
Texts in Computer Science

Guide
to Discrete
Mathematics
An Accessible Introduction to the
History, Theory, Logic and Applications

Second Edition

Gerard O’Regan

Texts in Computer Science

Series Editors

David Gries, Department of Computer Science, Cornell University, Ithaca, NY,
USA

Orit Hazzan , Faculty of Education in Technology and Science, Technion—Israel
Institute of Technology, Haifa, Israel

https://orcid.org/0000-0002-8627-0997

Titles in this series now included in the Thomson Reuters Book Citation Index!
‘Texts in Computer Science’ (TCS) delivers high-quality instructional content for
undergraduates and graduates in all areas of computing and information science,
with a strong emphasis on core foundational and theoretical material but inclusive
of some prominent applications-related content. TCS books should be reasonably
self-contained and aim to provide students with modern and clear accounts of topics
ranging across the computing curriculum. As a result, the books are ideal for
semester courses or for individual self-study in cases where people need to expand
their knowledge. All texts are authored by established experts in their fields,
reviewed internally and by the series editors, and provide numerous examples,
problems, and other pedagogical tools; many contain fully worked solutions.

The TCS series is comprised of high-quality, self-contained books that have
broad and comprehensive coverage and are generally in hardback format and
sometimes contain color. For undergraduate textbooks that are likely to be more
brief and modular in their approach, require only black and white, and are under
275 pages, Springer offers the flexibly designed Undergraduate Topics in Computer
Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/3191

http://www.springer.com/series/3191

Gerard O’Regan

Guide to Discrete
Mathematics
An Accessible Introduction
to the History, Theory, Logic
and Applications

Second Edition

123

Gerard O’Regan
University of Central Asia
Naryn, Kyrgyzstan

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-030-81587-5 ISBN 978-3-030-81588-2 (eBook)
https://doi.org/10.1007/978-3-030-81588-2

1st edition: © Springer International Publishing Switzerland 2016
2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81588-2

To
My wonderful goddaughter
Niamh O’Regan

Preface

Overview

The objective of this book is to give the reader a flavour of discrete mathematics
and its applications to the computing field. The goal is to provide a broad and
accessible guide to the fundamentals of discrete mathematics, and to show how it
may be applied to various areas in computing such as cryptography, coding theory,
formal methods, language theory, computability, artificial intelligence, the theory of
databases and software reliability. The emphasis is on both theory and applications,
rather than on the study of mathematics for its own sake.

There are many existing books on discrete mathematics, and while many of these
provide more in-depth coverage on selected topics, this book is different in that it
aims to provide a broad and accessible guide to the reader, and to show the rich
applications of discrete mathematics in a wide number of areas in the computing
field.

Each chapter of this book could potentially be a book in its own right, and so
there are limits to the depth of coverage. However, the author hopes that this book
will motivate and stimulate the reader, and encourage further study of the more
advanced texts.

Organization and Features

Chapter 1 discusses the contributions made by early civilizations to computing.
This includes work done by the Babylonians, Egyptians and Greeks. The Egyptians
applied mathematics to solving practical problems such as the construction of
pyramids. The Greeks made major contributions to mathematics and geometry.

Chapter 2 provides an introduction to fundamental building blocks in discrete
mathematics including sets, relations and functions. A set is a collection of
well-defined objects and it may be finite or infinite. A relation between two sets A
and B indicates a relationship between members of the two sets, and is a subset
of the Cartesian product of the two sets. A function is a special type of relation such
that for each element in A, there is at most one element in the codomain B.
Functions may be partial or total and injective, surjective or bijective.

vii

Chapter 3 presents the fundamentals of number theory, and discusses prime
number theory and the greatest common divisor and least common multiple of two
numbers. We also discuss the representation of numbers on a computer.

Chapter 4 discusses mathematical induction and recursion. Induction is a com-
mon proof technique in mathematics, and there are two parts to a proof by induction
(the base case and the inductive step). We discuss strong and weak induction, and
we discuss how recursion is used to define sets, sequences and functions. This leads
us to structural induction, which is used to prove properties of recursively defined
structures.

Chapter 5 discusses sequences and series and permutations and combinations.
Arithmetic and geometric sequences and series are discussed, and we discuss
applications of geometric sequences and series to the calculation of compound
interest and annuities.

Chapter 6 discusses algebra and we discuss simple and simultaneous equations,
including the method of elimination and the method of substitution to solve
simultaneous equations. We show how quadratic equations may be solved by
factorization, completing the square or using the quadratic formula. We present the
laws of logarithms and indices. We discuss various structures in abstract algebra,
including monoids, groups, rings, integral domains, fields and vector spaces.

Chapter 7 discusses automata theory, including finite state machines, pushdown
automata and Turing machines. Finite-state machines are abstract machines that are
in only one state at a time, and the input symbol causes a transition from the current
state to the next state. Pushdown automata have greater computational power than
finite-state machines, and they contain extra memory in the form of a stack from
which symbols may be pushed or popped. The Turing machine is the most powerful
model for computation, and this theoretical machine is equivalent to an actual
computer in the sense that it can compute exactly the same set of functions.

Chapter 8 discusses matrices including 2 � 2 and general m � n matrices.
Various operations such as the addition and multiplication of matrices are con-
sidered, and the determinant and inverse of a matrix is discussed. The application of
matrices to solving a set of linear equations using Gaussian elimination is
considered.

Chapter 9 discusses graph theory where a graph G = (V, E) consists of vertices
and edges. It is a practical branch of mathematics that deals with the arrangements
of vertices and edges between them, and it has been applied to practical problems
such as the modelling of computer networks, determining the shortest driving route
between two cities and the travelling salesman problem.

Chapter 10 discusses cryptography, which is an important application of number
theory. The code-breaking work done at Bletchley Park in England during the
Second World War is discussed, and the fundamentals of cryptography, including
private and public key cryptosystems, are discussed.

viii Preface

Chapter 11 presents coding theory and is concerned with error detection and
error correction codes. The underlying mathematics of coding theory is abstract
algebra, including group theory, ring theory, fields and vector spaces.

Chapter 12 discusses language theory and we discuss grammars, parse trees and
derivations from a grammar. The important area of programming language
semantics is discussed, including axiomatic, denotational and operational
semantics.

Chapter 13 discusses computability and decidability. The Church–Turing thesis
states that anything that is computable is computable by a Turing machine. Church
and Turing showed that mathematics is not decidable, in that there is no mechanical
procedure (i.e. algorithm) to determine whether an arbitrary mathematical propo-
sition is true or false, and so the only way is to determine the truth or falsity of a
statement is try to solve the problem.

Chapter 14 presents a short history of logic, and we discuss Greek contributions
to syllogistic logic, stoic logic, fallacies and paradoxes. Boole’s symbolic logic and
its application to digital computing is discussed, and we consider Frege’s work on
predicate logic.

Chapter 15 provides an introduction to propositional and predicate logic.
Propositional logic may be used to encode simple arguments that are expressed in
natural language, and to determine their validity. The nature of mathematical proof
is discussed, and we present proof by truth tables, semantic tableaux and natural
deduction. Predicate logic allows complex facts about the world to be represented,
and new facts may be determined via deductive reasoning. Predicate calculus
includes predicates, variables and quantifiers, and a predicate is a characteristic or
property that the subject of a statement can have.

Chapter 16 presents some advanced topics in logic including fuzzy logic, tem-
poral logic, intuitionistic logic, undefined values, theorem provers and the appli-
cations of logic to AI. Fuzzy logic is an extension of classical logic that acts as a
mathematical model for vagueness. Temporal logic is concerned with the expres-
sion of properties that have time dependencies, such as properties about the past,
present and future. Intuitionism was a controversial theory on the foundations of
mathematics based on a rejection of the law of the excluded middle, and an
insistence on constructive existence. We discuss three approaches to deal with
undefined values, including the logic of partial functions; Dijkstra’s approach with
his cand and cor operators; and Parnas’ approach which preserves a classical
two-valued logic.

Chapter 17 discusses the nature of proof and theorem proving, and we discuss
automated and interactive theorem provers. We discuss the nature of formal
mathematical proof, and consider early attempts at the automation of proof in the
1960s including the Logic Theorist (LT) and the Geometry Machine.

Preface ix

Chapter 18 provides an introduction to the important field of software engi-
neering. The birth of the discipline was at the Garmisch conference in Germany in
the late 1960s. The extent to which mathematics should be employed in software
engineering is discussed, and this remains a topic of active debate. We discuss some
of the early mathematical contributions to software engineering including the work
of Floyd and Hoare.

Chapter 19 discusses software reliability and dependability, and covers topics
such as software reliability, the Cleanroom methodology, system availability, safety
and security critical systems and dependability engineering. Software reliability is
the probability that the program works correctly without failure for a period of time,
and is generally expressed as the mean time to failure.

Chapter 20 discusses formal methods, which consist of a set of techniques that
provide an extra level of confidence in the correctness of the software. They may be
employed to formally state the requirements of the proposed system, and to derive a
program from its mathematical specification. They may be used to give a rigorous
proof that the implemented program satisfies its specification.

Chapter 21 presents the Z specification language, which is one of the most
widely used formal methods. It was developed at Oxford University in the U.K.

Chapter 22 discusses statistics which is an empirical science that is concerned
with the collection, organization, analysis, interpretation and presentation of data.
We discuss sampling; the average and spread of a sample; the abuse of statistics;
frequency distributions; variance and standard deviation; correlation and regression;
statistical inference; and hypothesis testing.

Chapter 23 discusses probability which is a branch of mathematics that is
concerned with measuring uncertainty and random events. We discuss discrete and
continuous random variables; probability distributions such as the binomial and
normal distributions; variance and standard deviation; confidence intervals; tests of
significance; the central limit theorem; Bayesianism; and queueing theory.

Chapter 24 discusses operations research which is a multi-disciplinary field that
is concerned with the application of mathematical and analytic techniques to assist
in decision-making. It employs techniques such as mathematical modelling, sta-
tistical analysis and mathematical optimization as part of its goal to achieve optimal
(or near-optimal) solutions to complex decision-making problems.

Chapter 25 discusses basic financial mathematics, and we discuss simple and
compound interest, annuities and mortgages. We discuss the basic mathematics
used in calculating simple and compound interest, as well as calculating the present
or future value of a payment. We discuss the mathematics of annuities (a sequence
of fixed equal payments made over a period of time), and this is the usual way in
which a loan or mortgage is paid back.

x Preface

Audience

The audience of this book includes computer science students who wish to gain a
broad and accessible overview of discrete mathematics and its applications to the
computing field. The book will also be of interest to students of mathematics who
are curious as to how discrete mathematics is applied to the computing field. The
book will also be of interest to the motivated general reader.

Cork, Ireland Gerard O’Regan

Acknowledgments I am deeply indebted to my family and friends who supported my efforts in
this endeavour, and a special thanks to the team at Springer. This book is dedicated to my
goddaughter (Niamh O’Regan), and to wish her every joy and happiness in life (and my apologies
for being a hopeless godfather).

Preface xi

Contents

1 Mathematics in Civilization . 1
1.1 Introduction . 1
1.2 The Babylonians . 4
1.3 The Egyptians . 6
1.4 The Greeks . 9
1.5 The Romans . 18
1.6 Islamic Influence . 21
1.7 Chinese and Indian Mathematics . 23
1.8 Review Questions . 24
1.9 Summary . 25
References . 25

2 Sets, Relations and Functions . 27
2.1 Introduction . 27
2.2 Set Theory . 28

2.2.1 Set Theoretical Operations . 30
2.2.2 Properties of Set Theoretical Operations 33
2.2.3 Russell’s Paradox . 34
2.2.4 Computer Representation of Sets 35

2.3 Relations . 36
2.3.1 Reflexive, Symmetric and Transitive Relations 37
2.3.2 Composition of Relations . 40
2.3.3 Binary Relations . 41
2.3.4 Applications of Relations . 42

2.4 Functions . 44
2.5 Application of Functions . 49
2.6 Review Questions . 52
2.7 Summary . 52
References . 53

3 Number Theory . 55
3.1 Introduction . 55
3.2 Elementary Number Theory . 57

xiii

3.3 Prime Number Theory . 61
3.3.1 Algorithms . 62
3.3.2 Greatest Common Divisors (GCD) 64
3.3.3 Least Common Multiple (LCM) 65
3.3.4 Euclid’s Algorithm . 66
3.3.5 Distribution of Primes . 68

3.4 Theory of Congruences . 70
3.5 Binary System and Computer Representation of Numbers 74
3.6 Review Questions . 77
3.7 Summary . 77
References . 78

4 Mathematical Induction and Recursion . 79
4.1 Introduction . 79
4.2 Strong Induction . 82
4.3 Recursion . 84
4.4 Structural Induction . 86
4.5 Review Questions . 87
4.6 Summary . 87
Reference . 88

5 Sequences, Series, and Permutations and Combinations 89
5.1 Introduction . 89
5.2 Sequences and Series . 89
5.3 Arithmetic and Geometric Sequences 90
5.4 Arithmetic and Geometric Series . 91
5.5 Simple and Compound Interest . 93
5.6 Time Value of Money and Annuities 94
5.7 Permutations and Combinations . 96
5.8 Review Questions . 100
5.9 Summary . 101

6 Algebra . 103
6.1 Introduction . 103
6.2 Simple and Simultaneous Equations . 103
6.3 Quadratic Equations . 107
6.4 Indices and Logarithms . 109
6.5 Horner’s Method for Polynomials . 111
6.6 Abstract Algebra . 112

6.6.1 Monoids and Groups . 113
6.6.2 Rings . 114
6.6.3 Fields . 115
6.6.4 Vector Spaces . 116

6.7 Review Questions . 118

xiv Contents

6.8 Summary . 119
Reference . 119

7 Automata Theory . 121
7.1 Introduction . 121
7.2 Finite-State Machines . 122
7.3 Pushdown Automata . 125
7.4 Turing Machines . 127
7.5 Hybrid Automata . 129
7.6 Review Questions . 130
7.7 Summary . 131
Reference . 131

8 Matrix Theory . 133
8.1 Introduction . 133
8.2 Two � Two Matrices . 134
8.3 Matrix Operations . 137
8.4 Determinants . 139
8.5 Eigen Vectors and Values . 141
8.6 Gaussian Elimination . 142
8.7 Business Applications of Matrices . 144
8.8 Review Questions . 145
8.9 Summary . 145
References . 146

9 Graph Theory . 147
9.1 Introduction . 147
9.2 Undirected Graphs . 148

9.2.1 Hamiltonian Paths . 153
9.3 Trees . 154

9.3.1 Binary Trees . 155
9.4 Graph Algorithms . 155
9.5 Graph Colouring and Four-Colour Problem 156
9.6 Review Questions . 157
9.7 Summary . 158
References . 159

10 Cryptography . 161
10.1 Introduction . 161
10.2 Breaking the Enigma Codes . 163
10.3 Cryptographic Systems . 166
10.4 Symmetric Key Systems . 166
10.5 Public Key Systems . 171

10.5.1 RSA Public Key Cryptosystem 173
10.5.2 Digital Signatures . 174

Contents xv

10.6 Review Questions . 175
10.7 Summary . 175
References . 176

11 Coding Theory . 177
11.1 Introduction . 177
11.2 Mathematical Foundations . 178
11.3 Simple Channel Code . 179
11.4 Block Codes . 180

11.4.1 Error Detection and Correction 182
11.5 Linear Block Codes . 183

11.5.1 Parity Check Matrix . 186
11.5.2 Binary Hamming Code . 186
11.5.3 Binary Parity-Check Code . 188

11.6 Miscellaneous Codes in Use . 188
11.7 Review Questions . 188
11.8 Summary . 189
References . 189

12 Language Theory and Semantics . 191
12.1 Introduction . 191
12.2 Alphabets and Words . 192
12.3 Grammars . 193

12.3.1 Backus Naur Form . 195
12.3.2 Parse Trees and Derivations 197

12.4 Programming Language Semantics . 198
12.4.1 Axiomatic Semantics . 200
12.4.2 Operational Semantics . 201
12.4.3 Denotational Semantics . 202

12.5 Lambda Calculus . 203
12.6 Lattices and Order . 205

12.6.1 Partially Ordered Sets . 205
12.6.2 Lattices . 207
12.6.3 Complete Partial Orders . 209
12.6.4 Recursion . 209

12.7 Review Questions . 211
12.8 Summary . 211
References . 212

13 Computability and Decidability . 213
13.1 Introduction . 213
13.2 Logicism and Formalism . 214
13.3 Decidability . 216
13.4 Computability . 218

xvi Contents

13.5 Computational Complexity . 222
13.6 Review Questions . 223
13.7 Summary . 223
References . 224

14 A Short History of Logic . 225
14.1 Introduction . 225
14.2 Syllogistic Logic . 226
14.3 Paradoxes and Fallacies . 227
14.4 Stoic Logic . 229
14.5 Boole’s Symbolic Logic . 231

14.5.1 Switching Circuits and Boolean Algebra 233
14.6 Application of Symbolic Logic to Digital Computing 235
14.7 Frege . 236
14.8 Review Questions . 237
14.9 Summary . 238
References . 239

15 Propositional and Predicate Logic . 241
15.1 Introduction . 241
15.2 Propositional Logic . 242

15.2.1 Truth Tables . 243
15.2.2 Properties of Propositional Calculus 245
15.2.3 Proof in Propositional Calculus 247
15.2.4 Semantic Tableaux in Propositional Logic 250
15.2.5 Natural Deduction . 252
15.2.6 Sketch of Formalization of Propositional

Calculus . 253
15.2.7 Applications of Propositional Calculus 254
15.2.8 Limitations of Propositional Calculus 256

15.3 Predicate Calculus . 256
15.3.1 Sketch of Formalization of Predicate Calculus 259
15.3.2 Interpretation and Valuation Functions 261
15.3.3 Properties of Predicate Calculus 262
15.3.4 Applications of Predicate Calculus 262
15.3.5 Semantic Tableaux in Predicate Calculus 263

15.4 Review Questions . 265
15.5 Summary . 266
References . 267

16 Advanced Topics in Logic . 269
16.1 Introduction . 269
16.2 Fuzzy Logic . 269
16.3 Temporal Logic . 271

Contents xvii

16.4 Intuitionist Logic . 273
16.5 Undefined Values . 274

16.5.1 Logic of Partial Functions . 275
16.5.2 Parnas Logic . 277
16.5.3 Dijkstra and Undefinedness 278

16.6 Logic and AI . 280
16.7 Review Questions . 284
16.8 Summary . 284
References . 285

17 The Nature of Theorem Proving . 287
17.1 Introduction . 287
17.2 Early Automation of Proof . 289
17.3 Interactive Theorem Provers . 291
17.4 A Selection of Theorem Provers . 294
17.5 Review Questions . 294
17.6 Summary . 295
References . 296

18 Software Engineering Mathematics . 297
18.1 Introduction . 297
18.2 What is Software Engineering? . 299
18.3 Early Software Engineering Mathematics 304
18.4 Mathematics in Software Engineering 307
18.5 Software Inspections and Testing . 308
18.6 Process Maturity Models . 309
18.7 Review Questions . 310
18.8 Summary . 311
References . 311

19 Software Reliability and Dependability . 313
19.1 Introduction . 313
19.2 Software Reliability . 314

19.2.1 Software Reliability and Defects 315
19.2.2 Cleanroom Methodology . 317
19.2.3 Software Reliability Models 318

19.3 Dependability . 320
19.4 Computer Security . 322
19.5 System Availability . 323
19.6 Safety-Critical Systems . 324
19.7 Review Questions . 325
19.8 Summary . 325
References . 326

xviii Contents

20 Formal Methods . 327
20.1 Introduction . 327

20.1.1 Definition 20.1 (Formal Specification) 327
20.2 Why Should We Use Formal Methods? 329

20.2.1 Comment 20.1 (Missile Safety) 330
20.3 Applications of Formal Methods . 331
20.4 Tools for Formal Methods . 331
20.5 Approaches to Formal Methods . 332

20.5.1 Model-Oriented Approach . 332
20.5.2 Axiomatic Approach . 333
20.5.3 Comment 20.2 (Axiomatic Approach) 333

20.6 Proof and Formal Methods . 334
20.7 The Future of Formal Methods . 335
20.8 The Vienna Development Method . 335
20.9 VDM♣, the Irish School of VDM . 336
20.10 The Z Specification Language . 338
20.11 The B Method . 339
20.12 Predicate Transformers and Weakest Preconditions 340
20.13 The Process Calculi . 340
20.14 The Parnas Way . 341
20.15 Usability of Formal Methods . 342

20.15.1 Why are Formal Methods difficult? 343
20.15.2 Characteristics of a Usable Formal Method 344

20.16 Review Questions . 345
20.17 Summary . 345

21 Z Formal Specification Language . 347
21.1 Introduction . 347
21.2 Sets . 349
21.3 Relations . 351
21.4 Functions . 353
21.5 Sequences . 354
21.6 Bags . 355
21.7 Schemas and Schema Composition . 357
21.8 Reification and Decomposition . 360
21.9 Proof in Z . 361
21.10 Review Questions . 361
21.11 Summary . 362
Reference . 362

22 Statistics . 363
22.1 Introduction . 363
22.2 Basic Statistics . 364

Contents xix

22.2.1 Abuse of Statistics . 364
22.2.2 Statistical Sampling and Data Collection 365

22.3 Frequency Distribution and Charts . 365
22.4 Statistical Measures . 369

22.4.1 Arithmetic Mean . 370
22.4.2 Mode . 371
22.4.3 Median . 372

22.5 Variance and Standard Deviation . 373
22.6 Correlation and Regression . 374

22.6.1 Regression . 377
22.7 Statistical Inference and Hypothesis Testing 377
22.8 Review Questions . 380
22.9 Summary . 380
References . 381

23 Probability Theory . 383
23.1 Introduction . 383
23.2 Basic Probability Theory . 384

23.2.1 Laws of Probability . 385
23.2.2 Bayes’ Formula . 386

23.3 Random Variables . 388
23.4 Binomial and Poisson Distributions . 390
23.5 The Normal Distribution . 393

23.5.1 Unit Normal Distribution . 394
23.5.2 Confidence Intervals and Tests of Significance 395
23.5.3 The Central Limit Theorem 397

23.6 Bayesianism . 399
23.7 Queueing Theory . 401
23.8 Review Questions . 403
23.9 Summary . 404
References . 405

24 Operations Research . 407
24.1 Introduction . 407
24.2 Linear Programming . 409

24.2.1 Linear Programming Example 410
24.2.2 General Formulation of LP Problem 414

24.3 Cost–Volume–Profit Analysis . 415
24.4 Game Theory . 418
24.5 Review Questions . 421
24.6 Summary . 421
References . 422

xx Contents

25 Basic Financial Mathematics . 423
25.1 Introduction . 423
25.2 Simple Interest . 424

25.2.1 Computing Future and Present Values 425
25.2.2 Computing Future Value . 425
25.2.3 Computing Present Values 426

25.3 Compound Interest . 428
25.3.1 Present Value Under Compound Interest 431
25.3.2 Equivalent Values . 432

25.4 Basic Mathematics of Annuities . 435
25.5 Loans and Mortgages . 440
25.6 Review Questions . 443
25.7 Summary . 444

Glossary . 445

Index . 449

Contents xxi

1Mathematics in Civilization

1.1 Introduction

It is difficult to think of Western society today without modern technology. The last
decades of the twentieth century have witnessed a proliferation of high-tech com-
puters, mobile phones, text messaging, the Internet and the World Wide Web.
Software is now pervasive, and it is an integral part of automobiles, aeroplanes,
televisions and mobile communication. The pace of change as a result of all this
new technology has been extraordinary. Today, consumers may book flights over
the World Wide Web as well as keep in contact with family members in any part of
the world via e-mail or mobile phone. In previous generations, communication
often involved writing letters that took months to reach the recipient.

Communication improved with the telegrams and the telephone in the late
nineteenth century. Communication today is instantaneous with text messaging,
mobile phones and e-mail, and the new generation probably views the world of
their parents and grandparents as being old-fashioned.

The new technologies have led to major benefits1 to society and to improvements
in the standard of living for many citizens in the Western world. It has also reduced
the necessity for humans to perform some of the more tedious or dangerous manual
tasks, as computers may now automate many of these. The increase in productivity
due to the more advanced computerized technologies has allowed humans, at least in
theory, the freedom to engage in more creative and rewarding tasks.

1Of course, it is essential that the population of the world moves towards more sustainable
development to ensure the long-term survival of the planet for future generations. This involves
finding technological and other solutions to reduce greenhouse gas emissions as well as moving to
a carbon neutral way of life. The solution to the environmental issues will be a major challenge for
the twenty-first century.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_1

Early societies had a limited vocabulary for counting: e.g. ‘one, two, three,
many’ is associated with some primitive societies, and indicates primitive com-
putation and scientific ability. It suggests that there was no need for more sophis-
ticated arithmetic in the primitive culture as the problems dealt with were
elementary. These early societies would typically have employed their fingers for
counting, and as humans have 5 fingers on each hand and five toes on each foot, the
obvious bases would have been 5, 10 and 20. Traces of the earlier use of the base 20
system are still apparent in modern languages such as English and French. This
includes phrases such as ‘three score’ in English and ‘quatre vingt’ in French.

The decimal system (base 10) is used today in Western society, but the base 60
was common in computation circa 1500 B.C. One example of the use of base 60
today is the subdivision of hours into 60 min, and the subdivision of minutes into
60s. The base 60 system (i.e. the sexagesimal system) is inherited from the
Babylonians [1]. The Babylonians were able to represent arbitrarily large numbers
or fractions with just two symbols. The binary (base 2) and hexadecimal (base 16)
systems play a key role in computing (as the machine instructions that computers
understand are in binary code).

The achievements of some of these ancient societies were spectacular. The
archaeological remains of ancient Egypt such as the pyramids at Giza and the
temples of Karnak and Abu Simbel are impressive. These monuments provide an
indication of the engineering sophistication of the ancient Egyptian civilization,
despite the fact that Egyptian mathematics was cumbersome. The objects found in
the tomb of Tutankhamun2 are now displayed in the Egyptian museum in Cairo,
and demonstrate the artistic skill of the Egyptians.

The Greeks made major contributions to Western civilization including contri-
butions to Mathematics, Philosophy, Logic, Drama, Architecture, Biology and
Democracy.3 The Greek philosophers considered fundamental questions such as
ethics, the nature of being, how to live a good life, and the nature of justice and
politics. The Greek philosophers include Parmenides, Heraclitus, Socrates, Plato
and Aristotle. The Greeks invented democracy, and their democracy was radically

2 1 Mathematics in Civilization

2Tutankhamun was a minor Egyptian pharaoh who reigned after the controversial rule of
Akhenaten. Tutankhamun’s tomb was discovered by Howard Carter in the Valley of the Kings,
and the tomb was intact. The quality of the workmanship of the artefacts found in the tomb is
extraordinary, and a visit to the Egyptian museum in Cairo is memorable.
3The origin of the word ‘democracy’ is from demos (dglo1) meaning people and kratos (jqaso1)
meaning rule. That is, it means rule by the people and it was introduced into Athens following the
reforms introduced by Cleisthenes. He divided the Athenian city-state into 30 areas, where 20 of
these areas were inland or along the coast and ten were in Attica itself. Fishermen lived mainly in
the ten coastal areas; farmers in the ten inland areas; and various tradesmen in Attica. Cleisthenes
introduced ten new clans where the members of each clan came from one coastal area, one inland
area on one area in Attica. He then introduced a Boule (or assembly) which consisted of 500
members (50 from each clan). Each clan ruled for 1/10 th of the year.

different from today’s representative democracy.4 The sophistication of Greek
architecture and sculpture is evident from the Parthenon on the Acropolis, and the
Elgin marbles5 that are housed today in the British Museum, London.

The Hellenistic6 period commenced with Alexander the Great and led to the
spread of Greek culture throughout most of the known world. The city of
Alexandria became a centre of learning and knowledge during the Hellenistic
period. Its scholars included Euclid who provided a systematic foundation for
geometry. His work is known as “The Elements”, and it consists of 13 books. The
early books are concerned with the construction of geometric figures, number
theory and solid geometry.

There are many words of Greek origin that are part of the English language.
These include words such as psychology that is derived from two Greek words:
psyche (wtne) and logos (koco1). The Greek word ‘psyche’ means mind or soul,
and the word ‘logos’ means an account or discourse. Other examples are anthro-
pology derived from ‘anthropos’ (amsqoqo1) and ‘logos’ (koco1).

The Romans were influenced by the Greek culture. The Romans built aqueducts,
viaducts and amphitheatres. They also developed the Julian calendar, formulated
laws (lex) and maintained peace throughout the Roman Empire (pax Romano). The
ruins of Pompeii and Herculaneum demonstrate their engineering capability. Their
numbering system is still employed in clocks and for page numbering in docu-
ments. However, it is cumbersome for serious computation. The collapse of the
Roman Empire in Western Europe led to a decline in knowledge and learning in
Europe. However, the eastern part of the Roman Empire continued at Con-
stantinople until it was sacked by the Ottomans in 1453.

1.1 Introduction 3

4The Athenian democracy involved the full participations of the citizens (i.e. the male adult
members of the city-state who were not slaves), whereas in representative democracy the citizens
elect representatives to rule and represent their interests. The Athenian democracy was chaotic and
could be easily influenced by individuals who were skilled in rhetoric. There were teachers (known
as the Sophists) who taught wealthy citizens rhetoric in return for a fee. The origin of the word
‘sophist’ is the Greek word rouo1 meaning wisdom, and one of the most well known of the
sophists was Protagoras. The problems with the Athenian democracy led philosophers such as
Plato to consider alternate solutions such as rule by philosopher kings. This totalitarian utopian
state is described in Plato’s Republic.
5The Elgin marbles are named after Lord Elgin who was the British ambassador to Greece (which
was then part of the Ottoman Empire), and he removed them (at his own expense) over several
years from the Parthenon in Athens to London during the first decade of the nineteenth century.
The marbles show the Pan-Athenaic festival that was held in Athens in honour of the goddess
Athena after whom Athens is named.
6The origin of the word Hellenistic is from Hellene (‘Ekkgm) meaning Greek.

1.2 The Babylonians

The Babylonian7 civilization flourished in Mesopotamia (in modern Iraq) from
about 2000 B.C. until about 300 B.C. Various clay cuneiform tablets containing
mathematical texts were discovered and later deciphered in the nineteenth century
[2]. These included tables for multiplication, division, squares, cubes and square
roots, and the measurement of area and length. Their calculations allowed the
solution of a linear equation and one root of a quadratic equation to be determined.
The late Babylonian period (c. 500 B.C.) includes work on astronomy.

They recorded their mathematics on soft clay using a wedge-shaped instrument
to form impressions of the cuneiform numbers.8 The clay tablets were then baked in
an oven or by the heat of the sun. They employed just two symbols (1 and 10) to
represent numbers, and these symbols were then combined to form all other
numbers. They employed a positional number system9 and used the base 60 system.
The symbol representing 1 could also (depending on the context) represent 60, 602,
603, etc. It could also mean 1/60,

1/3600 and so on. There was no zero employed in
the system and there was no decimal point (no ‘sexagesimal point’), and therefore
the context was essential.

The example above illustrates the cuneiform notation and represents the number
60 + 10 + 1 = 71. The Babylonians used the base 60 system, and this base is still
in use today in the division of hours into minutes and the division of minutes into
seconds. One possible explanation for the use of the base 60 notation is the ease of
dividing 60 into parts. It is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30. They
were able to represent large and small numbers and had no difficulty in working
with fractions (in base 60) and in multiplying fractions. The Babylonians main-
tained tables of reciprocals (i.e. 1/n, n = 1,… 59) apart from numbers like 7, 11, etc.
which cannot be written as a finite sexagesimal expansion (i.e. 7 and 11 are not of
the form 2a3b5c).

The modern sexagesimal notation [1] 1; 24, 51, 10 represents the number
1þ 24=60þ 51=3600þ 10=216;000 ¼ 1þ 0:4þ 0:0141666þ 0:0000462 ¼ 1:4142129.
This is the Babylonian representation of the square root of 2. They performed
multiplication as follows: e.g. consider 20 � sqrt(2) ¼ ð20Þ � ð1; 24; 51; 10Þ:

4 1 Mathematics in Civilization

7The hanging gardens of Babylon were one of the seven wonders of the ancient world.
8Henry Rawlinson played an important role in the decipherment of cuneiforms, and especially for
making a copy of the large Behistun inscription (the equivalent of the Rosetta stone for
Assyriologists) that recorded the victory of the Persian king Darius I over those who rebelled
against him in three languages. Edward Hicks and others played a key role in deciphering the
inscription.
9A positional numbering system is a number system where each position is related to the next by a
constant multiplier. The decimal system is an example: e.g. 546 = 5* 102 + 4* 101 + 6.

20 � 1 ¼ 20

20�; 24 ¼ 20 � 24=60 ¼ 8

20 � 51=3600 ¼ 51=180 ¼ 17=60 ¼; 17

20 � 10=216;000 ¼ 3=3600þ 20=216;000 ¼; 0; 3; 20:

Hence, the product 20 � sqrt(2) ¼ 20; þ 8; þ ; 17þ ; 0; 3; 20 ¼ 28; 17; 3; 20.
The Babylonians appear to have been aware of Pythagoras’ theorem about

1000 years before the time of Pythagoras. The Plimpton 322 tablet (Fig. 1.1)
records various Pythagorean triples, i.e. triples of numbers (a, b, c) where
a2 þ b2 ¼ c2. It dates from approximately 1700 B.C.

They developed an algebra to assist with problem-solving, and their algebra
allowed problems involving length, breadth and area to be discussed and solved.
They did not employ notation for the representation of unknown values (e.g. let x be
the length and y be the breadth), and instead they used words like ‘length’ and
‘breadth’. They were familiar with and used square roots in their calculations, and
they were familiar with techniques that allowed one root of a quadratic equation to
be solved.

They were familiar with various mathematical identities such as aþ bð Þ2¼
a2 þ 2abþ b2ð Þ as illustrated geometrically in Fig. 1.2. They also worked on
astronomical problems, and they had mathematical theories of the cosmos to make

Fig. 1.1 The Plimpton 322 Tablet

1.2 The Babylonians 5

predictions of when eclipses and other astronomical events would occur. They were
also interested in astrology, and they associated various deities with the heavenly
bodies such as the planets, as well as the sun and moon. They associated various
clusters of stars with familiar creatures such as lions, goats and so on.

The Babylonians used counting boards to assist with counting and simple cal-
culations. A counting board is an early version of the abacus, and it was usually
made of wood or stone. The counting board contained grooves that allowed beads
or stones that could be moved along the groove. The abacus differs from counting
boards in that the beads in abaci contain holes that enable them to be placed in a
particular rod of the abacus.

1.3 The Egyptians

The Egyptian civilization developed along the Nile from about 4000 B.C., and the
pyramids were built around 3000 B.C. They used mathematics to solve practical
problems such as measuring time; measuring the annual Nile flooding; calculating
the area of land; book keeping and accounting; and calculating taxes. They
developed a calendar circa 4000 B.C., which consisted of 12 months with each
month having 30 days. There were then five extra feast days to give 365 days in a
year. Egyptian writing commenced around 3000 B.C. and is recorded on the walls
of temples and tombs.10 A reed-like parchment termed ‘papyrus’ was used for
writing, and three Egyptian writing scripts were employed. These were hiero-
glyphics, the hieratic script and the demotic script.

Hieroglyphs are little pictures and are used to represent words, alphabetic
characters as well as syllables or sounds. Champollion deciphered hieroglyphics
with his work on the Rosetta stone. This object was discovered during the Napo-
leonic campaign in Egypt, and it is now in the British Museum in London. It
contains three scripts: Hieroglyphics, Demotic script and Greek. The key to its
decipherment was that the Rosetta stone contained just one name “Ptolemy” in the

a2

b2

a b

ab

ab

a+b

Fig. 1.2 Geometric
representation of
aþ bð Þ2¼ a2 þ 2abþ b2ð Þ

6 1 Mathematics in Civilization

10The decorations of the tombs in the Valley of the Kings record the life of the pharaoh including
his exploits and successes in battle.

Greek text, and this was identified with the hieroglyphic characters in the car-
touche11 of the hieroglyphics. There was just one cartouche on the Rosetta stone,
and Champollion inferred that the cartouche represented the name “Ptolemy”. He
was familiar with another multilingual object that contained two names in the
cartouche. One he recognized as Ptolemy and the other he deduced from the Greek
text as “Cleopatra”. This led to the breakthrough in the translation of hieroglyphics
[1].

The Rhind Papyrus is a famous Egyptian papyrus on mathematics. The Scottish
Egyptologist, Henry Rhind, purchased it in 1858, and it is a copy created by an
Egyptian scribe called Ahmose12 around 1832 B.C. It contains examples of many
kinds of arithmetic and geometric problems, and students may have used it as a
textbook to develop their mathematical knowledge. This would allow them to
participate in the pharaoh’s building programme.

The Egyptians were familiar with geometry, arithmetic and elementary algebra.
They had techniques to find solutions to problems with one or two unknowns.
A base 10 number system was employed with separate symbols for one, ten, a
hundred, a thousand, a ten thousand, a hundred thousand and so on. These hiero-
glyphic symbols are represented in Fig. 1.3.

For example, the representation of the number 276 in Egyptian hieroglyphics is
described in Fig. 1.4.

The addition of two numerals is straightforward and involves adding the indi-
vidual symbols, and where there are ten copies of a symbol it is then replaced by a
single symbol of the next higher value. The Egyptians employed unit fractions (e.g.
1/n where n is an integer). These were represented in hieroglyphs by placing the
symbol representing a ‘mouth’ above the number. The symbol mouth is used to
represent part of (or a fraction of) a number. For example, the representation of the
number 1/276 is described in Fig. 1.5.

The problems on the papyrus included the determination of the angle of the slope
of the pyramid’s face. They were familiar with trigonometry including sine, cosine,
tangent and cotangent, and they knew how to build right angles into their structures

Fig. 1.3 Egyptian numerals

1.3 The Egyptians 7

11The cartouche surrounded a group of hieroglyphic symbols enclosed by an oval shape.
Champollion’s insight was that the group of hieroglyphic symbols represented the name of the
Ptolemaic pharaoh “Ptolemy”.
12The Rhind papyrus is sometimes referred to as the Ahmes papyrus in honour of the scribe who
wrote it in 1832 B.C.

by using the ratio 3:4:5. The Rhind papyrus also considered problems such as the
calculation of the number of bricks required for part of a building project. Multi-
plication and division were cumbersome in Egyptian mathematics as they could
only multiply and divide by two, and this limited the mathematical progress made
by the Egyptians.

Suppose they wished to multiply a number n by 7. Then n * 7 is determined by
n � 2þ n � 2þ n � 2þ n. Similarly, if they wished to divide 27 by 7 they would
note that 7 * 2 + 7 = 21 and that 27 − 21 = 6 and therefore the answer was 3 6/7.
Egyptian mathematics was cumbersome and the writing of their mathematics was
long and repetitive. For example, they wrote a number such as 22 by
10 + 10 + 1 + 1.

The Egyptians calculated the approximate area of a circle by calculating the area
of a square 8/9 of the diameter of a circle. That is, instead of calculating the area in
terms of our familiar pr2, their approximate calculation yielded
8=9 � 2rð Þ2¼ 256=81r2 or 3:16 r2. Their approximation of p was 256/81 or 3.16.
They were able to calculate the area of a triangle and volumes. The Moscow
papyrus includes a problem to calculate the volume of the frustum.
The formula for the volume of a frustum of a square pyramid13 was given by
V ¼ 1=3 h b21 þ b1b2 þ b22

� �
and when b2 is 0, then the well-known formula for the

volume of a pyramid is given as 1/3 hb1
2.

Fig. 1.4 Egyptian representation of a number

Fig. 1.5 Egyptian representation of a fraction

8 1 Mathematics in Civilization

13The length of a side of the bottom base of the pyramid is b1, and the length of a side of the top
base is b2..

1.4 The Greeks

The Greeks made major contributions to Western civilization including mathe-
matics, logic, astronomy, philosophy, politics, drama and architecture. The Greek
world of 500 B.C. consisted of several independent city-states such as Athens and
Sparta, and various city-states in Asia Minor. The Greek polis (pokir) or city-state
tended to be quite small, and consisted of the Greek city and a certain amount of
territory outside the city-state. Each city-state had political structures for its citizens,
and some were oligarchs where political power was maintained in the hands of a
few individuals or aristocratic families. Others were ruled by tyrants (or sole rulers),
who sometimes took power by force, but who often had a lot of support from the
public. The tyrants included people such as Solon, Peisistratus and Cleisthenes in
Athens.

The reforms by Cleisthenes led to the introduction of the Athenian democracy.
Power was placed in the hands of the citizens who were male (women or slaves did
not participate in the Athenian democracy). It was an extremely liberal democracy
where citizens voted on all important issues. Often, this led to disastrous results as
speakers who were skilled in rhetoric could exert significant influence. This later led
to Plato advocating rule by philosopher kings rather than by democracy.14

Early Greek mathematics commenced approximately 500–600 B.C. with work
done by Pythagoras and Thales. Pythagoras was a philosopher and mathematician
who had spent time in Egypt becoming familiar with Egyptian mathematics. He
lived on the island of Samos, and formed a secret society known as the
Pythagoreans. They included men and women and believed in the transmigration of
souls, and that number was the essence of all things. They discovered the mathe-
matics for harmony in music with the relationship between musical notes being
expressed in numerical ratios of small whole numbers. Pythagoras is credited with
the discovery of Pythagoras’ theorem, although the Babylonians probably knew this
theorem about 1000 years earlier. The Pythagorean society was dealt with a major
blow15 by the discovery of the incommensurability of the square root of 2: i.e. there
are no numbers p, q such that

p
2 ¼ p=q.

Thales was a sixth-century (B.C.) philosopher from Miletus in Asia Minor who
made contributions to philosophy, geometry and astronomy. His contributions to
philosophy are mainly in the area of metaphysics, and he was concerned with
questions on the nature of the world. His objective was to give a natural or scientific
explanation of the cosmos, rather than relying on the traditional supernatural
explanation of creation in Greek mythology. He believed that there was a single
substance that was the underlying constituent of the world, and he believed that this
substance was water.

1.4 The Greeks 9

14Plato’s Republic describes his utopian state, and seems to be based on the austere Spartan model.
15The Pythagoreans took a vow of silence with respect to the discovery of incommensurable
numbers. However, one member of the society is said to have shared the secret result with others
outside the sect, and an apocryphal account is that he was thrown into a lake for his betrayal and
drowned. The Pythagoreans obviously took Mathematics seriously back then.

He also contributed to mathematics [3], and a well-known theorem in Euclidean
geometry is named after him. It states that if A, B and C are points on a circle, and
where the line AC is a diameter of the circle, then the angle \ABC is a right angle.

The rise of Macedonia led to the Greek city-states being conquered by Philip of
Macedonia in the fourth century B.C. His son, Alexander the Great, defeated the
Persian Empire, and extended his empire to include most of the known world. This
led to the Hellenistic Age with Greek language and culture spreading throughout
the known world. Alexander founded the city of Alexandra, and it became a major
centre of learning. However, Alexander’s reign was very short as he died at the
young age of 33 in 323 B.C.

Euclid lived in Alexandria during the early Hellenistic period, and he is con-
sidered the father of geometry and the deductive method in mathematics. His
systematic treatment of geometry and number theory is published in the 13 books of
the Elements [4]. It starts from five axioms, five postulates and twenty-three defi-
nitions to logically derive a comprehensive set of theorems. His method of proof
was often constructive, in that as well as demonstrating the truth of a theorem the
proof would often include the construction of the required entity. He also used
indirect proof to show that there are an infinite number of primes:

1. Suppose there are a finite number of primes (say n primes).
2. Multiply all n primes together and add 1 to form N:

N ¼ p1 � p2 � � � � � pn þ 1ð Þ:

1. N is not divisible by p1, p2, …, pn as dividing by any of these gives a remainder
of one.

2. Therefore, N must either be prime or divisible by some other prime that was not
included in the list.

3. Therefore, there must be at least n + 1 primes.
4. This is a contradiction as it was assumed that there was a finite number of

primes n.
5. Therefore, the assumption that there are a finite number of primes is false.
6. Therefore, there are infinite number of primes.

Euclidean geometry included the parallel postulate (or Euclid’s fifth postulate).
This postulate generated interest, as many mathematicians believed that it was
unnecessary and could be proved as a theorem. It states that:

Definition 1.1 (Parallel Postulate) If a line segment intersects two straight lines
forming two interior angles on the same side that sum to less than two right angles,
then the two lines, if extended indefinitely, meet on that side on which the angles
sum to less than two right angles.

10 1 Mathematics in Civilization

This postulate was later proved to be independent of the other postulates, with
the development of non-Euclidean geometries in the nineteenth century. These
include the hyperbolic geometry discovered independently by Bolyai and Loba-
chevsky, and elliptic geometry developed by Riemann. The standard model of
Riemannian geometry is the sphere where lines are great circles.

Euclid’s Elements is a systematic development of geometry starting from the
small set of axioms, postulates and definitions, leading to theorems logically
derived from the axioms and postulates. Euclid’s deductive method influenced later
mathematicians and scientists. There are some jumps in reasoning and the German
mathematician, David Hilbert, later added extra axioms to address this.

The Elements contains many well-known mathematical results such as
Pythagoras’ Theorem, Thales Theorem, Sum of Angles in a Triangle, Prime
Numbers, Greatest Common Divisor and Least Common Multiple, Euclidean
Algorithm, Areas and Volumes, Tangents to a Point and Algebra.

The Euclidean algorithm is one of the oldest known algorithms and is employed
to produce the greatest common divisor of two numbers. It is presented in the
Elements but was known well before Euclid. The algorithm to determine the gcd of
two natural numbers, a and b, is given by

1. Check if b is zero. If so, then a is the gcd.
2. Otherwise, the gcd (a, b) is given by gcd (b, a mod b).

It is also possible to determine integers p and q such that apþ bq ¼ gcdða; bÞ:
The proof of the Euclidean algorithm is as follows. Suppose a and b are two

positive numbers whose gcd has to be determined, and let r be the remainder when
a is divided by b.

1. Clearly, a ¼ qbþ r where q is the quotient of the division.
2. Any common divisor of a and b is also a divisor of r (since r ¼ a� qb).
3. Similarly, any common divisor of b and r will also divide a.
4. Therefore, the greatest common divisor of a and b is the same as the greatest

common divisor of b and r.
5. The number r is smaller than b, and we will reach r = 0 in finitely many steps.
6. The process continues until r = 0.

Comment 1.1

Algorithms are fundamental in computing as they define the procedure by which a
problem is solved. A computer program implements the algorithm in some pro-
gramming language.

1.4 The Greeks 11

Eratosthenes was a Hellenistic mathematician and scientist who worked at the
library in Alexandria, which was the largest library in the ancient world. It was built
during the Hellenistic period in the third century B.C. and destroyed by fire in 391
A.D.16

Eratosthenes devised a system of latitude and longitude, and became the first
person to estimate the size of the circumference of the earth (Fig. 1.6). His cal-
culation proceeded as follows:

1. On the summer solstice at noon in the town of Aswan17 on the Tropic of Cancer
in Egypt, the sun appears directly overhead.

2. Eratosthenes believed that the earth was a sphere.
3. He assumed that rays of light came from the sun in parallel beams and reached

the earth at the same time.
4. At the same time in Alexandria, he had measured that the sun would be 7.2°

south of the zenith.
5. He assumed that Alexandria was directly north of Aswan.
6. He concluded that the distance from Alexandria to Aswan was 7.2/360 of the

circumference of the earth.
7. Distance between Alexandria and Aswan was 5000 stadia (approximately

800 km).
8. He established a value of 252,000 stadia or approximately 396,000 km.

Fig. 1.6 Eratosthenes measurement of the circumference of the earth

12 1 Mathematics in Civilization

16The library in Alexandria is predated by the Royal library of Ashurbanipal which was established
in Nineveh (the capital of the Assyrian Empire) in the seventh century B.C. The latter contained
over 30,000 cuneiform tablets including the famous “Epic of Gilgamesh”, and the laws in
Hammurabi’s code.
17The town of Aswan is famous today for the Aswan high dam, which was built in the 1960s.
There was an older Aswan dam built by the British in the late nineteenth century. The new dam led
to a rise in the water level of Lake Nasser and flooding of archaeological sites along the Nile.
Several archaeological sites such as Abu Simbel and the temple of Philae were relocated to higher
ground.

Eratosthenes’ calculation was an impressive result for 200 B.C. The errors in his
calculation were due to the following:

1. Aswan is not exactly on the Tropic of Cancer but it is actually 55 km north of it.
2. Alexandria is not exactly north of Aswan, and there is a difference of 3°

longitude.
3. The distance between Aswan and Alexandria is 729 km, not 800 km.
4. Angles in antiquity could not be measured with a high degree of precision.
5. The angular distance is actually 7.08° and not 7.2°.

Eratosthenes also calculated the approximate distance to the moon and sun and
he also produced maps of the known world. He developed a very useful algorithm
for determining all of the prime numbers up to a specified integer. The method is
known as the Sieve of Eratosthenes and the steps are as follows:

1. Write a list of the numbers from 2 to the largest number that you wish to test for
primality. This first list is called A.

2. A second list B is created to list the primes. It is initially empty.
3. The number 2 is the first prime number and is added to the list of primes in B.
4. Strike off (or remove) 2 and all the multiples of 2 from List A.
5. The first remaining number in List A is a prime number, and this prime number

is added to List B.
6. Strike off (or remove) this number and all the multiples of this number from

List A.
7. Repeat steps 5 through 7 until no more numbers are left in List A.

Comment 1.2

The Sieve of Eratosthenes method is a well-known algorithm for determining prime
numbers.

Archimedes was a Hellenistic mathematician, astronomer and philosopher who
lived in Syracuse in the third century B.C. He discovered the law of buoyancy
known as Archimedes’ principle:

The buoyancy force is equal to the weight of the displaced fluid.

He is believed to have discovered the principle while sitting in his bath. He was
so overwhelmed with his discovery that he rushed out onto the streets of Syracuse
shouting “Eureka”, but forgot to put on his clothes to announce the discovery.

The weight of the displaced liquid will be proportional to the volume of the
displaced liquid. Therefore, if two objects have the same mass, the one with greater
volume (or smaller density) has greater buoyancy. An object will float if its buoyant
force (i.e. the weight of the liquid displaced) exceeds the downward force of gravity
(i.e. its weight). If the object has exactly the same density as the liquid, then it will
stay still, neither sinking nor floating upwards.

1.4 The Greeks 13

For example, a rock is generally a very dense material and will generally not
displace its own weight. Therefore, a rock will sink to the bottom as the downward
weight exceeds the buoyancy weight. However, if the weight of the object is less
than the liquid, it would displace and then it floats at a level where it displaces the
same weight of liquid as the weight of the object.

Archimedes (Fig. 1.7) was born in Syracuse18 in the third century B.C. He was a
leading scientist in the Greco-Roman world, and he is credited with designing
several innovative machines.

His inventions include the “Archimedes Screw” which was a screw pump that is
still used today in pumping liquids and solids. Another of his inventions was the
“Archimedes Claw”, which was a weapon used to defend the city of Syracuse. It
was also known as the ‘ship shaker’ and it consisted of a crane arm from which a
large metal hook was suspended. The claw would swing up and drop down on the
attacking ship. It would then lift it out of the water and possibly sink it. Another of
his inventions was said to be the “Archimedes Heat Ray”. This device is said to
have consisted of a number of mirrors that allowed sunlight to be focused on an
enemy ship thereby causing it to go on fire.

He made good contributions to mathematics including developing a good
approximation to p, as well as contributions to the positional numbering system,
geometric series and to maths physics. He also solved several interesting problems:
e.g. the calculation of the composition of cattle in the herd of the Sun god by
solving a number of simultaneous Diophantine equations. The herd consisted of

Fig. 1.7 Archimedes in
thought by Fetti

14 1 Mathematics in Civilization

18Syracuse is located on the island of Sicily in Southern Italy.

bulls and cows with one part of the herd consisting of white, second part black,
third spotted and the fourth brown. Various constraints were then expressed in
Diophantine equations, and the problem was to determine the precise composition
of the herd. Diophantine equations are named after Diophantus who worked on
number theory in the third century.

There is a well-known anecdote concerning Archimedes and the crown of King
Hiero II. The king wished to determine whether his new crown was made entirely
of solid gold, and that the goldsmith had not added substitute silver. Archimedes
was required to solve the problem without damaging the crown, and as he was
taking a bath he realized that if the crown was placed in water that the water
displaced would give him the volume of the crown. From this, he could then
determine the density of the crown and therefore whether it consisted entirely of
gold.

Archimedes also calculated an upper bound of the number of grains of sands in
the known universe. The largest number in common use at the time was a myriad
(100 million), where a myriad is 10,000. Archimedes’ numbering system goes up to
8 * 1016 and he also developed the laws of exponents: i.e. 10a10b ¼ 10aþ b. His
calculation of the upper bound includes the grains of sand not only on each beach
but also on the earth filled with sand and the known universe filled with sand. His
final estimate of the upper bound for the number of grains of sand in a filled
universe was 1064.

It is possible that he may have developed the odometer,19 and this instrument
could calculate the total distance travelled on a journey. An odometer is described
by the Roman engineer Vitruvius around 25 B.C., and it employed a wheel with a
diameter of 4 feet, and the wheel turned 400 times in every mile.20 The device
included gears and pebbles and a 400-tooth cogwheel that turned once every mile
and caused one pebble to drop into a box. The total distance travelled was deter-
mined by counting the pebbles in the box.

Aristotle was born in Macedonia and became a student of Plato in Athens
(Fig. 1.8). Plato had founded a school (known as Plato’s Academy) in Athens in the
fourth century B.C., and this school remained open until 529 A.D. Aristotle
founded his own school (known as the Lyceum) in Athens. He was also the tutor of
Alexander the Great. He made contributions to physics, biology, logic, politics,
ethics and metaphysics.

1.4 The Greeks 15

19The origin of the word “odometer” is from the Greek words ‘odof’ (meaning journey) and
lesqom meaning (measure).
20The figures given here are for the distance of one Roman mile. This is given by p4 � 400 ¼
12:56 � 400 ¼ 5024 (which is less than 5280 feet for a standard mile in the Imperial system).

Aristotle’s starting point to the acquisition of knowledge was the senses, as he
believed that these were essential to acquire knowledge. This position is the
opposite of Plato who argued that the senses deceive and should not be relied upon.
Plato’s writings are mainly in dialogues involving his former mentor Socrates.21

Aristotle made important contributions to formal reasoning with his develop-
ment of syllogistic logic. His collected works on logic is called the Organon and it
was used in his school in Athens. Syllogistic logic (also known as term logic)
consists of reasoning with two premises and one conclusion. Each premise consists
of two terms and there is a common middle term. The conclusion links the two
unrelated terms from the premises. For example:

Fig. 1.8 Plato and Aristotle

16 1 Mathematics in Civilization

21Socrates was a moral philosopher who deeply influenced Plato. His method of enquiry into
philosophical problems and ethics was by questioning. Socrates himself maintained that he knew
nothing (Socratic ignorance). However, from his questioning it became apparent that those who
thought they were clever were not really that clever after all. His approach obviously would not
have made him very popular with the citizens of Athens. Chaerephon (a friend of Socrates) had
consulted the oracle at Delphi to find out who the wisest of all men was, and he was informed that
there was no one wiser than Socrates. Socrates was sentenced to death for allegedly corrupting the
youth of Athens, and the sentence was carried out by Socrates being forced to take hemlock (a type
of poison). The juice of the hemlock plant was prepared for Socrates to drink.

Premise 1 All Greeks are Mortal;
Premise 2 Socrates is a Greek.–––––––––––––
Conclusion Socrates is Mortal.

The common middle term is ‘Greek’, which appears in the two premises. The
two unrelated terms from the premises are ‘Socrates’ and ‘Mortal’. The relationship
between the terms in the first premise is that of the universal: i.e. anything or any
person that is a Greek is mortal. The relationship between the terms in the second
premise is that of the particular: i.e. Socrates is a person who is a Greek. The
conclusion from the two premises is that Socrates is mortal: i.e. a particular rela-
tionship between the two unrelated terms ‘Socrates’ and ‘Mortal’.

The syllogism above is a valid syllogistic argument. Aristotle studied the various
possible syllogistic arguments and determined those that were valid and invalid.
Syllogistic logic is described in more detail in Chap. 14. Aristotle’s work was
highly regarded in classical and mediaeval times, and Kant believed that there was
nothing else to invent in Logic. There was another competing system of logic
proposed by the Stoics in Hellenistic times: i.e. an early form of propositional logic
that was developed by Chrysippus22 in the third century B.C. Aristotelian logic is
mainly of historical interest today.

Aquinas,23 a thirteenth century Christian theologian and philosopher, was deeply
influenced by Aristotle, and referred to him as the philosopher. Aquinas was an
empiricist (i.e. he believed that all knowledge was gained by sense experience), and
he used some of Aristotle’s arguments to offer five proofs of the existence of God.
These arguments included the Cosmological argument and the Design argument.
The Cosmological argument used Aristotle’s ideas on the scientific method and
causation. Aquinas argued that there was a first cause, and he deduced that this first
cause is God:

1. Every effect has a cause.
2. Nothing can cause itself.
3. A causal chain cannot be of infinite length.
4. Therefore there must be a first cause.

The Antikythera [5] was an ancient mechanical device that is believed to have
been designed to calculate astronomical positions. It was discovered in 1902 in a
wreck off the Greek island of Antikythera, and dates from about 80 B.C. It is one of
the oldest known geared devices, and it is believed that it was used for calculating
the position of the sun, moon, stars and planets for a particular date entered.

The Romans appear to have been aware of a device similar to the Antikythera
that was capable of calculating the position of the planets. The island of Antikythera
was well known in the Greek and Roman periods for its displays of mechanical
engineering.

1.4 The Greeks 17

22Chrysippus was the head of the Stoics in the third century B.C.
23Aquinas’ (or St. Thomas’) most famous work is Summa Theologica.

1.5 The Romans

Rome is said to have been founded24 by Romulus and Remus about 750 B.C. Early
Rome covered a small part of Italy, but it gradually expanded in size and impor-
tance. It destroyed Carthage25 in 146 B.C. to become the major power in the
Mediterranean. The Romans colonized the Hellenistic world, and they were
influenced by Greek culture and mathematics. Julius Caesar conquered the Gauls in
58 B.C. (Fig. 1.9).

The Gauls consisted of several disunited Celtic26 tribes. Vercingetorix succeeded
in uniting them, but he was defeated at the siege of Alesia in 52 B.C.

Fig. 1.9 Julius Caesar

18 1 Mathematics in Civilization

24The Aeneid by Virgil suggests that the Romans were descended from survivors of the Trojan
war, and that Aeneas brought surviving Trojans to Rome after the fall of Troy.
25Carthage was located in Tunisia, and the wars between Rome and Carthage are known as the
Punic wars. Hannibal was one of the great Carthaginian military commanders, and during the
second Punic war, he brought his army to Spain, marched through Spain and crossed the Pyrenees.
He then marched along southern France and crossed the Alps into Northern Italy. His army also
consisted of war elephants. Rome finally defeated Carthage and destroyed the city.
26The Celtic period commenced around 1000 B.C. in Hallstatt (near Salzburg in Austria). The
Celts were skilled in working with Iron and Bronze, and they gradually expanded into Europe.
They eventually reached Britain and Ireland around 600 B.C. The early Celtic period was known
as the “Hallstaat period” and the later Celtic period is known as “La Téne”. The later La Téne
period is characterised by the quality of ornamentation produced. The Celtic museum in Hallein in
Austria provides valuable information and artefacts on the Celtic period. The Celtic language
would have similarities to the Irish language. However, the Celts did not employ writing, and the
Ogham writing used in Ireland was developed in the early Christian period.

The Roman number system uses letters to represented numbers and a number
consists of a sequence of letters. The evaluation rules specify that if a number
follows a smaller number, then the smaller number is subtracted from the larger
number: e.g. IX represents 9 and XL represents 40. Similarly, if a smaller number
followed a larger number, they were generally added: e.g. MCC represents 1200.
They had no zero in their number system (Fig. 1.10).

The use of Roman numerals was cumbersome in calculation, and an abacus was
often employed. An abacus is a device that is usually of wood and has a frame that
holds rods with freely sliding beads mounted on them. It is used as a tool to assist
calculation, and it is useful for keeping track of the sums and the carries of
calculations.

It consists of several columns in which beads or pebbles are placed. Each col-
umn represented powers of 10: i.e. 100, 101, 102 and 103. The column to the far
right represents one, the column to the left 10, the next column to the left 100 and
so on. Pebbles27 (calculi) were placed in the columns to represent different num-
bers: e.g. the number represented by an abacus with 4 pebbles on the far right; 2
pebbles in the column to the left; and 3 pebbles in the next column to the left is 324.
The calculations were performed by moving pebbles from column to column.

Merchants introduced a set of weights and measures (including the libra for
weights and the pes for lengths). They developed an early banking system to
provide loans for businesses, and commenced minting money about 290 B.C. The
Romans also made contributions to calendars, and Julius Caesar introduced the
Julian calendar in 45 B.C. It has a regular year of 365 days divided into 12 months,
and a leap day is added to February every 4 years. It remained in use up to the
twentieth century, but has since been replaced by the Gregorian calendar. The

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Fig. 1.10 Roman numbers

Alphabet Symbol abcde fghij klmno pqrst uvwxyz

Cipher Symbol dfegh ijklm nopqr stuvw xyzabc

Fig. 1.11 Caesar Cipher

1.5 The Romans 19

27The origin of the word ‘Calculus’ is from Latin and means a small stone or pebble used for
counting.

problem with the Julian calendar is that too many leap years are added over time.
The Gregorian calendar was first introduced in 1582.

The Romans employed the mathematics that had been developed by the Greeks.
Caesar employed a substitution cipher on his military campaigns to enable
important messages to be communicated safely. It involves the substitution of each
letter in the plaintext (i.e. the original message) by a letter a fixed number of
positions down in the alphabet. For example, a shift of 3 positions causes the letter
B to be replaced by E, the letter C by F and so on. It is easily broken, as the
frequency distribution of letters may be employed to determine the mapping
(Fig. 1.11). The cipher is defined as

The process of enciphering a message (i.e. plaintext) involves looking up each
letter in the plaintext and writing down the corresponding cipher letter. The
decryption involves the reverse operation: i.e. for each cipher letter the corre-
sponding plaintext letter is identified from the table.

The encryption may also be represented using modular arithmetic,28 with the
numbers 0–25 representing the alphabet letters, and addition (modulo 26) is used to
perform the encryption.

Fig. 1.12 Muhammad
al-Khwarizmi

20 1 Mathematics in Civilization

28Modular arithmetic is discussed in chapter seven.

The emperor Augustus29 employed a similar substitution cipher (with a shift key
of 1). The Caesar cipher remained in use up to the early twentieth century. How-
ever, by then frequency analysis techniques were available to break the cipher.

1.6 Islamic Influence

Islamic mathematics refers to mathematics developed in the Islamic world from the
birth of Islam in the early seventh century up until the seventeenth century. The
Islamic world commenced with the Prophet Mohammed in Mecca, and spread
throughout the Middle East, North Africa and Spain. The Golden Age of Islamic
civilization was from 750 A.D. to 1250 A.D., and during this period enlightened

Fig. 1.13 Al Azhar University, Cairo

1.5 The Romans 21

29Augustus was the first Roman emperor, and his reign ushered in a period of peace and stability
following the bitter civil wars. He was the adopted son of Julius Caesar and was called Octavian
before he became emperor. The earlier civil wars were between Caesar and Pompey, and following
Caesar’s assassination civil war broke out between Mark Anthony and Octavian. Octavian
defeated Anthony and Cleopatra at the battle of Actium, and became the first Roman emperor,
Augustus.

caliphs recognized the value of knowledge, and sponsored scholars to come to
Baghdad to gather and translate the existing world knowledge into Arabic.

This led to the preservation of the Greek texts during the Dark Ages in Europe.
Further, the Islamic cities of Baghdad, Cordoba and Cairo became key intellectual
centres, and scholars added to existing knowledge (e.g. in mathematics, astronomy,
medicine and philosophy), as well as translating the known knowledge into Arabic.

The Islamic mathematicians and scholars were based in several countries in the
Middle East, North Africa and Spain. Early work commenced in Baghdad, and the
mathematicians were also influenced by the work of Hindu mathematicians who
had introduced the decimal system and decimal numerals. Among the well-known
Islamic scholars are Ibn al-Haytham, a tenth-century Iraqi scientist; Muhammad
al-Khwarizmi (Fig. 1.12), the 9th Persian mathematician; Abd al-Rahman al-Sufi, a
Persian astronomer who discovered the Andromeda galaxy; Ibn al-Nafis, a Syrian
who did work on circulation in medicine; Averros, who was an Aristotelian
philosopher from Cordoba in Spain; Avicenna who was a Persian philosopher; and
Omar Khayyam who was a Persian Mathematician and poet.

Many caliphs (Muslim rulers) were enlightened and encouraged scholarship in
mathematics and science. They set up a centre for translation and research in
Baghdad, and existing Greek texts such as the works of Euclid, Archimedes,
Apollonius and Diophantus were translated into Arabic. Al-Khwarizmi made
contributions to early classical algebra, and the word algebra comes from the Arabic
word ‘al jabr’ that appears in a textbook by Al-Khwarizmi. The origin of the word
algorithm is from the name of the Islamic scholar “Al-Khwarizmi”.

Education was important during the Golden Age, and the Al Azhar University in
Cairo (Fig. 1.13) was established in 970 A.D., and the Al-Qarawiyyin University in
Fez, Morocco, was established in 859 A.D. The Islamic world has created beautiful
architecture and art including the ninth-century Great Mosque of Samarra in Iraq;
the tenth-century Great Mosque of Cordoba; and the eleventh-century Alhambra in
Grenada.

The Moors30 invaded Spain in the eighth century A.D., and they ruled large parts
of the Peninsula for several centuries. Moorish Spain became a centre of learning,
and this led to Islamic and other scholars coming to study at the universities in
Spain. Many texts on Islamic mathematics were translated from Arabic into Latin,
and these were invaluable in the renaissance in European learning and mathematics
from the thirteenth century. The Moorish influence31 in Spain continued until the
time of the Catholic Monarchs32 in the fifteenth century. Ferdinand and Isabella
united Spain, defeated the Moors in Andalusia, and expelled them from Spain.

22 1 Mathematics in Civilization

30The origin of the word ‘Moor’ is from the Greek work ltoqof meaning very dark. It referred to
the fact that many of the original Moors who came to Spain were from Egypt, Tunisia and other
parts of North Africa.
31The Moorish influence includes the construction of various castles (alcazar), fortresses
(alcalzaba) and mosques. One of the most striking Islamic sites in Spain is the palace of Alhambra
in Granada, and it represents the zenith of Islamic art.
32The Catholic Monarchs refer to Ferdinand of Aragon and Isabella of Castille who married in
1469. They captured Granada (the last remaining part of Spain controlled by the Moors) in 1492.

The Islamic contribution to algebra was an advance on the achievements of the
Greeks. They developed a broader theory that treated rational and irrational num-
bers as algebraic objects, and moved away from the Greek concept of mathematics
as being essentially Geometry. Later Islamic scholars applied algebra to arithmetic
and geometry, and studied curves using equations. This included contributions to
reduce geometric problems such as duplicating the cube to algebraic problems.
Eventually, this led to the use of symbols in the fifteenth century such as

xn:xm ¼ xmþ n:

The poet Omar Khayyam was also a mathematician who did work on the
classification of cubic equations with geometric solutions. Other scholars made
contributions to the theory of numbers: e.g. a theorem that allows pairs of amicable
numbers to be found. Amicable numbers are two numbers such that each is the sum
of the proper divisors of the other. They were aware of Wilson’s theory in number
theory: i.e. for p prime then p divides ðp� 1Þ!þ 1.

The Islamic world was tolerant of other religious belief systems during the
Golden Age, and there was freedom of expression provided that it did not infringe
on the rights of others. It began to come to an end following the Mongol invasion
and sack of Baghdad in the late 1250s and the Crusades. It continued to some extent
until the conquest by Ferdinand and Isabella of Andalusia in the late fifteenth
century.

1.7 Chinese and Indian Mathematics

The development of mathematics commenced in China about 1000 B.C. and was
independent of developments in other countries. The emphasis was on
problem-solving rather than on conducting formal proofs. It was concerned with
finding the solution to practical problems such as the calendar, the prediction of the
positions of the heavenly bodies, land measurement, conducting trade and the
calculation of taxes.

The Chinese employed counting boards as mechanical aids for calculation from
the fourth century B.C. These are similar to abaci and are usually made of wood or
metal, and contained carved grooves between which beads, pebbles or metal discs
were moved.

Early Chinese mathematics was written on bamboo strips and included work on
arithmetic and astronomy. The Chinese method of learning and calculation in
mathematics was learning by analogy. This involves a person acquiring knowledge
from observation of how a problem is solved, and then applying this knowledge to
solving similar kinds of problems.

They had their version of Pythagoras’ theorem and applied it to practical
problems. They were familiar with the Chinese remainder theorem, the formula for
finding the area of a triangle, as well as showing how polynomial equations (up to

1.6 Islamic Influence 23

degree ten) could be solved. They showed how geometric problems could be solved
by algebra, how roots of polynomials could be solved, how quadratic and simul-
taneous equations could be solved, and how the area of various geometric shapes
such as rectangles, trapezia and circles could be computed. Chinese mathematicians
were familiar with the formula to calculate the volume of a sphere. The best
approximation that the Chinese had to p was 3.14159, and this was obtained by
approximations from inscribing regular polygons with 3 � 2n sides in a circle.

The Chinese made contributions to number theory including the summation of
arithmetic series and solving simultaneous congruences. The Chinese remainder
theorem deals with finding the solutions to a set of simultaneous congruences in
modular arithmetic. Chinese astronomers made accurate observations, which were
used to produce a new calendar in the sixth century. This was known as the Taming
Calendar and it was based on a cycle of 391 years.

Indian mathematicians have made important contributions such as the devel-
opment of the decimal notation for numbers that are now used throughout the
world. This was developed in India sometime between 400 B.C. and 400 A.D.
Indian mathematicians also invented zero and negative numbers, and also did early
work on the trigonometric functions of sine and cosine. The knowledge of the
decimal numerals reached Europe through Arabic mathematicians, and the resulting
system is known as the Hindu–Arabic numeral system.

The Sulva Sutras is a Hindu text that documents Indian mathematics, and it dates
from about 400 B.C. The Indians were familiar with the statement and proof of
Pythagoras’ theorem, rational numbers, quadratic equations, as well as the calcu-
lation of the square root of 2 to five decimal places.

1.8 Review Questions

1. Discuss the strengths and weaknesses of the various numbering system.
2. Describe the ciphers used during the Roman civilization and write a

program to implement one of these.
3. Discuss the nature of an algorithm and its importance in computing.
4. Discuss the working of an abacus and its application to calculation.
5. What are the differences between syllogistic logic and stoic logic?
6. Describe the main achievements of the Islamic world in mathematics.

24 1 Mathematics in Civilization

1.9 Summary 25

1.9 Summary

Software is pervasive in the modern world, and it has transformed the world in
which we live. New technology has led to improvements in all aspects of our lives
including medicine, transport, education and so on. The pace of change of new
technology is relentless, with new versions of technology products becoming
available several times a year.

This chapter considered some of the contributions of early civilizations to
computing. We commenced our journey with an examination of some of the
contributions of the Babylonians. We then moved forward to consider some of the
achievements of the Egyptians, the Greeks and Romans; Islamic scholars; and the
Indians and Chinese.

The Babylonians recorded their mathematical knowledge on clay cuneiform
tablets. These tablets included tables for multiplication, division, squares, and square
roots and the calculation of area. They were familiar with techniques that allowed the
solution of a linear equation and one root of a quadratic equation to be determined.

The Egyptian civilization developed along the River Nile, and they applied their
knowledge of mathematics to solve practical problems such as measuring the
annual Nile flooding, and constructing temples and pyramids.

The Greeks and the later Hellenistic period made important contributions to
Western civilization. Their contributions to mathematics included the Euclidean
algorithm, which is used to determine the greatest common divisor of two numbers.
Eratosthenes developed an algorithm to determine the prime numbers up to a given
number. Archimedes invented the “Archimedes Screw”, the “Archimedes Claw”
and a type of heat ray.

The Islamic civilization helped to preserve Western knowledge that was lost
during the Dark Ages in Europe, and they also continued to develop mathematics
and algebra. Hindu mathematicians introduced the decimal notation that is familiar
today. Islamic mathematicians adopted it and the resulting system is known as the
Hindu–Arabic system.

References

1. Resnikoff HL, Wells RO (1984) Mathematics in civilisation. Dover Publications
2. Smith DE (1923) History of mathematics, vol 1. Dover Publications, New York
3. Anglin WS, Lambek J (1995) The heritage of Thales. Springer, New York
4. Euclid (1956) The thirteen books of the elements, vol 1. Translated by Sir Thomas Heath.

Dover Publications (First published in 1925)
5. de Solla Price DJ (1959) An Ancient Greek computer. Sci Am 60–67

2Sets, Relations and Functions

2.1 Introduction

This chapter provides an introduction to fundamental building blocks in mathe-
matics such as sets, relations and functions. Sets are collections of well-defined
objects; relations indicate relationships between members of two sets A and B;
functions are a special type of relation where there is exactly (or at most)1 one
relationship for each element a 2 A with an element in B.

A set is a collection of well-defined objects that contains no duplicates. The term
‘well defined’ means that for a given value it is possible to determine whether or not
it is a member of the set. There are many examples of sets such as the set of natural
numbers ℕ, the set of integer numbers ℤ and the set of rational numbers ℚ. The
natural numbers ℕ is an infinite set consisting of the numbers {1, 2, .…}. Venn
diagrams may be used to represent sets pictorially.

A binary relation R(A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A and the codomain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that a; bð Þ 2 R. An n-ary relation R A1;A2; . . .Anð Þ is a subset of
ðA1 � A2 � � � � � AnÞ. However, an n-ary relation may also be regarded as a binary
relation R(A,B) with A ¼ A1 � A2 � � � � � An�1 and B = An.

Functions may be total or partial. A total function f : A ! B is a special relation
such that for each element a 2 A, there is exactly one element b 2 B. This is
written as f(a) = b. A partial function differs from a total function in that the
function may be undefined for one or more values of A. The domain of a function

1We distinguish between total and partial functions. A total function f : A ! B is defined for every
element in A, whereas a partial function may be undefined for one or more values in A.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_2

(denoted by dom f) is the set of values in A for which the partial function is defined.
The domain of the function is A provided that f is a total function. The codomain of
the function is B.

2.2 Set Theory

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and they
are distinct with no repetition of the same element in the set.2 Most sets encountered
in computer science are finite, as computers can only deal with finite entities. Venn
diagrams3 are often employed to give a pictorial representation of a set, and they
may be used to illustrate various set operations such as set union, intersection and
set difference.

There are many well-known examples of sets including the set of natural
numbers denoted by ℕ, the set of integers denoted by ℤ, the set of rational numbers
denoted by ℚ, the set of real numbers denoted by ℝ and the set of complex numbers
denoted by ℂ.

Example 2.1 The following are examples of sets.

– The books on the shelves in a library;
– The books that are currently overdue from the library;
– The customers of a bank;
– The bank accounts in a bank;
– The set of Natural Numbers ℕ = {1, 2, 3, …};
– The Integer Numbers ℤ = {…, −3, −2, −1, 0, 1, 2, 3, …};
– The non-negative integers ℤ+ = {0, 1, 2, 3, …};
– The set of Prime Numbers = {2, 3, 5, 7, 11, 13, 17, …};
– The Rational Numbers is the set of quotients of integers.

Q ¼ fp=q : p; q 2 Z and q 6¼ 0g:

28 2 Sets, Relations and Functions

2There are mathematical objects known as multi-sets or bags that allow duplication of elements.
For example, a bag of marbles may contain three green marbles, two blue and one red marble.
3The British logician, John Venn, invented the Venn diagram. It provides a visual representation of
a set and the various set theoretical operations. Their use is limited to the representation of two or
three sets as they become cumbersome with a larger number of sets.

A finite set may be defined by listing all of its elements. For example, the set
A = {2, 4, 6, 8, 10} is the set of all even natural numbers less than or equal to 10.
The order in which the elements are listed is not relevant: i.e. the set {2, 4, 6, 8, 10}
is the same as the set {8, 4, 2, 10, 6}.

a
b

A

Sets may be defined by using a predicate to constrain set membership. For
example, the set S ¼ fn : N : n� 10 ^ nmod 2 ¼ 0g also represents the set {2, 4, 6,
8, 10}. That is, the use of a predicate allows a new set to be created from an existing
set by using the predicate to restrict membership of the set. The set of even natural
numbers may be defined by a predicate over the set of natural numbers that restricts
membership to the even numbers. It is defined by

Evens ¼ fxjx 2 N ^ even xð Þg:

In this example, even(x) is a predicate that is true if x is even and false otherwise.
In general, A ¼ fx 2 EjP xð Þg denotes a set A formed from a set E using the
predicate P to restrict membership of A to those elements of E for which the
predicate is true.

The elements of a finite set S are denoted by {x1, x2, … xn}. The expression
x 2 S denotes that the element x is a member of the set S, whereas the expression
x 62 S indicates that x is not a member of the set S.

T

S

A set S is a subset of a set T (denoted by S� T) if whenever s 2 S then s 2 T,
and in this case the set T is said to be a superset of S (denoted by T � S). Two sets
S and T are said to be equal if they contain identical elements: i.e. S = T if and only
if S� T and T � S. A set S is a proper subset of a set T (denoted by S � T) if S� T
and S 6¼ T. That is, every element of S is an element of T, and there is at least one
element in T that is not an element of S. In this case, T is a proper superset of
S (denoted by T 	 S).

The empty set (denoted by ; or {}) represents the set that has no elements.
Clearly, ; is a subset of every set. The singleton set containing just one element x is
denoted by {x}, and clearly x 2 {x} and x 6¼ {x}. Clearly, y 2 {x} if and only if
x = y.

Example 2.2

(i) 1; 2f g� 1; 2; 3f g.
(ii) ; � N � Z � Q � R � C.

2.2 Set Theory 29

The cardinality (or size) of a finite set S defines the number of elements present in
the set. It is denoted by |S|. The cardinality of an infinite4 set S is written as
Sj j ¼ 1.

Example 2.3

(i) GivenA ¼ 2; 4; 5; 8; 10f g then Aj j ¼ 5:
(ii) GivenA ¼ fx 2 Z : x2 ¼ 9g then Aj j ¼ 2.
(iii) GivenA ¼ fx 2 Z : x2 ¼ �9g then Aj j ¼ 0:

2.2.1 Set Theoretical Operations

Several set theoretical operations are considered in this section. These include the
Cartesian product operation; the power set of a set; the set union operation; the set
intersection operation; the set difference operation; and the symmetric difference
operation.

Cartesian Product

The Cartesian product allows a new set to be created from existing sets. The
Cartesian5 product of two sets S and T (denoted by S � T) is the set of ordered pairs
fðs; tÞjs 2 S; t 2 Tg. Clearly, S� T 6¼ T � S and so the Cartesian product of two
sets is not commutative. Two ordered pairs (s1,t1) and (s2, t2) are considered equal if
and only if s1 = s2 and t1 = t2.

The Cartesian product may be extended to that of n sets S1, S2, …, Sn. The
Cartesian product S1 � S2 � ... � Sn is the set of ordered tuples
f s1; s2; ::; snð Þjs1 2 S1; s2 2 S2; ::; sn 2 Sng. Two ordered n-tuples (s1, s2, …, sn)
and (s1′, s2′, …, sn′) are considered equal if and only if s1 = s1′, s2, = s2′, …,
sn = sn′.

The Cartesian product may also be applied to a single set S to create ordered n-
tuples of S: i.e. Sn = S � S � .. � S (n times).

Power Set

The power set of a set A (denoted by ℙA) denotes the set of subsets of A. For
example, the power set of the set A = {1, 2, 3} has 8 elements and is given by

A ¼ f;; 1f g; 2f g; 3f g; 1; 2f g; 1; 3f g; 2; 3f g; 1; 2; 3f gg:

30 2 Sets, Relations and Functions

4The natural numbers, integers and rational numbers are countable sets, whereas the real and
complex numbers are uncountable sets.
5Cartesian product is named after René Descartes who was a famous 17th French mathematician
and philosopher. He invented the Cartesian coordinate system that links geometry and algebra, and
allows geometric shapes to be defined by algebraic equations.

There are 23 = 8 elements in the power set of A = {1, 2, 3} and the cardinality of
A is 3. In general, there are 2|A| elements in the power set of A.

Theorem 2.1 (Cardinality of Power Set of A)
There are 2|A| elements in the power set of A.

Proof Let |A| = n, then the cardinality of the subsets of A are subsets of size 0,1,

….,n. There are
n
k

� �
subsets of A of size k.6 Therefore, the total number of subsets

of A is the total number of subsets of size 0,1,2, … up to n. That is,

Aj j ¼
Xn
k¼1

n
k

� �
:

The Binomial theorem (we prove it in Example 4.2 in Chap. 4) states that

1þ xð Þn¼
Xn
k¼0

n
k

� �
xk:

Therefore, putting x = 1, we get

2n ¼ 1þ 1ð Þn¼
Xn
k¼0

n
k

� �
1k ¼ Aj j:

Union and Intersection Operations

The union of two sets A and B is denoted by A[B. It results in a set that contains all
of the members of A and of B and is defined by

A[B ¼ frjr 2 A or r 2 Bg:

For example, suppose A = {1, 2, 3} and B = {2, 3, 4} then A[B ¼ 1; 2; 3; 4f g.
Set union is a commutative operation: i.e. A[B ¼ B[A. Venn diagrams are used
to illustrate these operations pictorially.

A B A B

A B A B

The intersection of two sets A and B is denoted by A\B. It results in a set
containing the elements that A and B have in common and is defined by

2.2 Set Theory 31

6We discuss permutations and combinations in Chap. 5.

A\B ¼ frjr 2 A and r 2 Bg:

Suppose A = {1, 2, 3} and B = {2, 3, 4}, then A\B ¼ 2; 3f g. Set intersection is
a commutative operation: i.e. A\B ¼ B\A.

Union and intersection are binary operations but may be extended to more
generalized union and intersection operations. For example:

[n

i¼1
Ai denotes the union of n sets:

\n

i¼1
Ai denotes the intersection of n sets:

Set Difference Operations

The set difference operation A\B yields the elements in A that are not in B. It is
defined by

AnB ¼ faja 2 A and a 62 Bg:

For A and B defined as A = {1, 2} and B = {2, 3}, we have A\B = {1} and B
\A = {3}. Clearly, set difference is not commutative: i.e. A\B 6¼ B\A. Clearly,
AnA ¼ ; and An; ¼ A.

The symmetric difference of two sets A and B is denoted by ADB and is given
by

ADB ¼ AnB[BnA:

The symmetric difference operation is commutative: i.e. ADB ¼ BDA. Venn
diagrams are used to illustrate these operations pictorially.

A B A B A B

A \ B B \ A A Δ B

The complement of a set A (with respect to the universal set U) is the elements in
the universal set that are not in A. It is denoted by Ac (or A′) and is defined as

Ac ¼ fuju 2 U and u 62 Ag ¼ UnA:

The complement of set A is illustrated by the shaded area below.

A Ac

U

32 2 Sets, Relations and Functions

2.2.2 Properties of Set Theoretical Operations

The set union and set intersection properties are commutative and associative. Their
properties are listed in Table 2.1.

These properties may be seen to be true with Venn diagrams, and we give proof of
the distributive property (this proof uses logic which is discussed in Chaps. 14–16).

Proof of Properties (Distributive Property)

To show A\ ðB[CÞ ¼ ðA\BÞ [ðA\CÞ,
suppose x 2 A\ ðB[CÞ then

x 2 A ^ x 2 ðB[CÞ

) x 2 A ^ ðx 2 B _ x 2 CÞ

) ðx 2 A ^ x 2 BÞ _ ðx 2 A ^ x 2 CÞ

) x 2 ðA\BÞ _ x 2 ðA\CÞ

) x 2 ðA\BÞ [ðA\CÞ:

Table. 2.1 Properties of set operations

Property Description

Commutative Union and intersection operations are commutative:
S[T ¼ T [S
S\ T ¼ T \ S

Associative Union and intersection operations are associative:
R[ðS[TÞ ¼ ðR[SÞ [T
R\ ðS\ TÞ ¼ ðR\ SÞ \ T

Identity The identity under set union is the empty set ;, and the identity under
intersection is the universal set U
S[; ¼ ;[S ¼ S
S\U ¼ U \ S ¼ S

Distributive The union operator distributes over the intersection operator and vice versa
R\ ðS[TÞ ¼ ðR\ SÞ [ðR\ TÞ
R[ðS\ TÞ ¼ ðR[SÞ \ ðR[TÞ

De Morgan’s7

Law
The complement of S[T is given by
ðS[TÞc ¼ Sc \ Tc

The complement of S\ T is given by
ðS\ TÞc ¼ Sc [Tc

2.2 Set Theory 33

7De Morgan’s law is named after Augustus De Morgan, a nineteenth century English
mathematician who was a contemporary of George Boole.

Therefore, A\ ðB[CÞ� ðA\BÞ [ðA\CÞ.
Similarly, ðA\BÞ [ðA\CÞ�A\ ðB[CÞ.
Therefore, A\ ðB[CÞ ¼ ðA\BÞ [ðA\CÞ.

2.2.3 Russell’s Paradox

Bertrand Russell (Fig. 2.1) was a famous British logician, mathematician and
philosopher. He was the co-author with Alfred Whitehead of Principia Mathemat-
ica, which aimed to derive all of the truths of mathematics from logic. Russell’s
paradox was discovered by Bertrand Russell in 1901, and showed that the system of
logicism being proposed by Frege (discussed in Chap. 14) contained a contradiction.

QUESTION (POSED BY RUSSELL TO FREGE)

Is the set of all sets that do not contain themselves as members a set?

RUSSELL’S PARADOX

Let A = {S a set and S 62 S}. Is A 2 A? Then A 2 A) A 62 A and vice versa.
Therefore, a contradiction arises in either case and there is no such set A.

Two ways of avoiding the paradox were developed in 1908, and these were
Russell’s theory of types and Zermelo set theory. Russell’s theory of types was a
response to the paradox by arguing that the set of all sets is ill-formed. Russell
developed a hierarchy with individual elements at the lowest level, sets of elements
at the next level, sets of sets of elements at the next level and so on. It is then
prohibited for a set to contain members of different types.

A set of elements has a different type from its elements, and one cannot speak of the
set of all sets that do not contain themselves as members as these are of different types.
The other way of avoiding the paradox was Zermelo’s axiomatization of set theory.

Fig. 2.1 Bertrand Russell

34 2 Sets, Relations and Functions

Remark Russell’s paradox may also be illustrated by the story of a town that has
exactly one barber who is male. The barber shaves all and only those men in town
who do not shave themselves. The question is who shaves the barber.

If the barber does not shave himself, then according to the rule he is shaved by
the barber (i.e. himself). If he shaves himself, then according to the rule he is not
shaved by the barber (i.e. himself).

The paradox occurs due to self-reference in the statement, and a logical exam-
ination shows that the statement is a contradiction.

2.2.4 Computer Representation of Sets

Sets are fundamental building blocks in mathematics, and so the question arises as
to how a set is stored and manipulated in a computer. The representation of a set
M on a computer requires a change from the normal view that the order of the
elements of the set is irrelevant, and we will need to assume a definite order in the
underlying universal set ℳ from which the set M is defined.

That is, a set is always defined in a computer program with respect to an
underlying universal set, and the elements in the universal set are listed in a definite
order. Any set M arising in the program that is defined with respect to this universal
set ℳ is a subset of ℳ. Next, we show how the set M is stored internally on the
computer.

The set M is represented in a computer as a string of binary digits b1b2…bn
where n is the cardinality of the universal set ℳ. The bits bi (where i ranges over
the values 1, 2, … n) are determined according to the rule:

bi ¼ 1 if ith element of is inM;

bi ¼ 0 if ith element of is not inM:

For example, ifℳ = {1, 2,… 10} then the representation ofM = {1, 2, 5, 8} is
given by the bit string 1100100100 where this is given by looking at each element
of ℳ in turn and writing down 1 if it is in M and 0 otherwise.

Similarly, the bit string 0,100,101,100 represents the set M = {2, 5, 7, 8}, and
this is determined by writing down the corresponding element in ℳ that corre-
sponds to a 1 in the bit string.

Clearly, there is a one-to-one correspondence between the subsets of ℳ and all
possible n-bit strings. Further, the set theoretical operations of set union, intersec-
tion and complement can be carried out directly with the bit strings (provided that
the sets involved are defined with respect to the same universal set). This involves a
bitwise ‘or’ operation for set union, a bitwise ‘and’ operation for set intersection
and a bitwise ‘not’ operation for the set complement operation.

2.2 Set Theory 35

2.3 Relations

A binary relation R(A, B) where A and B are sets is a subset of A � B: i.e.
R�A� B. The domain of the relation is A and the codomain of the relation is
B. The notation aRb signifies that (a, b) 2 R.

A binary relation R(A, A) is a relation between A and A. This type of relation
may always be composed of itself, and its inverse is also a binary relation on A. The
identity relation on A is defined by a iAa for all a 2 A.

Example 2.4 There are many examples of relations:

(i) The relation on a set of students in a class where (a, b) 2 R if the height of a is
greater than the height of b.

(ii) The relation between A and B where A = {0, 1, 2} and B = {3, 4, 5} with
R given by

R ¼ 0; 3ð Þ; 0; 4ð Þ; 1; 4ð Þf g:

(iii) The relation less than (<) between and ℝ and ℝ is given by

f x; yð Þ 2 R2 : x\yg:

(iv) A bank may represent the relationship between the set of accounts and the set
of customers by a relation. The implementation of a bank account may often be
a positive integer with at most eight decimal digits.

The relationship between accounts and customers may be done with a
relation R�A� B, with the set A chosen to be the set of natural numbers, and
the set B chosen to be the set of all human beings alive or dead. The set A could
also be chosen to be A ¼ fn 2 N : n\108g.

A relation R(A, B) may be represented pictorially. This is referred to as the graph
of the relation, and it is illustrated in the diagram below. An arrow from x to y is
drawn if (x, y) is in the relation. Thus, for the height relation R given by {(a, p), (a,
r), (b, q)} an arrow is drawn from a to p, from a to r and from b to q to indicate that
(a, p), (a, r) and (b, q) are in the relation R.

a
b

p
q
r

A B

36 2 Sets, Relations and Functions

The pictorial representation of the relation makes it easy to see that the height of
a is greater than the height of p and r, and that the height of b is greater than the
height of q.

An n-ary relation R A1;A2; . . .Anð Þ is a subset of ðA1 � A2 � � � � � AnÞ. How-
ever, an n-ary relation may also be regarded as a binary relation R(A, B) with
A ¼ A1 � A2 � � � � � An�1 and B = An.

2.3.1 Reflexive, Symmetric and Transitive Relations

There are various types of relations including reflexive, symmetric and transitive
relations.

(i) A relation on a set A is reflexive if (a, a) 2 R for all a 2 A.
(ii) A relation R is symmetric if whenever (a, b) 2 R then (b, a) 2 R.
(iii) A relation is transitive if whenever (a, b) 2 R and (b, c) 2 R then (a, c) 2 R.

A relation that is reflexive, symmetric and transitive is termed an equivalence
relation.

Example 2.5 (Reflexive Relation)
A relation is reflexive if each element possesses an edge looping around on itself.
The relation in Fig. 2.2 below is reflexive.

Example 2.6 (Symmetric Relation)
The graph of a symmetric relation will show for every arrow from a to b an
opposite arrow from b to a. The relation in Fig. 2.3 is symmetric: i.e. whenever (a,
b) 2 R then (b, a) 2 R.

Example 2.7 (Transitive relation)
The graph of a transitive relation will show that whenever there is an arrow from
a to b and an arrow from b to c that there is an arrow from a to c. The relation in
Fig. 2.4 below is transitive: i.e. whenever (a, b) 2 R and (b, c) 2 R then (a, c) 2 R.

Fig. 2.2 Reflexive relation

2.3 Relations 37

Example 2.8 (Equivalence relation)
The relation on the set of integers ℤ defined by (a, b) 2 R if a – b = 2k for some
k 2 ℤ is an equivalence relation, and it partitions the set of integers into two
equivalence classes: i.e. the even and odd integers.

Domain and Range of Relation

The domain of a relation R (A, B) is given by fa 2 A j 9b 2 B and a; bð Þ 2 Rg. It is
denoted by dom R. The domain of the relation
R ¼ a; pð Þ; a; rð Þ; b; qð Þf g is a; bf g.

The range of a relation R (A, B) is given by fb 2 B j 9a 2 A and a; bð Þ 2 Rg. It is
denoted by rng R. The range of the relation R ¼ a; pð Þ; a; rð Þ; b; qð Þf g is p; q; rf g.
Inverse of a Relation

Suppose R�A� B is a relation between A and B, then the inverse relation
R�1 �B� A is defined as the relation between B and A and is given by

bR�1a if and only if aR b:

Fig. 2.3 Symmetric relation

Fig. 2.4 Transitive relation

38 2 Sets, Relations and Functions

That is,

R�1 ¼ f b; að Þ 2 B� A : a; bð Þ 2 Rg:

Example 2.9 Let R be the relation between ℤ and ℤ+ defined by mRn if and only if
m2 = n. Then R ¼ f m; nð Þ 2 Z� Zþ : m2 ¼ ng and
R�1 ¼ f n;mð Þ 2 Zþ � Z : m2 ¼ ng.

For example, −3 R 9, −4 R 16, 0 R 0, 16 R−1 −4, 9 R−1 −3, etc.

Partitions and Equivalence Relations

An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite set and let A1, A2, …, An be subsets of A such that c Ai 6¼ ; for
all i, Ai \Aj ¼ ; if i 6¼ j and A ¼ [n

i Ai ¼ A1 [A2 [. . .[An.
The sets Aipartition the set A, and these sets are called the classes of the partition

(Fig. 2.5).

Theorem 2.2 (Equivalence Relation and Partitions)

An equivalence relation on A gives rise to a partition of A where the equivalence
classes are given by Class (a) ¼ fxjx 2 A and ða; xÞ 2 Rg. Similarly, a partition
gives rise to an equivalence relation R, where (a, b) 2 R if and only if a and b are in
the same partition.

Proof Clearly, a 2 Class(a) since R is reflexive and clearly the union of the
equivalence classes is A. Next, we show that two equivalence classes are either
equal or disjoint.

Suppose Class (a) \ Class (b) 6¼ ;. Let x 2 Class (a) \ Class (b) and so (a,
x) and (b, x) 2 R. By the symmetric property (x, b) 2 R and since R is transitive
from (a, x) and (x, b) in R, we deduce that (a, b) 2 R. Therefore b 2 Class(a).
Suppose y is an arbitrary member of Class (b) then (b, y) 2 R therefore from (a,
b) and (b, y) in R, we deduce that (a, y) is in R. Therefore, since y was an arbitrary
member of Class(a), we deduce that Class(b�Class ðaÞ. Similarly,
Class ðaÞ�Class ðbÞ and so Class(a) = Class(b).

Fig. 2.5 Partitions of A

2.3 Relations 39

This proves the first part of the theorem and for the second part, we define a
relation R such that (a, b) 2 R if a and b are in the same partition. It is clear that this
is an equivalence relation.

2.3.2 Composition of Relations

The composition of two relations R1(A, B) and R2(B, C) is given by R2 o R1 where
(a, c) 2 R2 o R1 if and only if there exists b 2 B such that (a, b) 2 R1 and (b,
c) 2 R2. The composition of relations is associative: i.e.

R3 oR2ð Þ oR1 ¼ R3 o R2 oR1ð Þ:

Example 2.10 (Composition of Relations)
Consider a library that maintains two files. The first file maintains the serial number
s of each book as well as the details of the author a of the book. This may be
represented by the relation R1= sR1a. The second file maintains the library card
number c of its borrowers and the serial number s of any books that they have
borrowed. This may be represented by the relation R2 = cR2s.

The library wishes to issue a reminder to its borrowers of the authors of all books
currently on loan to them. This may be determined by the composition of R1 o R2:
i.e. c R1o R2 a if there is a book with serial number s such that c R2 s and s R1 a.

Example 2.11 (Composition of Relations)
Consider sets A = {a, b, c}, B = {d, e, f}, C = {g, h, i} and relations R(A, B) = {(a,
d), (a, f), (b, d), (c, e)} and S(B, C) = {(d, h), (d, i), (e, g), (e, h)}. Then we graph
these relations and show how to determine the composition pictorially.

S o R is determined by choosing x 2 A and y 2 C and checking if there is a route
from x to y in the graph (Fig. 2.6). If so, we join x to y in S o R. For example, if we
consider a and h we see that there is a path from a to d and from d to h, and
therefore (a, h) is in the composition of S and R.

a

b

c

g

h

i

A C

S o R

The union of two relations R1(A, B) and R2(A, B) is meaningful (as these are both
subsets of A � B). The union R1 [R2 is defined as a; bð Þ 2 R1 [R2 if and only if
(a, b) 2 R1 or (a, b) 2 R2.

40 2 Sets, Relations and Functions

Similarly, the intersection of R1 and R2ðR1 \R2Þ is meaningful and is defined as
a; bð Þ 2 R1 \R2 if and only if (a, b) 2 R1 and (a, b) 2 R2. The relation R1 is a
subset of R2ðR1 �R2Þ if whenever (a, b) 2 R1 then (a, b) 2 R2.

The inverse of the relation R was discussed earlier and is given by the relation
R−1 where R�1 ¼ f b; að Þj a; bð Þ 2 Rg.

The composition of R and R−1 yields R�1o R ¼ f a; að Þja 2 dom Rg ¼ iA and
R o R�1 ¼ f b; bð Þjb 2 domR�1g ¼ iB.

2.3.3 Binary Relations

A binary relation R on A is a relation between A and A, and a binary relation can
always be composed of itself. Its inverse is a binary relation on the same set. The
following are all relations on A:

R2 ¼ R oR

R3 ¼ R oRð Þ o R

R0 ¼ iA identity relationð Þ

R�2 ¼ R�1 o R�1:

Example 2.12 Let R be the binary relation on the set of all people P such that
(a, b) 2 R if a is a parent of b. Then the relation Rn is interpreted as

R is the parent relationship.
R2 is the grandparent relationship.
R3 is the great grandparent relationship.
R−1 is the child relationship.

Fig. 2.6 Composition of relations

2.3 Relations 41

R−2 is the grandchild relationship.
R−3 is the great grandchild relationship.
This can be generalized to a relation Rn on A where Rn = R o R o … o R (n-

times). The transitive closure of the relation R on A is given by

R
 ¼
[1

i¼0
Ri ¼ R0 [R1 [R2 [:::Rn [::

where R0 is the reflexive relation containing only each element in the domain of R:
i.e. R0 ¼ iA ¼ f a; að Þja 2 domRg.

The positive transitive closure is similar to the transitive closure except that it
does not contain R0. It is given by

Rþ ¼
[1

i¼1
Ri ¼ R1 [R2 [:::[Rn [::

a R+ b if and only if a Rn b for some n > 0: i.e. there exists c1, c2 … cn 2 A such
that

aRc1; c1Rc2; . . .; cnRb

Parnas8 introduced the concept of the limited domain relation (LD relation), and
an LD relation L consists of an ordered pair (RL, CL) where RL is a relation and CL is
a subset of Dom RL. The relation RL is on a set U and CL is termed the competence
set of the LD relation L. A description of LD relations and a discussion of their
properties are in Chap. 2 of [1].

The importance of LD relations is that they may be used to describe program
execution. The relation component of the LD relation L describes a set of states
such that if execution starts in state x, it may terminate in state y. The set U is the set
of states. The competence set of L is such that if execution starts in a state that is in
the competence set, then it is guaranteed to terminate.

2.3.4 Applications of Relations

A Relational Database Management System (RDBMS) is a system that manages
data using the relational model, and examples of such systems include RDMS
developed at MIT in the 1970s; Ingres developed at the University of California,
Berkeley, in the mid-1970s; Oracle developed in the late 1970s; DB2; Informix;
and Microsoft SQL Server.

A relation is defined as a set of tuples and is usually represented by a table.
A table is data organized in rows and columns, with the data in each column of the
table of the same data type. Constraints may be employed to provide restrictions on

42 2 Sets, Relations and Functions

8Parnas made important contributions to software engineering in the 1970s. He invented
information hiding which is used in object-oriented design.

the kinds of data that may be stored in the relations. Constraints are Boolean
expressions which indicate whether the constraint holds or not, and are a way of
implementing business rules in the database.

Relations have one or more keys associated with them, and the key uniquely
identifies the row of the table. An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all of the tuples in the relation.

The Structured Query Language (SQL) is a computer language that tells the
relational database what to retrieve and how to display it. A stored procedure is
executable code that is associated with the database, and it is used to perform
common operations on the database.

The concept of a relational database was first described in a paper “A Relational
Model of Data for Large Shared Data Banks” by Codd [2]. A relational database is
a database that conforms to the relational model, and it may be defined as a set of
relations (or tables).

Codd (Fig. 2.7) developed the relational database model in the late 1960s, and
today, this is the standard way that information is organized and retrieved from
computers. Relational databases are at the heart of systems from hospitals’ patient
records to airline flight and schedule information.

A binary relation R(A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A, and the codomain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) 2 R. An n-ary relation R A1;A2; . . .Anð Þ is a subset of the
Cartesian product of the n sets: i.e. a subset of ðA1 � A2 � � � � � AnÞ. However, an
n-ary relation may also be regarded as a binary relation R(A, B) with A ¼
A1 � A2 � � � � � An�1 and B = An.

The data in the relational model are represented as a mathematical n-ary relation.
In other words, a relation is defined as a set of n-tuples, and is usually represented
by a table. A table is a visual representation of the relation, and the data is organized

Fig. 2.7 Edgar Codd

2.3 Relations 43

in rows and columns. The data stored in each column of the table are of the same
data type.

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from [3], where this relation consists of a heading and the
body. There are five data types representing part numbers, part names, part colours,
part weights and locations in which the parts are stored. The body consists of a set
of n-tuples, and the PART relation given in Fig. 2.8 is of cardinality six.

For more information on the relational model and databases, see [4].

2.4 Functions

A function f : A ! B is a special relation such that for each element a 2 A, there is
exactly (or at most)9 one element b 2 B. This is written as f(a) = b.

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a 2 A.

P# PName Colour Weight City
P1
P2
P3
P4
P5

Nut
Bolt
Screw
Screw
Cam

Red
Green
Blue
Red
Blue

12
17
17
14
12

London
Paris
Rome
London
Paris

Fig. 2.8 PART relation

44 2 Sets, Relations and Functions

9We distinguish between total and partial functions. A total function is defined for all elements in
the domain, whereas a partial function may be undefined for one or more elements in the domain.

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A provided that f is a
total function. The codomain of the function is B. The range of the function
(denoted by rng f) is a subset of the codomain and consists of

rngf ¼ frjr 2 B such that f að Þ ¼ r for some a 2 Ag:

Functions may be partial or total. A partial function (or partial mapping) may be
undefined for some values of A, and partial functions arise regularly in the com-
puting field (Fig. 2.9). Total functions are defined for every value in A and many
functions encountered in mathematics are total.

Example 2.13 (Functions)
Functions are an essential part of mathematics and computer science, and there are
many well-known functions such as the trigonometric functions sin(x), cos(x) and
tan(x); the logarithmic function ln(x); the exponential functions ex; and polynomial
functions.

(i) Consider the partial function f : R ! R where

f xð Þ ¼ 1=x ðwhere x 6¼ 0Þ:

This partial function is defined everywhere except for x = 0.

(ii) Consider the function f : R ! R where

f ðxÞ ¼ x2:

Then this function is defined for all x 2 ℝ.

Fig. 2.9 Domain and range
of a partial function

2.4 Functions 45

Partial functions often arise in computing as a program may be undefined or fail
to terminate for several values of its arguments (e.g. infinite loops). Care is required
to ensure that the partial function is defined for the argument to which it is to be
applied.

Consider a program P that has one natural number as its input and which for
some input values will never terminate. Suppose that if it terminates, it prints a
single real result and halts. Then P can be regarded as a partial mapping from ℕ to
ℝ.

P : N ! R:

Example 2.14 How many total functions f : A ! B are there from A to B (where
A and B are finite sets)?

Each element of A maps to any element of B, i.e. there are |B| choices for each
element a 2 A. Since there are |A| elements in A, the number of total functions is
given by

Bj j Bj j. . .:: Bj j Aj j timesð Þ
¼ Bj jAj total functions betweenA andB:

Example 2.15 How many partial functions f : A ! B are there from A to B (where
A and B are finite sets)?

Each element of A may map to any element of B or to no element of B (as it may
be undefined for that element of A). In other words, there are |B|+1 choices for each
element of A. As there are |A| elements in A, the number of distinct partial functions
between A and B is given by

Bj j þ 1ð Þ Bj j þ 1ð Þ. . .:: Bj j þ 1ð Þ Aj j timesð Þ
¼ Bj j þ 1ð ÞjAj:

Two partial functions f and g are equal if

1. dom f = dom g;
2. f(a) = g(a) for all a 2 dom f.

A function f is less defined than a function gðf � gÞ if the domain of f is a subset
of the domain of g, and the functions agree for every value on the domain of f:

1. dom f � dom g;
2. f(a) = g(a) for all a 2 dom f.

46 2 Sets, Relations and Functions

The composition of functions is similar to the composition of relations. Suppose
f : A ! B and g : B ! C then g o f : A ! C is a function, and this is written as g o
f(x) or g(f(x)) for x 2 A.

The composition of functions is not commutative and this can be seen by an
example. Consider the function f : R ! R such that f xð Þ ¼ x2 and the function g:
R ! R such that g xð Þ ¼ xþ 2. Then

g o f xð Þ ¼ g x2
� � ¼ x2 þ 2:

f o g xð Þ ¼ f xþ 2ð Þ ¼ xþ 2ð Þ2¼ x2 þ 4xþ 4:

Clearly, g o f ðxÞ 6¼ f o gðxÞ and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. For f : A ! B, g : B ! C and
h : C ! D, we have

h o g o fð Þ ¼ h o gð Þ o f :

A function f : A ! B is injective (one to one) if

f a1ð Þ ¼ f a2ð Þ) a1 ¼ a2:

For example, consider the function f : R ! R with f xð Þ ¼ x2. Then
f (3) = f (−3) = 9, and so this function is not one to one.

A function f xð Þ ¼ x2 is surjective (onto) if given any b 2 B there exists an
a 2 A such that f(a) = b. Consider the function f : R ! R with f xð Þ ¼ xþ 1.
Clearly, given any r 2 ℝ, then f (r-1) = r and so f is onto (Fig. 2.10).

A function is bijective if it is one to one and onto. That is, there is a one-to-one
correspondence between the elements in A and B, and for each b 2 B there is a
unique a 2 A such that f(a) = b (Fig. 2.11).

The inverse of a relation was discussed earlier and the relational inverse of a
function f : A ! B clearly exists. The relational inverse of the function may or may
not be a function.

Fig. 2.10 Injective and surjective functions

2.4 Functions 47

However, if the relational inverse is a function, it is denoted by f�1 : B ! A.
A total function has an inverse if and only if it is bijective, whereas a partial
function has an inverse if and only if it is injective.

The identity function 1A : A ! A is a function such that 1A(a) = a for all a
A. Clearly, when the inverse of the function exists, then we have that f�1o f ¼ 1A
and f�o f�1 ¼ 1B.

Theorem 2.3 (Inverse of Function)
A total function has an inverse if and only if it is bijective.

Proof Suppose f : A ! B has an inverse f−1. Then we show that f is bijective.

We first show that f is one to one.
Suppose f ðx1Þ ¼ f ðx2Þ then

f�1ðf ðx1ÞÞ ¼ f�1ðf ðx2ÞÞ
) f�1o f ðx1Þ ¼ f�1o f ðx2Þ
) 1Aðx1Þ ¼ 1Aðx2Þ
) x1 ¼ x2:

Next, we first show that f is onto. Let.
b 2 B and let a = f−1(b) then

f að Þ ¼ f ðf�1ðbÞÞ ¼ b and so f is surjective:

The second part of the proof is concerned with showing that if f : A ! B is
bijective, then it has an inverse f−1. Clearly, since f is bijective we have that for each
a 2 A there exists a unique b 2 B such that f (a) = b.

Define g : B ! A by letting g(b) be the unique a in A such that f(a) = b. Then
we have that

g o f að Þ ¼ g bð Þ ¼ a and f o g bð Þ ¼ f að Þ ¼ b:

Therefore, g is the inverse of f.

Fig. 2.11 Bijective function (One to one and Onto)

48 2 Sets, Relations and Functions

2.5 Application of Functions

In this section, we discuss the applications of functions to functional programming,
which is quite distinct from the imperative programming languages used in com-
puting. Functional programming differs from imperative programming in that it
involves the evaluation of mathematical functions, whereas imperative program-
ming involves the execution of sequential (or iterative) commands that change the
state. For example, the assignment statement alters the value of a variable, and the
value of a given variable x may change during program execution.

There are no changes of state for functional programs, and the fact that the value
of x will always be the same makes it easier to reason about functional programs
than imperative programs. Functional programming languages provide referential
transparency: i.e. equals may be substituted for equals, and if two expressions have
equal values, then one can be substituted for the other in any larger expression
without affecting the result of the computation.

Functional programming languages use higher order functions,10 recursion, lazy
and eager evaluation, monads11 and Hindley–Milner type inference systems.12

These languages are mainly been used in academia, but there has been some
industrial use, including the use of Erlang for concurrent applications in industry.
Alonzo Church developed Lambda calculus in the 1930s, and it provides an
abstract framework for describing mathematical functions and their evaluation. It
provides the foundation for functional programming languages. Church employed
lambda calculus to prove that there is no solution to the decision problem for
first-order arithmetic in 1936 (discussed in Chap. 13).

Lambda calculus uses transformation rules, and one of these rules is variable
substitution. The original calculus developed by Church was untyped, but typed
lambda calculi have since been developed. Any computable function can be
expressed and evaluated using lambda calculus, but there is no general algorithm to
determine whether two arbitrary lambda calculus expressions are equivalent.
Lambda calculus influenced functional programming languages such as Lisp, ML
and Haskell.

Functional programming uses the notion of higher order functions. Higher order
takes other functions as arguments, and may return functions as results. The
derivative function d=dxf xð Þ ¼ f 0 xð Þ is a higher order function. It takes a function as
an argument and returns a function as a result. For example, the derivative of the
function Sin(x) is given by Cos(x). Higher order functions allow currying which is a
technique developed by Schönfinkel. It allows a function with several arguments to

2.5 Application of Functions 49

10Higher order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics, and one example is the
derivative function dy/dx that takes a function as an argument and returns a function as a result.
11Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of the uses this
feature.
12This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.

be applied to each of its arguments one at a time, with each application returning a
new (higher order) function that accepts the next argument. This allows a function
of n-arguments to be treated as n applications of a function with 1-argument.

John McCarthy developed LISP at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming lan-
guages.13 Scheme built upon the ideas in LISP. Kenneth Iverson developed APL14

in the early 1960s, and this language influenced Backus’s FP programming lan-
guage. Robin Milner designed the ML programming language in the early 1970s.
David Turner developed Miranda in the mid-1980s. The Haskell programming
language was released in the late 1980s.

Miranda Functional Programming Language

Miranda was developed by David Turner at the University of Kent in the mid-1980s
[5]. It is a non-strict functional programming language: i.e. the arguments to a
function are not evaluated until they are actually required within the function being
called. This is also known as lazy evaluation, and one of its main advantages is that
it allows infinite data structures to be passed as an argument to a function. Miranda
is a pure functional language in that there are no side-effect features in the language.
The language has been used for

– Rapid prototyping,
– Specification language and
– Teaching Language.

A Miranda program is a collection of equations that define various functions and
data structures. It is a strongly typed language with a terse notation.

z ¼ sqr p=sqr q

sqr k ¼ k
 k
p ¼ aþ b

q ¼ a� b

a ¼ 10

b ¼ 5.

The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the definition of the function in which it occurs.

One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8]. Lists
may be appended to by using the ‘ ++ ’ operator. For example:

50 2 Sets, Relations and Functions

13Lisp is a multi-paradigm language rather than a functional programming language.
14Iverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing award paper was “Notation as a tool of thought”.

1; 3; 5½ � þ þ 2; 4½ � ¼ 1; 3; 5; 2; 4½ �:

The length of a list is given by the ‘#’ operator:

1; 3½ � ¼ 2.

The infix operator ‘:’ is employed to prefix an element to the front of a list. For
example:

5 : 2; 4; 6½ � is equal to 5; 2; 4; 6½ �:

The subscript operator ‘!’ is employed for subscripting. For example:

Nums ¼ 5; 2; 4; 6½ � then Nums!0 is 5:

The elements of a list are required to be of the same type. A sequence of
elements that contains mixed types is called a tuple. A tuple is written as follows:

Employee ¼ ‘‘Holmes
00
;‘‘ 221BBaker St:London

00
; 50;‘‘ Detective

00
� �

:

A tuple is similar to a record in Pascal, whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

fac 0 ¼ 1

fac nþ 1ð Þ ¼ nþ 1ð Þ
 fac n:

The definition of the factorial function uses two equations, distinguished by the
use of different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:

reverse ½� ¼ ½�

reverse a : xð Þ ¼ reverse x þ þ a½ �:

Miranda is a higher order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
n-arguments to be treated as n applications of a function with 1-argument. Function
application is left-associative: i.e. f x y means (f x) y. That is, the result of applying
the function f to x is a function, and this function is then applied to y. Every function
with two or more arguments in Miranda is a higher order function.

2.5 Application of Functions 51

2.6 Review Questions

1. What is a set? A relation? A function?
2. Explain the difference between a partial and a total function.
3. Explain the difference between a relation and a function.
4. Determine A � B where A = {a, b, c, d} and B = {1, 2, 3}.
5. Determine the symmetric difference ADB where A = {a, b, c, d} and

B = {c, d, e}.
6. What is the graph of the relation � on the set A = {2, 3, 4}.
7. What is the composition of S and R (i.e. S o R), where R is a relation

between A and B, and S is a relation between B and C. The sets A, B, C
are defined as A = {a, b, c, d}, B = {e, f, g}, C = {h, i, j, k} and R = {(a,
e), (b, e), (b, g), (c, e), (d, f)} with S = {(e, h), (e, k), (f, j), (f, k), (g, h)}.

8. What is the domain and range of the relation R where R = {(a, p), (a, r),
(b, q)}.

9. Determine the inverse relation R−1 where R = {(a, 2), (a, 5), (b, 3), (b, 4),
(c, 1)}.

10. Determine the inverse of the function f : R� R ! R defined
byf xð Þ ¼ x�2

x�3 x 6¼ 3ð Þ and f 3ð Þ ¼ 1
11. Give examples of injective, surjective and bijective functions.
12. Let n � 2 be a fixed integer. Consider the relation
 defined by{(p, q):

p,q 2 ℤ, n | (q – p)}:

a. Show
 is an equivalence relation.
b. What are the equivalence classes of this relation?

13. Describe the differences between imperative programming languages and
functional programming languages.

2.7 Summary

This chapter provided an introduction to set theory, relations and functions. Sets are
collections of well-defined objects; a relation between A and B indicates relation-
ships between members of the sets A and B; functions are a special type of relation
where there is at most one relationship for each element a 2 A with an element in
B.

A set is a collection of well-defined objects that contains no duplicates. There are
many examples of sets such as the set of natural numbers ℕ, the integer numbers ℤ
and so on.

52 2 Sets, Relations and Functions

The Cartesian product allows a new set to be created from existing sets. The
Cartesian product of two sets S and T (denoted by S � T) is the set of ordered pairs
f s; tð Þjs 2 S; t 2 Tg.

A binary relation R(A, B) is a subset of the Cartesian product (A � B) of A and
B where A and B are sets. The domain of the relation is A and the codomain of the
relation is B. The notation aRb signifies that there is a relation between a and b and
that (a, b) 2 R. An n-ary relation R A1;A2; . . .Anð Þ is a subset of
ðA1 � A2 � � � � � AnÞ.

A total function f : A ! B is a special relation such that for each element a 2 A,
there is exactly one element b 2 B. This is written as f(a) = b. A function is a
relation but not every relation is a function.

The domain of the function (denoted by dom f) is the set of values in A for which
the function is defined. The domain of the function is A provided that f is a total
function. The codomain of the function is B.

Functional programming is quite distinct from imperative programming in that
there is no change of state, and the value of the variable x remains the same during
program execution. This makes functional programs easier to reason about than
imperative programs.

References

1. Parnas DL (2001) Software fundamentals. In: Hoffman D, Weiss D (eds) Collected papers.
Addison Wesley

2. Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13
(6):377–387

3. Date CJ (1981) An introduction to database systems, 3rd edn. The Systems Programming
Series

4. O’Regan G (2016) Introduction to the history of computing. Springer
5. David Turner M (1985) Proceedings IFIP conference, Nancy France. Springer LNCS (201).

2.7 Summary 53

3Number Theory

3.1 Introduction

Number theory is the branch of mathematics that is concerned with the mathe-
matical properties of the natural numbers and integers. These include properties
such as the parity of a number; divisibility; additive and multiplicative properties;
whether a number is prime or composite; the prime factors of a number; the greatest
common divisor and least common multiple of two numbers; and so on.

Number theory has many applications in computing including cryptography and
coding theory. For example, the RSA public key cryptographic system relies on its
security due to the infeasibility of the integer factorization problem for large
numbers.

There are several unsolved problems in number theory and especially in prime
number theory. For example, Goldbach’s1 conjecture states that every even integer
greater than two is the sum of two primes, and this result has not been proved to
date. Fermat’s2 Last Theorem (Fig. 3.1) states that there is no integer solution to
xn þ yn ¼ zn for n > 2, and this result remained unproved for over 300 years until
Andrew Wiles finally proved it in the mid-1990s.

1Goldbach was an eighteenth-century German mathematician and Goldbach’s conjecture has been
verified to be true for all integers n < 12 * 1017.
2Pierre de Fermat was the 17th French civil servant and amateur mathematician. He occasionally
wrote to contemporary mathematicians announcing his latest theorem without providing the
accompanying proof and inviting them to find the proof. The fact that he never revealed his proofs
caused a lot of frustration among his contemporaries, and in his announcement of his famous last
theorem he stated that he had a wonderful proof that was too large to include in the margin. He
corresponded with Pascal, and they did some early work on the mathematical rules of games of
chance and early probability theory. He also did some early work on the Calculus.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_3

The natural numbers ℕ consist of the numbers {1, 2, 3, …}. The integer
numbers ℤ consist of {… –2, –1, 0, 1, 2, …}. The rational numbers ℚ consist of all
the numbers of the form {p/q where p and q are integers and q 6¼ 0}. The real
numbers ℝ is defined to be the set of converging sequences of rational numbers,
and they are a superset of the rational numbers. They contain the rational and
irrational numbers. The complex numbers ℂ consist of all the numbers of the form
{a + bi where a, b 2 ℝ and i = √–1}.

Pythagorean triples (Fig. 3.2) are combinations of three whole numbers that
satisfy Pythagoras’ equation x2 þ y2 ¼ z2. There are an infinite number of such
triples, and an example of such a triple is 3, 4, 5 since 32 + 42 = 52.

The Pythagoreans discovered the mathematical relationship between the har-
mony of music and numbers, and their philosophy was that numbers are hidden in
everything from music to science and nature. This led to their philosophy that
“everything is number”.

Fig. 3.1 Pierre de Fermat

Fig. 3.2 Pythagorean triples

56 3 Number Theory

3.2 Elementary Number Theory

A square number (Fig. 3.3) is an integer that is the square of another integer. For
example, the number 4 is a square number since 4 = 22. Similarly, the number 9 and
the number 16 are square numbers. A number n is a square number if and only if
one can arrange the n points in a square. For example, the square numbers 4, 9 and
16 are represented in squares as follows.

The square of an odd number is odd whereas the square of an even number is
even. This is clear since an even number is of the form n = 2k for some k, and so
n2 = 4k2 which is even. Similarly, an odd number is of the form n ¼ 2kþ 1 and so
n2 ¼ 4k2 þ 4kþ 1 which is odd.

A rectangular number (Fig. 3.4) n may be represented by a vertical and hori-
zontal rectangle of n points. For example, the number 6 may be represented by a
rectangle with length 3 and breadth 2, or a rectangle with length 2 and breadth 3.
Similarly, the number 12 can be represented by a 4 � 3 or a 3 � 4 rectangle.

A triangular number (Fig. 3.5) n may be represented by an equilateral triangle of
n points. It is the sum of k natural numbers from 1 to k. = That is,

n ¼ 1þ 2þ � � � þ k:

Parity of Integers

The parity of an integer refers to whether the integer is odd or even. An integer n is
odd if there is a remainder of one when it is divided by two, and it is of the form
n = 2k + 1. Otherwise, the number is even and of the form n = 2k.

The sum of two numbers is even if both are even or both are odd. The product of
two numbers is even if at least one of the numbers is even. These properties are
expressed as

even� even ¼ even

even� odd ¼ odd

odd� odd ¼ even

Fig. 3.3 Square numbers

3.2 Elementary Number Theory 57

even� even ¼ even

even� odd ¼ even

odd� odd ¼ odd:

Divisors

Let a and b be integers with a 6¼ 0 then a is said to be a divisor of b (denoted by a |
b) if there exists an integer k such that b = ka.

A divisor of n is called a trivial divisor if it is either 1 or n itself; otherwise, it is
called a non-trivial divisor. A proper divisor of n is a divisor of n other than n itself.

DEFINITION (PRIME NUMBER)

A prime number is a number whose only divisors are trivial. There are an infinite
number of prime numbers.

The fundamental theorem of arithmetic states that every integer number can be
factored as the product of prime numbers.

Mersenne Primes

Mersenne primes are prime numbers of the form 2p – 1 where p is a prime. They are
named after Marin Mersenne (Fig. 3.6) who was the 17th French monk, philosopher
and mathematician. Mersenne did some early work in identifying primes of this
format, and there are 47 known Mersenne primes. It remains an open question as to
whether there are an infinite number of Mersenne primes.

Fig. 3.4 Rectangular numbers

Fig. 3.5 Triangular numbers

58 3 Number Theory

Fig. 3.6 Marin Mersenne

Properties of Divisors

(i) a | b and a | c then a | b + c
(ii) a | b then a | bc
(iii) a | b and b | c then a | c

Proof (of i) Suppose a | b and a | c then b = k1a and c = k2a.
Then bþ c ¼ k1aþ k2a ¼ ðk1 þ k2Þa and so a | b + c.

Proof (of iii) Suppose a | b and b | c then b = k1a and c = k2b.
Then c ¼ k2b ¼ k2k1ð Þa and thus a | c.

Perfect and Amicable Numbers

Perfect and amicable numbers have been studied for millennia. A positive integer
m is said to be perfect if it is the sum of its proper divisors. Two positive integers
m and n are said to be an amicable pair if m is equal to the sum of the proper
divisors of n and vice versa.

A perfect number is a number whose divisors add up to the number itself. For
example, the number 6 is perfect since it has divisors 1, 2, 3 and 1 + 2 + 3 = 6.

Perfect numbers are quite rare and Euclid showed that 2p−1 (2p – 1) is an even
perfect number whenever (2p – 1) is prime. Euler later showed that all even perfect
numbers are of this form. It is an open question as to whether there are any odd
perfect numbers, and if such an odd perfect number N was to exist then N > 101500.

A prime number of the form (2p – 1) where p is prime is called a Mersenne
prime. Mersenne primes are quite rare and each Mersenne prime generates an even
perfect number and vice versa. That is, there is a one-to-one correspondence
between the number of Mersenne primes and the number of even perfect numbers.

3.2 Elementary Number Theory 59

It remains an open question as to whether there are an infinite number of
Mersenne primes and perfect numbers.

An amicable pair of numbers is a pair of numbers such that each number is the sum
of divisors of the other number. For example, the numbers 220 and 284 are an
amicable pair since the divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, which
have sum 284, and the divisors of 284 are 1, 2, 4, 71, 142, which have sum 220.

Theorem 3.1 (Division Algorithm) For any integer a and any positive integer b,
there exists unique integers q and r such that

a ¼ bqþ r 0� r\b:

Proof The first part of the proof is to show the existence of integers q and r such
that the equality holds, and the second part of the proof is to prove the uniqueness
of q and r.

Consider …. –3b, –2b, –b, 0, b, 2b, 3b, … then there must be an integer q such
that

qb� a\ qþ 1ð Þb:

Then a – qb = r with 0 � r < b and so a = bq + r, and the existence of q and
r is proved.

The second part of the proof is to show the uniqueness of q and r. Suppose q1
and r1 also satisfy a ¼ bq1 þ r1 with 0 � r1 < b, and suppose r < r1. Then
bqþ r ¼ bq1 þ r1 and so b q� q1ð Þ ¼ r1 � r and clearly 0\ r1 � rð Þ\b. There-
fore, b | (r1 – r) which is impossible unless r1 – r = 0. Hence, r = r1 and q = q1.

Theorem 3.2 (Irrationality of Square Root of Two) The square root of two is an
irrational number (i.e. it cannot be expressed as the quotient of two integer
numbers).

Proof The Pythagoreans3 discovered this result, and it led to a crisis in their
community as number was considered to be the essence of everything in their
world. The proof is indirect: i.e. the opposite of the desired result is assumed to be

3Pythagoras of Samos (a Greek island in the Aegean sea) was an influential ancient mathematician
and philosopher of the sixth century B.C. He gained his mathematical knowledge from his travels
throughout the ancient world (especially in Egypt and Babylon). He became convinced that
everything is number, and he and his followers discovered the relationship between mathematics
and the physical world as well as relationships between numbers and music. On his return to
Samos, he founded a school and he later moved to Croton in Southern Italy to set up a school. This
school and the Pythagorean brotherhood became a secret society with religious beliefs such as
reincarnation, and they were focused on the study of mathematics. They maintained secrecy of the
mathematical results that they discovered. Pythagoras is remembered today for Pythagoras’
theorem, which states that for a right-angled triangle the square of the hypotenuse is equal to the
sum of the squares of the other two sides. The Pythagoreans discovered the irrationality of the
square root of two and as this result conflicted in a fundamental way with their philosophy that
number is everything, they suppressed the truth of this mathematical result.

60 3 Number Theory

correct, and it is showed that this assumption leads to a contradiction. Therefore, the
assumption must be incorrect and so the result is proved.

Suppose √2 is rational then it can be put in the form p/q where p and q are
integers and q 6¼ 0. Therefore, we can choose p, q to be co-prime (i.e. without any
common factors) and so

This is a contradiction as we have chosen p and q to be co-prime, and our
assumption that there is a rational number that is the square root of two results in a
contradiction. Therefore, this assumption must be false, and we conclude that there
is no rational number whose square is two.

3.3 Prime Number Theory

A positive integer n > 1 is called prime if its only divisors are n and 1. A number
that is not a prime is called composite.

Properties of Prime Numbers

(i) There are an infinite number of primes.
(ii) There is a prime number p between n and n! + 1 such that n\p\n!þ 1.
(iii) If n is composite, then n has a prime divisor p such that p � √n.
(iv) There are arbitrarily large gaps in the series of primes (given any k > 0, there

exist k consecutive composite integers).

Proof (i) Suppose there are a finite number of primes and they are listed as p1, p2,
p3, …, pk. Then consider the number N obtained by multiplying all known primes
and adding one. That is,

N ¼ p1p2p3. . .pk þ 1:

3.2 Elementary Number Theory 61

Clearly, N is not divisible by any of p1, p2, p3, …, pk since they all leave a
remainder of 1. Therefore, N is either a new prime or divisible by a prime q (that is
not in the list of p1, p2, p3, …, pk).

This is a contradiction since this was the list of all the prime numbers, and so the
assumption that there are a finite number of primes is false, and we deduce that
there are an infinite number of primes.

Proof (ii) Consider the integer N ¼ n! þ 1. If N is prime then we take
p = N. Otherwise, N is composite and has a prime factor p. We will show that
p > n.

Suppose p � n then p | n! and since p | N we have p | n! + 1 and therefore p | 1,
which is impossible. Therefore, p > n and the result is proved.

Proof (iii) Let p be the smallest prime divisor of n. Since n is composite n = uv,
and clearly p � u and p � v. Then p2 � uv = n and so p � √n.

Proof (iv) Consider the k consecutive integers kþ 1ð Þ!þ 2; kþ 1ð Þ!þ 3; . . .;
kþ 1ð Þ!þ k; kþ 1ð Þ!þ kþ 1. Then each of these is composite since jj kþ 1ð Þ!þ j
where 2� j� kþ 1.

3.3.1 Algorithms

An algorithm is a well-defined procedure for solving a problem, and it consists of a
sequence of steps that takes a set of values as input, and produces a set of values as
output. It is an exact specification of how to solve the problem, and it explicitly
defines the procedure so that a computer program may implement the algorithm.
The origin of the word ‘algorithm’ is from the name of the 9th Persian mathe-
matician, Muhammad al-Khwarizmi.

It is essential that the algorithm is correct and that it terminates in a reasonable
time. This may require mathematical analysis of the algorithm to demonstrate its
correctness and efficiency, and to show that termination is within an acceptable time
frame. There may be several algorithms to solve a problem, and so the choice of the
best algorithm (e.g. fastest/most efficient) needs to be considered. For example,
there are several well-known sorting algorithms (e.g. merge sort and insertion sort),
and the merge sort algorithm is more efficient [o(n lg n)] than the insertion sort
algorithm [o(n2)].

An algorithm may be implemented by a computer program written in some
programming language (e.g. C++ or Java). The speed of the program depends on
the algorithm employed, the input value(s), how the algorithm has been imple-
mented in the programming language, the compiler, the operating system and the
computer hardware.

62 3 Number Theory

An algorithm may be described in natural language (care is needed to avoid
ambiguity), but it is more common to use a more precise formalism for its
description. These include pseudo code (an informal high-level language descrip-
tion); flowcharts; a programming language such as C or Java; or a formal speci-
fication language such as VDM or Z. We shall mainly use a natural language and
pseudo code to describe an algorithm. Among the early algorithms developed was
an algorithm to determine the prime numbers up to a given number n, and Euclid’s
algorithm for determining the greatest common divisor of two natural numbers.
These are discussed below.

Algorithm for Determining Primes

The Sieve of Eratosthenes algorithm (Fig. 3.7) is a famous algorithm for deter-
mining the prime numbers up to a given number n. It was developed by the
Hellenistic mathematician, Eratosthenes.

The algorithm involves first listing all of the numbers from 2 to n. The first step
is to remove all the multiples of two up to n; the second step is to remove all the
multiples of three up to n; and so on.

The kth step involves removing multiples of the kth prime pk up to n, and the
steps in the algorithm continue while p � √n. The numbers remaining in the list are
the prime numbers from 2 to n.

1. List the integers from 2 to n.
2. For each prime pk up to √n, remove all the multiples of pk.
3. The numbers remaining are the prime numbers between 2 and n.

The list of primes between 1 and 50 is given in Fig. 3.7. They are 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43 and 47.

Theorem 3.3 (Fundamental Theorem of Arithmetic) Every natural number n > 1
may be written uniquely as the product of primes:

n ¼ p1
a1p2

a2p3
a3 . . .pk

ak :

Proof There are two parts to the proof. The first part shows that there is a fac-
torization, and the second part shows that the factorization is unique.

Fig. 3.7 Primes between 1 and 50

3.3 Prime Number Theory 63

Part(a)
If n is prime, then it is a product with a single prime factor. Otherwise, n can be
factored into the product of two numbers ab where a > 1 and b > 1. The argument
can then be applied to each of a and b each of which is either prime or can be
factored as the product of two numbers both of which are greater than one. Con-
tinue in this way with the numbers involved decreasing with every step in the
process until eventually all of the numbers are prime. (This argument can be made
more rigorous using strong induction.)

Part(b)
Suppose the factorization is not unique, and let n > 1 be the smallest number that
has more than one factorization of primes. Then n may be expressed as follows:

n ¼ p1p2p3. . .pk ¼ q1q2q3. . .qr:

Clearly, k > 1 and r > 1 and pi 6¼ qj for (i = 1, …, k) and (j = 1, …, r) as
otherwise we could construct a number smaller than n (e.g. n/pi where pi = qj) that
has two distinct factorizations. Next, without loss of generality take p1 < q1 and
define the number N by

N ¼ q1 � p1ð Þq2q3. . .qr
¼ p1p2p3. . .pk � p1q2q3. . .qr

¼ p1 p2p3. . .pk � q2q3. . .qrð Þ:

Clearly, 1 < N < n and so N is uniquely factorizable into primes. However,
clearly p1 is not a divisor of (q1 – p1), and so N has two distinct factorizations,
which is a contradiction of the choice of n.

3.3.2 Greatest Common Divisors (GCD)

Let a and b be integers, not both zero. The greatest common divisor d of a and b is a
divisor of a and b (i.e. d | a and d | b), and it is the largest such divisor (i.e. if k |
a and k | b then k | d). It is denoted by gcd (a, b).

Properties of Greatest Common Divisors

(i) Let a and b be integers not both zero, then there exist integers x and y such that

d ¼ gcd a; bð Þ ¼ axþ by:

(ii) Let a and b be integers not both zero, then the set S = {ax + by where x,
y 2 ℤ} is the set of all the multiples of d = gcd (a, b).

64 3 Number Theory

Proof (of i) Consider the set of all the linear combinations of a and b forming the
set {ka + nb: k, n 2 ℤ}. Clearly, this set includes positive and negative numbers.
Choose x and y such that m = ax + by is the smallest positive integer in the set.
Then we shall show that m is the greatest common divisor.

We know from the division algorithm that a = mq + r where 0 � r < m. Thus

r ¼ a�mq ¼ a� axþ byð Þq ¼ ð1� qxÞaþ �yqð Þb:

r is a linear combination of a and b and so r must be 0 from the definition of m.
Therefore, m | a and similarlym | b and som is a common divisor of a and b. Since, the
greatest common divisor d is such that d | a and d | b and d � m,wemust have d = m.

Proof (of ii) This follows since d | a and d | b = > d | ax + by for all integers x and
y and so every element in the set S = {ax + by where x, y 2 ℤ} is a multiple of d.

Relatively Prime

Two integers a, b are relatively prime if gcd(a, b) = 1.

Properties

If p is a prime and p | ab then p | a or p | b.

Proof Suppose p | a then from the results on the greatest common divisor, we have
gcd (a, p) = 1. That is,

3.3.3 Least Common Multiple (LCM)

If m is a multiple of a and m is a multiple of b, then it is said to be a common
multiple of a and b. The least common multiple is the smallest of the common
multiples of a and b and it is denoted by lcm (a, b).

Properties

If x is a common multiple of a and b, then m | x. That is, every common multiple of
a and b is a multiple of the least common multiple m.

Proof We assume that both a and b are non-zero as otherwise the result is trivial
(since all the common multiples are 0). Clearly, by the division algorithm, we have

x ¼ mqþ r where 0� r\m:

3.3 Prime Number Theory 65

Since x is a common multiple of a and b, we have a | x and b | x and also that
a | m and b | m. Therefore, a | r and b | r, and so r is a common multiple of a and b
and since m is the least common multiple we have r is 0. Therefore, x is a multiple
of the least common multiple m as required.

3.3.4 Euclid’s Algorithm

Euclid’s4 algorithm is one of the oldest known algorithms, and it provides a pro-
cedure for finding the greatest common divisor of two numbers. It appears in
Book VII of Euclid’s Elements, and the algorithm was known prior to Euclid
(Fig. 3.8).

Lemma

Let a, b, q and r be integers with b > 0 and 0 � r < b such that a = bq + r. Then
gcd(a, b) = gcd(b, r).

Proof Let K = gcd(a, b) and let L = gcd(b, r), and we therefore need to show that
K = L. Suppose m is a divisor of a and b, then as a = bq + r we have m is a divisor
of r and so any common divisor of a and b is a divisor of r.

Similarly, any common divisor n of b and r is a divisor of a. Therefore,
the greatest common divisor of a and b is equal to the greatest common divisor
of b and r.

Theorem 3.4 (Euclid’s Algorithm) Euclid’s algorithm for finding the greatest
common divisor of two positive integers a and b involves applying the division
algorithm repeatedly as follows:

a ¼ bq0 þ r1 0\r1\b

b ¼ r1q1 þ r2 0\r2\r1
r1 ¼ r2q2 þ r3 0\r3\r2

............

............

rn�2 ¼ rn�1qn�1 þ rn 0\rn\rn�1

rn�1 ¼ rnqn:

Then rn (i.e. the last non-zero remainder) is the greatest common divisor of a and
b: i.e. gcd(a,b) = rn.

4Euclid was a third-century B.C. Hellenistic mathematician and is considered the father of
geometry.

66 3 Number Theory

Proof It is clear from the construction that rn is a divisor of rn–1, rn–2, …, r3, r2, r1
and of a and b. Clearly, any common divisor of a and b will also divide rn. Using
the results from the lemma above, we have

gcd a; bð Þ
¼ gcd b; r1ð Þ
¼ gcd r1r2ð Þ
¼ . . .

¼ gcd rn�2rn�1ð Þ
¼ gcd rn�1; rnð Þ
¼ rn:

Lemma

Let n be a positive integer greater than one, then the positive divisors of n are
precisely those integers of the form:

d ¼ pb11 pb22 pb33 . . .pbk k ðwhere 0� bi � aiÞ

where the unique factorization of n is given by

n ¼ p1
a1p2

a2p3
a3 . . .pk

ak :

Fig. 3.8 Euclid of
Alexandria

3.3 Prime Number Theory 67

Proof Suppose d is a divisor of n, then n = dq. By the unique factorization theo-
rem, the prime factorization of n is unique, and so the prime numbers in the
factorization of d must appear in the prime factors p1, p2, p3, …, pk of n.

Clearly, the power bi of pi must be less than or equal to ai: i.e. bi � ai. Con-
versely, whenever bi � ai then clearly d divides n.

3.3.5 Distribution of Primes

We already have shown that there are an infinite number of primes. However, most
integer numbers are composite and a reasonable question to ask is how many primes
are there less than a certain number. The number of primes less than or equal to x is
known as the prime distribution function (denoted by p xð Þ) and it is defined by

p xð Þ ¼ R
p� x

1 where p is primeð Þ:

The prime distribution function satisfies the following properties:

(i) lim
x!1

p xð Þ
x ¼ 0:

(ii) lim
x!1 p xð Þ ¼ 1:

The first property expresses the fact that most integer numbers are composite,
and the second property expresses the fact that there are an infinite number of prime
numbers.

There is an approximation of the prime distribution function in terms of the
logarithmic function (x/ln x) as follows:

lim
x!1

p xð Þ
x= ln x

¼ 1 Prime Number Theoremð Þ:

The approximation x/ln x to p xð Þ gives an easy way to determine the approxi-
mate value of p xð Þ for a given value of x. This result is known as the Prime Number
Theorem, and Gauss originally conjectured this theorem.

Palindromic Primes

A palindromic prime is a prime number that is also a palindrome (i.e. it reads the
same left to right as right to left). For example, 11, 101, 353 are all the palindromic
primes.

All the palindromic primes (apart from 11) have an odd number of digits. It is an
open question as to whether there are an infinite number of palindromic primes.

Let r mð Þ denote the sum of all the positive divisors of m (including m):

r mð Þ ¼ Rd jm d:

68 3 Number Theory

Let s(m) denote the sum of all the positive divisors of m (excluding m):

s mð Þ ¼ r mð Þ � m:

Clearly, s(m) = m and r mð Þ ¼ 2m when m is a perfect number.

Theorem 3.5 (Euclid–Euler Theorem) The positive integer n is an even perfect
number if and only if n ¼ 2p�1 2p�1ð Þ where 2p – 1 is a Mersenne prime.

Proof Suppose n ¼ 2p�1 2p�1ð Þ where 2p – 1 is a Mersenne prime, then

r nð Þ ¼ r 2p�1 2p�1ð Þ� �

¼ r 2p�1
� �

r 2p�1ð Þ
¼ r 2p�1

� �
2p 2p�1 is prime with 2 divisors : 1 and itselfð Þ

¼ 2p�1ð Þ2p ðSum of arithmetic series)

¼ 2p�1ð Þ2:2p�1

¼ 2:2p�1 2p�1ð Þ
¼ 2n

:

Therefore, n is a perfect number since r nð Þ ¼ 2n.
The next part of the proof is to show that any even perfect number must be of the

form above. Let n be an arbitrary even perfect number (n = 2p−1q) with q odd and
so the gcd (2p−1, q) = 1, and so

r nð Þ
¼ r 2p�1q

� �

¼ r 2p�1
� �

r qð Þ
¼ 2p�1ð Þr qð Þ

r nð Þ
¼ 2n since n is perfectð Þ
¼ 2:2p�1q

¼ 2pq

:

Therefore,

2pq

¼ 2p�1ð Þr qð Þ
¼ 2p�1ð Þ s qð Þþ qð Þ
¼ 2p�1ð Þs qð Þþ 2p�1ð Þq
¼ 2p�1ð Þs qð Þþ 2pq�q

:

3.3 Prime Number Theory 69

Therefore, 2p�1ð Þs qð Þ ¼ q.
Therefore, d = s(q) is a proper divisor of q. However, s(q) is the sum of all the

proper divisors of q including d, and so d is the only proper divisor of q and d = 1.
Therefore, q = (2p – 1) is a Mersenne prime.

Euler u Function

The Euler5 u function (also known as the totient function) is defined for a given
positive integer n to be the number of positive integers k less than n that are
relatively prime to n. Two integers a, b are relatively prime if gcd(a,b) = 1
(Fig. 3.9).

u nð Þ ¼ R
1 � k\ n

1 where gcd k; nð Þ ¼ 1:

3.4 Theory of Congruences6

Let a be an integer and n a positive integer greater than 1, then (a mod n) is defined
to be the remainder r when a is divided by n. That is,

a ¼ knþ r where 0� r\n:

Definition

Suppose a, b are integers and n a positive integer, then a is said to be congruent to
b modulo n denoted by a � b (mod n) if they both have the same remainder when
divided by n.

This is equivalent to n being a divisor of (a – b) or n | (a – b) since we have
a ¼ k1nþ r and b ¼ k2nþ r, and so (a – b) = (k1 – k2) n and so n | (a – b).

Theorem 3.6 Congruence modulo n is an equivalence relation on the set of
integers: i.e. it is a reflexive, symmetric and transitive relation.

5Euler was an eighteenth-century Swiss mathematician who made important contributions to
mathematics and physics. His contributions include graph theory (e.g. the well-known formula V –

E + F = 2), calculus, infinite series, the exponential function for complex numbers and the totient
function.
6The theory of congruences was introduced by the German mathematician, Carl Friedrich Gauss.

70 3 Number Theory

Proof

(i) Reflexive

For any integer a, it is clear that a � a (mod n) since a – a = 0.n
(ii) Symmetric

Suppose a � b (mod n) then a – b = kn. Clearly, b – a = –kn and so b �
a (mod n).

(iii) Transitive

Suppose a � b mod nð Þ and b � c mod nð Þ
) a�b ¼ k1n and b�c ¼ k2n

) a�c ¼ a�bð Þþ b�cð Þ
¼ k1nþ k2n

¼ k1 þ k2ð Þn
) a � c mod nð Þ:

Therefore, congruence modulo n is an equivalence relation, and an equivalence
relation partitions a set S into equivalence classes (Theorem 2.2). The integers are
partitioned into n equivalence classes for the congruence modulo n equivalence
relation, and these are called congruence classes or residue classes.

Fig. 3.9 Leonard Euler

3.4 Theory of Congruences 71

The residue class of a modulo n is denoted by [a]n or just [a] when n is clear. It
is the set of all those integers that are congruent to a modulo n:

a½ �n¼ fx : x 2 Z and x � a mod nð Þg ¼ faþ kn : k 2 Zg:

Any two equivalence classes [a] and [b] are either equal or disjoint: i.e. we have
[a] = [b] or a½ � \ b½ � ¼ ;. The set of all the residue classes modulo n is denoted by

Z=nZ ¼ Zn ¼ f a½ �n: 0� a� n� 1g ¼ 0½ �n; 1½ �n; . . .:; n� 1½ �n
� �

:

For example, consider ℤ4 the residue classes mod 4, then

0½ �4¼ . . .;�8;�4; 0; 4; 8;f g

1½ �4¼ . . .;�7;�3; 1; 5; 9;f g

2½ �4¼ . . .;�6;�2; 2; 6; 10;f g

3½ �4¼ . . .;�5;�1; 3; 7; 11;f g:

The reduced residue class is a set of integers ri such that (ri, n) = 1 and ri is not
congruent to rj (mod n) for i 6¼ j, such that every x relatively prime to n is congruent
modulo n to for some element ri of the set. There are u nð Þ elements
fr1; r2; . . .; ruðnÞg in the reduced residue class set S.

Modular Arithmetic

Addition, subtraction and multiplication may be defined in ℤ/nℤ and are similar to
these operations in ℤ. Given a positive integer n and integers a, b, c, d such that a �
b (mod n) and c � d (mod n), then the following are properties of modular
arithmetic.

(i) aþ c � bþ d mod nð Þ and a�c � b� d mod nð Þ:
(ii) ac � bd mod nð Þ:
(iii) am � bm mod nð Þ8m 2.

Proof (of ii) Let a ¼ knþ b and c ¼ lnþ d for some k, l 2 ℤ, then

ac ¼ knþ bð Þ lnþ dð Þ
¼ knð Þ lnð Þþ knð Þdþ b lnð Þþ bd

¼ knlþ kdþ blð Þnþ bd

¼ snþ bd where s ¼ knlþ kdþ blð Þ

and so ac � bd mod nð Þ.

72 3 Number Theory

The three properties above may be expressed in the following equivalent
formulation:

(i) ½aþ c�n ¼ bþ d½ �n and a�c½ �n¼ b�d½ �n.
(ii) ½ac�n ¼ bd½ �n.
(iii) ½am�n ¼ bm½ �n 8m 2.

Two integers x, y are said to be multiplicative inverses of each other modulo n if

xy � 1 mod nð Þ:

However, x does not always have an inverse modulo n, and this is clear since, for
example, [3]6 is a zero divisor modulo 6, i.e. [3]6. [2]6 = [0]6 and so it does not
have a multiplicative inverse. However, if n and x are relatively prime, then it is
easy to see that x has an inverse (mod n) since we know that there are integers k,l
such that kxþ ln ¼ 1.

Given n > 0 there are u nð Þ numbers b that are relatively prime to n, and so there
are u nð Þ numbers that have an inverse modulo n. Therefore, for p prime there are
p-1 elements that have an inverse (mod p).

Theorem 3.7 (Euler’s Theorem) Let a and n be positive integers with gcd(a,n) = 1.
Then

a/ nð Þ � 1 mod nð Þ:
Proof Let fr1; r2; . . .; ruðnÞg be the reduced residue system (mod n). Then
far1; ar2; . . .; aruðnÞg is also a reduced residue system (mod n) since ari �
arj mod nð Þ and (a, n) = 1 implies that ri � rj mod nð Þ.

For each ri there is exactly one rj such that ari � rj (mod n), and different ri will
have different corresponding arj. Therefore, far1; ar2; . . .; aruðnÞg are just the
residues module n of fr1; r2; . . .; ruðnÞg but not necessarily in the same order.
Multiplying, we get

Yu nð Þ

j¼1

arj
� � �

Yu nð Þ

i¼1

ri ðmod nÞ

a/ nð Þ Y
u nð Þ

j¼1

rið Þ �
Yu nð Þ

i¼1

ri ðmod nÞ:

Since (rj, n) = 1, we can deduce that a/ nð Þ � 1ðmod nÞ from the result that
ax � ay mod nð Þ and (a, n) = 1 then x � y mod nð Þ.

3.4 Theory of Congruences 73

Theorem 3.8 (Fermat’s Little Theorem) Let a be a positive integer and p a prime.
If gcd(a, p) = 1, then

ap�1 � 1 mod pð Þ:
Proof This result is an immediate corollary to Euler’s theorem as uð pð Þ ¼ p�1.
Theorem 3.9 (Wilson’s Theorem) If p is a prime, then p� 1ð Þ! � �1 mod pð Þ.
Proof Each element a 2 1; 2; . . .p� 1 has an inverse a−1 such that
aa�1 � 1 mod pð Þ. Exactly two of these elements 1 and p − 1 are their own inverse
(i.e. x2 � 1 mod pð Þ having two solutions 1 and p − 1). Therefore, the product
1:2: . . .::p� 1 mod pð Þ ¼ p� 1 mod pð Þ � �1 mod pð Þ.

Diophantine equations

The word ‘Diophantine’ is derived from the name of the third-century mathe-
matician, Diophantus, who lived in the city of Alexandria in Egypt. Diophantus
studied various polynomial equations of the form f(x, y, z, …) = 0 with integer
coefficients to determine which of them had integer solutions.

A Diophantine equation may have no solution, a finite number of solutions or an
infinite number of solutions. The integral solutions of a Diophantine equation f(x,y)
= 0 may be interpreted geometrically as the points on the curve with integral
coordinates.

Example

A linear Diophantine equation axþ by ¼ c is an algebraic equation with two
variables x and y, and the problem is to find integer solutions for x and y.

3.5 Binary System and Computer Representation
of Numbers

Arithmetic has traditionally been done using the decimal notation,7 and this posi-
tional number system involves using the digits 0, 1, 2,… 9. Leibniz8 was one of the
earliest people to recognize the potential of the binary number system, and this base
2 system uses just two digits namely ‘0’ and ‘1’. Leibniz described the binary
system in Explication de l'Arithmétique Binaire [1], which was published in 1703.

7Other bases have been employed such as the segadecimal (or base-60) system employed by the
Babylonians. The decimal system was developed by Indian and Arabic mathematicians during
800–900AD, and it was introduced to Europe in the late twelfth/early thirteenth century. It is
known as the Hindu–Arabic system.
8Wilhelm Gottfried Leibniz was a German philosopher, mathematician and inventor in the field of
mechanical calculators. He developed the binary number system used in digital computers, and
invented the Calculus independently of Sir Isaac Newton. He was embroiled in a bitter dispute
towards the end of his life with Newton, as to who developed the calculus first.

74 3 Number Theory

His 1703 paper describes how binary numbers may be added, subtracted, multiplied
and divided, and Leibniz was an advocate of their use.

The number two is represented by 10, the number four by 100 and so on. A table
of values for the first 15 binary numbers is given in Table 3.1.

The binary number system (base 2) is a positional number system, which uses
two binary digits 0 and 1, and an example binary number is 1001.012 which
represents 1� 23 þ 1þ 1� 2�2 ¼ 8þ 1þ 0:25 ¼ 9:25.

The binary system is ideally suited to the digital world of computers, as a binary
digit may be implemented by an on–off switch. In the digital world, devices that
store information or data on permanent storage media such as discs, and CDs, or
temporary storage media such as random access memory (RAM) consist of a large
number of memory elements that may be in one of two states (i.e. on or off).

The digit 1 represents that the switch is on, and the digit 0 represents that the
switch is off. Claude Shannon showed in his Master’s thesis [2] that the binary
digits (i.e. 0 and 1) can be represented by electrical switches. This allows binary
arithmetic and more complex mathematical operations to be performed by relay
circuits, provided the foundation of digital computing.

The decimal system (base 10) is more familiar for everyday use, and there are
algorithms to convert numbers from decimal to binary and vice versa. For example,
to convert the decimal number 25 to its binary representation, we proceed as
follows:

The base 2 is written on the left and the number to be converted to binary is
placed in the first column. At each stage in the conversion, the number in the first
column is divided by 2 to form the quotient and remainder, which are then placed
on the next row. For the first step, the quotient when 25 is divided by 2 is 12 and the
remainder is 1. The process continues until the quotient is 0, and the binary rep-
resentation result is then obtained by reading the second column from the bottom
up. Thus, we see that the binary representation of 25 is 110012.

Table 3.1 Binary number system

Binary Dec Binary Dec Binary Dec Binary Dec

0000 0 0100 4 1000 8 1100 12

0001 1 0101 5 1001 9 1101 13

0010 2 0110 6 1010 10 1110 14

0011 3 0111 7 1011 11 1111 15

3.5 Binary System and Computer Representation of Numbers 75

Similarly, there are algorithms to convert decimal fractions to binary represen-
tation (to a defined number of binary digits as the representation may not terminate),
and the conversion of a number that contains an integer part and a fractional part
involves converting each part separately and then combining them.

The octal (base 8) and hexadecimal (base 16) are often used in computing, as the
bases 2, 8 and 16 are related bases and it is easy to convert between, as converting
between binary and octal involves grouping the bits into groups of three on either
side of the point. Each set of 3 bits corresponds to one digit in the octal repre-
sentation. Similarly, the conversion between binary and hexadecimal involves
grouping into sets of 4 digits on either side of the point. The conversion of the other
way from octal to binary or hexadecimal to binary is equally simple, and involves
replacing the octal (or hexadecimal) digit with the 3-bit (or 4-bit) binary
representation.

Numbers are represented in a digital computer as sequences of bits of fixed
length (e.g. 16-bits and 32-bits). There is a difference in the way in which integers
and real numbers are represented, with the representation of real numbers being
more complicated.

An integer number is represented by a sequence (usually 2 or 4) bytes where
each byte is 8 bits. For example, a 2-byte integer has 16 bits with the first bit used as
the sign bit (the sign is 1 for negative numbers and 0 for positive integers), and the
remaining 15 bits represent the number. This means that two bytes may be used to
represent all the integer numbers between −32768 and 32767. A positive number is
represented by the normal binary representation discussed earlier, whereas a neg-
ative number is represented using 2’s complement of the original number (i.e.
0 changes to 1 and 1 changes to 0, and the sign bit is 1). All of the standard
arithmetic operations may then be carried out using modulo 2 arithmetic.

The representation of floating-point real numbers is more complicated, and a real
number is represented to a fixed number of significant digits (the significand) and
scaled using an exponent in some base (usually 2). That is, the number is repre-
sented (approximated as)

significand� baseexponent:

The significand (also called mantissa) and exponent have a sign bit. For
example, in simple floating-point representation (4 bytes), the mantissa is generally
24 bits and the exponent 8 bits, whereas for double precision (8 bytes) the mantissa
is generally 53 bits and the exponent 11 bits. There is an IEEE standard for
floating-point numbers (IEEE 754).

76 3 Number Theory

3.6 Review Questions

1. Show that

(i) if a | b then a | bc.
(ii) If a | b and c | d then ac | bd.

2. Show that 1184 and 1210 are an amicable pair.
3. Use the Euclidean algorithm to find g = gcd (b, c) where b = 42,823 and

c = 6409, and find integers x and y such that bxþ cy ¼ g.
4. List all integers x in the range 1� x� 100 such that x � 7 (mod 17).
5. Evaluate / mð Þ for m = 1,2 ,3 , … 12.
6. Determine a complete and reduced residue system modulo 12.
7. Convert 767 to binary, octal and hexadecimal.
8. Convert (you may need to investigate) 0.3210 to binary (to 5 places).
9. Explain the difference between binary, octal and hexadecimal.

10. Find the 16-bit integer representation of –4961.

3.7 Summary

Number theory is concerned with the mathematical properties of natural numbers
and integers. These include properties such as whether a number is prime or
composite, the prime factors of a number, the greatest common divisor and least
common multiple of two numbers and so on.

The natural numbers ℕ consist of the numbers {1, 2, 3, … }. The integer
numbers ℤ consist of {… –2, –1, 0, 1, 2, …}. The rational numbers ℚ consist of all
the numbers of the form {p/q where p and q are integers and q 6¼ 0}. Number theory
has been applied to cryptography in the computing field.

Prime numbers have no factors apart from themselves and one, and there are an
infinite number of primes. The Sieve of Eratosthenes’ algorithm may be employed
to determine prime numbers, and the approximation to the distribution of prime
numbers less than a number n is given by the prime distribution function
p nð Þ ¼ n=ln n. Prime numbers are the key building blocks in number theory, and
the fundamental theorem of arithmetic states that every number may be written
uniquely as the product of factors of prime numbers.

Mersenne primes and perfect numbers were considered, and it was shown that
there is a one-to-one correspondence between the Mersenne primes and the even
perfect numbers.

Modulo arithmetic including addition, subtraction and multiplication were
defined, and the residue classes and reduced residue classes were discussed. There
are unsolved problems in number theory such as Goldbach’s conjecture that states

3.6 Review Questions 77

that every even integer is the sum of two primes. Other open questions include
whether there are an infinite number of Mersenne primes and palindromic primes.

We discussed the binary number system, which is ideally suited for digital
computers. We discussed the conversion between binary and decimal systems, as
well as the octal and hexadecimal systems. Finally, we discussed the representation
of integers and real numbers on a computer. For more detailed information on
number theory, see [3].

References

1. Leibniz WG (1703) Explication de l'Arithmétique Binaire. Memoires de l'Academie Royale
des Sciences

2. Shannon C (1937) A symbolic analysis of relay and switching circuits. Masters thesis,
Massachusetts Institute of Technology

3. Yan SY (1998) Number theory for computing, 2nd ed. Springer

78 3 Number Theory

4Mathematical Induction and Recursion

4.1 Introduction

Mathematical induction is an important proof technique used in mathematics, and it
is often used to establish the truth of a statement for all the natural numbers. There
are two parts to a proof by induction, and these are the base step and the inductive
step. The first step is termed the base case, and it involves showing that the
statement is true for some natural number (usually the number 1). The second step
is termed the inductive step, and it involves showing that if the statement is true for
some natural number n = k, then the statement is true for its successor n = k + 1.
This is often written as P kð Þ ! P kþ 1ð Þ.

The statement P(k) that is assumed to be true when n = k is termed the inductive
hypothesis. From the base step and the inductive step, we infer that the statement is
true for all the natural numbers (that are greater than or equal to the number
specified in the base case). Formally, the proof technique used in mathematical
induction is of the form1:

ðP 1ð Þ ^ 8kðP kð Þ ! P kþ 1ð ÞÞÞ ! 8nP nð Þ:

Mathematical induction (weak induction) may be used to prove a wide variety of
theorems, and especially theorems of the form 8nP nð Þ. It may be used to provide
proof of theorems about summation formulae, inequalities, set theory, and the
correctness of algorithms and computer programs. One of the earliest inductive
proofs was the sixteenth-century proof that the sum of the first n odd integers is n2,

1This definition of mathematical induction covers the base case of n = 1, and would need to be
adjusted if the number specified in the base case is higher.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_4

which was proved by Francesco Maurolico in 1575. Later mathematicians made the
method of mathematical induction more precise.

We distinguish between strong induction and weak induction, where strong
induction also has a base case and an inductive step, but the inductive step is a little
different. It involves showing that if the statement is true for all the natural numbers
less than or equal to an arbitrary number k, then the statement is true for its
successor k + 1. Structural induction is another form of induction and this math-
ematical technique is used to prove properties about recursively defined sets and
structures.

Recursion is often used in mathematics to define functions, sequences and sets.
However, care is required with a recursive definition to ensure that it actually
defines something, and that what is defined makes sense. Recursion defines a
concept in terms of itself, and we need to ensure that the definition is not circular
(i.e. that it does not lead to a vicious circle).

Recursion and induction are closely related and are often used together.
Recursion is extremely useful in developing algorithms for solving complex
problems, and induction is a useful technique in verifying the correctness of such
algorithms.

Example 4.1 Show that the sum of the first n natural numbers is given by the
formula:

1þ 2þ 3þ � � � þ n ¼ n nþ 1ð Þ
2

:

Proof Base Case

We consider the case where n = 1 and clearly 1 ¼ 1 1þ 1ð Þ
2 and so the base case P(1)

is true.

Inductive Step

Suppose the result is true for some number k, then we have P(k)

1þ 2þ 3þ � � � þ k ¼ k kþ 1ð Þ
2

:

Then consider the sum of the first k + 1 natural numbers, and we use the
inductive hypothesis to show that its sum is given by the formula:

80 4 Mathematical Induction and Recursion

1þ 2þ 3þ � � � þ kþ kþ 1ð Þ

¼ k kþ 1ð Þ
2

þ kþ 1ð Þ by inductive hypothesisð Þ

¼ k2 þ k

2
þ 2kþ 2ð Þ

2

¼ k2 þ 3kþ 2
2

¼ kþ 1ð Þ kþ 2ð Þ
2

:

Thus, we have shown that if the formula is true for an arbitrary natural number k,
then it is true for its successor k + 1. That is, P kð Þ ! P kþ 1ð Þ. We have shown that
P(1) is true, and so it follows from mathematical induction that P(2), P(3), … are
true, and so P(n) is true, for all the natural numbers and the theorem is established.

Note 4.1 There are opportunities to make errors in proofs with induction, and the
most common mistakes are not to complete the base case or inductive step cor-
rectly. These errors can lead to strange results and so care is required. It is important
to be precise in the statements of the base case and inductive step.

Example 4.2 (Binomial Theorem) Prove the binomial theorem using induction
(permutations and combinations are discussed in Chap. 5). That is,

1þ xð Þn¼ 1þ n
1

� �
xþ n

2

� �
x2 þ � � � þ n

r

� �
xr þ � � � þ n

n

� �
xn:

Proof Base Case

We consider the case where n = 1 and clearly 1þ xð Þ1 ¼ 1þ xð Þ ¼ 1þ 1
1

� �
x1

and so the base case P(1) is true.

Inductive Step

Suppose the result is true for some number k, then we have P(k)

1þ xð Þk¼ 1þ k
1

� �
xþ k

2

� �
x2 þ � � � þ k

r

� �
xr þ � � � þ k

k

� �
xk:

4.1 Introduction 81

Then consider (1 + x)k+1, and we use the inductive hypothesis to show that it is
given by the formula:

1þ xð Þkþ 1 ¼ 1þ xð Þk 1þ xð Þ

¼ 1þ k

1

� �
xþ k

2

� �
x2 þ � � � þ k

r

� �
xr þ � � � þ k

k

� �
xk

� �
1þ xð Þ

¼ 1þ k

1

� �
xþ k

2

� �
x2 þ � � � þ k

r

� �
xr þ � � � þ k

k

� �
xk

� �
þ xþ k

1

� �
x2

þ � � � þ k

r

� �
xrþ 1 þ � � � þ k

k

� �
xkþ 1

¼ 1þ k

1

� �
xþ k

2

� �
x2 þ � � � þ k

r

� �
xr þ � � � þ k

k

� �
xk

þ k

0

� �
xþ k

1

� �
x2 þ � � � þ k

r � 1

� �
xr þ � � � þ k

k � 1

� �
xk þ k

k

� �
xkþ 1

¼ 1þ kþ 1

1

� �
xþ � � � þ kþ 1

r

� �
xr þ � � � þ kþ 1

k

� �
xk þ kþ 1

kþ 1

� �
xkþ 1

(which follows from Exercise 7 below).
Thus, we have shown that if the binomial theorem is true for an arbitrary natural

number k, then it is true for its successor k + 1. That is, P kð Þ ! P kþ 1ð Þ. We have
shown that P(1) is true, and so it follows from mathematical induction that P(n) is
true, for all the natural numbers, and so the theorem is established.

The standard formula of the binomial theorem xþ yð Þn follows immediately
from the formula for 1þ xð Þn, by noting that xþ yð Þn ¼ x 1þ y=xð Þ� �n¼
xn 1þ y=xð Þn.

4.2 Strong Induction

Strong induction is another form of mathematical induction, which is often
employed when we cannot prove a result with (weak) mathematical induction. It is
similar to weak induction in that there is a base step and an inductive step. The base
step is identical to weak mathematical induction, and it involves showing that the
statement is true for some natural number (usually the number 1). The inductive
step is a little different, and it involves showing that if the statement is true for all
the natural numbers less than or equal to an arbitrary number k, then the statement is
true for its successor k + 1. This is often written as ðP 1ð Þ ^ P 2ð Þ ^ . . .^
P kð ÞÞ ! P kþ 1ð Þ.

82 4 Mathematical Induction and Recursion

From the base step and the inductive step, we infer that the statement is true for
all the natural numbers (that are greater than or equal to the number specified in the
base case). Formally, the proof technique used in mathematical induction is of the
form2:

ðP 1ð Þ ^ 8k½ðP 1ð Þ ^ P 2ð Þ ^ . . . ^ P kð ÞÞ ! P kþ 1ð Þ�Þ ! 8n P nð Þ:

Strong and weak mathematical induction are equivalent in that any proof done
by weak mathematical induction may also be considered a proof using strong
induction, and a proof conducted with strong induction may also be converted into
a proof using weak induction.

Weak mathematical induction is generally employed when it is reasonably clear
how to prove P(k + 1) from P(k), with strong mathematical typically employed
where it is not so obvious. The validity of both forms of mathematical induction
follows from the well-ordering property of the Natural Numbers, which states that
every non-empty set has a least element.

Well-Ordering Principle

Every non-empty set of natural numbers has a least element. The well-ordering
principle is equivalent to the principle of mathematical induction.

Example 4.3 Show that every natural number greater than one is divisible by a
prime number.

Proof Base Case

We consider the case of n = 2 which is trivially true, since 2 is a prime number
and is divisible by itself.

Inductive Step (strong induction)

Suppose that the result is true for every number less than or equal to k. Then we
consider k + 1, and there are two cases to consider. If k + 1 is prime, then it is
divisible by itself. Otherwise, it is composite and it may be factored as the product
of two numbers each of which is less than or equal to k. Each of these numbers is
divisible by a prime number by the strong inductive hypothesis, and so k + 1 is
divisible by a prime number.

Thus, we have shown that if all the natural numbers less than or equal to k are
divisible by a prime number, then k + 1 is divisible by a prime number. We have
shown that the base case P(2) is true, and so it follows from strong mathematical
induction that every natural number greater than one is divisible by some prime
number.

2As before, this definition covers the base case of n = 1 and would need to be adjusted if the
number specified in the base case is higher.

4.2 Strong Induction 83

4.3 Recursion

Some functions (or objects) used in mathematics (e.g. the Fibonacci sequence) are
difficult to define explicitly, and are best defined by a recurrence relation: i.e. an
equation that recursively defines a sequence of values, once one or more initial
values are defined. Recursion may be employed to define functions, sequences and
sets.

There are two parts to a recursive definition, namely the base case and the
recursive (inductive) step. The base case usually defines the value of the function at
n = 0 or n = 1, whereas the recursive step specifies how the application of the
function to a number may be obtained from its application to one or more smaller
numbers.

It is important that care is taken with the recursive definition, to ensure that that it
is not circular, and does not lead to an infinite regress. The argument of the function
on the right-hand side of the definition in the recursive step is usually smaller than
the argument on the left-hand side to ensure termination (there are some unusual
recursively defined functions such as theMcCarthy 91 function where this is not the
case).

It is natural to ask when presented with a recursive definition whether it means
anything at all, and in some cases the answer is negative. The fixed-point theory
provides the mathematical foundations for recursion, and ensures that the
functions/objects are well defined.

Chapter 12 (Sect. 12.6) discusses various mathematical structures such as partial
orders, complete partial orders and lattices, which may be employed to give a
secure foundation for recursion. A precise mathematical meaning is given to
recursively defined functions in terms of domains and fixed-point theory, and it is
essential that the conditions in which recursion may be used safely be understood.
The reader is referred to [1] for more detailed information.

A recursive definition will include at least one non-recursive branch with every
recursive branch occurring in a context that is different from the original, and brings
it closer to the non-recursive case. Recursive definitions are a powerful and elegant
way of giving the denotational semantics of language constructs.

Next, we present examples of the recursive definition of the factorial function
and Fibonacci numbers.

Example 4.4 (Recursive Definition of Functions) The factorial function n! is very
common in mathematics and its well-known definition is n! ¼
n n� 1ð Þ n� 2ð Þ. . .3:2:1 and 0! = 1. The formal definition in terms of a base case
and inductive step is given as follows:

Base Step fac (0) = 1
Recursive Step fac (n) = n * fac(n − 1)

This recursive definition defines the procedure by which the factorial of a number is
determined from the base case, or by the product of the number by the factorial of

84 4 Mathematical Induction and Recursion

its predecessor. The definition of the factorial function is built up in a sequence: fac
(0), fac(1), fac(2), ….
The Fibonacci sequence3 is named after the Italian mathematician Fibonacci, who
introduced it in the thirteenth century. It had been previously described in Indian
mathematics, and the Fibonacci numbers are the numbers in the following integer
sequence:

1; 1; 2; 3; 5; 8; 13; 21; 34

Each Fibonacci number (apart from the first two in the sequence) is obtained by
adding the two previous Fibonacci numbers in the sequence together. Formally, the
definition is given by

Base Step F1 = 1, F2 = 1
Recursive Step Fn ¼ Fn�1 þ Fn�2 (Definition for when n > 2)

Example 4.5 (Recursive Definition of Sets and Structures) Sets and sequences may
also be defined recursively, and there are two parts to the recursive definition (as
before). The base case specifies an initial collection of elements in the set, whereas
the inductive step provides rules for adding new elements to the set based on those
already there. Properties of recursively defined sets may often be proved by a
technique called structural induction.
Consider the subset S of the Natural Numbers defined by

Base Step 5 2 S
Recursive Step For x 2 S then xþ 5 2 S

Then the elements in S are given by the set of all the multiples of 5, as clearly
5 2 S; therefore, by the recursive step 5þ 5 ¼ 10 2 S; 5þ 10 ¼ 15 2 S; and so on.
The recursive definition of the set of strings R� over an alphabet R is given by

Base Step K 2 R� ðLis the empty stringÞ
Recursive Step For r 2 R�and v 2 R then rv 2 R�

Clearly, the empty string is created from the base step. The recursive step states that
a new string is obtained by adding a letter from the alphabet to the end of an
existing string in R�. Each application of the inductive step produces a new string
that contains one additional character. For example, if R ¼ 0; 1f g then the strings in
R� are the set of bit strings K, 0, 1, 00, 01, 10, 11, 000, 001, 010, etc.
We can define an operation to determine the length of a string (len: R� ! N)
recursively.

3We are taking the Fibonacci sequence as starting at 1, whereas others take it as starting at 0.

4.3 Recursion 85

Base Step len ðKÞ ¼ 0
Recursive Step lenðrvÞ ¼ lenðrÞþ 1 ðwhere r 2 R� and v 2 RÞ
A binary tree4 is a well-known data structure in computer science, and it consists of
a root node together with a left and right binary tree. A binary tree is defined as a
finite set of nodes (starting with the root node), where each node consists of a data
value and a link to a left subtree and a right subtree. Recursion is often used to
define the structure of a binary tree.
Base Step A single node is a binary tree (root)
Recursive Step

(i) Suppose X and Y are binary trees and x is a node then XxY is a
binary tree, where X is the left subtree, Y is the right subtree and
x is the new root node.

(ii) Suppose X is a binary tree and x is a node then xX and Xx are
binary trees, which consist of the root node x and a single child
left or right subtree.

That is, a binary tree has a root node and it may have no subtrees; it may consist of a
root node with a left subtree only; a root node with a right subtree only; or a root
node with both a left and a right subtree.

4.4 Structural Induction

Structural induction is a mathematical technique that is used to prove properties
about recursively defined sets and structures. It may be used to show that all the
members of a recursively defined set have a certain property, and there are two parts
to the proof (as before), namely the base case and the recursive (inductive) step.

The first part of the proof is to show that the property holds for all the elements
specified in the base case of the recursive definition. The second part of the proof
involves showing that if the property is true for all the elements used to construct
the new elements in the recursive definition then the property holds for the new
elements. From the base case and the recursive step, we deduce that the property
holds for all the elements of the set (structure).

Example 4.6 (Structural Induction) We gave a recursive definition of the subset
S of the natural numbers that consists of all the multiples of 5. We did not prove that
all the elements of the set S are divisible by 5, and we use structural induction to
prove this.

4We will give an alternate definition of a tree in terms of a connected acyclic graph in Chap. 9 on
graph theory.

86 4 Mathematical Induction and Recursion

Base Step 5 2 S (and clearly the base case is divisible by 5).
Inductive Step Suppose q 2 S then q = 5 k for some k. From the inductive

hypothesis, qþ 5 2 S and qþ 5 ¼ 5kþ 5 ¼ 5ðkþ 1Þ and so q + 5 is
divisible by 5.
Therefore, all the elements of S are divisible by 5.

4.5 Review Questions

1. Show that 9n+ 7 is always divisible by 8.
2. Show that the sum of 12 þ 22 þ � � � þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ=6
3. Explain the difference between strong and weak induction.
4. What is structural induction?
5. Explain how recursion is used in mathematics.
6. Investigate the recursive definition of the McCarthy 91 function, and explain

how it differs from usual recursive definitions.

7. Show that
r
r

� �
þ n

r � 1

� �
¼ nþ 1

r

� �
.

8. Determine the standard formula for the binomial theorem xþ yð Þn from the
formula for 1þ xð Þn.

4.6 Summary

Mathematical induction is an important proof technique that is used to establish the
truth of a statement for all the natural numbers. There are two parts to a proof by
induction, and these are the base case and the inductive step. The base case involves
showing that the statement is true for some natural number (usually for the number
n = 1). The inductive step involves showing that if the statement is true for some
natural number n = k, then the statement is true for its successor n ¼ kþ 1.

From the base step and the inductive step, we infer that the statement is true for
all the natural numbers (that are greater than or equal to the number specified in the
base case). Mathematical induction may be used to prove a wide variety of theo-
rems, such as theorems about summation formulae, inequalities, set theory, and the
correctness of algorithms and computer programs.

Strong induction is often employed when we cannot prove a result with (weak)
mathematical induction. It also has a base case and an inductive step, where the
inductive step is a little different, and it involves showing that if the statement is true
for all the natural numbers less than or equal to an arbitrary number k, then the
statement is true for its successor k + 1.

4.4 Structural Induction 87

Recursion may be employed to define functions, sequences and sets in mathe-
matics, and there are two parts to a recursive definition, namely the base case and
the recursive step. The base case usually defines the value of the function at n = 0
or n = 1, whereas the recursive step specifies how the application of the function to
a number may be obtained from its application to one or more smaller numbers. It is
important that care is taken with the recursive definition, to ensure that that it is not
circular, and does not lead to an infinite regress.

Structural induction is a mathematical technique that is used to prove properties
about recursively defined sets and structures. It may be used to show that all the
members of a recursively defined set have a certain property, and there are two parts
to the proof, namely the base case and the recursive (inductive) step.

Reference

1. Meyer B (1990) Introduction to the theory of programming languages. Prentice Hall

88 4 Mathematical Induction and Recursion

5Sequences, Series, and Permutations
and Combinations

5.1 Introduction

The goal of this chapter is to provide an introduction to sequences and series,
including arithmetic and geometric sequences, and arithmetic and geometric series.
We derive formulae for the sum of an arithmetic series and geometric series, and we
discuss the convergence of a geometric series when rj j\1, and the limit of its sum
as n gets larger and larger.

We discuss the calculation of simple and compound interest, and the concept of the
time value ofmoney, and its application to determine the present value of a payment to
be made in the future.We then discuss annuities, which are a series of payments made
at regular intervals over a period of time, and we determine the present value of an
annuity. Basic financial mathematics is discussed in more detail in Chap. 25.

We consider the counting principle, where one operation has m possible out-
comes and a second operation has n possible outcomes. We determine that the total
number of outcomes after performing the first operation followed by the second
operation to be m � n. A permutation is an arrangement of a given number of
objects, by taking some or all of them at a time. The order of the arrangement is
important, as the arrangement ‘abc’ is different from ‘cba’. A combination is a
selection of a number of objects in any order, where the order of the selection is
unimportant. That is, the selection ‘abc’ is the same as the selection ‘cba’.

5.2 Sequences and Series

A sequence a1, a2, …. an … is any succession of terms (usually numbers), and we
discussed the Fibonacci sequence earlier in Chap. 4. Each term in the Fibonacci
sequence (apart from the first two terms) is obtained from the sum of the previous
two terms in the sequence:

1; 1; 2; 3; 5; 8; 13; 21; . . .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_5

A sequence may be finite (with a fixed number of terms) or infinite. The
Fibonacci sequence is infinite whereas the sequence 2, 4, 6, 8, 10 is finite. We
distinguish between convergent and divergent sequences, where a convergent
sequence approaches a certain value as n gets larger and larger (technically, we say
that n!1 lim an exists (i.e. the limit of an exists)). Otherwise, the sequence is said to
be divergent.

Often, there is a mathematical expression for the nth term in a sequence (e.g. for the
sequence of even integers 2, 4, 6, 8, … the general expression for an is given by
an = 2n). Clearly, the sequence of the even integers is divergent, as it does not approach
a particular value, as n gets larger and larger. Consider the following sequence:

1; �1; 1; �1; 1; �1

Then this sequence is divergent since it does not approach a certain value, as
n gets larger and larger, since it continues to alternate between 1 and −1. The
formula for the nth term in the sequence may be given by.

�1ð Þnþ 1

The sequence 1, ½, 1/3, ¼, … 1/n … is convergent and it converges to 0. The nth
term in the sequence is given by 1/n, and as n gets larger and larger, it gets closer
and closer to 0.

A series is the sum of the terms in a sequence, and the sum of the first n terms of
the sequence a1, a2, …. an … is given by a1 þ a2 þ � � � þ an, which is denoted by

Xn
k¼1

ak

A series is convergent if its sum approaches a certain value S as n gets larger and
larger, and this is written formally as

lim
n!1

Xn
k¼1

ak ¼ S:

Otherwise, the series is said to be divergent.

5.3 Arithmetic and Geometric Sequences

Consider the sequence 1, 4, 7, 10,… where each term is obtained from the previous
term by adding the constant value 3. This is an example of an arithmetic sequence,
and there is a difference of 3 between any term and the previous one. The general
form of a term in this sequence is an = 3n − 2.

90 5 Sequences, Series, and Permutations and Combinations

The general form of an arithmetic sequence is given by

a; aþ d; aþ 2d; aþ 3d; . . . aþ n� 1ð Þd; . . .

The value a is the initial term in the sequence, and the value d is the constant
difference between a term and its successor. For the sequence, 1, 4, 7, .., we have
a = 1 and d = 3, and the sequence is not convergent. In fact, all the arithmetic
sequences (apart from the constant sequence a, a, …, a which converges to a) are
divergent.

Consider, the sequence 1, 3, 9, 27, 81, …, where each term is achieved from the
previous term by multiplying by the constant value 3. This is an example of a
geometric sequence, and the general form of a geometric sequence is given by

a; ar; ar2; ar3; . . .; arn�1

The first term in the geometric sequence is a and r is the common ratio. Each
term is obtained from the previous one by multiplying by the common ratio r. For
the sequence 1, 3, 9, 27 the value of a is 1 and r is 3.

A geometric sequence is convergent if rj j\1, and for this case it converges to 0.
It is also convergent if r = 1, as for this case it is simply the constant sequence a, a,
a, …., which converges to a. For the case where rj j[1 the sequence is divergent,
and the sequence alternates between a and –a for r = −1.

5.4 Arithmetic and Geometric Series

An arithmetic series is the sum of the terms in an arithmetic sequence, and a
geometric sequence is the sum of the terms in a geometric sequence. It is possible to
derive a simple formula for the sum of the first n terms in arithmetic and geometric
series.

Arithmetic Series

We write the series in two ways: first, the normal left to right addition, and then the
reverse, and then we add both series together:

Sn ¼ aþ aþ dð Þþ aþ 2dð Þþ aþ 3dð Þþ � � � þ ðaþ n� 1ð ÞdÞ
Sn ¼ aþ n� 1ð Þdþ aþ n� 2ð Þdþ � � � þ þ aþ dð Þþ a

- -

2Sn ¼ 2aþ n� 1ð Þd½ � þ 2aþ n� 1ð Þd½ � þ � � � þ 2aþ n� 1ð Þd½ � n timesð Þ
2Sn ¼ n� 2aþ n� 1ð Þd½ �:

5.3 Arithmetic and Geometric Sequences 91

Therefore, we conclude that

Sn ¼ n

2
2aþ n� 1ð Þd½ �:

Example (Arithmetic Series)

Find the sum of the first n terms in the following arithmetic series 1, 3, 5, 7, 9…

Solution

Clearly, a = 1 and d = 2. Therefore, applying the formula, we get

Sn ¼ n

2
2:1þ n� 1ð Þ2½ � ¼ 2n2

2
¼ n2:

Geometric Series

For a geometric series we have

Sn ¼ aþ arþ ar2 þ ar3 þ � � � þ arn�1

) rSn ¼ arþ ar2 þ ar3 þ � � � þ arn�1 þ arn

- - - - - - - - - - - - - - - - - - - -

) rSn � Sn ¼ arn�a

¼ aðrn�1Þ
) r � 1ð ÞSn ¼ aðrn�1Þ:

Therefore, we conclude that (where r 6¼ 1)

Sn ¼ a rn � 1ð Þ
r � 1

¼ a 1� rnð Þ
1� r

:

The case when r = 1 corresponds to the arithmetic series a + a + � � � + a, and
the sum of this series is simply na. The geometric series converges when rj j\1 as
rn ! 0 as n !/, and so

Sn ! a

1� r
as n !/ :

Example (Geometric Series)

Find the sum of the first n terms in the following geometric series 1, 1/2,
1/4,

1/8, …
What is the sum of the series?

Solution

Clearly, a = 1 and r = 1/2. Therefore, applying the formula, we get

92 5 Sequences, Series, and Permutations and Combinations

Sn ¼ 1 1� 1=2
nð Þ

1� 1=2
¼ 2 1� 1=2

nð Þ
1� 1=2

¼ 2 1� 1=2
nð Þ:

The sum of the series is the limit of the sum of the first n terms as n approaches
infinity. This is given by

lim
n!/ Sn ¼ lim

n!/ 2 1� 1=2
nð Þ ¼ 2:

5.5 Simple and Compound Interest

Savers receive interest on placing deposits at the bank for a period of time, whereas
lenders pay interest on their loans to the bank. We distinguish between simple and
compound interest, where simple interest is always calculated on the original
principal, whereas for compound interest, the interest is added to the principal sum,
so that interest is also earned on the added interest for the next compounding period.

For example, if Euro 1000 is placed on deposit at a bank with an interest rate of
10% per annum for 2 years, it would earn a total of Euro 200 in simple interest. The
interest amount is calculated by

1000 � 10 � 2
100

¼ Euro 200:

The general formula for calculating simple interest on principal P, at a rate of
interest I, and for time T (in years:), is

A ¼ P� I � T

100
:

The calculation of compound interest is more complicated as may be seen from
the following example.

Example (Compound Interest)

Calculate the interest earned and what the new principal will be on Euro 1000,
which is placed on deposit at a bank, with an interest rate of 10% per annum
(compound) for 3 years.

Solution

At the end of year 1, Euro 100 of interest is earned, and this is capitalized making
the new principal at the start of year 2 Euro 1100. At the end of year 2, Euro 110 is
earned in interest, making the new principal at the start of year 3 Euro 1210.
Finally, at the end of year 3, a further Euro 121 is earned in interest, and so the new
principal is Euro 1331 and the total interest earned for the 3 years is the sum of the
interest earned for each year (i.e. Euro 331). This may be seen from Table 5.1.

5.4 Arithmetic and Geometric Series 93

The new principal each year is given by the geometric sequence with a = 1000
and r ¼ 10=100 ¼ 0:1.

1000; 1000 1:1ð Þ; 1000 1:1ð Þ2; 1000 1:1ð Þ3; . . .

In general, if a principal amount P is invested for T years at a rate R of interest
(r is expressed as a proportion, i.e. r = R/100), then it will amount to

A ¼ P 1þ rð ÞT :

For our example above, A = 1000, T = 3 and r = 0.1 Therefore,

A ¼ 1000 1:1ð Þ3
¼ 1331 as beforeð Þ:

There are variants of the compound interest formula to cover situations where
there are m-compounding periods per year, and so the reader may consult the
available texts. We discuss basic financial mathematics in more detail in Chap. 25.

5.6 Time Value of Money and Annuities

The time value of money discusses the concept that the earlier that cash is received
the greater value it has to the recipient. Similarly, the later that a cash payment is
made, the lower its value to the recipient, and the lower its cost to the payer.

This is clear if we consider the example of a person who receives $1000 now and
a person who receives $1000 5 years from now. The person who receives $1000
now is able to invest it and to receive annual interest on the principal, whereas the
other person who receives $1000 in 5 years earns no interest during the period.
Further, the inflation during the period means that the purchasing power of $1000 is
less in 5 years time is less than it is today.

We presented the general formula for what the future value of a principal P invested
for n years at a compound rate r of interest is A ¼ P 1þ rð Þn. We can determine the
present value of an amount A received in n years time at a discount rate r by

P ¼ A

1þ rð Þn :

Table 5.1 Calculation of
compound interest

Year Principal Interest earned

1 1000 100

2 1100 110

3 1210 121

94 5 Sequences, Series, and Permutations and Combinations

An annuity is a series of equal cash payments made at regular intervals over a
period of time, and so there is a need to calculate the present value of the series of
payments made over the period. The actual method of calculation is clear from
Table 5.2.

Example (Annuities)

Calculate the present value of a series of payments of $1000 (made at the end of
each year) with the payments made for 5 years at a discount rate of 10%.

Solution

The regular payment A is 1000, the rate r is 0.1 and n = 5. The present value of the
payment received at the end of year 1 is 1000/1.1 = 909.91; at the end of year 2 it is
1000/(1.1)2 = 826.45; and so on. The total present value of the payments over the 5
years is given by the sum of the individual present values and is $3791 (Table 5.2).

We may easily derive a formula for the present value of a series of payments
A over a period of n years at a discount rate of r as follows: Clearly, the present
value is given by

A

1þ rð Þ þ
A

1þ rð Þ2 þ � � � þ A

1þ rð Þn :

This is a geometric series where the constant ratio is 1
1þ r and the present value of

the annuity is given by its sum:

PV ¼ A

r
½1� 1

1þ rð Þn�:

For the example above, we apply the formula and get

PV ¼ 1000
0:1

1� 1

1:1ð Þ5
" #

¼ 10000 0:3791ð Þ
¼ $3791.

Financial mathematics is discussed in more detail in Chap. 25.

Table 5.2 Calculation of
present value of annuity

Year Amount Present value (r = 0.1)

1 1000 909.91

2 1000 826.44

3 1000 751.31

4 1000 683.01

5 1000 620.92

5.6 Time Value of Money and Annuities 95

5.7 Permutations and Combinations

A permutation is an arrangement of a given number of objects, by taking some or
all of them at a time. A combination is a selection of a number of objects where the
order of the selection is unimportant. Permutations and combinations are defined in
terms of the factorial function, which was defined in Chap. 4.

Principles of Counting

(a) Suppose one operation has m possible outcomes and a second operation has
n possible outcomes, then the total number of possible outcomes when per-
forming the first operation followed by the second operation is m � n (Product
Rule).

(b) Suppose one operation has m possible outcomes and a second operation has
n possible outcomes, then the total number of possible outcomes of the first
operation or the second operation is given by m + n (Sum Rule).

Example (Counting Principle (a))

Suppose a dice is thrown and a coin is then tossed. How many different outcomes
are there and what are they?

Solution

There are six possible outcomes from a throw of the dice, 1, 2, 3, 4, 5 or 6, and there
are two possible outcomes from the toss of a coin, H or T. Therefore, the total
number of outcomes is determined from the product rule as 6 � 2 = 12. The
outcomes are given by

1;Hð Þ; 2;Hð Þ; 3;Hð Þ; 4;Hð Þ; 5;Hð Þ; 6;Hð Þ; 1;Tð Þ; 2;Tð Þ; 3;Tð Þ; 4;Tð Þ; 5;Tð Þ; 6;Tð Þ:

Example (Counting Principle (b))

Suppose a dice is thrown and if the number is even a coin is tossed and if it is odd
then there is a second throw of the dice. How many different outcomes are there?

Solution

There are two experiments involved with the first experiment involving an even
number and a toss of a coin. There are 3 possible outcomes that result in an even
number and 2 outcomes from the toss of a coin. Therefore, there are 3 � 2 = 6
outcomes from the first experiment.

The second experiment involves an odd number from the throw of a dice and the
further throw of the dice. There are 3 possible outcomes that result in an odd
number and 6 outcomes from the throw of a dice. Therefore, there are 3 � 6 = 18
outcomes from the second experiment.

96 5 Sequences, Series, and Permutations and Combinations

Finally, there are 6 outcomes from the first experiment and 18 outcomes from the
second experiment, and so from the sum rule there are a total of 6 + 18 = 24
outcomes.

Pigeonhole Principle

The pigeonhole principle states that if n items are placed into m containers (with
n > m), then at least one container must contain more than one item (Fig. 5.1).

Examples (Pigeonhole Principle)

(a) Suppose there is a group of 367 people, then there must be at least two people
with the same birthday.

This is clear as there are 365 days in a year (with 366 days in a leap year), and
so as there are at most 366 possible birthdays in a year. The group size is 367
people, and so there must be at least two people with the same birthday.

(b) Suppose that a class of 102 students is assessed in an examination (the outcome
from the exam is a mark between 0 and 100). Then, there are at least two
students who receive the same mark.
This is clear as there are 101 possible outcomes from the test (as the mark that a
student may achieve is between is between 0 and 100), and as there are 102
students in the class and 101 possible outcomes from the test, then there must
be at least two students who receive the same mark.

Fig. 5.1 Pigeonhole principle

5.7 Permutations and Combinations 97

Permutations

A permutation is an arrangement of a number of objects in a definite order.
Consider the three letters A, B and C. If these letters are written in a row, then

there are six possible arrangements:

ABC; ACB; BAC; BCA; CAB or CBA:

There is a choice of 3 letters for the first place, then there is a choice of 2 letters
for the second place and there is only 1 choice for the third place. Therefore, there
are 3 � 2 � 1 = 6 arrangements.

If there are n different objects to arrange, then the total number of arrangements
(permutations) of n objects is given by n! = n(n − 1)(n − 2) … 3.2.1.

Consider the four letters A, B, C and D. How many arrangements (taking 2
letters at a time with no repetition) of these letters can be made?

There are 4 choices for the first letter and 3 choices for the second letter, and so
there are 12 possible arrangements. These are given by

AB; AC;AD; BA;BC; BD;CA;CB;CD;DA; DB or DC:

The total number of arrangements of n different objects taking r at a time
(r � n) is given by nPr ¼ n n� 1ð Þ n� 2ð Þ. . . n� rþ 1ð Þ. It may also be written as

nPr ¼ n!

n� 1ð Þ! :

Example (Permutations)

Suppose A, B, C, D, E and F are six students. How many ways can they be seated
in a row if

(i) There is no restriction on the seating.
(ii) A and B must sit next to one another.
(iii) A and B must not sit next to one another.

Solution

For unrestricted seating, the number of arrangements is given by
6.5.4.3.2.1 = 6! = 720.

For the case where A and B must be seated next to one another, then consider A
and B as one person, and then the five people may be arranged in 5! = 120 ways.
There are 2! = 2 ways in which AB may be arranged, and so there are
2! � 5! = 240 arrangements:

AB C D E F

98 5 Sequences, Series, and Permutations and Combinations

For the case where A and B must not be seated next to one another, then this is
given by the difference between the total number of arrangements and the number
of arrangements with A and B together: i.e. 720 –240 = 480.

Combinatations

A combination is a selection of a number of objects in any order, and the order of
the selection is unimportant, in that both AB and BA represent the same selection.
The total number of arrangements of n different objects taking r at a time is given
by nPr, and we can determine that the number of ways that r objects can be selected
from n different objects from this, as each selection may be permuted r! times, and
so the total number of selections is r! � total number of combinations. That is,
nPr ¼ r! �n Cr and we may also write this as

n
r

� �
¼ n!

r! n� rð Þ! ¼
n n� 1ð Þ. . . n� rþ 1ð Þ

r!
:

It is clear from the definition that

n
r

� �
¼ n

n� r

� �
:

Example 1 (Combinations)

How many ways are there to choose a team of 11 players from a panel of 15
players?

Solution

Clearly, the number of ways is given by
15
11

� �
¼ 15

4

� �
.

That is, 15.14.13.12/4.3.2.1 = 1365.

Example 2 (Combinations)

How many ways can a committee of 4 people be chosen from a panel of 10 people
where

(i) There is no restriction on membership of the panel.
(ii) A certain person must be a member.
(iii) A certain person must not be a member.

Solution

For (i) with no restrictions on membership, the number of selections of a committee

of 4 people from a panel of 10 people is given by
10
4

� �
¼ 210.

5.7 Permutations and Combinations 99

For (ii) where one person must be a member of the committee, then this involves

choosing 3 people from a panel of 9 people and is given by
9
3

� �
¼ 84.

For (iii) where one person must not be a member of the committee, then this

involves choosing 4 people from a panel of 9 people, and is given by
9
4

� �
¼ 126.

5.8 Review Questions

1. Determine the formula for the general term and the sum of the following
arithmetic sequence

1; 4; 7; 10; . . .

2. Write down the formula for the nth term in the following sequence:

1=4;
1 =12;

1 =36;
1 =108; . . .

3. Find the sum of the following geometric sequence:

1=3;
1 =6;

1 =12;
1 =24; . . .

4. How many years will it take a principal of $5000 to exceed $10,000 at a
constant annual growth rate of 6% compound interest?

5. What is the present value of $5000 to be received in 5 years’ time at a
discount rate of 7%?

6. Determine the present value of a 20-year annuity of an annual payment of
$5000 per year at a discount rate of 5%.

7. How many different five-digit numbers can be formed from the digits 1, 2,
3, 4, 5 where

(i) No restrictions on digits and repetitions are allowed.
(ii) The number is odd and no repetitions are allowed.
(iii) The number is even and repetitions are allowed.

100 5 Sequences, Series, and Permutations and Combinations

8. (i) How many ways can a group of five people be selected from nine
people?

(ii) How many ways can a group be selected if two particular people
are always included?

(iii) How many ways can a group be selected if two particular people
are always excluded?

5.9 Summary

This chapter provided a brief introduction to sequences and series, including
arithmetic and geometric sequences, and arithmetic series and geometric series. We
derived formulae for the sum of an arithmetic series and geometric series, and we
discussed the convergence of a geometric series when rj j\1.

We discussed the calculation of simple and compound interest, and the concept
of the time value of money, and its application to determine the present value of a
payment to be made in the future. We discussed annuities, which are a series of
payments made at regular intervals over a period of time, and we calculated the
present value of an annuity.

We considered counting principles including the product and sum rules. The
product rule is concerned with where one operation has m possible outcomes and a
second operation has n possible outcomes, then the total number of possible out-
comes when performing the first operation followed by the second operation is
m � n.

We discussed the pigeonhole principle, which states that if n items are placed
into m containers (with n > m), then at least one container must contain more than
one item. We discussed permutations and combinations where permutations are an
arrangement of a given number of objects, by taking some or all of them at a time.
A combination is a selection of a number of objects in any order, and the order of
the selection is unimportant.

5.8 Review Questions 101

6Algebra

6.1 Introduction

Algebra is the branch of mathematics that uses letters in the place of numbers,
where the letters stand for variables or constants that are used in mathematical
expressions. Algebra is the study of such mathematical symbols and the rules for
manipulating them, and it is a powerful tool for problem-solving in science and
engineering.

The origins of algebra are in the work done by Islamic mathematicians during
the Golden age in Islamic civilization, and the word ‘algebra’ comes from the
Arabic term ‘al-jabr’, which appears as part of the title of a book by the Islamic
mathematician, Al-Khwarizmi, in the ninth century A.D. The third century A.D.
Hellenistic mathematician, Diophantus, also did early work on algebra, and we
mentioned in Chap. 1 that the Babylonians employed an early form of algebra.

Algebra covers many areas such as elementary algebra, linear algebra and
abstract algebra. Elementary algebra includes the study of symbols and rules for
manipulating them to form valid mathematical expressions, simultaneous equations,
quadratic equations, polynomials, indices and logarithms. Linear algebra is con-
cerned with the solution of a set of linear equations, and includes the study of
matrices (see Chap. 8) and vectors. Abstract algebra is concerned with the study of
abstract algebraic structures such as monoids, groups, rings, integral domains, fields
and vector spaces.

6.2 Simple and Simultaneous Equations

A simple equation is an equation with one unknown, and the unknown may be on
both the left-hand and right-hand sides of the equation. The method of solving such
equations is to bring the unknowns to one side of the equation, and the values to the
other side.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_6

Simultaneous equations are equations with two (or more) unknowns. There are a
number of methods to finding a solution to two simultaneous equations such as
elimination, substitution and graphical techniques. The solution to a set of n linear
equations with n unknowns may be done using Gaussian elimination and matrix
theory (see Chap. 8).

Example (Simple Equation)

Solve the simple equation 4� 3x = 2x� 11.

Solution (Simple Equation)

4� 3x ¼ 2x� 11

4� �11ð Þ ¼ 2x� 3xð Þ
4þ 11 ¼ 2xþ 3x

15 ¼ 5x

3 ¼ x:

Example (Simultaneous Equation—Substitution Method)
Solve the following simultaneous equations by the method of substitution:

xþ 2y ¼ �1

4x� 3y ¼ 18:

Solution (Simultaneous Equation—Substitution Method)

The method of substitution involves expressing x in terms of y and substituting it in
the other equation (or vice versa expressing y in terms of x and substituting it in the
other equation). For this example, we use the first equation to express x in terms of
y:

xþ 2y ¼ �1

x ¼ �1� 2y:

We then substitute for x (−1 − 2y) in the second equation, and we get a simple
equation involving just the unknown y:

4 �1� 2yð Þ � 3y ¼ 18

) �4�8y�3y ¼ 18

) �11y ¼ 18þ 4

) �11y ¼ 22

) y ¼ �2:

104 6 Algebra

We then obtain the value of x from the substitution:

x ¼ �1� 2y

) x ¼ �1�2 �2ð Þ
) x ¼ �1þ 4

) x ¼ 3:

We can then verify that our solution is correct by checking our answer for both
equations:

3þ 2 �2ð Þ ¼ �1
p

4 3ð Þ � 3 �2ð Þ ¼ 18
p
:

Example (Simultaneous Equation—Method of Elimination)
Solve the following simultaneous equations by the method of elimination:

3xþ 4y ¼ 5

2x�5y ¼ �12.

Solution (Simultaneous Equation—Method of Elimination)
The approach is to manipulate both equations so that we may eliminate either

x or y, and so reduce to a simple equation with just x or y. For this example, we are
going to eliminate x, and so we multiply Eq. (1) by 2 and Eq. (2) by –3 and this
yields two equations with the opposite coefficient of x:

6xþ 8y ¼ 10

� 6xþ 15y ¼ 36

0xþ 23y ¼ 46

y ¼ 2:

We then add both equations together and conclude that y = 2. We then deter-
mine the value of x by replacing y with 2 in the first equation:

3xþ 4 2ð Þ ¼ 5

3xþ 8 ¼ 5

3x ¼ 5�8

3x ¼ �3

x ¼ �1:

6.2 Simple and Simultaneous Equations 105

We can then verify that our solution is correct as before by checking our answer
for both equations.

Example (Simultaneous Equation—Graphical Techniques)

Find the solution to the following simultaneous equations using graphical
techniques:

xþ 2y ¼ �1

4x� 3y ¼ 18:

Solution (Simultaneous Equation—Graphical Techniques)
Each simultaneous equation represents a straight line, and so the solution to the

two simultaneous equations is the point of intersection of both lines (if there is such
a point). Therefore, the solution involves drawing each line and finding the point of
intersection of both lines (Fig. 6.1).

First, we find two points on line 1: e.g. (0, −0.5) and (−1, 0) are on line 1, since
when x = 0 we have 2y = −1 and so y = −0.5. Similarly, when y = 0 we have
x = −1. Next, we find two points on line 2 in a similar way: e.g. when x is 0 y is –6,
and when y is 0 we have x = 4.5 and so the points (0, −6) and (4.5, 0) are on line 2.

We then draw the X-axis and the Y-axis, draw the scales on the axes, label the
axes, plot the points and draw both lines. Finally, we find the point of intersection
of both lines (if there is such a point), and this is our solution to the simultaneous
equations.

Fig. 6.1 Graphical solution to simultaneous equations

106 6 Algebra

For this example, there is a point of intersection for the lines, and so we
determine the x and y coordinates, and the solution is then given by x = 3 and
y = −2. The solution using graphical techniques requires care (as inaccuracies may
be introduced from poor drawing) and graph paper is required for accuracy.

6.3 Quadratic Equations

A quadratic equation is an equation of the form ax2 þ bxþ c ¼ 0, and solving the
quadratic equation is concerned with finding the unknown value x (roots of the
quadratic equation). There are several techniques to solve quadratic equations such
as factorization; completing the square, the quadratic formula and graphical
techniques.

Example (Quadratic Equations—Factorization)

Solve the quadratic equation 3x2�11x�4 ¼ 0 by factorization.

Solution (Quadratic Equations—Factorization)

The approach taken is to find the factors of the quadratic equation. Sometimes this
is easy, but often other techniques will need to be employed. For the above
quadratic equation, we note immediately that its factors are 3xþ 1ð Þ x� 4ð Þ since

3xþ 1ð Þ x� 4ð Þ
¼ 3x2�12xþ x�4

¼ 3x2�11x�4:

Next, we note the property that if the product of two numbers A and B is 0 then
either A is 0 or B is 0. In other words, AB ¼ 0 ¼ [A ¼ 0 or B = 0. We conclude
from this property that as

3x2�11x�4 ¼ 0;

• 3xþ 1ð Þ x�4ð Þ ¼ 0
• 3xþ 1ð Þ ¼ 0 or x�4ð Þ ¼ 0
• 3x ¼ �1 or x ¼ 4
• x ¼ �0:33 or x ¼ 4.

Therefore, the solution (or roots) of the quadratic equation 3x2�11x�4 ¼ 0 is
x = −0.33 or x = 4.

Example (Quadratic Equations—Completing the Square)

Solve the quadratic equation 2x2 þ 5x�3 ¼ 0 by completing the square.

6.2 Simple and Simultaneous Equations 107

Solution (Quadratic Equations—Completing the Square)

First, we convert the quadratic equation to an equivalent quadratic with a unary
coefficient of x2. This involves division by 2. Next, we examine the coefficient of x
(in this case 5/2), and we add the square of half the coefficient of x to both sides.
This allows us to complete the square, and we then take the square root of both
sides. Finally, we solve for x.

2x2 þ 5x�3 ¼ 0;

• x2 þ 5=2x�3=2 ¼ 0
• x2 þ 5=2x ¼3 =2

• x2 þ 5=2xþ 5=4
� �2¼3 =2 þ 5=4

� �2
• xþ 5=4

� �2¼3 =2 þ 25=16
� �

• xþ 5=4
� �2¼24 =16 þ 25=16

� �
• xþ 5=4

� �2¼49 =16
• xþ 5=4

� � ¼ �7=4
• x ¼ �5=4 �7 =4
• x ¼ �5=4 �7 =4 or x ¼ �5=4 þ 7=4
• x ¼ �12=4 or x ¼2 =4
• x ¼ �3 or x ¼ 0:5.

Example 1 (Quadratic Equations—Quadratic Formula)

Establish the quadratic formula for solving quadratic equations.

Solution (Quadratic Equations—Quadratic Formula)

We complete the square and the result will follow.

ax2 þ bxþ c ¼ 0;

• x2 þ b=axþ c=a ¼ 0
• x2 þ b=ax ¼ �c=a

• x2 þ b=axþ b=2a
� �2¼ �c=a þ b=2a

� �2
• xþ b=2a

� �2¼ �c=a þ b=2a
� �2

• xþ b=2að Þ2¼ �4ac
4a2 þ b2

4a2

• xþ b=2að Þ2¼ b2�4ac
4a2

• xþ b=2að Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a

• x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a :

108 6 Algebra

Example 2 (Quadratic Equations—Quadratic Formula)

Solve the quadratic equation 2x2 þ 5x�3 ¼ 0 using the quadratic formula.

Solution (Quadratic Equations—Quadratic Formula)

For this example, a = 2, b = 5 and c = −3, and we put these values into the
quadratic formula:

x ¼ �5� ffi
52 � 4:2: �3ð Þp
2:2

¼ �5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 24

p

4

x ¼ �5� ffiffiffiffiffi
49

p

4
¼ �5� 7

4
x ¼ 0:5 or x ¼ �3:

Example (Quadratic Equations—Graphical Techniques)

Solve the quadratic equation 2x2 � x�6 ¼ 0 using graphical techniques given that
the roots of the quadratic equation lie between x = −3 and x = 3.

Solution (Quadratic Equations—Graphical Techniques)

The approach is first to create a table of values (Table 6.1) for the curve
y ¼ 2x2 � x�6, and to draw the X- and Y-axis and scales, and then to plot the
points from the table of values, and to join the points together to form the curve
(Fig. 6.2).

The graphical solution is to the quadratic equation is then given by the points
where the curve intersects the X-axis (i.e. y = 0 on the X-axis). There may be no
solution (i.e. the curve does not intersect the X-axis), one solution (a double root) or
two solutions.

The graph for the curve y ¼ 2x2 � x�6 is given below, and so the points where
the curve intersects the X-axis are determined. We note from the graph that the
curve intersects the X-axis at two distinct points, and we see from the graph that the
roots of the quadratic equation are given by x = −1.5 and x = 2.

The solution to quadratic equations using graphical techniques requires care (as
with the solution to simultaneous equations using graphical techniques), and graph
paper is required for accuracy.

6.4 Indices and Logarithms

The product a ∙ a ∙ a ∙ a … a (n times) is denoted by an, and the number n is the
index of a. The following are properties of indices:

6.3 Quadratic Equations 109

ao ¼ 1

amþ n ¼ am an

amn ¼ amð Þn

an ¼ 1
an

1
an

¼ ffiffiffi
an

p
:

Logarithms are closely related to indices, and if the number b can be written in
the form b = ax, then we say that log to the base a of b is x: i.e.
loga b ¼ x , ax ¼ b. Clearly, log10 100 = 2 since 102 = 100. The following are
properties of logarithms:

loga AB ¼ loga Aþ loga B

loga A
n ¼ n loga A

log
A

B
¼ logA� logB:

Fig. 6.2 Graphical solution to quadratic equation

Table 6.1 Table of values
for Quadratic equation

X −3 −2 −1 0 1 2 3

y ¼ 2x2 � x�6 15 4 −3 −6 −5 0 9

110 6 Algebra

We will prove the first property of logarithms. Suppose loga A = x and loga
B = y. Then A = ax and B = ay and so AB ¼ axay ¼ axþ y and so
loga AB ¼ xþ y ¼ loga Aþ loga B.

The law of logarithms may be used to solve certain equations involving powers
(called indicial equations). We illustrate this by an example.

Example (Indicial Equations)

Solve the equation 2x = 3 correct to 4 significant places.

Solution (Indicial Equations)

2x ¼ 3

) log10 2
x ¼ log10 3

)x log10 2 ¼ log10 3

)X ¼ log10 3
log10 2

¼ 0:4771
0:3010

)x ¼ 1:585:

6.5 Horner’s Method for Polynomials

Horner’s method is a computationally efficient way to evaluate a polynomial
function. It is named after William Horner who was a nineteenth-century British
mathematician and schoolmaster. Chinese mathematicians were familiar with the
method in the third century A.D.

The normal method for the evaluation of a polynomial involves computing
exponentials, and this is computationally expensive. Horner’s method has the
advantage that fewer calculations are required, and it eliminates all exponentials by
using nested multiplication and addition. It also provides a computationally efficient
way to determine the derivative of the polynomial.

Horner’s Method and Algorithm

Consider a polynomial P(x) of degree n defined by

P xð Þ ¼ anx
n þ an�1x

n�1 þ an�2x
n�2 þ � � � þ a1xþ a0:

The Horner method to evaluate P(x0) essentially involves writing P(x) as

P xð Þ ¼ ðððanxþ an�1Þxþ an�2Þxþ � � � þ a1Þxþ a0:

6.4 Indices and Logarithms 111

The computation of P(x0) involves defining a set of coefficients bk such that

bn ¼ an
bn�1 ¼ an�1 þ bnx0
. . .

bk ¼ ak þ bkþ 1x0

. . .

b1 ¼ a1 þ b2x0
b0 ¼ a0 þ b1x0:

Then the computation of P(x0) is given by

P x0ð Þ ¼ b0:

Q xð Þ ¼ bnxn�1 þ bn�1xn�2 þ bn�2xn�3 þ . . .::þ b1, then it is easy to verify that

P xð Þ ¼ x�x0ð ÞQ xð Þþ b0:

This also allows the derivative of P(x) to be easily computed for x0 since

P0 xð Þ ¼ Q xð Þþ x�x0ð ÞQ0 xð Þ
P0 x0ð Þ ¼ Q x0ð Þ:

Algorithm (To evaluate polynomial and its derivative)

(i) Initialize y to an and z to an (compute bn for P and bn−1 for Q);
(ii) For each j from n − 1, n − 2 to 1, compute bj for P and bj−1 for Q by

setting y to x0yþ aj (i.e. bj for P) and z to x0zþ y (i.e. bj−1 for Q).
(iii) Compute b0 by setting y to x0yþ a0.

Then P x0ð Þ ¼ y and P0 x0ð Þ ¼ z:

6.6 Abstract Algebra

One of the important features of modern mathematics is the power of the abstract
approach. This has opened up whole new areas of mathematics, and it has led to a
large body of new results and problems. The term ‘abstract’ is subjective, as what is
abstract to one person may be quite concrete to another. We shall introduce some
important algebraic structures in this section including monoids, groups, rings,
fields and vector spaces.

112 6 Algebra

6.6.1 Monoids and Groups

A non-empty set M together with a binary operation ‘*’ is called a monoid if for all
elements a, b, c 2 M the following properties hold:

(1) a � b 2 M (Closure property)

(2) a � b � cð Þ ¼ a � bð Þ � c (Associative property)

(3) 9u 2 M such that a � u ¼ u � a ¼ að8a 2 MÞ. (Identity Element)

A monoid is commutative if a * b = b * a for all a, b 2 M. A semi-group (M, *)
is a set with a binary operation ‘*’ such that the closure and associativity properties
hold (but it may not have an identity element).

Example 6.1 (Monoids)

(i) The set of sequences R� under concatenation with the empty sequence K is the
identity element.

(ii) The set of integers under addition forms an infinite monoid in which 0 is the
identity element.

A non-empty set G together with a binary operation ‘*’ is called a group if for all
elements a, b, c 2 G, the following properties hold:

(i) a � b 2 G (Closure property)

(ii) a � b � cð Þ ¼ a � bð Þ � c (Associative property)

(iii) 9e 2 G such that a � e ¼ e � a ¼ að8a 2 GÞ (Identity Element)

(iv) For every a 2 G;9a�1 2 G, such that a � a�1 ¼ a�1 � a ¼ e: (Inverse Element)

The identity element is unique, and the inverse a−1 of an element a is unique (see
exercise 5). A commutative group has the additional property that a * b = b * a for
all a, b 2 G. The order of a finite group G is the number of elements in G, and is
denoted by o(G).

Example 6.2 (Groups)

(i) The set of integers under addition (ℤ, +) forms an infinite group in which 0 is
the identity element.

(ii) The set of 2 � 2 integer matrices under addition, where the identity element

is
0 0
0 0

� �
.

6.6 Abstract Algebra 113

(iii) The set of integers under multiplication (ℤ, �) forms an infinite monoid with
1 as the identity element.

A cyclic group is a group where all elements g 2 G are obtained from the
powers ai of one element a 2 G, with a0 = e. The element ‘a’ is termed the gen-
erator of the cyclic group G. A finite cyclic group with n elements is of the form
{a0, a1, a2, …, an−1}.

A non-empty subset H of a group G is said to be a subgroup of G if for all a,
b 2 H then a * b 2 H, and for any a 2 H then a−1 2 H. A subgroup N is termed a
normal subgroup of G if gng−1 2 N for all g 2 G and all n 2 N. Further, if G is a
group and N is a normal subgroup ofG, then the quotient group G/Nmay be formed.

Lagrange’s theorem states the relationship between the order of a subgroup H of
G, and the order of G. The theorem states that if G is a finite group, and H is a
subgroup of G, then o(H) is a divisor of o(G).

We may also define a mapping between similar algebraic structures termed
homomorphism, and these mappings preserve the structure. If the homomorphism is
one to one and onto, it is termed isomorphism, which means that the two structures
are identical in some sense (apart from a relabelling of elements).

6.6.2 Rings

A ring is a non-empty set R together with two binary operations ‘+’ and ‘�’ where
(R, +) is a commutative group; (R, �) is a semi-group; and the left and right distributive
laws hold. Specifically, for all elements a, b, c 2 R, the following properties hold:

(1) aþ b 2 R (Closure property)

(2) aþ bþ cð Þ ¼ aþ bð Þþ c (Associative property)

(3) 90 2 R such that 8a 2 R : aþ 0 ¼ 0þ a ¼ a (Identity element)

(4) 8a 2 R : 9 �að Þ 2 R : aþ �að Þ ¼ �að Þþ a ¼ 0 (Inverse element)

(5) aþ b ¼ bþ a (Commutativity)

(6) a� b 2 R (Closure property)

(7) a� ðb� cÞ ¼ ða� bÞ � c (Associative property)

(8) a� bþ cð Þ ¼ a� bþ a� c (Distributive law)

(9) bþ cð Þ � a ¼ b� aþ c� a. (Distributive law)

The element 0 is the identity element under addition, and the additive inverse of
an element a is given by −a. If a ring (R, �, +) has a multiplicative identity 1
where a� 1 ¼ 1� a ¼ a for all a 2 R, then R is termed a ring with a unit element.
If a� b ¼ b� a for all a, b 2 R, then R is termed a commutative ring.

An element a 6¼ 0 in a ring R is said to be a zero divisor if there exists b 2 R,
with b 6¼ 0 such that ab = 0. A commutative ring is an integral domain if it has no

114 6 Algebra

zero divisors. A ring is said to be a division ring if its non-zero elements form a
group under multiplication.

Example 6.2 (Rings)

(i) The set of integers (ℤ, +, �) forms an infinite commutative ring with mul-
tiplicative unit element 1. Further, since it has no zero divisors it is an
integral domain.

(ii) The set of integers mod 4 (i.e. ℤ4 where addition and multiplication are
performed modulo 4)1 is a finite commutative ring with unit element [1]4. Its
elements are {[0]4, [1]4, [2]4, [3]4}. It has zero divisors since [2]4[2]4 = [0]4
and so it is not an integral domain.

(iii) The Quaternions (discussed in [1]) are an example of a non-commutative
ring (they form a division ring).

(iv) The set of integers mod 5 (i.e. ℤ5 where addition and multiplication are
performed modulo 5) is a finite commutative division ring2 and it has no zero
divisors.

6.6.3 Fields

A field is a non-empty set F together with two binary operation ‘+’ and ‘�’ where
(F, +) is a commutative group; (F \{0}, �) is a commutative group; and the dis-
tributive properties hold. The properties of a field are

(1) aþ b 2 F (Closure property)

(2) aþ bþ cð Þ ¼ aþ bð Þþ c (Associative property)

(3) 90 2 F such that 8a 2 Faþ 0 ¼ 0þ a ¼ a (Identity element)

(4) 8a 2 F9 �að Þ 2 Faþ �að Þ ¼ �að Þþ a ¼ 0 (Inverse element)

(5) aþ b ¼ bþ a (Commutativity)

(6) a� b 2 F (Closure property)

(7) a� ðb� cÞ ¼ ða� bÞ � c (Associative property)

(8) 91 2 F such that 8a 2 Fa� 1 ¼ 1� a ¼ a (Identity element)

(9) 8a 2 Fn 0f g9a�1 2 Fa� a�1 ¼ a�1 � a ¼ 1 (Inverse element)

(10) a� b ¼ b� a (Commutativity)

(11) a� bþ cð Þ ¼ a� bþ a� c (Distributive law)

(12) bþ cð Þ � a ¼ b� aþ c� a. (Distributive law)

6.6 Abstract Algebra 115

1Recall from Chap. 3 that Z=nZ ¼ Zn ¼ f a½ �n: 0� a� n� 1g ¼ 0½ �n; 1½ �n; . . .; n� 1½ �n
� �

.
2A finite division ring is actually a field (i.e. it is commutative under multiplication), and this
classic result was proved by Wedderburn.

The following are examples of fields:

Example 6.3 (Fields)

(i) The set of rational numbers (ℚ, +, �) forms an infinite commutative field.
The additive identity is 0, and the multiplicative identity is 1.

(ii) The set of real numbers (ℝ, +, �) forms an infinite commutative field. The
additive identity is 0, and the multiplicative identity is 1.

(iii) The set of complex numbers (ℂ, +, �) forms an infinite commutative field.
The additive identity is 0, and the multiplicative identity is 1.

(iv) The set of integers mod 7 (i.e. ℤ7 where addition and multiplication are
performed mod 7) is a finite field.

(v) The set of integers mod p where p is a prime (i.e. ℤp where addition and
multiplication are performed mod p) is a finite field with p elements. The
additive identity is [0] and the multiplicative identity is [1].

A field is a commutative division ring but not every division ring is a field. For
example, the quaternions (discovered by Hamilton) are an example of a division
ring, which is not a field. If the number of elements in the field F is finite then F is
called a finite field, and F is written as Fq where q is the number of elements in F. In
fact, every finite field has q = pk elements for some prime p, and some k 2 ℕ and
k > 0.

6.6.4 Vector Spaces

A non-empty set V is said to be a vector space over a field F if V is a commutative
group under vector addition +, and if for every a 2 F, m 2 V there is an element
av in V such that the following properties hold for v, w 2 V and a; b 2 F:

1. uþ v 2 V .
2. uþ vþwð Þ ¼ uþ vð Þþw.
3. 90 2 V such that 8v 2 Vvþ 0 ¼ 0þ v ¼ v.
4. 8v 2 V9 �vð Þ 2 V such that vþ �vð Þ ¼ �vð Þþ v ¼ 0.

5. vþw ¼ wþ v.
6. a vþwð Þ ¼ avþ aw.
7. ðaþ bÞv ¼ avþ bv.
8. aðbvÞ ¼ ðabÞv.
9. 1v ¼ v.

The elements in V are referred to as vectors and the elements in F are referred to
as scalars. The element 1 refers to the identity element of the field F under
multiplication.

116 6 Algebra

Application of Vector Spaces to Coding Theory

The representation of codewords in coding theory (which is discussed in Chap. 11)
is by n-dimensional vectors over the finite field Fq. A codeword vector v is rep-
resented as the n-tuple:

v ¼ a0; a1; . . .an�1ð Þ

where each ai 2 Fq. The set of all n-dimensional vectors is the n-dimensional
vector space Fn

q with qn elements. The addition of two vectors v and w, where
v ¼ a0; a1; . . .an�1ð Þ and w ¼ b0; b1; . . .bn�1ð Þ, is given by

vþw ¼ a0 þ b0; a1 þ b1; . . .an�1 þ bn�1ð Þ:

The scalar multiplication of a vector v ¼ a0; a1; . . .an�1ð Þ 2 Fnq by a scalar b 2
Fq is given by

bv ¼ ðba0; ba1; . . .ban�1Þ:

The set Fn
q is called the vector space over the finite field Fq if the vector space

properties above hold. A finite set of vectors v1, v2, … vk is said to be linearly
independent if

b1v1 þ b2v2 þ � � � þ bkvk ¼ 0) b1 ¼ b2 ¼ � � � bk ¼ 0:

Otherwise, the set of vectors v1, v2, … vk is said to be linearly dependent.
A non-empty subset W of a vector space VðW	VÞ is said to be a subspace of V,

if W forms a vector space over F under the operations of V. This is equivalent to
W being closed under vector addition and scalar multiplication: i.e. w1;w2 2
W ; a; b 2 F then aw1 þ bw2 2 W .

The dimension (dim W) of a subspace W	V is k if there are k linearly inde-
pendent vectors in W but every k + 1 vectors are linearly dependent. A subset of a
vector space is a basis for V if it consists of linearly independent vectors, and its
linear span is V (i.e. the basis generates V). We shall employ the basis of the vector
space of codewords (see Chap. 11) to create the generator matrix to simplify the
encoding of the information words. The linear span of a set of vectors v1, v2, …, vk
is defined as b1v1 þ b2v2 þ � � � þ bkvk.

Example 6.4 (Vector Spaces)

(i) The Real coordinate space ℝn forms an n-dimensional vector space over ℝ. The
elements of ℝn are the set of all n-tuples of elements of ℝ, where an element
x in ℝn is written as

6.6 Abstract Algebra 117

x ¼ ðx1; x2; . . . xnÞ

where each xi 2 ℝ and vector addition and scalar multiplication are given by

ax ¼ ax1; ax2; . . .axnð Þ
xþ y ¼ ðx1 þ y1; x2 þ y2. . .xn þ ynÞ:

(ii) The set of m � n matrices over the real numbers forms a vector space, with
vector addition given by matrix addition, and the multiplication of a matrix by
a scalar given by the multiplication of each entry in the matrix by the scalar.

6.7 Review Questions

1. Solve the simple equation: 4ð3xþ 1Þ ¼ 7ðxþ 4Þ � 2ðxþ 5Þ.
2. Solve the following simultaneous equations by

xþ 2y ¼ �1

4x� 3y ¼ 18

(a) Graphical techniques;
(b) Method of substitution;
(c) Method of Elimination.

3. Solve the quadratic equation 3x2 þ 5x� 2 ¼ 0 given that the solution is
between x = −3 and x = 3 by

(a) Graphical techniques;
(b) Factorization;
(c) Quadratic Formula.

4. Solve the following indicial equation using logarithms 2x¼1 ¼ 32x�1.
5. Explain the differences between semigroups, monoids and groups.
6. Show that the following properties are true for groups:

(i) The identity element is unique in a group.
(ii) The inverse of an element is unique in a group.

118 6 Algebra

7. Explain the differences between rings, commutative rings, integral
domains, division rings and fields.

8. What is a vector space?
9. Explain how vector spaces may be applied to coding theory (see Chap. 11

for more details).

6.8 Summary

This chapter provided a brief introduction to algebra, which is the branch of
mathematics that studies mathematical symbols and the rules for manipulating
them. Algebra is a powerful tool for problem-solving in science and engineering.

Elementary algebra includes the study of simultaneous equations (i.e. two or
more equations with two or more unknowns); the solution of quadratic equations
ax2 þ bxþ c ¼ 0; and the study of polynomials, indices and logarithms. Linear
algebra is concerned with the solution of a set of linear equations, and the study of
matrices and vector spaces.

Abstract algebra is concerned with the study of abstract algebraic structures such
as monoids, groups, rings, integral domains, fields and vector spaces. The abstract
approach in modern mathematics has opened up whole new areas of mathematics as
well as applications in areas such as coding theory in the computing field.

Reference

1. O’ Regan G (2020) Mathematics in computing, 2nd edn. Springer

6.7 Review Questions 119

7Automata Theory

7.1 Introduction

Automata Theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state at a
time (current state), and the input symbol causes a transition from the current state
to the next state. Finite-state machines have limited computational power due to
memory and state constraints, but they have been applied to a number of fields
including communication protocols, neurological systems and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and this
theoretical machine is equivalent to an actual computer in the sense that it can
compute exactly the same set of functions. The memory of the Turing machine is a
tape that consists of a potentially infinite number of one-dimensional cells. The
Turing machine provides a mathematical abstraction of computer execution and
storage, as well as providing a mathematical definition of an algorithm. However,
Turing machines are not suitable for programming, and therefore they do not
provide a good basis for studying programming and programming languages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_7

7.2 Finite-State Machines

The neurophysiologists Warren McCulloch and Walter Pitts published early work
on finite-state automata in 1943. They were interested in modelling the thought
process for humans and machines. Moore and Mealy developed this work further in
the mid-1950s, and their finite-state machines are referred to as the ‘Mealy machine’
and the ‘Moore machine’. The Mealy machine determines its outputs through the
current state and the input, whereas the output of Moore’s machine is based upon
the current state alone.

Definition 7.1 (Finite-State Machine) A finite-state machine (FSM) is an abstract
mathematical machine that consists of a finite number of states. It includes a start
state q0 in which the machine is in initially; a finite set of states Q; an input alphabet
R; a state transition function d and a set of final accepting states F (where F�Q).

The state transition function d takes the current state and an input symbol, and
returns the next state. That is, the transition function is of the form:

d : Q� R ! Q:

The transition function provides rules that define the action of the machine for
each input symbol, and its definition may be extended to provide output as well as a
transition of the state. State diagrams are used to represent finite-state machines, and
each state accepts a finite number of inputs. A finite-state machine (Fig. 7.1) may be
deterministic or non-deterministic, and a deterministic machine changes to exactly
(or at most)1 one state for each input transition, whereas a non-deterministic
machine may have a choice of states to move for a particular input symbol.

Finite-state automata can compute only very primitive functions, and so they are
not adequate as a model for computing. There are more powerful automata such as
the Turing machine that is essentially a finite automaton with a potentially infinite
storage (memory). Anything that is computable by a Turing machine.

A finite-state machine can model a system that has a finite number of states, and
a finite number of inputs/events that can trigger transitions between states. The
behaviour of the system at a point in time is determined from the current state and
input, with behaviour defined for the possible input to that state. The system starts
in a particular initial state.

A finite-state machine (also known as finite-state automata) is a quintuple (R, Q,
d, q0, F). The alphabet of the FSM is given by R; the set of states is given by Q; the
transition function is defined by d : Q� R ! Q; the initial state is given by q0 and
the set of accepting states is given by F where F is a subset of Q. A string is given
by a sequence of alphabet symbols: i.e. s 2 R�, and the transition function d can be
extended to d� : Q� R� ! Q.

122 7 Automata Theory

1The transition function may be undefined for a particular input symbol and state.

A string s 2 R� is accepted by the finite-state machine if d� q0; sð Þ ¼ qf where
qf 2 F, and the set of all strings accepted by a finite-state machine is the language
generated by the machine. A finite-state machine is termed deterministic (Fig. 7.2)
if the transition function d is a function,2 and otherwise (where it is a relation) it is
said to be non-deterministic. A non-deterministic automata is one for which the next
state is not uniquely determined from the present state and input symbol, and the
transition may be to a set of states rather than a single state.

For the example above the input alphabet is given by R ¼ 0; 1f g; the set of
states by {A, B, C}; the start state by A; the final state by {C} and the transition
function is given by the state transition table below (Table 7.1). The language
accepted by the automata is the set of all binary strings that end with a one that
contain exactly two ones.

A non-deterministic automaton (NFA) or non-deterministic finite-state machine
is a finite-state machine where from each state of the machine and any given input,
the machine may jump to several possible next states. However, a non-deterministic
automaton (Fig. 7.3) is equivalent to a deterministic automaton, in that they both
recognize the same formal language (i.e. regular languages as defined in Chomsky’s

Fig. 7.1 Finite-state machine

A B C

0 0

1 1

Fig. 7.2 Deterministic FSM

Table 7.1 State transition
table

State 0 1

A A B

B B C

C – –

7.2 Finite-State Machines 123

2It may be a total or a partial function (as discussed in Chap. 2).

classification). Further, for any non-deterministic automaton, it is possible to con-
struct the equivalent deterministic automaton using power set construction.

NFAs were introduced by Scott and Rabin in 1959, and a NFA is defined
formally as a 5-tuple (Q, R, d, qo, F) as in the definition of a deterministic
automaton, and the only difference is in the transition function d.

d : Q� R ! PQ:

The non-deterministic finite-state machine M1 ¼ ðQ;R; d; qo;FÞ may be con-
verted to the equivalent deterministic machine M2 ¼ ðQ0;R; d0; q0o;F0Þ where

Q0 ¼ PQ the set of all subsets of Qð Þ
q0o ¼ qof g
F0 ¼ fq 2 Q0 and q\F 6¼ ;g

d0ðq; rÞ ¼ [p2qdðp; rÞ for each state q 2 Q0 and r 2 R:

The set of strings (or language) accepted by an automaton M is denoted L(M).
That is, L Mð Þ ¼ fs : jd� q0; sð Þ ¼ qf for some qf 2 F}. A language is termed reg-
ular if it is accepted by some finite-state machine. Regular sets are closed under
union, intersection, concatenation, complement and transitive closure. That is, for
regular sets A;B�R� then

• A[B and A\B are regular.
• R�nA (i.e. Ac) is regular.
• AB and A* is regular.

The proof of these properties is demonstrated by constructing finite-state
machines to accept these languages. For example, the proof that A\B is regular is
to construct a machine MA\B that mimics the execution of MA and MB and is in a
final state if and only if both MA and MB are in a final state. Finite-state machines
are useful in designing systems that process sequences of data.

Fig. 7.3 Non-deterministic finite-state machine

124 7 Automata Theory

7.3 Pushdown Automata

A pushdown automaton (PDA) is essentially a finite-state machine with a stack, and
it includes three components namely an input tape; a control unit and a potentially
infinite stack. The stack head scans the top symbol of the stack, and two operations
(push or pop) may be performed on the stack. The push operation adds a new
symbol to the top of the stack, whereas the pop operation reads and removes an
element from the top of the stack (Fig. 7.4).

A push down automaton may remember a potentially infinite amount of infor-
mation, whereas a finite-state automaton remembers only a finite amount of
information. A PDA also differs from a FSM in that it may use the top of the stack
to decide on which transition to take, and it may manipulate the stack as part of the
performance of a transition. The input and current state determine the transition in a
finite-state machine, and a FSM has no stack to work with.

A pushdown automaton is defined formally as a 7-tuple (R, Q, C, d, q0, Z, F).
The set R is a finite set which is called the input alphabet; the set Q is a finite set of
states; C is the set of stack symbols; d is the transition function which maps
Q � {R [{e}}3 � C into finite subsets of Q� C�2; q0 is the initial state; Z is the
initial stack top symbol on the stack (i.e. Z 2 C) and F is the set of accepting states
(i.e. F�Q).

Figure 7.5 shows a transition from state q1 to q2, which is labelled as a,
b ! c. This means that at if the input symbol a occurs in state q1, and the symbol
on the top of the stack is b, then b is popped from the stack and c is pushed onto the
stack. The new state is q2.

In general, a pushdown automaton has several transitions for a given input
symbol, and so pushdown automata are mainly non-deterministic. If a pushdown
automaton has at most one transition for the same combination of state, input

Stack

Stack head

Finite
Control
Unit

Takes input

Input Tape

Push/pop

Fig. 7.4 Components of pushdown automata

7.3 Pushdown Automata 125

3The use of fR[fegg is to formalize that the PDA can either read a letter from the input, or
proceed leaving the input untouched.

symbol and top of stack symbol it is said to be a deterministic PDA (DPDA). The
set of strings (or language) accepted by a pushdown automaton M is denoted L(M).

The class of languages accepted by pushdown automata is the context free
languages, and every context free grammar can be transformed into an equivalent
non-deterministic pushdown automaton. Chapter 12 has more detailed information
on the classification of languages.

Example (Pushdown Automata)

Construct a non-deterministic pushdown automaton which recognizes the language
{0n1n | n � 0}.

Solution

We construct a pushdown automaton M ¼ ðR;Q;C; d; q0; Z;FÞ where R ¼
0; 1f g;Q ¼ q0; q1; qf

� �
;C ¼ A; Zf g; q0 is the start state; the start stack symbol is

Z and the set of accepting states is given by {qf}:. The transition function (relation)
d is defined by

1. ðq0; 0; ZÞ ! ðq0;AZÞ
2. ðq0; 0;AÞ ! ðq0;AAÞ
3. ðq0; e; ZÞ ! ðq1; ZÞ
4. ðq0; e;AÞ ! ðq1;AÞ
5. ðq1; 1;AÞ ! ðq1; eÞ
6. ðq1; e; ZÞ ! ðqf ; ZÞ

The transition function (Fig. 7.6) essentially says that whenever the value 0
occurs in state q0 then A is pushed onto the stack. Parts (3) and (4) of the transition
function essentially state that the automaton may move from state q0 to state q1 at
any moment. Part (5) states when the input symbol is 1 in state q1 then one symbol
A is popped from the stack. Finally, part (6) states the automaton may move from
state q1 to the accepting state qf only when the stack consists of the single stack
symbol Z.

Fig. 7.5 Transition in pushdown automata

126 7 Automata Theory

For example, it is easy to see that the string 0011 is accepted by the automaton,
and the sequence of transitions is given by

ðq0; 0011; ZÞ ðq0; 011;AZÞ ðq0; 11;AAZÞ ðq1; 11;AAZÞ ðq1; 1;AZÞ ðq1; e; ZÞ ðqf ; ZÞ:

7.4 Turing Machines

Turing introduced the theoretical Turing Machine in 1936, and this abstract
mathematical machine consists of a head and a potentially infinite tape that is
divided into frames. Each frame may be either blank or printed with a symbol from
a finite alphabet of symbols. The input tape may initially be blank or have a finite
number of frames containing symbols. At any step, the head can read the contents
of a frame; the head may erase a symbol on the tape, leave it unchanged or replace it
with another symbol. It may then move one position to the right, one position to the
left or not at all. If the frame is blank, the head can either leave the frame blank or
print one of the symbols (Fig. 7.7).

Turing believed that a human with finite equipment and with an unlimited
supply of paper to write on could do every calculation. The unlimited supply of
paper is formalized in the Turing machine by a paper tape marked off in squares,
and the tape is potentially infinite in both directions. The tape may be used for
intermediate calculations as well as for input and output. The finite number of

Fig. 7.6 Transition function for pushdown automata M

Tape Head (move left or right)

Control
Unit

Potentially Infinite Tape

Transition Function
Finite Set of States

Fig. 7.7 Turing machine

7.3 Pushdown Automata 127

configurations of the Turing machine was intended to represent the finite states of
mind of a human calculator.

The transition function determines for each state and the tape symbol what the
next state to move to and what should be written on the tape, and where to move the
tape head.

Definition 7.2 (Turing Machine) A Turing machine M ¼ ðQ;C; b;R; d; q0;FÞ is a
7-tuple as defined formally in [1] as

• Q is a finite set of states.
• C is a finite set of the tape alphabet/symbols.
• b 2 C is the blank symbol (This is the only symbol that is allowed to occur

infinitely often on the tape during each step of the computation).
• R is the set of input symbols and is a subset of C (i.e. C ¼ R[bf g).
• d : Q� C ! Q� C� L;Rf g4 is the transition function. This is a partial func-

tion where L is left shift and R is right shift.
• q0 2 Q is the initial state.
• F�Q is the set of final or accepting states.

The Turing machine is a simple machine that is equivalent to an actual physical
computer in the sense that it can compute exactly the same set of functions. It is
much easier to analyze and prove things about than a real computer, but it is not
suitable for programming and therefore does not provide a good basis for studying
programming and programming languages.

Figure 7.8 illustrates the behaviour when the machine is in state q1 and the
symbol under the tape head is a, where b is written to the tape and the tape head
moves to the left and the state changes to q2.

A Turing machine is essentially a finite-state machine (FSM) with an unbounded
tape. The tape is potentially infinite and unbounded, whereas real computers have a
large but finite store. The machine may read from and write to the tape. The FSM is
essentially the control unit of the machine, and the tape is essentially the store.
However, the store in a real computer may be extended with backing tapes and
disks, and in a sense may be regarded as unbounded. However, the maximum
amount of tape that may be read or written within n steps is n.

A Turing machine has an associated set of rules that defines its behaviour. Its
actions are defined by the transition function. It may be programmed to solve any
problem for which there is an algorithm. However, if the problem is unsolvable then

Fig. 7.8 Transition on turing machine

128 7 Automata Theory

the machine will either stop or compute forever. The solvability of a problem may
not be determined beforehand. There is, of course, some answer (i.e. either the
machine halts or it computes forever). The applications of the Turing machine to
computability and decidability are discussed in Chap. 13.

Turing also introduced the concept of a Universal Turing Machine, and this
machine is able to simulate any other Turing machine.

7.5 Hybrid Automata

Hybrid systems are digital real-time systems embedded in analog environments
such as a digital embedded control program for an analog plant environment. The
controller state moves discretely between the control modes, and within each
control mode the plant state evolves continuously according to physical laws. That
is, hybrid systems arise whenever continuous and discrete dynamics interact, and
where logic decision-making and embedded control actions are combined with
physical processes.

This has led to the need for mathematical models to combine the dynamics of the
continuous part of the system with the dynamics of the logic and discrete parts of
the system. These models may include some form of differential and difference
equations for the continuous part on the one hand, and to automata or other discrete
event models on the other hand. These models assist the challenge of
multi-disciplinary design, and promote a common understanding of the design
among the multiple groups of people involved. The physics and mechanics of the
system are generally controlled by the logic decision making part (i.e. the logical
device or embedded controller) of the system. Communication becomes more
challenging in larger systems with complicated networks of communication, and
this is another dimension of the design that needs to be considered.

Hybrid automata are a formal model that combine discrete control graphs
(finite-state automata) with continuously evolving variables. A hybrid automaton
exhibits two kinds of state changes: discrete jump transitions and continuous flow
transitions that occur over time. Hybrid systems are often safety critical systems
where reliability is a central concern, such as the correctness of a digital controller
that monitors the temperature of a nuclear reactor. We illustrate the idea of hybrid
automata in the following example.

Example

Consider a simple hybrid system for the regulation of temperature in a house, and in
this simplified description the heating system is assumed to work at maximum
power or switched off completely. That is, the system can operate in two modes
namely ‘off’ or ‘on’, and in each mode q 2 {off, on} the evolution of the tem-
perature T can be described by a differential equation (Fig. 7.9).

7.4 Turing Machines 129

The system has a hybrid state (q, T) with the state q taking the discrete values
‘on’ and ‘off’, and a continuous state T taking Real values. The value of the discrete
state q affects the evolution of the continuous state T, and changes of the discrete
state q are determined from the continuous state T and conditions on T. The edges
in the automaton indicate possible discrete state transitions.

7.6 Review Questions

1. What is a finite-state machine?
2. Explain the difference between a deterministic and non-deterministic

finite-state machine.
3. Show how to convert the non-deterministic finite-state automaton in

Fig. 7.3 to a deterministic automaton.
4. What is a pushdown automaton?
5. What is a Turing machine?
6. Explain what is meant by the language accepted by an automaton.
7. Give an example of a language accepted by a pushdown automaton but

not by a finite-state machine.
8. Describe the applications of the Turing machine to computability and

decidability.
9. What is a hybrid automaton?

Fig. 7.9 Simple hybrid
automaton for temperature
control

130 7 Automata Theory

7.7 Summary 131

7.7 Summary

Automata Theory is concerned with the study of abstract machines and automata.
These include finite-state machines, pushdown automata and Turing machines.
Finite-state machines are abstract machines that may be in one of a finite number of
states. These machines are in only one state at a time (current state), and the state
transition function determines the new state from the current state and the input
symbol. Finite-state machines have limited computational power due to memory
and state constraints, but they have been applied to a number of fields including
communication protocols and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and it is
equivalent to an actual computer in the sense that it can compute exactly the same
set of functions. The Turing machine provides a mathematical abstraction of
computer execution and storage, as well as providing a mathematical definition of
an algorithm.

Hybrid automata combine finite-state automata with continuously evolving
variables, and they are often safety critical systems where reliability is a key
concern.

Reference

1. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages and computation.
Addison-Wesley, Boston

8Matrix Theory

8.1 Introduction

A matrix is a rectangular array of numbers that consists of horizontal rows and
vertical columns. A matrix with m rows and n columns is termed an m � n matrix,
where m and n are its dimensions. A matrix with an equal number of rows and
columns (e.g. n rows and n columns) is termed a square matrix. Figure 8.1 is an
example of a square matrix with four rows and four columns.

The entry in the ith row and the jth column of a matrix A is denoted by A[i, j],
Ai,j, or aij, and the matrix A may be denoted by the formula for its (i, j)th entry: i.e.
(aij) where i ranges from 1 to m and j ranges from 1 to n.

An m � 1 matrix is termed a column vector, and a 1 � n matrix is termed a row
vector. Any row or column of a m � n matrix determines a row or column vector
which is obtained by removing the other rows (respectively columns) from the
matrix. For example, the row vector (11, −5, 5, 3) is obtained from the matrix
example by removing rows 1, 2 and 4 of the matrix.

Two matrices A and B are equal if they are both of the same dimensions, and if
aij = bij for each i = 1, 2, …, m and each j = 1, 2, … n.

Matrices be added or multiplied (provided certain conditions are satisfied). There
are identity matrices under the addition and multiplication binary operations such
that the addition of the (additive) identity matrix to any matrix A yields A and
similarly for the multiplicative identity. Square matrices have inverses (provided
that their determinant is non-zero), and every square matrix satisfies its character-
istic polynomial.

It is possible to consider matrices with infinite rows and columns, and although it
is not possible to write down such matrices explicitly it is still possible to add,
subtract and multiply by a scalar provided there is a well-defined entry in each (i, j)
th element of the matrix.

Matrices are an example of an algebraic structure known as an algebra. Chapter 6
discussed several algebraic structures such as groups, rings, fields and vector spaces.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_8

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_8

The matrix algebra for m � n matrices A, B, C and scalars k, l satisfies the fol-
lowing properties (there are additional multiplicative properties for square matrices).

1. AþB ¼ BþA
2. Aþ BþCð Þ ¼ AþBð ÞþC
3. Aþ 0 ¼ 0þA ¼ A
4. Aþ �Að Þ ¼ �Að ÞþA ¼ 0
5. k AþBð Þ ¼ kAþ kB
6. ðkþ lÞA ¼ kAþ lB
7. kðlAÞ ¼ ðklÞA
8. 1A ¼ A.

Matrices have many applications including their use in graph theory to keep
track of the distance between pairs of vertices in the graph; a rotation matrix may be
employed to represent the rotation of a vector in three-dimensional space. The
product of two matrices represents the composition of two linear transformations,
and matrices may be employed to determine the solution to a set of linear equations.
They also arise in computer graphics and may be employed to project a
three-dimensional image onto a two-dimensional screen. It is essential to employ
efficient algorithms for matrix computation, and this is an active area of research in
the field of numerical analysis.

8.2 Two � Two Matrices

Matrices arose in practice as a means of solving a set of linear equations. One of
the earliest examples of their use is in a Chinese text dating from between 300BC
and 200AD. The Chinese text showed how matrices could be employed to solve
simultaneous equations. Consider the set of equations:

axþ by ¼ r

cxþ dy ¼ s

Fig. 8.1 Example of a 4 � 4 square matrix

134 8 Matrix Theory

Then, the coefficients of the linear equations in x and y above may be represented
by the matrix A, where A is given by

A ¼ a b
c d

� �
:

The linear equations may be represented as the multiplication of the matrix A
and a vector x resulting in a vector v:

Ax ¼ v:

The matrix representation of the linear equations and its solution are as follows:

a b
c d

� �
x
y

� �
¼ r

s

� �
:

The vector x may be calculated by determining the inverse of the matrix A
(provided that its inverse exists). The vector x is then given by

x ¼ A�1v:

The solution to the set of linear equations is then given by

x
y

� �
¼ a b

c d

� ��1
r
s

� �
:

The inverse of a matrix A exists if and only if its determinant is non-zero, and if
this is the case the vector x is given by

x
y

� �
¼ 1

detA
d �b
�c a

� �
r
s

� �
:

The determinant of a 2 � 2 matrix A is given by

det A ¼ ad � cb:

The determinant of a 2 � 2 matrix is denoted by

a b
c d

����
����:

A key property of determinants is that

det ABð Þ ¼ det Að Þ det Bð Þ:

8.2 Two � Two Matrices 135

The transpose of a 2 � 2 matrix A (denoted by AT) involves exchanging rows
and columns, and is given by

AT ¼ a c
b d

� �
:

The inverse of the matrix A (denoted by A−1) is given by

A�1 ¼ 1
detA

d �b
�c a

� �
:

Further, A � A−1 = A−1 � A = I where I is the identity matrix of the algebra of
2 � 2 matrices under multiplication. That is,

AA�1 ¼ A�1A ¼ 1 0
0 1

� �
:

The addition of two 2 � 2 matrices A and B is given by a matrix whose entries
are the addition of the individual components of A and B. The addition of two
matrices is commutative, and we have

AþB ¼ BþA ¼ aþ p bþ 1
cþ r dþ s

� �

where A, B are given by

A ¼ a b
c d

� �
B =

p q
r s

� �
:

The identity matrix under addition is given by the matrix whose entries are all 0,
and it has the property that A + 0 = 0 + A = A.

0 0
0 0

� �
:

The multiplication of two 2 � 2 matrices is given by

AB ¼ apþ br aqþ bs
cpþ dr cqþ ds

� �
:

The multiplication of matrices is not commutative: i.e. AB 6¼ BA. The multi-
plicative identity matrix I has the property that A � I = I � A = A, and it is given by

136 8 Matrix Theory

I ¼ 1 0
0 1

� �
:

A matrix A may be multiplied by a scalar k, and this yields the matrix kA where
each entry in A is multiplied by the scalar k. That is the entries in the matrix kA are
kaij.

8.3 Matrix Operations

More general sets of linear equations may be solved with m � n matrices (i.e. a
matrix with m rows and n columns) or square n � n matrices. In this section, we
consider several matrix operations including addition, subtraction, multiplication of
matrices, scalar multiplication and the transpose of a matrix.

The addition and subtraction of two matrices A, B is meaningful if and only if A
and B have the same dimensions: i.e. they are both m � n matrices. In this case,
A + B is defined by adding the corresponding entries:

AþBð Þij¼ Aij þBij:

The additive identity matrix for the square n � n matrices is denoted by 0, where
0 is a n � n matrix whose entries are zero: i.e. rij = 0 for all i, j where
1 � i � n and 1 � j � n.

The scalar multiplication of a matrix A by a scalar k is meaningful and the
resulting matrix kA is given by

kAð Þij¼ kAij:

The multiplication of two matrices A and B is meaningful if and only if the
number of columns of A is equal to the number of rows of B (Fig. 8.2): i.e. A is an
m � n matrix and B is a n � p matrix and the resulting matrix AB is a
m � p matrix.

Let A = (aij) where i ranges from 1 to m and j ranges from 1 to n, and let
B = (bjl) where j ranges from 1 to n and l ranges from 1 to p. Then, AB is given by
(cil) where i ranges from 1 to m and l ranges from 1 to p with cil given by

cil ¼
Xn
k¼1

aikbkl:

That is, the entry (cil) is given by multiplying the ith row in A by the lth column in
B followed by a summation. Matrix multiplication is not commutative: i.e.
AB 6¼ BA.

8.2 Two � Two Matrices 137

The identity matrix I is a n � n matrix and the entries are given by rij where
rii = 1 and rij = 0 where i 6¼ j (Fig. 8.3). A matrix that has non-zero entries only on
the diagonal is termed a diagonal matrix. A triangular matrix is a square matrix in
which all the entries above or below the main diagonal are zero. A matrix is an
upper triangular matrix if all entries below the main diagonal are zero, and lower
triangular if all of the entries above the main diagonal are zero. Upper triangular
and lower triangular matrices form a subalgebra of the algebra of square matrices.

A key property of the identity matrix is that for all n � n matrices A we have

AI ¼ IA ¼ A

The inverse of a n � n matrix A is a matrix A−1 such that

A A�1 ¼ A�1A ¼ I

The inverse A−1 exists if and only if the determinant of A is non-zero.
The transpose of a matrix A = (aij) involves changing the rows to columns and

vice versa to form the transpose matrix AT. The result of the operation is that the
m � n matrix A is converted to the n � m matrix AT (Fig. 8.4). It is defined by

Fig. 8.3 Identity matrix In

Fig. 8.2 Multiplication of two matrices

138 8 Matrix Theory

AT
� �

ij
¼ Aji

� �
1 � j� n and 1 � i�m:

A matrix is symmetric if it is equal to its transpose: i.e. A = AT.

8.4 Determinants

The determinant is a function defined on square matrices and its value is a scalar.
A key property of determinants is that a matrix is invertible if and only if its
determinant is non-zero. The determinant of a 2 � 2 matrix is given by

a b
c d

����
���� ¼ ad � bc:

The determinant of a 3 � 3 matrix is given by

a b c
d e f
g h i

������
������ ¼ aeiþ bfgþ cdh� afh� bdi� ceg:

Cofactors

Let A be an n � n matrix. For 1 � i, j � n, the (i, j) minor of A is defined to be
the (n − 1) � (n − 1) matrix obtained by deleting the i-th row and j-th column of
A (Fig. 8.5).

Fig. 8.4 Transpose of a matrix

8.3 Matrix Operations 139

The shaded row is the ith row, and the shaded column is the jth column. These
both are deleted from A to form the (i, j) minor of A, and this is a (n − 1) � (n − 1)
matrix.

The (i, j) cofactor of A is defined to be (−1)i+j times the determinant of the
(i, j) minor. The (i, j) cofactor of A is denoted by Ki j(A).

The cofactor matrix Cof A is formed in this way where the (i, j)th element in the
cofactor matrix is the (i, j) cofactor of A.

Definition of Determinant
The determinant of a matrix is defined as

detA ¼
Xn
j¼1

AijKij:

Another words the determinant of A is determined by taking any row of A and
multiplying each element by the corresponding cofactor and adding the results. The
determinant of the product of two matrices is the product of their determinants.

det ABð Þ ¼ det A� det B:

Definition

The adjugate of A is the n � n matrix Adj(A) whose (i, j) entry is the (j, i) cofactor
Kji (A) of A. That is, the adjugate of A is the transpose of the cofactor matrix of A.

Inverse of A

The inverse of A is determined from the determinant of A and the adjugate of A.
That is,

A�1 ¼ 1
detA

AdjA ¼ 1
det A

Cof Að ÞT:

Fig. 8.5 Determining the
(i, j) minor of A

140 8 Matrix Theory

A matrix is invertible if and only if its determinant is non-zero: i.e. A is
invertible if and only if det(A) 6¼ 0.

Cramer’s Rule

Cramer’s rule is a theorem that expresses the solution to a system of linear equa-
tions with several unknowns using the determinant of a matrix. There is a unique
solution if the determinant of the matrix is non-zero.

For a system of linear equations of the Ax = v where x and v are n-dimensional
column vectors, then if det A 6¼ 0 then the unique solution for each xi is

xi ¼ detUi

detA

where Ui is the matrix obtained from A by replacing the ith column in A by the v-
column.

Characteristic Equation

For every n � n matrix A, there is a polynomial equation of degree n satisfied by
A. The characteristic polynomial of A is a polynomial in x of degree n. It is given
by

cA xð Þ ¼ det xI � Að Þ:

Cayley–Hamilton Theorem

Every matrix A satisfies its characteristic polynomial: i.e. p(A) = 0 where p(x) is the
characteristic polynomial of A.

8.5 Eigen Vectors and Values

A number k is an eigenvalue of a n � n matrix A if there is a non-zero vector v such
that the following equation holds:

Av ¼ kv:

The vector v is termed an eigenvector and the equation is equivalent to

ðA� kIÞv ¼ 0:

This means that ðA� kIÞ is a zero divisor and hence it is not an invertible
matrix. Therefore,

detðA� kIÞ ¼ 0:

8.4 Determinants 141

The polynomial function pðkÞ ¼ detðA� kIÞ is called the characteristic poly-
nomial of A, and it is of degree n. The characteristic equation is pðkÞ ¼ 0 and as the
polynomial is of degree n there are at most n roots of the characteristic equation,
and so there at most n eigenvalues.

The Cayley–Hamilton theorem states that every matrix satisfies its characteristic
equation: i.e. the application of the characteristic polynomial to the matrix A yields
the zero matrix.

p Að Þ ¼ 0:

8.6 Gaussian Elimination

Gaussian elimination with backward substitution is an important method used in
solving a set of linear equations. A matrix is used to represent the set of linear
equations, and Gaussian elimination reduces the matrix to a triangular or reduced
form, which may then be solved by backward substitution.

This allows the set of n linear equations (E1 to En) defined below to be solved by
applying operations to the equations to reduce the matrix to triangular form. This
reduced form is easier to solve, and it provides exactly the same solution as the
original set of equations. The set of equations is defined as

E1 : a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1
E2 : a21x1 þ a22x2 þ � � � þ a2nxn ¼ b1
..
. ..

. ..
. ..

. ..
.

En : an1x1 þ an2x2 þ � � � þ annxn ¼ bn

:

Three operations are permitted on the equations, and these operations transform
the linear system into a reduced form. They are

(a) Any equation may be multiplied by a non-zero constant.
(b) An equation Ei may be multiplied by a constant and added to another equation

Ej, with the resulting equation replacing Ej.
(c) Equations Ei and Ej may be transposed with Ej replacing Ei and vice versa.

This method for solving a set of linear equations is best illustrated by an
example, and we consider an example taken from [1]. Then, the solution to a set of
linear equations with four unknowns may be determined as follows:

142 8 Matrix Theory

E1 : x1 þ x2 þ 3x4 ¼ 4

E2 : 2x1 þ x2�x3 þ x4 ¼ 1

E3 : 3x1 � x2�x3 þ 2x4 ¼ �3

E4 : �x1 þ 2x2 þ 3x3 � x4 ¼ 4.

First, the unknown x1 is eliminated from E2, E3 and E4 and this is done by
replacing E2 with E2 − 2E1; replacing E3 with E3 − 3E1; and replacing E4 with
E4 + E1. The resulting system is

E1 : x1 þ x2 þ 3x4 ¼ 4

E2 : �x2�x3 � 5x4 ¼ �7

E3 : �4x2 � x3 � 7x4 ¼ �15

E4 : 3x2 þ 3x3 þ 2x4 ¼ 8.

The next step is then to eliminate x2 from E3 and E4. This is done by replacing E3

with E3 − 4E2 and replacing E4 with E4 + 3E2. The resulting system is now in
triangular form and the unknown variable may be solved easily by backward
substitution. That is, we first use equation E4 to find the solution to x4 and then we
use equation E3 to find the solution to x3. We then use equations E2 and E1 to find
the solutions to x2 and x1.

E1 : x1 þ x2 þ 3x4 ¼ 4

E2 : �x2�x3 � 5x4 ¼ �7

E3 : 3x3 þ 13x4 ¼ 13

E4 : � 13x4 ¼ �13.

The usual approach to Gaussian elimination is to do it with an augmented
matrix. That is, the set of equations is a n � n matrix and it is augmented by the
column vector to form the augmented n � n + 1 matrix. Gaussian elimination is
then applied to the matrix to put it into triangular form, and it is then easy to solve
the unknowns.

The other common approach to solving a set of linear equation is to employ
Cramer’s rule, which was discussed in Sect. 8.4. Finally, another possible (but
computationally expensive) approach to solving the set of linear equations
Ax = v is to compute the determinant and inverse of A, and to then compute
x = A−1v.

8.6 Gaussian Elimination 143

8.7 Business Applications of Matrices

There are many applications of matrices in business and economics, and the field of
linear programming often involves solving systems of linear equations. The orga-
nization structure of many organizations today is matrix orientated rather than the
traditional functional structure with single managerial responsibility for a functional
area in the organization. A matrix organization is one in which there is dual or
multiple managerial accountability and responsibility, and there are generally two
chains of command, with the first being along traditional functional lines and the
second being along project or client Fig. 8.6.

That is, each person in a matrix organization is essentially reporting to two
managers: their line manager for the functional area that they work in, and the
project manager for the project that they are assigned to. The project is a temporary
activity and so this reporting line ceases on project closure, whereas the functional
line is more permanent (subject to the regular changes following company reor-
ganizations as part of continuous improvement).

Another application of matrices in business is that of a decision matrix that
allows an organization to make decisions objectively based on criteria. For
example, the tool evaluation matrix in Table 8.1 lists all of the requirements ver-
tically that the tool is to satisfy, and the candidate tools that are to be evaluated and
rated against each requirement are listed horizontally. Various rating schemes may
be employed, and a simple numeric mechanism is employed in the example. The
tool evaluation criteria are used to rate the effectiveness of each candidate tool, and

Fig. 8.6 Matrix organization

144 8 Matrix Theory

indicate the extent to which the tool satisfies the defined requirements. The chosen
tool in this example is Tool k as it is the most highly rated of the evaluated tools.

There are many applications of matrices in the computing field including in
cryptography, coding theory and graph theory. For more detailed information on
matrix theory see [2].

8.8 Review Questions

1. Show how 2 � 2 matrices may be added and multiplied
2. What is the additive identity for 2 � 2 matrices? The multiplicative

identity?
3. What is the determinant of a 2 � 2 matrix?
4. Show that a 2 � 2 matrix is invertible if its determinant is non-zero
5. Describe general matrix algebra including addition and multiplication,

determining the determinant and inverse of a matrix
6. What is Cramer’s rule?
7. Show how Gaussian elimination may be used to solve a set of linear

equations
8. Write a program to find the inverse of a 3 � 3 and then a (n � n) matrix

8.9 Summary

A matrix is a rectangular array of numbers that consists of horizontal rows and
vertical columns. A matrix with m rows and n columns is termed an m � n matrix,
where m and n are its dimensions. A matrix with an equal number of rows and
columns (e.g. n rows and n columns) is termed a square matrix.

Matrices arose in practice as a means of solving a set of linear equations, and one
of the earliest examples of their use is from a Chinese text dating from between
300BC and 200AD.

Table 8.1 Tool evaluation
matrix

Tool 1 Tool 2 … Tool k

Requirement 1 8 7 9

Requirement 2 4 6 8

…

…

Requirement n 3 6 8

Total 35 38 … 45

8.7 Business Applications of Matrices 145

Matrices of the same dimensions may be added, subtracted and multiplied by a
scalar. Two matrices A and B may be multiplied provided that the number of
columns of A equals the number of rows in B.

Matrices have an identity matrix under addition and multiplication, and a square
matrix has an inverse provided that its determinant is non-zero. The inverse of a
matrix involves determining its determinant, constructing the cofactor matrix and
transposing the cofactor matrix.

The solution to a set of linear equations may be determined by Gaussian
elimination to convert the matrix to upper triangular form, and then employing
backward substitution. Another approach is to use Cramer’s rule.

Eigenvalues and eigenvectors lead to the characteristic polynomial and every
matrix satisfies its characteristic polynomial. The characteristic polynomial is of
degree n, and a square n � n matrix has at most n eigen values.

References

1. Burden RL, Faires JD (1989) Numerical analysis, 4th edn. PWS Kent
2. Schreier O, Sperner E (2013) Introduction to modern algebra and matrix theory, 2nd edn.

Dover Publications

146 8 Matrix Theory

9Graph Theory

9.1 Introduction

Graph theory is a practical branch of mathematics that deals with the arrangements
of certain objects known as vertices (or nodes) and the relationships between them.
It has been applied to practical problems such as the modelling of computer net-
works, determining the shortest driving route between two cities, the link structure
of a website, the travelling salesman problem and the four-colour problem.1

Consider a map of the London underground, which is issued to users of the
underground transport system in London. Then this map does not represent every
feature of the city of London, as it includes only material that is relevant to the users
of the London underground transport system. In this map the exact geographical
location of the stations is unimportant, and the essential information is how the
stations are interconnected to one another, as this allows a passenger to plan a route
from one station to another. That is, the map of the London underground is
essentially a model of the transport system that shows how the stations are
interconnected.

The seven bridges of Königsberg2 (Fig. 9.1) is one of the earliest problems in
graph theory. The city was set on both sides of the Pregel River in the early
eighteenth century, and it consisted of two large islands that were connected to each

1The 4-colour theorem states that given any map it is possible to colour the regions of the map with
no more than four colours such that no two adjacent regions have the same colour. This result was
finally proved in the mid-1970s.
2Königsberg was founded in the thirteenth century by Teutonic knights and was one of the cities of
the Hanseatic League. It was the historical capital of East Prussia (part of Germany), and it was
annexed by Russia at the end of the Second World War. The German population either fled the
advancing Red army or were expelled by the Russians in 1949. The city is now called Kaliningrad.
The famous German philosopher, Immanuel Kant, spent all his life in the city, and is buried there.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_9

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_9

other and the mainland by seven bridges. The problem was to find a walk through
the city that would cross each bridge once and once only.

Euler showed that the problem had no solution, and his analysis helped to lay the
foundations for graph theory as a discipline. This problem in graph theory is con-
cerned with the question as to whether it is possible to travel along the edges of a
graph starting from a vertex and returning to it and travelling along each edge exactly
once. An Euler Path in a graph G is a simple path containing every edge of G.

Euler noted, in effect, that for a walk through a graph traversing each edge
exactly once depends on the degree of the nodes (i.e. the number of edges touching
it). He showed that a necessary and sufficient condition for the walk is that the
graph is connected and has zero or two nodes of odd degree. For the Köningberg
graph, the four nodes (i.e. the land masses) have odd degree (Fig. 9.2).

A graph is a collection of objects that are interconnected in some way. The
objects are typically represented by vertices (or nodes), and the interconnections
between them are represented by edges (or lines). We distinguish between directed
and adirected graphs, where a directed graph is mathematically equivalent to a
binary relation, and an adirected (undirected) graph is equivalent to a symmetric
binary relations.

9.2 Undirected Graphs

An undirected graph (adirected graph) (Fig. 9.3) G is a pair of finite sets (V, E)
such that E is a binary symmetric relation on V. The set of vertices (or nodes) is
denoted by V(G), and the set of edges is denoted by E(G).

Fig. 9.1 Königsberg seven bridges problem

Fig. 9.2 Königsberg graph

148 9 Graph Theory

A directed graph (Fig. 9.4) is a pair of finite sets (V, E) where E is a binary
relation (that may not be symmetric) on V. A directed acylic graph (dag) is a
directed graph that has no cycles. The example below is of a directed graph with
three edges and four vertices.

An edge e 2 E consists of a pair <x, y> where x, y are adjacent nodes in the
graph. The degree of x is the number of nodes that are adjacent to x. The set of
edges is denoted by E(G), and the set of vertices is denoted by V(G).

A weighted graph is a graph G = (V, E) together with a weighting function
w : E ! N, which associates a weight with every edge in the graph. A weighting
function may be employed in modelling computer networks: for example, the
weight of an edge may be applied to model the bandwidth of a telecommunications
link between two nodes. Another application of the weighting function is in
determining the distance (or shortest path) between two nodes in the graph (where
such a path exists).

For an directed graph, the weight of the edge is the same in both directions: i.e.
w vi; vj
� � ¼ w vj; vi

� �
for all edges <vi, vj> in the graph G, whereas the weights may

be different for a directed graph.
Two vertices x, y are adjacent if xy 2 E, and x and y are said to be incident to the

edge xy. A matrix may be employed to represent the adjacency relationship.

Fig. 9.3 Undirected graph

Fig. 9.4 Directed graph

9.2 Undirected Graphs 149

a

b

c

d

•

• •

•

u

g•

v

x
f •

y

w
• e

Example 9.1 Consider the graph G = (V, E) where E = {u = ab, v = cd, w = fg,
x = bg, y = af}.

An adjacency matrix (Fig. 9.5) may be employed to represent the relationship of
adjacency in the graph. Its construction involves listing the vertices in the rows and
columns, and an entry of 1 is made in the table if the two vertices are adjacent and 0
otherwise.

Similarly, we can construct a table describing the incidence of edges and vertices
by constructing an incidence matrix (Fig. 9.6). This matrix lists the vertices and
edges in the rows and columns, and an entry of 1 is made if the vertex is one of the
nodes of the edge and 0 otherwise.

Two graphs G = (V, E) and G′ = (V′, E′) are said to be isomorphic if there exists
a bijection f : V ! V0 such that for any u; v 2 V; uv 2 E; f uð Þf vð Þ 2 E0. The
mapping f is called an isomorphism. Two graphs that are isomorphic are essentially
equivalent apart from a re-labelling of the nodes and edges.

Let G = (V, E) and G′ = (V′, E′) be two graphs then G′ is a subgraph of G if
V0�V and E0�E. Given G = (V, E) and V0�V then we can induce a subgraph G
′ = (V′, E′) by restricting G to V′ (denoted by G|V′|). The set of edges in E′ is
defined as

E0 ¼ fe 2 E : e ¼ uv and u; v 2 V0g:

Fig. 9.5 Adjacency matrix

150 9 Graph Theory

The degree of a vertex v is the number of distinct edges incident to v. It is
denoted by deg v where

deg v ¼ jfe 2 E : e ¼ vx for some x 2 Vgj
¼ jfx 2 V : vx 2 Egj:

A vertex of degree 0 is called an isolated vertex.

Theorem 9.1 Let G = (V, E) be a graph then

Rv2vdeg v ¼ 2 Ej j:
Proof This result is clear since each edge contributes one to each of the vertex
degrees. The formal proof is by induction based on the number of edges in the
graph, and the basis case is for a graph with no edges (i.e. where every vertex is
isolated), and the result is immediate for this case.

The inductive step (strong induction) is to assume that the result is true for all
graphs with k or fewer edges. We then consider a graph G = (V, E) with k + 1 edges.

Choose an edge e = xy 2 E and consider the graph G′ = (V, E′) where E′ = E \
{e}. Then, G′ is a graph with k edges and therefore letting deg′ v represent the
degree of a vertex in G′ we have

Rv2V �0 v ¼ 2 E0j j ¼ 2 Ej j � 1ð Þ ¼ 2 Ej j � 2:

The degree of x and y are one less in G′ than they are in G. That is,

Rv2V� v�2 ¼ Sv2V�0 v ¼ 2 Ej j � 2

)Rv2V� v ¼ 2 Ej j:

A graph G = (V, E) is said to be complete if all the vertices are adjacent: i.e.
E = V � V. A graph G = (V, E) is said to be simple graph if each edge connects
two different vertices, and no two edges connect the same pair of vertices. Simi-
larly, a graph that may have multiple edges between two vertices is termed a
multigraph.

Fig. 9.6 Incidence matrix

9.2 Undirected Graphs 151

A common problem encountered in graph theory is determining whether or not
there is a route from one vertex to another. Often, once a route has been identified
the problem then becomes that of finding the shortest or most efficient route to the
destination vertex. A graph is said to be connected if for any two given vertices v1,
v2 in V there is a path from v1 to v2.

Consider a person walking in a forest from A to B where the person does not
know the way to B. Often, the route taken will involve the person wandering
around aimlessly, and often retracing parts of the route until eventually the desti-
nation B is reached. This is an example of a walk from v1 to vk where there may be
repetition of edges.

If all of the edges of a walk are distinct then it is called a trail. A path v1, v2, …,
vk from vertex v1 to vk is of length k − 1 and consists of the sequence of edges <v1,
v2>, <v2, v3>,…, <vk-1, vk> where each <vi, vi+1> is an edge in E. The vertices in the
path are all distinct apart from possibly v1 and vk. The path is said to be a cycle if
v1 = vk. A graph is said to be acyclic if it contains no cycles.

Theorem 9.2 Let G = (V, E) be a graph and W = v1, v2, …, vk be a walk from v1
to vk. Then there is a path from v1 to vk using only edges of W.
Proof The walk W may be reduced to a path by successively replacing redundant
parts in the walk of the form vi vi+1, …, vj where vi = vj with vi. That is, we
successively remove cycles from the walk and this clearly leads to a path (not
necessarily the shortest path) from v1 to vk.
Theorem 9.3 Let G = (V, E) be a graph and let u, v 2 V with u 6¼ v. Suppose that
there exists two different paths from u to v in G, then G contains a cycle.

Suppose that P = v1, v2, …, vn and Q = w1, w2, …, wm are two distinct paths
from u to v (where u 6¼ v), and u = v1 = w1 and v = vn = wm. Suppose P and Q
are identical for the first k vertices (k could be 1), and then differ (i.e. vk + 1 6¼
wk + 1). Then Q crosses P again at vn = wm, and possibly several times before then.
Suppose the first occurrence is at vi = wj with k < i � n. Then
wk;wkþ 1;wkþ 2; . . .;wjvi�1; vi�2; . . .; vk is a closed path (i.e. a cycle) since the
vertices are all distinct.

If there is a path from v1 to v2 then it is possible to define the distance between v1
and v2. This is defined to be the total length (number of edges) of the shortest path
between v1 and v2.

152 9 Graph Theory

9.2.1 Hamiltonian Paths

A Hamiltonian path3 in a graph G = (V, E) is a path that visits every vertex once
and once only. Another words, the length of a Hamiltonian path is |V| − 1. A graph
is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path
between the two vertices.

Hamiltonian paths are applicable to the travelling salesman problem, where a
salesman4 wishes to travel to k cities in the country without visiting any city more
than once. In principle, this problem may be solved by looking at all of the possible
routes between the various cities, and choosing the route with the minimal distance.

For example, Fig. 9.7 shows five cities and the connections (including distance)
between them. Then, a travelling salesman starting at A would visit the cities in the
order AEDCBA (or in reverse order ABCDEA) covering a total distance of 14.

However, the problem becomes much more difficult to solve as the number of
cities increases, and there is no general algorithm for its solution. For example, for
the case of ten cities, the total number of possible routes is given by 9! = 362,880,
and an exhaustive search by a computer is feasible and the solution may be
determined quite quickly. However, for 20 cities, the total number of routes is given
by 19! = 1.2 � 1017, and in this case it is no longer feasible to do an exhaustive
search by a computer.

There are several sufficient conditions for the existence of a Hamiltonian path,
and Theorem 9.4 describes a condition that is sufficient for its existence.

Theorem 9.4 Let G = (V, E) be a graph with |V| = n and such that deg v + deg
w � n − 1 for all non-adjacent vertices v and w. Then G possesses a Hamiltonian
path.
Proof The first part of the proof involves showing that G is connected, and the
second part involves considering the largest path in G of length k − 1 and assuming
that k < n. A contradiction is then derived and it is deduced that k = n.

We assume that G′ = (V′, E′) and G″ = (V″, E″) are two connected components
of G, then V0j j þ V00j j � n and so if v 2 V′ and w 2 V″ then
n�1� � vþ � w� V0j j � 1þ V00j j � 1 ¼ V0j j þ V00j j � 2� n� 2 which is a con-
tradiction, and so G must be connected.

Let P = v1, v2, …, vk be the largest path in G and suppose k < n. From this a
contradiction is derived, and the details for are in [1].

3These are named after Sir William Rowan Hamilton, a nineteenth-century Irish mathematician
and astronomer, who is famous for discovering quaternions [3].
4We use the term ‘salesman’ to stand for ‘salesman’ or ‘saleswoman’.

9.2 Undirected Graphs 153

9.3 Trees

An acylic graph is termed a forest and a connected forest is termed a tree. A graph G is
a tree if and only if for each pair of vertices in G there exists a unique path in G joining
these vertices. This is since G is connected and acyclic, with the connected property
giving the existence of at least one path and the acylic property giving uniqueness.

A spanning tree T = (V, E′) for the connected graph G = (V, E) is a tree with the
same vertex set V. It is formed from the graph by removing edges from it until it is
acyclic (while ensuring that the graph remains connected).

Theorem 9.5 Let G = (V, E) be a tree and let e 2 E then G′ = (V, E \{e}) is
disconnected and has two components.
Proof Let e = uv then since G is connected and acyclic uv is the unique path from
u to v, and thus G′ is disconnected since there is no path from u to v in G′.

It is thus clear that there are at least two components in G′with u and v in different
components. We show that any other vertex w is connected to u or to v in G′.

Since G is connected there is a path from w to u in G, and if this path does not
use e then it is in G′ as well, and therefore u and w are in the same component of G′.

If it does use e then e is the last edge of the graph since u cannot appear twice in
the path, and so the path is of the form w, …, v, u in G. Therefore, there is a path
from w to v in G′, and so w and v are in the same component in G′. Therefore, there
are only two components in G′.

Theorem 9.6 Any connected graph G = (V, E) possesses a spanning tree.
Proof This result is proved by considering all connected subgraphs of (G = V, E)
and choosing a subgraph T with |E′| as small as possible. The final step is to show
that T is the desired spanning tree, and this involves showing that T is acyclic. The
details of the proof are left to the reader.
Theorem 9.7 Let G = (V, E) be a connected graph, then G is a tree if and only if |
E| = |V| − 1.
Proof This result may be proved by induction on the number of vertices |V| and the
applications of Theorems 9.5 and 9.6.

Fig. 9.7 Travelling salesman problem

154 9 Graph Theory

9.3.1 Binary Trees

A binary tree (Fig. 9.8) is a tree in which each node has at most two child nodes
(termed left and right child nodes). A node with children is termed a parent node,
and the top node of the tree is termed the root node. Any node in the tree can be
reached by starting from the root node, and by repeatedly taking either the left
branch (left child) or right branch (right child) until the node is reached. Binary
trees are used in computing to implement efficient searching algorithms (We gave
an alternative recursive definition of a binary tree in Chap. 4).

The depth of a node is the length of the path (i.e. the number of edges) from the
root to the node. The depth of a tree is the length of the path from the root to the
deepest node in the tree. A balanced binary tree is a binary tree in which the depth
of the two subtrees of any node never differs by more than one. The root of the
binary tree in Fig. 9.8 is A and its depth is 4. The tree is unbalanced and unsorted.

Tree traversal is a systematic way of visiting each node in the tree exactly once,
and we distinguish between breadth first search in which every node on a particular
level is visited before going to a lower level, and depth first search where one starts
at the root and explores as far as possible along each branch before backtracking.
The traversal in depth first search may be in preorder, inorder or postorder.

9.4 Graph Algorithms

Graph algorithms are employed to solve various problems in graph theory including
network cost minimization problems; construction of spanning trees; shortest path
algorithms; longest path algorithms and timetable construction problems.

A length function l : E ! R may be defined on the edges of a connected graph
G = (V, E), and a shortest path from u to v in G is a path P with edge set E′ such
that l(E′) is minimal.

The reader should consult the many texts on graph theory to explore many
well-known graph algorithms such as Dijkstra’s shortest path algorithm and longest
path algorithm (e.g. as described in [1]). Kruskal’s minimal spanning tree algorithm

Fig. 9.8 Binary tree

9.3 Trees 155

and Prim’s minimal spanning tree algorithms are described in [1]. We briefly
discuss graph colouring in the next section, but it is not possible due to space
constraints to describe graph algorithms in more detail in this text.

9.5 Graph Colouring and Four-Colour Problem

It is very common for maps to be coloured in such a way that neighbouring states or
countries are coloured differently. This allows different states or countries to be
easily distinguished as well as the borders between them. The question naturally
arises as to how many colours are needed (or determining the least number of
colours needed) to colour the entire map, as it might be expected that a large
number of colours would be needed to colour a large complicated map.

However, it may come as a surprise that in fact very few colours are required to
colour any map. A former student of the British logician, Augustus De Morgan, had
noticed this in the mid-1800s, and he proposed the conjecture of the four-colour
theorem. There were various attempts to prove that 4 colours were sufficient from
the mid-1800s onwards, and it remained a famous unsolved problem in mathe-
matics until the late twentieth century.

Kempe gave an erroneous proof of the four-colour problem in 1879, but his
attempt led to the proof that five colours are sufficient (which was proved by
Heawod in the late 1800s). Appel and Haken of the University of Illinois finally
provided the proof that 4 colours are sufficient in the mid-1970s (using over 1000 h
of computer time in their proof).

Each map in the plane can be represented by a graph, with each region of the
graph represented by a vertex. Edges connect two vertices if the regions have a
common border. The colouring of a graph is the assignment of a colour to each
vertex of the graph so that no two adjacent vertices in this graph have the same
colour.

Definition

Let G = (V, E) be a graph and let C be a finite set called the colours. Then, a
colouring of G is a mapping j : V ! C such that if uv 2 E then j uð Þ 6¼ j vð Þ.

That is, the colouring of a simple graph is the assignment of a colour to each
vertex of the graph such that if two vertices are adjacent then they are assigned a
different colour. The chromatic number of a graph is the least number of colours
needed for a colouring of the graph. It is denoted by v Gð Þ.

Example 9.2 Show that the chromatic colour of the following graph G (Fig. 9.9) is
3 (this example is adapted from [2]).

156 9 Graph Theory

Solution

The chromatic colour of G must be at least 3 since vertices p, q and r must have
different colours, and so we need to show that 3 colours are in fact sufficient to
colour G. We assign the colours red, blue and green to p, q and r respectively. We
immediately deduce that the colour of s must be red (as adjacent to q and r). From
this, we deduce that t is coloured green (as adjacent to q and s) and u is coloured
blue (as adjacent to s and t). Finally, v must be coloured red (as adjacent to u and t).
This leads to the colouring of the graph G in Fig. 9.10.

Theorem 9.8 (Four-Colour Theorem) The chromatic number of a planar graph G
is less than or equal to 4.

9.6 Review Questions

1. What is a graph and explain the difference between an adirected graph
and a directed graph.

2. Determine the adjacency and incidence matrices of the following graph
where V = {a, b, c, d, e} and E = {ab, bc, ae, cd, bd}.

3. Determine if the two graphs G and G′ defined below are isomorphic.
G = (V, E),V = {a, b, c, d, e, f, g} andE = {ab, ad, ae, bd, ce, cf, dg, fg, bf}.
G′ = (V′, E′), V′ = {a, b, c, d, e, f, g} and E′ = {ab, bc, cd, de, ef, fg, ga,
ac, be}.

4. What is a binary tree? Describe applications of binary trees.

Fig. 9.9 Determining the
chromatic colour of G

Fig. 9.10 Chromatic
colouring of G

9.5 Graph Colouring and Four-Colour Problem 157

5. Describe the travelling salesman problem and its applications.
6. Explain the difference between a walk, trail and path.
7. What is a connected graph?
8. Explain the difference between an incidence matrix and an adjacency

matrix.
9. Complete the details of Theorems 9.6 and 9.7.

10. Describe the four-colour problem and its applications.

9.7 Summary

This chapter provided a brief introduction to graph theory, which is a practical
branch of mathematics that deals with the arrangements of vertices and the edges
between them. It has been applied to practical problems such as the modelling of
computer networks, determining the shortest driving route between two cities and
the travelling salesman problem.

The seven bridges of Königsberg is one of the earliest problems in graph theory,
and it was concerned with the problem was of finding a walk through the city that
would cross each bridge once and once only. Euler showed that the problem had no
solution, and his analysis helped to lay the foundations for graph theory.

An undirected graph G is a pair of finite sets (V, E) such that E is a binary
symmetric relation on V, whereas a directed graph is a binary relation that is not
symmetric. An adjacency matrix is used to represent whether two vertices are
adjacent to each other, whereas an incidence matrix indicates whether a vertex is
part of a particular edge.

A Hamiltonian path in a graph is a path that visits every vertex once and once
only. Hamiltonian paths are applicable to the travelling salesman problem, where a
salesman wishes to travel to k cities in the country without visiting any city more
than once. A tree is a connected and acylic graph, and a binary tree is a tree in
which each node has at most two child nodes.

Graph colouring arose to answer the question as to how many colours are needed
to colour an entire map. It may be expected that many colours would be required,
but the four-colour theorem demonstrates that in fact four colours are sufficient to
colour a planar graph.

158 9 Graph Theory

References

1. Piff M (1991) Discrete mathematics. An introduction for software engineers. Cambridge
University Press

2. Rosen KH (1984/2012) Discrete mathematics and its applications, 7th edn. Mc Graw Hill
3. O’ Regan G (2020) Mathematics in computing, 2nd edn. Springer

References 159

10Cryptography

10.1 Introduction

Cryptography was originally employed to protect communication of private
information between individuals. Today, it consists of mathematical techniques that
provide secrecy in the transmission of messages between computers, and its
objective is to solve security problems such as privacy and authentication over a
communications channel.

It involves enciphering and deciphering messages, and it employs theoretical
results from number theory to convert the original message (or plaintext) into cipher
text that is then transmitted over a secure channel to the intended recipient. The
cipher text is meaningless to anyone other than the intended recipient, and the
recipient uses a key to decrypt the received cipher text and to read the original
message.

The origin of the word “cryptography” is from the Greek ‘kryptos’ meaning
hidden, and ‘graphein’ meaning to write. The field of cryptography is concerned
with techniques by which information may be concealed in cipher texts and made
unintelligible to all but the intended recipient. This ensures the privacy of the
information sent, as any information intercepted will be meaningless to anyone
other than the recipient.

Julius Caesar developed one of the earliest ciphers on his military campaigns in
Gaul. His objective was to communicate important messages safely to his generals.
His solution is one of the simplest and widely known encryption techniques, and it
involves the substitution of each letter in the plaintext (i.e., the original message) by
a letter a fixed number of positions down in the alphabet. The Caesar cipher
involves a shift of 3 positions and this leads to the letter B being replaced by E, the
letter C by F, and so on.

The Caesar cipher (Fig. 10.1) is easily broken, as the frequency distribution of
letters may be employed to determine the mapping. However, the Gaulish tribes
who were mainly illiterate, and it is likely that the cipher provided good security.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_10

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_10

The translation of the Roman letters by the Caesar cipher (with a shift key of 3) can
be seen by the following table.

The process of enciphering a message (i.e., the plaintext) simply involves going
through each letter in the plaintext and writing down the corresponding cipher
letter. The enciphering of the plaintext message “summer solstice” involves the
following:

Plaintext: Summer solstice

Cipher text vxpphu vrovwleh

The process of deciphering a cipher message involves doing the reverse oper-
ation: i.e., for each cipher letter the corresponding plaintext letter is identified from
the table.

Cipher text vxpphu vrovwleh

Plaintext: summer solstice

The encryption may also be represented using modular arithmetic. This involves
using the numbers 0–25 to represent the alphabet letters, and the encryption of a
letter is given by a shift transformation of three (modulo 26). This is simply
addition (modula 26): i.e., the encloding of the plaintext letter x is given by:

xþ 3 mod 26ð Þ ¼ a

Similarly, the decoding of the cipher letter a is given by:

a� 3 mod 26ð Þ ¼ x

The Caesar cipher was still in use up to the early twentienth century. However,
by then frequency analysis techniques were available to break the cipher. The
Vignère cipher uses a Caesar cipher with a different shift at each position in the text.
The value of the shift to be employed with each plaintext letter is defined using a
repeating keyword.

Fig. 10.1 Caesar cipher

162 10 Cryptography

10.2 Breaking the Enigma Codes

The Enigma codes were used by the Germans during the second world war for the
secure transmission of naval messages to their submarines. These messages con-
tained top-secret information on German submarine and naval activities in the
Atlantic, and the threat that they posed to British and Allied shipping.

The codes allowed messages to be passed secretly using encryption, and this
meant that any unauthorised inteception was meaningless to the Allies. The
plaintext (i.e., the original message) was converted by the Enigma machine
(Fig. 10.2) into the encrypted text, and these messages were then transmitted by the
German military to their submarines in the Atlantic, or to their bases throughout
Europe.

The Enigma machine was invented in 1918 and generated a polyalphabetic
substitution cipher which the Germans believed to be unbreakable. A letter was
typed in German into the machine, and electrical impulses through a series of
rotating wheels and wires produced the encrypted letter which was lit up on a panel
above the keyboard. The recipient typed the received message into his machine and
the decrypted message was lit up letter by letter above the keyboard. The rotors and
wires of the machine could be configured in many different ways, and during the
war the cipher settings were changed at least once a day. The odds against anyone
breaking the Enigma machine without knowing the setting were 150 � 1018 to 1.

The British code and cipher school was relocated from London to Bletchley Park
(Fig. 10.3) at the start of the second world war. It was located is in the town of
Bletchley near Milton Keynes (about fifty miles north west of London). It was
commanded by Alistair Dennison and was known as Station X, and several thou-
sands were working there during the second world war. The team at Bletchley Park
broke the Enigma codes, and therefore made vital contributions to the British and
Allied war effort.

Fig. 10.2 The enigma
machine

10.2 Breaking the Enigma Codes 163

Polish cryptanalysts did important work in breaking the Enigma machine in the
early 1930s, and they constructed a replica of the machine. They passed their
knowledge on to the British and gave them the replica just prior to the German
invasion of Poland. The team at Bletchley built upon the Polish work, and the team
included Alan Turing1 (Fig. 10.4) and other mathematicians.

The code-breaking teams worked in various huts in Bletchley park. Hut 6
focused on air force and army cyphers, and hut 8 focused on naval cyphers. The
deciphered messages were then converted into intelligence reports, with air force
and army intelligence reports produced by the team in hut 3, and naval intelligence
reports produced by the team in hut 4. The raw material (i.e., the encrpted mes-
sages) to be deciphered came from wireless intercept stations dotted around Britain,
and from various countries overseas. These stations listened to German radio
messages, and sent them to Bletchley park to be deciphered and analysed.

Turing devised a machine to assist with breaking the codes (an idea that was
originally proposed by the Polish cryptanalysts). This electromechanical machine
was known as the bombe (Fig. 10.5) , and its goal was to find the right settings of

Fig. 10.3 Bletchley park

Fig. 10.4 Alan turing

1Turing made fundamental contributions to computing, including the theoretical Turing machine.

164 10 Cryptography

the Enigma machine for that particular day. The machine greatly reduced the odds
and the time required to determine the settings on the Enigma machine, and it
became the main tool for reading the Enigma traffic during the war. The bombe was
first installed in early 1940 and it weighed over a ton. It was named after a cryp-
tological device designed in 1938 by the Polish cryptologist, Marian Rejewski.

A standard Enigma machine employed a set of rotors, and each rotor could be in
any of 26 positions. The bombe tried each possible rotor position and applied a test.
The test eliminated almost all of the positions and left a smaller number of cases to
be dealt with. The test required the cryptologist to have a suitable “crib”: i.e., a
section of ciphertext for which he could guess the corresponding plaintext.

For each possible setting of the rotors, the bombe employed the crib to perform a
chain of logical deductions. The bombe detected when a contradiction had occurred
and it then ruled out that setting and moved onto the next. Most of the possible
settings would lead to contradictions and could then be discarded. This would leave
only a few settings to be investigated in detail.

The Government Communication Headquarters (GCHQ) was the successor of
Bletchley Park, and it opened after the war. The site at Bletchley park was then used
for training purposes.

The codebreakers who worked at Bletchley Park were required to remain silent
about their achievements until the mid-1970s when the wartime information was
declassified.2 The link between British Intelligence and Bletchley Park came to an
end in the mid-1980s.

It was decided in the mid-1990s to restore Bletchley Park, and today it is run as a
museum by the Bletchley Park Trust.

Fig. 10.5 Replica of bombe

2Gordan Welchman was the head of Hut 6 at Bletchey Park and he published his book ‘The Hut
Six Story’ in 1982 (in the US and UK). However, the security services disapproved of its
publication and his security clearance was revoked. He was forbidden to speak of his book and his
wartime work.

10.2 Breaking the Enigma Codes 165

10.3 Cryptographic Systems

A cryptographic system is a computer system that is concerned with the secure
transmission of messages. The message is encrypted prior to its transmission, which
ensures that any unauthorized interception and viewing of the message is mean-
ingless to anyone other than the intended recipient. The recipient uses a key to
decrypt the cipher text, and to retrieve the original message.

There are essentially two different types of cryptographic systems employed, and
these are public key cryptosystems and secret key cryptosystems. A public key
cryptosystem is an asymmetric cryptosystem where two different keys are
employed: one for encryption and one for decryption. The fact that a person is able
to encrypt a message does not mean that the person is able to decrypt a message.

In a secret key cryptosystem the same key is used for both encryption and
decryption. Anyone who has knowledge on how to encrypt messages has sufficient
knowledge to decrypt messages. The following notation is employed (Table 10.1).

The encryption and decryption algorithms satisfy the following equation:

Ddk Cð Þ ¼ DdkðEek Mð ÞÞ ¼ M

There are two different keys employed in a public key cryptosystem. These are
the encryption key ek and the decryption key dk with ek. 6¼ dk. It is called asym-
metric since the encryption key differs from the decryption key.

There is just one key employed in a secret key cryptosystem, with the same key
ek. is used for both encryption and decryption. It is called symmetric since the
encryption key is the same as the decryption key: i.e., ek. = dk.

10.4 Symmetric Key Systems

A symmetric key cryptosystem (Fig. 10.6) uses the same secret key for encryption
and decryption. The sender and the receiver first need to agree a shared key prior to
communication. This needs to be done over a secure channel to ensure that the

Table. 10.1 Notation in
cryptography

Symbol Description

M Represents the message (plaintext)

C Represents the encrypted message (cipher text)

ek Represents the encryption key

dk Represents the decryption key

E Represents the encryption process

D Represents the decryption process

166 10 Cryptography

shared key remains secret. Once this has been done they can begin to encrypt and
decrypt messages using the secret key. Anyone who is able to encrypt a message
has sufficient information to decrypt the message.

The encryption of a message is in effect a transformation from the space of
messages ℳ to the space of cryptosystems ℂ. That is, the encryption of a message
with key k is an invertible transformation f such that:

f : M !k C

The cipher text is given by C = Ek(M) where M 2 ℳ and C 2 ℂ. The legit-
imate receiver of the message knows the secret key k (as it will have transmitted
previously over a secure channel), and so the cipher text C can be decrypted by the
inverse transformation f−1 defined by:

f�1 : C !k M

Therefore, we have that Dk Cð Þ ¼ Dk Ek Mð Þð Þ ¼ M the original plaintext
message.

There are advantages and disadvantages to symmetric key systems (Table 10.2),
and these include:

Examples of Symmetric Key Systems

(i) Caesar Cipher

The Caesar cipher may be defined using modular arithmetic. It involves a shift of
three places for each letter in the plaintext, and the alphabetic letters are represented
by the numbers 0–25. The encyption is carried out by addition (modula 26). The
encryption of a plaintext letter x to a cipher letter c is given by3:

Fig. 10.6 Symmetric key cryptosystem

3Here x and c are variables rather than the alphabetic characters ‘x’ and ‘c’.

10.4 Symmetric Key Systems 167

c ¼ xþ 3 mod 26ð Þ

Similarly, the decryption of a cipher letter c is given by:

x ¼ c� 3 mod 26ð Þ

(ii) Generalized Caesar Cipher

This is a generalisation of the Caesar cipher to a shift of k (the Caesar cipher
involves a shift of three). This is given by:

fk ¼ Ek xð Þ ¼ xþ k mod 26ð Þ 0� k� 25

f�1
k ¼ Dk cð Þ ¼ c�k mod 26ð Þ 0� k� 25

(iii) Affine Transformation

This is a more general transformation and is defined by:

f a;bð Þ ¼ Eða;bÞ xð Þ ¼ axþ b mod 26ð Þ 0� a; b; x� 25 and gcd a; 26ð Þ ¼ 1

f�1
a;bð Þ ¼ Dða;bÞ cð Þ ¼ a�1 c�bð Þ mod 26ð Þ a�1 is the inverse of amod 26

Table. 10.2 Advantages and disadvantages of symmetric key systems

Advantages Disadvantages

Encryption process is simple (as the same
key is used for encryption and decryption)

A shared key must be agreed between two
parties

It is faster than public key systems Key exchange is difficult as there needs to be a
secure channel between the two parties (to
ensure that the key remains secret)

It uses less computer resources than public
key systems

If a user has n trading partners then n secret
keys must be maintained (one for each partner)

It uses a different key for communication
with every different party

There are problems with the management and
security of all of these keys (due to volume of
keys that need to be maintained)

Authenticity of origin or receipt cannot be
proved (as key is shared)

168 10 Cryptography

(iv) Block Ciphers

Stream ciphers encrypt a single letter at a time and are easy to break. Block
ciphers offer greater security, and the plaintext is split into groups of letters, and the
encryption is performed on the block of letters rather than on a single letter.

The message is split into blocks of n-letters: M1, M2, … Mk where each Mi

(1 � i � k) is a block n letters. The letters in the message are translated into their
numerical equivalents, and the cipher text formed as follows:

Ci � AMi þB modNð Þ i ¼ 1; 2; . . .k

where (A, B) is the key, A is an invertible n � n matrix with gcd(det(A), N) = 1,4

Mi = (m1, m2, … mn)
T, B = (b1, b2, … bn)

T, Ci = (c1, c2, …, cn)
T.

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
.
.
an1 an2 an3 . . . ann

0
BBBBBB@

1
CCCCCCA

m1

m2

m3

. . .

. . .
mn

0
BBBBBB@

1
CCCCCCA

þ

b1
b2
b3
. . .
. . .
bn

0
BBBBBB@

1
CCCCCCA

¼

c1
c2
c3
. . .
. . .
cn

0
BBBBBB@

1
CCCCCCA

The decryption is performed by:

Mi � A�1 Ci � Bð Þ modNð Þ i ¼ 1; 2; . . .k

m1

m2

m3

. . .

. . .
mn

0
BBBBBB@

1
CCCCCCA

¼

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
.
.
an1 an2 an3 . . . ann

0
BBBBBB@

1
CCCCCCA

�1 c1 � b1
c2 � b2
c3 � b3
. . .
. . .
cn � bn

0
BBBBBB@

1
CCCCCCA

(v) Exponential Ciphers

Pohlig and Hellman [1] invented the exponential cipher in 1976. This cipher is
less vulnerable to frequency analysis than block ciphers.

Let p be a prime number and let M be the numerical representation of the
plaintext, with each letter of the plaintext replaced with its two-digit representation
(00–25). That is, A = 00, B = 01, …., Z = 25.

4This requirement is to ensure that the matrix A is invertible.

10.4 Symmetric Key Systems 169

M is divided into blocks Mi (these are equal size blocks of m letters where the
block size is approximately the same number of digits as p). The number of letters
m per block is chosen such that:

2525. . .::25|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m times

\p\ 2525. . .::25|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mþ 1 times

For example, for the prime 8191 a block size of m = 2 letters (4 digits) is chosen
since:

2525\8191\252525

The secret encryption key is chosen to be an integer k such that 0 < k < p and
gcd(k, p – 1) = 1. Then the encryption of the block Mi is defined by:

Ci ¼ EkðMiÞ � Mk
i mod pð Þ

The cipher text Ci is an integer such that 0 � Ci < p.
The decryption of Ci involves first determining the inverse k−1 of the key k (mod

p – 1), i.e., we determine k−1 such that k k−1 � 1 (mod p – 1). The secret key k was
chosen so that (k, p – 1) = 1, and this means that there are integers d and n such that
kd ¼ 1þ n p� 1ð Þ, and so k−1 is d and kk�1 ¼ 1þ n p� 1ð Þ. Therefore,

Dk�1ðCiÞ � Ck�1

i � ðMk
i Þk

�1 � M1þ n p�1ð Þ
i � Mi mod pð Þ

The fact that M1þ nðp�1Þ
i � Mi (mod p) follows from Euler’s Theorem and

Fermat’s Little Theorem (Theorem 3.7 and 3.8), which were discussed in Chap. 3.
Euler’s Theorem states that for two positive integers a and n with gcd(a, n) = 1 that
a/ nð Þ � 1 (mod n).

Clearly, for a prime p we have that / pð Þ ¼ p� 1. This allows us to deduce that:

M1þ nðp�1Þ
i � M1

iM
nðp�1Þ
i � Mi Mðp�1Þ

i

� �n
� Mi 1ð Þn� Mi mod pð Þ

(vi) Data Encryption Standard (DES)

DES is a popular cryptographic system [2] used by governments and private
companies around the world. It is based on a symmetric key algorithm and uses a
shared secret key that is known only to the sender and receiver. It was designed by
IBM and approved by the National Bureau of Standards (NBS5) in 1976. It is a
block cipher and a message is split into 64-bit message blocks. The algorithm is
employed in reverse to decrypt each cipher text block.

5The NBS is now known as the National Institute of Standards and Technology (NIST).

170 10 Cryptography

Today, DES is considered to be insecure for many applications as its key size
(56 bits) is viewed as being too small, and the cipher has been broken in less than
24 h. This has led to it being withdrawn as a standard and replaced by the
Advanced Encryption Standard (AES), which uses a larger key of 128 bits or 256
bits.

The DES algorithm uses the same secret 56-bit key for encryption and
decryption. The key consists of 56 bits taken from a 64-bit key that includes 8
parity bits. The parity bits are at position 8, 16, …, 64, and so every 8th bit of the
64-bit key is discarded leaving behind only the 56-bit key.

The algorithm is then applied to each 64-bit message block and the plaintext
message block is converted into a 64-bit cipher text block. An initial permutation is
first applied to M to create M’, and M’ is divided into a 32-bit left half L0 and a
32-bit right half R0. There are then 16 iterations, with the iterations having a left half
and a right half:

Li ¼ Ri�1

Ri ¼ Li�1 � f Ri�1;Kið Þ

The function f is a function that takes a 32 bit right half and a 48 bit round key Ki

(each Ki contains a different subset of the 56-bit key) and produces a 32-bit output.
Finally, the pre-cipher text (R16, L16) is permuted to yield the final cipher text C.
The function f operates on half a message block (Table 10.3) and involves:

The decryption of the cipher text is similar to the encryption and it involves running
the algorithm in reverse. DES has been implemented on a microchip. However, it has
been superseded in recent years by AES due to security concerns with its small 56 bit
key size. The AES uses a key size of 128 bits or 256 bits.

10.5 Public Key Systems

A public key cryptosystem (Fig. 10.7) is an asymmetric key system where there is a
separate key ek for encryption and dk decryption with ek. 6¼ dk. Martin Hellman and
Whitfield Diffie invented it in 1976. The fact that a person is able to encrypt a

Table. 10.3 DES encryption

Step Description

1 Expansion of the 32-bit half block to 48 bits (by duplicating half of the bits)

2 The 48-bit result is combined with a 48 bit subkey of the secret key using an XOR
operation

3 The 48-bit result is broken in to 8*6 bits and passed through 8 substitution boxes to
yield 8*4 = 32 bits
(This is the core part of the encryption algorithm)

4 The 32-bit output is re-arranged according to a fixed permutation

10.4 Symmetric Key Systems 171

message does not mean that the person has sufficient information to decrypt mes-
sages. The public key cryptosystem is based on the following (Table 10.4):

The advantages and disadvantages of public key cryptosystems include
(Table 10.5).

The implementation of public-key cryptosystems is based on trapdoor one-way
functions. A function f : X ! Y is a trapdoor one way function if.

– f is easy to compute
– f−1 is difficult to compute
– f−1 is easy to compute if a trapdoor (secret information associated with the

function) becomes available.

A function satisfying just the first two conditions above is termed a one-way
function.

Examples of Trapdoor and One-way Functions

(i) The function f : pq ! n (where p and q are primes) is a one way function
since it is easy to compute. However, the inverse function f−1 is difficult to

Fig. 10.7 Public key cryptosystem

Table. 10.4 Public key encryption system

Item Description

1 It uses the concept of a key pair (ek, dk)

2 One half of the pair can encrypt messages and the other half can decrypt messages

3 One key is private and one key is public

4 The private key is kept secret and the public key is published (but associated with the
trading partner)

5 The key pair is associated with exactly one trading partner

172 10 Cryptography

compute problem for large n since there is no efficient algorithm to factorize
a large integer into its prime factors (integer factorization problem).

(ii) The function fg;N : x ! gx (mod N) is a one way function since it is easy to
compute. However, the inverse function f−1 is difficult to compute as there is
no efficient method to determine x from the knowledge of gx (mod N) and
g and N (the discrete logarithm problem).

(iii) The function fk;N : x ! xk modNð Þ (where N = pq and p and q are primes)
and kk’′ � 1 (mod N) is a trapdoor function. It is easy to compute but the
inverse of f (the kth root modulo N) is difficult to compute. However, if the
trapdoor k’ is given then f can easily be inverted as (xk)k’ � x (mod N)

.

10.5.1 RSA Public Key Cryptosystem

Rivest, Shamir and Adleman proposed a practical public key cryptosystem
(RSA) based on primality testing and integer factorization in the late 1970s.
The RSA algorithm was filed as a patent (Patent No. 4,405, 829) at the U.S. Patent
Office in December 1977. The RSA public key cryptosystem is based on the
following assumptions:

– It is straightforward to find two large prime numbers.
– The integer factorization problem is infeasible for large numbers.

Table. 10.5 Advantages and disadvantages of public key cryptosystems

Advantages Disadvantages

Only the private key needs to be kept secret Public keys must be authenticated

The distribution of keys for encryption is convenient,
as everyone publishes their public key and the
private key is kept private

It is slow and uses more computer
resources

It provides message authentication as it allows the
use of digital signatures (which enables the recipient
to verify that the message is really from the particular
sender)

Security Compromise is possible (if
private key is compromised)

The sender encodes with the private key that is
known only to sender. The receiver decodes with the
public key and therefore knows that the message is
from the sender

Loss of private key may be irreparable
(unable to decrypt messages)

Detection of tampering (digital signatures enable the
receiver to detect whether message was altered in
transit)

Provides for non-repudiation

10.5 Public Key Systems 173

The algorithm is based on mod-n arithmetic where n is a product of two large
prime numbers.

The encryption of a plaintext message M to produce the cipher text C is given
by:

C � Me mod nð Þ

where e is the public encryption key,M is the plaintext, C is the cipher text, and n is
the product of two large primes p and q. Both e and n are made public, and e is
chosen such that 1\e\/ nð Þ, where / nð Þ is the number of positive integers that
are relatively prime to n.

The cipher text C is decrypted by

M � Cd mod nð Þ

where d is the private decryption key that is known only to the receiver, and ed � 1
(mod/ nð Þ) and d and / nð Þ are kept private.

The calculation of / nð Þ is easy if both p and q are known, as it is given by
/ nð Þ ¼ p� 1ð Þ q� 1ð Þ. However, its calculation for large n is infeasible if p and
q are unknown.

ed � 1 mod/ nð Þð Þ
) ed ¼ 1þ k/ nð Þ for some k 2 Z

We discussed Euler’Theorem in Chap. 3, and this result states that if a and n are
positive integers with gcd(a,n) = 1 then a/ nð Þ � 1 mod nð Þ. Therefore, M/ nð Þ �
1 mod nð Þ and Mk/ nð Þ � 1 mod nð Þ. The decryption of the cipher text is given by:

Cd mod nð Þ � Med mod nð Þ
� M1þ k/ nð Þ mod nð Þ
� M1Mk/ nð Þ mod nð Þ
� M:1 mod nð Þ
� M mod nð Þ

10.5.2 Digital Signatures

The RSA public-key cryptography may also be employed to obtain digital signa-
tures. Suppose A wishes to send a secure message to B as well as a digital signature.
This involves signature generation using the private key, and signature verification
using the public key. The steps involved are: (Table 10.6):

174 10 Cryptography

The National Institute of Standards and Technology (NIST) proposed an algo-
rithm for digital signatures in 1991. The algorithm is known as the Digital Signature
Algorithm (DSA) and later became the Digital Signature Standard (DSS).

10.6 Review Questions

1. Discuss the early ciphers developed by Julius Caesar and Augustus. How
effective were they at that period in history, and what are their weaknesses
today?

2. Describe how the team at Bletchley Park cracked the German Enigma
codes.

3. Explain the differences between a public key cryptosystem and a private
key cryptosystem.

4. What are the advantages and disadvantages of private (symmetric) key
cryptosystems?

5. Describe the various types of symmetric key systems.
6. What are the advantages and disadvantages of public key cryptosystems?
7. Describe public key cryptosystems including the RSA public key

cryptosystem.
8. Describe how digital signatures may be generated.

10.7 Summary

This chapter provided a brief introduction to cryptography, which is the study of
mathematical techniques that provide secrecy in the transmission of messages
between computers. It was originally employed to protect communication between
individuals, and today it is employed to solve security problems such as privacy and
authentication over a communications channel.

Table. 10.6 Steps for A to
send secure message and
signature to B

Step Description

1 A uses B’s public key to encrypt the message

2 A uses its private key to encrypt its signature

3 A sends the message and signature to B

4 B uses A’s public key to decrypt A’s signature

5 B uses its private key to decrypt A’s message

10.5 Public Key Systems 175

It involves enciphering and deciphering messages, and theoretical results from
number theory are employed to convert the original messages (or plaintext) into
cipher text that is then transmitted over a secure channel to the intended recipient.
The cipher text is meaningless to anyone other than the intended recipient, and the
received cipher text is then decrypted to allow the recipient to read the message.

A public key cryptosystem is an asymmetric cryptosystem. It has two different
encryption and decryption keys, and the fact that a person has knowledge on how to
encrypt messages does not mean that the person has sufficient information to
decrypt messages.

In a secret key cryptosystem the same key is used for both encryption and
decryption. Anyone who has knowledge on how to encrypt messages has sufficient
knowledge to decrypt messages, and it is essential that the key is kept secret
between the two parties.

References

1. Pohlig S, Hellman M (1978) An improved algorithm for computing algorithms over GF(p) and
its cryptographic significance. IEEE Trans Inf Theory (24):106–110

2. Data Encryption Standard (1997) FIPS-Pub 46. National Bureau of Standards. U.S.
Department of Commerce

176 10 Cryptography

11Coding Theory

11.1 Introduction

Coding theory is a practical branch of mathematics concerned with the reliable
transmission of information over communication channels. It allows errors to be
detected and corrected, which is essential when messages are transmitted through a
noisy communication channel. The channel could be a telephone line, radio link or
satellite link, and coding theory is applicable to mobile communications, and
satellite communications. It is also applicable to storing information on storage
systems such as the compact disc.

It includes theory and practical algorithms for error detection and correction, and
it plays an important role in modern communication systems that require reliable
and efficient transmission of information.

An error correcting code encodes the data by adding a certain amount of
redundancy to the message. This enables the original message to be recovered if a
small number of errors have occurred. The extra symbols added are also subject to
errors, as accurate transmission cannot be guaranteed in a noisy channel.

The basic structure of a digital communication system is shown in Fig. 11.1. It
includes transmission tasks such as source encoding, channel encoding and mod-
ulation; and receiving tasks such as demodulation, channel decoding and source
decoding.

The modulator generates the signal that is used to transmit the sequence of
symbols b across the channel. The transmitted signal may be altered due to the fact
that there is noise in the channel, and the signal received is demodulated to yield the
sequence of received symbols r.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_11

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_11

The received symbol sequence r may differ from the transmitted symbol
sequence b due to the noise in the channel, and therefore a channel code is
employed to enable errors to be detected and corrected. The channel encoder
introduces redundancy into the information sequence u, and the channel decoder
uses the redundancy for error detection and correction. This enables the transmitted
symbol sequence û to be estimated.

Shannon [1] showed that it is theoretically possible to produce an information
transmission system with an error probability as small as required provided that the
information rate is smaller than the channel capacity.

Coding theory uses several results from pure mathematics, and so first we briefly
discuss the mathematical foundations of coding theory.

11.2 Mathematical Foundations

Coding theory is built from the results of modern algebra, and it uses abstract
algebraic structures such as groups, rings, fields and vector spaces. These abstract
structures provide a solid foundation for the discipline, and the main structures used
include vector spaces and fields. A group is a non-empty set with a single binary
operation, whereas rings and fields are algebraic structures with two binary oper-
ations satisfying various laws. A vector space consists of vectors over a field.

We discussed these abstract mathematical structures in Chap. 6, and presented
examples of each structure. The representation of codewords is by n-dimensional
vectors over the finite field Fq. A codeword vector v is represented as the n-tuple:

v ¼ a0; a1; . . .: an�1ð Þ

where each ai 2 Fq. The set of all n-dimensional vectors is the n-dimensional
vector space Fn

q with qn elements. The addition of two vectors v and w, where
v = (a0, a1, …. an−1) and w = (b0, b1, …. bn−1) is given by

vþw ¼ a0 þ b0; a1 þ b1; . . .: an�1 þ bn�1ð Þ:

Fig. 11.1 Basic digital communication

178 11 Coding Theory

The scalar multiplication of a vector v = (a0, a1,…. an−1) 2 Fn
q by a scalar

b 2 Fq is given by

bv ¼ ðba0; ba1; . . .: ban�1Þ:

The set Fn
q is called the vector space over the finite field Fq if the vector space

properties above hold. A finite set of vectors v1, v2, … vk is said to be linearly
independent if

b1v1 þ b2v2 þ � � � þ bkvk ¼ 0) b1 ¼ b2 ¼ � � � bk ¼ 0:

Otherwise, the set of vectors v1, v2, … vk is said to be linearly dependent.
The dimension (dim W) of a subspace W�V is k if there are k linearly inde-

pendent vectors in W but every k + 1 vectors are linearly dependent. A subset of a
vector space is a basis for V if it consists of linearly independent vectors, and its
linear span is V (i.e. the basis generates V). We shall employ the basis of the vector
space of codewords to create the generator matrix to simplify the encoding of the
information words. The linear span of a set of vectors v1,v2,…,vkis defined as
b1v1 þ b2v2 þ � � � þ bkvk.

11.3 Simple Channel Code

This section presents a simple example to illustrate the concept of an error cor-
recting code. The example code presented is able to correct a single transmitted
error only.

We consider the transmission of binary information over a noisy channel that
leads to differences between the transmitted sequence and the received sequence.
The differences between the transmitted and received sequence are illustrated by
underlining the relevant digits in the example.

Sent 00101110

Received 00000110

Initially, it is assumed that the transmission is done without channel codes as
follows:

00101110 �!Channel
00000110

Next, the use of an encoder is considered and a triple repetition-encoding scheme
is employed. That is, the binary symbol 0 is represented by the code word 000, and
the binary symbol 1 is represented by the code word 111.

00101110 ! Encoder ! 000000111000111111111000

11.2 Mathematical Foundations 179

Another words, if the symbol 0 is to be transmitted then the encoder emits the
codeword 000, and similarly the encoder emits 111 if the symbol 1 is to be
transmitted. Assuming that on average one symbol in four is incorrectly transmit-
ted, then transmission with binary triple repetition may result in a received sequence
such as

000000111000111111111000 ! Channel ! 010000011010111010111010

The decoder tries to estimate the original sequence by using a majority decision
on each 3-bit word. Any 3-bit word that contains more zeros than ones is decoded
to 0, and similarly if it contains more ones than zero it is decoded to 1. The
decoding algorithm yields

010000011010111010111010 ! Decoder ! 00101010

In this example, the binary triple repetition code is able to correct a single error
within a code word (as the majority decision is two to one). This helps to reduce the
number of errors transmitted compared to unprotected transmission. In the first case
where an encoder is not employed there are two errors, whereas there is just one
error when the encoder is used.

However, there are disadvantages with this approach in that the transmission
bandwidth has been significantly reduced. It now takes three times as long to
transmit an information symbol with the triple replication code than with standard
transmission. Therefore, it is desirable to find more efficient coding schemes.

11.4 Block Codes

There were two code words employed in the simple example above: namely 000
and 111. This is an example of a (n, k) code where the code words are of length
n = 3, and the information words are of length k = 1 (as we were just encoding a
single symbol 0 or 1). This is an example of a (3, 1) block code, and the objective of
this section is to generalize the simple coding scheme to more efficient and pow-
erful channel codes.

The fundamentals of the q-nary (n, k) block codes (where q is the number of
elements in the finite field Fq) involve converting an information block of length
k to a codeword of length n. Consider an information sequence u0, u1, u2,……… of
discrete information symbols where ui 2 {0, 1,… q − 1} = Fq. The normal class of
channel codes is when we are dealing with binary codes: i.e. q = 2. The information
sequence is then grouped into blocks of length k as follows:

u0u1u2. . .uk�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} ukukþ 1ukþ 2. . .u2k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} u2ku2kþ 1u2kþ 2. . .u3k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} � � � � � �

180 11 Coding Theory

Each block is of length k (i.e. the information words are of length k), and it is
then encoded separately into codewords of length n. For example, the block ukuk
+1uk+2 … u2k−1.

is encoded to the code word bnbn+1bn+2 … b2n−1.
of length n where bi 2 Fq. Similarly, the information word u0u1u2 … uk−1 is

uniquely mapped to a code word b0b1b2 …bn-1 of length n as follows.

u0u1u2. . .uk�1ð Þ ! Encoder ! b0b1b2. . .bn�1ð Þ:

These code words are then transmitted across the communication channel and
the received words are then decoded. The received word r = (r0r1r2 … rn−1) is
decoded into the information word û ¼ ðû0û1û2. . .ûk�1Þ.

r0r1r2. . .rn�1ð Þ ! Decoder ! ðû0û1û2. . .ûk�1Þ:

Strictly speaking the decoding is done in two steps with the received n-block
word r first decoded to the n-block codeword b*. This is then decoded into the k-
block information word û. The encoding, transmission and decoding of an (n, k)
block may be summarized as follows (Fig. 11.2):

A lookup table may be employed for the encoding to determine the code word
b for each information word u. However, the size of the table grows exponentially
with increasing information word length k, and so this is inefficient due to the large
memory size required. We shall discuss later how a generator matrix provides an
efficient encoding and decoding mechanism.

Notes

(i) The codeword is of length n.
(ii) The information word is of length k.
(iii) The codeword length n is larger than the information word length k.
(iv) A block (n, k) code is a code in which all codewords are of length n and all

information words are of length k.
(v) The number of possible information words is given by M = qk (where each

information symbol can take one of q possible values and the length of the
information word is k).

Fig. 11.2 Encoding and decoding of an (n, k) block

11.4 Block Codes 181

(vi) The code rate R in which information is transmitted across the channel is
given by

R ¼ k

n
:

(vii) The weight of a codeword is b = (b0b1b2 … bn�1) is given by the number of
non-zero components of b. That is,

wt bð Þ ¼ jfi : bi 6¼ 0; 0� i\ngj:

(viii) The distance between two codewords b = (b0b1b2 … bn-1) and b′ = (b0′b1′
b2′ …bn�1′) measures how close the codewords b and b’ are to each other. It
is given by the Hamming distance:

dist b; b0ð Þ ¼ jfi : bi 6¼ b0i; 0� i\ngj:

(ix) The minimum Hamming distance for a code B consisting of M codewords
b1, ….., bM is given by

d ¼ minfdist b; b0ð Þ : where b 6¼ b0g:

(x) The (n, k) block code B = {b1, …., bM} with M (= qk) codewords of length
n and minimum Hamming distance d is denoted by B(n, k, d).

11.4.1 Error Detection and Correction

The minimum Hamming distance offers a way to assess the error detection and
correction capability of a channel code. Consider two codewords b and b′ of an (n,
k) block code B(n, k, d).

Then, the distance between these two codewords is greater than or equal to the
minimum Hamming distance d, and so errors can be detected as long as the erro-
neously received word is not equal to a codeword different from the transmitted
code word.

That is, the error detection capability is guaranteed as long as the number of
errors is less than the minimum Hamming distance d, and so the number of
detectable errors is d – 1.

182 11 Coding Theory

Any two codewords are of distance at least d and so if the number of errors is
less than d/2 then the received word can be properly decoded to the codeword b.
That is, the error correction capability is given by:

Ecor ¼ d � 1
2

:

An error correcting sphere (Fig. 11.3) may be employed to illustrate the error
correction of a received word to the correct codeword b. This may be done when all
received words are within the error correcting sphere with radius p (< d/2).

If the received word r is different from b in less than d/2 positions, then it is
decoded to b as it is more thand/2 positions from the next closest codeword. That is,
b is the closest codeword to the received word r (provided that the error-correcting
radius is less than d/2).

11.5 Linear Block Codes

Linear block codes have nice algebraic properties, and the codewords in a linear
block code are considered to be vectors in the finite vector space Fn

q. The repre-
sentation of codewords by vectors allows the nice algebraic properties of vector
spaces to be used, and this simplifies the encoding of information words as a
generator matrix may be employed to create the codewords.

An (n, k) block code B(n, k, d) with minimum Hamming distance d over the
finite field Fq is called linear if B(n, k, d) is a subspace of the vector space Fn

q of
dimension k. The number of codewords is then given by

M ¼ qk:

The rate of information (R) through the channel is given by

R ¼ k

n
:

Fig. 11.3 Error correcting capability sphere

11.4 Block Codes 183

Clearly, since B(n, k, d) is a subspace of Fn
q any linear combination of the

codewords (vectors) will be a codeword. That is, for the codewords b1,b2,…,br we
have that

a1b1 þ a2b2 þ . . .þ arbr 2 B n; k; dð Þ

where a1; a2; . . .; ar 2 Fq and b1,b2,…,br 2 B(n, k, d).
Clearly, the n-dimensional zero row vector (0, 0, …, 0) is always a codeword,

and so (0, 0, …, 0) 2 B(n, k, d). The minimum Hamming distance of a linear block
code B(n, k, d) is equal to the minimum weight of the non-zero codewords: That is,

d ¼ min
8b 6¼b0

dist b; b0ð Þf g ¼ min
8b 6¼0

wt bð Þ:

In summary, an (n, k) linear block code B(n, k, d) is

1. A subspace of Fn
q.

2. The number of codewords is M = qk.
3. The minimum Hamming distance d is the minimum weigh of the non-zero

codewords.

The encoding of a specific k-dimensional information word u = (u0, u1, … uk−1)
to a n-dimensional codeword b = (b0, b1, …, bn−1) may be done efficiently with a
generator matrix. First, a basis {g0, g1, … gk−1} of the k-dimensional subspace
spanned by the linear block code is chosen, and this consists of k linearly inde-
pendent n-dimensional vectors. Each basis element gi (where 0 � i � k − 1) is a
n-dimensional vector:

gi ¼ ðgi;0 ; gi;1 ; . . .: ; gi;n�1 Þ:

The corresponding codeword b = (b0, b1,…., bn−1) is then a linear combination
of the information word with the basis elements. That is,

b ¼ u0g0 þ u1g1 þ � � � þ uk�1gk�1

where each information symbol ui 2 Fq. The generator matrix G is then constructed
from the k linearly independent basis vectors as follows (Fig. 11.4):

The encoding of the k-dimensional information word u to the n-dimensional
codeword b involves matrix multiplication (Fig. 11.5):

This may also be written as

b ¼ uG:

184 11 Coding Theory

Clearly, all M = qk codewords b 2 B(n, k, d) can be generated according to this
rule, and so the matrix G is called the generator matrix. The generator matrix
defines the linear block code B(n, k, d).

There is an equivalent k � n generator matrix for B(n, k, d) defined as

G ¼ Ikj Ak;n�k

where Ik is the k � k identity matrix (Fig. 11.6):
The encoding of the information word u yields the codeword b such that the first

k symbols bi of b are the same as the information symbols ui 0 � i � k.

b ¼ uG ¼ u j u Ak;n�k

� �
:

The remaining m = n – k symbols are generated from uAk,n-k and the last
m symbols are the m parity check symbols. These are attached to the information
vector u for the purpose of error detection and correction.

Fig. 11.4 Generator matrix

Fig. 11.5 Generation of codewords

11.5 Linear Block Codes 185

11.5.1 Parity Check Matrix

The linear block code B(n, k, d) with generator matrix G = (Ik, | Ak,n-k) may be
defined equivalently by the (n − k) � n parity check matrix H, where this matrix is
defined as

H ¼ �AT
k; n�kj In�k

� �
:

The generator matrix G and the parity check matrix H are orthogonal: i.e.

HGT ¼ 0n�k; k:

The parity check orthogonality property holds if and only if the vector belongs to
the linear block code. That is, for each code vector in b 2 B(n, k, d) we have

HbT ¼ 0n�k; ;1

and vice verse whenever the property holds for a vector r, then r is a valid codeword
in B(n, k, d). We present an example of a parity check matrix in Example 11.1
below.

11.5.2 Binary Hamming Code

The Hamming code is a linear code that has been employed in dynamic random
access memory to detect and correct deteriorated data in memory. The generator
matrix for the B(7, 4, 3) binary Hamming code is given by (Fig. 11.7):

The information words are of length k = 4 and the codewords are of length
n = 7. For example, it can be verified by matrix multiplication that the information
word (0, 0, 1, 1) is encoded into the codeword (0, 0, 1, 1, 0, 0, 1).

That is, three parity bits 001 have been added to the information word (0, 0, 1, 1)
to yield the codeword (0, 0, 1, 1, 0, 0, 1).

Fig. 11.6 Identity matrix
(k � k)

186 11 Coding Theory

The minimum Hamming distance is d = 3, and the Hamming code can detect up
to two errors, and it can correct one error.

Example 11.1 (Parity Check Matrix—Hamming Code)
The objective of this example is to construct the Parity Check Matrix of the Binary
Hamming Code (7, 4, 3), and to show an example of the parity check orthogonality
property.
First, we construct the parity check matrix H which is given by H ¼ ð�AT

k;n�kjIn�kÞ
or another words H ¼ ð�AT

4;3jI3Þ. We first note that

A4;3 ¼
0 1 1
1 0 1
1 1 0
1 1 1

0
BB@

1
CCA AT

4;3 ¼
0 1 1 1
1 0 1 1
1 1 0 1

0
@

1
A:

Therefore, H is given by

H ¼
0 �1 �1 �1 1 0 0
�1 0 �1 �1 0 1 0
�1 �1 0 �1 0 0 1

0
@

1
A:

We noted that the encoding of the information word u = (0011) yields the code-
word b = (0,011,001). Therefore, the calculation of HbT yields (recalling that
addition is modulo two):

HbT ¼
0 �1 �1 �1 1 0 0
�1 0 �1 �1 0 1 0
�1 �1 0 �1 0 0 1

0
@

1
A

0
0
1
1
0
0
1

0
BBBBBBBB@

1
CCCCCCCCA

¼
0
0
0

0
@

1
A:

Fig. 11.7 Hamming code B(7, 4, 3) generator matrix

11.5 Linear Block Codes 187

11.5.3 Binary Parity-Check Code

The binary parity-check code is a linear block code over the finite field F2. The code
takes a k-dimensional information word u = (u0, u1, … uk−1) and generates the
codeword b = (b0, b1, …., bk−1, bk) where ui = bi (0 � i � k − 1) and bk is the
parity bit chosen so that the resulting codeword is of even parity. That is,

bk ¼ u0 þ u1 þ � � � þ uk�1 ¼
Xk�1

i¼0

ui:

11.6 Miscellaneous Codes in Use

There are many examples of codes in use such as repetition codes (such as the triple
replication code considered earlier in Sect. 11.3); parity check codes where a parity
symbol is attached such as the binary parity-check code; Hamming codes such as
the (7, 4) code that was discussed in Sect. 11.5.2, and which has been applied for
error correction of faulty memory.

The Reed–Muller codes form a class of error correcting codes that can correct
more than one error. Cyclic codes are special linear block codes with efficient
algebraic decoding algorithms. The BCH codes are an important class of cyclic
codes, and the Reed Solomon codes are an example of a BCH code.

Convolution codes have been applied in the telecommunications field, for
example, in GSM, UMTS and in satellite communications. They belong to the class
of linear codes, but also employ a memory so that the output depends on the current
input symbols and previous input. For more detailed information on coding theory
see [2].

11.7 Review Questions

1. Describe the basic structure of a digital communication system.
2. Describe the mathematical structure known as the field. Give examples of

fields.
3. Describe the mathematical structure known as the ring and give examples

of rings. Give examples of zero divisors in rings.
4. Describe the mathematical structure known as the vector space and give

examples.
5. Explain the terms linear independence and linear dependence and a basis.
6. Describe the encoding and decoding of an (n, k) block code where an

information word of length k is converted to a codeword of length n.

188 11 Coding Theory

7. Show how the minimum Hamming distance may be employed for error
detection and error correction.

8. Describe linear block codes and show how a generator matrix may be
employed to generate the codewords from the information words.

11.8 Summary

Coding theory is the branch of mathematics that is concerned with the reliable
transmission of information over communication channels. It allows errors to be
detected and corrected, and this is extremely useful when messages are transmitted
through a noisy communication channel. This branch of mathematics includes
theory and practical algorithms for error detection and correction.

The theoretical foundations of coding theory were considered, and its founda-
tions lie in abstract algebra including group theory, ring theory, fields and vector
spaces. The codewords are represented by n-dimensional vectors over a finite field
Fq.

An error correcting code encodes the data by adding a certain amount of
redundancy to the message so that the original message can be recovered if a small
number of errors have occurred.

The fundamentals of block codes were discussed where an information word is
of length k and a codeword is of length n. This led to the linear block codes B(n, k,
d) and a discussion on error detection and error correction capabilities of the codes.

The goal of this chapter was to give a flavour of coding theory, and the reader is
referred to more specialised texts (e.g. [2]) for more detailed information.

References

1. Shannon C (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423
2. Neubauer A, Freunderberger J, Kühn V (2007) Coding theory. Algorithms, architectures and

applications. John Wiley & Sons

11.7 Review Questions 189

12Language Theory and Semantics

12.1 Introduction

There are two key parts to any programming language, and these are its syntax and
semantics. The syntax is the grammar of the language and a program needs to be
syntactically correct with respect to its grammar. The semantics of the language is
deeper, and determines the meaning of what has been written by the programmer.

The difference between syntax and semantics may be illustrated by an example
in a natural language. A sentence may be syntactically correct but semantically
meaningless, or a sentence may have semantic meaning but be syntactically
incorrect. For example, consider the sentence:

“I will go to Dublin yesterday”.

Then this sentence is syntactically valid but semantically meaningless. Similarly,
if a speaker utters the sentence “Me Dublin yesterday” we would deduce that the
speaker had visited Dublin the previous day even though the sentence is syntacti-
cally incorrect.

The semantics of a programming language determines what a syntactically valid
program will compute. A programming language is therefore given by

Programming Language ¼ Syntaxþ Semantics

Many programming languages have been developed over the last sixty years
including Plankalkül which was developed by Zuse in the 1940s; Fortran developed
by IBM in the 1950s; Cobol was developed by a committee in the late 1950s; Algol
60 and Algol 68 were developed by an international committee in the 1960s; Pascal
was developed by Wirth in the early 1970s; Ada was developed for the US military
in the late 1970s; the C language was developed by Richie and Thompson at Bell
Labs in the 1970s; C++ was developed by Stroustrup at Bell Labs in the early
1980s and Java developed by Gosling at Sun Microsystems in the mid-1990s.
A short description of a selection of programming languages in use is in [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_12

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_12

A programming language needs to have a well-defined syntax and semantics, and
the compiler preserves the semantics of the language. Compilers are programs that
translate a program that is written in some programming language into another form.
It involves syntax analysis and parsing to check the syntactic validity of the pro-
gram; semantic analysis to determine what the program should do; optimization to
improve the speed and performance; and code generation in some target language.

Alphabets are a fundamental building block in language theory, as words and
language are generated from alphabets. They are discussed in the next section.

12.2 Alphabets and Words

An alphabet is a finite non-empty set A, and the elements of A are called letters. For
example, consider the usual alphabet which is a set A that consists of the letters
from a to z.

Words are finite strings of letters, and a set of words is generated from the alphabet.
For example, the alphabet A = {a, b} generates the following set of words:

e; a; b; aa; ab; bb; ba; aaa; bbb;:f g:

(e denotes the empty word.)
Each non-empty word consists of an ordered list of one or more letters, and the

set of words of length two consists of all ordered lists of two letters. It is given by

A2 ¼ aa; ab; bb; baf g:

Similarly, the set of words of length three is given by

A3 ¼ aaa; aab; abb; aba; baa; bab; bbb; bbaf g:

The set of all words over the alphabet A is given by the positive closure A+, and
it is defined by

Aþ ¼ A[A2 [A3 [. ¼
[/

n¼1

An:

Given any two words w1 = a1a2… ak and w2 = b1b2… br then the concatenation
of w1 and w2 is given by

w ¼ w1w2 ¼ a1a2. . .akb1b2. . .br:

The empty word is a word of length zero and is denoted by e. Clearly, ew ¼
we ¼ w for all w and so e is the identity element under the concatenation operation.

192 12 Language Theory and Semantics

A0 is used to denote the set containing the empty word feg, and the closure
A�ð¼ Aþ [fegÞ denotes the infinite set of all words over A (including empty
words). It is defined as

A� ¼
[/

n¼1

An:

The mathematical structure (A*, ^, e) forms a monoid,1 where ^ is the con-
catenation operator for words and the identity element is e. The length of a word
w is denoted by |w| and the length of the empty word is zero: i.e. jej ¼ 0.

A subset L of A* is termed a formal language over A. Given two languages L1, L2
then the concatenation (or product) of L1 and L2 is defined by

L1L2 ¼ fwjw ¼ w1w2 where w1 2 L1 and w2 2 L2g:

The positive closure of L and the closure of L may also be defined as

Lþ ¼
[/

n¼1

Ln L� ¼
[/

n¼0

Ln:

12.3 Grammars

A formal grammar describes the syntax of a language, and we distinguish between
concrete and abstract syntax. Concrete syntax describes the external appearance of
programs as seen by the programmer, whereas abstract syntax aims to describe the
essential structure of programs rather than the external form. In other words,
abstract syntax aims to give the components of each language structure while
leaving out the representation details (e.g. syntactic sugar). Backus Naur form
(BNF) notation is often used to specify the concrete syntax of a language.
A grammar consists of the following:

– A finite set of terminal symbols;
– A finite set of nonterminal symbols;
– A set of production rules;
– A start symbol.

A formal grammar generates a formal language, which is set of finite length
sequences of symbols created by applying the production rules of the grammar. The
application of a production rule involves replacing symbols at the left-hand side of

1Recall from Chap. 6 that a monoid (M, *, e) is a structure that is closed and associative under the
binary operation ‘*’, and it has an identity element ‘e’.

12.2 Alphabets and Words 193

the rule with the symbols on the right-hand side of the rule. The formal language
then consists of all words consisting of terminal symbols that are reached by a
derivation (i.e. the application of production rules) starting from the start symbol of
the grammar.

A construct that appears on the left-hand side of a production rule is termed a
nonterminal, whereas a construct that only appears on the right-hand side of a
production rule is termed a terminal. The set of nonterminals N is disjoint from the
set of terminals A.

The theory of the syntax of programming languages is well established, and
programming languages have a well-defined grammar that allows syntactically
valid programs to be derived from the grammars.

Chomsky2 (Fig. 12.1) is a famous linguisit who classified a number of different
types of grammar that occur. The Chomsky hierarchy (Table 12.1) consists of four
levels including regular grammars; context free grammars; context sensitive
grammars and unrestricted grammars. The grammars are distinguished by the
production rules, which determine the type of language that is generated.

Regular grammars are used to generate the words that may appear in a pro-
gramming language. This includes the identifiers (e.g. names for variables, func-
tions and procedures); special symbols (e.g. addition, multiplication, etc.) and the
reserved words of the language.

A rewriting system for context free grammars is a finite relation between N and
ðA[NÞ�: i.e. a subset of N � ðA[NÞ�: A production rule <N> ! w is one ele-
ment of this relation, and is an ordered pair (<N> , w) where w is a word consisting
of zero or more terminal and nonterminal letters. This production rule means
that <N> may be replaced by w.

Fig. 12.1 Noah Chomsky.
Creative commons

2Chomsky made important contributions to linguistics and the theory of grammars. He is more
widely known today as a critic of United States foreign policy.

194 12 Language Theory and Semantics

12.3.1 Backus Naur Form

Backus Naur form5 (BNF) provides an elegant means of specifying the syntax of
programming languages. It was originally employed to define the grammar for the
Algol-60 programming language [2], and a variant was used by Wirth to specify the
syntax of the Pascal programming language. BNF is widely used and accepted
today as the way to specify the syntax of programming languages.

BNF specifications essentially describe the external appearance of programs as
seen by the programmer. The grammar of a context free grammar may then be input
into a parser (e.g. Yacc), and the parser is used to determine if a program is
syntactically correct or not.

A BNF specification consists of a set of production rules with each production
rule describing the form of a class of language elements such expressions, state-
ments and so on. A production rule is of the form:

\symbol[::¼ \expressionwith symbols[

Table 12.1 Chomsky hierarchy of grammars

Grammar type Description

Type 0
grammar

Type 0-grammars include all formal grammars. They have production rules
of the form a ! b where a and b are strings of terminals and nonterminals.
They generate all languages that can be recognized by a Turing machine
(discussed in Chap. 7)

Type 1
grammar
(context
sensitive)

These grammars generate the context sensitive languages. They have
production rules of the form aAb ! acb where A is a nonterminal and a, b
and c are strings of terminals and nonterminals. They generate all languages
that can be recognized by a linear bounded automaton3

Type 2
grammar
(context free)

These grammars generate the context free languages. These are defined by
rules of the form A ! c where A is a nonterminal and c is a string of
terminals and nonterminals. These languages are recognized by a pushdown
automaton4 and are used to define the syntax of most programming
languages

Type 3
grammar
(regular
grammars)

These grammars generate the regular languages (or regular expressions).
These are defined by rules of the form A ! a or A ! aB where A and B are
nonterminals and a is a single terminal. A finite state automaton recognizes
these languages (discussed in Chap. 7), and regular expressions are used to
define the lexical structure of programming languages

3A linear bounded automaton is a restricted form of a nondeterministic Turing machine in which a
limited finite portion of the tape (a function of the length of the input) may be accessed.
4A pushdown automaton is a finite automaton that can make use of a stack containing data, and it
is discussed in Chap. 7.
5Backus Naur Form is named after John Backus and Peter Naur. It was created as part of the
design of the Algol 60 programming language, and is used to define the syntax rules of the
language.

12.3 Grammars 195

where <symbol> is a nonterminal, and the expression consists of sequenc of ter-
minal and nonterminal symbols. A construct that has alternate forms appears more
than once, and this is expressed by sequences separated by the vertical bar “|”
(which indicates a choice). In other word, there is more than one possible substi-
tution for the symbol on the left-hand side of the rule. Symbols that never appear on
the left-hand side of a production rule are called terminals.

The following example defines the syntax of various statements in a sample
programming language:

<loop statement> :: = <while loop> | <for loop>

<while loop> :: = while (<condition>) <statement>

<for loop> :: =f or (<expression>) <statement>

<statement > :: = <assignment statement> | <loop statement >

< assignment statement> :: = < variable> : = < expression>

This is a partial definition of the syntax of various statements in the language. It
includes various nonterminals such as (<loop statement> , <while loop> and so
on. The terminals include ‘while’, ‘for’, ‘: = ’, ‘(“ and “)’. The production rules
for <condition> and <expression > are not included.

The grammar of a context free language (e.g. LL(1), LL(k), LR(1), LR(k))
grammar expressed in BNF notation) may be translated by a parser into a parse
table. The parse table may then be employed to determine whether a particular
program is valid with respect to its grammar.

Example 12.1 (Context Free Grammar)
The example considered is that of parenthesis matching in which there are two
terminal symbols and one nonterminal symbol

S ! SS

S ! Sð Þ
S ! ðÞ:

Then by starting with S and applying the rules we can construct

S ! SS ! Sð ÞS ! ððÞÞS ! ððÞÞðÞ:

Example 12.2 (Context Free Grammar)
The example considered is that of expressions in a programming language. The
definition is ambiguous as there is more than one derivation tree for some expres-
sions (e.g. there are two parse trees for the expression 5 � 3 + 1 discussed below).

196 12 Language Theory and Semantics

<expr> ::= <numeral> | (<expr>)

| (<expr> <operator> <expr>)

<operator> ::= + | − | � | /

<digit> ::= 0 | 1 | …. | 9

<numeral>::=<digit> |<digit><numeral>

Example 12.3 (Regular Grammar)
The definition of an identifier in most programming languages is similar to

<identifier> ::= <let> <letdig>

<letdig> ::= <let> | <dig> | e

<letdig> ::= <let> <letdig> | <dig> <letdig>

< let > :: = a | b | c | …. | z.

<dig> ::= 0 | 1 | …. | 9

12.3.2 Parse Trees and Derivations

Let A and N be the terminal and nonterminal alphabet of a rewriting system and
let < X > ! w be a production. Let x be a word in ðA[NÞ� with
x = u < X > v for some words u; v 2 ðA[NÞ�. Then x is said to directly yield uwv
and this is written as x) uwv.

This single substitution ()) can be extended by a finite number of productions
() �), and this gives the set of words that can be obtained from a given word. This
derivation is achieved by applying several production rules (one production rule is
applied at a time) in the grammar.

That is, given x; y 2 ðA[NÞ� then x yields y (or y is a derivation of x) if x = y, or
there exists a sequence of words w1;w2; . . .:wn 2 ðA[NÞ� such that x = w1, y = wn

and wi ! wiþ 1 for 1 � i � n − 1. This is written as x)� y.
The expression grammar presented in Example 12.2 is ambiguous, and this

means that an expression such as 5 � 3 + 1 has more than one interpretation.
(Figs. 12.2, 12.3). It is not clear from the grammar whether multiplication is per-
formed first and then addition, or whether addition is performed first and then
multiplication.

The first parse tree is given in Fig. 12.2, and the interpretation of the first parse
tree is that multiplication is performed first and then addition (this is the normal
interpretation of such expressions in programming languages as multiplication is a
higher precedence operator than addition).

The interpretation of the second parse tree is that addition is performed first and
then multiplication (Fig. 12.3). It may seem a little strange that one expression has

12.3 Grammars 197

two parse trees, and it shows that the grammar is ambiguous. This means that there
is a choice for the compiler in evaluating the expression, and the compiler needs to
assign the right meaning to the expression. One solution would be for the language
designer to alter the definition of the grammar to remove the ambiguity.

12.4 Programming Language Semantics

The formal semantics of a programming language is concerned with defining the
actual meaning of a language. Language semantics is deeper than syntax, and the
theory of the syntax of programming languages is well established. A programmer
writes a program according to the rules of the language. The compiler first checks
the program for synyactic correctness: i.e. it determines whether the program as

Fig. 12.2 Parse tree 5 � 3 + 1 (mltiplication first)

Fig. 12.3 Parse Tree
5 � 3 + 1 (addition first)

198 12 Language Theory and Semantics

written is valid according to the rules of the grammar of the language. If the
program is syntactically correct, then the compiler determines the meaning of what
has been written and generates the corresponding machine code.6

The compiler must preserve the semantics of the language: i.e. the semantics are
not defined by the compiler, but rather the function of the compiler is to preserve
the semantics of the language. Therefore, there is a need to have an unambiguous
definition of the meaning of the language independently of the compiler, and the
meaning is then preserved by the compiler.

A program’s syntax7 gives no information as to the meaning of the program, and
therefore there is a need to supplement the syntactic description of the language
with a formal unambiguous definition of its semantics.

It is possible to utter syntactically correct but semantically meaningless sen-
tences in a natural language. Similarly, it is possible to write syntactically correct
programs that behave in quite a different way from the intention of the programmer.

The formal semantics of a language is given by a mathematical model that
describes the possible computations described by the language. There are three
main approaches to programming language semantics namely axiomatic semantics,
operational semantics and denotational semantics (Table 12.2).

There are several applications of programming language semantics including
language design, program verification, compiler writing and language standard-
ization. The three main approaches to semantics are described in more detail below.

Table 12.2 Programming language semantics

Approach Description

Axiomatic
semantics

This involves giving meaning to phrases of the language using logical
axioms
It employs pre and post condition assertions to specify what happens
when the statement executes. The relationship between the initial
assertion and the final assertion essentially gives the semantics of the code

Operational
semantics

This approach describes how a valid program is interpreted as sequences
of computational steps. These sequences then define the meaning of the
program
An abstract machine (SECD machine) may be defined to give meaning to
phrases, and this is done by describing the transitions they induce on
states of the machine

Denotational
semantics

This approach provides meaning to programs in terms of mathematical
objects such as integers, tuples and functions
Each phrase in the language is translated into a mathematical object that is
the denotation of the phrase

6Of course, what the programmer has written may not be what the programmer had intended.
7There are attribute (or affix) grammars that extend the syntactic description of the language with
supplementary elements covering the semantics. The process of adding semantics to the syntactic
description is termed decoration.

12.4 Programming Language Semantics 199

12.4.1 Axiomatic Semantics

Axiomatic semantics gives meaning to phrases of the language by describing the
logical axioms that apply to them. It was developed by C.A.R. Hoare8 in a famous
paper “An axiomatic basis for computer programming” [3]. His axiomatic theory
consists of syntactic elements, axioms and rules of inference.

The well-formed formulae that are of interest in axiomatic semantics are pre-post
assertion formulae of the form P{a}Q, where a is an instruction in the language and
P and Q are assertions: i.e. properties of the program objects that may be true or false.

An assertion is essentially a predicate that may be true in some states and false in
other states. For example, the assertion (x – y > 5) is true in the state in which the
values of x and y are 7 and 1 respectively, and false in the state where x and y have
values 4 and 2.

The pre and post condition assertions are employed to specify what happens
when the statement executes. The relationship between the initial assertion and the
final assertion gives the semantics of the code statement. The pre and post condition
assertions are of the form:

P af gQ:

The precondition P is a predicate (input assertion), and the postcondition Q is a
predicate (output assertion). The braces separate the assertions from the program
fragment. The well-formed formula P af gQ is itself a predicate that is either true or
false.

This notation expresses the partial correctness9 of a with respect to P and Q, and
its meaning is that if statement a is executed in a state in which the predicate P is
true and execution terminates, then it will result in a state in which assertion Q is
satisfied.

The axiomatic semantics approach is described in more detail in [5], and the
axiomatic semantics of a selection of statements is presented below.

• Skip

The skip statement does nothing and whatever condition is true on entry to the
command is true on exit from the command. It’s meaning is given by

P skipf gP:

8Hoare was influenced by earlier work by Floyd on assigning meanings to programs using
flowcharts [4].
9Total correctness is expressed using {P}a{Q} amd program fragment a is totally correct for
precondition P and postcondition Q if and only if whenever a is executed in any state in which P is
satisfied then execution terminates, and the resulting state satisfies Q.

200 12 Language Theory and Semantics

• Assignment

The meaning of the assignment statement is given by the axiom:

Px
e x :¼ ef gP:

The meaning of the assignment statement is that P will be true after execution of
the assignment statement if and only if the predicate Px

e with the value of x replaced
by e in P is true before execution (since x will contain the value of e after
execution).

The notation Px
e denotes the expression obtained by substituting e for all free

occurrences of x in P.

• Compound

The meaning of the conditional command is

P S1
� �

Q;Q S2
� �

R

PfS1; S2gR :

The compound statement involves the execution of S1 followed by the execution
of S2. The meaning of the compound statement is that R will be true after the
execution of the compound statement S1; S2 provided that P is true, if it is estab-
lished that Q will be true after the execution of S1 provided that P is true, and that
R is true after the execution of S2 provided Q is true.

There needs to be at least one rule associated with every construct in the lan-
guage in order to give its axiomatic semantics. The semantics of other programming
language statements such as the ‘while’ statement and the ‘if’ statement are
described in [5].

12.4.2 Operational Semantics

The operational semantics definition is similar to an interpreter, where the semantics
of a language are expressed by a mechanism that makes it possible to determine the
effect of any program in the language. The meaning of a program is given by the
evaluation history that an interpeter produces when it interprets the program. The
interpreter may be close to an executable programming language or it may be a
mathematical language.

The operational semantics for a programming language describes how a valid
program is interpreted as sequences of computational steps. The evaluation history
then defines the meaning of the program, and this is a sequence of internal inter-
preter configurations.

12.4 Programming Language Semantics 201

One early use of operational semantics was the work done by John McCarthy in
the late 1950s on the semantics of LISP in terms of the lambda calculus. The use of
lambda calculus allows the meaning of a program to be expressed using a math-
ematical interpreter, and this offers precision through the use of mathematics.

The meaning of a program may be given in terms of a hypothetical or virtual
machine that performs the set of actions that corresponds to the program. An
abstract machine (SECD machine10) may be defined to give meaning to phrases in
the language, and this is done by describing the transitions that they induce on
states of the machine.

Operational semantics give an intuitive description of the programming language
being studied, and its descriptions are close to real programs. It can play a useful
role as a testing tool during the design of new languages, as it is relatively easy to
design an interpreter to execute the description of example programs. This allows
the effects of new languages or new language features to be simulated and studied
through actual execution of the semantic descriptions prior to writing a compiler for
the language. Another words, operational semantics can play a role in rapid pro-
totyping during language design, and to get early feedback on the suitability of the
language.

One disadvantage of the operational approach is that the meaning of the lan-
guage is understood in terms of execution: i.e. in terms of interpreter configurations,
rather than in an explicit machine independent specification. An operational
description is just one way to execute programs. Another disadvantage is that the
interpreters for non-trivial languages often tend to be large and complex. A more
detailed account of operational semantics is in [6, 7].

12.4.3 Denotational Semantics

Denotational semantics [7] expresses the semantics of a programming language by
a translation schema that associates a meaning (denotation) with each program in
the language. It maps a program directly to its meaning, and it was originally called
mathematical semantics as it provides meaning to programs in terms of mathe-
matical values such as integers, tuples and functions. That is, the meaning of a
program is a mathematical object, and an interpreter is not employed. Instead, a
valuation function is employed to map a program directly to its meaning, and the
denotational description of a programming language is given by a set of meaning
functions M associated with the constructs of the language (Fig. 12.4).

Each meaning function is of the form MT : T ! DT where T is some construct
in the language and DT is some semantic domain. Many of the meaning functions
will be ‘higher order’: i.e. functions that yield functions as results. The signature of
the meaning function is from syntactic domains (i.e. T) to semantic domains (i.e.

10This virtual stack based machine was originally designed by Peter Landin to evaluate lambda
calculus expressions, and it has since been used as a target for several compilers.

202 12 Language Theory and Semantics

DT). A valuation map VT : T ! B may be employed to check the static semantics
prior to giving a meaning of the language construct.11

A denotational definition is more abstract than an operational definition. It does
not specify the computational steps and its exclusive focus is on the programs to the
exclusion of the state and other data elements. The state is less visible in denota-
tional specifications.

It was developed by Christopher Strachey and Dana Scott at the Programming
Research Group at Oxford, England in the mid-1960s, and their approach to
semantics is known as the Scott-Strachey approach [8]. It provided a mathematical
foundation for the semantics of programming languages.

Dana Scott’s contributions included the formulation of domain theory, and this
allowed programs containing recursive functions and loops to be given a precise
semantics. Each phrase in the language is translated into a mathematical object that
is the denotation of the phrase. Denotational Semantics has been applied to lan-
guage design and implementation.

12.5 Lambda Calculus

Functions (discussed in Chap. 2) are an essential part of mathematics, and they play
a key role in specifying the semantics of programming language constructs. We
discussed partial and total functions in Chap. 2, and a function was defined as a
special type of relation, and simple finite functions may be defined as an explicit set
of pairs: e.g.

f D a; 1ð Þ; b; 2ð Þ; c; 3ð Þf g:

However, for more complex functions there is a need to define the function more
abstractly, rather than listing all of its member pairs. This may be done in a similar
manner to set comprehension, where a set is defined in terms of a characteristic
property of its members.

Fig. 12.4 Denotational semantics

11This is similar to what a compiler does in that if errors are found during the compilation phase,
the compiler halts and displays the errors and does not continue with code generation.

12.4 Programming Language Semantics 203

Functions may be defined (by comprehension) through a powerful abstract
notation known as lambda calculus. This notation was introduced by Alonzo
Church in the 1930s to study computability, and lambda calculus provides an
abstract framework for describing mathematical functions and their evaluation. It
may be used to study function definition, function application, parameter passing
and recursion.

Any computable function can be expressed and evaluated using lambda calculus
or Turing machines, as these are equivalent formalisms. Lambda calculus uses a
small set of transformation rules, and these include:

– Alpha-conversion rule (a-conversion)12;
– Beta-reduction rule (b-reduction)13;
– Eta-conversion (g-conversion).14

Every expression in the k-calculus stands for a function with a single argument.
The argument of the function is itself a function with a single argument, and so on.
The definition of a function is anonymous in the calculus. For example, the function
that adds one to its argument is usually defined as f(x) = x + 1. However, in k-
calculus the function is defined as:

succD k x:xþ 1.

The name of the formal argument x is irrelevant and an equivalent definition of
the function is k z: zþ 1. The evaluation of a function f with respect to an argument
(e.g. 3) is usually expressed by f(3). In k-calculus this would be written as
k x: xþ 1ð Þ3, and this evaluates to 3 + 1 = 4. Function application is left associa-
tive: i.e. f x y ¼ f xð Þy. A function of two variables is expressed in lambda calculus
as a function of one argument, which returns a function of one argument. This is
known as currying: e.g. the function f x; yð Þ ¼ xþ y is written as k x: ky: xþ y. This
is often abbreviated to k x y: xþ y.

k-calculus is a simple mathematical system, and its syntax is defined as follows:

<exp> :: = < identifier> |
k <identifier > . <exp> | –abstraction
<exp> <exp> | –application
(<exp>)

k-Calculus’s four lines of syntax plus conversion rules are sufficient to define
Booleans, integers, data structures and computations on them. It inspired Lisp and
modern functional programming languages. The original calculus was untyped, but
typed lambda calculi have been introduced in recent years. The typed lambda

12This essentially expresses that the names of bound variables is unimportant.
13This essentially expresses the idea of function application.
14This essentially expresses the idea that two functions are equal if and only if they give the same
results for all arguments.

204 12 Language Theory and Semantics

calculus allows the sets to which the function arguments apply to be specified. For
example, the definition of the plus function is given as

plus k a; b : N : aþ b:

The lambda calculus makes it possible to express properties of the function
without reference to members of the base sets on which the function operates. It
allows functional operations such as function composition to be applied, and one
key benefit is that the calculus provides powerful support for higher order functions.
This is important in the expression of the denotational semantics of the constructs of
programming languages.

12.6 Lattices and Order

This section considers some the mathematical structures used in the definition of the
semantic domains used in denotational semantics. These mathematical structures
may also be employed to give a secure foundation for recursion (discussed in
Chap. 4), and it is essential that the conditions in which recursion may be used
safely be understood.

It is natural to ask when presented with a recursive definition whether it means
anything at all, and in some cases the answer is negative. Recursive definitions are a
powerful and elegant way of giving the denotational semantics of language con-
structs. The mathematical structures considered in this section include partial
orders, total orders, lattices, complete lattices and complete partial orders.

12.6.1 Partially Ordered Sets

A partial order � on a set P is a binary relation such that for all x, y, z 2 P the
following properties hold:

(i) x � x (Reflexivity)
(ii) x � y and y� x) x ¼ y (Anti-symmetry)
(iii) x � y and y� z) x� z (Transitivity)

A set P with an order relation � is said to be a partially ordered set (Fig. 12.5):

Example 12.4 Consider the power set ℙX, which consists of all the subsets of the
set X with the ordering defined by set inclusion. That is, A � B if and only if A�B
then � is a partial order on ℙX.

12.5 Lambda Calculus 205

A partially ordered set is a totally ordered set (also called chain) if for all x,
y 2 P then either x � y or y � x. That is, any two elements of P are directly
comparable.

A partially ordered set P is an anti-chain if for any x, y in P then x � y only if
x = y. That is, the only elements in P that are comparable to a particular element are
the element itself.

Maps between Ordered Sets

Let P and Q be partially ordered sets then a map / from P to Q may preserve the
order in P and Q. We distinguish between order preserving, order embedding and
order isomorphism. These terms are defined as follows:

Order Preserving (or Monotonic Increasing Function).
A mapping / : P ! Q is said to be order preserving if

x� y) / xð Þ�/ yð Þ:

Order Embedding
A mapping / : P ! Q is said to be an order embedding if.
x � y in P if and only if/ xð Þ�/ yð Þ in Q.
Order Isomorphism
The mapping / : P ! Q is an order isomorphism if and only if it is an order

embedding mapping onto Q.

Dual of a Partially Ordered Set

The dual of a partially ordered set P (denoted P@) is a new partially ordered set
formed from P where x � y holds in P@ if and only if y � x holds in P (i.e. P@

is obtained by reversing the order on P).
For each statement about P there is a corresponding statement about P@ . Given

any statement U about a partially ordered set, then the dual statement U@ is obtained
by replacing each occurrence of � by � and vice versa.

Duality Principle

Given that statement U is true of a partially ordered set P, then the statement U@ is
true of P@ .

Fig. 12.5 Pictorial
represenation of a partial
order

206 12 Language Theory and Semantics

Maximal and Minimum Elements

Let P be a partially ordered set and let Q�P then

(i) a 2 Q is a maximal element of Q if a� x 2 Q) a ¼ x.
(ii) a 2 Q is the greatest (or maximum) element of Q if a � x for every x 2 Q,

and in that case we write a = max Q.

A minimal element of Q and the least (or minimum) are defined dually by
reversing the order. The greatest element (if it exists) is called the top element and is
denoted by >. The least element (if it exists) is called the bottom element and is
denoted by ?.

Example 12.5 Let X be a set and consider ℙX the set of all subsets of X with the
ordering defined by set inclusion. The top element > is given by X, and the bottom
element ? is given by ;.

A finite totally ordered set always has top and bottom elements, but an infinite
chain need not have.

12.6.2 Lattices

Let P be a partially ordered set and let S�P. An element x 2 P is an upper bound of
S if s � x for all s 2 S. A lower bound is defined similarly.

The set of all upper bounds for S is denoted by Su, and the set of all lower bounds
for S is denoted by Sl.

Su ¼ fx 2 Pj ð8s 2 SÞs� xg;

Sl ¼ fx 2 Pj ð8s 2 SÞs� xg:

If Su has a least element x then x is called the least upper bound of S. Similarly, if
Sl has a greatest element x then x is called the greatest lower bound of S.

Another words, x is the least upper bound of S if.

(i) x is an upper bound of S.
(ii) x � y for all upper bounds y of S.

The least upper bound of S is also called the supremum of S denoted (sup S), and
the greatest lower bound is also called the infimum of S, and is denoted by inf S.

Join and Meet Operations

The join of x and y (denoted by x _ y) is given by sup{x, y} when it exists. The meet
of x and y (denoted by x ^ y) is given by inf{x, y} when it exists.

The supremum of S is denoted by
W
S, and the infimum of S is denoted by

V
S.

12.6 Lattices and Order 207

Definition
Let P be a non-empty partially ordered set then.

(i) If x _ y and x ^ y exist for all x, y 2 P then P is called a lattice.
(ii) If

W
S and

V
S exist for all S�P then P is called a complete lattice

Every non-empty finite subset of a lattice has a meet and a join (inductive
argument can be used), and every finite lattice is a complete lattice. Further, any
complete lattice is bounded—i.e. it has top and bottom elements (Fig. 12.6).

Example 12.6 Let X be a set and consider ℙX the set of all subsets of X with the
ordering defined by set inclusion. Then ℙX is a complete lattice in which.

_fAiji 2 Ig ¼ [Ai

^fAiji 2 Ig ¼ \Ai:

Consider the set of natural numbers ℕ and consider the usual ordering of < .
Then ℕ is a lattice with the join and meet operations defined as

x _ y ¼ max x; yð Þ

x ^ y ¼ min x; yð Þ:

Another possible definition of the meet and join operations are in terms of the
greatest common multiple and lease common divisor.

x _ y ¼ lcm x; yð Þ

x ^ y ¼ gcd x; yð Þ:

Fig. 12.6 Pictorial
represenation of a complete
lattice

208 12 Language Theory and Semantics

12.6.3 Complete Partial Orders

Let S be a non-empty subset of a partially ordered set P. Then

(i) S is said to be a directed set if for every finite subset F of S there exists
z 2 S such that z 2 Fu.

(ii) S is said to be consistent if for every finite subset F of S there exists z 2 P such
that z 2 Fu.

A partially ordered set P is a complete partial order (CPO) if

(i) P has a bottom element ?.
(ii)

W
D exists for each directed subset D of P.

The simplest example of a directed set is a chain, and we note that any complete
lattice is a complete partial order, and that any finite lattice is a complete lattice.

12.6.4 Recursion

Recursive definitions arise frequently in programs and offer an elegant way to
define routines and data types. A recursive routine contains a direct or indirect call
to itself, and a recursive data type contains a direct or indirect reference to speci-
mens of the same type. Recursion needs to be used with care, as there is always a
danger that the recursive definition may be circular (i.e. defines nothing). It is
therefore important to investigate when a recursive definition may be used safely,
and to give a mathematical definition of recursion.

The control flow in a recursive routine must contain at least one non-recursive
branch since if all possible branches included a recursive form the routine could
never terminate. The value of at least one argument in the recursive call is different
from the initial value of the formal argument as otherwise the recursive call would
result in the same sequence of events and therefore would never terminate.

The mathematical meaning of recursion is defined in terms of fixed point theory,
which is concerned with determining solutions to equations of the form x¼ s xð Þ,
where the function s is of the form s : X ! X.

A recursive definition may be interpreted as a fixpoint equation of the form
f ¼ U fð Þ; i.e. the fixpoint of a high-level functional U that takes a function as an
argument. For example, consider the functional U defined as follows:

UD kf kn � if n ¼ 0 then 1 else n�f n� 1ð Þ:

Then a fixpoint of U is a function f such that f ¼ U fð Þ or another words

f ¼ kn � if n ¼ 0 then 1 else n�f n� 1ð Þ:

12.6 Lattices and Order 209

Clearly, the factorial function is a fixpoint of U, and it is the only total function
that is a fixpoint. The solution of the equation f ¼ U fð Þ (where U has a fixpoint) is
determined as the limit f of the sequence of functions f0, f1, f2, …., where the fi are
defined inductively as

f0 D ; the empty partial functionð Þ
fi DU fi�1ð Þ:

Each fi may be viewed as a successive approximation to the true solution f of the
fixpoint equation, with each fi bringing a little more information on the solution
than its predecessor fi-1.

The function fi is defined for one more value than fi-1, and gives the same result
for any value for which they are both defined. The definition of the factorial
function is thus built up as follows:

f0 D ; the empty partial functionð Þ
f1 D f0 ! 1g
f2 D f0 ! 1; 1 ! 1g
f3 D f0 ! 1; 1 ! 1; 2 ! 2g
f4 D f0 ! 1; 1 ! 1; 2 ! 2; 3 ! 6g
: :

:

For every i, the domain of fi is the interval 1, 2, … i − 1 and fi (n) = n! for any
n in this interval. Another words fi is the factorial function restricted to the interval
1, 2, … i − 1. The sequence of fi may be viewed as successive approximations of
the true solution of the fixpoint equation (which is the factorial function), with each
fi bringing defined for one more value that its predecessor fi-1, and defining the same
result for any value for which they are both defined.

The candidate fixpoint f1 is the limit of the sequence of functions fi, and is the
union of all the elements in the sequence. It may be written as follows:

f1 D ;[Uð;Þ [UðUð;ÞÞ [. . . ¼ [i:Nfi

where the sequence fi is defined inductively as

f0 D ; the empty partial functionð Þ
fiþ 1 D fi [U fið Þ:

210 12 Language Theory and Semantics

This forms a subset chain where each element is a subset of the next, and it
follows by induction that

fiþ 1¼ [j:0...:iU fið Þ:

A general technique for solving fixpoint equations of the form h ¼ s hð Þ for some
functional s is to start with the least defined function ; and iterate with s. The union
of all the functions obtained as successive sequence elements is the fixpoint.

The conditions in which f1 is a fixpoint of U is the requirement for U f1ð Þ ¼ f1.

This is equivalent to

Uð [i:NfiÞ ¼ [i:Nfi

Uð [i:NfiÞ ¼ [i:NU fið Þ:

A sufficient condition for U to have a fixpoint is that the property Uð [i:NfiÞ ¼
[i:NU fið Þ holds for any subset chain fi.

We discussed recursion earlier in Chap. 4, and a more detailed account on the
mathematics of recursion is in Chap. 8 of [7].

12.7 Review Questions

1. Explain the difference between syntax and semantics.
2. Describe the Chomsky hierarchy of grammars and give examples of each

type.
3. Show that a grammar may be ambiguous leading to two difference parse

trees. What problems does this create and how should it be dealt with?
4. Describe axiomatic semantics, operation semantics and denotational

semantics and explain the differences between them.
5. Explain partial orders, lattices and complete partial orders. Give examples

of each.
6. Show how the meaning of recursion is defined with fixpoint theory.

12.8 Summary

This chapter considered two key parts to any programming language, namely
syntax and semantics. The syntax of the language is concerned with the production
of grammatically correct programs in the language, whereas the semantics of the
language is deeper and is concerned with the meaning of what has been written by
the programmer.

12.6 Lattices and Order 211

There are several approaches to defining the semantics of programming lan-
guages, and these include axiomatic, operational and denotational semantics.
Axiomatic semantics is concerned with defining properties of the language in terms
of axioms; operational semantics is concerned with defining the meaning of the
language in terms of an interpreter; and denotational semantics is concerned with
defining the meaning of the phrases in a language by the denotation or mathe-
matical meaning of the phrase.

Compilers are programs that translate a program that is written in some pro-
gramming language into another form. It involves syntax analysis and parsing to
check the syntactic validity of the program; semantic analysis to determine what the
program should do; optimization to improve the speed and performance of the
compiler and code generation in some target language.

Various mathematical structures including partial orders, total orders, lattices
and complete partial orders were considered. These are useful in the definition of
the denotational semantics of a language, and in giving a mathematical interpre-
tation of recursion.

References

1. O’Regan G (2016) Introduction to the history of computing. Springer
2. ALGOL 60 (1960) Report on the algorithmic language. Commun ACM 3(5):299–314
3. Hoare CAR (1969) An axiomatic basis for computer programming. Commun of the ACM 12

(10):576–585
4. Floyd R (1967) Assigning meanings to programs. Proc Symp Appl Math 19:19–32
5. O’ Regan G (2006) Mathematical approaches to software quality. Springer
6. Plotkin G (1981) A structural approach to operational semantics. Technical Report DAIM

FN-19. Computer Science Department. AarhusUniversity, Denmark
7. Meyer B (1990) Introduction to the theory of programming languages. Prentice Hall.
8. Denotational Semantics (1977) The scott-strachey approach to programming language theory.

Joseph Stoy. MIT Press

212 12 Language Theory and Semantics

13Computability and Decidability

13.1 Introduction

It is impossible for a human or machine to write out all of the members of an
infinite countable set, such as the set of natural numbers ℕ. However, humans can
do something quite useful in the case of certain enumerable infinite sets: they can
give explicit instructions (that may be followed by a machine or another human) to
produce the nth member of the set for an arbitrary finite n. The problem remains
that for all but a finite number of values of n it will be physically impossible for any
human or machine to actually carry out the computation, due to the limitations on
the time available for computation, the speed at which the individual steps in the
computation may be carried out, and due to finite materials.

The intuitive meaning of computability is in terms of an algorithm (or effective
procedure) that specifies a set of instructions to be followed to complete the task.
Another words, a function f is computable if there exists an algorithm that produces
the value of f correctly for each possible argument of f. The computation of f for a
particular argument x just involves following the instructions in the algorithm, and
it produces the result f(x) in a finite number of steps if x is in the domain of f. If x is
not in the domain of f then the algorithm may produce an answer saying so or it
might run forever never halting. A computer program implements an algorithm.

The concept of computability may be made precise in several equivalent ways
such as Church’s lambda calculus, recursive function theory or by the theoretical
Turing machines.1 These are all equivalent and perhaps the most well known is the
Turing machine (discussed in Chap. 7). This is a mathematical machine with a
potentially infinite tape divided into frames (or cells) in which very basic operations

1The Church-Turing thesis states that anything that is computable is computable by a Turing
Machine.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_13

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_13

can be carried out. The set of functions that are computable are those that are
computable by a Turing machine.

Decidability is an an important topic in contemporary mathematics. Church and
Turing independently showed in 1936 that mathematics is not decidable. In other
words, there is no mechanical procedure (i.e. algorithm) to determine whether an
arbitrary mathematical proposition is true or false, and so the only way is to
determine the truth or falsity of a statement is try to solve the problem. The fact that
there is no a general method to solve all instances of a specific problem, as well as
the impossibility of proving or disproving certain statements within a formal system
may suggest limitations to human and machine knowledge.

13.2 Logicism and Formalism

Gottlob Frege (Fig. 14.8) was a nineteenth-century German mathematician and
logician who invented a formal system which is the basis of modern predicate logic.
It included axioms, definitions, universal and existential quantification, and for-
malization of proof. His objective was to show that mathematics was reducible to
logic (logicism) but his project failed as one of the axioms used as part of the
axiomatisation of set theory led to inconsistentcy.

This inconsistency was pointed out by Bertrand Russell, and it is known as
Russell’s paradox.2 Russell later introduced the theory of types to deal with the
paradox, and he jointly published Principia Mathematica with Whitehead as an
attempt to derive the truths of arithmetic from a set of logical axioms and rules of
inference.

The sentences of Frege’s logical system denote the truth-values of true or false.
The sentences may include expressions such as equality (x = y), and this returns
true if x is the same as y, and false otherwise. Similarly, a more complex expression
such as f(x, y, z) = w is true if f(x, y, z) is identical with w, and false otherwise. Frege
represented statements such as ‘5 is a prime’ by ‘P(5)’ where P() is termed a
concept. The statement P(x) returns true if x is prime and false otherwise. His
approach was to represent a predicate as a function of one variable which returns a
Boolean value of true or false.

Formalism was proposed by Hilbert (Fig. 13.1) as a foundation for mathematics
in the early twentiety century. The motivation for the programme was to provide a
secure foundations for mathematics, and to resolve the contradictions in the for-
malization of set theory identified by Russell’s paradox. The presence of a con-
tradiction in a theory means the collapse of the whole theory, and so it was seen as
essential that there be a proof of the consistency of the formal system. The formalist
approach means that the methods of proof in mathematics are formalized with
axioms and rules of inference.

2Russell’s paradox (discussed in Chap. 2) considers the question as to whether the set of all sets
that contain themselves as members is a set. In either case there is a contradiction.

214 13 Computability and Decidability

Formalism is a formal system that contains meaningless symbols together with
rules for manipulating them. The individual formulas are certain finite sequences of
symbols obeying the syntactic rules of the formal language. A formal system
consists of:

– A formal language;
– A set of axioms;
– Rules of inference.

The expressions in a formal system are terms, and a term may be simple or
complex. A simple term may be an object such as a number, and a complex term
may be an arithmetic expression such as 43 + 1. A complex term is formed via
functions, and the expression above uses two functions namely the cube function
with argument 4 and the plus function with two arguments.

A formal system is generally intended to represent some aspect of the real world.
A rule of inference relates a set of formulas (P1, P2,… Pk) called the premises to the
consequence formula P called the conclusion. For each rule of inference there is a
finte procedure for determining whether a given formula Q is an immediate con-
sequence of the rule from the given formulas (P1, P2, … Pk). A proof in a formal
system consists of a finite sequence of formulae, where each formula is either an
axiom or derived from one or more preceding formulae in the sequence by one of
the rules of inference.

Hilbert’s programme was concerened with the formalization of mathematics (i.e.
the axiomatization of mathematics) together with a proof that the axiomatization
was consistent (i.e. there is no formula A such that both A and ¬A are deducible in
the calculus). The specific objectives of Hilbert’s programme were to

– Provide a formalism of mathematics.
– Show that the formalization of mathematics was complete: i.e. all mathematical

truths can be proved in the formal system.

Fig. 13.1 David Hilbert

13.2 Logicism and Formalism 215

– Provide a proof that the formal system is is consistent (i.e. that no contradictions
may be derived).

– Show that mathematics is decidable: i.e. there is an algorithm to determine the
truth of falsity of any mathematical statement.

The formalist movement in mathematics led to the formalization of large parts of
mathematics, where theorems could be proved using just a few mechanical rules.
The two most comprehensive formal systems developed were Principia Mathe-
matica by Russell and Whitehead, and the axiomatization of set theory by
Zermelo-Fraenkel (subsequently developed further by von Neumann).

Principia Mathematica is a comprehensive three volume work on the logical
foundations of mathematics written by Bertrand Russel and Alfred Whitehead
between 1910 and 1913. Its goal was to show that all of the concepts of mathe-
matics can be expressed in logic, and that all of the theorems of mathematics can be
proved using only the logical axioms and rules of inference of logic. It covered set
theory, ordinal numbers and real numbers, and it showed that in principle that large
parts of mathematics could be developed using logicism [1].

It avoided the problems with contradictions that arose with Frege’s system by
introducing the theory of types in the system. The theory of types meant that one
could no longer speak of the set of all sets, as a set of elements is of a different type
from that of each of its elements, and so Russell’s paradox was avoided. It remained
an open question at the time as to whether the Principia was consistent and
complete. That is, is it possible to derive all the truths of arithmetic in the system
and is it possible to derive a contradiction from the Principia’s axioms? However, it
was clear from the three volume work that the development of mathematics using
the approach of the Principia was extremely lengthy and time consuming.

Chapter 17 discusses early automation of mathematical proof in the 1950s,
including the Logic Theorist (LT) computer program that was demonstrated at the
Dartmounth conference on Artificial Intelligence in 1956, as well as interactive and
automated theorem provers. LT was developed by Allen Newell and Herbert
Simon, and it could prove 38 of the first 52 theorems from Principia Mathematica.

13.3 Decidability

The question remained whether these axioms and rules of inference are sufficient to
decide any mathematical question that can be expressed in these systems. Hilbert
believed that every mathematical problem could be solved, and that the truth or
falsity of any mathematical proposition could be determined in a finite number of
steps. He outlined twenty-three key problems at the International Congress of
Mathematics in Paris in 1900 that needed to be solved by mathematicians in the
twentieth century.

216 13 Computability and Decidability

He believed that the formalism of mathematics would allow a mechanical pro-
cedure (or algorithm) to determine whether a particular statement was true or false.
The problem of the decidability of mathematics is known as the decision problem
(Entscheidungsproblem).

The question of the decidability of mathematics had been considered by Leibnitz
in the seventeenth century. He had constructed a mechanical calculating machine,
and wondered if a machine could be built that could determine whether particular
mathematical statements are true or false.

Definition 13.1 (Decidability)
Mathematics is decidable if the truth or falisty of any mathematical proposition may
be determined by an algorithm.

Church and Turing independently showed this to be impossible in 1936. Church
developed the lambda calculus in the 1930s as a tool to study computability,3 and
he showed that anything that is computable is computable by the lambda calculus.
Turing showed that decidability was related to the halting problem for Turing
machines, and that therefore if first-order logic were decidable then the halting
problem for Turing machines could be solved. However, he had already proved that
there was no general algorithm to determine whether a given Turing machine halts
or not. Therefore, first-order logic is undecidable.

The question as to whether a given Turing machine halts or not can be for-
mulated as a first-order statement. If a general decision procedure exists for
first-order logic, then the statement of whether a given Turing machine halts or not
is within the scope of the decision algorithm. However, Turing had already proved
that the halting problem for Turing machines is not computable: i.e. it is not
possible algorithmically to decide whether or not any given Turing machine will
halt or not. Therefore, since there is no general algorithm that can decide whether
any given Turing machine halts, there is no general decision procedure for
first-order logic. The only way to determine whether a statement is true or false is to
try to solve it. However, if one tries but does not succeed this does not prove that an
answer does not exist.

There are first-order theories that are decidable. However, first-order logic that
includes Peano’s axioms of arithmetic (or any formal system that includes addition
and multiplication) cannot be decided by an algorithm. That is, there is no algorithm
to determine whether an arbitrary mathematical proposition is true or false.
Propositional logic is decidable as there is a procedure (e.g. using a truth table) to
determine whether an arbitrary formula is valid4 in the calculus.

3The Church Turing Thesis states that anytime that is computable is computable by Lambda
Calculus or equivalently by a Turing Machine.
4A well-formed formula is valid if it follows from the axioms of first-order logic. A formula is
valid if and only if it is true in every interpretation of the formula in the model.

13.3 Decidability 217

Gödel (Fig. 13.2) proved that first-order predicate calculus is complete. i.e. all
truths in the predicate calculus can be proved in the language of the calculus.

Definition 13.2 (Completeness)
A formal system is complete if all the truths in the system can be derived from

the axioms and rules of inference.
Gödel’s first incompleteness theorem showed that first-order arithmetic is

incomplete; i.e. there are truths in first-order arithmetic that cannot be proved in the
language of the axiomatization of first-order arithmetic. Gödel’s second incom-
pleteness theorem showed that that any formal system extending basic arithmetic
cannot prove its own consistency within the formal system.

Definition 13.3
(Consistency) A formal system is consistent if there is no formula A such that A

and ¬A are provable in the system (i.e. there are no contradictions in the system).

13.4 Computability

Alonzo Church (Fig. 13.3) developed the lambda calculus in the mid 1930s, as part of
his work into the foundations of mathemtics. Turing published a key paper on com-
putability in 1936, which introduced the theoretical machine known as the Turing
machine. This machine is computationally equivalent to the lambda calculus, and is
capable of performing any conceivable mathematical problem that has an algorithm.

Definition 13.4 (Algorithm)
An algorithm (or effective procedure) is a finite set of unambiguous instructions

to perform a specific task.
A function is computable if there is an effective procedure or algorithm to

compute f for each value of its domain. The algorithm is finite in length and

Fig. 13.2 Kurt Gödel

218 13 Computability and Decidability

sufficiently detailed so that a person can execute the instructions in the algorithm.
The execution of the algorithm will halt in a finite number of steps to produce the
value of f(x) for all x in the domain of f. However, if x is not in the domain of f then
the algorithm may produce an answer saying so, or it may get stuck, or it may run
forever never halting.

The Church-Turing Thesis that states that any computable function may be
computed by a Turing machine. There is overwhelming evidence in support in
support of this thesis, including the fact that alternative formalizations of com-
putability in terms of lambda calculus, recursive function theory, and Post systems
have all been shown to be equivalent to Turing machines.

A Turing machine (discussed previously in Chap. 7) consists of a head and a
potentially infinite tape that is divided into cells. Each cell on the tape may be either
blank or printed with a symbol from a finite alphabet of symbols. The input tape
may initially be blank or have a finite number of cells containing symbols.

At any step, the head can read the contents of a frame. The head may erase a
symbol on the tape, leave it unchanged, or replace it with another symbol. It may
then move one position to the right, one position to the left, or not at all. If the frame
is blank, the head can either leave the frame blank or print one of the symbols.

Turing believed that a human with finite equipment and with an unlimited
supply of paper could do every calculation. The unlimited supply of paper is
formalized in the Turing machine by a tape marked off in cells.

We gave a formal definition of a Turing machine as a 7-tuple M = (Q, C, b, R, d,
q0, F) in Chap. 7. We noted that the Turing machine is a simple theoretical
machine, but it is equivalent to an actual physical computer in the sense that they
both compute exactly the same set of functions. A Turing machine is easier to
analyze and prove things about than a real computer.

A Turing machine is essentially a finite state machine (FSM) with an unbounded
tape. The machine may read from and write to the tape and the tape provides
memory and acts as the store. The finite state machine is essentially the control unit
of the machine, whereas the tape is a potentially infinite and unbounded store.

Fig. 13.3 Alonzo Church

13.4 Computability 219

A real computer has a large but finite store, whereas the store in a Turing machine is
potentially infinite. However, the store in a real computer may be extended with
backing tapes and disks, and in a sense may be regarded as unbounded. The
maximum amount of tape that may be read or written within n steps is n.

A Turing machine has an associated set of rules that defines its behaviour. These
rules are defined by the transition function that specify the actions that a machine
will perform with respect to a particular input. The behaviour will depend on the
current state of the machine and the contents of the tape.

A Turing machine may be programmed to solve any problem for which there is
an algorithm. However, if the problem is unsolvable then the machine will either
stop in a non-accepting state or compute forever. The solvability of a problem may
not be determined beforehand, but, there is, of course, some answer (i.e. either the
machine either halts or it computes forever).

Turing showed that there was no solution to the decision problem (Entschei-
dungsproblem) posed by Hilbert. Hilbert believed that the truth or falsity of a
mathematical problem may always be determined by a mechanical procedure, and
he believed that first-order logic is decidable: i.e. there is a decision procedure to
determine if an arbitrary formula is a theorem of the logical system.

Turing was skeptical on the decidability of first-order logic, and the Turing
machine played a key role in refuting Hilbert’s claim of the decidability of
first-order logic.

The question as to whether a given Turing machine halts or not can be for-
mulated as a first-order statement. If a general decision procedure exists for
first-order logic, then the statement of whether a given Turing machine halts or not
is within the scope of the decision algorithm. However, Turing had already proved
that the halting problem for Turing machines is not computable: i.e. it is not
possible algorithmically to decide whether a given Turing machine will halt or not.
Therefore, there is no general algorithm that can decide whether a given Turing
machine halts. In other words, there is no general decision procedure for first-order
logic. The only way to determine whether a statement is true or false is to try to
solve it.

Turing also introduced the concept of a Universal Turing Machine, and this
machine is able to simulate any other Turing machine. Turing’s results on com-
putability were proved independently of Church’s lambda calculus equivalent
results in computability. Turing’s studied at Priceton Univsersity in 1937 and 1938
and was awarded a PhD from the university in 1938. His research supervisor was
Alonzo Church.5

5Alonzo Church was a famous American mathematician and logician who developed the lambda
calculus. He also showed that Peano arithmetic and first-order logic were undecidable. Lambda
calculus is equivalent to Turing machines and whatever may be computed is computable by
Lambda calculus or a Turing machine.

220 13 Computability and Decidability

Question 13.1 (Halting Problem)
Given an arbitrary program is there an algorithm to decide whether the pro-

gram will finish running or will continue running forever? Another words, given a
program and an input will the program eventually halt and produce an output or
will it run forever?

Note (Halting Problem)
The halting problem was one of the first problems that was shown to be

undecidable: i.e. there is no general decision procedure or algorithm that may be
applied to an arbitrary program and input to decide whether the program halts or not
when run with that input.

Proof We assume that there is an algorithm (i.e. a computable function function H
(i, j)) that takes any program i (program i refers to the ith program in the enu-
meration of all the programs) and arbitrary input j to the program such that

H i; jð Þ ¼ 1 If program i halts on input j:
0 otherwise

�

We then employ a diagonalization argument6 to show that every computable
total function f with two arguments differs from the desired function H. First, we
construct a partial function g from any computable function f with two arguments
such that g is computable by some program e.

g ið Þ ¼ 0 if f i; ið Þ ¼ 0
undefined otherwise:

�

There is a program e that computes g, and this program is one of the programs in
which the halting problem is defined. One of the following two cases must hold:

g eð Þ ¼ f e; eð Þ ¼ 0: ð13:1Þ

In this case H(e, e) = 1 because e halts on input e.

g eð Þ is undefined andf e; eð Þ 6¼ 0: ð13:2Þ

In this case H(e, e) = 0 because the program e does not halt on input e.

6This is similar to Cantor’s diagonalization argument that shows that the Real numbers are
uncountable. This argument assumes that it is possible to enumerate all real numbers between 0
and 1, and it then constructs a number whose nth decimal differs from the nth decimal position in
the nth number in the enumeration. If this holds for all n then the newly defined number is not
among the enumerated numbers.

13.4 Computability 221

In either case, f is not the same function as H. Further, since f was an arbitrary
total computable function all such functions must differ from H. Hence, the function
H is not computable and there is no such algorithm to determine whether an
arbitrary Turing machine halts for an input x. Therefore, the halting problem is not
decidable.

13.5 Computational Complexity

An algorithm is of little practical use if it takes millions of years to compute
particular instances. There is a need to consider the efficiency of the algorithm due
to practical considerations. Chapter 10 discussed cryptography and the RSA
algorithm, and the security of the RSA encryption algorithm is due to the fact that
there is no known efficient algorithm to determine the prime factors of a large
number.

There are often slow and fast algorithms for the same problem, and a measure of
complexity is the number of steps in a computation. An algorithm is of time
complexity f(n) if for all n and all inputs of length n the execution of the algorithm
takes at most f(n) steps.

An algorithm is said to be polynomially bounded if there is a polynomial p
(n) such that for all n and all inputs of length n the execution of the algorithm takes
at most p(n) steps. The notation P is used for all problems that can be solved in
polynomial time.

A problem is said to be computationally intractable if it may not be solved in
polynomial time—that is, there is no known algorithm to solve the problem in
polynomial time.

A problem L is said to be in the set NP (non-deterministic polynomial time
problems) if any given solution to L can be verified quickly in polynomial time.
A non-deterministic Turing machine may have several possibilities for its beha-
viour, and an input may give rise to several computations.

A problem is NP complete if it is in the set NP of non-deterministic polynomial
time problems, and it is also in the class of NP hard problems. A key characteristic
to NP complete problems is that there is no known fast solution to them, and the
time required to solve the problem using known algorithms increases quickly as the
size of the problem grows. Often, the time required to solve the problem is in
billions or trillions of years. Although any given solution can be verified quickly
there is no known efficient way to find a solution.

222 13 Computability and Decidability

13.6 Review Questions

1. Explain computability and decidability.
2. What were the goals of logicism and formalism and how successful were

these movement in mathematics?
3. What is a formal system?
4. Explain the difference between consistency, completeness and

decidability.
5. Describe a Turing machine and explain its significance in computability.
6. Describe the halting problem and show that it is undecidable.
7. Discuss the complexity of an algorithm and explain terms such as

‘polynomial bounded’, ‘computationally intractable’ and ‘NP complete’.

13.7 Summary

This chapter provided an introduction to computability and decidability. The
intuitive meaning of computability is that in terms of an algorithm (or effective
procedure) that specifies a set of instructions to be followed to solve the problem.
Another words, a function f is computable if there exists an algorithm that produces
the value of f correctly for each possible argument of f. The computation of f for a
particular argument x just involves following the instructions in the algorithm, and
it produces the result f(x) in a finite number of steps if x is in the domain of f.

The concept of computability may be made precise in several equivalent ways
such as Church’s lambda calculus, recursive function theory or by the theoretical
Turing machines. The Turing machine is a mathematical machine with a potentially
infinite tape divided into frames (or cells) in which very basic operations can be
carried out. The set of functions that are computable are those that are computable
by a Turing machine.

A formal system contains meaningless symbols together with rules for manip-
ulating them, and is generally intended to represent some aspect of the real world.
The individual formulas are certain finite sequences of symbols obeying the syn-
tactic rules of the formal language. A formal system consists of a formal language, a
set of axioms and rules of inference.

Church and Turing independently showed in 1936 that mathematics is not
decidable. In other words, it is not possible to determine the truth or falisty of any
mathematical proposition by an algorithm.

Turing had already proved that the halting problem for Turing machines is not
computable: i.e. it is not possible algorithmically to decide whether a given Turing
machine will halt or not. He then applied this result to first-order logic to show that
it is undecidable. That is, the only way to determine whether a statement is true or
false is to try to solve it.

13.6 Review Questions 223

The complexity of an algorithm was discussed, and it was noted that an algo-
rithm is of little practical use if it takes millions of years to compute the solution.
There is a need to consider the efficiency of the algorithm due to practical con-
siderations. The class of polynomial time bound problems and non-deterministic
polynomial time problems were considered, and it was noted that the security of
various cryptographic algorithms is due to the fact that there are no time efficient
algorithms to determine the prime factors of large integers.

The reader is referred to [2] for a more detailed account of decidability and
computability.

References

1. Russell B, Whitehead AN (1910) Principia mathematica. Cambridge University Press,
Cambridge

2. Rozenberg G, Salomaa A (1994) Cornerstones of undecideability. Prentice Hall

224 13 Computability and Decidability

14A Short History of Logic

14.1 Introduction

Logic is concerned with reasoning and with establishing the validity of arguments.
It allows conclusions to be deduced from premises according to logical rules, and
the logical argument establishes the truth of the conclusion provided that the pre-
mises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. The sophists (e.g. Protagoras and Gorgias) were teachers of rhetoric, who
taught their pupils techniques in winning an argument and convincing an audience.
Plato explores the nature of truth in some of his dialogues, and he is critical of the
position of the sophists who argue that there is no absolute truth, and that truth
instead is always relative to some frame of reference. The classic sophist position is
stated by Protagoras “Man is the measure of all things: of things which are, that
they are, and of things which are not, that they are not.” In other words, what is true
for you is true for you, and what is true for me is true for me.

Socrates had a reputation for demolishing an opponent's position, and the
Socratean enquiry consisted of questions and answers in which the opponent would
be led to a conclusion incompatible with his original position. The approach was
similar to a reductio ad absurdum argument, although Socrates was a moral
philosopher who did no theoretical work on logic.

Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic logic
is a ‘term logic’, with letters used to stand for the individual terms. A syllogism
consists of two premises and a conclusion, where the conclusion is a valid
deduction from the two premises. Aristotle also did some early work on modal logic
and was the founder of the field.

The Stoics developed an early form of propositional logic, where the assertibles
(propositions) have a truth-value such that at any time they are either true or false.
The assertibles may be simple or non-simple, and various connectives such as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_14

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_14

conjunctions, disjunctions and implications are used in forming more complex
assertibles.

George Boole developed his symbolic logic in the mid-1800s, and it later formed
the foundation for digital computing. Boole argued that logic should be considered
as a separate branch of mathematics, rather than a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations.

Logic plays a key role in reasoning and deduction in mathematics, but it is
considered a separate discipline to mathematics. There were attempts in the early
twentieth century to show that all mathematics can be derived from formal logic
and that the formal system of mathematics would be complete, with all the truths of
mathematics provable in the system (see Chap. 13). However, this program failed
when the Austrian logician, Kurt Goedel, showed that there are truths in the formal
system of arithmetic that cannot be proved within the system (i.e. first-order
arithmetic is incomplete).

14.2 Syllogistic Logic

Early work on logic was done by Aristotle in the fourth century B.C. in the
Organon [1]. Aristotle regarded logic as a useful tool of enquiry into any subject,
and he developed syllogistic logic. This is a form of reasoning in which a con-
clusion is drawn from two premises, where each premise is in a subject-predicate
form. A common or middle term is present in each of the two premises but not in
the conclusion. For example

All Greeks are mortal:

Socrates is a Greek

�������������������������
Therefore Socrates is mortal

The common (or middle) term in this example is ‘Greek’. It occurs in both
premises but not in the conclusion. The above argument is valid, and Aristotle
studied and classified the various types of syllogistic arguments to determine those
that were valid or invalid. Each premise contains a subject and a predicate, and the
middle term may act as a subject or a predicate. Each premise is a positive or
negative affirmation, and an affirmation may be universal or particular. The uni-
versal and particular affirmations and negatives are described in the table below
(Table 14.1)

226 14 A Short History of Logic

This leads to four basic forms of syllogistic arguments (Table 14.2), where the
middle is the subject of both premises; the predicate of both premises; and the
subject of one premise and the predicate of the other premise.

There are four types of premises (A, E, I and O), and therefore, sixteen sets of
premise pairs for each of the forms above. However, only some of these premise
pairs will yield a valid conclusion. Aristotle went through every possible premise
pair to determine if a valid argument may be derived. The syllogistic argument
above is of the form (iv) and is valid

GAM

SIG

�������
S IM

Syllogistic logic is a ‘term logic’ with letters used to stand for the individual
terms. Syllogistic logic was the first attempt at a science of logic and it remained in
use up to the nineteenth century. There are many limitations to what it may express,
and on its suitability as a representation of how the mind works.

14.3 Paradoxes and Fallacies

A paradox is a statement that apparently contradicts itself, and it presents a situation
that appears to defy logic. Some logical paradoxes have a solution, whereas others
are contradictions or invalid arguments. There are many examples of paradoxes,
and they often arise due to self-reference in which one or more statements refer to

Table 14.1 Types of
syllogistic premises

Type Symbol Example

Universal
affirmative

G A M All Greeks are mortal

Universal negative G E M No Greek is mortal

Particular
affirmative

G I M Some Greek is mortal

Particular negative G O M Some Greek is not mortal

Table 14.2 Forms of
syllogistic premises

Form
(i)

Form
(ii)

Form
(iii)

Form
(iv)

Premise 1 M P P M P M M P

Premise 2 M S S M M S S M

Conclusion S P S P S P S P

14.2 Syllogistic Logic 227

each other. We discuss several paradoxes such as the liar paradox and the sorites
paradox, which were invented by Eubulides of Miletus, and the barber paradox,
which was introduced by Russell to explain the contradictions in naïve set theory.

An example of the liar paradox is the statement “Everything that I say is false”,
which is made by the liar. This looks like a normal sentence but it is also saying
something about itself as a sentence. If the statement is true, then the statement must
be false, since the meaning of the sentence is that every statement (including the
current statement) made by the liar is false. If the current statement is false, then the
statement that everything that I say is false is false, and so this must be a true
statement.

The Epimenides paradox is a variant of the liar paradox. Epimenides was a
Cretan who allegedly stated “All Cretans are liars”. If the statement is true, then
since Epimenides is Cretan, he must be a liar, and so the statement is false and we
have a contradiction. However, if we assume that the statement is false and that
Epimenides is lying about all Cretan being liars, then we may deduce (without
contradiction) that there is at least one Cretan who is truthful. So in this case the
paradox can be avoided.

The sorites paradox (paradox of the heap) involves a heap of sand in which
grains are individually removed. It is assumed that removing a single grain of sand
does not turn a heap into a non-heap, and the paradox is to consider what happens
when the process is repeated often enough. Is a single remaining grain a heap?
When does it change from being a heap to a non-heap? This paradox may be
avoided by specifying a fixed boundary of the number of grains of sand required to
form a heap, or to define a heap as a collection of multiple grains (� 2 grains). Then
any collection of grains of sand less than this boundary is not a heap.

The barber paradox is a variant of Russell’s paradox (a contradiction in naïve
set theory), which was discussed in chapter two. In a village, there is a barber who
shaves everyone who does not shave himself, and no one else. Who shaves the
barber? The answer to this question results in a contradiction, as the barber cannot
shave himself, since he shaves only those who do not shave themselves. Further, as
the barber does not shave himself, then he falls into the group of people who would
be shaved by the barber (himself). Therefore, we conclude that there is no such
barber (or that the barber has a beard).

The purpose of a debate is to convince an audience of the correctness of your
position and to challenge and undermine your opponent’s position. Often, the
arguments made are factual, but occasionally individuals skilled in rhetoric and
persuasion introduce bad arguments as a way to persuade the audience. Aristotle
studied and classified bad arguments (known as fallacies), and these include fal-
lacies such as the ad hominem argument; the appeal to authority argument; and the
straw man argument. The fallacies are described in more detail in Table 14.3.

228 14 A Short History of Logic

14.4 Stoic Logic

The Stoic school1 was founded in the Hellenistic period by Zeno of Citium (in
Cyprus) in the late fourth/early third century B.C. The school presented its phi-
losophy as a way of life, and it emphasized ethics as the main focus of human

Table 14.3 Table: fallacies in arguments

Fallacy Description/example

Hasty/accident
generalization
Secundum Quid

This is a bad argument that involves a generalization that
disregards exceptions. It involves drawing a conclusion about all
instances based on a small number of instances

Slippery slope This argument outlines a chain reaction leading to a highly
undesirable situation that will occur if a certain situation is
allowed. The claim is that even if one step is taken onto the
slippery slope, then we will fall all the way down to the bottom

Against the person
Ad Hominem

The focus of this argument is to attack the person rather than the
argument that the person has made. It avoids a proper debate with
a diversion rather than dealing with the substance of the argument

Appeal to people
Ad Populum

This argument involves an appeal to popular belief to support an
argument, with a claim that the majority of the population
supports this argument. However, popular opinion is not always
correct

Appeal to authority Ad
Verecundiam

This argument is when an appeal is made to an authoritative figure
to support an argument, and where the authority is not an expert in
this area

Appeal to pity
Ad Misericordiam

This is where the arguer tries to get people to accept a conclusion
by making them feel sorry for someone

Appeal to ignorance
Argumentum ad
ignoratiam

The arguer makes the case that there is no conclusive evidence on
the issue at hand, and therefore, his conclusion should be accepted
as it has not been proven false

Straw man argument
Ignoratio Elenchi

The arguer sets up a version of an opponent’s position of his
argument and defeats this watered down version of his opponent’s
position

Begging the question
Petitio Principii

This is a circular argument where the arguer relies on a premise
that says the same thing as the conclusion and without providing
any real evidence for the conclusion

Red herring The arguer goes off on a tangent that has nothing to do with the
argument in question. It is an irrelevant diversionary tactic

False dichotomy The arguer presents the case that there are only two possible
outcomes (often there are more that are excluded). One of the
possible outcomes is then eliminated leading to the desired
outcome. The argument suggests that there is only one outcome

1The origin of the word Stoic is from the Stoa Poikile (
P

soa Poikjη), which was a covered
walkway in the Agora of Athens. Zeno taught his philosophy in a public space at this location, and
his followers became known as Stoics.

14.4 Stoic Logic 229

knowledge. The Stoics stressed the importance of living a good life in harmony
with nature. (Fig. 14.1)

The Stoics recognized the importance of reason and logic, and Chrysippus, the
head of the Stoics in the third century B.C., developed an early version of
propositional logic. This was a system of deduction in which the smallest unana-
lyzed expressions are assertibles (Stoic equivalent of propositions). The assertibles
have a truth-value such that at any moment of time they are either true or false. True
assertibles are viewed as facts in the Stoic system of logic, and false assertibles are
defined as the contradictories of true ones.

Truth is temporal and assertions may change their truth-value over time. The
assertibles may be simple or non-simple (more than one assertible), and there may
be present tense, past tense and future tense assertibles. Chrysippus distinguished
between simple and compound propositions, and he introduced a set of logical
connectives for conjunction, disjunction and implication that are used to form
non-simple assertibles from existing assertibles.

The conjunction connective is of the form ‘both.. and..’, and it has two con-
juncts. The disjunction connective is of the form ‘either.. or.. or..’, and it consists of
two or more disjuncts. Conditionals are formed from the connective ‘if..,..’ and they
consist of an antecedent and a consequence.

His deductive system included various logical argument forms such as modus
ponens and modus tollens. His propositional logic differed from syllogistic logic, in
that the Stoic logic was based on propositions (or statements) as distinct from
Aristotle’s term logic. However, he could express the universal affirmation in
syllogistic logic (e.g. All As are B) by rephrasing it as a conditional statement that if
something is A then it is B.

Chrysippus’s propositional logic did not replace Aristotle’s syllogistic logic, and
syllogistic logic remained in use up to the mid-nineteenth century. George Boole
developed his symbolic logic in the mid-1800s, and his logic later formed the foun-
dation for digital computing. Boole’s symbolic logic is discussed in the next section.

Fig. 14.1 Zeno of citium

230 14 A Short History of Logic

14.5 Boole’s Symbolic Logic

George Boole (Fig. 14.2) was born in Lincoln, England, in 1815. His father (a
cobbler who was interested in mathematics and optical instruments) taught him
mathematics and showed him how to make optical instruments. Boole inherited his
father’s interest in knowledge, and he was self-taught in mathematics and Greek.
He taught at various schools near Lincoln, and he developed his mathematical
knowledge by working his way through Newton’s Principia, as well as applying
himself to the work of mathematicians such as Laplace and Lagrange.

He published regular papers from his early twenties, and these included con-
tributions to probability theory, differential equations and finite differences. He
developed his symbolic algebra, which is the foundation for modern computing,
and he is considered (along with Babbage) to be one of the grandfathers of com-
puting. His work was theoretical, and he never actually built a computer or cal-
culating machine. However, Boole’s symbolic logic was the perfect mathematical
model for switching theory, and for the design of digital circuits.

Boole became interested in formulating a calculus of reasoning, and he pub-
lished a pamphlet titled “Mathematical Analysis of Logic” in 1847 [2]. This short
book developed novel ideas on a logical method, and he argued that logic should be
considered as a separate branch of mathematics, rather than a part of philosophy. He
argued that there are mathematical laws to express the operation of reasoning in the
human mind, and he showed how Aristotle’s syllogistic logic could be reduced to a
set of algebraic equations. He corresponded regularly on logic with Augustus De
Morgan.2

He introduced two quantities ‘0’ and ‘1’ with the quantity 1 used to represent the
universe of thinkable objects (i.e. the universal set), and the quantity 0 represents
the absence of any objects (i.e. the empty set). He then employed symbols such as x,
y, z, etc. to represent collections or classes of objects given by the meaning attached
to adjectives and nouns. Next, he introduced three operators (+, − and �) that
combined classes of objects.

The expression x, y (i.e. x multiplied by y or x � y) combines the two classes x,
y to form the new class x, y (i.e. the class whose objects satisfy the two meanings
represented by the classes x and y). Similarly, the expression x + y combines the
two classes x, y to form the new class x + y (that satisfies either the meaning
represented by class x or class y). The expression x–y combines the two classes x,
y to form the new class x–y. This represents the class (that satisfies the meaning
represented by class x but not class y. The expression (1 – x) represents objects that
do not have the attribute that represents class x.

Thus, if x = black and y = sheep, then xy represents the class of black
sheep. Similarly, (1 − x) would represent the class obtained by the operation of
selecting all things in the world except black things; x (1 − y) represents the class of

2De Morgan was a 19th British mathematician based at University College London. De Morgan’s
laws in Set Theory and Logic state that: ðA[BÞc ¼ Ac \Bc and :ðA _ BÞ � :A ^ :B.

14.5 Boole’s Symbolic Logic 231

all things that are black but not sheep; and (1 − x) (1 − y) would give us all things
that are neither sheep nor black.

He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc. in a manner that is similar to real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations. The rules include:

1. xþ 0 ¼ x (Additive Identity)
2. xþ yþ zð Þ ¼ xþ yð Þþ z (Associative)
3. xþ y ¼ yþ x (Commutative)
4. xþ 1� xð Þ ¼ 1
5. x1 ¼ x (Multiplicative Identity)
6. x0 ¼ 0
7. xþ 1 ¼ 1
8. xy ¼ yx (Commutative)
9. x yzð Þ ¼ xyð Þz (Associative)

10. x yþ zð Þ ¼ xyþ xz (Distributive)
11. x y� zð Þ ¼ xy� xz (Distributive)
12. x2 ¼ x (Idempotent)

These operations are similar to the modern laws of set theory with the set union
operation represented by ‘ + ’, and the set intersection operation is represented by
multiplication. The universal set is represented by ‘1’ and the empty by ‘0’. The
associative and distributive laws hold. Finally, the set complement operation is
given by (1 − x).

Boole applied the symbols to encode Aristotle’s Syllogistic Logic, and he
showed how the syllogisms could be reduced to equations. This allowed conclu-
sions to be derived from premises by eliminating the middle term in the syllogism.
He refined his ideas on logic further in his book “An Investigation of the Laws of
Thought” [3]. This book aimed to identify the fundamental laws underlying

Fig. 14.2 George Boole

232 14 A Short History of Logic

reasoning in the human mind and to give expression to these laws in the symbolic
language of calculus.

He considered the equation x2 = x to be a fundamental law of thought. It allows
the principle of contradiction to be expressed (i.e. for an entity to possess an
attribute and at the same time not to possess it)

x2 ¼ x;

) x�x2 ¼ 0;

) x 1�xð Þ ¼ 0:

For example, if x represents the class of horses then (1 – x) represents the class of
‘not-horses’. The product of two classes represents a class whose members are
common to both classes. Hence, x (1 – x) represents the class whose members are at
once both horses and ‘not-horses’, and the equation x (1 – x) = 0 expresses the fact
that there is no such class. That is, it is the empty set.

Boole contributed to other areas in mathematics including differential equations,
finite differences3 and to the development of probability theory. Des McHale has
written an interesting biography of Boole [4]. Boole’s logic appeared to have no
practical use, but this changed with Claude Shannon’s 1937 Master’s Thesis, which
showed its applicability to switching theory and to the design of digital circuits.

14.5.1 Switching Circuits and Boolean Algebra

Claude Shannon showed in his famous Master’s Thesis that Boole’s symbolic
algebra provided the perfect mathematical model for switching theory and for the
design of digital circuits. It may be employed to optimize the design of systems of
electromechanical relays, and circuits with relays solve Boolean algebra problems.
The use of the properties of electrical switches to process logic is the basic concept
that underlies all modern electronic digital computers. Digital computers use binary
digits 0 and 1, and Boolean logical operations may be implemented by electronic
AND, OR and NOT gates. More complex circuits (e.g. arithmetic) may be designed
from these fundamental building blocks.

Modern electronic computers use billions of transistors that act as switches and
can change states rapidly. The use of switches to represent binary values is the
foundation of modern computing. A high voltage represents the binary value 1 with
low voltage representing the binary value 0.

A silicon chip may contain billions of tiny electronic switches arranged into
logical gates. The basic logic gates are AND, OR and NOT, and these gates may be
combined in various ways to allow the computer to perform more complex tasks
such as binary arithmetic. Each gate has binary value inputs and outputs.

3Finite Differences are a numerical method used in solving differential equations.

14.5 Boole’s Symbolic Logic 233

The example in Fig. 14.3 is that of an ‘AND’ gate which produces the binary
value 1 as output only if both inputs are 1. Otherwise, the result will be the binary
value 0. Figure 14.4 is an ‘OR’ gate which produces the binary value 1 as output if
any of its inputs is 1. Otherwise, it will produce the binary value 0.

Finally, a NOT gate (Fig. 14.5) accepts only a single input which it reverses.
That is, if the input is ‘1’ the value ‘0’ is produced and vice versa.

The logic gates may be combined to form more complex circuits. The example
in Fig. 14.6 is that of a half adder of 1 + 0. The inputs to the top OR gate are 1 and
0 which yields the result of 1. The inputs to the bottom AND gate are 1 and 0 which
yields the result 0, which is then inverted through the NOT gate to yield binary 1.
Finally, the last AND gate receives two 1’s as input and the binary value 1 is the
result of the addition.

The half adder computes the addition of two arbitrary binary digits, but it does
not calculate the carry. It may be extended to a full adder that provides a carry for
addition.

Fig. 14.3 Binary AND
operation

Fig. 14.4 Binary OR
operation

234 14 A Short History of Logic

14.6 Application of Symbolic Logic to Digital Computing

Claude Shannon (Fig. 14.7) was an American mathematician and engineer who
made fundamental contributions to computing. He was the first person4 to see the
applicability of Boolean algebra to simplify the design of circuits and telephone
routing switches. He showed that Boole’s symbolic logic developed in the nine-
teenth century provided the perfect mathematical model for switching theory and
for the subsequent design of digital circuits and computers.

His influential Master’s Thesis is a key milestone in computing, and it shows
how to layout circuits according to Boolean principles. It provides the theoretical
foundation of switching circuits, and his insight of using the properties of electrical
switches to do Boolean logic is the basic concept that underlies all electronic
digital computers.

Shannon realized that you could combine switches in circuits in such a manner
as to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons, and thus is capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

Vannevar Bush [5] was Shannon’s supervisor at MIT, and Shannon’s initial
work was to improve Bush’s mechanical computing device known as the Differ-
ential Analyser. This machine had a complicated control circuit that was composed
of one hundred switches that could be automatically opened and closed by an

Fig. 14.5 NOT operation

Fig. 14.6 Half adder

4Victor Shestakov at Moscow State University also proposed a theory of electric switches based on
Boolean algebra around the same time as Shannon. However, his results were published in Russian
in 1941 whereas Shannon’s were published in 1937.

14.6 Application of Symbolic Logic to Digital Computing 235

electromagnet. Shannon’s insight was his realization that an electronic circuit is
similar to Boole’s symbolic algebra, and he showed how Boolean algebra could be
employed to optimize the design of systems of electromechanical relays used in the
analog computer. He also realized that circuits with relays could solve Boolean
algebra problems.

He showed in his Master’s thesis “A Symbolic Analysis of Relay and Switching
Circuits” [6] that the binary digits (i.e. 0 and 1) can be represented by electrical
switches. The implications of true and false being denoted by the binary digits one
and zero were enormous since it allowed binary arithmetic and more complex
mathematical operations to be performed by relay circuits. This provided elec-
tronics engineers with the mathematical tool they needed to design digital electronic
circuits and provided the foundation of digital electronic design.

The design of circuits and telephone routing switches could be simplified with
Boolean algebra. Shannon showed how to layout circuitry according to Boolean
principles, and his Master’s thesis became the foundation for the practical design of
digital circuits. These circuits are fundamental to the operation of modern com-
puters and telecommunication systems, and his insight of using the properties of
electrical switches to do Boolean logic is the basic concept that underlies all
electronic digital computers.

14.7 Frege

Gottlob Frege (Fig. 14.8) was a German mathematician and logician who is con-
sidered (along with Boole) to be one of the founders of modern logic. He also made
important contributions to the foundations of mathematics, and he attempted to
show that all of the basic truths of mathematics (or at least of arithmetic) could be
derived from a limited set of logical axioms (this approach is known as logicism).

Fig. 14.7 Claude Shannon

236 14 A Short History of Logic

He invented predicate logic and the universal and existential quantifiers, and
predicate logic was a significant advance on Aristotle’s syllogistic logic. Predicate
logic is described in more detail in Chap. 15.

Frege’s first logical system, the 1879 Begriffsschrift, contained nine axioms and
one rule of inference. It was the first axiomatization of logic, and it was complete in
its treatment of propositional logic and first-order predicate logic. He published
several important books on logic, including Begriffsschrift, in 1879; Die Grund-
lagen der Arithmetik (The Foundations of Arithmetic) in 1884; and the two-volume
work Grundgesetze der Arithmetik (Basic Laws of Arithmetic), which were pub-
lished in 1893 and 1903. These books described his invention of axiomatic pred-
icate logic; the use of quantified variables; and the application of his logic to the
foundations of arithmetic.

Frege presented his predicate logic in his books, and he began to use it to define
natural numbers and their properties. He had intended producing three volumes of
the Basic Laws of Arithmetic, with the later volumes dealing with the real numbers
and their properties. However, Bertrand Russell discovered a contradiction in
Frege’s system (see Russell’s paradox in Chap. 2), which he communicated to
Frege shortly before the publication of the second volume. Frege was astounded by
the contradiction and he struggled to find a satisfactory solution, and Russell later
introduced the theory of types in the Principia Mathematica as a solution.

14.8 Review Questions

1. What is logic?
2. What is a fallacy?
3. Give examples of fallacies in arguments in natural language (e.g. in
politics, marketing, debates)

Fig. 14.8 Gottlob Frege

14.7 Frege 237

4. Investigate some of the early paradoxes (for example the Tortoise and
Achilles paradox or the arrow in flight paradox) and give your interpre-
tation of the paradox.
5. What is syllogistic logic and explain its relevance.
6. What is stoic logic and explain its relevance.
7. Explain the significance of the equation x2 = x in Boole’s symbolic
logic.
8. Describe how Boole’s symbolic logic provided the foundation for
digital computing.
9. Describe Frege’s contributions to logic.

14.9 Summary

This chapter gave a short introduction to logic, which is concerned with reasoning
and with establishing the validity of arguments. It allows conclusions to be deduced
from premises according to logical rules, and the logical argument establishes the
truth of the conclusion provided that the premises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. Socrates had a reputation for demolishing an opponent's position (it meant
that he did not win any friends in debate), and the Socratean enquiry consisted of
questions and answers in which the opponent would be led to a conclusion
incompatible with his original position. His approach showed that his opponent’s
position was incoherent and untenable.

Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic logic
is a ‘term logic’, with letters used to stand for the individual terms. A syllogism
consists of two premises and a conclusion, where the conclusion is a valid deduction
from the two premises. The Stoics developed an early form of propositional logic,
where the assertibles (propositions) have a truth-value they are either true or false.

George Boole developed his symbolic logic in the mid-1800s, and it later formed
the foundation for digital computing. Boole argued that logic should be considered
as a separate branch of mathematics, rather than a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations.

Gottlob Frege made important contributions to logic and to the foundations of
mathematics. He attempted to show that all of the basic truths of mathematics (or at
least of arithmetic) could be derived from a limited set of logical axioms (this
approach is known as logicism). He invented predicate logic and the universal and
existential quantifiers, and predicate logic was a significant advance on Aristotle’s
syllogistic logic.

238 14 A Short History of Logic

References

1. Ackrill JL (1994) Aristotle the philosopher. Clarendon Press Oxford
2. Boole G (1848) The calculus of logic. Camb Dublin Math J. III:183–98
3. Boole G (1854) An investigation into the laws of thought. Dover Publications. First published

in 1854
4. McHale D (1985) Boole. Cork University Press
5. O’ Regan G (2013) Giants of computing. Springer
6. Shannon C (1937) A symbolic analysis of relay and switching circuits. Masters thesis.

Massachusetts Institute of Technology

References 239

15Propositional and Predicate Logic

15.1 Introduction

Logic is the study of reasoning and the validity of arguments, and it is concerned
with the truth of statements (propositions) and the nature of truth. Formal logic is
concerned with the form of arguments and the principles of valid inference. Valid
arguments are truth preserving, and for a valid deductive argument, the conclusion
will always be true if the premises are true.

Propositional logic is the study of propositions, where a proposition is a state-
ment that is either true or false. Propositions may be combined with other propo-
sitions (with a logical connective) to form compound propositions. Truth tables are
used to give operational definitions of the most important logical connectives, and
they provide a mechanism to determine the truth-values of more complicated
logical expressions.

Propositonal logic may be used to encode simple arguments that are expressed in
natural language, and to determine their validity. The validity of an argument may
be determined from truth tables, or using the inference rules such as modus ponens
to establish the conclusion via deductive steps.

Predicate logic allows complex facts about the world to be represented, and new
facts may be determined via deductive reasoning. Predicate calculus includes
predicates, variables and quantifiers, and a predicate is a characteristic or property
that the subject of a statement can have. A predicate may include variables, and
statements with variables become propositions once the variables are assigned
values.

The universal quantifier is used to express a statement such as that all members
of the domain of discourse have property P. This is written as ð8xÞPðxÞ, and it
expresses the statement that the property P(x) is true for all x.

The existential quantifier states that there is at least one member of the domain of
discourse that has property P. This is written as ð9xÞPðxÞ.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_15

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_15

15.2 Propositional Logic

Propositional logic is the study of propositions where a proposition is a statement
that is either true or false. There are many examples of propositions such as
‘1 + 1 = 2’ which is a true proposition, and the statement that “Today is Wed-
nesday” which is true if today is Wednesday and false otherwise. The statement
x > 0 is not a proposition as it contains a variable x, and it is only meaningful to
consider its truth or falsity only when a value is assigned to x. Once the variable x is
assigned a value, it becomes a proposition. The statement “This sentence is false” is
not a proposition as it contains a self-reference that contradicts itself. Clearly, if the
statement is true, it is false and if it is false, it is true.

A propositional variable may be used to stand for a proposition (e.g. let the
variable P stand for the proposition ‘2 + 2 = 4’ which is a true proposition).
A propositional variable takes the value true or false. The negation of a proposition
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false if
and only if P is true.

A well-formed formula (wff) in propositional logic is a syntactically correct
formula created according to the syntactic rules of the underlying calculus.
A well-formed formula is built up from variables, constants, terms and logical
connectives such as conjunction (and), disjunction (or), implication (if.. then..),
equivalence (if and only if) and negation. A distinguished subset of these
well-formed formulae are the axioms of the calculus, and there are rules of infer-
ence that allow the truth of new formulae to be derived from the axioms and from
formulae that have already been demonstrated to be true in the calculus.

A formula in propositional calculus may contain several propositional variables,
and the truth or falsity of the individual variables needs to be known prior to
determine the truth or falsity of the logical formula.

Each propositional variable has two possible values and a formula with n-
propositional variables has 2n values associated with the n-propositional variables.
The set of values associated with the n variables may be used to derive a truth table
with 2n rows and n + 1 columns. Each row gives each of the 2n truth-values that the
n variables may take, and column n + 1 gives the result of the logical expression for
that set of values of the propositional variables. For example, the propositional
formula W defined in the truth table above has two propositional variables A and B,
with 22 = 4 rows for each of the values that the two propositional variables may
take. There are 2 + 1 = 3 columns with W defined in the third column (Table 15.1).

A rich set of connectives is employed in the calculus to combine propositions
and to build up well-formed formulae. This includes the conjunction of two
propositions ðA ^ BÞ; the disjunction of two propositions ðA _ BÞ; and the impli-
cation of two propositions ðA ! BÞ. These connectives allow compound proposi-
tions to be formed, and the truth of the compound propositions is determined from
the truth-values of its constituent propositions and the rules associated with the
logical connective. The meaning of the logical connectives is given by truth tables.1

1Basic truth tables were first used by Frege, and developed further by Post and Wittgenstein.

242 15 Propositional and Predicate Logic

Mathematical Logic is concerned with inference, and it involves proceeding in a
methodical way from the axioms and using the rules of inference to derive further
truths.

The rules of inference allow new propositions to be deduced from a set of
existing propositions. A valid argument (or deduction) is truth preserving, i.e. for a
valid logical argument, if the set of premises is true, then the conclusion (i.e. the
deduced proposition) will also be true. The rules of inference include rules such as
modus ponens, and this rule states that given the truths of the proposition A, and the
proposition A ! B, then the truth of proposition B may be deduced.

The propositional calculus is employed in reasoning about propositions, and it
may be applied to formalize arguments in natural language. Boolean algebra is
used in computer science, and it is named after George Boole, who was the first
professor of mathematics at Queens College, Cork.2 His symbolic logic (discussed
in Chap. 14) is the foundation for modern computing.

15.2.1 Truth Tables

Truth tables give operational definitions of the most important logical connectives,
and they provide a mechanism to determine the truth-values of more complicated
compound expressions. Compound expressions are formed from propositions and
connectives, and the truth-values of a compound expression containing several
propositional variables are determined from the underlying propositional variables
and the logical connectives.

The conjunction of A and B (denoted A ^ BÞ is true if and only if both A and B are
true, and is false in all other cases (Table 15.2). The disjunction of two propositions
A and B (denoted A _ BÞ is true if at least one of A and B are true, and false in all
other cases (Table 15.3). The disjunction operator is known as the ‘inclusive or’
operator as it is also true when both A and B are true; there is also an exclusive or
operator that is true exactly when one of A or B is true and is false otherwise.

Example 15.1 Consider proposition A given by “An orange is a fruit” and
proposition B given by ‘2 + 2 = 5’, then A is true and B is false. Therefore

(i) A ^ B (i.e. An orange is a fruit and 2 + 2 = 5) is false,
(ii) A _ B (i.e. An orange is a fruit or 2 + 2 = 5) is true.

Table 15.1 Truth table for
formula W

A B W (A, B)

T T T

T F F

F T F

F F T

2This institution is now known as University College Cork and has over 20,000 students.

15.2 Propositional Logic 243

The implication operation ðA ! BÞ is true if whenever A is true; means that B is
also true, and also whenever A is false (Table 15.4). It is equivalent (as shown by a
truth table) to :A _ B. The equivalence operation ðA $ BÞ is true whenever both
A and B are true, or whenever both A and B are false (Table 15.5).

The not operator ð:Þ is a unary operator (i.e. it has one argument) and is such
that :A is true when A is false, and is false when A is true (Table 15.6).

Table 15.2 Conjunction A B A ^ B

T T T

T F F

F T F

F F F

Table 15.3 Disjunction A B A _ B

T T T

T F T

F T T

F F F

Table 15.4 Implication A B A ! B

T T T

T F F

F T T

F F T

Table 15.5 Equivalence A B A $ B

T T T

T F F

F T F

F F T

Table 15.6 Not operation A :A
T F

F T

244 15 Propositional and Predicate Logic

Example 15.2 Consider proposition A given by “Jaffa cakes are biscuits” and
proposition B given by ‘2 + 2 = 5’, then A is true and B is false. Therefore

(i) A ! B (i.e., Jaffa cakes are biscuits implies 2 + 2 = 5) is false,
(ii) A $ B (i.e., Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false,
(iii) :B (i.e., 2 + 2 6¼ 5) is true.

Creating a Truth Table

The truth table for a well-formed formula W(P1, P2, …, Pn) is a table with 2n rows
and n + 1 columns. Each row lists a different combination of truth-values of the
propositions P1, P2, …, Pn followed by the corresponding truth-value of W.

The example above (Table 15.7) gives the truth table for a formula W with three
propositional variables (meaning that there are 23 = 8 rows in the truth table).

15.2.2 Properties of Propositional Calculus

There are many well-known properties of propositional calculus such as the
commutative, associative and distributive properties. These ease the evaluation of
complex expressions and allow logical expressions to be simplified.

The commutative property holds for the conjunction and disjunction operators,
and it states that the order of evaluation of the two propositions may be reversed
without affecting the resulting truth-value, i.e.

A ^ B ¼ B ^ A,

A _ B ¼ B _ A:

The associative property holds for the conjunction and disjunction operators.
This means that the order of evaluation of a sub-expression does not affect the
resulting truth-value, i.e.

Table 15.7 Truth table for
W(P, Q, R)

P Q R W(P, Q, R)

T T T F

T T F F

T F T F

T F F T

F T T T

F T F F

F F T F

F F F F

15.2 Propositional Logic 245

ðA ^ BÞ ^ C ¼ A ^ ðB ^ CÞ;

ðA _ BÞ _ C ¼ A _ ðB _ CÞ:

The conjunction operator distributes over the disjunction operator and vice
versa.

A ^ ðB _ CÞ ¼ ðA ^ BÞ _ ðA ^ CÞ;

A _ ðB ^ CÞ ¼ ðA _ BÞ ^ ðA _ CÞ:

The result of the logical conjunction of two propositions is false if one of the
propositions is false (irrespective of the value of the other proposition).

A ^ F ¼ F ^ A ¼ F:

The result of the logical disjunction of two propositions is true if one of the
propositions is true (irrespective of the value of the other proposition).

A _ T ¼ T _ A ¼ T:

The result of the logical disjunction of two propositions, where one of the
propositions is known to be false is given by the truth-value of the other propo-
sition. That is, the Boolean value ‘F’ acts as the identity for the disjunction
operation.

A _ F ¼ A ¼ F _ A:

The result of the logical conjunction of two propositions, where one of the
propositions is known to be true, is given by the truth-value of the other proposi-
tion. That is, the Boolean value ‘T’ acts as the identity for the conjunction
operation.

A ^ T ¼ A ¼ T ^ A:

The ^ and _ operators are idempotent. That is, when the arguments of the
conjunction or disjunction operator are the same, for proposition A, the result is A.
The idempotent property allows expressions to be simplified.

A ^ A ¼ A;

A _ A ¼ A:

The law of the excluded middle is a fundamental property of the propositional
calculus. It states that proposition A is either true or false, i.e. there is no third
logical value.

246 15 Propositional and Predicate Logic

A _ :A:

We mentioned earlier that A ! B is logically equivalent to :A _ B (same truth
table), and clearly :A _ B is the same as :A _ ::B ¼ ::B _ :A which is logi-
cally equivalent to :B ! :A. In other words, A ! B is logically equivalent to
:B ! :A and this is known as the contrapositive.

De Morgan was a contemporary of Boole in the nineteenth century, and the
following law is known as De Morgan’s law.

:ðA ^ BÞ � :A _ :B;

:ðA _ BÞ � :A ^ :B:

Certain well-formed formulae are true for all values of their constituent vari-
ables. This can be seen from the truth table when the last column of the truth table
consists entirely of true values.

A proposition that is true for all values of its constituent propositional variables
is known as a tautology. An example of a tautology is the proposition A _ :A
(Table 15.8).

A proposition that is false for all values of its constituent propositional variables
is known as a contradiction. An example of a contradiction is the proposition
A ^ :A.

15.2.3 Proof in Propositional Calculus

Logic enables further truths to be derived from existing truths by rules of inference
that are truth preserving. Propositional calculus is both complete and consistent.
The completeness property means that all true propositions are deducible in the
calculus, and the consistency property means that there is no formula A such that
both A and :A are deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.

Consider a set of premises P1, P2, … Pn and conclusion Q. Then to determine if
the argument is valid using a truth table involves adding a column in the truth table
for each premise P1, P2, … Pn, and then to identify the rows in the truth table for
which these premises are all true. The truth-value of the conclusion Q is examined
in each of these rows, and if Q is true for each case for which P1, P2, … Pn are all

Table 15.8 Tautology
B _ :B B :B B _ :B

T F T

F T T

15.2 Propositional Logic 247

true, then the argument is valid. This is equivalent to P1 ^ P2 ^ . . . ^ Pn ! Q is a
tautology.

An alternate approach to proof with truth tables is to assume the negation of the
desired conclusion (i.e. :QÞ and to show that the premises and the negation of the
conclusion result in a contradiction (i.e. P1 ^ P2 ^ . . . ^ Pn ^ :QÞ is a
contradiction.

The use of truth tables becomes cumbersome when there are a large number of
variables involved, as there are 2n truth table entries for n- propositional variables.

Procedure for Proof by Truth Table

(i) Consider argument P1, P2, …, Pn with conclusion Q.
(ii) Draw truth table with column in truth table for each premise P1, P2, …, Pn.
(iii) Identify rows in truth table for when these premises are all true.
(iv) Examine truth-value of Q for these rows.
(v) If Q is true for each case that P1, P2,… Pn are true then the argument is valid.
(vi) That is P1 ^ P2 ^ . . . ^ Pn ! Q is a tautology.

Example 15.3 (Truth Tables) Consider the argument adapted from [1] and
determine if it is valid.
If the pianist plays the concerto, then crowd will come if the prices are not too high.
If the pianist plays the concerto, then the prices will not be too high.
Therefore, if the pianist plays the concerto, then crowd will come.

Solution We will adopt a common proof technique that involves showing that the
negation of the conclusion is incompatible (inconsistent) with the premises, and
from this, we deduce that the conclusion must be true. First, we encode the argu-
ment in propositional logic

Let P stand for “The pianist plays the concerto”; C stands for “Crowds will
come”; and H stands for “Prices are too high”. Then the argument may be expressed
in propositional logic as

P ! ð:H ! CÞ;
P ! :H;

P ! C:

Then we negate the conclusion P ! C and check the consistency of P !
ð:H ! CÞ ^ ðP ! :HÞ ^ :ðP ! CÞ� using a truth table (Table 15.9).

It can be seen from the last column in the truth table that the negation of the
conclusion is incompatible with the premises, and therefore, it cannot be the case
that the premises are true and the conclusion false. Therefore, the conclusion must
be true whenever the premises are true, and we conclude that the argument is valid.

248 15 Propositional and Predicate Logic

Logical Equivalence and Logical Implication
The laws of mathematical reasoning are truth preserving, and are concerned with

deriving further truths from existing truths. Logical reasoning is concerned with
moving from one line in mathematical argument to another and involves deducing
the truth of another statement Q from the truth of P.

The statement Q may be in some sense be logically equivalent to P and this
allows the truth of Q to be immediately deduced. In other cases, the truth of P is
sufficiently strong to deduce the truth of Q; in other words, P logically implies
Q. This leads naturally to a discussion of the concepts of logical equivalence (W1 �
W2) and logical implication (

W1 ├ W2).

Logical Equivalence

Two well-formed formulae W1 and W2 with the same propositional variables (P, Q,
R …) are logically equivalent (W1 � W2) if they are always simultaneously true or
false for any given truth-values of the propositional variables.

If two well-formed formulae are logically equivalent then it does not matter
which ofW1 andW2 is used, andW1 $ W2 is a tautology. In Table 15.10 above, we
see that P ^ Q is logically equivalent to :ð:P _ :QÞ.
Logical Implication

For two well-formed formulae W1 and W2 with the same propositional variables (P,
Q, R …), W1 logically implies W2 (W1 ├ W2), if any assignment to the proposi-
tional variables which makes W1 true also makes W2 true (Table 15.11). That is,
W1 ! W2 is a tautology.

Table 15.9 Proof of argument with a truth table

P C H :H :H ! C P ! ð:H ! CÞ P ! :H P ! C :ðP ! CÞ *

T T T F T T F T F F

T T F T T T T T F F

T F T F T T F F T F

T F F T F F T F T F

F T T F T T T T F F

F T F T T T T T F F

F F T F T T T T F F

F F F T F T T T F F

Table 15.10 Logical
equivalence of two WFFs

P Q P ^ Q :P :Q :P _ :Q :ð:P _ :QÞ
T T T F F F T

T F F F T T F

F T F T F T F

F F F T T T F

15.2 Propositional Logic 249

Example 15.4 Show by truth tables that (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R).

The formula ðP ^ QÞ _ ðQ ^ :RÞ is true on rows 1, 2 and 6 and the formula
ðQ _ RÞ is also true on these rows. Therefore, (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R).

15.2.4 Semantic Tableaux in Propositional Logic

We showed in Example 15.3 how truth tables may be used to demonstrate the
validity of a logical argument. However, the problem with truth tables is that they
can get extremely large very quickly (as the size of the table is 2n where n is the
number of propositional variables), and so in this section, we will consider an
alternative approach known as semantic tableaux.

The basic idea of semantic tableaux is to determine if it is possible for a con-
clusion to be false when all of the premises are true. If this is not possible, then the
conclusion must be true when the premises are true, and so the conclusion is
semantically entailed by the premises. The method of semantic tableaux is a
technique to expose inconsistencies in a set of logical formulae, by identifying
conflicting logical expressions.

We present a short summary of the rules of semantic tableaux in Table 15.12,
and we then proceed to provide proof for Example 15.3 using semantic tableaux
instead of a truth table.

Whenever a logical expression A and its negation :A appear in a branch of the
tableau, then an inconsistency has been identified in that branch, and the branch is
said to be closed. If all of the branches of the semantic tableaux are closed, then the
logical propositions from which the tableau was formed are mutually inconsistent,
and cannot be true together.

The method of proof is to negate the conclusion and to show that all branches in
the semantic tableau are closed, and therefore, it is not possible for the premises of
the argument to be true and for the conclusion to be false. Therefore, the argument
is valid and the conclusion follows from the premises.

Table 15.11 Logical
implication of two WFFs

P Q R ðP ^ QÞ _ ðQ _ :RÞ Q _ R

T T T T T

T T F T T

T F T F T

T F F F F

F T T F T

F T F T T

F F T F T

F F F F F

250 15 Propositional and Predicate Logic

Example 15.5 (Semantic Tableaux): Perform the proof for Example 15.3 using
semantic tableaux.

Solution We formalized the argument previously as

P ! ð:H ! CÞ
P ! :H
P ! C

We negate the conclusion to get :ðP ! CÞ and we show that all branches in the
semantic tableau are closed, and therefore, it is not possible for the premises of the
argument to be true and for the conclusion false. Therefore, the argument is valid,
and the truth of the conclusion follows from the truth of the premises.

Table 15.12 Rules of semantic tableaux

Rule
No

Definition Description

1 A ^ B
A
B

If A ^ B is true, then both A and B are true, and may be added
to the branch containing A ^ B

2 If A _ B is true, then either A or B is true, and we add two new
branches to the tableaux, one containing A and one containing
B

3 If A ! B is true, then either :A or B is true, and we add two
new branches to the tableaux, one containing :A and one
containing B

4 If A $ B is true, then either A ^ B or :A ^ :B is true, and we
add two new branches, one containing A ^ B and one
containing :A ^ :B

5 ::A
A

If ::A is true, then A may be added to the branch containing
::A

6 If :ðA ^ BÞ is true, then either :A or :B is true, and we add
two new branches to the tableaux, one containing :A and one
containing :B

7 : A _ Bð Þ
:A
:B

If : A _ Bð Þ is true, then both :A and :B are true, and may be
added to the branch containing : A _ Bð Þ

8 : A ! Bð Þ
A
:B

If : A ! Bð Þ is true, then both A and :B are true, and may be
added to the branch containing : A ! Bð Þ

15.2 Propositional Logic 251

We have shown that all branches in the semantic tableau are closed, and
therefore, it is not possible for the premises of the argument to be true and for the
conclusion false. Therefore, the argument is valid as required.

15.2.5 Natural Deduction

The German mathematician, Gerhard Gentzen (Fig. 15.1), developed a method for
logical deduction known as ‘Natural Deduction’, and his formal approach to natural
deduction aimed to be as close as possible to natural reasoning. Gentzen worked as
an assistant to David Hilbert at the University of Göttingen, and he died of mal-
nutrition in Prague at the end of the Second World War.

Fig. 15.1 Gerhard Gentzen

252 15 Propositional and Predicate Logic

Natural deduction includes rules for ^, _, ! introduction and elimination and
also for reductio ab adsurdum. There are ten inference rules in the Natural
Deduction system, and they include inference rules for each of the five logical
operators ^, _, ¬, ! and $. There are two inference rules per operator (an
introduction rule and an elimination rule) in Table 15.13.

Natural deduction may be employed in logical reasoning and is described in
detail in [1, 2].

15.2.6 Sketch of Formalization of Propositional Calculus

Truth tables provide an informal approach to proof and the proof is provided in
terms of the meanings of the propositions and logical connectives. The formal-
ization of propositional logic includes the definition of an alphabet of symbols and
well-formed formulae of the calculus, the axioms of the calculus and rules of
inference for logical deduction.

Table 15.13 Natural deduction rules

Rule Definition Description

^I P1 ;P2 ;... Pn

P1^P2^...^Pn

Given the truth of propositions P1, P2, … Pn then the truth of the
conjunction P1 ^ P2 ^ . . . ^ Pn follows. This rule shows how
conjunction can be introduced

^E P1^P2^...^Pn

Pi

where i 2 {1,…,n}

Given the truth the conjunction P1 ^ P2 ^ . . . ^ Pn then the truth
of proposition Pi follows. This rule shows how a conjunction
can be eliminated

_I Pi

P1_P2_..._Pn

Given the truth of propositions Pi then the truth of the
disjunction P1 _ P2 _ . . . _ Pn follows. This rule shows how a
disjunction can be introduced

E P1..._Pn ; P1!E;... Pn!E
E

Given the truth of the disjunction P1 _ P2 _ . . . _ Pn, and that
each disjunct implies E, then the truth of E follows. This rule
shows how a disjunction can be eliminated

! I From P1 ;P2 ;... Pn infer P
ðP1^P2^...^PnÞ!P

This rule states that if we have a theorem that allows P to be
inferred from the truth of premises P1, P2, … Pn, then we can
deduce ðP1 ^ P2 ^ . . . ^ PnÞ ! P. This is known as the
Deduction Theorem

! E Pi!Pj ;Pi

Pj

This rule is known as modus ponens. The consequence of an
implication follows if the antecedent is true (or has been
previously proved)

� I Pi!Pj ;Pj!Pi

Pi$Pj

If proposition Pi implies proposition Pj and vice versa then they
are equivalent (i.e. Pi $ PjÞ

� E Pi$Pj

Pi!Pj ; Pj!Pi

If proposition Pi is equivalent to proposition Pj then proposition
Pi implies proposition Pj and vice versa

:I FromP inferP1^:P1

:P
If the proposition P allows a contradiction to be derived, then :P
is deduced. This is an example of a proof by contradiction

:E From:P inferP1^:P1

P
If the proposition :P allows a contradiction to be derived, then P
is deduced. This is an example of a proof by contradiction

15.2 Propositional Logic 253

The deduction of a new formulae Q is via a sequence of well-formed formulae
P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis, or
deducible from an earlier pair of formula Pj, Pk, (where Pk is of the form Pj) PiÞ
and modus ponens. Modus ponens is a rule of inference that states that given
propositions A, and A) B then proposition B may be deduced. The deduction of a
formula Q from a set of hypothesis H is denoted by H ├ Q, and where Q is
deducible from the axioms alone this is denoted by ├ Q.

The deduction theorem of propositional logic states that if H [{P} ├ Q, then
H ├ P ! Q, and the converse of the theorem is also true, i.e. if H├ P ! Q then
H [fPg├ Q. Formalism (this approach was developed by the German mathe-
matician, David Hilbert) allows reasoning about symbols according to rules, and to
derive theorems from formulae irrespective of the meanings of the symbols and
formulae.

Propositional calculus is sound, i.e. any theorem derived using the Hilbert
approach is true. Further, the calculus is also complete, and every tautology has a
proof (i.e. is a theorem in the formal system). The propositional calculus is con-
sistent: (i.e. it is not possible that both the well-formed formula A and :A are
deducible in the calculus).

Propositional calculus is decidable, i.e. there is an algorithm (truth table) to
determine for any well-formed formula A whether A is a theorem of the formal
system. The Hilbert style system is slightly cumbersome in conducting proof and is
quite different from the normal use of logic in the mathematical deduction.

15.2.7 Applications of Propositional Calculus

Propositional calculus may be employed in reasoning with arguments in natural
language. First, the premises and conclusion of the argument are identified and
formalized into propositions. Propositional logic is then employed to determine if
the conclusion is a valid deduction from the premises.

Consider, for example, the following argument that aims to prove that Superman
does not exist:

“If Superman were able and willing to prevent evil, he would do so. If Superman
were unable to prevent evil he would be impotent; if he were unwilling to prevent
evil he would be malevolent; Superman does not prevent evil. If superman exists he
is neither malevolent nor impotent; therefore Superman does not exist”.

First, letters are employed to represent the propositions as follows:

a Superman is able to prevent evil,
w Superman is willing to prevent evil,
i Superman is impotent,
m Superman is malevolent,
p Superman prevents evil,
e Superman exists.

254 15 Propositional and Predicate Logic

Then, the argument above is formalized in propositional logic as follows:

Premises
P1

P2

P3

P4

ða ^ wÞ ! p;
ð:a ! iÞ ^ ð:w ! mÞ;
:p;
e ! : i ^ :m:�������������������������

Conclusion P1 ^ P2 ^ P3 ^ P4) : e

Proof that Superman does not exist

1 a ^ w ! p Premise 1

2 ð:a ! iÞ ^ ð:w ! mÞ Premise 2

3 :p Premise 3

4 e ! ð: i ^ :mÞ Premise 4

5 :p ! :ða ^ wÞ 1, Contrapositive

6 :ða ^ wÞ 3,5 Modus Ponens

7 :a _ :w 6, De Morgan’s Law

8 :ð: i ^ :mÞ ! :e 4, Contrapositive

9 i _ m ! :e 8, De Morgan’s Law

10 ð: a ! iÞ 2, ^ Elimination

11 ð:w ! mÞ 2, ^ Elimination

12 ::a _ i 10, A ! B equivalent to :A _ B

13 ::a _ i _ m 11, _ Introduction

14 ::a _ ði _ mÞ
15 :a ! ði _ mÞ 14, A ! B equivalent to :A _ B

16 ::w _ m 11, A ! B equivalent to :A _ B

17 ::w _ ði _ mÞ
18 :w ! ði _ mÞ 17, A ! B equivalent to :A _ B

19 ði _ mÞ 7,15, 18 _Elimination
20 ¬e 9,19 Modus Ponens

Second Proof

1 ¬p P3

2 :ða ^ wÞ _ p P1ðA ! B � :A _ BÞ
3 :ða ^ wÞ 1,2 A _ B;:B ├ A

4 :a _ :w 3, De Morgan’s Law

5 ð:a ! iÞ P2 (^-Elimination)

6 :a ! i _ m 5, x ! y ├ x ! y _ z

7 ð:w ! mÞ P2 (^-Elimination)
(continued)

15.2 Propositional Logic 255

(continued)

1 ¬p P3

8 :w ! i _ m 7, x ! y ├ x ! y _ z

9 ð:a _ :wÞ ! ði _ mÞ 8, x ! z, y ! z ├ x _ y ! z

10 ði _ mÞ 4,9 Modus Ponens

11 e ! :ði _ mÞ P4 (De Morgan’s Law)

12 :e _ :ði _ mÞ 11,ðA ! B � :A _ BÞ
13 ¬e 10, 12 A _ B;:B ├ A

Therefore, the conclusion that Superman does not exist is a valid deduction from
the given premises.

15.2.8 Limitations of Propositional Calculus

The propositional calculus deals with propositions only. It is incapable of dealing
with the syllogism “All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal”. This would be expressed in propositional calculus as three propositions A,
B, therefore C, where A stands for “All Greeks are mortal”, B stands for “Socrates is
a Greek” and C stands for “Socrates is mortal”. Propositional logic does not allow
the conclusion that all Greeks are mortal to be derived from the two premises.

Predicate calculus deals with these limitations by employing variables and terms
and using universal and existential quantification to express that a particular
property is true of all (or at least one) values of a variable. Predicate calculus is
discussed in the next section.

15.3 Predicate Calculus

Predicate logic is a richer system than propositional logic, and it allows complex
facts about the world to be represented. It allows new facts about the world to be
derived in a way that guarantees that if the initial facts are true, then the conclusions
are true. Predicate calculus includes predicates, variables, constants and quantifiers.

A predicate is a characteristic or property that an object can have, and we are
predicating some property of the object. For example, “Socrates is a Greek” could
be expressed as G(s), with capital letters standing for predicates and small letters
standing for objects. A predicate may include variables, and a statement with a
variable becomes a proposition once the variables are assigned values. For example,
G(x) states that the variable x is a Greek, whereas G(s) is an assignment of values to
x. The set of values that the variables may take is termed the universe of discourse,
and the variables take values from this set.

Predicate calculus employs quantifiers to express properties such as all members
of the domain have a particular property, e.g. ð8xÞPðxÞ, or that there is at least one

256 15 Propositional and Predicate Logic

member that has a particular property, e.g. ð9xÞPðxÞ. These are referred to as the
universal and existential quantifiers.

The syllogism “All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal” may be easily expressed in predicate calculus by

ð8xÞðGðxÞ ! MðxÞÞ
GðsÞ
� � � ����������
MðsÞ

In this example, the predicate G(x) stands for x is a Greek and the predicate M
(x) stands for x is mortal. The formula GðxÞ ! MðxÞ states that if x is a Greek, then
x is mortal, and the formula ð8xÞðGðxÞ ! MðxÞÞ states for any x that if x is a Greek,
then x is mortal. The formula G(s) states that Socrates is a Greek and the formula M
(s) states that Socrates is mortal.

Example 15.6 (Predicates) A predicate may have one or more variables. A pred-
icate that has only one variable (i.e. a unary or 1-place predicate) is often related to
sets; a predicate with two variables (a 2-place predicate) is a relation; and a pred-
icate with n variables (a n-place predicate) is a n-ary relation. Propositions do not
contain variables and so they are 0-place predicates. The following are examples of
predicates:

(i) The predicate Prime(x) states that x is a prime number (with the natural
numbers being the universe of discourse).

(ii) Lawyer(a) may stand for a is a lawyer.
(iii) Mean(m,x,y) states that m is the mean of x and y: i.e., m = ½(x + y).
(iv) LT(x,6) states that x is less than 6.
(v) GT(x, pÞ states that x is greater than p (where is the constant 3.14159).
(vi) GE(x,y) states that x is greater than or equal to y.
(vii) EQ(x, y) states that x is equal to y.
(viii) LE(x,y) states that x is less than or equal to y.
(ix) Real(x) states that x is a real number.
(x) Father(x,y) states that x is the father of y.
(xi) :ð9xÞðPrimeðxÞ ^ Bðx; 32; 36ÞÞ states that there is no prime number

between 32 and 36.

15.3 Predicate Calculus 257

Universal and Existential Quantification

The universal quantifier is used to express a statement that all members of the
domain have property P. This is written as ð8xÞPðxÞ and expresses the statement hat
the property.

P(x) is true for all x. Similarly, ð8x1; x2; . . .; xnÞPðx1; x2; . . .; xnÞ states that
property P(x1,x2,…, xn) is true for all x1,x2,…, xn. Clearly, the predicate ð8xÞPða; bÞ
is identical to P(a,b) since it contains no variables, and the predicate ð8y 2
NÞðx� yÞ is true if x = 1 and false otherwise.

The existential quantifier states that there is at least one member in the domain of
discourse that has property P. This is written as ð9xÞPðxÞ and the predicate
ð9x1; x2; . . .; xnÞPðx1; x2; . . .; xnÞ states that there is at least one value of (x1,x2, …,
xn) such that P(x1,x2, …, xn) is true.

Example 15.7 (Quantifiers)

(i) ð9pÞ ðPrimeðpÞ ^ p [1; 000; 000Þ is true

It expresses the fact that there is at least one prime number greater than a million,
which is true as there is an infinite number of primes.

(ii) ð8xÞ ð9yÞx\y is true

This predicate expresses the fact that given any number x we can always find a
larger number, e.g. take y = x+1.

(iii) ð9yÞ ð8xÞx\y is false

This predicate expresses the statement that there is a natural number y such that all
natural numbers are less than y. Clearly, this statement is false since there is no
largest natural number, and so the predicate ð9yÞ ð8xÞx\y is false.

Comment 15.1 It is important.
to be careful with the order in which quantifiers are written, as the meaning of a

statement may be completely changed by the simple transposition of two
quantifiers.

The well-formed formulae in the predicate calculus are built from terms and
predicates, and the rules for building the formulae are described briefly in
Sect. 15.3.1. Examples of well-formed formulae include:

258 15 Propositional and Predicate Logic

ð8xÞ x[2ð Þ;
ð9xÞx2 ¼ 2;

ð8xÞ ðx[2 ^ x\10Þ;
ð8yÞx2 ¼ y;

ð8xÞ ð9yÞLove y; xð Þ everyone is loved by someoneð Þ;
ð9yÞ ð8xÞLove y; xð Þ someone loves everyoneð Þ:

The formula ð8xÞðx[2Þ states that every x is greater than the constant 2;
ð9xÞx2 ¼ 2 states that there is an x that is the square root of 2; ð8xÞ ð9yÞx2 ¼ y
states that for every x there is a y such that the square of x is y.

15.3.1 Sketch of Formalization of Predicate Calculus

The formalization of predicate calculus includes the definition of an alphabet of
symbols (including constants and variables), the definition of function and predicate
letters, logical connectives and quantifiers. This leads to the definitions of the terms
and well-formed formulae of the calculus.

The predicate calculus is built from an alphabet of constants, variables, function
letters, predicate letters and logical connectives (including the logical connectives
discussed in propositional logic, and universal and existential quantifiers).

The definition of terms and well-formed formulae specify the syntax of the
predicate calculus, and the set of well-formed formulae gives the language of the
predicate calculus. The terms and well-formed formulae are built from the symbols,
and these symbols are not given meaning in the formal definition of the syntax.

The language defined by the calculus needs to be given an interpretation in order
to give meaning to the terms and formulae of the calculus. The interpretation needs
to define the domain of values of the constants and variables, and to provide
meaning to the function letters, the predicate letters and the logical connectives.

Terms are built from constants, variables and function letters. A constant or
variable is a term, and if t1, t2,…, tk are terms, then f ki t1; t2; . . .; tkð Þ is a term (where
f ki is a k-ary function letter). Examples of terms include:

x2 where x is a variable and square is a 1-ary function letter.
x2 + y2 where x2 + y2 is shorthand for the function add(square(x), square(y)).

where add is a 2-ary function letter and square is a 1-ary function
letter.
The well-formed formulae are built from terms as follows. If Pk

i is a k-ary
predicate letter, t1,t2, …, tk are terms, then Pk

i ðt1; t2; . . .; tkÞ is a well-formed for-
mula. If A and B are well-formed formulae, then so are :A;A ^ B;A _ B;A !
B;A $ B; ð8xÞA and ð9xÞA.

15.3 Predicate Calculus 259

There is a set of axioms for predicate calculus and two rules of inference used for
the deduction of new formulae from the existing axioms and previously deduced
formulae. The deduction of a new formula Q is via a sequence of well-formed
formulae P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a
hypothesis, or deducible from one or more of the earlier formulae in the sequence.

The two rules of inference are modus ponens and generalization. Modus ponens
is a rule of inference that states that given predicate formulae A, and A) B then the
predicate formula B may be deduced. Generalization is a rule of inference that states
that given predicate formula A, then the formula ð8xÞA may be deduced where x is
any variable.

The deduction of a formula Q from a set of hypothesis H is denoted by H├ Q,
and where Q is deducible from the axioms alone, this is denoted by ├ Q. The
deduction theorem states that if H [fPg├ Q then H ├ P ! Q3 and the converse
of the theorem is also true, i.e. if H ├ P ! Q then H[fPg├ Q.

The approach allows reasoning about symbols according to rules, and to derive
theorems from formulae irrespective of the meanings of the symbols and formulae.
Predicate calculus is sound i.e. any theorem derived using the approach is true, and
the calculus is also complete. Predicate calculus is semi-decidable (not fully
decidable) in the sense that the set of valid formulae is enumerable, which means
that it is possible (in theory) to search through all of the valid formulae.

Scope of Quantifiers

The scope of the quantifier ð8xÞ in the well-formed formula ð8xÞA is A. Similarly,
the scope of the quantifier ð9xÞ in the well-formed formula ð9xÞB is B. The variable
x that occurs within the scope of the quantifier is said to be a bound variable. If a
variable is not within the scope of a quantifier, it is free.

Example 15.8 (Scope of Quantifiers)

(i) x is free in the well-formed formula 8yðx2 þ y[5Þ;
(ii) x is bound in the well-formed formula 8xðx2 [2Þ:

A well-formed formula is closed if it has no free variables. The substitution of a
term t for x in A can only take place only when no free variable in t will become
bound by a quantifier in A through the substitution. Otherwise, the interpretation of
A would be altered by the substitution.

A term t is free for x in A if no free occurrence of x occurs within the scope of a
quantifier ð8yÞ or ð9yÞ where y is free in t. This means that the term t may be
substituted for x without altering the interpretation of the well-formed formula A.

For example, suppose A is 8yðx2 þ y2 [2Þ and the term t is y, then t is not free
for x in A as the substitution of t for x in A will cause the free variable y in t to

3This is stated more formally that if H[fPg ├ Q by a deduction containing no application of
generalization to a variable that occurs free in P then H ├ P ! Q.

260 15 Propositional and Predicate Logic

become bound by the quantifier 8y in A, thereby altering the meaning of the formula
to 8yðy2 þ y2 [2Þ.

15.3.2 Interpretation and Valuation Functions

An interpretation gives meaning to a formula and it consists of a domain of dis-
course and a valuation function. If the formula is a sentence (i.e. does not contain
any free variables), then the given interpretation of the formula is either true or
false. If a formula has free variables, then the truth or falsity of the formula depends
on the values given to the free variables. A formula with free variables essentially
describes a relation say, R(x1,x2,.… xn) such that R(x1, x2, .… xn) is true if (x1, x2, .…
xn) is in relation R. If the formula is true irrespective of the values given to the free
variables, then the formula is true in the interpretation.

A valuation (meaning) function gives meaning to the logical symbols and
connectives. Thus, associated with each constant c is a constant cR in some universe
of values R; with each function symbol f of arity k, we have a function symbol fR in
R and fR : Rk ! R; and for each predicate symbol P of arity k a relation PR�Rk.
The valuation function, in effect, gives the semantics of the language of the pred-
icate calculus L.

The truth of a predicate P is then defined in terms of the meanings of the terms,
the meanings of the functions, predicate symbols, and the normal meanings of the
connectives.

Mendelson [3] provides a technical definition of truth in terms of satisfaction
(with respect to an interpretationM). Intuitively a formula F is satisfiable if it is true
(in the intuitive sense) for some assignment of the free variables in the formula F. If
a formula F is satisfied for every possible assignment to the free variables in F, then
it is true (in the technical sense) for the interpretation M. An analogous definition is
provided for false in the interpretation M.

A formula is valid if it is true in every interpretation, however, as there may be
an uncountable number of interpretations, it may not be possible to check this
requirement in practice. M is said to be a model for a set of formulae if and only if
every formula is true in M.

There is a distinction between proof theoretic and model theoretic approaches in
predicate calculus. Proof theoretic is essentially syntactic, and there is a list of
axioms with rules of inference. The theorems of the calculus are logically derived
(i.e. ├ A) and the logical truths are a result of the syntax or form of the formulae,
rather than the meaning of the formulae. Model theoretical, in contrast, is essen-
tially semantic. The truth derives from the meaning of the symbols and connectives,
rather than the logical structure of the formulae. This is written as ├ M A.

A calculus is sound if all of the logically valid theorems are true in the inter-
pretation, i.e. proof theoretic) model theoretic. A calculus is complete if all the
truths in an interpretation are provable in the calculus, i.e. model theoretic) proof
theoretic. A calculus is consistent if there is no formula A such that ├ A and ├ ¬A.

15.3 Predicate Calculus 261

The predicate calculus is sound, complete and consistent. Predicate calculus is
not decidable (it is semi-decidable), i.e. there is no algorithm to determine for any
well-formed formula A whether A is a theorem of the formal system. The unde-
cidability of the predicate calculus may be demonstrated by showing that if the
predicate calculus is decidable, then the halting problem (of Turing machines) is
solvable (see Chap. 13).

15.3.3 Properties of Predicate Calculus

The following are properties of the predicate calculus:

(i) ð8xÞPðxÞ � ð8yÞPðyÞ;
(ii) ð8xÞPðxÞ � :ð9xÞ :PðxÞ;
(iii) ð9xÞPðxÞ � :ð8xÞ :PðxÞ;
(iv) ð9xÞP xð Þ � ð9yÞP yð Þ;
(v) ð8xÞ ð8yÞPðx; yÞ � ð8yÞ ð8xÞPðx; yÞ;
(vi) ð9xÞðPðxÞ _ QðxÞÞ � ð9xÞPðxÞ _ ð9yÞQðyÞ;
(vii) ð8xÞ ðPðxÞ ^ QðxÞÞ � ð8xÞPðxÞ ^ ð8yÞQðyÞ:

15.3.4 Applications of Predicate Calculus

The predicate calculus is may be employed to formally state the system require-
ments of a proposed system. It may be used to conduct formal proof to verify the
presence or absence of certain properties in a specification.

It may also be employed to define piecewise defined functions such as f(x,y),
where f(x,y) is defined by:

f ðx; yÞ ¼ x2 � y2 where x� 0 ^ y\0;

f ðx; yÞ ¼ x2 þ y2 where x[0 ^ y\0;

f ðx; yÞ ¼ xþ y where x� 0 ^ y ¼ 0;

f ðx; yÞ ¼ x� y where x\0 ^ y ¼ 0;

f ðx; yÞ ¼ xþ y where x� 0 ^ y[0;

f ðx; yÞ ¼ x2 þ y2 where x[0 ^ y[0:

The predicate calculus may be employed for program verification and to show
that a code fragment satisfies its specification. The statement that a program frag-
ment F is correct with respect to its precondition P and postcondition Q is written as
P{F}Q. The objective of program verification is to show that if the precondition is
true before execution of the code fragment, then this implies that the postcondition
is true after execution of the code.

262 15 Propositional and Predicate Logic

A program fragment a is partially correct for precondition P and postcondition
Q if and only if whenever a is executed in any state in which P is satisfied and
execution terminates, then the resulting state satisfies Q. Partial correctness is
denoted by P{F}Q, and Hoare’s Axiomatic Semantics is based on partial correct-
ness. It requires proof that the postcondition is satisfied if the program terminates.

A program fragment a is totally correct for precondition P and postcondition Q,
if and only if whenever a is executed in any state in which P is satisfied then the
execution terminates and the resulting state satisfies Q. It is denoted by {P}F{Q},
and Dijkstra’s calculus of weakest preconditions is based on total correctness [2, 4].
It is required to prove that if the precondition is satisfied then the program termi-
nates and the postcondition is satisfied. Program verification is discussed in more
detail in Chap. 20 and in [5].

15.3.5 Semantic Tableaux in Predicate Calculus

We discussed the use of semantic tableaux for determining the validity of argu-
ments in propositional logic earlier in this chapter, and its approach is to negate the
conclusion of an argument and to show that this results in inconsistency with the
premises of the argument.

The use of semantic tableaux is similar to predicate logic, except that there are
some additional rules to consider. As before, if all branches of a semantic tableau
are closed, then the premises and the negation of the conclusion are mutually
inconsistent. From this, we deduce that the conclusion must be true.

The rules of semantic tableaux for propositional logic were presented in
Table 15.12, and the additional rules specific to predicate logic are detailed in
Table 15.14.

Table 15.14 Extra rules of semantic tableaux (for predicate calculus)

Rule
No

Definition Description

1 ð8xÞAðxÞ
A(t) where t is a term

Universal instantiation

2 ð9xÞAðxÞ
A(t) where t is a term that has not been
used in the derivation so far

Rule of Existential instantiation. The
term “t” is often a constant “a”

3 :ð8xÞAðxÞ
ð9xÞ :AðxÞ

4 :ð9xÞAðxÞ
ð8xÞ:AðxÞ

15.3 Predicate Calculus 263

Example 15.9 (Semantic Tableaux) Show that the syllogism “All Greeks are
mortal; Socrates is a Greek; therefore Socrates is mortal” is a valid argument in
predicate calculus.

Solution We expressed this argument previously as
ð8xÞðGðxÞ ! MðxÞÞ;GðsÞ;MðsÞ. Therefore, we negate the conclusion (i.e. :MðsÞÞ.
and try to construct a closed tableau.

ð8xÞðGðxÞ ! MðxÞÞ
GðsÞ
:MðsÞ:
GðsÞ ! MðsÞ Universal Instantiation

^
:GðsÞ MðsÞ

� � � �� ������
closed closed

Therefore, as the tableau is closed, we deduce that the negation of the conclusion
is inconsistent with the premises, and therefore, the conclusion follows from the
premises.

Example 15.10 (Semantic Tableaux) Determine whether the following argument is
valid:

All lecturers are motivated.
Anyone who is motivated and clever will teach well.
Joanne is a clever lecturer.
Therefore, Joanne will teach well.

Solution We encode the argument as follows:

L(x) stands for ‘x is a lecturer’,
M(x) stands for ‘x is motivated’,
C(x) stands for ‘x is clever’,
W(x) stands for ‘x will teach well’.

We, therefore, wish to show that

ð8xÞðLðxÞ ! MðxÞÞ ^ ð8xÞððMðxÞ ^ CðxÞÞ ! WðxÞÞ ^ L joanneð Þ ^ C joanneð Þ
�W joanneð Þ

264 15 Propositional and Predicate Logic

Therefore, we negate the conclusion (i.e. ¬W(joanne)) and try to construct a
closed tableau:

1. ð8xÞðLðxÞ ! MðxÞÞ,
2. ð8xÞððMðxÞ ^ CðxÞÞ ! WðxÞÞ,
3. L(joanne),
4. C(joanne),
5. ¬W(joanne) ,
6.

7.

8.

9.

10.

Therefore, since the tableau is closed, we deduce that the argument is valid.

15.4 Review Questions

1. Draw a truth table to show that :ðP ! QÞ � P ^ :Q.
2. Translate the sentence “Execution of program P begun with x < 0 will not

terminate” into propositional form.
3. Prove the following theorems using the inference rules of natural

deduction:

(a) From b infer b _ :c,
(b) From b) ðc ^ dÞ; b infer d.

4. Explain the difference between the universal and the existential quantifier.

15.3 Predicate Calculus 265

5. Express the following statements in the predicate calculus:

a. All natural numbers are greater than 10,
b. There is at least one natural number between 5 and 10,
c. There is a prime number between 100 and 200.

6. Which of the following predicates are true?

a. 8i 2 f10; ::: ; 50g: i2\2000 ^ i\100
b. 9i 2 N: i[5 ^ i2 ¼ 25
c. 9i 2 N: i2 ¼ 25

7. Use semantic tableaux to show that ðA ! AÞ _ ðB ^ :BÞ is true
8. Determine if the following argument is valid.

If Pilar lives in Cork, she lives in Ireland. Pilar lives in Cork. Therefore, Pilar
lives in Ireland.

15.5 Summary

Propositional logic is the study of propositions, and a proposition is a statement that
is either true or false. A formula in propositional calculus may contain several
variables, and the truth or falsity of the individual variables, and the meanings of the
logical connectives determine the truth or falsity of the logical formula.

A rich set of connectives is employed in the calculus to combine propositions
and to build up well-formed formulae. This includes the conjunction of two
propositions ðA ^ BÞ, the disjunction of two propositions ðA _ BÞ, and the impli-
cation of two propositions ðA) BÞ. These connectives allow compound proposi-
tions to be formed, and the truth of the compound propositions is determined from
the truth-values of the constituent propositions and the rules associated with the
logical connectives.

Propositional calculus is both complete and consistent with all true propositions
deducible in the calculus, and there is no formula A such that both A and ¬A are
deducible in the calculus. An argument in propositional logic consists of a sequence
of formulae that are the premises of the argument and a further formula that is the
conclusion of the argument. One elementary way to see if the argument is valid is to
produce a truth table to determine if the conclusion is true whenever all of the
premises are true.

Predicate calculus allows expressions such as all members of the domain have a
particular property to be expressed formally, e.g. ð8xÞPx, or that there is at least one

266 15 Propositional and Predicate Logic

member that has a particular property, e.g. ð9xÞPx. Predicate calculus may be
employed to specify the requirements for a proposed system and to give the defi-
nition of a piecewise defined function. Semantic tableaux may be used for deter-
mining the validity of arguments in propositional or predicate logic, and its
approach is to negate the conclusion of an argument and to show that this results in
inconsistency with the premises of the argument.

References

1. Kelly J (1997) The essence of logic. Prentice Hall
2. Gries D (1981) The science of programming. Springer, Berlin
3. Mendelson E (1987) Introduction to mathematical logic. Wadsworth and Cole/Brook.

Advanced Books & Software
4. Dijkstra EW (1976) A disciple of programming. Prentice Hall
5. O’Regan G (2017) Concise guide to formal methods. Springer

15.5 Summary 267

16Advanced Topics in Logic

16.1 Introduction

In this chapter, we consider some advanced topics in logic including fuzzy logic,
temporal logic, intuitionist logic, undefined values, logic and AI and theorem
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical
model for vagueness, and it handles the concept of partial truth where truth-values
lie between completely true and completely false. Temporal logic is concerned with
the expression of properties that have time dependencies, and it allows temporal
properties about the past, present and future to be expressed.

Brouwer and others developed intuitionist logic as the logical foundation for
intuitionism, which was a controversial theory of the foundations of mathematics
based on a rejection of the law of the excluded middle and an insistence on con-
structive existence. Martin Löf successfully applied it to type theory in the 1970s.

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. One approach to deal with
partial functions is to employ a precondition, which restricts the application of the
function to values where it is defined. We consider three approaches to deal with
undefined values, including the logic of partial functions, Dijkstra’s approach with
his cand and cor operators and Parnas’s approach which preserves a classical
two-valued logic.

We examine the contribution of logic to the AI field and the work done by
theorem provers to supporting proof.

16.2 Fuzzy Logic

Fuzzy logic is a branch of many-valued logic that allows inferences to be made
when dealing with vagueness, and it can handle problems with imprecise or
incomplete data. It differs from classical two-valued propositional logic, in that it is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_16

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_16

based on degrees of truth, rather than on the standard binary truth-values of ‘true or
false’ (1 or 0) of propositional logic. That is, while statements made in propositional
logic are either true or false (1 or 0), the truth-value of a statement made in fuzzy
logic is a value between 0 and 1. Its value expresses the extent to which the
statement is true, with a value of 1 expressing absolute truth, and a value of 0
expressing absolute falsity.

Fuzzy logic uses degrees of truth as a mathematical model for vagueness, and
this is useful since statements made in natural language are often vague and have a
certain (rather than an absolute) degree of truth. It is an extension of classical logic
to handle the concept of partial truth, where the truth-value lies between completely
true and completely false. Lofti Zadeh developed fuzzy logic at Berkeley in the
1960s, and it has been successfully applied to Expert Systems and other areas of
Artificial Intelligence.

For example, consider the statement “John is tall”. If John were 6 foot, 4 inches,
then we would say that this is a true statement (with a truth value of 1) since John is
well above average height. However, if John is 5 feet, 9 inches tall (around average
height), then this statement has a degree of truth, and this could be indicated by a
fuzzy truth valued of 0.6. Similarly, the statement that today is sunny may be
assigned a truth-value of 1 if there are no clouds, 0.8 if there are a small number of
clouds and 0 if it is raining all day.

Propositions in fuzzy logic may be combined together to form compound
propositions. Suppose X and Y are propositions in fuzzy logic, then compound
propositions may be formed from the conjunction, disjunction and implication
operators. The usual definition in fuzzy logic of the truth-values of the compound
propositions formed from X and Y is given by

Truth ð:XÞ ¼ 1�Truth Xð Þ;

Truth X and Yð Þ ¼ min Truth Xð Þ;Truth Yð Þð Þ;

Truth X or Yð Þ ¼ max Truth Xð Þ;Truth Yð Þð Þ;

Truth ðX ! YÞ ¼ Truthð:X orYÞ:

There is another way in which the operators may be defined in terms of
multiplication:

Truth X and Yð Þ ¼ Truth Xð Þ � Truth Yð Þ;

Truth X or Yð Þ ¼ 1� 1� Truth Xð Þð Þ � 1� Truth Yð Þð Þ:

Truth ðX ! YÞ ¼ max fzj Truth Xð Þ � z�Truth Yð Þg where 0� z� 1

270 16 Advanced Topics in Logic

Under these definitions, fuzzy logic is an extension of classical two-valued logic,
which preserves the usual meaning of the logical connectives of propositional logic
when the fuzzy values are just {0, 1}.

Fuzzy logic has been useful in the expert system and artificial intelligence
applications, and it has also been applied to the aerospace and automotive sectors,
and to the medical, robotics and transport sectors. The first fuzzy logic controller
was developed in England, in the mid-1970s.

16.3 Temporal Logic

Temporal logic is concerned with the expression of properties that have time
dependencies, and the various temporal logics can express facts about the past,
present and future. Temporal logic has been applied to specify temporal properties
of natural language, artificial intelligence as well as the specification and verifica-
tion of program and system behaviour. It provides a language to encode temporal
knowledge in artificial intelligence applications, and it plays a useful role in the
formal specification and verification of temporal properties (e.g. liveness and
fairness) in safety- critical systems.

The statements made in temporal logic can have a truth-value that varies over
time. In other words, sometimes the statement is true and sometimes it is false, but it
is never true or false at the same time. The two main types of temporal logics are
linear time logics (reasoning about a single timeline) and branching time logics
(reasoning about multiple timelines).

The roots of temporal logic lie in work done by Aristotle in the fourth century B.
C. when he considered whether a truth-value should be given to a statement about a
future event that may or may not occur. For example, what truth value (if any)
should be given to the statement that “There will be a sea battle tomorrow”.
Aristotle argued against assigning a truth-value to such statements in the present
time.

Newtonian mechanics assumes an absolute concept of time independent of
space, and this viewpoint remained dominant until the development of the theory of
relativity in the early twentieth century (when space–time became the dominant
paradigm). Arthur Prior began analyzing and formalizing the truth-values of
statements concerning future events in the 1950s, and he introduced Tense Logic (a
temporal logic) in the early 1960s. Tense logic contains four modal operators
(strong and weak) that express events in the future or in the past:

– P (It has at some time been the case that),
– F (It will be at some time be the case that),
– H (It has always been the case that),
– G (It will always be the case that).

16.2 Fuzzy Logic 271

The P and F operators are known as weak tense operators, while the H and
G operators are known as strong tense operators. The two pairs of operators are
interdefinable via the equivalences:

P/ ffi :H:/

H/;ffi :P:/

F/ ffi :G:/

G/;ffi :F:/

The set of formulae in Prior’s temporal logic may be defined recursively, and
they include the connectives used in classical logic (e.g. ¬, ^, _, !, $). We can
express a property / that is always true as A/ ffi H/ ^ / ^ G/, and a property that
is sometimes true as E/ ffi P/ _ / _ F/. Various extensions of Prior’s tense logic
have been proposed to enhance its expressiveness, including the binary since
temporal operator ‘S’, and the binary until temporal operator ‘U’. For example, the
meaning of /Sw is that / has been true since a time when w was true.

Temporal logics are applicable in the specification of computer systems, and a
specification may require safety, fairness and liveness properties to be expressed.
For example, a fairness property may state that it will always be the case that a
certain property will hold sometime in the future. The specification of temporal
properties often involves the use of special temporal operators.

We discuss common temporal operators that are used, including an operator to
express properties that will always be true, properties that will eventually be true
and a property that will be true in the next time instance. For example

⎕P P is always true.
⋄ P P will be true sometime in the future.
○ P P is true in the next time instant (discrete time).

Linear Temporal Logic (LTL) was introduced by Pnueli in the late-1970s. This
linear time logic is useful in expressing safety and liveness properties. Branching
time logics assume a non-deterministic branching future for time (with a deter-
ministic, linear past). Computation Tree Logic (CTL and CTL*) were introduced in
the early 1980s by Emerson and others.

It is also possible to express temporal operations directly in classical mathe-
matics, and the well-known computer scientist, Parnas, prefers this approach. He is
critical of computer scientists for introducing unnecessary formalisms when clas-
sical mathematics already possesses the ability to do this. For example, the value of
a function f at a time instance prior to the current time t is defined as

Prior f ; tð Þ ¼ lime!0f t � eð Þ:

272 16 Advanced Topics in Logic

For more detailed information on temporal logic, the reader is referred to the
excellent article on temporal logic in [1].

16.4 Intuitionist Logic

The controversial school of intuitionist mathematics was founded by the Dutch
mathematician, L. E. J. Brouwer, who was a famous topologist, and well known for
his fixpoint theorem in topology. This constructive approach to mathematics proved
to be highly controversial, as its acceptance as a foundation of mathematics would
have led to the rejection of many accepted theorems in classical mathematics (in-
cluding his own fixed point theorem).

Brouwer was deeply interested in the foundations of mathematics, and the
problems arising from the paradoxes of set theory. He was determined to provide a
secure foundation for mathematics, and his view was that an existence theorem in
mathematics that demonstrates the proof of a mathematical object has no validity,
unless the proof is constructive and accompanied by a procedure to construct the
object. He, therefore, rejected indirect proof and the law of the excluded middle
ðP _ :PÞ or equivalently ð::P ! PÞ, and he insisted on an explicit construction of
the mathematical object.

The problem with the law of the excluded middle (LEM) arises in dealing with
properties of infinite sets. For finite sets, one can decide if all elements of the set
possess a certain property P by testing each one. However, this procedure is no
longer possible for infinite sets. We may know that a certain element of the infinite
set does not possess the property, or it may be the actual method of construction of
the set that allows us to prove that every element has the property. However, the
application of the law of the excluded middle is invalid for infinite sets, as we
cannot conclude from the situation where not all elements of an infinite set possess
a property P that there exists at least one element which does not have the property
P. In other words, the law of the excluded middle may only be applied in cases
where the conclusion can be reached in a finite number of steps.

Consequently, if the Brouwer view of the world were accepted, then many of the
classical theorems of mathematics (including his own well-known results in
topology) could no longer be said to be true. His approach to the foundations of
mathematics hardly made him popular with other mathematicians (the differences
were so fundamental that it was more like a war), and intuitionism never became
mainstream in mathematics. It led to deep and bitter divisions between Hilbert and
Brouwer, with Hilbert accusing Brouwer (and Weyl) of trying to overthrow
everything that did not suit them in mathematics, and that intuitionism was treason
to science. Hilbert argued that a suitable foundation for mathematics should aim to
preserve most of mathematics. Brouwer described Hilbert’s formalist program as a
false theory that would produce nothing of mathematical value. For Brouwer, ‘to
exist’ is synonymous with ‘constructive existence’, and constructive mathematics is

16.3 Temporal Logic 273

relevant to computer science, as a program may be viewed as the result obtained
from a constructive proof of its specification.

Brouwer developed one of the more unusual logics that have been invented
(intuitionist logic), in which many of the results of classical mathematics were no
longer true. Intuitionist logic may be considered the logical basis of constructive
mathematics, and formal systems for intuitionist propositional and predicate logic
were developed by Heyting and others [2].

Consider a hypothetical mathematical property P(x) of which there is no known
proof (i.e. it is unknown whether P(x) is true or false for arbitrary x where x ranges
over the natural numbers). Therefore, the statement 8xðP xð Þ _ :P xð ÞÞ cannot be
asserted with the present state of knowledge, as neither P xð Þ or:P xð Þ has been
proved. That is, unproved statements in intuitionist logic are not given an inter-
mediate truth-value, and they remain of an unknown truth-value until they have
been either proved or disproved.

The intuitionist interpretation of the logical connectives is different from clas-
sical propositional logic. A sentence of the form A _ B asserts that either a proof of
A or a proof of B has been constructed, and A _ B is not equivalent to :ð:A ^ :BÞ.
Similarly, a proof of A ^ B is a pair whose first component is a proof of A, and
whose second component is a proof of B. The statement 8x:P xð Þ is not equivalent
to 9x P xð Þ in intuitionist logic.

Intuitionist logic was applied to Type Theory by Martin Löf in the 1970s [3].
Intuitionist type theory is based on an analogy between propositions and types,
where A ^ B is identified with A � B, the Cartesian product of A and B. The ele-
ments in the set A � B are of the form (a, b) where a 2 A and b 2 B. The
expression A _ B is identified with A + B, the disjoint union of A and B. The
elements in the set A + B are got from tagging elements from A and B, and they are
of the form inl (a) for a 2 A and inr (b) for b 2 B. The left and right injections are
denoted by inl and inr.

16.5 Undefined Values

Total functions f : X ! Y are functions that are defined for every element in their
domain, and total functions are widely used in mathematics. However, there are
functions that are undefined for one or more elements in their domain, and one
example is the function y = 1/x. This function is undefined at x = 0.

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. One approach to deal with
partial functions is to employ a precondition, which restricts the application of the
function to where it is defined. This makes it possible to define a new set (a proper
subset of the domain of the function) for which the function is total over the new
set.

274 16 Advanced Topics in Logic

Undefined terms often arise1 and need to be dealt with. Consider, the example of
the square root function √x taken from [4]. The domain of this function is the
positive real numbers, and the following expression is undefined:

ð x[0ð Þ ^ ðy ¼ p
xÞÞ _ ððx� 0Þ ^ ðy ¼ p � xÞÞ:

The reason this is undefined is since the usual rules for evaluating such an
expression involve evaluating each sub-expression and then performing the Boo-
lean operations. However, when x < 0, the sub-expression y = √x is undefined,
whereas when x > 0, the sub-expression y = √–x is undefined. Clearly, it is desir-
able that such expressions be handled, and that for the example above, the
expression would evaluate to be true.

Classical two-valued logic does not handle this situation adequately, and there
have been several proposals to deal with undefined values. Dijkstra’s approach is to
use the cand and cor operators in which the value of the left-hand operand
determines whether the right-hand operand expression is evaluated or not. Jone’s
logic of partial functions [5] uses a three-valued logic2 and Parnas’s3 approach is an
extension to the predicate calculus to deal with partial functions that preserve the
two-valued logic.

16.5.1 Logic of Partial Functions

Jones [5] has proposed the logic of partial functions (LPFs) as an approach to deal
with terms that may be undefined. This is a three-valued logic and a logical term
may be true, false or undefined (denoted ⊥). The definition of the truth-functional
operators used in classical two-valued logic is extended to three-valued logic. The
truth tables for conjunction and disjunction are defined in Fig. 16.1.

The conjunction of P and Q is true when both P and Q are true; false if one of
P or Q is false; and undefined otherwise. The operation is commutative. The
disjunction of P and QðP _ QÞ is true if one of P or Q is true; false if both P and
Q are false; and undefined otherwise. The implication operation ðP ! QÞ is true
when P is false or when Q is true; false when P is true and Q is false; and undefined
otherwise. The equivalence operation ðP $ QÞ is true when both P and Q are true
or false; it is false when P is true and Q is false (and vice versa); and it is undefined
otherwise (Fig. 16.2).

The not operator (¬) is a unary operator such ¬A is true when A is false, false
when A is true and undefined when A is undefined (Fig. 16.3).

1It is best to avoid undefinedness by taking care with the definitions of terms and expressions.
2The above expression would evaluate to true under Jones 3-valued logic of partial functions.
3The above expression evaluates to true for Parnas logic (a 2-valued logic).

16.5 Undefined Values 275

The result of an operation may be known immediately after knowing the value of
one of the operands (e.g. disjunction is true if P is true irrespective of the value of
Q). The law of the excluded middle, i.e. A _ :A does not hold in the three-valued
logic, and Jones [5] argues that this is reasonable as one would not expect the
following to be true:

1=0 ¼ 1
� � _ ð1=0 6¼ 1Þ:

There are other well-known laws that fail to hold, such as:

(i) E ! E,
(ii) Deduction Theorem E1├E2 does not justify ├E1 ! E2 unless it is known

that E1 is defined.

Many of the tautologies of standard logic also fail to hold.

Fig. 16.1 Conjunction and disjunction operators

Fig. 16.2 Implication and equivalence operators

Fig. 16.3 Negation

276 16 Advanced Topics in Logic

16.5.2 Parnas Logic

Parnas’s approach to logic is based on classical two-valued logic, and his philos-
ophy is that truth-values should be true or false only,4 and that there is no third
logical value. It is an extension to predicate calculus to deal with partial functions.
The evaluation of a logical expression yields the value ‘true’ or ‘false’ irrespective
of the assignment of values to the variables in the expression. This allows the
expression: ðy ¼ p

xÞÞ _ ðy ¼ p � xÞ, that is undefined in classical logic to yield
the value true.

The advantages of his approach are that no new symbols are introduced into the
logic and that the logical connectives retain their traditional meaning. This makes it
easier for engineers and computer scientists to understand, as it is closer to their
intuitive understanding of logic.

The meaning of predicate expressions is given by first defining the meaning of
the primitive expressions. These are then used as the building blocks for predicate
expressions. The evaluation of a primitive expression Rj(V) (where V is a
comma-separated set of terms with some elements of V involving the application of
partial functions) is false if the value of an argument of a function used in one of the
terms of V is not in the domain of that function.5 The following examples (Tables
16.1 and 16.2) should make this clearer:

These primitive expressions are used to build the predicate expressions, and the
standard logical connectives are used to yield truth-values for the predicate
expression. Parnas logic is defined in detail in [4].

The power of Parnas logic may be seen by considering a tabular expressions
example [4]. The table below specifies the behaviour of a program that searches the
array B for the value x. It describes the properties of the values of ‘j’ and ‘present’.
There are two cases to be considered (Fig. 16.4):

1. There is an element in the array with the value of x
2. There is no such element in the array with the value of x.

Clearly, from the example above the predicate expressions 9i; B i½ � ¼ x and
:ð9i;B½i� ¼ xÞ are defined. One disadvantage of the Parnas approach is that some
common relational operators (e.g. >, � , � , and <) are not primitive in the logic.
However, these relational operators are then constructed from primitive operators.
Further, the axiom of reflection does not hold in the logic.

4It seems strange to assign the value false to the primitive predicate calculus expression y = 1/ 0.
5The approach avoids the undefined logical value () and preserves the two-valued logic.

16.5 Undefined Values 277

16.5.3 Dijkstra and Undefinedness

The cand and cor operators were introduced by Dijkstra (Fig. 16.5) to deal with
undefined values. They are non-commutative operators and allow the evaluation of
predicates that contain undefined values.

Consider the following expression:

y ¼ 0 _ x=y ¼ 2ð Þ:

Table 16.1 Examples of Parnas evaluation of undefinedness

Expression x < 0 x � 0

y = √x False True if y = √x, False otherwise

y = 1/0 False False

y = x2 + √x False True if y = x2 + √x, False otherwise

Table 16.2 Example of undefinedness in array

Expression i 2 {1.. N} i 62 {1..N}

B[i] = x True if B[i] = x False

9i, B[i] = x True if B[i] = x for some i, False otherwise False

Fig. 16.4 Finding index in array

Fig. 16.5 Edsger Dijkstra.
Courtesy of Brian Randell

278 16 Advanced Topics in Logic

Then this expression is undefined when y = 0 as x/y is undefined since the
logical disjunction operation is not defined when one of its operands is undefined.
However, there is a case for giving meaning to such an expression when y = 0,
since in that case, the first operand of the logical or operation is true. Further, the
logical disjunction operation is defined to be true if either of its operands is true.
This motivates the introduction of the cand and cor operators. These operators are
associative and their truth tables are defined in Tables 16.3 and 16.4.

The order of the evaluation of the operands for the cand operation is to evaluate
the first operand; if the first operand is true then the result of the operation is the
second operand; otherwise the result is false. The expression a cand b is equivalent to

a cand b ffi if a then b elseF:

The order of the evaluation of the operands for the cor operation is to evaluate
the first operand. If the first operand is true, then the result of the operation is true;
otherwise the result of the operation is the second operand. The expression a cor b
is equivalent to

a cor b ffi if a then T else b:

Table 16.3 a cand b a b a cand b

T T T

T F F

T U U

F T F

F F F

F U F

U T U

U F U

U U U

Table 16.4 a cor b a b a cor b

T T T

T F T

T U T

F T T

F F F

F U U

U T U

U F U

U U U

16.5 Undefined Values 279

The cand and cor operators satisfy the following laws:

• Associativity

The cand and cor operators are associative.

A candBð ÞcandC ¼ A cand B candCð Þ;

A corBð Þ corC ¼ A cor B corCð Þ;

• Distributivity

The cand operator distributes over the cor operator and vice versa.

A cand B corCð Þ ¼ A candBð Þcor A candCð Þ;

A corðB ^ CÞ ¼ A corBð Þcand A corCð Þ:

De Morgan’s law enables logical expressions to be simplified.

: A candBð Þ ¼ :A cor:B,

: A corBð Þ ¼ :A cand:B:

16.6 Logic and AI

The long-term goal of Artificial Intelligence is to create a thinking machine that is
intelligent, has consciousness, has the ability to learn, has free will and is ethical.
Artificial Intelligence is a young field and John McCarthy and others coined the
term in 1956. Alan Turing devised the Turing Test in the early 1950s as a way to
determine whether a machine was conscious and intelligent. Turing believed that
machines would eventually be developed that would stand a good chance of passing
the ‘Turing Test’.

There are deep philosophical problems in Artificial Intelligence, and some
researchers believe that its goals are impossible or incoherent. Even if Artificial
Intelligence is possible, there are moral issues to consider such as the exploitation of
artificial machines by humans and whether it is ethical to do this. Weizenbaum
argues that AI is a threat to human dignity, and that AI should not replace humans
in positions that require respect and care.

280 16 Advanced Topics in Logic

John McCarthy has long advocated the use of logic in AI, and mathematical
logic has been used in the AI field to formalize knowledge and in guiding the
design of mechanized reasoning systems. Logic has been used as an analytic tool,
as a knowledge representation formalism and as a programming language
(Fig. 16.6).

McCarthy’s long-term goal was to formalize common-sense reasoning, i.e. the
normal reasoning that is employed in problem-solving and dealing with normal
events in the real world. McCarthy [6] argues that it is reasonable for logic to play a
key role in the formalization of common-sense knowledge, and this includes the
formalization of basic facts about actions and their effects, facts about beliefs and
desires and facts about knowledge and how it is obtained. His approach allows
common-sense problems to be solved by logical reasoning.

Its formalization requires sufficient understanding of the common-sense world,
and often the relevant facts to solve a particular problem are unknown. It may be
that knowledge thought relevant may be irrelevant and vice versa. A computer may
have millions of facts stored in its memory, and the problem is how to determine
which of these should be chosen from its memory to serve as premises in logical
deduction.

McCarthy’s influential 1959 paper discusses various common-sense problems
such as getting home from the airport. Mathematical logic is the standard approach
to express premises, and it includes rules of inferences that are used to deduce valid
conclusions from a set of premises. Its rigorous deductive reasoning shows how
new formulae may be logically deduced from a set or premises.

McCarthy’s approach to programs with common sense has been criticized by
Bar-Hillel and others on the grounds that common sense is fairly elusive, and the
difficulty that a machine would have in determining which facts are relevant to a
particular deduction from its known set of facts. However, McCarthy’s approach
has showed how logical techniques can contribute to the solution of specific AI
problems.

Fig. 16.6 John McCarthy.
Courtesy of John McCarthy

16.6 Logic and AI 281

Logic programming languages describe what is to be done, rather than how it
should be done. These languages are concerned with the statement of the problem
to be solved, rather than how the problem will be solved. These languages use
mathematical logic as a tool in the statement of the problem definition. Logic is a
useful tool in developing a body of knowledge (or theory), and it allows rigorous
mathematical deduction to derive further truths from the existing set of truths. The
theory is built up from a small set of axioms or postulates, and the rules of inference
derive further truths logically.

The objective of logic programming is to employ mathematical logic to assist
with computer programming. Many problems are naturally expressed as a theory,
and the statement of a problem to be solved is often equivalent to determining if a
new hypothesis is consistent with an existing theory. Logic provides a rigorous way
to determine this, as it includes a rigorous process for conducting proof.

Computation in logic programming is essentially logical deduction, and logic
programming languages use first-order6 predicate calculus. They employ theorem
proving to derive the desired truth from an initial set of axioms. These proofs are
constructive7 in that more an actual object that satisfies the constraints is produced
rather than a pure existence theorem. Logic programming specifies the objects, the
relationships between them and the constraints that must be satisfied for the
problem.

– The set of objects involved in the computation,
– The relationships that hold between the objects,
– The constraints of the particular problem.

The language interpreter decides how to satisfy the particular constraints. Arti-
ficial Intelligence influenced the development of logic programming, and John
McCarthy8 demonstrated that mathematical logic could be used for expressing
knowledge. The first logic programming language was Planner developed by Carl
Hewitt at MIT in 1969. It uses a procedural approach for knowledge representation
rather than McCarthy’s declarative approach.

The best-known logic programming language is Prolog, which was developed in
the early 1970s by Alain Colmerauer and Robert Kowalski. It stands for
programming in logic. It is a goal-oriented language that is based on predicate
logic. Prolog became an ISO standard in 1995. The language attempts to solve a
goal by tackling the subgoals that the goal consists of:

6First-order logic allows quantification over objects but not functions or relations. Higher-order
logics allow quantification of functions and relations.
7For example, the statement 9x such that x = √4 states that there is an x such that x is the square
root of 4, and the constructive existence yields that the answer is that x = 2 or x −2, i.e.
constructive existence provides more the truth of the statement of existence, and an actual object
satisfying the existence criteria is explicitly produced.
8John McCarthy received the Turing Award in 1971 for his contributions to Artificial Intelligence.
He also developed the programming language LISP.

282 16 Advanced Topics in Logic

goal :� subgoal1; :::; subgoaln:

That is, in order to prove a particular goal, it is sufficient to prove subgoal1
through subgoaln. Each line of a Prolog program consists of a rule or a fact, and the
language specifies what exists rather than how. The following program fragment
has one rule and two facts:

Grandmother (G,S):- parent(P, S), mother(G, P).
Mother (Sarah, Isaac).
Parent (Isaac, Jacob).

The first line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two
statements are facts stating that Isaac is a parent of Jacob, and that Sarah is the
mother of Isaac. A particular goal clause is true if all of its subclauses are true

goalclause Vg
� �

:� clause1 V1ð Þ; ::; clausem Vmð Þ:

A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog finds solutions by unification, i.e. by binding a variable to a value.
For an implication to succeed, all goal variables Vg on the left side of:- must find a
solution by binding variables from the clauses which are activated on the right side.
When all clauses are examined and all variables in Vg are bound, the goal succeeds.
But if a variable cannot be bound for a given clause, then that clause fails. Following
the failure, Prolog backtracks, and this involves going back to the left to previous
clauses to continue trying to unify with alternative bindings. Backtracking gives
Prolog the ability to find multiple solutions to a given query or goal.

Logic programming languages generally use a simple searching strategy to
consider the following alternatives:

– If a goal succeeds and there are more goals to achieve, then remember any
untried alternatives and go on to the next goal.

– If a goal is achieved and there are no more goals to achieve, then stop with
success.

– If a goal fails and there are alternative ways to solve it, then try the next one.
– If a goal fails and there are no alternate ways to solve it, and there is a previous

goal, then go back to the previous goal.
– If a goal fails and there are no alternate ways to solve it, and no previous goal,

then stop with failure.

Constraint programming is a programming paradigm where relations between
variables can be stated in the form of constraints. Constraints specify the properties
of the solution and differ from the imperative programming languages, in that they
do not specify the sequence of steps to execute. For more detailed information on
Artificial Intelligence; see Chap. 22 of [7].

16.6 Logic and AI 283

16.7 Review Questions

1. What is fuzzy logic?
2. What is intuitionist logic and how is it different from classical logic?
3. Discuss the problem of undefinedness and the advantages and disadvan-

tages of three-valued logic. Describe the approaches of Parnas, Dijkstra
and Jones.

4. What is temporal logic?
5. Show how the temporal operators may be expressed in classical mathe-

matics. Discuss the merits of temporal operators.
6. Investigate the Isabelle (or another) theorem-proving environment and

determine the extent to which it may assist with proof.
7. Discuss the applications of logic to AI.

16.8 Summary

We discussed some advanced topics in logic in this chapter, including fuzzy logic,
temporal logic, intuitionist logic, undefined values, logic and AI and theorem
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical
model for vagueness, whereas temporal logic is concerned with the expression of
properties that have time dependencies.

Intuitionism was a controversial school of mathematics that aimed to provide a
solid foundation for mathematics. Its adherents rejected the law of the excluded
middle and insisted that, for an entity to exist, there must be a constructive proof of
its existence. Martin Löf applied intuitionistic logic to type theory in the 1970s.

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. There are a number of
approaches to deal with undefined values, including Jone’s logic of partial func-
tions, Dijkstra’s cand and cor operators and Parnas’s approach which preserves a
classical two-valued logic.

We discussed temporal logic and its applications to the safety-critical field,
including the specification of properties with time dependencies. We discussed the
application of logic to the AI field, and logic has been used to formalize knowledge
in AI systems.

284 16 Advanced Topics in Logic

References

1. Temporal logic. Stanford Enclyopedia of Philosophy. http://plato.stanford.edu/entries/logic-
temporal/

2. Heyting A (1966) Intuitionist logic. An introduction. North-Holland Publishing
3. Löf PM (1984) Intuitionist type theory. Notes by Giovanni Savin of lectures given in Padua,

June, 1980. Bibliopolis. Napoli
4. Parnas DL (1993) Predicate calculus for software engineering. IEEE Trans Softw Eng 19(9)
5. Jones C (1986) Systematic software development using VDM. Prentice Hall International
6. McCarthy J (1959) Programs with common sense. Proceedings of the Teddington conference

on the mechanization of thought processes
7. O’ Regan G (2021) A brief history of computing, 3rd edn. Springer

References 285

http://plato.stanford.edu/entries/logic-temporal/
http://plato.stanford.edu/entries/logic-temporal/

17The Nature of Theorem Proving

17.1 Introduction

The word ‘proof’ is generally interpreted as facts or evidence that support a par-
ticular proposition or belief, and such proofs are generally conducted in natural
language. Several premises (which are self-evident or already established) are
presented, and from these premises (via deductive or inductive reasoning) further
propositions are established until finally the conclusion is established.

The proof of a theorem in mathematics requires additional rigour, and such
proofs consist of a mixture of natural language and mathematical argument. It is
common to skip over the trivial steps in the proof, and independent mathematicians
conduct peer reviews to provide additional confidence in the correctness of the
proof and to ensure that no unwarranted assumptions or errors in reasoning have
been made. Proofs conducted in logic are extremely rigorous as every step in the
proof is explicit.1

Mathematical proof dates back to the Greeks, and many students are familiar
with Euclid’s work (The Elements) in geometry, where, from a small set of axioms,
postulates and definitions, he derived many of the well-known theorems of
geometry. Euclid was a Hellenistic mathematician based in Alexandria around 300
BC, and his style of proof was mainly constructive, i.e. in addition to the proof of
the existence of an object, he actually constructed the object in the proof. Euclidean
geometry remained unchallenged for over 2000 years, until the development of the
non-Euclidean geometries in the nineteenth century, and these geometries were
based on a rejection of Euclid’s controversial 5th postulate (the parallels postulate).

1Perhaps a good analogy might be that a mathematical proof is like a program written in a
high-level language such as C, whereas a formal mathematical proof in logic is like a program
written in assembly language.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_17

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_17

Mathematical proof may employ a “divide and conquer” technique, i.e. breaking
the conjecture down into subgoals and then attempting to prove each of the sub-
goals. Another common proof technique is indirect proof where we assume the
opposite of what we wish to prove, and we show that this results in a contradiction
(e.g. the proof that there are an infinite number of primes or the proof that there is
no rational number whose square is 2 in Chap. 3). Other proof techniques used are
the method of mathematical induction, which involves proof of the base case and
inductive step (see Chap. 4).

Aristotle developed syllogistic logic in the fourth century BC, and the rules of
reasoning with valid syllogisms remained dominant in logic up to the nineteenth
century. Boole develop his mathematical logic in the mid-nineteenth century, and
he aimed to develop a calculus of reasoning to verify the correctness of arguments
using logical connectives. Predicate logic (including universal and existential
quantifiers) was introduced by Frege in the late nineteenth century as part of his
efforts to derive mathematics from purely logical principles. Russell and Whitehead
continued this attempt in Principia Mathematica, and Russell introduced the theory
of types to deal with the paradoxes in set theory which he identified in Frege’s
system.

The formalists introduced extensive axioms in addition to logical principles, and
Hilbert’s program led to the definition of a formal mathematical proof as a sequence
of formulae, where each element is either an axiom or derived from a previous
element in the series by applying a fixed set of mechanical rules (e.g. modus
ponens). The last line in the proof is the theorem to be proved, and the formal proof
is essentially syntactic following rules with the formulae simply a string of symbols
and the meaning of the symbols is unimportant.

The formalists later ran into problems in trying to prove that a formal system
powerful enough to include arithmetic was both complete and consistent, and the
results of Gödel showed that such a system would be incomplete (and one of the
propositions without a proof is that of its own consistency). Turing later showed
(with his Turing machine) that mathematics is undecidable, i.e. there is no algo-
rithm or mechanical procedure that may be applied in a finite number of steps to
determine if an arbitrary mathematical proposition is true or false.

The proofs employed in mathematics are rarely formal (in the sense of Hilbert’s
program), whereas they involve deductions from a set of axioms, these deductions
are rarely expressed as the application of individual rules of logical inference.

The application of formal methods in an industrial environment requires the use
of machine-assisted proof since thousands of proof obligations arise from a formal
specification, and theorem provers are essential in resolving these efficiently. Many
proofs in formal methods are concerned with crosschecking the details of the
specification, or checking the validity of the refinement steps, or checking that
certain properties are satisfied by the specification. There are often many tedious
lemmas to be proved, and theorem provers2 are essential in dealing with these.

2Most existing theorem provers are difficult to use and are for specialist use only. There is a need to
improve the usability of theorem provers.

288 17 The Nature of Theorem Proving

Machine proof is explicit and reliance on some brilliant insight is avoided. Proofs
by hand in formal methods are notorious for containing errors or jumps in rea-
soning, whereas machine proofs are explicit but are often extremely lengthy and
essentially unreadable.

Automated theorem proving (ATP) is difficult, as often mathematicians prove a
theorem with an initial intuitive feeling that the theorem is true (Fig. 17.1). Human
intervention to provide guidance or intuition improves the effectiveness of the
theorem prover. There are several tools available to support theorem proving, and
these include the Boyer–Moore theorem prover (known as NQTHM), the Isabelle
theorem prover and the HOL system.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness3 is unlikely except for the
most trivial of programs. A program may consist of legacy software that is assumed
to work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that mathematical
proof in formal methods can claim is increased confidence in the correctness of the
software, rather than an absolute proof of correctness.

17.2 Early Automation of Proof

Early work on the automation of proof began in the 1950s with the beginning of
work in the Artificial Intelligence field, where the early AI practitioners were trying
to develop a ‘thinking machine’. One of the earliest programs developed was the

Fig. 17.1 Idea of automated
theorem proving

3This position is controversial with others arguing that if correctness is defined mathematically
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,
and that the reason why there are not many examples of such proofs is due to a lack of
mathematical specifications.

17.1 Introduction 289

Logic Theorist (LT), which was presented at the Dartmouth conference on Artificial
Intelligence in 1956 [1].

It was developed by Allen Newell and Herbert Simon, and it could prove 38 of
the first 52 theorems from Russell and Whitehead’s Principia Mathematica. [2].4

Russell and Whitehead had attempted to derive all mathematics from axioms and
the inference rules of logic, and the LT program conducted proof from a small set of
propositional axioms and deduction rules. Its approach was to start with the theo-
rem to be proved, and to then search for relevant axioms and operators to prove the
theorem. The Logic Theorist proved theorems in the propositional calculus, but it
did not support predicate calculus. It used the five basic axioms of propositional
logic and three rules of inference from the Principii to prove theorems.5

LT demonstrated that computers had the ability to encode knowledge and
information and to perform intelligent operations such as solving theorems in
mathematics. The heuristic approach of the LT program tried to emulate human
mathematicians, but could not guarantee that proof would be found for every valid
theorem.

If no immediate one-step proof could be found, then a set of subgoals was
generated (these are formulae from which the theorem may be proved in one step)
and proofs of these were then searched for, and so on. The program could use
previously proved theorems in the course of developing a proof of a new theorem.
Newell and Simon were hoping that the Logic Theorist would do more than just
prove theorems in logic, and their goal was that it would attempt to prove theorems
in a human-like way, especially with a selective search.

However, in practice, the Logic Theorist search was not very selective in its
approach, and the subproblems were considered in the order in which they were
generated, and so there was no actual heuristic procedure (as in human problem
solving) to guess at which subproblem was most likely to yield an actual proof.
This meant that the Logic Theorist could, in practice, find only very short proofs,
since as the number of steps in the proof increased, the amount of search required to
find the proof exploded.

The Geometry Machine was developed by Herbert Gelernter at the IBM
Research Center in New York, in the late 1950s, with the goal of developing
intelligent behaviour in machines. It differed from the Logic Theorist in that it
selected only the valid subgoals (i.e. it ignored the invalid ones), and attempted to
find proof of these. The Geometry Machine was successful in finding the solution to
a large number of geometry problems taken from high-school textbooks in plane
geometry.

4Russell is said to have remarked that he was delighted to see that the Principia Mathematica could
be done by machine, and that if he and Whitehead had known this in advance that they would not
have wasted 10 years doing this work by hand in the early twentieth century.
5Another possibility (though an inefficient and poor simulation of human intelligence) would be to
start with the five axioms of the Principia, and to apply the three rules of inference to logically
derive all possible sequences of valid deductions. This is known as the British Museum algorithm
(as sensible as putting monkeys in front of typewriters to reproduce all of the books of the British
Museum).

290 17 The Nature of Theorem Proving

The logicians Hao Wang and Evert Beth (the inventor of semantic tableaux
which was discussed in Chap. 15) were critical of the approaches of the AI pioneers
and believed that mathematical logic could do a lot more. Wang and others
developed a theorem prover for first-order predicate calculus in 1960, but it had
serious limitations due to the combinatorial explosion.

Alan Robinson’s work on theorem provers in the early 1960s led to a proof
procedure termed ‘resolution’, which appeared to provide a breakthrough in the
automation of predicate calculus theorem provers. A resolution theorem prover is
essentially provided with the axioms of the field of mathematics in question, and the
negation of the conjecture whose proof is sought. It then proceeds until a contra-
diction is reached, where there is no possible way for the axioms to be true and for
the conjecture to be false.

The initial success of resolution led to excitement in the AI field where pioneers
such as John McCarthy (see Chap. 16) believed that human knowledge could be
expressed in predicate calculus,6 and therefore, if the resolution was indeed suc-
cessful for efficient automated theorem provers, then the general problem of Arti-
ficial Intelligence was well on the way to a solution. However, while resolution led
to improvements with the state explosion problem, it did not eliminate the problem.

This led to a fall-off in research into resolution-based approaches to theorem
proving, and other heuristic-based techniques were investigated by Bledsoe in the
late 1970s. The field of logic programming began in the early 1970s with the
development of the Prolog programming language (see Chap. 16). Prolog is in a
sense an application of automated theorem proving, where problems are stated in
the form of goals (or theorems) that the system tries to prove using a resolution
theorem prover. The theorem prover generally does not need to be very powerful as
many Prolog programs require only a very limited search, and a depth-first search
from the goal backwards to the hypotheses is conducted.

The Argonne Laboratory developed the Aura System in the early 1980s (it was
later replaced by Otter), as an improved resolution-based automated theorem pro-
ver, and this led to renewed interest in resolution-based approaches to theorem
proving. There is a more detailed account of the nature of proof and theorem
proving in [1].

17.3 Interactive Theorem Provers

The challenges in developing efficient automated theorem provers led researchers to
question whether an effective fully automated theorem prover was possible, and
whether it made more sense to develop a theorem prover that could be guided by a

6McCarthy’s viewpoint that predicate logic was the solution for the AI field was disputed by
Minsksy and others (resulting in a civil war between the logicists and the proceduralists). The
proceduralists argued that formal logic was an inadequate representation of knowledge for AI, and
that predicate calculus was an overly rigid and inadequate framework. They argued that an
alternative approach such as the procedural representation of knowledge was required.

17.2 Early Automation of Proof 291

human in its search for proof. This led to the concept of Interactive theorem proving
(ITP) which involves developing formal proofs by man–machine collaboration and
is (in a sense) a new way of doing mathematics in front of a computer.

Such a system is potentially useful in mathematical research in formalizing and
checking proofs, and it allows the user to concentrate on the creative parts of the
proof and relieves the user from the need of carrying out the trivial steps in the
proof. It is also a useful way of verifying the correctness of published mathematical
proofs by acting as a proof checker, where the ITP is provided with a formal proof
constructed by a human, which may then be checked for correctness.7 Such a
system is important in program verification in showing that the program satisfies its
specification, especially in the safety/security-critical field.

A group at Princeton developed a series of systems called Semi-automated
mathematics (SAM) in the late 1960s, which combined logic routines with human
guidance and control. Their approach placed the mathematician at the heart of the
theorem proving, and it was a departure from the existing theorem proving
approaches where the computer attempted to find proofs unaided. SAM provided
proof of an unproven conjecture in lattice theory (SAM’s lemma), and this is
regarded as the first contribution of automated reasoning systems to mathematics [1].

De Bruijn and others at the Technische Hogeschool in Eindhoven in the
Netherlands commenced development of the Automath system in the late 1960s.
This was a large-scale project for the automated verification of mathematics, and it
was tested by treating a full textbook. Automath systematically checked the proofs
from Landau’s text Grundlagen der Analysis (this foundation of analysis text was
first published in 1930).

The typical components of an Interactive Theorem Prover include an interactive
proof editor to allow editing of proofs, formulae and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results.

The Gypsy verification environment and its associated theorem prover was
developed at the University of Texas in the 1980s, and it achieved early success in
program verification with its verification of the encrypted packet interface program
(a 4200 line program). It supports the development of software systems and formal
mathematical proof of their behaviour.

The Boyer–Moore Theorem prover (NQTHM) was developed in the
1970s/1980s at the University of Texas by B. S. Boyer and J. S. Moore [3]. It has
been improved since then and it is currently known as NQTHM (it has been
superseded by ACL2 available from the University of Texas). It supports mathe-
matical induction as a rule of inference, and induction is a useful technique in
proving the properties of programs. The axioms of Peano arithmetic are built into
the theorem prover, and new axioms added to the system need to pass a ‘cor-
rectness test’ to prevent the introduction of inconsistencies.

7A formal mathematical proof (of a normal proof) is difficult to write down and can be lengthy.
Mathematicians were not really interested in these proof checkers.

292 17 The Nature of Theorem Proving

It is far more automated than many other interactive theorem provers, but it
requires detailed human guidance (with suggested lemmas) for difficult proofs. The
user, therefore, needs to understand the proof being sought and the internals of the
theorem prover.

It has been effective in proving well-known theorems such as Goedel’s
Incompleteness Theorem, the insolvability of the Halting problem, a formalization
of the Motorola MC 68020 Microprocessor and many more.

Computational Logic Inc. was a company founded by Boyer and Moore in 1983
to share the benefits of a formal approach to software development with the wider
computing community. It was based in Austin, Texas, and provided services in the
mathematical modelling of hardware and software systems. This involved the use of
mathematics and logic to formally specify microprocessors and other systems. The
use of its theorem prover was to formally verify that the implementation meets its
specification, i.e. to prove that the microprocessor or other system satisfies its
specification.

The HOL system was developed at Cambridge University in the UK, and it is an
environment for interactive theorem proving in a higher-order logic. It has been
applied to the formalization of mathematics and to the verification of hardware
(including the verification of microprocessor design). It requires skilled human
guidance and is one of the most widely used theorem provers. It was originally
developed in the early 1980s, and HOL 4 is the latest version. It is an open-source
project and is used by academia and industry.

Isabelle is a theorem-proving environment developed at Cambridge University
by Larry Paulson and Tobias Nipkow of the Technical University of Munich. It
allows mathematical formulas to be expressed in a formal language and provides
tools for proving those formulas. The main application is the formalization of
mathematical proofs, and proving the correctness of computer hardware or software
with respect to their specification, and proving properties of computer languages
and protocols.

Isabelle is a generic theorem prover in the sense that it has the capacity to accept a
variety of formal calculi, whereas most other theorem provers are specific to a specific
formal calculus. Isabelle is available free of charge under an open-source license.

There is a steep learning curve with the theorem provers above and it generally
takes a couple of months for users to become familiar with them. However,
automated theorem proving has become a useful tool in the verification of inte-
grated circuit design. Several semiconductor companies use automated theorem
proving to demonstrate the correctness of division and other operators on their
processors. We present a selection of theorem provers in the next section.

17.3 Interactive Theorem Provers 293

17.4 A Selection of Theorem Provers

Table 17.1 presents a small selection of the available automated and interactive
theorem provers.

17.5 Review Questions

1. What is a mathematical proof?
2. What is a formal mathematical proof?
3. What approaches are used to prove a theorem?
4. What is a Theorem Prover?
5. What role can theorem provers play in software development?

Table 17.1 Selection of theorem provers

Theorem prover Description

ACL2 A Computational Logic for Applicative Common Lisp (ACL2) is part of the
Boyer–Moore family of theorem provers. It is a software system consisting
of a programming language (LISP) and an interactive theorem prover. It was
developed in the mid-1990s as an industrial strength successor to the Boyer–
Moore Theorem prover (NQTHM). It is used in the verification of
safety-critical hardware and software, and in industrial applications such as
the verification of the floating point module of a microprocessor

OTTER OTTER is a resolution-style theorem prover for first order logic developed at
the Argonne Laboratory at the University of Chicago (it was the successor to
Aura). It has been mainly applied to abstract algebra and formal logic

PVS The Prototype Verification System (PVS) is a mechanized environment for
formal specification and verification. It includes a specification language
integrated with support tools and an interactive theorem prover. It was
developed by SRI in California by John Rushby and others. The
specification language is based on higher-order logic, and the theorem
prover is guided by the user in conducting proof. It has been applied to the
verification of hardware and software

Theorem Proving
System (TPS)

TPS is an automated theorem prover for first-order and higher-order logic (it
can also prove theorems interactively). It was developed at Carnegie Mellon
University, and is used for hardware and software verification

HOL and Isabelle HOL and Isabelle were developed by the Automated Reasoning Group at
the University of Cambridge. The HOL system is an environment for
interactive theorem proving in a higher-order logic, and it has been applied
to hardware verification. Isabelle is a generic proof assistant which allows
mathematical formulae to be expressed in a formal language, and it provides
tools for proving those formulae in a logical calculus

Boyer–Moore The Boyer–Moore Theorem prover (NQTHM) was developed at the
University of Texas in the 1970s with the goal of checking the correctness of
computer systems. It has been used to verify the correctness of
microprocessors, and it has been superseded by ACL2

294 17 The Nature of Theorem Proving

6. What is the difference between an automated theorem prover and an
interactive theorem prover?

7. Investigate and give a detailed description of one of the theorem provers
in Table 17.1

17.6 Summary

A mathematical proof includes natural language and mathematical symbols, and
often many of the tedious details of the proof are omitted. The proofs in mathematics
are rarely formal as such, and many proofs in formal methods are concerned with
crosschecking the details of the specification, or checking the validity of the
refinement steps, or checking that certain properties are satisfied by the specification.

Machine proof is explicit and reliance on some brilliant insight is avoided.
Proofs by hand often contain errors or jumps in reasoning, while machine proofs are
often extremely lengthy and unreadable. The application of formal methods in an
industrial environment requires the use of machine-assisted proof since thousands
of proof obligations arise, and theorem provers are essential in resolving these
efficiently. The proof of various properties about a program increases confidence in
its correctness. However, an absolute proof of correctness is unlikely except for the
most trivial of programs.

Automated theorem proving is difficult, as often mathematicians prove a theorem
with an initial intuitive feeling that the theorem is true. Human intervention to
provide guidance or intuition improves the effectiveness of the theorem prover.
Early work on the automation of proof began in the 1950s with the beginning of
work in the Artificial Intelligence field, and one of the earliest programs developed
was the Logic Theorist, which was presented at the Dartmouth conference on
Artificial Intelligence in 1956.

The challenges in developing effective automated theorem provers led
researchers to investigate whether it made more sense to develop a theorem prover
that could be guided by a human in its search for proof. This led to the development
of Interactive theorem proving which involved developing formal proofs by man–
machine collaboration.

The typical components of an Interactive Theorem Prover include an interactive
proof editor to allow editing of proofs, formulae and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results. An interactive theorem prover allows the user to concentrate on the creative
parts of the proof and relieves the user from the need to carry out and verify the
trivial steps in the proof. It is also a useful way of verifying the correctness of
published mathematical proofs by acting as a proof checker and is also useful in
program verification in showing that the program satisfies its specification.

17.5 Review Questions 295

References

1. MacKensie D (1995) The automation of proof. IEEE a historical and sociological exploration.
Ann Hist Comput 17(3)

2. Russell B, Whitehead AN (1910) Principia mathematica. Cambridge University Press,
Cambridge

3. Boyer R, Moore JS (1979) A computational logic. The Boyer Moore theorem prover.
Academic Press

296 17 The Nature of Theorem Proving

18Software Engineering Mathematics

18.1 Introduction

The NATO Science Committee organized two famous conferences on software
engineering in the late 1960s. The first conference was held in Garmisch, Germany,
in 1968, and it was followed by a second conference in Rome, in 1969. The
Garmisch conference was attended by over fifty people from eleven countries.

The conferences highlighted the problems that existed in the software sector in
the late 1960s, and the term “software crisis” was coined to refer to these problems.
These included budget and schedule overruns of projects and problems with the
quality and reliability of the delivered software. This conference led to the birth of
software engineering as a separate discipline and the realization that programming
is quite distinct from science and mathematics. Programmers are like engineers in
the sense that they design and build products. Therefore, they need an appropriate
software engineering education (not just on the latest technologies but on the
fundamentals of engineering) in order to properly design and develop software.

The construction of bridges was problematic in the nineteenth century, and many
people who presented themselves as qualified to design and construct bridges did
not have the required knowledge and expertise. Consequently, many bridges col-
lapsed, endangering the lives of the public. This led to legislation requiring an
engineer to be licensed by the Professional Engineering Association prior to
practicing as an engineer. These engineering associations identify a core body of
knowledge that the engineer is required to possess, and the licensing body verifies
that the engineer has the required qualifications and experience. The licensing of
engineers by most branches of engineering ensures that only personnel competent
to design and build products actually do so. This, in turn, leads to products that the
public can safely use. In other words, the engineer has a responsibility to ensure that
the products are properly built, and are safe for the public to use.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_18

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_18

Parnas argues that traditional engineering is contrasted with the software engi-
neering discipline where there is no licensing mechanism, and where individuals
with no qualifications can participate in the design and building of software
products.1 However, best practice in modern HR places a strong emphasis on the
qualification of staff.

The Standish group has conducted research since the late 1990s [1] on the extent
of problems with schedule and budget overruns of IT projects. The results indicate
serious problems with on-time delivery, cost overruns and quality.2 Fred Brooks
has argued that software is inherently complex and that there is no silver bullet that
will resolve all of the problems associated with software projects such as schedule
overruns and software quality problems [2, 3].

Poor quality software can at best cause minor irritation to clients, and in some
circumstances, it may seriously disrupt the work of the client organization leading
to injury or even the death of individuals (e.g. as in the case of the Therac-25
radiotherapy machine in the mid-1980s3). The Y2K problem occurred due to poor
design, as the representation of the date used two digits to record the year rather
than four. Its correction required major rework, as it was necessary to examine all
existing software code to determine how the date was represented and to make
appropriate corrections. Clearly, well-designed programs would have hidden the
representation of the date , thereby minimizing the changes required for the year
2000 compliance.

Mathematics plays a key role in engineering, and it may potentially assist
software engineers in delivering high-quality software products that are safe to use.
Several mathematical approaches that may assist in delivering high-quality software
described in [4]. However, it is important to recognize that while the use of
mathematics is suitable for some areas of software engineering (especially in the
safety and security-critical fields), less rigorous techniques (such as software
inspections and testing) are sufficient in most other areas of software engineering.

1Modern HR recruitment specifies the requirements for a particular role, and the interviews
establish whether the candidate is suitably qualified, and has the appropriate experience for the
role. Parnas is arguing against the content of courses that emphasize the latest technologies rather
than the fundamentals of engineering.
2It should be noted that these are IT projects covering diverse sectors including banking,
telecommunications, etc. rather than pure software companies. Mature software companies using
the CMM tend to be more consistent in project delivery with high quality.
3Therac-25 was a radiotherapy machine produced by the Atomic Energy of Canada Limited
(AECL). It was involved in at least six accidents between 1985 and 1987 in which patients were
given massive overdoses of radiation. The dose given was over 100 times the intended dose and
three of the patients died from radiation poisoning. These accidents highlighted the dangers of
software control of safety-critical systems. The investigation subsequently highlighted the poor
software design of the system and the poor software development practices employed.

298 18 Software Engineering Mathematics

There is a lot of industrial interest in approaches to mature software engineering
practices in software organizations (e.g. the use of software process maturity
models such as the CMMI). These include approaches to assess and mature the
software engineering processes in software companies, and they are described in
[5, 6].4 Software process improvement focuses mainly on improving the effec-
tiveness of the management, engineering and organization practices related to
software engineering.

18.2 What is Software Engineering?

Software engineering involves multi-person construction of multi-version pro-
grams. The IEEE 610.12 definition states that

Definition 18.1 (Software Engineering) Software engineering is the application of
a systematic, disciplined, quantifiable approach to the development, operation and
maintenance of software, that is, the application of engineering to software and the
study of such approaches.

Software engineering includes:

1. Methodologies to determine requirements, design, develop, implement and test
software to meet customers’ needs.

2. The philosophy of engineering, i.e. an engineering approach to developing
software is adopted. That is, products are properly designed, developed, tested,
with quality and safety properly addressed.

3. Mathematics5 may be employed to assist with the design and verification of
software products. The level of mathematics to be employed will depend on the
safety-critical nature of the product, as systematic peer reviews and testing are
often sufficient.

4. Sound project and quality management practices are employed.

Software engineering requires the engineer to state precisely the requirements
that the software product is to satisfy and then to produce designs that will meet
these requirements. Engineers provide a precise description of the problem to be
solved, they then proceed to producing a design and validating its correctness and
finally the design is implemented and testing is performed to verify the correctness

4The process maturity models focus mainly on the management, engineering and organizational
practices required in software engineering. The models focus on what needs to be done rather how
it should be done.
5There is no consensus at this time as to the appropriate role of mathematics in software
engineering. The use of mathematics is invaluable in the safety critical and security critical fields
as it provides an extra level of confidence in the correctness of the software.

18.1 Introduction 299

of the implementation with respect to the requirements. The software requirements
need to be unambiguous, and should clearly state what is and what is not required.

Classical engineers produce the product design and then analyze their design for
correctness. They use mathematics in their analysis, as this is the basis of con-
firming that the specifications are met. The level of mathematics employed will
depend on the particular application and calculations involved. The term ‘engineer’
is generally applied only to people who have attained the necessary education and
competence to be called engineers, and who base their practice on mathematical and
scientific principles. Often in computer science, the term engineer is employed
rather loosely to refer to anyone who builds things, rather than to an individual with
a core set of knowledge, experience and competence.

Parnas6 (Fig. 18.1) is a strong advocate of the classical engineering approach,
and he argues that computer scientists should have the right education to apply
scientific and mathematical principles to their work. This includes mathematics and
design, to enable them to be able to build high-quality and safe products. Baber has
argued [7] that “mathematics is the language of engineering”. He argues that stu-
dents should be shown how to turn a specification into a program using
mathematics.

Parnas advocates a solid engineering approach to the teaching of mathematics
with an emphasis on its application to developing and analyzing product designs.
He argues that software engineers need education on engineering mathematics,
specification and design, converting designs into programs, software inspections
and testing. The education should enable the software engineer to produce
well-designed programs that will correctly implement the requirements.

He argues that software engineers have individual responsibilities as profes-
sional engineers.7 They are responsible for designing and implementing
high-quality and reliable software that is safe to use. They are also accountable for

Fig. 18.1 David Parnas

6Parnas has made important contributions to software engineering including information hiding
which is used in the object-oriented world.
7The concept of accountability is not new; indeed the ancient Babylonians employed a code of
laws c. 1750 B.C. known as the Hammarabi Code. This code included the law that if a house
collapsed and killed the owner then the builder of the house would be executed.

300 18 Software Engineering Mathematics

their own decisions and actions8 and have a responsibility to object to decisions that
violate professional standards. Professional engineers need to be honest about
current capabilities, especially when asked to work on problems that have no
appropriate technical solution. In other words, they should be honest and avoid
accepting a contract for something that cannot be done.

The licensing of a professional engineer provides confidence that the engineer
has the right education and experience to build safe and reliable products. Pro-
fessional engineers are required to follow rules of good practice, and to object when
the rules are violated.9 The professional engineering body is responsible for
enforcing standards and certification. The term ‘engineer’ is a title that is awarded
on merit, but it also places responsibilities on its holder. For a more detailed account
of the professional responsibilities of software engineers see Chap. 23 of [8].

The approach used in current software engineering is to follow a well-defined
software engineering process. The process includes activities such as project
management, requirements gathering, requirements specification, architecture
design, software design, coding and testing. Most companies use a set of templates
for the various phases. The waterfall model [9] and spiral model [10] are popular
software development lifecycles.

The waterfall model (Fig. 18.2) starts with requirements, followed by specifi-
cation, design, implementation and testing. It is typically used for projects where
the requirements can be identified and it is often called the “V” life cycle model.
The left-hand side of the “V” involves requirements, specification, design and
coding and the right-hand side is concerned with unit tests, integration tests, system
tests and acceptance testing. Each phase has entry and exit criteria that must be
satisfied before the next phase commences. There are several variations of the
waterfall model.

The spiral model (Fig. 18.3) is useful where the requirements are not fully
known at project initiation. There is an evolution of the requirements during
development which proceeds in a number of spirals, with each spiral typically
involves updates to the requirements, design, code, testing and a user review of the
particular iteration or spiral.

8However, it is unlikely that an individual programmer would be subject to litigation in the case of
a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility
for problems rather than a guarantee of quality accompany most software products. Software
engineering is a team-based activity involving several engineers in various parts of the project, and
it could be potentially difficult for an outside party to prove that the cause of a particular problem is
due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and the fact that a company is a financially richer
entity than one of its employees.
9Software companies that are following the CMMI or ISO 9000 will employ audits to verify that
the rules and best practice have been followed. Auditors report their findings to management and
the findings are addressed appropriately by the project team and affected individuals.

18.2 What is Software Engineering? 301

The spiral is, in effect, a reusable prototype, and the customer examines the
current iteration and provides feedback to the development team to be included in
the next spiral. The approach is to partially implement the system. This leads to a
better understanding of the requirements of the system and it then feeds into the
next cycle in the spiral. The process repeats until the requirements and product are
fully complete.

There has been a growth of popularity among software developers in lightweight
methodologies such as Agile. This is a software development methodology that
claims to be more responsive to customer needs than traditional methods such as the
waterfall model. The waterfall development model is similar to a wide and
slow-moving value stream, and halfway through the project, 100% of the require-
ments are typically 50% done. However, for agile development, 50% of require-
ments are typically 100% done halfway through the project.

Fig. 18.2 Waterfall lifecycle
model (V-Model)

Fig. 18.3 SPIRAL lifecycle
model

302 18 Software Engineering Mathematics

Ongoing changes to requirements are considered normal in the Agile world, and
it is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to define all of the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and early regular feedback is an essential part of the
process.

A story may be a new feature or a modification to an existing feature. It is
reduced to the minimum scope that can deliver business value, and a feature may
give rise to several stories. Stories often build upon other stories and the entire
software development lifecycle is employed for the implementation of each story.
Stories are either done or not done, i.e. there is such thing as a story being 80%
done. The story is complete only when it passes its acceptance tests, and software
testing is described in more detail in [11]. For more details on Agile; see [6, 12].

The challenge in software engineering is to deliver high-quality software on time
to customers. The Standish Group research (Fig. 18.4) on project cost overruns in
the US during 1998, showed that 33% of projects are between 21 and 50% over-
estimate, 18% are between 51 and 100% overestimate and 11% of projects are
between 101 and 200% overestimate.

The accurate estimation of project cost and effort are key challenges, and project
managers need to determine how good their current estimation process actually is
and to make improvements. Many companies today employ formal project man-
agement methodologies such as Prince 2 or Project Management Professional
(PMP). These methodologies allow projects to be rigorously managed and include
processes for initiating a project, planning a project, executing a project, monitoring
and controlling a project and closing a project.

The Capability Maturity Model developed by the Software Engineering Institute
(SEI) has become useful in software engineering. The SEI has collected empirical
data to suggest that there is a close relationship between software process maturity
and the quality and the reliability of the delivered software. The CMMI enables the
organization to improve processes such as:

Fig. 18.4 Standish group report—estimation accuracy

18.2 What is Software Engineering? 303

– Developing and managing requirements,
– Design activities,
– Configuration Management,
– Selection and Management of Suppliers,
– Planning and Managing projects,
– Building quality into the product with peer reviews,
– Performing rigorous testing,
– Performing independent audits.

The rest of this chapter is focused on mathematical techniques to support soft-
ware engineering to improve software quality, and the chapter concludes with a
short discussion on software inspections and testing and process maturity models.
For a more detailed account of software engineering see [13].

18.3 Early Software Engineering Mathematics

Robert Floyd was born in New York, in 1936, and he did pioneering work on
software engineering from the 1960s. He made important contributions to the
theory of parsing; the semantics of programming languages, program verification
and methodologies for the creation of efficient and reliable software (Fig. 18.5).

Mathematics and Computer Science were regarded as two completely separate
disciplines in the 1960s, and software development was based on the assumption
that the completed code would always contain defects. It was, therefore, better and
more productive to write the code as quickly as possible, and to then perform
debugging to find the defects. Programmers then corrected the defects, made pat-
ches and retested and found more defects. This continued until they could no longer
find defects. Of course, there was always the danger that defects remained in the
code that could give rise to software failures.

Fig. 18.5 Robert Floyd

304 18 Software Engineering Mathematics

Floyd believed that there was a way to construct rigorous proof of the correct-
ness of the programs using mathematics. He showed that mathematics could be
used for program verification, and he introduced the concept of assertions that
provided a way to verify the correctness of programs.

Flowcharts were employed in the 1960s to explain the sequence of basic steps
for computer programs. Floyd’s insight was to build upon flowcharts and to apply
an invariant assertion to each branch in the flowchart. These assertions state the
essential relations that exist between the variables at that point in the flow chart. An
example relation is ‘R = Z > 0, X = 1, Y = 0’. He devised a general flowchart
language to apply his method to programming languages. The language essentially
contains boxes linked by the flow of control arrows [14].

Consider the assertion Q that is true on entry to a branch where the condition at
the branch is P. Then, the assertion on exit from the branch is Q

V
¬P if P is false

and Q
V

P otherwise (Fig. 18.6).
The use of assertions may be employed in an assignment statement. Suppose

x represents a variable and v represents a vector consisting of all the variables in the
program. Suppose f(x, v) represents a function or expression of x and the other
program variables represented by the vector v. Suppose the assertion S(f(x, v), v) is
true before the assignment x = f(x, v). Then the assertion S(x, v) is true after the
assignment (Fig. 18.7). This is given by

Floyd used flowchart symbols to represent entry and exit to the flowchart. This
included entry and exit assertions to describe the program’s entry and exit
conditions.

Fig. 18.6 Branch assertions in flowcharts

Fig. 18.7 Assignment assertions in flowcharts

18.3 Early Software Engineering Mathematics 305

Floyd’s technique showed how a computer program is a sequence of logical
assertions. Each assertion is true whenever control passes to it, and statements
appear between the assertions. The initial assertion states the conditions that must
be true for the execution of the program to take place, and the exit assertion
essentially describes what must be true when the program terminates.

His key insight was the recognition that if it can be shown that the assertion
immediately following each step is a consequence of the assertion immediately
preceding it, then the assertion at the end of the program will be true, provided the
appropriate assertion was true at the beginning of the program.

He published an influential paper, “Assigning Meanings to Programs”, in 1967
[14], and this paper influenced Hoare’s work on preconditions and post-conditions
leading to Hoare logic [15]. Floyd’s paper also presented a formal grammar for
flowcharts, together with rigorous methods for verifying the effects of basic actions
like assignments.

Hoare logic is a formal system of logic used for programming semantics and for
program verification. It was developed by C. A. R. Hoare (Fig. 18.8)., and was
originally published in Hoare’s 1969 paper “An axiomatic basis for computer
programming” [15]. Hoare and others have subsequently refined it, and it provides
a logical methodology for precise reasoning about the correctness of computer
programs.

Hoare was influenced by Floyd’s 1967 paper that applied assertions to flow-
charts, and he recognized that this provided an effective method for proving the
correctness of programs. He built upon Floyd’s approach to cover the familiar
constructs of high-level programming languages.

This led to the axiomatic approach to defining the semantics of every statement
in a programming language (see Chap. 12), and the approach consists of axioms
and proof rules. He introduced what has become known as the Hoare triple, and this
describes how the execution of a fragment of code changes the state. A Hoare triple
is of the form

P Qf gR

Fig. 18.8 C.A.R Hoare

306 18 Software Engineering Mathematics

where P and R are assertions and Q is a program or command. The predicate P is
called the precondition and the predicate R is called the postcondition.

Definition 18.2 (Partial Correctness) The meaning of the Hoare triple above is that
whenever the predicate P holds of the state before the execution of the command or
program Q, then the predicate R will hold after the execution of Q. The brackets
indicate partial correctness as if Q does not terminate then R can be any predicate.
R may be chosen to be false to express that Q does not terminate.

Total correctness requires Q to terminate, and at termination R is true. Termi-
nation needs to be proved separately. Hoare logic includes axioms and rules of
inference rules for the constructs of imperative programming language.

Hoare and Dijkstra were of the view that the starting point of a program should
always be the specification, and that the proof of the correctness of the program
should be developed along with the program itself.

That is, the starting point is the mathematical specification of what a program is
to do, and mathematical transformations are applied to the specification until it is
turned into a program that can be executed. The resulting program is then known to
be correct by construction.

18.4 Mathematics in Software Engineering

Mathematics plays a key role in classical engineering to assist with the design and
verification of software products. It is, therefore, reasonable to apply appropriate
mathematics in software engineering (especially for safety and security-critical
systems) to assure that the delivered systems conform to the requirements. The
extent to which mathematics should be used is controversial with strong views in
both camps. In many cases, peer reviews and testing will be sufficient to build
quality into the software product. In other cases, and especially with safety and
security-critical applications, it is desirable to have the extra assurance that may be
provided with mathematical techniques.

Mathematics allows a rigorous analysis to take place and avoids an over-reliance
on intuition. The emphasis is on applying mathematics to solve practical problems
and to develop products that are fit for use. Engineers are taught how to apply
mathematics in their work, and the emphasis is always on the application of
mathematics to solve practical problems.

Classical mathematics may be applied to software engineering and specialized
mathematical methods and notations have also been developed. The classical
mathematics employed includes sets, relations, functions, logic, graph theory,
automata theory, matrix theory, probability and statistics, calculus and matrix
theory. Specialized formal specification languages such as Z and VDM have been
developed, and these allow the requirements to be formally specified in precise
mathematical language.

18.3 Early Software Engineering Mathematics 307

The term ‘formal methods’ refers to various mathematical techniques used in the
software field for the specification and formal development of software. Formal
methods consist of formal specification languages or notations and employ a col-
lection of tools to support the syntax checking of the specification, as well as the
proof of properties about the specification. The term ‘formal methods’ is used to
describe a formal specification language and a method for the design and imple-
mentation of computer systems.

The mathematical analysis of the formal specification allows questions to be
asked about what the system does, and these questions may be answered inde-
pendently of the implementation. Mathematical notation is precise, and this helps to
avoid the problem of ambiguity inherent in a natural language description of a
system. The formal specification may be used to promote a common understanding
for all stakeholders.

Formal methods have been applied to a diverse range of applications, including
the safety-critical field, security-critical field, the railway sector, the nuclear field,
microprocessor verification, the specification of standards and the specification and
verification of programs.

There are various tools to support formal methods including syntax checkers,
specialized editors, tools to support refinement, automated code generators, theorem
provers and specification animation tools. Formal methods need to mature further
before they will be used in mainstream software engineering, and they are described
in more detail in Chap. 20.

18.5 Software Inspections and Testing

Software inspections play an important role in building quality into software
products. The Fagan Inspection Methodology was developed by Michael Fagan at
IBM in the mid-1970s [16]. It is a seven-step process that identifies and removes
defects in work products. The Fagan methodology mandates that requirement
documents, design documents, source code and test plans are all formally inspected.

There are several roles defined in the process including the moderator who
chairs the inspection; the reader who reads or paraphrases the particular deliver-
able; the author who is the creator of the deliverable; and the tester who is con-
cerned with the testing viewpoint.

The inspection process will consider whether a design is correct with respect to
the requirements and whether the source code is correct with respect to the design.
There are several stages in the Fagan inspection process, including planning,
overview, preparation, inspection, process improvement, rework and follow-up.

Software testing plays a key role in verifying that a software product is of high
quality and conforms to the customer’s quality expectations. Testing is both a
constructive activity in that it is verifying the correctness of functionality, and it is
also a destructive activity in that the objective is to find as many defects as possible

308 18 Software Engineering Mathematics

in the software. The testing verifies that the requirements are correctly implemented
as well as identifying whether any defects are present in the software product.

There are various types of testing such as unit testing, integration testing, system
testing, performance testing, usability testing, regression testing, and customer
acceptance testing. The testing needs to be planned and test cases prepared and
executed. The results of testing are reported and any issues corrected and re-tested.
The test cases will need to be appropriate to verify the correctness of the software.
Software inspection and testing are described in more detail in [6].

18.6 Process Maturity Models

The Software Engineering Institute (SEI) developed the Capability Maturity Model
(CMM) in the early 1990s as a framework to help software organizations to
improve their software process maturity, and to implement best practice in software
and systems engineering. The SEI believes that there is a close relationship between
the maturity of software processes and the quality of the delivered software product.

The CMM applied the ideas of Deming [17], Juran [18], and Crosby [19] to the
software field. These quality gurus were influential in transforming manufacturing
companies with quality problems into effective quality-driven organizations with a
reduced cost of poor quality.

Watt Humphries (Fig. 18.9) did early work on software process improvement at
IBM [20]. He moved to the SEI in the late 1980s and the first version of the CMM
was released in 1991. It is now called the Capability Maturity Model Integration
(CMMI®) [21].

The CMMI consists of five maturity levels with each maturity level (except level
one) consisting of several process areas. Each process area consists of a set of goals
that are implemented by practices related to that process area leading to an effective
process.

The emphasis on level two of the CMMI is on maturing management practices
such as project management, requirements management, configuration management
and so on. The emphasis on level three of the CMMI is to mature engineering and

Fig. 18.9 Watts Humphrey.
Courtesy of Watts Humphrey

18.5 Software Inspections and Testing 309

organization practices. This maturity level includes peer reviews and testing,
requirements development, software design and implementation practices and so
on. Level four is concerned with ensuring that key processes are performing within
strict quantitative limits, and adjusting processes where necessary to perform within
these defined limits. Level five is concerned with continuous process improvement,
which is quantitatively verified.

The CMMI allows organizations to benchmark themselves against other similar
organizations. This is done by appraisals conducted by an authorized SCAMPI lead
appraiser. The results of a SCAMPI appraisal are generally reported back to the
SEI, and there is a strict qualification process to become an authorized lead
appraiser. An appraisal is useful in verifying that an organization has improved, and
it enables the organization to prioritize improvements for the next improvement
cycle.

18.7 Review Questions

1. What is software engineering? Describe the difference between classical
engineers and software engineers

2. Describe the “software crisis” of the late 1960s that led to the first
software engineering conference in 1968

3. Discuss the Standish Research Report and the level of success of IT
projects today. In your view is there a crisis in software engineering
today? Give reasons for your answer

4. Discuss what the role of mathematics should be in current software
engineering

5. Describe the waterfall and spiral lifecycles. What are the similarities and
differences between them?

6. Discuss the contributions of Floyd and Hoare
7. Explain the difference between partial correctness and total correctness
8. What are formal methods?
9. Discuss the process maturity models (including the CMMI). What are

their advantages and disadvantages?
10. Discuss how software inspections and testing can assist in the delivery of

high-quality software

310 18 Software Engineering Mathematics

18.8 Summary

This chapter presented a short account of some important developments in software
engineering. Its birth was at the Garmisch conference, in 1968, and it was recog-
nized that there was a crisis in the software field, and a need for sound method-
ologies to design, develop and maintain software to meet customer needs.

Classical engineering has a successful track record in building high-quality
products that are safe for the public to use. It is, therefore, natural to consider using
an engineering approach to developing software, and this involves identifying the
customer requirements, carrying out a rigorous design to meet the requirements,
developing and coding a solution to meet the design and conducting appropriate
inspections and testing to verify the correctness of the solution.

Mathematics plays a key role in classical engineering to assist with the design
and verification of software products. It is, therefore, reasonable to apply appro-
priate mathematics in software engineering (especially for safety-critical systems) to
ensure that the delivered system conforms to the requirements. The extent to which
mathematics should be used is controversial with strong views in both camps.

There is a lot more to the successful delivery of a project than just the use of
mathematics or peer reviews and testing. Sound project management and quality
management practices are essential, as a project that is not properly managed will
suffer from schedule, budget or cost overruns as well as problems with quality.

Maturity models such as the CMMI can assist organizations in maturing key
management and engineering practices and may help companies in their goals to
deliver high-quality software systems that are consistently delivered on time and
budget.

References

1. Standish Group Research Note (1999) Estimating: art or science. Featuring Morotz cost
expert

2. Brooks F (1975) The mythical man month. Addison Wesley
3. Brooks F (1986) No silver bullet. Essence and accidents of software engineering. Information

processing. Elsevier, Amsterdam
4. O’Regan G (2017) Concise guide to formal methods. Springer
5. O’ Regan G (2010) Introduction to software process improvement. Springer
6. O’ Regan G (2014) Introduction to software quality. Springer
7. Baber RL (2011) The language of mathematics. Utilizing math in practice. Wiley
8. O’ Regan G (2021) A brief history of computing, 3rd edn. Springer
9. Royce W (1970) The software lifecycle model (Waterfall Model). In: Proceedings of

WESTCON
10. Boehm B (1988) A spiral model for software development and enhancement. Computer
11. O’Regan G (2019) Concise guide to software testing. Springer
12. Beck K (2000) Extreme programming explained. Embrace change. Addison Wesley
13. O’Regan G (2017) Concise guide to software engineering. Springer
14. Floyd R (1967) Assigning meanings to programs. Proc Symp Appl Math (19):19–32

18.8 Summary 311

15. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12
(10):576–585

16. Fagan M (1976) Design and code inspections to reduce errors in software development. IBM
Syst J 15(3)

17. Edwards Deming W (1986) Out of crisis. M.I.T. Press
18. Juran J (2000) Juran’s quality handbook, 5th edn. McGraw Hill
19. Crosby P (1979) Quality is free. The art of making quality certain. McGraw Hill
20. Humphry W (1989) Managing the software process. Addison Wesley
21. Chrissis MB, Conrad M, Shrum S (2011) CMMI. Guidelines for process integration and

product improvement, 3rd edn. SEI series in software engineering. Addison Wesley

312 18 Software Engineering Mathematics

19Software Reliability and Dependability

19.1 Introduction

This chapter gives an introduction to the important area of software reliability and
dependability, and it discusses important topics in software engineering such as
software reliability, software availability, software reliability models, the Clean-
room methodology, dependability and its various dimensions, security engineering
and safety-critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. It is
different from hardware reliability, which is characterized by components that
physically wear out over time, whereas software is an intellectual creation and is
intangible and does not physically wear out as such. In other words, software
failures are due to design and implementation errors as the software is either correct
or incorrect when it is designed and developed, and it does not physically deteri-
orate with time.

Harlan Mills and others at IBM developed the Cleanroom approach to software
development, and the process is described in Sect. 19.2.2 and in more detail in [1].
It involves the application of statistical techniques to calculate a software reliability
measure based on the expected usage of the software.1 This involves executing tests
chosen from the population of all possible uses of the software in accordance with
the probability of its expected use. Statistical usage testing has been shown to be
more effective in finding defects that lead to failure than coverage testing.

1The expected usage of the software (or operational profile) is a quantitative characterization
(usually based on probability) of how the system will be used.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_19

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_19

Models are simplifications of reality and a good model allows accurate predic-
tions of future behaviour to be made. A model is judged effective if there is good
empirical evidence to support it, and a good software reliability model will have
good theoretical foundations and realistic assumptions. The extent to which the
software reliability model can be trusted depends on the accuracy of its predictions,
and empirical data will need to be gathered to judge its effectiveness. A good
software reliability model will give good predictions of the reliability of the
software.

It is essential that software that is widely used is dependable, which means that
the software is available whenever required and that it operates safely and reliably
without any adverse side effects (e.g. the software problems with the Therac-25
radiography machine led to several patients receiving massive overdoses in radia-
tion in the mid-1980s leading to serious injury and death of several patients).

Today, billions of computers are connected to the Internet, and this has led to a
growth in attacks on computers. It is essential that computer security is carefully
considered, and developers need to be aware of the threats facing a system and
techniques to eliminate them. The developers need to be able to develop secure
systems that are able to deal with and recover from external attacks.

19.2 Software Reliability

The design and development of high-quality software has become increasingly
important for society. The hardware field has been very successful in developing
sound reliability models, which allow useful and accurate predictions of how long a
hardware component (or product) will function. This has led to a growing interest in
the software field in the development of a sound software reliability model. Such a
model would provide a sound mechanism to predict the reliability of the software
prior to its deployment at the customer site, as well as confidence that the software
is fit for purpose and safe to use.

Definition 19.1 (Software Reliability) Software reliability is the probability that
the program works without failure for a specified length of time, and it is a state-
ment of the future behaviour of the software. It is generally expressed in terms of
the mean time to failure (MTTF) or the mean time between failure (MTBF).

Statistical sampling techniques are often employed to predict the reliability of
hardware, as it is not feasible to test all items in a production environment. The
quality of the sample is then used to make inferences on the quality of the entire
population, and this approach is effective in manufacturing environments where
variations in the manufacturing process often lead to defects in the physical
products.

314 19 Software Reliability and Dependability

There are similarities and differences between hardware and software reliability.
A hardware failure generally arises due to a component wearing out due to its age,
and often a replacement component is required. Many hardware components are
expected to last for a certain period of time, and the variation in the failure rate of a
hardware component is often due to variations in the manufacturing process, and to
the operating environment of the component. Good hardware reliability predictors
have been developed, and each hardware component has an expected mean time to
failure. The reliability of a product may then be determined from the reliability of
the individual components.

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest
themselves from particular user inputs. Each copy of the software code is identical,
and the software code is either correct or incorrect. That is, software failures are due
to design and implementation errors, rather than to the software physically wearing
out over time. The software community has not yet developed a sound software
reliability predictor model.

The software population to be sampled consists of all possible execution paths of
the software, and since this is potentially infinite it is generally not possible to
perform exhaustive testing. The way in which the software is used (i.e. the inputs
entered by the users) will impact upon its perceived reliability. Let If represent the
fault set of inputs (i.e. if 2 If if and only if the input of if by the user leads to failure).
The randomness of the time to software failure is due to the unpredictability in the
selection of an input if 2 If. It may be that the elements in If are inputs that are
rarely used, and therefore, the software will be perceived as being reliable.

Statistical usage testing may be used to make predictions on the future perfor-
mance and reliability of the software. This requires an understanding of the
expected usage profile of the system, as well as the population of all possible usages
of the software. The sampling is done in accordance with the expected usage
profile, and a software reliability measure is calculated.

19.2.1 Software Reliability and Defects

The release of an unreliable software product may result in damage to property or
injury (including loss of life) to a third party. Consequently, companies need to be
confident that their software products are fit for use prior to their release. The
project team needs to conduct extensive inspections and testing of the software, as
well as considering all associated risks prior to its release.

Objective product quality criteria may be set (e.g. 100% of tests performed and
passed) that must be satisfied prior to the release of the product. This provides a
degree of confidence that the software has the desired quality, and is fit for its
purpose. However, these results are historical in the sense that they are a statement
of past and present quality. The question is whether the past behavior and perfor-
mance provides a sound indication of the future behaviour.

19.2 Software Reliability 315

Software reliability models are an attempt to predict the future reliability of the
software and to assist in deciding on whether the software is ready for release.
A defect does not always result in a failure, as it may occur on a rarely used
execution path. Studies indicate that many observed failures arise from a small
proportion of the existing defects.

Adam’s 1984 case study of defects in IBM software [2] indicate that over 33%
of the defects led to an observed failure with mean time to failure greater than
5000 years, whereas less than 2% of defects led to an observed failure with a mean
time to failure of less than 5 years. This suggests (if these results may be gener-
alized to the wider software field) that a small proportion of defects often lead to
almost all of the observed failures (Table 19.1).

The analysis shows that 61.6% of all fixes (Group 1 and 2) were for failures that
will be observed less than once in 1580 years of expected use and that these
constitute only 2.9% of the failures observed by typical users. On the other hand,
groups 7 and 8 constitute 53.7% of the failures observed by typical users and only
1.4% of fixes.

This case study indicates that coverage testing is not cost effective in increasing
MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes
that will occur 53.7% of the time for a typical user. Harlan Mills has argued [3] that
the data in the table shows that usage testing is 21 times more effective than
coverage testing.

There is a need to be careful with reliability growth models, as there is no
tangible growth in reliability unless the corrected defects are likely to manifest
themselves as a failure.2 Many existing software reliability growth models assume
that all remaining defects in the software have an equal probability of failure and
that the correction of a defect leads to an increase in software reliability. These
assumptions are questionable.

The defect count and defect density may be poor predictors of operational
reliability, and an emphasis on removing a large number of defects from the
software may not be sufficient to achieve high reliability.

The correction of defects in the software leads to a newer version of the soft-
ware, and many software reliability models assume reliability growth, i.e. the new
version is more reliable than the older version as several identified defects have

Table 19.1 Adam’s 1984 study of software failures of IBM PRODUCTS

Rare Frequent

1 2 3 4 5 6 7 8

MTTF (years) 5,000 1,580 500 158 50 15.8 5 1.58

Avg % Fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Prob Failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

2We are assuming that the defect has been corrected perfectly with no new defects introduced by
the changes made.

316 19 Software Reliability and Dependability

been corrected. However, in some sectors such as the safety-critical field, the view
is that the new version of a program is a new entity and that no inferences may be
drawn until further investigation has been done. There are a number of ways to
interpret the relationship between the new version of the software and the older
version (Table 19.2).

The safety-critical industry (e.g. the nuclear power industry) takes the conser-
vative viewpoint that any change to a program creates a new program. The new
program is, therefore, required to demonstrate its reliability, and so extensive testing
needs to be performed.

19.2.2 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way to
develop high-quality software [3]. Cleanroom helps to ensure that the software is
released only when it has achieved the desired quality level, and the probability of
zero defects is very high.

The way in which the software is used will impact its perceived quality and
reliability. Failures will manifest themselves on certain input sequences, and as the
input sequences will vary among users, the result will be different perceptions of the
reliability of the software among the users. The knowledge of how the software will
be used allows the software testing to focus on verifying the correctness of common
everyday tasks carried out by users.

Therefore, it is important to determine the operational profile of the users to enable
effective software testing to be performed. This may be difficult to determine and
could change over time, as users may potentially change their behaviour as their needs
evolve. The determination of the operational profile involves identifying the common
operations to be performed, and the probability of each operation being performed.

Cleanroom employs statistical usage testing rather than coverage testing, and
this involves executing tests chosen from the population of all possible uses of the
software in accordance with the probability of its expected use. The software
reliability measure is calculated by statistical techniques based on the expected
usage of the software, and Cleanroom provides a certified mean time to failure of
the software.

Table 19.2 New and old
version of the software

Similarities and differences between new/old version

• The new version of the software is identical to the previous
version except that the identified defects have been
corrected

• The new version of the software is identical to the previous
version, except that the identified defects have been
corrected, but the developers have introduced some new
defects

• No assumptions can be made about the behaviour of the
new version of the software until further data is obtained

19.2 Software Reliability 317

Coverage testing involves designing tests that cover every path through the
program, and this type of testing is as likely to find a rare execution failure as well
as a frequent execution failure. However, it is essential to find failures that occur on
frequently used parts of the system.

The advantage of usage testing (that matches the actual execution profile of the
software) is that it has a better chance of finding execution failures on frequently
used parts of the system. This helps to maximize the expected mean time to failure
of the software.

The Cleanroom software development process and calculation of the software
reliability measure is described in [1], and the Cleanroom development process
enables engineers to deliver high-quality software on time and on budget. Some of
the benefits of the use of Cleanroom on projects at IBM are described in [3] and
summarized in Table 19.3.

19.2.3 Software Reliability Models

System availability is the percentage of time that the software system is running
without downtime, and robust systems will generally aim to achieve 5-nines
availability (i.e. 99.999% availability). This is equivalent to approximately 5 min of
downtime (including planned/unplanned outages) per year. The availability of a
system is measured by its performance when a subsystem fails, and its ability to
resume service in a state close to the original state. A fault-tolerant system continues
to operate correctly (possibly at a reduced level) after some part of the system fails,
and it aims to achieve 100% availability.

A model is judged effective if there is good empirical evidence to support it, and
more accurate models are sought to replace inadequate models. Models are often
modified (or replaced) over time, as further facts and observations lead to aberra-
tions that cannot be explained with the current model. A good software reliability
model will have the following characteristics (Table 19.4).

Table 19.3 Cleanroom results in IBM

Project Results

Flight Control project (1987) 33KLOC Completed ahead of schedule
Error-fix effort reduced by factor of five
2.5 errors KLOC before any execution

Commercial Product (1988) Deployment failures of 0.1/KLOC
Certification testing failures 3.4/KLOC
Productivity 740 LOC/month

Satellite Control (1989) 80 KLOC
(partial Cleanroom)

50% improvement in quality
Certification testing failures of 3.3/KLOC
Productivity 780 LOC/month
80% improvement in productivity

Research project (1990) 12 KLOC Certified to 0.9978 with 989 test cases

318 19 Software Reliability and Dependability

The underlying mathematics used in the calculation of software reliability (i.e.
probability and statistics) is discussed in Chaps. 22 and 23. There are several
existing software reliability predictor models employed (Table 19.5) with varying
degrees of success. Some of these models just compute defect counts rather than
estimating software reliability in terms of mean time to failure. They may be
categorized into:

• Size and Complexity Metrics
These are used to predict the number of defects that a system will reveal in oper-
ation or testing.

• Operational Usage Profile
These predict failure rates based on the expected operational usage profile of the
system. The number of failures encountered is determined and the software relia-
bility predicted (e.g. Cleanroom and its prediction of the MTTF).

• Quality of the Development Process
These predict failure rates based on the process maturity of the software develop-
ment process in the organization (e.g. CMMI maturity).

The extent to which the software reliability model can be trusted depends on the
accuracy of its predictions, and empirical data will need to be gathered to make a
judgement. It may be acceptable to have a little inaccuracy during the early stages
of prediction, provided the predictions of operational reliability are close to the
observations. A model that gives overly optimistic results is termed ‘optimistic’,
whereas a model that gives overly pessimistic results is termed ‘pessimistic’.

The assumptions in the reliability model need to be examined to determine
whether they are realistic. Several software reliability models have questionable
assumptions such as:

• All defects are corrected perfectly.
• Defects are independent of one another.
• Failure rate decreases as defects are corrected.
• Each fault contributes the same amount to the failure rate.

Table 19.4 Characteristics
of good software reliability
model

Characteristics of good software reliability model

Good theoretical foundation
Realistic assumptions
Good empirical support
As simple as possible (Ockham’s Razor)
Trustworthy and accurate

19.2 Software Reliability 319

19.3 Dependability

Software is ubiquitous and is important to all sections of society, and so it is
essential that software that is widely used is dependable (or trustworthy). In other
words, the software should be available whenever required, as well as operating
properly, safely and reliably, without any adverse side effects or security concerns.
It is essential that the software used in systems in the safety-critical and

Table 19.5 Software reliability models

Model Description Comments

Jelinski/Moranda
Model

The failure rate is a Poisson process31

and is proportional to the current defect
content of program. The initial defect
count is N; the initial failure rate is Nu;
it decreases to (N-1)u after the first fault
is detected and eliminated, and so on.
The constant u is termed the
proportionality constant

Assumes defects corrected perfectly
and no new defects are introduced
Assumes each fault contributes the
same amount to the failure rate

Littlewood/Verrall
Model

Successive execution time between
failures is independent exponentially
distributed random variables.42

Software failures are the result of the
particular inputs and faults introduced
from the correction of defects

Does not assume perfect correction of
defects

Seeding and
Tagging

This is analogous to estimating the fish
population of a lake (Mills). A known
number of defects are inserted into a
software program, and the proportion of
these identified during testing
determined
Another approach (Hyman) is to regard
the defects found by one tester as tagged,
and then to determine the proportion of
tagged defects found by a 2nd
independent tester

Estimate of the total number of
defects in the software but not a
software reliability predictor
Assumes all faults equally likely to be
found and introduced faults
representative of existing

Generalized
Poisson Model

The number of failures observed in ith
time interval si has a Poisson distribution
with mean /(N − Mi-1) si

a where N is
the initial number of faults; Mi-1 is the
total number of faults removed up to the
end of the (i − 1)th time interval; and /
is the proportionality constant

Assumes faults removed perfectly at
end of time interval

3The Poisson process is a widely used counting process, especially in counting the occurrence of
certain events that appear to happen at a certain rate but at random. A Poisson random variable is
of the form P{X = i} = e−k ki / i!.
4The exponential distribution is used to model the time between the occurrence of events in an
interval of time. The exponential density function is given by f(x) = ke−kx.

320 19 Software Reliability and Dependability

security-critical fields is dependable, as the consequence of failure (e.g. the failure
of a nuclear power plant) could be massive damage leading to loss of life or
endangering the lives of the public.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and it involves the use of a rigorous design and devel-
opment process to minimize the number of defects in the software. A dependable
system is generally designed for fault tolerance, where the system can deal with
(and recover from) faults that occur during software execution. Such a system needs
to be secure and able to protect itself from accidental or deliberate external attacks.
Table 19.6 lists several dimensions of dependability:

Modern software systems are subject to attack by malicious software such as
viruses that change the behaviour of the software, or corrupt data causing the
system to become unreliable. Other malicious attacks include a denial of service
attack that negatively impacts the system’s availability.

The design and development of dependable software needs to include protection
measures that protect against external attacks that could compromise the availability
and security of the system. Further, a dependable system needs to include recovery
mechanisms to enable normal service to be restored as quickly as possible fol-
lowing an attack.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and in designing dependable systems. A dependable
system will generally be developed using an explicitly defined repeatable process,
and it may employ redundancy (spare capacity) and diversity (different types) to
achieve reliability.

There is a trade-off between dependability and the performance of the system, as
dependable systems often need to carry out extra checks to monitor themselves and
to check for erroneous states, and to recover from faults before failure occurs. This
inevitably leads to increased costs in the design and development of dependable
systems.

Software availability is the percentage of the time that the software system is
running, and is a measure of the uptime/downtime of the software during a par-
ticular time period. The downtime refers to a period of time when the software is
unavailable for use (including planned and unplanned outages), and many com-
panies aim to develop software that is available for use 99.999% of the time in the
year (i.e. a downtime of less than 5 min per annum). This goal is known as five
nines, and it is a common goal in the telecommunications sector.

Table 19.6 Dimensions of dependability

Dimension Description

Availability The system is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system does not injure people or damage the environment

Security The system prevents unauthorized intrusions

19.3 Dependability 321

Safety-critical systems are systems where it is essential that the system is safe for
the public, and that people or the environment are not harmed in the event of system
failure. These include aircraft control systems and process control systems for
chemical and nuclear power plants. The failure of a safety-critical system could in
some situations lead to loss of life or serious economic damage.

Formal methods are discussed in Chap. 20, and they provide a precise way of
specifying the requirements of the proposed system and demonstrating (using
mathematics) that key properties are satisfied in the formal specification. Further,
they may be used to show that the implemented program satisfies its specification.
The use of formal methods generally leads to increased confidence in the correct-
ness of safety-critical and security-critical systems.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks, which are common today since most computers are
networked and connected to the Internet. There are various security threats in any
networked system including threats to the confidentiality and integrity of the system
and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are
unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted
data is unreadable to the attacker. There may be controls that detect and repel
attacks, and these controls are used to monitor the system and to take action to shut
down parts of the system or restrict access in the event of an attack. There may be
controls that limit exposure (e.g. insurance policies and automated backup strate-
gies) that allow recovery from the problems introduced.

It is important to have a reasonable level of security as otherwise all of the other
dimensions of dependability (reliability, availability and safety) are compromised.
Security loopholes may be introduced in the development of the system, and so care
needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability
requirements, and this involves identifying risks that can result in serious incidents.
This leads to the generation of specific security requirements as part of the system
requirements to ensure that these risks do not materialize, or if they do materialize
then serious incidents will not materialize.

19.4 Computer Security

The introduction of the world wide web in the early 1990s transformed the world of
computing, and it led inexorably to more and more computers being connected to
the Internet. This has subsequently led to an explosive growth in attacks on com-
puters and systems, as hackers and malicious software seek to exploit known
security vulnerabilities. It is, therefore, essential to develop secure systems that can
deal with and recover from such external attacks.

322 19 Software Reliability and Dependability

Hackers will often attempt to steal confidential data and disrupt the services
being offered by a system. Security engineering is concerned with the development
of systems that can prevent such malicious attacks and recover data from them. It
has become an important part of the software and system engineering, and software
developers need to be aware of the threats faced by a system, and develop solutions
to eliminate them.

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorized access to the system. There is a
need to conduct a risk assessment of the security threats facing a system early in the
software development process, and this will lead to several security requirements
for the system.

The system needs to be designed for security, as it is difficult to add security after
it has been implemented. Security loopholes may be introduced in the development
of the system, and so care needs to be taken to prevent these as well as preventing
hackers from exploiting security vulnerabilities. There may be controls that detect
and repel attacks, and these monitor the system and take appropriate action to
restrict access in the event of an attack. Users need to be educated on cyber hygiene,
as often attackers gain entry to a system after a user clicks on what appears to be a
genuine mail but which launches malware into the system.

The choice of architecture and how the system is organized is fundamental to the
security of the system, and different types of systems will require different technical
solutions to provide an acceptable level of security to its users. There following
guidelines for designing secure systems are described in [4]:

– Security decisions should be based on the security policy.
– A security-critical system should fail securely.
– A secure system should be designed for recoverability.
– A balance is needed between security and usability.
– A single point of failure should be avoided.
– A log of user actions should be maintained.
– Redundancy and diversity should be employed.
– Organization of information in the system into compartments.

It is important to have a good level of security, as otherwise all of the other
dimensions of dependability are compromised.

19.5 System Availability

System availability is the percentage of time that the software system is running
without downtime, and robust systems will generally aim to achieve 5-nines
availability (i.e. 99.999% availability). This is equivalent to approximately 5 min of
downtime (including planned/unplanned outages) per year. The availability of a
system is measured by its performance when a subsystem fails, and its ability to

19.4 Computer Security 323

resume service in a state close to the original state. A fault-tolerant system continues
to operate correctly (possibly at a reduced level) after some part of the system fails,
and it aims to achieve 100% availability.

System availability and software reliability are related, with availability mea-
suring the percentage of time that the system is operational, and reliability mea-
suring the probability of failure-free operation over a period of time. The
consequence of a system failure may be to freeze or crash the system, and system
availability is measured by how long it takes to recover and restart after a failure.
A system may be unreliable and yet have good availability metrics (fast restart after
failure), or it may be highly reliable with poor availability metrics (taking a long
time to recover after a failure).

Software that satisfies strict availability constraints is usually reliable. The
downtime generally includes the time needed for activities such as rebooting a
machine, upgrading to a new version of software planned and unplanned outages.

19.6 Safety-Critical Systems

A safety-critical system is a system whose failure could result in significant eco-
nomic damage or loss of life. There are many examples of safety-critical systems
including aircraft flight control systems and missile systems. It is, therefore,
essential to employ rigorous processes in their design and development, and testing
alone is usually insufficient in verifying their correctness.

The safety-critical industry takes the view that any change to safety-critical
software creates a new program. The new program is, therefore, required to
demonstrate that it is reliable and safe to use, and so extensive testing needs to be
performed. Other techniques such as formal verification and model checking may
be employed to provide an extra level of assurance in its correctness.

Safety-critical systems need to be dependable and available for use whenever
required, and this software must operate correctly and reliably without any adverse
side effects. The consequence of failure (e.g. the failure of a weapons system) could
be massive damage, leading to loss of life or endangering the lives of the public.

Safety-critical systems are generally designed for fault tolerance, where the
system can deal with (and recover from) faults that occur during execution. Fault
tolerance is achieved by anticipating exceptional events, and in designing the
system to handle them. A fault-tolerant system is designed to fail safely, and
programs are designed to continue working (possibly at a reduced level of per-
formance) rather than crashing after the occurrence of an error or exception. Many
fault-tolerant systems mirror all operations, where each operation is performed on
two or more duplicate systems, and so if one fails then the other system can take
over.

324 19 Software Reliability and Dependability

The development of a safety-critical system needs to be rigorous, and subject to
strict quality assurance to ensure that the system is safe to use and that the public
will not be in danger. This involves rigorous design and development processes to
minimize the number of defects in the software, as well as comprehensive testing to
verify its correctness. Formal methods are often employed in the development of
safety-critical systems (see Chap. 20).

19.7 Review Questions

1. Explain the difference between software reliability and system availability?
2. What is software dependability?
3. Explain the significance of Adam’s 1984 study of failures at IBM?
4. Describe the Cleanroom methodology?
5. Describe the characteristics of a good software reliability model?
6. Explain the relevance of security engineering?
7. What is a safety-critical system?

19.8 Summary

This chapter gave an introduction to some important topics in software engineering
including software reliability and the Cleanroom methodology, dependability,
availability, security and safety-critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. Cleanroom
involves the application of statistical techniques to calculate software reliability,
and it is based on the expected usage of the software.

It is essential that the software used in the safety- and security-critical fields is
dependable, with the software available when required, as well as operating safely
and reliably without any adverse side effects. Many of these systems are fault
tolerant and are designed to deal with (and recover) from faults that occur during
execution.

These systems need to be secure and able to deal with external attacks, and need
to include recovery mechanisms to enable normal service to be restored as quickly
as possible. It is essential that if the system fails then it fails safely.

Today, billions of computers are connected to the Internet, and this has led to a
growth in attacks on computers. It is essential that developers are aware of the
threats facing a system and are familiar with techniques to eliminate them.

19.6 Safety-Critical Systems 325

References

1. O’ Regan G (2006) Mathematical approaches to software quality. Springer
2. Adams E (1984) Optimizing preventive service of software products. IBM Res J 28(1):2–14
3. Cobb RH, Mills HD (1990) Engineering software under statistical quality control. IEEE Softw
4. Sommerville I (2011) Software engineering, 9th edn. Pearson

326 19 Software Reliability and Dependability

20Formal Methods

20.1 Introduction

The term “formal methods” refer to various mathematical techniques used for the
formal specification and development of software. They consist of a formal spec-
ification language, and employ a collection of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification. They
allow questions to be asked about what the system does independently of the
implementation.

The use of mathematical notation avoids speculation about the meaning of
phrases in an imprecisely worded natural language description of a system. Natural
language is inherently ambiguous, whereas mathematics employs a precise rigorous
notation. Spivey [Spi:92] defines formal specification as:

20.1.1 Definition 20.1 (Formal Specification)

Formal specification is the use of mathematical notation to describe in a precise
way the properties that an information system must have, without unduly con-
straining the way in which these properties are achieved.

The formal specification thus becomes the key reference point for the different
parties involved in the construction of the system. It may be used as the reference
point in the requirements; program implementation; testing and program docu-
mentation. It promotes a common understanding for all those concerned with the
system. The term “formal methods” is used to describe a formal specification
language and a method for the design and implementation of computer systems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_20

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_20

The specification is written in a mathematical language, and the implementation
is derived from the specification via step-wise refinement.1 The refinement step
makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid,
and that the concrete state preserves the properties of the more abstract state. Thus,
assuming that the original specification is correct, and the proofs of correctness of
each refinement step are valid, then there is a very high degree of confidence in the
correctness of the implemented software.

Step-wise refinement is illustrated as follows: the initial specification S is the
initial model M0; it is then refined into the more concrete model M1, and M1 is then
refined into M2, and so on until the eventual implementation Mn = E is produced.

S ¼ M0�M1�M2�M3�.::�Mn ¼ E

Requirements are the foundation of the system to be built, and irrespective of the
best design and development practices, the product will be incorrect if the
requirements are incorrect. The objective of requirements validation is to ensure
that the requirements reflect what is actually required by the customer (in order to
build the right system). Formal methods may be employed to model the require-
ments, and the model exploration yields further desirable or undesirable properties.
The ability to prove that certain properties are true of the specification is very
valuable, especially in safety critical and security critical applications. These
properties are logical consequences of the definition of the requirements, and,
where appropriate, the requirements may need to be amended. Thus, formal
methods may be employed in a sense to debug the requirements during require-
ments validation.

The use of formal methods generally leads to more robust software and to
increased confidence in its correctness. The challenges involved in the deployment
of formal methods in an organization include the education of staff in formal
specification, as the use of these mathematical techniques may be a culture shock to
many staff.

Formal methods have been applied to a diverse range of applications, including
the security critical field; the safety critical field; the railway sector; microprocessor
verification; the specification of standards, and the specification and verification of
programs.

Parnas and others have criticized formal methods on the following grounds
(Table 20.1):

However, formal methods are potentially quite useful and reasonably easy to
use. The use of a formal method such as Z or VDM forces the software engineer to
be precise and helps to avoid ambiguities present in natural language. Clearly, a
formal specification should be subject to a peer review to provide confidence in

1It is debatable whether step-wise refinement is cost effective in mainstream software engineering,
as it involves re-writing a specification ad nauseum. It is time-consuming, as significant time is
required to prove that each refinement step is valid.

328 20 Formal Methods

its correctness. New formalisms need to be intuitive to be usable by practitioners.
The advantage of classical mathematics is that it is familiar to students.

20.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order to
produce software adhering to high quality standards. Quality problems with soft-
ware may cause minor irritations or major damage to a customer’s business
including loss of life.8 Formal methods are a leading-edge technology that may help
companies to reduce the occurrence of defects in software products. Brown
[Bro:90] argues that for the safety critical field that:

Table 20.1 Criticisms of formal methods

No Criticism

1 Often the formal specification is as difficult to read as the program2

2 Many formal specifications are wrong3

3 Formal methods are strong on syntax but provide little assistance in deciding on what
technical information should be recorded using the syntax4

4 Formal specifications provide a model of the proposed system. However, a precise
unambiguous mathematical statement of the requirements is what is needed5

5 Step-wise refinement is unrealistic.6 It is like, for example, deriving a bridge from the
description of a river and the expected traffic on the bridge. There is always a need for a
creative step in design

6 Much unnecessary mathematical formalisms have been developed rather than using the
available classical mathematics7

2Of course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and
that the notation he employs in some of his tables is quite unfriendly. The usability of all of the
mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists.
3Obviously, the formal specification must be analysed using mathematical reasoning and tools to
provide confidence in its correctness. The validation may be carried out using mathematical proof
of key properties of the specification; software inspections; or specification animation.
4VDM includes a method for software development as well as the specification language.
5Models are extremely valuable as they allow simplification of the reality. A mathematical study of
the model demonstrates whether it is a suitable representation of the system. Models allow
properties of the proposed requirements to be studied prior to implementation.
8We mentioned the serious problems with the Therac-25 radiotherapy machine in Chap. 18.
6Step-wise refinement involves rewriting a specification with each refinement step producing a
more concrete specification (that includes code and formal specification) until eventually the
detailed code is produced. However, tool support may make refinement easier.
7Approaches such as VDM or Z are useful in that they add greater rigour to the software
development process. Classical mathematics is familiar to students and therefore it is desirable that
new formalisms are introduced only where absolutely necessary.

20.1 Introduction 329

20.2.1 Comment 20.1 (Missile Safety)

Missile systems must be presumed dangerous until shown to be safe, and that the
absence of evidence for the existence of dangerous errors does not amount to
evidence for the absence of danger.

This suggests that companies in the safety critical field need to demonstrate that
every reasonable practice was taken to prevent the occurrence of defects. One such
practice is the use of formal methods, and its exclusion may need to be justified in
some domains. It is quite possible that a software company may be sued for
software which injures a third party,9 and this suggests that companies will need a
rigorous quality assurance system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides
savings in the cost of the project. For example, a 9% cost saving is attributed to the
use of formal methods during the CICS project; the T800 project attributes a
12-month reduction in testing time to the use of formal methods. These are dis-
cussed in more detail in chapter one of [HB:95].

The use of formal methods is mandatory in certain circumstances. The Ministry
of Defence in the United Kingdom issued two safety–critical standards10 in the
early 1990s related to the use of formal methods in the software development
lifecycle.

The first is Defence Standard 00–55, “The Procurement of safety critical soft-
ware in defense equipment” [MOD:91a] which makes it mandatory to employ
formal methods in safety-critical software development in the UK; and mandates
the use of formal proof that the most crucial programs correctly implement their
specifications.

The second is Def Stan 00–56 “Hazard analysis and safety classification of the
computer and programmable electronic system elements of defense equipment”
[MOD:91b]. The objective of this standard is to provide guidance to identify which
systems or parts of systems being developed are safety–critical and thereby require
the use of formal methods. This proposed system is subject to an initial hazard
analysis to determine whether there are safety–critical parts.

The reaction to these defence standards 00–55 and 00–56 was quite hostile
initially, as most suppliers were unlikely to meet the technical and organization
requirements of the standard [Tie:91]. The standards were subsequently revised to
be less prescriptive on the use of formal methods.

9A comprehensive disclaimer of responsibility for problems (rather than a guarantee of quality)
accompany most software products, and so the legal aspects of licensing software may protect
software companies from litigation. However, greater legal protection for the customer can be built
into the contract between the supplier and the customer for bespoke-software development.
10The U.K. Defence Standards 0055 and 0056 were later revised to be less prescriptive on the use
of formal methods.

330 20 Formal Methods

20.3 Applications of Formal Methods

Formal methods have been employed to verify correctness in the nuclear power
industry, the aerospace industry, the security technology area, and the railroad
domain. These sectors are subject to stringent regulatory controls to ensure safety
and security. Several organizations have piloted formal methods with varying
degrees of success. These include IBM, who developed VDM at its laboratory in
Vienna; IBM (Hursley) piloted the Z formal specification language on the CICS
(Customer Information Control System) project.

The mathematical techniques developed by Parnas (i.e., tabular expressions)
have been employed to specify the requirements of the A-7 aircraft as part of a
research project for the US Navy11. Tabular expressions have also been employed
for the software inspection of the automated shutdown software of the Darlington
Nuclear power plant in Canada.12 These are two successful uses of mathematical
techniques in software engineering.

There are examples of the use of formal methods in the railway domain, and
examples dealing with the modeling and verification of a railroad gate controller
and railway signaling are described in [HB:95]. Clearly, it is essential to verify
safety critical properties such as “when the train goes through the level crossing
then the gate is closed”.

20.4 Tools for Formal Methods

A key criticism of formal methods is the limited availability of tools to support the
software engineer in writing a formal specification or in conducting proof. Many of
the early tools were criticized as not being of industrial strength. However, in recent
years more advanced tools to support the software engineer’s work in formal
specification and formal proof have become available, and this should continue in
the coming years.

The tools include syntax checkers that determine whether the specification is
syntactically correct; specialized editors which ensure that the written specification
is syntactically correct; tools to support refinement; automated code generators that
generate a high-level language corresponding to the specification; theorem provers
to demonstrate the presence or absence of key properties and to prove the cor-
rectness of refinement steps, and to identify and resolve proof obligations; and
specification animation tools where the execution of the specification can be
simulated.

11However, the resulting software was never actually deployed on the A-7 aircraft.
12This was an impressive use of mathematical techniques and it has been acknowledged that
formal methods must play an important role in future developments at Darlington. However, given
the time and cost involved in the software inspection of the shutdown software some managers
have less enthusiasm in shifting from hardware to software controllers [Ger:94].

20.3 Applications of Formal Methods 331

The B-Toolkit from B-Core is an integrated set of tools that supports the B-
Method. These include syntax and type checking, specification animation, proof
obligation generator, an auto-prover, a proof assistor, and code generation. This
allows, in theory, a complete formal development from initial specification to final
implementation to be achieved, with every proof obligation justified, leading to a
provably correct program.

The IFAD Toolbox13 is a support tool for the VDM-SL specification language,
and it includes support for syntax and type checking, an interpreter and debugger to
execute and debug the specification, and a code generator to convert from VDM-SL
to C++. It also includes support for graphical notations such as the OMT/UML
design notations.

20.5 Approaches to Formal Methods

There are two key approaches to formal methods: namely the model-oriented
approach of VDM or Z, and the algebraic or axiomatic approach of the process
calculi such as the calculus communicating systems (CCS) or communicating
sequential processes (CSP).

20.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models, and
a model is a mathematical representation or abstraction of a physical entity or
system. The model aims to provide a mathematical explanation of the behaviour of
the physical world, and it is considered suitable if its properties closely match those
of the system being modeled. A model will allow predictions of future behaviour to
be made, and many models are employed in the physical world (e.g., weather
forecasting system).

It is fundamental to explore the model to determine its adequacy, and to
determine the extent to which it explains the underlying physical behaviour, and
allows predictions of future behaviour to be made. This will determine its accept-
ability as a representation of the physical world. Models that are ineffective will be
replaced with models that offer a better explanation of the manifested physical
behaviour. There are many examples in science of the replacement of one theory by
a newer one. For example, the Copernican model of the universe replaced the older
Ptolemaic model, and Newtonian physics was replaced by Einstein’s theories on
relativity [Kuh:70].

The model-oriented approach to software development involves defining an
abstract model of the proposed software system. The model acts as a representation

13The IFAD Toolbox has been renamed to VDMTools as IFAD sold the VDM Tools to CSK in
Japan.

332 20 Formal Methods

of the proposed system, and the model is then explored to assess its suitability. The
exploration of the model takes the form of model interrogation, i.e., asking ques-
tions and determining the effectiveness of the model in answering the questions.
The modeling in formal methods is typically performed via elementary discrete
mathematics, including set theory, sequences, functions and relations.

VDM and Z are model-oriented approaches to formal methods. VDM arose from
work done in the IBM laboratory in Vienna in formalizing the semantics for the
PL/1 compiler, and it was later applied to the specification of software systems. The
origin of the Z specification language is in work done at Oxford University in the
early 1980s.

20.5.2 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to
satisfy, and there is no intention to produce an abstract model of the system. The
required properties and behaviour of the system are stated in mathematical notation.
The difference between the axiomatic specification and a model-based approach is
may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping
an element from the stack. The properties of pop and push are explicitly defined in
the axiomatic approach. The model-oriented approach constructs an explicit model
of the stack and the operations are defined in terms of the effect that they have on
the model. The specification of the pop operation on a stack is given by axiomatic
properties, for example, pop (push(s,x)) = s.

20.5.3 Comment 20.2 (Axiomatic Approach)

The property-oriented approach has the advantage that the implementer is not
constrained to a particular choice of implementation, and the only constraint is that
the implementation must satisfy the stipulated properties.

The emphasis is on the required properties of the system, and implementation
issues are avoided. The focus is on the specification of the underlying behaviour,
and properties are typically stated using mathematical logic or higher-order logics.
Mechanized theorem-proving techniques may be employed to prove results.

One potential problem with the axiomatic approach is that the properties spec-
ified may not be satisfiable in any implementation. Thus, whenever a “formal
axiomatic theory” is developed a corresponding “model” of the theory must be
identified, in order to ensure that the properties may be realized in practice. That is,
when proposing a system that is to satisfy some set of properties, there is a need to
prove that there is at least one system that will satisfy the set of properties.

20.5 Approaches to Formal Methods 333

20.6 Proof and Formal Methods

A mathematical proof typically includes natural language and mathematical sym-
bols, and often many of the tedious details of the proof are omitted. The proof of a
conjecture may be by a “divide and conquer” technique; i.e., breaking the con-
jecture down into subgoals and then attempting to prove the subgoals. Many proofs
in formal methods are concerned with crosschecking the details of the specification,
or checking the validity of refinement steps, or checking that certain properties are
satisfied by the specification. There are often many tedious lemmas to be proved,
and theorem provers14 are essential in assisting with this. Machine proof needs to be
explicit, and reliance on some brilliant insight is avoided. Proofs by hand are
notorious for containing errors or jumps in reasoning, while machine proofs are
explicit but are often extremely lengthy and unreadable (e.g., the actual machine
proof of correctness of the VIPER microprocessor15 [Tie:91] consisted of several
million formulae).

A formal mathematical proof consists of a sequence of formulae, where each
element is either an axiom or derived from a previous element in the series by
applying a fixed set of mechanical rules.

Theorem provers are invaluable in resolving many of the thousands of proof
obligations that arise from a formal specification, and it is not feasible to apply
formal methods in an industrial environment without the use of machine-assisted
proof. Automated theorem proving is difficult, as often mathematicians prove a
theorem with an initial intuitive feeling that the theorem is true. Human intervention
to provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness16 is unlikely except for the
most trivial of programs. A program may consist of legacy software that is assumed
to work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that formal methods
can claim is increased confidence in correctness of the software, rather than an
absolute proof of correctness.

14Many existing theorem provers are difficult to use and are for specialist use only. There is a need
to improve their usability.
15This verification was controversial with RSRE and Charter overselling VIPER as a chip design
that conforms to its formal specification.
16This position is controversial with others arguing that if correctness is defined mathematically
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,
and that the reason why there are not many examples of such proofs is due to a lack of
mathematical specifications.

334 20 Formal Methods

20.7 The Future of Formal Methods

The debate concerning the level of use of mathematics in software engineering is
still ongoing. Most practitioners are against the use of mathematics and avoid its
use. They tend to employ methodologies such as software inspections and testing to
improve confidence in the correctness of the software. Industrialists often need to
balance conflicting needs such as quality; cost; and aggressive time pressures. They
argue that commercial realities dictate that appropriate methodologies and tech-
niques are required that allow them to achieve their business goals in a timely
manner.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software, and that if a company does not place sufficient
emphasis on quality it will pay the price in terms of a poor reputation in the market
place.

It is generally accepted that mathematics and formal methods must play a role in
the safety critical and security critical fields. Apart from that the extent of the use of
mathematics is a hotly disputed topic. The pace of change in the world is
extraordinary, and companies face major competitive pressures in a global market
place. It is unrealistic to expect companies to deploy formal methods unless they
have clear evidence that it will support them in delivering commercial products to
the market place ahead of their competition, at the right price and with the right
quality. Formal methods needs to prove that it can do this if it wishes to be taken
seriously in mainstream software engineering. The issue of technology transfer of
formal methods to industry is discussed in [ORg:17a].

20.8 The Vienna Development Method

VDM dates from work done by the IBM research laboratory in Vienna. This group
was specifying the semantics of the PL/1 programming language using an opera-
tional semantic approach (discussed in Chap. 12). That is, the semantics of the
language were defined in terms of a hypothetical machine, which interprets the
programs of that language [BjJ:78, BjJ:82]. Later work led to the Vienna Devel-
opment Method (VDM) with its specification language, Meta IV. This was used to
give the denotational semantics of programming languages; i.e., a mathematical
object (set, function, etc.) is associated with each phrase of the language [BjJ:82].
The mathematical object is termed the denotation of the phrase.

VDM is a model-oriented approach and this means that an explicit model of the
state of an abstract machine is given, and operations are defined in terms of this
state. Operations may act on the system state, taking inputs, and producing outputs
as well as a new system state. Operations are defined in a precondition and
post-condition style. Each operation has an associated proof obligation to ensure
that if the precondition is true, then the operation preserves the system invariant.
The initial state itself is, of course, required to satisfy the system invariant.

20.7 The Future of Formal Methods 335

VDM uses keywords to distinguish different parts of the specification, e.g.,
preconditions, post-conditions, as introduced by the keywords pre and post
respectively. In keeping with the philosophy that formal methods specifies what a
system does as distinct from how, VDM employs post-conditions to stipulate the
effect of the operation on the state. The previous state is then distinguished by
employing hooked variables, e.g., v¬, and the postcondition specifies the new state
which is defined by a logical predicate relating the pre-state to the post-state.

VDM is more than its specification language VDM-SL, and is, in fact, a software
development method, with rules to verify the steps of development. The rules
enable the executable specification, i.e., the detailed code, to be obtained from the
initial specification via refinement steps. Thus, we have a sequence S = S0, S1,…, Sn
= E of specifications, where S is the initial specification, and E is the final (exe-
cutable) specification.

Retrieval functions enable a return from a more concrete specification to the
more abstract specification. The initial specification consists of an initial state, a
system state, and a set of operations. The system state is a particular domain, where
a domain is built out of primitive domains such as the set of natural numbers, etc.,
or constructed from primitive domains using domain constructors such as Cartesian
product, disjoint union, etc. A domain-invariant predicate may further constrain the
domain, and a type in VDM reflects a domain obtained in this way. Thus, a type in
VDM is more specific than the signature of the type, and thus represents values in
the domain defined by the signature, which satisfy the domain invariant. In view of
this approach to types, it is clear that VDM types may not be “statically type
checked”.

VDM specifications are structured into modules, with a module containing the
module name, parameters, types, operations, etc. Partial functions occur frequently
in computer science as many functions, may be undefined, or fail to terminate for
some arguments in their domain. VDM addresses partial functions by employing
nonstandard logical operators, namely the logic of partial functions (LPFs), which
was discussed in Chap. 16.

VDM has been used in industrial projects, and its tool support includes the IFAD
Toolbox.17 There are several variants of VDM, including VDM++, the
object-oriented extension of VDM, and the Irish school of the VDM, which is
discussed in the next section.

20.9 VDM♣, the Irish School of VDM

The Irish School of VDM is a variant of standard VDM, and is characterized by
[Mac:90] its constructive approach, classical mathematical style, and its terse
notation. This method aims to combine the what and how of formal methods in that
its terse specification style stipulates in concise form what the system should do;

17The VDM Tools are now available from the CSK Group in Japan.

336 20 Formal Methods

furthermore, the fact that its specifications are constructive (or functional) means
that the how is included with the what. However, it is important to qualify this by
stating that the how as presented by VDM♣ is not directly executable, as several of
its mathematical data types have no corresponding structure in high-level pro-
gramming languages or functional languages. Thus, a conversion or reification of
the specification into a functional or higher-level language must take place to ensure
a successful execution. Further, the fact that a specification is constructive is no
guarantee that it is a good implementation strategy, if the construction itself is
naive.

The Irish school follows a similar development methodology as in standard
VDM, and is a model-oriented approach. The initial specification is presented, with
initial state and operations defined. The operations are presented with precondi-
tions; however, no postcondition is necessary as the operation is “functionally” (i.e.,
explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the
invariant. That is, if the precondition for the operation is true, and the operation is
performed, then the system invariant remains true after the operation. The philos-
ophy is to exhibit existence constructively rather than a theoretical proof of exis-
tence that demonstrates the existence of a solution without presenting an algorithm
to construct the solution.

The school avoids the existential quantifier of predicate calculus and reliance on
logic in proof is kept to a minimum, and emphasis instead is placed on equational
reasoning. Structures with nice algebraic properties are sought, and one nice
algebraic structure employed is the monoid, which has closure, associativity, and a
unit element. The concept of isomorphism is powerful, reflecting that two structures
are essentially identical, and thus we may choose to work with either, depending on
which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The former
[Pol:57] advocated a style of problem solving characterized by first considering an
easier sub-problem, and considering several examples. This generally leads to a
clearer insight into solving the main problem. Lakatos’s approach to mathematical
discovery [Lak:76] is characterized by heuristic methods. A primitive conjecture is
proposed and if global counter-examples to the statement of the conjecture are
discovered, then the corresponding hidden lemma for which this global coun-
terexample is a local counter example is identified and added to the statement of the
primitive conjecture. The process repeats, until no more global counterexamples are
found. A skeptical view of absolute truth or certainty is inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the problem
is that functions may be undefined, or fail to terminate for several of the arguments
in their domain. The logic of partial functions (LPFs) is avoided, and instead care is
taken with recursive definitions to ensure termination is achieved for each argu-
ment. Academic and industrial projects have been conducted using the method of
the Irish school, but at this stage tool support is limited.

20.9 VDM♣, the Irish School of VDM 337

20.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and it was
developed by Abrial at Oxford University in the early 1980s. It is a model-oriented
approach where an explicit model of the state of an abstract machine is given, and
the operations are defined in terms of the effect on the state. It includes a mathe-
matical notation that is similar to VDM, and it employs the visually striking schema
calculus, which consists essentially of boxes, with these boxes or schemas used to
describe operations and states. The schema calculus enables schemas to be used as
building blocks and combined with other schemas. The Z specification language
was published as an ISO standard (ISO/IEC 13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specification highly readable, as
each individual schema is small in size and self-contained. The exception handling
is done by defining schemas for the exception cases, and these are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. However, the
precondition is implicitly defined within the operation; i.e., it is not separated out as
in standard VDM. Each operation has an associated proof obligation to ensure that
if the precondition is true, then the operation preserves the system invariant. The
initial state itself is, of course, required to satisfy the system invariant. Postcondi-
tions employ a logical predicate which relates the pre-state to the post-state, and the
post-state of a variable v is given by priming, e.g., v'. Various conventions are
employed, e.g., v? indicates that v is an input variable and v! indicates that v is an
output variable. The symbol N Op operation indicates that this operation does not
affect the state, whereas D Op indicates that this operation that affects the state.

Many data types employed in Z have no counterpart in standard programming
languages. It is therefore important to identify and describe the concrete data
structures that will ultimately represent the abstract mathematical structures. The
operations on the abstract data structures may need to be refined to yield operations
on the concrete data structure that yield equivalent results. For simple systems,
direct refinement (i.e., one step from abstract specification to implementation) may
be possible; in more complex systems, deferred refinement is employed, where a
sequence of increasingly concrete specifications are produced to yield the exe-
cutable specification eventually.

Z has been successfully applied in industry, and one of its well-known successes
is the CICS project at IBM Hursley in England. Z is described in more detail in
Chap. 21.

338 20 Formal Methods

20.11 The B Method

The B-Technologies [McD:94] consist of three components: a method for software
development, namely the B-Method; a supporting set of tools, namely, the B-
Toolkit; and a generic program for symbol manipulation, namely, the B-Tool (from
which the B-Toolkit is derived). The B-Method is a model-oriented approach and is
closely related to the Z specification language. Abrial developed the B specification
language, and every construct in the language has a set theoretic counterpart, and
the method is founded on Zermelo set theory. Each operation has an explicit
precondition.

One key purpose [McD:94] of the abstract machine in the B-Method is to
provide encapsulation of variables representing the state of the machine and
operations that manipulate the state. Machines may refer to other machines, and a
machine may be introduced as a refinement of another machine. The abstract
machines are specification machines, refinement machines, or implementable
machines. The B-Method adopts a layered approach to design where the design is
gradually made more concrete by a sequence of design layers. Each design layer is
a refinement that involves a more detailed implementation in terms of abstract
machines of the previous layer. The design refinement ends when the final layer is
implemented purely in terms of library machines. Any refinement of a machine by
another has associated proof obligations, and proof is required to verify the validity
of the refinement step.

Specification animation of the Abstract Machine Notation (AMN) specification
is possible with the B-Toolkit, and this enables typical usage scenarios of the AMN
specification to be explored for requirements validation. This is, in effect, an early
form of testing, and it may be used to demonstrate the presence or absence of
desirable or undesirable behavior. Verification takes the form of a proof to
demonstrate that the invariant is preserved when the operation is executed within its
precondition, and this is performed on the AMN specification with the B-Toolkit.

The B-Toolkit provides several tools that support the B-Method, and these
include syntax and type checking; specification animation, proof obligation gen-
erator, auto prover, proof assistor, and code generation. Thus, in theory, a complete
formal development from initial specification to final implementation may be
achieved, with every proof obligation justified, leading to a provably correct
program.

The B-Method and toolkit have been successfully applied in industrial appli-
cations, including the CICS project at IBM Hursley in the United Kingdom
[Hor:95]. The automated support provided has been cited as a major benefit of the
application of the B-Method and the B-Toolkit.

20.11 The B Method 339

20.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e., a statement that may be true or
false, and it is usually required to prove that if the precondition Q is true,; i.e., {Q}
S {R}, then execution of S is guaranteed to terminate in a finite amount of time in a
state satisfying R.

The weakest precondition of a command S with respect to a postcondition
R represents the set of all states such that if execution begins in any one of these
states, then execution will terminate in a finite amount of time in a state with R true
[Gri:81]. These set of states may be represented by a predicate Q’, so that wp(S,R) =
wpS (R) = Q’, and so wpS is a predicate transformer, i.e., it may be regarded as a
function on predicates. The weakest precondition is the precondition that places the
fewest constraints on the state than all of the other preconditions of (S,R). That is,
all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness and indicates that if
execution of S commences in any state satisfying Q, and if execution terminates,
then the final state will satisfy R. Often, a predicate Q which is stronger than the
weakest precondition wp(S,R) is employed, especially where the calculation of the
weakest precondition is nontrivial. Thus, a stronger predicate Q such that Q) wp
(S,R) is sometimes employed.

There are many properties associated with the weakest preconditions, and these
may be used to simplify expressions involving weakest preconditions, and in
determining the weakest preconditions of various program commands such as
assignments, iterations, etc. Weakest preconditions may be used in developing a
proof of correctness of a program in parallel with its development [Dij:76].

An imperative program may be regarded as a predicate transformer. This is since
a predicate P characterizes the set of states in which the predicate P is true, and an
imperative program may be regarded as a binary relation on states, which may be
extended to a function F, leading to the Hoare triple P{F}Q. That is, the program
F acts as a predicate transformer with the predicate P regarded as an input assertion,
i.e., a Boolean expression that must be true before the program F is executed, and
the predicate Q is the output assertion, which is true if the program F terminates
(where F commenced in a state satisfying P).

20.13 The Process Calculi

The objectives of the process calculi [Hor:85] are to provide mathematical models
that provide insight into the diverse issues involved in the specification, design, and
implementation of computer systems which continuously act and interact with their
environment. These systems may be decomposed into sub-systems that interact
with each other and their environment.

340 20 Formal Methods

The basic building block is the process, which is a mathematical abstraction of
the interactions between a system and its environment. A process that lasts indef-
initely may be specified recursively. Processes may be assembled into systems; they
may execute concurrently; or communicate with each other. Process communica-
tion may be synchronized, and this takes the form of a process outputting a message
simultaneously to another process inputting a message. Resources may be shared
among several processes. Process calculi such as CSP [Hor:85] and CCS [Mil:89]
have been developed to enrich the understanding of communication and concur-
rency, and these calculi obey a rich collection of mathematical laws.

The expression (a ? P) in CSP describes a process which first engages in event a,
and then behaves as process P. A recursive definition is written as (lX)•F(X), and
the example of a simple chocolate vending machine is given recursively as:

VMS ¼ lX : coin; chocf g � coin ? choc ? Xð Þð Þ

The simple vending machine has an alphabet of two symbols, namely, coin and
choc. The behaviour of the machine is that a coin is entered into the machine, and
then a chocolate selected and provided.

CSP processes use channels to communicate values with their environment, and
input on channel c is denoted by (c?.x Px). This describes a process that accepts any
value x on channel c, and then behaves as process Px. In contrast, (c!e P) defines a
process which outputs the expression e on channel c and then behaves as process P.

The p-calculus is a process calculus based on names. Communication between
processes takes place between known channels, and the name of a channel may be
passed over a channel. There is no distinction between channel names and data
values in the p-calculus. The output of a value v on channel a is given by āv; i.e.,
output is a negative prefix. Input on a channel a is given by a(x), and is a positive
prefix. Private links or restrictions are given by (x)P in the p-calculus.

20.14 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the specification,
design, implementation, maintenance, and documentation of computer software
remain important. He advocates a solid classical engineering approach to devel-
oping software, and he argues that the role of an engineer is to apply scientific
principles and mathematics in designing and developing software products. His
main contributions to software engineering are summarized in Table 20.2 below:

20.13 The Process Calculi 341

20.15 Usability of Formal Methods

There are practical difficulties associated with the use of formal methods. It seems to
be assumed that programmers and customers are willing to become familiar with
the mathematics used in formal methods. There is little evidence to suggest that
customers in mainstream organizations would be prepared to use formal methods19.
Customers are concerned with their own domain and speak the technical language
of that domain20. Often, the use of mathematics is an alien activity that bears little
resemblance to their normal work. Programmers are interested in programming
rather than in mathematics, and generally have no interest in becoming
mathematicians21.

Table 20.2 Parnas’s contributions to software engineering

Area Description

Tabular expressions These are mathematical tables for specifying requirements, and enable
complex predicate logic expressions to be represented in a simpler form

Mathematical
documentation

He advocates the use of precise mathematical documentation

Requirements
specification

He advocates the use of mathematical relations to specify the requirements
precisely

Software design He developed information hiding which is used in object-oriented design181,
and allows software to be designed for change [Par:72]. Every
information-hiding module has an interface that provides the only means to
access the services provided by the modules. The interface hides the module’s
implementation

Software inspections His approach requires the reviewers to take an active part in the inspection.
They are provided with a list of questions by the author and their analysis
involves the production of mathematical table to justify the answers

Predicate logic He developed an extension of the predicate calculus to deal with partial
functions. This approach preserves the classical two-valued logic and deals
with undefined values that may occur in predicate logic expressions

18It is surprising that many in the object-oriented world seem unaware that information hiding goes
back to the early 1970s and many have never heard of Parnas.
19The domain in which the software is being used will influence the willingness or otherwise of the
customers to become familiar with the mathematics required. There is very little interest from
customers in mainstream software engineering, and the perception is that formal methods are
difficult to use. However, in some domains such as the regulated sector there is a greater
willingness of customers to become familiar with the mathematical notation.
20The author’s experience is that most customers have a very limited interest in using mathematics.
21Mathematics that is potentially useful to software engineers was discussed in Chap. 18.

342 20 Formal Methods

However, the mathematics involved in most formal methods is reasonably ele-
mentary, and, in theory, if both customers and programmers are willing to learn the
formal mathematical notation, then a rigorous validation of the formal specification
can take place to verify its correctness. Both parties can review the formal speci-
fication to verify its correctness, and the code can be verified to be correct with
respect to the formal specification. It is usually possible to get a developer to learn a
formal method, as a programmer has some experience of mathematics and logic;
however, in practice, it is more difficult to get a customer to learn a formal method.

This means that often a formal specification of the requirements and an informal
definition of the requirements using a natural language are maintained. It is essential
that both of these documents are consistent and that there is a rigorous validation of
the formal specification. Otherwise, if the programmer proves the correctness of the
code with respect to the formal specification, and the formal specification is
incorrect, then the formal development of the software is incorrect. There are
several techniques to validate a formal specification (Table 20.3) and these are
described in [Wic:00]:

20.15.1 Why are Formal Methods difficult?

Formal methods are perceived as being difficult to use and of offering limited value
in mainstream software engineering. Programmers receive some training in math-
ematics as part of their education. However, in practice, most programmers who
learn formal methods at university never use formal methods again once they take
an industrial position.

It may well be that the very nature of formal methods is such that it is suited only
for specialists with a strong background in mathematics. Some of the reasons why
formal methods are perceived as being difficult are (Table 20.4):

Table 20.3 Techniques for validation of formal specification

Technique Description

Proof This involves demonstrating that the formal specification adheres to key
properties of the requirements. The implementation will need to preserve
these properties also

Software
inspections

This involves a Fagan like inspection to perform the validation. It may
involve comparing an informal set of requirements (unless the customer
has learned the formal method) with the formal specification

Specification
animation

This involves program (or specification) execution as a way to validate
the formal specification. It is similar to testing

20.15 Usability of Formal Methods 343

20.15.2 Characteristics of a Usable Formal Method

It is important to investigate ways by which formal methods can be made more
usable to software engineers. This may involve designing more usable notations
and better tools to support the process. Practical training and coaching to employees
can help also. Some of the characteristics of a usable formal method are
(Table 20.5):

Table 20.4 Factors in Difficulty of Formal Methods

Factor Description

Notation/Intuition The notation employed differs from that used in mathematics. Many
programmers find the notation in formal methods to be unintuitive

Formal specification It is easier to read a formal specification than to write one

Validation of formal
specification

The validation of a formal specification using proof techniques or a
Fagan like inspection is difficult

Refinement221 The refinement of a formal specification into successive more
concrete specifications with proof of validity of each refinement
step is difficult and time consuming

Proof Proof can be difficult and time consuming

Tool Support Many of the existing tools are difficult to use

Table 20.5 Characteristics of a usable formal method

Characteristic Description

Intuitive A formal method should be intuitive

Teachable A formal method needs to be teachable to the average software engineer.
The training should include (at least) writing practical formal
specifications

Tool support Good tools to support formal specification, validation, refinement and
proof are required

Adaptable to
change

Change is common in a software engineering environment. A usable
formal method should be adaptable to change

Technology
transfer path

The process for software development needs to be defined to include
formal methods. The migration to formal methods needs to be managed

Cost231 The use of formal methods should be cost effective with a return on
investment. There should be benefits in time, quality and productivity

22It is highly unlikely that refinement is cost effective for mainstream software engineering.
However, it may be useful in the regulated environment.
23A commercial company will expect a return on investment from the use of a new technology.
This may be reduced software development costs, improved quality, improved timeliness of
projects or improvements in productivity.

344 20 Formal Methods

20.16 Review Questions

1. What are formal methods and describe their potential benefits? How essential is tool support?

2. What is stepwise refinement and is it realistic in mainstream software engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his views are justified

4. Discuss the applications of formal methods and which areas have benefited most from their
use? What problems have arisen?

5. Describe a technology transfer path for the potential deployment of formal methods in an
organization

6. Explain the difference between the model-oriented approach and the axiomatic approach

7. Discuss the nature of proof in formal methods and tools to support proof

8. Discuss the Vienna Development Method and explain the difference between standard VDM
and VDM♣

9. Discuss Z and B? Describe the tools in the B-Toolkit

10. Discuss process calculi such as CSP, CCS or p–calculus

20.17 Summary

This chapter discussed formal methods, which are a rigorous approach to the
development of high-quality software. Formal methods employ mathematical
techniques for the specification and formal development of software, and are very
useful in the safety critical field. They consist of formal specification languages or
notations; a methodology for formal software development; and a set of tools to
support the syntax checking of the specification, as well as the proof of properties of
the specification.

Formal methods allow questions to be asked and answered about what the
system does independently of the implementation. The use of formal methods
generally leads to more robust software and to increased confidence in its cor-
rectness. There are challenges involved in the deployment of formal methods, as the
use of these mathematical techniques may be a culture shock to many staff.

Formal methods may be model oriented or axiomatic oriented. The
model-oriented approach includes formal methods such as VDM, Z and B. The
axiomatic approach includes the process calculi such as CSP, CCS and the p calculus.

The usability of formal methods was considered as well as an examination of
why formal methods are difficult and what the characteristics of a usable formal
method would be.

20.16 Review Questions 345

21Z Formal Specification Language

21.1 Introduction

Z is a formal specification language based on Zermelo set theory. It was developed
at the Programming Research Group at Oxford University in the early 1980s [1] and
became an ISO standard in 2002. Z specifications are mathematical and employ a
classical two-valued logic. The use of mathematics ensures precision and allows
inconsistencies and gaps in the specification to be identified. Theorem provers may
be employed to demonstrate that the software implementation meets its
specification.

Z is a ‘model-oriented’ approach with an explicit model of the state of an
abstract machine given, and operations are defined in terms of this state. Its
mathematical notation is used for formal specification, and the schema calculus is
used to structure the specifications. The schema calculus is visually striking and
consists essentially of boxes, and these boxes or schemas are used to describe
operations and states. The schemas may be used as building blocks and combined
with other schemas. The simple schema below (Fig. 21.1) is the specification of the
positive square root of a real number.

Schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specifications highly readable, as
each individual schema is small in size and self-contained. Exception handling is
addressed by defining schemas for the exception cases. These are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system, and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_21

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_21

Operations are defined in a precondition/postcondition style. A precondition
must be true before the operation is executed, and the postcondition must be true
after the operation has been executed. The precondition is implicitly defined within
the operation. Each operation has an associated proof obligation to ensure that if the
precondition is true, then the operation preserves the system invariant. The system
invariant is a property of the system that must be true at all times. The initial state
itself is, of course, required to satisfy the system invariant.

The precondition for the specification of the square root function above is that
num? � 0, i.e. the function SqRoot may be applied to positive real numbers only.
The postcondition for the square root function is root!2 = num? and root! � 0.
That is, the square root of a number is positive and its square gives the number.
Postconditions employ a logical predicate that relates the pre-state to the post-state,
with the post-state of a variable being distinguished by priming the variable, e.g. v’.

Z is a typed language and whenever a variable is introduced, its type must be
given. A type is simply a collection of objects, and there are several standard types
in Z. These include the natural numbers ℕ, the integers ℤ and the real numbers ℝ.
The declaration of a variable x of type X is written x: X. It is also possible to create
your own types in Z.

Various conventions are employed within Z specification, for example, v?
indicates that v is an input variable; v! indicates that v is an output variable. The
variable num? is an input variable and root! is an output variable for the square root
example above. The notation N in a schema indicates that the operation Op does not
affect the state; whereas the notation D in the schema indicates that Op is an
operation that affects the state.

Many of the data types employed in Z have no counterpart in standard pro-
gramming languages. It is, therefore, important to identify and describe the concrete
data structures that ultimately will represent the abstract mathematical structures. As
the concrete structures may differ from the abstract, the operations on the abstract
data structures may need to be refined to yield operations on the concrete data that
yield equivalent results. For simple systems, direct refinement (i.e. one step from
abstract specification to implementation) may be possible; in more complex

Fig. 21.1 Specification of positive square root

348 21 Z Formal Specification Language

systems, deferred refinement1 is employed, where a sequence of increasingly
concrete specifications is produced to yield the executable specification. There is a
calculus for combining schemas to make larger specifications, and this is discussed
later in the chapter.

Example 21.1 The following is a Z specification to borrow a book from a library
system. The library is made up of books that are on the shelf, books that are
borrowed and books that are missing (Fig. 21.2). The specification models a library
with sets representing books on the shelf, on loan or missing. These are three
mutually disjoint subsets of the set of books Bkd-Id.

The system state is defined in the Library schema below, and operations such as
Borrow and Return affect the state. The Borrow operation is specified below
(Fig. 21.3).

The notation ℙBkd-Id is used to represent the power set of Bkd-Id (i.e. the set of
all subsets of Bkd-Id). The disjointness condition for the library is expressed by the
requirement that the pair-wise intersection of the subsets on-shelf, borrowed and
missing is the empty set.

The precondition for the Borrow operation is that the book must be available on
the shelf to borrow. The postcondition is that the borrowed book is added to the set
of borrowed books and is removed from the books on the shelf.

Z has been successfully applied in the industry including the CICS project at
IBM Hursley in the UK.2 Next, we describe key parts of Z including sets, relations,
functions, sequences and bags.

21.2 Sets

Sets were discussed in Chap. 2 and this section focuses on their use in Z. Sets may
be enumerated by listing all of their elements. Thus, the set of all even natural
numbers less than or equal to 10 is

2; 4; 6; 8; 10f g:

Sets may be created from other sets using set comprehension, i.e. stating the
properties that its members must satisfy. For example, the set of even natural
numbers less than 10 is given by set comprehension as

fn : Njn 6¼ 0 ^ n\10 ^ n mod 2 ¼ 0 � ng:

1Step-wise refinement involves producing a sequence of increasingly more concrete specifications
until eventually the executable code is produced. Each refinement step has associated proof
obligations to prove that the refinement step is valid.
2This project claimed a 9% increase in productivity attributed to the use of formal methods.

21.1 Introduction 349

There are three main parts to the set comprehension above. The first part is the
signature of the set and this is given by n: ℕ above. The first part is separated from
the second part by a vertical line. The second part is given by a predicate, and for
this example, the predicate is n 6¼ 0 ^ n\10 ^ n mod 2 ¼ 0. The second part is
separated from the third part by a bullet. The third part is a term, and for this
example, it is simply n. The term is often a more complex expression, e.g. log(n2).

In mathematics, there is just one empty set. However, since Z is a typed set
theory, there is an empty set for each type of set. Hence, there are an infinite number
of empty sets in Z. The empty set is written as ; X½ � where X is the type of the empty
set. However, X is generally omitted when the type is clear.

Various operations on sets such as union, intersection, set difference and sym-
metric difference are employed in Z. The power set of a set X is the set of all subsets
of X and is denoted by ℙ X. The set of non-empty subsets of X is denoted by ℙ1X
where

P1X ¼¼ fU : PX j U 6¼ ; X½ �g:

A finite set of elements of type X (denoted by F X) is a subset of X that cannot
be put into a one-to-one correspondence with a proper subset of itself. This is
defined formally as

FX ¼¼ fU : PX j:9V : PU � V 6¼ U ^ ð9f : V [! UÞg:

Fig. 21.2 Specification of a library system

Fig. 21.3 Specification of Borrow operation

350 21 Z Formal Specification Language

The expression f : V[! U denotes that f is a bijection from U to V and
injective, surjective and bijective functions were discussed in Chap. 2.

The fact that Z is a typed language means that whenever a variable is introduced
(e.g. in quantification with 8 and 9), it is first declared. For example, 8j : J � P) Q.
There is also the unique existential quantifier 91j : J j P which states that there is
exactly one j of type J that has property P.

21.3 Relations

Relations are used extensively in Z and were discussed in Chap. 2. A relation R
between X and Y is any subset of the Cartesian product of X and Y, i.e.
R�ðX� YÞ, and a relation in Z is denoted by R : X $ Y. The notation x 7! y
indicates that the pair (x,y) 2 R.

Consider the relation home_owner: Person $ Home that exists between people
and their homes. An entry daphne ↦ mandalay 2 home_owner if daphne is the
owner of mandalay. It is possible for a person to own more than one home:

rebecca 7! nirvana 2 home owner;

rebecca 7! tivoli 2 home owner:

It is possible for two people to share ownership of a home:

rebecca 7! nirvana 2 home owner;

lawrence 7! nirvana 2 home owner:

There may be some people who do not own a home, and there is no entry for
these people in the relation home_owner. The type Person includes every possible
person, and the type Home includes every possible home. The domain of the
relation home_owner is given by

x 2 dom home owner , 9h : Home � x 7! h 2 home owner:

The range of the relation home_owner is given by

h 2 ran home owner , 9x : Person � x 7! h 2 home owner:

The composition of two relations home_owner: Person $ Home and home_-
value: Home $ Value yields the relation owner_wealth: Person $ Value and is
given by the relational composition home_owner; home_value where

21.2 Sets 351

p 7! v 2 home owner; home value ,
ð9h : Home � p 7! h 2 home owner ^ h 7! v 2 home valueÞ:

The relational composition may also be expressed as

owner wealth ¼ home value o home owner:

The union of two relations often arises in practice. Suppose a new entry aisling
↦ muckross is to be added. Then this is given by

home owner0 ¼ home owner [faisling 7!muckrossg:

Suppose that we are interested in knowing all females who are house owners.
Then we restrict the relation home_owner so that the first element of all ordered
pairs has to be female. Consider female: ℙ Person with {aisling, rebecca} �
female.

home owner ¼ faisling 7!muckross; rebecca 7! nirvana;

lawrence 7! nirvanag;

female / home owner ¼ faisling 7!muckross; rebecca 7! nirvanag:

That is, female ⊲ home_owner is a relation that is a subset of home_owner, and
the first element of each ordered pair in the relation is female. The operation ⊲ is
termed domain restriction and its fundamental property is

x 7! y 2 U / R , ðx 2 U ^ x 7! y 2 Rg;

where R : X $ Y and U: ℙ X.
There is also a domain anti-restriction (subtraction) operation and its funda-

mental property is

x 7! y 2 U��� . R , ðx 62 U ^ x 7! y 2 Rg;

where R : X $ Y and U: ℙX.
There are also range restriction (the ⊲operator) and the range anti-restriction

operator (the ��/ ⊲operator). These are discussed in [1].

352 21 Z Formal Specification Language

21.4 Functions

A function [1] is an association between objects of some type X and objects of
another type Y such that given an object of type X, there exists only one object in
Y associated with that object. A function is a set of ordered pairs where the first
element of the ordered pair has at most one element associated with it. A function
is, therefore, a special type of relation, and a function may be total or partial.

A total function has exactly one element in Y associated with each element of X,
whereas a partial function has at most one element of Y associated with each
element of X (there may be elements of X that have no element of Y associated with
them).

A partial function from X to Yðf : X9YÞ is a relation f : X $ Y such that:

8x : X; y; z : Y � ðx 7! y 2 f ^ x 7! z 2 f) y ¼ zÞ:

The association between x and y is denoted by f(x) = y, and this indicates that the
value of the partial function f at x is y. A total function from X to Y (denoted
f : X ! Y) is a partial function such that every element in X is associated with some
value of Y.

f : X ! Y , f : X9Y ^ dom f ¼ X:

Clearly, every total function is a partial function but not vice versa.
One operation that arises quite frequently in specifications is the function

override operation. Consider the following specification of a temperature map:

│– TempMap———————————————

│ CityList : ℙCity

│ temp : City 9Z

│———————

│ dom temp = CityList

│-—————————————————————————————————

Suppose the temperature map is given by
temp ¼ fCork 7! 17;Dublin 7! 19; London 7! 15g. Then consider the problem of
updating the temperature map if a new temperature reading is made in Cork, e.g.
fCork 7! 18g. Then the new temperature chart is obtained from the old temperature
chart by function override to yield fCork 7! 18;Dublin 7! 19; London 7! 15g. This
is written as

temp0 ¼ temp� fCork 7! 18g:

21.4 Functions 353

The function override operation combines two functions of the same type to give
a new function of the same type. The effect of the override operation is that the
entry fCork 7! 17g is removed from the temperature chart and replaced with the
entry fCork 7! 18g.

Suppose f ; g : X9Yare partial functions, then f � g is defined and indicates that
f is overridden by g. It is defined as follows:

ðf � gÞ xð Þ ¼ g xð Þ; where x 2 dom g:

ðf � gÞ xð Þ ¼ f xð Þ ; where x 62 dom g ^ x 2 dom f :

This may also be expressed (using domain anti-restriction) as

f � g ¼ ð domgð Þ��� . f Þ [g:

There is a notation in Z for injective, surjective and bijective functions. An
injective function is one to one, i.e.

f xð Þ ¼ f yð Þ) x ¼ y:

A surjective function is onto, i.e.

Given y 2 Y ; 9x 2 X such that f xð Þ ¼ y:

A bijective function is one to one and onto, and it indicates that the sets X and
Y can be put into one-to-one correspondence with one another. Z includes lambda
calculus notation (k-calculus was discussed in Chap. 12) to define functions. For
example, the function cube ¼¼ kx : N � x 	 x 	 x. Function composition f; g is
similar to relational composition.

21.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by seq
X. Sequences are written as 〈x1, x2,…. xn〉 and the empty sequence is denoted by 〈〉.
Sequences may be used to specify the changing state of a variable over time, with
each element of the sequence representing the value of the variable at a
discrete-time instance.

Sequences are functions and a sequence of elements drawn from a set X is a
finite function from the set of natural numbers to X. The domain of the function
consists of all numbers between 1 and # f (where #f is the cardinality of f). It is
defined formally as

seqX ¼¼ ff : N9Xj domf ¼ 1. . . #f � fg:

354 21 Z Formal Specification Language

The sequence 〈x1, x2, …. xn〉 above is given by

f1 7! x1; 2 7! x2; . . .:. . .: n 7! xng:

There are various functions to manipulate sequences. These include the sequence
concatenation operation. Suppose r ¼ x1; x2; . . .: xnh i and s ¼ y1; y2; . . .: ymh i,
then

r \ s ¼ x1; x2; . . .: xn; y1; y2; . . .: ymh i:

The head of a non-empty sequence gives the first element of the sequence.

head r ¼ head x1; x2; . . .: xnh i ¼ x1:

The tail of a non-empty sequence is the same sequence except that the first
element of the sequence is removed.

tail r ¼ tail x1; x2; . . .: xnh i ¼ x2; . . .: xnh i:

Suppose f : X ! Y and a sequence r: seq X, then the function map applies f to
each element of r:

map fr ¼ map f x1; x2; . . .: xnh i ¼ f x1ð Þ; f x2ð Þ; . . .: f xnð Þh i:

The map function may also be expressed via function composition as

map fr ¼ r; f :

The reverse order of a sequence is given by the rev function:

revr ¼ rev x1; x2; . . .: xnh i ¼ xn; . . .: x2; x1h i:

21.6 Bags

A bag is similar to a set except that there may be multiple occurrences of each
element in the bag. A bag of elements of type X is defined as a partial function from
the type of the elements of the bag to positive whole numbers. The definition of a
bag of type X is

bagX ¼¼ X9N1:

21.5 Sequences 355

For example, a bag of marbles may contain three blue marbles, two red marbles
and one green marble. This is denoted by B = ׀] b,b,b,g,,r,r]. The bag of marbles is,
thus, denoted by

bagMarble ¼¼ Marble9N1:

The function count determines the number of occurrences of an element in a bag.
For the example above, count Marble b = 3 and count Marble y = 0 since there are
no yellow marbles in the bag. This is defined formally as

count bagX y ¼ 0 y 62 bag X:

count bagX y ¼ bagXð ÞðyÞ y 2 bag X:

An element y is in bag X if and only if y is in the domain of bag X.

y in bagX , y 2 dom bagXð Þ:

The union of two bags of marbles B1 = ׀] b,b,b,g,,r,r] and B2 = ׀] b,g,,r,y] is
given by B1]B2 ¼ ½b; b; b; b; g; g; r; r; r; y�. It is defined formally as

ðB1]B2Þ yð Þ ¼ B2 yð Þ y 62 dom B1 ^ y 2 dom B2

ðB1]B2Þ yð Þ ¼ B1 yð Þ y 2 dom B1 ^ y 62 dom B2

ðB1]B2Þ yð Þ ¼ B1 yð Þ y 2 dom B1 ^ y 62 dom B2:

A bag may be used to record the number of occurrences of each product in a
warehouse as part of an inventory system. It may model the number of items
remaining for each product in a vending machine (Fig. 21.4).

The operation of a vending machine would require other operations such as
identifying the set of acceptable coins, checking that the customer has entered
sufficient coins to cover the cost of the good, returning change to the customer and
updating the quantity on hand of each good after a purchase. A more detailed
examination is in [1].

Fig. 21.4 Specification of Vending Machine using Bags

356 21 Z Formal Specification Language

21.7 Schemas and Schema Composition

The schemas in Z are visually striking and the specification is presented in
two-dimensional graphic boxes. Schemas are used for specifying states and state
transitions, and they employ notation to represent the before and after state (e.g.
s and s’ where s’ represents the after state of s). They group all relevant information
that belongs to a state description.

There are a number of useful schema operations such as schema inclusion,
schema composition and the use of propositional connectives to link schemas
together. The D convention indicates that the operation affects the state whereas the
N convention indicates that the state is not affected. These operations and con-
ventions allow complex operations to be specified concisely and assist with the
readability of the specification. Schema composition is analogous to relational
composition and allows new schemas to be derived from existing schemas.

A schema name S1 may be included in the declaration part of another schema S2.
The effect of the inclusion is that the declarations in S1 are now part of S2 and the
predicates of S1 are S2 are joined together by conjunction. If the same variable is
defined in both S1 and S2, then it must be of the same type in both schemas.

│– S1————————│– S2————————

│ x,y : ℕ│ S1 ; z : ℕ

│———————│———————

│ x + y > 2│ z = x + y

│——————————│——————————

The result is that S2includes the declarations and predicates of S1 (Fig. 21.5).
Two schemas may be linked by propositional connectives such as S1 ^ S2,

S1 _ S2, S1) S2 and S1 , S2. The schema S1 _ S2 is formed by merging the
declaration parts of S1 and S2 and then combining their predicates by the logical _
operator. For example, S ¼ S1 _ S2 yields (Fig. 21.6).

Schema inclusion and the linking of schemas use normalization to convert
sub-types to maximal types, and predicates are employed to restrict the maximal
type to the sub-type. This involves replacing declarations of variables (e.g. u: 1.0.35
with u: Z, and adding the predicate u > 0 and u < 36 to the predicate part of the
schema).

The D and N conventions are used extensively, and the notation D TempMap is
used in the specification of schemas that involve a change of state. The notation D
TempMap represents

D TempMap ¼ TempMap ^ TempMap0:

21.7 Schemas and Schema Composition 357

The longer form of D TempMap is written as follows:

│– ΔTempMap———————————————

│ CityList, CityList’ : ℙ City

│ temp, temp’ : City 9 Z

│———————

│ dom temp = CityList

│ dom temp’ = CityList’

│-—————————————————————————————————

The notation N TempMap is used in the specification of operations that do not
involve a change to the state.

│– N TempMap———————————————

│ ΔTempMap

│——————————

│ CityList = CityList’

│ temp = temp’

│-—————————————————————————————————

Fig. 21.5 Schema inclusion

Fig. 21.6 Merging schemas (S1 _ S2)

358 21 Z Formal Specification Language

Schema composition is analogous to relational composition and it allows new
specifications to be built from existing ones. It allows the after state variables of one
schema to be related with the before variables of another schema. The composition
of two schemas S and T (S; T) is described in detail in [1] and involves four steps
(Table 21.1).

The example below should make schema composition clearer. Consider the
composition of S and T where S and T are defined as follows:

│– S————————│– T————————

│ x,x’,y? : ℕ│ x,x’ : ℕ

│———————│———————

│ x’ = y? - 2│ x’ = x + 1

│——————————│——————————

│– S1————————│– T1————————

│ x,x+,y? : ℕ│ x+,x’ : ℕ

│———————│———————

│ x+ = y? - 2│ x’ = x+ + 1

│——————————│——————————

S1 and T1 represent the results of step 1 and step 2, with x’ renamed to x+ in S,
and x renamed to x+ in T. Step 3 and step 4 yield (Fig. 21.7).

Schema composition is useful as it allows new specifications to be created from
existing ones.

Table. 21.1. Schema composition

Step Procedure

1 Rename all after state variables in S to something new:
S sþ =s0½ �:

2 Rename all before state variables in T to the same new thing, i.e.
T sþ =s½ �:

3 Form the conjunction of the two new schemas,
S sþ =s0½ � ^ T sþ =s½ �:

4 Hide the variable introduced in steps 1 and 2
S ; T ¼ ðS sþ =s0½ � ^ T sþ =s½ �Þ n sþð Þ:

Fig. 21.7 Schema composition

21.7 Schemas and Schema Composition 359

21.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying the
required operations. The Z specification language employs many constructs that are
not part of conventional programming languages, and a Z specification is, therefore,
not directly executable on a computer. A programmer implements the formal
specification, and mathematical proof may be employed to prove that a program
meets its specification.

Often, there is a need to write an intermediate specification that is between the
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification.
The intermediate specification is termed the design and the design needs to be
correct with respect to the specification, and the program needs to be correct with
respect to the design. The design is a refinement (reification) of the state of the
specification, and the operations of the specification have been decomposed into
those of the design.

The representation of an abstract data type such as a set by a sequence is termed
data reification, and data reification is concerned with the process of transforming
an abstract data type into a concrete data type. The abstract and concrete data types
are related by the retrieve function, and the retrieve function maps the concrete data
type to the abstract data type. There are typically several possible concrete data
types for a particular abstract data type (i.e. refinement is a relation), whereas there
is one abstract data type for a concrete data type (i.e. retrieval is a function). For
example, sets are often reified to unique sequences; however, more than one unique
sequence can represent a set whereas a unique sequence represents exactly one set.

The operations defined on the concrete data type are related to the operations
defined on the abstract data type. That is, the commuting diagram property is
required to hold (Fig. 21.8). That is, for an operation ⊡ on the concrete data type to
correctly model the operation ʘ on the abstract data type, the diagram must
commute, and the commuting diagram property requires proof. That is, it is
required to prove that

retðr�sÞ ¼ ðretrÞ
 ðret sÞ:

Fig. 21.8 Refinement commuting diagram

360 21 Z Formal Specification Language

In Z, the refinement and decomposition are done with schemas. It is required to
prove that the concrete schema is a valid refinement of the abstract schema, and this
gives rise to a number of proof obligations. It needs to be proved that the initial
states correspond to one another and that each operation in the concrete schema is
correct with respect to the operation in the abstract schema and also that it is
applicable (i.e. whenever the abstract operation may be performed, the concrete
operation may also be performed).

21.9 Proof in Z

Mathematicians perform rigorous proof of theorems using technical and natural
language. Logicians employ formal proofs to prove theorems using propositional
and predicate calculus. Formal proofs generally involve a long chain of reasoning
with every step of the proof justified. Rigorous proofs involve precise reasoning
using a mixture of natural and mathematical language. Rigorous proofs [1] have
been described as being analogous to high-level programming languages, whereas
formal proofs are analogous to machine language.

A mathematical proof includes natural language and mathematical symbols, and
often many of the tedious details of the proof are omitted. Many proofs in formal
methods such as Z are concerned with crosschecking on the details of the speci-
fication or on the validity of the refinement step or proofs that certain properties are
satisfied by the specification. There are often many tedious lemmas to be proved,
and tool support is essential as proof by hand often contains errors or jumps in
reasoning. Machine proofs are lengthy and largely unreadable; however, they
provide extra confidence as every step in the proof is justified.

The proof of various properties about the programs increases confidence in their
correctness.

21.10 Review Questions

1. Describe the main features of the Z specification language.
2. Explain the difference between ℙ1 X, ℙ X and FX.
3. Give an example of a set derived from another set using set compre-

hension. Explain the three main parts of set comprehension in Z.
4. Discuss the applications of Z and which areas have benefited most from

their use. What problems have arisen?
5. Give examples to illustrate the use of domain and range restriction

operators and domain and range anti-restriction operators with relations
in Z.

6. Give examples to illustrate relational composition.

21.8 Reification and Decomposition 361

7. Explain the difference between a partial and total function, and give
examples to illustrate function override.

8. Give examples to illustrate the various operations on sequences including
concatenation, head, tail, map and reverse operations.

9. Give examples to illustrate the various operations on bags.
10. Discuss the nature of proof in Z and tools to support proof.
11. Explain the process of refining an abstract schema to a more concrete

representation, the proof obligations that are generated and the com-
muting diagram property.

21.11 Summary

Z is a formal specification language that was developed in the early 1980s at Oxford
University in England. It has been employed in both industry and academia, and it
was used successfully on IBM’s CICS project. Its specifications are mathematical,
and this leads to more rigorous software development. Its mathematical approach
allows properties to be proved about the specification, and any gaps or inconsis-
tencies in the specification may be identified.

Z is a ‘model-oriented’ approach, and an explicit model of the state of an abstract
machine is given, and the operations are defined in terms of their effect on the state.
Its main features include a mathematical notation that is similar to VDM, and the
schema calculus consists essentially of boxes that are used to describe operations
and states.

The schema calculus enables schemas to be used as building blocks to form
larger specifications. It is a powerful means of decomposing a specification into
smaller pieces and helps with the readability of Z specifications, as each individual
schema is small in size and self-contained.

Z is a highly expressive specification language, and it includes notation for sets,
functions, relations, bags, sequences, predicate calculus and schema calculus.
Z specifications are not directly executable as many of its data types and constructs
are not part of modern programming languages. Therefore, there is a need to refine
the Z specification into a more concrete representation and prove that the refinement
is valid.

Reference

1. Diller A (1990) Dil:90 Z. An introduction to formal methods. Wiley, England

362 21 Z Formal Specification Language

22Statistics

22.1 Introduction

Statistics is an empirical science that is concerned with the collection, organization,
analysis, interpretation and presentation of data. The data collection needs to be
planned and this may include surveys and experiments. Statistics are widely used
by government and industrial organizations, and they are employed for forecasting
as well as for presenting trends. They allow the behaviour of a population to be
studied and inferences to be made about the population. These inferences may be
tested (hypothesis testing) to ensure their validity.

The analysis of statistical data allows an organization to understand its perfor-
mance in key areas and to identify problematic areas. Organizations will often
examine performance trends over time and will devise appropriate plans and actions
to address problematic areas. The effectiveness of the actions taken will be judged
by improvements in performance trends over time.

It is often not possible to study the entire population, and instead, a represen-
tative subset or sample of the population is chosen. This random sample is used to
make inferences regarding the entire population, and it is essential that the sample
chosen is indeed random and representative of the entire population. Otherwise, the
inferences made regarding the entire population will be invalid, as a selection bias
has occurred. Clearly, a census where every member of the population is sampled is
not subject to this type of bias.

A statistical experiment is a causality study that aims to draw a conclusion
between the values of a predictor variable(s) and a response variable(s). For
example, a statistical experiment in the medical field may be conducted to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_22

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_22

determine if there is a causal relationship between the use of a particular drug and
the treatment of a medical condition such as lowering cholesterol in the population.
A statistical experiment involves the following:

– Planning the research.
– Designing the experiment.
– Performing the experiment.
– Analysing the results.
– Presenting the results.

22.2 Basic Statistics

The field of statistics is concerned with summarizing, digesting and extracting
information from large quantities of data. It provides a collection of methods for
planning an experiment and analysing data to draw accurate conclusions from the
experiment. We distinguish between descriptive statistics and inferential statistics:
Descriptive Statistics
This is concerned with describing the information in a set of data elements in
graphical format or describing its distribution.
Inferential Statistics
This is concerned with making inferences with respect to the population by using
information gathered in the sample.

22.2.1 Abuse of Statistics

Statistics are extremely useful in drawing conclusions about a population. However,
it is essential that the random sample chosen is actually random, and that the
experiment is properly conducted to ensure that valid conclusions are inferred.
Some examples of the abuse of statistics include the following:

– The sample size may be too small to draw conclusions.
– It may not be a genuine random sample of the population.
– There may be bias introduced from poorly worded questions.
– Graphs may be drawn to exaggerate small differences.
– Area may be misused in representing proportions.
– Misleading percentages may be used.

364 22 Statistics

The quantitative data used in statistics may be discrete or continuous. Discrete
data is numerical data that has a finite or countable number of possible values, and
continuous data is numerical data that has an infinite number of possible values.

22.2.2 Statistical Sampling and Data Collection

Statistical sampling is concerned with the methodology for choosing a random
sample of a population and the study of the sample with the goal of drawing valid
conclusions about the entire population. If a genuine representative random sample
of the population is chosen, then a detailed study of the sample will provide insight
into the whole population. This helps to avoid a lengthy expensive (and potentially
infeasible) study of the entire population.

The sample chosen must be truly random and the sample size sufficiently large to
enable valid conclusions to be drawn for the entire population. The probability of
being chosen for the random sample should be the same for each member of the
population.
Random Sample
A random sample is a sample of the population such that each member of the
population has an equal chance of being chosen.

A large sample size gives more precise information about the population.
However, little extra information is gained from increasing the sample size above a
certain level, and the sample size chosen will depend on factors such as money and
time available, the aims of the survey, the degree of precision required and the
number of subsamples required. Table 22.1 summarizes several ways of generating
a random sample from the population:

Once the sample is chosen, the next step is to obtain the required information
from the sample. The data collection may be done by interviewing each member in
the sample, conducting a telephone interview with each member, conducting a
postal questionnaire survey and so on (Table 22.2).

The design of the questionnaire requires careful consideration as a poorly
designed questionnaire may lead to invalid results. The questionnaire should be as
short as possible, and the questions should be simple and unambiguous. Closed
questions where the respondent chooses from simple categories are useful. It is best
to pilot the questionnaire prior to carrying out the survey.

22.3 Frequency Distribution and Charts

The data gathered from a statistical study is often raw and may yield little infor-
mation as it stands. Therefore, the way the data is presented is important, and it is
useful to present the information in pictorial form. The advantage of a pictorial
presentation is that it allows the data to be presented in an attractive and colourful
way, and the reader is not overwhelmed with excessive detail. This enables analysis

22.2 Basic Statistics 365

Table 22.1 Sampling techniques

Sampling
technique

Description

Systematic
sampling

The population is listed and every kth member of the population is
sampled. For example, to choose a 2% (1 in 50) sample, every 50th
member of the population would be sampled

Stratified
sampling

The population is divided into two or more strata and each subpopulation
(stratum) is then sampled. Each element in the subpopulation shares the
same characteristics (e.g. age groups, gender). The results from the various
strata are then combined

Multi-Stage
sampling

This approach may be used when the population is spread over a wide
geographical area. The area is split up into a number of regions, and a
small number of the regions are randomly selected. Each selected region is
then sampled. It requires less effort and time but it may introduce bias if a
small number of regions are selected, as it is not a truly random sample

Cluster sampling A population is divided into clusters and a few of these clusters are
exhaustively sampled (i.e. every element in the cluster is considered). This
approach may lead to significant selection bias, as the sampling is not
random

Convenience
sampling

Sampling is done as convenient, and in this case, each person selected
may decide whether to participate or not in the sample

Table 22.2 Types of survey

Survey type Description

Personal interview Interviews are expensive and time consuming, but allow detailed and
accurate information to be collected. Questionnaires are often employed
and the interviewers need to be trained in interview techniques.
Interviews need to be planned and scheduled, and they are useful in
dealing with issues that may arise (e.g. a respondent not fully
understanding a question)

Phone survey This is a reasonably efficient and cost-effective way to gather data.
However, refusals or hang-ups may affect the outcome. It also has an
in-built bias as only those people with telephones may be contacted and
interviewed

Mail questionaire
survey

This involves sending postal questionnaire survey to the participants.
The questionnaire needs to be well designed to ensure the respondents
understand the questions and answer them correctly. There is a danger
of a low response rate that may invalidate the findings

Direct
measurement

This may involve direct measurement of all those in the sample (e.g. the
height of all students in a class)

Direct
observational study

An observational study allows individuals to be studied and the
variables of interest to be measured

Experiment An experiment imposes some treatment on individuals in order to study
the response

366 22 Statistics

and conclusions to be drawn. There are several types of charts or graphs that are
often employed in the presentation of the data including the following:

– Bar chart.
– Histogram.
– Pie Chart.
– Trend Graph.

A frequency table is often used to present and summarize data, where a simple
frequency distribution consists of a set of data values and the number of items that
have that value (i.e. a set of data values and their frequency). The information is
then presented pictorially in a bar chart.

The general frequency distribution is employed when dealing with a larger
number of data values (e.g. >20 data values). It involves dividing the data into a set
of data classes and listing the data classes in one column and the frequency of data
values in that category in another column. The information is then presented pic-
torially in a bar chart or histogram.

Figure 22.1 presents the raw data of salaries earned by different people in a
company, and Table 22.3 presents the raw data in table format using a frequency
table of salaries. Figure 22.2 presents a bar chart of the salary data in pictorial
form, and it is much easier to read than the raw data presented in Fig. 22.1.

A histogram is a way of representing data in bar chart format, and it shows the
frequency or relative frequency of various data values or ranges of data values. It is
usually employed when there are a large number of data values, and it gives a crisp
picture of the spread of the data values and the centring and variance of the data
values from the mean.

The data is divided into disjoint intervals where an interval is a certain range of
values. The horizontal axis of the histogram contains the intervals (also known as
buckets) and the vertical axis shows the frequency (or relative frequency) of each
interval.

Fig. 22.1 Raw salary data

Table 22.3 Frequency table
of salary data

Salary Frequency

45,000 2

50,000 8

65,000 4

90,000 1

22.3 Frequency Distribution and Charts 367

The bars represent the frequency and there is no space between the bars. The
histogram has an associated shape, e.g. it may be a normal distribution, a bimodal
or multi-modal distribution, and it may be positively or negatively skewed. The
variation and centring refer to the spread of data, and the spread of the data is
important as it may indicate whether the entity under study (e.g. a process) is too
variable or whether it is performing within the requirements.

The histogram is termed process-centred if its centre coincides with the customer
requirements; otherwise, the process is too high or too low. A histogram allows
predictions of future performance to be made, where it can be assumed that the
future will resemble the past.

The construction of a histogram first requires that a frequency table be con-
structed, and this requires that the range of the data values be determined. The data
are divided into a number of classes (or data buckets), where a bucket is a particular
range of data values, and the relative frequency of each bucket is displayed in bar
format. The number of class intervals or buckets is determined, and the class
intervals are defined. The class intervals are mutually disjoint and span the range of
the data values. Each data value belongs to exactly one class interval, and the
frequency of each class interval is determined (Table 22.4).

The results of a class test in mathematics are summarized in Table 24.4. There
are 30 students in the class and each student achieves a score somewhere between 0
and 100. There are four data intervals between 0 and 100 employed to summarize
the scores, and the result of each student belongs to exactly one interval.
Figure 22.3 is the associated histogram for the frequency data, and it gives a
pictorial representation of the marks for the class test.

Fig. 22.2 Bar chart of salary data

Table 22.4 Frequency table
—test results

Mark Frequency

0–24 3

25–49 10

50–74 15

75–100 2

368 22 Statistics

We may also employ a pie chart as an alternate way to present the class marks.
The frequency table is constructed, and a visual representation of the percentage in
each data class (i.e. the relative frequency) is provided with the pie chart. Each
portion of the pie chart represents the percentage of the data values in that interval
(Fig. 22.4).

We present the monthly sales and profit figures for a company in Table 22.5, and
Fig. 22.5 gives a pictorial representation of the data in the form of a time series (or
trend chart).

22.4 Statistical Measures

Statistical measures are concerned with the basic analysis of the data to determine
the average of the data as well as how spread out the data is. The term ‘average’
generally refers to the arithmetic mean of a sample, but it may also refer to the
statistical mode or median of the sample. We first discuss the arithmetic mean as it
is the mathematical average of the data and is representative of the data. The
arithmetic mean is the most widely used average in statistics.

Fig. 22.3 Histogram class test results

Fig. 22.4 Pie chart test results

22.3 Frequency Distribution and Charts 369

22.4.1 Arithmetic Mean

The arithmetic mean (or just mean) of a set of n numbers is defined to be the sum of
the data values divided by the number of values. That is, the arithmetic mean of a
set of data values x1, x2, …. xn (where the sample size is n) is given by

x ¼
Pn

i¼1
xi

n
:

The arithmetic mean is representative of the data as all values are used in its
calculation. The mean of the set of values 5, 11, 9, 4, 16, 9 is given by

m ¼ 5þ 11þ 9þ 4þ 16þ 9=6 ¼ 54=6 ¼ 9:

Table 22.5 Monthly Sales and Profit

Sales Profit

Jan 5500 200

Feb 3000 400

Mar 3500 200

Apr 3000 600

May 4500 100

Jun 6200 1200

Jul 7350 3200

Aug 4100 100

Sep 9000 3300

Oct 2000 500

Nov 1100 800

Dec 3000 300

Fig. 22.5 Monthly sales and profit

370 22 Statistics

The formula for the arithmetic mean of a set of data values given by a frequency
table needs to be adjusted.

x1 x2 … … xn
f1 f2 fn

x ¼
Pn

i¼1
fixi

Pn

i¼1
fi

:

The arithmetic mean for the following frequency distribution is calculated by

x 2 5 7 10 12

fx 2 4 7 4 2

The mean is given by

m ¼ ð2 � 2þ 5 � 4þ 7 � 7þ 10 � 4þ 12 � 2Þ=ð2þ 4þ 7þ 4þ 2Þ
¼ ð4þ 20þ 49þ 40þ 24Þ=19 ¼ 137=19 ¼ 7:2:

The actual mean of the population is denoted by l, and it may differ from the
sample mean m.

22.4.2 Mode

The mode is the most popular element in the sample, i.e. it is the data element that
occurs most frequently in the sample. For example, consider a shop that sells
mobile phones, then the mode of the annual sales of phones is the most popular
phone sold. The mode of the list [1, 4, 1, 2, 7, 4, 3, 2, 4] is 4, whereas there is no
unique mode in the sample [1, 1, 3, 3, 4], and it is said to be bimodal.

The mode of the following frequency distribution is 7 since it occurs the most
times in the sample.

x 2 5 7 10 12

fx 2 4 7 4 2

It is possible that the mode is not unique (i.e. there are at least two elements that
occur with the equal highest frequency in the sample), and if this is the case, then

22.4 Statistical Measures 371

we are dealing with a bimodal or possibly a multi-modal distribution (where there
are more than two elements that occur most frequently in the sample).

22.4.3 Median

The median of a set of data is the value of the data item that is exactly half way
along the set of items, where the data set is arranged in increasing order of
magnitude.

If there are an odd number of elements in the sample, the median is the middle
element. Otherwise, the median is the arithmetic mean of the two middle elements.

The median of 34, 21, 38, 11, 74, 90, 7 is determined by first ordering the set as
7, 11, 21, 34, 38, 74, 90, and the median is then given by the value of the fourth
item in the list which is 34.

The median of the list 2, 4, 8, 12, 20, 30 is the mean of the middle two items (as
there are an even number of elements and the set is ordered), and so it is given by
the arithmetic mean of the third and fourth elements, i.e. 8 + 12/2 = 10.

The calculation of the median of a frequency distribution first requires the cal-
culation of the total number of data elements (i.e. this is given by N ¼ Rf) and then
determining the value of the middle element in the table, which is the N+1/2 element.

The median for the following frequency distribution is calculated by

x 2 5 7 10 12

fx 2 4 7 4 2

The number of elements is given by N ¼ Rf ¼ 2þ 4þ 7þ 4þ 2 ¼ 19 and so
the middle element is given by the value of the N+1/2 element, i.e. the 19+1/2 = the
tenth element. From an examination of the table, it is clear that the value of the tenth
element is 7 and so the median of the frequency distribution is 7.

The final average that we consider is the midrange of the data in the sample, and
this is given by the arithmetic mean of the highest and lowest data elements in the
sample. That is, mmid = (xmax + xmin) / 2.

The mean, mode and median coincide for symmetric frequency distributions but
differ for left- or right-skewed distributions (Fig. 22.6). Skewness describes how
non-symmetric the data is.

Dispersion indicates how spread out or scattered the data is, and there are several
ways of measuring dispersion including how skewed the distribution is, the range of
the data, variance and the standard deviation.

372 22 Statistics

22.5 Variance and Standard Deviation

An important characteristic of a sample is its distribution and the spread of each
element from some measure of central tendency (e.g. the mean). One elementary
measure of dispersion is that of the sample range, which is defined to be the
difference between the maximum and minimum value in the sample. That is, the
sample range is defined to be

range ¼ xmax � xmin:

The sample range is not a reliable measure of dispersion as just two elements in
the sample are used, and so extreme values in the sample may distort the range and
make it very large even if most of the elements are quite close to one another.

The standard deviation is the most common way to measure dispersion, and it
gives the average distance of each element in the sample from the arithmetic mean.
The sample standard deviation of a sample x1, x2, … xn is denoted by s, and its
calculation first requires the calculation of the sample mean. It is defined by

s ¼
ffiP

xi � xð Þ2
n� 1

s

¼
ffiP

x2i � nx2

n� 1

r

:

The population standard deviation is denoted by r and is defined by

r ¼
ffiP

xi � lð Þ2
n

s

¼
ffiP

x2i � nl2

n

r

:

Variance is another measure of dispersion and it is defined as the square of the
standard deviation. The sample variance s2 is given by

Fig. 22.6 Symmetric distribution

22.5 Variance and Standard Deviation 373

s2 ¼
P

xi � xð Þ2
n� 1

¼
P

x2i � nx2

n� 1
:

The population variance r2 is given by

r2 ¼
P

xi � lð Þ2
n

¼
P

x2i � nl2

n
:

Example (Standard Deviation)
Calculate the standard deviation of the samples 2, 4, 6, 8.
Solution (Standard Deviation)
The sample mean is given by m = 2 + 4 + 6 + 8 / 4 = 5.
The sample variance is given by

s2 ¼ ð2� 5Þ2 þð4� 5Þ2 þð6� 5Þ2 þð8� 5Þ2=4� 1

¼ 9þ 1þ 1þ 9=3

¼ 20=3

¼ 6:66.

The sample standard deviation is given by the square root of the variance and so
it is given by

s ¼ p
6:66

¼ 2:58.

The formula for the standard deviation and variance may be adjusted for fre-
quency distributions. The standard deviation and mean often go hand in hand, and
for normal distributions, 68% of the data lies within one standard deviation of the
mean; 95% of the data lies within two standard deviations of the mean and the vast
majority (99.7%) of the data lies within three standard deviations of the mean. All
data values are used in the calculation of the mean and standard deviation, and so
these measures are truly representative of the data.

22.6 Correlation and Regression

The two most common techniques for exploring the relationship between two
variables are correlation and linear regression. Correlation is concerned with
quantifying the strength of the relationship between two variables by measuring the
degree of ‘scatter’ of the data values, whereas regression expresses the relationship
between the variable in the form of an equation (usually a linear equation).

374 22 Statistics

Correlation quantifies the strength and direction of the relationship between two
numeric variables X and Y, and the correlation coefficient may be positive or
negative and it lies between –1 and + 1. If the correlation is positive, then as the
value of one variable increases, the value of the other variable increases (i.e. the
variables move together in the same direction), whereas if the correlation is neg-
ative, then as the value of one variable increases ,the value of the other variable
decreases (i.e. the variables move together in the opposite directions). The corre-
lation coefficient r is given by the formula:

CorrðX; YÞ ¼ XY � X Y

StdðXÞStdðYÞ ¼
n
P

XiYi �
P

Xi
P

Yiffi
n
P

X2
i �

P
Xið Þ2

q ffi
n
P

Y2
i �

P
Yið Þ2

q :

The sign of the correlation coefficient indicates the direction of the relationship
between the two variables. A correlation of r = + 1 indicates perfect positive
correlation, whereas a correlation of r = –1 indicates perfect negative correlation.
A correlation close to zero indicates no relationship between the two variables; a
correlation of r = –0.3 indicates a weak negative relationship; whereas a correlation
of r = 0.85 indicates a strong positive relationship. The extent of the relationship
between the two variables may be seen from the following:

– A change in the value of X leads to a change in the value of Y.
– A change in the value of Y leads to a change in the value of X.
– Changes in another variable lead to changes in both X and Y.
– There is no relationship (or correlation) between X and Y.

The relationship (if any) between the two variables can be seen by plotting the
values of X and Y in a scatter graph as in Fig. 22.7 and Fig. 22.8. The correlation
coefficient identifies linear relationships between X and Y, but it does not detect
non-linear relationships. It is possible for correlation to exist between two variables
but for no causal relationship to exist, i.e. correlation is not the same as causation.

Fig. 22.7 Strong positive correlation

22.6 Correlation and Regression 375

Example (Correlation)
The data in Table 22.6 is a summary of the cost of maintenance of eight printers,

and it is wished to explore the extent to which the age of the machine is related to
the cost of maintenance. It is required to calculate the correlation coefficient.

Solution (Correlation)
For this example, n = 8 (as there are 8 printers) and RXi;RYi;RXiYi;RX2

i ;RY
2
i

are computed in the last row of the table and so

RXi ¼ 76;

RYi ¼ 940;

RXiYi ¼ 12680;

RX2
i ¼ 978;

RY2
i ¼ 169450:

We input these values into the correlation formula and get

r ¼ 8 � 12680� 76 � 940
ffi
8 � 978� 762

p ffi
8 � 169450 � 9402

p

¼ 30000
ffiffiffiffiffiffiffiffiffiffi
2048

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
472000

p

¼ 30000
45:25 � 687:02

¼ 30000
31087

¼ 0:96:

Therefore, r = 0.96 and so there is a strong correlation between the age of the
machine and the cost of maintenance of the machine.

Fig. 22.8 Strong negative correlation

376 22 Statistics

22.6.1 Regression

Regression is used to study the relationship (if any) between dependent and inde-
pendent variables and to predict the dependent variable when the independent
variable is known. The prediction capability of regression makes it a more powerful
tool than correlation, and regression is useful in identifying which factors impact
the desired outcome variable.

There are several types of regression that may be employed such as linear or
polynomial regression, and this section is concerned with linear regression where
the relationship between the dependent and independent variables is expressed by a
straight line. More advanced statistical analysis may be conducted with multiple
regression models, where there are several independent variables that are believed
to affect the value of another variable.

Regression analysis first involves data gathering and plotting the data on a
scatter graph. The regression line is the line that best fits the data on the scatter
graph (Fig. 22.9), and it is usually determined using the method of least squares or
one of the methods summarized in Table 22.7. The regression line is a plot of the
expected values of the dependant variable for all values of the independent variable,
and the formula (or equation) of the regression line is of the form y = mx + b,
where the coefficients of a and b are determined.

The regression line then acts as a model that describes the relationship between
the two variables, and the value of the dependent variable may be predicted from
the value of the independent variable using the regression line.

22.7 Statistical Inference and Hypothesis Testing

Inferential statistics is concerned with statistical techniques to infer properties of a
population from samples taken from the population. Often, it is infeasible or
inconvenient to study all members of a population, and so the properties of a
representative sample are studied and statistical techniques are used to generalize

Table 22.6 Cost of
maintenance of printers

X (Age) Y (Cost) XY X2 Y2

5 50 250 25 2500

12 135 1620 144 18,225

4 60 240 16 3600

20 300 6000 400 90,000

2 25 50 4 625

10 80 800 100 6400

15 200 3000 225 40,000

8 90 720 64 8100

76 940 12,680 978 169,450

22.6 Correlation and Regression 377

these properties to the population. A statistical experiment is carried out to gain
information from the sample, and it may be repeated as many times as required to
gain the desired information. Statistical experiments may be simple or complex.

There are two main types of inferential statistics and these are estimating
parameters and hypothesis testing. Estimating parameters is concerned with taking
a statistic from the sample (e.g. the sample mean or variance) and using it to make a
statement about the population parameter (i.e. the population mean or variance).
Hypothesis testing is concerned with using the sample data to answer research
questions such as whether a new drug is effective in the treatment of a particular
disease. A sample is not expected to perfectly represent the population, as sampling
errors will naturally occur.

A hypothesis is a statement about a particular population whose truth or falsity is
unknown. Hypothesis testing is concerned with determining whether the values of
the random sample from the population are consistent with the hypothesis. There
are two mutually exclusive hypotheses: one of these is the null hypothesis H0 and
the other is the alternate research hypothesis H1. The null hypothesis H0 is what the

Fig. 22.9 Regression line

Table 22.7 Methods to obtain a regression line

Methods Description

Inspection This is the simplest method and involves plotting the data in a scatter graph
and then drawing a line that best suits the data. (This is subjective and so it is
best to draw the mean point and ensure the regression line passes through this
point.)

Semi-averages This involves splitting the data into two equal groups, then finding and
drawing the mean point in each group and joining these points with a straight
line (i.e. the regression line)

Least squares The method of least squares is mathematical and involves obtaining the
regression line where the sum of the squares of the vertical deviations of all
the points from the line is minimal

378 22 Statistics

researcher is hoping to reject, and the research hypothesis H1 is what the researcher
is hoping to accept.

Statistical testing is employed to test the hypothesis, and the result of the test is
that we either reject the null hypothesis (and therefore, accept the alternative
hypothesis) or that we fail to reject it (i.e. we accept) the null hypothesis. The
rejection of the null hypothesis means that the null hypothesis is highly unlikely to
be true and that the research hypothesis should be accepted.

Statistical testing is conducted at a certain level of significance, with the prob-
ability of the null hypothesis H0 being rejected when it is true never greater than a.
The value a is called the level of significance of the test, with a usually being 0.1,
0.05 or 0.005. A significance level b may also be applied with respect to accepting
the null hypothesis H0 when H0 is false. The objective of a statistical test is not to
determine whether or not H0 is actually true, but rather to determine whether its
validity is consistent with the observed data. That is, H0 should only be rejected if
the resultant data is very unlikely if H0 is true.

The errors that can occur with hypothesis testing include type 1 and type 2
errors. Type 1 errors occur when we reject the null hypothesis when the null
hypothesis is actually true. Type 2 errors occur when we accept the null hypothesis
when the null hypothesis is false (Table 22.8).

For example, an example of a false positive is where the results of a blood test
come back positive to indicate that a person has a particular disease when in fact the
person does not have the disease. Similarly, an example of a false negative is where
a blood test is negative indicating that a person does not have a particular disease
when in fact the person does.

Both errors are potentially very serious, with a false positive generating major
stress and distress to the recipient, until further tests are done that show that the
person does not have the disease. A false negative is potentially even more serious,
as early detection of a serious disease is essential to its treatment, and so a false
negative means that valuable time is lost in its detection, which could be very
serious.

The terms a and b represent the level of significance that will be accepted, and a
may or may not be equal to b. In other words, a is the probability that we will reject
the null hypothesis when the null hypothesis is true, and b is the probability that we
will accept the null hypothesis when the null hypothesis is false.

Table 22.8 Hypothesis testing

Action H0 true, H1 false H0 false, H1 true

Reject H1 Correct False Positive—Type 2 error
P Accept H0jH0 falseð Þ ¼ b

Reject H0 False Negative—Type 1 error
P Reject H0jH0 trueð Þ ¼ a

Correct

22.7 Statistical Inference and Hypothesis Testing 379

Testing a hypothesis at the a ¼ 0:05 level is equivalent to establishing a 95%
confidence interval. For 99% confidence, a will be 0.01, and for 99.999% confi-
dence, then a will be 0.00001.

The hypothesis may be concerned with testing a specific statement about the
value of an unknown parameter h of the population. This test is to be done at a
certain level of significance, and the unknown parameter may, for example, be the
mean or variance of the population. An estimator for the unknown parameter is
determined, and the hypothesis that this is an accurate estimate is rejected if the
random sample is not consistent with it. Otherwise, it is accepted.

The steps involved in hypothesis testing include the following:

1. Establish the null and alternative hypotheses.
2. Establish error levels (significance).
3. Compute the test statistics (often a t-test).
4. Decide on whether to accept or reject the null hypothesis.

The difference between the observed and expected test statistic and whether the
difference could be accounted for by normal sampling fluctuations are the key to the
acceptance or rejection of the null hypothesis. For more detailed information on
statistics, see [1, 2].

22.8 Review Questions

1. What is statistics?
2. Explain how statistics may be abused.
3. What is a random sample? How may it be generated?
4. Describe the charts available for the presentation of statistical data.
5. Explain how the average of a sample may be determined.
6. Explain sample variance and sample standard deviation.
7. Explain the difference between correlation and regression.
8. Explain the methods for obtaining the regression line from data.
9. What is hypothesis testing?

22.9 Summary

Statistics is an empirical science that is concerned with the collection, organization,
analysis, interpretation and presentation of data. Statistics are widely used for
forecasting as well as for presenting trends. They allow the behaviour of a

380 22 Statistics

population to be studied and inferences to be made about the population. These
inferences may be tested to ensure their validity.

It is often not possible to study the entire population, and instead, a represen-
tative subset or sample of the population is chosen. This random sample is used to
make inferences regarding the entire population, and it is essential that the sample
chosen is indeed random and representative of the entire population. Otherwise, the
inferences made regarding the entire population will be invalid due to the intro-
duction of a selection bias.

The data gathered from a statistical study is often raw, and the way the data is
presented is important. It is useful to present the information in pictorial form, as
this enables analysis to be done and conclusions to be drawn. Bar charts, his-
tograms, pie charts, and trend graphs may be employed.

Statistical measures are concerned with the basic analysis of the data to deter-
mine the average of the data, as well as how spread out the data is. The term
‘average’ generally refers to the arithmetic mean of a sample, but it may also refer
to the statistical mode or median of the sample.

An important characteristic of a sample is its distribution and the spread of each
element from some measure of central tendency (e.g. the mean). The standard
deviation is the most common way to measure dispersion, and it gives the average
distance of each element in the sample from the arithmetic mean.

Correlation and linear regression are techniques for exploring the relationship
between two variables. Correlation is concerned with quantifying the strength of the
relationship between two variables, whereas regression expresses the relationship
between the variable in the form of an equation.

Inferential statistics is concerned with statistical techniques to infer properties of
a population from samples taken from the population. A hypothesis is a statement
about a particular population whose truth or falsity is unknown. Hypothesis testing
is concerned with determining whether the values of the random sample from the
population are consistent with the hypothesis.

References

1. Dekking FM et al (2010) A modern introduction to probability and statistics. Springer, Berlin
2. Ross SM (1987) Introduction to probability and statistics for engineers and scientists. Wiley

Publications, New York

22.9 Summary 381

23Probability Theory

23.1 Introduction

Probability is a branch of mathematics that is concerned with measuring uncertainty
and random events, and it provides a precise way of expressing the likelihood of a
particular event occurring. Probability is also used as part of everyday speech in
expressions such as “It is likely to rain in the afternoon”, where the corresponding
statement expressed mathematically might be “The probability that it will rain in the
afternoon is 0.7”.

The modern theory of probability theory has its origins in work done on the
analysis of games of chance by Cardano in the sixteenth century, and it was
developed further in the seventeenth century by Fermat and Pascal and refined in
the eighteenth century by Laplace. It led to the classical definition of the probability
of an event being

P Eventð Þ ¼ #Favourable Outcomes
#Possible Outcomes

:

There are several definitions of probability such as the frequency interpretation
and the subjective interpretation of probability. For example, if a geologist states
that “there is a 70% chance of finding gas in a certain region”, then this statement is
usually interpreted in two ways:

– The geologist is of the view that over the long run, 70% of the regions whose
environmental conditions are very similar to the region under consideration have
gas. [Frequency Interpretation].

– The geologist is of the view that it is likely that the region contains gas and that
0.7 is a measure of the geologist’s belief in this hypothesis. [Belief
Interpretation].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_23

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_23

That is, according to the frequency interpretation, the probability of an event is
equal to the long-term frequency of the event’s occurrence when the same process
is repeated many times.

According to the belief, interpretation probability measures the degree of belief
about the occurrence of an event or in the truth of a proposition, with a probability
of 1 representing the certain belief that something is true and a probability of 0
representing the certain belief that something is false, with a value in between
reflecting uncertainty about the belief.

Probabilities may be updated by Bayes’ Theorem (see Sect. 23.2.2), where the
initial belief is the prior probability for the event, and this may be updated to a
posterior probability with the availability of new information (see Sect. 23.6 for a
short account of Bayesian Statistics).

23.2 Basic Probability Theory

Probability theory provides a mathematical indication of the likelihood of an event
occurring, and the probability lies between 0 and 1. A probability of 0 indicates that
the event cannot occur whereas a probability of 1 indicates that the event is
guaranteed to occur. If the probability of an event is greater than 0.5, then this
indicates that the event is more likely to occur than not to occur.

A statistical experiment is conducted to gain certain desired information, and the
sample space is the set of all possible outcomes of an experiment. The outcomes are
all equally likely if no one outcome is more likely to occur than another. An event E
is a subset of the sample space, and the event is said to have occurred if the outcome
of the experiment is in event E.

For example, the sample space for the experiment of tossing a coin is the set of
all possible outcomes of this experiment, i.e. head or tail. The event that the toss
results in a tail is a subset of the sample space.

S ¼ h; tf g E ¼ tf g:

Similarly, the sample space for the gender of a newborn baby is the set of
outcomes, i.e. the newborn baby is a boy or a girl. The event that the baby is a girl is
a subset of the sample space.

S ¼ b; gf g E ¼ gf g:

For any two events E and F of a sample space S, we can also consider the union
and intersection of these events. That is,

– E[Fconsists of all outcomes that are in E or F or both.
– E\ F(usually written as EF) consists of all outcomes that are in both E and F.
– Ec denotes the complement of E with respect to S and represents the outcomes of

S that are not in E.

384 23 Probability Theory

If EF ¼ ;, then there are no outcomes in both E and F, and so the two events E
and F are mutually exclusive. Events that are mutually exclusive cannot occur at the
same time (i.e. they cannot occur together).

Two events are said to be independent if the occurrence (or not) of one of the
events does not affect the occurrence (or not) of the other. Two mutually exclusive
events cannot be independent, since the occurrence of one excludes the occurrence
of the other.

The union and intersection of two events can be extended to the union and
intersection of a family of events E1, E2, … En ði.e:[n

i¼1Ei and \ n
i¼1EiÞ:

23.2.1 Laws of Probability

The probability of an event E occurring is given by

P Eð Þ ¼ #Outcomes in Event E
#Total Outcomes in Sð Þ :

The laws of probability essentially state that the probability of an event is
between 0 and 1 and that the probability of the union of a mutually disjoint set of
events is the sum of their individual probabilities. The probability of an event E is
zero if E is an impossible event, and the probability of an event E is one if it is a
certain event (Table 23.1).

The probability of the union of two events (not necessarily disjoint) is given by

PðE[FÞ ¼ P Eð Þþ P Fð Þ � P EFð Þ:

The complement of an event E is denoted by Ec and denotes that event E does
not occur. Clearly, S ¼ E[Ecand E and Ec are disjoint and so

P Sð Þ ¼ PðE[EcÞ ¼ P Eð Þþ P Ecð Þ ¼ 1

) P Ecð Þ ¼ 1�P Eð Þ:

Table 23.1 Axioms of probability

Axiom Description

1 P(S) = 1

2 Pð;Þ ¼ 0

3 0 � P(E) � 1

4 For any sequence of mutually exclusive events E1, E2, … En. (i.e. EiEj ¼ ; where
i 6¼ j), then the probability of the union of these events is the sum of their individual
probabilities, i.e.
P [n

i¼1Ei

� � ¼ Pn
i¼1 P Eið Þ

23.2 Basic Probability Theory 385

The probability of an event E occurring given that an event F has occurred is
termed the conditional probability (denoted by P(E|F)) and is given by

P EjFð Þ ¼ P EFð Þ
P Fð Þ ; where P Fð Þ[0:

This formula allows us to deduce that

P EFð Þ ¼ P EjFð ÞP Fð Þ:

Example (Conditional Probability)
A family has two children. Find the probability that they are both girls given that

they have at least one girl.

Solution (Conditional Probability)
The sample space for a family of two children is S = {(g,g), (g,b), b,g), (b,b)}. The

event E where is at least one girl in the family is given by E = :{(g,g), (g,b), b,g)}, and
the event that G both are girls is G = {(g,g)}, so we will determine the conditional
probability P(G|E) that both children are girls given that there is at least one girl in the
family:

P EGð Þ ¼ P Gð Þ ¼ P g; gð Þ ¼ 1=4:

P Eð Þ ¼ 3=4:

P GjEð Þ ¼ P EGð Þ
P Eð Þ ¼

1=4
3=4

¼ 1=3:

Two events E, F are independent if the knowledge that F has occurred does not
change the probability that E has occurred. That is, P(E|F) = P(E) and since P(E|
F) = P(EF)/P(F), we have that two events E, F are independent if

P EFð Þ ¼ P Eð ÞP Fð Þ:

Two events E and F that are not independent are said to be dependent.

23.2.2 Bayes’ Formula

Bayes’ formula enables the probability of an event E to be determined by a
weighted average of the conditional probability of E given that the event F occurred
and the conditional probability of E given that F has not occurred:

E ¼ E\ S ¼ E\ ðF[FcÞ
¼ EF[EFc:

386 23 Probability Theory

P Eð Þ ¼ P EFð Þþ P EFcð Þ ðsince EF\EFc ¼ ;Þ
¼ P EjFð ÞP Fð Þþ P EjFcð ÞP Fcð Þ
¼ P EjFð ÞP Fð Þþ P EjFcð Þ 1� P Fð Þð Þ:

We may also get another expression of Bayes’ formula from noting that

P FjEð Þ ¼ P FEð Þ
P Eð Þ ¼ P EFð Þ

P Eð Þ :

Therefore, P EFð Þ ¼ P FjEð ÞP Eð Þ ¼ P EjFð ÞP Fð Þ;

P EjFð Þ ¼ P FjEð ÞP Eð Þ
P Fð Þ :

This version of Bayes’ formula allows the probability to be updated where the
initial or preconceived belief (i.e. P(E)) is the prior probability for the event, and
this may be updated to a posterior probability (i.e. P(E|F is the updated probability),
with the new information or evidence (i.e. P(F)) and the likelihood that the new
information leads to the event (i.e. P(F|E)).

Example (Bayes’ Formula)

A medical lab is 99% effective in detecting a certain disease when it is actually
present, and it yields a false positive for 1% of healthy people tested. If 0.25% of
the population actually have the disease, what is the probability that a person has
the disease if the patient’s blood test is positive?

Solution (Bayes’ Formula)

Let T be the event that that the patient’s test result is positive, and D the event that the
tested person has the disease. Then the desired probability is P(D|T) and is given by

P DjTð Þ ¼ P DTð Þ
P Tð Þ ¼ P TjDð ÞP Dð Þ

P TjDð ÞP Dð Þþ P TjDcð ÞP Dcð Þ
¼ 0:99 � 0:0025

0:99 � 0:0025þ 0:01 � 0:9975 ¼ 0:1988:

The reason that only approximately 20% of the population whose test results are
positive actually have the disease may seem surprising, but is explained by the low
incidence of the disease (just one person out of every 400 tested will have the
disease and the test will correctly confirm that 0.99 have the disease, but the test
will also state that 399 * 0.01 = 3.99 have the disease and so the proportion of time
that the test is correct is 0:99=0:99þ 3:99 ¼ 0:1988Þ.

23.2 Basic Probability Theory 387

23.3 Random Variables

Often, some numerical quantity determined by the result of the experiment is of
interest rather than the result of the experiment itself. These numerical quantities are
termed random variables. A random variable is termed discrete if it can take on a
finite or countable number of values, and otherwise, it is termed continuous.

The distribution function (denoted by F(x)) of a random variable is the probability
that the random variable X takes on a value less than or equal to x. It is given by

F xð Þ ¼ PfX� xg:

All probability questions about X can be answered in terms of its distribution
function F. For example, the computation of P {a < X < b} is given by

P a\X\bf g ¼ PfX� bg � PfX� ag
¼ F bð Þ � F að Þ:

The probability mass function for a discrete random variable X (denoted by p(a))
is the probability that the random variable is a certain value. It is given by

p að Þ ¼ P X ¼ af g:

Further, F(a) can also be expressed in terms of the probability mass function

F að Þ ¼ PfX� ag ¼
X
8x� a

p xð Þ:

X is a continuous random variable if there exists a non-negative function f
(x) (termed the probability density function) defined for all x 2 ð� /;/Þ such that

P X 2 Bf g ¼
Z
B
f xð Þdx:

All probability statements about X can be answered in terms of its density
function f(x). For example:

P a�X� bf g ¼
Zb

a

f ðxÞdx

P X 2 �1;1ð Þf g ¼ 1 ¼
Z1

�1
f ðxÞdx

388 23 Probability Theory

The function f(x) is termed the probability density function, and the probability
distribution function F(a) is defined by

F að Þ ¼ P X� af g ¼
Z a

�/
f xð Þdx;

Further, the first derivative of the probability distribution function yields the
probability density function. That is,

d=daF að Þ ¼ f að Þ:

The expected value (i.e. the mean) of a discrete random variable X (denoted E
[X]) is given by the weighted average of the possible values of X:

E X½ � ¼
P

i xiP X ¼ xif g Discrete Random variableR1
�1

xf xð Þdx Continuous Random variable

8<
:

Further, the expected value of a function of a random variable is given by E[g
(X)] and is defined for the discrete and continuous case, respectively.

E g Xð Þ½ � ¼
P

i g xið ÞP X ¼ xif g Discrete RandomvariableR1
�1

g xð Þf xð Þdx Continuous Random variable

8<
: :

The variance of a random variable is a measure of the spread of values from the
mean and is defined by

Var Xð Þ ¼ E X2
� �� E X½ �ð Þ2:

The standard deviation r is given by the square root of the variance. That is,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p
:

The covariance of two random variables is a measure of the relationship
between two random variables X and Y and indicates the extent to which they both
change (in either similar or opposite ways) together. It is defined by

Cov X;Yð Þ ¼ E XY½ � � E X½ � E Y½ �:

It follows that the covariance of two independent random variables is zero.
Variance is a special case of covariance (when the two random variables are
identical). This follows since Cov X;Xð Þ ¼ E X:X½ �� E X½ �ð Þ E X½ �ð Þ ¼ E X2

� ��
E X½ �ð Þ2¼ Var Xð Þ.

23.3 Random Variables 389

A positive covariance (Cov(X,Y) � 0) indicates that Y tends to increase as X
does, whereas a negative covariance indicates that Y tends to decrease as X increases.

The correlation of two random variables is an indication of the relationship
between two variables X and Y (we discussed correlation and regression in
Sect. 22.6). If the correlation is negative and close to −1, then Y tends to decrease
as X increases, and if it is positive and close to 1, then Y tends to increase as X
increases. A correlation close to zero indicates no relationship between the two
variables; a correlation of r = −0.4 indicates a weak negative relationship; whereas
a correlation of r = 0.8 indicates a strong positive relationship. The correlation
coefficient is between ±1 and is defined by

Corr X;Yð Þ ¼ Cov X;Yð Þffi
Var Xð ÞVar Yð Þp :

Once the correlation between two variables has been calculated, the probability
that the observed correlation was due to chance can be computed. This is to ensure
that the observed correlation is a real one and not due to a chance occurrence.

23.4 Binomial and Poisson Distributions

The binomial and Poisson distributions are two important distributions in statistics,
and the Poisson distribution may be used as an approximation for the binomial. The
binomial distribution was first used in games of chance, and it has the following
characteristics:

– The existence of a trial of an experiment, which is defined in terms of two states
namely success or failure.

– The identical trials may be repeated a number of times yielding several successes
and failures.

– The probability of success (or failure) is the same for each trial.

A Bernouilli trial is where there are just two possible outcomes of an experi-
ment, i.e. success or failure. The probability of success and failure is given by

P X ¼ 1f g ¼ p;

P X ¼ 0f g ¼ 1� p:

The mean of the Bernouilli distribution is given by p (since
E X½ � ¼ 1:pþ 0: 1� pð Þ ¼ pÞ, and the variance is given by p(1-p) (since
E X2
� �� E X½ �2¼ p� p2 ¼ p 1� pð ÞÞ.
The Binomial distribution involves n Bernouilli trials, where each trial is

independent and results in either success (with probability p) or failure (with
probability 1 - p). The binomial random variable X with parameters n and

390 23 Probability Theory

p represents the number of successes in n independent trials, where Xi is the result
of i th trial and X is represented as

X ¼
Xn
i¼1

Xi:

Xi ¼ 1 if the i th trial is a success
0 otherwise

�
:

The probability of i successes from n independent trials is then given by the
binomial theorem:

P X = if g ¼ n
ið Þpi 1� pð Þn�i i ¼ 0; 1; :::n:

Clearly, E Xi½ � ¼ p and Var Xið Þ ¼ p 1� pð Þ (since Xi is an independent Ber-
nouilli random variable). The mean of the Binomial distribution E[X] is the sum of
the mean of the E[Xi], i.e. Rn

1E Xi½ � ¼ np, and the variance Var(X) is the sum of the
Var(Xi) (since the Xi are independent random variables) and so
Var Xð Þ ¼ np 1� pð Þ. The binomial distribution is symmetric when p = 0.5, and
the distribution is skewed to the left or right when p 6¼ 0.5 (Fig. 23.1).

Example (Binomial Distribution)
The probability that a printer will need correcting adjustments during a day is

0.2. If there are five printers running on a particular day, determine the probability
of the following:

1. No printers need correcting.
2. One printer needs correcting.
3. Two printers require correcting.
4. More than two printers require adjusting.

Fig. 23.1 Binomial distribution

23.4 Binomial and Poisson Distributions 391

Solution (Binomial Distribution)
There are five trials (with n = 5, p = 0.2, and the success of a trial is a printer

needing adjustments). And so,

(1) This is given by P X ¼ 0ð Þ ¼ 5
0

� �
0:20 � 0:85 ¼ 0:3277.

(2) This is given by P X ¼ 1ð Þ ¼ 5
1

� �
0:21 � 0:84 ¼ 0:4096.

(3) This is given by P X ¼ 2ð Þ ¼ 5
2

� �
0:22 � 0:83 ¼ 0:205.

(4) This is given by 1 – P(2 or fewer printers need correcting).

¼ 1�½P X ¼ 0ð Þþ P X ¼ 1ð Þþ P X ¼ 2ð Þ
¼ 1� 0:3277þ 0:4096þ 0:205½ �
¼ 1�0:9423

¼ 0:0577.

The Poisson distribution may be used as an approximation to the Binomial
Distribution when n is large (e.g. n > 30) and p is small (e.g. p < 0.1). The char-
acteristics of the Poisson distribution are as follows:

– The existence of events that occur at random and may be rare (e.g. road
accidents).

– An interval of time is defined in which events may occur.

The probability of i successes (where i = 0, 1, 2, …) is given by

P X ¼ ið Þ ¼ e�kki

i!
:

The mean and variance of the Poisson distribution are given by k.

Example (Poisson Distribution)

Customers arrive randomly at a supermarket at an average rate of 2.5 customers per
minute, where the customer arrivals form a Poisson distribution. Determine the
probability that

1. No customers arrive at any particular minute.
2. Exactly one customer arrives at any particular minute.
3. Two or more customers arrive at any particular minute.
4. One or more customers arrive at any 30-s period.

Solution (Poisson Distribution)

The mean k is 2.5 per minute for parts 1–3 and k is 1.25 for part 4.

392 23 Probability Theory

1. P X ¼ 0ð Þ ¼ e�2:5 � 2:50=0! ¼ 0:0821.
2. P X ¼ 1ð Þ ¼ e�2:5 � 2:51=1! ¼ 0:2052.
3. P 2 or moreð Þ ¼ 1�P X ¼ 0 or X ¼ 1ð Þ ¼ 1�� ½P X ¼ 0ð Þþ P X ¼ 1ð Þ� ¼ 0:7127:

4. P 1 or moreð Þ ¼ 1�P X ¼ 0ð Þ ¼ 1� e�1:25 � 1:250=0! ¼ 1�0:2865 ¼ 0:7134.

23.5 The Normal Distribution

The normal distribution is the most important distribution in statistics and it occurs
frequently in practice. It is shaped like a bell and it is popularly known as the
bell-shaped distribution, and the curve is symmetric about the mean of the distri-
bution. The empirical frequencies of many natural populations exhibit a bell-shaped
(normal) curve, such as the frequencies of the height and weight of people. The
largest frequencies cluster around the mean and taper away symmetrically on either
side of the mean. The German mathematician, Gauss (Fig. 23.2), originally studied
the normal distribution, and it is also known as the Gaussian distribution.

The normal distribution is a continuous distribution, and it has two parameters
namely the mean l and the standard deviation r. It is a continuous distribution, and so
it is not possible to find the probability of individual values, and thus, it is only
possible to find the probabilities of ranges of values. The normal distribution has the
important properties that 68.2% of the values lie within one standard deviation of the
mean, with 95% of the values within two standard deviations and 99.7% of values are
within 3 standard deviations of the mean. In other words, the value of the normal
distribution is practically zero when the value of x is more than three standard
deviations from the mean. The shaded area under the curve in Fig. 23.3 represents
two standard deviations of the mean and comprises 95% of the population.

The normal distribution N has mean l and standard deviation r. Its density
function f(x) (where �1\x\1) is given by

f xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pr

p e� x�lð Þ2=2r2 :

Fig. 23.2 Carl Friedrich
Gauss

23.4 Binomial and Poisson Distributions 393

23.5.1 Unit Normal Distribution

The unit (or standard) normal distribution Z(0,1) has a mean 0 and standard deviation
of 1. Every normal distribution may be converted to the unit normal distribution by
Z ¼ ðX� lÞ =r, and every probability statement about X has an equivalent proba-
bility statement about Z. The unit normal density function is given by

f yð Þ ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2y

2
:

The unit normal distribution is symmetric about 0 (as the mean is zero), and the
process of converting a normal distribution with mean l and standard deviation r is
termed standardizing the x-value. There are tables of values that give the probability
of a Z score between zero and the one specified.

Example (Normal Distribution)

Weights of bags of oranges are normally distributed with a mean of 3lbs and a
standard deviation of 0.2 lb. The delivery to a supermarket is 350 bags at a time.
Determine the following:

1. Standardize to a unit normal distribution.
2. What is the probability that a standard bag will weigh more than 3.5 lbs?
3. How many bags from a single delivery would be expected to weigh more than

3.5 lbs.

Solution (Normal Distribution)

1. Z ¼ X� l=r ¼ X�3= 0:2:
2. Therefore, when X = 3.5, we have Z = 3.5 –3 / 0.2 = 2.5.

For Z = 2.5, we have from the unit normal tables that
PðZ� 2:50Þ ¼ 0:9938 ¼ PðX� 3:5Þ:

Fig. 23.3 Standard normal
bell curve (Gaussian
distribution)

394 23 Probability Theory

Therefore, P X[3:5ð Þ ¼ 1�PðX� 3:5Þ ¼ 1�0:9938 ¼ 0:0062.

3. The proportion of all bags that have a weight greater than 3.5 lbs is 0.0062, and
so it would be expected that there are 350 * 0.0062 = 2.17 bags with a
weight >3.5, and so in practical terms, we would expect two bags to weigh more
than 3.5 lbs.

The normal distribution may be used as an approximation to the binomial when
n is large (e.g. n > 30) and when p is not too small or large. This is discussed in the
next section, where the mean of the normal distribution is np and the standard
deviation is

ffi
np 1� pð Þp

.

23.5.2 Confidence Intervals and Tests of Significance

The study of normal distributions helps in the process of estimating or specifying a
range of values, where certain population parameters (such as the mean) lie from
the results of small samples. Further, the estimate may be stated with a certain
degree of confidence, such as there is 95 or 99% confidence that the mean value lies
between 4.5 and 5.5. That is, confidence intervals (also known as confidence limits)
specify a range of values within which some unknown population parameter lies
with a stated degree of confidence, and it is based on the results of the sample.

The confidence interval for an unknown population mean where the sample
mean, sample variance, the sample size and desired confidence level are known is
given by

x� z
sffiffiffi
n

p :

In the formula, x is the sample mean, s is the sample standard deviation, n is the
sample size and z is the confidence factor (for a 90% confidence interval, z = 1.64;
for the more common 95% confidence interval, z = 1.96 and z = 2.58 for the 99%
confidence interval).

Example (Confidence Intervals)

Suppose a new motor fuel has been tested on 30 similar cars, and the fuel con-
sumption was 44.1mpg with a standard deviation of 2.9 mpg. Calculate a 95%
confidence interval for the fuel consumption of this model of car.

Solution (Confidence Intervals)

The sample mean is 44.1, the sample standard deviation is 2.9, the sample size is 30
and the confidence factor is 1.96, so the 95% confidence interval is

23.5 The Normal Distribution 395

x� z
sffiffiffi
n

p ¼ 44:1� 1:96 � 2:9ffiffiffiffiffi
30

p

¼ 44:1� 1:96 � 0:5295

¼ 44:1� 1:0378

¼ 43:0622; 45:1378ð Þ:

That is, we can say with 95% confidence that the fuel consumption for this
model of car is between 43.0 and 45.1 mpg.

The confidence interval for an unknown population mean where the sample
proportion and sample size are known is given by

p� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n

r
:

In the formula, p is the sample proportion, n is the sample size and z is the
confidence factor.

Example (Confidence Intervals)

Suppose 3 faulty components are identified in a random sample of 20 products
taken from a production line. What statement can be made about the defect rate of
all finished products?

Solution (Confidence Intervals)

The proportion of defective products in the sample is p = 3/20 = 0.15, and the
sample size is n = 20. Therefore, the 95% confidence interval for the population
mean is given by

p� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n

r
¼ 0:15� 1:96

ffi
0:15 1� 0:15ð Þ

20

r

¼ 0:15� 1:96 � 0:0798

¼ 0:15� 0:1565

¼ �0:0065; 0:3065ð Þ:

That is, we can say with 95% confidence that the defective rate of finished
products lies between 0 and 0.3065.

Tests of Significance for the Mean

Tests of significance are related to confidence intervals and use the concepts from
the normal distribution. To test whether a sample of size n, with sample mean x

and sample standard deviation s, could be considered as having been drawn from
a population with mean l, the test statistic must lie in the range –1.96 to 1.96.

396 23 Probability Theory

z ¼ x� l
sffiffi
n

p
� 	 :

That is, the test is looking for evidence of a significant difference between the
sample mean x and the population mean l, and evidence is found if z lies outside of
the stated limits, whereas if z lies within the limits, then there is no evidence that the
sample mean is different from the population mean.

Example (Tests of Significance)
A new machine has been introduced and management is questioning whether it

is more productive than the previous one. Management takes 15 samples of this
week’s hourly output to test whether it is less productive, and the average pro-
duction per hour is 1250 items with a standard deviation of 50. The output per hour
of the previous machine was 1275 items per hour. Determine with a test of sig-
nificance whether the new machine is less productive.

Solution (Tests of Significance)

The sample mean is 1250, the population mean is 1275, the sample standard
deviation is 50 and the sample size is 15.

z ¼ x� l
sffiffi
n

p
� 	 ¼ 1250� 1275

50ffiffiffiffi
15

p
� 	 ¼ �25

12:91
¼ �0:1936:

This lies within the range –1.96 to 1.96 and so there is no evidence of any
significant difference between the sample mean and the population mean, and so
management is unable to make any statement on differences in productivity.

23.5.3 The Central Limit Theorem

A fundamental result in probability theory is the Central Limit Theorem, which
essentially states that the sum of a large number of independent and identically
distributed random variables has a distribution that is approximately normal. That
is, suppose X1,X2, … Xn is a sequence of independent random variables each with
mean l and variance r2. Then for large n, the distribution of

X1 þX2 þ � � � þXn � nl
r

ffiffiffi
n

p

23.5 The Normal Distribution 397

is approximately that of a unit normal variable Z. One application of the central limit
theorem is in relation to the binomial random variables, where a binomial random
variable with parameters (n,p) represents the number of successes of n independent
trials, where each trial has a probability of p of success. This may be expressed as

X ¼ X1 þX2 þ � � � þXn;

where Xi = 1 if the ith trial is a success and is 0 otherwise. The mean of the
Bernoulli trial E(Xi) = p, and its variance is Var Xið Þ ¼ p 1� pð Þ. (The mean of the
Binomial distribution with n Bernoulli trials is np and the variance is np(1 − p).) By
applying the central limit theorem, it follows that for large n that

X� npffi
np 1� pð Þp

will be approximately a unit normal variable (which becomes more normal as
n becomes larger).

The sum of independent normal random variables is normally distributed, and it
can be shown that the sample average of X1,X2,… Xn is normal, with a mean equal
to the population mean but with a variance reduced by a factor of 1/n.

E X
� � ¼ Xn

i¼1

E Xið Þ
n

¼ l:

Var X
� � ¼ 1

n2
Xn
i¼1

Var Xið Þ ¼ r2

n
:

It follows from this that the following is a unit normal random variable.

ffiffiffi
n

p X � lð Þ
r

:

The term six-sigma 6rð Þ is a methodology concerned with continuous process
improvement to improve business performance, and it aims to develop very high
quality close to perfection. It was developed by Bill Smith at Motorola in the early
1980s, and it was later used by leading companies such as General Electric. A 6r
process is one in which 99.9996% of the products are expected to be free from
defects (3.4 defects per million) [1].

There are many other well-known distributions such as the hypergeometric
distribution that describes the probability of i successes in n draws from a finite
population without replacement, the uniform distribution, the exponential distri-
bution and the gamma distribution. The mean and variance of these distributions are
summarized in Table 23.2 below.

398 23 Probability Theory

23.6 Bayesianism

Bayesian thinking is named after Thomas Bayes who was an eighteenth-century
English theologian and statistician, and it differs from the frequency interpretation
of probability in that it considers the probability of an event to be a measure of
one’s personal belief in the event. According to the frequentist approach, only
repeatable events such as the result from flipping a coin have probabilities, where
the probability of an event is the long-term frequency of occurrence of the particular
event. Bayesians view probability in a more general way and probabilities may be
used to represent the uncertainty of an event or hypothesis. It is perfectly acceptable
in the Bayesian view of the world to assign probabilities to non-repeatable events,
whereas a strict frequentist would claim that such probabilities do not make sense,
as they are not repeatable.

Bayesianism provides a way of dealing rationally with randomness and risk in
daily life, and it is very useful when the more common frequency interpretation is
unavailable or has limited information. It interprets probability as a measure of
one’s personal belief in a proposition or outcome, and it is essential to first use all
your available prior knowledge to form an initial estimate of the probability of the
event or hypothesis. Further, when reliable frequency data becomes available, the
measure of personal belief would be updated accordingly to equal the probability
calculated by the frequency calculation. Further, the probabilities must be updated
in the light of new information that becomes available, as probabilities may change
significantly from new information and knowledge. Finally, no matter how much
the odds move in your favour, there is eventually one final outcome (which may or
may not be the desired event).

Often, in an unreliable and uncertain world, we base our decision-making on a
mixture of reflection and our gut instinct (which can be wrong). Often we encounter
several constantly changing random events and so it is natural to wonder about the
extent to which rational methods may be applied to risk assessment and
decision-making in an uncertain world.

An initial estimate is made of the belief in the proposition, and if you always rely
on the most reliable and objective probability estimates while keeping track of
possible uncertainties and updating probabilities in line with new data, then the final
probability number computed will be the best possible.

Table 23.2 Probability distributions

Distribution
name

Density function Mean/variance

Hypergeometric P X ¼ if g ¼ N
ið Þ M

n�ið Þ= N
n
þMð Þ nN=NþM,np 1� pð Þ 1� n� 1ð Þ=NþM� 1½ �

Uniform f xð Þ ¼ 1=ðb� aÞa� x� b; 0 ðaþbÞ=2; ðb� aÞ2=12
Exponential f xð Þ ¼ ke�kx 1=k; 1=k2

Gamma f xð Þ ¼ ke�kxðkxÞa�1=CðaÞ a=k;a=k2

23.6 Bayesianism 399

We illustrate the idea of probabilities being updated with an adapted excerpt
from a children’s story called “Fortunately”, which was written by Remy Charlip in
the 1960s [2]:

– A lady went on a hot air balloon trip.
– Unfortunately, she fell out.
– Fortunately, she had a parachute on.
– Unfortunately, the parachute did not open.
– Fortunately, there was a haystack directly below.
– Unfortunately, there was a pitchfork sticking out at the top of the haystack.
– Fortunately, she missed the pitchforks.
– Unfortunately, she missed the haystack.

The story illustrates how probabilities can change dramatically based on new
information, and despite all the changes to the probabilities during the fall, the final
outcome is a single result (i.e. either life or death). Let p be the probability of
survival, then the value of p changes as she falls through the sky based on new
information at each step. Table 23.3 illustrates an estimate of what the probabilities
might be.

However, even if probability calculations become irrelevant after the event, they
still give the best chances over the long term. Over our lives, we make many
thousands of decisions about where and how to travel, what diet we should have
and so on, and though the impact of each of these decisions on our life expectancy
is very small, their combined effects are potentially significant. Clearly, careful
analysis is needed for major decisions rather than just making a decision based on
gut instinct.

For the example above, we could estimate probabilities for the various steps
based on the expectation of probability of survival on falling without a parachute
and the expectation of probability of survival on falling onto a haystack without a
parachute, and we would see wildly changing probabilities from the changing
circumstances.

Table 23.3 Probability of survival

Step Prob. survival

A lady went on a hot air balloon trip p = 0.999998

Unfortunately, she fell out p = 0.000001

Fortunately, she had a parachute on p = 0.999999

Unfortunately, the parachute did not open p = 0.000001

Fortunately, there was a haystack directly below p = 0.5

Unfortunately, there was a pitchfork sticking out at the top of the haystack p = 0. 000,001

Fortunately, she missed the pitchforks p = 0.5

Unfortunately, she missed the haystack p = 0.000001

400 23 Probability Theory

We discussed Bayes’ formula in Sect. 23.2.2, which allows the probability to be
updated where the initial or preconceived belief (i.e. P(E) is the prior probability for
the event), and this may be updated to a posterior probability (i.e. P(E|F is the
updated probability), with the new information or evidence (i.e. P(F)) and the
likelihood that the new information leads to the event (i.e. P(F|E)).

23.7 Queueing Theory

The term ‘queue’ refers to waiting in line for a service, such as waiting in line at a
bakery or a bank, and queueing theory is the mathematical study of waiting lines or
queues. The origins of queueing theory are in work done by Erlang at the
Copenhagen Telephone Exchange in the early twentieth century where he modelled
the number of telephone calls arriving as a Poisson process.

Queueing theory has been applied to many fields including telecommunications
and traffic management. This section aims to give a flavour and a very short
introduction to queueing theory, and it has been adapted from [3]. The interested
reader may consult the many other texts available for more detailed information
(e.g. [4]).

A supermarket may be used to illustrate the ideas of queueing theory, as it has a
large population of customers some of whom may enter the supermarket and
queueing system (the checkout queues). Customers will generally wait for a period
of time in a queue before receiving service at the checkout, and they wait for a
further period of time for the actual service to be carried out. Each service facility
(the checkouts) contains identical servers, and each server is capable of providing
the desired service to the customer (Fig. 23.4).

Fig. 23.4 Basic queueing system

23.6 Bayesianism 401

Clearly, if there are no waiting lines, then immediate service is obtained.
However, in general, there are significant costs associated with the provision of an
immediate service, and so there is a need to balance costs with a certain amount of
waiting.

Some queues are bounded (i.e. they can hold only a fixed number of customers),
whereas others are unbounded and can grow as large as is required to hold all
waiting customers. The customer source may be finite or infinite, and where the
customer source is finite but very large, it is often considered to be infinite.

Random variables (described by probability distribution functions) arise in
queueing problems, and these include the random variable q, which represents the
time that a customer spends in the queue waiting for service; the random variable s,
which represents the amount of time that a customer spends in service and the
random variable w, which represents the total time that a customer spends in the
queueing system (Fig. 23.5). Clearly,

w ¼ qþ s:

It is assumed that the customers arrive at a queueing system one at a time at
random times (t0 < t1 < … < tn) with the random variable sk = tk − tk − 1 repre-
senting the interarrival times (i.e. it measures the times between successive arri-
vals). It is assumed that these random variables are independent and identically
distributed, and it is usually assumed that arrival form a Poisson arrival process.

A Poisson arrival process is characterized by the fact that the interarrival times
are distributed exponentially. That is,

P s� tð Þ ¼ 1�e�kt:

Fig. 23.5 Sample random
variables in queueing theory

402 23 Probability Theory

Further, the probability that exactly n customers will arrive in any time interval
of length t is given by

e�kt ktð Þn
n!

; where n ¼ 0; 1; 2; . . .:ð Þ

where k is a constant average arrival rate of customers per unit time, and the
number of arrivals per unit time is Poisson distributed with mean k.

Similarly, it is usual to assume in queueing theory that the service times are
random with l denoting the average service rate, and we let sk denote the service
time that the kth customer requires from the system. The distribution of service
times is given by

Ws tð Þ ¼ P s� tð Þ ¼ 1�e�lt:

The capacity of the queues may be infinite (where every arriving customer is
allowed to enter the queueing system no matter how many waiting customers are
present) or finite (where arriving customers may wait only if there is still room in
the queue).

Queueing systems may be single server (one server serving one customer at a
time) systems or multiple servers (several identical servers that can service c cus-
tomers at a time). The method by which the next customer is chosen from the queue
to be serviced is termed the queue discipline, and the most common method is first
come, first served (FCFS). Other methods include the last in, first out (LIFO), the
shortest job first or the highest priority job next.

Customers may exhibit various behaviours in a queueing system such as
deciding not to join a queue if it is too long, switching between queues to try to
obtain faster service or leaving the queueing system if they have waited too long.
There are many texts on queueing theory, and for a more detailed account of
queueing theory, see [4].

The reader is referred to [5, 6] for a more detailed account of probability and
statistics.

23.8 Review Questions

1. What is probability?
2. Explain the laws of probability.
3. What is a sample space? What is an event?
4. Prove Boole’s inequality P [n

i¼1Ei

� �� Pn
i¼1 P Eið Þ where the Ei are not

necessarily disjoint.
5. A couple has two children. What is the probability that both are girls if

the eldest is a girl?

23.7 Queueing Theory 403

6. What is a random variable?
7. Explain the difference between the probability mass function and the

probability density function (for both discrete and continuous random
variables).

8. Explain variance, covariance and correlation.
9. What is the binomial distribution and what is its mean and variance?

10. What is the Poisson distribution and what is its mean and variance?
11. What is the normal distribution and what is its mean and variance?
12. What is the unit normal distribution and what is its mean and variance?
13. Explain the significance of the central limit theorem.
14. What is Bayes’ theorem? Explain the importance of Bayesian thinking.

23.9 Summary

Probability is a branch of mathematics that is concerned with measuring uncertainty
and random events, and it provides a precise way of expressing the likelihood of a
particular event occurring, and the probability is a numerical value between 0 and 1.
A probability of 0 indicates that the event cannot occur, whereas a probability of 1
indicates that the event is guaranteed to occur. If the probability of an event is
greater than 0.5, then this indicates that the event is more likely to occur than not to
occur.

A sample space is the set of all possible outcomes of an experiment, and an event
E is a subset of the sample space, and the event is said to have occurred if the
outcome of the experiment is in the event E. Bayes’ formula enables the probability
of an event E to be determined by a weighted average of the conditional probability
of E given that the event F occurred and the conditional probability of E given that
F has not occurred.

Often, some numerical quantity determined by the result of the experiment is of
interest rather than the result of the experiment itself. These numerical quantities are
termed random variables. The distribution function of a random variable is the
probability that the random variable X takes on a value less than or equal to x.

The binomial and Poisson distributions are important distributions in statistics,
and the Poisson distribution may be used as an approximation for the binomial. The
Binomial distribution involves n Bernouilli trials, where each trial is independent
and results in either success or failure. The mean of the Bernouilli distribution is
given by p and the variance by p(1 − p).

The normal distribution is a continuous distribution, and the curve is symmetric
about the mean of the distribution. It has two parameters namely the mean l and the
standard deviation r. Every normal distribution may be converted to the unit

404 23 Probability Theory

normal distribution by Z ¼ ðX� lÞ =r, and every probability statement about X
has an equivalent probability statement about the unit distribution Z.

The Central Limit Theorem essentially states that the sum of a large number of
independent and identically distributed random variables has a distribution that is
approximately normal. Bayesianism provides a way of dealing rationally with
randomness and risk in daily life, and it interprets probability as a measure of one’s
personal belief in a proposition or outcome.

Queueing theory is the mathematical study of waiting lines or queues, and its
origins are in work done by Erlang in the early twentieth century. Customers will
generally wait for a period of time in a queue before receiving service, and they wait
for a further period of time for the actual service to be carried out. Each service
facility (the checkouts) contains identical servers, and each server is capable of
providing the desired service to the customer. Queueing theory has been applied to
many fields including telecommunications and traffic management.

References

1. O’Regan G (2014) Introduction to software quality. Springer
2. Charlip R (1993) Fortunately. Simon and Schuster
3. Deitel HM (1990) Operating systems, 2nd edn. Addison Wesley
4. Gross D, Shortle J (2008) Fundamentals of queueing theory, 4th edn. Wiley Interpress
5. Ross SM (1987) Introduction to probability and statistics for engineers and scientists. Wiley

Publications, New York
6. Dekking FM et al (2010) A modern introduction to probability and statistics. Springer

23.9 Summary 405

24Operations Research

24.1 Introduction

Operations research is a multi-disciplinary field that is concerned with the appli-
cation of mathematical and analytic techniques to assist in decision-making. It
employs techniques such as mathematical modelling, statistical analysis and
mathematical optimization as part of its goal to achieve optimal (or near-optimal)
solutions to complex decision-making problems. The modern field of operations
research includes other disciplines such as computer science, industrial engineering,
business practices in manufacturing and service companies, supply chain man-
agement and operations management.

Pascal did early work on operations research in the seventeenth century. He
attempted to apply early work on probability theory to solve complex
decision-making problems. Babbage’s work on the transportation and sorting of
mail contributed to the introduction of the uniform “Penny Post” in England in the
nineteenth century. The origins of the operations research field are from the work of
military planners during the First World War, and the field took off during the
Second World War as it was seen as a scientific approach to decision-making using
quantitative techniques. It was applied to strategic and tactical problems in military
operations, where the goal was to find the most effective utilization of limited
military resources through the use of quantitative techniques. It played an important
role in solving practical military problems such as determining the appropriate
convoy size in the submarine war in the Atlantic.

Numerous peacetime applications of the field of operations research emerged
after the Second World War, where operations research and management science
were applied to many industries and occupations. It was applied to procurement,
training, logistics and infrastructure in addition to its use in operations. The pro-
gress that has been made in the computing field means that operations research can
now solve problems with thousands of variables and constraints.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_24

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_24

Operations research (OR) is the study of mathematical models for complex
organizational systems, where a model is a mathematical description of a system
that accounts for its known and inferred properties, and it may be used for the
further study of its properties. A system is a functionally related collection of
elements such as a network of computer hardware and software. Optimization is a
branch of operations research that uses mathematical techniques to derive values
from system variables that will optimize system performance.

Operations research has been applied to a wide variety of problems including
network optimization problems, designing the layouts of the components on a
computer chip, supply chain management, critical path analysis during project
planning to identify key project activities that affect the project timeline, scheduling
project tasks and personnel and so on. Several of the models used in operations
research are described in Table 24.1 below.

Table 24.1 Models used in operations research

Model Description

Linear
programming

These problems aim to find the best possible outcome (where this is
expressed as a linear function) such as to maximize a profit or
minimize a cost subject to various linear constraints. The function and
constraints are linear functions of the decision variables, and modern
software can solve problems containing millions of variables and
thousands of constraints

Network flow
programming

This is a special case of the general linear programming problem and
includes problems such as the transportation problem, the shortest path
problem, the maximum flow problem and the minimum cost problem.
There are very efficient algorithms available for these

Integer
Programming

This is a special case of the general linear programming problem,
where the variables are required to take on discrete values

Non-linear
programming

The function and constraints are non-linear, and these are much more
difficult to solve than linear programming. Many real-world
applications require a non-linear model, and often solution is
approximated with a linear model

Dynamic
programming

A dynamic programming (DP) model describes a process in terms of
states, decisions, transitions and a return. The process begins in some
initial state, a decision is made leading to a transition to a new state,
and the process continues through a sequence of states until the final
state is reached. The problem is to find a sequence that maximizes the
total return

Stochastic processes A stochastic process models practical situations where the attributes of
a system randomly change over time (e.g. number of customers at an
ATM machine, the share price), and the state is a snapshot of the
system at a point in time that describes its attributes. Events occur that
change the state of the system

(continued)

408 24 Operations Research

Mathematical programming involves defining a mathematical model for the
problem and using the model to find the optimal solution. A mathematical model
consists of variables, constraints, the objective function to be maximized or mini-
mized and the relevant parameters and data. The general form is

Min or Max f x1; x2; . . .xnð Þ Objective functionð Þ
g x1; x2; . . .xnð Þ� ðor[; � ;¼ \Þbi Constraintsð Þ
x 2 X

f ; g are linear andX is continuous for linear programming LPð Þ:

A feasible solution is an assignment of values to the variables such that the
constraints are satisfied. An optimal solution is one whose objective function
exceeds all other feasible solutions (for maximization optimization). We now dis-
cuss linear programming in more detail.

24.2 Linear Programming

Linear programming (LP) is a mathematical model for determining the best possible
outcome (e.g. maximizing profit or minimizing cost) of a particular problem. The
problem is subject to various constraints such as resources or costs, and the con-
straints are expressed as a set of linear equations and linear inequalities. The best
possible outcome is expressed as a linear equation. For example, the goal may be to

Table 24.1 (continued)

Model Description

Markov chains A stochastic process that can be observed at regular intervals (such as
every day or every week) can be described by a matrix, which gives the
probabilities of moving to each state from every other state in one time
interval. The process is called a Markov Chain when this matrix is
unchanging over time

Markov processes A Markov process is a continuous-time stochastic process in which the
duration of all state-changing activities are exponentially distributed

Game theory Game theory is the study of mathematical models of strategic
interaction among rational decision makers. It is concerned with the
logical decision-making by humans, animals and computers

Simulation Simulation is a general technique for estimating statistical measures of
complex systems

Time series and
forecasting

A time series is a sequence of observations of a periodic random
variable and is generally used as input to an operation research decision
model

Inventory theory Aims to optimize inventory management, e.g. determining when and
how much inventory should be ordered

Reliability theory Aims to model the reliability of a system from probability theory

24.1 Introduction 409

determine the number of products that should be made to maximize profit subject to
the constraint of limited available resources.

The constraints for the problem are linear, and they specify regions that are
bounded by straight lines. The solution will lie somewhere within the regions
specified, and a feasible region is a region where all of the linear inequalities are
satisfied. Once the feasible region is found, the challenge is then to find where the
best possible outcome may be maximized in the feasible region, and this will
generally be in a corner of the region. The steps involved in developing a linear
programming model include the following:

– Formulation of the problem.
– Solution of the problem.
– Interpretation of the solution.

Linear programming models seek to select the most appropriate solution from
the alternatives that are available subject to the specified constraints. Often,
graphical techniques are employed to sketch the problem and the regions corre-
sponding to the constraints.

The graphical techniques identify the feasible region where the solution lies, and
then the maximization or minimization function is employed within the region to
search for the optimal value. The optimal solution will lie at one or more of the
corner points of the feasible region.

24.2.1 Linear Programming Example

We consider an example in an industrial setting where a company is trying to
decide how many of each product it should make to maximize profits subject to the
constraint of limited resources.

Square Deal Furniture produces two products namely chairs and tables, and it
needs to decide on how many of each to make each month in order to maximize
profits. The amount of time to make tables and chairs and the maximum hours
available to make each product, as well as the profit contribution of each product,
are summarized in Table 24.2 below. There are additional constraints that need to
be specified as follows:

– At least 100 tables must be made.
– The maximum number of chairs to be made is 450.

Table 24.2 Square Deal
Furniture

Table Chair Hours available

Carpentry 3 h 4 h 2400

Painting 2 h 1 h 1000

Profit contribution 7 Euros 5 Euros

410 24 Operations Research

We use variables to represent tables and chairs and formulate an objective
function to maximize profits subject to the constraints.

T ¼ Number of Tables to make:

C ¼ Number of Chairs to make:

The objective function (to maximize profits) is then specified as

Maximize the value of 5Cþ 7T:

The constraints on the hours available for carpentry and painting may be
specified as follows:

3Tþ 4C� 2400 carpentry time availableð Þ:

2TþC� 1000 painting time availableð Þ:

The constraints that at least 100 tables must be made and the maximum number
of chairs to be made is 450 may be specified as follows:

T� 100 number of tablesð Þ:

C� 450 number of chairsð Þ:

Finally, it is not possible to produce a negative number of chairs or tables and
this is specified as follows:

T� 0 non-negativeð Þ:

C� 0 non-negativeð Þ:

The model is summarized as follows:

Max 5Cþ 7T Maximation problemð Þ:

3Tþ 4C� 2400 (carpentry time available)
2TþC� 1000 (painting time available)
T� 100 (number of tables)
C� 450 (number of chairs)
T� 0 (non-negative)
C� 0 (non-negative)

:

We graph the LP model and then use the graph to find a feasible region for
where the solution lies, and we then identify the optimal solution. The feasible

24.2 Linear Programming 411

region is an area where all of the constraints for the problem are satisfied, and the
optimal solution lies at one or more of the corner points of the feasible region.

First, for the constraints on the hours available for painting and carpentry
3Tþ 4C� 2400 and 2TþC� 1000, respectively, we draw the two lines
3 T + 4C = 2400 and 2 T + C = 1000. We choose two points on each line and
then join both points to form the line, and we choose the intercepts of both lines as
the points.

For the line 3T + 4C = 2400 when T is 0 C is 600 and when C is 0T is 800.
Therefore, the points (0, 600) and (800, 0) are on the line 3T + 4C = 2400. For the
line 2T + C = 1000 when T = 0 then C = 1000 and when C = 0 then T = 500.
Therefore, the points (0, 1000) and (500, 0) are on the line 2T + C = 1000.

Figure 24.1 is the first step in developing a graphical solution and we note that
for the first two constraints 3Tþ 4C� 2400 and 2TþC� 1000 the solution lies
somewhere in the area bounded by the lines 3T + 4C = 2400, 2T + C = 1000, the
T-axis and the C-axis.

Next, we add the remaining constraints (T � 100, C � 450, T � 0, C � 0)
to the graph, and this has the effect of reducing the size of the feasible region in
Fig. 24.1 (which placed no restrictions on T and C). The feasible region can be
clearly seen in Fig. 24.2, and the final step is to find the optimal solution in the
feasible region that maximizes the profit function 5C + 7T.

Figure 24.3 shows how we find the optimal solution by drawing the line
7T + 5C = k within the feasible region, and this forms a family of parallel lines
where the slope of the line is �5=7 and k represents the profit. Each point in the
feasible region is on one of the lines in the family, and to determine the equation of
that line, we just input the point into the equation 7T + 5C = k. For example, the
point (200, 0) is in the feasible region and it satisfies the equation
7T + 5C = 7*200 + 5*0 = 1400.

Fig. 24.1 Linear
programming—developing a
graphical solution

412 24 Operations Research

We seek to maximize k and it is clear that the value of k that is maximal is at one
of the corner points of the feasible region. This is the point of intersection of the
lines 2T + C = 1000 and 3T + 4C = 2400, and we solve for T and C to get
T = 320 and C = 360. This means that the equation of the line containing the
optimal point is 7T + 5C = 2240 + 1800 = 4040. That is, its equation is
7T + 5C = 4040 and so the maximum profit is €4040.

Fig. 24.2 Feasible region of
solution

Fig. 24.3 Optimal solution

24.2 Linear Programming 413

24.2.2 General Formulation of LP Problem

The more general formulation of the linear programming problem can be stated as
follows. Find variables x1, x2, …, xn to optimize (i.e. maximize or minimize) the
linear function:

Z ¼ c1x1 þ c2x2 þ � � � ; cnxn;

where the problem is subject to the linear constraints

a11x1 þ a12x12 þ � � � ; a1jxj þ � � � þ a1nxnð� ¼ � Þb1
a21x1

..

.
þ a22x12

..

.
þ � � � ; a2jxj

..

.

þ � � � þ a2nxn
..
.

ð� ¼ � Þ b2
..
.

am1x1 þ am2x12 þ � � � ; amjxj þ � � � þ amnxnð� ¼ � Þbm

and to non-negative constraints on the variables such as

x1; x2; . . .; xn � 0;

where aij, bj and ci are constants and xi are variables.
The variables x1, x2,…, xn whose values are to be determined are called decision

variables.
The coefficients ci, c2, …., cn are called cost (profit) coefficients.
The constraints b1, b2, …., bm are called the requirements.
A set of real values (x1, x2, …., xn) which satisfies the constraints (including the

non-negative constraints) is said to be a feasible solution.
A set of real values (x1, x2, …., xn) which satisfies the constraints (including the

non-negative constraints) and optimizes the objective function is said to be an
optimal solution.

There may be no solution, a unique solution or multiple solutions.
The constraints may also be formulated in terms of matrices as follows:

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 � � � a3n
.
.
am1 am2 am3 . . . amn

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

x1
x2
x3
. . .
. . .
. . .
xn

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

� ¼ �ð Þ

b1
b2
b3
. . .
. . .
. . .
bm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

This may also be written as AX (� = �) B and the optimization function
may be written as Z = CX where C = (c1, c2, …, cn) and X = (x1, x2, …, xn)

T and
X � 0.

414 24 Operations Research

Linear programming problems may be solved by graphical techniques (when
there are a small number of variables) or analytic techniques using matrices. There
are techniques that may be employed to find the solution of the LP problem that are
similar to finding the solution to a set of simultaneous equations using Gaussian
elimination. Matrices were discussed in Chap. 29.

24.3 Cost–Volume–Profit Analysis

A key concern in business is profitability, and management needs to decide on the
volume of products to produce, including the costs and total revenue. Cost–vol-
ume–profit analysis (CVPA) is a useful tool in the analysis of the relationship
between the costs, volume, revenue and profitability of the products produced. The
relationship between revenue and costs at different levels of output can be displayed
graphically, with revenue behaviour and cost behaviour shown graphically.

The breakeven point (BP) is where the total revenue is equal to the total costs,
and breakeven analysis is concerned with identifying the volume of products that
need to be produced to break even.

Example (CVPA)

Pilar is planning to set up a business that makes pottery cups, and she has been
offered a workshop to rent for €800 per month. She estimates that she needs to
spend €10 on the materials to make each pottery cup and that she can sell each cup
for €25. She estimates that if she is very productive that she can make 500 pottery
cups in a month.

Prepare a table that shows the profit or loss that Pilar makes based on the sales of
0, 100, 200, 300, 400 and 500 pottery cups.

Solution (CVPA)

Each entry in the table consists of the revenue for the volume sold, the material
costs per volume of the pottery cups, the fixed cost of renting the workshop per
month, the total cost per month and the net income per month (Table 24.3).

The total sales (revenue) is determined from the volume of sales multiplied by
the unit sales price of a pottery cup (€25). There are two types of costs that may be
incurred namely fixed costs and variable costs.

Table 24.3 Projected profit or loss per volume

#Cups 0 100 200 300 400 500

Revenue (sales) 0 2500 5000 7500 10,000 12,500

Materials (var cost) 0 1000 2000 3000 4000 5000

Workshop (fix cost) 800 800 800 800 800 800

Total cost 800 1800 2800 3800 4800 5800

Net income −€800 €700 €2200 €3700 €5200 €6700

24.2 Linear Programming 415

Fixed costs are incurred irrespective of the volume of items produced, and so the
cost of renting the workshop is a fixed cost. Variable costs are constant per unit of
output and include the direct material and labour costs, and so the total variable cost
increases as the volume increases. That is, the total variable cost is directly related
to the volume of items produced, and Table 24.4 summarizes the revenue and costs.

We may represent the relationships between volume, cost and revenue graphi-
cally and use it to see the relationship between revenue and costs at various levels of
output (Fig. 24.4). We may then use the graph to determine the breakeven point, for
when total revenue is equal to the total cost.

We may also determine the breakeven point algebraically by letting X represent
the volume of cups produced for breakeven. Then breakeven is when the total
revenue is equal to the total cost. That is,

Table 24.4 Revenue and
costs

Item Amount

Total revenue (TR) SP * X

Total variable cost (TVC) VC * X

Fixed cost (FC) FC

Total cost (TC) FCþTVC

¼ FCþ VC � Xð Þ
Net income (profit) TR�TC

SP � Xð Þ�FC� VC � Xð Þ

Fig. 24.4 Breakeven point

416 24 Operations Research

SP � X ¼ FCþVC � X
) 25X ¼ 800þ 10X

) 15X ¼ 800) X

¼ 800=15 ¼ 53:3 units:

The breakeven amount in revenue is 25 * 53.3 = €1333.32.
Next, we present an alternate way of calculating the breakeven point in terms of

contribution margin and sales. Contribution margin is the monetary value that each
extra unit of sales makes towards profitability, and it is given by the selling price
per unit minus the variable cost per unit.

Each additional pottery cup sold increases the revenue by €25 whereas the
increase in costs is just €10 (the materials required). That is, the contribution margin
per unit is the selling price minus the variable cost per unit (i.e. SP - VC = €15),
and so the total contribution margin is the total volume of units sold multiplied by
the contribution margin per unit (i.e. X � SP� VCð Þ ¼ 15X).

The breakeven volume is reached when the total contribution margin covers the
fixed cost (i.e. the cost of renting the workshop which is €800 is covered by the
total contribution). That is, the breakeven volume is reached when

X � SP� VCð Þ ¼ FC � X ¼ FC
SP� VC

� X ¼ 800=ð25� 10Þ ¼ 800=15 ¼ 53:3:

Example

Suppose that the rent of the workshop is increased to €1400 per month and that it
also costs €13 (more than expected) to make each cup and that she can sell each cup
for just €20. What is her new breakeven volume and revenue?

Solution

The breakeven volume is reached when

X � SP� VCð Þ ¼ FC

X � 20�13ð Þ ¼ 1400

7X ¼ 1400

X ¼ 200:

Further, the breakeven revenue is

24.3 Cost–Volume–Profit Analysis 417

24.4 Game Theory

Game theory is the study of mathematical models of strategic interaction among
rational decision makers, and it was originally applied to zero sum games where the
gains or losses of each participant are exactly balanced by those of the other
participants.

The modern game theory emerged as a field following John von Neumann’s
1928 paper on the theory of games of strategy [1]. The Rand corporation investi-
gated possible applications of game theory to global nuclear strategy in the 1950s.
Game theory has been applied to many areas including economics, biology and the
social sciences. It is an important tool in situations where a participant’s best
outcome depends on what other participants do, and their best outcome depends on
what he/she does. We illustrate the idea of game theory through the following
example.

Example (Game Theory)

We consider an example of two television networks that are competing for an
audience of 100 million on the 8 to 9 p.m. time nighttime television slot. The
networks announce their schedule ahead of time, but do not know the other net-
work’s decision until the program begins. A certain number of viewers will watch
Network 1, with the remainder watching Network 2. Market research has been
carried out to show the expected number of viewers for each network based on what
will be shown by the networks (Table 24.5).

Problem to Solve (Viewing Figures)
Determine the best strategy that both networks should employ to maximize their

viewing figures.
Table 24.5 shows the number of viewers of Network 1 for each type of film that

also depends on the type of film that is being shown by Network 2. For example, if
Network 1 is showing a western while Network 2 is showing a comedy, then
Network 1 will have 60 million viewers, and Network 2 will have 100 − 60 = 40
million viewers. However, if Network 2 was showing a soap opera, then the
viewing figures for Network 1 are 15 million, and 100 − 15 = 85 million will be
tuned into Network 2.

Solution (Game Theory)

Network 1 is a row player whereas Network 2 is a column player, and the table
above is termed a payoff matrix. This is a constant-sum game (as the outcome for
both players always adds up to a constant 100 million).

Table 24.5 Network
viewing figures

Network 2

Network 1 Western Soap Opera Comedy

Western 35 15 60

Soap opera 45 58 50

Comedy 38 14 70

418 24 Operations Research

The approach to finding the appropriate strategy for Network 1 is to examine
each option. If Network 1 decides to show a western, then it can get as many as 60
million viewers if Network 2 shows a comedy or as few as 15 million viewers if
Network 2 shows a soap opera. That is, this choice cannot guarantee more than 15
million viewers. Similarly, if Network 1 shows a soap opera, it may get as many as
58 million viewers if Network 2 shows a soap opera as well or as few as 45 million
viewers if Network 2 shows a western. That is, this choice cannot guarantee more
than 45 million viewers. Finally, if Network 1 shows a comedy, it would get 70
million viewers if Network 2 is showing a comedy as well or as few as 14 million
viewers if Network 2 is showing a soap opera. That is, this option cannot guarantee
more than 14 million viewers. Clearly, the best option for Network 1 would be to
show a soap opera, as at least 45 million viewers would tune into Network 1
irrespective of what Network 2 does.

In other words, the strategy for Network 1 (being a row player) is to determine
the row minimum of each row and then to choose the row with the largest row
minimum.

Similarly, the best strategy for Network 2 (being a column player) is to deter-
mine the column maximum of each column and then to choose the column with the
smallest column maximum. For Network 2, the best option is to show a western and
so 45 million viewers will tune into Network 1 to watch the soap opera, and 55
million will tune into Network 2 to watch a western.

It is clear from the table that the two outcomes satisfy the following inequality:

MaxðrowsÞ row minimumð Þ�MinðcolsÞ col maximumð Þ:

This choice is simultaneously best for Network 1 and Network 2 (as max(row
minimum) = min(col maximum)), and this is called a saddle point, and the com-
mon value of both sides of the equation is called the value of the game. An
equilibrium point of the game is where there is a choice of strategies for both
players where neither player can improve their outcome by changing their strategy,
and a saddle point of a game is an example of an equilibrium point.

Example (Prisoner Dilemma)

The police arrest two people who they know have committed an armed robbery
together. However, they lack sufficient evidence for a conviction for armed robbery,
but they have sufficient evidence for a conviction of two years for the theft of the
getaway car. The police make the following offer to each prisoner:

If you confess to your part in the robbery and implicate your partner and he does not
confess, then you will go free and he will get ten years. If you both confess you will both get
five years. If neither of you confess you will get each get two years for the theft of the car

Model the prisoners’ situation as a game and determine the rational (best pos-
sible) outcome for each prisoner.

24.4 Game Theory 419

Solution (Prisoner’s Dilemma)

There are four possible outcomes for each prisoner as follows:

– Go Free (He confesses, Other does not).
– 2-year sentence (Neither confess).
– 5-year sentence (Both confess).
– 10 years (He does not confess. Other does).

Each prisoner has a choice of confessing or not, and Table 24.6 summarizes the
various outcomes depending on the choices that the prisoners make. The first entry
in each cell of the table is the outcome for prisoner 1 and the second entry is the
outcome for prisoner 2. For example, the cell with entries 10, 0 states that prisoner 1
is sentenced for 10 years and prisoner 2 goes free.

It is clear from Table 24.6 that if both prisoners confess they both will receive, a
5-year sentence; if neither confess, then they will both receive a 2-year sentence; if
prisoner 1 confesses and prisoner 2 does not, then prisoner 1 goes free whereas
prisoner 2 gets a 10-year sentence and finally, if prisoner 2 confesses and prisoner 1
does not, then prisoner 2 goes free and prisoner a 1 gets a 10-year sentence.

Each prisoner evaluates his two possible actions by looking at the outcomes in
both columns, as this will show which action is better for each possible action of
their partner. If prisoner 2 confesses, then prisoner 1 gets a 5-year sentence if he
confesses or a 10-year sentence if he does not confess. If prisoner 2 does not
confess, then prisoner 1 goes free if he confesses or 2 years if he does not confess.
Therefore, prisoner 1 is better off confessing irrespective of the choice of prisoner 2.
Similarly, prisoner 2 comes to exactly the same conclusion as prisoner 1, and so the
best outcome for both prisoners is to confess to the crime, and both will go to prison
for 5 years.

The paradox in the prisoners’ dilemma is that two individuals acting in their own
self-interest do not produce the optimal outcome. Both parties choose to protect
themselves at the expense of the other, and as a result both find themselves in a
worse state than if they had cooperated with each other in the decision-making
process and received two years.

For more detailed information on operations research, see [2].

Table 24.6 Outcomes in
prisoners’ dilemma

Prisoner 2

Prisoner 1 Confess Refuse confess

Confess 5, 5 0, 10

Refuse confess 10, 0 2, 2

420 24 Operations Research

24.5 Review Questions

1. What is operations research?
2. Describe the models used in operations research.
3. What is linear programming and describe the steps in developing a linear

programming model?
4. What is cost–volume–profit analysis?
5. Suppose the fixed costs are rent of £1,500 per month and that the cost of

making each item is £20 and it may then be sold for £25. How many items
must be sold to breakeven and what is the breakeven revenue?

6. What is game theory?
7. What is a zero sum game?

24.6 Summary

Operations research is a multi-disciplinary field concerned with the application of
mathematical and analytic techniques to assist in decision-making. It employs
mathematical modelling, statistical analysis and mathematical optimization to
achieve optimal (or near-optimal) solutions to complex decision-making problems.
The modern field of operations research includes other disciplines such as computer
science, industrial engineering, business practices in manufacturing and service
companies, supply chain management and operations management.

Linear programming is a mathematical model for determining the best possible
outcome such as maximizing profit or minimizing the cost of a particular problem.
The problem is subject to various constraints such as resources or costs, and the
constraints are expressed as a set of linear equations and linear inequalities. The
best possible outcome is expressed as a linear equation. For example, the goal may
be to determine the number of products that should be made to maximize profit
subject to the constraint of limited available resources.

Cost–volume–profit analysis (CVPA) is used in the analysis of the relationship
between the costs, volume, revenue and profitability of the products produced. The
relationship between revenue and costs at different levels of output can be displayed
graphically, with revenue behaviour and cost behaviour shown graphically.

Game theory is the study of mathematical models of strategic interaction among
rational decision makers. Von Neumann was the founder of modern game theory
with his 1928 paper on the theory of games of strategy. The Rand Corporation
applied game theory to global nuclear strategy in the 1950s, and the original
applications of game theory were to zero sum games where the gains or losses of
each participant are exactly balanced by those of the other participants.

24.5 Review Questions 421

References

1. von Neumann J (1928) On the theory of games of strategy. Math Ann (in German) 100
(1):295–320

2. Taher H (2016) Pearson operations research. An introduction, 10th edn.

422 24 Operations Research

25Basic Financial Mathematics

25.1 Introduction

Interest is the additional payment that a borrower makes to the lender and is
separate from the repayment of the principal. We distinguish between simple and
compound interest, where simple interest is calculated on the principal only,
whereas compound interest is calculated on both the principal and the accumulated
interest of previous compounding periods. That is, simple interest is always cal-
culated on the original principal, whereas for compound interest, the interest is
added to the principal sum, so that interest is also earned on the added interest for
the next compounding period.

The future value is what the principal will amount to in the future at a given rate
of interest, whereas the present value of an amount to be received in the future is the
principal that would grow to that amount at a given rate of interest.

An annuity is a sequence of fixed equal payments made over a period of time,
and it is usually paid at the end of the payment interval. For example, for a hire
purchase contract, the buyer makes an initial deposit for an item, and then pays an
equal amount per month (the payment is generally at the end of the month) up to a
fixed end date. Personal loans from banks are paid back in a similar manner but
without an initial deposit.

An interest-bearing debt is amortized if both the principal and interest are repaid
by a series of equal payments (with the exception of possibly the last payment)
made at equal intervals of time. The debt is repaid by an amortization annuity,
where each payment consists of both the repayment of the capital borrowed and the
interest due on the capital for that time interval.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2_25

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81588-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-81588-2_25

25.2 Simple Interest

Savers receive interest for placing deposits at the bank for a period of time, whereas
lenders pay interest on their loans to the bank. Simple interest is generally paid on
term deposits (these are usually short-term fixed-term deposits for 3, 6 or 12 months)
or short-term investments or loans. The interest earned on a savings account depends
on the principal amount placed on the deposit at the bank, the period of time that it will
remain on deposit and the specified rate of interest for the period.

For example, if Euro 5000 is placed on deposit at a bank with an interest rate of
5% per annum for 2 years, then it will earn a total of Euro 500 in simple interest for
the period. The interest amount is calculated by

5000 � 5 � 2
100

¼ Euro 500:

The general formula for calculating the amount of simple interest A due for
placing principal P on deposit at a rate r of interest (where r is expressed as a
percentage) for a period of time T (in years) is given by

I ¼ P� r � t

100
:

If the rate of interest r is expressed as a decimal, then the formula for the interest
earned is simply

I ¼ P� r � t:

It is essential in using the interest rate formula that the units for time and rate of
interest are the same.

Example (Simple Interest)

Calculate the simple interest payable for the following short-term investments.

1. £5000 placed on deposit for 6 months (1/2 year) at an interest rate of 4%.
2. £3000 placed on deposit for 1 month (1/12 year) at an interest rate of 5%.
3. £10,000 placed on deposit for 1 day (1/365 year) at an interest rate of 7%.

Solution (Simple Interest)

1. A = 5000 * 0.04 * 0.5 = £100.
2. A = 3000 * 0.05 * 0.08333 = £12.50.
3. A = 10,000 * 0.07 * 0.00274 = £1.92.

We may derive various formulae from the simple interest formula
I = P x r x T.

424 25 Basic Financial Mathematics

P ¼ I

rt
r ¼ I

Pt
t ¼ I

Pr
:

Example (Finding the principal, rate or time)

Find the value of the principal or rate or time in the following.

1. What principal will earn interest of €24.00 at 4.00% in 8 months?
2. Find the annual rate of interest for a principal of €800 to earn €50 in interest in

9 months.
3. Determine the number of months required for a principal of €2000 to earn €22 in

interest at a rate of 5%.

Solution

We use the formulae derived from the simple interest formula to determine these.

1.

2. r ¼ I
Pt ¼ 50

800�0:75 ¼ 0:0833 ¼ 8:33%:

3. t ¼ I
Pr ¼ 22

2000�0:05 ¼ 0:22 years ¼ 2:64 months:

25.2.1 Computing Future and Present Values

The future value is what the principal will amount to in the future at a given rate of
interest, whereas the present value of an amount to be received in the future is the
principal that would grow to that amount at a given rate of interest.

25.2.2 Computing Future Value

A fixed-term account is an account that is opened for a fixed period of time
(typically 3, 6 or 12 months). The interest rate is fixed during the term and thus, the
interest due at the maturity date is known in advance. That is, the customer knows
what the future value (FV) of the investment is and knows what is due on the
maturity date of the account (this is termed the maturity value).

On the maturity date, both the interest due and the principal are paid to the
customer, and the account is generally closed on this date. In some cases, the
customer may agree to roll over the principal, or the principal and interest for a
further fixed period of time, but there is no obligation on the customer to do so. The

25.2 Simple Interest 425

account is said to mature on the maturity date, and the maturity value (MV) or future
value (FV) is given by the sum of the principal and interest:

MV ¼ FV ¼ Pþ I:

Further, since I = Prt, we can write this as MV = P + Prt or

FV ¼ MV ¼ Pð1þ rtÞ:

Example (Computing Maturity Value)

Jo invests €10,000 in a short-term investment for 3 months at an interest rate of 9%.
What is the maturity value of her investment?

Solution (Computing Maturity Value)

25.2.3 Computing Present Values

The present value of an amount to be received at a given date in the future is the
principal that will grow to that amount at a given rate of interest over that period of
time. We computed the maturity value of a given principal at a given rate of interest
r over a period of time t as

MV ¼ Pð1þ rtÞ:

Therefore, the present value (PV = P) of an amount V to be received t years in
the future at an interest rate r (simple interest) is given by

PV ¼ P ¼ V

ð1þ rtÞ :

Example (Computing Present Value)

Compute the present value of an investment eight months prior to the maturity date,
where the investment earns interest of 7% per annum and has a maturity value of
€920.

Solution (Computing Present Value)

V ¼ 920; r ¼ 0:07; t ¼ 8=12 ¼ 0:66:

426 25 Basic Financial Mathematics

Example (Equivalent Values)

Compute the payment due for the following:

1. A payment of $2000 is due in 1 year. It has been decided to repay early and
payment is to be made today. What is the equivalent payment that should be
made given that the interest rate is 10%?

2. A payment of $2000 is due today. It has been agreed that payment will instead
be made 6 months later. What is the equivalent payment that will be made at
that time given that the interest rate is 10%?

Solution (Equivalent Values)

1. The original payment date is 12 months from today and is now being made
12 months earlier than the original date. Therefore, we compute the present
value of $2000 for 12 months at an interest rate of 10%.

2. The original payment date is today but has been changed to 6 months later, and
so we compute the future value of $2000 for 6 months at an interest rate of 10%.

FV ¼ Pð1þ rtÞ ¼ 2000 1þ 0:1 � 0:5ð Þ ¼ 2000ð1:05Þ ¼ $2100:

Example (Equivalent Values)

A payment of €5000 that is due today is to be replaced by two equal payments (we
call the unknown payments value x) due in 4 and 8 months, where the interest rate
is 10%. Find the value of the replacement payments.

Solution (Equivalent Values)

The sum of the present value of the two (equal but unknown) payments is €5000.
The present value of x (received in 4 months) is

PV ¼ P ¼ V

ð1þ rtÞ ¼
x

1þ 0:1 � 0:33ð Þ ¼
x

1:033
¼ 0:9678x:

The present value of x (received in 8 months) is

PV ¼ P ¼ V

ð1þ rtÞ ¼
x

ð1þ 0:1 � 0:66Þ ¼
x

1:066
¼ 0:9375x:

25.2 Simple Interest 427

Therefore,

25.3 Compound Interest

The calculation of compound interest is more complicated as may be seen from the
following example:

Example (Compound Interest)

Calculate the interest earned and what the new principal will be on Euro 1000,
which is placed on deposit at a bank, with an interest rate of 10% per annum
(compound) for 3 years.

Solution

At the end of year 1, Euro 100 of interest is earned, and this is added to the existing
principal making the new principal (at the start of year 2) €1000 + €100 = Euro
1100. At the end of year 2, Euro 110 is earned in interest, and this is added to the
principal making the new principal (at the start of year 3) €1100 + €110 = Euro
1210. Finally, at the end of year 3, a further Euro 121 is earned in interest, and so
the new principal is Euro 1331, and the total interest earned for the 3 years is the
sum of the interest earned for each year (i.e. Euro 331). This may be seen in
Table 25.1 below.

The new principal each year is given by a geometric sequence (recall a geometric
sequence is a sequence in the form a, ar, ar2, … arn). For this example, we have
a = 1000, and as the interest rate is 10% = 1/10 = 0.1, we have r = (1 + 0.1), and
so the sequence is

1000; 1000ð1:1Þ; 1000ð1:1Þ2; 1000ð1:1Þ3; . . .:

Table 25.1. Calculation of
compound interest

Year Principal Interest earned New principal

1 €1000 €100 €1100

2 €1100 €110 €1210

3 €1210 €121 €1331

428 25 Basic Financial Mathematics

That is, if a principal amount P is invested for n years at a rate r of interest (r is
expressed as a decimal), then it will amount to

A ¼ FV ¼ Pð1þ rÞn:

For our example above, A = 1000, t = 3 and r = 0.1 Therefore,

A principal amount P invested for n years at a rate r of simple interest (r is
expressed as a decimal) will amount to

A ¼ FV ¼ Pð1þ rtÞ:

The principal €1000 invested for 3 years at a rate of interest of 10% (simple
interest) will amount to

There are variants of the compound interest formula to cover situations where
there are m-compounding periods per year. For example, interest may be com-
pounded annually, semi-annually (with 2 compounding periods per year), quarterly
(with 4 compounding periods per year), monthly (with 12 compounding periods per
year) or daily (with 365 compounding periods per year).

The periodic rate of interest (i) per compound period is given by the nominal
annual rate of interest (r) divided by the number of compounding periods (m) per
year:

i ¼ Nominal Rate
compounding periods

¼ r

m
:

For example, if the nominal annual rate is 10% and interest is compounded
quarterly, then the period rate of interest per quarter is 10/4 = 2.5%. That is, com-
pound interest of 2.5% is calculated at the end of each quarter and applied to the
account.

The number of compounding periods for the total term of a loan or investment is
given by the number of compounding periods per year (m) multiplied by the
number of years of the investment or loan.

n ¼ #years� m:

25.3 Compound Interest 429

Example (Compound Interest—Multiple Compounding Periods)

An investor places £10,000 on a term deposit that earns interest at 8% per annum
compounded quarterly for 3 years and 9 months. At the end of the term, the interest
rate changes to 6% compounded monthly and it is invested for a further term of
2 years and 3 months.

1. How many compounding periods are there for 3 years and 9 months?
2. What is the value of the investment at the end of 3 years and 9 months?
3. How many compounding periods are there for 2 years and 3 months?
4. What is the final value of the investment at the end of the 6 years?

Solution (Compound Interest—Multiple Compounding Periods)

1. The initial term is for 3 years and 9 months (i.e. 3.75 years), and so the total
number of compounding periods is given by n = #years * m, where #years =
3.75 and m = 4. Therefore, n = 3.75 * 4 = 15.

2. The nominal rate of interest r is 8% = 0.08, and so the interest rate i per
quarterly compounding period is 0.08/4 = 0.02.

Therefore, at the end of the term, the principal amounts to

A ¼ FV1 ¼ Pð1þ iÞn

¼ 10000ð1þ 0:02Þ15

¼ 10000ð1:02Þ15
¼ 10000ð1:3458Þ
¼ £13; 458:

3. The term is for 2 years and 3 months (i.e. 2.25 years), and so the total number
of compounding periods is given by n = #years * m, where #years = 2.25 and
m = 12. Therefore, n = 2.25 * 12 = 27.

4. The new nominal interest rate is 6% = 0.06 and so the interest rate i per
compounding period is 0.06/12 = 0.005. Therefore, at the end of the term, the
principal amounts to

A ¼ FV2 ¼ FV1ð1þ iÞn

¼ 13458ð1þ 0:005Þ27

¼ 13458ð1:005Þ27
¼ 13458 � 1:14415

¼ £15; 398:

430 25 Basic Financial Mathematics

25.3.1 Present Value Under Compound Interest

The time value of money is the concept that the earlier that cash is received, the
greater its value to the recipient. Similarly, the later that a cash payment is made, the
lower its value to the payee and the lower its cost to the payer.

This is clear if we consider the example of a person who receives $1000 now and
a person who receives $1000 five years from now. The person who receives $1000
now is able to invest it and to receive compound interest on the principal, whereas
the other person who receives $1000 in five years earns no interest during the
period. Further, the inflation during the period means that the purchasing power of
$1000 is less in five years time than it is today.

We presented the general formula for the future value of a principal P invested
for n compounding periods at a compound rate r of interest per compounding
period as

A ¼ Pð1þ rÞn:

The present value of a given amount A that will be received in the future is the
principal (P = PV) that will grow to that amount where there are n compounding
periods and the rate of interest is r for each compounding period. The present value
of an amount A received in n compounding periods at an interest rate r for the
compounding period is given by

P ¼ A

ð1þ rÞn :

We can also write the present value formula as PV = P = A(1 + r)−n.

Example (Present Value)

Find the principal that will amount to $10,000 in 5 years at 8% per annum com-
pounded quarterly.

Solution (Present Value)

The term is 5 years = 5 * 4 = 20 compounding period. The nominal rate of interest
is 8% = 0.08 and so the interest rate i per compounding period is 0.08/4 = 0.02. The
present value is then given by

PV ¼ Að1þ iÞ�n ¼ FVð1þ iÞ�n

¼ 10000ð1:02Þ�20

¼ $6729:71:

The difference between the known future value of $10,000 and the computed
present value (i.e. the principal of $6729.71) is termed the compound discount and

25.3 Compound Interest 431

represents the compound interest that accumulates on the principal over the period
of time. It is given by

Compound Discount ¼ FV � PV :

For this example, the compound discount is $10,000 − 6729.71 = $3270.29.

Example (Present Value)

Elodie is planning to buy a home entertainment system for her apartment. She can
pay £1500 now or pay £250 now and £1600 in 2 years time. Which option is better
if the nominal rate of interest is 9% compounded monthly?

Solution (Present Value)

There are 2 * 12 = 24 compounding periods and the interest rate i for the com-
pounding period is 0:09=12 ¼ 0:0075: The present value of £1600 in two years time
at an interest rate of 9% compounded monthly is

PV ¼ FVð1þ iÞ�n

¼ 1600ð1:0075Þ�24

¼ 1600=1:1984

¼ £1337:33:

The total cost of the second option is £250 + 1337.33 = £1587.33.
Therefore, Elodie should choose the first option since it is cheaper by £87.33 (i.e.

£1587.33 − 1500).

25.3.2 Equivalent Values

When two sums of money are to be paid/received at different times, they are not
directly comparable as such, and a point in time (the focal date) must be chosen to
make the comparison (Fig. 25.1).

The choice of focal date determines whether the present value or future value
formula will be used. That is, when computing equivalent values, we first determine
the focal date, and then depending on whether the payment date is before or after
this reference date, we apply the present value or future value formula.

If the due date of the payment is before the focal date, then we apply the future
value FV formula: n

FV ¼ Pð1þ iÞn:

432 25 Basic Financial Mathematics

If the due date of the payment is after the focal date, then we apply the present
value PV formula:

PV ¼ FVð1þ iÞ�n:

Example (Equivalent Values)

A debt value of €1000 that was due 3 months ago, €2000 that is due today and
€1500 that is due in 18 months are to be combined into one payment due 6 months
from today at 8% compounded monthly. Determine the amount of the single
payment.

Solution (Equivalent Values)
The focal date is 6 months from today and so we need to determine the

equivalent value E1, E2 and E3 of the three payments on this date, and we then
replace the three payments with one single payment E = E1 + E2 + E3 that is
payable 6 months from today.

The equivalent value E1 of €1000 which was due 3 months ago in 6 months from
today is determined from the future value formula where the number of interest
periods n = 6 + 3 = 9. The interest rate per period is 8%/12 = 0.66% = 0.00667.

The equivalent value E2 of €2000 which is due today in 6 months is determined
from the future value formula, where the number of interest periods n = 6. The
interest rate per period is = 0.00667.

Fig. 25.1 Equivalent
weights

25.3 Compound Interest 433

The equivalent value E3 of €1500 which is due in 18 months from today is
determined from the present value formula, where the number of interest periods
n = 18 − 6 = 12. The interest rate per period is = 0.00667.

E ¼ E1 þE2 þE3

¼ 1061:60þ 2081:40þ 1384:49

¼ £4527:49:

And so, a single equivalent payment of €4527.49 is paid in 6 months.

Example (Equivalent Values—Replacement Payments)

Liz was due to make a payment of £2000 today. However, she has negotiated a deal
to make two equal payments: the first payment is to be made one year from now
and the second payment two years from now. Determine the amount of the equal
payments where the interest rate is 9% compounded quarterly and the focal date is
today.

Solution (Equivalent Values—Replacement Payments)

Let x be the value of the equal payments. The first payment is made in one year and
so there are n = 1 * 4 = 4 compounding periods and the second payment is made
in 2 years and so there are n = 2 * 4 = 8 compounding periods. The interest rate
i is 9%/4 = 2.25% = 0.0225.

The present value E1 of a sum x received in one year is given by

PV ¼ FVð1þ iÞ�n

¼ xð1þ 0:0225Þ�4

¼ xð1:0225Þ�4

¼ 0:9148x:

434 25 Basic Financial Mathematics

The present value E2 of a sum x received in two years is given by

PV ¼ FVð1þ iÞ�n

¼ xð1þ 0:0225Þ�3

¼ xð1:0225Þ�8

¼ 0:8369x:

The sum of the present value of E1 and E2 is £2000 and so we have

0:9148xþ 0:8369x ¼ 2000

1:7517x ¼ 2000

x ¼ £1141:75:

25.4 Basic Mathematics of Annuities

An annuity is a sequence of fixed equal payments made over a period of time, and it
is usually paid at the end of the payment interval. For example, for a hire purchase
contract, the buyer makes an initial deposit for an item and then pays an equal
amount per month (the payment is generally at the end of the month) up to a fixed
end date. Personal loans from banks are paid back in a similar manner but without
an initial deposit.

An investment annuity (e.g. a regular monthly savings scheme) may be paid at
the start of the payment interval. A pension scheme involves two stages, with the
first stage involving an investment of regular payments at the start of the payment
interval up to retirement and the second stage involving the payment of the
retirement annuity. The period of payment of a retirement annuity is usually for the
remainder of a person’s life (life annuity) or it could be for a period of a fixed
number of years.

We could determine the final value of an investment annuity by determining the
future value of each payment up to the maturity date and then adding them all
together. Alternately, as the future values form a geometric series, we may derive a
formula for the value of the investment by using the formula for the sum of a
geometric series.

We may determine the present value of an annuity by determining the present
value of each payment made and summing these or we may also develop a formula
to calculate the present value.

The repayment of a bank loan is generally with an amortization annuity, where
the customer borrows a sum of money from a bank (e.g. a personal loan for a car or
a mortgage for the purchase of a house). The loan is for a defined period of time and
its repayment is with a regular annuity, where each annuity payment consists of

25.3 Compound Interest 435

interest and capital repayment. The bulk of the early payments goes on the interest
due on the outstanding capital with smaller amounts going on capital repayments.
However, the bulk of the later payments goes in repaying the capital with smaller
amounts going on interest.

Definition

An annuity is a series of equal cash payments made at regular intervals over a
period of time, and they may be used for investment purposes or paying back a loan
or mortgage. We first consider the example of an investment annuity.

Example (Investment Annuity)

Sheila is investing €10,000 a year in a savings scheme that pays 10% interest every
year. What will the value of her investment be after 5 years?

Solution (Invested Annuity)

Sheila invests €10,000 at the start of year 1 and so this earns 5 years of compound
interest of 10% and so its future value in 5 years is given by 10,000 * 1.15 =
€16,105. The future value of the payments that she makes is presented in
Table 25.2.

Therefore, the value of her investment at the end of 5 years is the sum of the
future values of each payment at the end of 5 years = 16,105 + 14,641 +
13,310 + 12,100 + 11,000 = €67,156.

We note that this is the sum of a geometric series and so in general if an investor
makes a payment of A at the start of each year for n years at a rate r of interest, then
the investment value at the end of n years is

Að1þ rÞn þAð1þ rÞn�1 þ � � �Að1þ rÞ
¼ Að1þ rÞ 1þAð1þ rÞþ � � � þAð1þ rÞn�1

h i
¼ Að1þ rÞ ð1þ rÞn � 1

ð1þ rÞ � 1

¼ Að1þ rÞ ð1þ rÞn � 1
r

:

Table 25.2 Calculation of
future value of annuity

Year Amount Future value (r = 0.1)

1 10,000 10,000 * 1.15 = €16,105

2 10,000 10,000 * 1.14 = €14,641

3 10,000 10,000 * 1.13 = €13,310

4 10,000 10,000 * 1.12 = €12,100

5 10,000 10,000 * 1.11 = €11,000

Total €67,156

436 25 Basic Financial Mathematics

We apply the formula to check our calculation.

Note 25.1

We assumed that the annual payment was made at the start of the year. However,
for ordinary annuities, payment is made at the end of the year (or compounding
period) and so the formula would be slightly different:

FV ¼ A
ð1þ rÞn � 1

r
:

The future value formula is adjusted for multiple (m) compounding periods per
year, where the interest rate for the period is given by i = r/m, and the number of
payment periods n is given by where n = tm (where t is the number of years). The
future value of a series of payments of amount A (made at the start of the com-
pounding period) with interest rate i per compounding period, where there are
n compounding periods, is given by

FV ¼ Að1þ iÞ ð1þ iÞn � 1
i

:

The future value of a series of payments of amount A (made at the end of the
compounding period) with interest rate i per compounding period, where there are
n compounding periods, is given by

FV ¼ A
ð1þ iÞn � 1

i
:

An annuity consists of a series of payments over a period of time, and so it is
reasonable to consider its present value with respect to a discount rate r (this is
applicable to calculating the present value of the annuity for mortgage repayments
discussed in the next section).

The net present value of an annuity is the sum of the present value of each of the
payments made over the period, and the method of calculation is clear from
Table 25.3 below.

25.4 Basic Mathematics of Annuities 437

Example (Present Value Annuities)

Calculate the present value of a series of payments of $1000 with the payments
made for 5 years at a discount rate of 10%.

Solution (Present Value Annuities)

The regular payment A is 1000, the rate r is 0.1 and n = 5. The present value of the
first payment received is 1000/1.1 = 909.91 at the end of the year 1; at the end of
year 2, it is 1000/(1.1)2 = 826.45 and so on. At the end of year 5, its present value is
620.92. The net present value of the annuity is the sum of the present value of all
the payments made over the five years, and it is given by the sum of the present
values from Table 25.3. That is, the present value of the annuity is
909.91 + 826.44 + 751.31 + 683.01 + 620.92 = $3791.

We may derive a formula for the present value of a series of payments A made
over a period of n years at a discount rate of r as follows: Clearly, the present value
is given by

A

ð1þ rÞ þ
A

ð1þ rÞ2 þ . . .þ A

ð1þ rÞn :

This is a geometric series where the constant ratio is 1
1þ r and the present value of

the annuity is given by its sum:

PV ¼ A

r
1� 1

ð1þ rÞn
� �

:

For the example above, we apply the formula and get

PV ¼ 1000
0:1

1� 1

ð1:1Þ5
" #

¼ 10000ð0:3791Þ
¼ $3791:

Table 25.3 Calculation of
present value of annuity

Year Amount Present value (r = 0.1)

1 1000 $909.91

2 1000 $826.44

3 1000 $751.31

4 1000 $683.01

5 1000 $620.92

Total $3791

438 25 Basic Financial Mathematics

The annuity formula is adjusted for multiple (m) compounding periods per year,
and the interest rate for the period is given by i = r/m, and the number of payment
periods n is given by n = tm (where t is the number of years). For example, the
present value of an annuity of amount A, with interest rate i per compounding
period, where there are n compounding periods, is given by

P ¼ A

i
1� 1

ð1þ iÞn
� �

:

Example (Retirement Annuity)

Bláithín has commenced employment at a company that offers a pension in the form of
an annuity that pays 5% interest per annumcompoundedmonthly. She plans towork for
30 years andwishes to accumulate a pension fund that will pay her €2000 permonth for
25 years after she retires. How much does she need to save per month to do this?

Solution (Retirement Annuities)

First, we determine the value that the fund must accumulate to pay her €2000 per
month, and this is given by the present value of the 25 years annuity of €2000 per
month. The interest rate r is 5% and as there are 12 compounding periods per year,
there are a total of 25 * 12 = 300 compounding periods, and the interest rate per
compounding period is 0.05/12 = 0.004166.

That is, her pension fund at retirement must reach €342,174 and so we need to
determine the monthly payments necessary for her to achieve this. The future value
is given by the formula:

FV ¼ A
ð1þ iÞnþ 1 � 1

i

and so

A ¼ FV�i= ð1þ iÞnþ 1 � 1
h i

;

where m = 12, n = 30 * 12 = 360 and i = 0.05/12 = 0.004166 and FV = 342,174.

25.4 Basic Mathematics of Annuities 439

That is, Bláithín needs to save €408.87 per month into her retirement account
(sinking fund) for 30 years in order to have an annuity of €2000 per month for
25 years (where there is a constant interest rate of 5% compounded monthly).

25.5 Loans and Mortgages

The purchase of a home or car requires a large sum of money, and so most
purchasers need to obtain a loan from the bank to fund the purchase. Once the
financial institution has approved the loan, the borrower completes the purchase and
pays back the loan to the financial institution over an agreed period of time (the
term of the loan). For example, a mortgage is generally paid back over 20–25 years,
whereas a car loan is usually paid back in 5 years. (Fig. 25.2)

An interest-bearing debt is amortized if both the principal and interest are repaid
by a series of equal payments (with the exception of possibly the last payment)
made at equal intervals of time. That is, the amortization of loans refers to the
repayment of interest-bearing debts by a series of equal payments made at equal
intervals of time. The debt is repaid by an amortization annuity, where each pay-
ment consists of both the repayment of the capital borrowed and the interest due on
the capital for that time interval.

Mortgages and many consumer loans are repaid by this method, and the standard
problem is to calculate what the annual (or monthly) payment should be to amortize
the principal P in n years where the rate of interest is r.

The present value of the annuity is equal to the principal borrowed, i.e. the sum
of the present values of the payments must be equal to the original principal
borrowed. That is,

P ¼ A

ð1þ rÞ þ
A

ð1þ rÞ2 þ . . .þ A

ð1þ rÞn :

Fig. 25.2 Loan or mortgage

440 25 Basic Financial Mathematics

We may also use the formula that we previously derived for the present value of
the annuity to get

P ¼ A

r
1� 1

ð1þ rÞn
� �

:

We may calculate A by manipulating this formula to get

A ¼ Pr

1� 1
ð1þ rÞn

h i

A ¼ Pr= 1� ð1þ rÞ�n½ �:

Example (Amortization)

Joanne has taken out a €200,000 mortgage over 20 years at 8% per annum. Cal-
culate her annual repayment amount to amortize the mortgage.

mt ¼ pr

1� 1
ð1þ rÞn

h i

Solution (Amortization)

We apply the formula to calculate her annual repayment:

We adjust the formula for the more common case where the interest is com-
pounded several times per year (usually monthly), and so n = #years * #com-
poundings and the interest i = r/#compoundings.

A ¼ Pi

1� 1
ð1þ iÞn

h i :

25.5 Loans and Mortgages 441

Example (Amortization)

A mortgage of £150,000 at 6% compounded monthly is amortized over 20 years.
Determine the following:

1. Repayment amount per month.
2. Total amount paid to amortize the loan.
3. The cost of financing.

Solution (Amortization)

The number of payments n = #years * payments per year = 20 * 12 = 240.
The interest rate i = 6%/12 = 0.5% = 0.005.

1. We calculate the amount of the repayment A by substituting for n and i and obtain

A ¼ 150000 � 0:005

1� 1
ð1þ 0:005Þ240

h i
¼ 750

1� 1
3:3102

� �
¼ £1074:65:

2. The total amount paid is the number of payments * amount of each payment =
n * A = 240 * 1074.65 = £257,916.

3. The total cost of financing = total amount paid − original principal =
257,916 − 150,000 = £107,916.

Example (Amortization)

For the previous example, determine the following at the end of the first period:

1. The amount of interest repaid.
2. The amount of the principal repaid.
3. The amount of the principal outstanding.

Solution (Amortization)

The amount paid at the end of the first period is £1074.65.

1. The amount paid in interest for the first period is 150000 * 0.005 = £750.
2. The amount of the principal repaid is £1074 − 750 = £324.65.
3. The amount of the principal outstanding at the end of the first interest period is

£150,000 − 324.65 = £149,675.35.

442 25 Basic Financial Mathematics

The early payments of the mortgage mainly involve repaying interest on the
capital borrowed, whereas the later payments mainly involve repaying the capital
borrowed with less interest due. We can create an amortization table that shows the
interest paid, the amount paid in capital repayment and the outstanding principal
balance for each payment interval. Often, the last payment is different from the
others due to rounding errors introduced and carried through.

Each entry in the amortization table includes interest, principal repaid and out-
standing principal balance. The interest is calculated by the principle bal-
ance * periodic interest rate i; the principal repaid is calculated by the payment
amount—interest; the new outstanding principal balance is given by the principal
balance—principal repaid.

25.6 Review Questions

1. Explain the difference between simple and compound interest?
2. Calculate the simple interest payable on an investment of £12,000 placed

on deposit for 9 months at an interest rate of 8%.
3. An investor places £5,000 on a term deposit that earns interest at 8% per

annum compounded quarterly for 2 years and 3 months. Find the value of
the investment on the maturity date.

4. Find the principal that will amount to $12,000 in 3 years at 6% per annum
compounded quarterly.

5. How many years will it take a principal of $5000 to exceed $10,000 at a
constant annual growth rate of 6% compound interest?

6. What is the present value of $5000 to be received in 5 years time at a
discount rate of 7%?

7. Explain the concept of equivalent values and when to use the present
value/future value in its calculation.

8. A debt value of €2000 due 6 months ago, €5000 due today and €3000 due
in 18 months are to be combined into one payment due 3 months from
today at 6% compounded monthly. Determine the amount of the single
payment.

25.5 Loans and Mortgages 443

25.7 Summary

Simple interest is calculated on the principal only whereas compound interest is
calculated on both the principal and the accumulated interest of previous periods.
Compound interest is generally used for long-term investments and loans, and its
calculation is more complicated than that of simple interest.

The time value of money is the concept that the earlier that cash is received, the
greater its value to the recipient, and vice versa for late payments. The future value
of a principal P invested for n year compounding periods at a compound rate r of
interest per compounding period is given by A = P (1 + r)n. The present value of a
given amount A that will be received in n years in the future at an interest rate r for
each compounding period is the principal that will grow to that amount and is given
by P = A(1 + r)−n.

The future value is what the principal will amount to in the future at a given rate
of interest, whereas the present value of an amount to be received in the future is the
principal that would grow to that amount at a given rate of interest.

An annuity is a sequence of fixed equal payments made over a period of time,
and it is usually paid at the end of the payment interval. An interest-bearing debt is
amortized if both the principal and interest are repaid by a series of equal payments
(with the exception of possibly the last payment) made at equal intervals of time.
The debt is repaid by an amortization annuity, where each payment consists of both
the repayment of the capital borrowed and the interest due on the capital for that
time interval.

444 25 Basic Financial Mathematics

Glossary

ACL A Computational Logic for Applicative Common Lisp

AECL Atomic Energy Canada Ltd.

AES Advanced Encryption Standard

AI Artificial Intelligence

AMN Abstract Machine Notation

ATP Automated Theorem Proving

BCH Bose, Chauduri and Hocquenghem

BNF Backus Naur Form

BP Breakeven Point

CCS Calculus Communicating Systems

CICS Customer Information Control System

CMM Capability Maturity Model

CMMI® Capability Maturity Model Integration

CPO Complete Partial Order

CSP Communicating Sequential Processes

CTL Computational Tree Logic

CVPA Cost–Volume–Profit Analysis

DAG Directed Acyclic Graph

DES Data Encryption Standard

DOD Department of Defence

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2

445

https://doi.org/10.1007/978-3-030-81588-2

DPDA Deterministic Pushdown automata

DSA Digital Signature Algorithm

DSS Digital Signature Standard

FCFS First Come, First Served

FSM Finite-State Machine

FC Fixed Cost

FV Future Value

GCD Greatest Common Divisor

GCHQ General Communications Headquarters

GSM Global System Mobile

HOL Higher Order Logic

HR Human Resources

IBM International Business Machines

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

IT Information Technology

ITP Interactive Theorem Prover

LCM Least Common Multiple

LD Limited Domain

LEM Law Excluded Middle

LIFO Last In, First Out

LP Linear Programming

LPF Logic of Partial Function

LT Logic Theorist

LTL Linear Temporal Logic

MIT Massachusetts Institute of Technology

MTBF Mean time between failure

MTTF Mean time to failure

MOD Ministry of Defence

446 Glossary

MV Maturity Value

NATO North Atlantic Treaty Organization

NBS National Bureau of Standards

NFA Non-Deterministic Finite-State Automaton

NIST National Institute of Standards and Technology

NP Non-deterministic polynomial

OMT Object Modelling Technique

OR Operations Research

OTTER Organised Techniques for Theorem proving and Effective Research

PMP Project Management

PV Present Value

PVS Prototype Verification System

RDBMS Relational Database Management System

RSA Rivest, Shamir and Adleman

SAM Semi-Automated Mathematics

SCAMPI Standard CMM Appraisal Method for Process Improvement

SECD Stack, Environment, Code, Dump

SEI Software Engineering Institute

SP Selling Price

SQL Structured Query Language

TC Total Cost

TM Turing Machine

TPS Theorem Proving System

TR Total Revenue

TVC Total Variable Cost

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System

VC Variable Cost

VDM Vienna Development Method

VDM♣ Irish School of VDM

Glossary 447

VDM-SL VDM specification language

WFF Well-formed formula

Y2K Year 2000

YACC Yet Another Compiler Compiler

448 Glossary

Index

A
Abstract algebra, 112
Abuse of statistics, 364
Abu Simbel, 2
Agile development, 302
Alexander the Great, 10
Algebra, 103
Algorithm, 218
Al-Khwarizmi, 22
Alonzo Church, 49, 218
Alphabets and Words, 192
Amortization, 441
Annuity, 95, 435, 436
Antikythera, 17
Application of functions, 49
Applications of relations, 42
Aquinas, 17
Archimedes, 15
Aristotle, 16
Arithmetic Mean, 370
Arithmetic sequence, 91
Arithmetic series, 91
Artificial Intelligence, 280
Athenian democracy, 9
Augustus, 21
Automata Theory, 121
Automath system, 292
Axiomatic approach, 333
Axiomatic semantics, 199, 200

B
Babylonians, 4, 5
Backus Naur Form, 195
Bags, 355
Bar chart, 367
Baye’s Formula, 386
Bayesianism, 399
Bernouilli trial, 390

Bertrand Russell, 214
Bijective, 47
Binary relation, 27, 36, 43, 53
Binary system, 74
Binary trees, 155
Binomial distribution, 391
Bletchey Park, 163
Block Codes, 180
B Method, 339
Bombe, 164, 166, 171
Boole, 231
Boole’s symbolic logic, 231
Boyer-Moore Theorem prover, 292

C
Caesar cipher, 161
Capability Maturity Model Integration

(CMMI), 27, 309
Calculus Communicating Systems (CCS), 341
Cayley-Hamilton Theorem, 141
Central Limit Theorem, 397, 405
Chinese remainder theorem, 24
Chomsky hierarchy, 194
Church-Turing Thesis, 219
Classical engineers, 300
Classical mathematics, 307
Claude Shannon, 233
Cleanroom, 313
Cleanroom methodology, 317
Coding theory, 177
Combination, 99
Commuting diagram property, 360
Communicating Sequential Processes (CSP),

341
Competence set, 42
COMPLETENESS, 218
Complete partial orders, 209
Compound interest, 89, 428

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2021
G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-81588-2

449

https://doi.org/10.1007/978-3-030-81588-2

Computability, 218
Computability and decidability, 213
Computable function, 49, 204
Computer Representation of Numbers, 74
Computer Representation of Sets, 35
Computer security, 322
Conditional probability, 386
Confidence intervals, 395
Correlation, 374, 381, 390
Cost Volume Profit Analysis (CVPA), 415
Covariance, 389
Cramer’s rule, 141
Cryptographic Systems, 166
Cryptography, 161
Customer Information Control System (CICS),

331

D
Darlington Nuclear power plant, 331
Data reification, 360
Decidability, 217
Decideability, 216
Decomposition, 360
Deduction theorem, 254
Def Stan 00-55, 330
Deming, 309
Denotational Semantics, 202
Dependability engineering, 321
Descriptive statistics, 364
Determinants, 139
Digital signatures, 174
Dijkstra, 278
Diophantine equations, 74
Distribution of primes, 68

E
Edgar Codd, 43
Egyptians, 6
Enigma codes, 163
Equivalence relation, 39
Equivalent values, 432
Eratosthenes, 13
Error correcting code, 177
Error detection and correction, 182
Euclid, 10
Euclidean algorithm, 11
Euclid’s algorithm, 66
Euler Euclid Theorem, 69
Euler’s Theorem, 73
Existential quantifier, 241, 258

F
Fermat’s Little Theorem, 74
Field, 115

Finite state machines, 122
Flowcharts, 305
Floyd, 304
Formalism, 214
Formal specification, 327
Four colour theorem, 157
Frequency distribution, 365
Frequency table, 367
Functional programming, 49
Functional programming languages, 49
Functions, 44
Fundamental Theorem of Arithmetic, 63
Future value, 425
Fuzzy logic, 269

G
Game theory, 418
Garmisch conference, 297
Gaussian distribution, 393
Gaussian elimination, 142
General formulation of LP problem, 414
Geometric sequence, 91
Geometric series, 92
Geometry machine, 290
Gottlob Frege, 214, 236
Grammar, 193
Graph, 148, 158
Greatest common divisor, 64, 65
Greek, 1, 9
Group, 113

H
Hackers, 323
Halting problem, 221, 262
Hamiltonian paths, 153
Hamming code, 186
Hellenistic age, 10
Hilbert’s programme, 215
Histogram, 367
Hoare logic, 306
HOL system, 293
Horner’s method, 111
Hypothesis testing, 377

I
Indices and logarithms, 109
Inferential statistics, 364
Information hiding, 342
Injective, 47
Input assertion, 200
Interactive Theorem Provers, 291
Interpretation, 261
Intuitionist logic, 273
Irish School of VDM, 336

450 Index

Isabelle, 293
Islamic mathematics, 21

J
Julius Caesar, 161
Juran, 309

K
Karnak, 2
Königsberg Seven Bridges Problem, 148

L
L. E. J. Brouwer, 273
Lambda Calculus, 203
Lattices and Order, 205
Laws of Probability, 385
Least Common Multiple, 65
Leibniz, 74
Limited domain relation, 42
Linear block codes, 183
Linear programming, 409
Loans, 440
Logic and AI, 280
Logic of partial functions, 275
Logic programming languages, 282
Logic Theorist, 290

M
Mathematical induction, 79
Mathematical proof, 287, 295, 334, 361
Mathematics in Software Engineering, 307
Matrix, 135
Matrix operations, 137
Matrix theory, 133
Median, 372
Mersenne, 58
Mersenne primes, 58
Miranda, 50
Mode, 371
Model-oriented approach, 332
Modular arithmetic, 72
Monoids, 113
Morgages, 440

N
Natural deduction, 253
Normal distribution, 393
Number theory, 55

O
Omar Khayyam, 23
Operational semantics, 199, 201
Operations research, 407
Output assertion, 200

P
Paradoxes and Fallacies, 227
Parallel Postulate, 10
Parity, 57
Parnas, 300, 341
Parnas logic, 277
Parse trees and derivations, 197
Partial correctness, 340
Partial function, 46, 353
Partially ordered sets, 205
Perfect numbers, 59
Permutation, 98
Permutations and combinations, 96
Pidgeonhole principle, 97
Pie chart, 369
Plaintext, 162, 167
Plato, 16
Plimpton 322 Tablet, 5
Poisson distribution, 390, 392
Postcondition, 200, 338
Precondition, 338, 340
Predicate, 257
Predicate logic, ix, 241, 256
Predicate transformer, 340
Present values, 426, 431, 438
Principia Mathematica, 216
Prisoner’s Dilemma, 420
Probability mass function, 388
Probability theory, 384
Process calculi, 340
Process maturity models, 309
Professional engineers, 301
Programming language semantics, 198
Prolog, 282
Proof in propositional calculus, 247
Proof in Z, 361
Propositional logic, 241, 242
Public key cryptosystem, 166
Public key systems, 171
Pushdown automata, 125
Pythagoras, 9

Q
Quadratic equations, 107
Queueing theory, 401

R
Random sample, 365
Random variables, 388, 389
Rectangular number, 57
Recursion, 84, 209
Refinement, 328
Reflexive, 37
Regression, 377

Index 451

Reification, 360
Relational database management system, 42
Relations, 36
Requirements validation, 328
Rhind Papyrus, 7
Ring, 114
RSA public key cryptographic system, 55
RSA public key cryptosystem, 173
Russell’s paradox, 34, 214

S
Safety-critical systems, 322, 324
Schema calculus, 338
Schema composition, 357, 359
Schema inclusion, 357
Schemas, 357
Secret key cryptosystem, 166
Semantics, 191, 211
Semantic tableaux, 250, 263
Sequences, 89, 354
Set theory, 28
Sieve of Eratosthenes algorithm, 63
Simple channel code, 179
Simple equation, 103
Simple interest, 93, 423
Simultaneous equations, 104
Software availability, 321
Software crisis, 297
Software engineering, 297, 299, 303
Software inspections, 308
Software reliability, 313, 316, 401
Software reliability and defects, 315
Software reliability models, 318
Software testing, 308
Spiral model, 301
Square number, 57
Standard deviation, 373, 389
Standish group, 298, 303
Statistical sampling, 365
Statistical usage testing, 318
Statistics, 363
Stoic logic, 229
Story, 303
Strong induction, 80, 82
Structural induction, 86
Structured Query Language, 43
Surjective, 47
Syllogistic logic, 16, 226, 227
Symmetric, 37

Symmetric key systems, 166
Syntax, 191, 211
System availability, 318, 323

T
Tautology, 254
Temporal logic, 271
Tests of significance, 395
Theory of congruences, 70
Time value of money, 94, 444
Transition function, 122
Transitive, 37
Trees, 154
Trend chart, 369
Triangular number, 57
Truth tables, 242, 243
Turing machines, 127, 129, 219
Tutankhamun, 2
Two � Two matrices, 134

U
Undefined values, 274
Undirected graphs, 148
Unit Normal distribution, 394
Universal quantifier, 241, 258
Usability of formal methods, 342

V
Valuation functions, 261
Vannevar bush, 235
Variance, 373, 389
VDM, 328, 335
VDM♣, 337
Vector space, 116
VIPER, 334

W
Waterfall model, 301
Watt Humphries, 309
Weakest precondition, 340
Weak induction, 80
Wilson’s Theorem, 74

Z
Z, 328
Zermelo set theory, 339
Z specification, 338, 347
Zspecification language, 338

452 Index

	Preface
	Overview
	Organization and Features
	Audience

	Contents
	1 Mathematics in Civilization
	1.1 Introduction
	1.2 The Babylonians
	1.3 The Egyptians
	1.4 The Greeks
	1.5 The Romans
	1.6 Islamic Influence
	1.7 Chinese and Indian Mathematics
	1.8 Review Questions
	1.9 Summary
	References

	2 Sets, Relations and Functions
	2.1 Introduction
	2.2 Set Theory
	2.2.1 Set Theoretical Operations
	2.2.2 Properties of Set Theoretical Operations
	2.2.3 Russell’s Paradox
	2.2.4 Computer Representation of Sets

	2.3 Relations
	2.3.1 Reflexive, Symmetric and Transitive Relations
	2.3.2 Composition of Relations
	2.3.3 Binary Relations
	2.3.4 Applications of Relations

	2.4 Functions
	2.5 Application of Functions
	2.6 Review Questions
	2.7 Summary
	References

	3 Number Theory
	3.1 Introduction
	3.2 Elementary Number Theory
	3.3 Prime Number Theory
	3.3.1 Algorithms
	3.3.2 Greatest Common Divisors (GCD)
	3.3.3 Least Common Multiple (LCM)
	3.3.4 Euclid’s Algorithm
	3.3.5 Distribution of Primes

	3.4 Theory of Congruences
	3.5 Binary System and Computer Representation of Numbers
	3.6 Review Questions
	3.7 Summary
	References

	4 Mathematical Induction and Recursion
	4.1 Introduction
	4.2 Strong Induction
	4.3 Recursion
	4.4 Structural Induction
	4.5 Review Questions
	4.6 Summary
	Reference

	5 Sequences, Series, and Permutations and Combinations
	5.1 Introduction
	5.2 Sequences and Series
	5.3 Arithmetic and Geometric Sequences
	5.4 Arithmetic and Geometric Series
	5.5 Simple and Compound Interest
	5.6 Time Value of Money and Annuities
	5.7 Permutations and Combinations
	5.8 Review Questions
	5.9 Summary

	6 Algebra
	6.1 Introduction
	6.2 Simple and Simultaneous Equations
	6.3 Quadratic Equations
	6.4 Indices and Logarithms
	6.5 Horner’s Method for Polynomials
	6.6 Abstract Algebra
	6.6.1 Monoids and Groups
	6.6.2 Rings
	6.6.3 Fields
	6.6.4 Vector Spaces

	6.7 Review Questions
	6.8 Summary
	Reference

	7 Automata Theory
	7.1 Introduction
	7.2 Finite-State Machines
	7.3 Pushdown Automata
	7.4 Turing Machines
	7.5 Hybrid Automata
	7.6 Review Questions
	7.7 Summary
	Reference

	8 Matrix Theory
	8.1 Introduction
	8.2 Two × Two Matrices
	8.3 Matrix Operations
	8.4 Determinants
	8.5 Eigen Vectors and Values
	8.6 Gaussian Elimination
	8.7 Business Applications of Matrices
	8.8 Review Questions
	8.9 Summary
	References

	9 Graph Theory
	9.1 Introduction
	9.2 Undirected Graphs
	9.2.1 Hamiltonian Paths

	9.3 Trees
	9.3.1 Binary Trees

	9.4 Graph Algorithms
	9.5 Graph Colouring and Four-Colour Problem
	9.6 Review Questions
	9.7 Summary
	References

	10 Cryptography
	10.1 Introduction
	10.2 Breaking the Enigma Codes
	10.3 Cryptographic Systems
	10.4 Symmetric Key Systems
	10.5 Public Key Systems
	10.5.1 RSA Public Key Cryptosystem
	10.5.2 Digital Signatures

	10.6 Review Questions
	10.7 Summary
	References

	11 Coding Theory
	11.1 Introduction
	11.2 Mathematical Foundations
	11.3 Simple Channel Code
	11.4 Block Codes
	11.4.1 Error Detection and Correction

	11.5 Linear Block Codes
	11.5.1 Parity Check Matrix
	11.5.2 Binary Hamming Code
	11.5.3 Binary Parity-Check Code

	11.6 Miscellaneous Codes in Use
	11.7 Review Questions
	11.8 Summary
	References

	12 Language Theory and Semantics
	12.1 Introduction
	12.2 Alphabets and Words
	12.3 Grammars
	12.3.1 Backus Naur Form
	12.3.2 Parse Trees and Derivations

	12.4 Programming Language Semantics
	12.4.1 Axiomatic Semantics
	12.4.2 Operational Semantics
	12.4.3 Denotational Semantics

	12.5 Lambda Calculus
	12.6 Lattices and Order
	12.6.1 Partially Ordered Sets
	12.6.2 Lattices
	12.6.3 Complete Partial Orders
	12.6.4 Recursion

	12.7 Review Questions
	12.8 Summary
	References

	13 Computability and Decidability
	13.1 Introduction
	13.2 Logicism and Formalism
	13.3 Decidability
	13.4 Computability
	13.5 Computational Complexity
	13.6 Review Questions
	13.7 Summary
	References

	14 A Short History of Logic
	14.1 Introduction
	14.2 Syllogistic Logic
	14.3 Paradoxes and Fallacies
	14.4 Stoic Logic
	14.5 Boole’s Symbolic Logic
	14.5.1 Switching Circuits and Boolean Algebra

	14.6 Application of Symbolic Logic to Digital Computing
	14.7 Frege
	14.8 Review Questions
	14.9 Summary
	References

	15 Propositional and Predicate Logic
	15.1 Introduction
	15.2 Propositional Logic
	15.2.1 Truth Tables
	15.2.2 Properties of Propositional Calculus
	15.2.3 Proof in Propositional Calculus
	15.2.4 Semantic Tableaux in Propositional Logic
	15.2.5 Natural Deduction
	15.2.6 Sketch of Formalization of Propositional Calculus
	15.2.7 Applications of Propositional Calculus
	15.2.8 Limitations of Propositional Calculus

	15.3 Predicate Calculus
	15.3.1 Sketch of Formalization of Predicate Calculus
	15.3.2 Interpretation and Valuation Functions
	15.3.3 Properties of Predicate Calculus
	15.3.4 Applications of Predicate Calculus
	15.3.5 Semantic Tableaux in Predicate Calculus

	15.4 Review Questions
	15.5 Summary
	References

	16 Advanced Topics in Logic
	16.1 Introduction
	16.2 Fuzzy Logic
	16.3 Temporal Logic
	16.4 Intuitionist Logic
	16.5 Undefined Values
	16.5.1 Logic of Partial Functions
	16.5.2 Parnas Logic
	16.5.3 Dijkstra and Undefinedness

	16.6 Logic and AI
	16.7 Review Questions
	16.8 Summary
	References

	17 The Nature of Theorem Proving
	17.1 Introduction
	17.2 Early Automation of Proof
	17.3 Interactive Theorem Provers
	17.4 A Selection of Theorem Provers
	17.5 Review Questions
	17.6 Summary
	References

	18 Software Engineering Mathematics
	18.1 Introduction
	18.2 What is Software Engineering?
	18.3 Early Software Engineering Mathematics
	18.4 Mathematics in Software Engineering
	18.5 Software Inspections and Testing
	18.6 Process Maturity Models
	18.7 Review Questions
	18.8 Summary
	References

	19 Software Reliability and Dependability
	19.1 Introduction
	19.2 Software Reliability
	19.2.1 Software Reliability and Defects
	19.2.2 Cleanroom Methodology
	19.2.3 Software Reliability Models

	19.3 Dependability
	19.4 Computer Security
	19.5 System Availability
	19.6 Safety-Critical Systems
	19.7 Review Questions
	19.8 Summary
	References

	20 Formal Methods
	20.1 Introduction
	20.1.1 Definition 20.1 (Formal Specification)

	20.2 Why Should We Use Formal Methods?
	20.2.1 Comment 20.1 (Missile Safety)

	20.3 Applications of Formal Methods
	20.4 Tools for Formal Methods
	20.5 Approaches to Formal Methods
	20.5.1 Model-Oriented Approach
	20.5.2 Axiomatic Approach
	20.5.3 Comment 20.2 (Axiomatic Approach)

	20.6 Proof and Formal Methods
	20.7 The Future of Formal Methods
	20.8 The Vienna Development Method
	20.9 VDM♣, the Irish School of VDM
	20.10 The Z Specification Language
	20.11 The B Method
	20.12 Predicate Transformers and Weakest Preconditions
	20.13 The Process Calculi
	20.14 The Parnas Way
	20.15 Usability of Formal Methods
	20.15.1 Why are Formal Methods difficult?
	20.15.2 Characteristics of a Usable Formal Method

	20.16 Review Questions
	20.17 Summary

	21 Z Formal Specification Language
	21.1 Introduction
	21.2 Sets
	21.3 Relations
	21.4 Functions
	21.5 Sequences
	21.6 Bags
	21.7 Schemas and Schema Composition
	21.8 Reification and Decomposition
	21.9 Proof in Z
	21.10 Review Questions
	21.11 Summary
	Reference

	22 Statistics
	22.1 Introduction
	22.2 Basic Statistics
	22.2.1 Abuse of Statistics
	22.2.2 Statistical Sampling and Data Collection

	22.3 Frequency Distribution and Charts
	22.4 Statistical Measures
	22.4.1 Arithmetic Mean
	22.4.2 Mode
	22.4.3 Median

	22.5 Variance and Standard Deviation
	22.6 Correlation and Regression
	22.6.1 Regression

	22.7 Statistical Inference and Hypothesis Testing
	22.8 Review Questions
	22.9 Summary
	References

	23 Probability Theory
	23.1 Introduction
	23.2 Basic Probability Theory
	23.2.1 Laws of Probability
	23.2.2 Bayes’ Formula

	23.3 Random Variables
	23.4 Binomial and Poisson Distributions
	23.5 The Normal Distribution
	23.5.1 Unit Normal Distribution
	23.5.2 Confidence Intervals and Tests of Significance
	23.5.3 The Central Limit Theorem

	23.6 Bayesianism
	23.7 Queueing Theory
	23.8 Review Questions
	23.9 Summary
	References

	24 Operations Research
	24.1 Introduction
	24.2 Linear Programming
	24.2.1 Linear Programming Example
	24.2.2 General Formulation of LP Problem

	24.3 Cost–Volume–Profit Analysis
	24.4 Game Theory
	24.5 Review Questions
	24.6 Summary
	References

	25 Basic Financial Mathematics
	25.1 Introduction
	25.2 Simple Interest
	25.2.1 Computing Future and Present Values
	25.2.2 Computing Future Value
	25.2.3 Computing Present Values

	25.3 Compound Interest
	25.3.1 Present Value Under Compound Interest
	25.3.2 Equivalent Values

	25.4 Basic Mathematics of Annuities
	25.5 Loans and Mortgages
	25.6 Review Questions
	25.7 Summary

	Glossary
	Index

