN). A computer network that operates
with computers in a definable small area, such as a business or
university.

Lock. The process of allocating a database resource to a particular
transaction in a concurrent-processing system. The size of the re-
source locked is known as the lock granularity. With an exclusive
lock, no other transaction may read or write the resource. With
a shared lock, other transactions may read the resource, but no
other transaction may write it.

Lock granularity. The size of a locked data element. The lock of a
column value of a particular row is a small granularity lock, and
the lock of an entire table is a large granularity lock.

Locking behavior. How a DBMS controls locks on database ele-
ments such as tables during SQL operations.

Log. A file containing a record of database changes. The log contains
before images and after images.

Logical unit of work (LUW). An equivalent term for transaction.
See also transaction.

Login name. The character string that a user uses to log into a
computer.

Logistic regression. A form of supervised data mining that esti-
mates the parameters of an equation to calculate the odds that a
given event will occur.

Lost update problem. Same as concurrent update problem.
M score. In RFM analysis, the “how much money” score, which

reflects how much a customer spends per purchase. See also RFM
analysis.

Managed Extensibility Framework (MEF). An extension to the
Microsoft .NET Framework added in version 4.5 to provide sup-
port for Windows 8 apps.

Mandatory. In a relationship, when the minimum number of en-
tity instances that must participate in a relationship is one, then
participation in the relationship is said to be mandatory. See also
minimum cardinality, optional.

Mandatory-to-mandatory (M-M) relationship. A relationship in
which entity instances are required on both sides of the relationship.

Mandatory-to-optional (M-O) relationship. A relationship in
which an entity instance is required on the left-hand side of the
relationship but not on the right-hand side.

Many-to-many (N:M) relationship. A relationship in which one
parent entity instance (or row in the parent table) can be associ-
ated with many child entity instances (or rows in the child table).
At the same time, one child entity instance (or row in the child ta-
ble) can be associated with many parent entity instances (or rows
in the parent table). In an actual database, these relationships
are transformed into two one-to-many relationships between the
original entities (tables) and an intersection table.

Market basket analysis. A type of data mining that estimates the
correlations of items that are purchased together. See also confi-
dence, lift.

MapReduce. A Big Data processing technique that breaks a data
analysis into many parallel processes (the Map function) and then
combines the results of these processes into one final result (the
Reduce function).

MAX. In SQL, a function that determines the largest value in a set of
numbers. See also SQL built-in functions.

Maximum cardinality. (1) In a binary relationship in the entity-
relationship data model, the maximum number of entities
on each side of the relationship. Common values are 1:1, 1:N,
and N:M. (2) In a relationship in the relational model database
design, the maximum number of rows on each side of the rela-
tionship. Common values are 1:1 and 1:N. An N:M relationship
is not possible in the relational model database design, where
an additional intersection relation (table) must be used to link
the two relations (tables) via two 1:N relationships.

Measure. In OLAP, the source data for the cube—data that are
displayed in the cells. They may be raw data, or they may be
functions of raw data, such as SUM, AVG, or other computations.

 Glossary 621

Object-oriented programming (OOP). A programming method-
ology that defines objects and the interactions between them to
create application programs.

Object-relational databases. DBMS products that support both
relational and object-oriented programming data structures, such
as Oracle Database.

ODBC. See Open Database Connectivity (ODBC) standard.
ODBC conformance level. In ODBC, definitions of the features

and functions that are made available through the driver’s appli-
cation program interface (API). A driver API is a set of functions
that the application can call to receive services. There are three
conformance levels: Core API, Level 1 API, and Level 2 API.

ODBC data source. In the ODBC standard, a database and its as-
sociated DBMS, operating system, and network platform.

ODBC Data Source Administrator. The application used to cre-
ate ODBC data sources.

ODBC driver. In ODBC, a program that serves as an interface be-
tween the ODBC driver manager and a particular DBMS prod-
uct. Runs on the client machines in a client-server architecture.

ODBC driver manager. In ODBC, a program that serves as an
interface between an application program and an ODBC driver.
It determines the required driver, loads it into memory, and
coordinates activity between the application and the driver. On
Windows systems, it is provided by Microsoft.

ODBC multiple-tier driver. In ODBC, a two-part driver, usually
for a client-server database system. One part of the driver resides
on the client and interfaces with the application; the second part
resides on the server and interfaces with the DBMS.

ODBC single-tier driver. In ODBC, a database driver that accepts
SQL statements from the driver manager and processes them with-
out invoking another program or DBMS. A single-tier driver is both
an ODBC driver and a DBMS. It is used in file-processing systems.

ODBC SQL conformance levels. ODBC SQL conformance levels
specify which SQL statements, expressions, and data types an
OBDC driver can process. Three SQL conformance levels are de-
fined: Minimum SQL Grammar, Core SQL Grammar, Extended
SQL Grammar.

OLAP. See online analytical processing (OLAP).
OLAP cube. In OLAP, a presentation structure having axes upon

which data dimensions are placed. Measures of the data are
shown in the cells of the cube. Also called a hypercube.

OLAP report. The output of an OLAP analysis in tabular format. For
example, this can be an Excel Pivot Table. See also OLAP cube.

OLAP server. A server specifically developed to perform OLAP
analyses.

OLE DB. The COM-based foundation of data access in the Microsoft
world. OLE DB objects support the OLE object standard. ADO is
based on OLE DB.

1:N. The abbreviation for a one-to-many relationship between two
entities or relations.

One-to-many (1:N) relationship. A relationship in which one par-
ent entity instance (or row in the parent table) can be associated
with many child entity instances (or rows in the child table). At
the same time, one child entity instance (or row in the child table)
can be associated with only one parent entity instance (or row in
the parent table).

One-to-one (1:1) relationship. A relationship in which one parent
entity instance (or row in the parent table) can be associated with
only one child entity instance (or row in the child table). At the
same time, one child entity instance (or row in the child table)
can be associated with only one parent entity instance (or row in
the parent table).

Online analytical processing (OLAP). A form of dynamic data
presentation in which data are summarized, aggregated, deaggre-
gated, and viewed in the frame of a table or a cube.

Online transaction processing (OLTP) system. An opera-
tional database system available for, and dedicated to, transaction
processing.

between the structure of a neural network and a network of bio-
logical neurons, the similarity is only superficial.

N:M. The abbreviation for a many-to-many relationship between two
entities or relations.

Nonidentifying connection relationships. In IDEF1X, 1:1
and 1:N HAS-A relationships that do not involve ID-dependent
entities.

Nonidentifying relationship. In data modeling, a relationship be-
tween two entities such that one is not ID-dependent on the other.
See also identifying relationship.

Nonintegrated data. Data that are stored in two incompatible in-
formation systems.

Non-prime attribute. In normalization, an attribute that is not con-
tained in any candidate key.

Nonrepeatable read. The situation that occurs when a transaction
reads data it has previously read and finds modifications or dele-
tions caused by a committed transaction.

Nonspecific IDEF1X relationships. In IDEF1X, an N:M
relationship.

Normal form. A rule or set of rules governing the allowed structure
of relations. The rules apply to attributes, functional dependen-
cies, multivalue dependencies, domains, and constraints. The
most important normal forms are first normal form, second nor-
mal form, third normal form, Boyce-Codd normal form, fourth
normal form, fifth normal form, and domain/key normal form.

Normalization. (1) The process of constructing one or more rela-
tions such that in every relation the determinant of every func-
tional dependency is a candidate key (BCNF). (2) The process
of removing multivalued dependencies (4NF). (3) In general,
the process of evaluating a relation to determine whether it is in
a specified normal form and of converting it to relations in that
specified normal form, if necessary.

NoSQL. See Not only SQL.
NoSQL movement. See Not only SQL.
NOT NULL constraint. In SQL, a constraint that specifies that a

column must contain a value in every row.
Not only SQL. Actually referring to the creation and use of nonrela-

tional DBMS products instead of just not using the SQL language,
this movement was originally mislabeled as the NoSQL movement.
It is now recognized that both relational and nonrelational DBMS
products are needed in management information systems and that
they must interact with each other. Thus, the term not only SQL.

Not-type-valid document. An XML document that either does not
conform to its document type declaration (DTD) or does not have
a DTD. See also schema-valid document, type-valid document.

NULL constraint. In SQL, a constraint that specifies that a column
may have empty cells in some or all rows.

Null status. Whether the column has a NULL constraint or a
NOT NULL constraint. See also NOT NULL constraint, NULL
constraint.

Null value. An attribute value that has never been supplied. Such values
are ambiguous and can mean that (a) the value is unknown, (b) the
value is not appropriate, or (c) the value is known to be blank.

Object. In object-oriented programming, an abstraction that is de-
fined by its properties and methods. See also object-oriented
programming (OOP).

Object class. In object-oriented programming, a set of objects with a
common structure. See also object-oriented programming (OOP).

Object Linking and Embedding (OLE). Microsoft’s object stan-
dard. OLE objects are Component Object Model (COM) objects
and support all required interfaces for such objects.

Object persistence. In object-oriented programming, the char-
acteristic that an object can be saved to nonvolatile memory,
such as a disk. Persistent objects exist between executions of a
program.

Object-oriented DBMS (OODBMS or ODBMS). A DBMS that
can store the objects similar to those used in OOP. See also object-
oriented programming (OOP).

622 Glossary

Pessimistic locking. A locking strategy that prevents conflict by
locking data resources, processing the transaction, and then un-
locking the data resources. See also deadlock, optimistic locking.

Phantom read. The situation that occurs when a transaction reads
data it has previously read and finds new rows that were inserted
by a committed transaction.

PHP. A Web page programming language that runs routines on the
Web server rather than on the user’s client device. See aslo PHP:
Hypertext Processor (PHP).

PHP Data Objects (PDO). A consistent data-access specification
for PHP that allows a programmer to use the same functions in-
dependent of which DBMS is being used.

PHP: Hypertext Processor (PHP). A Web page scripting lan-
guage used to create dynamic Web pages. It now includes an
object-oriented programming component and PHP Data Objects
(PDO). See also PHP Data Objects (PDO).

Pig. The database query language created as part of the Hadoop
suite and used to query the HBase nonrelational DBMS. See also
Hadoop, Hbase.

PivotTable. Microsoft’s name for its OLAP client, as used in Microsoft
Excel 2013. See also OLAP.

PL/SQL. See Procedural Language/SQL (PL/SQL).
PL/SQL SEQUENCE object. An Oracle Database object used to

implement surrogate primary keys by providing sequences of
numbers.

Portable Class Libraries. An extension to the Microsoft .NET
Framework added in version 4.5 to provide support for Windows
8 apps.

POST method. In PHP, a method of passing data values from one
Web page to another for processing.

PowerShell sqlps utility [MSSQL]. In Microsoft SQL Server
2014, an add-in to the Microsoft PowerShell command-line util-
ity that allows it to work with Microsoft SQL Server.

Prepared Statement object. A JDBC object used to invoke data-
base compiled queries and stored procedures.

Primary key. A candidate key selected to be the key of a rela-
tion; the primary key is used as a foreign key for representing
relationships.

PRIMARY KEY constraint. In SQL, a constraint statement used to
create a primary key for a table.

PrimaryKey property. The ADO.NET DataSet object used to en-
force row uniqueness in a DataTable object.

Procedural programming language. A programming language
where each step necessary to obtain a result must be specified.
The language may have the ability to contain sets of steps in struc-
tures called procedures or subprocedures.

Procedural Language/SQL (PL/SQL). An Oracle-supplied lan-
guage that augments SQL with programming language structures
such as while loops, if-then-else blocks, and other such constructs.
PL/SQL is used to create stored procedures and triggers.

Processing rights and responsibilities. Organizational policies
regarding which groups can take which actions on specified data
items or other collections of data.

Program/data independence. The condition existing when the
structure of the data is not defined in application programs.
Rather, it is defined in the database and then the application
programs obtain it from the DBMS. In this way, changes can be
made in the data structures that may not necessarily be made in
the application programs.

Programmer. A person who creates application programs in a pro-
gramming language.

Project-Join normal form (PJ/NF). Another name for 5NF. See
also Fifth normal form (5NF).

Property. Same as attribute.
Proposed values. One type of ADO.NET DataSet object data values

stored in a DataRow collection in a DataTable object.
Prototype. A quickly developed demonstration of an application or

portion of an application.

Open Database Connectivity (ODBC). A standard interface by
which application programs can access and process relational
databases, spreadsheets, text files, and other table-like structures
in a DBMS or in a program-independent manner. The driver
manager portion of ODBC is incorporated into Windows. ODBC
drivers are supplied by DBMS vendors, by Microsoft, and by
third-party software developers.

Operational system. A database system in use for the operations of
the enterprise, typically an OLTP system, See also online transac-
tion processing (OLTP) system.

Optimistic locking. A locking strategy that assumes no conflict will
occur, processes a transaction, and then checks to determine
whether conflict did occur. If conflict did occur, no changes are
made to the database and the transaction is repeated. See also pes-
simistic locking.

Optional. In a relationship, when the minimum number of entity in-
stances that must participate in a relationship is zero, then partici-
pation in the relationship is said to be optional. See also mandatory,
minimum cardinality

Optional-to-mandatory (O-M) relationship. A relationship in
which an entity instance is required on the right-hand side of the
relationship but not on the left-hand side.

Optional-to-optional (O-O) relationship. A relationship in which
an entity instance is not required on either side of the relationship.

Oracle SQL Developer. The GUI utility for Oracle Database 12c.
Outer join. A join in which all of the rows of a table appear in the

join result, regardless of whether they have a match in the join
condition. In a left outer join, all of the rows in the left-hand rela-
tion appear; in a right outer join, all of the rows in the right-hand
relation appear.

Overlapping candidate keys. Two candidate keys are said to be
overlapping candidate keys if they have one or more attributes in
common.

Parameter. A data value that is passed as input to a stored procedure
or other application.

Parent. An entity or row on the one side of a one-to-many relationship.
Parent mandatory and child mandatory (M-M). A relationship

where the minimum cardinality of the parent is 1 and the mini-
mum cardinality of the child is 1.

Parent mandatory and child optional (M-O). A relationship
where the minimum cardinality of the parent is 1 and the mini-
mum cardinality of the child is 0.

Parent optional and child mandatory (O-M). A relationship
where the minimum cardinality of the parent is 0 and the mini-
mum cardinality of the child is 1.

Parent optional and child optional (O-O). A relationship where
the minimum cardinality of the parent is 0 and the minimum
cardinality of the child is 0.

Partially dependent. In normalization, a condition where an at-
tribute is dependent on only part of a composite primary key
instead of on the whole key.

Partitioning. For databases, separating a database into parts, which
will normally be stored on separate DBMS servers.

Passive repository. Repositories that are filled only when someone
takes the time to generate the needed metadata and place it in
the repository. See also data repository.

Persistent object. In object-oriented programming, an object that
has been written to persistent storage.

Persistent Stored Modules. See SQL/Persistent Stored Modules
(SQL/PSM).

Personal Computer (PC). Also known as a micro-computer, a small
computer intended for use by one person as his or her own
computer.

Personal database system. A DBMS product intended for use
by an individual or small workgroup. Such products typically
include application development tools such as form and report
generators in addition to the DBMS. For example, Microsoft
Access 2013.

ADO.NET
ADO.NET

 Glossary 623

DBMS products include a feature that removes duplicate rows
when necessary and appropriate. Such a removal is not done as
a matter of course because it can be time-consuming to enforce.

Relational model. A data model in which data are stored in rela-
tions and relationships between rows are represented by data
values.

Relational schema. A set of relations with interrelation constraints.
Relationship. An association between two entities or rows.
Relationship cardinality constraint. A constraint on the num-

ber of rows that can participate in a relationship. Minimum
cardinality constraints determine the number of rows that must
participate; maximum cardinality constraints specify the largest
number of rows that can participate. See also maximum cardinal-
ity, minimum cardinality.

Relationship class. An association between entity classes.
Relationship instance. (1) An association between entity instances;

(2) a specific relationship between two tables in a database.
Repeatable read isolation level. A level of transaction isolation

that disallows both dirty reads and nonrepeatable reads. Phantom
reads can occur.

Replication. For both Oracle Database, Microsoft SQL Server, and
MySQL, a term that refers to maintaining accurate copies of data
on databases that are distributed on more than one computer.

Report. A formatted set of information created to meet a user’s
need.

Report authoring. In a reporting system, connecting to the data
source, creating the report structure, and formatting the report.

Report delivery. In a reporting system, pushing the reports to users
or allowing them to pull the reports as needed.

Report management. In a reporting system, defining who receives
which reports, when, and by what means.

Reporting system. A business intelligence system that processes
data by filtering, sorting, and making simple calculations.
OLAP is a type of reporting system. Contrast with data mining
systems.

Repository. A collection of metadata about database structure, ap-
plications, Web pages, users, and other application components.
Active repositories are maintained automatically by tools in the
application-development environment. Passive repositories must
be maintained manually.

Requirements analysis. The second step in the systems develop-
ment life cycle (SDLC) model. User requirements are gathered
and analyzed, and a set of user approved project requirements are
created. The data model is created in this step.

Reserved word. A word that has a special meaning in the DBMS or
ODBC and should not be used as a table, column, or other name
in a database. See also DBMS reserved word.

Resource locking. See lock.
Reverse engineered (RE) data model. The structure that results

from reverse engineering. It is not really a data model because
it includes physical structures such as intersection tables. It is,
instead, a thing unto itself; midway between a data model and a
relational database design.

Reverse engineering. The process of reading the structure of an
existing database and creating a reverse-engineered data model
from that schema.

RFM analysis. A type of reporting system in which customers are
classified according to how recently (R), how frequently (F), and
how much money (M) they spend on their orders.

RIGHT OUTER constraint. A join that includes all the rows of
the second table listed in the SQL statement (the “right” table)
regardless of whether they have a matching row in the other
table.

Role. In database administration, a defined set of permissions that
can be assigned to users or groups.

Rollback. The process of recovering a database in which before im-
ages are applied to the database to return to an earlier checkpoint
or other point at which the database is logically consistent.

Pseudofile. The term used to describe the results of an SQL state-
ment, used in conjunction with a cursor. See also cursor.

Pull report. In reporting systems, a report that must be requested by
users.

Push report. In reporting systems, a report that is sent to users ac-
cording to a schedule.

QBE. See query by example (QBE).
Query. A request for database data that meets specific criteria. This

can be thought of as asking the database a question and getting an
answer in the form of the data returned.

Query by example (QBE). A style of query interface, first devel-
oped by IBM but now used by Microsoft Access 2013 and other
DBMS products, that enables users to express queries by provid-
ing examples of the results they seek.

Question mark (?) wildcard character. A character used in
Access 2013 queries to represent a single unspecified character.
See also SQL underscore (_) wildcard character.

R score. In RFM analysis, the “how recently” score, which reflects
how recently a customer made a purchase. See also RFM analysis.

Range constraint. A data constraint that specifies that data values
must be within a specific range of values. See also data constraint,
domain integrity constraint, interrelation constraint, intrarelation
constraint.

Read committed isolation level. A level of transaction isolation
that prohibits dirty reads but allows nonrepeatable reads and
phantom reads.

Read uncommitted isolation level. A level of transaction isola-
tion that allows dirty reads, nonrepeatable reads, and phantom
reads.

Record. (1) In a relational model, a synonym for row and tuple.
(2) A group of fields pertaining to the same entity; used in file-
processing systems.

Recordset. An ADO.NET object that encapsulates a relation; cre-
ated as the result of the execution of an SQL statement or a stored
procedure.

Recovery via reprocessing. Recovering a database by restoring
the last full backup and then re-creating each transaction since
the backup.

Recovery via rollback/rollforward. Recovering a database by
restoring the last full backup and then using data stored in a
transaction log to modify the database as needed by either add-
ing transactions (rollforward) or removing erroneous transactions
(rollback).

Recursive relationship. A relationship among entities or rows of
the same type. For example, if CUSTOMERs refer to other
CUSTOMERs, the relationship is recursive.

ReDo files. In Oracle Database, backups of rollback segments used
for backup and recovery. ReDo files may be online or offline.

Referential integrity (RI) actions. In general, rules that specify the
activities that must take place when insert, update, or delete ac-
tions occur on either the parent or child entities in a relationship.
In this text, we use referential integrity actions only to document
activities needed to preserve required parents. Other actions can
be defined as part of the database design. See also minimum cardi-
nality enforcement actions, Figure 6-29.

Referential integrity constraint. A relationship constraint on for-
eign key values. A referential integrity constraint specifies that
the values of a foreign key must be a subset of the values of the
primary key to which it refers.

Regression analysis. A form of supervised data mining in which
the parameters of equations are estimated by data analysis.

Relation. A two-dimensional array containing single-value entries
and no duplicate rows. Values for a given entity are shown in
rows; values of attributes of that entity are shown in columns. The
meaning of the columns is the same in every row. The order of the
rows and columns is immaterial.

Relational database. A database consisting of relations. In practice,
relational databases contain relations with duplicate rows. Most

ADO.NET

624 Glossary

SGML. See Standard Generalized Markup Language (SGML).
Shared lock. A lock against a data resource in which only one trans-

action may update the data but many transactions can concur-
rently read that data.

Shrinking phase. In two-phase locking, the stage at which locks are
released but no lock is acquired.

Sibling. A record or node that has the same parent as another record
or node.

Simple Object Access Protocol. A standard used for remote
procedure calls. It uses XML for definition of the data and HTTP
for transport. Contrast with SOAP.

Slowly changing dimension. In a dimensional database, a data
column with values that change occasionally but irregularly over
time; for example, a customer’s address or phone number.

Smartphone. A cell phone that is capable of running user client
applications (apps) in a client-server environment. See also cell
phone, client-server architecture.

Snowflake schema. In a dimensional database or an OLAP database,
the structure of tables such that dimension tables may be several lev-
els away from the table storing the measure values. Such dimension
tables are usually normalized. Contrast with star schema.

SOAP. Originally, Simple Object Access Protocol. Today, it is a pro-
tocol for remote procedure calls that differs from the Simple
Object Access Protocol because it involves transport protocols in
addition to HTTP. It is no longer an acronym.

Software development kit (SDK). A group of development tools
provided to programmers to help them create applications.

SQL. See Structured Query Language (SQL).
SQL ALTER TABLE statement. The SQL command used to

change the structure of a database table.
SQL AND operator. The SQL operator used to combine conditions

in an SQL WHERE clause.
SQL built-in aggregate functions. In SQL, the functions

COUNT, SUM, AVG, MAX, or MIN.
SQL CMD utility. A command-line utility used with SQL Server 2008.
SQL CREATE TABLE statement. The SQL command used to

create a database table.
SQL CREATE VIEW statement. The SQL command used to cre-

ate a database view.
SQL Data Control Language (DCL). The SQL statements to

grant and/or revoke user permissions to perform operations on
tables and other database components.

SQL DROP TABLE statement. The SQL command used to re-
move a table from a database.

SQL expression. A formula or set of values that determines the
exact results of an SQL query. We can think of an SQL expression
as anything that follows an actual or implied equal to (=) charac-
ter (or any other relational operator, such as greater than [>], less
than [<], and so on) or that follows certain SQL keywords, such
as LIKE and BETWEEN.

SQL FROM clause. The part of an SQL SELECT statement that
specifies conditions used to determine which tables are used in
a query.

SQL GROUP BY clause. The part of an SQL SELECT statement
that specifies conditions for grouping rows when determining
the query results.

SQL HAVING clause. The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the
groupings in a GROUP BY clause.

SQL injection attack. The use of hacker-modified SQL statements,
usually by manipulating input data in Web forms, to attack and
infect an SQL database attached to a Web site. Preventable by
careful application coding. The Lizamoon SQL injection attack in
March 2011 affected more than 1.5 million URLs.

SQL join operation. In SQL, the process of combining data rows
from two tables by using a relational algebra operation on two
relations, A and B, which produces a third relation, C. A row of

Rollforward. The process of recovering a database by applying after
images to a saved copy of the database to bring it to a checkpoint
or other point at which the database is logically consistent.

Root. (1) In MySQL, the name of the DBMS administrator account.
(2) The top record, row, or node in a tree. A root does not have a
parent.

Routers. Networking devices used to move messages across the
Internet and other connected networks.

Row. A group of columns in a table. All the columns in a row pertain
to the same entity. A row is the same as a tuple and a record.

Rowset. In OLE DB, an abstraction of data collections such as re-
cordsets, email addresses, and nonrelational and other data.

SAX. Simple API (Application Program Interface) for XML. An
event-based parser that notifies a program when the elements
of an XML document have been encountered during document
parsing.

Scalar-valued function. A user-defined function that operates on
a single row of data and returns a single value.

Schema. (1) In MySQL, a synonym for database. (2) A complete logi-
cal view of the database.

Schema-valid document. An XML document that conforms to its
XML Schema definition.

SCN. See system change number.
Scrollable cursor. A cursor type that enables forward and back-

ward movement through a recordset. Three scrollable cursor
types discussed in this text are snapshot, keyset, and dynamic.

Second normal form (2NF). A relation in first normal form in
which all nonkey attributes are dependent on all of the key
attributes.

SelectCommand object. The ADO.NET DataAdapter object used
to query data in a DataSet.

Self-describing. In a database, the characteristic of including data
about the database in the database itself. Thus, the data that
define a table are included in a database along with the data
that are contained in that table. These descriptive data are called
metadata. See also metadata, relation, table.

Semantic object model. The constructs and conventions used to
create a model of the users’ data. The things in the users’ world
are represented by semantic objects (sometimes called objects).
Relationships are modeled in the objects, and the results are usu-
ally documented in object diagrams.

Sequence. The Oracle Database 12c SQL statement used to create
surrogate key values.

Serializable isolation level. A level of transaction isolation that
disallows dirty reads, nonrepeatable reads, and phantom reads.

Server. A robust computer operated by information systems staff
and used to run the server portion of client-server application
such as Web pages and email. Servers are thus said to provide
services to users. See also service, client-server architecture.

Server cluster. A group of servers that communicate and coordi-
nate with each other.

Service. The provision of some utility to users. For example, a Web
server provides the Web service, which is providing Web pages
to users. See also server.

Service provider. An OLE DB data provider that transforms data.
A service provider is both a data consumer and a data provider.

Servlet. A compiled, machine-independent Java bytecode program
that is run by a Java virtual machine located on a Web server.

Set. In mathematical set theory, a collection of things (often referred
to as objects). See also set theory.

Set operators. In mathematical set theory, the symbols for the op-
erations that may be done with sets. In SQL, the SQL set operators
that mimic set operations are specifically UNION, INTERSECT
and EXCEPT. The SQL logical operators AND, OR, and NOT also
implement some set theory functionality. See also set theory.

Set theory. The area of mathematics that works with sets. See also
set.

ADO.NET

 Glossary 625

SQL underscore (_) wildcard character. The standard SQL
wildcard character used to match a single character. Microsoft
Access 2013 uses a question mark (?) character instead of the
underscore character.

SQL WHERE clause. The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the
query results.

SQL view. A relation that is constructed from a single SQL SELECT
statement. The term view in most DBMS products, including
MySQL, Oracle Database, and Microsoft SQL Server, means SQL
view.

SQL*Plus. A command-line utility in Oracle Database 12c.
Standard Generalized Markup Language (SGML). A standard

means for tagging and marking the format, structure, and con-
tent of documents. HTML is an application of SGML. XML is a
subset of SGML.

Star schema. In a dimensional database or an OLAP database, the
structure of tables such that every dimension table is adjacent
to the table storing the measure values. In the star schema, the
dimension tables are often not normalized. Contrast with snow-
flake schema.

Statement-level consistency. All rows affected by a single SQL
statement are protected from changes made by other users
during the execution of the statement. Contrast with transaction-
level consistency.

Static cursor. A cursor that takes a snapshot of a relation and pro-
cesses that snapshot.

Static report. In reporting systems, a report that is prepared once
from underlying data and does not change when the underlying
data change. Contrast with dynamic report.

Stock-keeping unit (SKU). A unique identifier for each product
available from a vendor.

Stored function. See user-defined function.
Stored procedure. A collection of SQL statements stored as a file that

can be invoked by a single command. Usually, DBMS products
provide a language for creating stored procedures that augments
SQL with programming language constructs. Oracle Database
provides PL/SQL for this purpose; Microsoft SQL Server provides
T-SQL; MySQL also adds procedural capabilities but does not use
a separate name for these additions. With some products, stored
procedures can be written in a standard language such as Java.
Usually, stored procedures are stored within the database itself.

Strong entity. In an entity-relationship model, any entity whose ex-
istence in the database does not depend on the existence of any
other entity. See also ID-dependent entity, weak entity.

Strong password. A password that meets requirements intended
to make it difficult to guess or unencrypt.

Structured Query Language (SQL). A language for defining the
structure and processing of a relational database. It can be used
as a stand-alone language, or it may be embedded in application
programs. SQL has been adopted as a national standard by the
American National Standards Institute (ANSI). The most com-
mon version used today is SQL-92, the version adopted by ANSI
in 1992. SQL was originally developed by IBM.

Stylesheet. A document used by XSLT to indicate how to transform
the elements of an XML document into another format.

Subquery. In SQL, a SELECT statement within another SELECT
statement.

Subset. In mathematical set theory, a portion of a set. See also set.
Subtype. In generalization hierarchies, an entity or object that is a

subspecies or subcategory of a higher-level type, called a super-
type. For example, ENGINEER is a subtype of EMPLOYEE.

SUM. In SQL, a function that adds up a set of numbers. See also SQL
built-in functions.

Supertype. In generalization hierarchies, an entity or object that
logically contains subtypes. For example, EMPLOYEE is a super-
type of ENGINEER, ACCOUNTANT, and MANAGER.

A is concatenated with a row of B to form a new row in C if
the rows in A and B meet a restriction concerning their values.
Normally, the restriction is that one or more columns of A equal
one or more columns of B. For example, suppose that A1 is an
attribute in A and B1 is an attribute in B. The join of A with B in
which A1 = B1 will result in a relation, C, having the concatena-
tion of rows in A and B in which the value of A1 equals the value
of B1. In theory, restrictions other than equality are allowed; a join
could be made in which A1 > B1. Such nonequal joins are not
used in practice, however.

SQL JOIN ON syntax. The SQL syntax used to create an explicit
join.

SQL logical operators. The operators AND, OR, and NOT.
SQL MERGE statement. This SQL command is essentially a

combination of the SQL INSERT and SQL UPDATE statements,
where an INSERT or UPDATE is performed depending upon
existing data.

SQL OR operator. The SQL operator used to specify alternate con-
ditions in an SQL WHERE clause.

SQL ORDER BY clause. The part of an SQL SELECT statement
that specifies how the query results should be sorted when they
are displayed.

SQL outer join. An SQL join operation that include all rows from
one of the tables in the join regardless of whether or not they
match associated rows in the other table.

SQL percent sign (%) wildcard character. The standard SQL
wildcard character used to specify multiple characters. Microsoft
Access 2013 uses an asterisk (*) character instead of the percent
character.

SQL/Persistent Stored Modules (SQL/PSM). SQL statements
that extend SQL by adding procedural programming capabilities,
such as variables and flow-of-control statements, and thus provide
some programmability within the SQL framework. SQL/PSM
is used to create user-defined functions, stored procedures, and
triggers. See also trigger, stored procedure, user-defined function.

SQL/PSM. See SQL/Persistent Stored Modules (SQL/PSM).
SQL query. An SQL statement that uses the SQL SELECT/FROM/

WHERE framework to “ask” a question that can be “answered”
using database data. See also SQL SELECT/FROM/WHERE
framework

SQL script. A set of SQL statements that are intended to be ex-
ecuted as a group.

SQL script comment. A comment in an SQL script. See also SQL
script.

SQL script file. A file that holds an SQL script for repeated use. See
also SQL script.

SQL SELECT clause. The part of an SQL SELECT statement that
specifies which columns are in the query results.

SQL SELECT * statement. A variant of an SQL SELECT query
that returns all columns for all tables in the query.

SQL SELECT . . . for XML statement. A variant of an SQL
SELECT query that returns the query results in XML format.

SQL SELECT/FROM/WHERE framework. The basic structure
of an SQL query. See also SQL SELECT clause, SQL FROM clause,
SQL WHERE clause, SQL ORDER BY clause, SQL GROUP BY
clause, SQL HAVING clause, SQL AND operator, SQL OR operator.

SQL Server IDENTITY ({StartValue}, {Increment}) expres-
sion. The Microsoft SQL Server syntax used to provide surro-
gate key values of sequential numbers.

SQL set operators. The operators UNION, INTERSECT, and
EXCEPT.

SQL Transaction Control Language (TCL). The SQL state-
ments used to create and control SQL managed transactions and
thus protect database data.

SQL TRUNCATE TABLE statement. The SQL TRUNCATE
TABLE command removes all data from a database table while
leaving the table structure in place.

626 Glossary

Transaction-level consistency. All rows affected by any of the
SQL statements in a transaction are protected from changes dur-
ing the entire transaction. This level of consistency is expensive to
enforce and reduces throughput. It may also mean that a transac-
tion cannot see its own changes. Contrast with statement-level
consistency.

Transact-SQL (T-SQL). A Microsoft-supplied language that is part
of Microsoft SQL Server. It augments SQL with programming
language structures such as while loops, if-then-else blocks, and
other such constructs. Transact-SQL is used to create stored pro-
cedures and triggers.

Transitive dependency. In a relation having at least three attri-
butes, for example, R (A, B, C), the situation in which A deter-
mines B, B determines C, but B does not determine A.

Transactional system. A database dedicated to processing trans-
actions such as product sales and orders. It is designed to make
sure that only complete transactions are recorded in the data-
base. See also OLTP.

Tree. A collection of records, entities, or other data structures in
which each element has at most one parent, except for the top
element, which has no parent.

Trigger. A special type of stored procedure that is invoked by
the DBMS when a specified condition occurs. BEFORE trig-
gers are executed before a specified database action, AFTER
triggers are executed after a specified database action, and
INSTEAD OF triggers are executed in place of a specified
database action. INSTEAD OF triggers are normally used to
update data in SQL views.

T-SQL. See Transact-SQL (T-SQL).
Tuple. Same as row.
Two dashes (- -). Symbols used to indicate a single-line comment

in a stored procedure or a trigger in SQL Server 2014, Oracle
Database 12c, and MySQL 5.6.

Two-phase locking. The procedure by which locks are obtained
and released in two phases. During the growing phase, the locks
are obtained; during the shrinking phase, the locks are released.
After a lock is released, no other lock will be granted for that
transaction. Such a procedure ensures consistency in database
updates in a concurrent-processing environment.

Two-tier architecture. In a Web-based database processing envi-
ronment, the Web server and the DBMS are running on the same
computer. One tier is for the Web browsers, and one is for the
Web server/DBMS computer.

Type domain. In IDEF1X, a domain that is defined as a subset of a
base domain or another type of domain.

Type-valid XML document. An XML document that conforms
to its document type declaration (DTD). Contrast with not-type-
valid document.

UML. See Unified Modeling Language (UML).
Unary relationship. A relationship between a table and itself. Also

call a recursive relationship.
Unified Modeling Language (UML). A set of diagrams, struc-

tures, and techniques for modeling and designing object-oriented
programs and applications. It is a set of tools for object-oriented
development that has led to a development methodology. UML
incorporates the entity-relationship model for data modeling.

Union. A set operation similar to a logical OR operation. See also set
theory.

UNIQUE constraint. In SQL, a constraint that specifies that the val-
ues in a column must be unique.

Unsupervised data mining. A form of data mining in which ana-
lysts do not create a prior model or hypothesis but rather let the
data analysis reveal a model.

Updatable view. An SQL view that can be updated. Such views are
usually very simple, and the rules that allow updating are nor-
mally quite restrictive. Nonupdatable views can be made updat-
able by writing application-specific INSTEAD OF triggers.

Supervised data mining. A form of data mining in which an ana-
lyst creates a prior model or hypothesis and then uses the data to
test that model or hypothesis.

Support. In market basket analysis, the probability that two items
will be purchased together.

Surrogate key. A unique, system-supplied identifier used as the pri-
mary key of a relation. It is created when a row is created, it never
changes, and it is destroyed when the row is deleted. The values
of a surrogate key have no meaning to the users and are usually
hidden within forms and reports.

System change number (SCN). In Oracle Database, a database-
wide value that is used to order changes made to database
data. The SCN is incremented whenever database changes are
committed.

System data source. An ODBC data source that is local to a single
computer and can be accessed by that computer’s operating sys-
tem and select users of that operating system.

System maintenance. The fifth step in the systems development
life cycle (SDLC) model. The implemented system is modified to
correct errors and to implement new changes, and user responses
and requests are gathered for the next iteration of the SDLC. See
also systems development life cycle (SDLC).

Systems analysis and design. The process of studying business
processes, and designing management information systems to
support those processes. See also systems development life cycle
(SDLC).

Systems development life cycle (SDLC). The five-stage cycle
used to develop management information systems.

Table. A database structure of rows and columns to create cells that
hold data values. Also known as a relation in a relational database,
although strictly only tables that meet specific conditions can be
called relations. See also relation.

TableName.ColumnName syntax. A syntax used to indi-
cate which table a column is associated with. For example,
CUSTOMER.LastName indicates the LastName column in the
CUSTOMER table.

Tablet. A handheld user device that can run user client applications.
Similar to a cell phone, but generally larger and without the tele-
phone capability.

Table-valued function. In SQL/PSM, a user-defined function that
returns a table of values.

Tabular data provider. An OLE DB data provider that presents data
in the form of rowsets.

Ternary relationship. A relationship between three entities.
Third normal form (3NF). A relation in second normal form that

has no transitive dependencies.
Three-tier architecture. A system of computers having a database

server, a Web server, and one or more client computers. The
 database server hosts a DBMS, the Web server hosts an HTTP
server, and the client computer hosts a browser. Each tier can run
a different operating system.

Time dimension. A required dimension table in a dimensional
database. The time dimension allows the data to be analyzed over
time.

Transaction. (1) A group of actions that is performed on the data-
base automatically; either all actions are committed to the data-
base or none of them is. (2) In general, the record of an event in
the business world.

Top level query. The first SELECT statement in an SQL query using
a subquery.

Transaction control language (TCL). SQL statements that are
used to mark transaction boundaries and control transaction
behavior.

Transaction isolation level. The degree to which a database trans-
action is protected from actions by other transactions. The 1992
SQL standard specified four isolation levels: Read Uncommitted,
Read Committed, Repeatable Reads, and Serializable.

TableName.ColumnName
CUSTOMER.LastName

 Glossary 627

Web browser. The client application used to view and interact with
Web sites. See also client-server architecture, web site.

Web portal. A Web page designed to be an entrance point for a Web
site. It may display information from several sources and may
require authentication to access.

Web site. A location on the World Wide Web. See also World Wide
Web.

World Wide Web. The set of interconnected hypertext objects acces-
sible on the Internet, organized into Web sites.

World Wide Web Consortium (W3C). The group that creates,
maintains, revises, and publishes standards for the World Wide
Web including HTML, XML, and XHTML.

WWW. A synonym for the World Wide Web. See also World Wide
Web.

wwwroot folder. The root folder or base directory of a Web site on a
Microsoft IIS Web server.

x..y cardinality format [UML]. The symbology format used in
UML E-R diagrams to document minimum and maximum car-
dinalities. X records the minimum cardinality, and y records the
maximum cardinality.

XML (Extensible Markup Language). A standard markup lan-
guage that provides a clear separation between structure, content,
and materialization. It can represent arbitrary hierarchies and
hence can be used to transmit any database view.

XML Namespaces. A standard for assigning names to defined col-
lections. X:Name is interpreted as the element Name as defined
in namespace X. Y:Name is interpreted as the element Name as
defined in namespace Y. Useful for disambiguating terms.

XML Schema. An XML document that defines the structure of other
XML documents. Extends and replaces document type declara-
tions (DTDs).

XPath. A sublanguage within XSLT that is used to identify parts of an
XML document to be transformed. Can also be used for calcula-
tions and string manipulation. Commingled with XSLT.

XPointer. A standard for linking one document to another. XPath has
many elements from XPointer.

XQuery. A standard for expressing database queries as XML docu-
ments. The structure of the query uses XPath facilities, and the
result of the query is represented in an XML format. Currently
under development and likely to be important in the future.

XSL (XSLT Stylesheet). The document that provides the {match,
action} pairs and other data for XSLT to use when transforming
an XML document.

XSLT (Extensible Style Language: Transformations). A pro-
gram (or process) that applies XSLT Stylesheets to an XML docu-
ment to produce a transformed XML document.

Update anomaly. A data error created in a non-normalized table
when an update action modifies one data value without modify-
ing another occurrence of the same data value in the table.

UpdateCommand object. The ADO.NET DataAdapter object
used to update existing data from a DataSet back to the actual
DBMS data.

User. A person using an application.
User-defined function (stored function). A stored set of SQL

statements that is called by name from another SQL statement, that
may have input parameters passed to it by the calling SQL state-
ment, and that returns an output value to the SQL statement that
called the function.

User data source. An ODBC data source that is available only to
the user who created it.

User group. A group of users. See also user.
Username. The set of characters that a user identifies himself/

herself with for authentication purposes to log onto a computer.
Variable. A value that may be assigned or calculated by a stored

procedure or a trigger in SQL Server 2014, Oracle Database 12c,
and MySQL 5.6.

VBScript. An easily learned, interpreted language created by
Microsoft that is used for both Web server and Web client ap-
plications processing.

Venn diagram. In mathematical set theory, the visual diagrams used
to represent sets and their interactions.

Virtualization. A technique for sharing the hardware resources of
one computer by having that one physical computer host one
or more virtual computers, more commonly known as virtual
machines. To do this, the actual computer hardware, now called
the host machine, runs an application program known as a
virtual machine manager or hypervisor. The hypervisor creates
and manages the virtual machines and controls the interaction
between the virtual machine and the physical hardware. For
example, if a virtual machine has been allocated two Gigabytes of
main memory for its use, the hypervisor is responsible for making
sure the actual physical memory is allocated and available to the
virtual machine.

WAMP. AMP running on a Windows operating system. See also
AMP.

Weak entity. In an entity-relationship model, an entity whose logical
existence in the database depends on the existence of another en-
tity. All ID-dependent entities are weak, but not all weak entities
are ID-dependent.

Web (the). A synonym for the World Wide Web. See also World Wide
Web.

Web 2.0. Web sites that allow users to contribute content.

ADO.NET

628

SYMBOLS
/* and */, 78
; (semicolon) for terminating SQL statements, 78
* (asterisk) wildcard character, 78, 104
(%) percent sign wildcard character, 103
(?) question mark wildcard character, 105
(_) underscore wildcard character, 103

A
Abstraction, 515
ACID transaction, 468
Action, 306
Active Data Objects (ADO), 502
Active repository, 482
Active Server Pages (ASP), 502
Ad-hoc queries, 68
ADO.NET, 502, 517–522
ADO.NET Command object, 520
ADO.NET Connection object, 519
ADO.NET DataAdapter object, 520
ADO.NET Data Provider, 518
ADO.NET DataReader, 521
ADO.NET DataSet, 520
ADO.NET Entity Framework, 513
After image, 478
Alternate key (AK), 284
Amazon Web Services (AWS), 597
American National Standards Institute (ANSI), 76
AMP, 503
Android operating system, 35
ANSI-89 SQL, 80–82
ANSI-92 SQL, 80
Apache Tomcat, 525–526
Apache Web server, 503
Apple II, 35
Apple iPad, 499
Applet, 523
Application program interface (API), 502
Application security, 475–476
Apps, 35, 499
Archetype/instance pattern, 297–300
ARPANET, 35
ASP.NET, 502
Association pattern, 247–248
Association relationships, 295–297
Association table, 296
Associative (association) entity, 248, 295
Asterisk (*) wildcard character, 78, 104
Atomic transaction, 460–462, 468

concurrent transaction, 460
definition of, 460
lost update problem, 460–462

Attribute, 171, 230
AVG, 107

B
Backup and recovery. See Database backup and recovery
Base Class Library, 513
Before image, 478

Big Data, 565–566
BI systems, 567
cloud computing, 596–598
data marts, 571–573
data mining application, 568, 591–592
data warehouse, 568–573
definition of, 60–61
dimensional database, 573–580
distributed database, 592–594
Not only SQL, 598–602
object-relational database, 594–595
operational system, 567
reporting system, 567–568, 580–591
virtualization, 595–596

Bigtable, 598
Binary relationship, 232
BI system. See Business intelligence (BI)
Boyce-Codd Normal Form (BCNF), 181, 185–186

eliminating anomalies, 187–196
from functional dependencies with, 187–196
from multivalued dependencies with, 196–199

not used in updatable database design, 213–214
Step-by-Step method, 182–185
"straight-to-BNCF method," 190

Bulk insert in SQL INSERT statement, 353
Bulk updates in SQL UPDATE statement, 359
Business intelligence (BI) system, 214, 567

ad-hoc queries in, 68
data mining application, 591–592
data warehouse, 568–573
definition of, 68, 567
extracted data sets, 71–72, 76

CATALOG_SKU_20## tables, 75
ORDER_ITEM data, 74
process of, 71–72
RETAIL_ORDER data, 72–74
schema, 75
SKU_DATA table, 74–75

operational system and, 567
reporting system, 580–591

Bytecode interpreter, 523

C
Callable Statement object, 524
Candidate key, 177–178, 284
Cardinality, 233, 445–446
Cartesian product, 122
Cascading deletion, 310
Cascading update, 310
Cassandra, 598
Cell phone, 35, 499
Character strings, 103
CHECK constraint, 378
Checkpoint, 479
Child

changing, 442–443
defined, 233–234
in minimum cardinality design (See Minimum cardinality

 enforcement action)

Index

 Index 629

Database. See also Database management system (DBMS);
Multiuser databases, managing

backup and test databases, 437–438
characteristics of, 37–38
column family, 598–601
definition of, 43
examples of (See Database applications)
function of, 47–49
information created by, 40–41
metadata in, 47–48
naming conventions in, 38–39
relationships of data in, 39
self-describing, 47
systems (See Database systems)

Database administration/administrator (DBA), 55–56, 457–458
in DBMS, 480–482
security, 472–475

Database applications
data mining, 43
definition of, 43
e-commerce, 42
in enterprise-class database system, 50–51
multiuser, 41–42
reporting, 43
single-user, 41
SQL and, 44–45

Database backup and recovery, 477–480
recovery via reprocessing, 477–478
recovery via rollback/rollforward, 478–480

Database design, 52–55, 280–327. See also Normalization
database redesign, 54–55
definition of, 52, 281
example of, 316–325
from existing data, 52–54
for minimum cardinality, 309–316
for new systems development, 54
problems, common, 217–222

general-purpose remarks column, 221–222
inconsistent values, 219–220
missing values, 220–221
multivalue, multicolumn problem, 218–219

as process, 52
as product, 54
purpose of, 281
relationships, creating, 292–308
tables created for entities, 281–292

Database development utilities, 492
Database integrity, 180
Database management system (DBMS)

choosing products, 494
concurrency control, 463–464, 494
database, creating, 492
database administration, 480–482
database backup and recovery, 494
database development utilities, 492
database structure, reviewing in DBMS GUI utility, 493
database tables, creating and populating, 493
DBA’s role in, 480–482
definition of, 43
early products, 56–57
in enterprise-class database system, 51–52
functions of, 43–45
installing, 491
in multiuser databases, 457, 480–482
reserved word, 318
security, 473–474, 494
SQL statements in, 44–45
SQL views, creating, 493

Click-stream data, 571
Client applications, 37
Client/server architecture, 37
Client server architecture, 499
Cloud computing, 61, 596–598
CODASYL DBTG, 58
Collection, 515
College report, 252
Column

adding and dropping in SQL ALTER TABLE
statement, 350

data type or column restraints, changing, 441
definition of, 37
properties, specifying in database design, 284–290

data constraints, 291
data type, 285–290
default value, 290, 291
null status, 284–285

Column family databases, 598–601
ColumnName, 125
Common Language Runtime (CLT), 513
Complement, 134
Component design, 280
Component Object Model (COM), 502
Composite determinant, 174
Composite functional dependency, 174
Composite identifier, 230
Composite key, 40, 177
Concurrency, 47
Concurrency control, 459–472

atomic transaction, need for, 460–462
COMMIT Transaction, 467–468
consistent transaction, 468–469
DBMS, 463–464, 494
optimistic vs. pessimistic locking, 465–466
resource locking, 463–464
SQL cursors, 470–472
SQL Transaction Control Language (TCL), 466–467
transaction isolation level, 469–470

Concurrent transaction, 460
Concurrent update problem, 462
Configuration control, 458
Conformance levels

ODBC, 505
SQL, 506

Conformed dimension, 78, 580
Consistent transaction, 468
Constraints, 520. See also Referential integrity

(RI) constraints
adding and dropping, 442
CHECK, 341, 345, 378
FOREIGN KEY, 520
interrelation, 291
intrarelation, 291
SQL CHECK, 378
triggers used to enforce, 378–379

Correlated subquery, 127, 430–434
COUNT, 107
CROSS JOIN, 122
Crow’s foot symbol, 236–238
CRUD (create, read, update, and delete), 77
Current values, 520
Curse of dimensionality, 571
Cursor, 470–471, 517

D
Data, 35
Data administration, 457–458

630 Index

components of, 70–71, 569–571
data mart as, 71
vs. data marts, 571–573
data purchased for vendors, 571–573
DBMS, 71, 214
definition of, 53, 70, 569
dimensional database, 573–580
operational data, problems with, 570–571

Data warehouse DBMS, 71, 214
Data warehouse metadata database, 569
Date dimension, 573
DBMS reserved word, 318
Deadlock, 464
Deadly embrace, 464
Decomposition rule, 174
DEFAULT keyword, 339
Default value

defined, 290
documenting, 290, 291
with SQL

creating, 344–345
implementing, 345
triggers used to provide, 378

Default Web Site folder, 528
DeleteCommand object, 520
Deletion anomaly, 180
Denormalize, 215
Department/major report, 262, 264
Department report, 261–263
Dependency graph, 437
Determinant, 172
Determinant values, 177
Development utilities, database, 492
Devices, 37
Dimensional database, 573–580

conformed dimensions, 580
definition of, 573
illustrating dimensional model, 578
multiple fact tables, 578, 580
star schema, 573–578

Dimension table, 573
Dirty data, 570
Dirty read, 469
Discriminator, 241
Distributed database, 61, 592–594

challenges of, 593–594
definition of, 592
types of, 592–593

Distributed two-phase locking, 594
Documentation, 459
Document type declaration (DTD), 530
Domain, 169
Domain constraint, 291
Domain integrity constraint, 169
Domain/key normal form (DK/NF), 182, 199
Double NOT EXISTS query, 433–435
Drill down, 589
Dynamic cursor, 471
Dynamo, 598
DynamoDB database sevice, 597

E
EC2 service, 597
Empty set, 112, 211
Enterprise-class database system, 49–52

components of, 50
database applications in, 50–51
DBMS in, 51–52

strong passwords, 475
submitting SQL statements to, 80–93 (See also SQL statements,

submitting to DBMS)
Microsoft Access 2013, 80–85
Microsoft SQL Server 2014, 85–88
Oracle Database, 88–90
Oracle MySQL 5.6, 90–93

Database migration, 54
Database processing, history of, 56–61

early years, 56–58
eras of, 57
post-relational developments, 59–61
relational model, 58–59

Database redesign, 428–448
analyzing existing database, 435–438
forward engineering, 446
need for, 429
overview, 54–55
relationship cardinalities, changing, 442–446
SQL statements for checking functional dependencies,

429–435
table names and columns, changing, 438–442
tables and relationships, adding and deleting, 446

Database save, 477
Database security, 472–477

application security, 475–476
DBMS security, 473–475
rights and responsibilities, processing, 472–473
SQL injection attack, 476–477

Database server access standards, 502–503
Database structure, managing, 458–459
Database systems

components of, 43–49
database, 47–49
database applications and SQL, 44–45
DBMS, 46–47

definition of, 43
enterprise-class, 50–52
personal, 49

Database technology, careers in, 55–56
DataColumnCollection, 520
Data constraints, 291
Data consumer, 515
Data control language (DCL), 77
Data definition language (DDL), 76, 334
Data integrity problems, 181
Data Language/I (DL/I), 58
Data manipulation language (DML), 76, 334
Data mart

vs. data warehouse, 571–573
definition of, 53, 71, 571

Data mining application, 567, 591–592
Data model, 54
Data modeling with entity-relationship model, 228–267

patterns in forms, reports, and E-R models, 243–260
process of, 260–266
purpose of, 229

Data provider, 515
DataRelationCollection, 520
DataRelations, 520
Data repository, 481–482
DataRowCollection, 520
Data sublanguage, 76
DataTableCollection, 520
DataTable object, 520
Data warehouse, 568–571

business intelligence systems and, 70–76

Database management system (DBMS) (continued)

 Index 631

finding, 174–177
in ORDER_ITEM table, 176–177
in SKU_DATA table, 174–175

SQL statements for checking, 429–435 (See also Correlated
subquery)

in updatable database design, 212
Functionally dependent, 172

G
General-purpose remarks column, 221–222
Google Android operating system (os), 499
Graphical user interface (GUI), 69
Growing phase, 464
GUI utilities, 493

H
Hadoop Distributed File System (HDFS), 602
HAS-A relationship, 234
HBase, 602
Higher order relationships, 304–306

MUST constraint, 305
MUST COVER constraint, 306, 307
MUST NOT constraint, 306

Host machine, 595
HTML document tags, 529
HTML syntax rules, 529
HTML Web pages, 529–530
Hypertext Markup Language (HTML), 529

document tags, 529
in PHP, 529–530
syntax rules, 529

Hypervisor, 595

I
IBM PC, 35
ID-dependent entity, 238–239

archetype/instance pattern, 252–253
association pattern, 247–248
multivalued attribute pattern, 249–251
relationships in database design, 295–299

archetype/instance pattern, 297–300
association relationships, 295–297
multivalued attributes, 297–299

Identifier, 230–231
Identifying and nonidentifying patterns, mixing,

253–256
Identifying relationship, 239
IE Crow’s Foot model, 235, 236–238
iisstart.htm, 528
Implementation, 516
Implicit join, 122
Implicit lock, 463
Inappropriately formatted data, 571
Inclusive subtype, 241
Inconsistent data, 570
Inconsistent read problem, 462
Inconsistent values, 219–220
Index, 351
Index.html, 530–532
Inetpub folder, 527
Information, 40–41
Information Engineering (IE) model, 235
Inner join, 122–123
InsertCommand object, 520
Insertion anomaly, 180
Instance, 37
Integrated Definition 1, Extended (IDEF1X), 235–236

definition of, 50
vs. personal, 49–52

Enterprise data warehouse (EDW) architecture, 573
Entity, 169

ambiguity of weak, 240
definition of, 229–230
ID-dependent, 238–239
non-ID-dependent weak, 239–240
strong, 238
subtype, 240–242
weak, 238, 240–241

Entity class, 230
Entity Data Model (EDM), 513
Entity instance, 230
Entity integrity constraint, 178
Entity-relationship (E-R) data modeling, 54
Entity-relationship (E-R) diagrams, 235
Entity-relationship (E-R) model, 229. See also Data

modeling with entity-relationship model;
Extended E-R model

variations of, 235–236
Equijoin, 125
Ethernet networking technology, 35
Exclusive lock, 463
Exclusive subtype, 241
Existing database, analyzing, 435–438

database backup and test database, 437
dependency graph, 437–438
reverse engineering, 436–437

Explicit join, 122
Explicit lock, 463
Extended E-R model, 229

attributes, 230
entities

ID-dependent, 238–239
non-ID-dependent weak, 239
strong, 238
subtype, 241–242
weak, 238, 240

E-R diagrams, 236
identifiers, 230–231
IE Crow’s Foot model, 235
maximum cardinality, 233–234
minimum cardinality, 234–235
relationships, 231–233

Extensible Markup Language (XML), 529, 553
Extract, Transform, and Load (ETL) system, 70–71, 569
Extracted data sets, example of, 71–73

common nature of, 76
process of, 71–72
schema, 75

F
Fact table, 573
Field. See Column
Fields, 37
Fifth normal form (5NF), 182, 199
File data source, 506
First normal form (1NF), 181, 182
Foreign key, 40, 179–180
ForeignKeyConstraint, 520
For-use-by pattern, 256–257
Forward only cursor, 470, 471
Fourth normal form (4NF), 182
F score, 580
Functional dependency, 173

composite, 174

632 Index

Local Area Networks (LANs), 35
Lock granularity, 463
Locking

characteristics, declaring, 466–472
consistent transactions, 468–469
implicit and explicit COMMIT TRANSACTION, 467–468
SQL cursor, 470–472
transaction isolation level, 469–470

deadlock, 464
distributed two-phase, 594
optimistic vs. pessimistic, 465–476
resource locking, 463–464
serializable transaction, 463–464
terminology, 463

Locking behavior, 494
Log, 477
Logical operators, 100–101
Logical unit of work (LUW), 460
Login name, 474
Lost update problem, 460–462

M
Managed Extensibility Framework (MEF), 513
Mandatory, 234
Mandatory-to-mandatory (M-M) relationship

defined, 235
in minimum cardinality design, 313–314

actions for, implementing, 313–314
special case, designing, 314

parent mandatory and child mandatory, 309
Mandatory-to-optional (M-O) relationship

defined, 235
parent mandatory and child optional, 309

Many-to-many (N:M) relationship
defined, 234
recursive, 259–260
recursive, in database design, 304, 305
strong entity, in database design, 294–295

MapReduce, 601–602
Market basket analysis, 571
MAX, 107
Maximum cardinality

changing 1:N relationship to N:M relationship, 443
changing 1:1 relationship to 1:N relationship, 444–445
in entity-relationship model, 233–234

Measures (of business activity), storing, 576
Metadata, 47–48
Method, 515, 594
Microsoft Access 2013, 80–85, 491. See also SQL statements,

submitting to DBMS
asterisk (*) wildcard character, 104
modifying query structure with QBE GUI, 118
as personal database system, 49–50
question mark (?) wildcard character, 105
SQL subquery structure, 110

Microsoft.NET framework, 512
Microsoft SQL Server 2014, 85–88
Microsoft SQL Server 2014 Express Advanced, 491
Microsoft SQL Server 2014 Management Studio, 492
Microsoft Transaction Server (MTS), 516
MIN, 107
Minimum cardinality, in entity-relationship model, 233,

234–235
Minimum cardinality enforcement action, 309

child required, 311–312
on child row, 312
documenting, 315
on parent row, 311

Integrated development environment (IDE), 532–533
Integrated tables, 47
Interface, 515
International Organization for Standardization (ISO), 76
Internet, 35, 499
Internet Information Services (IIS), 502
Internet Information Services Manager, 528
Interrelation constraint, 291
Intersection, 134
Intersection table, 294
Intrarelation constraint, 291
iPad, 499
iPhone, 35
IS-A relationship, 242
Isolated transaction, 468
Isolation level, 469

J
Java Database Connectivity (JDBC), 502, 522–526

Connection object, 524
DriverManager, 524
driver types, 522–523
ResultSetMetaData object, 524
ResultSet object, 524
Statement object, 524

Java Data Objects (JDO), 502
Java platform, 502, 522–526

Apache Tomcat, 525–526
driver types, 522–523
Java Server Pages and servlets, 524–525
JDBC, 522–524

Java programming language, 502
JavaServer Pages (JSP), 502
Java virtual machine, 523
JDBC, 522–524

driver types, 522–523
using, 523–524

JDBC Connection object, 524
JDBC DriverManager, 524
JDBC ResultSetMetaData object, 524
JDBC ResultSet object, 524
JDBC Statement object, 524
Join

equijoin, 125
explicit, 122
implicit, 122
inner, 122–123, 131
outer, 130–134
two or more tables with, 125

Joining two tables, 125

K
Keys, 177–180

alternate, 284
candidate, 177–178, 284
composite, 177
definition of, 177
foreign, 179–180
overlapping candidate, 186
primary, 178, 281, 283
surrogate, 178–179, 284

Keyset cursor, 471
Knowledge worker, 55

L
LAMP, 503
Language Integrated Query (LINQ), 513
Line-item pattern, 254

 Index 633

definition of, 54
examples, 188–196
verify in tables in database design, 291–292

NoSQL. See Not only SQL
NoSQL movement, 60–61
NOT NULL column, adding, 440–441
Not only SQL, 598–602

Hadoop Distributed File System, 602
MapReduce, 601–602
structured storage, 598–601

NULL status, 284–285
NULL value, 75, 179, 220–121

in SQL WHERE clauses, 106–107

O
Object, 515, 594
Object class, 515
Object Linking and Embedding (OLE), 514
Object-oriented DBMS (OODBMS), 59, 594
Object-oriented programming (OOP), 59, 594–595
Object persistence, 594
Object-relational database, 594–595
Object-relational DBMS, 59
ODBC conformance levels, 505
ODBC data source, 504, 506–512
ODBC Data Source Administrator, 507–508
ODBC driver, 504
ODBC driver manager, 504
ODBC multiple-tier driver, 505
ODBC single-tier driver, 504
ODBC SQL conformance levels, 506
ODBC standard, 503–512

architecture, 504–506
conformance levels, 505–506
data source name, creating, 506–512

OLAP cube, 582
OLAP report, 582–591
OLAP server, 590
OLE DB, 502, 514–517

goals of, 515–516
terminology, 516–517

One-to-many (1:N) relationship
defined, 233
recursive, 258–259
recursive, in database design, 304
strong entity, in database design, 293

One-to-one (1:1) relationship
defined, 233
recursive, 257–258
recursive, in database design, 303
strong entity, in database design, 292–293

OnLine Analytical Processing (OLAP), 567–568, 582–591
definition of, 567
report, 582–591
server, 590

Online transaction processing (OLTP) system, 69, 211
Open Database Connectivity (ODBC), 502. See also ODBC standard

conformance levels, 505, 506
Operational system

vs. business intelligence system, 567
definition of, 567

Optimistic locking, 465–466
Optional, 234
Optional-to-mandatory (O-M) relationship

defined, 235
in minimum cardinality design, 313
parent optional and child mandatory, 309

Optional-to-optional (O-O) relationship, 235

complication in, 315–316
definition of, 309
documenting, 314–315

child required, 315
parent required, 314–315

M-M relationship, 313–314
actions for, implementing, 313–314
special case, designing, 314

M-O relationship, 312–313
O-M relationship, 313
parent required, 310–315

on child row, 311
documenting, 314–315
on parent row, 310

summary of design decisions for, 316
Missing values, 220–221, 570
Mixed entity designs, 300–302
Mobile phone, 35, 499
Modification anomalies, 180–181
M score, 580
Multiuser databases, managing, 456–483

backup and recovery, 477–480
concurrency control, 459–472
database security, 472–477
DBMS product, 457, 480–482
distributed database processing, 592–594
object-relational databases, 594–595

Multivalue, multicolumn problem, 218–219
Multivalued attributes, 297–299
Multivalued dependency, 196–199, 214
MUST constraint, 305
MUST COVER constraint, 306, 307
MUST NOT constraint, 306
MySQL AUTO_INCREMENT property, 493
MySQL Community Server, 491
MySQL Installer 5.6 for Windows, 491
MySQL Workbench, 492

N
NetBeans IDE, 527–529, 532–533
.NET for Windows Store Apps, 513
.NET Framework, 512–522

OLE DB, 514–517
Non-ID-dependent entity relationships in database design, 299–300
Nonidentifying and identifying patterns, mixing, 253–256
Nonidentifying relationship, 239
Nonintegrated data, 570–571
Non-prime attribute, 186
Nonrepeatable read, 469
Normal forms, 180–199

definition of, 54, 180
history of, 181–182
modification anomalies, 180–181

Normalization
categories, 182

BCNF, 181, 185–186
DK/NF, 182, 199
1NF, 181, 182
2NF, 181, 183
3NF, 183–185
4NF, 182
5NF, 182, 199

in database design, 209–222
advantages/disadvantages of, 211–212
design problems, common, 217–222
read-only databases, designing, 214–217
table structure, assess, 210–211
updatable databases, designing, 211–214

634 Index

Q
Query by example (QBE), 69
Question mark (?) wildcard character, 105

R
Range constraint, 291
RDS (Relational DBMS Service), 597
ReadArtist.php file, 533–536
Read-committed isolation level, 470
Read-only database design, 214–217

customized duplicated tables, 215–217
denormalization, 215

Read-uncommitted isolation level, 470
Record, 37
Recordset, 515
Recovery via reprocessing, 477–478
Recovery via rollback/rollforward, 478–480
Recursive relationships, 257–260

created in database design, 303–304
N:M relationship, 304, 305
1:N relationship, 304
1:1 relationship, 303

patterns, 257–260
N:M relationship, 246
1:N relationship, 258–259
1:1 relationship, 257–258

Referential integrity (RI) action, 314
Referential integrity (RI) constraints, 47, 179
Relational database, 37
Relational model, 58
Relational model terminology, 168–180

alternative, 171–172
functional dependencies, 172–177
keys, 172, 177–180
relations, 168–170

Relations
characteristics of, 169–170
definition of, 169

Relationship
cardinalities, changing, 442–446

maximum cardinalities, 443–446
minimum cardinalities, 442–443
reducing cardinalities (with data loss),

445–446
creating in database design, 292–308

example of, 306–308
ID-dependent entities, 238–239
mixed entity designs, 300–302
non-ID-dependent entities, 239
recursive, 303–304
strong entities, 292–295
supertype and subtype, 241
ternary and higher-order, 304–306

definition of, 40
degree of, 232
entity, 231–233
between supertype and subtype entities, 302

Relationship class, 231
Relationship instance, 231
Repeatable-read isolation level, 470
Replication, 592
Reporting system, 567–568, 580–591

definition of, 567
OLAP, 582–591
RFM analysis, 580–591

Requirements analysis, 229
Resource locking, 462, 463

Oracle Big Data Appliance, 602
Oracle Database, 88–90
Oracle Database Express Edition 11g Release 2, 491
Oracle MySQL 5.6, 90–93. See also SQL statements,

submitting to DBMS
Oracle SQL Developer, 492
ORDER_ITEM table, 176–177
Original values, 520
Outer join, 130–134
Overlapping candidate key, 186
Owner entity, 239

P
Parallel LINQ (PLINQ), 513
Parent

changing, 442
defined, 233–234
in minimum cardinality design (See Minimum cardinality

 enforcement action)
Partially dependent, 183
Partial relationship, 241
Partitioning, 592
Passive repository, 482
Passwords, DBMS security and, 475
Patterns in forms, reports, and E-R models, 243–260

for-use-by-pattern, 256–257
ID-dependent entity, 247–254

archetype/instance pattern, 252–253
association pattern, 247–249
multivalued attribute pattern, 249–251

mixed identifying and nonidentifying patterns, 253–256
line-item pattern, 254–255
other patterns, 255–256

recursive patterns, 257–260
N:M relationship, 259–260
1:N relationship, 258–259
1:1 relationship, 257–258

strong entity patterns, 243–247
N:M relationships, 246
1:N relationships, 245–246
1:1 relationship, 243–244

Personal computer (PC), 35
Personal database system

definition of, 49
vs. enterprise-class, 49–52
Microsoft Access, 49–50

Pessimistic locking, 465–466
Phantom read, 469
PHP concatenation operator (.=), 544
PHP Data Objects (PDO), 539
PHP scripting language, 532
Pig, 602
PivotTable, 582
Point of Sale (POS) systems, 37
Portable Class Libraries, 513
POST method, 541
Prepared Statement objects, 524
Primary key, 178

definition of, 39
selecting in tables in database design, 281, 283

PrimaryKey property, 520
Procedural Language/SQL (PL/SQL), 492, 493
Programmer, 55
Project-Join Normal Form (PJ/NF), 199
Properties, 515
Property, 594
Proposed values, 520

 Index 635

data constraints with SQL, creating, 344–345
default values with SQL, creating, 344–246
1:1 relationships, implementing, 344
parent rows, implementing required, 343
SQL ALTER TABLE statement, 349–350
SQL CREATE INDEX statement, 351–352
SQL CREATE TABLE statement, 337, 338–339
SQL data types, variations in, 339
SQL DROP TABLE statement, 350–351
SQL scripts, 337–338
SQL TRUNCATE TABLE statement, 351

SQL DECLARE CURSOR statement, 470
SQL DELETE statement, 361
SQL DESC keyword, 99
SQL DISTINCT keyword, 93
SQL DROP INDEX statement, 351
SQL DROP TABLE statement, 213, 350–351
SQL EXCEPT operator, 137
SQL EXISTS comparison operator, 433
SQL FROM clause, 77
SQL GRANT statement, 473
SQL GROUP BY clause, 114
SQL HAVING clause, 116
SQL injection attack, 476–477, 552
SQL inner join, 131
SQL INNER JOIN phrase, 131
SQL IN operator, 101
SQL INSERT statement, 212–213, 352–359

bulk insert, 353
definition of, 352
using column names, 352–353

SQL INTERSECT operator, 136
SQL IS keyword, 106
SQL IS NOT NULL operator, 106
SQL IS NULL operator, 106
SQL JOIN keyword, 128
SQL JOIN ON syntax, 127–130
SQL join operation, 122
SQL JOIN operator, 122
SQL LEFT JOIN syntax, 133
SQL left outer join, 133
SQL LIKE operator, 103
SQL logical operators, 100–101
SQL MERGE statement, 360–361
SQL MINUS operator, 137
SQL NOT BETWEEN operator, 102
SQL NOT EXISTS comparison operator, 433–434
SQL NOT IN operator, 101
SQL NOT LIKE operator, 103
SQL NOT operator, 101
SQL ON clause, 128
SQL ON keyword, 128
SQL ORDER BY clause, 97–98
SQL OR operator, 100
SQL outer join, 132–133
SQL percent sign (%) wildcard character, 103
SQL/Persistent Stored Modules (SQL/PSM)

definition of, 76
embedding SQL in program code, 371–372

SQL REVOKE statement, 473
SQL RIGHT JOIN syntax, 133
SQL right outer join, 133
SQL ROLLBACK TRANSACTION statement, 466
SQL script file, 87, 89, 92
SQL scripts, creating and running, 492
SQL SELECT clause, 77
SQL SELECT…FOR XML statement, 554

Reverse engineered (RE), 436
RFM analysis, 580–582

Rollback, 477
Rollforward, 477
Routers, 499
Row, 37
RowKey, 599
Rowset, 515
R score, 580

S
Schema, 75, 492
Scripting languages, 501
Scrollable cursor, 471
Search button, 35
Search catalog, 37
Second normal form (2NF), 181, 183
Security. See Database security
SelectCommand object, 520
Self-describing, 47
Serializable isolation level, 470
Serializable transaction, 463
Server, 499
Server cluster, 592
Service provider, 516–517
Services, 37
Servlet, 523
Set, 134
Set operators, 134
Set theory, 134
Shared lock, 463
Shrinking phase, 464
Simple Object Access Protocol, 553
Single quotation marks (' ') in SQL WHERE clause, 95
SKU_DATA table, 174–175
Slowly changing dimension, 573
Smartphone, 35, 499
Snowflake schema, 574
SOAP, 553
Spreadsheet vs. table, 38
SQL ALL keyword, 136
SQL ALTER INDEX statement, 351
SQL ALTER TABLE statement, 349–350

columns, adding and dropping, 350
constraints, adding and dropping, 350
definition of, 349

SQL AND operator, 100
SQL AS keyword, 108
SQL asterisk (*) wildcard character, 78
SQL BEGIN TRANSACTION statement, 466
SQL BETWEEN operator, 102
SQL built-in aggregate functions, 107–111
SQL comment, 78
SQL COMMIT TRANSACTION statement, 466
SQL comparison operator, 95–96
SQL conformance level, 506
SQL COUNT(*) function, 210
SQL CREATE INDEX statement, 351–352
SQL CREATE TABLE statement

defined, 337
using, 338–339

SQL cursor, 470–472
SQL Data Control Language (DCL), 473
SQL DDL for managing table structure, 337–352

causal relationships, 344
database, creating, 337
database tables, creating, 339–343, 346

636 Index

SQL WHERE clause
character string patterns, 103–108
compound, 100
definition of, 77
NULL values, 106–107
options, 100–107
ranges in, 102–103
sets of values, using, 101–102
single quotation marks (' ') in, 95
wildcard characters in, 103–106

SQL WORK keyword, 467
Standard Generalized Markup Language (SGML), 553
Star schema, 573–578
Static cursor, 471
Step-by-Step method, 188–189
Stock-keeping unit (SKU), 71
Stored function, 373
Stored procedure, 493
Straight-to-BNCF method, 190
Strong entity, 238

relationships in database design, 292–295
N:M relationship, 294–295
1:N relationship, 293
1:1 relationship, 292–293

Strong password, 475
Structured Query Language (SQL). See SQL

(Structured Query Language)
Structured storage, 598–601
Student acceptance letter, 264–266
Subquery, correlated, 127
Subset, 134
Subtype, 240–241

supertype relationship with, 302
Subtype entity, 242
SUM, 107
Supertype, 240

subtype relationships with, 302
Supertype entity, 240
Surrogate key, 178–179

definition of, 40
selecting in tables in database design, 283

System data source, 506
System maintenance, 429
Systems analysis and design, 229, 280, 429
Systems development life cycle (SDLC), 229, 280, 429

T
TableName, 125
Tables

adding and dropping, 440–441, 446
columns, dropping, 441
NOT NULL column, adding, 440–441

assessing, 210–211
columns of, in SQL SELECT/FROM/WHERE

framework, 77–80
order in, specifying from single table, 79–80
shorthand notation for querying, 78

created for entities in database design, 281–292
candidate key, specifying, 284
column properties, specifying, 284–290

data constraints, 291
data type, 285–290
default value, 258 259
null status, 284–285

normalization, verify, 291–292
primary key, selecting, 281, 283

customized duplicated, in read-only database design, 215–217
definition of, 37

SQL SELECT/FROM/WHERE framework, 77–80
reading specified columns and rows from single table, 78–79
reading specified columns from single table, 78–79
reading specified rows from single table, 78–79
specifying column order in SQL queries from single table, 79–80

SQL SELECT * statement, 210
SQL Server Parallel Data Warehouse, 602
SQL set operators, 134–137
SQL statements, submitting to DBMS, 80–93

Microsoft Access 2013, 80–85
opening query window and running query, 84
opening query window in Design view, 82–83
processing SQL statements in, 82–85
saving query, 84–85

Microsoft SQL Server 2014, 86–88
running SQL query in SQL Server Management Studio, 86–88
saving SQL query as SQL script in SQL Server Management

Studio, 88
MySQL 5.6, 90–93

running SQL query in MySQL Workbench, 91–93
Oracle Database, 88–90

running SQL query in Oracle SQL Developer, 88–90
saving SQL script in Oracle SQL Developer, 90

SQL (Structured Query Language), 68–138
background, 76–77
for database construction and application processing, 44–45
definition of, 43, 69
expression

definition of, 111
in SQL SELECT statements, 111–114

introduction to, 68–138
normalizing with, in updatable database design, 212–213
queries

built-in functions used for, 107–111
calculations performed in, 107–114
definition of, 76
SQL SELECT statements, 111–114
two or more tables, 119–127

script
saving, in Oracle SQL Developer, 90
saving SQL query, as in SQL Server Management Studio, 88

set operators, 134–137
statements

categories of, 76–77
in DBMS, 44
DDL, 76
DML, 76
SELECT, 114
semicolon (;) for terminating, 78
submitting to DBMS (See SQL statements, submitting

to DBMS)
subqueries

vs. joins, 127
XML support, 76

SQL subquery, 120
SQL TOP function, 94
SQL TOP property, 210
SQL TOP PERCENT function, 94
SQL Transaction Control Language (TCL)

defined, 466
lock characteristics, declaring, 466–467

SQL TRUNCATE TABLE statement, 351
SQL underscore (_) wildcard character, 103
SQL UNION operator, 136
SQL UPDATE statement, 359–360

bulk updates, 359
definition of, 359
updating using values from other tables, 360

 Index 637

V
Venn diagrams, 134
Virtual computers, 595
Virtualization, 61, 595–596
Virtual machine, 595
Virtual machine manager, 595

W
WAMP, 503
Weak entity, 238–241
Web browser, 35
Web database processing environment, 501–502
Web database processing with PHP, 526–539

challenges for, 551–552
connecting to database, 536–537
disconnecting from database, 538–539
HTML pages, 529–530
index.html Web page, 530–532
NetBeans IDE and, 527–529
RecordSet, creating, 537
results, displaying, 538
using PHP, 532–539

Web page examples with PHP, 539–552
invoking stored procedure, 545–551
PDO, using, 545
updating tables, 540–545

Web server environment, 498–555
ADO and ADO.NET, 517–522
database server access standards, 502–503
Java platform, 522–526
Microsoft.NET Framework, 512–517
ODBC standard, 503–512
web database application, 500
Web database processing environment, 501–502
Web database processing with PHP, 526–539
XML, 552–554

Web sites, 35
Web 2.0, 35
Wildcard characters

asterisk (*), 78, 104
percent sign (%), 103
question mark (?), 105
in SQL WHERE clause, 103–106
underscore (_), 103

Windows Azure, 597
Worksheet, 38
World Wide Web Consortium (W3C), 529
World Wide Web (the Web; WWW), 35
wwwroot folder, 527

X
XML (Extensible Markup Language), 76. See also XML Schema

documents created from database data, 554–555
history of, 57, 60
importance of, 552–554
as markup language, 553–554

XML Schema, 521, 553, 556

integrated, 47
names, changing, 438–439
single, SQL enhancements for, 93–107

reading specified rows from, 93–97
results, sorting, 97–100
SQL WHERE clause options, 100–107

vs. spreadsheet, 38
SQL queries, 119–127

Tablespace, 492
Tablet, 499
Tabular data providers, 516
Task Parallel Library (TPL), 513
Ternary relationship, 232, 304–306

MUST constraint, 305
MUST COVER constraint, 306, 307
MUST NOT constraint, 306

Third normal form (3NF), 183–185
Three-tier architecture, 501
Time dimension, 573
Too much data, 571
Top level query, 120
Total relationship, 241
Transaction, 460
Transaction, concurrent. See Concurrency control
Transactional system. See Operational system
Transaction control language (TCL), 77
Transaction isolation level, 469–470, 494
Transaction-level consistency, 469
Transact-SQL (T-SQL), 492, 493
Transitive dependency, 184
Triggers, 313, 493
Tuples, 171
Two-phase locking, 463
Two-tier architecture, 501

U
Unary relationship. See Recursive relationships
Underscore (_) wildcard character, 103
Unified Modeling Language (UML), 236
Union, 134
Union rule, 174
UniqueConstraint, 520
Updatable database design, 211–214

advantages/disadvantages of normalization, 211–212
BCNF not used in, 213–214
functional dependencies, 212
multivalued dependencies in, 214
normalizing with SQL, 212–213
referential integrity constraints in, 212–214,

220, 221
Update anomaly, 180
UpdateCommand object, 520
User, 43
User data source, 506
User-defined function, 373, 493
Username, 474
Users, 37

	Cover
	Title Page
	Copyright Page
	Supplements
	Acknowledgments
	About the Authors
	Contents
	Preface
	Part 1 Getting Started
	Chapter 1: Introduction
	Chapter Objectives
	The Importance of Databases in the Internet and Smartphone World
	The Characteristics of Databases
	A Note on Naming Conventions
	A Database Has Data and Relationships
	Databases Create Information

	Database Examples
	Single-User Database Applications
	Multiuser Database Applications
	E-Commerce Database Applications
	Reporting and Data Mining Database Applications

	The Components of a Database System
	Database Applications and SQL
	The DBMS
	The Database

	Personal Versus Enterprise-Class Database Systems
	What Is Microsoft Access?
	What Is an Enterprise-Class Database System?

	Database Design
	Database Design from Existing Data
	Database Design for New Systems Development
	Database Redesign

	What You Need to Learn
	A Brief History of Database Processing
	The Early Years
	The Emergence and Dominance of the Relational Model
	Post-Relational Developments

	Summary
	Key Terms
	Review Questions
	Project Questions

	Chapter 2: Introduction to Structured Query Language
	Chapter Objectives
	Cape Codd Outdoor Sports
	Business Intelligence Systems and Data Warehouses
	The Cape Codd Outdoor Sports Extracted Retail Sales Data
	RETAIL_ORDER Data
	ORDER_ITEM Data
	SKU_DATA Table
	CATALOG_SKU_20## Tables
	The Complete Cape Codd Data Extract Schema
	Data Extracts Are Common

	SQL Background
	The SQL SELECT/FROM/WHERE Framework
	Reading Specified Columns from a Single Table
	Specifying Column Order in SQL Queries from a Single Table

	Submitting SQL Statements to the DBMS
	Using SQL in Microsoft Access 2013
	Using SQL in Microsoft SQL Server 2014
	Using SQL in Oracle Database
	Using SQL in Oracle MySQL 5.6

	SQL Enhancements for Querying a Single Table
	Reading Specified Rows from a Single Table
	Reading Specified Columns and Rows from a Single Table
	Sorting the SQL Query Results
	SQL WHERE Clause Options

	Performing Calculations in SQL Queries
	Using SQL Built-in Aggregate Functions
	SQL Expressions in SQL SELECT Statements

	Grouping Rows in SQL SELECT Statements
	Querying Two or More Tables with SQL
	Querying Multiple Tables with Subqueries
	Querying Multiple Tables with Joins
	Comparing Subqueries and Joins
	The SQL JOIN ON Syntax
	Outer Joins
	Using SQL Set Operators

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Part 2 Database Design
	Chapter 3: The Relational Model and Normalization
	Chapter Objectives
	Relational Model Terminology
	Relations
	Characteristics of Relations
	Alternative Terminology
	To Key, or Not to Key—That Is the Question!
	Functional Dependencies
	Finding Functional Dependencies
	Keys

	Normal Forms
	Modification Anomalies
	A Short History of Normal Forms
	Normalization Categories
	From First Normal Form to Boyce-Codd Normal Form Step by Step
	Eliminating Anomalies from Functional Dependencies with BCNF
	Eliminating Anomalies from Multivalued Dependencies
	Fifth Normal Form
	Domain/Key Normal Form

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 4: Database Design Using Normalization
	Chapter Objectives
	Assess Table Structure
	Designing Updatable Databases
	Advantages and Disadvantages of Normalization
	Functional Dependencies
	Normalizing with SQL
	Choosing Not to Use BCNF
	Multivalued Dependencies

	Designing Read-Only Databases
	Denormalization
	Customized Duplicated Tables

	Common Design Problems
	The Multivalue, Multicolumn Problem
	Inconsistent Values
	Missing Values
	The General-Purpose Remarks Column

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 5: Data Modeling with the Entity-Relationship Model
	Chapter Objectives
	The Purpose of a Data Model
	The Entity-Relationship Model
	Entities
	Attributes
	Identifiers
	Relationships
	Maximum Cardinality
	Minimum Cardinality
	Entity-Relationship Diagrams and Their Versions
	Variations of the E-R Model
	E-R Diagrams Using the IE Crow’s Foot Model
	Strong Entities and Weak Entities
	ID-Dependent Entities
	Non-ID-Dependent Weak Entities
	The Ambiguity of the Weak Entity
	Subtype Entities

	Patterns in Forms, Reports, and E-R Models
	Strong Entity Patterns
	ID-Dependent Relationships
	Mixed Identifying and Nonidentifying Patterns
	The For-Use-By Pattern
	Recursive Patterns

	The Data Modeling Process
	The College Report
	The Department Report
	The Department/Major Report
	The Student Acceptance Letter

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 6: Transforming Data Models into Database Designs
	Chapter Objectives
	The Purpose of a Database Design
	Create a Table for Each Entity
	Selecting the Primary Key
	Specifying Alternate Keys
	Specifying Column Properties
	Verify Normalization

	Create Relationships
	Relationships Between Strong Entities
	Relationships Using ID-Dependent Entities
	Relationships with a Weak Non-ID-Dependent Entity
	Relationships in Mixed Entity Designs
	Relationships Between Supertype and Subtype Entities
	Recursive Relationships
	Representing Ternary and Higher-Order Relationships
	Relational Representation of the Highline University Data Model

	Design for Minimum Cardinality
	Actions when the Parent Is Required
	Actions when the Child Is Required
	Implementing Actions for M-O Relationships
	Implementing Actions for O-M Relationships
	Implementing Actions for M-M Relationships
	Designing Special Case M-M Relationships
	Documenting the Minimum Cardinality Design
	An Additional Complication
	Summary of Minimum Cardinality Design

	The View Ridge Gallery Database
	View Ridge Gallery Database Summary of Requirements
	The View Ridge Data Model
	Database Design with Data Keys
	Minimum Cardinality Enforcement for Required Parents
	Minimum Cardinality Enforcement for the Required Child
	Column Properties for the View Ridge Database Design Tables

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Part 3 Database Implementation
	Chapter 7: SQL for Database Construction and Application Processing
	Chapter Objectives
	The Importance of Working with an Installed DBMS Product
	The View Ridge Gallery Database
	SQL DDL and DML
	Managing Table Structure with SQL DDL
	Creating the VRG Database
	Using SQL Scripts
	Using the SQL CREATE TABLE Statement
	Variations in SQL Data Types and SQL/PSM
	Creating the VRG Database ARTIST Table
	Creating the VRG Database WORK Table and the 1:N ARTIST-to-WORK Relationship
	Implementing Required Parent Rows
	Implementing 1:1 Relationships
	Casual Relationships
	Creating Default Values and Data-Constraints with SQL
	Creating the VRG Database Tables
	The SQL ALTER TABLE Statement
	The SQL DROP TABLE Statement
	The SQL TRUNCATE TABLE Statement
	The SQL CREATE INDEX Statement

	SQL DML Statements
	The SQL INSERT Statement
	Populating the VRG Database Tables
	The SQL UPDATE Statement
	The SQL MERGE Statement
	The SQL DELETE Statement

	Using SQL Views
	Using SQL Views to Hide Columns and Rows
	Using SQL Views to Display Results of Computed Columns
	Using SQL Views to Hide Complicated SQL Syntax
	Layering Built-in Functions
	Using SQL Views for Isolation, Multiple Permissions, and Multiple Triggers
	Updating SQL Views

	Embedding SQL in Program Code
	SQL/Persistent Stored Modules (SQL/PSM)
	Using SQL User-Defined Functions
	Using SQL Triggers
	Using Stored Procedures
	Comparing User-Defined Functions, Triggers, and Stored Procedures

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 8: Database Redesign
	Chapter Objectives
	The Need for Database Redesign
	SQL Statements for Checking Functional Dependencies
	What Is a Correlated Subquery

	How Do I Analyze an Existing Database
	Reverse Engineering
	Dependency Graphs
	Database Backup and Test Databases

	Changing Table Names and Table Columns
	Changing Table Names
	Adding and Dropping Columns
	Changing a Column Data Type or Column Constraints
	Adding and Dropping Constraints

	Changing Relationship Cardinalities
	Changing Minimum Cardinalities
	Changing Maximum Cardinalities

	Adding and Deleting Tables and Relationships
	Forward Engineering
	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Part 4 Multiuser Database Processing
	Chapter 9: Managing Multiuser Databases
	Chapter Objectives
	The Importance of Working with an Installed DBMS Product
	Database Administration
	Managing the Database Structure

	Concurrency Control
	The Need for Atomic Transactions
	Resource Locking
	Optimistic Versus Pessimistic Locking
	SQL Transaction Control Language and Declaring Lock Characteristics
	Implicit and Explicit COMMIT TRANSACTION
	Consistent Transactions
	Transaction Isolation Level
	SQL Cursors

	Database Security
	Processing Rights and Responsibilities
	DBMS Security
	DBMS Security Guidelines
	Application Security
	The SQL Injection Attack

	Database Backup and Recovery
	Recovery via Reprocessing
	Recovery via Rollback/Rollforward

	Managing the DBMS
	Maintaining the Data Repository

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 10: Managing Databases with Microsoft SQL Server 2014, Oracle Database, and MySQL 5.6
	Chapter Objectives
	Installing the DBMS
	Using the DBMS Database Administration and Database Development Utilities
	Creating a Database
	Creating and Running SQL Scripts
	Reviewing the Database Structure in the DBMS GUI Utility
	Creating and Populating the View Ridge Gallery VRG Database Tables
	Creating SQL Views for the View Ridge Gallery VRG Database
	Database Application Logic and SQL/Persistent Stored Modules (SQL/PSM)
	DBMS Concurrency Control
	DBMS Security
	DBMS Database Backup and Recovery
	Other DBMS Topics Not Discussed
	Choose Your DBMS Product(s)!
	Summary
	Key Terms
	Project Questions

	Part 5 Database Access Standards
	Chapter 11: The Web Server Environment
	Chapter Objectives
	A Web Database Application for the View Ridge Gallery
	The Web Database Processing Environment
	Database Server Access Standards
	The ODBC Standard
	ODBC Architecture
	Conformance Levels
	Creating an ODBC Data Source Name

	The Microsoft.NET Framework and ADO.NET
	OLE DB
	ADO and ADO.NET
	The ADO.NET Object Model

	The Java Platform
	JDBC
	Java Server Pages (JSP) and Servlets
	Apache Tomcat

	Web Database Processing with PHP
	Web Database Processing with PHP and the NetBeans IDE
	Getting Started with HTML Web Pages
	The index.html Web Page
	Creating the index.html Web Page
	Using PHP

	Web Page Examples with PHP
	Example 1: Updating a Table
	Example 2: Using PHP Data Objects (PDO)
	Example 3: Invoking a Stored Procedure
	Challenges for Web Database Processing
	SQL Injection Attacks

	Extensible Markup Language (XML)
	The Importance of XML
	XML as a Markup Language

	Creating XML Documents from Database Data
	Using the SQL SELECT . . . FOR XML Statement

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Chapter 12: Big Data, Data Warehouses, and Business Intelligence Systems
	Chapter Objectives
	Business Intelligence Systems
	The Relationship Between Operational and BI Systems
	Reporting Systems and Data Mining Applications
	Reporting Systems
	Data Mining Applications

	Data Warehouses and Data Marts
	Components of a Data Warehouse
	Data Warehouses Versus Data Marts
	Dimensional Databases

	Reporting Systems
	RFM Analysis
	OLAP

	Data Mining
	Distributed Database Processing
	Types of Distributed Databases
	Challenges of Distributed Databases

	Object-Relational Databases
	Virtualization
	Cloud Computing
	Big Data and the Not Only SQL Movement
	Column Family Databases
	MapReduce
	Hadoop

	Summary
	Key Terms
	Review Questions
	Project Questions
	Case Questions
	The Queen Anne Curiosity Shop
	Morgan Importing

	Appendices: ONLINE APPENDICES: SEE PAGE 610 FOR INSTRUCTIONS
	Bibliography
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

		2016-02-23T13:29:46+0000
	Preflight Ticket Signature

