
Tom Jenkyns • Ben Stephenson

A Problem-Solving Primer

Second Edition

123

Fundamentals of
Discrete Math for
Computer Science

Tom Jenkyns
Brock University
St. Catharines, ON
Canada

Ben Stephenson
University of Calgary
Calgary, AB
Canada

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-70150-9 ISBN 978-3-319-70151-6 (eBook)
https://doi.org/10.1007/978-3-319-70151-6

Library of Congress Control Number: 2017959909

1st edition: © Springer-Verlag London 2013

2nd edition: © Springer International Publishing AG, part of Springer Nature 2018

Preface

While this is a new edition of Fundamentals of Discrete Math for Computer
Science, the goal of the book remains the same: To present discrete mathematics to
computer science students in a form that is accessible to them, and in a way that will
improve their programming competence. This edition improves upon its prede-
cessor by introducing a new chapter on directed graphs, introducing a new section
on drawing and coloring graphs, adding more than 100 new exercises, and pro-
viding solutions to selected exercises. We have also made numerous minor mod-
ifications in the second edition that make the text easier to read, improve clarity, or
correct errata.

Most chapters begin with an example that sets the stage for its content. Chapter 1
begins by setting the stage for the whole book: How do you design algorithms to
solve computing problems? How do you know your algorithm will work correctly
for every suitable input? How long will your algorithm take to generate its output?

In our view, teaching is much more than presenting content, and we have written
this text as a design for the experience of students with our subject. A students’ first
experience with a new subject can have a long-lasting impact on their perception it.
We want that experience to be positive. Our text empowers students to think
critically, to be effective problem solvers, to integrate theory and practice, and to
recognize the importance of abstraction. It engages them with memorable, moti-
vating examples. It challenges them with many new ideas, methods, and rigorous
thinking, and we hope it entertains them like no other textbook with “Math” in its
title.

This book introduces much of the “culture” of Computer Science and the
common knowledge shared by all computer scientists (beyond programming).
Much of it is devoted to the solutions to fundamental problems that all computer
scientists have studied: how to search a list for a particular target; how to sort a list
into a natural order; how to generate all objects, subsets, or sequences of some kind
in such an order; how to traverse all of the nodes in a graph or digraph; and
especially, how to compare the efficiency of algorithms and prove their correctness.
Our constant theme is the relevance of the mathematics we present to Computer
Science.

Perhaps the most distinguishing feature of this text is its informal and interactive
nature. Detailed walkthroughs of algorithms appear from beginning to end. We
motivate the material by inserting provocative questions and commentary into the
prose, and we simulate a conversation with our reader, more like our lectures and
less like other pedantic and ponderous mathematics texts. We employ the symbol
“//” to denote “comments”, to indicate asides (especially expanding and explaining
mathematical arguments), as signals of what comes next, and to prompt questions
we want to raise in the reader’s mind. We’ve kept the text (words, sentences, and
paragraphs) short and to the point, and we’ve used font changes, bold, italic and
underlining to capture, focus and recapture our reader’s attention.

But this book is a mathematics text. We expand on students’ intuition with
precise mathematical language and ideas. Although detailed proofs are delayed
until Chap. 3, the fundamental nature of proof in mathematics is explained,
maintained, and applied repeatedly to proving the correctness of algorithms. One
of the purposes of the text is to provide a toolbox of useful algorithms solving
standard problems in Computer Science. The other purpose is to provide a cata-
logue of useful concepts without which the underlying theory of Computer Science
cannot be understood.

St. Catharines, Canada Tom Jenkyns
Calgary, Canada Ben Stephenson

Contents

1 Algorithms, Numbers, and Machines . 1
1.1 What Is an Algorithm? . 4
1.2 Integer Algorithms and Complexity . 8

1.2.1 Prime Testing . 9
1.2.2 Real Numbers . 11
1.2.3 More Prime Testing. 12
1.2.4 Prime Factorization . 14
1.2.5 Logarithms . 16
1.2.6 Greatest Common Divisor . 18

1.3 Machine Representation of Numbers . 21
1.3.1 Approximation Errors . 23
1.3.2 Base 2, 8, and 16 . 26

1.4 Numerical Solutions . 35
1.4.1 Newton’s Method for Square Roots 35
1.4.2 The Bisection Algorithm . 37

Exercises . 41

2 Sets, Sequences, and Counting . 45
2.1 Naïve Set Theory . 45

2.1.1 The Diabolical Librarian . 48
2.1.2 Operations on Sets and Cardinality 49
2.1.3 The Pigeonhole Principle. 51

2.2 Sequences . 53
2.2.1 The Characteristic Sequence of a Subset 55

2.3 Counting. 56
2.3.1 Number of k-Sequences on an n-Set 57
2.3.2 Number of Subsets of an n-Set 58
2.3.3 Number of k-Permutations on an n-Set 58
2.3.4 n-Factorial . 59
2.3.5 Number of k-Subsets of an n-Set. 60
2.3.6 Pascal’s Triangle . 63
2.3.7 Counting Algorithmically (Without a Formula) 66

2.4 Infinite Sequences and Complexity Functions. 69
2.4.1 The Towers of Hanoi . 72
2.4.2 Bad Complexity Functions . 75

Exercises . 76

3 Boolean Expressions, Logic, and Proof . 81
3.1 The Greedy Algorithm and Three Cookie Problems 81

3.1.1 The Greedy Algorithm . 82
3.2 Boolean Expressions and Truth Tables . 86

3.2.1 The Negation Operator . 86
3.2.2 The Conjunction Operator . 86
3.2.3 The Disjunction Operator . 87
3.2.4 The Conditional Operator . 89
3.2.5 The Biconditional Operator . 91

3.3 Predicates and Quantifiers. 92
3.4 Valid Arguments. 93
3.5 Examples of Proofs. 97

3.5.1 Direct Proof. 100
3.5.2 Indirect Proof . 101
3.5.3 Cantor’s Diagonalization Process 104

3.6 Mathematical Induction . 106
3.6.1 Strong Induction . 117

3.7 Proofs Promised in Chap. 1 . 119
3.7.1 Russian Peasant Multiplication Is Correct 119
3.7.2 Resolving the Cake Cutting Conundrum 121
3.7.3 Casting Out Nines . 123
3.7.4 Euclid’s Algorithm for GCD Is Correct. 125

3.8 The Proof Promised in Chap. 2 . 128
Exercises . 130

4 Searching and Sorting. 137
4.1 Searching . 137

4.1.1 Searching an Arbitrary List . 137
4.1.2 Searching a Sorted List . 139

4.2 Branching Diagrams . 145
4.2.1 A Second Version of Binary Search 145

4.3 Sorting . 153
4.3.1 Selection Sorts. 153
4.3.2 Exchange Sorts . 156

4.4 Binary Trees with (at Least) n! Leaves. 163
4.5 Partition Sorts . 171
4.6 Comparison of Sorting Algorithms . 184

4.6.1 Timings and Operation Counts 184
Exercises . 185

5 Graphs and Trees . 191
5.1 Introduction . 191

5.1.1 Degrees . 196
5.1.2 Eulerian Graphs. 196
5.1.3 Hamiltonian Graphs. 197

5.2 Paths, Circuits, and Polygons . 198
5.2.1 Subgraphs Determined by Paths 200

5.3 Trees. 202
5.3.1 Traversals . 203

5.4 Edge-Weighted Graphs . 217
5.4.1 Shortest Paths . 221

5.5 Drawing and Coloring . 222
5.5.1 Bipartite Graphs . 223
5.5.2 Planar Graphs . 225
5.5.3 Some History of the Four Color Theorem 232

Exercises . 233

6 Directed Graphs . 241
6.1 Introducing Directions . 241
6.2 Strong Connectivity . 243
6.3 Topological Sorting . 247
6.4 Shortest Paths in Digraphs (Acyclic or not) 258

6.4.1 Distance Function . 259
6.4.2 Dijkstra’s Algorithm . 259
6.4.3 Floyd-Warshall Algorithm . 267

6.5 The Maximum Flow Problem. 272
6.6 Matchings in Bipartite Graphs . 284
Exercises . 291

7 Relations: Especially on (Integer) Sequences 299
7.1 Relations and Representations. 299

7.1.1 Matrix Representation . 300
7.1.2 Directed Graph Representation 301
7.1.3 Properties of Relations. 301

7.2 Equivalence Relations. 302
7.2.1 Matrix and Digraph of an Equivalence Relation 303

7.3 Order Relations. 306
7.3.1 Matrix and Digraph of a Partial Order. 307
7.3.2 Minimal and Maximal Elements 308

7.4 Relations on Finite Sequences . 311
7.4.1 Domination . 311
7.4.2 Lexicographic Order . 313

7.5 Relations on Infinite Sequences . 315
7.5.1 Asymptotic Dominance and Big-Oh Notation 316
7.5.2 Asymptotic Equivalence and Big-Theta Notation 322
7.5.3 Asymptotic Ranking . 325
7.5.4 Strong Asymptotic Dominance and Little-Oh

Notation. 326
Exercises . 328

8 Sequences and Series. 333
8.1 Examples Defined by Recurrence Equations. 334
8.2 Solving First-Order Linear Recurrence Equations 340
8.3 The Fibonacci Sequence . 346

8.3.1 Algorithms for the Fibonacci Sequence 348
8.3.2 The Golden Ratio . 350
8.3.3 The Fibonacci Sequence and the Golden Ratio 351
8.3.4 The Order of the Fibonacci Sequence 354
8.3.5 The Complexity of Euclid’s Algorithm for GCD. 355

8.4 Solving Second-Order Linear Recurrence Equations. 358
8.5 Infinite Series . 366

8.5.1 Zeno’s Paradoxes . 366
8.5.2 Formal Definitions of Convergence of Sequences

and Series . 367
Exercises . 373

9 Generating Sequences and Subsets. 379
9.1 Generating Sequences in Lexicographic-Order 381
9.2 Generating All k-Sequences on {1..n} . 384

9.2.1 Average-Case Complexity . 384
9.3 Generating Subsets of {1..n} as Increasing Sequences 388
9.4 Generating Permutations in Lexicographic-Order 398

9.4.1 Generating All k-Permutations of {1..n}
in Lex-Order . 407

Exercises . 412

10 Discrete Probability and Average-Case Complexity 421
10.1 Probabilistic Models . 421

10.1.1 Sample Spaces. 422
10.1.2 Probability Functions. 422
10.1.3 The Special Case of Equally Likely Outcomes 424

10.2 Conditional Probability . 427
10.2.1 Combinations of Events. 428
10.2.2 Conditional Probability . 428
10.2.3 Independent Events . 430
10.2.4 Mutually Exclusive Events . 430

10.3 Random Variables and Expected Values. 435
10.3.1 Expected Frequency . 436
10.3.2 Expected Values . 437
10.3.3 Probability Distributions . 438

10.4 Standard Distributions and Their Expected Values 439
10.4.1 The Uniform Distribution . 439
10.4.2 The Binomial Distribution . 443
10.4.3 The Geometric Distribution . 444

10.5 Conditional Expected Values . 447
10.5.1 Conditional Expectation. 452

10.6 Average-Case Complexity . 454
10.6.1 Applying Expectation to Linear Search 454
10.6.2 Applying Expectation to QuickSort 455

Exercises . 460

11 Turing Machines . 467
11.1 What Is an Algorithm? . 468

11.1.1 The Church-Turing Thesis. 475
11.1.2 Universal Turing Machine: As a Computational

Model . 476
11.1.3 The Halting Problem . 476

Exercises . 479

Appendix A: Solutions to Selected Exercises . 483

Index . 509

1Algorithms,Numbers, andMachines

We want to begin by illustrating the objectives of this book with two examples.
First, an “algorithm” for multiplication you weren’t taught in school.

Russian Peasant Multiplication

To find the product of integers M and N, both larger than one:

Step 1. Start two columns on a page, one labeled “A” and
the other “B”; and put the value of M under A and
the value of N under B.

Step 2. Repeat
(a) calculate a new A-value by multiplying the old

A-value by 2; and
(b) calculate a new B-value by dividing the

old B-value by 2 and reducing the result by
a half if necessary to obtain an integer;

Until the B-value equals one.
Step 3. Go down the columns crossing out the A-value

whenever the B-value is even.
Step 4. Add up the remaining A-values and “return” the sum.

To see how this works, let’s “walk through” an example of the operation of this
algorithm. Suppose that the input values are M ¼ 73 and N ¼ 41.

A B
73 41

146 20 (20½ is reduced to 20)

292 10

584 5

1168 2 (2½ is reduced to 2)
2336
2993

1

The algorithm ends by returning the value 2993. Is that equal to 73 � 41?
What would happen if the initial values of A and B were both 100?

A B
100 100

200 50

400 25

800 12

1600 6

3200 3
6400
10000

1

Now you try a few more examples.

A B A B A B
6 6 41 73 1000 1000

..

..

..

.

.

.

.

.

.

.

Do you believe that this algorithm is correct? (Will it produce the right answer
for every possible pair of suitable input values – integers M and N larger than one?)

Is the “loop” in Step 2 sure to terminate? (Must B eventually equal one
exactly?)

What is the complexity of this algorithm? (Do you think it is possible to predict,
before applying the algorithm, how often B will be halved? That will determine
how many rows the table will have, and give an upper bound on how many terms
will be added in Step 4.)

We will mention this algorithm a number of times later (and answer these three
questions), but we’ll refer to it by its initials, RPM.

The second example is a problem involving a

Cake-Cutting Conundrum

Imagine you’re cutting a circular cake with a large knife in the following manner.
There are N “points” marked on the circumference of the cake, and you decide to
make straight cuts joining all pairs of these points. How many pieces of cake, P(N),
will be produced?

2 1 Algorithms, Numbers, and Machines

Tabulating the number of points and the number of pieces, we get the following.

N P(N)
1 1

2 2

3 4

4 8

5 16

6 ??

How many pieces will 6 points produce? Count the pieces in the diagram below.

The number of pieces doubles each time as N goes from 1 to 5. This “pattern”
would indicate that P(6) should be 32. But it’s not 32. The general pattern
of doubling exists only in our minds. People seem programmed to find patterns of
consistency, and we find it very disappointing when they are not correct; we feel
we’ve been tricked. When students ask me “Why is P(6) not 32?” I ask them
“Which do you believe: what you actually saw when you counted the pieces for
N ¼ 6 or the pattern you imagined?”

Do you believe that RPM always works? On the basis of a few cases? Or could this
be a “pattern” like the Cake-Cutting Conundrum that only applies some of the time?

We will look at RPM again later and prove that it is indeed correct (there are no
caseswhere it does not return the product ofN andM), it always terminates, andwe can
determine its complexity. Also, we’ll see that while N must be an integer
greater than one, M need not be greater than one, need not be an integer, and may
even be negative!

And we will look again at the Cake-Cutting Conundrum and prove there is a
formula for P(N) that equals 2N−1 only for N ¼ 1, 2, 3, 4, and 5.

1 Algorithms, Numbers, and Machines 3

The two objectives of this book are to provide you with a portfolio of
algorithms and a catalogue of mathematical ideas for designing and analyzing
algorithms. The algorithms will be useful for solving standard problems. (Russian
Peasant Multiplication is not used, even by Russian peasants, to multiply integers,
but we used it to introduce the notion of an algorithm and will use it again later in
several contexts. For our purposes, it is very useful.) We used the Cake-Cutting
Conundrum to illustrate that induction – the method of reasoning that arrives at a
general principle fromseveral examples–cannot be trusted toestablish thewhole truth.
We need bettermethods of reasoning, ones that will provide “mathematical” certainty.

1.1 What Is an Algorithm?

The word algorithm is a distortion of the name of a ninth century Persian mathe-
matician, Al-Khowarizimi, who devised (or at least wrote down) a number of
methods for doing arithmetic. Such methods were known long before Al-
Khowarizimi’s book and were known to you long before now. Much of your earlier
mathematics education involved learning and applying algorithms for addition,
multiplication, division, solving quadratic equations, and so on. But you probably
didn’t ask “Why does this procedure work?” or “Could this be done another way,
that’s easier or more efficient?” When using a computer, you must specify to the
machine exactly which steps must be done and the order in which they must be
done, making these questions important and interesting.

We shall use the word algorithm to mean

a step by stepmethod

(like a recipe for a calculation divided up into sub-calculations). But there is always
some intended purpose for an algorithm, whether it fulfils that intended purpose or
not is another question. (A computer program that has bugs in it so it doesn’t work
correctly is still a computer program.) When the algorithm does accomplish the task
or computation it was intended to do, the algorithm is correct. Also, to ever be of
any practical value, an algorithm must terminate; that is, it must finish operation
after a finite number of steps.

This description is very vague. What is a step? A method? A task? We will try to
show you with a number of examples what we mean by these terms (even though we
warned you about induction a few paragraphs ago, induction was the process we all
used to learn our first language). In particular, a “step” is some relatively easy
subtask. Computer programming is expressing a process as a sequence of statements
in some formal language; here, a “step” roughly corresponds to a program statement.
In an executable program, a “step” corresponds to execution of a machine instruction.

Throughout this book, we will present algorithms in terms we hope you will
understand, not in a particular “computer language”. However, we will often add
“comments”, set off by the symbols “//”. These comments are not part of the list
of steps in the algorithms. They are there to assist you in comprehending what’s
going on. In fact, we will use this convention to indicate commentary to the entire
text of this book and will often use “//” to raise questions in imitation of a

4 1 Algorithms, Numbers, and Machines

conversation with you. The symbols “//X” will indicate a question that will occur
again among the exercises.

Example 1.1.1: Exponentiation

// Let us remind you that if n is an integer greater than one then xn denotes the
// product of n x’s; x1 is x itself; x0 equals 1; and, if x 6¼ 0 then x−n denotes 1/xn.
// Then (xm) � (xn) ¼ xm þ n and (xn)m ¼ xmn for all integers m and n.

Evaluating x100 would seem to require 99 multiplications, but it can be done with
far fewer as follows:

multiply x by x to obtain x2

multiply x2 by x2 to obtain x4

multiply x4 by x4 to obtain x8

multiply x8 by x8 to obtain x16

multiply x16 by x16 to obtain x32

multiply x32 by x32 to obtain x64:

Now multiply x64 by x32 to obtain x96 and multiply x96 by x4 to obtain x100.
The total number of multiplications was only 8.

// How many multiplications would be required to evaluate x23, x204, or x2005?

The first stage of the algorithm used 6 squaring operations to obtain x2
j

for j ¼ 1, 2, . . . , 6, and the second stage used the fact that

100 ¼ 64þ 32þ 4 ¼ 26 þ 25 þ 22:

Do you think that every positive integer can be expressed as a sum of certain,
distinct powers of 2? If we were to use RPM to multiply 1 times 1,349, we would get

A B
1 1349

2 674

4 337

8 168

16 84

32 42

64 21

128 10

256 5

512 2
1024
1349

1

When A is given the initial value 1 ¼ 20, then the rest of the A-values are
consecutive powers of 2, and the product returned by RPM is the initial value of B
expressed as a sum of distinct powers of 2.

1.1 What Is an Algorithm? 5

// Incidentally, several current cryptographic methods used to securely encode
// data raise certain numerical objects to very high powers and use variations of
// this “square and multiply” algorithm to do it.

Example 1.1.2: Three Subtraction Algorithms
Digit by digit subtraction was what we all learned in school along with some rule

to apply when the digit in the subtrahend was larger than the corresponding digit in
the minuend.

86 ðthe minuendÞ
�38 ðthe subtrahendÞ
?? ðthe differenceÞ

There are (at least) three ways to do subtraction.
(a) Borrowing: “Borrow” a 10 from the 80 so the problem becomes

70þ 16
�30� 8
40þ 8 ¼ 48

(b) Carrying: Add 10 to the 6 and add 10 to the subtrahend by adding a 1 in the
“tens place” so the problem becomes

80þ 16
�40� 8
40þ 8 ¼ 48

(c) Complementation: No such rule would be needed if the minuend were all
nines.

99
�38
61

The difference, 61, is called “the 2-digit nines complement of 38”. Adding 1 to
this produces 62 which is called “the 2-digit tens complement of 38”.

Then

86� 38 ¼ 86 þ fthe 2-digit tens complement of 38� 102g
¼ 86þ 62 � 100

¼ 148� 100 // an easy subtraction

¼ 48

// � 38 ¼ 100 � 38 � 100

// ¼ 1þð99 � 38Þ � 100

// ¼ 1 þ 61 � 100

// ¼ 62 � 100

6 1 Algorithms, Numbers, and Machines

You probably feel that the best of these algorithms was the one you learned in
elementary school. Which do you think machines use? Usually, there are many
algorithms that accomplish the same task. How do we decide that one algorithm is
better than another?

Example 1.1.3: Casting Out Nines
Is there a quick and easy way to decide whether or not 3 (or 9) divides evenly

into a given positive integer n, without doing the division?

1. Let k start with the value of n.
2. While k has more than one digit,

add the digits in k to produce a new value of k.
3. Return the answer to the question

“Does 3 (or 9) divide evenly into k?”

For example, if n were 87 466, we would get

k0 ¼ 87 466 // ¼ n; the input

k1 ¼ 31 // ¼ 8þ 7þ 4þ 6þ 6

k2 ¼ 4

No. 3 does not divide evenly into 87 466:

// Is that correct? Is 87 466 ¼ 9 9 718ð Þþ 4 ¼ 3 29 155ð Þþ 1?

This process is known as “casting out nines” because at each stage (i.e., for
each k we calculate)

n ¼ 9qþ k for some integer q:

So going from n to k, we have subtracted (cast out) a bunch of nines. Because 3
divides evenly into 9q, 3 divides evenly into n (the left hand side of the equation,
LHS) if and only if 3 divides evenly into k.

// But is n − k always a multiple of 9?

If n were a 4-digit number “d3d2d1d0,” then for the first k-value

n ¼ 1000d3 þ 100d2 þ 10d1 þ 1d0
k ¼ 1d3 þ 1d2 þ 1d1 þ 1d0

n� k ¼ 999d3 þ 99d2 þ 9d1

where each term on the right hand side (RHS) is clearly divisible by 9, and so the
sum on the RHS is divisible by 9.

If we let <n> denote the final k-value obtained, then // as we’ll prove later

<n> ¼ 9 precisely when n is divisible by 9, and in all other cases
<n> is the remainder you get when you divide n by 9.

Ancient accountants used “casting out nines” to check arithmetic.

1.1 What Is an Algorithm? 7

If A þ B ¼ C, then <<A> þ > ¼ <C>, and if A � B ¼ D, then
<<A> � > ¼ <D>.

So if an apprentice-accountant claimed that

492� 61þ 2983 ¼ 34995;

the master accountant would quickly determine

<<492> � <61> þ <2983>> ¼ <6� 7þ 4> ¼ <46> ¼ 1

but <34995> ¼ <30> ¼ 3;

and conclude that the apprentice had made (at least one) mistake. This checking is
much simpler than redoing the original arithmetic (on a clay tablet or on an abacus)
because it uses relatively small numbers, but it’s not foolproof. If it finds a mistake
there must be one, but there may be mistakes it doesn’t find. For instance, the
correct answer in this example is 32995, but a “transposition error” giving 23995
would not be detected.

The Most Important Ideas in This Section.
An algorithm is a step by step method with some intended purpose. When it
does accomplish the task or computation it was intended to do, the algorithm
is correct. But to be of any practical value, an algorithm must terminate (after
a finite number of steps). Providing methods of proving termination and
correctness of algorithms is the “intended purpose” of this book.

1.2 Integer Algorithms and Complexity

This section gives more examples of algorithms. We will develop several related
algorithms to test a positive integer to see if it is prime or not, to factor a positive
integer into primes, and to find the greatest common divisor of two given positive
integers.

The first division algorithm I was taught in school was called “short division”
and consisted of finding the integer quotient of two numbers and the remainder.
I learned that 7 divided into 25 goes 3 times with a remainder of 4, or

25 ¼ 7 3ð Þþ 4:

In fact,

if n is any integer and d is any positive integer,
then there are (unique) integers q and r where

n ¼ d(q) þ r and 0 <¼ r < d.

8 1 Algorithms, Numbers, and Machines

Finding the integer quotient, q, and the remainder, r, is done so often that most
high-level computer languages have built-in operations to do just that. In this book,
we shall use DIV and MOD to denote these operations. That is,

q is n DIV d and r is n MOD d:

When n MOD d ¼ 0, d is said to divide evenly into n or to be a factor of n or
to be a divisor of n. Furthermore it will be useful to let

d nj denote the statement “d divides evenly into n”:

Then d|n is sometimes True and sometimes False depending on the values of d
and n. That is, “|” is a Boolean operator on ordered pairs of integers.

2j6 is True but 6j2 is False and 7j25 is False

The first operand, d, cannot be zero, but the second, n, may be negative, zero, or
positive. For any integer n 6¼ 0

1 nj ; n nj ; n ð�nÞj and n 0j are all True:

When d|n is True and 1< d< n, we’ll say that d is a proper divisor of n. A prime
is an integer greater than one that has no proper divisors. One is not a prime;
the smallest prime is two.

1.2.1 Prime Testing

We can use the definition of a prime to construct an algorithm to test an input
integer n to see if n is prime or not, by “trying” all the integers in the range from 2 to
n − 1. If one of these divides evenly into n, then n is not prime; if none of these
divides n, then n has no proper divisors, so n must be prime. This is known as
“the method of trial divisions”.

We’ll assume that the input integer is greater than 2, and we’ll use t as the
variable for the trial divisors.

Algorithm 1.2.1: Prime Tester #1

Begin
t ← 1;

Repeat
t ← t þ 1;

Until (t|n) or (t ¼ n − 1);

If (t|n) Then
Output(t, “is a proper divisor of”,n);

Else
Output(n,“is prime”);

End ;
End.

1.2 Integer Algorithms and Complexity 9

// As this is the first example of the pseudo-code we will use to present algorithms
// in this book, let us expand, for a moment, on the syntax (form) and semantics
// (meaning) of that code.

// There are three “steps” here; each is terminated by a semicolon and all of them
// lie between the tokens, “Begin” and “End.” which mark the beginning and the
// end of the list of steps.

// The first is an assignment: The value of the expression to the right of the symbol
// “←” is assigned to the variable on the left of the symbol. (t is initialized to the
// value 1.)

// The second is a repeat-loop: The steps between “Repeat” and “Until” (the body
// of the loop) are done again and again until the “condition” following the “Until”
// occurs.

// The third is a conditional statement: When the condition between the “If ” and
// “Then” is True the steps between “Then” and “Else” are done, but when the
// condition is False the steps between the “Else” and “End” are done.

Walkthrough Algorithm 1.2.1 with input n ¼ 35:

// A “walkthrough” is the construction of a table to show the changes in the values
// of the variables and expressions in the algorithm. As time passes we move
// down the table. This table is commonly called a “trace” of the operation of the
// algorithm.

t t|n t ¼ n − 1 output

1 --- --- ---

2 F F ---

3 F F ---

4 F F ---

5 T F 5 is a proper divisor of 35

Walkthrough with input n ¼ 11:

t t|n t ¼ n − 1 output

1 --- --- ---

2 F F ---

3 F F ---

4 F F ---

5 F F ---

6 F F ---

7 F F ---

8 F F ---

9 F F ---

10 F T 11 is prime

10 1 Algorithms, Numbers, and Machines

This algorithm simply reflects the definition of a prime, so it correctly
determines whether or not the input integer n is a prime. The repeat-loop is sure to
terminate after at most n − 2 iterations. A worst case occurs when n is prime.
A best case occurs when n is even, and we do only one iteration of the loop.

Suppose now that your supervisor asks you to test an integer, N, that’s 25 digits
long using a machine that can do 109 iterations of the loop per second. How long
might this algorithm take?

If N has 25 digits,

1024 ¼ 1 000 . . . 000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
24�zeros

<¼ N <¼ 9 999 . . . 999|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
25�nines

¼ 1025 � 1:

If N were prime, the number of iterations to be done would be

N � 2 >¼ 1024 � 2 > 1024 � 1023 ¼ 10ð Þ1023 � 1023 ¼ 9ð Þ1023:

These would take more than

ð9Þ1023=109 seconds ¼ ð9Þ1014 seconds ¼ 900ð Þ1012=60 minutes
¼ 15ð Þ1012 minutes ¼ 1500ð Þ1010=60 hours
¼ 25ð Þ1010 hours ¼ 25ð Þ1010=24 days
> 1010 days ¼ 1000ð Þ107=365:2 years
> 2ð Þ107 years ¼ 20 000 000 years

Knowing your supervisor is not that patient, let’s look again at the problem and try
to construct a faster algorithm.

How large can a proper divisor of n be? If n ¼ a � b and 1 < a < n, then

2<¼ a and so 2� b<¼ a� b ¼ n: Thus; b<¼ n=2:

Therefore, we can stop our search for a proper divisor of n immediately after we
try dividing by t¼ n/2. But if n is odd, n/2 is not an integer, and we could stop when
t is the next integer below n/2. We will find it useful to have a notation for that
integer (and for the next integer above n/2). Let’s digress for a moment to discuss

1.2.2 Real Numbers

The following three strings of symbols all represent the same number:

17 XVII seventeen:

The first uses Arabic numerals, the second uses Roman numerals, and the last
uses an English word written in lower case Latin letters. Numbers themselves are
entities that are independent of their representation.

1.2 Integer Algorithms and Complexity 11

Imagine a line extending infinitely in both directions but having two points
marked on it, one labeled 0 and, slightly to the right of that, one labeled 1.

If we use the distance between the points labeled 0 and 1 as a standard unit of
length, any point to the right of 0 can be labeled with a number, x, equal to the
distance from the point labeled 0 to that point in standard units. Points between
0 and 1 are labeled with fractions (of a standard unit). Points to the left of 0 are
given a negative sign. In this way, real numbers are realized as lengths. Points on
this line are geometric representations of real numbers, and the line itself is a
geometric representation of R, the set of all real numbers. When a and b are real
numbers, a < b means a is left of b on this line.

Every real number is either an integer or lies between two consecutive integers.
For any real number x, the floor function of x,bxc, is defined to be the largest integer
<¼ x. Then

b23:45c ¼ 23; b6c ¼ 6; and b�9:11c ¼ �10:

Also, the ceiling function of x, dxe, is defined to be the smallest integer >¼ x.
Then

d23:45e ¼ 24; d6e ¼ 6; and d�9:11e ¼ �9:

Either x is an integer and xb c ¼ x ¼ xd e or; xb c< x< xd e and xd e ¼ xb cþ 1:

// For all real numbers, x − 1 < bxc <¼ x <¼ dxe < x þ 1,
// the largest integer < x is dxe − 1, and the smallest integer > x is bxc þ 1.

1.2.3 More Prime Testing

We can now give an improved, more efficient method.

Algorithm 1.2.2: Prime Tester #2

Begin
t ← 1;

Repeat
t ← t þ 1;

Until (t|n) or (t ¼ bn/2c);
If (t|n) Then

Output(t,“is a proper divisor of”,n);
Else

Output(n,“is prime”);
End;

End.

12 1 Algorithms, Numbers, and Machines

This version will run about twice as fast as the first version in a worst case, but
testing a 25-digit integer might still take a long time, more than 10 000 000 years.
Your supervisor will probably not be too impressed with this improvement. So let’s
try again.

Algorithm 1.2.2 actually searches for the smallest proper divisor of n. How large
can the smallest proper divisor of n be? If n ¼ a � b and 1 < a <¼ b < n, then

a<¼ b and so a� a<¼ a� b ¼ n: Thus; a<¼ ffiffiffi
n

p
:

In fact, a <¼ b ffiffiffi
n

p c, and we have the following:

Algorithm 1.2.3: Prime Tester #3

Begin
t ← 1;

Repeat
t ← t þ 1;

Until (t|n) or (t ¼ b ffiffiffi
n

p c);
If (t|n) Then

Output(t,“is a proper divisor of”,n);
Else

Output(n,“is prime”);
End;

End.

Walkthrough with input n ¼ 107. // b ffiffiffi
n

p c ¼ 10

t t|n t ¼ b ffiffiffi
n

p c output

1 --- --- ---

2 F F ---

3 F F ---

4 F F ---

5 F F ---

6 F F ---

7 F F ---

8 F F ---

9 F F ---

10 F T 107 is prime

// This version is faster when n is prime, but how much of an improvement has
// been made? Can this test a 25-digit integer in less than a million years?

If N has 25 digits, the number of iterations of the body of the repeat-loop in
Algorithm 1.2.3 will be less than

ffiffiffiffi
N

p
which is less than

ffiffiffiffiffiffiffiffiffi
1025

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024 � 10

p
¼ 1012 �

ffiffiffiffiffi
10

p
:

1.2 Integer Algorithms and Complexity 13

These will take less than

ð1012 �
ffiffiffiffiffi
10

p
Þ=109 s ¼ 103 �

ffiffiffiffiffi
10

p
s

¼ 1000�ð3:162 277. . . Þ s
< 3163 s

¼ 52:716 6. . . min

< 53 min:

Now your supervisor will be pleased! The first moral of this story about prime
testing is that efficiency might matter a lot – an intractable problem instance might
become doable after some thought is invested in the design of your algorithm.

Can we speed up our prime tester even more? We’ve seen that the algorithm
searches for the smallest proper divisor of n. That smallest proper divisor must be
a prime.

// If d is a proper divisor of n but d is not prime, then d itself has a proper divisor f
// which must be a proper divisor of n that is smaller than d.

If 2 does not divide evenly into n, then no even number will. So no even numbers
larger than 2 need be tested. We could make the algorithm almost twice as fast
again by trying 2 separately and then only trying odd numbers up to b ffiffiffi

n
p c. When

working by hand, we can restrict ourselves to trying only prime values of t in the
range from 2 up to b ffiffiffi

n
p c.

However, there is a second moral to this story: Better algorithms need better
conceptual (mathematical?) foundations. Our algorithm was based only on the
definition of a prime and a search for a proper divisor. Primes have many amazing
properties, which are studied in “number theory”. In 2002, an extremely efficient
(but completely different) algorithm for prime testing was published where the
number of steps required to test an input integer N depends directly on the number
of digits needed to represent N.

1.2.4 Prime Factorization

The so-called Fundamental Theorem of Arithmetic states that any integer n greater
than one can be factored (uniquely) as a product of primes:

n ¼ p1 � p2 � p3 � . . . � pk where p1 <¼ p2 <¼ p3 <¼ . . . <¼ pk:

// How do we find p1, p2, p3, and so on?

26 040¼ 2� 13 020ð Þ // The smallest prime factor of 26 040 is 2:
¼ 2� 2� 6 510ð Þ // The smallest prime factor of 13 020 is 2:
¼ 2� 2� 2� 3 255ð Þ // The smallest prime factor of 6 510 is 2:
¼ 2� 2� 2� 3� 1 085ð Þ // The smallest prime factor of 3 255 is 3:
¼ 2� 2� 2� 3� 5� 217ð Þ // The smallest prime factor of 1 085 is 5:
¼ 2� 2� 2� 3� 5� 7� 31ð Þ // The smallest prime factor of 217 is 7:

// We’re done because 31 is also prime:

14 1 Algorithms, Numbers, and Machines

The prime testing algorithm will find the smallest proper divisor of n which we
know must be prime (and therefore must be p1) or will tell us that n itself is prime.
Therefore, we can adopt the following strategy:

Find the smallest prime factor p of n. // Either p ¼ n or p <¼ b ffiffiffi
n

p c.
If (p ¼ n) then we’re done. // We have all the prime factors of n.
Else, let Q ← n DIV p

now the prime factorization of n equals
p � (the prime factorization of Q).

// We also know that the smallest prime factor of Q is at least as big as p, and
// therefore, if p > b ffiffiffiffi

Q
p c, then Q is also prime.

We can now give a pseudo-code version of this algorithm to find the prime
factorization of any input integer n greater than one. It incorporates the prime tester,
Algorithm 1.2.3, and uses a variable Q for the integer that still has to be factored.

Algorithm 1.2.4: Prime Factorization

Begin
Q ← n;
t ← 2;

While (t <¼ b ffiffiffiffi
Q

p c) Do
If (t|Q) Then

Output(t,“�”);
Q ← Q DIV t;

Else
t ← t þ 1;

End ;
End ;

If (Q ¼ n) Then
Output(n, “is prime”);

Else
Output(Q, “ ¼ ”, n);

End;
End.

// This pseudo-code contains a slightly different structure, a while-loop:
// As long as the condition between “While” and “Do” is true,
// execute the steps between “Do” and “End” (the body of the loop).

// The body of a repeat-loop is always done (at least) once, but if the condition of
// a while-loop is not satisfied the first time it’s checked, the body of the loop is
// never done. That happens here if the input value, n, is 2 or 3.

1.2 Integer Algorithms and Complexity 15

Walkthrough with input n ¼ 74382:

Q b ffiffiffiffi
Q

p c t t <¼ b ffiffiffiffi
Q

p c t|Q Q¼n output-so-far

74382 272 2 T T - 2�
37191 192 " T F - 2�

" " 3 T T - 2�3�
12397 111 " T F - 2�3�

" " 4 T F - 2�3�
" " 5 T F - 2�3�
" " 6 T F - 2�3�
" " 7 T T - 2�3�7�

1771 42 " T T - 2�3�7�7�
253 15 " T F - 2�3�7�7�

" " 8 T F - 2�3�7�7�
" '' 9 T F - 2�3�7�7�
" " 10 T F - 2�3�7�7�
" " 11 T T - 2�3�7�7�11�

23 4 " F - F 2�3�7�7�11�23¼74382

// On each iteration of the while-loop, either Q decreases or t increases (but not
// both), so eventually, t > b ffiffiffiffi

Q
p c and the condition controlling the while-loop

// becomes false.

//X For positive integers t and Q, (t <¼ b ffiffiffiffi
Q

p c) is equivalent to (t � t <¼ Q) and
// this second form is much more suitable for a computer program.

Algorithm 1.2.4 terminates and is correct. The number of trial divisions is at
most b ffiffiffi

n
p c −1; a worst case occurs when no proper factors are found because n is

prime. On the other hand, how many prime factors might there be? If n ¼ p1 � p2
� p3 � . . . � pk , how large can k be? To answer this question, let’s digress for a
moment to discuss

1.2.5 Logarithms

We know how to calculate integer powers of 2:

n 2n 2−n

0 1 1/1 ¼ 1

1 2 1/2 ¼ 0.5

2 4 1/4 ¼ 0.25

3 8 1/8 ¼ 0.125

4 16 1/16 ¼ 0.062 5

5 32 1/32 ¼ 0.031 25

. ¼ . . .

10 1024 1/1024 ¼ 0.000 976 562 5

In every case, 2n is a positive real number.

16 1 Algorithms, Numbers, and Machines

We will assume the following facts about real numbers.
Whenever b is some particular real number greater than one:

1. For any real number x, bx is a certain, positive real number.
2. For any real numbers x and y, if x < y then bx < by.
3. For any positive real number z, there is a real number x such that z ¼ bx.

When z ¼ bx, we say that x is the logarithm of z to base b and write logb(z) ¼ x.
Thus, if z is any positive real number,

z ¼ blogbðzÞ:

For instance; log2 32ð Þ ¼ 5 because 32 ¼ 25

log2 1024ð Þ ¼ 10 because 1024 ¼ 210

log10 10000ð Þ ¼ 4 because 10000 ¼ 104

and; log10 0:001ð Þ ¼ �3 because 0:001 ¼ 10�3:

Furthermore, for any real number y, logb(b
y) ¼ y.

Logarithm tables (and anti-log tables) were created to simplify arithmetic in the
1600s. These tables were used to convert multiplication problems to addition and
convert exponentiation to multiplication. If x and y are positive, then

xy ¼ blogbðxÞ � blogbðyÞ ¼ blogbðxÞþ logbðyÞ so logb xyð Þ ¼ logbðxÞþ logbðyÞ

If z is any real number, xz¼ ðblogbðxÞÞz ¼ bz� logbðxÞ so logb (x
z)¼ z � logb (x).

Calculators have a log-button for “common” logarithms where the base is 10,
and they have a ln-button for “natural” logarithms where the base is (a very
unnatural number perhaps named for Euler) e ¼ 2.718 281 828 44. . . .

Throughout this book, we will frequently use logarithms to base 2 for which
there is no calculator button. We will use lg(x) to denote log2(x) and give you an
algorithm (actually, a formula) to calculate values of lg(x). Suppose that x is a given
positive number:

x ¼ 2lgðxÞ so logbðxÞ ¼ logb 2lgðxÞ
� �

¼ lgðxÞ� logbð2Þ and therefore

lgðxÞ ¼ logbðxÞ=logb 2ð Þ: // for any base b
So lgðxÞ ¼ logðxÞ=log 2ð Þ // when b ¼ 10
or lgðxÞ ¼ lnðxÞ=ln 2ð Þ: // when b ¼ e

Returning to the question that prompted this digression into logarithms:
If n ¼ p1 � p2 � p3 � . . . � pk, how large can k be? Since each prime factor

is at least as big as 2, n >¼ 2 � 2 � . . . � 2 = 2k . If n >¼ 2k then lg(n) >¼
lg(2k) ¼ k so k <¼ blg(n)c.

1.2 Integer Algorithms and Complexity 17

Logarithm functions are increasing but grow very slowly.

n
ffiffiffi
n

p
lg(n)

4 2 2

16 4 4

64 8 6

256 16 8

1024 32 10

4096 64 12

16384 128 14

65536 256 16

262144 512 18

1048576 1024 20

If the complexity function of an algorithm (the number of steps it takes for
completion when the input is of size n) were logarithmic, it would be very efficient.
We will later show that RPM is such an algorithm, as is the bisection algorithm for
solving equations (done at the end of the chapter). And so is the next algorithm,
Euclid’s Algorithm for the greatest common divisor of two integers (used since
� 300 BC).

1.2.6 Greatest Common Divisor

A common divisor of two integers x and y is any integer d that divides evenly into
both x and y. My introduction to common divisors was in about grade IV where
they were used to “reduce” fractions. Because 4 is a common divisor of both 40
and 60, 40/60 ¼ 10/15. But this fraction can be reduced further. The greatest
common divisor of 40 and 60 is 20, and when 20 is divided into the numerator
and the denominator, 40/60 ¼ 2/3, and this fraction is in what my teacher called
“lowest terms.”

// What would 3568/10035 be when reduced to lowest terms?
// Do we need to try all possible divisors up to a certain point?
// Or is there another strategy for solving this problem?

We want an efficient algorithm to find the greatest common divisor of two
positive integers x and y, denoted GCD(x,y). // Will GCD(x,y) ¼ GCD(y,x)?

Suppose that x >¼ y >¼ 1. Since 1|x and 1|y, and since y is the largest integer
that divides y, we know 1 <¼ GCD(x,y) <¼ y. If y|x, then (because y|y) y is a
common divisor and is as large as possible so GCD(x,y) ¼ y.

// That case is easy and didn’t involve a search for divisors. What about the other
// case?

18 1 Algorithms, Numbers, and Machines

Otherwise (y does not divide evenly into x so) x > y and

x ¼ yðqÞþ r where 0< r< y: // q>¼ 1 and r ¼ x MOD y

Euclid proved that in this case

GCD x; yð Þ ¼ GCD y; rð Þ: //And we’ll prove this in Chap. 3.

// This is an example of recursion; the GCD of x and y will (sometimes) be found
// by finding the GCD of two other (but smaller) integers, y and r.

An iterative algorithm for this problem can be constructed by observing that
GCD is a function with two “parameters”, say A and B. These are initialized to be
the input integers, x and y, respectively; and are revised whenever we calculate a
positive remainder.

Algorithm 1.2.5: Euclid’s Algorithm for GCD(x,y)

Begin
A ← x;
B ← y;
R ← A MOD B;
While (R > 0) Do

A ← B;
B ← R;
R ← A MOD B;

End ;
Output(“GCD(”, x, “,”, y, “)¼”, B); // or Return(B)

End.

Walkthrough with input x ¼ 10035 and y ¼ 3568:

A B R R > 0

10035 3568 2899 T // 10035 ¼ 3568(2) þ 2899

3568 2899 669 T // 3568 ¼ 2899(1) þ 669

2899 669 223 T // 2899 ¼ 669(4) þ 223

669 223 0 F // 669 ¼ 223(3) þ 0

output: GCD(10035 , 3568) ¼ 223.

// Is this correct? 10035 ¼ 223 � 45 ¼ 223(3 � 3 � 5) and
// 3568 ¼ 223 � 16 ¼ 223 (2 � 2 � 2 � 2).

1.2 Integer Algorithms and Complexity 19

Walkthrough with x ¼ 2108 and y ¼ 969:

A B R R > 0 // GCD(2108,969)

2108 969 170 T // ¼ GCD(969,170)

969 170 119 T // ¼ GCD(170,119)

170 119 51 T // ¼ GCD(119, 51)

119 51 17 T // ¼ GCD(51, 17)

51 17 0 F // = 17

output: GCD(2108 , 969) ¼ 17.

// Is this correct? 2108¼ 17�124¼ 17(2�2�31) and 969¼ 17�57¼ 17(3�19).

// Is this algorithm guaranteed to terminate?

This algorithm generates a sequence of integer values for A, B, and R, where

A1 ¼ x; B1 ¼ y and 0<¼ R1 < y ¼ B1;
if 0<R1; A2 ¼ B1; B2 ¼ R1 and 0<¼ R2 <R1 ¼ B2; and
if 0<R2; A3 ¼ B2 ¼ R1; B3 ¼ R2 and 0<¼ R3 <R2 ¼ B3:

The R-values decrease but are never negative, so eventually some Rk ¼ 0.

// How large can that k be?

We will see in Chap. 8 that if k iterations are required then

y>¼ 1þ ffiffiffi
5

p

2

 !k

and from this; k<¼ bð3=2Þ lgðyÞc

// Is that believable? That its complexity function is related to such a strange
// number?

Euclid’s Algorithm is effective and very efficient.

// It works even when x < y, but then takes 1 extra iteration. How? Why?

The Most Important Ideas in This Section.
This section gave more examples of algorithms on positive integers. Some-
thing we all learned in elementary school is that if n is any integer and d is any
positive integer then there are (unique) integers q and r where n ¼ d(q) þ r
and 0 <¼r< d. We use two operators to describe integer-division: n DIV d
produces q and n MOD d produces the (nonnegative) remainder r.

When n MOD d ¼ 0, d is a factor or a divisor of n. Furthermore, d|n
denotes the statement “d divides evenly into n” (so d|n is sometimes True and
sometimes False). When d|n is True and 1 < d < n, d is a proper divisor of n.

(continued)

20 1 Algorithms, Numbers, and Machines

A prime is an integer greater than one that has no proper divisors. One is not
a prime; the smallest prime is two.

Prime tester #1 implements this definition of prime and introduces the
pseudo-code we use to present algorithms in this book. Before presenting
another (faster) version, we described the “real” line, a geometric representa-
tion of R, the set of all real numbers. For any real number x, the floor of x, bxc,
is the largest integer <¼ x, and the ceiling of x, dxe, is the smallest integer
>¼ x.

Prime tester #2 runs twice as fast as the first version (in a worst case), but
still may be too slow. Prime tester #3 runs much, much faster.

The first moral of this story about prime testing is that efficiency might
matter – an intractable problem instance might become doable after some
thought is invested in the design of your algorithm. However, there is a
second moral to this story: Better algorithms need better conceptual
foundations. Our algorithms were based only on the definition of a prime and
a search for a proper divisor. In 2002, an extremely efficient (but completely
different) algorithm for prime testing was published.

The Fundamental Theorem of Arithmetic states that any integer n greater
than one can be factored (uniquely) as a product of primes

n ¼ p1 � p2 � p3 � . . . � pk where p1 <¼ p2 <¼ p3 <¼ . . . <¼ pk

Algorithm 1.2.4 finds the factors in nondecreasing order.
We assume that whenever b is some particular real number greater than one:
1. For any real number x, bx is a certain, positive real number.
2. For any real numbers x and y, if x < y, then bx < by.
3. For any positive real number z, there is a real number x such that z ¼ bx.

When z ¼ bx, x is the logarithm of z to base b (written logb(z) ¼ x).
We use lg(x) to denote log2(x).

If the complexity function of an algorithm (the number of steps it takes for
completion when the input is of size n) were logarithmic, it would be very
efficient. We will later show that RPM is such an algorithm, as is the bisection
algorithm for solving equations (done at the end of this chapter). And so is
Euclid’s Algorithm for the greatest common divisor of two positive integers
(used since � 300 BC).

1.3 Machine Representation of Numbers

The usual representation of numbers by means of Arabic numerals uses the ten
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as basic symbols.

// Digitus is the Latin word for finger.

(continued)

1.2 Integer Algorithms and Complexity 21

Ten symbols are enough because the notation is positional; that is, the position of a
digit in a numeral carries information about the meaning of that digit.

563:6 means 5� 102 þ 6� 101 þ 3� 100 þ 6� 10�1 ¼ 500þ 60þ 3þ 6=10:

This is called the decimal system because the base is 10.
// “Decem” is Latin for “ten.”

We’ll consider positional notation in other bases later, and in every case, we’ll
refer to the “.” in the numeral as the base point, not the decimal point.

// It is only a decimal point in the decimal number system.

Multiplying by the base simply shifts the base point one space to the right;
dividing by the base shifts it one space left. If k is a positive integer, the base raised to
the k-th power is a one followed by k zeros (104 ¼ 10 000), and the (−k)-th power is
the base point followed by (k − 1) zeros followed by a one (10−4 ¼ .0001).

Before considering how computers might represent numbers internally, let’s
examine how calculators display numbers. Mine displays integers as

a minus sign if the number is negative;
then up to 10 digits
right-justified in the display windowð Þ // placed at the right side
and then the base point:

The largest integer it can display is 9 999 999 999. If this number were squared,
the answer would be 99 999 999 980 000 000 001 which is too long to be displayed
as an integer. My machine displays (an approximation of this number)

9:999 999 998 E 19 where “E 19” means “times 1019:”

This is known as floating point notation. The part to the left of the E is the
mantissa, and the part to the right is the exponent. Either or both of these parts may
have a negative sign. When my calculator uses floating point notation, the mantissa
always has one nonzero digit to the left of the base point and is right-justified if it
has fewer than 10 digits, and the exponent always has 2 digits.

// When the exponent is between −9 and þ9, the base point is moved to the correct
// position in the display window.
// 3.217 E 6 appears as 3217000 and 3.217 E −6 appears as 0.000003217.

The largest floating point number that can be displayed is 9.999 999 999 E 99. If
that number is squared, the answer is too big to be displayed (even approxi-
mately), and my calculator stops and displays “error 2”. This type of error, where
the exponent of the number is just too big to fit, is called an “overflow error.”

The smallest, positive floating point number that can be displayed is “1. E−99”.
If that number were divided by 2, the answer (in my calculator’s floating point

22 1 Algorithms, Numbers, and Machines

format) would be “5. E−100” which is too small to be displayed. But my calculator
doesn’t stop this time; instead, it displays 0 as an approximation of this very
small number.

1.3.1 Approximation Errors

This problem, caused by numbers with positional representations that are too big to
fit into my calculator’s display window, is unavoidable when using a physical
object to do arithmetic as in any (digital) computer. My calculator “says”

625=26 ¼ 24:038 461 54: // in the display

If I subtract 24 and multiply by 1000, it displays “38.461 538 4,” and then, if
I subtract 38 and multiply by 1000, it displays “461.538 4.” My calculator seems to
“think”

625=26 ¼ 24:038 461 538 4: // in its memory

Using “short division”, 26 divides into 625 exactly 24 times with a remainder of
1. However, when we do this calculation by “long division”, we find the digits of the
quotient one at a time by short division which creates a remainder at each iteration.
Part of this algorithm “extends” the dividend (the 625) by adding zeros after the
base point; let’s look at the remainders constructed during this stage.

1.3 Machine Representation of Numbers 23

At this point, when R8 is the same as R2, the algorithm will repeat the
calculation of the six different remainders and will repeat the calculation of the
block 384 615 in the quotient. And this will continue forever. When dividing by 26,
there are only 26 possible remainders so there must be a repetition of a remainder,
and there must be a repeated block of digits in the quotient, like we saw here.

// Must this sort of thing happen in every long division?
// What happens when some remainder equals zero? Is it repeated?

The value of 625/26 can be represented exactly (by people) using bar notation
to indicate a repeating block of digits. Then

625=26 ¼ 24:0384615 // and 1=3 ¼ 0:3:

A rational number is any number that can be expressed as a ratio (or a quotient)
of integers. Every rational number represented in positional notation must be
repeating. However, repetitions of a block of zeros are never written and such
rationals are called terminating, like

1=625 ¼ 0:0016 not 0:00160:

//X When does 1/n have a terminating positional representation in base 10?
// Is that frequent or rare? Do most have an infinite repeating decimal
// representation?

No physical object could contain an infinite repeating decimal, and they don’t
use bar notation to shorten the representation, as people do. They must do some-
thing else to shorten the representation of the mantissa to a certain number of digits.

The simplest thing to do is just cut off all the digits after the most significant
ones; this is called truncation.

// The most significant digits are the leftmost; they contribute most to the
// magnitude of the number.

If A ¼ 625/26, we can describe several approximations of A.

A1 ¼ 24:03 which is A truncated to 4 significant figures, and
A1 ¼ 24:0384 which is A truncated to 4 places after the base point:

A is between 24.03 and 24.04,

but nearer to 24.04 so a better approximation of A would be

A3 ¼ 24:04 which is A rounded to 4 significant figures.

24 1 Algorithms, Numbers, and Machines

The (usual) rounding rule for base 10 is

if the next digit is 5 or bigger then add 1 to the least significant digit
in the truncated approximation.

// In our example, the next digit is 8.
We might also approximate A by

A4 ¼ 24:0385 which is A rounded to 4 places after the base point.
// In our example, the next digit is 6.

// My calculator appeared to truncate 625/26 to 12 significant figures in memory
// and then display that value rounded to 10 significant figures.

If B is an approximation of A, we would like to know how good an approxima-
tion it is. The error in B is the difference B − A. Usually we’re interested in the size
of that error; the absolute error in B is the absolute value of the difference, jB − Aj
where for x in R

xj j ¼ x if x >¼ 0

�x if x< 0

(
:

But an error of ±1 in an approximation of 5.285 is much more serious than an
error of ±1 in an approximation of 528.5. So sometimes we’re interested in the size
of the error compared to the size of A; the relative error in B is

jB� Aj
jAj ; // assuming A 6¼ 0

and this quotient is frequently expressed as a percentage. For the four approxi-
mations of A ¼ 625/26:

Error Relative error
For A1 ¼ 24.03 24:03� A

¼ 2403
100

� 625
26

¼ 62478� 62500
100� 26

¼ �22
2600

¼ �0:00846153

jErrorj � A

¼ 22
2600

� 26
625

¼ 0:000352

¼ 0:0352%

// similarly, you can show

For A2 ¼ 24.0384 �16
260000

¼ �0:0000615384
0.000 256%

For A3 ¼ 24.04 þ 4
2600

¼ 0:00153846
0.006 4%

For A4 ¼ 24.0385 þ 10
260000

¼ 0:0000384615
0.000 16%

1.3 Machine Representation of Numbers 25

For large numbers, truncating to k significant figures means keeping the k most
significant digits and replacing the others by zeros; rounding to k significant figures
works similarly. So

345678 truncated to 3 significant figures is 345000

and 345678 rounded to 3 significant figures is 346000.

Working to k significant figures limits the relative error; working to k places after
the base point limits the absolute error. Truncating is easier but rounding is
better. // Actually, rounding is only better half the time;

// the other half of the time it is truncation.

Sometimes numbers are presented that are clearly approximations, but the
precision of the approximation is not made explicit. For instance, the sign outside
Hamilton used to say that the population is 306,000. The most natural reading of
this is that when the sign was erected, the population rounded to the nearest
thousand was 306 thousand. That is, one would assume that there are three signifi-
cant figures in the sign (306) and three zeros that do not convey precise information
but are there to display the size of the population – several thousands. This
ambiguity could be removed by using floating point notation where the mantissa
contains all the significant figures. // even zeros!

Not all numbers can be represented in my calculator nor displayed. All “repre-
sentable numbers” are rational, and as we’ll show in the next section, the represent-
able numbers are “denser” near zero. Furthermore, most calculators and computers
represent numbers in base 2 using a fixed length mantissa and exponent, and this is
another source of (unavoidable) approximation error.

1.3.2 Base 2, 8, and 16

Imagine someone buys and sells gold dust by weight, and he has an accurate pan
balance and very precisely manufactured standard weights of 1 unit and 2 units.
He can use this equipment to weigh out 3 units of dust by putting both standard
weights in one pan. The next standard weight he should buy is a 4-unit weight.
Then he can weigh 4 units of dust, 5 ¼ 4 þ 1 units, 6 ¼ 4 þ 2, and 7 ¼ 4 þ 2 þ 1.
The next standard weight he needs is an 8-unit weight. Then he can weigh 8 units of
dust, 9 ¼ 8 þ 1 units, 10 ¼ 8 þ 2, and so on up to 15 ¼ 8 þ 7 ¼ 8 þ (4 þ 2 þ 1).
The next standard weight he needs is a 16-unit weight. Then he can weigh 16 units
of dust, 17 units, 18 units, and so on up to 31 ¼ 16 þ 15. If we line up the standard
weights largest to smallest and write underneath them a 1 if that standard weight is
used and a 0 if it’s not used to balance some dust, we obtain this table.

26 1 Algorithms, Numbers, and Machines

16 8 4 2 1 Total

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 2

0 0 0 1 1 3

0 0 1 0 0 4

0 0 1 0 1 5

0 0 1 1 0 6

0 0 1 1 1 7

0 1 0 0 0 8

0 1 0 0 1 9

0 1 0 1 0 10

0 1 0 1 1 11

0 1 1 0 0 12

0 1 1 0 1 13

0 1 1 1 0 14

0 1 1 1 1 15

1 0 0 0 0 16

1 0 0 0 1 17

1 0 0 1 0 18

1 0 0 1 1 19

1 0 1 0 0 20

We’ve seen earlier that every positive integer can be expressed as a sum of
distinct powers of 2. That is, every positive integer n can be described as a sequence
of 0s and 1s indicating which powers of 2 are used to balance n units of dust.

The binary system represents numbers in positional notation using the two
digits, 0 and 1. The numeral

101 111:011 means 1� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 1� 21 þ 1� 20 þ 0� 2�1

þ 1� 2�2 þ 1� 2�3:

The RHS is known as the literal expansion of the LHS. The LHS could be
interpreted as a decimal numeral. So, to avoid this ambiguity, we will append the
base in braces; that is,

101 111:011 2f g ¼ 1� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 1� 21 þ 1� 20 þ 0� 2�1

þ 1� 2�2 þ 1� 2�3 10f g
¼ 32þ 8þ 4þ 2þ 1þ 1=4þ 1=8 10f g
¼ 47þ 0:25þ 0:125 10f g
¼ 47:375 10f g:

The binary system is used in machines because it only requires a physical
representation of the two binary digits (bits): on or off, voltage above or below a

1.3 Machine Representation of Numbers 27

certain threshold. (A decimal machine would have to be able to distinguish between
ten different levels of some physical phenomenon.) As well, the addition and
multiplication tables for binary digits are small (and so simple compared to the
base 10 tables we had to memorize). The tables for these operations are these:

The only complication is that 1 þ 1 ¼ 10 in base 2. Digit by digit addition and
multiplication can be done in base 2 the same way it is done in base 10.

There are other similarities with base 10: The base itself is represented by “10” in
both cases; multiplying by the base simply shifts the base point one space to the right
and dividing by the base shifts it one space left. If k is a positive integer, the base
raised to the k-th power is a one followed by k zeros (104 ¼ 10 000), and the (−k)-th
power is the base point followed by (k − 1) zeros followed by a one, (10−4¼ 0.0001).

As an example of binary arithmetic, let’s look again at the instance of Russian
Peasant Multiplication that began this chapter; we wanted to find the product
M � N when M ¼ 73 and N ¼ 41.

A B

73 41

146 20

292 10

584 5

1168 2

2336

2993

1

Each new B-value was obtained by “dividing by 2 and reducing the result by
a half if necessary to obtain an integer.” When the B-values are written in binary,
we divide by the base and truncate to an integer. The effect of this is to chop off the
last bit off the binary representation of B.

B{10} B{2}

41 101001 // 41 ¼ 32 þ 8 þ 1 ¼ 25 þ 23 þ 20

20 10100 // 20 ¼ 16 þ 4 ¼ 24 þ 22

10 1010 // 10 ¼ 8 þ 2 ¼ 23 þ 21

5 101 // 5 ¼ 4 þ 1 ¼ 22 þ 20

2 10

1 1

28 1 Algorithms, Numbers, and Machines

// Now, do you think the B-value must eventually equal one exactly?
// The number of rows in the table ¼ the number of bits in N{2}.
// The B-value is even when B{2} ends in a zero and is odd when B{2} ends in a
// one.

// What about the A-values?

Multiplying by two adds a zero to the binary representation of A.

A{10} A{2}

73 100 100 1 // 73 ¼ 64 þ 8 þ 1 ¼ 26 þ 23 þ 20

146 100 100 10

292 100 100 100

584 100 100 100 0

1168 100 100 100 00

2336 100 100 100 000

If we were to do the multiplication (by the usual algorithm), we would get

73{10}¼ 1001001

�41{10}¼ �1001001
1001001 73 // multiply by the digit 1

1001001x 146 // shift and multiply by 0

1001001xx 292 // shift and multiply by 0

1001001xxx 584 // shift and multiply by 1

1001001xxxx 1168 // shift and multiply by 0

1001001xxxxx
101110110001

2336
2993

// shift and multiply by 1

// 101 110 110 001 2f g ¼ 211 þ 29 þ 28 þ 27 þ 25 þ 24 þ 20 10f g
// ¼ 2048þ 512þ 256þ 128þ 32þ 16þ 1 10f g
// ¼ 2993 10f g

RPM appears to be just a disguised version of multiplication in base 2.
The disadvantage of using base 2 is that numerals are about 3 times longer

and with just two digits are hard for people to read. Is 10010110101010 ¼
10010110101010?

If b is any integer greater than 1, numbers can be written in positional notation
in base b where the digits are single symbols for 0, 1, . . . , (b � 1). Then

dpdp−1. . . d0 . d−1 . . . d−q {b}means
dp � bp þ dp−1 � bp−1 þ . . . þ d0 � b0 þ d−1 � b−1 þ . . . þ d−q � b−q.

Any number written in base b can be converted to base 10 by converting b to
base 10, the digits to base 10, and then doing the arithmetic in the literal expansion.

In the octal system, the base is 8 and the digits are (single symbols representing)
the integers from 0 to 7. Then

1.3 Machine Representation of Numbers 29

502:71f8g ¼ 5� 82 þ 0� 81 þ 2� 80 þ 7� 8�1þ 1� 8�2 f10g
¼ 5� 64 þ 2� 1 þ 7=8 þ 1=64 f10g
¼ 320 þ 2 þ 0:875 þ 0:015 625 f10g
¼ 322:890 625 f10g:

In the hexadecimal system, the base is 16 and the digits are single symbols
representing the integers from 0 to 15. The standard convention is to use 0–9 for
the first ten and A, B, C, D, E, and F for 10–15.

Decimal Binary Octal Hexadecimal
0 0 0 0

1 1 1 1

2 10 ¼b 2 2

3 11 3 3

4 100 ¼b2 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 ¼b3 10 ¼b 8

9 1001 11 9

10 ¼b 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 ¼b4 20 10 ¼b

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

Then

A02:D4f16g ¼ A� 162 þ 0� 161 þ 2� 160 þD� 16�1 þ 4� 16�2

//using both bases

¼ 10ð Þ� 256þ 2 þ 13ð Þ=16 þ 4=256 10f g
¼ 2 560 þ 2 þ 0:812 5 þ 0:015 625 10f g
¼ 2 562:828 125 f10g:

Because 8 and 16 are integer powers of 2, conversion from binary to octal and
from binary to hexadecimal is easy. The octal digits correspond to the 3-bit binary
numbers and the hexadecimal digits correspond to the 4-bit binary numbers.

30 1 Algorithms, Numbers, and Machines

Group the bits from the base point to the left and then from the base point to the right.
The binary number’s value is not changed if we add extra zeros at the two ends.

// Are these all equal to 322.890 625 {10}?

To convert from octal to binary, just expand each octal digit as 3 bits; to convert
from hexadecimal to binary, just expand each hex digit as 4 bits.

Conversion from base 10 to base b is somewhat more complicated. This may be
done using two different algorithms: one to convert integers and a second to convert
fractions.

Suppose n is some positive integer. We want to determine the digits of its
expansion in base b; that is, we want to determine the dj’s where

n ¼ dpdp�1 . . . d1d0 bf g and each dj is one of 0; 1; . . . ; b� 1ð Þ:

If n ¼ dp � bp þ dp�1 � bp�1 þ . . . þ d1 � bþ d0

¼ dp � bp�1 þ dp�1 � bp�2 þ . . . þ d1
� �� bþ d0

then, dividing n by the base b, we get n ¼ (q) � b þ r where 0 <¼ r < b.
The remainder r must equal d0 and the integer quotient q must equal

dp � bp�1 þ dp�1 � bp�2 þ . . . þ d2 � bþ d1 ¼ dpdp�1 . . . d1 bf g:

Thus, the remainder is the rightmost digit, d0, and the integer quotient q has the
rest of the digits as its expansion in base b. Therefore, to convert an integer n to
base b, generate the digits one at a time in order (from the base point to the left) by
finding the integer quotients and remainders until the quotient is zero.

// Must q ¼ 0 eventually?

Example 1.3.1: Convert 322 from base 10 to base 2, to base 8, and to base 16

322 ¼ 2 161ð Þþ 0 so d0 ¼ 0
161 ¼ 2 80ð Þþ 1 so d1 ¼ 1
80 ¼ 2 40ð Þþ 0 so d2 ¼ 0
40 ¼ 2 20ð Þþ 0 so d3 ¼ 0
20 ¼ 2 10ð Þþ 0 so d4 ¼ 0
10 ¼ 2 5ð Þþ 0 so d5 ¼ 0
5 ¼ 2 2ð Þþ 1 so d6 ¼ 1
2 ¼ 2 1ð Þþ 0 so d7 ¼ 0
1 ¼ 2 0ð Þþ 1 so d8 ¼ 1

1.3 Machine Representation of Numbers 31

Therefore, 322{10} ¼ 101 000 010 {2}. // ¼ 28 þ 26 þ 21 ¼ 256 þ 64 þ 2

322 ¼ 8 40ð Þþ 2 so d0 ¼ 2
40 ¼ 8 5ð Þþ 0 so d1 ¼ 0
5 ¼ 8 0ð Þþ 5 so d2 ¼ 5

Therefore, 322{10} ¼ 502 {8}. // ¼ (5)82 þ (2)80 ¼ 320 þ 2

322 ¼ 16 20ð Þþ 2 so d0 ¼ 2
20 ¼ 16 1ð Þþ 4 so d1 ¼ 4
1 ¼ 16 0ð Þþ 1 so d2 ¼ 1

Therefore, 322{10} ¼ 142 {16}. // ¼ (1)162þ (4)161þ (2)160¼ 256þ 64þ 2

// How long is n{2}? How many bits are there in the binary representation of n?
// More generally, how many digits are used when n is written in base b?

If n written in base 2 uses exactly k bits, then

2k�1 ¼ 100. . .0|fflfflffl{zfflfflffl}
k�1

f2g<¼ n<¼ 111. . .1|fflfflfflffl{zfflfflfflffl}
k

2f g ¼ 2k � 1:

Hence, 2k�1 <¼ n< 2k; and so k � 1 ¼ lg 2k�1
� 	

<¼ lgðnÞ< lg 2k
� 	 ¼ k:

Therefore, k � 1 ¼ blg(n)c and so

k ¼ blgðnÞcþ 1: // and similarly for any base b?

This k is the smallest integer strictly larger than lg(n).

// What’s the complexity of RPM?

Suppose f is some positive fraction, so 0 < f < 1. We want to determine the
digits of its expansion in base b; that is, we want to determine the d−j’s where

f ¼ :d�1d�2d�3d�4. . . bf g and each d�j is one of 0; 1; . . . ; b� 1ð Þ:

Multiplying f by the base b, we get // The base point shifts 1 space right.

f � b ¼ d�1:d�2d�3d�4. . . bf g where 0 <¼ d�1 < b: // d�1 <¼ f � b< 1� b

¼ d�1 þ :d�2d�3d�4. . . bf g:

The integer part of f � b is the leftmost digit, d−1, and the new fraction part has
the rest of the digits as its expansion in base b. Thus, to convert a fraction f to
base b, generate the digits one at a time in order (from the base point to the right)
by multiplying by b and finding the integer parts and fraction parts. We can stop
if the new fraction is ever equal to zero. // Will that always happen?

32 1 Algorithms, Numbers, and Machines

Example 1.3.2: Convert 0.890625 from base 10 to base 2, to base 8, and to
base 16

2 :890 625ð Þ ¼ 1:781 25 so d�1 ¼ 1
2 :781 25ð Þ ¼ 1:562 5 so d�2 ¼ 1
2 :562 5ð Þ ¼ 1:125 so d�3 ¼ 1
2 :125ð Þ ¼ 0:25 so d�4 ¼ 0
2 :25ð Þ ¼ 0:5 so d�5 ¼ 0
2 :5ð Þ ¼ 1: so d�6 ¼ 1

Therefore, 0.890 625 {10} ¼ 0.111 001 {2}.

8 :890 625ð Þ ¼ 7:125 so d�1 ¼ 7
8 :125ð Þ ¼ 1: so d�2 ¼ 1

Therefore, 0.890 625 {10} ¼ 0.71 {8}.

16 :890 625ð Þ ¼ 14:25 so d�1 ¼ E // 14 10f g ¼ E 16f g
16 :25ð Þ ¼ 4: so d�2 ¼ 4

Therefore, 0.890 625 {10} = 0.E4 {16}.

Example 1.3.3: Convert .7 from base 10 to base 8, to base 16, and to base 2
For base 8:

8 :7ð Þ ¼ 5:6 so d�1 ¼ 5
! 8 :6ð Þ ¼ 4:8 so d�2 ¼ 4

8 :8ð Þ ¼ 6:4 so d�3 ¼ 6
8 :4ð Þ ¼ 3:2 so d�4 ¼ 3
8 :2ð Þ ¼ 1:6 so d�5 ¼ 1

But now the new fraction, .6, has appeared before, and hence the four digits, 4631,
will repeat in a block forever.
Therefore, 0.7 {10} ¼ 0:54631 {8}.

For base 16:

16 :7ð Þ ¼ 11:2 so d�1 ¼ B // 11 10f g ¼ B 16f g
! 16 :2ð Þ ¼ 3:2 so d�2 ¼ 3

But the new fraction, .2, appeared before as the old fraction and hence the hex
digit, 3, will repeat forever.
Therefore, 0.7 {10} = 0:B3 {16}.

1.3 Machine Representation of Numbers 33

For base 2:

2 :7ð Þ ¼ 1:4 so d�1 ¼ 1
! 2 :4ð Þ ¼ 0:8 so d�2 ¼ 0

2 :8ð Þ ¼ 1:6 so d�3 ¼ 1
2 :6ð Þ ¼ 1:2 so d�4 ¼ 1
2 :2ð Þ ¼ 0:4 so d�5 ¼ 0

But the new fraction, .4, has appeared before, and hence the four digits, 0110, will
repeat in a block forever.
Therefore, 0.7 {10} ¼ 0:10110 {2}.

Because this conversion process does not stop in some natural way (unlike all
the other, previous conversion methods), an artificial termination condition must be
imposed. In Example 1.3.3, we stopped when we could express the result exactly
using bar notation. Most often the process is terminated after a certain, fixed
number of base b digits are found. Sometimes the next base b digit is found and the
value is rounded. Conversion (of fractions) to base 2 for internal representation in
computers is another source of approximation error.

// When does 1/n have a terminating positional representation in base 2?
// Is it only when n has no prime factor other than 2?
// Is that frequent or rare?
// Do almost all rational numbers have an infinite repeating binary representation?

// We asked earlier “Is 10010110101010 ¼ 10010110101010?” Converting these
// numbers to base 16, that question becomes “Is 25AA ¼ 25AA?” and is very easy
// to answer.

The Most Important Ideas in This Section.
Computers and calculators represent numbers using positional notation,
as k-sequences of digits in some base, where k is a fixed integer. But most
numbers cannot be written as such a sequence; most numbers must be
approximated. This section shows the difference between truncation and
rounding, between absolute error and relative error, between rounding to
s significant figures and to p places after the base point, and between repre-
senting integers and representing real numbers (in floating point notation).

Computers represent numbers using base 2. Four conversion algorithms
are given: convert an integer from base b to base 10, convert an integer from
base 10 to base b, convert a fraction from base b to base 10, and convert a
fraction from base 10 to base b. Conversion of fractions to base 2 for internal
representation is another source of approximation error.

34 1 Algorithms, Numbers, and Machines

1.4 Numerical Solutions

The last section emphasized that arithmetic (especially division) on machines
entails approximation errors, and (sometimes) it simply cannot be done (absolutely)
accurately. The best we can do is to calculate approximate answers. In this
section, we will try to make that a virtue.

1.4.1 Newton’s Method for Square Roots

To find a “good” approximation of
ffiffiffi
A

p
, when A is a given positive number:

1. Make a guess at the square root, x0. // some positive number
2. Revise the last guess, xi, to obtain a new guess:

xiþ 1 ¼ xi þA=xi
2

: // until ?

Let’s see what happens when A ¼ 144 (so we know the answer) and x0 ¼ 10.

x1 ¼ 10þ 144=10
2

¼ 10þ 14:4
2

¼ 24:4
2

¼ 12:2

x2 ¼ 12:2þ 144=12:2
2

¼ 12:2þ 11:80327869. . .
2

¼ 24:00327869. . .
2

¼ 12:001 639 344 2. . . // my calculator truncates to 12 digits

x3 ¼ 12:000 000 111 9. . .

x4 ¼ 12

then x5 will also be 12, and all other xi’s will be 12. Newton’s method found the
square root exactly after only 4 revisions of our initial guess of 10.

// Isn’t that magical? And worth looking at a bit more closely?
// Would you believe that we only got the right answer because of roundoff error?
// (and that if we did exact arithmetic, we would never reach 12.)

Let Ei denote the error in xi as an approximation of
ffiffiffi
A

p
; that is,

Ei ¼ xi �
ffiffiffi
A

p
and so xi ¼

ffiffiffi
A

p
þEi:

Then the next error

Eiþ 1 ¼ xiþ 1 �
ffiffiffi
A

p
¼ xi þA=xi

2
�

ffiffiffi
A

p
¼ xi þA=xi � 2

ffiffiffi
A

p

2

¼ x2i � 2
ffiffiffi
A

p� 	
xi þA

2xi
¼ xi �

ffiffiffi
A

p� 	2
2xi

¼ E2
i

2xi
:

1.4 Numerical Solutions 35

After the first guess, the errors are always positive (>0). // So xi >
ffiffiffi
A

p
> 0.

The positive errors get smaller and smaller; since Ei ¼ xi −
ffiffiffi
A

p
< xi,

0<
Ei

xi
< 1 and Eiþ1 ¼ E2

i

2xi
¼ Ei

xi
� Ei

2
<

Ei

2

The errors that occur when A ¼ 144 and x0 ¼ 10 are

E0 ¼ x0 �
ffiffiffi
A

p
¼ 10� 12 ¼ �2 // we know the exact value of

ffiffiffi
A

p

E1 ¼ E2
0

2x0
¼ �2ð Þ2

2 10ð Þ ¼
4
20

¼ 0:2

E2 ¼ E2
1

2x1
¼ 0:2ð Þ2

2 12:2ð Þ ¼
0:04
24:4

¼ 0:001 639 344 262 29 . . .

E3 ¼ 0:000 000 111 961 771 811 . . . ¼ 1:119 617 718� 10�7

E4 ¼ 5:223 099 263� 10�16 // This shows that there are
// many more “representable”

E5 ¼ 1:136 698 580� 10�32 // numbers near zero than
// near 12 on my calculator:

E6 ¼ 5:383 681 922� 10�66

E7 ¼ 0

// The last five equal signs here should be the symbol “≅” and must be read as
// “appears to be very close to”, not “is exactly identical to”.
// When A > 1, the errors are (more or less) squared at each iteration,
// and the number of correct digits in the xi (more or less) doubles.

When we don’t know the exact value of
ffiffiffi
A

p
(which is the objective of the

algorithm), when should we stop generating the xi? When is xi a good enough
approximation?

Suppose our supervisor will be satisfied by an approximation z of
ffiffiffi
A

p
with an

absolute error < 0.000 000 1. Let’s use d to denote this bound. We want to generate
the xiþ1 until we’re certain that |Eiþ1| is < d ¼ 0.000 000 1. Without knowing the
exact value of

ffiffiffi
A

p
, we cannot calculate the exact value of Eiþ1. We’ll have to

approximate it and show that whatever its true value is, that value is < d. We know
for i > 0

0<Eiþ 1 <Ei=2<Ei and so 0< xiþ 1 �
ffiffiffi
A

p
< xi �

ffiffiffi
A

p
:

Therefore,
ffiffiffi
A

p
< xiþ1 < xi.

36 1 Algorithms, Numbers, and Machines

Then

Ei ¼ xi �
ffiffiffi
A

p
¼ xi � xiþ1 þ xiþ1 �

ffiffiffi
A

p
¼ xi � xiþ 1ð ÞþEiþ1 < xi � xiþ1ð ÞþEi=2:

Thus, Eiþ1 < Ei / 2 < (xi − xiþ1).
Furthermore, if we generate new guesses, xiþ1, until (xi − xiþ1) < d, that is, until

the change between successive guesses is < d, we will be able to guarantee to our
supervisor that this last guess, z ¼ xiþ1, is an approximation of

ffiffiffi
A

p
with an absolute

error less than d ¼ 0.000 000 1. // or whatever value of d she specifies
Newton’s method for square roots produces very good approximate answers

very quickly. Finding
ffiffiffi
A

p
is equivalent to solving x2 − A ¼ 0 for a positive “root.”

The method can be generalized to quickly find a good approximate solution to an
equation of the form f(x) ¼ 0, but calculus and the derivative of f are required.

On the other hand, we can give a simple, intuitive and efficient algorithm for
finding approximate solutions to equations.

1.4.2 The Bisection Algorithm

It would be nice to have a formula to solve equations like

x3 þ 2x ¼ 200:

But probably no such formula (for x) exists. However, we can design a simple
and efficient algorithm which will find a good, numerical approximation z of
an exact solution x*; a number z that we can guarantee has an absolute error less
than any limit d our supervisor specifies.

Our strategy will be to find an interval that must contain x*. Each iteration
will determine whether x* is in the lower half of that interval or the upper half.
The original interval is bisected (cut in half) again and again until its length is < 2d.
At that point, the algorithm will return the midpoint of that last interval.

Let f(x) denote the function x3 þ 2x and let T denote the target value 200.

If x ¼ 5 then x3 þ 2x ¼ 53 þ 25 ¼ 125 þ 32 ¼ 157 < 200,
and if x ¼ 10 then x3 þ 2x ¼ 103 þ 210 ¼ 1000 þ 1024 ¼ 2024 > 200.

At 5, the function value is too small; at 10, the function value is too big, so for
some x-value between 5 and 10, the function value is just right.

// Goldilock’s Theorem?
Let’s try halfway between.

If x ¼ 7:5 then x3 þ 2x ¼ 7:53 þ 27:5

¼ 421:875þ 181:019 336. . . > 200:

1.4 Numerical Solutions 37

So x* lies between 5 and 7.5. Let’s try halfway between again.

If x ¼ 6:25 then x3 þ 2x¼ 6:253 þ 26:25

¼ 244:140 625þ 76:109 255. . . > 200:

So x* lies between 5 and 6.25. If we make our next guess halfway between these
values

then |5.625 � x*| < |5.625 � 5| ¼ 0.625.
In general, if the function value at A is too small and the function value at B is too

big then for some x* between A and B, the function value is just right. If we let z be
the value that is halfway between A and B, then the point z bisects the interval from
A to B. If f(z) is too small, then x* lies between z and B, and on the next iteration we
can use z for A. If f(z) is too big, then x* lies between A and z, and on the next
iteration we can use z for B. Also, if we know that x* lies somewhere between A and
B, and z is halfway between A and B, then

z� x*j j< z� Aj j ¼ B� Aj j=2:

On the next iteration, this error bound is halved, and so with enough iterations,
it can be made as small as our supervisor requires.

Algorithm 1.4.1: The Bisection Algorithm for Solving f(x) ¼ T

Begin
z ← (A þ B) / 2;
While (|z � A| >¼ d) Do

If (f(z)<¼ T) Then
A ← z;

End;
If (f(z)>¼ T) Then

B ← z;
End;
z ← (A þ B) / 2;

End;
Return(z);

End.

// This pseudo-code contains 2 conditional statements with no Else part:
// When the condition between the “If” and “Then” is true, the steps between
// “Then” and “End” are done, but when it is false nothing at all is done.
// What would happen if at some point, f(z) ¼ T?

38 1 Algorithms, Numbers, and Machines

Walkthrough with input f(x) ¼ x3 þ 2x, T ¼ 200, A ¼ 5, B ¼ 10, and d ¼ 0.005:
// Each line in the table corresponds to fixed values of A and B (and z between them).

A z B |z − A| f(z)

5 7.5 10 2.5 602.894 . . .

" 6.25 7.5 1.25 320.249 . . .

" 5.625 6.25 .625 227.329 . . .

" 5.3125 5.625 .3125 189.672 . . .

5.3125 5.46875 " .15625 207.840 . . .

" 5.390625 5.46875 .078125 198.596 . . .

5.390625 5.4296875 " .0390625 203.177 . . .

" 5.41015625 5.4296875 .01953125 200.876 . . .

" 5.400390625 5.41015625 .009765625 199.733 . . .

5.400390625 5.4052734375 " .0048828125 (200.304 . . .)

The algorithm returns z ¼ 5.405 273 437 5 as an approximation of the solution
of the equation, x*, and this number has an absolute error that is < d ¼ 0.005.

// If we continue, we find 5.402 668 655 < x* < 5.402 668 656,
// but no one can ever know the exact (numerical) value of x*.

Before this algorithm can be executed, certain “preconditions” must be met:
1. f(x) must be a continuous and computable function.
2. A target value T for the function f(x) must be specified
3. An x-value A where f(A) < T must be specified. // “guessed” somehow
4. An x-value B where f(B) > T must be specified. // “guessed” too
5. A bound d on the absolute error in the approximation must be given.

// Continuity is a concept from calculus; it ensures f has no sudden “jumps” in
// value so that the Intermediate Value Theorem applies.
// And f must be in a form that can be evaluated fairly accurately despite roundoff
// errors. In practical applications, this precondition is almost always met.

// Very often the target value T for the function is taken to be zero.

// Preconditions 3 and 4 imply that A 6¼ B and (at least one) exact solution x* is
// between A and B.
// Therefore, either A < x* < B or B < x* < A.

// d provides “quality control”; it specifies how “good” an approximation we will
// get and gives a termination criterion for the algorithm.

// But how many iterations will be done?

1.4 Numerical Solutions 39

Let A1 and B1 denote the input values of A and B and let zi denote the i-th
midpoint calculated. Then

z1 � x�j j< B1 � A1j j=2 ¼ z1 � Aj j
z2 � x�j j< B1 � A1j j=4 ¼ z2 � Aj j
z3 � x�j j< B1 � A1j j=8 ¼ z3 � Aj j

and in general,

zk � x�j j< B1 � A1j j=2k ¼ zk � Aj j:

The algorithm terminates when jzk − Aj < d. This is sure to happen when

B1 � A1j j=2k < d or B1 � A1j j< d� 2k or B1 � A1j j=d< 2k:

Taking logs to base 2, we get lg(jB1−A1j=d) < lg(2k) ¼ k. Therefore, the num-
ber of midpoints zi that the algorithm calculates is (at most)

blg B1 � A1j j=dð Þcþ 1 // the smallest integer> lg B1 � A1j j=dð Þ

and this will guarantee that

if the preconditions are met and the algorithm is run, it terminates and
then, the following “post-condition” holds

the value z returned has jz − x*j < d
where x* is an (exact) solution of the equation f(x) ¼ T.

// This algorithm finds a good, numerical approximation z of an exact solution x*;
// a number z that we can be certain has an absolute error less than any limit d
// our supervisor might specify.

When A1 ¼ 5, B1 ¼ 10, and d ¼ 0.005

blg B1 � A1j j=dð Þcþ 1 ¼ blg 10� 5j j=0:005ð Þcþ 1

¼ blg 1000ð Þcþ 1

¼ 10:

The bisection algorithm is short, simple, effective, and efficient and perhaps the
most practical algorithm in this book.

The Most Important Ideas in This Section.
The previous section showed that arithmetic (especially division) on
machines causes unavoidable truncation or roundoff errors. The best we can
do is to calculate approximate answers. In this section, we made approximate
answers our goal.

(continued)

40 1 Algorithms, Numbers, and Machines

Newton’s method for square roots produces very good approximate
answers very quickly. (Finding

ffiffiffi
A

p
is equivalent to solving x2 − A ¼ 0 for

a positive “root.” The method can be generalized to quickly find a good
approximate solution to an equation of the form f(x) ¼ 0 where calculus and
the derivative of f are used.)

The (very simple) bisection algorithm for solving f(x) ¼ T was examined,
shown to terminate after at most b lg(jB1 − A1j=d) c iterations of the while-
loop and shown to correctly determine an approximate solution with an
absolute error < d.

Exercises

1. Express 2015 as a sum of distinct powers of 2.
2. Is 83 prime?
3. Find the smallest prime larger than 800.
4. A positive integer, n, has property P if n is equal to the sum of its positive

divisors (not including itself). Demonstrate that the following numbers have
property P:
(a) 6
(b) 28
(c) 496
(d) 8128

5. A positive integer, n, has property Q if n is less than the sum of its positive
divisors (not including itself). Demonstrate that the following numbers have
property Q:
(a) 12
(b) 20
(c) 30
(d) 36

6. Show that if n ¼ 34 � 54 = 2475 then n has property Q (defined in the previous
question).

7. Demonstrate that for positive integers t and Q,
t<¼ ffiffiffiffi

Q
p
 �� 	

is equivalent to (t � t <¼ Q).
Show that if t<¼ ffiffiffiffi

Q
p
 �� 	

, then t � t <¼ Q and also
show that if t is an integer and t � t <¼ Q, then t<¼ ffiffiffiffi

Q
p
 �� 	

.
8. Is n2 þ n þ 17 always prime (when n is a nonnegative integer)?
9. Show that if n is a positive integer and d is the smallest proper divisor of n,

then d must be a prime; that is, explain why it is true that:
If d is a proper divisor of n but d is not prime, then d itself has a proper
divisor f which must be a proper divisor of n that is smaller than d.

(continued)

1.4 Numerical Solutions 41

10. Let K be your birth year. Use Algorithm 1.2.4 to factor K, K þ 1, and K þ 2
into primes.

11. (a) Compute lg(128), lg(8,192) and lg(1,048,576).
(b) Compute b lg(1,000) c, b lg(10,000) c and b lg(10,000,000) c.
(c) Compute lg(100) correct to 4 significant figures.
(d) Compute lg(1,000,000) correct to 4 decimal places.

12. If you use your calculator to divide 4678352 by 1974 and it displays
2369.985816:
(a) Is 4678352 DIV 1974 equal 2369?
(b) Is 4678352 MOD 1974 equal 1974 � 0. 985816?
(c) Should 1974 � 0. 985816 equal 4678352 MOD 1974?
(d) Why is 1974 � 0. 985816 not exactly equal 4678352 MOD 1974?

13. For all positive values of x, loga(x) is a constant times logb(x), though that
constant is often irrational. Find the value of the constant C where log2(x) ¼
C � log10(x) but round your answer to 6 significant figures.

14. Find the relative error in each of the following approximations expressed as a
percentage and rounded to 2 decimal places.
(a) A ¼ 2.3456 is approximated by A1 ¼ 2.35.
(b) B ¼ 2.3541 is approximated by B1 ¼ 2.3.
(c) (A – B) is approximated by (A1 – B1).
(d) Why is the relative error in (c) so large, even though the absolute error is

small?
15. Let K be your birth year and let N be your 7-digit phone number. Use Euclid’s

Algorithm to find GCD(N, K), GCD(N, K þ 1), and GCD(N, K þ 2).
16. Use Euclid’s Algorithm to find GCD(N þ 1, N) for any positive integer N. Does

this show that N and N þ 1 never have a prime factor in common?
17. Use Euclid’s Algorithm to find GCD(2Nþ1, 3Nþ1) for any positive integer N.

18. Use “long division” to show that
1
81

¼ 0:012345679 . // 8 is missing

19. Convert the following numbers from base 2 to base 10:
(a) 1101{2}
(b) 10 0110{2}
(c) 1111 1111{2}

20. Convert the following numbers from base 16 to base 10:
(a) 1D{16}
(b) 88{16}
(c) ABC{16}

21. Convert the following base 10 numbers to base 2, base 8 and base 16:
(a) 22
(b) 77
(c) 105

22. Convert 111001101.1011 from base 2 to base 10.
23. What’s the complexity of RPM? (How many times will B be divided by 2?)
24. Convert 1203.201 from base 10 to base 2, but round your answer:

42 1 Algorithms, Numbers, and Machines

(a) To 6 significant figures and to 12 significant figures.
(b) To 3 places after the base point.
(c) What is the rounding rule for base 2?

25. (a) Use the Fundamental Theorem of Arithmetic to explain why 1/n has a
terminating positional representation in base b only when every prime
factor of n is also a factor of b.

(b) When does 1/n have a terminating positional representation in base 2?
(c) When does 1/n have a terminating positional representation in base 10?
(d) Do almost all rational numbers have an infinite repeating binary

representation?
(e) Do almost all rational numbers have an infinite repeating decimal

representation?
26. Use Newton’s Method for Square Roots to compute the square root of 157,

starting from an initial guess of x0 ¼ 78.5, accurate to 4 decimal places. How
many iterations are needed to reach this level of precision?

27. Use the bisection algorithm to find an approximate solution z to the equation
x5:3 þð3:5Þx ¼ N where N is your 7-digit phone number, and:
(a) z is correct to 2 significant figures.
(b) z is correct to 2 decimal places.

28. Let X* denote the approximation obtained by rounding X to 2 places after the
base point. If X* ¼ 45.67, then 45.665 <¼ X < 45.675.
In general, X* − 0.005 <¼ X < X* þ 0.005.
If A* ¼ B* ¼ z, then jB − Aj < 0.010.

Is it true that if jB − Aj <¼ 0.010, then A* ¼ B*?
Or could we have jB − Aj <¼ 0.000 000 1 but A* 6¼ B*?

1.4 Numerical Solutions 43

2Sets, Sequences, and Counting

Sets and sequences are the fundamental objects of study in discrete mathematics,
and constructions and enumeration of these are the main elements of combinatorics.
Our objectives in this chapter are to give you the basic vocabulary and formulas
to describe and count these so we can apply them to analyze the complexity of
algorithms.

2.1 Naïve Set Theory

Mathematicians are sometimes very sensitive about the precision of the language
used to describe this area of the foundations of mathematics, but we will simply
give set theoretic terms their commonly used meanings. Some fuss is often made
about a “set” being a “primitive notion” that’s not defined itself, but it is used to
define other “derived notions”. Let’s agree that

A set is a well-defined collection of objects called its elements

// By “well-defined”, we mean that for any object that might possibly be in the set,
// there is a way of deciding whether it is in the set or not.
// We’ve left “collection” and “object” as primitive (that is, undefined) terms
// (but we hope “you know what I mean”).

When S is a set and x is an object,

x 2 S means x is an element of S;

x =2 S means x is not an element of S:

A set then is completely determined by its elements. When a set has only a few
elements, it may be possible to list them all. Such an explicit listing of elements
places them between a matching pair of braces; for example,

B ¼ 0,1f g or H ¼ 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,Ff g or A ¼ a,b,c,. . . ,zf g:
The three dots in the list of A form an “ellipsis”; the reader is supposed to

understand that the list goes “and so on up to z” and that the set A is “the lower case
Roman alphabet from a to z”. Using ellipses, we can define three important sets
of numbers:

The positive integers P ¼ 1,2,3,. . .f g // All “whole” numbers > 0
The nonnegative integers N ¼ 0,1,2,3; . . .f g // Zero is not negative

and all integers; Z ¼ . . . ,�3,�2,�1, 0,1,2,3, . . .f g:
// Z is commonly used to denote the integers � from Zahl � the German word for
// number.

If listing all the elements, even with ellipses, is not convenient or not possible,
a set may be specified by giving a list of properties that determine if an object is
in the set or not. For instance,

W ¼ x: x 2 Z; 0< x<¼ 99 and 3 xjf g

means “W is the set of all objects x such that x is an integer and
0< x and x<¼ 99 and also 3 divides evenly into x”:

// The colon is read “such that” and the comma is read “and”.

Thus, W is the set of positive multiples of 3 up to 99 ¼ 3� 33:
Recall that a rational number is any real number that can be expressed as a ratio

or a quotient of integers. The set of rational numbers,

Q ¼ x: x 2 R; x ¼ p/q where p; q 2 Z, but q 6¼ 0f g // Q is for quotients:

// But remember that 2/3 ¼ 6/9 ¼ 400/600 ¼ �8/ð�12Þ ¼ . . . : This single (real)
// number can be expressed as a quotient of integers in many, many ways.

We might also define the set

D ¼ x: x is a number that can be displayed on my calculatorf g:
Then D contains some but not all the elements of Q, but Q contains every element
of D.

Two sets are equal (or perhaps, two descriptions of a set are equivalent) when
they have the same elements.

0,1,4,9,4,1,0,0,9,1f g ¼ 0,1,4,9f g // Repeating elements in the list does not
// change which elements are in the set;
// repetitions are redundant and can be removed:

46 2 Sets, Sequences, and Counting

4,0,9,1f g ¼ 0,1,4,9f g // Changing the order of the elements in the list
// does not change which elements are in the set:
// The order of the elements doesn’t matter; so
// we can pick any convenient order for the list:

We could also say {0,1,4,9} ¼ {x2: x 2 N, x < 4} and W ¼ {3k: k = 1,2,…,33}.
If A and B are sets,

A is a subset of B ½written A�B� means

every element of A is also an element of B:

So D � Q and also P � N � Z � Q � R. If every element of A is an element of B
and every element of B is an element of A, then A and B have the same elements;
that is,

if A � B and B � A; then A ¼ B:

Every set is a subset of itself. On the other hand,

A is a proper subset of B ½written A�B� means

A is a subset of B but A 6¼ B:

Then, D � Q and also P � N � Z � Q � R.
It will be useful to be able to speak of the set that has no elements at all, the

empty set, which we’ll denote with the symbol ∅. Now, if B is some specific given
set, is ∅ a subset of B? Is every element of ∅ also an element of B? If that were not
True, then some element of ∅ would not be in B, but that cannot happen because
there are no elements in ∅. Therefore,

∅ � B for any setB:

// Aristotle (384–322 BC) seems to have thought that it is nonsense to talk of
// things that don’t exist (like elements of the empty set) and attribute properties to
// them (like membership in set B). But the modern use of the empty set does
// make sense, and it is very useful; Aristotle has been superseded.

If A is any set, the power set of A,

P ðAÞ ¼ S: S � Af g: // the set of all subset of A

For example, if A ¼ {a,b,c} then

P ðAÞ ¼ ∅, fag, fbg, fcg, fa, bg, fa, cg, fb, cg, fa, b, cgf g:

2.1 Naïve Set Theory 47

That is, A contains 8 subsets: 1 of size 0, 3 of size 1, 3 of size 2, and 1 of size 3.
So sets are objects and may be elements of other sets.

// Could a set be an element of itself?

There definitely are sets that are not elements of themselves. For instance,

∅ =2 ∅ // because ∅ has no elements
and Z =2 Z: // because the elements of Z are finite numbers

// and Z itself is an infinite set:

It is said that when Bertrand Russell (1872–1970) was a student, he read a
description of set theory as a basis for the foundations of mathematics by Gottlob
Frege (1848–1925) much like the last few pages here and wondered about the set

K ¼ x: x =2 xf g,

the set of all sets that are not elements of themselves. This set is paradoxical
because

if K 2 K; then K must satisfy the condition for membership in K soð ÞK =2 K;
but if K =2 K; then K does satisfy the condition for membership in K soð Þ K 2 K:

Russell’s Paradox may be removed by constructing a much more “sophisticated”
set theory (Zermelo-Fraenkel set theory) that assigns types to the objects, classes,
and sets or that restricts objects to a fixed “universe of discourse”. But let’s just not
worry about the paradox hoping it will never cause us problems like

2.1.1 The Diabolical Librarian

Suppose a certain library contains a large but fixed collection of books. Each book
has a “title” that’s written on its cover, and each book has a “text” that’s written on
its pages. Often the title occurs in the text. Sometimes it is many pages into the
text that you find its title, as in “Silence of the Lambs” or “Catcher in the Rye”.

This library also has one particular book whose title is “The Special Catalogue”
(written on its cover) but whose pages are blank. The librarian offers you a sub-
stantial amount of money to write the text for The Special Catalogue. He wants to
know which books in the collection do not have their title somewhere in their text.
He wants you to list, on the pages of The Special Catalogue, the titles of all
the books in the library that do not have their title somewhere in their text, but
you must only include the titles of books in the library that do not have their title
in their text.

You work diligently in the library over the summer, and with some help from
your friends, you complete the task. Then you go to present the librarian with the
finished Special Catalogue and to collect your payment.

48 2 Sets, Sequences, and Counting

Before giving you the money, he asks you about “The Special Catalogue” itself.
It is a book in the library, it has a title and a text; does its title occur in its text? If you
answer “no”, he’ll say you haven’t finished the job and refuse to pay you; if you say
“yes”, he’ll say you haven’t done the job correctly and refuse to pay you.

2.1.2 Operations on Sets and Cardinality

If A and B are sets, several other sets can be constructed from them:

the intersection of A and B, A \ B ¼ {x: x 2 A and x 2 B};
// B \ A ¼ A \ B.

the union of A and B, A [B ¼ {x: x 2 A or x 2 B};
// B [A ¼ A [B.

and the set difference, A but not B, A \ B ¼ {x: x 2 A and x =2 B}.
// Is B \ A ¼ A \ B?

// The set A \ B is sometimes called the “relative complement” of B in A.

When A \ B ¼ ∅, sets A and B are said to be disjoint.
// A and B have no common element.

The number of elements in a set S is called the cardinality of S and denoted
by jSj. When this is a finite number, then jSj 2 N, and when jSj ¼ n, we’ll say that
S is an n-set. For any pair of sets,

A[Bj j ¼ Aj j þ Bj j � A \ Bj j;

and when A and B are disjoint,

A[Bj j ¼ Aj j þ Bj j: // since A \ B ¼ ∅

Furthermore, we always have

jA[Bj ¼ jA \ Bj þ jB \ Aj þ jA \ Bj.
Example 2.1.1: Operations, Sizes, and Subsets

Suppose A is the set of odd integers less than 10 and B is the set of primes less
than 10. Then

A ¼ 1,3,5,7,9f g and B ¼ 2,3,5,7f g
A \ B ¼ 3,5,7f g and A[B ¼ 1,2,3,5,7,9f g
A \ B ¼ 1,9f g and B \ A ¼ 2f g;

6 ¼ A[Bj j ¼ Aj j þ Bj j � A \ Bj j ¼ 5þ 4� 3
¼ jA \ Bj þ jB \ Aj þ A \ Bj j ¼ 2þ 1 þ 3:

2.1 Naïve Set Theory 49

Each element of A [B is in exactly one of the sets A \ B, B \ A, and A \ B.
More generally,

subsets S1, S2, S3, . . . Sk of T form a partition of T means
every element of T belongs to exactly one of the sets Sj:

// The sets S1 ¼ A \ B, S2 ¼ B \ A and S3 ¼ A \ B form a partition of T ¼ A [B.
// In general, S1 [S2 [S3 [. . . [Sk � T because each Sj is a subset of T.
// T � S1 [S2 [S3 [. . . [Sk because each element of T is in some subset Sj.
// Therefore, T ¼ S1 [S2 [S3 [. . . [Sk.

The subsets in a partition are mutually disjoint; that is, any two are disjoint sets.

// If p 6¼ q, Sp \ Sq ¼ ∅ because no element (of T) belongs to more than one Sj.

When S1, S2, S3, … Sk forms a partition of T, then

Tj j ¼ S1j j þ S2j j þ S3j j þ . . . þ Skj j:

TheCartesian product of sets A and B, named for RenéDescartes (1596–1650), is

A�B ¼ ða; bÞ: a 2 A and b 2 Bf g;

where (a,b) denotes an ordered pair of objects; there is a first entry and a second
entry in each ordered pair. Parentheses indicate that order matters.

// Braces indicate it doesn’t.

// {0, 1} ¼ {1, 0}, but (0, 1) 6¼ (1, 0) – in sets, order doesn’t matter; in ordered pairs
// it does.

// {1, 1} ¼ {1}, but (1, 1) 6¼ (1) – in sets, repetitions don’t matter; in ordered pairs
// they do.

Example 2.1.2: Two Cartesian Products
If A ¼ {1,3,5,7} and B ¼ {2,3,5}, then

A�B ¼ 1, 2ð Þ, 1,3ð Þ, 1,5ð Þ, 3,2ð Þ, 3,3ð Þ, 3,5ð Þ, 5,2ð Þ, 5,3ð Þ, 5,5ð Þ, 7,2ð Þ, 7,3ð Þ, 7,5ð Þf g
and

B�A ¼ 2,1ð Þ, 2,3ð Þ, 2,5ð Þ, 2,7ð Þ, 3,1ð Þ, 3,3ð Þ, 3,5ð Þ, 3,7ð Þ, 5,1ð Þ, 5,3ð Þ, 5,5ð Þ, 5,7ð Þf g:

// ðA�BÞ \ ðB�AÞ ¼ fð3,3Þ, ð3,5Þ, ð5,3Þ, ð5,5Þg, so A�B 6¼ B�A:

In this example, both j A � B j ¼ 12 and j B � A j ¼ 12. For any object z,

fzg�B ¼ z; 2ð Þ; z; 3ð Þ; z; 5ð Þf g and so fzg�Bj j ¼ Bj j:

50 2 Sets, Sequences, and Counting

Since S1 ¼ {1}� B, S2¼ {3}� B, S3¼ {5}� B, and S4¼ {7}� B form a partition
of A � B,

A�Bj j ¼ 1f g�Bj j þ 3f g�Bj j þ 5f g�Bj j þ 7f g�Bj j ¼ Bj j þ Bj j þ Bj j þ Bj j
¼ Aj j � Bj j

This formula applies in general, for all sets A and B // even when A ¼ B?

A � Bj j ¼ Aj j � Bj j // which equals Bj j � Aj j ¼ B�Aj j

This product rule for counting is often given without reference to a Cartesian
product of sets as

if a first thing can be done in p different ways, and (no matter how it was done)
a second thing can be done in q different ways, then
the two things can be done (together) in p � q different ways.

2.1.3 The Pigeonhole Principle

Suppose that 27 pigeons fly into a coop (an apartment house for pigeons) with
5 pigeonholes (apartments). What’s the maximum number M that could fly into any
single pigeonhole? It’s clear that M <¼ 27. But is there a lower bound on M?
If the holes were numbered from 1 to 5, and Xi is the number that fly into hole
number i, then

27 ¼ X1 þX2 þX3 þX4 þX5 <¼ MþMþMþMþM ¼ 5M:

Therefore, M>¼ 27=5 ¼ 5:4: // which is the average per pigeonhole

In fact, M>¼ 27=5e ¼ 6: // because M is an integerd

The pigeonhole principle asserts that

If P pigeons fly into H pigeonholes, then (at least) one pigeonhole
contains (at least) dP/He pigeons.

Example 2.1.3: How Many Socks Are Enough?
Suppose that while you’re in the bath you ask your color-blind roommate to open

your sock drawer (where there are 10 red socks, 12 blue socks, and 9 black socks)
and take out a bunch of socks so you can find a matching pair. How many socks
must he select to guarantee that there is a matching pair in his selection? All 31?
How few socks can he select and still guarantee that there is a matching pair in his
selection?

// Let the colors be the pigeonholes; now find the smallest P so dP/3e >¼ 2.

2.1 Naïve Set Theory 51

The pigeonhole principle is really a theorem about partitions.

// The pigeonholes divide the set of pigeons into mutually disjoint subsets.

If S1, S2, S3,. . . Sk forms a partition of an n-set T, then

n ¼ Tj j ¼ S1j j þ S2j j þ S3j j þ . . . þ Skj j:

Hence, the average size of a subset Sj is n=k; // not necessarily an integer
the largest size of a subset Sj is at least n=kd e, // and at most n

and the smallest size of a subset Sj is at most n=kb c: // and at least 0:

// Not all the subsets can be smaller than average, and not all can be bigger than
// average. In fact, either all the subsets have the same size, or the largest is larger
// than average, and the smallest is smaller than average.

The Most Important Ideas in This Section.
A set is a well-defined collection of elements. Some important sets of
numbers are P ¼ {1,2,3, . . . }, N ¼ {0,1,2,3, . . . }, Z ¼ {. . . ,−3,−2,−1,0,1,
2,3,. . . }, the real numbers R, and the rational numbers Q ¼ {x: x 2 R, x ¼
p/q where p, q 2 Z, but q 6¼ 0}.

A is a subset of B [written A � B] when every element of A is also an
element of B. The empty set ∅ � B for any set B. The power set of B,
P ðBÞ ¼ fS: S � Bg:

Russell’s Paradox seems inherent in this description of sets and can
produce impossible tasks like the diabolical librarian did.

If A and B are sets, other sets can be constructed from them: the intersec-
tion A \ B¼ {x: x 2 A and x 2 B}, the union A [B¼ {x: x 2 A or x 2 B},
and the set difference A \ B ¼ {x: x 2 A and x 2= B}. When A \ B ¼ ∅,
sets A and B are disjoint. Sets S1, S2, S3, . . . Sk form a partition of set T if
every element of T belongs to exactly one of the sets Sj. The sets in a partition
are mutually disjoint.

The number of elements in a set S is called the cardinality of S and denoted
by jSj. When S1, S2, S3,. . . Sk forms a partition of T, then

Tj j ¼ S1j j þ S2j j þ S3j j þ . . . þ Skj j:

The Cartesian product of sets A and B, A � B ¼ {(a,b): a 2 A and b 2 B}
where (a,b) denotes an ordered pair of objects. The product rule for counting
is if a first thing can be done in p different ways, and (no matter how it was
done) a second thing can be done in q different ways, then the two things can
be done (together) in p � q different ways.

The pigeonhole principle is if P pigeons fly into H pigeonholes, then some
pigeonhole contains (at least) dP/He pigeons.

All these definitions will aid our analysis of algorithms, particularly our
counts of operations.

52 2 Sets, Sequences, and Counting

2.2 Sequences

Sequences are special functions. A function f is a “rule” that takes an object x from
a (nonempty) set called the “domain of f” and makes a (unique) object f(x) in a set
called the “codomain of f.” More formally,

f is a function from set D 6¼ ∅ into set C ½written f :D ! C� means
f � D�C where each x 2 D occurs in exactly one ordered pair of f :

As a set of ordered pairs, f ¼ {(x, f(x)): x 2 D}.

A function f :D ! C is one-to-one means

if x and y are in D and x 6¼ y; then f ðxÞ 6¼ f ðyÞ,

// One-to-one functions are also known as an “injections”.

and a function f :D ! C is onto means
for every z 2 C, there is at leastð Þ one w 2 D such that f ðwÞ ¼ z:

// Onto functions are also known as an “surjections”.

Two sets, A and B, have the same cardinality (size) means there is a function
f :A ! B that is one-to-one and onto.

// Such functions are also known as an “bijections”.

In particular, if X is an n-set, there is a one-to-one indexing function from
{1, 2, . . . , n} onto X, and using this function, the elements of X can be listed (in
order) as {x1, x2, . . . , xn}.

Example 2.2.1: Bums on Seats
To determine whether or not the number of students in this classroom equals the

number of seats, I could ask each student to sit on a seat. If no two (different)
students sat on the same seat (at the same time) so each student got their own seat,
then the number of students is not more than the number of seats. And, if no seats
were left vacant, then the number of students is not less than the number of seats.

This description of “equal cardinality” is due to Georg Cantor (1845–1918), and
while it agrees with our intuition about finite sets, it revolutionized (mathematicians’)
ideas about infinite sets in part because it implies there are several gradations of
infinity. // There’s even an infinite number of bigger and bigger infinities!

If a and b are integers, let

a::f g denote the set x 2 Z: a<¼ xf g
and a::bf g denote the set x 2 Z: a<¼ x and x<¼ bf g:

// So a::bf g ¼ ∅ if b< a:

2.2 Sequences 53

An interval of integers is defined to be any subset of Z that is of one of those two
types. The first type is an infinite interval; the second type is a finite interval where

fa; bgj j ¼ b� aþ 1 when a<¼ b:

// {a..b} ¼ {aþ 0, aþ 1, aþ 2, . . . , aþ (b − a)} and j{0,1,2, . . . , n}j ¼ nþ 1.

A sequence is defined to be a function S whose domain D is a nonempty interval
of integers. S is an infinite sequence if D has the form {a..}.

// Usually a is 1 or 0.

S is a finite sequence if D has the form {a..b} where a <¼ b. When j D j ¼ n,
we will say that S is an n-sequence. We will take the domain of an n-sequence to
be the set {1..n}. // But a could be 0, and then D is {0..(n − 1)}.

The (natural) ordering of the domain of a sequence S gives a natural ordering to
the ordered pairs in the set S. If S is a 5-sequence, then

S ¼ 1, Sð1Þð Þ, 2, Sð2Þð Þ, 3, Sð3Þð Þ, 4, Sð4Þð Þ, 5, Sð5Þð Þf g:

But this is just an awful, clumsy notation to represent S. However, it makes it clear
that S has a first ordered pair, a second ordered pair, a third, and so on. Instead, we’ll
use the conventional notation and write

S ¼ S1, S2, S3, S4, S5ð Þ where Si means SðiÞ: // the function value at i

Parentheses again indicate that order matters; in sequences, the order of the entries
is the fundamental characteristic.

Example 2.2.2: What’s a Sequence?
Suppose D ¼ {1..10}, and we define the function S on D by

SðiÞ ¼ the smallest prime factor of the integer ð1þ iÞ:

Then D is a finite interval of integers, and so S is the sequence denoted by

S ¼ 2, 3, 2, 5, 2, 7, 2, 3, 2, 11ð Þ:

// In sequences, order matters and repetitions also matter.

If S ¼ (S1, S2, S3, . . . , Sn) is a finite sequence of numbers, the corresponding
series is the sum of the entries in S,

S1 þ S2 þ S3 þ . . . þ Sn:

54 2 Sets, Sequences, and Counting

There is a compact notation for series, called sigma notation where

Xn
i¼1

Si means the sum of the values of the Si as i goes from 1 up to n:

// “�” is the Greek capital letter “sigma”; it became the letter S in the Latin
// alphabet and stands for “sum” – the output from addition.

It is sometimes useful to generalize sigma notation by allowing other lower limits
and other upper limits,

Xb
i¼a

Si means Sa þ Saþ 1 þ Saþ 2 þ . . . þ Sb: // when a<¼ b

// This sum is given a “default” value of zero when a > b, and there are no terms
// added.

2.2.1 The Characteristic Sequence of a Subset

Suppose that U is some given n-set whose elements have been indexed (listed in a
certain order) so that U ¼ {x1, x2, . . . , xn}. If A is a subset of U, the characteristic
sequence of A is the function whose domain is {1..n} defined by

XA
i ¼ XAðiÞ ¼ 1 if xi 2 A

0 if xi =2 A

(
:

Example 2.2.3: Characteristic Sequences
If U is the set of the first 10 odd positive integers, A is the subset of primes in U,

and B is the set of multiples of 3 in U, then

U ¼{1, 3, 5, 7, 9, 11, 13, 15, 17, 19} // xi ¼ 2i − 1.
A ¼{ 3, 5, 7, 11, 13, 17, 19}
B ¼{ 3, 9, 15 }
XA ¼(0, 1, 1, 1, 0, 1, 1, 0, 1, 1)
XB ¼(0, 1, 0, 0, 1, 0, 0, 1, 0, 0).

Characteristic sequences may be used as an implementation model for subsets of
any given indexed set U. The set operations may be done on these sequences:

XA\BðiÞ ¼ XAðiÞ�XBðiÞ;
XA[BðiÞ ¼ XAðiÞþXBðiÞ � XAðiÞ�XBðiÞ;
XAnB ðiÞ ¼ XAðiÞ � XAðiÞ�XBðiÞ:

If A � B then XAðiÞ<¼ XBðiÞ for each index i,

and Aj j ¼
Xn
i¼1

XA
i :

2.2 Sequences 55

The Most Important Ideas in This Section.
f is a function from set D 6¼∅ into set C [written f:D ! C] when f � D� C,
and each x 2 D occurs in exactly one ordered pair of f; f is one-to-one means
each element in the domain of the function maps to a different element in the
codomain; f is onto means every element in the codomain can be generated
by the function.

Two sets, A and B, have the same cardinality if and only if there is a
function f:A ! B that is one-to-one and onto.

If a and b are integers, {a.. } denotes the set {x 2 Z: a <¼ x}, and {a..b}
denotes the set {x 2 Z: a <¼ x and x <¼ b}. An interval of integers is a
subset of Z that is of one of those two types. A sequence is a function S whose
domain D is a nonempty interval of integers; S is an infinite sequence if D has
the form {a.. }, and S is a finite sequence if D has the form {a..b} where
a <¼ b. When |D| ¼ n, we will say that S is an n-sequence. Unlike sets,
in sequences, order matters and repetitions also matter.

If S¼ (S1, S2, S3, . . . , Sn) is a finite sequence of numbers, the corresponding
series is the sum of the entries in S,

Xn
i¼1

Si ¼ S1 þ S2 þ S3 þ . . . þ Sn

When U ¼ {x1, x2, . . . , xn} and A is a subset of U, the characteristic
sequence of A is the function whose domain is {1..n} defined by

XA
i ¼ XAðiÞ ¼

�
1 if xi 2 A

0 if xi =2 A
:

All these definitions will aid our analysis of algorithms, particularly our
counts of operations.

2.3 Counting

Let’s determine the number of telephone numbers, sequences that are composed of
a 3-digit “area code”, followed by a 3-digit “exchange”, followed by 4 more digits.
But we’ll assume that these telephones are in some system where if you dial a 0,
you get connected to an “operator”, and if you dial a 1, you get connected to a
“long-distance line”, and there are a few other restrictions.

Suppose that an area code cannot begin with a 0 or a 1 and must have a 0 or a 1
as the middle digit. That is, an area code is a sequence (x,y,z) where

x 2 2, 3, 4, 5, 6, 7, 8, 9f g and y 2 0, 1f g and z 2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9f g:

56 2 Sets, Sequences, and Counting

There are 8 possible values for x, and after x is chosen, there are 2 possible values
for y, so the number of possible choices for x and then y is 8 � 2 ¼ 16. After both
x and y have been chosen, there are 10 possible values for z, so the number of
possible choices for x and y and then z is 16 � 10 ¼ 160. The number of area codes
in this system is 160.

Suppose also that an exchange cannot begin with a 0 or a 1 and cannot be
mistaken for an area code because the middle digit must not be a 0 or a 1. That is,
an exchange is a sequence (x,y,z) where

x and y 2 2, 3, 4, 5, 6, 7, 8, 9f g and z 2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9f g:

There are 8 possible values for x, and after x is chosen, there are 8 possible values
for y, so the number of possible choices for x and then y is 8 � 8 ¼ 64. After both x
and y have been chosen, there are 10 possible values for z, so the number of possible
choices for x and y and then z is 64 � 10 ¼ 640. The number of exchanges in this
system is 640.

Finally, the number of 4-digit sequences that end the number is the number of
sequences, S ¼ (w,x,y,z) where

w,x,y and z 2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9f g:

There are 10 possible values for w, and after w is chosen, there are 10 possible
values for x, and after both w and x have been chosen, there are 10 possible values
for y, and after all of w and x and y have been chosen, there are 10 possible
values for z, so the number of possible choices for constructing the sequence S is
10 � 10 � 10 � 10 ¼ 10000.

Hence, using the product rule, the number of telephone numbers is

the number of area codesð Þ� the number of exchangesð Þ� 10000ð Þ
¼ 160ð Þ 640ð Þ 10000ð Þ ¼ 1 024 000 000:

2.3.1 Number of k-Sequences on an n-Set

When the codomain of a sequence S is the set C, we say that S is a sequence on C.
If both k and n are positive integers, then a k-sequence on an n-set is a function S
from {1..k} into some set X ¼ {x1, x2,. . . , xn} with exactly n elements, and we may
write S as

S ¼ s1, s2, s3, . . . , skð Þ where each sj 2 X:

2.3 Counting 57

We can count these like we did the telephone numbers using the product rule.
There are n possible choices for s1.

After s1 is chosen, there are n possible choices for s2.
After s1 and s2 are chosen, there are n possible choices for s3, and so on.

Since there are n possible choices for each of the k entries in S,

the number of k-sequences on an n-set is n� n� . . . � n ¼ nk:

In particular, the number of k-sequences on {0,1} is 2k.

2.3.2 Number of Subsets of an n-Set

If X is a set of size n, the elements of X may be indexed so that X ¼ {x1, x2,. . . , xn}.
Every subset of X has a unique characteristic sequence, and every characteristic
sequence corresponds to a unique subset. The number of characteristic sequences
is 2n, so

the number of subsets of an n-set is 2n: // This formula even
// applies when n ¼ 0:

2.3.3 Number of k-Permutations on an n-Set

Permutations may be defined in a number of ways, but in this book,

a permutation is a sequence without repetitions:

Then a k-permutation on an n-set is a function S from {1..k} into some set X ¼
{x1, x2,. . . , xn} with exactly n elements that is one-to-one; that is, if i 6¼ j, then
S(i) 6¼ S(j). We may write S as

S ¼ s1, s2, s3, . . . , skð Þ where the sj’s are distinct elements of X:

If k > n (by the pigeonhole principle), at least two of the sj’s must be the same in
any k-sequence S on an n-set. So there are no (zero) k-permutations on an n-set
when k > n.

If 1 <¼ k <¼ n, we can count these like we did sequences using the product
rule. There are n possible choices for s1.

After s1 is chosen, there are (n − 1) possible choices for s2.
// s2 cannot be the same as s1.

58 2 Sets, Sequences, and Counting

After s1 and s2 are chosen, there are (n − 2) possible choices for s3.
// s3 cannot be s1 or s2, and so on.

After s1 up to sj have been chosen, there are (n − j) possible choices for sjþ1.
// and so on until

After s1 up to sk−1 have been chosen and then there are (n − [k − 1]) possible
choices for sk. // since (n − [k − 1]) ¼ n − k þ 1

Thus, if 1 <¼ k <¼ n,

the number of k-permutations on an n-set is

n� n� 1ð Þ� n� 2ð Þ� . . . � n� kþ 1ð Þ:

The number of 4-permutations on an 8-set is 8 � 7 � 6 � 5 ¼ 1680, but the number
of 8-permutations on an 4-set is 4 � 3 � 2 � 1 � 0 � (–1) � (–2) � (–3) ¼ 0. The
formula correctly counts the number of k-permutations on an n-set for all positive
integers, k and n.

2.3.4 n-Factorial

When k ¼ n, each k-permutation uses all of the elements of the n-set X exactly once;
we’ll call these full permutations of X. The number of full permutations of an
n-set is

n� n� 1ð Þ� n� 2ð Þ� . . . �ð2Þ� ð1Þ:

It will be useful to have a notation for this decreasing product. The function
n-factorial [written n!] is defined on N by // So n! is an infinite sequence.

n! ¼ nðn� 1Þ. . . ð2Þð1Þ if n> 0

1 if n ¼ 0

(

// It may seem strange to define 0! at all, but it will be very convenient to have a
// value for 0! equal 1. (All definitions are supposed to facilitate communication.)
// Note also that if n >¼ 1, then n! ¼ n � (n − 1)!
// if n >¼ 2, then n! ¼ n � (n − 1)(n − 2)!
// if n >¼ 3, then n! ¼ n � (n − 1)(n − 2)(n − 3)!

In general, if n >¼ k> 0, then n! ¼ n� (n − 1) � (n − 2)� . . . � (n − k þ 1)�
(n − k)!. Therefore, the number of k-permutations on an n-set is also given by the
expression

n!

n� kð Þ! : // even when n ¼ k and we divide by 0!

2.3 Counting 59

The function n! grows very large very quickly.

n n!
0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5 040

8 40 320

9 362 880

10 3 628 800

11 39 916 800

12 479 001 600

// The largest factorial value my calculator can display is
// 69! ffi 1.711 224 524 E 98. That times 7 produces 1.197 857 167 E 99, and so
// 70! causes an overflow error.

The number of full permutations of an n-set is n!, and each full permutation is an
indexing function from {1..n} onto X. That is, the elements of the set X may be
listed in (exactly) n! different orders.

2.3.5 Number of k-Subsets of an n-Set

The complex symbol
�
n
k

�
will denote the number of k-subsets of an n-set

assuming 0 <¼ k <¼ n. Suppose X is any n-set. The empty set is the only subset
of X of size 0, and all of X is the only subset of size n, so

�
n
0

�
¼ 1 and

�
n
n

�
¼ 1: // Even when n ¼ 0?

There are exactly n subsets of size 1, so

�
n
1

�
¼ n: // But how many of size k?

Suppose 1 < k <¼ n. If we were to list all the k-permutations on X, each
k-subset will appear several times in that list. The same k-subset occurs once for
every possible reordering of its k elements. So each subset will occur k! times in the

60 2 Sets, Sequences, and Counting

list of all k-permutations on X. Each k-permutation on X is an ordering of k distinct
elements of X and therefore

the total number of k-permutations on X
¼ the total number of orderings of k-subsets of X
¼ (the number of k-subsets of X)

� (the number of full permutations of a k-subset).

In algebra,
n!

ðn� kÞ! ¼
�
n
k

�
� k!. Therefore, when 0 <¼ k <¼ n

�
n
k

�
¼ n!

k! � n� kð Þ! :

// The argument justifying the formula wasn’t applied when k ¼ 0 or 1, but
// the formula produces the right number even then.

Example 2.3.1: Virginia’s Boyfriends
Suppose Virginia has 5 boyfriends: Tom, Dick, Harry, George, and Alvah. She

wants to choose two of them to take home to meet mother on the next long
weekend. In how many ways can she do this?

Let X ¼ {A, D, G, H, T}. Then we can list all the 2 subsets of X:

fA,Dg,
fA,Gg, fD,Gg,
fA,Hg, fD,Hg, fG,Hg;
fA, Tg, fD, Tg, fG, Tg and fH, Tg: // There are 10 ways:

So
�
5
2

�
¼ 10 and

5!
2! � 5� 2ð Þ! ¼

5 � 4 � ð3Þ!
2 � 1 � ð3Þ! ¼ 5 � 2 ¼ 10.

Each time she chooses 2 boyfriends to take, she also chooses 3 to leave behind.
The number of ways of choosing 3 out of 5 must be the same as the number of ways
of choosing 2 out of 5.

So
�
5
3

�
¼ 10 and

5!
3! � 5� 3ð Þ! ¼

5 � 4 � 3 � ð2Þ!
3 � 2 � 1 � ð2Þ! ¼ 5 � 2 ¼ 10.

This idea generalizes. For every k-subset A of an n-set X, the relative complement,
X \ A is an (n − k)-subset. Different k-subsets produce different (n − k)-subsets, and
every (n − k)-subset is produced. Therefore, the number of (n − k)-subsets must
equal the number of k-subsets. In terms of the formula, we have

n
n� k

� �
¼ n!

n� kð Þ! � n� n� kð Þ½ �! ¼
n!

n� kð Þ! � k½ �! ¼
n!

k! � n� kð Þ! ¼
n
k

� �
:

2.3 Counting 61

Example 2.3.2: Counting Subsets by Sizes

We know
�
5
0

�
¼ 1, // And the formula gives

5!
0! � 5 � 0ð Þ! ¼

5!
1 � ð5Þ! ¼ 1.

and we know
�
5
1

�
¼ 5. // And the formula gives

5!
1! � 5 � 1ð Þ! ¼

5 � ð4Þ!
1 � ð4Þ! ¼ 5.

// # subsets of a 5-set ¼ 25 ¼ 32

For any n 2 P, we could partition all the subsets according to their sizes and get

Xn
k¼0

�
n
k

�
¼ 2n:

This is a special case of the Binomial Theorem, which states that

ðaþ bÞn ¼
Xn
k¼0

�
n
k

�
ak � bn�k // take a ¼ 1 and b ¼ 1

// Prof. Moriarty, Sherlock Holmes’ archenemy, is said to have written a treatise
// on the Binomial Theorem. We will prove the theorem in Chap. 3.

Because of this theorem, the numbers
�
n
k

�
are often called binomial coefficients.

Example 2.3.3: The Bad Banana Theorem // aka Pascal’s Theorem
Suppose you are sent to buy 6 bananas. The store has 20 bananas altogether: 19

good ones and 1 bad one. Any selection of 6 either avoids the bad one or includes it.
So the total number of selections equals the number containing only good bananas
plus the number that contain the bad one and 5 good ones. That is,

20

6

� �
¼ 19

6

� �
þ 19

5

� �
¼ 19!

6!� 13!
þ 19!

5!� 14!

¼ 19� 18� 17� 16� 15� 14
6� 5� 4� 3� 2� 1

þ 19� 18� 17� 16� 15
5� 4� 3� 2� 1

¼ 19� 17� 2� 3� 14þ 19� 18� 17� 2

¼ 27 132þ 11 628 ¼ 38 760:

k

�
5
k

�
0 1
1 5
2 10
3 10
4 5
5 1___

32

62 2 Sets, Sequences, and Counting

This result applies in general, if 0 < k < n, then

n� 1

k

!
þ

n� 1

k � 1

!
¼ n� 1ð Þ!

k!� n� 1ð Þ � k½ �! þ
n� 1ð Þ!

k � 1ð Þ!� n� 1ð Þ � k � 1ð Þ½ �!

¼ n� 1ð Þ!
k!� n� k � 1½ �! þ

n� 1ð Þ!
k � 1ð Þ!� n� k½ �! // we need a commom denominator

¼ n� 1ð Þ!
k!� n� k � 1ð Þ! �

n� kð Þ
n� kð Þ þ

k

k
� n� 1ð Þ!

k � 1ð Þ!� n� kð Þ! // N! ¼ N� N� 1ð Þ! so

¼ n� kð Þþ k½ � � n� 1ð Þ!
k! � n� kð Þ! ¼ n� n� 1ð Þ!

k!� n� kð Þ! ¼
n!

k! � n� kð Þ! ¼

n
k

!
:

2.3.6 Pascal’s Triangle

The binomial coefficients may be displayed in a triangular array. For n 2 N and

0 <¼ k <¼ n, let B½n; k� ¼ n
k

� �
. The rows are indexed by n and start with row 0;

each row has n þ 1 entries, one for each k. The first 7 rows of B are

Each row begins and ends with a 1. // B[n, 0] ¼ 1 ¼ B[n, n].

The Bad Banana Theorem allows us to fill in the table row by row since

for 0< k< n B n, k½ � ¼ B n� 1, k � 1½ � þB n� 1, k½ �:

// B[n, k] is the sum of two entries in the row above it.
// B[n − 1, k] is the entry one step north, and B[n − 1, k − 1] is the entry one step
// northwest.

Example 2.3.4: The Sailing Teams
Suppose that a sailing team is to be chosen from 30 people and it consists of a

captain and a crew of 5. How many different teams can be chosen?
// Different captains make different teams – the captain is BOSS.

k

20 1 3 4 5 6

n

0 1
1
2
3
4
5
6

1 1
1
3 1

1 2
1 3
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

2.3 Counting 63

There are (at least) 3 methods we might use to select a sailing team:
• The dictator method: a captain is chosen (somehow) and s/he chooses the crew.
• The democratic method: a team is chosen (somehow) and they elect the captain.
• The completely random method: a crew is chosen (at random) and then a captain
is also chosen (at random).

The number of possible teams in each case is: // using the product rule

Case 1.
30
1

� �
� 29

5

� �
¼ � ¼ :

Case 2.
30
6

� �
� 6

1

� �
¼ � ¼ :

Case 3.
30
5

� �
� 25

1

� �
¼ � ¼ :

// Do these all produce the same number? Is the number 3 562 650?
// Can this be generalized to n people and a crew of size k? // assuming k < n

Case 1.
n

1

� �
� n� 1

k

� �
¼ n� n� 1

k

� �
¼ n� n� 1ð Þ!

k! � ½n� 1� � kð Þ! ¼
n!

k! � n� k � 1ð Þ ! :

Case 2.
n

kþ 1

� �
� kþ 1

1

� �
¼ n

kþ 1

� �
kþ 1ð Þ ¼ kþ 1ð Þ� n!

kþ 1ð Þ! � n� ½kþ 1�ð Þ!
¼ n!

k! � n� k � 1ð Þ! :
Case 3.
n

k

� �
� n� k

1

� �
¼ n

k

� �
�ðn� kÞ ¼ n!

k! � ðn� kÞ! �ðn� kÞ ¼ n!

k! � ðn� k � 1Þ! :

These results from counting sailing teams imply the following equations
involving binomial coefficients: // again assuming k < n

From Cases 1 and 3, n � B[n − 1, k] ¼ (n − k) � B[n, k], so

n
k

� �
¼ n

n� k
� n� 1

k

� �
// in column k; the values increase
// unless k ¼ 0ð Þ:

From Cases 1 and 2, n� B[n – 1, k]¼ (kþ 1)� B[n, kþ 1] and putting j for kþ
1, we get n � B[n − 1, j − 1] ¼ (j) � B[n, j], so

n
j

� �
¼ n

j
� n� 1

j� 1

� �
:

// Stepping southeast, the values increase
// unless k ¼ n� 1 and j ¼ nð Þ:

64 2 Sets, Sequences, and Counting

From Cases 2 and 3, (k þ 1) � B[n, k þ 1] ¼ (n − k) � B[n, k], so

n
kþ 1

� �
¼ ðn� kÞ

ðkþ 1Þ � n
k

� �
:

// Going across row n, do the values increase? decrease? or stay the same?
//X For which values of k, do they increase? decrease? stay the same?
//X Is B[n, k] is largest when k ¼ bn/2c?

Example 2.3.5: The Exploration Parties
Suppose there are 11 people aboard a yacht, 5 women and 6 men, and 4 of

them take the dinghy to explore an island. How many exploration parties have
at least two women?

A quick and dirty solution is this: choose 2 women from the 5 and then choose
2 others from the 9 remaining people. (This will certainly produce an exploration
party with 2 or more women.) Applying the product rule, we know that this can be
done in

5
2

� �
� 9

2

� �
¼ 10� 36 ¼ 360 ways: // But is this correct?

// Does each “way” produce a unique exploration party?

That number cannot be right because the total number of possible exploration
parties is

11
4

� �
¼ 11!

4!� 7!
¼ 11� 10� 9� 8� 7!

4� 3� 2� 1� 7!
¼ 11� 10� 3 ¼ 330:

For w ¼ 0 to 4, the number of parties that contain exactly w women can be
counted by determining the number of ways w can be chosen from the 5 women,
and then choosing the rest of the party from the men; that is, (4 − w) men are
chosen from the 6 men.

w 4� w
5
w

� �
� 6

4� w

� �
0 4 1 � 15 ¼ 15
1 3 5 � 20 ¼ 100
2 2 10 � 15 ¼ 150 //� 1 ¼ 150
3 1 10 � 6 ¼ 60 //� 3 ¼ 180
4 0 5 � 1 ¼ 5 //� 6 ¼ 30

330 360

2.3 Counting 65

The correct answer is 150 þ 60 þ 5 ¼ 215 parties contain at least 2 women.
// not 360

// What is wrong about the first “solution”? If the set of women were
// {A,B,C,D,E}, how often would the subset {A,B,D,E} be counted in the first
// “solution”? Why 6?

2.3.7 Counting Algorithmically (Without a Formula)

In this subsection, we want to provide a strategy for counting sequences, using tree
diagrams, which can be applied when the set of possible values for sj depends on
what the previous values in S actually are. We’ll look at two examples.

Example 2.3.6: Sequences on P that sum to 5
How many sequences of positive integers have a sum that equals 5?

// Both (1,4) and (1,1,2,1) sum to 5, so we’ll have to deal with sequences of
// varying lengths. But, since each entry is at least one, there can be at most 5
// entries.

Let’s generate all such sequences, one entry at a time, by growing a “tree of
possibilities.” Suppose S¼ (s1, s2,. . . , sk) is such a sequence. The possible values for
s1 are 1,2,3,4, and 5. This may be displayed by

start

1 2 3 4 5

The vertex labeled start, at the top of the diagram, is called the “root” of the tree.
Attached to the root are five “branches,” one for each possible value of s1. These
possible values of s1 are written inside the vertices (circles) at the ends of the 5
branches. // Yes, the tree is upside down.

If s1 ¼ 1, then the possible values for s2 are 1,2,3, and 4, and we may add 4 more
(downward) branches from the vertex corresponding to s1 ¼ 1. If s1 ¼ 2, then the
possible values for s2 are 1,2, and 3, and we may add 3 more branches from the
vertex corresponding to s1 ¼ 2. But if s1 ¼ 5, then the current subsequence cannot
be extended; we cannot add more branches from the vertex corresponding to s1 ¼ 5.
These terminal vertices are called “leaves” and are indicated in the diagram as
squares (rather than circles).

From each vertex indicating a possible value of s2 that’s not a leaf, we may add
branches corresponding to values of s3. And so on until we have a diagram of all
sequences on P that sum to 5.

66 2 Sets, Sequences, and Counting

start

1

111 2 1

1111 2321 1 2

2 11324321 1

1 2 3 4 5

Now, by counting the leaves, we have determined that there are exactly 16
sequences on P which sum to 5.

We have consistently labeled the values below a vertex from smallest to largest
across the diagram from left to right. If we take the leaves as they occur across the
diagram from left to right, and write down the corresponding sequence, we get

// There is something special about the order in which the sequences appear.
// If the first 5 digits were replaced by the first 5 letters, the sequences of digits
// produce “words” in alphabetic or lexicographic order.

Example 2.3.7: Subsets of P that Sum to 10
How many sets of positive integers have a sum that equals 10?
Let’s again grow a tree of possibilities. Each set of positive integers may be

listed (uniquely) in its natural order as a sequence (where the entries get larger and
larger). We want to generate all such sequences S ¼ (s1, s2,. . . , sk) on P where

10 ¼ s1 þ s2 þ . . . þ sk and 1<¼ s1 < s2 < . . . < sk <¼ 10:

1. (1,1,1,1,1) // aaaaa
2. (1,1,1,2) // aaab
3. (1,1,2,1) // aaba
4. (1,1,3) // aac
5. (1,2,1,1) // abaa
6. (1,2,2) // abb
7. (1,3,1) // aca
8. (1,4) // ad
9. (2,1,1,1) // baaa

10. (2,1,2) // bab
11. (2,2,1) // bba
12. (2,3) // bc
13. (3,1,1) // caa
14. (3,2) // cb
15. (4,1) // da
16. (5) // e

2.3 Counting 67

// What are the possible values for s1? 1,2,3,. . . ,10?
// Will there be 10 branches from the root?

Either k ¼ 1 and s1 ¼ 10, or k > 1 and

10 ¼ s1 þ s2 þ . . . þ sk >¼ s1 þ s2 > s1 þ s1 ¼ 2� s1: // So s1 < 5:

Therefore, the possible values for s1 are 1,2,3,4, and 10. Furthermore, if s1 < 10
then

either k ¼ 2 and s2 ¼ 10 − s1, or k > 2 and

10� s1 ¼ s2 þ s3 þ . . . þ sk >¼ s2 þ s3 > s2 þ s2 ¼ 2� s2: // So s2 < 10� s1ð Þ=2:

We may “prune off” the useless branches and obtain a diagram of all subsets of P
that sum to 10.

start

4

55673

7 6839432

1 2 3 4 10

If we take the leaves as they occur across the diagram from left to right, and write
down the corresponding sets, we get the10 subsets of P which sum to 10.

// Subsets are written in braces.

// We could also convert sets to sequences by listing the elements in decreasing
// order, and then generating a tree, but this tree would look quite different.

// The generation of the tree diagrams by growing the tree across each “level” at a
// time is known as breadth-first generation. Reading the sequences from the root
// to each leaf is known as depth-first traversal.

1. {1,2,3,4}

2. {1,2,7}

3. {1,3,6}

4. {1,4,5}

5. {1,9}

6. {2,3,5}

7. {2,8}

8. {3,7}

9. {4,6}

10. {10}

68 2 Sets, Sequences, and Counting

The Most Important Ideas in This Section.
A permutation is a sequence without repetitions.

The function n-factorial [written n!] is defined on N by

n! ¼
�
nðn� 1Þ. . . ð2Þð1Þ if n> 0
1 if n ¼ 0

:

This section derived the fundamental counting formulas:
1. The number of k-sequences on an n-set is n � n � . . . � n ¼ nk.
2. The number of subsets of an n-set is 2n.
3. The number of k-permutations on an n-set is

n� n� 1ð Þ� n� 2ð Þ� . . . � n� kþ 1ð Þ ¼ n!

n� kð Þ! :

4. The number of k-subsets of an n-set is

�
n
k

�
¼ n!

k! � n� kð Þ!.
Some basic properties of these binomial coefficients were given:

�
n
0

�
¼ 1 ¼

�
n
n

�
for all n>¼ 0:

n
n� k

� �
¼ n

k

� �
whenever 0<¼ k<¼ n:

The Bad Banana Theorem: If 0 < k < n, then

n
k

� �
¼ n� 1

k

� �
þ n� 1

k � 1

� �
:

When no standard paradigm applies, we can often generate a tree diagram
of all the possibilities and then count them.

The next section looks at infinite sequences, especially complexity
functions of algorithms.

2.4 Infinite Sequences and Complexity Functions

Infinite sequences are functions defined from an infinite interval of integers.
Throughout this section, we’ll suppose that S is a sequence with domain {a.. }
and codomain R. Our main interest in infinite sequences will be studying complex-
ity functions of algorithms, where f(n) is the number of steps it takes for the
algorithm to finish a problem instance of size n (in the worst case).

2.4 Infinite Sequences and Complexity Functions 69

But there are other infinite sequences worth examining. For instance, in the
walkthrough of the operation of the Bisection Algorithm in the example in Chap. 1,
five sequences were generated as we attempted to find (a good approximation of) x*
where f(x*) ¼ (x*)3 þ 2(x*) ¼ 200.

// x*, when rounded to 8 decimal places, is 5.402 668 66.

Assuming the first row of the table corresponds to i¼ 1, the second row to i¼ 2, and
so on and that the process continued indefinitely, we would expect:

The sequence of midpoints [the zi] “converges to” x*.
The sequence of function values [the f(zi)] “converges to” 200. // ¼ f(x*).
The sequence of error bounds [the ei, which decrease by half on each

iteration] “converges to” 0.
The sequence of lower bounds [the Ai, which never decrease and are always

between A1 ¼ 5 and x*] also “converges to” x*.
The sequence of upper bounds [the Bi never increase and are always between

x* and 10 ¼ B1] also “converges to” x*.

A z B e ¼ |z − A| f(z)

5 7.5 10 2.5 602.894…

" 6.25 7.5 1.25 320.249…

" 5.625 6.25 .625 227.329…

" 5.3125 5.625 .3125 189.672…

5.3125 5.46875 " .15625 207.840…

" 5.390625 5.468 75 .078125 198.596…

5.390625 5.4296875 " .0390625 203.177…

" 5.41015625 5.4296875 .01953125 200.876…

" 5.400390625 5.41015625 .009765625 199.733…

5.400390625 5.4052734375 " .0048828125 (200.304…)

// We will give a formal definition of convergence of a sequence momentarily.

// The algorithm itself determines these five functions on P – from the values in
// any row, it calculates the values in the next row. There is a “formula” for the
// error bounds, but there seems to be no formula for the other sequences.

When S is a sequence with domain {a.. } and codomain R,

S is a geometric sequence means

there is a number r such that for all n>¼ a; Snþ 1 ¼ r� Sn:

// Each entry, after the first, is obtained by multiplying the previous entry by the
// constant value r. The equation “Snþ1 ¼ r � Sn” is an example of a
// recurrence equation.

If a ¼ 0 and S0 equals some initial value, I, then

S1 ¼ r� I

S2 ¼ r� r� Ið Þ ¼ r2 � I

S3 ¼ r� r2 � I
� � ¼ r3 � I

S4 ¼ r� r3 � I
� � ¼ r4 � I;

70 2 Sets, Sequences, and Counting

and in general, // as we’ll prove in Chap. 3

Sn ¼ r� rn�1 � I
� � ¼ rn � I: // Or Sn ¼ rn�1 � r� I ¼ rn�1 � S1:

The error bounds in the example are a geometric sequence with r ¼ ½ . Here,
a ¼ 1 and e1 ¼ 2.5 ¼ 5/2. We can (pretend the sequence began with e0 ¼ 5 and) use
the formula to get

en ¼ rn � I ¼ 1=2ð Þn � 5 ¼ 5=ð2nÞ: // or use Sn ¼ rn�1 � S1

If S is any geometric sequence and I > 0, then if r > 1, the entries in S get larger
and larger, and if 0 < r < 1, the entries get smaller and smaller.

//X What happens if r or I (or both) are negative?

S is increasing means Sa < Saþ 1 < Saþ 2 < Saþ 3 < . . .

and S is decreasing means Sa > Saþ 1 > Saþ 2 > Saþ 3 > . . .

// en is decreasing.

Often we don’t have strict inequality between consecutive entries.

S is nondecreasing means Sa <¼ Saþ 1 <¼ Saþ 2 <¼ Saþ 3 <¼ . . .

and S is nonincreasing means Sa >¼ Saþ 1 >¼ Saþ 2 >¼ Saþ 3 >¼ . . .

// An is nondecreasing and Bn is nonincreasing.

And, S is a monotone means either S is nonincreasing or nondecreasing.
// the midpoints zi are not a monotone sequence.

It is clear that the error bounds, the ei, get closer and closer to 0. But the
midpoints, the zi, have values that “bounce around” x*: sometimes they’re bigger,
sometimes smaller, sometimes closer, sometimes further away. Nevertheless, there
is an overall “trend” in the zi toward x*; in general, the larger the index i, the closer
zi is to x*. The formal description of this is

A sequence S converges to L ½written Sn ! L� means
for any number d> 0; there is an integer M such that

if ðn>MÞ then Sn � Lj j< d:

// No matter how small d is, from some point on, the Sn’s are within d of (the
// number) L.

// d was the precision our supervisor specified for the absolute error of our
// approximation in the problem given in Chap. 1.

2.4 Infinite Sequences and Complexity Functions 71

To show that the sequence of midpoints [the zn] does converge to x* under
the definition given above, suppose a positive value for d is given. Let M ¼
dlg(|B1 − A1|/d)e. Then as we saw in Chap. 1,

if ðn>MÞ; then zn � x*j j< B1 � A1j j=2n < d:

Since en ¼ jB1 − A1j/2n ¼ 5/2n, we also have

if ðn>MÞ then en � 0j j ¼ en ¼ B1 � A1j j=2n < d;

and therefore, the sequence of error bounds, en, converges to 0.

// j An − x* j < jAn − Bnj = 2en ! 0 so An ! x* and also
// j Bn − x* j < jBn − Anj = 2en ! 0 so Bn ! x*.

A sequence S is bounded means
there are numbers A and B such that if ðn>¼ aÞ then A<¼ Sn <¼ B:

// The ei are bounded by 0 and 2.5 (or −100 and þ100),
// and the zi are bounded by 5 and 10 (or −100 and þ100).

// If a sequence converges, then it must be bounded.
// If a sequence is monotone and bounded, then it must converge.

Complexity functions are infinite sequences whose entries are nonnegative
integers. They are bounded below by 0 and are usually increasing. Rarely are
they bounded above, and bad complexity functions grow very large very rapidly.

2.4.1 The Towers of Hanoi

In the late 1800s, a toy was marketed called the Towers of Hanoi. The toy consisted
of a base on which there were three posts, together with a set of discs. The discs
were all different diameters, and each had a hole in the center so they could fit over
any of the three posts as displayed in the illustration below.

72 2 Sets, Sequences, and Counting

The toy came with a blurb that said something like “In the Temple of Brahma in
Hanoi there is a brass platform with three diamond needles and 64 golden discs all
of different sizes. At the beginning of time the discs were placed on the first needle
in a pile from largest up to smallest. The priests of the temple are transferring the
discs to another needle one at a time so that no disc ever rests on a smaller disc.
When they finish, time and the world will end.”

// Is it possible to accomplish this divine task? Will the world ever end?
// Is there an algorithm for doing this? When will the world end?

Let’s label the needles a, b, and cwhere the tower of discs starts on needle a. Also
let’s number the discs from smallest to largest, 1 to n ¼ 64.

// n is the problem size.

If there were only one disc, it could be transferred to another needle in one step;
that is, one move of a single disc. Let T(n) be the (minimum) number of single-disc-
moves (steps) required to transfer a tower of n discs from needle a to some other
needle. Then T(1) ¼ 1.

If there were two discs,

The first step must move disc 1 from a to another needle, say needle b. Then
disc 2 may be moved from a to c. Finally, disc 1 may be moved from b to c.
So T(2) ¼ 3.

// T(2) >¼ 2 because both discs must be moved, and it cannot be done with just 2
// moves.

Suppose there are k discs (in a tower) on needle a to be transferred. Before disc k
can be moved, the (k − 1) discs above disc k must be transferred off needle a, and
there must be a needle with none of the small discs on it so that disc kmay be moved
to that needle. Thus, to transfer a tower of k discs from needle a, we must
1. Transfer the whole tower of the top (k − 1) discs from a to b (or to c)
2. Move disc k from a to c (or to b)
3. Transfer the whole tower of the top (k − 1) discs from b to c (or c to b)

If the transfer is to be as efficient as possible, each of these three parts must be
done as efficiently as possible. Therefore,

TðnÞ ¼ T n� 1ð Þþ 1þ T n� 1ð Þ
¼ 2T n� 1ð Þþ 1:

2

1

a b c

2.4 Infinite Sequences and Complexity Functions 73

Using this recurrence equation when n >¼ 2 and the starting value T(1) ¼ 1,
we get

Tð1Þ ¼ 1

Tð2Þ ¼ 2 Tð1Þþ 1 ¼ 2� 1þ 1 ¼ 3

Tð3Þ ¼ 2 Tð2Þþ 1 ¼ 2� 3þ 1 ¼ 7

Tð4Þ ¼ 2 Tð3Þþ 1 ¼ 2� 7þ 1 ¼ 15

Tð5Þ ¼ 2 Tð4Þþ 1 ¼ 2� 15þ 1 ¼ 31:

In every case, // as we’ll prove in Chap. 3

TðnÞ ¼ 2n � 1:

This recursive description of a solution indicates that it can be done and allows
us to count how many steps must be done but doesn’t explicitly tell us how to move
whole towers of discs.

Any move consists of taking the top disc from the pile on one needle and then
placing it on top of the (perhaps empty) pile of discs on some other needle.

The smallest disc is never covered by another disc, so it is always the top disc on
some needle. The smallest disc can be moved to either of the other two needles.
After the smallest disc is moved, the next step will not move the smallest disc again
and will not place another disc on top of the smallest.

// The first step must move disc 1. What other moves are possible?
// We will show there is only one move possible that does not involve the
// smallest disc.

If all the discs are on one needle, we’re either at the beginning or the end of the
task. If we’re in the midst of the transfer, there must be discs on at least two needles.
Suppose disc 1 is now on needle x and disc i is at the top of the pile on needle y.
Either the third needle, z, has no discs on it, or some discs are on needle z and
disc j is at the top. In the first case, the only move is to take disc i from needle y to
needle z. In the second case, the only move is to take the smaller of discs i and j and
place it on top of the larger. After a move that didn’t involve disc 1, we can only
reverse that move or move disc 1.

Any solution algorithm (that uses as few moves as possible) must alternate
moves of disc 1 with moves that don’t involve disc 1. If we standardize the
moves of disc 1 by always moving from a to b, from b to c, and from c to a, we
obtain an (iterative) algorithm that solves the Towers of Hanoi problem.

// But how long will it take to transfer a tower of 64 discs?

The number of steps required is

264 � 1 ¼ 18 446 744 073 709 551 615 ffi 1:844 674 407� 1019:

If the priests worked continuously in shifts day and night and move (on average)
one disc per second, it will take at least 584.5 billion years to finish.

74 2 Sets, Sequences, and Counting

The Towers of Hanoi with 64 discs is an example of a problem that has an
effective algorithmic solution in principle but not in practice. The number of steps
involved is finite but just too large to be practical. [Certain modern methods of
cryptography are based on this consideration; the codes can be broken but even with
fast machines, it would take much too long to be of any value to the code-breaker.]
The difficulty lies with the complexity functions which grow very large very
quickly, which may be described as

2.4.2 Bad Complexity Functions

Let’s say a problem instance is “doable” if a machine executing 109 operations
per second could finish it in a year; that is,

the # steps <¼ 109 � 60� 60� 24� 365 ¼ 3:1536� 1016:

What is the maximum size of a doable instance for the following four bad
complexity functions?

n 2n 2n
n

� �
n! nn

1 2 2 1 1

2 4 6 2 4

3 8 20 6 27

4 16 70 24 256

5 32 252 120 3125

6 64 924 720 46656

7 128 3432 5040 823543

8 256 12870 40320 16777216

9 512 48620 362880 387420489

10 1024 184756 3628800 1000000000

..

14 16384 40116600 8.718 E10 1.111 E16

15 32768 155117520 1.308 E12 4.379 E17

..

18 262144 9075135300 6.402 E15 ..

19 524288 3.535 E10 1.216 E17 ..

..

29 536870912 3.007 E16

30 1073741824 1.183 E17

..

54 1.801 E16

55 3.603 E16

// The first is the complexity of the Towers of Hanoi algorithm, or of generating
// all subsets of an n-set; an instance is doable only when n < 55.
// The second is that of generating all n-subsets in a set twice as large;

2.4 Infinite Sequences and Complexity Functions 75

// we need n < 30.
// The third is that of generating all full permutations of an n-set; n must be < 19.
// The last is that of generating all functions from one n-set into another; n <¼ 14.

Thus, if the complexity function grows very rapidly, only (relatively) small
problem instances can be done (no matter how fast the machine is, and how
much time is allowed for the task).

The Most Important Ideas in This Section.
A number of adjectives for a sequence S:{a..} ! R were defined:
S is a geometric sequence when there is a number r such that
for all n >¼ a, Snþ1 ¼ r � Sn.
S is increasing when Sa < Saþ1 < Saþ2 < Saþ3 < . . .
S is decreasing when Sa > Saþ1 > Saþ2 > Saþ3 > . . .
S is nondecreasing when Sa <¼ Saþ1 <¼ Saþ2 <¼ Saþ3 <¼ . . .
S is nonincreasing when Sa >¼ Saþ1 >¼ Saþ2 >¼ Saþ3 >¼ . . .
S is a monotone when either S is nonincreasing or nondecreasing.
S converges to L [written Sn ! L] when for any number d > 0 there is an
integer M such that if (n > M) then | Sn − L | < d.
S is bounded when there are numbers A and B such that
if (n >¼ a) then A <¼ Sn <¼ B.

Complexity functions are infinite sequences whose entries are nonnegative
integers. They are bounded below by 0 and are usually increasing. Rarely are
they bounded above, and bad complexity functions grow very large very
rapidly. The section ends with several examples of bad complexity functions.

Exercises

1. Indicate whether each statement is true or false:
(a) {4, 0, 3, 0} = {4, 4, 0, 3}
(b) {4} � {0, 3, 4}
(c) {0, 3, 4} � {4}
(d) {0, 3, 4} � {0, 3, 4}
(e) ∅� {0, 3, 4}

2. What is P ({0, 3, 4, 7})?
3. Let A ¼ {1, 2, 3, 4} and B ¼ {2, 3, 5, 8}. Evaluate each of the following

expressions:

(a) A \ B
(b) A [B
(c) A \ B
(d) A � B

76 2 Sets, Sequences, and Counting

4. Let C ¼ {a, c, e} and D ¼ {a, b, c, d, e}. Evaluate each of the following
expressions:

(a) C \ D
(b) C [D
(c) C \ D
(d) C � D

5. Is {1, 3}, {2, 3}, {4} a partition of {1, 2, 3, 4}? Justify your answer.
6. Consider the set {a, b, c, d, e}. Construct 3 different partitions of this set.
7. Consider a large family that has a mother, a father, and 11 children. Use the

Pigeon Hole Principle to construct an argument that:

(a) At least two family members were born on the same day of the week
(b) At least two family members were born in the same month

8. The particular cultivar of raspberries in my garden has between 100 and 125
drupelets per berry. Each cane produces at least 55 berries. Does each cane
produce at least two berries that have the same number of drupelets? Use the
Pigeon Hole Principle to construct an argument that supports your answer.

9. Assume that a and b are integers where a <¼ b, and both S and T are sequences
on R.

(a) Explain why
Pb
i¼a

Si þ
Pb
i¼a

Ti ¼
Pb
i¼a

Si þ Tið Þ.

(b) Explain why
Pb
i¼a

c� Sið Þ ¼ c� Pb
i¼a

Si

� �
for any number c.

10. Let A denote all k-subsets of {1..n} where 0 < k <¼ n and let B denote
all increasing k-sequences on {1..n}. Show that the number of k-subsets in
A equals the number of k-sequences in B.

11. (a) How many 4-sequences on {1..9} are there?
(b) How many 4-permutations on {1..9} are there?
(c) How many 4-permutations on {1..9} begin with 3?
(d) How many increasing 4-sequences on {1..9} are there?
(e) How many increasing 4-sequences on {1..9} begin with 3?

12. Suppose that a ¼ 5 and b ¼ 20.
(a) How many elements are there in {a..b}?
(b) How many 4-sequences on {a..b} are there?
(c) How many 4-permutations on {a..b} are there?
(d) How many 4-permutations on {a..b} begin with 8?
(e) How many increasing 4-sequences on {a..b} are there?
(f) How many increasing 4-sequences on {a..b} begin with 8?

13. Suppose that a and b are integers and 0 <¼ a < b − 4.
(a) How many elements are there in {a..b}?
(b) How many 4-sequences on {a..b} are there?
(c) How many 4-permutations on {a..b} are there?
(d) How many increasing 4-sequences on {a..b} are there?

2.4 Infinite Sequences and Complexity Functions 77

14. (a) How many 4-sequences on {0..9} are there?
(b) How many 4-sequences on {0..9} do not begin with 0?
(c) How many 4-sequences on {0..9} begin and end with 0?
(d) How many 4-sequences on {0..9} do not begin and end with 0?
(e) How many 4-sequences on {0..9} do not begin or end with 0?

15. Passwords on a certain system have exactly 5 letters that are either lowercase
letters or uppercase letters.
(a) How many possible passwords are there?
(b) How many possible passwords are there that use only lowercase letters?
(c) How many possible passwords are there that use only uppercase letters?
(d) How many possible passwords are there that use at least one uppercase

letter and at least one lowercase letter?

16. In LOTTO 6-49, a subset of six numbers is selected at random from {1..49} as
the “winning” numbers. How many different selections of winning numbers are
there?

17. A personal identification number may be set to be any 4 digits.
(a) How many possible PINs are there?
(b) How many possible PINs are there that do not have a repeated digit?
(c) How many possible PINs are there that do have a repeated digit?

18. Suppose that in a certain jurisdiction, license plates have 4 letters followed by 3
digits and all such character sequences are possible.
(a) Show that the number of license plates that have exactly two T’s and end

in a 5 is 375,000.
(b) Show that the number of license plates have the letter T and the digit 4

(someplace) in them is 17,981,121.

19. The number of non-decreasing k-sequences on {1..n} is larger than the number
of increasing k-sequences on {1..n} because entries may be repeated. If X ¼ (x1,
x2, x3,. . . , xk) ia a non-decreasing k-sequences on {1..n}, define the sequence
Y ¼ (y1, y2, y3,. . . , yk) by

yi ¼ xi þ k � 1 for i ¼ 1; 2; . . . ; k:

(a) Show that the sequence Y is an increasing k-sequence on {1..(n þ k – 1)}.
(b) Show that if Y is any increasing k-sequence on {1..(n þ k – 1)} then there

is an X as above that would be transformed into Y.
(c) Explain how this shows that the number of non-decreasing k-sequences on

{1..n} ¼ nþ k � 1
k

� �
:

// If there are n different “kinds” of objects in a certain context, this allows
// us to count the number of selections of k objects where several objects
// of the same kind may be selected.

78 2 Sets, Sequences, and Counting

20. To find the number of k-sequences of positive integers that sum to n, one can
use a caret-and-stick method. Suppose k ¼ 4 and n ¼ 15. Write down 15 ones
in a row (sticks) then insert 3 carets (separators) into 3 different spaces between
2 ones. Viz.

111^111111^11^1111 corresponds to the sequence ð3; 6; 2; 4Þ

(a) Does every such caret-and-stick configuration correspond to a k-sequence
of positive integers that has a sum equal to n?

(b) Does every selection of (k – 1) insertion points for the carets from (n – 1)
possible insertion points produce a k-sequence of positive integers that has
a sum equal to n?

(c) How many 4-sequences of positive integers have a sum equal 15?
(d) How many k-sequences of positive integers have a sum equal n?
(e) Can this “method” be adapted to count how many k-sequences of

non-negative integers have a sum equal to n?

21. Use a tree diagram to show that there are exactly 22 non-decreasing sequences
of positive integers that add up to 8.

2.4 Infinite Sequences and Complexity Functions 79

3Boolean Expressions, Logic, and Proof

In the first two chapters, we made a number of arguments to try to convince you
that certain algorithms were correct and that certain counting formulas applied.
By an “argument”, we don’t mean a social disagreement; we mean a sequence
of statements that leads to some conclusion. And by “leads to some conclusion”,
we mean increases your confidence in the truth of the conclusion to the point of
certainty.

Logic is the art of reasoning and forms the basis of mathematics, which is a
science of pure thought in which discoveries of new truths about the world
are found (not by more careful observation but) by precise reasoning alone.
Mathematics is not calculation; it’s deduction. It’s not formulas; it’s proofs.

The objective of this chapter is to show you the structure of mathematical proofs.
But before that, we want to try (once more) to illustrate the purpose of proofs with
a look at

3.1 The Greedy Algorithm and Three Cookie Problems

Suppose you are a hungry 5-year-old and in front of you is a 6 × 6 sheet of just
baked cookies, all of the same kind but each of a different size as indicated below –

the larger the number, the bigger the cookie.

56 76 69 60 75 51

61 77 74 72 80 58

82 97 94 88 99 92

47 68 59 52 65 40

78 81 79 71 85 62

50 67 73 57 70 46

We’ll consider three optimization problems associated with this array.

Cookie Problem #1

If you are allowed to take up to 6 cookies, what would be the best selection?
The best selection is the one with the largest total number of “cookie units”.

For this problem, the solution is obvious – take the 6 largest cookies.

56 76 69 60 75 51

82 97 94 88 99 92

85 62

61 77 74 72 80 58

47 68 59 52 65 40

78 81 79 71

50 67 73 57 70 46

An algorithm to construct this selection is

3.1.1 The Greedy Algorithm

Keep taking the best cookie you can

Until you can’t take any more.

// The total for this selection is 99 þ 97 þ 94 þ 92 þ 88 þ 85 ¼ 555.

// The number of selections of 6 cookies is
36
6

� �
¼ 1 947 792:

// Could they all have different totals? Is the number of different totals < 555?
// Does the pigeonhole principle imply that some total occurs > 3,500 times?
// Does the worst selection have total, 40 þ 46 þ 47 þ 50 þ 51 þ 52 ¼ 286?

Cookie Problem #2

If you are allowed to take at most one cookie from any (horizontal) row, what would
be the best selection?

For this problem too, the solution is obvious – take the largest cookie in each row.

56 76 69 60 75 51

82 97 94 88 99 92

85 62

61 77 74 72 80 58

47 68 59 52 65 40

78 81 79 71

50 67 73 57 70 46

// The Greedy Algorithm will find this selection with total,
// 99 þ 85 þ 80 þ 76 þ 73 þ 68 ¼ 481.
// The number of allowable selections of 6 cookies is 66 ¼ 46 656;
// could they all have different totals? Does some total occur >¼ 97 times?

82 3 Boolean Expressions, Logic, and Proof

Cookie Problem #3

If you are allowed to take at most one cookie from any (horizontal) row and at most
one cookie from any (vertical) column, what would be the best selection?

For this problem, the solution is not so obvious, but the Greedy Algorithm,
which was effective for solving the previous two problems, may be applied here.

The best cookie of all is 99; after that is taken, the best we can take is 81;

56 76 69 60 75 51

61 77 74 72 80 58

82 97 94 88 99 92

47 68 59 52 65 40

78 81 79 71 85 62

50 67 73 57 70 46

after that is taken, the best we can take is 74;

56 76 69 60 75 51

61 77 74 72 80 58

82 97 94 88 99 92

47 68 59 52 65 40

78 81 79 71 85 62

50 67 73 57 70 46

after that is taken, the best we can take is 60; after that, the best we can take is 50;
after that is taken, the best we can take is 40. // It’s the only cookie left.

56 76 69 60 75 51

61 77 74 72 80 58

82 97 94 88 99 92

47 68 59 52 65 40

78 81 79 71 85 62

50 67 73 57 70 46

The Greedy Algorithm will find this selection with total, 99 þ 81 þ 74 þ 60 þ
50 þ 40 ¼ 404. // Is this the best selection?

This selection is not the best. We can prove that by finding any allowable selection
that’s better. If we take 69 from the top row instead of 60, and we take 72 from the
second row instead of 74, and keep the other four cookies, this selection has a larger
total (411) than the greedy solution, so the greedy solution is not the best.

3.1 The Greedy Algorithm and Three Cookie Problems 83

// Even if it’s not the best selection, it’s probably a fairly good selection.
// How bad could the greedy solution be? Would you believe the following
// assertion?

In this example of Cookie Problem #3,
the greedy solution is the worst possible selection of six cookies.

// Why would anyone believe that?
// Could someone provide enough evidence to make you believe that? Let’s try.

A transversal of an n × n array M is a selection of entries with exactly one in
each row and exactly one in each column. The value of a transversal is the sum of
its entries.

// We want to show that the transversal produced by the Greedy Algorithm in this
// example has the smallest value of all possible transversals (without generating
// all n!).

If 50 is subtracted from each entry in the top row, then (because each transversal
has exactly one entry in the top row) the value of each transversal is reduced by 50,
the transversal that was best before remains the best, and the transversal that was
worst before remains the worst.

More generally, if Ri is subtracted from each entry in row i, then (because each
transversal has exactly one entry in row i) the value of each transversal is reduced
by Ri, the transversal that was best before remains the best, and the transversal that
was worst before remains the worst.

Subtract
50 from row 1 56 76 69 60 75 51 and

56 from row 2 61 77 74 72 80 58 and

75 from row 3 82 97 94 88 99 92 and

40 from row 4 47 68 59 52 65 40 and

60 from row 5 78 81 79 71 85 62 and

45 from row 6 50 67 73 57 70 46

//
P

Ri ¼ 326.

The new matrix is

6 26 19 10 25 1

5 21 18 16 24 2

7 22 19 13 24 17

7 28 19 12 25 0

18 21 19 11 25 2

5 22 28 12 25 1

Now, if Cj is subtracted from each entry in column j, then (because each
transversal has exactly one entry in column j) the value of each transversal is
reduced by Cj, the transversal that was best before remains the best, and the
transversal that was worst before remains the worst. For each j, let Cj be the

84 3 Boolean Expressions, Logic, and Proof

minimum entry in column j and then subtract Cj from each entry in that column.
This produces the following matrix: //

P
Cj ¼ 78 and 326 þ 78 ¼ 404.

2

0

13

1 5 1 0 1 1

0 0 0 6 0 2

1 1 3 0 17

2 7 1 2 1

0 1 1 1 2

0 1 10 2 1 1

The final element of the argument is this. If every entry in a matrix is >¼ 0, then
the value of every transversal is >¼ 0. Therefore, if every entry in a matrix
is >¼ 0 and T is a transversal with all-zero entries, then T is a worst transversal
(in the final matrix and in the original matrix). This final all-zero transversal is the
one produced by the Greedy Algorithm. Thus, for this example of Cookie Problem
#3, the Greedy Algorithm produces the worst possible answer.

// What is the best transversal?

Using that last array, for each j let Dj be the maximum entry in column j and then
subtract Dj from each entry in that column. This produces the following matrix:

–6 0 –16

–10

–1 0

–11 –17

0

–12 –2 –9

–13 –7 0 –1 –15

–11 –6 –9 –3

0 –9 –4 0

–7 –9 –5 0 –15

–13 –6 0 –4 0 –16

If every entry in a matrix is <¼ 0, then the value of every transversal is <¼ 0.
Therefore, if every entry in a matrix is <¼ 0 and T is a transversal with all-zero
entries, then T is a best transversal (in the final matrix and in the original matrix).
Here the all-zero transversal is best, and therefore we know the best transversal in
the original matrix. Its value is 75þ 72þ 92þ 68þ 78þ 73¼ 458, and it does not
contain the biggest cookie nor the second biggest nor the third biggest.

//
P

Dj ¼ 54 and 404 þ 54 ¼ 458.

82 97 92

47

56 76 69 60 75 51

61 77 74 72 80 58

94 88 99

68 59 52 65 40

78 81 79 71 85 62

50 67 73 57 70 46

3.1 The Greedy Algorithm and Three Cookie Problems 85

The Most Important Ideas in This Section.
The moral of this story about cookies is: some plausible statements seem
reasonable and probable but are not (always) true [statements like: “the best
solution contains the biggest cookie” or “the Greedy Algorithm gives the best
solution”], and some implausible statements seem unreasonable and unlikely
but are true [statements like “the Greedy Algorithm produces the worst
possible solution”]. We need more than plausibility (and our intuition) to
determine which statements are really true. What we need is the subject of the
remainder of this chapter.

3.2 Boolean Expressions and Truth Tables

A Boolean variable, p, is a symbol that takes a Boolean value; either p is True or
p is False (never both at the same time, and never neither). They denote assertions
from ordinary language and are named after George Boole (1815–1864) who was a
pioneer in formal logic. Most high-level computer languages include such variables
and allow evaluation of Boolean expressions. Boolean variables by themselves are
the simplest Boolean expressions; more complicated Boolean expressions may be
constructed using Boolean operators.

3.2.1 The Negation Operator

The negation of a Boolean expression P [written �P and read “not-P”] is True
when P is False and is False when P is True. // “�” reverses the truth-value of P.
The effect of the negation operator is summarized in the table below.

P P

T F

F T

This truth table gives the value of the expression “�P” for all possible values of P.

3.2.2 The Conjunction Operator

The conjunction of a Boolean expression P with a second Boolean expression Q
[written P ^ Q and read “P and Q”] is True when both P and Q are True and is

86 3 Boolean Expressions, Logic, and Proof

False otherwise. The effect of the conjunction operator is summarized in the table
below.

P Q P Q

T T T

T F F

F T F

F F F

This truth table gives the value of the expression “P ^ Q” for all possible
combinations of truth-values of P and Q.

The conjunction operator is meant to reflect “and” (or “but”) in ordinary language;
the compound statement “Today is Monday and it is raining” is true only when today
is Monday and also it is raining. // So, most of the time it’s False.

3.2.3 The Disjunction Operator

The disjunction of a Boolean expression P with a second Boolean expression Q
[written P _ Q and read “P or Q”] is False when both P and Q are False and is True
otherwise.

// P _ Q is True when P is True or Q is True or both are True.
// _ is the “inclusive or”.

The effect of the disjunction operator is summarized in the table below.

P Q P Q

T T T

T F T

F T T

F F F

This truth table gives the value of the expression “P _ Q” for all possible
combinations of truth-values of P and Q.

The disjunction operator is meant to reflect “either…or” in ordinary language;
the compound statement “Either he is smart or he is very lucky” is true whenever he
is smart or very lucky or both.

On the other hand, in ordinary language, “P or Q” is sometimes used to indicate
that either P is True or Q is True but not both as in “I’ll either get an A or a B on
this assignment” or “Either Brazil or Germany will win the World Cup”. This
“exclusive or” may be represented by the Boolean expression

P _ Qð Þ ^ � P ^ Qð Þ

3.2 Boolean Expressions and Truth Tables 87

Let’s construct the truth table for this expression.
These Boolean operators are common to web search engines as well as computer

languages, and all follow the same conventions or rules for evaluating expressions
(similar to the rules for evaluating arithmetic expressions):

work from left to right
but evaluate sub-expressions inside parentheses first
and do negations before conjunctions
and do conjunctions before disjunctions.

P Q P Q ((P Q))
T T T F F T
T F T T T F
F T T T T F
F F F F T F

1 4 3 2

// The rows of the table contradict each other, so at any time only one row occurs.
// Each row corresponds to specific values for P and Q, and in each row
// (P _ Q) is evaluated first.
// ^ waits for �.
// � waits for (P ^ Q), so evaluating (P ^ Q) is done second.
// Now, � is done (third).
// Finally, ^ is done (fourth) and we obtain the value of the whole expression.

The shaded column of the truth table gives the value of the expression “(P _ Q)
^ � (P ^ Q)” for all possible combinations of truth-values of P and Q.

Two Boolean expressions P and Q are equivalent [written P , Q] means that
they have exactly the same truth tables. For instance,

shows that �(P ^ Q) , (�P) _ (�Q) and that �(P _ Q) , (�P) ^ (�Q).

// “Not both P and Q” carries the same information as “either (�P) or (�Q)”.
// “Neither P nor Q” carries the same information as “both (�P) and (�Q)”.
// These two logical equivalences are known as De Morgan’s Laws.
// The most obvious equivalence is P , P.
// Another obvious equivalence is �(�P) , P.

88 3 Boolean Expressions, Logic, and Proof

3.2.4 The Conditional Operator

By far the most important Boolean operator in mathematics is the conditional
operator which is denoted by “! ”. The Boolean expression “P!Q” is meant to
reflect the conditional statement “if P then Q” in ordinary language. This condi-
tional statement means that “whenever P is True, then Q must also be True,” or “it
cannot happen that P is True and Q is False”. Therefore, “P!Q” is (logically)
equivalent to “�(P^ �Q)”.

In formal terms, the conditional operator ! is defined by the following truth
table.

// Then (by De Morgan’s Laws), P ! Q is (also) equivalent to (�P)_Q.

Because so many mathematical statements take the form of a conditional
expression, names have been given to the two parts: P, the part before the operator,
is the antecedent; Q, the part after the operator, is the consequent. Also names have
been given to certain variations of it:

The converse of “P ! Q” is “Q ! P”:
The contrapositive of “P ! Q” is “�Q ! �P”:
The inverse of “P ! Q” is “�P ! �Q”:

// Are these all equivalent?

Any conditional expression is equivalent to its contrapositive.

// And so the converse is equivalent to its own contrapositive form, the inverse.

But a conditional expression and its converse are not equivalent.

// Are they that much different?

3.2 Boolean Expressions and Truth Tables 89

Example 3.2.1: Conditional Variations
Suppose p denotes the statement “you were 90 on your last birthday” and q

denotes the statement “you are over 21”:

p! q denotes the conditional statement
“If you were 90 on your last birthday, then you are over 21.”
which is true, no matter who you are.

�q! �p denotes the contrapositive
“If you are not over 21, then you were not 90 on your last birthday.”
which is true, no matter who you are.

q! p denotes the converse
“If you are over 21, then you were 90 on your last birthday.”
which is false for almost everyone over 21.

// If your age last birthday was >¼ 21 but 6¼ 90, the antecedent is true but the
// consequent is false.

�p! �q denotes the inverse // the converse of the contrapositive
“If you were not 90 on your last birthday, then you are not over 21”.
which is false for almost everyone over 21.

// If your age last birthday was 6¼ 90 but was >¼ 21, the antecedent is true but the
// consequent is false.

A Boolean expression P implies Boolean expression Q [written P) Q] means
that the conditional expression, P!Q, is always True; that is, whenever P is True,
Q must be True. We will sometimes use this symbol to indicate one statement
implies another like

“You were 90 on your last birthday”) “you are over 21.”

Here, the relation of implication occurs because of the meanings of the statements.
But it may also occur just because of the forms of the Boolean expressions. For
instance,

P ^ Q)P and P)P and P)P _ Q and Q)ðP ! QÞ:

In general, the conditional expression P!Q may be False, but when P and Q are
related by their meanings or by their forms so that P!Q is always True, P is said
to imply Q.

90 3 Boolean Expressions, Logic, and Proof

3.2.5 The Biconditional Operator

The biconditional operator $ is defined by the following truth table.

We can interpret “P only if Q” to mean “if P is True, then (because P only occurs
when Q occurs) Q must be True”. Then “P only if Q” would be denoted by
“P!Q”. Since “P if Q” is denoted by “Q!P”, “P if and only if Q” would be
denoted by

ðP ! QÞ ^ ðQ ! PÞ:

The operator $ is called the biconditional because it’s (logically) equivalent to
the conjunction of the two conditional expressions (P!Q) and (Q!P).

// Since (Q!P) , (�P! �Q), we also have
// (P $ Q) , [(P!Q) ^ (�P! �Q)].

P $ Q is read “P if and only if Q”, and P $ Q is True when P and Q have the
same truth-value, and is False when they disagree. Therefore, two Boolean
expressions P and Q are equivalent means that P $ Q is always True.

The Most Important Ideas in This Section.
Five standard Boolean operators are defined using truth tables: negation
[written �P and read “not-P”], conjunction [written P ^ Q and read “P and
Q”], disjunction [written P _Q and read “P or Q”], conditional [written
P!Q and read “if P then Q”], and biconditional [written P $ Q and
read “P if and only if Q”].

P implies Q [written P) Q] means P!Q is always True; P and Q are
equivalent [written P , Q] means P $ Q is always True.

Because so many mathematical statements take the form of a conditional
expression, names have been given to the parts: P is the antecedent and Q is

(continued)

3.2 Boolean Expressions and Truth Tables 91

(continued)

the consequent. Names also have been given to certain variations of P!Q:
the converse is Q!P, the contrapositive is �Q! �P, and the inverse of
is �P! �Q.

This formalism is very useful in describing the structure of valid arguments,
which we will come to soon.

3.3 Predicates and Quantifiers

The truth-value of an assertion like “you were 90 on your last birthday” depends
on who “you” are, and the truth-value of “x2 > 25” depends on what number x is.
This section concerns these sorts of statements.

A predicate is a function from a set D into the set C ¼ {True, False}. For
instance, suppose that D is the set of positive integers, we might let

PðkÞ denote the assertion “k is prime” // So P 13ð Þ is True but P 33ð Þ is False:
and QðnÞ denote the assertion “n is odd”. // So Q 23ð Þ is True but Q 32ð Þ is False:
The truth-value of P(x) and of Q(x) depends on which value x takes in the set D.
Predicates using specific values from D are Boolean expressions and can be
connected by Boolean operators to make larger, more complicated Boolean
expressions.

More interesting Boolean expressions can be created using “quantifiers”. The
universal quantifier 8 is read “for every” or “for all” and

“8x F(x)” denotes the assertion
“For every x in the domain of the predicate F, F(x) is True”.

The existential quantifier 9 is read “there exists a” and

“9x F(x)” denotes the assertion
“There exists a value x in the domain of the predicate F, where F(x) is True”.

// 8 is an upside down A and stands for “All”.
// 9 is a backward E and stands for there “Exists”.

For instance, taking D to be the set of positive integers and P and Q to be the
predicates defined above,

“8x P(x)” denotes “every positive integer is prime,” so as a Boolean expression
8x P(x) is False // because 6 is a positive integer that’s not prime

“9x [P(x)^�Q(x)]” denotes “there exists a positive integer that is prime and not odd” so
9x [P(x) ^�Q(x)] is True. // because 2 is such an integer

Negations, in a sense, interchange the two quantifiers. Suppose that D is the
domain of the predicate F.

“�[8x F(x)]” denotes “it is not the case that for every x in D, F(x) is True”,

92 3 Boolean Expressions, Logic, and Proof

that is, “for some x in D, F(x) is False” and this is denoted by “9x �F(x)”. Thus,

� 8x FðxÞ½ � , 9x �FðxÞ

“�[9x F(x)]” denotes “it is not the case that there exists an x in D, where F(x)
is True,”
that is, “for every x in D, F(x) is False” and this is denoted by “8x �F(x)”. Thus,

� 9x FðxÞ½ � , 8x �FðxÞ:

In the example of Cookie Problem #3, let U denote the set of all transversals of
the given 6 � 6 array. The assertion that the greedy solution (with total 404) is the
best transversal is the statement

8T 2 U; the value of T is<¼ 404:

We saw that this is False, by constructing a transversal T* whose value was not
<¼ 404. That is,

9T* 2 U;where the value of T* is> 404:

One example proves an existential assertion is True. One counterexample to a
universal assertion proves the universal assertion is False.

// How can universal assertions be proved to be True?

The Most Important Ideas in This Section.
Predicates are Boolean expressions whose truth-value depends on (one or
more) parameters. The universal quantifier [written 8 and read “for every”
or “for all”] and the existential quantifier [written 9 and read “there exists a”
or “there is some”] are used to express statements asserting something occurs
for every input of a certain kind or for some particular input of that kind.
Such statements are essential for describing program correctness.

3.4 Valid Arguments

An argument is a sequence of statements called premises, followed by a statement,
called the conclusion. The purpose of the argument is to convince the audience of
the truth of the conclusion. The form of an argument is

P1
P2
P3
. . .
Pk
KC //Kread “therefore” signals the conclusion:

where the first k statements are the premises and the last, C, is the conclusion.

3.4 Valid Arguments 93

An argument is valid means if all the premises are True, then the conclusion
must be True. Certain arguments are valid just because of their form, independent of
their content. We can test the validity of an argument form by constructing the
conditional statement whose antecedent is the conjunction of all the premises and
whose consequent is the conclusion,

P1 ^ P2 ^ P3 ^ . . . ^ Pk½ � ! C:

The argument form is valid if and only if this conditional statement is always true
(the conjunction of the premises implies the conclusion).

Example 3.4.1: Modus Ponens
This standard argument form is

P ! Q If it’s raining; then the streets are wet:
P It is raining:
KQ KThe streets are wet:

That this form is valid (independent of the meanings of P and Q) is shown by the
following truth table.

In the case about the wet weather, the first premise is True, and if (at some time and
place) the second premise is also True, then (at that time and place) the conclusion
must also be True.

Example 3.4.2: Modus Tollens
This standard argument form is

P ! Q If it’s raining; then the streets are wet:
�Q The streets are not wet:
K �P KIt’s not raining:

That this form is valid (independent of the meaning of P and Q) is shown by the
following truth table.

94 3 Boolean Expressions, Logic, and Proof

In the case about the weather, the first premise is True, and if (at some time and
place) the second premise is also True, then (at that time and place) the conclusion
must also be True.

Example 3.4.3: Conditional Syllogism
This standard argument form is

P ! Q If it’s raining; then the streets are wet:
Q ! R If the streets are wet then she’ll wear galoshes:

KP ! R KIf it’s raining then she’ll wear galoshes

That this form is valid (independent of the meaning of P, Q, and R) is shown by the
following truth table. // Here there are 3 Boolean expression and 8¼ 23 rows

In the case about the wet weather, the first premise is True, and if (for a certain
lady) the second premise is also True, then (for that lady) the conclusion must also
be True.

These examples of valid argument forms perhaps seem obvious, but we want to
consider one more case.

Example 3.4.4: The Scientific Method?
A high school teacher described the “scientific method” as a means of discover-

ing knowledge through experimentation and observation, a process of formulating
and testing hypotheses. It seemed to be based on this (argument) paradigm:

If my theory is correct; then my experiment will produce such and such:
Look! Look! My experiment did produce such and such:
KMy theory is correct:

3.4 Valid Arguments 95

This argument has the form

P ! Q
Q
KP // Is this a valid form of argument?

That this form is not valid is shown by the following truth table.

The third row shows that the two premises may both be True but the conclusion
might be False. This invalid argument form is known as “the fallacy of affirming the
consequent”.

In the case about the wet weather, the argument would be:

If it’s raining; then the streets are wet:
The streets are wet
KIt is raining:

The first premise is True. But could it ever happen that (at some time and place) the
streets are wet but it is not raining?

// after a thunderstorm is over
// as the snow is melting
// as the river floods the town
// after the street-washing truck passes
// …

The conclusion would only be correct if Q only occurred when P occurs.
// That is, Q!P

The methodology of testing hypotheses by experiment and observation is very
important and, in general, very effective. It is the basis of much scientific progress.
But when an experiment produces the results predicted by the theory, the scientist
cannot be certain her/his theory is correct. The only thing she/he can be certain of is
that her/his own experiment did not disprove her/his own theory.

// by modus tollens

Computer programmers too might be tempted to use the paradigm:

If my algorithm is correct; then my output will be such and such:
Look! Look! My output is such and such:
KMy algorithm is correct:

96 3 Boolean Expressions, Logic, and Proof

The conclusion may be true, but this argument alone is not enough to guarantee
its truth. (The first premise must be strengthened to say that the only way to get
such and such output is by using a correct algorithm.) On the other hand, we will
never risk making such a logical oversight; we’ll prove our algorithms are correct
by valid means.

The Most Important Ideas in This Section.
A valid argument is a (finite) sequence of premises followed by a conclusion
where if all the premises are True, then the conclusion must be True. Several
classical patterns of argument are shown to be valid and examples are given.
The main point is that correct arguments have correct form (as well as content
and meaning). This is applied and generalized in the next section on proofs.

3.5 Examples of Proofs

We’ve given a rather long-winded introduction to proofs emphasizing their form;
now we want to add content to the arguments. We are particularly interested in
proving universal statements about mathematical objects, especially algorithms.

A PROOF is a valid argument where all the premises are True:

// And therefore the conclusion must be True.

We’ll look at several examples of proofs next. Remember that a proof is an
attempt to strengthen your confidence that a certain statement is True to the point of
certainty. Statements that can be proved to be True are known as theorems.

Theorem 3.5.1: For all integers n, n/2cþ n/2d e ¼ n:b

Proof. Either n is even or n is odd; that is, either n¼ 2q or n¼ 2qþ 1 where q 2 Z.
If n ¼ 2q where q 2 Z, then n/2 ¼ q so bn/2c ¼ q ¼ dn/2e and hence,

n=2b cþ n=2d e ¼ qþ q ¼ n:

If n ¼ 2q þ 1 where q 2 Z, then n/2 ¼ q þ ½, so bn/2c ¼ q and dn/2e ¼ q þ 1 and
hence,

n=2b cþ n=2d e ¼ qþ qþ 1ð Þ ¼ n:

Therefore, for all integers n, n=2b cþ n=2d e ¼ n: ▯

// The universality of this argument is due to the “magic of algebra”; the variable
// n was used to denote an integer whose value is unspecified � so n represents any

3.5 Examples of Proofs 97

// integer, and therefore all integers are represented at once.
// We will use ▯ as a symbol indicating the end of the proof, for QED.

The underlying form of this argument is

Example 3.5.1: Disjunctive Syllogism

P _ Q Either n is even or n is odd:
P ! R If n is even; then bn=2cþ dn=2e ¼ n:
Q ! R If n is odd; then bn=2cþ dn=2e ¼ n:
KR Kbn=2cþ dn=2e ¼ n:

That this form is valid (independent of the meaning of P, Q, and R) is shown by the
following truth table.

//X Theorem 3.5.1 may be generalized to
// If f is any real number and g¼ (1− f), then for all integers n, f � nb cþ g� nd e ¼ n.
// In Theorem 3.5.1, f ¼ ½ (and g ¼ ½).
// (A proof of the generalized theorem will be quite different.)

The Disjunctive Syllogism itself may be generalized to “Proof by Cases” as in

Theorem 3.5.2: Among any three consecutive integers, there is a multiple of 3.

Proof. If the smallest of the three consecutive integers is denoted by n, then the
three integers are n, n þ 1, and n þ 2. We must prove that

for all integers n; at leastð Þ one of n; nþ 1; and nþ 2 is a multiple of 3:

Either n¼ 3q, or n¼ 3qþ 1, or n¼ 3qþ 2 where q 2 Z. // n MOD 3 2 {0,1,2}.
Case 1. If n ¼ 3q where q 2 Z, then n itself is a multiple of 3.
Case 2. If n ¼ 3q þ 1 where q 2 Z, then n þ 2 ¼ 3q þ 3 ¼ 3(q þ 1), so n þ 2 is

a multiple of 3.

98 3 Boolean Expressions, Logic, and Proof

Case 3. If n ¼ 3q þ 2 where q 2 Z, then n þ 1 ¼ 3q þ 3 ¼ 3(q þ 1), so n þ 1 is a
multiple of 3.

Therefore, among any three consecutive integers, there is a multiple of 3. ▯

//X Theorem 3.5.2 may be generalized to
// Among any K consecutive integers, there is a multiple of K. (A proof of the
// generalized theorem will be quite different and use more algebra.)
// You might also prove that
// Among any K consecutive integers, there is exactly one multiple of K, and/or
// Among any K consecutive integers, there is a multiple of k for k ¼ 2,3,…K.
// The product of any K consecutive integers is a multiple of K!.

The first two sentences of the proof of Theorem 3.5.2 are there to introduce
algebraic notation and then restate the theorem. The underlying form of the
argument in this proof is

Example 3.5.2: Proof by Cases

P1 _ P2 _ P3 _ . . . _ Pk // lists all cases
P1 ! R // case 1
P2 ! R // case 2
P3 ! R // case 3
. . .
Pk ! R // the last case
KR

To prove that “Proof by Cases” is a valid argument form for all (finite) positive
integers k, we cannot just construct truth tables. We’ll have to give an argument that
shows that when all the premises are True, the conclusion R must be True.

Proof. (that “Proof by Cases” is a valid argument form)
If all the premises are True, then (the first one which describes all possible cases)

P1 _ P2 _ P3 _ … _ Pk is True; because this is a disjunction, (at least) one of the
P’s is True, and so 9 j where 1 <¼ j <¼ k and Pj is True.

If all the premises are True, then the premise Pj!R is True, and because we
know the antecedent of this conditional Pj is True, the consequent R must be True.

Therefore, if all the premises are True, the conclusion R must be True; that is,
“Proof by Cases” is a valid argument form. ▯

That proof was constructed by expanding on the meaning of “a valid argument
form” and explaining what must result when all the premises are True in more and
more detail, until we knew that the conclusion of the argument must also be True.
This is a common form of proof and is often referred to as a

3.5 Examples of Proofs 99

3.5.1 Direct Proof

Theorem 3.5.3: If n is an odd integer, then n2 is also an odd integer.

Proof. If n is an odd integer, then n ¼ 2q þ 1 where q 2 Z.
If n ¼ 2q þ 1 where q 2 Z, then

n2 ¼ 2qþ 1ð Þ2 ¼ 2qð Þ2 þ 2 2qð Þþ 1 // aþ bð Þ2 ¼ a2 þ 2abþ b2

¼ 4q2 þ 4qþ 1

¼ 2 2q2 þ 2q
� �þ 1 where 2q2 þ 2q

� � 2 Z

If n2 ¼ 2(2q2 þ 2q) þ 1 where (2q2 þ 2q) 2 Z, then n2 is an odd integer.
Therefore, if n is an odd integer, then n2 is (also) an odd integer. ▯

// Isn’t the product of any two odd integers also an odd integer?
//X Construct a direct proof that for positive integers
// if ajb and bjc, then ajc.
//X Prove that the smallest proper divisor of an integer n > 1 must be prime.

The underlying form of that last argument (the proof of Theorem 3.5.3) is a
sequence of conditional statements in the following pattern.

Example 3.5.3: Generalized Conditional Syllogism

P½1� ! P½2�
P½2� ! P½3�
P½3� ! P½4�
. . .
P½k� ! P½kþ 1�

KP½1� ! P½kþ 1�

To prove that the Generalized Conditional Syllogism is a valid argument form
for all (finite) positive integers k, we’ll have to give an argument that shows that
when all the premises are True, the conclusion P[1]!P[k þ 1] also must be True.
However, it is somewhat easier to establish the contrapositive form:

If the conclusion “P 1½ � ! P kþ 1½ �” is False,
then at leastð Þ one of the premises is False:

// This may seem backward but remember that (P!Q) , (�Q! �P);
// that is, a conditional and its contrapositive are logically equivalent.

Proof. (that the Generalized Conditional Syllogism is a valid argument form)
If the conclusion P[1]!P[k þ 1] is False, then P[1] is True and P[k þ 1] is

False. Let j be the smallest index where P[j] is False, then 1 < j and j <¼ k þ 1.

// Must there be a smallest such index? A first case where P[j] is False?

100 3 Boolean Expressions, Logic, and Proof

By this choice of j, we know that P[j � 1] is not False. Since 1 <¼ j − 1 <¼ k,
“P[j � 1]!P[j]” is one of the premises, where P[j � 1] is True and P[j] is False.
Therefore the premise P[j � 1]!P[j] is False. ▯

// Often this argument a direct proofð Þ takes a less formal, less repetitive, and more

// compact shape:

//
// If P 1½ � OR “Suppose” or “Assume” P 1½ �:
// then P 2½ �: OR “Hence” or “So” or “Therefore” P 2½ �:
// Then P 3½ �: 00

// . . . 00

// Then P kþ 1½ �:
// KP 1½ � ! P kþ 1½ �

Proving a conditional statement by showing its contrapositive is True seems
strange but is correct. This “inverted” method of argument is more pronounced
(and more counterintuitive) in an

3.5.2 Indirect Proof

This argument has the form

�P ! Q
�P ! �Q
KP // Can this be valid?

That this form is valid (independent of the meaning of P and Q) is shown by the
following truth table.

// This truth table actually shows that [(�P!Q) ^ (�P! �Q)] , P.
// Modus tollens shows that [(�P!Q) ^ (�Q)]) P.

Perhaps the most famous application of this method of proof is in the follow-
ing story. Pythagoras, renowned for his theorem about right-angled triangles,

3.5 Examples of Proofs 101

established a school at Syracuse (in Italy) about 500 BC. Actually, it was more
like a monastery. Mathematics was studied but numbers were revered. Numbers
(for these ancient scholars) were the positive integers. One of their beliefs about
numbers was that any two line segments were commensurable – that is, there is
some unit of length such that both line segments were an integer number of units
long. However, some unknown student showed that the diagonal and side of any
square are not commensurable.

d s

s

If the diagonal were d units long and the side were s units long, then by Pythagoras’
famous theorem,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s2

p
¼

ffiffiffiffiffiffiffi
2s2

p
¼

ffiffiffi
2

p
� s and so

ffiffiffi
2

p
¼ d=s:

Thus, if the diagonal and side of a square were commensurable, then
ffiffiffi
2

p
would be a

rational number. But the student proved

Theorem 3.5.4:
ffiffiffi
2

p
is an irrational number.

Proof. Suppose that
ffiffiffi
2

p
were a rational number. // Suppose �P.

Then
ffiffiffi
2

p
may be written as a ratio of two integers; that is,ffiffiffi

2
p

¼ A/B where both A and B are integers and B 6¼ 0:

Because
ffiffiffi
2

p
is positive, both A and B may be taken to be positive. Then we could

divide both A and B by GCD(A,B) and write the fraction in “lowest terms”. Thus,
we have

if
ffiffiffi
2

p
is a rational number

then 9a; b 2 P such that
ffiffiffi
2

p
¼ a=b and GCD a; bð Þ ¼ 1: // This is �P ! Q:

On the other hand, if
ffiffiffi
2

p ¼ a=b where a,b 2 P, then

ffiffiffi
2

p
� b ¼ a // multiplying both sides by b

so 2� b2 ¼ a2; // squaring both sides
that is; a2 ¼ 2� b2:

102 3 Boolean Expressions, Logic, and Proof

Then, since a2 is even, a itself must be even.
// the contrapositive of Theorem 3.5.3

Hence, a ¼ 2r for some integer r, and

2� b2 ¼ a2 ¼ 2rð Þ2¼ 4� r2;

so b2 ¼ 2� r2: // an even integer

Then, since b2 is even, b (too) must be even. // again by Theorem 3.5.3
We’ve shown that

if
ffiffiffi
2

p
¼ a=b; then GCD a; bð Þ 6¼ 1;

which is logically equivalent to � ffiffiffi
2

p ¼ a/b
� �

and GCDða; bÞ ¼ 1ð Þ� �
. Thus, we

have

if
ffiffiffi
2

p
is a rational number;

then 8a; b 2 P either
ffiffiffi
2

p
6¼ a=b or GCD a; bð Þ 6¼ 1: // This is �P ! �Q:

Therefore,
ffiffiffi
2

p
is not a rational number. ▯

Because this was heresy at the academy in Syracuse, the clever student was “cast
out”; some say thrown off a cliff into the sea, but maybe “cast out” just means
expelled.

// A similar indirect argument [and the prime factorization theorem]
// can be used to prove two other theorems:
//X if p is prime, then

ffiffiffi
p

p
is irrational, and [the more general assertion]

//X if n is a positive integer, then
ffiffiffi
n

p
is either an integer or is irrational.

// Almost all machine calculations involving square roots will entail round-off
// error.

We will do a few more examples of indirect proofs. The pattern of these
arguments to prove some assertion P is:
1. Assume �P [or suppose P is False].
2. Using that assumption, deduce Q.
3. Again, using that assumption (if necessary), deduce �Q.
4. Conclude P.

The next example of an indirect proof is an ancient theorem concerning prime
numbers, but first let’s look at an ancient algorithm for determining all primes <= n
known as the sieve of Eratosthenes (276–195 BC):
Step 1. Write down all the integers from 2 to n and set p ¼ 2. // the smallest prime
Step 2. While (p2 <¼ n)

– Strike out all multiples of p beginning at p2 // They cannot be prime.
– Find the first number q > p that’s not struck out. // q will be prime.
– Set p ¼ q.

3.5 Examples of Proofs 103

Now, all the integers that remain (the ones not struck out) are primes.
Walk through when n = 25:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 // p ¼ 2

2 3 �4 5�6 7�8 9 �1�0 11 �1�2 13 �1�4 15 �1�6 17 �1�8 19 �2�0 21 �2�2 23�2�4 25 // p ¼ 3

2 3�4 5�6 7�8�9 �1�0 11 �1�2 13 �1�4 �1�5 �1�6 17 �1�8 19 �2�0 �2�1 �2�2 23 �2�4 25 // p ¼ 5

2 3�4 5�6 7�8�9 �1�0 11 �1�2 13 �1�4 �1�5 �1�6 17 �1�8 19 �2�0 �2�1 �2�2 23 �2�4 �2�5 // p ¼ 7

The primes <¼ 25 are the nine integers that remain:

2 3 5 7 11 13 17 19 23

If we imagine this process being done on all the integers >¼ 2. Each time we
find a new prime, an infinite number of multiples of it are struck out. Is it
conceivable that after a certain (large) number of primes have been discovered,
all larger numbers have been struck out? And there are no more primes? Is there a
largest prime?

Theorem 3.5.5: There is an infinite number of primes.

Proof. Suppose that there were only a finite number of primes; let N be that
number. Then the set of primes may be indexed so that

p1; p2; p3; . . . ; pNð Þ is a list of all primes: // This isQ:

Now consider the integer K¼ (p1� p2� p3�…� pN)þ 1, the product of all the
primes plus one. No prime number in the list divides evenly into K because KMOD
p ¼ 1 for each p in the list. But K is a positive integer greater than one, so either K is
prime or K has a smallest proper divisor q (which must be a prime). Thus, there is a
prime p* that divides evenly into K. Since p* cannot be in the list,

p1; p2; p3; . . . ; pNð Þ is not a list of all primes: // This is �Q:

Therefore, the number of primes is infinite. ▯

3.5.3 Cantor’s Diagonalization Process

Our next example of an indirect proof illustrates Cantor’s Diagonalization Process.
Recall from Chap. 2 that two sets A and B have the same cardinality (size) if and
only if there is a function f:A!B that is one to one and onto. We are going to show
you two infinite sets that cannot have the same cardinality.

104 3 Boolean Expressions, Logic, and Proof

It would seem that the decimal expansion of every real number r between 0 and 1
corresponds to a sequence of digits; that is,

r ¼ :d�1d�2d�3. . .

where each d−j is in D ¼ {0, 1, … , 9}. Sometimes the sequence terminates and
sometimes it continues forever.

Let S denote all possible infinite sequences with domain P and co-domain D.

Theorem 3.5.6: There cannot exist a function from P onto S.

// The (infinite) size of S is not equal to the (infinite) size of P; S is bigger.

Proof. Suppose that there were a function f from P onto S. Then all the elements of
S can be indexed using f so that // setting Sj ¼ f(j) for each j 2 P

S ¼ Sj : j 2 P
� �

: // This isQ:

// We will show that this “equation” is not correct by constructing a sequence T
// that is in S but is different from every Sj.

If j is any (fixed) positive integer, Sj is an infinite sequence of digits, say

Sj ¼ dj1 ; dj2 ; dj3 ; dj4 ; . . . ; djj; . . .
� �

:

Let T ¼ (t1, t2, t3, t4, …) be the sequence of digits where for each j 2 P, tj ¼
(9 − djj). Then T 2 S because each entry tj 2 D. But for each k 2 P, the sequence
T 6¼ Sk because the kth entry in T is 6¼ the kth entry in Sk; that is,

tk ¼ 9� dkkð Þ 6¼ dkk: // If 9� x ¼ x; then x ¼ 9=2 =2 0::9f g:
Hence; S 6¼ fSj : j 2 Pg: // This is �Q:

Therefore, there is no function from P onto S. ▯

There is an elaboration of this argument that shows that there are more functions
from P into {0..9} (or into P, or even into {0,1}) than there are computer programs
(in any language, of any finite length). Therefore, there are (infinitely many)
functions whose values cannot be computed (by computer programs)!

This theorem shows that there are infinite sets of different sizes (cardinalities).

// There are several “levels” of infinity?

Our last example of an indirect proof is

Theorem 3.5.7: There is no smallest positive rational number.

Proof. Suppose there were a smallest positive rational number, let R0 be that
number. Then

R0 is the smallest positive rational number: // This is Q:

3.5 Examples of Proofs 105

Then, since 0 < ½ < 1 and since R0 is positive,

0 ¼ 0�R0 < 1=2�R0 < 1�R0 ¼ R0:

If we let S ¼ ½ � R0, then S is a rational number, S is positive, and S is less
than R0. So

R0 is not the smallest positive rational number: // This is �Q:

Therefore, there is no smallest positive rational number. ▯

// There is no smallest positive real number either
// � just replace the word “rational” by “real” throughout the above argument.
// But in every machine, there is a smallest positive representable number.

On the other hand, there is a smallest positive integer, namely 1. A stronger form
of this statement is an axiom for the integers called

The Well-Ordering Principle:

Every nonempty subset of positive integers has a smallest element.

The Most Important Ideas in This Section.
A proof is an attempt to strengthen confidence that a certain statement is True
to the point of certainty. Statements that can be proved to be True are known
as theorems.

Several more patterns of argument were shown to be valid, and examples
were given with content and meaning. Disjunctive Syllogism is extended to
Proof by Cases. Conditional Syllogism is generalized and expanded to the
idea of a direct proof. Proving a conditional statement by showing its
contrapositive is True is generalized and expanded to the idea of an indirect
proof, and several examples were given.

The section ends with the Well-Ordering Principle, the basis for Mathe-
matical Induction and Strong Induction given in the next section; these may
be the most useful argument forms we’ll present in this book.

3.6 Mathematical Induction

Mathematical Induction is used to prove universal assertions of the form

8 integers n>¼ a, PðnÞ

where P is some predicate whose domain is (or includes) the interval {a.. }. The
form of the argument is

106 3 Boolean Expressions, Logic, and Proof

PðaÞ
PðkÞ ! Pðkþ 1Þ for 8k 2 fa:: g
K 8n 2 fa:: g PðnÞ

The first premise asserts that

the predicate is True for the one value, a, the smallest element in {a.. }.

The second premise asserts that

if P is True for any particular value k 2 a::f g;
then P must also be True for the next value; kþ 1:

We find that proofs by Mathematical Induction are most clearly presented as a
three-step method where the conditional premise is divided into two parts.
Step 1. Prove that P(a) is True. // Do the “basis” step.
Step 2. Assume 9 k 2 {a.. } where P(k) is True. // State the “inductive hypothesis”.
Step 3. Use that assumption to prove that P(k þ 1) is also True.

// Do the “induction” step:

// Step 1 is done by substituting the value of a into the predicate.
//
// Step 2 is written with an existential quantifier to show we’re not assuming
// what we intend to prove (the universal assertion),
// and is done by substituting a single but unspecified value
// k into the predicate. // the magic of algebra again
//
// Step 3 is the hard part and usually involves some algebra and some argument.

Let’s look at an instance where we can devise a universal conjecture and then
construct its proof by Mathematical Induction.

Example 3.6.1: Comparing n2 and 2n

n n2 2n
0 0 1
1 1 2
2 4 ¼ 4

3 9 > 8

4 16 ¼ 16

5 25 32

6 36 64

// In the table, n2 < 2n except for three cases: n ¼ 2, 3, and 4.
// Since 2n grows larger faster than n2, for large n it’s likely that n2 < 2n. In fact,

3.6 Mathematical Induction 107

Theorem 3.6.1: 8 integers n >¼ 5, n2 < 2n.

// Here, a ¼ 5 and P(n) is the Boolean expression “n2 < 2n”.
// P(n) may be evaluated for any real number n, so P(n) is defined for 8n 2 {a.. }.

Proof. // by Mathematical Induction
Step 1. If n ¼ 5, then n2 ¼ 25 < 32 ¼ 2n. // P(5) is True.
Step 2. Assume 9 k 2 {5…}where k2 < 2k. // where P(k) is True
Step 3. If n ¼ k þ 1, then

n2 ¼ kþ 1ð Þ2 ¼ k2 þ 2kþ 1
< k2 þ 2kþ k // k>¼ 5 so k> 1:
¼ k2 þ 3k
< k2 þ k� k // k>¼ 5 so k> 3:
¼ k2 � 2
< 2k � 2 // by Step 2:
¼ 2kþ 1 ¼ 2n:

// If n ¼ k þ 1, then n2 < 2n; that is, P(k þ 1) is True.

Therefore, 8 integers n >¼ 5, n2 < 2n. ▯

//X Is n < 2n for 8 integers n 2 N?
//X Is n2 < 3n for 8 integers n 2 N?

The validity of Mathematical Induction as an argument form is based on the
Well-Ordering Principle for integers. We can use it to prove the contrapositive of
“if all the premises are True, then the conclusion must be True”.

// We will show that if the conclusion is False,
// then one or other of the two premises must be False.

If “8n 2 {a.. } P(n)” is not True, then 9 n 2 {a.. } where P(n) is False. Let

Y ¼ n 2 a::f g: PðnÞ is Falsef g:

Then Y is a nonempty subset of the interval of integers {a.. }.

// The value of a might be negative and Y might include some negative numbers.

Let

X ¼ 1þ n� a: n 2 Yf g:
When n >¼ a, 1 þ n − a >¼ 1 þ 0 > 0. Therefore, X is a nonempty subset of
positive integers, and by the Well-Ordering Principle, X has a smallest element x.
This x must equal 1 þ n* − a for some n* 2 Y.

// If Y had an element q < n*, then X would have an element
// w = 1 þ q − a < 1 þ n* − a = x.
// If n* is not the smallest element of Y, then x is not the smallest element of X;
// that is, if x is the smallest element of X, then n* is the smallest element of Y.

108 3 Boolean Expressions, Logic, and Proof

Because n* is the smallest element of Y,

P n�ð Þ is False; but

if a<¼ n< n�; then PðnÞ is not False:

// In fact, PðaÞ ^ P aþ 1ð Þ ^ . . . ^ P n� � 1ð Þ would be True:

Either n* ¼ a or n* >¼ a þ 1.
If n* ¼ a, then the first premise is False. // P(a) is False.
If n* >¼ a þ 1, then

n� � 1>¼ a, P n� � 1ð Þ is True but P n�ð Þ is False;

and so the conditional statement “P(n* � 1)!P(n*)” is False. But then the
second premise,

“PðkÞ ! P kþ 1ð Þ for 8k 2 a::f g”

is False because 9 k 2 {a.. }where P(k)!P(k þ 1) is False, namely k ¼ n* −1.
Therefore, Mathematical Induction is a valid form of argument for any predicate

P and any interval {a.. }. ▯

Mathematical Induction [which we’ll abbreviate to MI] is a technique for
proving universal statements. Often it is of little help in discovering such theorems.
However, when mathematical objects of size (k þ 1) are constructed (algorithmi-
cally) from objects of size k, many properties of all such objects can be easily
proved using MI. Mathematical Induction is particularly useful in analyzing
algorithms.

The rest of this section is a collection of proofs by Mathematical Induction.
Section 3.7 gets back to algorithms and proving their correctness. The next few
examples prove formulas for series.

Suppose we’d like to find a formula for the sum of the integers from 1 to n.
Consider the array of naughts and crosses:

o þ þ þ þ þ
o o þ þ þ þ
o o o þ þ þ
o o o o þ þ
o o o o o þ

Counting from the top row down, the number of o’s is (1 þ 2 þ 3 þ 4 þ 5), and
counting from the bottom row up, the number of þ’s is (1 þ 2 þ 3 þ 4 þ 5).
The whole array is 5 rows where each row contains 6 symbols. Since the number
of symbols equals the number of o’s plus the number of þ’s, we have

1þ 2þ 3þ 4þ 5ð Þþ 1þ 2þ 3þ 4þ 5ð Þ ¼ 5 6ð Þ;
so 1þ 2þ 3þ 4þ 5ð Þ ¼ 5 5þ 1ð Þ=2:
This pattern generalizes to 1 þ 2 þ 3 þ. . .þ n ¼ n(n þ 1)/2.

3.6 Mathematical Induction 109

However, before we continue, we want to clarify the conventions that are usually
followed when interpreting the ellipses in the formulas like the one on the left-hand
side. To say that

“1þ 2þ 3þ . . . þ n” means

“add the integers, beginning with 1 and then 2 and then 3;

and so on, going up 1 unit at a time but stopping at n”:

makes sense when n is bigger than 3. // What about smaller values?

When n ¼ 3 “1þ 2þ 3þ . . . þ n” means “1þ 2þ 3”; // start at 1 and stop at 3:

When n ¼ 2 “1þ 2þ 3þ . . . þ n” means “1þ 2”; // start at 1 and stop at 2:

When n ¼ 1 “1þ 2þ 3þ . . . þ n” means “1”; // start at 1 and stop at 1:

When n ¼ 0 “1þ 2þ 3þ . . . þ n” would then mean

“add the integers starting at 1 going up 1 unit at a time but stopping at 0”.

In this case, no integers are added. When n ¼ 0, “1 þ 2 þ 3 þ … þ n” is usually
described as an “empty” sum. Empty sums are usually given the “default value” of
zero.

Theorem 3.6.2: 8n 2 P, 1 þ 2 þ 3 þ … þ n ¼ n(n þ 1)/2.

// Here a ¼ 1 and P(n) is an equation with a left-hand side (LHS)
// and a right-hand side (RHS).

Proof. // by Mathematical Induction
Step 1. If n ¼ 1, then LHS ¼ 1 and RHS ¼ 1(1 þ 1)/2 =1. // P(1) is True.
Step 2. Assume 9 k 2 P where 1þ 2þ 3þ…þ k ¼ k(k þ 1)/2.

// where P(k) is True
Step 3. If n ¼ k þ 1, then

LHS ¼ 1þ 2þ 3þ . . . þ k þ kþ 1ð Þ
¼ 1þ 2þ 3þ . . . þ kf g þ kþ 1ð Þ
¼ k kþ 1ð Þ=2 þ kþ 1ð Þ // by Step 2

¼ k kþ 1ð Þ=2 þ kþ 1ð Þ� 2=2

¼ k kþ 1ð Þþ kþ 1ð Þ2
2

¼ kþ 1ð Þ kþ 2½ �
2

¼ kþ 1ð Þ kþ 1ð Þþ 1½ �=2
¼ RHS: // in the predicate P

// Therefore, 8n 2 P, 1 þ 2 þ 3 þ … þ n ¼ n(n þ 1)/2. ▯

110 3 Boolean Expressions, Logic, and Proof

// Is there a formula for the sum of the first n even positive integers?
// 2þ 4þ . . . þ 2nð Þ ¼ 2 1þ 2þ . . . þ n½ � ¼ 2 n nþ 1ð Þ=2½ � ¼ n nþ 1ð Þ:
// Is there a formula for the sum of the first n odd positive integers?

Consider the 5 � 5 square array below and the “L”-shaped regions inside it –
they each contain an odd number of small squares.

1
3
5
7
9

It looks as though the sum of the first 5 odd positive integers equals 52 ¼ 25.

// and the sum of the first 4 odd positive integers equals 42 ¼ 16,
// and the sum of the first 3 odd positive integers equals 32 ¼ 9.
// Is the sum of the first n odd positive integers always equal n2?

The jth odd positive integer is (2j − 1). // j >¼ 1.

// This is obvious, but could be proved by Mathematical Induction.

Theorem 3.6.3: 8n 2 P, 1 þ 3 þ 5 þ … þ (2n − 1) ¼ n2.

// Here a ¼ 1 and P(n) is an equation with a LHS and a RHS.

Proof. // by Mathematical Induction
Step 1. If n ¼ 1, then LHS ¼ 1 and RHS ¼ 12 = 1. // P(1) is True.
Step 2. Assume 9 k 2 P where 1þ 3þ 5 þ…þ (2k − 1) ¼ k2.

// that is, P(k) is True
Step 3. If n ¼ k þ 1, then

LHS ¼ 1þ 3þ 5þ . . . þ 2k � 1ð Þ þ 2 kþ 1ð Þ � 1½ �
¼ 1þ 3þ 5þ . . . þ 2k � 1ð Þf g þ 2kþ 2� 1½ �
¼ k2 þ 2kþ 2� 1½ � // by Step 2

¼ k2 þ 2kþ 1

¼ kþ 1ð Þ2
¼ RHS: // in the predicate P

// Therefore, 8n 2 P, 1 þ 3 þ 5 þ … þ (2n − 1) ¼ n2. ▯

When S is a sequence with domain {a.. } and co-domain R,

S is an arithmetic sequence means
there is a number b such that for all n >¼ a, S(n þ 1) ¼ S(n) þ b.

// S ¼ (6, 8, 10, 12, …) is an arithmetic sequence with b ¼ 2.
// Each entry, after the first, is obtained from the previous entry by adding the

3.6 Mathematical Induction 111

// constant value b, which is called “the common difference”.
// The equation “S(n þ 1) ¼ S(n) þ b” is an example of a recurrence equation [RE].

If a ¼ 0 and S0 equals some initial value, I, then

S1 ¼ Iþ b;
S2 ¼ Iþ bð Þþ b ¼ Iþ 2b;
S3 ¼ Iþ 2bð Þþ b ¼ Iþ 3b;
S4 ¼ Iþ 3bð Þþ b ¼ Iþ 4b;

and in general, the entries in an arithmetic sequence are given by the formula
Sn ¼ I þ nb.

Theorem 3.6.4: If S is an arithmetic sequence with common difference b, then
8n 2 N, Sn ¼ I þ nb where I ¼ S0.

// I is the initial value in S.
// Here a ¼ 0 and P(n) is the equation Sn ¼ I þ nb.

Proof. // by Mathematical Induction, using the RE: Sqþ1 ¼ Sq þ b 8q 2 N.
Step 1. If n ¼ 0, then Sn ¼ I and RHS ¼ I þ 0 � b = I. // P(0) is True.
Step 2. Assume 9 k 2 N where Sk ¼ I þ kb. // P(k) is True.
Step 3. If n ¼ k þ 1, then

Sn ¼ Skþ 1 ¼ Sk þ b // using the RE

¼ Iþ kbf gþ b // by Step 2

¼ Iþ kbþ bð Þ
¼ Iþ kþ 1ð Þb
¼ RHS: // in the predicate P

// Therefore, 8n 2 N, Sn ¼ I þ nb ¼ S0 þ nb. ▯
We can also give a formula for the sum of the first (nþ 1) entries in an arithmetic

sequence.

Theorem 3.6.5: If S is an arithmetic sequence, then
8n 2 N, S0 þ S1 þ S2 þ … þ Sn = (n þ 1)[S0 þ Sn]/2.

// Here a = 0 and P(n) is the equation S0 þ S1 þ S2 þ… þ Sn ¼ (n þ 1)[S0 þ Sn]/2.

Proof. // by Mathematical Induction
Assume that S is a arithmetic sequence with common difference b.

Step 1. If n ¼ 0, then LHS¼ S0 and RHS¼ (0þ 1)[S0þ S0]/2¼ S0.
// P(0) is True.

Step 2. Assume 9 k 2 N where S0þ S1þ S2þ…þ Sk¼ (k þ 1)[S0 þ Sk]/2.

112 3 Boolean Expressions, Logic, and Proof

Step 3. If n ¼ k þ 1, then

LHS ¼ S0 þ S1 þ S2 þ . . . þ Sk þ Skþ 1

¼ S0 þ S1 þ S2 þ . . . þ Skf g þ Skþ 1 � 2=2

¼ S0 þ S1 þ S2 þ . . . þ Skf g þ Skþ 1 þ Skþ 1f g=2
¼ kþ 1ð Þ S0 þ Sk½ �=2 þ Skþ 1 þ Skþ 1f g=2 // by Step 2

¼ ðkþ 1Þ½S0 þ Sk� þ fS0 þðkþ 1Þbgþ Skþ 1

2
// from Theorem 3.6.4

¼ ½ðkþ 1Þþ 1�S0 þðkþ 1Þ½Sk þ b� þ Skþ 1

2

¼ ½ðkþ 1Þþ 1�S0 þðkþ 1ÞSkþ 1 þ Skþ 1

2
// from the RE

¼ kþ 1ð Þþ 1½ � S0 þ Skþ 1½ �=2
¼ RHS: // in the predicate P

// Therefore, 8n 2 N, S0 þ S1 þ S2 þ … þ Sn ¼ (n þ 1)[S0 þ Sn]/2. ▯

// The average of all the terms S0, S1, S2, … , Sn will be (S0 þ Sn)/2,
// which is the average of the first and last terms.

// S = (0,1,2,3,…,n) is an arithmetic sequence with S0 ¼ I ¼ 0 and b ¼ 1.
// Hence, 0 þ 1 þ 2 þ … þ n ¼ (n þ 1)[0 þ n]/2 ¼ n(n þ 1)/2.

// as in Theorem 3.6.2
// S ¼ (�1,1,3,5,…,[2n � 1]) is an arithmetic sequence with S0 ¼ I ¼ (�1)
// and b ¼ 2
// Hence; �1þ 1þ 3þ 5þ . . . þ 2n� 1ð Þ ¼ nþ 1ð Þ �1ð Þþ ð2n� 1Þ½ �=2

¼ nþ 1ð Þ 2n� 2½ �=2
¼ nþ 1ð Þ n� 1ð Þ
¼ n2 � 1:

// Therefore; 1þ 3þ 5þ . . . þ 2n� 1ð Þ ¼ n2: // as in Theorem 3.6.3

Theorem 3.6.6: 8n 2 P, (1)(2) þ (2)(3) þ (3)(4) þ … þ (n)(nþ 1)
¼ n(n þ 1)(n þ 2)/3.

Proof. // by Mathematical Induction {a ¼ 1 and P(n) is an equation}
Step 1. If n ¼ 1, then LHS ¼ (1)(2) ¼ 2 and RHS ¼ (1)(2)(3)/3 ¼ 2.
Step 2. Assume 9 k 2 P where

1ð Þ 2ð Þþ 2ð Þ 3ð Þþ 3ð Þ 4ð Þþ . . . þðkÞ kþ 1ð Þ ¼ k kþ 1ð Þ kþ 2ð Þ=3:

3.6 Mathematical Induction 113

Step 3. If n ¼ k þ 1, then

LHS ¼ 1ð Þ 2ð Þþ 2ð Þ 3ð Þþ 3ð Þ 4ð Þþ . . . þðkÞ kþ 1ð Þþ kþ 1ð Þ kþ 2ð Þ
¼ k kþ 1ð Þ kþ 2ð Þ=3 þ kþ 1ð Þ kþ 2ð Þ // by Step 2

¼ kþ 1ð Þ kþ 2ð Þ k=3þ 1½ �
¼ kþ 1ð Þ kþ 2ð Þ kþ 3ð Þ=3½ �
¼ kþ 1ð Þ kþ 1ð Þþ 1½ � kþ 1ð Þþ 2½ �=3: ¼ RHS:

// Therefore, 8n 2 P, (1)(2)þ (2)(3)þ (3)(4)þ…þ (n)(nþ 1)¼ n(nþ 1)(nþ 2)/3.
▯

Is there a formula for the sum of the squares of the first n positive integers?

Xn
j¼1

ðjÞðjþ 1Þ ¼
Xn
j¼1

fj2 þ jg ¼ 12 þ 1

þ 22 þ 2
þ 32 þ 3
þ 42 þ 4
. . .

þ n2 þ n

¼
Xn
j¼1

j2 þ
Xn
j¼1

j:

Therefore, nðnþ 1Þðnþ 2Þ=3 ¼Pn
j¼1

j2 þ nðnþ 1Þ=2, and hence,

Xn
j¼1

j2 ¼ n nþ 1ð Þ nþ 2ð Þ=3� n nþ 1ð Þ=2 ¼ n nþ 1ð Þ nþ 2ð Þ=3� 1=2f g

¼ n nþ 1ð Þ nþ 2ð Þ � 1=2� 3f g=3 ¼ n nþ 1ð Þ nþ 1=2f g=3
¼ n nþ 1=2ð Þ nþ 1ð Þ=3: // or n nþ 1ð Þ 2nþ 1f g=6

Recall from Chap. 2 that when S is a sequence with domain {a.. } and
co-domain R,

S is a geometric sequence means

there is a number r such that for all n>¼ a; S nþ 1ð Þ ¼ r� SðnÞ:

// S ¼ (4, 8, 16, 32, …) is an geometric sequence with r ¼ 2.
// Each entry, after the first, is obtained from the previous entry by multiplying by
// the constant value r, which is called “the common ratio.”
// The equation “S(n þ 1) ¼ r � S(n)” is another example of a
// recurrence equation [RE].

If a ¼ 0 and S0 equals some initial value, I, then we can prove

114 3 Boolean Expressions, Logic, and Proof

Theorem 3.6.7: If S is a geometric sequence with common ratio r, then 8n 2 N,
Sn ¼ rn � I where I ¼ S0.

Proof. // by Mathematical Induction, using the RE: Sqþ1 ¼ r � Sq 8q 2 N.
// Here a ¼ 0 and P(n) is the equation Sn ¼ rn � I.

Step 1. If n ¼ 0, then Sn ¼ I and RHS ¼ r0 � I ¼ 1 � I = I. // P(0) is True.
Step 2. Assume 9 k 2 N where Sk ¼ rk � I.
Step 3. If n ¼ k þ 1, then

Sn ¼ Skþ 1 ¼ r� Sk // using the RE

¼ r�frk � Ig // by Step 2

¼ fr� rkg� I

¼ rkþ 1 � I
¼ RHS:

// Therefore, 8n 2 N, Sn ¼ rn � I. ▯

//X This can be generalized as follows:
// If Sa = I and 8q 2 {a.. } Sqþ1 ¼ r � Sq,
// then 8n 2 {a.. }, Sn ¼ rn � K where K ¼ I / ra.

Is there a compact formula for the sum of the first (n þ 1) consecutive entries in a
geometric sequence?

Theorem 3.6.8: If r 6¼ 1, then 8n 2 N, Iþ rIþ r2Iþ . . . þ rnI ¼ rnþ 1 � 1
r� 1

� I.

Proof. // by Mathematical Induction where r − 1 6¼ 0, a ¼ 0
// and P(n) is an equation

Step 1. If n ¼ 0, then LHS ¼ I and RHS ¼ r0þ 1 � 1
r � 1

� I ¼ I.

Step 2. Assume 9 k 2 N where Iþ rIþ r2Iþ . . . þ rkI ¼ rkþ 1 � 1
r � 1

� I.

Step 3. If n ¼ k þ 1, then

LHS ¼ Iþ rIþ r2Iþ . . . þ rkIþ rkþ 1I

¼ rkþ 1 � 1
r � 1

� I þ rkþ 1I� r � 1
r � 1

// by Step 2

¼ rkþ 1 � 1þ rkþ 1r � rkþ 1
� �

r � 1
� I

¼ r½kþ 1� þ 1 � 1
r � 1

� I ¼ RHS:

// Therefore, 8n 2 N, Iþ rIþ r2Iþ . . . þ rnI ¼ rnþ 1 � 1
r � 1

� I: ▯

3.6 Mathematical Induction 115

// If r ¼ 1, then 8n 2 N, I þ rI þ r2I þ … þ rnI ¼ ? (n þ 1)I?

// If I ¼ 1 and r ¼ 2, 1þ 2þ 22þ 23 þ … þ 2n ¼ 2nþ1 − 1.
// What would that last equation look like when written in positional notation in
// base 2?

// If I ¼ 1 and r ¼ 10, 1 þ 10 þ 102 þ 103 þ … þ 10n ¼ (10nþ1 − 1)/9.
// What would that last equation look like when written in positional notation in
// base 10?

//X Is there a formula for the sum of the any (n þ 1) consecutive entries in a
// geometric sequence?

Are there formulas for sequences defined by recurrence equations like the one
we saw for the number of disc transfers in the Towers of Hanoi problem?

Theorem 3.6.9: If S0 ¼ I and 8q 2 N Sqþ1 ¼ 2 � Sq þ b, then 8n 2 N,
Sn ¼ 2n � [I þ b] − b.

Proof. // by Mathematical Induction
// here a ¼ 0 & P(n) is the equation Sn ¼ 2n � [I þ b] − b.

Step 1. If n ¼ 0, then Sn ¼ I and RHS ¼ 20 � [I þ b] − b ¼ I. // P(0) is True.
Step 2. Assume 9 k 2 N where Sk ¼ 2k � [I þ b] − b.
Step 3. If n ¼ k þ 1, then

Sn ¼ Skþ 1 ¼ 2� Sk þ b // using the RE

¼ 2� 2k � Iþ b½ � � b
� �þ b // by Step 2

¼ 2� 2k � Iþ b½ � � 2bþ b

¼ 2kþ 1 � Iþ b½ � � b
¼ RHS:

// Therefore, 8n 2 N, Sn ¼ 2n � [I þ b] − b. ▯

This is the recurrence equation for counting the number of moves required in
the Towers of Hanoi problem when b is set to 1. S1 (the number for moving a tower
with 1 disc) equals 1 so we may solve an equation for a value of I and thereby
prove the formula we “conjectured” in Chap. 2:

Sn ¼ 2n � Iþ b½ � � b

S1 ¼ 21 � Iþ b½ � � b ¼ 2Iþ 2b� b ¼ 2Iþ b ¼ 2Iþ 1
1 ¼ 2Iþ 1;

so I ¼ 0 and Sn ¼ 2n � 0þ 1½ � � 1 ¼ 2n � 1:

This is the formula for T(n) in Chap. 2.

// Is S0 ¼ T(0), the number for moving a tower with 0 discs?

116 3 Boolean Expressions, Logic, and Proof

After all these examples, we’re sure you recognize the pattern of a proof
by Mathematical Induction. But we want to show you (an example of) a slight
(but equivalent) variation called Strong Mathematical Induction, or just

3.6.1 Strong Induction

Strong Induction is used to prove assertions of the form

8 integers n>¼ a, PðnÞ

where P is some predicate whose domain is (or includes) the interval {a.. }. The
form of the argument is

PðaÞ
PðaÞ ^ P aþ 1ð Þ ^ . . . ^ PðkÞ½ � ! P kþ 1ð Þ for 8k 2 a::f g
K8n 2 fa:: g PðnÞ

The first premise asserts that

the predicate is True for the one value a, the smallest element in a::f g:

The second premise asserts that

if P is True for all integers from a up to any particular value k 2 a::f g;
then P must also be True for the next value, kþ 1:

We can present proofs by Strong Induction as before, but with a revised
inductive hypothesis.

Step 2. Assume 9 k 2 {a.. } where P(n) is True for all integers from a up to k.
// n 2 {a..k}.

// This is a much stronger assumption, so this form is called “Strong” Induction.

The validity of Strong Induction can be deduced from the Well-Ordering
Principle for integers with only a slight modification to the proof we gave of the
validity of ordinary MI.

// Why would we ever need this form?

Strong Induction is essential for proving the correctness of (many) recursive
algorithms. But here, we give a simple illustration of this method.

3.6 Mathematical Induction 117

Theorem 3.6.10: 8n 2 {2.. } either n is prime or n is a product of primes.

Proof. // by Strong Induction on n
// P(n) is the assertion “either n is prime or n is a product of primes”.

Step 1. If n ¼ 2, then n is prime. // P(2) is True.
Step 2. Assume 9 k 2 {2.. } where every integer in {2..k} either is a prime or is the

product of primes.
Step 3. If n ¼ k þ 1, then either k þ 1 is prime or not.
If k þ 1 is prime, then clearly P(k þ 1) is True.
Suppose that k þ 1 is not prime. Then k þ 1 has a proper divisor d; that is,

kþ 1 ¼ d�m for some integer m and 1 < d < kþ 1:

Since 0 < d ¼ d� 1< kþ 1 ¼ d�m, we have that 1 < m: // dividing by d

Since 1 < d, kþ 1 ¼ d�m> 1�m, we have that m < kþ 1:

Both d and m are in {2..k} and so the inductive hypothesis applies to them both;
that is,

d ¼ p1 � p2 � . . . � ps, where s >¼ 1 and each pi is a prime,

and m ¼ q1 � q2 � . . . � qt, where t >¼ 1 and each qj is a prime:

Then kþ 1 ¼ d�m ¼ p1 � p2 � . . . � psð Þ q1 � q2 � . . . � qtð Þ

which is a product of primes. Therefore, if k þ 1 is not prime, then P(k þ 1) is True.

// Thus, 8n 2 {2.. } either n is prime or n is a product of primes. ▯

// Both d and m are <¼ (k þ 1)/2 and are usually much smaller than k.
// We wanted to apply the inductive hypothesis to these two integers (not just to k),
// so this proof required the strong assumption of Strong Induction; in this
// argument, knowing P(k) is True is of no use at all in showing P(k þ 1) is True.

The Most Important Ideas in This Section.
Mathematical Induction is used to prove universal assertions of the form

8 integers n>¼ a, PðnÞ

and works in a very algorithmic fashion. The validity of Mathematical
Induction (and Strong Induction) is established from the Well-Ordering
Principle. This section gave many examples because the method is so impor-
tant. Strong Induction is often essential for proving the correctness of recur-
sive algorithms. Mathematical Induction itself is often used for proving the
correctness of algorithms as we show next.

118 3 Boolean Expressions, Logic, and Proof

3.7 Proofs Promised in Chap. 1

3.7.1 Russian Peasant Multiplication Is Correct

The purpose of the algorithm is to find the product of two input values M and N
where N is a positive integer. // The version in Chap. 1 assumed N > 1.

RPM can be given in pseudo-code as

Algorithm 3.7.1: Russian Peasant Multiplication #2

Begin
Total ← 0;
A ← M;
B ← N;
While (B > 1) Do
If (B MOD 2 ¼ 1) Then

Total ← Total þ A;
End;
A ← A � 2;
B ← B DIV 2;

End;
Return(Total þ A);

End.

// This version is slightly different; it doesn’t keep all the intermediate values of A
// and B; it adds the current A-value to the variable Total when the B-value is odd.

Walk through with M ¼ 27 and N ¼ 50.

B > 1 B mod 2 Total A B

- - 0 27 50

T 0 " 54 25

T 1 54 108 12

T 0 " 216 6

T 0 " 432 3

T 1 486 864 1

F (1)

// 50{10} ¼ 110 010{2}.
Return the value 1350 // 1350 ¼ 486 þ 864.

We know that after k ¼ blg(N)c iterations, the value of B must be 1, and the
while-loop will terminate.

// We want a formal mechanism to describe the action of a loop, iteration by
// iteration; something we can use to prove the correctness of algorithms
// containing loops.

A Loop invariant is a statement describing the variables involved in the loop
that is True after each iteration of the loop:

// And therefore, it must be True when the loop terminates.
// The truth-value of a loop invariant does not change (vary) with iterations of the
// loop. A loop invariant might be True before the loop is entered.

3.7 Proofs Promised in Chap. 1 119

Loop invariants provide a very potent technique for designing and analyzing
algorithms that contain loops. The Bisection Algorithm for finding an approximate
solution to an equation revised the values of the two variables A and B so that “there
is an exact solution between A and B” was a loop invariant. You will see many
more loop invariants in this book.

For the loop in RPM, we can prove that the equation “AB þ Total ¼ MN” is a
loop invariant.

Theorem 3.7.1: For any integer n, after n iterations of the loop in RPM,
AB þ Total ¼ MN. // This is P(n).

Proof. // by Mathematical Induction on n where n 2 {0.. }
Step 1. After n ¼ 0 iterations of the loop, // that is, before the loop is done once

AB þ Total ¼ MN þ 0 ¼ MN. // P(0) is True.

// Suppose that this equation has been True for the first few iterations.

Step 2. Assume 9 k 2 N such that after k iterations of the loop
AB þ Total ¼ MN.

// Now, what will happen on the next iteration, if there is one?

Step 3. Suppose there is another iteration, the k þ 1-st. // that is, B >¼ 2
The value of B at the beginning of this next iteration of the loop may be written

as 2Q þ R where R is either 0 or 1. Let A*, B*, and Total* denote the values of
these variables after this next iteration. Then

Total� ¼ TotalþRA; // R ¼ 1 , B is odd:
A� ¼ 2A;
B� ¼ Q: // Q ¼ bB=2c ¼ B DIV 2:

Hence; A�B�þTotal� ¼ 2Að Þ Qð Þþ TotalþRAð Þ
¼ A 2QþR½ � þTotal
¼ ABþTotal
¼ MN: // from Step 2

Therefore, 8n 2 N, after n iterations of the loop in RPM, AB þ Total = MN. ▯
When the while-loop finally terminates, B ¼ 1 and

MN ¼ ABþTotal // as we just saw

¼ A� 1þTotal ¼ TotalþA:

So the value returned by the algorithm is the product of the two input values M
and N. RPM is correct. If N is any positive integer, then the algorithm correctly
calculates the product MN.

// M may be any real number.

120 3 Boolean Expressions, Logic, and Proof

3.7.2 Resolving the Cake Cutting Conundrum

When N points are marked on the circumference of a circular cake and straight cuts
are made joining all pairs of these points, how many pieces of cake, P(N), are
produced? In Chap. 1, we tabulated the number of points and the number of pieces:

The number of pieces 6 points produce is 30 or 31; it’s only 30 if the three “longest”
cuts all pass through the center of the circle. The maximum number of pieces, Q(N),
will be obtained when no three cuts go through a single point. We will show you a
formula for Q(N).

// That equals 2N−1 for N ¼ 1,2,3,4 and 5 but never again.

Theorem 3.7.2: 8N 2 P, QðNÞ ¼ N
4

� �
þ N

2

� �
þ N

0

� �

Proof. // by Mathematical Induction on N where we follow the “convention” that

N
k

� �
¼ 0 unless 0<¼ k<¼ N:

// This notation was introduced in Chap. 2, to denote the number of k-subsets in
// an N-set

Step 1. If N ¼ 1, there is only one point on the circumference of the circular cake.
Then there are no pairs of distinct points, so no cuts are made. Hence the
number of pieces, Q(N), is 1. And the RHS

N
4

� �
þ N

2

� �
þ N

0

� �
¼ 1

4

� �
þ 1

2

� �
þ 1

0

� �
¼ 0þ 0þ 1 ¼ 1: // P 1ð Þ is True:

Step 2. Assume 9 k 2 P such that the number of pieces produced by straight cuts
joining all pairs of k points on the circumference of a circular cake and
no 3 cuts “meet” is

QðkÞ ¼ k
4

� �
þ k

2

� �
þ k

0

� �
// PðkÞ is True:

// Now, what will happen when one more point is added to k points on the
// circumference of a circular cake, and k more straight cuts are made from this
// k þ 1-st point to the other points already there?

N P(N)

1 1

2 2

3 4

4 8

5 16

6 ?

3.7 Proofs Promised in Chap. 1 121

Step 3. Suppose N = k þ 1; that is, suppose that on some particular circular cake,
there are kþ 1 points marked on the circumference. Index these points from
1 to k þ 1 clockwise around the cake. If straight cuts are made joining all
pairs of points 1 up to k, then Q(k) pieces are produced.

Now, k more straight cuts are made from point k þ 1 to the other points
numbered 1 to k. // How many new pieces are produced?

Suppose 1< j< k and consider the new cut from point kþ 1 to point j. If this cut
is made very slowly beginning at point kþ 1, when it reaches the first of the old cuts,
one old piece is divided in two, and one more piece is produced. As this new cut
continues, when it reaches the second of the old cuts, another old piece is divided in
two and one more piece is produced. As this new cut continues further, whenever it
reaches an old cut, another old piece is divided in two, and onemore piece is produced.
And finally, when this new cut leaves the last old cut it crosses, it continues to point j,
and another old piece is divided in two producing one more piece.

a

j+1

k+1

1

j–1

j

b

k

The number of old pieces divided into two new pieces by the new cuts from point
k þ 1 to the other points numbered 1 to k equals the number of old cuts crossed by
new cuts plus one for each old point. That is,

additional pieces ¼ # times a new cut crosses an old cutþ k:

// How many times do the new cuts cross old cuts?

If a new cut from point k þ 1 to point j crosses an old cut, the old cut must be
from a to b where 1 <= a < j < b <= k. Since neither a nor b is equal j, {a,j,b} is
a 3-subset of {1..k}. Furthermore, if {x,y,z} is any 3-subset of {1..k} where x < y
< z, then the new cut from point k þ 1 to point y crosses the old cut from x to z.
Therefore,

times a new cut crosses an old cut ¼ k
3

� �
:

122 3 Boolean Expressions, Logic, and Proof

Hence,

Qðkþ 1Þ ¼ QðkÞþ k

3

� �
þ k

¼ k

4

� �
þ k

2

� �
þ k

0

� �
þ k

3

� �
þ k // from Step 2

¼ k

4

� �
þ k

2

� �
þ k

0

� �
þ k

3

� �
þ k

1

� �
//

n

1

� �
¼ n 8n 2 P:

¼ k

4

� �
þ k

3

� �
þ k

2

� �
þ k

1

� �
þ k

0

� �
// 2k iff 0<¼ k<¼ 4

¼ kþ 1

4

� �
þ kþ 1

2

� �
þ k

0

� �
// the Bad Banana Theorem

// in Example 2.3.3

¼ kþ 1

4

� �
þ kþ 1

2

� �
þ kþ 1

0

� �
//

n

0

� �
¼ 1 8n 2 P:

¼ RHS:

Therefore, 8N 2 P, QðNÞ ¼ N
4

� �
þ N

2

� �
þ N

0

� �
. ▯

// The N points can always be arranged, so no three cuts go through a single point.
// If more than 2 cuts do go through a single point,
// # additional pieces is < # times new cuts cross old cuts þ k.

3.7.3 Casting Out Nines

For any positive integer K, let R(K) denote the sum of the digits in K; that is,

if K ¼ dada�1. . . d1d0 10f g where all the dj 2 0::9f g and da > 0;

then RðKÞ ¼ da þ da�1 þ . . . þ d1 þ d0: // 0< da <¼ RðKÞ 2 P:

// If K < 10, then K only has one digit, a ¼ 0 and R(K) ¼ K.

Suppose that K has more than one digit; that is, suppose a >¼ 1.

// We’ll show that 8a 2 P, K − R(K) ¼ 9Q where Q 2 P.

For each n 2 N, let Tn denote 1 þ 10 þ 102 þ 103 þ… þ 10n. // each Tn 2 P
// What is Tn{10}?

Then,

Tn ¼ 10nþ 1 � 1
� �

=9 and so 10nþ 1 � 1
� � ¼ 9Tn: // from Theorem 3.6.8

3.7 Proofs Promised in Chap. 1 123

Hence,

K � RðKÞ ¼
Xa
j¼0

dj10
j �
Xa
j¼0

dj ¼
Xa
j¼0

djð10j � 1Þ // but 100 � 1 ¼ 0

¼
Xa
j¼1

dj9Tj�1 ¼ 9�
Xa
j¼1

djTj�1 ¼ 9Q

where Q is the positive integer, d1T0 þ d2T1 þ … þ daTa − 1. // daTa − 1 > 0

The algorithm for casting out nines with an input N 2 P may be given in pseudo-
code as // to discuss the algorithm not to implement it

Algorithm 3.7.2: Casting Out Nines #2

Begin
j ← 0;
K[j] ← N;
While (K[j] >¼ 10) Do
K[jþ1] ← R(K[j]); // R(K) is evaluated here.
j ← jþ1;

End;
Return(K[j]); // This value is in {0..9}.

End.

Walkthrough with N ¼ 586 987 583.

j K[j]
0 586987583

1 59

2 14

3 5 return the value 5.

This algorithm generates a sequence of K-values in P where K[0] ¼ N and for
j >¼ 0, K[j þ 1] ¼ R(K[j]). The K-values decrease (by at least 9) with each iteration
so eventually, some K-value must be < 10. The while-loop must terminate; let
t denote the value j has when the loop terminates. When N itself is < 10, t ¼ 0. If the
output value is denoted by <N>, then <N> ¼ K[t] and K[t] is a positive integer
<¼ 9.

// Show that “9|(N − K[j])” is a loop invariant using MI on the number of
// iterations of the while-loop (starting from 0).

Theorem 3.7.3: 8N 2 P, <N> ¼ 9 precisely when N is divisible by 9 and, in all
other cases, <N> is the remainder obtained when N is divided by 9.

Proof. // We must prove: if <N> ¼ 9 then 9|N and
// if <N> 6¼ 9 then <N> ¼ N MOD 9 and is positive
// so N is not divisible by 9.
// We first show that 9 Q* 2 N such that N ¼ 9 � Q* þ <N>.

124 3 Boolean Expressions, Logic, and Proof

If t > 0, then for j ¼ 0, 1, 2, …, (t − 1), let Q[j] be the positive integer such that

9�Q j½ � ¼K j½ � � R K j½ �ð Þ
¼K j½ � � K jþ 1½ �:

Then;
Xt�1

j¼0

fK½j� � K½jþ 1�g ¼
Xt�1

j¼0

9�Q½j� ¼ 9�
Xt�1

j¼0

Q½j�

But
Xt�1

j¼0

K j½ � � K jþ 1½ �f g ¼ K 0½ � � K 1½ �f gþ K 1½ � � K 2½ �f gþ K 2½ � � K 3½ �f gþ . . .

. . . þ K t � 2½ � � K t � 1½ �f gþ K t � 1½ � � K t½ �f g
¼ K 0½ � � K t½ � // All the other terms “cancel out”:

¼ N � <N> :

// A series of differences like this is sometimes called a “telescoping series”
// because the sum of all the differences collapses into one special difference.

Letting Q* denote the positive integer Q[0] þ Q[1] þ Q[2] þ … þ Q[t − 1], we
have

N � <N> ¼ 9�Q� and so N ¼ 9�Q�þ <N>:

If t ¼ 0, then N ¼ <N>; so letting Q* ¼ 0, we again have N ¼ 9 � Q* þ <N>.
If <N> ¼ 9, then

N ¼ 9�Q�þ 9 ¼ 9� Q�þ 1ð Þ so 9jN: // Q�þ 1ð Þ 2 P:

If <N> 6¼ 9, then

N ¼ 9�Q�þ <N> where <N> is positive and< 9;

in these cases, <N> must be the remainder obtained when N is divided by 9 (and
because this remainder is positive, 9 cannot divide evenly into N). ▯

3.7.4 Euclid’s Algorithm for GCD Is Correct

The assertion underlying Euclid’s Algorithm (1.2.5) for finding the greatest
common divisor of two given positive integers x and y can be proven fairly easily.
In the argument that follows, all variables are assumed to represent integer values.
Let us begin by proving a lemma (a relatively small result to be used in proving
other, larger, and more important results).

3.7 Proofs Promised in Chap. 1 125

Lemma. If d is a common divisor of p and q then for any pair of integers a and
b, d divides evenly into pa þ qb.

Proof. If d is a common divisor of p and q, then there exist integers s and t such that
p ¼ d � s and q ¼ d � t. Then as þ bt is an integer, so d divides evenly into

d� asþ btð Þ ¼ dasþ dbt ¼ ds� aþ dt� b ¼ paþ qb: ▯

// If d is a common divisor of p and q, then d divides evenly into every “integer
// combination” of p and q (every number that can be expressed in the form
// pa þ qb where a and b are integers).

Theorem 3.7.4: (Euclid) For any two positive integers x and y, if x ¼ yq þ r
where r > 0 then GCD(x,y) ¼ GCD(y,r).

Proof. Suppose that d1 ¼ GCD(y,r) and d2 ¼ GCD(x,y).

// We will show that d1 <¼ d2 and d2 <¼ d1, and therefore d1 must equal d2.

Because d1 is a common divisor of y and r, by our lemma, d1 also divides evenly
into y(q) þ r(1) ¼ x. So d1 is a common divisor of x and of y, and therefore, d1
is <¼ the greatest common divisor of x and y; that is, d1 <¼ GCD(x,y) = d2.

Because d2 is a common divisor of x and y, (again by our lemma) d2 also divides
evenly into x(1) þ y(−q) ¼ r. So d2 is a common divisor of y and r, and therefore,
d2 <¼ GCD(y,r) = d1. ▯

// What we actually have proved is that the set of all common divisors of x and y
// is the same as the set of all common divisors of y and r. Note that in the proof, r
// does not necessarily equal x MOD y and q may be any integer.

Theorem 3.7.5: For any two positive integers x and y,
(1) GCD(x,y) ¼ the smallest element of the set X ¼ P ∩ {ax þ by : a, b 2 Z};
(2) 9 a0,b0 2 Z such that GCD(x,y) ¼ a0 � x þ b0 � y; and
(3) if f is a common divisor of x and y, then f also divides evenly into GCD(x,y).

Proof. Because x is positive and x ¼ (1)x þ (0)y, x 2 X. Thus, X is a nonempty
subset of the positive integers, so by the Well-Ordering Principle, X has a smallest
element d. Since d is of the form ax þ by where a,b 2 Z, 9 a0,b0 2 Z such that
d ¼ a0 � x þ b0 � y.

// But does this smallest element d really equal GCD(x,y)?
//We’ll show that d <¼ GCD(x,y) and GCD(x,y) <¼ d, so d must equal GCD(x,y),
// and first we’ll show that d<¼ GCD(x,y) by showing that d is a common divisor of
// x and y.

126 3 Boolean Expressions, Logic, and Proof

Dividing x by d, we get x ¼ dq þ r where 0 <¼ r < d. Then,

r ¼ x� dq ¼ x� ða0 � xþ b0 � yÞq ¼ x� qa0 � x� qb0 � y

¼ 1� qa0ð Þxþ �qb0ð Þy:

If rwere positive, then it would be an element of X that’s smaller than d and that’s not
possible. // That would contradict the fact that d is the smallest element of X.

Therefore r must be zero; that is, djx.
// A completely “similar” argument, using y instead of x, gives the conclusion that
// djy.

Dividing y by d, we get y ¼ dq þ r where 0 <¼ r < d. Then,

r ¼ y� dq ¼ y� ða0 � xþ b0 � yÞq ¼ y� qa0 � x� qb0 � y

¼ �qa0ð Þxþ 1� qb0ð Þy:

If r were positive, then it would be an element of X that’s smaller than d and that’s
not possible. Therefore r must be zero; that is, d|y. Then, because d is a common
divisor of x and y, d is <¼ GCD(x,y).

// Now we show that GCD(x,y) ¼< d by showing that GCD(x,y) divides evenly
// into d.

Because GCD(x,y) is a common divisor of x and y, by our lemma, GCD(x,y)
divides evenly into a0 � x þ b0 � y which equals d. Then,

d ¼ GCD x; yð Þ� t where t 2 Z:

Since d is positive and GCD(x,y) >¼ 1, t must be positive, and therefore, t >¼ 1.
But then d ¼ GCD(x,y) � t >¼ GCD(x,y) � 1 ¼ GCD(x,y). Hence, d ¼ GCD(x,y),
and we have proven (1).

Because d ¼ GCD(x,y), we have already shown (2) – that 9 a0,b0 2 Z such that
GCD(x,y) ¼ a0 � x þ b0 � y.

Since a0,b0 2 Z and GCD(x,y) ¼ a0 � x þ b0 � y, the lemma implies (3) – if f is
a common divisor of x and y, then f also divides evenly into GCD(x,y). ▯

// Euclid’s algorithm to find GCD(x,y) can be extended to also find integer values
// a and b such that GCD(x,y) ¼ a � x þ b � y.

The Most Important Ideas in This Section.
As we proved several assertions made earlier in the text, we gave a formal
mechanism to describe the action of a loop, iteration by iteration, which is
used to prove the correctness of algorithms containing loops. A loop invariant
is a statement about the variables involved in the loop that is True after each
iteration of the loop. Therefore, it must be True when the loop terminates.

3.7 Proofs Promised in Chap. 1 127

3.8 The Proof Promised in Chap. 2

In Chap. 2, the Binomial Theorem was introduced. We prove it here using Mathe-
matical Induction. // and lots of algebra

Theorem 3.8.1: (The Binomial Theorem) For any two numbers a and b, and
any nonnegative integer n

aþ bð Þn ¼
Xn
k¼0

n
k

� �
ak � bn�k:

Proof. // by Mathematical Induction on n
Step. 1 If n ¼ 0, then LHS ¼ ða+bÞ0 ¼ 1 and

RHS ¼
X0
k¼0

0

k

� �
ak � bn�k ¼ 0

0

� �
a0 � b0�0 ¼ 1ð Þ1� 1 ¼ 1:

// k = 0 only.

// Even though it isn’t necessary, let’s check one more case:

// If n ¼ 1; then LHS ¼ ðaþ bÞ1 ¼ aþ b and

// RHS ¼
X1
k¼0

1

k

� �
ak � bn�k ¼ 1

0

� �
a0 � b1�0 þ 1

1

� �
a1 � b1�1

// ¼ 1ð Þ1� b þ 1ð Þa� 1

// ¼ b þ a

// ¼ aþ b: // k ¼ 0 and 1:

Step 2. Assume 9 q 2 N where

aþ bð Þq ¼
Xq
k¼0

q
k

� �
ak � bq�k:

Step 3. If n = q þ 1, then

LHS ¼ aþ bð Þqþ 1 ¼ aþ bð Þ� aþ bð Þq ¼ a� aþ bð Þq þ b� aþ bð Þq

¼ a�
Xq
k¼0

q

k

� �
ak � bq�k þ b�

Xq
k¼0

q

k

� �
ak � bq�k // by Step 2

¼
Xq
k¼0

q

k

� �
akþ 1 � bq�k þ

Xq
k¼0

q

k

� �
ak � bq�kþ 1:

128 3 Boolean Expressions, Logic, and Proof

Writing these sums out in detail as columns,

LHS ¼ q

0

� �
a0þ 1bq�0 þ q

0

� �
a0bq�0þ 1

þ q

1

� �
a1þ 1bq�1 þ q

1

� �
a1bq�1þ 1

þ q

2

� �
a2þ 1bq�2 þ q

2

� �
a2bq�2þ 1

þ

þ q

j

� �
ajþ 1bq�j þ

þ þ q

jþ 1

� �
ajþ 1bq�ðjþ 1Þþ 1

þ þ

þ q

q

� �
aqþ 1bq�q þ q

q

� �
aqbq�qþ 1:

Writing the terms with equal powers of a (and b) on the same line,

LHS ¼ þ q

0

� �
a0bq�0þ 1

þ q

0

� �
a0þ 1bq�0 þ q

1

� �
a1bq�1þ 1

þ q

1

� �
a1þ 1bq�1 þ q

2

� �
a2bq�2þ 1

þ q

2

� �
a2þ 1bq�2 þ q

3

� �
a3bq�3þ 1

þ þ

þ q

j

� �
ajþ 1bq�j þ q

jþ 1

� �
ajþ 1bq�ðjþ 1Þþ 1

þ þ

þ q

q� 1

� �
aðq�1Þþ 1bq�ðq�1Þ þ q

q

� �
aqbq�qþ 1

þ q

q

� �
aqþ 1bq�q:

By the Bad Banana Theorem from Example 2.3.3, we have for j ¼ 0, 1, …, q − 1

q
j

� �
þ q

jþ 1

� �
¼ qþ 1

jþ 1

� �
:

3.8 The Proof Promised in Chap. 2 129

Therefore,

LHS ¼ þ q
0

� �
a0bqþ 1

þ qþ 1
1

� �
a1bq

þ qþ 1
2

� �
a2bq�1

þ

þ qþ 1
jþ 1

� �
ajþ 1bq�j

þ

þ qþ 1
q

� �
aqb1

þ q
q

� �
aqþ 1bq�q:

Since
q
0

� �
¼ qþ 1

0

� �
¼ 1 and

q
q

� �
¼ qþ 1

qþ 1

� �
¼ 1,

LHS ¼
Xqþ 1

k¼0

qþ 1
k

� �
ak � bðqþ 1Þ�k ¼ RHS: ▯

The Most Important Ideas in This Section.
Sometimes ugly algebra works (and is necessary) to prove a pretty theorem.

Exercises

1. Create truth tables for the following expressions:

(a) P ^ �Q
(b) �P _ �Q
(c) P ^ Q _ �ðP _ QÞ
(d) P _ Q �Q _ R
(e) �P ^ Q ^ �R
(f) P ^ ð�Q _ RÞ

2. Prove that the product of any two odd integers is also an odd integer.
3. Prove the following by cases: if x,y 2 R, then |x � y| ¼ |x| � |y|.
4. Construct a direct proof that for positive integers

if a b and bj jc then ajc:

130 3 Boolean Expressions, Logic, and Proof

5. Prove that if a�b is odd for integers a and b then a3�b3 is also odd. Use the
same argument to prove that if aþb is odd then a2þb2 is also odd.

6. Prove that the product of any two even integers is a multiple of 4.
7. Prove that for all integers n, if n is a multiple of 6 then n is also a multiple of 3.
8. Prove that for all integers, n, if n2 is even then n is even.
9. Prove the smallest proper divisor of an integer n > 1 must be prime.

10. Generalize Theorem 3.5.1 by proving

If f is any real number and g ¼ 1� fð Þ; then
for all integers n; bf � ncþ dg� ne ¼ n:

// In Theorem 3.5.1; f ¼ 1=2 and so g ¼ 1=2ð Þ:

11. Disprove each of the following assertions:
(a) n2þ nþ 41 is prime for every positive integer n.
(b) the product of any two irrational numbers is irrational.
(c) the product of any rational number and any irrational number is irrational.

12. Generalize Theorem 3.5.2 by proving
(a) Among any K consecutive integers, there is a multiple of K.
(b) Among any K consecutive integers, there is exactly one multiple of K.
(c) Among any K consecutive integers, there is a multiple of k for k ¼ 2,3,…K.
(d) The product of any K consecutive integers is a multiple of K!.

13. Use the Fundamental Theorem of Arithmetic [Any integer n greater than one
can be factored uniquely as a product of primes n ¼ p1 � p2 � p3 � … � pk
where p1 <¼ p2 <¼ p3 <¼ … <¼ pk.] to prove two other theorems:
(a) If p is prime, then

ffiffiffi
p

p
is irrational.

Hint: Assume that
ffiffiffi
p

p
is rational. Then use the fact that if k> 1, then k2 has

an even number of prime factors.
(b) If n is a positive integer, then

ffiffiffi
n

p
is either an integer or is irrational.

14. Find irrational numbers a and b such that ab is rational.
15. Use truth tables to show the following are equivalent:

(a) (P ^ Q)!R
(b) P! (Q!R)
(c) [P ^ (�R)]! (�Q)

16. Is (P _ Q)!R equivalent to (P!R) _ (Q!R) or to (P!R) ^ (Q!R)?
Use truth tables to confirm your answer.

17. Use a truth table to determine the validity of the following argument form:

P _ Q
�P _ R
Q ! R

KQ ^ R

3.8 The Proof Promised in Chap. 2 131

18. Use a truth table to determine the validity of the following argument form:

�P _ Q
�½R ^ ð�QÞ�
KðP _ RÞ!Q

19. Use a Truth Table to show the validity of the following argument form:

ðP _ QÞ ! �Q
ðP _ �QÞ ! Q

K�P

20. There is no function from X onto P (X). Hint: Consider the subset B ¼
{x 2 X : x =2 f ðxÞ} and an element y 2 X such that f(y) ¼ B.

21. Prove, using mathematical induction, that:

1
2
þ 1

22
þ 1

23
þ . . . þ 1

2n
¼ 1� 1

2n

for all integers n >¼ 1.
22. Prove, using mathematical induction, that:

12 þ 22 þ 32 þ . . .þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

for all integers n >¼ 1.
23. Prove, using mathematical induction, that:

1
1� 3

þ 1
3� 5

þ 1
5� 7

þ . . .þ 1
2n� 1ð Þ 2nþ 1ð Þ ¼

n

2nþ 1

for all integers n >¼ 1.
24. Prove, using mathematical induction, that: // Hint: Use Theorem 3.6.2

Xn
i¼1

i3 ¼
Xn
i¼1

i

 !2

25. Is n < 2n for 8 integers n 2 N?
If your answer is “no,” give a counterexample.
If your answer is “yes,” give a proof by MI.

26. Is n2 < 3n for 8 integers n 2 N?
If your answer is “no,” give a counterexample.
If your answer is “yes,” give a proof by MI.

132 3 Boolean Expressions, Logic, and Proof

27. Use MI to prove the following generalization of Theorem 3.6.4:

If Sa ¼ I and 8q 2 a::f g; Sqþ 1 ¼ Sq þ b;

then 8n 2 a::f g; Sn ¼ K þ nb where K ¼ I � ab:

28. Use Mathematical Induction to prove that for all non-negative integers n, the
number of subsets of an n-set is 2n.

29. Use Mathematical Induction to prove that for all positive integers n:

12 þ 32 þ . . . þ 2n� 1ð Þ2 ¼ 2n� 1ð Þ 2nð Þ 2nþ 1ð Þ=6

30. Prove that for any arithmetic sequence S defined on {a.. }

8n 2 a::f g Sa þ Saþ 1 þ Saþ 2 þ . . . þ Sn ¼ n� aþ 1ð Þ Sa þ Sn½ �=2:

31. Use MI to prove the following generalization of Theorem 3.6.7:

If Sa ¼ I and 8q 2 a::f g Sqþ 1 ¼ r� Sq where r is not zero,

then 8n 2 a::f g; Sn ¼ rn �K where K ¼ I=ra:

32. Find a formula for the sum of the any (n þ 1) consecutive entries in a geometric
sequence. Use MI to prove your formula is correct.

33. Use Mathematical Induction to prove

if q is any fixedð Þ nonnegative integer; then 8n 2 P;Xn
j¼1

ðjÞðjþ 1Þðjþ 2Þ. . . ðjþ qÞ ¼ nðnþ 1Þðnþ 2Þ. . . ðnþ qÞðnþ qþ 1Þ=ðqþ 2Þ

// If q ¼ 0, then
Pn
j¼1

ðjÞðjþ 1Þðjþ 2Þ. . . ðjþ qÞ ¼Pn
j¼1

j ¼ 1þ 2þ . . . þ n

// and RHS ¼ n(n þ 1)(n þ 2)…(n þ q þ 1)/(q þ 2) ¼ n(n þ 1)/2
// as in Theorem 3.6.2.

// If q ¼ 1, then
Xn
j¼1

ðjÞðjþ 1Þðjþ 2Þ. . . ðjþ qÞ

// ¼
Xn
j¼1

ðjÞðjþ 1Þ ¼ ð1Þð2Þþ . . . þðnÞðnþ 1Þ

// and RHS ¼ n(n þ 1)(n þ 2)…(n þ q þ 1)/(q þ 2) ¼ n(n þ 1)(n þ 2)/3
// as in Theorem 3.6.6.

3.8 The Proof Promised in Chap. 2 133

34. Find a formula for the sum

1
ð1Þð2Þ þ

1
ð2Þð3Þ þ . . . þ 1

ðnÞðnþ 1Þ // try n ¼ 1,2,3,4, and 5:

Use MI to prove your formula is correct for all n 2 P.
35. Prove by MI that 8n 2 N,

(a)
Pn
j¼0

ðjþ 1Þ2j ¼ n2nþ 1 þ 1:

(b)
Pn
j¼0

ðjþ 1Þ3j ¼ ½2nþ 1�3nþ 1 þ 1
4

:

(c)
Pn
j¼0

ðjþ 1Þrj ¼ ½ðr � 1Þnþðr � 2Þ�rnþ 1 þ 1

ðr � 1Þ2 for all numbers r 6¼ 1:

36. Suppose that q is some fixed positive integer. Use MI to prove that 8 integers
n >¼ q,

q
q

� �
þ qþ 1

q

� �
þ qþ 2

q

� �
þ . . . þ n

q

� �
¼ nþ 1

qþ 1

� �
:

37. Use the Binomial Theorem to prove that
Pn
k¼0

n
k

� �2

¼ 2n
n

� �
for 8 n 2 N.

38. A non-recursive Square and Multiply Algorithm to calculate (b)n.

Precondition: n is a positive integer and b is of any type that can be multiplied.
Postcondition: the value returned is equal (b)n.

Begin
product ← 1;
square ← b;
a ← n;
While (a > 1) Do

If (a is odd) Then
product ← product*square;

End;
square ← square*square;
a ← a DIV 2;

End;

Return(product*square);

End.

134 3 Boolean Expressions, Logic, and Proof

(a) Walk through the algorithm with n ¼ 53 // lg(53) ¼ 5.72…
using the column headings

a > 1 a is odd Product Square a (square)a � Product

-- -- 1 b 53 (b)53 � 1

T T b b2 26 (b2)26 � b

…

Return (?)
(b) Walk through with n ¼ 710. // lg(710) ¼ 9.47…
(c) Show that the algorithm terminates.

Let ak denote the value of a after the kth iteration of the while-loop, and let
s ¼ lgðnÞb c.
Prove by Mathematical Induction on k that

For any nonnegative integer k, after k iterations of the while-loop,
2s�k <¼ ak < 2� 2s�k: // This is PðkÞ

// Then for k ¼ 0,1,…,(s − 1), ak > 1 and as ¼ 1,
// so the body of the while-loop is done exactly s times,
// and the number of multiplication operations is <¼ 2s þ 1.

(d) Proof of correctness. // using a loop invariant as in Sect. 3.7 for RPM
Use Mathematical Induction on k to prove

For any nonnegative integer k, after k iterations of the while-loop,
squareð Þa � product ¼ bð Þn:

39. A Recursive Square and Multiply Algorithm to calculate (b)n

// based on the observation that when n ¼ 2q þ r where q >¼ 1 and r 2 {0,1},
// bn ¼ b2qþr ¼ b2q � br ¼ (bq)2 � br.

Precondition: n is a positive integer and b is of any type that can be multiplied.
Postcondition: the value returned, y ¼ (b)n // every time the function is invoked

RECURSIVE FUNCTION Exponent(b, n)

// returns a value of the type of b

Begin
If (n ¼ 1) Then

Return(b);
End;
y ← Exponent(b, n Div 2);
y ← y*y;
If (n is odd) Then

y ← y*b;
End;
Return(y);

End.

3.8 The Proof Promised in Chap. 2 135

Walk through with n ¼ 53: // lg(53) ¼ 5.72. . .

Recursive calls (…Returned values…)

-- Exponent(b, 53) ! (b26)2 � b ¼ b53

1 Exponent(b, 26) ! (b13)2 ¼ b26

2 Exponent(b, 13) ! (b6)2 � b ¼ b13

3 Exponent(b, 6) ! (b3)2 ¼ b6

4 Exponent(b, 3) ! (b)2 � b ¼ b3

5 Exponent(b, 1) ! b

(a) Walk through the algorithm with n ¼ 710. // lg(710) ¼ 9.47…
(b) Why is the number of subcalls of the function equal lgðnÞb c?
(c) Proof of correctness.

Use Strong Induction on the value of parameter p to prove that

For any positive integer p, if Exponent(b,p) is invoked
then the value returned, y ¼ (b)p.

// If p ¼ 1, then the value returned, y ¼ b ¼ (b)1 ¼ (b)p. P(1) is True.

136 3 Boolean Expressions, Logic, and Proof

4Searching and Sorting

After all that theory, this chapter returns to very practical problems, searching and
sorting. Imagine maintaining the records of a bank, drugstore, or college. Most
often, files of accounts are kept and updated periodically. Each account is identified
by a “key”: a bank account number or customer’s name or a student’s ID number.
When a record is to be displayed and/or changed, the first step is to find it in the
collection of records. Let’s restrict our attention to the problem of determining
whether or not a certain number occurs in a certain list of keys.

// On the way, we’ll admire a forest of Binary Trees.

4.1 Searching

The search problem is
Given an array A[1], A[2], A[3], . . . , A[n] and a target value T,
find an index j where T ¼ A[j] or determine that no such index exists

because T is not in the array A.

4.1.1 Searching an Arbitrary List

Names in telephone books are not kept in arbitrary order and probably neither are
student records. But consider the problem of finding your car in a parking lot when
you’ve forgotten where you left it. If parking spaces are selected at random by
drivers as they arrive, how would you find your car?

// A solution algorithm sometimes applied by tipsy students is random walk:
//
// (a) Pick a direction N, S, E, or W at random and take a step in that direction;
// if you bump into the edge of the parking lot, take a step back; but
// if you bump into a car, try your car key and
// if the key works, stop the search. (Here is a key a key?)

// (b) Go back to (a) and pick again.
//
// Would you believe that this algorithm can be proved to be effective
// (in a certain “probabilistic” sense)?

A more practical algorithm would be as follows: Look at the parked cars one at a
time in some order, say, from the beginning of the first row to the end of the first row,
then back along the second row to its beginning, and so on until the last car in the last
row is checked (if necessary). Stop searching when you’ve found your car or
when you’ve checked all the positions in the lot (perhaps your car is not there
because it’s been stolen, seized by the bank, impounded by the police, borrowed by
your sister, or left at home). The algorithm of comparing the target value T to the
value in each position in turn is known as a sequential or a Linear Search. Returning
to the case of numerical keys, we have

Algorithm 4.1.1: Linear Search

Begin
j 0;
Repeat

j jþ1;
Until ((A[j] ¼ T) Or (j ¼ n));

If (A[j] ¼ T) Then
Output(“T is A[”, j, “]”);

Else
Output(“T is not in A”);

End;
End.

This algorithm is clearly correct – it will surely find the target if it is present and
will surely terminate with a correct report if the target is not present.

// It finds the first occurrence of T if T occurs in the array more than once.

The cost of a search algorithm is often taken as the number of probes, the
number of array entries that must be retrieved and then compared to the target
value. Linear Search makes at most n probes when T is in the array and makes
exactly n probes when T is not present. A search typically takes longest (a worst
case occurs) when it is unsuccessful.

Suppose that all the entries in A are distinct. If T ¼ A[1], the search stops after 1
probe; if T ¼ A[2], the search stops after 2 probes. For each index j, finding A[j] as
the target value requires exactly j probes. If we were to search for all the entries in
A in turn, the average number of probes would be

p ¼ 1=nð Þ
Xn
j¼1

j ¼ 1=nð Þ� n nþ 1ð Þ=2f g ¼ nþ 1ð Þ=2: // by Theorem 3.6.2

// On average, Linear Search would go through about half the list.
// If n were 99, we’d average 50 probes; if n were 25,000 we’d average 12,500½
// probes.

138 4 Searching and Sorting

4.1.2 Searching a Sorted List

Now consider adding some structure to the array A to facilitate searching, like
sorting the entries into increasing order. // Really just “nondecreasing” order.
Words in a dictionary are kept in increasing alphabetical order, which does ease the
task of finding a target word (when you know how to spell it). Suppose that we are
given an array where

A 1½ � <¼ A 2½ � <¼ A 3½ � <¼ . . . <¼ A n½ �:

// We use “<¼” to denote that the elements are in nondecreasing order whether
// they are numbers or not.

Of course, we could still apply Linear Search to this list. We could even change
the Boolean expression controlling the repeat-loop to

Until ((A[j] >¼ T) Or (j ¼ n));

and this will stop the search sooner (when T is not present) because

if T <A j½ � then T cannot occur among A jþ 1½ �; A jþ 2½ �; A jþ 3½ �; . . . ; A n½ �:

// since they are all at least as big as A[j] which is bigger than T

Expanding on this idea, if we make one probe at A[i], then:

1. If A[i] ¼ T, then we’re done. // 1 entry
2. If T < A[i], then T cannot occur among A[i], A[i þ 1], . . . , A[n],

and we need only search the list from A[1] to A[i � 1]; // i � 1 entries
// If T ¼ A[j], then j must be between 1 and i � 1.

3. If A[i] < T, then T cannot occur among A[1], A[2], . . . , A[i],
and we need only search the list from A[i þ 1] to A[n]. // n � i entries

// If T ¼ A[j], then j must be between i þ 1 and n.

// What is the best way to choose the position i for the first probe?
// If n ¼ 100 and we probe at A[5], then:
// 1. If A[5] ¼ T, then we’re done.
// 2. If T < A[5], then we need to search the sublist A[1], A[2], A[3], A[4].
// 3. If A[5] < T, then we need to search the sublist A[6], A[7], . . . , A[100].
// The worst and most likely of these three cases leaves us with a list of 95 entries.
// On the other hand, if we probe at A[50], then the worst case leaves us with a list
// of 50 entries: A[51], A[52], . . . , A[100].

If we adopt a policy of making the worst case as favorable as we can, we should
probe in the middle (or as near to the middle as possible) of the list (or sublist) we’re
searching. Then, if we don’t find the target there, we will have at most half the list to
search. // Does this remind you of an earlier algorithm?

Suppose the sublist we’re searching is from A[p] up to A[q]. The average of
p and q is exactly halfway between them, but (p þ q)/2 might not be an integer so
let’s probe at A[i] where i ¼ b(p þ q)/2c.

4.1 Searching 139

The resulting search algorithm where we probe in the middle of the current
sublist is

Algorithm 4.1.2: Binary Search

Begin
p 1;
q n;
Repeat

j b(p þ q)/2c;
If (A[j] < T) Then

p j þ 1;
End;
If (A[j] > T) Then

q j � 1;
End;

Until ((A[j] ¼ T) Or (p > q));

If (A[j] ¼ T) Then Output(“T is A[”, j, “]”);
Else Output(“T is not in A”);
End;

End.

Walkthrough with n ¼ 12 and A ¼ (3, 5, 8, 8, 9, 16, 29, 41, 50, 63, 64, 67)

// A 1½ � ¼ 3; A 2½ � ¼ 5; A 3½ � ¼ 8; A 4½ � ¼ 8; A 5½ � ¼ 9; A 6½ � ¼ 16;

// A 7½ � ¼ 29; A 8½ � ¼ 41; A 9½ � ¼ 50; A 10½ � ¼ 63; A 11½ � ¼ 64; & A 12½ � ¼ 67

If T ¼ 9, then

p j q A[j] relation output

1 6 12 16 T < A[j] -

1 3 5 8 A[j] < T -

4 4 5 8 A[j] < T -

5 5 5 9 A[j] ¼ T T is A[5]

If T ¼ 64, then

p j q A[j] relation output

1 6 12 16 A[j] < T -

7 9 12 50 A[j] < T -

10 11 12 64 A[j] ¼ T T is A[11]

If T ¼ 23.4, then // T and the entries in A might be real numbers.

p j q A[j] relation output

1 6 12 16 A[j] < T -

7 9 12 50 T < A[j] -

7 7 8 29 T < A[j] -

7 - 6 - - T is not in A

// T lies between A6 and A7.

140 4 Searching and Sorting

If T ¼ 99, then

p j q A[j] relation output

1 6 12 16 A[j] < T -

7 9 12 50 A[j] < T -

10 11 12 64 A[j] < T -

12 12 12 67 A[j] < T -

13 - 12 - - T is not in A

// T lies beyond An.

// When n ¼ 12, is the first probe always at A[6] and the second, either at A[3] or
// A[9]?
//
// In general:
// Is this algorithm sure to terminate?
// How many iterations of the loop could there be?
// Is this algorithm correct? If T is in A is the algorithm guaranteed to find it?
// If T is not in A, must p eventually become larger than q?

Suppose the sublist we’re searching is from A[p] up to A[q] of length k and we
probe unsuccessfully atA[j]: // k ¼ q� pþ 1.

A½p�. . .A½j� 1�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k1

A j½ � A½jþ 1�. . .A½q�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k2

:

If A[j] > T, then we will search from A[p] up to A[j � 1] of length k1 ¼ j � p.
If A[j] < T, then we will search from A[j þ 1] up to A[q] of length k2 ¼ q � j.
We would like k1 and k2 to be equal, but if that’s not possible (because q � p is
odd), let’s consistently make k1 the smaller value.

// How should we choose j so that k1 <¼ k2 and k2 is as small as possible?

To make k2 ¼ q � j as small as possible, we need to make j as large as possible.
We want

k1þ k2 <¼ k2þ k2;

that is; q� p <¼ 2ðq� jÞ ¼ 2q� 2j

or 2j <¼ 2q� ðq� pÞ ¼ qþ p:

The largest integer j <¼ ðqþ pÞ/2 is b(q þ p)/2c, and this is the j-value used in the
algorithm.

4.1 Searching 141

Theorem 4.1.1: On each iteration of Binary Search with j ¼ b(p þ q)/2c, the
lengths of the sublists will be k1 ¼ b(k � 1)/2c <¼ k2 ¼ d(k � 1)/2e <¼ k/2.

Proof. Since j <¼ qþ pð Þ/2< jþ 1;
subtracting p from each of these three expressions gives

j� p <¼ qþ pð Þ/ 2� p< j� pþ 1

or k1 <¼ q� pð Þ/ 2 < k1þ 1:

Thus; k1 ¼ q� pð Þ/ 2b c ¼ k � 1ð Þ/ 2b c:

Because k1 þ k2 ¼ k � 1, we know that

if k is odd, say k ¼ 2r þ 1, then k � 1 ¼ 2r and k1 ¼ r ¼ k2 < k/2, and
if k is even, say k ¼ 2r, then k � 1 ¼ 2r � 1 and k1 ¼ r � 1 < r ¼ k2 ¼ k/2.

Thus; k1 ¼ k � 1ð Þ/2b c <¼ k2 ¼ k � 1ð Þ/2d e <¼ k/2: ▯

Therefore, at each iteration of Binary Search, the length of the next sublist is at
most half the length of the current sublist. // The search-region is halved.

Theorem 4.1.2: Binary Search terminates after at most blg(n)c þ 1 probes

Proof. Let w ¼ blg(n)c. If, in some instance, Binary Search has not terminated after
w (unsuccessful) probes, then the current value of pmust be<¼ the current value of
q, and the length of the current sublist, k, must be <¼ n/2w.

//X Prove this by MI:
Since w <¼ lgðnÞ<wþ 1; // n ¼ 2lgðnÞ so

2w <¼ n< 2� 2w // then dividing each by 2w

so 1 <¼ n/2w < 2: // which implies that k ¼ 1

For the next iteration, p ¼ q and so j ¼ p.
// And we probe the one remaining entry in A.

If A[j] < T, then p j þ 1 > q, so Binary Search terminates after this probe;
if A[j] > T, then q j � 1 < p, so Binary Search terminates after this probe; and
if A[j] ¼ T, then Binary Search terminates after this one last probe.

Therefore, Binary Search terminates after at most blgðnÞcþ 1 probes. ▯

// Recall that on average, Linear Search would go through about half the list.
// If n ¼ 99, it averages 50 probes; if n ¼ 25,000, it averages 12,500½ probes.
// For Binary Search, a worst possible case makes blgðnÞcþ 1 probes and
// lg(25000) ffi 14.609. If n ¼ 25,000 Binary Search makes at most 15 probes.
// If n ¼ 25,000, Linear Search does >800 times as many probes on average.

In order to prove that Binary Search is correct, we will first establish a loop
invariant. The algorithm proceeds by dividing the search region (the sublist from

142 4 Searching and Sorting

A[p] up to A[q]) in half at each iteration after probing in the middle and then
changing either p or q. A loop invariant that is maintained is

“If T is in A, then T must be in the sub-list from A p½ � to A q½ �:”
that is; “If T ¼ A i½ � then i must be between p and q:”

Theorem 4.1.3: After k iterations of the loop, // For any k,
if T ¼ A [i], then p <¼ i <¼ q // this is P(k).

Proof. // by Mathematical Induction on k where k 2 {0.. }
Step 1. After k ¼ 0 iterations of the loop, // that is, before the loop is done once

p ¼ 1 and q ¼ n, and therefore,

if T ¼ A i½ � then p <¼ i <¼ q: // Pð0Þ is True

// Suppose that for the first few iterations of the loop (even though p and q may
// have been changed), this conditional statement has been True.

Step 2. Assume 9w 2 N such that

after w iterations of the loop, if T ¼ A i½ �; then p <¼ i <¼ q: // This is PðwÞ:

// Now, what will happen on the next iteration, if there is one?

Step 3. Suppose there is another iteration, the w þ 1st.

// That is, T has not been found in w unsuccessful probes, and now, p <¼ q.

On the next iteration, we calculate a new j-value,

jnew pþ qð Þ=2b c

Since p <¼ q; pþ p <¼ pþ q <¼ qþ q

and p ¼ pþ pð Þ/2 <¼ pþ qð Þ/2 <¼ qþ qð Þ/2 ¼ q and so p <¼ jnew <¼ q:

// In fact, if p ¼ q, then jnew ¼ p, and if p < q, then p <¼ jnew < q.

In the remainder of the proof, we will let p* and q* denote the values of p and q
at the end of the iteration. There are three cases to consider:
Case 1. If A[jnew] < T, then T cannot occur at or before position jnew hence

if T ¼ A i½ �; then p< jnewþ 1 <¼ i <¼ q: // Here p* ¼ jnew þ 1 and q* ¼ q.

Case 2. If A[jnew] > T, then T cannot occur at or after position jnew hence

if T ¼ A i½ �; then p <¼ i <¼ jnew � 1< q: // Here p* ¼ p and q* ¼ jnew � 1.

4.1 Searching 143

Case 3. If A[jnew] ¼ T, then neither p nor q are changed hence, from Step 2

if T ¼ A i½ �; then p <¼ i <¼ q: // In this case, p* ¼ p and q* ¼ q.

Therefore, after this next iteration, // in every case

if T ¼ A i½ �; then p� <¼ i <¼ q�: ▯

When the repeat-loop in Binary Search terminates,

if T ¼ A i½ �; then p <¼ i <¼ q: // That is, this conditional statement is True.

But if p > q, there is no index i where p <¼ i <¼ q.
// The consequent must be False.

If p > q, there is no index i where T ¼ A[i]. // The antecedent must be False.
If p > q, then T cannot be in A. Therefore, when Binary Search terminates,

the target has been found at position j
or (p > q and so) T is not in A.

Binary Search is correct and very efficient. // compared to Linear Search

// Do other loop invariants hold for Binary Search? Perhaps
// either p ¼ 1 or A[p � 1] < T and either q ¼ n or T < A[qþ 1].
//
// Do the p-values stay the same or grow larger? Do the q values never increase?
//
// If T is not found, where will T fit into the array? Where should it be inserted?
// Is the final q-value always one less than the final p-value?
// When is A[q] < T < A[p]?
// If p ¼ 1 (that is, p was never changed), is T < A[1]?
// If q ¼ n (that is, q was never changed), is A[n] < T ?

The Most Important Ideas in This Section.
The search problem is as follows: Given an array A[1], A[2], . . . , A[n] and a
target value T, find an index j where T¼ A[j] if there is such an index j. Linear
Search compares T to the entries in turn until it finds T or exhausts the array.
Binary Search compares T to the middle entry, A[j]. If it finds T, it stops; if
T < A[j], it searches to lower half of A, but if T > A[j], it searches the upper
half of A. Binary Search is generally much, much faster. But Binary Search
requires a sorted input array (sorting is the subject of Sect. 4.3).

The next section gives a method to diagram the action of searches and then
gives a second version of Binary Search which makes fewer comparisons.

144 4 Searching and Sorting

4.2 Branching Diagrams

A General Branching Diagram for an algorithm is a tree that shows all possible
sequences of operations the algorithm might do. They can be huge structures even
for simple algorithms, and (while they can be imagined) they are rarely constructed.
However, sometimes constructing a portion of it is useful. When n is small, we can
construct the Branching Diagram of probes for Binary Search, a tree diagram
displaying all possible sequences of probes that Binary Search might make.

The first probe is always at A[j] where j ¼ b(1 þ n)/2c. This probe is placed at
the top of the diagram.

// near the middle of the page like the “start” vertex in Chap. 2
After this probe, if T 6¼ A[j] the algorithm continues along one of two “branches”:

when T < A[j], follow the tree down to the left to the next probe;
// A[r] where r ¼ bj/2c

when A[j] < T, follow the tree down to the right to the next probe.
// A[s] where s ¼ b(j þ 1 þ n)/2c

For n ¼12, the diagram is
A[6]

A[3]

A[1]

A[2]

A[4]

A[5]

A[9]

A[7]

A[8]

A[11]

A[10] A[12]

< TT <

This kind of diagram is known as a Binary Tree: it’s “rooted” at the vertex
placed at the top of the diagram, and is binary in the sense that from any vertex,
there are at most two edges downward in the diagram. The vertices with no
downward edges are called leaves. The other vertices are called internal vertices.
Every vertex, except the root, is the end of exactly one edge to it from a vertex
above it in the diagram.

// Does this sound as though Binary Trees are drawn upside down?
// Does every entry in A appear exactly once in this tree? Why?

4.2.1 A Second Version of Binary Search

Jack and Jill are playing a game where Jill chooses a number between 1 and 1,000
and then Jack tries to discover Jill’s number by asking “yes/no” questions about

4.2 Branching Diagrams 145

Jill’s number – Jack may not ask “What is your number?” but may ask “Is your
number 6?” or “Is your number even and greater than 543?” How should Jack
formulate his sequence of questions to find Jill’s number most quickly; that is, with
fewest questions (in the worst case)?

Binary Search as given in Algorithm 4.1.2 makes three comparisons with each
probe (i.e., asks 3 questions about each number it investigates). If we wanted to
reduce the number of comparisons, we could modify it to search for the target value
T by making exactly one comparison per probe until the sublist we’re searching has
only one entry and then testing to see if that single entry equals T.

Algorithm 4.2.1: Binary Search #2 // version #2.0
Begin

p 1;
q n;
While (p < q) Do

j b(pþq)/2c;
If (A[j]< T) Then
p jþ1;

Else
q j;

End; // the if
End; // the while // Now, p ¼ q

If (A[p]¼ T) Then
Output(“T is A[”, p, “]”);

Else
Output(“T is not in A”);

End; // the if
End.

Walkthrough with n ¼ 12 and A ¼ (3, 5, 8, 8, 9, 16, 29, 41, 50, 63, 64, 67)

// A 1½ � ¼ 3; A 2½ � ¼ 5; A 3½ � ¼ 8; A 4½ � ¼ 8; A 5½ � ¼ 9; A 6½ � ¼ 16;
// A 7½ � ¼ 29; A 8½ � ¼ 41; A 9½ � ¼ 50; A 10½ � ¼ 63; A 11½ � ¼ 64; & A 12½ � ¼ 67

If T ¼ 9, then (using t for True and f for False) // and T for target

p j q p<q A[j] A[j] < T A[p] ¼ T output

1 6 12 t 16 f - -

1 3 6 t 8 t - -

4 5 6 t 9 f - -

4 4 5 t 8 t - -

5 - 5 f - - t T is A[5]

146 4 Searching and Sorting

If T ¼ 64, then

p j q p < q A[j] A[j] < T A[p] ¼ T output

1 6 12 t 16 t - -

7 9 12 t 50 t - -

10 11 12 t 64 f - -

10 10 11 t 63 t - -

11 - 11 f - - t T is A[11]

If T ¼ 23.4, then // T and the entries in A might be real numbers.

p j q p < q A[j] A[j] < T A[p] ¼ T output

1 6 12 t 16 t - -

7 9 12 t 50 f - -

7 8 9 t 41 f - -

7 7 8 t 29 f - -

7 - 7 f - - f T is not in A

// T lies between A6 and A7.
If T ¼ 99, then

p j q p < q A[j] A[j] < T A[p] ¼ T output

1 6 12 t 16 t - -

7 9 12 t 50 t - -

10 11 12 t 64 t - -

12 - 12 f - - f T is not in A

// T lies beyond An.

//X Do the same loop invariants for the while loop hold for Version #2? Is it True
// that
// “after each iteration of the loop, if T ¼ A[i] then p <¼ i <¼ q”?
//
//X If T is not found, where will T fit in to the array? Where should it be inserted?
//X Suppose that at the last comparison, A[p] 6¼ T. Now,
// if 1 < p< n is A p� 1½ �< T <A p½ �?
// if 1 ¼ p< n is T <A 1½ �?
// if 1< p ¼ n is A n� 1½ �< T <A n½ � or A n½ �< T?

Suppose the sublist we’re searching is from A[p] up to A[q] of length k and we
make the comparison “is A[j] < T?”: // k ¼ q � p þ1.

A½p�. . .A½j�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k1

A½jþ 1�. . .A½q�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k2

4.2 Branching Diagrams 147

If A[j] < T, then we will search the sublist from A[j þ 1] up to A[q] of length
k2 ¼ q � j. If A[j] >¼ T, then we will search the sublist from A[p] up to A[j] of
length k1 ¼ j � p þ 1. We would like k1 and k2 to be equal, but that’s not possible
when k is odd.

When j is given the value b(q þ p)/2c, as we saw in Theorem 4.1.1,

k2 ¼ k � 1ð Þ/2d e:

But k � 1ð Þ/2d e ¼ k/2b c: //X prove this 8k 2 Z:

Since k1 þ k2 ¼ k, we have // k1 ¼ k � k2.

if k is even, say k ¼ 2r, then k1 ¼ r ¼ k2 ¼ k/2 and
if k is odd, say k ¼ 2r þ 1, then k2 ¼ r < k/2 < rþ1 ¼ k1.

In general,

k2 ¼ k/2b c <¼ k/2 <¼ k1 ¼ k/2d e: // Recall Theorem 3:5:1:

Therefore, at some iterations of binary search #2, the length of the next sublist is
more than half the length of the previous sublist. // but not much more

Let L(w) denote the length of the sublist still to be searched after w iterations of
the while loop. // And L(0) ¼ n.

// We’ve just shown that bL(w)/2c <¼ L(wþ1) <¼ dL(w)/2e.

Theorem 4.2.1: After w iterations of the loop

n/2wb c <¼ LðwÞ <¼ n/2wd e: // This is PðwÞ:

Proof. // by Mathematical Induction on w where w 2 {0.. }
Step 1. After w ¼ 0 iterations of the loop, // before the loop is done once

the length of the current sublist,

Lð0Þ ¼ n ¼ n/20
� � ¼ n/20

� �
: // Pð0Þ is True:

// Suppose that for the first few iterations of the loop (even though p and q may
// have been changed), these bounds on the length of the current sublist are
// maintained.

Step 2. Assume 9m 2 N such that after m iterations of the loop

n/2mb c <¼ LðmÞ <¼ n/2md e: // This is PðmÞ:

// Now, what will happen on the next iteration, if there is one?

148 4 Searching and Sorting

Step 3. Suppose there is another iteration, the m þ 1st. // That is, now p < q.
We know that

LðmÞ/2b c <¼ L mþ 1ð Þ <¼ LðmÞ/2d e:

// If we can to show that
//
// LðmÞ/2d e <¼ n/2md e/2d e and n/2md e/2d e ¼ n/2m þ 1� �

;

//
// we will have the upper bound we want: L(m þ 1) <¼ dn/2mþ1e.
//
// We deal with these (and the corresponding inequalities with the floor function)
// in a more general setting in the next two lemmas.
//
// Remember that dre is (defined to be) the smallest integer >¼ the (real) number r
// and brc is the largest integer <¼ r.
// Also, recall that whenever y is not an integer, byc < y < dye ¼ byc þ 1.

Lemma A: If x and y are real numbers and x < y, then bxc <¼ byc and
dxe <¼ dye.
Proof. // of Lemma A, that the floor and ceiling functions are nondecreasing.

Since x < y <¼ dye 2 Z and dxe is the smallest integer >¼ x, dxe <¼ dye.
Since bxc <¼ x < y and byc is the largest integer <¼ y, byc >¼ bxc. ▯

Lemma B: For any real number x,
xb c
2

� �
¼ x

2

j k
and

x

2

l m
¼ xd e

2

	

.

Proof. // of Lemma B

If x is an integer, then bxc ¼ x ¼ dxe, and therefore,

xb c
2

� �
¼ x

2

j k
and

x

2

l m
¼ xd e

2

	

:

Suppose now that x is not an integer, and let Q denote bx/2c. Then, we have

Q < x/2 < Qþ 1 // x=2 cannot be an integer:

, 2Q < x < 2Qþ 2:

In fact; 2Q <¼ xb c < 2Qþ 2; // because 2Q 2 Z

and 2Q < xd e <¼ 2Qþ 2:

4.2 Branching Diagrams 149

Then; Q <¼ xb c
2

<
x

2
<

xd e
2

<¼ Qþ 1;

and so
xb c
2

� �
¼

�
x

2

�
¼ Q and

	
x

2

¼ xd e

2

	

¼ Qþ 1: ▯

Returning to the proof of Theorem 4.2.1, and taking x ¼ n/2m,
we have // from Lemma B

n/2mb c/2b c ¼ n/2m þ 1� �
and n/2md e=2d e ¼ n/2m þ 1� �

:

Since n/2mb c <¼ LðmÞ <¼ n/2md e; // from Step 2

n/2mb c/2 <¼ LðmÞ/2 <¼ n/2md e/2 // and applying Lemma A

n/2mb c/2b c <¼ LðmÞ/2b c and LðmÞ/2d e <¼ n/2md e/2d e:

Thus,

L mþ 1ð Þ <¼ LðmÞ/2d e <¼ n/2md e/2d e ¼ n/2mþ 1
� �

and L mþ 1ð Þ>¼ LðmÞ/2b c>¼ n/2mb c/2b c ¼ n/2mþ 1
� �

;

that is; n/2mþ 1
� �

<¼ L mþ 1ð Þ <¼ n/2mþ 1
� �

: // P mþ 1ð Þ is True:

The proof of Theorem 4.2.1 is complete. ▯

Theorem 4.2.2: After at most dlg(n)e comparisons of the form “is A [j] < T?”
the length of the current sublist is 1. // And p ¼ q.

Proof. // We will show that the while loop does at least blg(n)c iterations and
// at most dlg(n)e iterations. So if lg(n) ¼ Q 2 N, it does exactly Q iterations.
//
// One more equality comparison is done, so Binary Search #2 stops after at most
// dlg(n)e þ1 comparisons.

Let Q ¼ dlg(n)e. Then

Q� 1< lgðnÞ <¼ Q so 2Q�1 < n <¼ 2Q:

For any integer k

2Q�1�k ¼ 2Q�1

2k
<

n

2k
<¼ 2Q

2k
¼ 2Q�k:

150 4 Searching and Sorting

Applying Theorem 4.2.1 and Lemma A, the length of the current sublist after k
iterations is bounded:

LðkÞ<¼ n=2k
� �

<¼ 2Q=2k
� � ¼ 2Q�k // Q� k 2 P so 2Q�k 2 P:

and LðkÞ>¼ n=2k
� �

>¼ 2Q�1=2k
� � ¼ 2Q�1�k: // And 2Q�k�1 2 P:

In particular,

2 ¼ 21 <¼ L Q� 2ð Þ <¼ 22

and 1 ¼ 20 <¼ L Q� 1ð Þ <¼ 21 ¼ 2:

Thus, the while loop cannot stop before Q � 1 iterations are done, though it might
stop after exactly Q � 1 iterations are done, but, if L(Q � 1) ¼ 2, it must stop after
(one more iteration) exactly Q iterations. ▯

We can construct the Branching Diagram of comparisons for Binary Search
#2. The first comparison is always “is A[j] < T ?” where j ¼ b(1 þ n)/2c, and this
comparison is placed at the top of the diagram. // in the middle of the page

When “A[j]< T” is False, follow the tree down to the left to the next comparison;
when “A[j]< T” is True, follow the tree down to the right to the next comparison.

The leaves are the (final) comparisons that take the form “is A[p] ¼ T ?”
When n ¼ 12, the diagram we get is

A[6]<T

A[3]<T

A[2]<T

A[1]<T

A[5]<T

A[1] =T A[2] =T

A[3] =T A[4]<T A[6] =T

A[4] =T A[5] =T

A[9]<T

A[8]<T A[11]<T

A[10]<T A[12] =T

A[10] =T A[11] =T

A[9] =TA[7]<T

A[8] =TA[7] =T

F T

This diagram is also a Binary Tree. But in it, from every internal vertex, there
are exactly two edges downward in the diagram (never just one). This kind of
Binary Tree is said to be a full Binary Tree.

// The variable j is never equal to n so we never ask “is A[n] < T?”
// Does the tree have a unique internal vertex for all (n � 1) other values of j?
// Are there n leaves each corresponding to one (possible) comparison
// “is A[i] ¼ T?”

4.2 Branching Diagrams 151

Theorem 4.2.3: If T is a full Binary Tree with m internal vertices, then T has
m þ 1 leaves

Proof. // by Strong Induction on m where m 2 {0.. }
Step 1. If m ¼ 0, then T has a root vertex, r, but no internal vertices. Therefore,

rmust be a leaf and must be the only vertex in T . // T hasmþ 1 leaves.
Step 2. Assume 9k 2 N such that if 0 <¼ m <¼ k and if T is a full Binary Tree

with m internal vertices, then T has m þ 1 leaves.
Step 3. Suppose now that T * is a full Binary Tree with k þ 1 internal vertices.

// We must prove that T * has (k þ 1) þ 1 ¼ k þ 2 leaves.

Let r* denote the root of T *; r* cannot be a leaf, so must be an internal vertex with
exactly two vertices, u and v, below it in the diagram.

The part of the diagram from u down is full Binary Tree T 1 with m1 internal
vertices, and the part of the diagram from v down is full Binary Tree T 2 with m2
internal vertices. Since every internal vertex of T is either in T 1 or in T 2 or r*,

kþ 1 ¼ m1þm2þ 1

where both m1 and m2 are nonnegative and <¼ k. Since every leaf of T is either a
leaf in T 1 or is a leaf in T 2,

leaves in T ¼ # leaves in T 1 þ # leaves in T 2

¼ m1 þ 1 þ m2 þ 1

¼ k þ 2 ▯

The Most Important Ideas in This Section.
A Branching Diagram for an algorithm (sometimes called a “decision tree”)
is a tree that shows all possible sequences of operations the algorithm might
do. Sometimes, constructing a portion of it is useful. We constructed the
Branching Diagram of probes for Binary Search when n ¼ 12 displaying all
possible sequences of probes that it might make. That diagram was a Binary
Tree with 5 leaves and 7 internal vertices.

(continued)

152 4 Searching and Sorting

A second version of Binary Search with fewer comparisons was given, and
we constructed the Branching Diagram of comparisons for Binary Search
#2 for n¼ 12 displaying all possible sequences of comparisons it might make.
That diagram was as a full Binary Tree with 12 leaves and 11 internal
vertices.

We proved that every full Binary Tree with m internal vertices has m þ 1
leaves. // a fact we’ll use later when analyzing algorithms

4.3 Sorting

We showed that efficient searching requires sorted data. But even if sorting were
useless, it is worth studying for other reasons. Sorting is an easily understood problem
for which there is a truly surprising variety of solution strategies and algorithms.

// And sorting methods are part of the common
// knowledge of all computer scientists.

We’ll look at just three such strategies in detail, though others are considered in the
exercises.
The sorting problem is

Given an array A[1], A[2], A[3], . . . , A[n], // of numbers in arbitrary order
rearrange the values in A so that // maybe real numbers

A 1½ � <¼ A 2½ � <¼ A 3½ � <¼ . . . <¼ A n½ �:

// Is every list of length 1 already sorted?

4.3.1 Selection Sorts

Imagine your young nephew is visiting and has entertained himself by perusing
your Illustrated Encyclopedia of Tantric Trigonometry. He’s put the whole set back
on its shelf but in a peculiar order. Could he use the following method to
unscramble them?

Find volume 1.
If it’s not in position 1, then

set it on the floor.
move whatever volume is in position 1 to the empty space

that volume 1 left free
pick up volume 1 and put it in position 1 that was just emptied.

Then do the same for volume 2, volume 3, and so on.

// Volume 1 “belongs” in the first position on the bookshelf,
// which value “belongs” in A[1]?

(continued)

4.3 Sorting 153

Selection sorts choose a particular element in the list (usually the smallest or the
largest) and place it in the correct position; MinSort selects the minimum entry.
So first let’s construct an algorithm for finding the minimum entry in a list subject to
the restriction that we can only compare two values at a time. Let’s make a “pass”
through the list keeping track of the minimum value we’ve found so far in the
variable min.

Algorithm 4.3.1: Minimum

Begin
min A[1];
For j 2 To n Do
If (A[j] < min) Then

min A[j];
End; // the if

End; // the for-j loop
Return(min);

End.

// This pseudo-code contains a new control structure, a for-loop, which looks like:
//
// For variable expression1 To expression2 Do
// (the body of the loop)
// End;
//
// The execution of this construction is the same as the following:
//
// variable expression1;
// While (variable <¼ expression2) Do
// (the body of the loop)
// variable variable þ 1;
// End;
//
// For-loops are a natural way to manipulate arrays; the control variable starts at a
// particular value and goes up by ones until it reaches a second particular value.

To begin, the smallest so far is A[1]. Then, looking at A[2], A[3] . . . in turn, if one
of these is smaller than the smallest so far we change min to be that A-value. That is,

“min is the smallest of A 1½ �;A 2½ �. . .A j½ �”

is a loop invariant of the for-j loop. Then, the final value of min must be the smallest
value in the whole list, and it was obtained at the cost of (n � 1) comparisons. The
cost of a sorting algorithm is usually taken to be the number of comparisons
involving two array entries.

// comparisons involving values of the keys

154 4 Searching and Sorting

We can sort the A-values by finding the minimum of all of them and
interchanging it with A[1], then finding the minimum of all the A-values from
A[2] to A[n] of them and interchanging it with A[2], and so on.

Algorithm 4.3.2: MinSort

Begin
For k 1 To (n-1) Do // the kth pass selects a correct value for A[k]
min A[k]; // min will be the smallest in A[k]..A[n]
index k; // & min occurs at entry A[index]
For j kþ1 To n Do
If (A[j] < min) Then
min A[j];
index j;

End; // the if
End; // the for-j loop
A[index] A[k];
A[k] min;

End; // the for-k loop
End.

// If A[1], A[2], . . . A[n � 1] have been selected correctly, what about A[n]?
// Can we remove the variable min and just use A[index]?

Walkthrough with n ¼ 5 and A ¼ (3.1, 5.7, 4.3, 1.9, 3.1)

// A 1½ � ¼ 3:1; A 2½ � ¼ 5:7; A 3½ � ¼ 4:3; A 4½ � ¼ 1:9; A 5½ � ¼ 3:1

We can prove that

“A 1½ � <¼ A 2½ � <¼ . . . <¼ A k½ � <¼ A kþ 1½ �; A kþ 2½ �; . . . ; A n½ �”

is a loop invariant of the for-k loop. // using MI on k
That will confirm that MinSort is correct. // But is it efficient?

4.3 Sorting 155

The number of comparisons in MinSort is

n� 1ð Þ for finding the minimum of A 1½ �; A 2½ �; A 3½ �; . . . ; A n½ �
þ n� 2ð Þ for finding the minimum of A 2½ �; A 3½ �; . . . ; A n½ �
þ n� 3ð Þ for finding the minimum of A 3½ �; . . . ; A n½ �
. . .

. . .

þ 1ð Þ for finding the minimum of A n� 1½ �;A n½ �
¼ n n� 1ð Þ=2 // Thm 3.6.2

¼ 1=2ð Þ� n2 � 1=2ð Þ� n // which is “of Order n2”

// as we shall see in Chap. 7

Even if the array A is already sorted, MinSort will make this number of
comparisons – it will compare each entry to every other entry. Every case is a
worst case. To take advantage of some order already present in the array A (especially
if A is already completely sorted), we need a different strategy.

4.3.2 Exchange Sorts

Even though exchanges occurred in MinSort, the main objective of the algorithm
was selecting A-values to exchange. In BubbleSort, the primary element of the
algorithm is exchanging A-values.

But let’s first consider the problem of checking to see whether or not the
A-values are already in sorted order, with

A 1½ � <¼ A 2½ � <¼ A 3½ � <¼ . . . <¼ A n½ �:

The natural algorithm is as follows: Check each pair of consecutive entries A[j] and
A[j þ 1] to see that A[j] <¼ A[j þ 1]. BubbleSort does exactly that, but when it
finds a consecutive pair “out of order,” it interchanges their values:

compare A[1] and A[2],
if A[1] > A[2], then interchange them, so now A[1] <¼ A[2];

compare A[2] and A[3],
if A[2] > A[3], then interchange them, so now A[2] <¼ A[3];

. . .
compare A[n � 1] and A[n],

if A[n � 1] > A[n], then interchange them, so A[n � 1] <¼ A[n].

// Will this pass leave the list sorted?

Walkthrough a BubbleSort pass with n ¼ 11 and A ¼ (5, 7, 6, 0, 9, 8, 2, 1, 5, 7, 8)

// comparing and sometimes interchanging A[j] and A[jþ 1] as j goes from 1 to n� 1.

156 4 Searching and Sorting

After the pass, A ¼ (5, 6, 0, 7, 8, 2, 1, 5, 7, 8, 9).

// This pass did not leave the list sorted. But is it closer to being sorted?
// What progress has been made? 7 “bubbled up” to A[4] and 9 “bubbled up”
// to A[11].
// What progress can we count on? Big values seem to bubble upward.

We can see that as j changes in the pass and some values are interchanged,

“A jþ 1½ � is always the largest entry in A 1½ �;A 2½ �; . . .A jþ 1½ �”;

// that is, “A[1], A[2], . . . , A[j] <¼ A[jþ1]” is always True.
// like a “loop invariant”

So at the end of the pass, the largest value in the list is now in the correct position,
A[n], and now, we just have to sort A[1], A[2], . . . , A[n � 1].

A second (identical) BubbleSort pass will move the largest of A[1], A[2], . . . ,
A[n � 1] into A[n � 1]. And then it will not move again because A[n � 1] <¼
A[n]. The second pass can be shortened to terminate after comparing A[n � 2] with
A[n � 1]. At the end of the second pass, A[n � 1] and A[n] are both correct, and the
third pass can be shortened to terminate after comparing A[n � 3] with A[n � 2].
At the end of the third pass, A[n � 2], A[n � 1] and A[n] are all correct.

// How many passes are needed to guarantee the list is sorted?
// When A[2], . . . , A[n] are all correct, what about A[1]?

We’d like to make just one more observation before presenting BubbleSort, and
that is, to interchange the values of A[j] and A[j þ 1], we need a third variable, x.
If A[j] has the value α and A[j þ 1] has the value β (usually different from α), the
assignment

A j½ � A jþ 1½ �;

will copy the value of A[j þ 1] into the storage position of the variable A[j]
overwriting any value that was there. So after that assignment statement is
executed, both A[j] and A[j þ 1] have the value β, and α has been lost. The
value α must be saved somewhere temporarily, like in an auxiliary variable, x.

4.3 Sorting 157

Interchanging the values of A[j] and A[j þ 1] requires three assignments.

x A j½ � and A j½ � A jþ 1½ � and A jþ 1½ � x:
// α β α

// In MinSort, when the values of A[k] and A[index] were interchanged,
// what was the auxiliary variable and where were the three assignments?

// Strictly speaking, you don’t really need a third variable to interchange the
// values of variables y and z; you can do it with three assignments and some
// arithmetic as follows:
//
// y yþ z; z y� z; y y� z;
//
// If you begin when the value of y is α and value of z is β, then
// after the first assignment, the value of y is α þ β and value of z is β;
// after the second assignment, the value of y is α þ β and value of z is α;
// and after the third assignment, the value of y is β and value of z is α.
// But this is more work than just three assignments, and we can afford the extra
// variable x.

Algorithm 4.3.3: BubbleSort // the standard version

Begin
For k 1 To (n � 1) Do // the kth pass through A
For j 1 To (n � k) Do
If (A[j] > A[j þ 1]) Then

x A[j];
A[j] A[j þ 1];
A[j þ 1] x;

End; // the if
End; // the for-j loop

End; // the for-k loop
End.

Walkthrough of BubbleSort with n ¼ 11 and A ¼ (5, 7, 6, 0, 9, 8, 2, 1, 5, 7, 8)

// showing the contents of A after each pass.

158 4 Searching and Sorting

After 6 passes, A ¼ (0,1,2,5,5,6,7,7,8,8,9) and is sorted.

// The other passes make no (inter)changes.
// How can we stop sooner? How can we tell when the list has been sorted?

BubbleSort is correct. // But is it efficient?
The number of comparisons we want to count is the number of j-values where we
ask “Is A[j] > A[j þ 1]” in the inner for-loop.

When k ¼ 1, j runs from 1 to n� 1, so there are n� 1 comparisons:
When k ¼ 2, j runs from 1 to n� 2, so there are n� 2 comparisons:
When k ¼ 3, j runs from 1 to n� 3, so there are n� 3 comparisons:
. . .

When k ¼ n� 1, j runs from 1 to n� n� 1ð Þ, so there is only 1 comparison:

Thus, (just like MinSort), the number of comparisons done by BubbleSort in every
case is

1þ 2þ . . . þ n� 1ð Þ ¼ n n� 1ð Þ/2 ¼ 1=2ð Þ� n2 � 1=2ð Þ� n

// BubbleSort is of Order n2:

To improve upon this and reduce the number of comparisons the algorithm does,
we’d like to stop making passes as soon as we can determine that the list is sorted.
The list must be sorted if we ever make an entire pass which produces no
interchanges of consecutive entries. We’d also like to shorten the passes whenever
we can.

Suppose that during the first pass, some exchanges did occur and the last one
interchanged the values of A[p] and A[p þ 1] in the list

A 1½ �, A 2½ �, A 3½ �, . . . , A p½ �, A pþ 1½ �, . . . , A n½ �:

We know that now A[p] < A[p þ 1] and, since no interchanges occurred among
A[p þ 1] . . . A[n], these must be in sorted order. Thus,

A p½ �<A pþ 1½ � <¼ A pþ 2½ � <¼ . . . <¼ A n½ �:

Furthermore, if we think of that pass just operating on A[1] up to A[p þ 1], the
largest value among these is now in the last position, so

A 1½ �;A 2½ �;A 3½ �; . . . ;A p½ � <¼ A pþ 1½ �:

Therefore, the whole list will be sorted if we just sort A[1], . . . , A[p] where the last
entry we need worry about now is A[p].

To implement this observation, let’s use a variable p, for the position (j-value)
of the last interchange. Before each pass p is set to zero, and at each interchange of

4.3 Sorting 159

A[j] and A[j þ 1], p is updated to that value of j. After the pass is complete,
p will give us the position of the last interchange.

// or will be 0 if there are no interchanges.

On the next pass j will run from 1 to p � 1, as we sort A[1], . . . , A[p]. And we
will avoid making another pass if the value of p is <¼ 1. We can implement this by
using another new variable q, for the index of the last position we need to consider
in the current pass. For the first pass, q is set to n, and after each pass, q is set to p.

Algorithm 4.3.4: BetterBubbleSort

Begin
q n;
Repeat // passes through the array A

p 0;
For j 1 To (q � 1) Do
If (A[j] > A[j þ 1]) Then
x A[j];
A[j] A[j þ 1];
A[j þ 1] x;
p j; // the “position” of the last exchange

End; // the if
End; // the for-j loop
q p;

Until (q <¼ 1);
End.

// Can the repeat-loop be rewritten as a while loop?

Walkthrough of BetterBubbleSort with n¼ 11and A¼ (5, 7, 6, 0, 9, 8, 2, 1, 5, 7, 8)

// showing the contents of A after each pass and the final value of p
// using the same data as the previous walkthrough.

// After 6 passes, A ¼ (0,1,2,5,5,6,7,7,8,8,9) and is (completely) sorted.
// But we didn’t discover that until we completed one more pass.

For BetterBubbleSort, the number of passes, #P, and the number of
comparisons, #C, depend on the input. In a best case, the first pass is enough.

160 4 Searching and Sorting

A best case is when A is already sorted (or when the only interchange swaps A[1]
and A[2]). In a best case,

#P ¼ 1 and #C ¼ n� 1:

// What is a worst case for BetterBubbleSort?

While large values move rapidly up the array to where they belong, small values
move down the array one step at a time and only one step per pass. A worst case for
BetterBubbleSort would occur if p is assigned the largest possible value on every
pass. The largest possible value of p is the largest value j takes on the pass, q � 1.
This happens when the smallest value in A is in the last position A[n].

// Are there other worst cases?

Then, BetterBubbleSort acts like standard BubbleSort and in a worst case

#P ¼ n� 1 and #C ¼ n n� 1ð Þ/2:

The worst case complexity of BetterBubbleSort is of Order n2.

// What about an average case? We look at average case complexity in Chap. 10.

// Is there a way to determine a minimum possible complexity,
// for all possible sorting algorithms that are based on comparing key values?

Let’s construct the Branching Diagram of MinSort, when n ¼ 3, with an
internal vertex for each comparison, and a leaf for each possible rearrangement
of the input values. Suppose the input array A ¼ (x, y, z) where the entries are in
some arbitrary order. At each comparison, take the left branch if the result is False,
and the right branch if the result is True.

// On the first pass, min ¼ A[1] ¼ x; on the second pass, min ¼ A[2].
// The first pass ends at the dotted horizontal line.

The corresponding Branching Diagram of BetterBubbleSort is shown below
for input A ¼ (x, y, z). At each comparison, take the left branch if the result is False
and the right branch if the result is True.

A [2]<min

A [3]<minA [3]<min

A [3]<min A [3]<min A [3]<min A [3]<min

x , y, z x , z, y z, x , y z, x , y y, x , z y, z, x z, y, x

min z

A=(z, y, x)

min y

min z

A=(y, x, z) A=(z, y, x)

F T

4.3 Sorting 161

// The first pass ends at the dotted horizontal line.

In both of these Branching Diagrams, we constructed a rooted Binary Tree with
at least 6 ¼ 3! leaves.

The Most Important Ideas in This Section.
The sorting problem is as follows: Given an array A[1], A[2], A[3], . . . , A[n],
rearrange the values in A so that

A 1½ � <¼ A 2½ � <¼ A 3½ � <¼ . . . <¼ A n½ �:

There is a surprising variety of solution strategies and sorting algorithms.
Sorting methods are part of the common knowledge of all computer
scientists. The cost of a sorting algorithm is usually taken to be the number
of comparisons involving two array entries (key comparisons).

We described a “selection sort” called MinSort and an “exchange sort”
called BubbleSort. And we showed that for both of these algorithms every
case costs, n(n � 1)/2 ¼ (½) � n2 � (½) � n comparisons. We then pro-
posed consideration of a BetterBubbleSort where not all cases are worst
cases, a best case costs only (n � 1) comparisons, and in most cases, many
comparisons are saved.

We constructed the Branching Diagram of comparisons for MinSort and
for BetterBubbleSort when n ¼ 3, displaying all possible sequences of
comparisons they might make as the internal vertices, and the rearrangements
of entries as the leaves (there must be at least n! leaves.)

Next, we will look at such a Branching Diagram of comparisons for any
possible sorting algorithm A , and we’ll use the diagram to prove that the
average cost for A is at least lg(n!) comparisons (then we’ll know what a best
possible sorting algorithm must do – on average). Average-case complexity is
the subject of Chap. 10.

162 4 Searching and Sorting

4.4 Binary Trees with (at Least) n! Leaves

A Binary Tree is a tree T with a certain distinguished vertex, r, called the root of
T and placed at the top of the diagram, and where each vertex, v, of T has at most
two vertices directly below it in the diagram.

r

A leaf is a vertex with no vertices below it; the other (non-leaf) vertices are
known as internal vertices. For any vertex, v, there is a unique path from it back to
the root r. // up the diagram and down the tree
The length of that path is the number of edges traversed and is called the height of
vertex v and denoted by h(v). // so h(r) ¼ 0
The height of the tree T equals the height of the highest vertex in T .

// the highest leaf

Theorem 4.4.1: A Binary Tree with height h has at most 2h leaves.

Proof. // by Strong Induction on h where h 2 {0:: }
Step 1. If T has height h ¼ 0, there can be no vertex in T other than the root, r.

Then, r must be a leaf and so T has exactly 1 ¼ 2h leaves.
Step 2. Assume 9 q >¼ 0 such that for any k where 0 <¼ k <¼ q,

any Binary Tree with height k has at most 2k leaves.
Step 3. Suppose T * is some particular Binary Tree with height q þ 1 rooted at

vertex r. // We must prove that T * has at most 2qþ1 leaves.

4.4 Binary Trees with (at Least) n! Leaves 163

Case 1. The root r has two vertices below it, u and w.

r

wu

The portion of T * below u is a Binary Tree T u with height i <¼ q rooted at u, and
the portion of T * below w is a Binary Tree T w with height j <¼ q rooted at w.

// In fact, either i or j (or both) must equal q.

From our assumption in Step 2,

T u has at most 2i leaves and T w has at most 2j leaves:

Since every leaf in T occurs in T u or in T w, // but not in both

of leaves in T * ¼ # of leaves in T uþ # of leaves in T w

<¼ 2i þ 2 j

<¼ 2q þ 2q // i and j <¼ q

¼ 2qþ 1:

Case 2. The root r has only one vertex below it, u.
The portion of T * below u is a Binary Tree T u rooted at u, with height equal q
exactly. Since every leaf in T occurs in T u,

of leaves in T * ¼ # of leaves in T u

<¼ 2q

< 2qþ 1: ▯

From Theorem 4.4.1, we know that:
If a Binary Tree has height h < k, then it has <¼ 2h < 2k leaves.
If a Binary Tree has height h < lg(n), then it has <¼ 2h < 2lg(n)¼ n leaves.

164 4 Searching and Sorting

The contrapositive of this second statement is as follows:
If a Binary Tree has >¼ n leaves, then it has a height >¼ lg(n).

And, in particular:
If a Binary Tree has >¼ n! leaves, then it has a height >¼ lg(n!).

Since the Branching Diagram of comparisons for any Sorting Algorithm applied
to an array of length n must have >¼ n! leaves, the Worst Case for this algorithm
(which corresponds to reaching a highest leaf) must do >¼ lg(n!) comparisons
(of array entries).

// But what about the average case? Can the Branching Diagram give us a bound
// for it?

Theorem 4.4.2: The average height of a leaf in a Binary Tree with n leaves
is >¼ lg(n).

Proof. Let T be some (fixed but arbitrary) Binary Tree with n leaves.

// We’ll prove that the leaves in T have an average height >¼ lg(n) in four stages.

Let SHLðT Þ denote the Sum of the Heights of the Leaves in T , and let AHLðT Þ
denote the Average of the Heights of the Leaves in T . Then,

AHLðT Þ ¼ SHLðT Þ/n:

// Stage 1.

If some vertex x, which is not the root, has only one vertex w below it, and we
remove x but join the vertex u above x directly to w, we obtain a new tree T 1, with
the same number of leaves but at least one leaf is now one step closer to the root.

r

u

x

w

r

u

1

w

4.4 Binary Trees with (at Least) n! Leaves 165

If the root r has only one vertex w below it, and we remove r and make w the root,
we obtain a new Binary Tree T 1, with the same number of leaves but where every
leaf is now one step closer to the root.

r

w

1

w

In either case, T 1 is a Binary Tree with n leaves. But since at least one leaf is now
one step closer to the root,

SHLðT Þ > SHLðT 1Þ and so AHLðT Þ > AHLðT 1Þ:

If we remove all internal vertices with only one vertex below them in the same
fashion, we obtain a full Binary Tree Ta with n leaves, where

AHLðT Þ >¼ AHLðTaÞ: // T itself might be full:

//Now we need to prove that AHLðTaÞ>¼ lg(n) (in three more stages).

// Stage 2.

Let x be a “lowest” leaf with p ¼ h(x) as small as possible,
// a leaf closest to the root

and let y be a “highest” leaf with q ¼ h(y) as large as possible.
// farthest from the root

If q> p þ 1, then we can construct a new tree T 2 that is still a full Binary Tree with
n leaves, where

SHLðTaÞ > SHLðT 2Þ:

Let s be the internal vertex above y; since s must have exactly two vertices
directly below it, there is another vertex z directly below s along with y. Since
h(z) ¼ h(y), z must also be a highest leaf. Construct T 2 by detaching them from
s and reattaching them below x.

166 4 Searching and Sorting

r

x

s

yz

2

r

x

s

y*z*

Then, T 2 is a full Binary Tree with n leaves, but

SHL T 2ð Þ ¼ SHL Tað Þ � hðxÞ � hðyÞ � hðzÞþ h z*ð Þ þ h y*ð Þ þ hðsÞ
¼ SHL Tað Þ � p � q � q þ pþ 1ð Þþ pþ 1ð Þþ q� 1ð Þ
¼ SHL Tað Þþ p � q þ 1

< SHL TaÞ // q> pþ 1ð

If we repeat this construction of detaching pairs of leaves at the highest level q
and reattaching them below a vertex at the lowest level p whenever q > p þ 1, we
will obtain a full Binary Tree Tb with n leaves, where all the leaves are at level p
or (perhaps) p þ 1.

r

x

s

yz

r

x

syz

// Now we need to prove that AHLðTb Þ>¼ lg(n) (in two more stages).
// Stage 3.

We can show by Mathematical Induction that for k ¼ 0, 1, . . ., p the number of
vertices at level k in Tb is exactly 2k.

// because each internal vertex has 2 vertices below it

4.4 Binary Trees with (at Least) n! Leaves 167

If all the vertices at level p are leaves, then all the leaves are at height p, n ¼ 2p, and

AHLðTb Þ ¼ p ¼ lgðnÞ:

If only t vertices at level p are leaves, then there are exactly 2p � t internal
vertices at level p. Since all other leaves are at level p þ 1, there are exactly
2(2p � t) leaves at level p þ 1. Thus,

n ¼ tþ 2 2p � tð Þ ¼ 2pþ 1 � t; // where 0< t < 2p

SHLðTb Þ ¼ t� pþðn� tÞ� ðpþ 1Þ
¼ tpþ np� tpþ n� t

and AHL Tbð Þ ¼ ðnÞ pþ 1ð Þ � tf g/n
¼ pþ 1ð Þ � t/n

// Stage 4. (finally)

The function y ¼ lg(x) for x > 0 is concave down.

// Students of Calculus can prove this by showing that y″ is negative when x > 0.

This means that if any two points on the curve are joined by a straight line segment,
that segment lies entirely below the curve.

In particular, the line segment joining (1,0) and (2,1) given by y ¼ x � 1 lies below
the curve. // That is, if 1 < x < 2, then x � 1 < lg(x).

If n and t are integers where 0 < t < n, then 1 < 1þ t/n < 2, // 0 < t/n < 1
so taking x ¼1þ t/n, we get

x� 1< lgðxÞ

where x� 1 ¼ 1þ t/nð Þ � 1 ¼ t/n

and lgðxÞ ¼ lg 1þ t/nð Þ ¼ lg n/nþ t/nð Þ
¼ lg nþ t½ �/nð Þ ¼ lg nþ tð Þ � lgðnÞ: // lg a/bð Þ ¼ lgðaÞ � lgðbÞ

x

168 4 Searching and Sorting

Hence, t/n< lg nþ tð Þ � lgðnÞ
so lgðnÞ< lg nþ tð Þ � t/n:

Because n ¼ 2pþ 1 � t; nþ t ¼ 2pþ 1; so

lgðnÞ< lg 2pþ 1
� �� t/n

¼ pþ 1� t/n
¼ AHLðTb Þ:

Therefore, AHLðT Þ>¼ AHLðTb Þ>¼ lg(n). ▯

Since the Branching Diagram for any Sorting Algorithm applied to any array of
length n must have >¼ n! leaves, the Average Case for this algorithm (which
corresponds to reaching a leaf at average height) must do >¼ lg(n!) comparisons
(involving array entries).

Next, we find bounds on lg(n!) in terms of n and lg(n). Consider the table

n n! nn (n!)2

1 1 ¼ 1 ¼ 1

2 2 < 4 ¼ 4

3 6 27 < 36

4 24 256 576

5 120 3125 14400

Theorem 4.4.3: For all positive integers

1ð Þ n! <¼ nn but n!< nn when n> 1;

2ð Þ nn <¼ n!ð Þ2 but nn < n!ð Þ2 when n> 2;
3ð Þ lg n!ð Þ < n� lgðnÞ < 2� lg n!ð Þ when n> 2;

and 4ð Þ 1=2ð Þn� lgðnÞ < lg n!ð Þ < n� lgðnÞ when n> 2:

Proof. // We’ll prove these results in order. (using algebra, not MI)

n! ¼ n� n� 1ð Þ� n� 2ð Þ� . . . �ð2Þ� ð1Þ
<¼ n� nð Þ� nð Þ� . . . �ðnÞ� ðnÞ ¼ nn:

Equality holds only when n ¼ 1. // We’ve proven (1).

// What about 2ð Þ?
// If n ¼ 5; then 5! ¼ 5ð Þ 4ð Þ 3ð Þ 2ð Þ 1ð Þ
// and 5! ¼ 1ð Þ 2ð Þ 3ð Þ 4ð Þ 5ð Þ;
// so
// 5!ð Þ2 ¼ 5!ð Þ 5!ð Þ ¼ 5� 1ð Þ 4� 2ð Þ 3� 3ð Þ 2� 4ð Þ 1� 5ð Þ
// ¼ 5ð Þ 8ð Þ 9ð Þ 8ð Þ 5ð Þ
// > 5ð Þ 5ð Þ 5ð Þ 5ð Þ 5ð Þ ¼ 55:
// Does this generalize?

4.4 Binary Trees with (at Least) n! Leaves 169

In general,

n! ¼ n� n� 1ð Þ� n� 2ð Þ� . . . � 2ð Þ� 1ð Þ ¼
Yn
r¼1

nþ 1� rð Þ

and n! ¼ 1ð Þ� 2ð Þ� 3ð Þ� . . . � n� 1ð Þ� ðnÞ ¼
Yn
r¼1

r;

where
Q

(the Greek capital letter π) is used in the way the Greek capital letter sigma
is used in sigma-notation for sums, but it applies to products. Then,

n!ð Þ2 ¼
Yn
r¼1

nþ 1� rð Þ�
Yn
r¼1

r

¼
Yn
r¼1

nþ 1� rð Þ� rf g:

But nþ 1� rð Þr ¼ n� rþ 1ð Þr ¼ n� rð Þr þ r
¼ n� rð Þ r � 1½ � þ 1ð Þ þ r
¼ n� rð Þ r � 1ð Þþ n� rð Þ þ r
¼ n� rð Þ r � 1ð Þþ n
>¼ n: // Both n� rð Þ>¼ 0 and r � 1ð Þ>¼ 0

// when 1 <¼ r <¼ n

Thus, n!ð Þ2 >¼
Yn
r¼1

n ¼ nn:

Equality holds only when n ¼ 1 or 2. If n >¼ 3, there is at least one r-value in the
product where 1 < r < n and then n < (n þ 1 � r)r.

// Now we’ve proven (2). What about the logarithms in (3) and (4)?

Suppose that n >¼ 3. Since n! < nn < (n!)2, taking logarithms, we get (3),

lg n!ð Þ< n� lgðnÞ< 2� lg n!ð Þ: // Recall logb xyð Þ ¼ y� logbðxÞ

Dividing the last two terms by 2, we get

1=2ð Þn� lgðnÞ< lg n!ð Þ

and so we’ve proven result (4) as well. ▯

The Most Important Ideas in This Section.
This section concerned three theorems about Binary trees which also apply to
all possible sorting algorithms (based on comparisons of array entries).

A Binary Tree with height h has at most 2h leaves. So if a rooted Binary
tree has >¼ n! leaves, then it has a height >¼ lg(n!). Therefore, in a Worst
Case, any Sorting Algorithm must do >¼ lg(n!) comparisons.

170 4 Searching and Sorting

(continued)

The average height of a leaf in a Binary Tree with n leaves is >¼ lg(n).
Therefore, in an Average Case, any Sorting Algorithm must do >¼ lg(n!)
comparisons.

For all positive integers > 2, n! < nn < (n!)2, and so (½)n � lg(n) < lg(n!)
< n � lg(n). Therefore, in an Average Case, any Sorting Algorithm must do
> (½)n � lg(n) comparisons.

We now know that a best possible sorting algorithm applied to an array of
length n would cost about n � lg(n) comparisons on average. How can we
create such a sorting algorithm?

If A i½ �<A j½ � and A j½ �<A k½ �;

then (we know even without comparing them that)

A i½ �<A k½ �:

If we can somehow remember the results of early comparisons, or somehow
organize the sequence of comparisons so we remember the results, we can
avoid many later (unnecessary) comparisons. We’ll do that next.

4.5 Partition Sorts

We will examine one particular partition sort in detail, QuickSort. This is a very
good sorting algorithm; it is very efficient on average, relative to the hoped for
complexity of n � lg(n) key comparisons and relative to the previous sorts. Also,
it allows us to introduce and discuss an intrinsically recursive algorithm.

The strategy for QuickSort is this: Make a pass through the array A[1] to A[n]
comparing each entry in turn to the value of one particular entry and interchanging
certain entries so that after this pass, all entries smaller than A[j] occur before
position j in the array and all values larger than A[j] occur after position j in the
array.

A½1� . . . A½j� 1�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
<¼ A½j�

A j½ � A½jþ 1� . . . A½n�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
>¼ A½j�

Now A[j] is in the “correct” position, and we just have to sort the two sublists,
A[1] to A[j � 1] and A[j þ 1] to A[n], to obtain the whole list, A[1] to A[n], in
sorted order.

The optimum partition divides the list as nearly in half as possible. //X why?
In that case, the value of A[j] would be the Median of all the values in A.

However, we’ll proceed by making a rather crude estimate M of the median,

4.5 Partition Sorts 171

namely, we’ll use A[n]. Actually, we will write QuickSort to work on a sublist of
the array, A[p] to A[q] where p < q, and we will initialize M to be the value of A[q].

// The median occurs somewhere; maybe it’s at the end.
After we partition the whole list, as

A½1�. . .A½j� 1�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
<¼ M

A½j�|{z}
¼ M

A½jþ 1�. . .A½n�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
>¼ M

;

we’ll recursively sort the sublists we’ve created (using QuickSort itself) until the
input list is completely sorted. We’ll assume that there is an “external” call of
QuickSort that initiates a sort of the whole array from A[1] to A[n].

// And we’ll assume that 1 <¼ n.

There have been many versions of QuickSort devised since it was first created
and published by C. A. R. Hoare as Algorithms 63 and 64 – Partition and Quicksort
in the Communications of the ACM in 1961. The one included here is based on a
version due to N. Lomuto which also appeared many years ago.

We will make one minor revision to the basic strategy: the values that are put
before position j will be strictly smaller than M. The strategy will be implemented
using a for-loop controlled by a variable k going from p up to (q � 1). We’ll alter
the array A so that for each successive value of k, we have

A½p�. . .A½j� 1�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
<M

A½j�. . .A½k�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
>¼ M

A½kþ 1�.A½q� 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
?

A½q�|{z}
¼M

// The part of A from A[p] to A[k] has been partitioned into those < M and those
// not < M the way we want, but
// the part from A[k þ 1] to A[q � 1] is yet to be partitioned.

Now, if A[k þ 1] < M, then interchange A[k þ 1] and A[j] and then increase j by 1
(but, if A[k þ 1] >¼ M, then do nothing), so we get

A½p�.A½j� 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<M

A½j�.A½kþ 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
>¼M

A½kþ 2�. . .A½q� 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
?

A½q�|{z}
¼M

:

When k reaches (q � 1), we’ll have

A½p�.A½j� 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<M

A½j�.A½q� 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
>¼M

A½q�|{z}
¼M

:

So if we now interchange A[q] and A[j], we’ll have A partitioned the way we want
at a cost of exactly (q � p) key comparisons. // And (j � p) þ 1 exchanges.

172 4 Searching and Sorting

Algorithm 4.5.1: QuickSort(p,q)

// Assumes an “external” invocation of the form QuickSort(1, n) and
// (recursively) sorts A[p], A[p þ 1],. . . , A[q] into order:

Begin
If (p < q) Then

M A[q];
j p;
For k p to (q � 1) Do

If (A[k]< M) Then
x A[j];
A[j] A[k];
A[k] x;
j j þ 1;

End; // the if
End; // the for-k loop
A[q] A[j];
A[j] M; // this is the end of the “partitioning”

QuickSort(p , j � 1); // the first “recursive” sub-call
QuickSort(j þ 1, q); // the second “recursive” sub-call

End; // the if-statement at the beginning
End. // the recursive algorithm

Walkthrough assuming an “external” invocation of the form Q(1, 11); that is,

// QuickSort the array A from position, p ¼ 1 to the last position, q ¼ 11.

A

k A[k] A[k] jM
- - - 5 7 6 0 9 8 2 1 5 7 3 1
1 5 F 5 7 6 0 9 8 2 1 5 7 3 "
2 7 F 5 7 6 0 9 8 2 1 5 7 3 "
3 6 F 5 7 6 0 9 8 2 1 5 7 3 "
4 0 T 0 7 6 5 9 8 2 1 5 7 3 2
5 9 F 0 7 6 5 9 8 2 1 5 7 3 "
6 8 F 0 7 6 5 9 8 2 1 5 7 3 "
7 2 T 0 2 6 5 9 8 7 1 5 7 3 3
8 1 T 0 2 1 5 9 8 7 6 5 7 3 4
9 5 F 0 2 1 5 9 8 7 6 5 7 3 "
10 7 F 0 2 1 5 9 8 7 6 5 7 3 "
- - - 0 2 1 3 9 8 7 6 5 7 5 -

the first Partition of A is: <3 3 >=3 and first j 4

1 p q 11

M 3

Now, p ¼ 1 and j � 1 ¼ 3, so the next “action” taken by QuickSort is the
invocation of QuickSort itself with new parameter values, QuickSort(1,3).

Before continuing the walk through, we digress for a moment to describe a
common mechanism for implementing recursion (in modern high-level computer
languages). Each invocation of the algorithm, including the sub-calls inside the

4.5 Partition Sorts 173

algorithm, causes the creation of a “call frame”, a data structure specifically for that
call. We can employ the analogy of using sheets of scrap paper for getting partial
results throughout a long and complex calculation.

When the algorithm reaches a point where a sub-call is made, imagine starting
the algorithm again but first marking where we are in the current execution/
calculation (this will be the “return address”). Then, getting a new page to work
on; placing it on the top of the stack of scratch pages; making room on that new
page for storing the values of the variables local to this instance of the algorithm
(M, k, j, and x – but not the “global” variable A – all references to A must “point to”
one master copy of the array); recording on this new page the values of the
parameters in this invocation; and recording the return point on the page just
below. Then, a run of the algorithm again from its beginning is started.

When the algorithm reaches another point where a new sub-call occurs, repeat
that process. Start running the algorithm again from its beginning, with the new
page to work on placed on the top of the stack of scratch pages.

If a run of a sub-call of the algorithm reaches completion, throw away the top
page and return to the point on the previous page where that execution/calculation
should continue.

Call #2 of QuickSort will be Q(1, 3).
// Later, there will be a call Q(5, 11), but not
// until we have finished sorting A[1] . . . A[3].

// QuickSort the array A from position p ¼ 1 to position q ¼ 3.

A
k A[k] A[k] M j
- - - 0 2 1 3 9 8 7 6 5 7 5 M=1 1
1 0 T 0 2 1 " " " " " " " " 2
2 2 F 0 2 1 " " " " " " " " "
- - - 0 1 2 " " " " " " " " -

the second Partition of A is: 0 1 2 and second j = 2

1 p q 3

Now p ¼ j � 1 ¼ 1, and therefore, the next invocation,

Call #3 of QuickSort, will be Q(1, 1). // And later, there will be Q(3, 3).
On this call, p ¼ q, so nothing is done, and control returns to Call #2 of QuickSort
where j þ 1 ¼ q ¼ 3. The second sub-call is then done. Therefore, the next
invocation,

Call #4 of QuickSort, will be Q(3, 3). On this call, p ¼ q, so nothing is done, and
control returns to Call #2 of QuickSort which is now complete.

// Both sub-calls have been done.
At this point, we return to the first invocation of QuickSort and do the second
sub-call;

Call #5 of QuickSort will be Q(5, 11).

// QuickSort the array A from position p ¼ 5 to position q ¼ 11.

174 4 Searching and Sorting

C
5 r s 11

m C]m_ C]m_ lO
- - - 0 1 2 3 9 8 7 6 5 7 5 O 5 5
5 9 F $ $ $ $; 8 7 6 5 7 5 $
6 8 F $ $ $ $ 9 : 7 6 5 7 5 $
7 7 F $ $ $ $ 9 8 9 6 5 7 5 $
8 6 F $ $ $ $ 9 8 7 8 5 7 5 $
9 5 F $ $ $ $ 9 8 7 6 7 7 5 $

10 7 F $ $ $ $ 9 8 7 6 5 9 5 $
- - - $ $ $ $ 7 8 7 6 5 7 ; -

the new Partition of A is: 7 5 and current j 5

Now, p ¼ 5, but j � 1 ¼ 4, and therefore, the next invocation,

Call #6 of QuickSort will be Q(5, 4). // And later, there will be Q(6, 11).
But on this call, p > q, so nothing is done, and control returns to Call #5 of
QuickSort where j ¼ 5 to do the second sub-call. Therefore, the next invocation,

Call #7 of QuickSort, will be Q(6, 11).

// QuickSort the array A from position p ¼ 6 to position q ¼ 11.

Now, p ¼ 6 and j � 1 ¼ 10; therefore, the next invocation,

Call #8 of QuickSort, will be Q(6, 10). // And later, there will be Q(12, 11)

// QuickSort the array A from position p ¼ 6 to position q ¼ 10.

A
6 p q 10

k A[k] A[k] jM
- - - 0 1 2 3 5 8 7 6 5 7 9 M 7 6
6 8 F " " " " " 8 7 6 5 7 " "
7 7 F " " " " " 8 7 6 5 7 " "
8 6 T " " " " " 6 7 8 5 7 " 7
9 5 T " " " " " 6 5 8 7 7 " 8
- - - " " " " " 6 5 7 7 8 " -

the new Partition of A is: 7 7 7 and current j 8

A
6 p q 11

k A[k] A[k] jM
- - - 0 1 2 3 5 8 7 6 5 7 9 M 9 6
6 8 T " " " " " 8 7 6 5 7 9 7
7 7 T " " " " " 8 7 6 5 7 9 8
8 6 T " " " " " 8 7 6 5 7 9 9
9 5 T " " " " " 8 7 6 5 7 9 10
10 7 T " " " " " 8 7 6 5 7 9 11
- - - " " " " " 8 7 6 5 7 9 -

the new Partition of A is: 9 9 and current j 11

4.5 Partition Sorts 175

Now, p ¼ 6 and j � 1 ¼ 7, so the next invocation,

Call #9 of QuickSort, will be Q(6, 7). // And later, there will be Q(9, 10)

// QuickSort the array A from position p ¼ 6 to position q ¼ 7.

A
6 p q 7

k A[k] A[k] jM
- - - 0 1 2 3 5 6 5 7 7 8 9 M 5 6
6 6 F " " " " " 6 5 " " " " "
- - - " " " " " 5 6 " " " " -

the new Partition of A is: 5 6 and current j 6

6

Now p ¼ j ¼ 6, and therefore, the next invocation,

Call #10 of QuickSort, will be Q(6, 5). // And later, there will be Q(7, 7)
On this call, p > q, so nothing is done, and control returns to Call #9 of QuickSort
where j þ 1 ¼ q ¼ 7, and therefore, the next invocation,

Call #11 of QuickSort, will be Q(7, 7). On this call, p ¼ q, so nothing is done, and
control returns to Call #9 of QuickSort which is now complete.
At this point, we return to Call #8 of QuickSort where j ¼ 8 and do the second sub-
call;

Call #12 of QuickSort will be Q(9, 10).

// QuickSort the array A from position p ¼ 9 to position q ¼ 10.

A
9 p q 10

k A[k] A[k] jM
- - - 0 1 2 3 5 5 6 7 7 8 9 M 8 9
9 7 T " " " " " " " " 7 8 " 10
- - - " " " " " " " " 7 8 " -

the new Partition of A is: 7 8 and current j 10

Now p ¼ j � 1 ¼ 9, and therefore, the next invocation,

Call #13 of QuickSort, will be Q(9, 9). // And later, there will be Q(11,10).
On this call, p ¼ q, so nothing is done, and control returns to Call #12 of QuickSort
where j þ 1 ¼ 11 and q ¼ 10 to do the second sub-call. Therefore, the next
invocation,

Call #14 of QuickSort, will be Q(11, 10). On this call, p> q, so nothing is done, and
control returns to Call #12 of QuickSort which is now complete.
At this point, we return to Call #8 of QuickSort which is now complete, so we return
to Call #7 of QuickSort where j ¼ 11 ¼ q and do the second sub-call.

Call #15 of QuickSort will be Q(12, 11). On this call, p > q, so nothing is done, and
control returns to Call #7 of QuickSort which is now complete.
At this point, we return to Call #5 of QuickSort which is now complete.

176 4 Searching and Sorting

Then, we return to the first invocation of QuickSort, and it is now complete, and we
can be certain that the input array is now completely sorted.

A
1= qp =11

A = 0 1 2 3 5 5 6 7 7 8 9

The diagram below is the Tree of Recursive Calls for this one instance of
QuickSort. // It is not a Branching Diagram or Decision Tree for the algorithm.

The vertices are the invocations of QuickSort. It is a full Binary Tree rooted at
the “external” call, QuickSort(1,n), where n ¼ 11 and where the vertices “below” an
internal vertex are the two sub-calls made. The leaves are sub-calls where p >¼ q,
and nothing is done (except to ascertain that p >¼ q).

Q(1,11)

Q(5,11)

Q(6,11)

Q(6,10)

Q(9,10)Q(6,7)

Q (1,3)

Q(1,1) Q(3,3) Q(5,4)

Q(12,11)

Q(11,10)Q(9,9)Q(7,7)Q(6,5)

Theorem 4.5.1: QuickSort is a correct sorting algorithm

Proof. We will prove the following statement by Strong Induction on k where
k 2 {1.. }

If QuickSort(p, q) is invoked to sort the sublist A[p] . . . A[q] of length k,
it will terminate with the sublist correctly sorted. // k ¼ q � p þ1.

Step 1. If k ¼ 1, then p must equal q so QuickSort(p, q) terminates immediately
after ascertaining that p ¼ q, and any sublist of length 1 is correctly sorted.

Step 2. Assume 9 t >¼ 1 such that for any k where 1 <¼ k <¼ t
if QuickSort(p, q) is invoked to sort the sublist A[p]. . . A[q] of length k,
it will terminate with the sublist correctly sorted.

Step 3. Suppose QuickSort(p, q) is invoked to sort the sublist A[p]. . .A[q] of length
t þ 1.

4.5 Partition Sorts 177

Since t ¼ q � p and t >¼ 1, q must be greater than p. In the partition portion of the
algorithm, the value of j starts at p and is increased by 1 at most once for each value
of k, so the value of j at the end of the for-k loop is at most p þ (q � p) ¼ q.

We will continue by considering three cases. // of the value of j
Case 1. Suppose j ¼ p. Because j was not increased above its initial value p, for

every index k from p to q � 1, A[k] was >¼ M. So the only exchange done
is to interchange A[q] and A[j]. Then

A p½ � <¼ A pþ 1½ �;A pþ 2½ �; . . . ;A q½ �:

The first recursive sub-call is QuickSort(p, p � 1) which does nothing to array A.
By step 2, the second recursive sub-call which is QuickSort(p þ 1, q) terminates
and correctly sorts the sublist A[p þ 1] to A[q] which has length t. But then, the
algorithm terminates and the whole sublist A[p] to A[q] which has length tþ1 has
been correctly sorted.
Case 2. Suppose j ¼ q. Because j must have been increased from its initial value p,

for every index k from p to q � 1, each A[k] was < M, each j-value equaled
the current k-value, each A[k] was interchanged with itself, and finally,
A[q] was interchanged with itself. Then

A p½ �;A pþ 1½ �; . . . ;A q� 1½ �<A q½ �

By step 2, the first recursive sub-call which is QuickSort(p, q � 1) terminates and
correctly sorts the sublist A[p] to A[q � 1] which has length t. The second recursive
sub-call is QuickSort(q þ 1, q) which does nothing to array A. But then, the
algorithm terminates and the whole sublist A[p] to A[q] which has length t þ 1 has
been correctly sorted.
Case 3. If p < j < q, the algorithm will partition the list A[p]. . . A[q] into three

sections:
A[p]. . . A[j � 1] of length r where 1 <¼ r ¼ j � p < q � p ¼ t;
A[j] of length 1; and
A[j þ 1]. . . A[q] of length s where 1 <¼ s ¼ q � j < q � p ¼ t.

The first recursive sub-call is QuickSort(p, j � 1) which, by step 2, terminates and
correctly sorts A[p] to A[j � 1] so that

A p½ � <¼ . . . <¼ A j� 1½ �<A j½ � ¼ M

The second recursive sub-call is QuickSort(j þ 1, q) which, by step 2, terminates
and correctly sorts A[j þ 1] to A[q] so that

A j½ � ¼ M <¼ A jþ 1½ � <¼ A jþ 2½ � <¼ . . . <¼ A q½ �:

But then, the algorithm terminates and the whole sublist A[p] to A[q] which has
length t þ 1 has been correctly sorted. ▯

The main virtues of this version of QuickSort are as follows: It is fairly simple
despite the essential recursion, each partition makes one (left to right) traversal of

178 4 Searching and Sorting

the array, and it makes clear that there are exactly q � p key comparisons done in
each partition.

However, in our walk through of the example with n¼ 12, there were 8 “useless”
sub-calls of QuickSort where p >¼ q but only 7 “worthwhile” sub-calls (where
p < q); there were also many “useless” interchanges of A[j] with A[k] when k ¼ j
(in call #7) and two “useless” interchanges of A[j] with A[q] when q ¼ j (in call
#7 and #12).

Can we remove these useless operations? // Yes:
Can we make the algorithm more efficient? // Maybe:
Can we still keep the algorithm simple? // Probably not:

Any Tree of Recursive Calls of (any application of) QuickSort is a full Binary
Tree rooted at the “external” call, QuickSort(1, n) where n >¼ 1. Each internal
vertex has two vertices below it. The leaves are sub-calls where p >¼ q and where
nothing is done (so no sub-calls are made). Recall that Theorem 4.2.3 says that in a
full Binary Tree with k internal vertices, there are k þ 1 leaves – more than half the
vertices are leaves. Thus, in the sub-calls of QuickSort, more than half of them do
nothing (to alter array A), but each one has a cost in time and resources, as each
induces the construction of a call frame, placing it on the call stack, checking to see
that p >¼ q then removing the frame from the stack, and then returning to the
previous instance of QuickSort.

We can probably speed up the operation of QuickSort, if we check that a sub-call
will actually do something before it is made. That is, make the sub-calls
conditional.

If (p < j � 1) Then QuickSort(p, j � 1) End;

If (j þ 1 < q) Then QuickSort(j þ 1, q) End;

Then, we can remove the initial if-statement comparing the parameter values,
that checks that p < q, provided we make this a precondition for any “external” call
of QuickSort.

Furthermore, we can remove the useless interchanges of an entry with itself, if
we search for an entry A[j] >¼ M before the main partition loop. Implementing
these two ideas give us

Algorithm 4.5.2: QuickSort2 (p, q) // version #2.0

// Assumes that any “external” invocation has p < q. //X or p ¼ q.
// (recursively) sorts A[p], A[p þ 1], . . . , A[q] into order

Begin
M A[q];
j p;
While (A[j]< M) Do

j j þ 1;
End;

// Since A[q] ¼ M, this loop must terminate with j <¼ q.
// At termination, A[j] >¼ M & perhaps j ¼ q.
// But j ¼ q iff M is > all entries from A[p] to A[q – 1].

4.5 Partition Sorts 179

If (j¼q) Then
If (p < j � 1) Then

QuickSort2(p, j � 1);
End;

Else // when j < q & A[j] >¼ M, do the partitioning
For k (j þ 1) To (q � 1) Do
If (A[k]< M) Then
x A[j];
A[j] A[k]; // j < k
A[k] x;
j j þ 1;

End; // the if
End; // for k-loop

A[q] A[j];
A[j] M; // j < q

If (p < j � 1) Then QuickSort2(p , j � 1) End;
If (j þ 1 < q) Then QuickSort2(j þ 1, q) End;

End; // the else part when j < q
End. // the algorithm

Walkthrough assuming an “external” invocation of the form QuickSort2(1, 11).

// Sort the array A from position p ¼ 1 to the last position q ¼ 11.

C

l C]l_ C]l_ lO
- - - 5 7 6 0 9 8 2 1 5 7 5 1
1 5 F 7 7 6 0 9 8 2 1 5 7 3 $

1 r s 11

O 3

m C]m_ C]m_ lO
2 7 F 5 9 6 0 9 8 2 1 5 7 3 $
3 6 F 5 7 8 0 9 8 2 1 5 7 3 $
4 0 T 2 7 6 7 9 8 2 1 5 7 3 2
5 9 F 0 7 6 5 ; 8 2 1 5 7 3 $
6 8 F 0 7 6 5 9 : 2 1 5 7 3 $
7 2 T 0 4 6 5 9 8 9 1 5 7 3 5
8 1 T 0 2 3 5 9 8 7 8 5 7 3 4
9 5 F 0 2 1 5 9 8 7 6 7 7 3 $

10 7 F 0 2 1 5 9 8 7 6 5 9 3 $
- - - 0 2 1 5 9 8 7 6 5 7 7 -

the first Partition of A is: <3 5 >=3 and first j 4

Now, p ¼ 1 and j � 1 ¼ 3, so the next “action” taken by QuickSort2 is the
invocation of QuickSort2 itself with new parameter values.

Call #2 of QuickSort2 will be Q2(1, 3). // Later, there will be Q2(5, 11)

// Sort the array A from position p ¼ 1 to position q ¼ 3.

180 4 Searching and Sorting

C
1 r s 3

l C]l_ C]l_ O
- - - 0 2 1 3 9 8 7 6 5 7 5 O 1
1 0 T 2 2 1 $ $ $ $ $ $ $ $
2 2 F 0 4 1 $ $ $ $ $ $ $ $

At the end of the while-loop, j q. But j+1 q–1 so the for-loop is “empty”.
- - - 0 3 4 $ $ $ $ $ $ $ $

the second Partition is: 0 and second j 23 4

Now p ¼ j � 1 and also j þ 1 ¼ q; therefore, neither sub-call is made, Call #2 is
complete, and at this point, we return to the first invocation of QuickSort2 and do
the second sub-call.

Call #3 of QuickSort2 will be Q2(5, 11).

// Sort the array A from position p ¼ 5 to position q ¼ 11.

Now p > j � 1 but j þ 1 < q; therefore, the next invocation,

Call #4 of QuickSort2, will be Q2(6, 11).

// Sort the array A from position p ¼ 6 to position q ¼ 11.

C
6 r s 11

l C]l_ C]l_ O
- - - 0 1 2 3 5 8 7 6 5 7 9 O 9
6 8 T $ $ $ $ $: 7 6 5 7 9
7 7 T $ $ $ $ $ 8 9 6 5 7 9
8 6 T $ $ $ $ $ 8 7 8 5 7 9
9 5 T $ $ $ $ $ 8 7 6 7 7 9

10 7 T $ $ $ $ $ 8 7 6 5 9 9
11 9 F $ $ $ $ $ 8 7 6 5 7 ;

the fourth Partition is: 9 ; and fourth j 11
// At the end of the while loop, j ¼ q.

Since p < j � 1, the next invocation,

4.5 Partition Sorts 181

Call #5 of QuickSort2, will be Q2(6, 10).

// Sort the array A from position p ¼ 6 to position q ¼ 10.

A
6 p q 10

j A[j] A[j] M
- - - 0 1 2 3 5 8 7 6 5 7 9 M 7
6 8 F $ $ $ $ $ 8 7 6 5 7 "

k A[k] A[k] jM
7 7 F $ $ $ $ $ 8 7 6 5 7 " 6
8 6 T $ $ $ $ $ 8 7 8 5 7 " 7
9 5 T $ $ $ $ $ 6 5 8 7 7 " 8
- - - $ $ $ $ $ 6 5 7 7 8 " -

the fifth Partition is: 7 7 7 and fifth j 8

Now p < j � 1, so the next invocation,

Call #6 of QuickSort2, will be Q2(6, 7). // And later, there will be Q2(9, 10).

// Sort the array A from position p ¼ 6 to position q ¼ 7.

C
6 rs 7

l C]l_ C]l_ O
- - - 0 1 2 3 5 6 5 7 7 8 9 O 5
6 6 F $ $ $ $ $ 8 5 $ $ $ $

At the end of the while-loop, j q. But j+1 q–1 so the for-loop is “empty”.
- - - $ $ $ $ $ 7 8 $ $ $ $
the sixth Partition is: 7 6 and sixth j 6

Now p > j � 1 and j þ 1 ¼ q, so Call #6 is complete. At this point, we return to
Call #5 of QuickSort2 where j ¼ 8 and do the second sub-call;

Call #7 of QuickSort2 will be Q2(9, 10).

// Sort the array A from position p ¼ 9 to position q ¼ 10.

C
9 r s 10

l C]l_ C]l_ O
- - - 0 1 2 3 5 5 6 7 7 8 9 O 8
9 7 T $ $ $ $ $ $ $ $ 9 8 $

10 8 F $ $ $ $ $ $ $ $ 7 : $
the seventh Partition is: 7 : and seventh j 10
At the end of the while-loop, j q.

Now p ¼ j � 1, so no sub-call is made, the else part is skipped over, and Call #7 is
complete.
At this point, we return to Call #5 of QuickSort2 which is now complete.

182 4 Searching and Sorting

Then, we return to Call #4 of QuickSort2, skip over the else part, and Call #4 is complete.
Then, we return to Call #3 of QuickSort2 which is now complete.
Then, we return to the first invocation of QuickSort2, and it is now complete, and
we can be certain that the input array is now completely sorted.

A
1= qp =11

A = 0 1 2 3 5 5 6 7 7 8 9

The diagram below is the Tree of Recursive Calls for this one instance of
QuickSort2. // It is not a Branching Diagram or Decision Tree for the algorithm.
The vertices are the invocations of QuickSort2. It is no longer a full Binary Tree
rooted at the “external” call, QuickSort2(1, n), where n ¼ 11. The vertices “below”
a vertex are the sub-calls made.

Q2(1,11)

Q2(5,11)

Q2(6,11)

Q2(6,10)

Q2(9,10)Q2(6,7)

Q2(1,3)

Compare this binary tree with the tree for the original QuickSort algorithm. Notice
that this is the same tree that we saw previously with all its leaves pruned off.
Or one might say that this is a sub-tree of the previous tree consisting of the internal
vertices only (together with those edges that join internal vertices to each other).

The Most Important Ideas in This Section.
We presented a “partition sort” called QuickSort and proved its correctness.
An exercise asks you to prove that it terminates after at most n(n � 1)/2
comparisons and to demonstrate that a worst case occurs when the input array
is already sorted.

We described a common mechanism for implementing recursion, a stack
of call frames. And we gave a way to diagram the action of recursion on a
specific input as a Tree of Recursive Calls. For QuickSort, that diagram is a
full Binary Tree. We used a general result about full Binary Trees to construct
a second version QuickSort2 to try to speed up execution.

Recursive algorithms are often very easy to construct and to prove correct
(by Strong Induction).

The next section reports experimental results about the time taken for each
of the sorting algorithms – with some dramatic conclusions.

4.5 Partition Sorts 183

4.6 Comparison of Sorting Algorithms

To compare the running times of the sorting algorithms we’ve discussed in this
chapter, each was implemented and run on a desktop computer using a sample of
ten input arrays. The entries in these arrays were integers selected at random from
1 to 1,000,000. In each case, the average time in seconds was calculated.

// and rounded

4,000 keys 8,000 keys T(2n)/T(n)
BetterBubbleSort 5.467 21.992 4.023

BubbleSort 5.132 21.033 4.098

MinSort 2.445 9.782 4.002

QuickSort 0.0218 0.0465 2.131

QuickSort2 0.0217 0.0460 2.124

We also ran the two QuickSort algorithms on much longer arrays.

200,000 keys 400,000 keys T(2n)/T(n)
QuickSort 1.497 3.183 2.126

QuickSort2 1.454 3.165 2.177

From this data, we can see that:
1. BetterBubbleSort was just too clever – for random lists, the savings in

comparisons was lost to the extra cost of maintaining the “flag” variable p.

// p was updated at every exchange, and (usually) there are many
// exchanges. BubbleSort is dumb and BetterBubbleSort is dumber.

2. Lowly MinSort spends much less time shuffling data and requires less than half
the time of the BubbleSorts. // Only one exchange is done on each pass.

3. QuickSort may seem complicated but is much, much quicker.
4. QuickSort2 is even quicker. // but only slightly

4.6.1 Timings and Operation Counts

These data also show that counting comparisons is a reasonable way to determine
“relative costs” of running these algorithms. If T(n) is the time taken to sort a list of
length n, and f(n) is the number of key comparisons done, then we might expect that
T(n) is roughly proportional to f(n). That is, T(n) ffi c � f(n) where c is a constant.

// The value of that constant would depend on the speed of the machine used, the
// optimization level of the object code, the computing environment, and other
// factors.

If f(n) ffi a � n2, // In a way, we’ll make precise in Chap. 7.
as is the case for MinSort and the BubbleSorts, then doubling the size of the input
more or less quadruples the running time. // as shown in the data

184 4 Searching and Sorting

Tð2nÞ
TðnÞ ffi

c� a�ð2nÞ2
c� a� n2

¼ 4

If f(n) ffi b � n � lg(n), as is the (average) case for the QuickSorts, then

Tð2nÞ
TðnÞ ffi

c� b�ð2nÞ lgð2nÞ
c� b� n lgðnÞ ¼ 2½lgð2Þþ lgðnÞ�

lgðnÞ ¼ 2þ 2
lgðnÞ :

For n ¼ 4; 000; lgðnÞ ¼ 11:96578 . . . and 2þ 2
lgðnÞ ¼ 2:167143. . .

For n ¼ 200; 000; lgðnÞ ¼ 17:60964 . . . and 2þ 2
lgðnÞ ¼ 2:113574. . .

// The running time more than doubles (but not a lot more).

The Most Important Ideas in This Section.
BubbleSort is so bad it should never be shown to students, never used, and
never remembered. MinSort works well for short lists. QuickSort is very
quick.

Some improvement ideas work but some do not. Modern computers are
fast and programming languages are complex, and it is often difficult to
predict whether a change to an algorithm will actually result in a performance
gain (or not). And even when a performance gain is realized, it may be very
small.

But sometimes, a revision of an algorithm produces an enormous increase
in efficiency! In Chap. 7, we will revisit these ideas about time-complexity.

Exercises

1. Consider the array A ¼ (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024).
(a) How many elements will be probed when performing a linear search for 32?
(b) Can a binary search be performed on this array? If so, how many elements

will be probed when performing a binary search for 32? If not, briefly
explain why not.

2. Consider the array A ¼ (0, 1, 127, 1023, 255, 3, 31, 511, 63, 7).
(a) How many elements will be probed when performing a linear search for

32?
(b) Can a binary search be performed on this array? If so, how many elements

will be probed when performing a binary search for 32? If not, briefly
explain why not.

3. (a) Draw the “Tree of Probes” for Linear Search when n ¼ 7.
(b) Draw the “Tree of Probes” for Binary Search when n ¼ 14 and n ¼ 20.

4.6 Comparison of Sorting Algorithms 185

4. Prove by MI that for all k 2 {0.. }, if Binary Search is applied to an array of
length n and has not terminated after k (unsuccessful) probes, then the length of
the current sublist must be <¼ n/2k.

5. Why does every entry in A appear exactly once in the tree of Probes for Binary
Search?

6. Do other loop invariants hold for Binary Search? Prove that:

(a) Either p ¼ 1 or A[p � 1] < T
(b) Either q ¼ n or T < A[q þ 1]

7. Prove that d(k � 1)/2e ¼ bk/2c for 8k 2 Z.
8. Prove that dk/2e ¼ b(k þ 1)/2c for 8k 2 Z.
9. Suppose T is not found by Binary Search.

// Where will T fit into the array? Where should it be inserted?
(a) Is the final q-value always one less than the final p-value?
(b) When is A[q] < T < A[p]?
(c) If p ¼ 1 (that is, p was never changed), is T < A[1]?
(d) If q ¼ n (that is, q was never changed), is A[n] < T?

10. Do the same loop invariants for the while loop hold for Binary Search #2? Prove
that “after each iteration of the loop, if T ¼ A[i] then p <¼ i <¼ q.”

11. Suppose T is not found by Binary Search #2; then, in the last comparison,
A[p] 6¼ T.
(a) Show that if 1 < p < n, then A[p � 1] < T < A[p].
(b) Show that if 1 ¼ p < n, then T < A[1].
(c) Show that if 1 < p ¼ n, then A[n � 1] < T < A[n] or A[n] < T.

12. Suppose that T is a full Binary Tree where all leaves are at level p or higher.
Prove by Mathematical Induction that for k ¼ 0, 1, . . . , p the number of vertices
at level k is exactly 2k.

// because each internal vertex has two vertices below it
13. (a) How would you sort A[1], A[2], . . . , A[400] if each entry is either 0 or 1?

(b) How would you sort A[1], A[2], . . . , A[400] if each entry is one of ten
possible values X[1] < X[2] < . . . < X[10]?

14. The prototype for InsertionSort is a common method of “sorting” a hand of
cards. Suppose 1<¼ k< n and A[1], A[2], . . . , A[k] are in nondecreasing order.
Now insert A[k þ 1] into its correct position among these previous entries. To
make room for (the value of) A[k þ 1], those entries larger than A[k þ 1] can
be shifted up one place, one entry at a time:
(a) Write a program (or pseudo-code) for the Algorithm InsertionSort.
(b) Would you say this is an exchange sort?
(c) Is every case a worst case? How many comparisons would be done in a

worst case?
(d) What is a best case? How many comparisons would be done in a best case?

15. Prove that QuickSort terminates after at most n(n � 1)/2 key comparisons,
where n is the length of the list being sorted.

// Hint: Follow the pattern of the proof of Theorem 4.5.1.
Does this argument show that a worst case for QuickSort is an already sorted
list?

186 4 Searching and Sorting

16. Does Quicksort2 work correctly if the “external” invocation has p ¼ q?
17. In QuickSort, the list A[p]. . .A[q] of length k is partitioned into 3 sublists:

A[p]. . .A[j � 1] of length k1, A[j] of length 1, and A[j þ 1]. . .A[q] of length k2.
The total cost in key comparisons of sorting the list is described by

CðkÞ ¼ k � 1ð ÞþC k1ð ÞþC k2ð Þ:
This exercise will show that C(k1) þ C(k2) is smallest when

k1 ¼ k � 1
2

� �
and k2 ¼ k � 1

2

	

: //or visa versa

(a) Let f be any sequence on N. The nth increment of f is
�f(n) ¼ f(n þ 1) � f(n).

// So �f is also a sequence on N (sometimes called the “first-differences”).

Prove that if 0 <¼ a < b, then

f ðaÞþ
Xb�1
j¼a

�f ðjÞ ¼ f ðbÞ:

(b) The function f has increasing increments means �f is an increasing
sequence. Assume that the cost of sorting an array in terms of the number
of comparisons is such a function.
Suppose that 0 <¼ a < r <¼ s < b and N ¼ a þ b ¼ r þ s.
(i) Prove that if the function f has increasing increments, then

f ðrÞþ f ðsÞ< f ðaÞþ f ðbÞ:

// Hint:
// f(a) þ f(b) ¼ f(a) þ {f(a)þ [�f(a) þ �f(a þ 1) þ . . . þ �f(b � 1)]}

// from (a)
// f(a) þ [�f(a) þ . . . þ �f(r � 1) þ
// f(a) þ [�f(r) þ �f(r þ 1) þ . . . þ �f(b � 1)]
// ¼ . . .

// Remember �f(r þ j) > �f(a þ j) whenever j >¼ 0
// and that b � 1 ¼ r þ (b�1�r) > a þ (b � 1 � r) ¼ N � r � 1 ¼
// s � 1.
(ii) Use (i) to prove that of all choices of r and s where r<¼ s, f(r)þ f(s) is

smallest when r ¼ bN/2c and s ¼ dN/2e.
18. Walk through the operation of QuickSort when n ¼ 7 and the input array is

A ¼ ð11; 13; 12; 32; 31; 33; 20Þ:

4.6 Comparison of Sorting Algorithms 187

(a) Count the number of comparisons in the walk through.
(b) Evaluate 7!, lg(7!) and 7�lg(7).
(c) Construct a best-case example for QuickSort with n ¼ 15.

19. The merging problem is as follows:
Given two sorted arrays

A 1½ � <¼ A 2½ � <¼ A 3½ � <¼ . . . <¼ A m½ �
and B 1½ � <¼ B 2½ � <¼ B 3½ � <¼ . . . <¼ B n½ �;

put these m þ n entries into an array C so that

C 1½ � <¼ C 2½ � <¼ C 3½ � <¼ <¼ C mþ n½ �:

(a) Write a program (or pseudo-code) for the Algorithm Merge.
// with 3 array parameters

(b) How many comparisons of array entries would be done in a worst case?
(c) Can A and B be merged into C using <¼ mþn key comparisons in every

case?
(d) Can A[p]<¼ . . .<¼A[j] andA[jþ 1]<¼ . . .<¼A[q], where p<¼ j<¼ q,

be merged directly into C[p] <¼ C[p þ 1] <¼ . . .<¼ C[q]?
(e) Can A[p]<¼ . . .<¼A[j] andB[jþ 1]<¼ . . .<¼B[q], where p<¼ j<¼ q,

be merged directly into A[p] <¼ A[p þ 1] <¼ . . .<¼ A[q]?
(f) Can A[p]<¼ . . .<¼A[j] andA[jþ 1]<¼ . . .<¼A[q], where p<¼ j<¼ q,

be merged directly into A[p] <¼ A[p þ 1] <¼ . . .<¼ A[q]?
20. MergeSort is an easily described partition sort. To sort A[p], A[p þ 1], . . . , A[q]

where p < q, divide the list in half, sort the first half (using this same method),
sort the second half (also using this same method), and then Merge the two
sorted sublists. The simplest possible “division into halves” can be used,
namely, calculate j ¼ b(p þ q)/2c and let the “halves” be

A p½ �;A pþ 1½ �; . . . ;A j½ � and A jþ 1½ �;A jþ 1½ �; . . . ;A q½ �:
// But if p ¼ q, do nothing.

(a) Usually, one of these two halves is copied (entry by entry) into a different
array B before the Merge operation can be done. Can B be a “global”
variable like A?

(b) Write a program (or pseudo-code) for the Recursive Algorithm MergeSort.
(c) The number of comparisons of array entries can be shown to be less than

n � dlg(n)e. But how much space will be used? How many computer
words, if each array entry uses one word?

188 4 Searching and Sorting

21. HeapSort is yet another efficient sorting algorithm. It uses a clever data
structure known as a “heap” that has the properties of a Binary Tree and an
array. Look up HeapSort on the web.

22. The Philosophy Prof’s practical problem: Suppose Professor Plum has 600
marked midterm papers she wants to sort into alphabetical order. You know that
an inefficient sorting algorithm might require n(n � 1)/2 comparisons of names,
and if it takes 1 second to do such a comparison, the whole job would take about
50 hours. How would you sort the papers? Would you partition the papers using
the first letter of the last name? Would you merge small sets of papers?

4.6 Comparison of Sorting Algorithms 189

5Graphs and Trees

5.1 Introduction

We begin this chapter with three puzzle problems. Each is “set up” with a certain
amount of “patter” in a story.

#1: Tartaglia’s Pouring Problem (� 1530)

Imagine three earthenware vessels (jars): one of unknown large capacity containing
exactly 8 units (maybe pints) of some (maybe precious) liquid; a middle-sized one
that’s empty but can hold exactly 5 units when filled to the brim; and a small
one that’s empty but can hold exactly 3 units when filled to the brim. Using only
these three vessels,

Can you divide the given liquid exactly in half?

// Hint 1. You may pour liquid from one vessel into another. But you only know
// how much you’ve poured when you exactly fill a smaller vessel, or
// (knowing how much the vessel holds) you completely empty a vessel.
// Hint 2. You can describe any “configuration” by a triple (x,y,z) where x is the
// number of units in the large vessel, y the number in the middle-sized
// one, and z the number in the small one.
// Now, you need a sequence of pourings that takes you from (8,0,0) to (4,4,0).

#2: The Missionaries and Cannibals Problem

Imagine three missionaries and three cannibals traveling together through the
jungle. They come to a fairly wide river that they need to cross, in which there
are threatening “monsters” of some kind (alligators, crocodiles, snakes, piranhas –
who knows). Since they cannot safely swim or wade (or jump) across, they walk
along the shore until they find a boat (with a paddle). But the boat is so small that
only two people can fit into it.

Using that boat, they can all get across. But if the cannibals ever outnumber the
missionaries on either side, something dreadful will happen.

How do they all get across, so nothing dreadful happens?

#3: Konigsberg Bridge Problem (� 1730)

The town of Konigsberg is situated at the place where two branches of a river join,
and there is an island near that point. Seven bridges were built in the town as in the
diagram below. The citizens entertained themselves (on Sunday afternoons when
no one worked and everyone spent quality time with their families) by trying to find
a route that crossed every bridge exactly once. It could start anywhere and end
anywhere.

Can you find such a route?

Solution to #1: Tartaglia’s Pouring Problem

One possible first move is to pour liquid from the large vessel into the smallest
one and completely fill it; that is,

go from 8,0,0ð Þ to 5,0,3ð Þ:

Then a possible next move is to empty the smallest vessel into the middle-sized one;
that is,

go from 5,0,3ð Þ to 5,3,0ð Þ:

From (5,3,0), we could pour from the middle vessel and go to (8,0,0) or to (5,0,3).
But we’ve been in both of these configurations before. Let’s adopt the policy of
always going to a new configuration, if we can. Then from (5,3,0), we could pour
from the large vessel into the small one and go from (5,3,0) to (2,3,3).

192 5 Graphs and Trees

Furthermore, a possible sequence of pourings would be:

8,0,0

5,0,3

5,3,0

2,3,3

2,5,1

7,0,1

7,1,0

4,1,3

4,4,0

1: Fill the smallest

2: Empty the smallest into middle

3: Fill the smallest

4: Fill middle from smallest

5: Empty middle into large

6: Empty smallest into middle

7: Fill the smallest

8: Empty smallest into middle

So we have a solution that’s not immediately obvious. It requires eight pourings
but wasn’t too hard to find. This is probably why this puzzle has been around for
500 years. But is this solution the “best” one? Can it be done with fewer pourings?

To see if it’s the best, we can “grow a tree” of possible solutions: actually, all
possible sequences of pourings that don’t repeat a configuration. From any config-
uration, let’s add “branches” down to all new configurations that we can reach in
one more pouring, and let’s organize this as a tree “rooted” at the initial configura-
tion, (8,0,0). // like the “start” vertex in the tree diagrams of Chap. 2

8,0,0

3,5,0 5,0,3

0,5,33,2,3

6,2,0

6,0,2

1,5,2

1,4,3

1

2

3

4

5

6

7
4,4,0

5,3,0

2,3,3

2,5,1

7,0,1

7,1,0

4,1,3

// Are you sure that this tree contains all possible branches to new configurations?

The first solution was not the best possible solution. This diagram proves that the
(unique) best one uses only seven pourings.

5.1 Introduction 193

Solution to #2: The Missionaries and Cannibals Problem

Let’s begin with a representation of possible “configurations”: say þ will represent
a missionary, o will represent a cannibal, | will represent the river, and * will
represent the boat. Then the starting configuration is (þþþooo *|), and the con-
figuration we want to reach is (|* þþþooo). A transition from one configuration to
another will correspond to one or two people crossing the river in the boat. The five
possibilities are:

1. ― þ ― // a missionary paddles across
2. ― o ― // a cannibal paddles across
3. ― þþ ― // two missionaries paddle across
4. ― oo ― // two cannibals paddle across
5. ― þo ― // a missionary and a cannibal paddle across

But we want to restrict transitions so that we never reach a configuration where
something dreadful happens. The first transition cannot be:

1. ― þ ― // else we reach (þþooo |* þ) and something dreadful

// happens on the left bank of the river
nor 3. ― þþ― // else we reach (þooo |* þþ) and ditto

If the first transition were
2. ― o ―

we would reach (þþþoo |* o) where nothing dreadful happens, but the cannibal
must paddle back, and we must start again. To make progress, we must start by
sending two people across, say a missionary and a cannibal.

Let’s again adopt the policy of always going to a new configuration, if we can.

// Restricted, of course, to the configurations where nothing dreadful happens.

+++ooo *|

++oo |* +o

+oStart

+++oo *| o

+

+++ |* ooo

oo

+++o *| oo

o

+o |* ++oo

++

++oo |* +o

+o

oo |* +++o

++

ooo *| +++

o

o |* +++oo

oo

oo *| +++o

o

oo

|* +++ooo Finish

194 5 Graphs and Trees

// Are these the only possible transitions? Are all these reversible?

// This solution is puzzling because there is an essential but “counterintuitive”
// step where two people are sent back.
// Perhaps Tartaglia’s problem is puzzling because we took several steps that
// didn’t appear to be taking us closer to the final target configuration.

Solution to #3: Konigsberg Bridge Problem (1736)

Leonard Euler (1707–1783) ruined this pastime for the citizens of Konigsberg by
proving that the problem has no solution; there is no route that crosses every bridge
exactly once, no matter where it starts or ends.

Tartaglia’s Pouring Problem has survived for hundreds of years because it has a
solution. This problem has survived not because it has no solution but because
Euler’s proof that it has no solution is said to mark the beginning of graph theory.

Euler abstracted the essential elements of the problem. He said (in effect) that:
(a) It doesn’t matter where you are on the island; what matters is that you must

leave or arrive on the island by crossing one of the 5 bridges to the island. Thus,
the island may be thought of as a “point” (I) that may be “reached” by crossing
the bridges.

(b) It doesn’t matter where you are on the north shore; what matters is that you must
leave or arrive on the north shore by crossing one of the 3 bridges to the north
shore. Thus, the north shore may be thought of as a “point” (N) that may be
“reached” by crossing the bridges.

(c) It doesn’t matter where you are on the south shore; what matters is that you
must leave or arrive on the south shore by crossing one of the 3 bridges to it.
Thus, the south shore may be thought of as a “point” (S) that may be “reached”
by crossing the bridges.

(d) It also doesn’t matter where you are on the peninsula; what matters is that you
must leave or arrive on the peninsula by crossing one of the 3 bridges to it.
Thus, the peninsula shore may be thought of as a “point” (P) that may be
“reached” by crossing the bridges.
When the bridges are represented as lines joining their two end points, the

problem may be diagrammed as follows.

N

I

S

P

We’ll come back to “routes” in the Konigsberg Bridge Problem after a short
digression introducing some of the basic definitions from graph theory.

// used in this book

A graph G consists of a (finite, nonempty) set V of vertices together with a (finite
but possibly empty) set E of edges where each edge “joins” two vertices. The

5.1 Introduction 195

vertices are drawn as small circles, ovals, or squares, and the edges are drawn as
line segments joining one vertex to another. An edge may join a vertex to itself;
such an edge is called a loop. Vertices joined by an edge are said to be neighbors.
Two different edges may join the same two vertices (like the two bridges from the
north shore to the island in Konigsberg); such edges are said to be parallel. When
there are no loops and no parallel edges, the graph is said to be simple.

A path (in a graph) is a sequence of the form

p ¼ v0, e1, v1, e2, v2, e3, . . . , ek, vkð Þ

where each vj is a vertex and each ei is an edge joining vertex vi�1 to vertex vi.

// A path corresponds to a trip through (part of) the graph
// starting from vertex v0 then following the edge e1 to vertex v1,
// then following the edge e2 to vertex v2, and so on until
// finally, the edge ek is traversed and we end up at vertex vk.

5.1.1 Degrees

Each edge has two ends and each edge-end occurs at a vertex. The number of edge-
ends at any vertex, x, is called the degree of that vertex and will be denoted d(x).
Then, counting all the edge-ends in two ways, we have

2� Ej j ¼
X
x2V

dðxÞ: ð5:1:1Þ

// In the Konigsberg bridge graph: d(N) ¼ 3 ¼ d(S) ¼ d(P), and d(I) ¼ 5.

//X Use Eq. 5.1.1 to prove that in any graph, the number of vertices with
// odd degree must be even.

5.1.2 Eulerian Graphs

An Euler Tour of a graph is a path where each edge occurs exactly once; such a tour
is called an Euler Circuit when it starts and ends at the same vertex.

// Puzzle problem #3 asks: Does the Konigsberg bridge graph contain an Euler
// Tour?

Lemma 5.1.1: (Euler 1736) If p ¼ (v0, e1, v1, e2, v2, e3, . . . , ek, vk) is a path in G
containing each edge exactly once, then every “intermediate” vertex x in the
path must have even degree in G, where an intermediate vertex occurs in the
middle of the path in the sense that it’s not an end so it’s not equal v0 nor vk.

Proof. If x occurs as vj in the path, then 0 < j < k, and so one end of edge ej and
one end of edge ejþ1 are at x. If x occurs q-times in the path, then 2q edge-ends are

196 5 Graphs and Trees

at x. Since every edge of G occurs exactly once in p, all the edge-ends at x have
been counted exactly once; that is,

dðxÞ ¼ 2q, an even number: ▯

x

Thus, if G has an Euler Tour, then G has at most two vertices of odd degree.
// And if there are 2, they must occur as the ends of the tour.

The contrapositive form is: If G has more than two vertices of odd degree, then G
cannot have an Euler Tour. Because the Konigsberg bridge graph contains
4 vertices of odd degree, it cannot have an Euler Tour.

// Finding an Euler Tour is easy. There are amusements for children that ask if
// they can “trace out a diagram (like the one below) without lifting their pencil,
// and never going over an edge more than once.”

// More serious applications involve routing garbage trucks or mail carriers
// through a neighborhood so they go down every street but avoid going down
// any street more than once, or constructing a tour through an art gallery or
// museum so the most natural route takes patrons past every exhibit exactly once.
//
// You can look up Fleury’s Algorithm to find an Euler Tour (1883).
// Two easily checked conditions characterizing Eulerian graphs are in an
// exercise.

5.1.3 Hamiltonian Graphs

A Hamilton Tour of a graph is a path where each vertex occurs exactly once; such a
tour is called a Hamilton Circuit when there also is an edge joining the last vertex
to the first vertex. // And there are >¼ 3 vertices.

// Unlike Eulerian graphs, characterizing Hamiltonian graphs is not easy. In fact,
// no one has (yet) given a list of easily checked conditions characterizing

5.1 Introduction 197

// Hamiltonian graphs – that is, G is Hamiltonian if and only if all the conditions are
// present.
//
// Nor has anyone (yet) devised an efficient algorithm to find a Hamilton Tour.
// You could try all jVj-factorial permutations of the vertices in G and check to see
// if one of them is the vertex sequence of a path in G, but this “total-enumeration”
// method is too inefficient to be feasible in large graphs.
//
// The Clay Mathematics Institute has offered a $1,000,000 prize for solving a
// problem (known as the “P ¼ NP Problem”) that could be claimed by anybody
// who created an algorithm to find a Hamilton Tour (if there is one) in an arbitrary
// graph on n vertices, with a complexity function bounded by nk for some constant
// k.

The Most Important Ideas in This Section.
A graph G consists of a set of vertices together with a set of edges where each
edge joins two vertices. A simple graph has no loops and no parallel edges.
A path is a sequence of the form p ¼ (v0, e1, v1, e2, v2, e3, . . . , ek, vk) where
each ei is an edge joining vertex vi−1 to vertex vi. The degree of a vertex x,
d(x), is the number of edge-ends at x. An Euler Tour of a graph is a path
where each edge occurs exactly once; a Hamilton Tour is a path where each
vertex occurs exactly once. Eulerian graphs are easily characterized but
Hamiltonian graphs are not.

Many problems ask us to find a path (or tour) of a certain kind: such as an
Euler Tour or a Hamilton Tour. Some ask us to find a path from a particular
vertex y to a particular vertex z, and some problems ask us to find a shortest
path from y to z.

// Puzzle problem #2 asks: is there any path from (þþþooo *|) to
// (|* þþþooo)?
Designing solution algorithms for these kinds of problems is the underlying
purpose of this chapter.

The Clay Mathematics Institute has offered a $1,000,000 prize for solving
the “P ¼ NP Problem,” which some consider the most important problem in
theoretical computer science.

5.2 Paths, Circuits, and Polygons

Recall that a path (in a graph) is a sequence of the form

p ¼ v0, e1, v1, e2, v2, e3, . . . , ek, vkð Þ

where each vj is a vertex and each ei is an edge joining vertex vi−1 to vertex vi.

198 5 Graphs and Trees

The path p is said to go from v0 to vk and to have length k, the number of edges
traversed. // like pourings in puzzle problem #1

A graph is connected means for any two vertices y and z, there is a path from y to z.
A path is simple if all the vertices are distinct. // If i 6¼ j, then vi 6¼ vj.
A path is closed if v0 ¼ vk. // It starts and ends at the same vertex.

A closed path is a circuit if k >¼ 1, and all the edges are distinct.

// The path p ¼ (v0) is a simple, closed path of length zero from v0 to v0, often
// referred to as a “trivial” path, but it is not a circuit.
// If edge e is a loop at vertex v, then p ¼ (v, e, v) is a circuit (of length one).
// If e is an edge joining vertices v and w, then p ¼ (v, e, w, e, v) is a closed path
// of length two, which is not a circuit.
// If edges e and f are parallel edges joining vertices v and w, then p ¼ (v, e, w, f, v)
// is a circuit (of length two).
// G is a simple graph , G has no circuits of length 1 or 2.

Lemma 5.2.1: If p = (v0 , e1 , v1 , e2 , v2 , e3 , … , ek , vk) is a path from v0 to
a different vertex vk, then there is a simple path p s from v0 to vk that is a
subsequence of p.

Proof. If p is a simple path, we may use p itself as ps. If p is not a simple path, then
there are indices i and j, where 0 <¼ i < j <¼ k and vi ¼ vj. That is,

p ¼ v0, e1, v1, e2, . . . , ei, vi, eiþ 1, viþ 1, . . . , ej, vj ¼ vi, ejþ 1, vj þ 1, . . . , ek, vk
� �

:

vi vjv0 vk

Let p1 ¼ (v0, e1, v1, e2, . . . , ei, vi ¼ vj, ejþ1, vjþ1, . . . , ek, vk).

// Traverse the edges of p from v0 to the first occurrence of vi and then
// traverse the edges of p from the second occurrence of vi to vk.

Then p1 is a path from v0 to vk that is a subsequence of p but has fewer edges
than p. // eiþ1 is not in p1, and p1 has fewer repeated vertices than p.

If p1 is not a simple path, we can find a repeated vertex and (as above) create a
new path p2 from v0 to vk that is a subsequence of p1 (and of p) that has fewer edges
than p1.

Because we remove at least one edge each time, this process must stop after at
most k iterations. And then we will have a simple path ps from v0 to vk that is a
subsequence of p. ▯

// Why must a shortest path (in the sense of having fewest edges) from one vertex
// to another vertex be a simple path?

5.2 Paths, Circuits, and Polygons 199

5.2.1 Subgraphs Determined by Paths

Suppose that p¼ (v0, e1, v1, e2, v2, e3, . . . , ek, vk) is a path in graph G. To isolate the
part of G occurring in p, let Gp denote the graph

whose vertex set is Vp ¼ v0, v1, v2,. . . , vkf g // vertices of G occurring in p

and whose edge set is Ep ¼ e1, e2, . . . , ekf g: // edges of G occurring in p

// But these vertices and edges may not all be different.
// If the edges were all different, then p would be an Euler Tour of Gp.
// Gp is a connected graph.

If we denote by pR the sequence we obtain by writing p in reverse order, then

pR ¼ vk, ek, vk�1, ek�1, vk�2,. . . , v2, e2, v1, e1, v0ð Þ

is a path, and this path determines the same subgraph as p.
If p is a simple path (having no repeated vertices), then p has no repeated edges
and // as we saw in Euler’s Lemma 5.1.1

v0 and vk have degree 1 in the graphGp,

v1, v2, up to vk�1 all have degree 2 inGp:

If p is a simple path from v to w and e is an edge joining v and w that is not an edge in
Gp, then Gp together with e forms a graph where every vertex has degree 2.

If p is a circuit (having no repeated edges but maybe having some repeated
vertices) then

v1 up to vk ¼ v0 all have even degree in Gp:

A connected graph where all vertices have degree 2 is called a polygon. Paths
and circuits are algebraic objects; polygons are geometric. A polygon with n >¼ 2
vertices is the subgraph determined by 2 � n distinct circuits.

// We saw that every path joining different vertices contains a simple path as a
// subsequence. Do you think that any graph Gp where p is a closed path contains
// a polygon?

If p is a simple path from v to w and e is an edge joining v and w that is not an
edge in Gp, then Gp together with e forms a polygon.

A subgraph containing all the vertices of G is called a spanning subgraph.

// When G has >¼ 3 vertices, G has a Hamilton circuit , G has a spanning
// polygon.

200 5 Graphs and Trees

Lemma 5.2.2: If p = (v0 , e1 , v1 ,… , vj−1 , ej , vj ,… , ek, vk) is a closed path and
edge ej occurs only once in p, then the graph Gp contains a polygon that
contains ej.

Proof. If vj ¼ vj−1, then ej must be a loop and then (vj−1, ej, vj) determines a
polygon in the graph Gp.

If vj 6¼ vj�1; then // ej is not a loop and

p1 ¼ vj, ejþ 1, vjþ 1, . . . , ek, vk ¼ v0, e1, v1, . . . , vj�2, ej�1, vj�1
� �

is a path from vj to a different vertex vj−1. Since ej only occurs once in p, p1 does
not contain ej. By Lemma 5.2.1, there is a simple path ps from vj to vj−1 (that is a
subsequence of p1). The path ps has no repeated vertex so it can have no repeated
edge, and in addition, ps cannot contain ej. This simple path together with ej forms a
polygon in the graph Gp. ▯

// Construct an example of a closed path p, where Gp contains no polygons.
//X If p ¼ (v0, e1, v1, . . . , ek, vk) is a closed path and k is odd,
// then the graph Gp contains a polygon.

Lemma 5.2.3: If there are two distinct simple paths in G joining the same two
vertices, then G contains a polygon.

Proof. Suppose

p1 ¼ y, e1, v1, e2, v2, e3, . . . ,ek, zð Þ
and p2 ¼ y, f1,w1, f 2,w2, f 3, , f q, z

� �

are two distinct simple paths in G joining the same two vertices, y and z.
Compare the sequences p1 and p2 entry by entry. They both begin with the same

vertex, y. If f1 ¼ e1, then w1 must equal v1; then if f2 ¼ e2, then w2 must equal v2.
But p1 and p2 are different sequences so there must be an entry where they differ,
and the first entry where they differ must be an edge. Thus, there is an index j such
that 0 <¼ j < k where (as sequences) // Why is j < k ?

y, e1, v1, e2, v2, e3, . . . , ej, vj
� � ¼ y, f 1,w1, f 2,w2, f 3, . . . , f j,wj

� �

but ejþ1 6¼ fjþ1. // The next edges are not equal.

Let e denote the edge ejþ1 and let x denote the vertex vj. // So x also equals wj.

y x

e

z

1

2π

π

5.2 Paths, Circuits, and Polygons 201

The edge e cannot occur twice in p1 else p1 would have a repeated vertex.
// namely, x

If e were in p2 as fr, then r > j þ 1, and the end points of ejþ1 would occur as wr

and wrþ1. But then the vertex x ¼ wj would be repeated in p2. Therefore, the edge
e cannot occur at all in p2.

Let p be the closed path constructed by following p1 from y to z and then
following (p2)R from z back to y. The edge in e occurs exactly once in p. Therefore,
by Lemma 5.2.2, G contains a polygon. ▯

If H is a polygon containing two distinct vertices y and z, then there are two
different simple paths from y to z: one going “clockwise” around the polygon from y
to z, and one going “anticlockwise” around the polygon from y to z.

The Most Important Ideas in This Section.
Suppose that p ¼ (v0, e1, v1, e2, v2, e3, . . . , ek, vk) is a path. The path p is said
to go from v0 to vk and to have length k. A graph is connected means for any
two vertices y and z, there is a path from y to z. A path is simple if all the
vertices are distinct, and closed if v0 ¼ vk. A closed path is a circuit if
k >¼ 1, and all the edges are distinct. Gp denotes the connected graph
whose vertex set is the vertices of G occurring in p and whose edge set is the
edges of G occurring in p. If p is a circuit, then all vertices in Gp have even
degree. A polygon is a connected graph where all vertices have degree 2. If p
is a simple path from v to w and e is an edge joining v and w that is not an edge
in Gp, then Gp together with e forms a polygon. Polygons are used in the
formal definition of trees, the subject of the next section.

5.3 Trees

Most of the graphs that we constructed earlier have been what were called “tree
diagrams.” They were all in one “connected” piece and had no polygons in them.
We now formally define

a tree as a graph that is connected and has no polygons:

The diagram below is a “forest” of four trees.

202 5 Graphs and Trees

Trees are important data structures and useful conceptual models for a number of
reasons: one of them being that in a tree, there is a unique simple path from any
vertex to any other vertex.

// this follows from the contrapositive of Lemma 5.2.3.
In fact, a graph G is a tree if and only if there is a unique simple path between any
two distinct vertices.

5.3.1 Traversals

In this subsection, we will describe two ways to travel through a (connected) graph
so that every vertex is visited at least once, by “growing” a spanning tree. The first
method will imitate the way we found our first solution to Tartaglia’s Problem, and
the second will imitate the way we found the best solution. By analyzing the
algorithms for constructing the trees, we obtain a number of important theoretical
results for free. Both methods may be used to search for a target vertex in a graph,
and both methods may be modified to find a path joining any two target vertices.

We will describe the algorithms (throughout this chapter) in fairly informal
terms and in a way that’s independent of any “implementation” of graphs.
Walkthroughs will be done using drawings, and we will focus on the “correctness”
of the algorithms. Furthermore, we will use a “family tree” analogy and talk about
the methods in terms of parents and children, ancestors, and descendants.

Depth-First Traversal // a.k.a. Depth-First Search

The strategy is to pick a vertex y in G and construct a tree T rooted at y by
always going to a new vertex (if possible). This method is called depth-first because
we extend a simple path from y as “deeply” into the graph as we can, that is, until we
reach a vertex x, where all neighbors of x are already in the path (and in T so far).
Then we take a step back along the path and extend a second simple path from y
as far as we can. Then we take a step back and extend another simple path from y as
far as we can and so on.

The input is a graph G implemented in some manner, where the neighbors of a
vertex can be quickly determined. The vertex objects might be given Boolean
attributes like “InTree” and “Scanned”.

// v has been “scanned” when all its neighbors are in T.
// And the output is also a graph, T.

Algorithm 5.3.1: Depth-First Traversal

Begin
Mark all vertices “unscanned”;
Pick a vertex y and put it into the tree T as the root; // y might be input.
If (y has no neighbors) Then

Mark vertex y as “scanned”;
End;
Let v ¼ y; // v is the “current vertex”.

5.3 Trees 203

While (y is still “unscanned”) Do
If (there is a neighbor w of v that is not yet in T) Then

Call the edge joining w and v, the back-edge of w, BE(w);
Add w and BE(w) to T; // T stays connected & no polygon is created
P(w) v; // call v the “Parent” of w
v w; // reset the “current vertex”

Else // All the neighbors of v are already in the tree T.
Mark vertex v as “scanned”;
If (v 6¼ y) Then

v P(v);
End ; // reset the “current vertex”

// and “backtrack” 1 step along the path in T from y to v.
End ; // the if-then-else statement

End ; // the while-loop
End.

// Every vertex in T, except y, is put into T as the child of a (single) parent.
// (But please don’t be confused by the mixed metaphor where neighbors get
// adopted as children.)

In the walkthrough below, we draw the input graph G using small circles for
vertices, dotted lines for edges. We will use solid lines for edges that have been put
into the tree T. And because there is a natural order of the vertices, we deal with
the neighbors of a vertex in that order. After a vertex is marked “scanned,” we draw
it as a small square. In earlier tree diagrams the children of a vertex were drawn
directly below that vertex; here, we’ll draw the edge as an arrow from parent
to child.

We also give a “table” indicating the progress in the traversal. It lists the
unscanned vertices in the order they were added to T: vj is the j-th vertex put into
T, and Pj is the parent of vj (provided that vj is not the root of T).

Walkthrough with V ¼ {0, 1, …, 9} and y set be 0. // the “first” vertex in V

0

5

1

62 7

3 8 4

9
j 1
vj 0
Pj *

v ¼ 0 w ¼ 1

0

5

1

62 7

3 8 4

9
j 1 2
vj 0 1
Pj * 0

v ¼ 1 w ¼ 3

204 5 Graphs and Trees

0

5

1

62 7

3 8 4

9
j 1 2 3
vj 0 1 3
Pj * 0 1

v ¼ 3 w ¼ 2

0

5

1

62 7

3 8 4

9
j 1 2 3 4
vj 0 1 3 2
Pj * 0 1 3

v ¼ 2 w ¼ 7

0

5

1

62 7

3 8 4

9
j 1 2 3 4 5
vj 0 1 3 2 7
Pj * 0 1 3 2

v ¼ 7 7 is marked “scanned” and removed from the list

0

5

1

62

3 8 4

9
j 1 2 3 4
vj 0 1 3 2
Pj * 0 1 3

7

v ¼ 2 2 is marked “scanned” and removed from the list.

0

5

1

6

3 8 4

9
j 1 2 3
vj 0 1 3
Pj * 0 1

72

v ¼ 3 w ¼ 8

0

5

1

6

3 8 4

9
j 1 2 3 6
vj 0 1 3 8
Pj * 0 1 3

72

v ¼ 8 w ¼ 4

5.3 Trees 205

0

5

1

6

3 8 4

9
j 1 2 3 6 7
vj 0 1 3 8 4
Pj * 0 1 3 8

72

v ¼ 4 w ¼ 5

0

5

1

6

3 8 4

9
j 1 2 3 6 7 8
vj 0 1 3 8 4 5
Pj * 0 1 3 8 4

72

v ¼ 5 w ¼ 6

0

5

1

6

3 8 4

9
j 1 2 3 6 7 8 9
vj 0 1 3 8 4 5 6
Pj * 0 1 3 8 4 5

72

v ¼ 6 6 is marked “scanned” and removed from the list.

0

5

1

6

3 8 4

9
j 1 2 3 6 7 8
vj 0 1 3 8 4 5
Pj * 0 1 3 8 4

72

v ¼ 5 w ¼ 9

0

5

1

6

3 8 4

9
j 1 2 3 6 7 8 10
vj 0 1 3 8 4 5 9
Pj * 0 1 3 8 4 5

72

v ¼ 9 9 is marked “scanned” and removed from the list.

0

5

1

6

3 8 4

9
j 1 2 3 6 7 8
vj 0 1 3 8 4 5
Pj * 0 1 3 8 4

72

v ¼ 5 5 is marked “scanned” and removed from the list.

206 5 Graphs and Trees

0 1

6

3 8 4

9
j 1 2 3 6 7
vj 0 1 3 8 4
Pj * 0 1 3 8

72 5

v ¼ 4 4 is marked “scanned” and removed from the list.

0 1

6

3 8

9
j 1 2 3 6
vj 0 1 3 8
Pj * 0 1 3

72 5

4

v ¼ 8 8 is marked “scanned” and removed from the list.

0 1

6

3

9
j 1 2 3
vj 0 1 3
Pj * 0 1

72 5

48

v ¼ 3 3 is marked “scanned” and removed from the list.

0 1

69
j 1 2
vj 0 1
Pj * 0

72 5

483

v ¼ 1 1 is marked “scanned” and removed from the list.

0

69
j 1
vj 0
Pj *

72 5

483

1

v ¼ 0 0 is marked “scanned” and removed from the list.

6972 5

483

10

5.3 Trees 207

On every iteration of the body of the while-loop:

either 1. a (new) child w of v is added to T (as a leaf), and
2. w is added to the “end” of the list L of unscanned vertices in T, and
3. the current vertex v moves 1 step down the tree to w;

or 1. v is marked “scanned,” and
2. v is removed from the “end” of the list L, and
3. the current vertex v moves 1 step up the tree to its parent (if v is not
the root).

The list L of unscanned vertices in T is an example of a data structure called a
stack: items are added to the “top” of the stack, and items are removed from the
“top” of the stack – like plates or trays in a cafeteria.

// the right-hand end of the list is the “top” of the stack

Let n be the number of vertices in G. At most n vertices can be put into T and
then later marked scanned, so there are at most 2n iterations of the while-loop
performed. Thus, Algorithm 5.3.1 is certain to terminate.

Lemma 5.3.1: After k iterations of the while-loop, the current vertex v is (in
the tree T and) at the top of the stack L, the root of T is at the bottom of the
stack, and the vertex below any other vertex x is P(x), the parent of x.However,
after the last iteration the stack is empty.

Proof. // by Mathematical Induction on k.
Step 1. If k ¼ 0, that is, before the loop is entered, y is the root of T and the only

vertex in tree T and the list L, and y is the current vertex, v.
Step 2. Assume that 9 an integer q >¼ 0 such that after q iterations of the while-

loop, the current vertex v is at the top of L, the root of T is at the bottom of
the stack, and the vertex below any other vertex x is P(x), the parent of x.

Step 3. Suppose there is another iteration (because y is still unscanned), the qþ1st.
If there is a neighbor w of v that is not yet in T, then w is added to the tree.

Because, only the current vertex is ever marked “scanned” and the current vertex is
always in T, the new vertex w is still “unscanned.” So w is put on the top of the
stack, above v, the parent of w. Then the current vertex becomes w.

If all the neighbors of v are already in the tree T, then v is marked “scanned” and
removed from the top of the stack L. If v 6¼ y, then the current vertex becomes P(v),
which is now the vertex at the top of the stack. If v ¼ y, the stack is now empty and
the while-loop terminates after this iteration. ▯

From this Lemma it follows that:
1. When a parent is marked “scanned” all its children have already been marked

“scanned”.

208 5 Graphs and Trees

2. When any vertex is marked “scanned” all its descendants (children of children,
and children of children of children, and . . .) have already been marked
“scanned.”

3. Since all the vertices in the tree are descendants of y, all the other vertices in T are
marked “scanned” before y is marked “scanned” (and the algorithm ends).

We next prove the correctness of this algorithm: that every vertex in the graph is
visited. We will show that if the pre-condition “G is connected” holds, then the
post-condition “every vertex in G is visited at least once and put into the tree” also
holds. This will follow from

Theorem 5.3.2: If there is a path from y to another vertex, z, then eventually z
will be put into T by the Depth-First Traversal algorithm.

Proof. Suppose p ¼ (y ¼ v0, e1, v1, e2, v2, e3, . . . , ek, vk ¼ z) is a path in G from
y to z. We will prove each vj in p will be put into T, by induction on j.
Step 1. If j ¼ 0 then vj ¼ y, which is put into T as the root.
Step 2. Assume that 9 an index q such that 0 <¼ q < k and vq has been added to T.
Step 3. The algorithm does not terminate before vq is marked “scanned,” and when

vq is marked “scanned,” all the neighbors of vq including vqþ1 must be in T.
Thus, vqþ1 will be put into T.

Therefore, eventually z ¼ vk must be put into T. ▯

If we are searching for a path in G from some particular vertex y to some other
particular vertex z, we can use Algorithm 5.3.1 to find such a path (or demonstrate
that no such path exists). Start the algorithm by rooting the tree T at vertex y. Then
run the algorithm until z enters the tree or until y is marked “scanned.” In the first
case, T contains a path p from y to z (and the list L is the vertex sequence of p).
In the second case, z never enters T so (by the contrapositive of Theorem 5.3.2)
there can be no path in G from y to z.

Backtracking is stepping up the tree toward the root, tracing the ancestry of a
vertex back to y. Every vertex v except the root has a unique parent P(v), grand-
parent P(P(v)), great-grandparent, and so on. Reversing this path gives the path in T
from the root y to v.

Algorithm 5.3.1 provides a basis for proving some general results in graph
theory.

Theorem 5.3.3: If G is connected then G contains a spanning tree.

Proof. Let T be the tree generated by Algorithm 5.3.1 and suppose that T is rooted
at vertex y. Let z be any other vertex in G. Since G is connected, there is a path from
y to z. By Theorem 5.3.2, z will be put into T. Therefore T contains all the vertices
of G so T is a spanning tree of G. ▯

5.3 Trees 209

If T is the tree rooted at vertex y generated by Algorithm 5.3.1, then after y is
put into T, each new vertex is added to T together with a new edge, its back-edge.
Therefore, the number of edges in T equals the number of vertices minus one.

// This is true for all trees.

Lemma 5.3.4: If H is the graph obtained from a tree T by adding one new edge
e joining two vertices of T, then H contains a polygon, but only one polygon.

Proof. Suppose that the new edge joins two vertices y and z. Any polygon in H
must contain e. // it can’t be contained in T

If e is a loop at y, then y together with this loop is a polygon, and is the only
polygon in H.

If y and z are distinct vertices, then there is a simple path p in T from y to z, and
Gp together with e forms a polygon. If there were two polygons in H, they would
determine two distinct simple paths from y to z in T. But Lemma 5.2.3 would imply
that T contains a polygon. Since T contains no polygon, H contains exactly one
polygon. ▯

Theorem 5.3.5: In any tree, the number of edes equals the number of vertices
minus 1.

Proof. Suppose U is a given tree with n vertices. Let T be the tree generated by
Algorithm 5.3.1 when G ¼ U. Since U is connected, T is a subgraph of U that
contains all n vertices and exactly n � 1 edges. Hence, U has at least n � 1 edges.
If U had more edges, U would contain an edge e joining two vertices in T that is
not contained in T. But then the polygon described in Lemma 5.3.4 would be
contained in the tree U. Since U cannot contain a polygon, U must have exactly
n � 1 edges. ▯

If G is not connected and consists of k connected “pieces” G1, G2, . . . , Gk but G
does not contain a polygon, then each Gj is a tree. // G is a forest of k trees.

So if Gj has nj vertices, it must have nj � 1 edges. Hence, if G has n vertices, it has
n � k edges.

// X If G is a connected graph with n vertices and has exactly n � 1 edges then G is
// a tree.
// X If G has n vertices but no polygons and has exactly n � 1 edges then G is a tree.

Breadth-First Traversal // a.k.a. Breadth-First Search

The strategy this time is to pick a vertex, y, in G and construct a tree T rooted at
y by scanning the vertices v in T in the order they were added to T, where scanning
a vertex x means adding to T all the neighbors of x that are not already in T.

// In Algorithm 5.3.1, a vertex was marked “scanned”
// after all its neighbors were in T.

This algorithm will grow a broad, bushy tree.

210 5 Graphs and Trees

As before, vertices will be added to the tree one at a time as leaves. We include
the height function in our description of the algorithm only to help in our analysis of
its action; it is not necessary for constructing T.

The input is a graph G implemented in some manner, where the neighbors of a
vertex can be quickly determined. The vertex objects might be given Boolean
attributes like “InTree” and “Scanned.” The output is also a graph, T.

Algorithm 5.3.2: Breadth-First Traversal

Begin
Mark all vertices “unscanned”;
Pick a vertex y and put it into the tree, T, as the root; // y might be input
h(y) 0; // The “height” of the root is zero.

While (T has an unscanned vertex v) Do
// Find the “first” unscanned vertex in T and scan vertex v.

While (there is a neighbor w of v that is not yet in T) Do
Call the edge joining w and v, the back-edge of w, BE(w);
Add w and BE(w) to T; // T stays connected and no polygon is created.
P(w) v; // Call v the “Parent” of w.
h(w) h(v) þ 1; // The height of a child is 1 more than

// the height of its parent.
End ; // Now all the neighbors of v are in the tree T.

Mark vertex v as “scanned”;
End ; // the outside while-loop

End.

In the walkthrough below, we draw the input graph G using small circles for
vertices and dotted lines for edges. We will use solid lines for edges that have been
put into the tree T. After a vertex is scanned, we draw it as a small square. In earlier
tree diagrams, the children of a vertex were drawn directly below that vertex; here,
we draw the edge as an arrow from parent to child.

We also give a “table” indicating the progress in the traversal. It lists the
unscanned vertices in the order they were added to T: vj is the j-th vertex put
into T, and Pj is the parent of vj (provided that vj is not the root of T). The table also
has a row for hj, the “height” of vertex vj which is equal the length of the (unique)
simple path from the root vertex y to vj. The height of the root is zero, and the height
of any other vertex is 1 plus the height of its parent.

Walkthrough with V ¼ {0, 1, . . . , 9} and y set be 0. // the “first” vertex in V

0

5

1

62 7

3 8 4

9

j 1
vj 0
Pj *
hj 0

5.3 Trees 211

v ¼ 0 and h(v) ¼ 0

5

1

62 7

3 8 4

9

j 2 3 4
vj 1 2 7
Pj 0 0 0
hj 1 1 1

0

v ¼ 1 and h(v) ¼ 1

5 62 7

3 8 4

9

j 3 4 5 6 7
vj 2 7 3 5 9
Pj 0 0 1 1 1
hj 1 1 2 2 2

0 1

v ¼ 2 and h(v) ¼ 1.

5 67

3 8 4

9

j 4 5 6 7
vj 7 3 5 9
Pj 0 1 1 1
hj 1 2 2 2

0 1

2

v ¼ 7 and h(v) ¼ 1

5 6

3 8 4

9

j 5 6 7
vj 3 5 9
Pj 1 1 1
hj 2 2 2

0 1

2 7

v ¼ 3 and h(v) ¼ 2

5 6

8 4

9

j 6 7 8
vj 5 9 8
Pj 1 1 3
hj 2 2 3

0 1

2 7

3

v ¼ 5 and h(v) ¼ 2

6

8 4

9

j 7 8 9 10
vj 9 8 4 6
Pj 1 3 5 5
hj 2 3 3 3

0 1

2 7

3

5

212 5 Graphs and Trees

v ¼ 9 and h(v) ¼ 2

6

8 4

j 8 9 10
vj 8 4 6
Pj 3 5 5
hj 3 3 3

0 1

2 7

3

59

v ¼ 8 and h(v) ¼ 3

6

4

j 9 10
vj 4 6
Pj 5 5
hj 3 3

0 1

2 7

3

59

8

v ¼ 4 and h(v) ¼ 3

6

j 10
vj 6
Pj 5
hj 3

0 1

2 7

3

59

8 4

v ¼ 6 and h(v) ¼ 3

0 1

2 7

3

59

8 4

6

The list L of unscanned vertices in T is an example of a data structure called a
queue: items are added to the “back” of the queue, and items leave from the “front”
of the queue – like a line of customers at McDonald’s or in a bank.

// The left-hand end of the list is the “front” of the queue.
// The right-hand end of the list is the “back” of the queue.

Let n be the number of vertices in G. At most n vertices can be put into T and
then (later) scanned, so there are at most n iterations of the outer while-loop
performed. Scanning a vertex v requires examining each of at most n neighbors
of v. Thus, Algorithm 5.3.2 is certain to terminate.

Lemma 5.3.6: After k iterations of the outer while-loop, the next current
vertex v is (in the tree T and) at the front of the queue L, and the children of
v are at the back of the queue. However, after the last iteration, the queue
is empty.

5.3 Trees 213

Proof. // by Mathematical Induction on k.
Step 1. If k ¼ 0, that is, before the outer while-loop is entered, y is the root of T and

the only vertex in tree T and the list L, and y is the current vertex, v. But v
has no children in T yet.

Step 2. Assume that 9 an integer q >¼ 0 such that after q iterations of the outer
while-loop, the current vertex v is at the front of the queue L, and the
children of v are at the back of the queue L.

Step 3. Suppose there is another iteration (because T still has an unscanned
vertex v), the q þ 1st. The “first” unscanned vertex in T is at the front of
the queue.

If there is a neighbor w of v that is not yet in T, thenw is added to the tree as a child
of v, and w is added to the back of the queue. When all the neighbors of v are in the
tree T, then v has been scanned and is then removed from the front of the queue L.
If the queue is now empty, the outer while-loop terminates after this iteration. ▯

// Here, parents are scanned before their children are scanned –

// the opposite of the case for depth-first traversal.

Theorem 5.3.7: If there is a path from y to another vertex, z, then eventually z
will be put into T by the Breadth-First Traversal algorithm.

Proof. Suppose p ¼ (y ¼ v0, e1, v1, e2, v2, e3, . . . , ek, vk ¼ z) is a path in G from
y to z. We prove that each vj in p will be put into T by Mathematical Induction on j.
Step 1. If j ¼ 0, then vj ¼ y, which is put into T as the root.
Step 2. Assume that 9 an index q such that 0 <¼ q < k, and vq has been added to T

as an unscanned vertex.
Step 3. The outer while-loop does not terminate before vq is scanned, and after vq is

scanned, all the neighbors of vq including vqþ1 must be in T. Thus, vqþ1 will
be put into T.

Therefore, eventually z ¼ vk will be put into T. ▯

Lemma 5.3.8: After k iterations of the outer while-loop, the h-values of the
vertices in the queue L are nondecreasing, and the h-value of the vertex at the
back of the queue is <¼ 1 þ the h-value of the vertex at the front of the queue.
However, after the last iteration, the queue is empty.

Proof. // by Mathematical Induction on k.
Step 1. If k ¼ 0, that is, before the outer while-loop is entered, y is the only vertex

in the list L and h(y) has the value zero.

// The h-values of the vertices in the queue L are nondecreasing.
// The h-value of the vertex at the back of the queue is <¼ 1 þ the h-value of the
// vertex at the front of the queue.

214 5 Graphs and Trees

Step 2. Assume that 9 an integer q >¼ 0 such that after q iterations of the
while-loop, the h-values of the vertices in the queue L are nondecreasing,
and the h-value of the vertex at the back of the queue is <¼ 1 þ the h-value
of the vertex at the front of queue.

Step 3. Suppose there is another iteration (because T still has an unscanned
vertex v), the q þ 1st. The “first” unscanned vertex in T is at the front of
the queue.

If there is a neighbor w of v that is not yet in T, then (w is added to the tree and)
w is added to the back of the queue, and h(w) is set equal to h(v) þ 1. At this point,
the h-values of the vertices in the queue L are still nondecreasing, and the h-value of
the vertex at the back of the queue is equal to 1 þ the h-value of the vertex at the
front of the queue.

When all the neighbors of v are in the tree T, v is removed from the front of the
queue L. If the queue is not empty, the h-values of the vertices in the queue L are
still nondecreasing. Let v* denote new vertex at the front of the queue and let w*
denote vertex at the back of the queue. Then

hðvÞ <¼ h v*ð Þ <¼ h w*ð Þ; // The h-values are nondecreasing:

and h w*ð Þ<¼ hðvÞþ 1<¼ h v*ð Þþ 1:

Therefore, the h-value of the vertex at the back of the queue is <¼ 1 þ the
h-value of the (new) vertex at the front of the queue. If the queue is now empty then
the outer while-loop terminates after this iteration. ▯

In fact, the whole sequence of h-values is nondecreasing, not just the current
“active” portion that appears in the queue. Furthermore, for each vertex x in T, the
unique path in T from y to x has length equal to h(x).

// This can be proved by induction too.

Lemma 5.3.9: If there is a path in G from y to vertex z of length k, then the
(unique) path in the tree T from y to z has length h(z) <¼ k.

Proof. // by Mathematical Induction on k
Step 1. If k ¼ 0, then y ¼ z, and the (trivial) path in T from y to z has length

h(z) ¼ 0.
Step 2. Assume that 9 an index q >¼ 0 such that if there is a path in G from y to z

of length q, then the path in the tree T from y to z has length h(z) <¼ q.
Step 3. Suppose that z is a vertex such that there is path p in G from y to z of

length q þ 1.

//We need to prove that the path in the tree T from y to z has length h(z) <¼ q þ 1.

If p ¼ y ¼ v0, e1, . . . , eq, vq, eqþ 1, vqþ 1¼ z
� �

then p1 ¼ y ¼ v0, e1, . . . , eq, vq
� �

5.3 Trees 215

is a path in G from y to vq of length q. By the inductive hypothesis in Step 2, the
path in the tree T from y to vq has length h(vq) <¼ q. At some point, vq is put into
T and the queue L. Later, vq is scanned. If the neighbor z of vq is added to T when
vq is scanned, there will be a path in the tree T from y to z that has length
h(z) ¼ h(vq) þ 1 <¼ q þ 1. Otherwise, the neighbor z of vq must have been
added to T before vq is scanned and when some other vertex x was scanned. This
other vertex x must have been added to T before vertex vq was added. Therefore,

hðxÞ<¼ h vq
� �

: // All the h-values are nondecreasing:

Then hðzÞ ¼ hðxÞþ 1<¼ h vq
� �þ 1<¼ qþ 1:

Hence, there will be a path in the tree T from y to z with length h(z) <¼ q þ 1. ▯

Theorem 5.3.10: If there is a path from y to another vertex z, then the path
in the tree T (produced by Breadth-First Traversal) is a shortest path in G
from y to z.

Proof.
If there is a path from y to another vertex z, then there is a shortest path p in G from
y to z. If the length of p is k, by Lemma 5.3.9, the unique path p* in the tree T
from y to z has length h(z) <¼ k. But p* is a path in G, so h(z) >¼ k. Thus, the path
in the tree T is a shortest path. ▯

The Most Important Ideas in This Section.
We described two ways to travel through a connected graph so that every
vertex is visited, by “growing” a spanning tree. The first method was Depth-
First Traversal and the second was Breadth-First Traversal. By analyzing
the algorithms, we obtained a few important theoretical results about trees.
Both methods may be used to search for a target vertex in a graph, and both
methods may be modified to find a path joining any two target vertices.

We used a “family tree” analogy to talk about the methods in terms of
parents and children, ancestors, and descendants. Backtracking is stepping
up the tree toward the root, tracing the ancestry of a vertex back to y. Every
vertex v except the root has a unique parent P(v), grandparent P(P(v)), great-
grandparent, and so on. Reversing this path gives the path in T from the root
to vertex v.

We also introduced two important data structures in our descriptions of the
actions of these two algorithms: (1) a stack where items are added to the “top”
of the stack and items are removed from the “top” of the stack – like plates or
trays in a cafeteria, and (2) a queue where items are added to the “back” of the
queue and items leave from the “front” of the queue – like a line of customers
at McDonald’s or in a bank.

216 5 Graphs and Trees

5.4 Edge-Weighted Graphs

An “edge-weighted” graph is a graph G ¼ (V, E) together with a “weight” function
on the edges

w: E! Rþ:

This function measures a “cost” of traversing an edge: the length in miles, the time
in minutes, the price of a bus ticket, or whatever is relevant.

// All weights are positive.

A simple, though common, problem involving edge-weighted graphs is known
as the minimum connector problem. Suppose a large company wants to rent or buy
a secure communication network for its offices (or computers). Almost any pair of
offices may be joined directly by a link in the system at a certain cost. But since
communication may be made through intermediate offices, the company wants to
select a subset of possible links so that there is a path from any office to any other
office inside the company’s network. As usual, the company wants the total cost of
the system to be as small as possible.

// How do you decide which links to select?

Let’s let G be the graph with a vertex for each office and an edge joining two
vertices if a link between them can be constructed. The “weight” of an edge e is the
cost of constructing the communication link e represents. We will have to deter-
mine a subgraph K of the graph G that contains all the vertices and where any two
vertices are joined by a path; such a subgraph is a “connector”. K must be a
spanning subgraph which is connected. The cost of K is the sum of the costs of
edges in K. A “minimum connector” is one that costs the least.

// There must be minimum connector if G is connected, even if it’s all of G.

Since any connector K is a connected graph, we know it contains a spanning tree
T. But then T itself would be a connector. Since all the edge weights are positive, a
minimum connector must be a spanning tree. For this reason, a solution to this
problem is often called a “minimum-cost spanning tree”, an MST.

// There must be an MST if G is connected, even if it’s all of G.

How do you find an MST? Here, the Greedy Algorithm works!
The input is a simple connected graph G implemented in some manner, together

with a weight function w: E ! Rþ. And the output is also a graph, a minimum
connector K. // actually, a spanning tree with n � 1 edges

Algorithm 5.4.1: MST (Kruskal 1956)

Begin
Put all the vertices of G into K; // K is spanning but has no

// edges yet and no polygons.
Sort the q edges by weight, and index them so that

w(e1) <¼ w(e2) <¼ w(e3) <¼ . . . <¼ w(eq); // q ¼ |E|.

5.4 Edge-Weighted Graphs 217

For j ¼ 1 To q Do
If (K plus ej does not contain a polygon) Then

add ej to K; // K still has no polygons
End ; // the if

End ; // the for j-loop
End.

Input for Kruskal’s Algorithm (an edge-weighted graph):

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

Walkthrough with V ¼ {0, 1, . . . , 9}.
The smallest edge-weight is 3. Add the edge joining 4 and 6.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

The next smallest edge-weight is 8. Both edges with weight 8 may be added.
// one after the other, in any order

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

The next smallest edge-weight is 9. Add the edge joining 4 and 5.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

9

218 5 Graphs and Trees

The next smallest edge-weight is 10. The edge joining 5 and 6 cannot be added.
Both of the others with weight 10 may be added, one after the other, in any order.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

The next smallest edge-weight is 15. Add the edge joining 3 and 8.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

The next smallest edge-weight is 16. The edge joining 5 and 8 cannot be added. Add
the edge joining 0 and 1.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

The next smallest edge-weight is 18. Add the edge joining 1 and 3.

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

Now we have a spanning tree, and no other edges may be added (without creating a
polygon).

5.4 Edge-Weighted Graphs 219

There remain the questions: Is K always a tree? And is K always a minimum
connector? The following theorems answer these questions. // “yes”

Theorem 5.4.1: K is a tree.

Proof. // We use an indirect argument to prove that K is connected.
Suppose that K is not connected. Then there must be distinct vertices x and y

that are not joined by any path in K. Let W be all the vertices z in G such that there
is a path from x to z in K. Since G is connected, there is a simple path in G from
x to y, say

p ¼ x ¼ v0, e1, v1, e2, v2, e3, . . . , ek, vk ¼ yð Þ:

Consider the vertices in p in turn. Vertex x ¼ v0 is in W, but vertex y ¼ vk is
not in W. Let j be the smallest index such that vj is not in W. Then 0 < j <¼ k, and
ej is an edge joining vj−1 in W and vj which is not in W. Edge ej is not in K.

Furthermore, there can be no (simple) path in K from vj−1 to vj. Thus, K plus ej
cannot contain a polygon. But if K plus ej doesn’t contain a polygon, ej would have
been added to K by the algorithm. This contradiction implies that our supposition
that K is not connected must be false. Therefore, K is connected but contains no
polygons. K is a tree. ▯

If the edges put into K are e[j1], e[j2], e[j3], up to e[jp], then for i ¼ 1, 2, . . . , p, let
E[i] denote the set {e[j1], e[j2], . . . , e[ji]} and let E[0] denote the empty set. Also,
let Ki denote the partially constructed subgraph of K with all the vertices of G but
just the edges in E[i]. // K0 has no edges.

Theorem 5.4.2: For i ¼ 0, 1, 2, . . . , p, there is an MST Ti that contains all
the edges in E[i].

Proof. // by Mathematical Induction.
Step 1. If i ¼ 0, then any MST contains all the edges in E[0], the empty set.
Step 2. Assume that 9 an index k such that 0 <¼ k < p and 9 an MST Tk that

contains all the edges in E[k].
Step 3. // We need to find (or construct) an MST that contains all the edges in

// E[k þ 1] ¼ {e[j1], . . . , e[jk], e[jkþ1]}.
Let e denote the next edge added to K, e[jkþ1]. If e is in Tk, then Tk is an MST that

contains all the edges in E[k þ 1]¼ {e[j1], . . . , e[jk], e[jkþ1]}. LetTkþ1 be the tree Tk.
If e is not in Tk, then Tk plus the edge e contains a unique polygon C by Lemma

5.3.4. The edges in C cannot all be edges in K else K would contain the polygon C.
Therefore, C contains an edge f that is not in K but is in Tk. Let U be the graph
obtained by adding e to Tk and removing edge f. Then U has the same number of
edges as Tk does, n � 1, and U contains all the vertices that Tk does.

220 5 Graphs and Trees

Since Tk plus the edge e contains one polygon C and f is in C, U contains no
polygons. Because U contains no polygons and has n � 1 edges, U is a (forest
consisting of a single) tree. In fact, U is a spanning tree of G.

// But is U of minimum cost?

The graph Kk was a subgraph of Tk, a tree that contains edge f. So Kk plus f
does not contain a polygon. If w(f) < w(e), then f would have been added to K
before e was added. But f was never added to K. Therefore,

wðf Þ>¼ wðeÞ:

But then the total weight of U
¼ the total weight of Tk þ w(e) � w(f)

<¼ the total weight of Tk.

Since Tk is an MST, U cannot have a smaller total weight, so U is an MST
that contains all the edges in E[k þ 1] ¼ {e[j1], e[j2], . . . , e[jk], e[jkþ1]}. Let Tkþ1
be the tree U.

Therefore, there is an MST Tkþ1 that contains all the edges in E[k þ 1]. ▯

Since Tp is an MST that contains all the edges in K, and K itself is a spanning
tree, K must equal Tp. Thus, the output of Kruskal’s Algorithm is an MST.

// This implies that we can “exit” the for-loop if we detect that K (now) has n � 1
// edges.

// This gives a third algorithm for finding a spanning tree in a connected graph.

// Checking that “K plus ej does not contain a polygon” may appear difficult to
// program, but the difficulty can be avoided. Look up Prim’s Algorithm which
// finds an MST by growing a spanning tree.

5.4.1 Shortest Paths

If p¼ (v0, e1, v1, e2, v2, e3, . . . , ek, vk) is a path in G, then the weight of p is given by

w pð Þ ¼
Xk
j¼1

w ej
� �

// the sum of the weights of edges in p

5.4 Edge-Weighted Graphs 221

A “lightest” (or fastest or cheapest) path from a vertex x to a vertex y is a path from
x to y with smallest possible weight. It’s much more common to refer to shortest
paths than “lightest” paths, so we’ll do that.

// If all edges “weigh” 1 unit, a shortest path is one with fewest edges.

The Most Important Ideas in This Section.
An edge-weighted graph is a graph G ¼ (V, E) together with a function on
the edges w: E ! Rþ. In such a graph, theminimum connector problem is to
find a spanning subgraph which is connected and has minimum total weight.
There must be a minimum connector if G is connected. We prove that for
this problem, the Greedy Algorithm produces the best possible solution,
a “minimum-cost spanning tree.”

In an edge-weighted graph, the weight of a path p is the sum of the weights
of edges in p; a shortest path from a vertex x to a vertex y is a path from x to
y with smallest possible weight.

But it may be that in a particular context, the cost of going from a vertex
x to a neighbor y is not the same as going from y back to x. (If y were uphill or
upstairs from x, the cost in time or energy would be different.) But we can
fairly easily expand our model to accommodate this asymmetry due to the
direction we’re moving along certain edges. We continue the investigation
of algorithms to find shortest paths in the more general model of directed
graphs in the next chapter. That chapter begins with definitions parallel to
those for “undirected” graphs.

5.5 Drawing and Coloring

The Utilities Problem is classic: Can the utilities Water, Gas and Electricity all be
connected to each of three houses in such a way that no two utility lines cross each
other? // use pencil

Water Gas Electricity

H1 H2 H3

222 5 Graphs and Trees

Real utility lines use 3 dimensions to avoid crossings. But can you make a blue-print
or schematic that does not have two utility connections that cross? This section
discusses drawings of graphs and colorings of graphs. It ends with some history of
the famous Four Color Problem and the critical role computers played in solving that
problem. But before that we will look at a few common classes of graphs.

The complete graph on n vertices, denoted Kn, is the (simple) graph where every
pair of distinct vertices is joined by an edge.

K1 K2 K3 K4 K5

In any graph, a subset of vertices where every pair of distinct vertices is joined by an
edge is called a clique. The complementary idea is independence. In any graph, a
subset of vertices where no pair of distinct vertices is joined by an edge is called an
independent set.

5.5.1 Bipartite Graphs

AgraphG(V,E) is bipartitemeans thatVmay be partitioned into two independent sets.
So in a bipartite graph each vertex is in exactly one of two sets, R and B say, where
every edge joins a vertex in R to a vertex in B. Bipartite graphs model connections
between objects of different types: utilities and houses, tasks and workers, jobs and
machines, or TA’s and courses. The complete bipartite graphwith p vertices inR and
q vertices inB, denotedKp,q, is the (simple) graphwhere every vertex inR is joined by
an edge to every vertex in B. // The utilities problem is about “drawing” K3,3.

A bipartite graph is sometimes said to be “2-colorable” in the sense that each vertex
is colored Red or Blue and every edge joins a Red vertex and a Blue one. A graph is
said to be k-colorable if Vmay be partitioned into k independent sets:C1,C2,. . . ,Ck.

Coloring a graph is assigning each vertex one of several colors so every edge
joins a vertex to one with a different color, and no edge joins two vertices of the
same color. // Is every tree 2-colorable?

It is clear that if every component of a disconnected graph is bipartite, then the
whole graph is bipartite.

An edge e in a connected graph G is called a bridge (or an isthmus) if removing
e leaves a disconnected graph. Suppose that e is a bridge inG joining vertices a and b.

5.5 Drawing and Coloring 223

Let H be the disconnected graph obtained from G by removing edge e. Then H has
exactly two connected “pieces”, called components: Ha containing vertex a, and Hb

containing vertex b. If bothHa andHb are bipartite then so is all of G, because if a is
colored Red inHa and b is colored Blue inHb then all vertices inG are colored so that
no edge joins two vertices of the same color. On the other hand, if both a and b are
given the same color, reverse the colors in Hb so a and b now have opposite colors
and again, all vertices in G are colored so that no edge joins two vertices of the same
color. Finally, if G has k bridges, removing all of the bridges would produce a
bridgeless, disconnected graph with several components C1, C2, . . . , Cn. If all these
bridgeless components were bipartite, the bridges could be added back one at a time
(and the colorings revised if necessary) so that all vertices in G are colored Red or
Blue and no edge joins two vertices of the same color.

If G is bipartite, and p ¼ (v0, e1, v1, e2, v2, e3, . . . , e2kþ1, v2kþ1) is a path of odd
length in G, then v0 and v2kþ1 must have different colors.

// This can be proved by induction on k.
Thus, if G is bipartite, then G cannot contain a closed path of // v0 6¼ v2kþ1
odd length, and it also cannot contain an odd polygon. In fact

Theorem 5.5.1. A graph G is bipartite if and only if G does not contain an odd
polygon.

Proof. We’ve just seen that if G is bipartite, then G cannot contain an odd polygon.

Suppose that G does not contain an odd polygon. // How do we 2-color G?
We will show how to 2-color each connected component of G, because then G itself
will be 2-colored.

Suppose now that we want to 2-color a connected graph G that does not contain
an odd polygon. Choose any vertex y of G. If Algorithm 5.3.2 (Breadth-First
Traversal) were applied to G, it would produce a spanning tree T of G that contains
a shortest path in G from y to every vertex z in G.

Color z Red if the path in T from y to z has even length, and
color z Blue if the path in T from y to z has odd length.

We can prove no pair of Red vertices is joined by an edge indirectly. Assume v and
w are Red vertices that are joined by an edge e. //Must G contain an odd polygon?
Then there is an even path p1 from y to v and an even path p2 from y to w. Consider
the closed path

p ¼ p1 from y to v
followed by the edge e from v to w

followed by p2
R from w in reverse back to y.

Since both p1 and p2 are even, p is a closed path of odd length in G. If p is not a
polygon, it must contain a repeated vertex. Suppose a vertex is repeated in p (other

224 5 Graphs and Trees

than the last vertex repeating the first). That is, suppose vi ¼ vj, where 0 <¼ i < j <
k or 0 < i < j <¼ k. Then

p¼ (v0,e1,v1, . . . ,vi–1,ei,vi,eiþ1,viþ1, . . . ,vj–1,ej,vj¼vi,ejþ1,vjþ1, . . . ,ek,vk¼v0).

Let p4 ¼ (vi, eiþ1, viþ1, . . . ,vj–1, ej, vj ¼ vi)
and p3¼ (v0, e1, v1, . . . , vi–1, ei, vi ¼ vj, ejþ1, vjþ1, . . . , ek, vk ¼ v0)

v0

vk

vi

vj

Both p3 and p4 are closed paths, and exactly one, p’ say, is of odd length. This
process may be repeated until we obtain p*, a closed odd path, which has no repeated
vertices (except the last repeating the first). Therefore, p* is an odd polygon in
G. Since G has no odd polygon, no two Red vertices are joined by an edge.

Similarly, we can prove no two Blue vertices, v and w, are joined by an edge. If
they were adjacent, then following the previous argument, both paths p1 and p2
are odd, so again the path constructed from them, p, is a closed path of odd length
in G. And, as before, the existence of such a path implies that there is an odd
polygon in G. ▯

Theorem 5.5.1 completely characterizes 2-colorable graphs. No one (yet) knows
such a characterization for 3-colorlable graphs. Deciding whether or not an arbitrary
graph is 3-colorable is known to be NP-complete like the Hamilton Path problem.

// and worth $1M

5.5.2 Planar Graphs

Just as we did for set theory, we will take an intuitive approach to the topology of
the plane and its geometry. A graph G(V, E) is planar means that it can be “drawn”
on a sheet of paper where the vertices are points (drawn as small circles, so they are
visible) and the edges are drawn as “lines” joining the points that are the
end-vertices of the edge, but where no two lines cross (at an interior point). We
assume the lines representing edges are straight segments or nice, smooth curves
that do not intersect (cross) themselves.

// Fary’s Theorem from 1948 asserts that for a simple planar graph
// the vertices can be positioned so all edges can be drawn as
// straight line segments.

The complement of such a drawing partitions the remainder of the plane into
connected regions called faces. For instance, K4 can be drawn as

5.5 Drawing and Coloring 225

A B C

D

producing the 4 faces: A, B, C and D. A drawing of a path of length 3 is

A

but only one face is produced. Every tree can be drawn in the plane producing
exactly one face.

// This can be proved by induction on jVj or giving an algorithm for
// placing the vertices and joining adjacent vertices by straight lines.

The drawing of a polygon with 5 vertices (and 5 edges) has exactly 2 faces, one

A B

“interior” to the polygon and one “exterior” to it. Furthermore, each edge in the
polygon has the interior face on one side of it and the exterior face on the other side.

In general, we will assume that any drawing of a polygon, P, produces a closed
curve in the plane that partitions the remainder of the plane into exactly two
regions, the “interior” of the curve and the “exterior” of it. Furthermore, if P is a
polygon in some planar graph G then in any drawing of G, each edge in the polygon
is on the “boundary” of a face in the interior of P on one side of it and is on the
“boundary” of a face in the exterior of P on the other side.

If G ¼ (V, E) is bridgeless and connected then every edge is in some polygon,
and we assume that the boundary of every face f in any drawing of G is a circuit
(though not necessarily a polygon), and the “size” of the face f is the length of that
circuit. Then, since every edge is in the boundary of exactly 2 faces, we have

226 5 Graphs and Trees

2 Ej j ¼ the sum of the sizes of the faces in any drawing of G: ð5:5:1Þ

// Draw a graph consisting of two disjoint triangles, one inside the other.
// Is the “boundary” of every face a circuit?
// Draw a graph consisting of two triangles one inside the other, that share one vertex.
// Is the “boundary” of the every face a polygon?

Given a drawing of a bridgeless graph G, d(G), we can construct a drawing of
another planar graph known as the dual of d(G) by placing a vertex inside each face
and for each edge e, joining the faces on either side of e by a new edge e'. Different
drawings of the same graph may produce different dual graphs. For example,

1 2

5 4

6 3

1

2

5

4

3 6A C DB ACDB

are both drawings of the same graph, but the dual drawings are quite different.

1 2

5 4

6 3

1

2

5

4

3 6DB ACBA DC

// Is the original drawing, the dual of the dual?
// Is every bridgeless planar graph the dual of a planar graph?
// Do all drawings of any particular graph have the same number of faces?

Given a drawing of graph G(V, E) let F denote the set of faces in the drawing.

Theorem 5.5.2: Euler’s Formula. If G is a connected, planar graph then in any
drawing of G

Vj j � Ej j þ Fj j ¼ 2: ð5:5:3Þ

Proof. Let G(V, E) be any connected, planar graph with n 2 P vertices that has
been drawn in the plane. We will establish the formula by Mathematical Induction
on jEj.

Since G is connected, it contains a spanning tree (Theorem 5.3.3) and so it has at
least (n − 1) edges (Theorem 5.3.5).

5.5 Drawing and Coloring 227

Step 1. If jEj ¼ n – 1 then G itself is a tree and the drawing will have only one
face. Hence,

Vj j � Ej j þ Fj j ¼ n� n � 1ð Þ þ 1 ¼ 2:

Step 2. Assume that 9 q >¼ n − 1 such that any drawing of a connected, planar
graph with n vertices and q edges satisfies Euler’s formula.

Step 3. Let G* be any connected, planar graph with n vertices and q þ 1 edges
drawn in the plane, as d(G*). G* has too many edges to be a tree, so G*
must contain a polygon, P. Let e be any edge in that polygon.

A

B

d(G*)

e

P

The edge e is on the boundary of exactly 2 faces, A and B, in the drawing. If H is
the graph obtained from G* by removing e, and d(H) is obtained from d(G*) by
erasing the line representing e, then d(H) is a drawing of a connected, planar graph
with n vertices and q edges, and so satisfies Euler’s formula. // by Step 2

But the two faces, A and B, are now merged into one region.

d(H)

228 5 Graphs and Trees

Thus; 2 ¼ V Hð Þj j � E Hð Þj j þ F d Hð Þð Þj j
¼ V G*ð Þj j � E G*ð Þj j �1f g þ f F d G*ð Þð Þj j �1g
¼ V G*ð Þj j � E G*ð Þj j þ F d G*ð Þð Þj j

Therefore, G* satisfies Euler’s Formula and the Theorem is proved. ▯

One of our first examples in this book was the Cake Cutting Conundrum, where
N points were marked on the circumference of a circular cake and then the cake was
cut by making straight cuts joining all pairs of these points. How many pieces will
N points produce?

The diagram below illustrates the case of 6 points.

The number of pieces 6 points produce is 30 or 31; it’s only 30 if the three
“longest” cuts all pass through the center of the circle. The maximum number of
pieces, Q(N), will be obtained when no three cuts pass through a single point.

Chapter 3 contained a proof by Mathematical Induction that

8N 2 P, Q Nð Þ ¼ N
4

� �
þ N

2

� �
þ N

0

� �
where

N
k

� �
¼ 0 unless 0 <¼ k<¼ N:

This can also be proved using Euler’s Formula.

Imagine a diagram like the one above for N points, but with a vertex at each of
the given points on the circumference, and a vertex introduced wherever two cuts
meet. This revised diagram is the drawing of a connected, planar graph, and
therefore Euler’s formula holds.

5.5 Drawing and Coloring 229

Recall the number of points where two cuts cross is
N
4

� �
. In this revised

diagram

Vj j ¼ N þ N
4

� �
:

We can determine the number of edges using Eq. 5.1.1:

2 Ej j ¼ the sum of the degrees of all the vertices:

Each “crossing” vertex will have degree 4, and each “point” vertex is the end of a
cut to each of the other N − 1 “point” vertices, and it is also the end of the 2 arcs on
the circle next to it. Therefore

2 Ej j ¼ N
4

� �
� 4þN � Nþ 1ð Þ ¼ N

4

� �
� 4þN� N�1ð Þ þ 2N

and so

Ej j ¼ N
4

� �
� 2þ N � N � 1ð Þ

2
þN ¼ N

4

� �
� 2þ N

2

� �
þN:

Hence, Fj j ¼ 2þ Ej j � Vj j ¼ N
4

� �
þ N

2

� �
þ 2:

Since Euler’s Formula counts the exterior face, the number of pieces of cake
produced is

Q Nð Þ ¼ Fj j �1 ¼ N
4

� �
þ N

2

� �
þ N

0

� �
:

Next we will use Euler’s Formula to prove that K3,3 and K5 are not planar, by the
indirect method of argument.

Suppose that K3,3 were planar and that d(K3,3) is a drawing of K3,3. Then

2 ¼ V K3;3
� ��� ��� E K3;3

� ��� �� þ F d K3;3
� �� ��� �� ¼ 3þ 3f g� 3� 3f g þ F d K3;3

� �� ��� ��

and so F d K3;3
� �� ��� �� ¼ 2þ 9� 6 ¼ 5:

230 5 Graphs and Trees

Since no edge of K3,3 is a bridge, each line in the drawing is on the boundary of
exactly two faces. Let fj denote the number of faces in d(K3,3) with exactly j edges
on its boundary. Then

F d K3;3
� �� ��� �� ¼ f1þ f2þ f3þ f4þ f5þ f6þ . . . þ f9

since no circuit could have more than |E(K3,3)| ¼ 9 edges. But f1 ¼ 0 because there
are no loops; f2 ¼ 0 because there are no parallel edges; and because there are no
odd circuits in K3,3

F d K3;3
� �� ��� �� ¼ f4þ f6þ f8:

Counting the edges in the boundary circuits, each edge is counted exactly twice, so

2� E d K3;3
� �� ��� �� ¼ 4� f4þ 6� f6þ 8� f8

>¼ 4� f4þ 4� f6þ 4� f8 ¼ 4� F d K3;3
� �� ��� �� ¼ 4� 5:

This asserts that 18 >¼ 20 which is false, and therefore K3,3 is not planar.

Suppose that K5 were planar and that d(K5) is a drawing of K5. Then

2 ¼ V K5ð Þj j � E K5ð Þj j þ F d K5ð Þð Þj j ¼ 5�10 þ F d K5ð Þð Þj j

and so F d K5ð Þð Þj j ¼ 2þ 10�5 ¼ 7:
Since no edge of K5 is a bridge, each line in the drawing is on the boundary of

exactly two faces. Let fj denote the number of faces in d(K3,3) with exactly j edges
on its boundary. Then

F d K5ð Þð Þj j ¼ f1þ f2þ f3þ f4þ f5þ f6þ . . . þ f10

since no circuit could have more than |E(K5)| ¼ 10 edges. But f1 ¼ 0 because there
are no loops, and f2 ¼ 0 because there are no parallel edges.

Counting the edges in the boundary circuits, each edge is counted exactly twice, so

2� E d K5ð Þð Þj j ¼ 3� f3þ 4� f4þ . . . þ 10 � f10

>¼ 3� f3þ 3� f4þ . . . þ 3� f10 ¼ 3� F d K5ð Þð Þj j ¼ 3� 7:

This asserts that 20 >¼ 21 which is false, and therefore K5 is not planar.

A subdivision of a graph is formed by replacing its edges by paths of length one
or more. It is fairly clear that if H is a subdivision of G, then H is planar if and only
if G is planar. It’s also clear that if H is a subgraph of a planar graph G, then H is
planar. So if a graph G contains a subdivision of K3,3 or K5 then G is not planar.

5.5 Drawing and Coloring 231

We can use this to demonstrate that the Petersen Graph (1898) is non-planar.

1

25

4 3

A

B

D

E

C

D C

A

1

5 2

The two graphs, K3,3 and K5, are the fundamental non-planar graphs. In 1930
Kuratowski proved

A graph G is planar if and only if it does not contain a subdivision of K3,3 or K5.

5.5.3 Some History of the Four Color Theorem

In about 1850, Francis Guthrie asked his former mathematics professor (Augustus
de Morgan) about coloring the map of the English counties with 4 colors so any two
sharing a common boundary line had different colors. He asked “were 4 colors
enough to color any map?” De Morgan wrote to Professor William Rowan
Hamilton in Dublin in 1852 asking him about “Guthrie’s Problem”.

The assertion that 4 colors were enough to color any map became known as “the
Four Color Conjecture”. Much of the subsequent work on the conjecture focused on
4-coloring the vertices of the planar graph obtained as the dual of a map.

232 5 Graphs and Trees

In 1879 Alfred Kempe announced he had a proof of the conjecture, and pub-
lished a proof of the Four Color Theorem in the American Journal of Mathematics
that same year. But the Theorem reverted to the Four Color Conjecture in 1890
when Percy Heawood showed that Kempe’s proof was wrong and only demon-
strated that 5 colors were enough.

The conjecture remained just that until 1976 when a complete proof of the Four
Color Theorem was announced by Kenneth Appel and Wolfgang Haken. The details
of their proof appeared in two articles in 1977. These were read very carefully, in part
because of the disaster of Kempe’s “proof”, but mainly because their proof involved
about 2000 cases, many of which were generated by computers and resolved by
computer programs consuming an estimated 1200 hours of computing time. Their
proof has survived 40 years of close scrutiny and some improvements have been
made to the algorithms and the analysis of the cases, which now number fewer than
1500. Using a computer to assist with a mathematical proof in this manner was a
breakthrough in the application of computing to theoretical mathematics.

The Most Important Ideas in This Section.
Both bipartite and planar graphs are characterized by forbidden subgraphs.
A graph G is bipartite if and only if G does not contain an odd polygon.
A graph G is planar if and only if it does not contain a subdivision of K3,3 or
K5. Euler’s Formula jVj − jEj þ jFj ¼ 2 was proved for connected, planar
graphs. The section ends with some history of the Four Color Theorem and
recognition of the role computers and computer programs play in modern
Mathematics.

Exercises

1. Consider the following graph, G:

v1

v
4

v
3

v
2

e
1

e
2

e
3

e
4

e
5

e
6

e
7

a. What is the vertex set of G?
b. What is it the edge set of G?
c. Which edges in G are loops?
d. What are the neighbours of v1?
e. What is the degree of v3?
f. Which edges in G are parallel?
g. Is G a simple graph? Why or why not?

5.5 Drawing and Coloring 233

2. Consider the following graph, H:
v1

v
4

v
3

v
2

e
1

e
2

e
3

e
4

a. What is the vertex set of H?
b. What is it the edge set of H?
c. Which edges in H are loops?
d. What are the neighbours of v1?
e. What is the degree of v3?
f. Which edges in H are parallel?
g. Is H a simple graph? Why or why not?

3. Draw a graph that has the stated properties:
a. One vertex with degree 8
b. Two vertices, each with degree 3
c. Three vertices with degrees 1, 2, 3
d. Four vertices with degrees 1, 2, 3 and 4

4. Try to draw a graph with 3 vertices of odd degree. Use Eq. 5.1.1 to prove that
in any graph, the number of vertices with odd degree must be even.

5. Draw a graph that has both an Euler circuit and a Hamilton circuit.
6. Draw a graph that has an Euler circuit and a Hamilton circuit that are not the

same.
7. Draw a graph that has an Euler circuit but does not have a Hamilton circuit.
8. Draw a graph that has a Hamilton circuit but does not have an Euler circuit.
9. Draw a graph that has a neither an Euler circuit nor a Hamilton circuit.

10. Which of the following graphs include an Euler Tour? If the graph includes an
Euler Tour, list one of the paths that describes such a tour. If the graph does
not include an Euler Tour, justify why no such path exists.

v1

v
4

v
3

v
2

e
1

e
2

e
3

e
4

e
5

e
6

e
7

v
1

v
4

v
3

v
2

e
1

e
2

e
3

e
4 v

1

v
4

v
3

v
2

e
1

e
2

e
3

e
4

e
5

e
6

e
5

A B C

11. Which of the graphs from the previous question includes a Hamilton circuit?
If such a circuit exists, list one of the paths that describes such a circuit.

12. Demonstrate that G has an Euler Tour if and only if G is connected and has
<¼ 2 vertices of odd degree.

13. Look up Fleury’s Algorithm to find an Euler Tour on the web.
14. Consider the path p1 ¼ (v1, e1, v2, e2, v3, e3, v2, e4, v4).

a. Is p1 a simple path? Why or why not?

234 5 Graphs and Trees

b. Is p1 a closed path? Why or why not?
c. Is p1 a circuit? Why or why not?

15. Consider the path p2 ¼ (v1, e1, v2, e2, v1, e3, v3, e4, v1).
a. Is p2 a simple path? Why or why not?
b. Is p2 a closed path? Why or why not?
c. Is p2 a circuit? Why or why not?

16. Construct an example of a pathp joining two distinct vertices v andwwhere there
are two (or more) subsequences that are simple paths joining vertices v and w.

17. Why must a shortest path (in the sense of having fewest edges) from one
vertex to another vertex be a simple path?

18. Why is a polygon with n >¼ 2 vertices the subgraph determined by 2 � n
distinct circuits?

19. Prove that there is no simple graph that has 4 vertices with degrees 1, 1, 3
and 3.

20. Prove that if p is a simple path from v to w, and e is an edge joining v and
w that is not an edge not in Gp, then Gp together with e forms a polygon.

21. Prove that if p ¼ (v0, e1, v1, . . . , ek, vk) is a closed path and k is odd, then the
graph Gp contains a polygon.

22. Draw a graph that contains n vertices and n � 1 edges that is not a tree.
23. Provide three different spanning trees for the following graph:

e
3

e
6

e
10

e
8

e
9

e
12

e
7

e
2

e
1

e
15

e
13

e
5

e
11 e

14e
4

24. Prove that G is a tree if and only if there is a unique simple path between any
two distinct vertices.

25. Prove that if all vertices have degree >¼2, then G contains a polygon.
26. Prove that a tree with >¼ 2 vertices must have >¼ 2 pendant vertices, which

are vertices of degree 1.
27. Prove that if T is a tree with a vertex of degree k > 1, then T must have >¼

k pendant vertices.
28. A “disconnected” graph G ¼ (V, E) can be “divided” into connected “pieces”

called components, say G1, G2, . . . Gk, where the vertex set V is partitioned
into the vertex sets of the subgraphs, Gj. When all the components are trees,
G is called a forest. Prove the following:
(a) A graph G is a forest if and only if G has no polygons.
(b) If G is a forest of q trees, then jEj ¼ jVj − q.

5.5 Drawing and Coloring 235

29. Prove that if G has n vertices and n − 1 edges but no polygons, then G is a tree.
30. Prove that if a graph, G, includes an Euler circuit then G is connected.
31. Prove that if G is connected and has n vertices and exactly n − 1 edges, then

G is a tree.
32. (a) Prove that if e is an edge in G then either e is a bridge or e is contained in a

polygon.
(b) Prove that G is a tree if and only if every edge is a bridge.

33. Prove that if there is a path from y to another vertex, z, then eventually z will
be put into T, the tree produced by Algorithm 5.3.2 Breadth-First Traversal.

34. Prove that the paths in T (the tree produced by Algorithm 5.3.2 Breadth-First
Traversal) are shortest paths from y (the root) to all other vertices in T.

35. Consider the following algorithm that “visits” every vertex in a connected graph.

Yjkng (T has an unscanned vertex) Fq
Find any unscanned vertex v in T;
Kh (there is a neighbor of v that is not yet in T) Vjgp

Find any neighbor w of v that is not yet in T;
Call the edge joining w and v, the back-edge of w, BE(w);
Add w and BE(w) to T; // T stays connected & no polygon is created.
P(w) v; // Call v the “Parent” of w.

Gnug // now all the neighbors of v are in the tree T
Mark vertex v as “scanned”;

Gpf // the if-statement
Gpf;

;

 // the while-loop (now, all vertices in T have been “scanned”)
Gpf.

Algorithm: Random Traversal

Dgikp"
Mark all vertices “unscanned”;
Pick a vertex y and put it into the tree, T, as the root; // y might be input

(a) Prove that this algorithm terminates.
(b) Prove that if there is a path p ¼ (y ¼ v0, e1, v1, e2, v2, e3, . . . , ek,

vk ¼ z) from y to another vertex, z, then eventually z will be put into T by
this algorithm.

// Hint: Prove each vj in p will be put into T, by induction on j.
(c) Explain how Depth-First Traversal uses a stack to store the unscanned

vertices in T and takes v from the top of the stack when finding any
unscanned vertex.

(d) Explain how Breadth-First Traversal uses a queue to store the unscanned
vertices in T and takes v from the front of the queue when finding any
unscanned vertex.

236 5 Graphs and Trees

36. Determine whether or not each of the following graphs is bipartite.

37. Determine whether or not each of the graphs in the previous question is planar.
38. Show that each of the graphs in question 36 has a Hamilton Circuit.
39. Suppose that G is a bridgeless, connected, planar graph.

(a) Prove that if G is a simple graph then the average degree in G is < 6.
(b) Construct an example of a bridgeless, connected, planar graph G* (with

loops and/or parallel edges) where the average degree in G* is >¼ 6.
40. Suppose that G is a bridgeless, connected, planar graph.

(a) Prove that if G has no vertex of degree < 3, the average size of a face in
any drawing of G is < 6.

(b) Construct a drawing of a bridgeless, connected, planar graph G* (with
some vertices of degree 2) where the average face size in G* is >¼ 6.

41. A (3-dinensional) polyhedron is a (convex) crystal-like structure with flat
faces, straight edges where two faces meet, and vertices at the corners where 3
or more faces meet. For example consider a cube: it has 6 square faces, 12
edges and 8 vertices. We can embed the surface of a polyhedron in the plane
as follows: puncture the bottom face, and then stretch open the “hole” wider
and wider until the surface of the polyhedron lies flat on a plane.

// Assuming the surface is made of a pliable, flexible material.

A Platonic Solid is a polyhedron where all the faces are (isomorphic and) the
same size s and all the vertices have the same degree d. So a cube is a Platonic
Solid. Five such solids have been studied since Plato:

5.5 Drawing and Coloring 237

(1) The tetrahedron with 4 triangular faces (s ¼ 3 & d ¼ 3)
// a pyramid with triangular base

(2) The cube with 6 square faces (s ¼ 4 & d ¼ 3)
(3) The octahedron with 8 triangular faces (s ¼ 3 & d ¼ 4)
(4) The dodecahedron with 12 pentagonal faces (s ¼ 5 & d ¼ 3)
(5) The icosahedron with 20 triangular faces (s ¼ 3 & d ¼ 5)

(a) Draw the “planar” version of the surface of each of these 5 polyhedra.
(b) Determine the dual of each “planar” version of the surface for each of

these 5 polyhedra.
(c) Use the results we have about planar graphs to prove that there are no

other Platonic Solids.
42. Imagine that a vertex of an icosahedron is “sanded” down to create a plateau.

That plateau would have 5 sides.

If all the vertices were “sanded” down in that same way, we obtain a poly-
hedron with 12 pentagonal sides and 20 hexagonal sides (resulting from the
original triangles).
(a) Draw the “planar” version of the surface of the resulting polyhedron.

// This “rounded down” icosahedron is the pattern of the surface of most
// modern soccer balls.

(b) How many edges are there in the surface the resulting polyhedron?
43. Consider the Petersen graph.

(a) Does it have a Hamilton Path?
(b) Does it have a Hamilton Path between any pair of non-adjacent vertices?
(c) Does it have a Hamilton Circuit?

44. Can the vertices of the Petersen graph be labelled with 2-subsets of {1, 2, 3, 4, 5}
so that v is adjacent to w if and only if their subset labels are disjoint?

45. Imagine “shrinking” an edge e joining vertices a and b in some drawing of a
planar graph G ¼ (V, E).

ba ba abe e

238 5 Graphs and Trees

Shrinking edge e does not introduce any edge-crossing. If we denote the graph
that results from shrinking edge e by G \ e, then we know that if G is planar
then G \ e is also planar.
(a) Explain why if H is obtained by shrinking a finite sequence of edges of

G and H is not planar then G could not have been planar.
(b) Choose a sequence of edges in the Petersen Graph to shrink to obtain K5,

and thereby prove (again) that the Petersen Graph is not planar.
46. Suppose that G is a bridgeless, connected, planar graph. Prove that G is

bipartite if in some drawing of G every face has an even size.
47. It is well known that the squares of a checker board can be colored with 2

colors so that no two squares that share an edge have the same color. Suppose
that we draw a curve across the board from one edge of the board to another,
and we draw a closed curve inside the border of the board.

(a) Can the regions in this new drawing be colored with 2 colors so that no
two regions that share an edge have the same color?

(b) Suppose that G is a bridgeless, connected planar graph where each vertex
has even degree, and let d(G) be any drawing of G. Use the dual graph
and the result stated in question 46 to prove that the faces of d(G) can be
colored with 2 colors so that no two regions that share an edge have the
same color.

(c) Explain how the result of part (b) relates to the drawing and coloring result
in part (a).
// Think about “dropping” a square (or circular) frame onto the colored
// drawing and looking at the portion of it inside the frame.

5.5 Drawing and Coloring 239

6Directed Graphs

This chapter gives a number of algorithms that apply to directed graphs, though
many ideas and algorithms for undirected graphs apply to digraphs (and vice versa).
The first is an algorithm to orient the edges of an undirected graph to produce a
strongly-connected digraph. Then we consider acyclic digraphs, showing how they
may be “topologically sorted”, and how to use Dynamic Programming to count the
number of dipaths from a to b, and find a shortest or a longest dipath from a to b.

Dijkstra’s Algorithm grows a tree of shortest dipaths from a “single source”, and the
Floyd-Warshall Algorithm solves the “all-pairs” shortest dipath problem. Next we
consider commodity Flow Networks. The Max-flow/Min-cut Theorem is proved by
the action of the Ford-Fulkerson algorithm which finds a feasible flow, and gives it
a “certificate of optimality” by producing a cut whose capacity equals the value of
that flow. The final section shows that matching problems in bipartite graphs can be
converted to flow problems and proves several classic results, including Hall’s
Marriage Theorem.

6.1 Introducing Directions

A directed graph (or digraph) D consists of a (finite, non-empty) set V of
vertices together with a (finite but possibly empty) set A of arcs where each arc
“goes” from one vertex to another vertex. The vertices are drawn as small circles,
ovals or squares; and the arcs are drawn as line segments joining one vertex to
another with an arrowhead indicating the “direction” of the arc.

// like the arrows for one-way streets
An arc may join a vertex to itself; such an arc is (also) called a loop. All arcs have a
“start”-end and a “finish”-end. The vertices at the finish-ends of arcs starting from
vertex x are called out-neighbours of x; the vertices at the start-ends of arcs
finishing at vertex y are called in-neighbours of y. Two different arcs may join the

same two vertices and go in the same direction; such arcs are said to be strictly-
parallel. When there are no loops and no strictly-parallel arcs, the digraph is said to
be simple.

A directed path (or dipath) is a sequence of the form:

p ¼ ðv0,a1, v1, a2, v2,a3, . . . ,ak, vkÞ

where each vj is a vertex, and each ai is an arc from vertex vi–1 to vertex vi.

// A dipath corresponds to a trip through (part of) the directed graph
// starting from vertex v0 then following the arc a1 in the correct direction to vertex v1,
// then following the arc a2 (again in the correct direction) to vertex v2, and so on until
// finally, the arc ak is traversed (in its direction) and we end up at vertex vk.
The dipath p is said to go from v0 to vk and have length k, where k is the number of
arcs traversed. // like paths in undirected graphs
We will say that vk is reachable from v0 when there is a dipath from v0 to vk.
A dipath is simple if all the vertices are distinct, and a dipath is closed if v0 ¼ vk.
A closed dipath is simple if all vertices in the sequence are distinct except v0 ¼ vk.
A closed dipath is a cycle if k >¼ 1, and all the arcs are distinct.

// The dipath p ¼ (v0) is a simple, closed dipath of length zero from v0 to v0, often
// referred to as a “trivial” dipath, but it is not a cycle.
// If arc a is a loop at vertex v, then p ¼ (v, a, v) is a cycle (of length one).
// If a is an arc from v to w, and b is an arc from w to v then p ¼ (v, a, w, b, v)
// is a cycle of length two.

Theorem 6.1.1: Suppose that p ¼ (v0, a1, v1, a2, v2, a3, . . . , ak, vk) is a dipath in
D(V, A).

(a) If v0 and vk are different vertices, then there is a simple dipath p* from v0 to vk
in D.

(b) If p is a closed dipath, that is v0 ¼ vk, then there is a simple cycle p* in D.

Proof.

(a) If p is not a simple dipath, it must contain a repeated vertex. Suppose vi ¼ vj,
where 0 <¼ i < j <¼ k. Then we can’t have both 0 ¼ i and j ¼ k, and

p ¼ ðv0,a1, v1, . . . ,vi�1,ai, vi,aiþ 1, viþ 1, . . . ,vj�1,aj, vj ¼ vi,ajþ 1, vjþ 1, . . . ,ak, vkÞ:

Then p may be replaced by

p1 ¼ðv0, a1, v1, . . . ,vi�1,ai, vi ¼ vj, ajþ 1, vjþ 1, . . . ,ak, vkÞ

which is a shorter dipath from v0 to vk in D. This process may be repeated until
we obtain p*, a simple dipath from v0 to vk in D.

242 6 Directed Graphs

apply to digraphs (and vice versa).
and all the arcs are distinct. Many ideas and algorithms for undirected graphs
ai is an arc from vertex vi–1 to vertex vi. A closed dipath is a cycle if k >¼ 1,
form p ¼ (v0, a1, v1, a2, v2, a3, . . . , ak, vk) where each vj is a vertex, and each
each arc goes from one vertex to another vertex. A dipath is a sequence of the
A directed graph consists of a set of vertices together with a set of arcs where
The Most Important Ideas in this Section.

(b) If v0 ¼ v1, then p* ¼ (v0, a1, v1) is a simple cycle in D. If v0 6¼ v1, then
p1 ¼ (v1, a2, v2, a3, . . . , ak, vk) is a dipath joining different vertices, so by part
(a) there is a simple dipath p2 from v1 to vk in D. This dipath p2 together with
arc a1 forms a simple cycle p* in D.

It could happen that p2 ¼ (v1, ak, vk) but then a1 and ak are oppositely
oriented arcs joining the same two vertices, and (v0, a1, v1, ak, vk) would be a
simple cycle in D. // What could happen in an undirected graph?

▯

Many problems ask us to find a dipath (or tour) of a certain kind. These occur in
problems where “transitions” between configurations are not always reversible.
//What would be analogous to an Euler Tour or a Hamilton Tour in a directed graph?
// Is the corresponding Euler Tour problem still easy?
// Is the corresponding Hamilton Tour problem still hard, unsolved, and worth
// $1,000,000?

// Is there a dipath from a given vertex y to another specified vertex z?
// Can a Depth-First Traversal of all vertices reachable from a given vertex y be done?
// CanaBreadth-First Traversal of all vertices reachable fromagiven vertex ybedone?

6.2 Strong Connectivity

A digraph is strongly-connectedmeans for any two vertices x and y, there is a dipath
from x to y. // Any vertex is reachable from any other.
// In a (completely) one-way street system, you must be able to get from any point
// to any other point following the one-way arrows.

An orientation of an undirected graph G, is an assignment of a direction to each
edge of G, thereby producing a digraph, O(G).

Now we consider two questions:
1. When can an undirected graph be oriented to produce a strongly-connected

digraph?
2. Is there a simple algorithm to do this?

6.1 Introducing Directions 243

If O(G) is strongly-connected then (ignoring the directions of the arcs) G itself must
be (weakly) connected. // But there’s more.

An edge e in a connected graph is called a bridge if removing e leaves a dis-
connected graph. If a bridge e joins vertices a and b, it provides the only route from
a to b, and from b to a. Thus, if e is oriented from a to b, then a is not reachable from
b; and if e is oriented from b to a, then b is not reachable from a. Hence, if G has a
bridge, no orientation of G can be strongly-connected. On the other hand,

Theorem 6.2.1: If G is a bridgeless connected graph then G has an orientation that
is strongly-connected.

Proof.
Choose any vertex y in G, and do a Depth-First Traversal of G (applying

Algorithm 5.3.1), keeping track of the order in which all the vertices of G enter the
tree T, then

V ¼ v1 ¼ y; v2, v3, . . . , vnð Þ:

As in the walk-through of Algorithm 5.3.1, orient the edges in the tree T from vi to
vj when i < j. But also orient the edges that are not in the tree T from vj back to vi
when i < j. Orienting the edges in the result of the walk-through of Algorithm 5.3.1
produces the digraph below.

6972 5

483

10

But to more clearly illustrate the relation between the Depth-First tree and the arcs
that are not in that tree, consider this second drawing of this same digraph.

6 9

7

2

5

4

8

3

1

0

244 6 Directed Graphs

In general, with this orientation, there is a dipath in T from y to every vertex in G.
We will prove by Mathematical Induction on k, that there is a dipath from vertex vk
back to vertex y.

Step 1. The trivial dipath (y) is a dipath from v1 back to y.

Step 2. Assume 9 an integer q where 1 <¼ q < n such that there is a dipath from
vertex vk back to y for k ¼ 1, 2, . . . , q.

Step 3. To show that there is a dipath from vqþ1 back to y, imagine the Depth-First
Traversal of G at the point when vqþ1 is marked “scanned”. Let A denote the set
of vertices in T that are vqþ1 and the “descendants” of vqþ1. Let B denote the set
of other vertices in G.

The parent of vqþ1, P(vqþ1), is put in T before vqþ1. Let x ¼ P(vqþ1) and let e be
the edge in the tree joining x and vqþ1 (which is oriented from x to vqþ1). But this
edge e is not a bridge in G. Therefore there is a path (that avoids e) in G from vqþ1
in set A to x in set B, say

p ¼ vqþ 1, e1,w1, e2, . . . ,wr�1, er,wr, . . . ,em,wm ¼ x
� �

where wr is the first vertex along p that is in set B. Then wr�1 is in set A. In
Depth-First Traversal all the descendants of a vertex are marked “scanned” before
that vertex itself is marked “scanned”, so wr�1 (a descendant of vqþ1) has been
marked “scanned”.

y

x

e

vq+1

wr

wr–1

B

A

Because wr has not been added to the tree as a child of wr�1, it must be that wr is in
the tree already. Furthermore, wr must have been added to the tree before any vertex
in set A. Hence, wr ¼ vp for some p <¼ q. Then

6.2 Strong Connectivity 245

strongly-connected.
prove that if G is connected and bridgeless, then G has an orientation that is
a direction to each edge. The Depth-First Traversal algorithm was used to
dipath from x to y. An orientation of an undirected graph is an assignment of
A digraph is strongly-connected means for any two vertices x and y, there is a
The Most Important Ideas in this Section.

there is a dipath in T from vqþ1 to its descendant wr�1,
there is an arc from wr�1 to wr ¼ vp for some p <¼ q, and
there is a dipath from vp to y. // by Step 2.

y

x

e

vq+1

B

A

wr = vp

wr–1= vt where q+1 <= t

Scanned before wr–1

Thus, in this orientation of G, there is a dipath from every vertex of G back to y.

The final step of this proof is to show that if a and b are any vertices ofG, there is a
dipath from a to b. But we know there is a dipath from a to y, and a dipath (in the tree)
from y to b, so there must be a dipath from a to b in this orientation of G. ▯

One further observation is:

if a non-tree edge in G is oriented from vb to va because a < b then va is an ancestor
of vb.

When va is put into the tree, it is marked “unscanned” and placed on top of the “stack”
of unscanned vertices. This vertex, va, is not marked “scanned” and not removed
from the stack until after its neighbor, vb, is put into the tree, marked “unscanned” and
placed on top of the “stack” of unscanned vertices. The stack itself (from top to
bottom) is the vertex sequence of the parent, grand-parent, great-grand-parent, . . .
from vb, down through va, back to y ¼ v1.

// Would Breadth-First Traversal work here?

246 6 Directed Graphs

6.3 Topological Sorting

Digraphs model processes where there is a priority involved: in college pro-
grams, certain courses are prerequisites for others; in project management, certain
tasks must be completed before others can start. For example, think of building a
house. Work must generally begin at the bottom and move up. A topological
sorting of a digraph, in a sense, describes the precedence relations among all the
vertices; it is a labelling, L, of all the vertices with the integers from 1 to jVj in such
a way that if an arc goes from a to b then L(a) < L(b).

Again there are two questions to consider:
1. When can a digraph be topologically sorted?
2. Is there a simple algorithm to do this?

If a digraph, D, has been topologically sorted, and p ¼ (v0, a1, v1, . . . , aj, vj, ajþ1,
vjþ1, . . . , ak, vk) is a nontrivial dipath in D, then

L v0ð Þ<L v1ð Þ< . . . < LðvjÞ<L vjþ 1
� �

< . . . < L vkð Þ: ð6:3:1Þ

Thus L(v0) < L(vk), so v0 6¼ vk, and therefore D cannot contain a closed path, so it
cannot contain a cycle. A digraph is said to be acyclic if it does not contain a cycle.
If D can be topologically sorted then D must be acyclic.

A source is a vertex s in a digraph that is not the finish-end of any arc, so a
source only has arcs leaving it. A sink is a vertex t that is not the start-end of any
arc, so a sink only has arcs entering it.

If we grow a simple dipath as long as possible, say p ¼ (v0, a1, v1, . . . , ak, vk)
then since no vertex is repeated, k <¼ jVj, and either vk is a sink; or vk has at least
one out-neighbour w, but w has already occurred in p. Suppose that vj is the last
occurrence of w in p, then p′ ¼ (vj, ajþ1, vjþ1, . . . , ak, vk, akþ1, w ¼ vj) is a cycle.
Hence, every digraph has a sink, or a cycle, (or both).

// Does every digraph have a source, a cycle, or both?

If D(V, A) has been topologically sorted, then the vertex labelled n ¼ jVj must
be a sink. Furthermore, if a sink t and all arcs that end at t are removed, then any
topological sorting of the remaining digraph on n − 1 vertices can be extended to a
topological sorting of all of D by assigning L(t) to be n.

Therefore, we can topologically sort any acyclic digraph, D(V, A) by applying
the following algorithm:

6.3 Topological Sorting 247

Algorithm 6.3.1: Topological Sort of a Digraph

Begin
While jVj > 0 Do

Find a sink, t, in D(V, A); // by beginning a Depth-First Traversal say
L(t) jVj;
Remove all arcs into t from A;
Remove t from V;

End; // the while loop
End.

Walkthrough with jVj ¼ 14 // And introducing an example that we
// will use repeatedly in this chapter.

14

14

13

248 6 Directed Graphs

14

13

12

//XWalking through the remainder of Algorithm 6.3.1 to complete the labelling of the
// graph is left as an exercise for the reader.

An “arc-weighted” digraph is a digraph, D ¼ (V, A) together with a “weight”
function on the arcs w: A → Rþ. // Rþ is the set of all positive real numbers.

This function represents the “cost” of traversing an arc: the time in minutes, the
price of a one-way bus-ticket, the length in miles, or whatever is relevant to the
problem being considered. We usually use the “length” metaphor.

If p ¼ (v0, a1, v1, a2, . . . , ak, vk) is a dipath in D, then the length of p is given by

wðpÞ ¼ +
k

j¼1
wðajÞ. // the sum of the weights of the arcs in p

A shortest dipath from v0 to vk is one of smallest possible length. Clearly a shortest
dipath has no repeated vertex; it must be a simple dipath. Furthermore, if
0 <¼ i < j <¼ k then the portion of p from vi to vj must be a shortest dipath from
vi to vj. A longest dipath from v0 to vk is a simple dipath of largest possible length.

Consider the following examples where edge-weights and arc-weights are all
equal to one unit.

3

2

1

8

7

4

5

6

b

a

c

d

h

g

f

e

3

2

1

8

7

4

5

6

b

a

c

d

h

g

f

e

d'

a'

6.3 Topological Sorting 249

In the undirected graph, (1, a, 2, b, 3, c, 4, d, 5) is a longest simple path from vertex 1
to vertex 5. The portion (2, b, 3, c, 4) from 2 to 4 is not a longest such path; (2, a,
1, h, 8, g, 7, f, 6, e, 5, d, 4) is much longer. In the directed graph, (1, a, 2, b, 3, c, 4,
d, 5) is a longest simple dipath from vertex 1 to vertex 5. The portion (2, b, 3, c, 4)
from 2 to 4 is not a longest such dipath; (2, a', 1, h, 8, g, 7, f, 6, e, 5, d', 4) is much
longer.

Theorem 6.3.1: If D(V, A) is a simple, acyclic digraph that has been topologically
sorted, and P ¼ (v0, a1, v1, a2, v2, a3, . . . , ak, vk) is a dipath in D, then

1. P is a simple dipath;
2. if 0 <¼ i < j <¼ k, and Q ¼ (vi ¼ y0, b1, y1, b2, . . . , bm, ym ¼ vj) is a
dipath from vi to vj then R ¼ (v0, a1, v1, . . . , ai, vi ¼ y0, b1, y1, . . . , bm, ym ¼ vj,
ajþ1, vjþ1, . . . , ak, vk) is a simple dipath; and
3. if P is a longest dipath in D from v0 to vk and 0 <¼ i < j <¼ k,

then the portion of P from vi to vj is a longest dipath from vi to vj.

Proof. From Eq. 6.3.1 we have

L v0ð Þ<L v1ð Þ< . . . < LðviÞ<L viþ 1ð Þ< . . . < LðvjÞ<L vjþ 1
� �

< . . . <L vkð Þ:

Thus the vertices in P are distinct, and part 1 holds. Applying Eq. 6.3.1. to the
dipath Q we have

L við Þ<L y1ð Þ< . . . < LðyrÞ<L yrþ 1ð Þ< . . . < LðymÞ<L vjþ 1

� �
< . . . <L vkð Þ:

Thus the vertices in R are distinct, and part 2 holds.

To prove part 3 we will establish the contrapositive statement. Suppose that
0 <¼ i < j <¼ k but the portion of P from vi to vj is not a longest dipath from vi to
vj. Then there is a longer dipath Q from vi to vj. Then, if R is constructed as in part 2
this dipath R would be longer than P. Hence, we have proved part 3. ▯

In the remainder of this section, when we refer to a topologically sorted digraph,
we will assume that V ¼ {1, 2, . . . , n} and that if an arc goes from a to b then
a < b. // the labelling function is L(j) ¼ j

The topological sorting of a digraph can be used to simplify answering certain
common questions:
1. Is vertex z reachable from vertex y?
2. How many dipaths are there from vertex y to vertex z?
3. How can we find a shortest dipath from vertex y to vertex z?
4. How can we find a longest dipath from vertex y to vertex z?

Suppose that D is a simple, acyclic digraph that has been topologically sorted, and
suppose a and b are distinct vertices in D. If

250 6 Directed Graphs

p ¼ ðx0 ¼ a; a1, x1, . . . , xk�1,ak, xk ¼ bÞ

is any dipath from a to b, then xk−1 must be an in-neighbour of b. Furthermore, if

p0 ¼ ðx0 ¼ a; a1, x1, . . . , xk�1,ak, xk ¼ vÞ

is a dipath from a to an in-neighbour v of b, then there is a unique extension of p′ to
a dipath from a to b. // D is simple, so has (at most) one arc from v to b.

v1

v2

vn

a x

…

Define the function fa(b) to be the number of dipaths inD from a to b for each b in V.
Then b is reachable from a if and only if fa(b) > 0. Furthermore,

f a bð Þ ¼ + f a vð Þ : v is an in-neighbour of bf g

Therefore, we can evaluate fa(b) for all vertices b in a topologically sorted, simple,
acyclic digraph, D(V, A) by applying the following (iterative) algorithm:

Algorithm 6.3.2: Count the dipaths from a to b

Begin
For x 1 to (a – 1) Do

fa(x) 0; // From Eq. 6.3.1, no dipath goes from a to x.
End;
fa(a) 1; // The trivial dipath is the only one from a to a.
For x a þ 1 to b Do

fa(x)
P

{fa(v): v is an in-neighbour of x}
// v < x so fa(v) has been evaluated.

End;
End.

Three examples of applying Algorithm 6.3.2 to the topologically sorted digraph are
shown below. The number of dipaths from a to each vertex is noted above each
vertex.

6.3 Topological Sorting 251

1 5 10 14

4 9 13

2 6 11

3 7

8 12
1 6

1 5 24

1 3 13 61

1 5 24

1 6

a = 1, b = 14

1 5 10 14

4 9 13

2 6 11

3 7

8 12
1 4

1 3 12

0 1 5 24

0 1 7

0 1

a = 4, b = 14

1 5 10 14

4 9 13

2 6 11

3 7

8 12
0 0

0 0 1

0 0 1 6

0 1 4

1 2

a = 3, b = 14

252 6 Directed Graphs

Algorithm 6.3.2 is a prototype of an algorithm design known as “Dynamic
Programming”. The main problem, finding the value of fa(b), is computed itera-
tively by solving a sequence of similar sub-problems, tabulating their solutions, and
combining their solutions to solve the next sub-problem in the sequence. The next
two algorithms follow the same pattern of dynamic programming.

Define the function ga(b) to be the length of a shortest dipath in D from a to b for
each b in V. We can evaluate ga(x) by growing a tree T of shortest paths from
a similar to what we did for the traversals in Chap. 5.

Vertex a is reachable from a; any other vertex y is reachable from a if and only if
some in-neighbour v of y is reachable from a.

v1

v2

vn

a x

…

Algorithm 6.3.3: Find a shortest dipath from a to b

Begin
Put a into T as the root;
ga(a) 0; // the trivial dipath from a to a has total weight 0
For x a þ 1 to b Do

If (x has an in-neighbour in T) then
Find v, an in-neighbour of x in T that minimizes ga(v) þ w(v, x);

// v < x so ga(v) has been evaluated.
ga(x) ga(v) þ w(v, x);
Add x and the arc (v, x) to the tree T;
P(x) v; // call v the “Parent” of x

End;
End;

End.

We have updated our previous digraph so that it includes a weight on each arc.
The diagrams below show the result of applying Algorithm 6.3.3 to this arc-
weighted digraph. The length of the shortest dipath from a to each vertex is noted
above the vertex.

// This arc-weighted digraph will be used in several
// additional examples later in this chapter.

6.3 Topological Sorting 253

1 5 10 14

4 9 13

2 6 11

3 7

8 12

14 13 21

0 8 15 24

15 15 20

23 24

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 1, b = 14
25 16

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0 10 18

5 12 21

12 17

21

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 4, b = 14
11 13

1 5 10 14

4 9 13

2 6 11

3 7

8 12

23

11 22

2 8

0 4

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 3, b = 14

254 6 Directed Graphs

Theorem 6.3.2: Algorithm 6.3.3 is correct
When vertex x is added to the tree, T contains a shortest dipath from a to x and
ga(x) equals the length of that dipath.

Proof. If x < a then x is not reachable from a, and x is not put into T. We will
proceed by mathematical induction on x, as x goes from a to b.

Step 1. When a is put into the tree, T contains a shortest dipath from a to a and
ga(x) equals the length of the trivial dipath.

Step 2. Assume that 9 an integer q such that a <¼ q < b, such that for each x in the
range a up to q, when vertex x is added to the tree, T contains a shortest dipath
from a to x and ga(x) equals the length of that dipath.

Step 3. On the next iteration of the body of the for-loop x equals q þ 1. If x has no
in-neighbour in T then x is not reachable from a, and x is not put into T.
Otherwise, x is reachable from a through certain in-neighbours in T: v1, v2, . . . ,
vk say. For each index j, a <¼ vj < x and when vertex vj was added to the tree,
T contained a shortest dipath from a to vj and ga(vj) equaled the length of that
dipath.

If p ¼ (x0 ¼ a, a1, x1, . . . , xk−1, ak, xk ¼ x) is any dipath from a to x then xk−1
¼ vj, an in-neighbour of x in T.

The length of p ¼ the length of x0 ¼ a; a1, x1, . . . , xk�1 ¼ vj
� �þw akð Þ

>¼ ga vj
� � þw vj, x

� �
:

The length of a shortest dipath from a to x when xk−1 ¼ vj, is equal to ga(vj) þ
w(vj, x). Therefore, the length of a shortest dipath from a to x is equal to ga(v) þ
w(v, x) where v is the in-neighbor of x in T that minimizes ga(vj) þ w(vj, x).

The algorithm finds that very in-neighbour v, sets ga(x) to be ga(v) þ w(v, x), and
adds x and the arc (v, x) to the tree. Now, as vertex x is added to the tree, T contains a
shortest dipath from a to x and ga(x) equals the length of that dipath. ▯

This same technique can be used to find a longest dipath in a digraph D from
vertex a to vertex b. // But why would a longest dipath be of any use?
Recall the example of “Project Management” we mentioned in the introduction of
this section. The overall project is divided into smaller tasks or activities and these
are the vertices of D. An arc goes from task a to task b when a must be completed
before b can begin. Let the “weight” on arc (a, b) be the time it takes to do task a.
A longest dipath in this digraph is known as a “Critical Path”; its length gives the
total time needed to complete the whole project, and the tasks along the path are
critical in the sense that if one of them is delayed, the whole project is delayed.

Define the function ha(b) to be the length of a longest dipath in D from a to b for
each b in V. We can evaluate ha(x) by growing a tree T of longest paths from a just
as we did in Algorithm 6.3.3 for shortest dipaths.

6.3 Topological Sorting 255

v1

v2

vn

a x

…

Algorithm 6.3.4: Find the longest dipath from a to b

Begin
Put a into T as the root;
ha(a) 0; // the trivial dipath from a to a has total weight 0
For x a þ 1 to b Do

If (x has an in-neighbour in T) then
Find v, an in-neighbour of x in T that maximizes ha(v) þ w(v, x);

// v < x so ha(v) has been evaluated.
ha(x) ha(v) þ w(v, x);
Add x and the arc (v, x) to the tree T;
P(x) v; // call v the “Parent” of x

End;
End;

End.

We continue our previous pattern by showing three examples of applying Algo-
rithm 6.3.4 to our arc-weighted digraph. The length of the longest dipath from a to
each vertex is noted above each vertex.

1 5 10 14

4 9 13

2 6 11

3 7

8 12
25 35

14 32 47

0 19 35 70

15 26 49

23 35

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 1, b = 14

256 6 Directed Graphs

1 5 10 14

4 9 13

2 6 11

3 7

8 12
11 21

0 18 33

5 21 56

12 35

21

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 4, b = 14

1 5 10 14

4 9 13

2 6 11

3 7

8 12

23

11 46

2 25

0 11

14

11 37
10

8

5

4

6

8

6

10 11

5

325

15 7 5

8 9

5 12

2 9 21

2 14

a = 3, b = 14

Theorem 6.3.3: Algorithm 6.3.4 is correct
When vertex x is added to the tree, T contains a longest dipath from a to x and
ha(x) equals the length of that dipath.

Proof. If x < a then x is not reachable from a, and x is not put into T. We will
proceed by mathematical induction on x, as x goes from a to b.

Step 1. When a is put into the tree, T contains a longest dipath from a to a and
ha(x) equals the length of the trivial dipath.

Step 2. Assume that 9 an integer q such that a <¼ q < b, such that for each x in the
range a up to q, when vertex x is added to the tree, T contains a longest dipath
from a to x and ha(x) equals the length of that dipath.

Step 3. On the next iteration of the body of the for-loop x equals q þ 1. If x has no
in-neighbour in T then x is not reachable from a, and x is not put into T.
Otherwise, x is reachable from a through certain in-neighbours in T: v1, v2, . . . ,
vk say. For each index j, a <¼ vj < x and when vertex vj was added to the tree,
T contained a longest dipath from a to vj and ha(vj) equaled the length of that
dipath.

6.3 Topological Sorting 257

If p ¼ (x0 ¼ a, a1, x1, . . . , xk−1, ak, xk ¼ x) is any dipath from a to x then xk−1
¼ vj, an in-neighbour of x in T.

The length of p ¼ the length of x0 ¼ a; a1, x1, . . . ,xk�1 ¼ vj
� �þw akð Þ

<¼ ha vj
� � þw vj, x

� �
:

The length of a longest dipath from a to xwhen xk−1 ¼ vj, is equal toha(vj) þ w(vj, x).
Therefore, the length of a longest dipath from a to x is equal to ha(v) þ w(v, x)
where v is the in-neighbor of x in T that maximizes ha(vj) þ w(vj, x).

The algorithm finds that very in-neighbour v, sets ha(x) to be ha(v) þ w(v, x), and
adds x and the arc (v, x) to the tree. Now, as vertex x is added to the tree, T contains a
longest dipath from a to x and ha(x) equals the length of that dipath. ▯

The Most Important Ideas in this Section.
A topological sorting of a digraph is a labelling of the vertices with the
integers from 1 to jVj so that if an arc goes from a to b then L(a) < L(b).
A digraph is acyclic if it does not contain a cycle, and it can be topologically
sorted if and only if it is acyclic. In topologically sorted digraphs the Dynamic
Programming method can be used to count the number of dipaths from a to b,
and to find a shortest or a longest dipath from a to b.

6.4 Shortest Paths in Digraphs (Acyclic or not)

From any simple, undirected, edge-weighted graph G we can construct a digraph
DG by replacing each (undirected) edge e of weight w(e) joining vertices u and v,
with two arcs: a1 going from u to v with w(a1) ¼ w(e), and a2 going from v to u
with w(a2) ¼ w(e). Then it’s obvious that:

(1) If G has a path from x to y with total weight K,
then DG has a dipath from x to y with total weight K.

and (2) If DG has a dipath from x to y with total weight K,
then G has a path from x to y with total weight K.

Therefore, an algorithm for finding shortest dipaths in (arbitrary) digraphs may be
applied to digraphs like DG, obtained from some undirected graph G, and it will
find the shortest paths in G.

258 6 Directed Graphs

Many problems ask us to find a dipath from a particular vertex y to a particular
vertex z; some problems ask us to find a shortest dipath from y to z.

6.4.1 Distance Function

Using the idea of dipath length, we can define a distance function on V � V by

d(x, y) ¼ the length of a shortest directed path from x to y. // if there is one

It is tempting to say that “d(x, y) ¼∞” when there is no dipath from x to y. We will
use the symbol “∞” in our descriptions of algorithms, but in implementations, we
would “approximate” it by some numerical value M that is > any shortest path
length.
The distance function d has the following properties. For all vertices x, y, and z
ð1Þ d x; yð Þ>¼ 0: // nonnegativity
ð2Þ d x; yð Þ ¼ 0 if and only if x ¼ y:

ð3Þ d x; zÞ<¼ d x; yð Þþ d y; zð Þ: // the triangle inequalityð
Property (3) holds because if there were a (shortest) dipath p1 from x to y of length
p and a (shortest) dipath p2 from y to z of length q, then these could be concatenated
to produce dipath p3 from x to z of length p þ q.

// Traverse p1 and then traverse p2 to form p3.
Therefore, a shortest dipath from x to z will have length <¼ d(x, y) þ d(y, z).

6.4.2 Dijkstra’s Algorithm

This algorithm finds a shortest dipath from a start vertex y to a finish vertex z in
a simple, arc-weighted digraph.

The input is a simple arc-weighted digraph D (implemented in some manner
where the out-neighbors of a vertex can be quickly determined) with a positive
weight function w defined on the arc set A and two particular vertices, y and z.

The strategy is to grow a tree T rooted at y by adding one new vertex at a time
(as a leaf) together with a “back-arc” to it from a vertex already in T. All the vertices
in D are given labels where L(v) is an “estimate” of d(y, v).

// But always >¼ d(y,v).
The output is also a digraph T which contains shortest dipaths from y, satisfying

the post-condition:
1. If there is a dipath from y to z, T will contain a shortest dipath from y to z.
2. If there is no dipath from y to z in D, T will contain a shortest dipath from y to

every vertex reachable from y.

6.4 Shortest Paths in Digraphs (Acyclic or not) 259

Algorithm 6.4.1: Dijkstra’s Algorithm (1959)
// for single-source shortest dipaths

Begin
For every vertex v in D, set L(v) to be ∞;
Change L(y) to be zero and put y in T as the root vertex;
Set v ¼ y; // v is the “current vertex.”

While ((v 6¼ z) and (L(v) < ∞)) Do
For (each out-neighbor x of v not yet in T) Do

let ax be the arc from v to x;
If (L(v) þ w(ax) < L(x)) Then

L(x) L(v) þ w(ax); // reduce L(x) to be this new value
BA(x) ax; // call ax the “Back-arc” of x
P(x) v; // call v the “Parent” of x

End; // the if
End; // the for-loop

Find a vertex v that is not yet in T with the smallest label;

If (L(v) < ∞) Then
add v and its back-arc BA(v) to the tree T;

End; // T now contains a shortest dipath from y to v.
End; // of the while-loop

End. // of Dijkstra’s Algorithm.

In the walkthrough below, we draw the input digraph D using small circles for
vertices, dotted lines for each arc in D not assigned as the back-arc of any vertex
(nor put into T), light lines for each back-arc of the vertex at its finish-end but not
put into T, and heavy lines for those arcs that have been put into T. We display the
configuration at the end of the for-loop before a new current vertex v is chosen.
After vertex v is added to T, and the for-loop is executed, v is drawn as a square.

We also give a “table” indicating the progress in the algorithm. It lists the
vertices w not yet put into T but having L(w) < ∞; P is the parent of w (provided
that w is not the root of T), and L is the label on w, L(w).
Input for Dijkstra’s Algorithm (an arc-weighted digraph):

0

5

1

62 7

3 8 4

9

16

10 8

30
50

20 18
42

8

15 30

3

1010

50

16 9

260 6 Directed Graphs

Walkthrough with V ¼ {0, 1, . . ., 9} and y input as vertex 2 and z as vertex 4.

w 2

P *

L 0

0

5

1

69

∞

0

∞

2 7

3 8 4

∞ ∞

∞
∞

∞
∞

∞

v ¼ 2

w 0 3 7
P 2 2 2
L 10 50 20

0

5

1

67

3 8 4

9

10

0

50

20 ∞

∞
∞

∞
∞

∞

2

v ¼ 0

v ¼ 7

6.4 Shortest Paths in Digraphs (Acyclic or not) 261

v ¼ 1

v ¼ 3

v ¼ 8

v ¼ 9

262 6 Directed Graphs

v ¼ 5

v ¼ 4 ¼ z

We note that the same final configuration would result if the input z was the
vertex 6 where there is no dipath from y ¼ 2 to z ¼ 6.

// Every other vertex is reachable from 2.

Let n be the number of vertices in D. If z is selected as the current vertex, v, then
the while-loop terminates. But if z is not selected, there is at least one vertex not yet
in T, and there must be a vertex v not yet in T with the smallest label. If L(v) ¼∞,
the while-loop terminates. If L(v) < ∞, then a new vertex v is added to T. At most
n vertices can be put into T so the while-loop must terminate after at most n
iterations. Thus, Dijkstra’s Algorithm is certain to terminate.

Furthermore, when the while-loop terminates, either z has been put into T or all
vertices x of D not in T, including z, have L(x) ¼ ∞.

We will prove Dijkstra’s Algorithm is correct; that is, after Dijkstra’s Algorithm
is run, the following post-conditions are satisfied:
1. If there is a dipath from y to z, T will contain a shortest dipath from y to z.
2. If there is no dipath from y to z in D, T will contain a shortest dipath from y to

every vertex reachable from y.

Theorem 6.4.1: When vertex v and its back-arc are added to the tree, the label
on v equals d(y,v), and the tree itself then contains a shortest dipath from y to v.

Proof. // by Strong Induction
Step 1. When the first vertex y is added to the (empty) tree, L(y) ¼ 0 ¼ d(y, y), and

the tree contains p ¼ (y) which is a shortest dipath from y to y.

6.4 Shortest Paths in Digraphs (Acyclic or not) 263

// When the second vertex v is added to the tree,
// the tree consists of the root vertex y and nothing else, and v is the “nearest”
// neighbor of y. If av denotes the arc from y to v, L(v) ¼ 0 þ w(av), and after
// v and av are added to the tree, it contains the dipath p0 ¼ (y, av, v) of length L(v).
// Any different simple dipath p1 from y to v must begin on some other arc
// and visit some other neighbor u of y before reaching v. But then
//
// the length of p1 >¼ L(u) >¼ L(v) ¼ the length of p0.
//
// Therefore, p0 is a shortest dipath from y to v and is contained in the tree.
// Furthermore, L(v) ¼ the length of p0 ¼ d(y, v).

Step 2. Assume 9 a positive integer k less than the number of vertices in the final
tree, such that when each of the first k vertices x (and their back-arcs) is
added to the tree, the label on x was equal to d(y, x), and the tree itself then
contained a shortest dipath from y to x.

Step 3. Suppose now that a kþ1st vertex v and its back-arc av are added to the tree
T to produce a new (larger) tree T1.

Let u denote the start-end of av. The vertex u must already be in T, so it was
added earlier. By our induction hypothesis in Step 2, L(u) ¼ d(y, u), and the tree
contains a shortest dipath p0 from y to u. Let p1 be the dipath obtained by
appending arc av and vertex v to p0. Then the tree T1 contains a dipath p1, from y to
v extending p0 along av to v. Because av is the back-arc of v,

LðvÞ ¼ LðuÞþwðavÞ ¼ the length of p1 >¼ dðy; vÞ:

// We’ll be finished if we can prove that L(v) ¼ d(y, v),
// and that equality will follow if we can prove that L(v) <¼ d(y, v).

Let p2 denote some shortest dipath from y to v. This dipath starts at a vertex in T
but ends at a vertex outside of T. Let w be the first vertex along p2 that is outside
of T; let x be the vertex before w along p2 and let a denote the arc from x to w in p2.
Then x is in T and so was added to the tree earlier. When x was added to the tree, the
labels on all the out-neighbors of x (outside the current tree at that time, including w)
were revised so we can be sure that now

LðwÞ<¼ LðxÞþwðaÞ ¼ d y; xð ÞþwðaÞ: //L-values only decrease:

The portion of p2 from y to x must be a shortest dipath from y to x, the portion of
p2 from x to w must be a shortest dipath from x to w, and the portion of p2 from w to
v must be a shortest dipath from w to v.

264 6 Directed Graphs

y

v

x

u

w

v

T

α

α

dðy; vÞ ¼ dðy;wÞþ dðw; vÞ >¼ d y;wð Þ
¼ dðy; xÞþ dðx;wÞ ¼ LðxÞþwðaÞ

>¼ LðwÞ:

Because v is a vertex outside T with a smallest label, we have

LðvÞ<¼ LðwÞ<¼ dðy; vÞ:

Therefore, when the kþ 1st vertex v and its back-arc av are added to the tree T to
produce a new (larger) tree T1, the label on v equals d(y, v) and the new tree itself
contains a shortest dipath p1 from y to v. ▯

If z is put into T, there may be many vertices w reachable from y that are not put
into T because Dijkstra’s Algorithm stops before w is considered for inclusion in T.

Theorem 6.4.2: Suppose z is not put into T. If there is a dipath π from y to
vertex w, then eventually w will be put into T by Dijkstra’s Algorithm.

Proof. Suppose p ¼ (y ¼ v0, a1, v1, a2, v2, a3, . . . , ak, vk ¼ w). We will prove that
each vj in p will be put into T by Mathematical Induction on j.
Step 1. If j ¼ 0, then vj ¼ y, which is put into T as the root.
Step 2. Assume that 9 an index q such that 0 <¼ q < k and vq has been added

to T. When vq is put into T, vq was selected as the current vertex v and
L(vq) < ∞.

Step 3. On the next iteration of the body of the while-loop after vq was put into T,
all the out-neighbors w of vq, including vqþ1, must be in T or now have a
label <¼ L(vq) þ w(a) where a is the arc from vq to w. Therefore

L vqþ 1
� �

<¼ L vq
� �þwðajþ 1Þ<1:

Eventually, this will be the smallest label on a vertex not yet put into T, and vqþ1
will be selected as the current vertex v and vqþ1 will be put into T.

Therefore, eventually w ¼ vk will be put into T. ▯

6.4 Shortest Paths in Digraphs (Acyclic or not) 265

The argument in the proof of Theorem 6.4.2 applies even when w ¼ z. It would
then assert that

“If z is not put into T then;

if there is a dipath p from y to vertex z; then z will be put into T”:

This statement has the form: (�P) ! (Q ! P) which, using the methods in Chap. 3,
is logically equivalent to (Q ! P). Therefore, we have proven

“If there is a dipath p from y to vertex z; then z will be put into T”:

Together, these two theorems prove Dijkstra’s Algorithm is correct; that is, after
Dijkstra’s Algorithm is run, the following post-conditions are satisfied:
1. If there is a dipath from y to z, T will contain a shortest dipath from y to z.
2. If there is no dipath from y to z in D, T will contain a shortest dipath from y to

every vertex reachable from y.
In addition, if there is no dipath from y to z in D, z will not be put into T and all
vertices x of D not in T, including z, have L(x) ¼ ∞.

If p ¼ (v0 ¼ x, a1, v1, . . . , aj, vj ¼ y, ajþ1, vjþ1, . . . , ak, vk ¼ z) is a shortest
dipath from x to z, then the portion of p from x to y must be a shortest dipath from x
to y, and the portion of p from y to z must be a shortest dipath from y to z. So

the length of p ¼ dðx; zÞ ¼ dðx; yÞþ dðy; zÞ:

In particular, d(x, z) ¼ d(x, v1) þ d(v1, z) ¼ w(a1) þ d(v1, z).
Furthermore, if for some arc a from x to z

d x; zð Þ ¼ w að Þ ð6:4:1Þ

then p ¼ (x, a, z) is a shortest dipath from x to z. If for some vertex v and some arc a
from x to v

d x; zð Þ ¼ w að Þþ d v; zð Þ ð6:4:2Þ

then there is a shortest dipath from x to z that begins (x, a, v, . . .) and continues with
a shortest path from v to z. These observations can be used as the basis of an
algorithm to construct a shortest dipath from x to z, for any two target vertices x and
z, provided we know the functions w and d.

// Search for v and a satisfying one of the equations.

In most applications, D is a simple digraph. // no loops or strictly parallel arcs

In this case, if V¼ {v1, v2, . . . , vn}, then wmay be given in an n� nmatrixW where

W i; j½ � ¼ w að Þ
1

(
if there is an arc a from vi to vj;

if there is no such arc: // W may not be symmetric:

266 6 Directed Graphs

In this case too, d may be given in an n � n matrix d where

d i; j½ � ¼ d vi; vj
� �
1

(
if there is a dipath from vi to vj;

otherwise:

// The distance matrix d is not necessarily symmetric, like W.

6.4.3 Floyd-Warshall Algorithm

This algorithm evaluates the entries in the distance matrix d for a digraph without
strictly parallel arcs and having vertex set V ¼ {1, 2, . . . , n}.

// Our description of the algorithm uses the symbol “∞” to represent
// some numerical value that is > any shortest dipath total weight.

The input is an n � n Matrix W where

W a; b½ � ¼ the weight of the arc from a to b

1

(
if there is such an arc;

if there is no such arc:

// It is amazing that we can determine d(x, y), the length of a shortest dipath from
// x to y, without first finding a dipath p* from x to y and then showing p* is
// shortest.

The strategy is to start with the matrix W and then to use the triangle inequality,
d(x, z) <¼ d(x, y) þ d(y, z), to reduce the entries (when that’s possible) for all
triples of vertices.

The output is an n � n matrix D where for all vertices p and q, if p 6¼ q, then
D[p, q] ¼ d[p, q].

Algorithm 6.4.2: Floyd-Warshall Algorithm (1959)
for all-pairs shortest dipaths

Begin
D W; // Copy the values from W into matrix D.
For B 1 To n Do // B is the intermediate vertex y.

For A 1 To n Do // A is the start vertex x.
For C 1 To n Do // C is the final vertex z.

// B must control the outside loop.
If (D[A, C] > D[A, B] þ D[B, C]) Then

D[A, C] D[A, B] þ D[B, C];
End; // the if-statement

End; // the inner for-loop
End; // the middle for-loop

End; // the outer for-loop
End.

6.4 Shortest Paths in Digraphs (Acyclic or not) 267

Walkthrough with n ¼ 5 and W from the arc-weighted digraph below.

// D(k) denotes the matrix D after the iteration of the outer for-loop with B ¼ k.

268 6 Directed Graphs

In this example, the diagonal entries D[j, j] ended up being the length of a
shortest cycle through vertex j, a shortest nontrivial dipath from vertex j to itself.
If they had been initialized as zero, they would stay zero, reflecting the idea that the
trivial dipath is a shortest dipath from any vertex to itself.

We will prove the Floyd-Warshall Algorithm is correct; that is, after it is
run, the following post-conditions are satisfied:
1. For all vertices p and q, if p 6¼ q, then D[p, q] ¼ d[p, q].
2. If there is a cycle through vertex p, then D[p, p] is the length of a shortest such

cycle, else D[p, p] ¼ ∞.
To facilitate the proof, we define an n � n matrix d1 where

d1 i; j½ � ¼ the length of a shortest nontrivial dipath from i to j;

1 if there is no such dipath:

(

Then if i 6¼ j, then d1[i, j] ¼ d[i, j]. But for each vertex j, d1[j, j] is the length of a
shortest cycle through j (if there is a cycle through j); otherwise, d1[j, j] ¼ ∞.

// Recall d[j, j] ¼ 0.

Theorem 6.4.3: The Floyd-Warshall Algorithm is correct; the final matrix D
is equal d1.

Proof. // in several parts (such a simple algorithm seems to need a complex
// proof of correctness)

Part 1. At every stage, for all pairs of vertices p and q

if D p; q½ �<1; then 9 a nontrivial dipath from p to q of length D p; q½ �: ð�Þ

6.4 Shortest Paths in Digraphs (Acyclic or not) 269

// We prove this using a variation of Mathematical Induction.
// We could index the iterations of the body if the inner for-loop is from 1 to n3

// and then use our usual form for MI.

Let x and y be fixed (but arbitrary) vertices. After initializing D to beW, if D[x, y]
< ∞, then 9 an arc a from x to y with weight equal to D[x, y], so p ¼ (x,a,y) is a
dipath from x to y of length D[x, y].

Assume that (*) is true up to some point when D[x,y] is revised (downward)
when A ¼ x, C ¼ y and for some value b of B

D½x, y�>D½x, b� þD½b, y�: // x 6¼ b 6¼ y

Then D[x, b] must be < ∞ and also D[b, y] must be < ∞. Hence, from (*)

9 a nontrivial dipath from x to b of length D x; b½ �;
and 9 a nontrivial dipath from b to y of length D b; y½ �:

These two dipaths can be “concatenated.” // traverse the first and then the second
Hence, when D[x, y] is revised down to equal D[x, b]þ D[b, y], //which is<∞

9 a nontrivial dipath from x to y of length D x; y½ �:

Part 2. At every stage, for all pairs of vertices p and q,

D½p; q�>¼ d1½p; q�: // even when p ¼ q or when D½p; q� ¼ 1

Part 3. Definition of the “height” of a dipath. // for Mathematical Induction later
If p ¼ (x0, a1, x1, a2, x2, . . . , ak, xk) is a nontrivial dipath, we will call x1, x2, . . .

xk−1 the “intermediate” vertices in p. // vs. “end” vertices
If p has no intermediate vertices, we say

hðpÞ ¼ 0;

otherwise; hðpÞ ¼ max x1; x2; x3; . . . ,xk�1f g: // So 0<¼ hðpÞ<¼ n:

Part 4. Let D(k) denote the matrix D after the iteration of the outer for-loop with
B ¼ k and let D(0) denote W.

Lemma. If there is a shortest nontrivial path p from a to b with h(p) ¼ k, then
D(k)[a, b] <¼ d1[a, b].

// Actually, D(k)[a, b] ¼ d1[a, b], but D-values may decrease so <¼ will be easier
// to prove.

270 6 Directed Graphs

Proof. // by Mathematical Induction on k
Step 1. // when k ¼ 0

If there is a shortest nontrivial path p from a to b with h(p) ¼ 0, then p ¼
(a,a,b) where a is an arc from a to b with weight ¼ W[a, b] ¼ D(0)[a, b].
So D(0)[a, b] <¼ d1[a, b]. // Actually, D(0)[a, b] ¼ d1[a, b].

Step 2. Assume that 9 q where 0 < q <¼ n, such that if 0 <¼ H < q then, if there
is a shortest path p from a to b with h(p) ¼ H, then

DðHÞ a; b½ �<¼ d1 a; b½ �:

Step 3. // when k ¼ q
Suppose there is a shortest nontrivial path p from a to b with h(p) ¼ q, say

p ¼ a ¼ x0; a1; x1; . . . ,aj; xj ¼ q; aj þ 1; xj þ 1; . . . ,am; xm ¼ b
� �

;

where the largest intermediate vertex, q ¼ xj.

// Since q > 0, there must be some intermediate vertex in p, also m >¼ 2.

Let p1 ¼ a ¼ x0; a1; x1; a2; x2; . . . ,aj; xj ¼ q
� �

and let

p2 ¼ q ¼ xj;ajþ 1; xjþ 1; ajþ 2; xjþ 2; . . . ,am; xm ¼ b
� �

:

Then p1 is a shortest nontrivial path from a to q with h(p1) ¼ h1 < q,
and p2 is a shortest nontrivial path from q to b with h(p2) ¼ h2 < q.

By the induction hypothesis, // in Step 2.

D h1ð Þ½a, q�<¼ d1½a; q� and D h2ð Þ½q; b�<¼ d1½q; b�:

Since the D-values decrease or remain the same, the current D-values when A ¼ a
and C ¼ b and D[a, b] are considered for revision, then

D a, q½ �<¼ D q�1ð Þ a, q½ �<¼ Dðh1Þ a, q½ �, // h1<¼ q� 1:

and D q, b½ �<¼ D q�1ð Þ q, b½ �<¼ Dðh2Þ q, b½ �: // h2<¼ q� 1:

After the iteration of the outer for-loop with B ¼ q,

DðqÞ½a, b�<¼ D h1ð Þ½a, q� þD h2ð Þ½q, b�<¼ d1½a, q� þ d1½q, b� ¼ d1½a, b�: ▯

Part 5. // Putting these parts together.
If ever D[a, b] becomes <∞, 9 a nontrivial dipath from a to b of length D[a, b],

and through all subsequent revisions D[a, b] remains>¼ d1[a, b]. // by #1 and #2

6.4 Shortest Paths in Digraphs (Acyclic or not) 271

If there is a nontrivial dipath from a to b, there must be a shortest nontrivial
dipath from a to b, and that dipath must have height H where 0 <¼ H <¼ n, so by
the Lemma, D(H)[a, b] <¼ d1[a, b]. // by #4

Then D(n)[a, q] <¼ d1[a, b] which is < ∞ and, when D(n)[a, q] < ∞,

DðnÞ½a; q�>¼ d1½a; b�: // by#1

If there is a nontrivial dipath from a to b, then D(n)[a, q] ¼ d1[a, b]. If there is no
nontrivial dipath from a to b, D[a, b] must remain equal ∞ which equals d1[a, b].
Therefore, 8 pairs of vertices, D(n)[a, b] ¼ d1[a, b]. ▯

Recall that a digraph is strongly connected means that for any two vertices
x and y, there is a dipath from x to y. How can the output from the Floyd-Warshall
Algorithm be used to test a digraph for strong connectivity? How can the (input
matrix and the) output from the Floyd-Warshall Algorithm be used to determine a
shortest dipath from a given vertex y to some other given vertex z? Equations 6.4.1
and 6.4.2 can be used as a basis for an algorithm to recover the shortest path from
any particular vertex to any other.

The Most Important Ideas in this Section.
In an arc-weighted digraph, the distance function d may be defined so that
d(x, y) ¼ the length of a shortest directed path from x to y (if there is one).

Dijkstra’s Algorithm finds a shortest dipath from a given vertex to another
given vertex, in a simple arc-weighted digraph, using vertex labels to grow a
tree of shortest dipaths from a single source.

The Floyd-Warshall Algorithm evaluates the entries in the distance
matrix d and is said to solve the “all-pairs” shortest dipath problem.

6.5 The Maximum Flow Problem

Imagine a group of travelers arrive at the Los Angeles airport wishing to travel to
New York City that same day, and that the customer service agent for a particular
airline tells them that that no seats are available on any direct flights that day, but

272 6 Directed Graphs

she can book them to New York City using seats that are available on connecting
flights through several intermediate cities: Denver, Houston, Chicago, and Atlanta.
Below is a diagram of these connecting flights with the arcs labelled with the
number of available seats on each. How many travelers can be booked to go from
LA to NY that day?

LA

D

H

C

A

NY

6
6

2

2 3

 4

5

Five people can be sent from LA to D, D to A, and A to NY. In the next diagram,
each arc a represents a connecting flight labelled by an ordered pair, “f /c” where
f(a) is the number of travelers assigned to that flight, and c(a) is the “capacity” of
that flight.

LA

D

H

C

A

NY

5 / 6
5 / 6

0 / 2

0 / 2 0 / 3

0 / 4

5 / 5

With the graph labelled in this manner, it becomes apparent that it is possible to
send one more traveler from LA to D, D to C, and C to NY, as shown below:

LA

D

H

C

A

NY

6 / 6
5 / 6

1 / 2

0 / 2 0 / 3

1 / 4

5 / 5

This diagram shows that one more traveler could get from D to NY via C, and two
more could get from LA to A via H. If one traveler, x say, on the flight from D to A
were diverted to go instead to C, and on to NY, then an additional traveler y could
go from LA to A via H, and then (in what was previously x’s seat) from A to NY.
This would give the trips displayed in the diagram below, with a total of 7 travelers
able to make the trip from LA to NY. // Is 7 the maximum?

6.5 The Maximum Flow Problem 273

LA

D

H

C

A

NY

6 / 6
4 / 6

2 / 2

1 / 2 1 / 3

2 / 4

5 / 5

This is indeed the maximum, because any traveler from LA to NY must (at some
point) leave the southwest group of cities {LA, D, H, A} on the flight from D to C or
the flight from A to NY, and those two flights have a total of only 7 seats available.

The remainder of this section formalizes the ideas in this example and proves the
Max-flow/Min-cut Theorem of Ford and Fulkerson from 1962. The proof is based
on an algorithm that simultaneously constructs a maximum value flow and a
minimum capacity “cut”.

A Flow Network is a simple digraph D(V, A) with one source s, one sink t, and a
capacity on each arc given by a function C: A→ N. They model networks that carry
some commodity from place to place: travelers on airline flights, oil through
pipelines where the capacity might be the number of barrels per day, water in pipes
where the capacity might be the number of gallons per hour, manufactured items over
a road system where the capacity might be the number of truckloads per week, etc.

In many applications the network is acyclic, but our treatment here allows for the
possibility that there may be many cycles present. We assume the vertices in V are
given in some order (though not necessarily the order of a topological sort because
the flow network is not necessarily acyclic).

A flow is a function F: A ! N. // Flows on arcs are non-negative integers.
Because the digraph is simple (having no loops nor strictly-parallel arcs) the arc
from a to b can be (uniquely) represented as the ordered pair (a, b). A flow F is said
to be feasible if it satisfies two sets of constraints:

1. Capacity constraints: For all arcs,

F a; bð Þ<¼ C a; bð Þ:

2. Conservation constraints: For all intermediate vertices, i 2 V \ {s, t},

+ F i; xð Þ: i; xð Þ 2 Af g ¼ + F y; ið Þ: y; ið Þ 2 Af g:

// The total flow out of vertex i equals the total flow into vertex i.
// Flow does not originate at any vertex other than the single source s
// and is not absorbed at any vertex other than the single sink t.

274 6 Directed Graphs

The value of a flow F, written as jjFjj, is the total amount of the commodity that it
moves from the source to the sink over the network. The main question is:

“What is the maximum value of a feasible flow over this given network?”

Let GD denote the underlying, undirected graph obtained from the digraph D by
replacing each arc by an undirected edge joining the same two vertices. If

p ¼ v0, e1, v1, . . . , vj�1, ej, vj, ejþ 1, vjþ 1, . . . , ek, vk
� �

is a path in GD and aj is the arc producing the edge ej,

aj is called a “forward arc” if it goes from vj�1 to vj, and
aj is called a “backward arc” if it goes from vj back to vj�1:

An Augmenting Path for a given flow F is a simple path in GD where

on each forward arc, F að Þ<C að Þ and

on each backward arc, 0<F að Þ:

If p ¼ s ¼ v0, e1, v1, . . . ,vj�1, ej, vj, . . . ,ek, vk ¼ t
� �

is an augmenting path from s to t for a feasible flow F, then a new feasible flow Fþ

can be constructed with a larger value. Let � denote

minimum of fC að Þ�F að Þ: a is forward inpg [fF að Þ: a is backward inpg:

Then � is a positive integer. Now define a new flow on A as follows:

Fþ að Þ ¼
F að Þþ� if a is forward inp // F að Þþ�<¼ F að ÞþC að Þ�F að Þ
F að Þ �� if a is backward in p // 0<¼ F að Þ��<¼ C að Þ
F að Þ if a is not inp

8<
:

Thus Fþ takes non-negative integer values and satisfies all capacity constraints.
Now we must show that Fþ satisfies all the conservation constraints. Let i be any

intermediate vertex. We know that i 2 V \ s; tf g and

+fF i, xð Þ : i, xð Þ 2 Ag ¼ +fF y, ið Þ : y, ið Þ 2 Ag:

If i does not appear in p, flow is still conserved at i. // at i,F-values remain the same
If i does appear in p, it occurs only once as vj say, where 0 < j < k. But there are
now 4 cases to consider:

6.5 The Maximum Flow Problem 275

1. aj and ajþ1 are forward arcs,

vj−1 vj+1i +Δ +Δ

the flow into i and the flow out of i are both increased by � so flow is still
conserved at i.

2. aj is a forward arc but ajþ1 is a backward arc,

vj−1 vj+1i +Δ Δ

the flow into i from vj–1 is increased by � and the flow into i from vjþ1 is decreased
by � so the total flow into i is unchanged, the total flow out of i is unchanged, and
flow is still conserved at i.

3. aj is a backward arc but ajþ1 is a forward arc,

vj−1 vj+1i Δ +Δ

the flow out of i to vj–1 is decreased by � and the flow out of i to vjþ1 is increased
by � so the total flow out of i is unchanged, the total flow into i is unchanged, and
flow is still conserved at i.

4. aj and ajþ1 are both backward arcs,

vj−1 vj+1i Δ Δ

the flow out of i and the flow into i are both decreased by � so flow is still
conserved at i. Thus Fþ is feasible, and the value of the flow has been increased
(augmented) by the positive value of �. // jjFþjj ¼ jjFjj þ �.

A cut is a subset K of vertices that contains s but does not contain t. The
“capacity” of cut K, written as C(K), is +fC a, xð Þ : a, xð Þ 2 A, a 2 K but
x 2 V \Kg. The set of arcs, f a, xð Þ 2 A, a 2 K but x 2 V \Kg is sometimes called
the cut-set determined by K.

// Now after all these definitions, some theorems:

Theorem 6.5.1: The Flow/Cut Equality
If F is any feasible flow and K is any cut, then

Fj jj j ¼ the value of F ¼ the net flow out of K:

276 6 Directed Graphs

Proof. We will use (just) the conservation constraints to prove that
Fj jj j ¼+fF s, xð Þ: s, xð Þ 2 Ag
¼+fF a, xð Þ: a, xð Þ 2 A, a 2 K but x 2 V\Kg // the total flow out of K

�+fF y, bð Þ: y; bð Þ 2 A, y 2 V\K but b 2 Kg: // �the total flow intoK

Recall that for all intermediate vertices, i e V \{s, t}

+fF i, xð Þ: i, xð Þ 2 Ag ¼ +fF y, ið Þ: y, ið Þ 2 Ag:

// Any flow introduced at s must be passed on through all the intermediate vertices.

For all vertices, i 2 K\ sf g

+fF i, xð Þ: i, xð Þ 2 Ag�+fF y, ið Þ: y, ið Þ 2 Ag ¼ 0:

Furthermore, summing all these differences, we get

+f½+fF i, xð Þ: i, xð Þ 2 Ag�+fF y, ið Þ: y, ið Þ 2 Ag� : i 2 K\ sf gg ¼ 0:

That is

0 ¼+f½+fF i, xð Þ: i, xð Þ 2 Ag�: i 2 K\ sf gg
�+f½+fF y, ið Þ: y, ið Þ 2 Ag�: i 2 K\ sf gg:

The value of F,

Fj jj j ¼+fF s, xð Þ: s, xð Þ 2 Agþ 0

¼+fF s, xð Þ: s, xð Þ 2 Agþ+f+fF i, xð Þ: i, xð Þ 2 Ag: i 2 K\ sf gg
�+f+fF y, ið Þ: y, ið Þ 2 Ag: i 2 K\ sf gg

¼+f+fF a, xð Þ: a, xð Þ 2 Ag: a 2 Kg
�+f+fF y, ið Þ: y, ið Þ 2 Ag: i 2 Kg // there is no arc from y into s

// then changing the variable i to b

¼+fF a, xð Þ: a, xð Þ 2 A, a 2 K, x 2 Kg
þ+fF a, xð Þ: a, xð Þ 2 A, a 2 K, x 2 V\Kg
�+fF y, bð Þ: y, bð Þ 2 A, b 2 K, y 2 Kg
�+fF y, bð Þ: y, bð Þ 2 A, b 2 K, y 2 V\Kg

6.5 The Maximum Flow Problem 277

// The first and third sums both equal the total of all flows on arcs with
// both ends in K, so they “cancel” each other and we get

¼+fF a, xð Þ: a; xð Þ 2 A, a 2 K, x 2 V\Kg
�+fF y, bð Þ: y, bð Þ 2 A, b 2 K, y 2 V\Kg: ▯

Corollary 6.5.2: The Flow/Cut Inequality
If F is any feasible flow and K is any cut, then

Fj jj j ¼ the value of F<¼ the capacity of K ¼ C Kð Þ:

Proof.

Fj jj j ¼+fF s, xð Þ: s, xð Þ 2 Ag
¼+fF a, xð Þ: a, xð Þ 2 A, a 2 K but x 2 V\Kg
�+fF y, bð Þ: y, bð Þ 2 A, b 2 K but y 2 V\Kg

<¼+fF a, xð Þ: a, xð Þ 2 A, a 2 K; but x 2 V\Kg // eachF y, bð Þ>¼ 0

<¼+fC a, xð Þ: a, xð Þ 2 A, a 2 K, but x 2 V\Kg // eachF a, xð Þ<¼ C a, xð Þ
¼ CðKÞ ▯

Corollary 6.5.3: The Max-Flow/Min-Cut Inequality
If F is a feasible flow of maximum value and K is a cut of minimum capacity, then

Fj jj j ¼ the value of F<¼ the capacity of K ¼ C Kð Þ:

Proof. Corollary 6.5.2 applies for this particular flow and this particular cut. ▯

Theorem 6.5.4: The Max-Flow/Min-Cut Theorem
If F is any feasible flow of maximum value and K is any cut of minimum capacity,
then

Fj jj j ¼ the value of F ¼ the capacity of K ¼ C Kð Þ:

Proof. We will give an algorithm that constructs a feasible flow F* and a cut K*
such that

F*j jj j ¼+fF* s, xð Þ: s, xð Þ 2 Ag
¼+fC a, xð Þ: a; xð Þ 2 A, a 2 K* but x 2 V\K*g ¼ CðK*Þ:

278 6 Directed Graphs

Then, for any flowF, Fj jj j<¼ capacity of K* ¼ the value of F* ¼ F*j jj j
soF* is a flow of maximum value:

Furthermore, for any cutK;C Kð Þ>¼ the value of F* ¼ capacity of K* ¼ C K*ð Þ
soK� is a cut of minimum capacity: ▯

Algorithm 6.5.1: The Ford-Fulkerson Algorithm

1. Grow a tree T of simple augmenting paths from the source s, adding new
vertices one at a time, until

either (a) the sink, t, enters the tree
or (b) the sink is not in the tree, but no new vertex can be added T.

2. If the sink enters the tree, augment the current flow, and go back and repeat step 1.
When (b) occurs, the vertex set of the final tree is a cut that verifies that the current
flow has maximum possible value.

The value of the current flow is augmented by at least one unit in step 2, and is
bounded above by C({s}) say, so (b) must eventually occur, and the algorithm must
terminate.

We will describe the algorithm for constructing augmenting paths for any feasible
flow in words, avoiding a description of a particular implementation for the graph
(and, as before, we will follow the algorithm with a walkthrough using diagrams).

But first we make one more (non-standard) definition. We will say an arc a is
“free at v” (free to be added to the tree T of augmenting paths from vertex v)

if (a) the other end w of a is not already in the tree;
and (b) if a is a forward arc, then F(a) < C(a);
but (c) if a is a backward arc, then 0 < F(a).

Algorithm 6.5.2: Growing a Tree of Augmenting Paths

Mark all vertices “unscanned”;
Put s into the tree, T, as the root;

 (T has an unscanned vertex v) and (the sink, t, is not in T)
(there is a “free” arc α ending at v)

Let w denote the other end of α;
Add w and α to T; // T stays connected and no polygon is created
P(w) ← v; // call v the “Parent” of w

// now all the free arcs at v are in the tree T
Mark vertex v as “scanned”;

// either t has just been put into T,
// or t is not in T, but all vertices in T have been “scanned”

This algorithm provides a great deal of freedom when selecting vertex v and arc a.
We could imitate a Breadth-First Traversal by using a queue to store the unscanned

6.5 The Maximum Flow Problem 279

vertices in T and taking v from the front of the queue during each iteration. Or we
could imitate a Depth-First Traversal by using a stack to store the unscanned
vertices in T and taking v from the top of the stack during each iteration. Our
walk-through illustrates use of a “Depth-First” selection of v.

Also, in our walk-through, the selection of arc a is made by finding a
forward-arc from vertex v with F(a) < C(a) to the first available vertex w. But if
that is not possible, a backward-arc is found from vertex v with F(a) > 0 from the
first available vertex w.

In the walk-through below, we draw the input network using small circles for
vertices, dotted lines for edges not yet put into T, and solid lines for edges that have
been put into the tree T. After a vertex is scanned, we draw it as a small square.

Finally, we just report the sequence of trees produced at step 1 of Algorithm
6.5.1, the Ford-Fulkerson Algorithm, and we start the process with the all-zero
(feasible) flow.

Walkthrough (Growing 10 Trees)

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0/14

0/11 0/30/7
0/10

0/8

0/5

0/4

0/6

0/8

0/6

0/10 0/11

0/5

0/3 0/2 0/5

0/15 0/7 0/5

0/8 0/9

0/5 0/12

0/2 0/9 0/21

0/2 0/14

Tree
#1

Δ=2

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0/14

0/11 0/30/7
0/10

0/8

0/5

0/4

0/6

0/8

0/6

0/10 0/11

0/5

0/3 0/2 0/5

2/15 0/7 0/5

2/8 2/9

0/5 0/12

0/2 0/9 2/21

2/2 2/14

Tree
#2

Δ=4

280 6 Directed Graphs

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0/14

0/11 0/30/7
0/10

0/8

0/5

4/4

0/6

0/8

0/6

0/10 0/11

0/5

0/30/20/5

6/15 0/7 0/5

6/8 2/9

0/5 0/12

0/2 0/9 6/21

2/2 6/14

Tree
#3

Δ=2

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0/14

0/11 0/30/7
0/10

0/8

0/5

4/4

0/6

0/8

0/6

0/10 0/11

0/5

0/3 0/2 0/5

8/15 2/7 0/5

6/8 4/9

0/5 0/12

2/2 0/9 8/21

2/2 8/14

Tree
#4

Δ=5

1 5 10 14

4 9 13

2 6 11

3 7

8 12

0/14

0/11 0/30/7
0/10

0/8

5/5

4/4

0/6

0/8

0/6

0/10 0/11

0/5

0/30/20/5

13/15 2/7 0/5

6/8 9/9

0/5 0/12

2/2 0/9 13/21

2/2 13/14

Tree
#5

Δ=5

6.5 The Maximum Flow Problem 281

1 5 10 14

4 9 13

2 6 11

3 7

8 12

5/14

0/11 0/30/7
0/10

0/8

5/5

4/4

0/6

0/8

0/6

0/10 0/11

0/5

0/3 0/2 5/5

13/15 7/7 5/5

6/8 9/9

0/5 0/12

2/2 5/9 18/21

2/2 13/14

Tree
#6

Δ=2

1 5 10 14

4 9 13

2 6 11

3 7

8 12

7/14

2/11 0/32/7
0/10

0/8

5/5

4/4

0/6

0/8

0/6

0/10 0/11

0/5

2/32/25/5

13/15 7/7 5/5

6/8 9/9

0/5 2/12

2/2 5/9 18/21

2/2 13/14

Tree
#7

Δ=1

1 5 10 14

4 9 13

2 6 11

3 7

8 12

8/14

3/11 1/33/7
0/10

0/8

5/5

4/4

0/6

0/8

0/6

0/10 0/11

1/5

3/32/25/5

13/15 7/7 5/5

6/8 9/9

0/5 2/12

2/2 5/9 18/21

2/2 13/14

Tree
#8

Δ=2

282 6 Directed Graphs

1 5 10 14

6 11

7

10/14

5/11 3/35/7
0/10

0/8

5/5

4/4

0/6

0/8

0/6

0/10 2/11

3/5

3/32/25/5

13/15 7/7 5/5

6/8 9/9

0/5 0/12

2/2 5/9 18/21

2/2 13/14

Tree
#9

Δ=8

4 9 13

2

3

8 12

5 10 14

6 11

7

10/14

5/11 3/35/7
0/10

8/8

5/5

4/4

0/6

0/8

0/6

8/10 10/11

3/5

3/32/25/5

13/15 7/7 5/5

6/8 9/9

0/5 0/12

2/2 5/9 18/21

2/2 13/14

Tree
#10

1

4 9 13

2

3

8 12

The final tree (#10) shows a feasible flow with value 31 units. The cut that is the
vertex set of this final tree has a capacity of 31 units. Therefore this flow is of
maximum value and this cut is of minimum capacity.

Theorem 6.5.5: Algorithm 6.5.1, the Ford-Fulkerson Algorithm, constructs a
feasible flow F of maximum possible value. It also produces a “certificate of
optimality”, a cut K where jjFjj ¼ C(K).

Proof. Each time the algorithm constructs an augmenting path for the current
feasible flow, that flow can be altered to give a new feasible flow with a strictly
larger value. We will prove that
if the algorithm terminates with a tree T of augmenting paths that does not contain

the sink t and where no new arc can be added,
then the current flow F has the maximum possible value of a feasible flow and the

vertex set of the final tree is a cut K where jjFjj ¼ C(K).

6.5 The Maximum Flow Problem 283

Theorem is proved by the action of the Ford-Fulkerson Algorithm.
whose capacity equals the value of the flow. The Max-Flow/Min-Cut
mum possible value, and we can certify its optimality by exhibiting a cut
Given any commodity Flow Network we can find a feasible flow of maxi-
The Most Important Ideas in this Section.

Let K denote the vertex set of the tree T. Then K contains s but does not
contain t, so K is indeed a “cut”. By Theorem 6.5.1

Fj jj j ¼+fF a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V\Kg // total flow out of K

�+fF y; bð Þ: y; bð Þ 2 A; y 2 V\K but b 2 Kg: //�total flow intoK

If there were an arc, (y, b), where vertex y is not in the tree, vertex b is in the tree,
and F(y, b) > 0, then this arc could be added to the tree as a backward arc. Since
no such arc can be added, F(y, b) must equal 0. Thus,

Fj jj j ¼ +fF a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V\Kg // total flow out of K

If there were an arc, (a, x), where vertex x is not in the tree, vertex a is in the
tree, and F(a, x) < C(a, x), then this arc could be added to the tree as a forward
arc. Since no such arc can be added, F(a, x) must equal C(a, x). Thus,

Fj jj j ¼ +fC a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V\Kg // the capacity of K
¼ C(K) ▯

6.6 Matchings in Bipartite Graphs

In a loopless, undirected graph G(V, E), a matching is a subset M of edges where
no two have a common end point. Matchings “pair up” vertices like roommates in a
dorm, or tasks and workers, or jobs and machines. A matching is said to be perfect
if every vertex in G is matched with some other vertex. The main problem dis-
cussed here is: How can we find a matching that is as large as possible? This
section will show how matchings in bipartite graphs can be related to flow
problems.

A vertex-cover of G is a subset W of its vertices such that every edge in G has at
least one end in W. V is a vertex-cover, but we would like to find a “small”
vertex-cover; as small as possible if we can.

284 6 Directed Graphs

//X Show that W is a vertex-cover of G if and only if V \W is an independent set of
//X vertices in G.

Theorem 6.6.1: The Matching/Vertex-Cover Inequality

IfM is anymatching andW is any vertex-cover; then Mj j<¼ Wj j:

Proof. Suppose that M is a matching and W is a vertex-cover. Since each edge e in
M has an end-point f(e) in W, and since no two edges in M have an end-point in
common, the set of vertices, ff eð Þ: e 2 Mg, is a subset ofW that is the same size as
M. Thus jMj <¼ jWj. ▯

In particular, we have

Corollary 6.6.2: The Max-Matching/Min-Cover Inequality
If M is a matching of maximum cardinality, and W is a vertex-cover of minimum
cardinality, then jMj <¼ jWj.

If G is a polygon with n vertices (and n edges) then any matching has at most
n=2b c edges. // all the ends of the matching edges must be different
Any vertex covers exactly 2 edges, so at least n=2d e vertices are needed to cover all
n edges. If n ¼ 7, any matching has at most 3 edges, and any vertex-cover has at
least 4 vertices.

In this example, the inequality of Corollary 6.6.2 is strict. // it’s not an equality
But we will prove that for bipartite graphs the inequality of Corollary 6.6.2 is never
strict; it’s always an equation.

We will say that an edge “covers” its end points, and a matching M “covers” all
the end points of all the edges in M. For any set of vertices X in any graph, let
N(X) denote all vertices joined by an edge to some vertex in X.

// all neighbours of all vertices in X

Theorem 6.6.3: Suppose that X is an independent set of vertices in a graph G.
If there is a matching M that covers X then jXj <¼ jN(X)j.
Proof. Each vertex v in X is matched by M to a unique vertex m(v). Because X is
independent, each m vð Þ 2 N Xð Þ\X½ �. Each m(v) is different, so fm vð Þ: v 2 Xg is a

6.6 Matchings in Bipartite Graphs 285

subset of N(X) of the same size as X. Therefore, jXj <¼ jN(X)j. Furthermore, if
jXj > jN(X)j then there is no matching M that covers X. // the contra-positive

▯

In particular, if G(V, E) is bipartite with V partitioned into independent sets L and
R, then any subset of L (or R) is independent. We will show (near the end of this
section) that either (1) there is a matching in G that covers L;
or (2) there is a subset X of Lwhere jXj > jN(X)j. // but not both

Example 6.6.1: Consider the matching in the graph below where the 4 matching
edges are the ones drawn with “heavy” lines.

a2

a
1

a
3

a
4

a
5

a
6

b2

b1

b3

b4

b5

b6

Is this a maximal matching? Here we use “maximal” to mean “is not a proper
subset of a larger matching”. Yes, it is maximal. No new edge can be added to it to
make a larger matching. // The 8 ends of these 4 matching edges are a vertex-cover.

Is this a maximum cardinality matching? Is it a matching of largest possible
size? No, it is not. We will convert this to a flow problem where we know how to
find a flow of maximum possible value in a network.

Suppose that G(V, E) is a bipartite graph where V is partitioned into subsets
L and R and every edge joins a vertex in L to one in R. Create a flow network
N(G) as follows:

1. Begin with V as the vertex set of N(G).
2. Orient all the edges as arcs from set L on the left to set R on the right.

// Then all L-vertices are sources, and all R-vertices are sinks.
3. Add a “super-source” s, and an arc from it to each “left-source”.

// This can be done for any commodity flow network with several sources.
4. Add a “super-sink” t, and an arc to it from each “right-sink”.

// This can be done for any commodity flow network with several sinks.
5. Let V* denote V [s; tf g, the vertex set of N(G).

286 6 Directed Graphs

6. Give every arc a capacity of 1 unit. // But don’t put capacities in the diagrams.

Suppose also that M is a matching in G. // perhaps the empty set of edges
Create a feasible flow FM in N(G) as follows:

If (li, rj) is an arc that is the orientation of a matching edge, then
assign a flow of 1 unit to the 3 arcs (s, li), (li, rj) and (rj, t).
But assign all other arcs a flow of zero. // The value of this flow equals jMj.

Applying this construction to Example 6.6.1, where the arcs are labelled with their
flows, gives:

t

a2

a
1

a
3

a
4

a
5

a
6

s

b2

b1

b3

b4

b5

b6

1

1

0

1

1

0

1
0 0

00

00

0

1

0

0
0

1

0

0

0

1

0

1

0

0

1

1

1

// Is this initial flow of maximum value?
By applying the Ford-Fulkerson Algorithm, exactly as we did in the walkthrough in
the previous section, we obtain a flow with value 5.

t

a2

a
1

a
3

a
4

a
5

a
6

s

b2

b1

b3

b4

b5

b6

1

1

1

1

1

0

1
0 0

01

00

0

0

0

0
0

1

0

0

1

1

0

1

1

0

1

1

1

// Is this flow of maximum value?

6.6 Matchings in Bipartite Graphs 287

Applying the Ford-Fulkerson algorithm again, exactly as we did in the walkthrough
in the previous section, we obtain a cut with capacity 5. And there is a vertex-cover
of G of size 5.

a2

a
1

a
3

a
4

a
5

a
6

b2

b1

b3

b4

b5

b6

Theorem 6.6.4: If bipartite graph G has a matching M of size p then the flow
network N(G) has a feasible flow FM of value p, and if N(G) has a feasible flow
F of value q then G has a matching MF of size q.

Proof. Let G(V, E) be a bipartite graph where V is partitioned into subsets L and
R and every edge joins a vertex in L to one in R. Construct the flow network N(G).

Suppose M is a matching of size p. Construct the feasible flow FM corre-
sponding to M as we did in the example above. Let K be the cut sf g[L. Then by
Theorem 6.5.1 (the Flow/Cut Equality)

FMj jj j ¼ +fFM a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V*\Kg // total flow out of K

�+fFM y; bð Þ: y; bð Þ 2 A; y 2 V*\K but b 2 Kg: //� total flow intoK

Since there are no arcs into K from V*\K,

FMj jj j ¼ +fFM a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V*\Kg // total flow out of K

¼ +fFM a; xð Þ: a; xð Þ 2 A; a 2 L but x 2 Rg
¼ # arcs fromL toR given a flow of 1 unit

¼ Mj j ¼ p:

Thus, if G has a matching of size p then the flow network N(G) has a feasible flow
of value p.

288 6 Directed Graphs

Suppose N(G) has a feasible flow F of value q. As above, if K is the cut sf g[L,

Fj jj j ¼ +fF a; xð Þ: a; xð Þ 2 A; a 2 K but x 2 V*\Kg // total flow out of K

¼ +fF a; xð Þ: a; xð Þ 2 A; a 2 L but x 2 Rg
¼ # arcs fromL toR given a flow of 1 unit

¼ q:

Each arc in N(G) from L to R corresponds to an edge in G. Let MF denote the set
of edges in G that correspond to arcs from L to R given a flow of 1 unit. Since no
vertex a in L can have 2 arcs out of it with a flow of 1, no 2 edges in MF meet at
vertex a. Since no vertex b in R can have 2 arcs into it with a flow of 1, no 2 edges
in MF meet at vertex b. Thus, MF is a matching in G of size q. ▯

This theorem implies that we can find a maximum cardinality matching M* in a
bipartite graph G by finding a maximum valued flow F* in the flow network N(G).
// M* will be MF*.
// But what about a minimum cut K* in N(G)?
// And what about a vertex-cover W in G?

Let T be the final tree of augmenting paths produced by Algorithm 6.5.1, the
Ford-Fulkerson Algorithm, acting on N(G), the flow network associated with
bipartite graph G. Also let n denote jLj. Either all arcs from s to L have a flow equal
1 unit or there is at least one vertex a* in L with F(s,a*) ¼ 0.

Case 1. Suppose no arc from s has a flow of zero.
Then there is a flow of 1 unit to every vertex a in L and from every vertex a in L to a
unique vertex m(a) in R. The value of the flow will be jLj ¼ n and {s} will be a
minimum capacity cut. In this case, the edges in G corresponding to the arcs (a, m(a))
will be a matching M* of size n, and L will be a vertex-cover in G of size n. M*
covers L. // What about the other possibility?
Case 2. Suppose there is at least one vertex a* in L with F(s,a*) ¼ 0.

Theorem 6.6.5: If T is the final tree produced by the Ford-Fulkerson Algorithm,
and a is a vertex inL \ V Tð Þ, then all out-neighbours of a are also inT. // inR \ V Tð Þ
Proof. // Considering F(s, a) ¼ 0 and F(s, a) ¼ 1 separately.

Suppose F(s, a) ¼ 0. // Whether a is a* or not.
Because the total flow into a is 0, there can be no arc from a to b 2 RwithF(a, b) ¼ 1.
Vertex a would have been put into T when s was being scanned using (s, a) as a
forward arc. Then any arc from a to b 2 R has F(a, b) ¼ 0 < C(a, b), so this arc
would be added toT unless b is already inT. Thus, all out-neighbours b of a are also in
T. Also, a* 2 L \ V Tð Þ but there is no arc from a* to b 2 R with F(a*, b) ¼ 1.

Suppose F(s, a) ¼ 1. Then the total flow out of a is 1, and there is a unique
vertex m að Þ 2 R where F(a, m(a)) ¼ 1 ¼ C(a, m(a)). Because (s, a) is the only arc
into a and F(s, a) ¼ C(s, a), vertex a must have been put into T as the start-end of a
backward arc with positive flow. That arc must have been (a, m(a)) and m(a) must
have been in T. Then any arc from a to b 2 R\ m að Þf g hasF a; bð Þ ¼ 0<C a; bð Þ, so

6.6 Matchings in Bipartite Graphs 289

this arc would be added to T unless b is already in T. Thus, all out-neighbours of
a are also in T, including m(a). ▯

Therefore, no arcs in N(G) go from a vertex in L \ V Tð Þ to R\V(T). In fact,
fL \ V Tð Þg [R\V Tð Þf g is an independent set of vertices in G. There are several
consequences of this theorem.

1. All arcs from the minimum cut, V(T) to its complement in N(G) must go from
the source s to a vertex in L\V(T) or from R \ V Tð Þ to the sink t. All these arcs
must have a flow of 1 unit equaling the capacity of the arc. The capacity of the
minimum cut must be

Q ¼ L\V Tð Þj j þ jR \ V Tð Þj ¼ the value of themaximum flow inN Gð Þ
¼ the size of themaximummatching inG:

2. Since no edge in G goes from a vertex in L \ V Tð Þ toR\V Tð Þ;

K ¼ L\V Tð Þf g[fR \ V Tð Þg is a vertex-cover inG of size

Q ¼ L\V Tð Þj j þ jR \ V Tð Þj ¼ the size of themaximummatching inG:

Theorem 6.6.6: If T is the final tree produced by the Ford-Fulkerson Algorithm,
and b is a vertex in R \ V Tð Þ, then there is a unique vertex c in L \ V Tð Þ where
F(c, b) ¼ 1.

Proof. For all vertices b in R and T, F(b, t) must be 1 since otherwise, this arc
could be added to T and the sink t would enter the tree. Therefore the total flow into
b must be 1 and so there must be a unique vertex c in L where F(c, b) ¼ 1. Then
the arc (c, b) could be added to T as a backward arc into b, unless c is already in the
tree. Hence, c must be in L and the tree T. However, c is not equal to a*. ▯

Thus every vertex in R \ V Tð Þ is matched with a vertex in L \ V Tð Þ by the
matching MF in G determined by the flow F, so R \ V Tð Þj j<¼ L \ V Tð Þj j.
However, a* is in L \ V Tð Þj j but is not matched to any vertex, so
R \ V Tð Þj j< L \ V Tð Þj j. Therefore, if X ¼ L \ V Tð Þ, then N Xð Þ�R \ V Tð Þ
so Xj j> N Xð Þj j.
Summarizing these two cases, we have proved what’s known as

(Philip) Hall’s Marriage Theorem (1935): If G(V, E) is bipartite with V parti-
tioned into independent sets L and R, then
either (1) there is a matching in G that covers L;
or (2) there is a subset X of L where jXj > jN(X)j. // but not both

//Thiswas called the “Marriage Theorem” because of the settingwhereL is the set of n
// girls in a certain town, and R the set of n boys, and each girl would only accept a
// proposal from a few boys in some small subset of R. Then either there is a perfect

290 6 Directed Graphs

// matching (a set of n perhaps proposed marriages involving all the boys and all the
// girls) or there is a set of picky girls, X, all of whom will only accept proposals
// from the boys in a strictly smaller set, Y.

The Most Important Ideas in this Section.
A matching is a subset M of edges where no two have a common end point.
A vertex-cover of G is a subset W of vertices such that every edge in G has at
least one end in W. If M is any matching and W is any vertex-cover, then
jMj <¼ jWj.

If G(V, E) is a bipartite graph where V is partitioned into subsets L and
R and every edge joins a vertex in L to one in R, we can create a flow network
N(G) where G has a matching of size q if and only if N(G) has a feasible flow
of value q. A maximum size matching M* in G is produced by finding a flow
of maximum value in N(G), using the Ford-Fulkerson algorithm say. That
algorithm also produces a vertex-cover W of G where jWj ¼ jM*j, so W is as
small a cover as possible. The section ends with a proof of Hall’s Marriage
Theorem that either (1) there is a matching in G that covers L or (2) there is a
subset X of L where jXj > jN(X)j.

Exercises

1. Answer the following questions about the graph shown below:
(a) What are the out-neighbours of v1?
(b) What are the out-neighbours of v3?
(c) What are the in-neighbours of v3?
(d) What are the in-neighbours of v5?
(e) What is the set of source vertices?
(f) What is the set of sink vertices?
(g) Is the graph simple? Justify your answer.

v1 v3

v2

v5

v5

2. A tournament with n players/teams is an orientation of the complete graph
Kn. The graph models wins and losses in a round robin competition. Every
player/team plays one game against each of the others, and the edge between
vertex a and vertex b is directed from a to b if b defeats a. Assume no ties
are allowed.
(a) Does every tournament have a sink? (A champion who defeats all the

others?)
(b) Orient K5 so every player/team wins 2 games and loses 2 games.

6.6 Matchings in Bipartite Graphs 291

(c) Can K6 be oriented so every player/team wins the same number of
games?

(d) Prove that if a has more wins than losses, then there must be a b who has
more losses than wins.

(e) Prove that every tournament contains a directed Hamilton Path.
3. Find an orientation that produces a strongly connected digraph for each of

the graphs below.

4. Use Algorithm 6.3.1 to topologically sort the vertices in the following graph.

5. Find a topological sorting or find a directed cycle in each of the digraphs
below.

292 6 Directed Graphs

6. When is there only one topological sorting of an acyclic digraph?
7. Orient the graph below to produce an acyclic digraph.

8. Use Algorithm 6.3.2 to count the number of dipaths from v1 to v2 in each of
the following graphs.

v
1

v
2

G H

v
1

v
2

9. Using Algorithm 6.3.3, find the shortest dipath from v1 to v2 in each of the
following weighted digraphs:

6.6 Matchings in Bipartite Graphs 293

2

16 1

16
4

2
2

4

2

2

10 9 3

G

2 2

1

1

1 2

1

2

2

H

2

1
13

v
1

v
2

v
1

v
2

10. Using Algorithm 6.3.4, find the longest dipath from v1 to v2 in each of the
weighted digraphs from the previous question.

11. In the acyclic arc-weighted digraph below, find the number of dipaths from
a to b, the length of a shortest dipath from a to b, and the length of a longest
dipath from a to b.

a

b

12 7

9

6 10

7 13
6

2 1

7

 2 1

6
4 7

4 5

25

2

8

1 2

1 2

8

3 6

12. Prove that when the jth vertex vj is added to T in Dijkstra’a Algorithm,
L(vj) >¼ L(x) for all vertices x in T, and L(vj) <¼ L(w) for all vertices w not
in T.

13. The diameter of a connected graph is the length of a longest shortest path, the
radius from a given vertex v is the length of a longest shortest path from v, and
the center of a graph is a vertex with the smallest radius.

// the shortest longest shortest path?

294 6 Directed Graphs

By referring to directed paths, the notions of diameter, radius and center also
apply to strongly connected digraphs.
Find the diameter and center of the directed graph below.
Hint. You could use the Floyd-Warshall Algorithm to get the distance matrix.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

14. Write an algorithm to construct a shortest nontrivial dipath from a given
vertex y to another given vertex z using the input and output from the
Floyd-Warshall Algorithm.

15. Use the Ford-Fulkerson algorithm to compute the maximum flow from s to
t in the following graphs where each arc is labelled with its capacity.

2

1 6

1
8

2
3

4

3

4

1 1 3

G

2 2

1

1

1 2

1

3

2

H

3

1
1

s

t

s

t

16. Find a maximum flow in the “standard example” of Sect. 6.5 by applying
the Ford-Fulkerson Algorithm but starting with the initial flow given below.

6.6 Matchings in Bipartite Graphs 295

1 5 10 14

4 9 13

2 6 11

3 7

8 12

3/14

3/11 0/20/7
0/10

8/8

5/5

0/4

3/6

0/3

5/5

8/10 8/11

3/3

3/30/20/5

5/15 0/7 0/5

0/8 0/9

0/5 0/12

0/2 0/9 5/21

0/2 0/14

Is the output flow the same as that produced in Sect. 6.5?
Is the output cut the same as that produced in Sect. 6.5?

17. Consider the digraph shown in question 11. Interpret the arc weights as
capacities. Find a maximum flow from the single source (vertex a) to the
single sink (vertex b) and a minimum cut.

18. Show that W is a vertex-cover of G if and only if V \W is an independent set
of vertices in G.

19. Find a maximum cardinality matching in the bipartite graph given below.

20. If b(v) is a non-negative integer assigned to each vertex v in an undirected
graph G(V,E), then a b-matching is a subset of edges M such that for each
vertex v the number of edges in M that have v as an end-point is <¼ b(v).
So ordinary matchings are b-matchings where all b-values are 1.
(a) If G is bipartite, how can a flow network be created so the max-flow

algorithm finds a maximum cardinality b-matching?
(b) In the graph given in Exercise 19, find a maximum cardinality

b-matching if all b-values are 2.
(c) In the graph given in Exercise 19, find a maximum cardinality

b-matching if all b-values are 3.

296 6 Directed Graphs

21. Given a bipartite graph G(V, E) and a positive integer k, use Hall’s Marriage
Theorem to prove that:
(a) If all vertices in G have degree k, then G has a perfect matching.
(b) If all vertices in G have degree k, then E can be partitioned into k perfect

matchings.
22. In our reduction of bipartite matching problems to flow problems, a flow can

have its value increased if there is an “augmenting path” for the current flow.
That path in N(G) corresponds to a path in G itself as illustrated below.

s a

b t

a

b

0

0

0 1 0 1 0

In N(G):

In G:

Define an augmenting path for a matching M to be a path in G(V, E), which
may be bipartite or not, as a path of odd length from an “uncovered” vertex
a to a different “uncovered” vertex b, and where the edges are alternately not
in M and then in M.
(a) Prove that if matching M has such an augmenting path then M is not a

maximum cardinality matching.
(b) Prove that if matching M is not a maximum cardinality matching then

M has such an augmenting path. Hint: Given two matchings M and M*
where jMj < jM*j, then jM\M*j < jM*\Mj, and so some component of
the subgraph whose edge set is (M\M*) [(M*\M) has more edges from
M* than M.

(c) Find a perfect matching in the graph below.

6.6 Matchings in Bipartite Graphs 297

23. Consider the graph G below.

(a) Show that G is bipartite by coloring the vertices Red and Blue so every
edge joins a Red vertex and a Blue one.

(b) Find a vertex-cover of size 8.
(c) Find a matching of maximum size.
(d) Find an independent set of size 13.
(e) Explain why your independent set has maximum size.

24: (a) Prove that if G(V, E) has a Hamilton Path and jVj is even, then G has a
perfect matching.

(b) Construct an example of a connected graph G(V, E) where jVj is even
and G has a perfect matching but where G does not have a Hamilton
Path.

// A tree might work.
(c) Prove that if G(V, E) has a Hamilton Circuit and jVj is even, then G has

two disjoint perfect matchings.
(d) Construct an example of a connected graph G(V, E) where jVj is even

and G has two disjoint perfect matchings but where G does not have a
Hamilton Circuit.

// Try 2 squares joined by an edge.

298 6 Directed Graphs

7Relations: Especially on (Integer)
Sequences

There are two main objectives of this chapter: (1) to provide an “ordering” of
sequences of objects so they can be sorted, like individual numbers, and so any
finite set of them can be generated (see Chap. 9) in a natural order from the first
to the last, and (2) to provide a mechanism for classifying complexity functions by
their rates of growth. Relations will be a means to realize both these goals.

7.1 Relations and Representations

The relations in the chapter title don’t refer to aunts, uncles, and cousins but more
to special or intimate personal relations. A relation, R, on some underlying set, S,
is some characteristic of certain ordered pairs of elements of S, namely,

on numbers: a¼ b
a< b
a>¼ b

on integers: ajb
on subsets: A�B

Aj j ¼ Bj j
on people: a is married to b

a has a crush on b
a is younger than b
a is a descendant of b:

In every case, R may be identified with the set of ordered pairs connected by the
relation. We define a relation on set S to be any set of ordered pairs of elements
of S; that is, any set

R� S� S:

Generalizing the notation of the examples, let’s write

a R b to denote a; bð Þ 2 R:

Then “a R b” is a statement and therefore takes a Boolean value. The negation of
this is also a Boolean expression, and (as in Java) let’s write

a !R b to denote a; bð Þ 2= R:

Example 7.1.1: Let S ¼ {1,2,3,4} and let

R¼ {(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (4, 2)}.

Here, 1 R 1 but 4 !R 4 and 1 R 3 but 3 !R 1.

Besides listing the pairs in R, there are other ways of representing a relation.
We’ll look at two of them.

7.1.1 Matrix Representation

Choose any ordering of the set S and use this ordering for the row and column
indices of a square matrix M. Then define the entries in M by

M½a; b� ¼ 1 if a R b
0 if a !R b

�
:

We could give M Boolean values but it is more conventional to use 0’s and 1’s in
such “characteristic” matrices.

The matrix representation of Example 7.1.1 is then

1 2 3 4

1 1 0 1 1

2 1 1 1 1

3 0 1 0 0

4 0 1 0 0

300 7 Relations: Especially on (Integer) Sequences

7.1.2 Directed Graph Representation

We can construct a directed graph, D, to display the relation R on set S by letting S be
the set of vertices of D and then drawing an arc (an arrow or a directed edge) from a
to b whenever a R b. The directed graph representation of Example 7.1.1 is then

4

1

3

2

7.1.3 Properties of Relations

Next, we define five properties a relation might have: reflexivity, symmetry, anti-
symmetry, transitivity, and comparability. We will use these generic attributes to
distinguish certain kinds of relations, especially those indicating similarity and
those indicating a ranking (one thing is bigger, better, or sexier than another).

A relation R on S is reflexive means
a R a 8 a 2 S.

// “equals” is reflexive; “<” is not.
A relation R on S is transitive means

if a R b and b R c then a R c 8a;b;c 2 S.
// “<” is transitive; “has a crush on” is not.

A relation R on S is symmetric means
if a R b then b R a 8a;b 2 S.

// “is married to” is symmetric; “>” is not.
A relation R on S is antisymmetric means

if a R b and b R a then a ¼ b 8a;b 2 S.
// “� ” is anti-symmetric; “is married to” is not.

// is “<” anti-symmetric?
A relation R on S has the comparability property means

either a R b or b R a or a¼ b 8a;b 2 S.
// Both “<” and “<¼” have the comparability property; “� ” does not.

Symmetry and antisymmetry are not opposites because “equals” has both
properties, and some relations, like R in Example 7.1.1, have neither.

// Which properties does R in Example 7.1.1 have?
// 4 !R 4) R is not reflexive.
// 1 R 3 and 3 R 2 but 1 !R 2) R is not transitive.
// 1 R 3 but 3 !R 1) R is not symmetric.

7.1 Relations and Representations 301

// 2 R 3 and 3 R 2 but 2 6¼ 3) R is not antisymmetric.
// 3 !R 4 and 4 !R 3 and 3 6¼ 4) R does not have the comparability property.

The last three properties are really only of interest when a 6¼ b, so we will
rephrase them in that case.

A relation R on S is symmetric means
whenever a and b are distinct elements of S

if a R b, then b R a.
A relation R on S is antisymmetric means

whenever a and b are distinct elements of S
if a R b, then b !R a. // “<” is antisymmetric.

A relation R on S has the comparability property means
whenever a and b are distinct elements of S

if a !R b, then b R a.

Distinct elements x and y are said to be comparable (under R) if either x R y or y R x;
otherwise, x and y are incomparable.

// Which properties do the examples at the beginning of the chapter have?
// How are the properties reflected by the matrix?
// How are the properties reflected by the digraph?

The Most Important Ideas in This Section.
A relation R on set S is any set of ordered pairs of elements of S and may
be represented as a matrix or as a digraph. But this definition is too general to
be of any use. Relations are classified by what properties they possess,
particularly the five properties: reflexivity, symmetry, antisymmetry, transi-
tivity, and comparability.

7.2 Equivalence Relations

In this section, we formalize the idea of “similarity”. Any object is similar to itself;
if a is similar to b, then b is similar to a, and if a is similar to b and b is similar to c,
then a is similar to c.

A relation R is an equivalence relation whenever R is reflexive, symmetric,
and transitive. Equality (an extreme case of similarity) is an equivalence relation,
but there are many others. A fairly general but simple construction is the following.

Example 7.2.1: Let f be any function with domain S.Define a relation R on S by

a R b if and only if f að Þ¼ f ðbÞ:

Because equality is an equivalence relation, no matter how the function f is defined,
this R will also be an equivalence relation.

302 7 Relations: Especially on (Integer) Sequences

// f ðaÞ¼ f ðaÞ) a R a // R is reflexive

// a R b) f ðaÞ¼ f ðbÞ) f ðbÞ¼ f ðaÞ) b R a // symmetric

// a R b and b R c) f ðaÞ¼ f ðbÞ and f ðbÞ¼ f ðcÞ) f ðaÞ¼ f ðcÞ) a R c // transitive

For instance, suppose S is the set of people in this classroom today and for each
person, x, we let f(x) be that person’s age (in years, rounded down). Then the relation
R partitions the set S into subsets of people of the same age. All 18-year-olds are
related to each other but no one else, and the same with all 19-year-olds, 20-year-
olds, and so on. This partitioning occurs with every equivalence relation.

If R is an equivalence relation on S, an equivalence class is a nonempty subset E
of S such that (i) every pair of elements of E are related
and (ii) no element of E is related to an element not in E.

// Some authors define an equivalence class to be a maximal subset with property
// (i), but that’s “equivalent” to this definition.

Theorem 7.2.1: If R is an equivalence relation on S, then R partitions S into
equivalence classes

Proof. // We must prove that every element of S belongs to one and only one
// equivalence class.

Let a be any element of S and let [a] be the subset of S defined by

a½ � ¼ x 2 S: a R xf g:

Since a R a, a 2 [a] and so [a] is nonempty. // Is this subset an equivalence class?
If x, y 2 [a], then a R x and a R y. By symmetry x R a. Then x R a and a R y, so by

transitivity, x R y. Thus, every pair of elements of [a] are related. If x 2 [a] and x R z,
then a R x and x R z, so, by transitivity, a R z, and therefore, z 2 [a]. Thus, no
element of [a] is related to any element not in [a], and hence, [a] is an equivalence
class.

We now know that every element a of S is in at least one equivalence class,
namely, [a]. // Is this the only equivalence class containing element a?
Suppose C is some equivalence class containing a. If z 2 C, then a R z and so z 2 [a].
Thus, C � [a]. If a R x, then by (ii), x must be an element of C; thus, [a] � C. The
subset C must equal the subset [a], and we have proved the theorem that every
element of S is in exactly one equivalence class. ▯

7.2.1 Matrix and Digraph of an Equivalence Relation

Example 7.2.2: Let S ¼ {0, 1, . . . ,9} and define a relation R on S by

a R b if and only if 3j a� bð Þ:

7.2 Equivalence Relations 303

Then R is an equivalence relation.

// Recall xjy means that integer x “divides evenly into” y.
// 3j0 so a R a for all a in S. Thus, R is reflexive.
// If a R b, then 3j(a � b) and since (b � a) ¼ � (a � b), 3j(b � a) and so b R a.
// Thus, R is symmetric.
// If a R b and b R c, then 3j(a � b) and 3j(b � c),
// so because (a � c) ¼ (a � b) þ (b � c), 3j(a � c) and a R c.
// Thus, R is transitive.

With the natural ordering of the elements of S, the matrix representation of this
relation is

However, if the elements of S are ordered somewhat differently, the matrix
representation of this relation becomes

The equivalence classes occur in blocks in this ordering of S, and the ones in the
matrix occur in corresponding squares along the main diagonal.

// What will the digraph of this relation look like?

Example 7.2.3: Z5

Define an equivalence relation R on Z by

a R b if and only if f ðaÞ¼ f ðbÞ;

where f(x) ¼ x MOD 5, the nonnegative remainder obtained when x is divided by 5.

304 7 Relations: Especially on (Integer) Sequences

Then f(x) takes only five values: 0,1,2,3, or 4. The equivalence classes induced are

[0] = {. . .,�15,�10,�5,0,5,10,15, . . .}
[1] = {. . .,�14, �9,�4,1,6,11,16, . . .} // �9 ¼ 5(�2) þ 1
[2] = {. . .,�13, �8,�3,2,7,12,17, . . .} // �3 ¼ 5(�1) þ 2
[3] = {. . .,�12, �7,�2,3,8,13,18, . . .}
[4] = {. . .,�11, �6,�1,4,9,14,19, . . .}.

We can define arithmetic on these classes from the ordinary operations, þ and�,
on Z as follows:

a½ � � b½ � ¼ aþ b½ � and a½ � � b½ � ¼ ½a� b�:

// The class containing a plus the class containing b is the class containing (a þ b).
// The class containing a times the class containing b is the class containing (a � b).
//X Is this definition really independent of the representatives of the classes?

The tables for these operations are the following; but inside the table, [x] is written
as x.

[0] [1] [2] [3] [4]

[0] 0 1 2 3 4
[1] 1 2 3 4 0
[2] 2 3 4 0 1
[3] 3 4 0 1 2
[4] 4 0 1 2 3

[0] [1] [2] [3] [4]

[0] 0 0 0 0 0
[1] 0 1 2 3 4
[2] 0 2 4 1 3
[3] 0 3 1 4 2
[4] 0 4 3 2 1

// What will the tables for these operations on Z6 look like?

Finite algebraic systems like Z5 turn out to have many applications in computer
science, especially in modern cryptography.

The Most Important Ideas in This Section.
A relation R on a set S is an equivalence relation whenever R is reflexive,
symmetric, and transitive. This formalizes the idea of “similarity”. An equiv-
alence class is a nonempty subset E of S such that:
(1) Every pair of elements in E are related and
(2) No element in E is related to an element not in E.

(continued)

7.2 Equivalence Relations 305

(continued)

Furthermore, R partitions S into equivalence classes.
In Sect. 7.5, we will define an equivalence relation on complexity functions
of algorithms in a way that will make all linear functions equivalent to n and
put all quadratic functions in the class [n2].

7.3 Order Relations

In this section, we formalize the idea of objects occurring in a certain “preference
ranking”. If a is bigger or better than b, then b is not bigger or better than a.
Antisymmetry is a fundamental property of such rankings. But so is transitivity: if a
is bigger or better than b and b is bigger or better than c, then a is bigger or better
than c.

A relation R is an order relation whenever R is antisymmetric and transitive.
// Some books use the term “quasi-order” for such relations.

An order relation R is a partial order whenever R is (also) reflexive. A partial order
R is a total order whenever R (also) has the comparability property. The
distinctions will (perhaps) become clear as we look at some examples.

Let’s examine the ten relations on various sets at the start of this chapter and use
fairly obvious abbreviations for the properties:

1. a ¼ b: AS, T and R so it’s a PO.
2. a < b: AS and T so it’s an OR.
3. a >¼ b: AS, T, R and CP so it’s a TO.
4. ajb on Z: T but not AS since (�5)j(þ5) and (þ5)j(�5)

but (�5) 6¼ (þ5).
ajb on P: AS, T and R so it’s a PO.

5. A � B: AS, T and R so it’s a PO.
6. jAj ¼ jBj: T but not AS.
7. a is married to b: is not AS.
8. a has a crush on b: is not AS // Since sometimes, though all too rarely,

// when a has a crush on b, b also has a crush on a.
is not T // Since if a has a crush on b and b has a

// crush on c, then (almost) never
// does a have a crush on c.

is not S // Everyone is painfully aware that this

// relation is not symmetric.
9. a is younger than b: AS and T so it’s an OR.
10. a is a descendant of b: AS and T so it’s an OR.

// If a R¼ b denotes (a R b or a ¼ b), then
// whenever R is an order relation, R¼ is a partial order.

306 7 Relations: Especially on (Integer) Sequences

7.3.1 Matrix and Digraph of a Partial Order

Example 7.3.1: Let S ¼ {1, 2, . . . , 12} and consider the partial order, j, on S.
// recall that ajb means “a divides evenly into b”.

With this natural ordering of the elements of S, the matrix representation of this
relation is

This matrix is said to be “upper triangular” because all the entries below the main
diagonal are zeros (and therefore, all the “information” is contained in the upper
triangle).

When R is an order relation on S and a and b are distinct elements of S, b is said
to cover a if a R b, and there is no element x 2 S\{a,b} where a R x and x R b.

The graphical representation of a partial order on a finite set S can be simplified
to what’s known as a Hasse diagram, named after Helmut Hasse (1898–1979)
where:
1. No loops are drawn – there would be a loop at every vertex so these loops carry

no information and just clutter the picture.
2. No arcs are drawn that are implied by transitivity from the ones that are present –

draw an arc from a to b if and only if b covers a.
3. No arrowheads are drawn – the vertices are placed on the page so that all arrows

would go upward.

// Is this always possible?

The Hasse diagram for Example 7.3.1 is

812

69 104

1

3 52 117

7.3 Order Relations 307

// Here, b covers a , b ¼ a � p where p is a prime.
// a R b , there is a “consistently upward” path in the Hasse diagram from a to b.
// What would the Hasse diagram of a total order look like?

7.3.2 Minimal and Maximal Elements

Suppose that R is an order relation on a set S and that T is a subset of S.

q 2 T is a minimum element of T means 8x 2 T \{q}, q R x.
// q is related to every other element of T, like 1 in Example 7.3.1.

//X T might not have a minimum element,
// but if T has a minimum element, it is unique.

q 2 T is a minimal element of T means 8y 2 T \{q}, y !R q.
// No other element of T is related q, like 1 in Example 7.3.1.

//X If q is a minimum element, then q is minimal.
// We’ll see that if T is finite,

// T must have a (at least one) minimal element.
//X b covers a , b is a minimal element of {x 2 S \{a}: a R x}.

q 2 T is a maximum element of T means 8x 2 T \{q}, x R q.
// Every other element of T is related to q.

//X T might not have a maximum element, like Example 7.3.1,
// but if T has a maximum element, it is unique.

q 2 T is a maximal element of T means 8y 2 T \{q}, q !R y.
// q is not related to any other element of T,

// like 7, 8, 9, 10, 11, and 12 in Example 7.3.1.
//X If q is a maximum element, then q is maximal.

//X If T is finite, T must have a (at least one) maximal element.

z 2 S is an upper bound for T means 8x 2 T, x R z.
// Every element of T is related to z, like z ¼ 12! in Example 7.3.1

// or z ¼ (12)(11)(10)(9)(8)(7).
// The upper bounds for T form another subset U of S

// and one might ask questions like:
//X What is the minimum upper bound for the subset in Example 7.3.1?

// Is it z ¼ (23)(32)(5)(7)(11)?

z 2 S is an lower bound for T means 8x 2 T, z R x.
// z is related to every element of T like 1 in Example 7.3.1.

// The lower bounds for T also form a subset of S.

Suppose R is an order relation on a finite set S = {x[1], x[2], . . . , x[n]}. The
following algorithm will find a minimal element of S.

308 7 Relations: Especially on (Integer) Sequences

Algorithm 7.3.1: Minimal in S

Begin
M ← x[1];
For j ← 2 To n Do

If (x[j] R M) Then
M ← x[j];

End;
End; // the for-loop
Return(M);

End. // Is this Algorithm 4.3.1 when R is <?

Theorem 7.3.1: This algorithm correctly finds and returns a minimal element
of S because

“M is a minimal element of S j½ � ¼ x 1½ �; x 2½ �; . . . ; x j½ �f g”

is a loop invariant. // for the for-loop

Proof. // by Mathematical Induction on j 2 P
Before the loop is done the first time, M ¼ x[1], which is a minimal element of

S[1] ¼ {x[1]}. // No other element of S[1] is related to x[1].
Assume 9q where 1 < q <¼ n and that, before the iteration where j ¼ q, M is a

minimal element of S[q � 1]. That is, if y 2 S[q � 1]\{M}, then y !R M.
The next iteration of the loop may change the value of M; let M* denote the

value of M after this iteration. // Is M* a minimal element of S[q]?
Suppose that y 2 S[q]\{M*}. // We need to show that y !R M*.

Case 1. If x[q] !R M, then M* ¼ M and S[q]\{M*} ¼ {x[q]} [(S[q � 1]\{M}).
If y ¼ x[q] or y 2 S[q � 1]\{M}, then y !R M so y !R M*.

Case 2. If x[q] R M then M* ¼ x[q] and M* 6¼ M. // because M 2 S[q � 1]
The set S[q]\{M*} ¼ S[q � 1] ¼ {M} [(S[q � 1]\{M}) so either y ¼ M
or y 2 S[q � 1]\{M}.

Suppose y R M*. // We want to find a contradiction.
If y ¼ M, then, since M* R M by antisymmetry, we’d have M ¼ M*. But since

M* 6¼ M, we know that y 6¼ M. If y 2 S[q � 1]\{M}, then, since M* R M, by
transitivity, we would have y R M, but this contradicts the assumption that M is a
minimal element of S[q � 1].

Therefore, y !R M*, and after the loop is done when j = q, the current value of M
is a minimal element of S[q]. ▯

The elements of S can be indexed as S ¼ {y[1], y[2], . . . , y[n]} so that

if y i½ � R y j½ �; then i<¼ j

by means of the following algorithm.

7.3 Order Relations 309

Algorithm 7.3.2: R-indexing of the n-set S

Begin
T ← S;
For j ← 1 To n Do
Find a minimal element M of T;
y[j] ← M;
T ← T\{M};
End; // the for-loop

End.

Theorem 7.3.2: After this algorithm indexes the elements of set S,

if y i½ � R y j½ �; then i<¼ j:

Proof. y[1] is a minimal element of S. Thus, 8x 2 S \{y[1]}, x !R y[1].

S \{y[1]}¼ {y[2], y[3], . . . , y[n]} so if i > 1, then y[i] !R y[1].

For each value of j from 2 to n � 1, the current set T ¼ S \{y[1], . . . , y[j � 1]} and
y[j] is a minimal element of T. Thus, 8x 2 T \{y[j]}, x !R y[j]. But

T \{y[j]} ¼ (S \{y[1], . . . , y[j� 1]})\{y[j]}¼ {y[jþ 1], y [jþ 2],. . . ,y[n]}

Therefore, if i > j, then y[i] !R y[j]. The contrapositive of this statement is

if y i½ � R y j½ �; then i<¼ j: ▯

// Using this ordering of S, the matrix representation of R will be upper triangular.
//X Must y[n] be a maximal element of S?

The Most Important Ideas in This Section.
A relation R on a set S is an order relation whenever it is antisymmetric
and transitive. An order relation R is a partial order whenever R is (also)
reflexive. A partial order R is a total order whenever R (also) has the
comparability property. This section formalized the idea of objects occurring
in a preference ranking.

The graphical representation of a Partial Order on a finite set S can be
simplified to what’s known as a Hasse Diagram.

310 7 Relations: Especially on (Integer) Sequences

7.4 Relations on Finite Sequences

If X ¼ (x1, x2, . . . , xm) and Y ¼ (y1, y2, . . . , yn) are sequences of any objects at all

X equals Y means
m¼ n and xi ¼ yi for i¼ 1; 2; . . . ;m:

While this may be the most fundamental relation between sequences, the main focus
of this section is the study of two (other) order relations on sequences of numbers.

7.4.1 Domination

If X ¼ (x1, x2, . . . , xm) and Y ¼ (y1, y2, . . . , yn) are sequences of numbers,

X is dominated by Y [written X D Y] means

1ð Þ m<¼ n // Y is at least as long as X
and 2ð Þ xi <¼ yi for i¼ 1; 2; . . . ;m: // Each yi is at least as big as xi

For instance, (1,2,3) D (2,2,4,0) and (2,2,4,0) D (4,4,4,4).

// When X D Y, some books say that X is “majorized” by Y.
// Is this a total order? Which properties does D have?

Theorem 7.4.1: D is a partial order but not a total order

Proof. // We must prove that D is reflexive, transitive, antisymmetric
// and show it does not have the comparability property.

D is reflexive because if X¼ Y, thenm¼ n, and condition (2) is satisfied so XD Y.

// What about antisymmetry?
Suppose X D Y and Y D X. // Must X ¼ Y?

Then

1ð Þ m<¼ n and n<¼m so m¼ n //<¼ is anti-symmetric:
and 2ð Þ xi <¼ yi for i¼ 1; 2; . . . ;m and yi <¼ xi for i¼ 1; 2; . . . ; n so

xi ¼ yi for i¼ 1; 2; . . . ;m¼ n: //<¼ is anti-symmetric:

Hence, X ¼ Y, and therefore, D is antisymmetric.

// What about transitivity?
Suppose X D Y and Y D Z where Z ¼ (z1, z2, . . . , zp). // Must X D Z?

Since X D Y and Y D Z,

1ð Þ m<¼ n and n<¼ p so m<¼ p //<¼ is transitive:
and 2ð Þ xi <¼ yi for i¼ 1; 2; . . . ;m and yi <¼ zi for i¼ 1; 2; . . . ; n so

xi <¼ zi for i¼ 1; 2; . . . ;m: //<¼ is transitive:

Hence, X D Z, and therefore, D is transitive.

7.4 Relations on Finite Sequences 311

If X ¼ (1,2,3) and Y ¼ (3,2,1), then X !D Y and Y !D X, and therefore, D does
not have the comparability property. ▯

Hasse diagrams of the dominates relation D
In this diagram, D is restricted to the set of all three sequences on {0, 1, 2}.

222

212

202

121

111

101

020

010

000

221

120

211220

201210

100

110200

122

012

022112

102021

001

002011

In this diagram, D is restricted to the set of all increasing three sequences on {1..6}.

456

356

346 256

345 246 156

245 236 146

235 145 136

234 135 126

124

134 125

123

312 7 Relations: Especially on (Integer) Sequences

7.4.2 Lexicographic Order

The ordering of words in a dictionary is based on the ordering of the letters in the
alphabet. In a dictionary,

KIND comes before KINDER // A prefix comes before an extension.
KINDER comes before KINDEST. // R precedes S in the alphabet.

The basic idea in lexicographic (i.e., dictionary) ordering of words may be used to
provide a (total) ordering of finite sequences of numbers as follows:

if X ¼ (x1, x2, . . . , xm) and Y ¼ (y1, y2, . . . , yn) are sequences of numbers,

X is lexicographically less than or equal Y [written X L Y] means

either 1ð Þ m<¼ n and xi ¼ yi for i¼ 1; 2; . . . ;m;

or 2ð Þ 9 an index j where 1 <¼ j<¼m; n such that

xj < yj but if 1 <¼ i< j then xi ¼ yi:

// Condition (1) asserts that X is a “prefix” of Y.
// Condition (2) asserts that at the first index where xi 6¼ yi, we have xi < yi.
//X If X D Y, then X L Y. (But the converse is false.)
//X If X L Y, then x1 <¼ y1.

// Is L really a total order? Which properties does L have?
Since (1,2,3) L (2,2) but (2,2) !L (1,2,3), L is not symmetric.

Theorem 7.4.2: L is a total order

Proof. // We must prove that L is reflexive, transitive, antisymmetric, and
// has the comparability property.

L is reflexive because if X ¼ Y, then m ¼ n, and condition (1) is satisfied
so X L Y.

If X 6¼ Y and m<¼ n; then // Take X to be the shorter sequence:

either xi ¼ yi for i¼ 1; 2; . . . ;m
or 9 an index j where 1<¼ j<¼m such that xj 6¼ yj but if 1<¼ i< j then

xi ¼ yi:

In the first case, m must be < n (if m ¼ n, then X ¼ Y) so X L Y and Y !L X.
In the second case, either xj < yj or xj > yj. If xj < yj, then X L Y and Y !L X;
if xj > yj, then Y L X and X !L Y. Therefore, we have shown that

if X 6¼ Y, then X L Y or Y L X but not both,

and this proves both that L is antisymmetric and has the comparability property.

// But what about transitivity?

7.4 Relations on Finite Sequences 313

Suppose X L Y and Y L Z where Z ¼ (z1, z2, . . . , zp). // Can we show that X L Z?

// It seems that there are several (tedious) cases we must consider.

Since X L Y, x1 <¼ y1 and since Y L Z, y1 <¼ z1. Therefore x1 <¼ z1. If x1 < z1,
then X L Z. Otherwise, x1 ¼ y1 ¼ z1.
Let j be the length of a longest common prefix of X and Y. Then 1 <¼ j <¼ m, n.
If j¼ n, then Y is a prefix of X, so Y L X by antisymmetry X ¼ Y, and therefore,
X L Z. Otherwise, j < n and

either m¼ j< n and X is a prefix of Y

or j<m and j< n and xjþ1 < yjþ1:

Let k be the length of a longest common prefix of Y and Z. Then 1 <¼ k <¼ n, p.
If k¼ p then Z is a prefix of Y so Z L Y; by anti-symmetry Z¼ Y, and therefore X L Z.
Otherwise, k < p and

either n¼ k< p and Y is a prefix of Z

or k< n and k< p and ykþ1 < zkþ1:

Suppose now that j < n and k < p.
If j > k, then xi ¼ yi ¼ zi for i ¼ 1,2,. . . , k and xkþ1 ¼ ykþ1 < zkþ1, and so X L Z.

Otherwise, j <¼ k and xi ¼ yi ¼ zi for i ¼ 1,2,. . . , j.
If j ¼ m, then (X is a prefix of Z so) X L Z.
If j < m, then xjþ1 < yjþ1 <¼ zjþ1 and so X L Z.

// If yjþ1 6¼ zjþ1, then yjþ1 < zjþ1.
Thus, L is transitive. ▯

The Most Important Ideas in This Section.
Two order relations were defined on finite sequences of numbers:

X is dominated by Y [X D Y],
and X is lexicographically less than or equal Y [X L Y].

D is a partial order but not a total order; L is a total order.
If S¼ {O[1], O[2], O[3], . . . , O[n]} is a set of indexed objects of any kind,

and T is a sequence of these objects (O[a], O[b], O[c], O[d]), T corresponds to
the sequence of indices (a, b, c, d). Applying lexicographic ordering to the
sequences of indices produces a total ordering of the sequences of objects.

In the next section, we expand the idea of domination to compare com-
plexity functions of algorithms, so we can “rank” their efficiency. In Chap. 9,
we develop algorithms for (efficiently) generating sequences of several kinds
in “lexicographic” order, from the first to the last.

// the minimum element to the maximum

314 7 Relations: Especially on (Integer) Sequences

7.5 Relations on Infinite Sequences

This section concerns relations on complexity functions of algorithms taken as
real-valued sequences defined on P. The three relations defined in Sect. 7.4 may be
extended to infinite sequences. Suppose f ¼ (x1, x2, . . .) and g ¼ (y1, y2, . . .) are
sequences of numbers. Then

f equals g means xi ¼ yi for 8i 2 P; // f ¼ g

f is lexicographically less than or equal g means // f L g
f ¼ g or 9 an index j where xj < yj but if 1<¼ i< j; then xi ¼ yi;

and f is dominated by g means xi <¼ yi for 8i 2 P: // f D g

As sequences defined on P, it’s easy to see that

n D n2 and n2 D n3 and n3 D n4 and n4 D n5. . .

1n D 2n and 2n D 3n and 3n D 4n and 4n D 5n. . .

In Chap. 3, we noted that n D 2n, and therefore, lg(n) D n.

Also n D nþ lg nð Þ½ �; nþ lg nð Þ½ � D 2n; and nlg nð Þ D n2:

We also saw that n2 D 3n, but n2 !D 2n because n2 <¼ 2n except when n ¼ 3.
// 32 > 23

In Chap. 4, we proved that (n!) D nn and that nn D (n!)2.

Therefore; lg n!ð ÞD nlgðnÞ and nlgðnÞ D 2lg n!ð Þ:
However, the main objective of this section is to determine relations between

complexity functions of algorithms that will indicate when they are similar and
when one is better than another. The relation D (by itself) does not serve either
purpose very well. For instance, n2 is a much better complexity than 2n even though
n2 !D 2n, and even though (n � 1) D n, (n � 1) is very similar to n.

We want a fairly rough measure of complexity that will detect large and
important changes in complexity. In earlier chapters, we found that (for large
values of n)

from prime testingffiffiffi
n

p
is much, much better than n/2

but n/2 is somewhat better than n� 2 // but not much, much better

from searching
lgðnÞ is much better than nþ 1ð Þ/2; // for large n

7.5 Relations on Infinite Sequences 315

and from sorting
n n� 1ð Þ/2 is roughly similar to n2

but n� lgðnÞ is of lower complexity than n2:

We want a way of comparing and ranking complexity functions that makes these
ideas precise.

Complexity functions are nonnegative and usually increasing, since the number
of steps it takes to solve a larger problem is (almost always) more than the number of
steps it takes to solve a smaller problem. As n gets bigger, f(n) gets bigger.

// These functions are also (almost always) concave up; that is, the extra work in
// doing a problem of size n þ 1 compared to doing a problem of size n also
// increases (with n).

We will devise a way to classify the rates of growth of such functions so that all
linear functions, f(n) ¼ An þ B with A > 0, end up in the same class as n itself,
H(n), and all quadratic functions, f(n) ¼ An2 þ Bn þ C with A > 0, end up in the
same class as n2 itself, H(n2).

We will begin by defining a fairly large set of functions F that will include the
complexity functions of algorithms. Later, we’ll define an equivalence relation on
F so that all linear functions are equivalent and so that all quadratic functions are
equivalent. And finally, we’ll define an order relation <<< on F where

ffiffiffi
n

p
<<< n/2 and lgðnÞ<<< nþ 1ð Þ/2 and n� lgðnÞ<<< n2:

Let F denote the set of all infinite, real-valued sequences (with domain P) that are
“eventually positive”; that is, there is an N 2 P such that if n >¼ N, then f(n) > 0.

7.5.1 Asymptotic Dominance and Big-Oh Notation

The last section on sorting algorithms listed the time they took to sort a list of
length n, T(n). We found that T(n) was roughly proportional to the number
of comparisons of array elements, f(n). That is,

TðnÞ ffi K� f ðnÞ;

where the constant of proportionality K depended on the machine, operating
system, compiler, etc. The exact value of K was not as important to us as the fact
that it was a constant. Counting the number of comparisons of array elements
gave a rough measure of the “cost” of using each sorting algorithm and also a
means of comparing their efficiencies.

Often, we’re only interested in the worst case and would be satisfied by an upper
bound on the cost which would apply for all large values of n (say >¼ M) like

if n>¼M then TðnÞ<¼K � f ðnÞ:

This relation between T(n) and f(n) is known as asymptotic dominance.
If f(n) and g(n) are sequences in F ,

316 7 Relations: Especially on (Integer) Sequences

f is asymptotically dominated by g [written f << g] means
9 K 2 Rþ and 9 M 2 P such that if n >¼ M, then f(n) <¼ K � g(n).

// Rþ denotes the set of positive real numbers.
Asymptotic domination is a weaker condition than ordinary domination because we
can multiply g(n) by an arbitrary positive constant and, even then, the domination
inequality does not need to apply until n is sufficiently large. Furthermore, if f D g,
then (taking K ¼ 1 and M ¼ 1) f << g. Because D is reflexive, << is also
reflexive.

Example 7.5.1: 900n<< n2.

// We need a value for K, a value for M, and an algebraic “argument” that shows
// if n >¼ our value of M, then 900n <¼ our value of K � n2.

Let K ¼ 1 and let M ¼ 900. If n >¼ 900, then 900 � n <¼ n � n ¼ 1 � n2.

// In fact, many different values of K and M will “work”, and
// any such pair of values proves asymptotic domination.

Let K¼ 900 and let M¼ 1: If n>¼ 1 then n<¼ n� n so 900� n< ¼ 900� n2:
Let K¼ 30 and let M¼ 30: If n>¼ 30 then 30� n<¼ n� n so

900� n¼ 30� 30n<¼ 30� n2:

// Also, if any particular value of K works, then any larger value of K will work.
// And if any particular value of M works, then any larger value of M will work.

Example 7.5.2: n2 !<< 900n.

// Here we need to show that no pair of values “works” to prove asymptotic
// domination. That is, for any value of K (no matter how large)
// and any value of M (no matter how large), the conditional statement
// “if n >¼ the value of M then n2 <¼ the value of K �(900n)”
// is False.
//
// It’s False if we can find a value of n, say n*, where
// n* >¼ the value of M
// but (n*)2 > the value of K � (900n*).

Let K be any given positive real number and let M be any given positive integer.
Now let n* ¼ M þ dK e� 900. Then n* >¼ M and, since n* > K � 900,

ðn*Þ2 > ðK� 900Þ n*ð Þ¼K � 900n*ð Þ:

In general, if f(n) and g(n) are sequences in F ,

f is not asymptotically dominated by g [written f !<< g] means
8 K 2 Rþ and 8 M 2 P, 9 n* >¼ M where f(n*) > K � g(n*).

Examples 7.5.1 and 7.5.2 show that<< is not symmetric. The next example
shows it’s not antisymmetric. // What properties does<< have?

7.5 Relations on Infinite Sequences 317

Example 7.5.3: n(n � 1)/ 2 << n2 and n2 << n(n � 1)/2
When n 2 P, n(n � 1)/ 2 <¼ n(n � 1) < n2, // n(n � 1)/2 D n2

Taking K ¼ 1 and M ¼ 1, we have

if n>¼M; then nðn� 1Þ/2<¼K � n2; and therefore; nðn� 1Þ/2<< n2:

Even though n(n � 1)/ 2 is dominated by n2, if we multiply it by a sufficiently
large constant K, it might then dominate n2 from some point on.

// Let’s try K¼ 4: Then; n2 <¼K n n� 1ð Þ/2½ � ¼ 2n n� 1ð Þ¼ 2n2 � 2n

// , 2n<¼ n2 , 2<¼ n:

Let K ¼ 4 and let M ¼ 2. If n >¼ 2, then n2 >¼ 2n so

n2 <¼ n2 þ n2 � 2n
� �¼ 2n2 � 2n¼ 4 nðn� 1Þ/2½ � ¼K � nðn� 1Þ/2½ �;

and therefore, n2 << n(n � 1)/2.

Theorem 7.5.1: The relation << is transitive.

Proof. Suppose f << g and g << h where f, g, and h are sequences in F .
// Is f << h?

Since f << g and g << h,

9K1 2 Rþ and 9M1 2 P such that if n>¼M1; then f ðnÞ<¼K1� gðnÞ
and 9K2 2 Rþ and 9M2 2 P such that if n>¼M2; then gðnÞ<¼K2� hðnÞ:

Let K ¼ K1 � K2 and let M ¼ M1 þ M2. // K 2 Rþ and M 2 P
Now, if n >¼ M, then

n>¼M2 so gðnÞ<¼ K2� hðnÞ
K1> 0 so K1� gðnÞ<¼ K1� K2� hðnÞf g¼ K1�K2f g� hðnÞ

and n>¼M1 so f ðnÞ<¼ K1� gðnÞ<¼ K1�K2f g� hðnÞ¼K� hðnÞ;

and therefore, f << h. ▯

Theorem 7.5.2: The relation << does not have the comparability property

Proof. //We must find two sequences, f and g, and show that f !<< g and g !<< f.
// In fact, we’ll construct two incomparable, increasing, integer sequences.

Let f ðnÞ¼ n!ð Þ� n!ð Þ and

let gðnÞ¼ 2rð Þ! 2rð Þ! 2rð Þ
2rð Þ! 2rð Þ! 2r þ 1ð Þ

�
if n¼ 2r
if n¼ 2r þ 1:

318 7 Relations: Especially on (Integer) Sequences

Tabulating the first few values of these sequences, we get

n f(n) g(n)
1 1 1 // n ¼ 1 ¼ 2(0) þ 1 so r ¼ 0
2 4 8
3 36 12
4 576 2304
5 14400 2880

For any r 2 P, we have

f 2rð Þ¼ 2rð Þ! 2rð Þ!
< g 2rð Þ¼ 2rð Þ! 2rð Þ! 2rð Þ

< g 2r þ 1ð Þ¼ 2rð Þ! 2rð Þ! 2r þ 1ð Þ
< f 2r þ 1ð Þ¼ 2rð Þ! 2rð Þ! 2r þ 1ð Þ 2r þ 1ð Þ
< f 2r þ 2ð Þ¼ 2rð Þ! 2rð Þ! 2r þ 1ð Þ 2r þ 1ð Þ 2r þ 2ð Þ 2r þ 2ð Þ
< g 2r þ 2ð Þ¼ 2rð Þ! 2rð Þ! 2r þ 1ð Þ 2r þ 1ð Þ 2r þ 2ð Þ 2r þ 2ð Þ 2r þ 2ð Þ:

If n ¼ 2r, then g(n) ¼ f(n) � n, and if n ¼ 2r þ 1, then f(n) ¼ g(n) � n.
Recall that f1 !<< f2 means

8 K 2 Rþ and 8 M 2 P; 9 n*>¼M;where f1 n*ð Þ>K� f2 n*ð Þ:

Let K be any given positive real number and let M be any given positive integer.
Let r* ¼ M þ dKe. // r* 2 P and r* > M, K.
If n* ¼ 2r*, then

n*>¼M and g n*ð Þ¼ f n*ð Þ� n*>K� f n*ð Þ so g !<< f :

If n* ¼ 2r* þ 1, then

n*>¼M and f n*ð Þ¼ g n*ð Þ� n*>K � g n*ð Þ so f !<< g: ▯

Because we’re looking at sequences that are eventually positive, we can give
an additional attribute when f << g. We know 9K 2 Rþ and 9M 2 P such that if
n >¼ M, then f(n) <¼ K � g(n), and, since f 2 F , 9N 2 P such that if n >¼ N,
then 0 < f(n). If we let Mþ ¼ max{M, N}, we get

if f << g, then 9K 2 Rþ and 9Mþ 2 P such that if n >¼ Mþ
,

then 0< f ðnÞ <¼ K � g(n).

If f and g are sequences in F and A 2 Rþ, we can create three other sequences in
F as follows: For 8 n 2 P, let

Afð ÞðnÞ¼A� f ðnÞ
f þ gð ÞðnÞ¼ f ðnÞ þ gðnÞ // and gþ fð Þ¼ f þ gð Þ

and f � gð ÞðnÞ¼ f ðnÞ� gðnÞ: // and g� fð Þ¼ f � gð Þ

7.5 Relations on Infinite Sequences 319

Theorem 7.5.3: For sequences in F

1. g << (f þ g).
2. If A 2 Rþ, then Af << f and f << Af.
3. If f << g and A 2 Rþ, then Af << g.
4. If f << g, then (f þ g) << g.
5. If f1 << g and f2 << g, then (f1 þ f2) << g.
6. If f1 << g1 and f2 << g2, then (f1 þ f2) << (g1 þ g2).
7. If f1 << g1 and f2 << g2, then (f1 � f2) << (g1 � g2).

Proof.
// We’ll prove each of these seven assertions but in a slightly different order
// because some are special cases of others.

// First we’ll prove 1.
Because f is eventually positive, 9N 2 P such that if n >¼ N, then f(n) > 0.

Let K ¼ 1 and M ¼ N. If n >¼ M, then g(n) <¼ g(n) þ f(n) ¼ (f þ g)(n);
so g << f þ g.

// Next, we’ll prove 3.
If f << g, then 9K2Rþ and 9M2 P such that if n>¼M, then f(n)<¼K� g(n).

If A 2 Rþ, then AK 2 Rþ, and now, if n >¼ M, then

Afð ÞðnÞ¼A� f ðnÞ<¼A� ½K � gðnÞ� ¼ AKð Þ� gðnÞ

so Af << g. // What about 2?
Since f << f, using g ¼ f in 3, we get 8A 2 Rþ, Af << f, and, in particular,
f þ f ¼ 2f << f. If A 2 Rþ, then (1/A) 2 Rþ, and we have (1/A)(Af) << Af; that
is, f << Af.

// Next, we’ll prove 6.
Suppose that f1 << g1 and f2 << g2. Then

9K1 2 Rþ and 9M1 2 P such that if n>¼M1 then f1ðnÞ<¼K1� g1ðnÞ;
and 9K2 2 Rþ and 9M2 2 P such that if n>¼M2 then f2ðnÞ<¼K2� g2ðnÞ:

Let K = max{K1, K2} and M ¼ max{M1, M2}. Suppose n >¼ M. Then

f1þ f2ð ÞðnÞ¼ f1ðnÞ þ f2ðnÞ<¼K1� g1ðnÞ þ K2� g2ðnÞ
<¼K� g1ðnÞ þ K� g2ðnÞ¼K� g1ðnÞ þ g2ðnÞ½ � ¼K� g1þ g2ð ÞðnÞ½ �:

Thus, (f1 þ f2) << (g1 þ g2).
To prove 5, take g1 ¼ g2 ¼ g in 6, then we get f1 þ f2 << g þ g << g (from 2).
To prove 4, take f1 ¼ f and f2 ¼ g in 5, then we get f þ g << g.

320 7 Relations: Especially on (Integer) Sequences

// Finally, we’ll prove 7.

Suppose that f1 << g1 and f 2 << g2. Then

9K1 2 Rþ and 9M1þ 2 P such that if n>¼M1þ then 0< f1ðnÞ<¼K1� g1ðnÞ;
and

9K2 2 Rþ and 9M2þ 2 P such that if n>¼M2þ then 0< f2ðnÞ<¼K2� g2ðnÞ:

Let K ¼ K1 � K2 and M ¼ max{M1þ, M2þ}. Suppose n >¼ M. Then

f1� f2ð ÞðnÞ¼ f1ðnÞ� f2ðnÞ<¼ K1� g1ðnÞ½ � � f2ðnÞ // f2ðnÞ> 0

<¼ K1� g1ðnÞ½ � � K2� g2ðnÞ½ � // g1ðnÞ> 0

¼ K1�K2½ � � g1ðnÞ� g2ðnÞ½ � ¼ K � g1� g2ð ÞðnÞ½ �:

Thus, (f1 � f2) << (g1 � g2). ▯

We have used the notation << to denote asymptotic domination to stress its
properties and similarity to ordinary domination, but other books do not use it.
They use what’s called Big-Oh notation. When f << g, it is often said that “f is of
order g” or “f is O(g)”. In some books, O(g) is called an “order class” and is defined
as a set by

OðgÞ¼ f : f << gf g:

From this point on, we will assume that the following are all equivalent assertions:
1. f is asymptotically dominated by g.
2. f << g.
3. f is of order g.
4. f is O(g).
5. f 2 O(g).

And all of these mean

9K 2 Rþ and 9M 2 P such that if n>¼M; then f ðnÞ<¼K� gðnÞ:

If an algorithm has “complexity O(n2)”, we now understand that to mean that the
cost of running that algorithm on input of size n is bounded by some constant times
n2 when n is large.

Some algorithms are said to have “complexity f which is O(1)”.
// What can that mean?

We interpret “1” as the sequence (1,1,1,. . .) and “f is O(1)” to mean that f << 1;
that is,

9K 2 Rþ and 9M 2 P such that if n>¼M; then f ðnÞ<¼K � 1¼K:

Setting B ¼ max{K, f(1), f(2), f(3), f(4),. . . , f(M � 1)}, we see f(n) <¼ B for
8n 2 P. Thus, “f is O(1)” means “f is bounded”.

7.5 Relations on Infinite Sequences 321

7.5.2 Asymptotic Equivalence and Big-Theta Notation

If f(n) and g(n) are sequences in F ,

f is asymptotically equivalent to g [written f 	 g] means
f << g and g<< f :

We’ve seen n(n � 1)/2 	 n2. // But is this really an equivalence relation?

// f << f (and f << f)) f 	 f so 	 is reflexive.
// f 	 g) f << g and g << f) g << f and f << g) g 	 f, so 	 is symmetric.
// f 	 g and g 	 h) f << g and g << f
// and g << h and h << g
//) f << h and h << f (because << is transitive)
//) f 	 h and hence 	 is transitive.

//X logb(n) 	 lg(n) for 8 b > 1
// that is, all logarithm functions are equivalent no matter what the base is.
//X f 	 g , 9A,B 2 Rþ and 9 M 2 P such that

if n>¼M; then A� f ðnÞ<¼ gðnÞ<¼B� f ðnÞ:

The relation 	 partitions F into equivalence classes. We will use what’s called
Big-Theta notation to denote these classes:

HðgÞ¼ f : f 	 gf g:

From this point on, we will assume that the following are all equivalent assertions:
1. f is asymptotically equivalent to g.
2. f 	 g.
3. f is H(g).
4. f 2 H(g).
And all of these mean f << g and g << f.

7.5.2.1 Polynomials

Example 7.5.4: 6n3 � 10n2 þ 3n� 12<< n3:
If n >¼ 1, then

6n3 � 10n2 þ 3n� 12<¼ 6n3 þ 3n<¼ 6n3 þ 3n3 ¼ 9n3:

Thus, if K ¼ 9 and M ¼ 1, the condition for asymptotic dominance is satisfied.

Example 7.5.5: n3 << 6n3 � 10n2 þ 3n� 12:
If n >¼ 1, then

6n3 � 10n2 þ 3n� 12>¼ 6n3 � 10n2 � 12
>¼ 6n3 � 10n2 � 12n2

¼ 6n3 � 22n2:

322 7 Relations: Especially on (Integer) Sequences

If n >¼ 22, then n3 ¼ n � n2 >¼ 22n2, and so

6n3 � 10n2 þ 3n� 12>¼ 5n3 þ n3 � 22n2
� �

>¼ 5n3 > n3:

Thus if K ¼ 1 and M ¼ 22 the condition for asymptotic dominance is satisfied.

// We’ve shown that (6n3 � 10n2 þ 3n � 12) 	 n3.

Example 7.5.6: n3 << 0:4ð Þn3 � 10n2 þ 3n� 12:
Let K = 2/(0.4) ¼ 5. Then, when n >¼ 1,

K� 0:4ð Þn3 � 10n2 þ 3n� 12
� �¼ 2n3 � 50n2 þ 15n� 60

> 2n3 � 50n2 � 15n� 60

> 2n3 � 50n2 � 15n2 � 60n2

¼ 2n3 � 125n2

¼ n3 þ n3 � 125n2

¼ n3 þ n2 n� 125f g:

If n>¼ 125; then n3 þ n2 n� 125f g>¼ n3:

Thus, if K ¼ 5 and M ¼ 125, the condition for asymptotic dominance is satisfied.

These last few examples are instances of a general theorem about polynomials,
which we will prove in detail from the definitions.

Theorem 7.5.4: Suppose f(n) is a polynomial of degree d; that is,
f(n) ¼ ad � nd þ ad�1 � nd�1 þ . . . þ a2 � n2 þ a1 � n þ a0 where each
aj 2 R and ad 6¼ 0.

If ad > 0, then f(n) is a polynomial of degree d in F and f 2 H(nd).
If ad < 0, then f(n) is eventually negative, so is not in the set F .

Proof. // This argument has three parts to it.
Part 1. Let K ¼ jadj þ jad � 1j þ . . . þ ja2j þ ja1j þ ja0j. // K 2 Rþ

If n >¼ 1,

f ðnÞ¼ ad � nd þ ad�1 � nd�1 þ . . .þ a2 � n2 þ a1 � nþ a0
<¼ adj jnd þ ad�1j jnd�1 þ . . .þ a2j jn2 þ a1j jnþ a0j j
<¼ adj jnd þ ad�1j jnd þ . . .þ a2j jnd þ a1j jnd þ a0j jnd
¼ adj j þ ad�1j jf þ . . .þ a2j j þ a1j j þ a0j jgnd
¼ K� nd: // so f ðnÞ D K� nd

If f is in F , then f << nd. // But when is f is in F ? And when is nd << f ?
Let g(n) ¼ ad�1 � nd�1 þ . . . þ a2 � n2 þ a1 � n þ a0

and B ¼ jad�1j þ . . . þ ja2j þ ja1j þ ja0j. // B >¼ 0

7.5 Relations on Infinite Sequences 323

Using the same inequalities as above, we have g(n) <¼ B � nd�1. Then

f ðnÞ¼ ad � nd þ gðnÞ<¼ ad � nd þ B� nd�1 ¼ ad � nþ Bf gnd�1:

Part 2. If ad is negative, ad¼ �jadj. Then, for any n > B/jadj, since ad < 0,

ad � n< ad � B/jadjð Þ¼�B:

Then ad � nþ B<�Bþ B¼ 0
and f ðnÞ<¼ ad � nþ Bf gnd�1 < 0: // f ðnÞ is eventually negative

That is, f(n) is not eventually positive and cannot be in F .

Part 3. // Next, we show that if ad is positive, then f is in F and nd << f(n).
Since for any number a, �jaj <¼ a, we have for all n 2 P

gðnÞ ¼ ad�1 � nd�1 þ . . . þ a2 � n2 þ a1 � n þ a0
>¼ �jad�1jð Þnd�1 þ . . . þ �ja2jð Þn2 þ �ja1jð Þn þ �ja0jð Þ
>¼ �jad�1jð Þnd�1 þ . . . þ �ja2jð Þnd�1 þ � a1j jð Þnd�1 þ �ja0jð Þnd�1

¼ � ad�1j jf þ . . . þ a2j j þ a1j j þ a0j jgnd�1

¼ � Bf gnd�1:

Assume that ad> 0. LetK¼ 2/ad and letM¼1þ dKBe. // ThenK2Rþ andM2 P.
If n >¼ M, then n > KB and

K � f ðnÞ¼ Kad � nd þ Kad�1 � nd�1þ . . . þ Ka2 � n2 þ Ka1 � nþ Ka0

¼ 2� nd þ K� gðnÞ
>¼ 2� nd þ K� � Bf gnd�1

� 	
¼ nd þ nd � KBf gnd�1

� 	
¼ nd þ n� KB½ �nd�1

> nd: // and so f ðnÞ> nd/K > 0

Thus, f is eventually positive, f is in F , and nd << f.
We have shown that if f(n) is a polynomial of degree d in F , then f 	 nd and so

f 2 H(nd). ▯

For sequences in F and A 2 Rþ:
1. If f	 g and A 2 Rþ, then Af	 g.
2. If f<< g, then (f þ g)	 g.
3. If f1<< g and f 2	 g, then (f1 þ f 2)	 g.
4. If f1	 g1 and f 2	 g2, then (f1 þ f 2)	 (g1 þ g2).
5. If f1	 g1 and f 2	 g2, then (f1 � f 2)	 (g1 � g2).

// The proofs of these assertions are left as exercises.
// All the work has been done earlier on << in Theorem 7.5.3.

324 7 Relations: Especially on (Integer) Sequences

7.5.3 Asymptotic Ranking

If f(n) and g(n) are sequences in F ,

f is of lower order than g [written f <<< g] means
f << g but g !<< f :

We’ve seen 900n<<< n2: // in Examples 7:5:1 & 7:5:2
// f <<< g implies f << g but f !	 g: // here “but” means “and”

// Is this really an order relation on F ? What properties does <<< have?
The relation <<< is clearly not reflexive; if f << g but g !<< f, then f 6¼ g.

Theorem 7.5.5: The relation <<< is an order relation on F

Proof. // We must show that <<< is transitive and antisymmetric.
Suppose f <<< g and g <<< h where f, g, and h are sequences in F .

// Is f <<< h?
We know that f << g but g !<< f and g << h but h !<< g.
Since f << g and g << h, we have f << h. // because << is transitive
If it were the case that h << f, then, because f << g and << is transitive, we’d
have h << g; since this contradicts h !<< g, we know that h !<< f. Because f << h
and h !<< f, f <<< h. Therefore, <<< is transitive.

If f <<< g, then f << g and g !<< f, so it cannot be the case that that g << f,
and therefore, it cannot be the case that that g <<< f. Thus, <<< is anti-
symmetric. ▯

The relation <<< does not have the comparability property. The two sequences,
f and g, given in the proof of Theorem 7.5.2 were incomparable under <<; that is,
f !<< g and g !<< f. Therefore, they are incomparable under <<<; that is, f !<<< g
and g !<<< f.

The relation <<< acts (consistently) on whole equivalence classes; that is,

Theorem 7.5.6: If f 1 	 f and g1 	 g and f1 <<< g1 then f <<< g

Proof. Suppose that f 1	 f, g1	 g, and f1 <<< g1. Then

f << f1 and g1<< g and f1<< g1 but g1 !<< f1:

// We want to show that f << g but g !<< f.

Since f << f1and f1 << g1andg1 << g, andbecause << is transitive,weget f << g .
If it were the case that g << f, then

g1<< g and g<< f and f << f1 would give g1<< f1:

Because this contradicts g1 !<< f1, we must have g !<< f . Thus, f <<< g. ▯

7.5 Relations on Infinite Sequences 325

// In fact, what we proved was as follows: If f << f1 and f1 <<< g1 and g1 << g,
// then f <<< g.
// If f is of order f1 and f1 is of lower order than g1 and g1 is of order g,
// then f is of lower order than g.

7.5.4 Strong Asymptotic Dominance and Little-Oh Notation

There is yet another relation on F that is used to rank complexity functions.

f is strongly asymptotically dominated by g [written f SD g] means

8K 2 Rþ; 9MðKÞ 2 P such that if n>MðKÞ; then K� f ðnÞ< gðnÞ:

// For any positive real number K (no matter how large),
// there is a starting point (depending on the value of K) such that
// if n is any integer > M(K), then K � f(n) is strictly smaller than g(n).

For example, n SD n2.
Suppose K is any given positive real number. Let M(K) ¼ dKe. // M(K) 2 P.
If n > M(K), then n > K and so K � n < n2.

// Some books use “Little-Oh notation” to denote this relation, and it is usually
// defined by f is o(g) , limit{f(n)/g(n)} = 0.
// (We discussed limits of sequences in Sect. 2.4).

//X What properties does SD have? Is SD an order relation?

Theorem 7.5.7: If f SD g, then f <<< g //X The converse is false.

Proof. Suppose that f SD g // We must show that f << g and g !<< f.
Then

8 K1 2 Rþ; 9M1 K1ð Þ 2 P such that if n>¼M1 K1ð Þ; then K1 � f ðnÞ< gðnÞ:
// We use K1 and M1(K1) to distinguish the constants in the definition of SD
// from those in the definitions of that f << g and g !<< f.

To prove that f << g, we must show that

9K2 2 Rþ and 9M2 2 P such that if n>¼M2; then f ðnÞ<¼K2 � gðnÞ:

Let K2 ¼ 1 and M2 ¼ 1þM1(1). // K2 2 Rþ and M2 2 P.
Using K1 ¼ 1, we get

if n>M1 K1ð Þ; then K1 � f ðnÞ¼ 1� f ðnÞ< gðnÞ; that is;

if n>¼M2; then f ðnÞ< gðnÞ¼K2 � gðnÞ:

Therefore, f << g.

326 7 Relations: Especially on (Integer) Sequences

To prove that that g !<< f, we must show that

8 K3 2 Rþ and 8 M3 2 P; 9 n*>¼M3 where g n*ð Þ>K3 � f n*ð Þ:

Let K3 be any given positive real number and let M3 be any positive integer.
Using K1 ¼ K3,

9M1 K3ð Þ 2 P; such that if n>M1 K3ð Þ; then K3 � f ðnÞ< gðnÞ:

Now let n* ¼ M3 þ M1(K3) then n* >¼ M3 and g(n*) > K3 � f(n*).
// n* > M1(K3)

Therefore, g !<< f. ▯

The relation SD does not have the comparability property. The two sequences,
f and g, given in the proof of Theorem 7.5.2 are incomparable under <<; that is,
f !<< g and g !<< f. Therefore, f !<<< g and g !<<< f. The contrapositive
of Theorem 7.5.7 gives us f !SD g and g !SD f.

Theorem 7.5.8: 1 SD lg(n) and n SD n � lg(n)

Proof. // We will show that 8K 2 Rþ, 9M(K) 2 P, such that
// if n > M(K), then K � 1 < lg(n), and K � n < n � lg(n).

Suppose K is any given positive real number. Let M(K) ¼ d2Ke.
If n > M(K), then n > 2K, and so

K � 1¼ lg 2K
� �

< lgðnÞ and also K � n< n� lgðnÞ: ▯

The Most Important Ideas in This Section.
We defined F to be the set of all infinite, real-valued sequences (with domain
P) that are “eventually positive”; that is, there is an N 2 P such that if n>¼ N,
then f(n) > 0. The set F contains the complexity functions of algorithms, and
we examined several relations on F . If f(n) and g(n) are sequences in F :
1. f is asymptotically dominated by g [f << g or f 2 O(g)] ,

9K 2 Rþ and 9M 2 P such that if n >¼ M, then f(n) <¼ K � g(n).
2. f is not asymptotically dominated by g [f !<< g] ,

8K 2 Rþ and 8M 2 P, 9 n* >¼ M where f(n*) > K � g(n*).
3. f is asymptotically equivalent to g [f 	 g or f 2 H(g)] ,

f << g and g << f.
4. f is of lower order than g [f <<< g] ,

f << g but g !<< f.
5. f is strongly asymptotically dominated by g [f SD g or f is o(g)] ,

8 K 2 Rþ, 9M(K) 2 P such that if n > M(K), then K � f(n) < g(n).

(continued)

7.5 Relations on Infinite Sequences 327

(continued)

The relation	was shown to be an equivalence relation, so it partitions
F into equivalence classes, where the class containing f(n) is denoted H(f).
We proved that if f(n) is a polynomial of degree d in F , then f 2 H(nd).

All three of the relations <<, <<<, and SD are order relations, so they
allow ranking of complexity functions. The following list shows many of the
common complexity classes in increasing “cost”. All of these comparisons
can be established using SD (or using Little-Oh).

1 <<< lgðnÞ
lgðnÞ <<< np whenever p> 0
np <<< nq whenever q> p> 0

nq <<< nlgðnÞ whenever q> 0

nlgðnÞ <<< n
ffiffi
n

p

n
ffiffi
n

p
<<< bn whenever b> 1

bn <<< cn whenever c> b> 0
cn <<< n! whenever c> 0
n! <<< nn

All bounded functions are of lower order than all logarithmic functions.
All logarithmic functions are of lower order than all power functions with
p > 0.
All power functions (polynomials) are of lower order than nlg(n).
The function nlg(n) is of lower order than n

ffiffi
n

p
.

The function n
ffiffi
n

p
is of lower order than all exponential functions with b > 1.

So all power functions are of lower order than all exponential functions with
b > 1.
All exponential functions with b > 1 are of lower order than the factorial
function, n!.

Exercises

1. Consider the set S ¼ {0, 1, 2, 3, 4, 5, 6} and the relations

R1 ¼ {(a,b): a,b 2 S, a> b}, and R2 ¼ {(a,b): a,b 2 S, max(aþ b, ab)¼ 3 or 6}:

(a) Give a matrix representation for each relation.
(b) Give a digraph representation for each relation.
(c) Determine the properties of each relation.
(d) Which relation is a partial order, an equivalence relation or neither?

2. Let S ¼ {1, 2, 3}. Define a relation R on S that is reflexive.

328 7 Relations: Especially on (Integer) Sequences

3. Let S ¼ {1, 2, 3, 4, 5} and let R be a relation on S where R ¼ {(1, 2), (1, 3),
(2, 4), (3, 5), (4, 1), (5, 4)}. What additional pairs must be added to R to make it
transitive?

4. Let S ¼ {1, 2, 3}. Define a relation R on S where every integer in S appears in
at least one ordered pair in R and R is
(a) Symmetric
(b) Antisymmetric

5. Let S ¼ {1, 2, 3, 4}. Define a relation R on S that has the comparability
property.

6. Let X ¼ {3, 4, 5, 6, 7} and let R be the relation on X defined by a R b , ab þ
b < 30. Find a “counter-example” to prove each of the following:
(a) R is NOT reflexive.
(b) R is NOT transitive.
(c) R is NOT symmetric.
(d) R is NOT antisymmetric.

7. Let S denote the set of Boolean expressions:
(a) The “implies” relation on S is denoted using the symbol “)”. (Recall from

Chap. 3 that P) Q means that the conditional expression, P ! Q, is
always True.) What properties does the relation) have?

(b) In Chap. 3 two Boolean expressions P and Q were said to be equivalent
[written P,Q] when they had exactly the same truth tables. Therefore ,
denotes a relation on S. Is this really an equivalence relation? What
properties does , have?

8. Let G ¼ (V, E) be an undirected graph. Define a relation R on V by

v R w , there is a path joining vertices v and w:

What properties does R have?
9. Let D ¼ (V, A) be a directed graph. Define a relation R on V by

v R w , there is a dipath from vertex v to vertex w:

What properties does R have?
If D has no cycles, what properties does R have?

10. Let S ¼ {1, 2, 3, 4} and R be an equivalence relation on S where R ¼ {(1, 1),
(1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)}. What are the equivalence
classes of R?

11. Let S ¼ {1, 2, 3, 4, 5} and R be an equivalence relation on S where R ¼ {(1, 1),
(2, 2), (2, 4), (2, 5), (3, 3), (4, 2), (4, 4), (4, 5), (5, 2), (5, 4), (5, 5)}. What are
the equivalence classes of R?

12. Let D ¼ (V, A) be a directed graph. Define a relation R on V by

v R w , there is a dipath from vertex v to vertex w
and there is a dipath from vertex w to v:

7.5 Relations on Infinite Sequences 329

(a) Show that R is an equivalence relation.
(b) An equivalence class X together with all arcs joining vertices in X, is called

a “strong component” of D. Prove that all vertices occurring in some cycle
C, are in the same strong component.

(c) Consider the digraph D* ¼ (V*, A*) where V* is the set of equivalence
classes of D, and where there is an arc from class A to class B in D* ,
there is an arc in D from a vertex a in A to a vertex b in class B. Prove that
D* is acyclic.

13. Suppose that R is a relation on set X. Define a second relation, R*, on X by

x R* y , x R y and y R x

(a) Prove that R* is symmetric.
(b) Prove that if R is transitive, then R* is transitive.
(c) Prove that if R is reflexive and transitive, then R* is an equivalence

relation.
14. Construct the operation tables for Z6 like the ones given in Example 7.2.3. Does

your table show that if [a] ⊗ [b] ¼ [0] then either [a] ¼ [0] or [b] ¼ [0]?
15. Suppose that k is a given positive integer. Zk denotes the set of equivalence

classes determined by the relation R on Z defined by

a R b if and only if f ðaÞ¼ f ðbÞ;

where f(x) ¼ x MOD k, the nonnegative remainder obtained when x is divided
by k:
(a) Show a R b if and only if b ¼ a þ kn for some integer n.
(b) Show a R b if and only if b � a ¼ kn for some integer n.
(c) Show a R b if and only if k|(b � a).
(d) Show that if a R b and c R d, then (a þ c) R (b þ d).

// This shows that the addition of classes given by [a] � [b] ¼ [a þ b] is
// “independent of the representatives of the classes”.

(e) Show that if a R b and c R d, then (a � c) R (b � d).

// This shows that the addition of classes given by [a] ⊗ [b] ¼ [a � b] is
// “independent of the representatives of the classes”.

16. Let S ¼ {1, 2, 3, 4, 5} and R be a relation on S where R ¼ {(1, 1), (1, 3), (1, 5),
(2, 2), (2, 4), (3, 3), (3, 5), (4, 4), (5, 5)}.
(a) Is R an order relation on S? Why or why not?
(b) Is R a partial order relation on S? Why or why not?
(c) Is R a total order relation on S? Why or why not?

17. Let S ¼ {1, 2, 3, 4, 5} and R be a relation on S where R ¼ {(1, 1), (1, 3), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(5, 5)}.
(a) Is R an order relation on S? Why or why not?
(b) Is R a partial order relation on S? Why or why not?
(c) Is R a total order relation on S? Why or why not?

330 7 Relations: Especially on (Integer) Sequences

18. Consider a finite sequence Y ¼ (1, 3, 5, 2, 4).
(a) Give an example of a finite sequence X such that X is dominated by Y.
(b) Give an example of a finite sequence Z such that Y is dominated by Z.

19. Consider a finite sequence Y ¼ (1, 3, 5, 2, 4).
(a) Give an example of a finite sequence X such that X is lexicographically

less than Y.
(b) Give an example of a finite sequence Z such that Y is lexicographically

less than Z.
20. Let S denote the set of all five sequences on Z. Consider the set T of ten

elements of S:

s1 ¼ 4; 2; 9; 5; 5ð Þ s2 ¼ 4; 2; 3; 1; 2ð Þ s3 ¼ �2; 3; 3;�2; 4ð Þ
s4 ¼ 7; 6; 8; 3; 9ð Þ s5 ¼ 0;�1; 5; 1; 3ð Þ s6 ¼ 3; 1; 3; 0; 3ð Þ
s7 ¼ 4; 2; 4; 5; 5ð Þ s8 ¼ 4;�2; 9; 1; 6ð Þ s9 ¼ 4; 2; 9;�1; 6ð Þ
s10 ¼ 4; 2; 9; 5; 6ð Þ

(a) Sort the ten elements of T into lexicographic order, smallest to largest.
(b) Using the relation “is dominated by” on S:

1. Find an element of S which is dominated by all of these ten.
2. Find two elements in the ten which are not comparable under this

relation.
3. Draw the Hasse diagram of the set T.
4. Find the least upper bound of the set T in S.

21. Suppose that R is an order relation on a set S and that T is a subset of S. Prove
the following:
(a) If T has a minimum element, it is unique.
(b) If q is a minimum element, then q is minimal.
(c) Prove that b covers a , b is a minimal element of {x 2 S \ {a}: a R x}.

22. Suppose that R is an order relation on a set S and that T is a subset of S. Prove
the following:
(a) If T has a maximum element, it is unique.
(b) If q is a maximum element, then q is maximal.
(c) If T is finite, T must have at least one maximal element.
(d) What is the minimum upper bound for the subset in Example 7.3.1?

23. After Algorithm 7.3.2 has R-indexed the n-set S, is y[n] a maximal element of S?
24. Construct an example where X L Y but X !D Y.
25. Prove that if X L Y, then x1 <¼ y1.
26. Prove that logb(n) 	 lg(n) for 8 b > 1. Is logb(n) ¼ K � lg(n) for some

particular real number K?
27. Prove that f 	 g ,

9 A,B 2 Rþ and 9 M 2 P such that if n >¼ M, then
A � f(n) <¼ g(n) <¼ B � f(n).

7.5 Relations on Infinite Sequences 331

28. List the following ten complexity classes from lowest complexity to highest:
nlg(n), n2, 2n, n!, n, 1, nn, ð ffiffiffi

5
p Þn, ffiffiffi

n
p

, lg(n).
29. Suppose that f, f1, f 2, g, g1, and g2 are sequences in F . Prove each of the

following:
(a) If f 	 g and A 2 Rþ then Af 	 g.
(b) If f << g, then (f þ g) 	 g.
(c) If f1 << g and f2 	 g, then (f1 þ f2) 	 g.
(d) If f1 	 g1 and f2 	 g2, then (f1 þ f2) 	 (g1 þ g2).
(e) If f1 	 g1 and f2 	 g2, then (f1 � f2) 	 (g1 � g2).

30. Suppose that f1 ¼ n, f2 ¼ n2, g1 ¼ n3, and g2 ¼ 2n2. Then f1 << g1 and
f2 	 g2. Prove that (f1 þ f2) <<< (g1 þ g2) and so (f1 þ f2) !	 (g1 þ g2).

31. Prove that SD is an order relation.
32. Prove that the converse of Theorem 7.5.7 is False.

Find two sequences, f and g, where f <<< g and f !SD g.
Hint: Consider these two increasing integer sequences

f ðnÞ¼ n!ð Þ and

gðnÞ¼ 2rð Þ! 2rð Þ
2rð Þ! 2r þ 1ð Þ

�
if n¼ 2r

if n¼ 2r þ 1:

332 7 Relations: Especially on (Integer) Sequences

8Sequences and Series

When we considered the Towers of Hanoi in Sect. 2.4, we saw that the number
of single disc transfers required to move a tower of n > 1 discs, Tn, satisfied
the equation

Tn ¼ Tn�1þ 1þTn�1;

or Tn ¼ 2Tn�1þ 1: ð8:1:1Þ

This is an example of a recurrence equation � where the generic entry in a sequence
is expressed in terms of one or more previous entries. Such equations arise
frequently when counting the operations done by an algorithm and in other counting
problems.

“Solving a recurrence equation” means finding a sequence that satisfies the
recurrence equation. Finding a “general solution” means finding a formula that
describes all possible solutions (all possible sequences that satisfy the equation).

The recurrence equation (8.1.1) tells how the sequence continues but doesn’t
tell us how the sequence starts:

If T1 ¼ 1; then T ¼ 1; 3; 7; 15; 31; . . .ð Þ: // if T has domain P

Let’s assume that T is some sequence defined on the set of positive integers, P.
Using the recurrence equation alone (not some intrinsic meaning for the entries),
we can determine that

If T1 ¼ 2; then T ¼ 2; 5; 11; 23; 47; 95; . . .ð Þ:
If T1 ¼ 4; then T ¼ 4; 9; 19; 39; 79; 159; . . .ð Þ:
If T1 ¼ �1; then T ¼ �1;�1;�1;�1;�1;�1; . . .ð Þ:

// Are there formulas for each of these sequences?
// Is there a formula (perhaps involving n and the value of T1) describing all
// possible solutions to recurrence equation (8.1.1)?

Before answering those two questions, we want to show you a few more
sequences that are

8.1 Examples Defined by Recurrence Equations

Example 8.1.1: Derangements

Imagine a party where couples arrive together, but at the end of the evening,
every person leaves with a new partner. For each n 2 P, let Dn denote the number of
different ways n couples can be “deranged” – that is, rearranged in couples so no
one is paired with the person they arrived with.

Then D1 ¼ 0 // one couple cannot be deranged:
D2 ¼ 1 // 9 one and only one way to derange two couples:
D3 ¼ 2 // If the couples arrive as Aa; Bb; and Cc;

// then A would be paired with b or c:
// If A is paired with b; C must be paired with a not cð Þ;
// and then B with c:
// If A is paired with c; B must be paired with a not bð Þ;
// and then C with b:

// How big are D4, D5, and D10? How can we calculate them? Is there a formula?

Let’s develop a strategy for counting derangements when n >¼ 4. Suppose the
n women are A1, A2, A3, . . . An, and each Aj arrives with man aj.

Woman A1 may be “re-paired” with any of the n � 1 men a2 or a3 or . . . or an;
let’s say she’s paired with ak where 2 <¼ k <¼ n. Now let’s consider ak’s original
partner, woman Ak: she might take a1 or she might refuse a1 and take someone else.

If A1 is paired with ak and Ak is paired with a1, there are n � 2 couples left to
derange, and that may be done in exactly Dn�2 different ways.

If A1 is paired with ak but Ak refuses a1, we could pretend that Ak and a1 arrived
together, so now, there are n � 1 couples left to derange which may be done in
exactly Dn�1 different ways.

For each of the n � 1 men that A1 might choose, there are {Dn�2 þ Dn�1}
different ways to complete the derangement. Therefore, when n >¼ 4,

Dn ¼ n� 1ð Þ Dn�2þDn�1f g: ð8:1:2Þ

// This also applies when n ¼ 3.
// Equation 8.1.2 is an example of a second-order recurrence equation,
// where the generic entry is expressed in terms the previous two entries.

334 8 Sequences and Series

Using Eq. 8.1.2 together with the values of D1 and D2, we can evaluate Dn for
any value of n: // in principle

D3 ¼ 3� 1ð Þ D2þD1f g ¼ 2 1þ 0f g ¼ 2
D4 ¼ 4� 1ð Þ D3þD2f g ¼ 3 2þ 1f g ¼ 9
D5 ¼ 5� 1ð Þ D4þD3f g ¼ 4 9þ 2f g ¼ 44
D6 ¼ 6� 1ð Þ D5þD4f g ¼ 5 44þ 9f g ¼ 265
D7 ¼ 7� 1ð Þ D6þD5f g ¼ 6 265þ 44f g ¼ 1 854
D8 ¼ 8� 1ð Þ D7 þD6f g ¼ 7 1854þ 265f g ¼ 14 833
D9 ¼ 9� 1ð Þ D8þD7f g ¼ 8 14833þ 1854f g ¼ 133 496
D10 ¼ 10� 1ð Þ D9þD8f g ¼ 9 133496þ 14833f g ¼ 1 334 961

// It’s strange that 1 334 961 ¼ 10� (133 496) þ 1. Or is it?
// Is there a (convenient and compact) formula for Dn that we can use to calculate
// its values?

The sequence on P defined by Sn ¼ A � n! where A is any real number satisfies
the recurrence equation (8.1.2). If n >¼ 3 then

n� 1ð Þ Sn�2þ Sn�1f g ¼ n� 1ð Þ A n� 2ð Þ!þA n� 1ð Þ!f g
¼ n� 1ð ÞA n� 2ð Þ! 1þ n� 1½ �f g
¼ A n� 1ð Þ n� 2ð Þ! nf g
¼ A� n!
¼ Sn:

// But will this “formula” apply when n ¼ 1 or n ¼ 2?
// Does there exist a real number A such that Dn ¼ A(n!) when n ¼ 1 or n ¼ 2?
// No, because if 0 ¼ D1 ¼ A(1!), then A must equal 0,
// and if 1 ¼ D2 ¼ A(2!), then A must equal ½.

We can however use this formula to prove that Dn is H(n!) by proving

Theorem 8.1.1: For all n >¼ 2, (1/3)n! <¼ Dn <¼ (1/2)n!

Consider the table of values

n (1/3)n! Dn (1/2)n!
1 1/3 0 1/2
2 2/3 1 1 ¼ 2/2
3 6/3 ¼ 2 2 3 ¼ 6/2
4 24/3 ¼ 8 9 12 ¼ 24/2
5 120/3 ¼ 40 44 60 ¼ 120/2
6 720/3 ¼ 240 265 360 ¼ 720/2

8.1 Examples Defined by Recurrence Equations 335

Proof. // by strong Mathematical Induction on n
Step 1. If n ¼ 2, then (1/3)n! ¼ 2/3 < 1 ¼ Dn ¼ (1/2)n!
and if n ¼ 3, then (1/3)n! ¼ 6/3 ¼ 2 ¼ Dn < 3 ¼ (1/2)n!.
Step 2. Assume 9 k >¼ 3 such that if 2 <¼ n <¼ k, then (1/3)n! <¼ Dn <¼ (1/2)n!.
Step 3. If n ¼ k þ 1, then n >¼ 4 and

Dn ¼ (n � 1){Dn�2 þ Dn�1} where 2 <¼ n � 2 < n � 1 <¼ k.

Thus; Dn >¼ n� 1ð Þ 1=3ð Þ n� 2½ �!þ 1=3ð Þ n� 1½ �!f g ¼ 1=3ð Þ n!;
// as we saw before

and Dn <¼ n� 1ð Þ 1=2ð Þ n� 2½ �!þ 1=2ð Þ n� 1½ �!f g ¼ 1=2ð Þ n!:
// as we saw before

▯
The nicest formula for Dn that we know uses the “nearest integer” function.

For any real number x, let dxc denote the nearest integer to x defined as follows:
when x is written as n þ f where n is the integer xb c, and f is a fraction where
0 <¼ f < 1:

if 0 <¼ f < 1=2 then dxc ¼ n;

if 1=2 <¼ f < 1 then dxc ¼ nþ 1: // Is dxc ¼ bxþ 1=2c?

So 3:29d c ¼ 3; �3:78d c ¼ �4; þ 3:78d c ¼ 4, and 3:50d c ¼ 4.
Then Dn ¼ n!ð Þ=ed c where e ¼ 2.718 281 828 44 . . . is the base of the natural

logarithms. // (n!)/e is never equal to n!ð Þ=eb cþ 1=2:

// There is another (much less compact) formula for Dn given in the exercises,
// along with an outline of the proof that Dn ¼ n!ð Þ=ed c (for you to complete).

Example 8.1.2: Ackermann Numbers
In the 1920s, a German logician and mathematician, Wilhelm Ackermann

(1896–1962), invented a very curious function, A:P � P ! P, which we will
define recursively using three “rules”:

Rule 1: A 1; nð Þ ¼ 2 for n ¼ 1; 2; . . . ;
Rule 2: A m; 1ð Þ ¼ 2m for m ¼ 2; 3; . . . ;
Rule 3: When both m and n are larger than 1;

A m; nð Þ ¼ A A m� 1; nð Þ; n� 1ð Þ:

n Dn n!/e
1 0 0.367 879 441
2 1 0.735 758 882
3 2 2.207 276 647
4 9 8.829 106 588
5 44 44.145 532 94
6 265 264.873 197 6
7 1 854 1 854.112 384
8 14 833 14 832.899 07
9 133 496 133 496.091 6

10 1 334 961 1 334 960.916

336 8 Sequences and Series

Then A 2; 2ð Þ ¼ A A 2� 1; 2ð Þ ; 2� 1ð Þ // Rule 3
¼ A A 1; 2ð Þ ; 1ð Þ
¼ A 2 ; 1ð Þ // Rule 1
¼ 2 2ð Þ // Rule 2
¼ 4:

Also; A 2; 3ð Þ ¼ A A 2� 1; 3ð Þ ; 3� 1ð Þ // Rule 3
¼ A A 1; 3ð Þ ; 2ð Þ
¼ A 2 ; 2ð Þ // Rule 1
¼ 4 // above

In fact; if Að2; kÞ ¼ 4; // for some k>¼ 2
then Að2; kþ 1Þ¼ AðAð2� 1; kþ 1Þ ; ½kþ 1� � 1Þ // Rule 3

¼ AðAð1; kþ 1Þ ; kÞ
¼ Að 2 ; kÞ // Rule 1
¼ 4: // our assumption

Thus; A 2; nð Þ ¼ 4 for all n>¼ 1: // by MI

So far the table of Ackermann numbers looks like this:

A n ¼ 1 n = 2 3 4 5 6 7 8 9. . .
m ¼ 1 2 2 2 2 2 2 2 2 2. . .
m = 2 4 4 4 4 4 4 4 4 4. . .

3 6
4 8
5 10

// The second row is all 4’s.
// What’s the second column like?

Að3; 2Þ ¼ AðAð3� 1; 2Þ ; 2� 1Þ // Rule 3
¼ AðAð2; 2Þ ; 1Þ
¼ Að 4 ; 1Þ // second row
¼ 2ð4Þ // Rule 2
¼ 8:

Að4; 2Þ ¼ AðAð4� 1; 2Þ ; 2� 1Þ // Rule 3
¼ AðAð3; 2Þ ; 1Þ
¼ Að 8 ; 1Þ // above
¼ 2ð8Þ // Rule 2
¼ 16:

8.1 Examples Defined by Recurrence Equations 337

// Is the second column the powers of 2?

If Aðk; 2Þ ¼ 2k; // for some k>¼ 2
then Aðkþ 1; 2Þ ¼ AðAð½kþ 1� � 1; 2Þ ; 2� 1Þ // Rule 3

¼ AðAðk; 2Þ ; 1Þ
¼ Að 2k ; 1Þ // our assumption
¼ 2ð2kÞ // Rule 2
¼ 2kþ 1:

Thus, A(m, 2) ¼ 2m for all m >¼ 1.
// What are the other values like?

Að3; 3Þ ¼ AðAð3� 1; 3Þ ; 3� 1Þ // Rule 3
¼ AðAð2; 3Þ ; 2Þ
¼ Að 4 ; 2Þ // second row
¼ 24 // second column
¼ 16:

Að4; 3Þ ¼ AðAð4� 1; 3Þ ; 3� 1Þ // Rule 3
¼ AðAð3; 3Þ ; 2Þ
¼ Að 16 ; 2Þ // above
¼ 216 // second column
¼ 65 536:

Að3; 4Þ ¼ AðAð3� 1; 4Þ ; 4� 1Þ // Rule 3
¼ AðAð2; 4Þ ; 3Þ
¼ Að 4 ; 3Þ // second row
¼ 65 536: // above

// What is the value of A(4, 4)?
// Could you run a simple recursive program to evaluate A(4, 4)?

Að5; 3Þ ¼ AðAð5� 1; 3Þ ; 3� 1Þ // Rule 3
¼ AðAð4; 3Þ ; 2Þ
¼ Að65536 ; 2Þ // above
¼ 265536 // second column
¼ a very large number:

// with about 20;000 digits ðin base 10Þ

338 8 Sequences and Series

So far, we have

// How does the third column continue?

Let 2"k denote the value of a “tower” of k 2’s, defined recursively by

2"1 ¼ 2; and for k>¼ 1; 2 " kþ 1½ � ¼ 22
"k:

Then 2"2 ¼ 22
"1 ¼ 22 ¼ 4;

2"3 ¼ 22
"2 ¼ 24 ¼ 16;

and 2"4 ¼ 22
"3 ¼ 216 ¼ 65 536:

We can prove (by Mathematical Induction) that A(m, 3) ¼ 2"m for 8m 2 P.
Step 1. If m ¼ 1, then by Rule 1, A(1, 3) ¼ 2 and 2 ¼ 2"1.
Step 2. Assume 9 k >¼ 1 such that A(k, 3) ¼ 2"k.
Step 3. If m ¼ k þ 1, then by Rule 3

Aðkþ 1; 3Þ ¼ AðAð½kþ 1� � 1; 3Þ ; 3� 1Þ
¼ AðAðk; 3Þ ; 2Þ
¼ Að 2 " k ; 2Þ // our assumption
¼ 22

"k // second column
¼ 2 " ðkþ 1Þ: // definition of "

Thus, A(m, 3) ¼ 2"m for all m >¼ 1. // by MI
▯

Finally; Að4; 4Þ ¼ AðAð4� 1; 4Þ ; 4� 1Þ // Rule 3
¼ AðAð3; 4Þ ; 3Þ
¼ Að65 536 ; 3Þ // above
¼ 2 " ð65 536Þ:

But this is a number so big it could never be written out in decimal digits, not
even using all the paper in the world. Its value can never be calculated. Are
Ackermann numbers “computable”? On the other hand, let’s assume that the
sequences we encounter, even those defined by recurrence equations, will be easy
to understand and deal with.

A n = 1 2 3 4 5 6
m = 1 2 2 2 2 2 2
2 4 4 4 4 4 4
3 6 8 16 65536 ?
4 8 16 65536 ?
5 10 32 265536

8.1 Examples Defined by Recurrence Equations 339

The Most Important Ideas in This Section.
Derangements were defined and the number of derangements of n couples
produced a sequence Dn on P. The entries satisfy the recurrence equation

Dn ¼ n� 1ð Þ Dn�2þDn�1f g

when n >¼ 3, and the “boundary values” D1 ¼ 0 and D2 ¼ 1. From this, we
can calculate any later entry. But the entries grow very large very rapidly
since Dn is H(n!). In fact, Dn ¼ n!ð Þ=ed c.

Then we looked at Ackermann’s function, also defined by a recurrence
equation and boundary values. But its values grow so incredibly large its very
existence might be questioned.

The next section considers (some more useful) recurrence equations (REs)
and their solutions.

8.2 Solving First-Order Linear Recurrence Equations

A first-order linear recurrence equation relates consecutive entries in a sequence
by an equation of the form

Snþ1 ¼ aSnþ c for 8 n in the domain of S: ð8:2:1Þ

But let’s assume that the domain of S is N. Let’s also assume that a 6¼ 0; otherwise,
Sn ¼ c for 8n > 0, and the solutions to (8.2.1) are not very interesting.

// What are they?
We saw in Chap. 3, that when a ¼ 1, any sequence satisfying (8.2.1) is an
arithmetic sequence, and when S is defined on N and S0 is some initial value I,

Sn ¼ Iþ nc for 8 n 2 N: // Theorem 3:6:4

Also, when c ¼ 0, any sequence satisfying (8.2.1) is a geometric sequence, and
when S is defined on N and S0 is some initial value I,

Sn ¼ anI for 8 n 2 N: // Theorem 3:6:7

Furthermore, Theorem 3.6.8 gives a formula for the sum of the first (n þ 1) terms
of a geometric series when a 6¼ 1:

a0Iþ a1Iþ a2Iþ . . . þ anI ¼ I 1þ aþ a2þ . . . þ an
� � ¼ I

anþ1 � 1
a� 1

:

340 8 Sequences and Series

In particular; 1þ 1=2þ 1=2ð Þ2þ 1=2ð Þ3þ . . . þ 1=2ð Þn ¼ 1=2ð Þnþ1�1
h i

= 1=2� 1½ �

¼ 1� 1=2ð Þnþ1
h i

= 1=2½ �
¼ 2� 1=2ð Þn:

Equation 8.2.1 says how the sequence continues, after starting with some initial
value I but doesn’t restrict the value of I; hence, there is an infinite number of solutions.
A general solution is an algebraic description of all such solution sequences.

If S is any sequence on N satisfying (8.2.1), then denoting S0 by I, we have

S1 ¼ aS0þ c ¼ aIþ c;

S2 ¼ aS1þ c ¼ a aIþ c½ � þ c ¼ a2Iþ acþ c;

S3 ¼ aS2þ c ¼ a a2Iþ acþ c
� �þ c ¼ a3Iþ a2cþ acþ c:

. . .

So we might conjecture

Sn ¼ anIþ an�1cþ an�2cþ . . . þ acþ c for 8 n 2 P: ð8:2:2Þ

This can be proved by MI – if for some k 2 P, Sk ¼ akI þ ak-1c þ ak-2c þ . . . þ
ac þ c then

Skþ1 ¼ aSk þ c

¼ a akIþ ak�1cþ ak�2cþ . . . þ acþ c
� �þ c

¼ akþ 1Iþ akcþ ak�1cþ . . . þ a2cþ acþ c:

Thus, (8.2.2) is correct. Hence, if S is any sequence on N satisfying (8.2.1), then for
8n 2 P

if a ¼ 1; Sn ¼ 1nIþ 1n�1cþ 1n�2cþ . . . þ 1cþ c

¼ Iþ nc; // And this formula works for S0

and if a 6¼ 1; Sn ¼ anIþ an�1cþ an�2cþ . . . þ acþ c

// and from Theorem 3:6:9

¼ anIþ c
1� an

1� a
¼ anIþ c

1� a
� an

c

1� a

¼ an I � c

1� a

h i
þ c

1� a
: // And this formula works for S0

Therefore, the general solution of the recurrence equation

Snþ1 ¼ aSnþ c for 8 n 2 N ð8:2:1Þ

8.2 Solving First-Order Linear Recurrence Equations 341

is given in two parts:

if a ¼ 1; Sn ¼ Iþ nc for 8 n 2 N;
if a 6¼ 1; Sn ¼ anAþ c

1 � a
for 8 n 2 N:

When a ¼ 1, any particular solution is obtained by determining a specific,
numerical value for I. In fact, a particular solution is determined by a specific,
numerical value J for any (particular) entry, Sj. Solving the equation

J ¼ Iþ jc for I; // since Sj ¼ Iþ jc
we get I ¼ J � jc: // where S0 ¼ I

// One particular “particular solution” has I ¼ 0.

When a 6¼ 1, any particular solution is obtained by determining a specific,

numerical value for A; if the starting value I is given, then A ¼ I � c

1� a
. In fact,

a particular solution is determined by a specific, numerical value J for any
(particular) entry, Sj. Solving the equation

J ¼ Aajþ c

1� a
for A;

we get A ¼ 1
a j

J � c

1� a

h i
: // But what if a ¼ 0?

// One particular “particular solution” has A ¼ 0.

Example 8.2.1: The Towers of Hanoi

The recurrence equation for the number of moves in the Towers of Hanoi
problem is a first-order linear recurrence equation:

Tn ¼ 2Tn�1þ 1:

Here a ¼ 2 and c ¼ 1, so
c

1 � a
¼ 1

1 � 2
¼ �1, and any sequence T that satisfies

this RE is given by the formula

Tn ¼ 2n I � �1ð Þ½ � þ �1ð Þ
¼ 2n Iþ 1½ � � 1:

Assuming T has domain N and denoting T0 by I, we saw at the beginning of this
chapter several particular solutions:

if I ¼ 0; then T ¼ 0; 1; 3; 7; 15; 31; . . .ð Þ; // Tn ¼ 2n 0þ 1½ � � 1 ¼ 2n � 1:
if I ¼ 2; then T ¼ 2; 5; 11; 23; 47; 95; . . .ð Þ; // Tn ¼ 2n 2þ 1½ � � 1 ¼ 3� 2n � 1:
if I ¼ 4; then T ¼ 4; 9; 19; 39; 79; 159; . . .ð Þ; // Tn ¼ 2n 4þ 1½ � � 1 ¼ 5� 2n � 1:
if I ¼ �1; then T ¼ �1;�1;�1;�1;�1; . . .ð Þ: // Tn ¼ 2n �1þ 1½ � � 1 ¼ �1:

342 8 Sequences and Series

Example 8.2.2: The three Shipwrecked Pirates

A pirate ship is wrecked in a storm at night. Three of the pirates survive and find
themselves on a beach the morning after the storm. They agree to cooperate to
ensure their continued survival. They spot a monkey in the jungle near the beach
and spend all of that first day collecting a large pile of coconuts and then go to sleep
exhausted.

But they are pirates.
The first one sleeps fitfully, worried about his share of the coconuts; he wakes,

divides the pile into 3 equal piles, but finds one left over which he throws into the
bush for the monkey, buries his third in the sand, heaps the two other piles together,
and goes to sleep soundly.

The second pirate sleeps fitfully, worried about his share of the coconuts; he
wakes, divides the pile into 3 equal piles, but finds one left over which he throws
into the bush for the monkey, buries his third in the sand, heaps the two other piles
together, and goes to sleep soundly.

The third one too sleeps fitfully, worried about his share of the coconuts; he
wakes, divides the pile into 3 equal piles, but finds one left over which he throws
into the bush for the monkey, buries his third in the sand, heaps the two other piles
together, and goes to sleep soundly.

The next morning, they all awaken and see a somewhat smaller pile of coconuts
which they divide into 3 equal piles but find one left over which they throw into the
bush for the monkey.

How many coconuts did they collect on the first day?

Let Sj denote the size of the pile after the j
th pirate and let S0 will be the number they

collected on the first day. Then

S0 ¼ 3xþ 1 for some integer x and S1 ¼ 2x;
S1 ¼ 3yþ 1 for some integer y and S2 ¼ 2y;
S2 ¼ 3zþ 1 for some integer z and S3 ¼ 2z;

and S3 ¼ 3wþ 1 for some integer w:

// Is there a recurrence equation here?

S1 ¼ 2x where x ¼ S0 � 1ð Þ=3; so S1 ¼ 2=3ð ÞS0 � 2=3ð Þ;
S2 ¼ 2y where y ¼ S1 � 1ð Þ=3; so S2 ¼ 2=3ð ÞS1 � 2=3ð Þ;
S3 ¼ 2z where z ¼ S2 � 1ð Þ=3; so S3 ¼ 2=3ð ÞS2 � 2=3ð Þ:

The recurrence equation satisfied by the first few Sj’s is

Sjþ 1 ¼ 2=3ð ÞSj � 2=3ð Þ: *ð Þ

If we now let S4 ¼ (2/3)S3 � (2/3), then S4 ¼ 2[S3 � 1]/3 ¼ 2w for some
integer w.

8.2 Solving First-Order Linear Recurrence Equations 343

We want to know what value (or values) of S0 will produce an even integer for
S4 when we apply the RE (*).
In (*), a ¼ 2/3 and c ¼ �2/3, so c/(1 � a) ¼ �2, and so the general solution of (*)
is

Sn ¼ 2=3ð Þn S0þ 2½ � � 2:

Hence; S4 ¼ 2=3ð Þ4 S0þ 2½ � � 2 ¼ 16=81ð Þ S0þ 2½ � � 2:

S4 will be an integer
, S4 þ 2 is an (even) integer
, 81 divides into [S0 þ 2]
, [S0 þ 2] ¼ 81k for some integer k
, S0 ¼ 81k � 2 for some integer k.

S0 must be a positive integer, but there are an infinite number of possible answers:

79 or 160 or 241 or 322 or . . .

// We need more information to determine S0.
// If we had been told that on the first day the pirates collected
// between 200 and 300 coconuts, we could now say
// “the number they collected on the first day was exactly 241.”

Example 8.2.3: Compound Interest

Suppose you are offered two retirement savings plans. In Plan A, you start with
$1,000, and each year (on the anniversary of the plan), you are paid 11% simple
interest, and you add $1,000. In Plan B, you start with $100, and each month, you
are paid one-twelfth of 10% simple (annual) interest, and you add $100. Which plan
will be larger after 40 years? // Can we apply a recurrence equation?

Consider Plan A and let Sn denote the number of dollars in the plan after
(exactly) n years of operation. Then S0 ¼ $1,000 and

Snþ1 ¼ Snþ interest on Snþ $1000

¼ Snþ 11% of Sn þ $1000

¼ Sn 1þ 0:11ð Þ þ $1000:

In this RE; a ¼ 1:11; c ¼ 1000; so
c

1� a
¼ 1000
�0:11 ; and

Sn ¼ 1:11ð Þn 1000� 1000
�0:11

� �
þ 1000
�0:11

¼ 1:11ð Þn 1110
þ 0:11

� �
� 1000
þ 0:11

:

344 8 Sequences and Series

Hence; S40 ¼ 1:11ð Þ40 10 090:090 909. . .ð Þ � 9 090:909 090. . .ð Þ
¼ 65:000 867. . .ð Þ 10 090:090 909. . .ð Þ � 9 090:909 090. . .ð Þ
¼ 655 917:842. . . � 9 090:909 090. . .ð Þ
ffi $646 826:

// Can that be right? You put in $40,000 and take out > $600,000 in interest.

Now consider Plan B and let Tn denote the number of dollars in the plan after
(exactly) n months of operation. Then T0 ¼ $100 and

Tnþ 1 ¼ Tnþ interest on Tn þ $100

¼ Tnþ 1=12ð Þ of 10% of Tnþ $100

¼ Tn 1þ 0:1=12½ � þ $100:

In this RE; a ¼ 12:1=12; c ¼ 100; so
c

1� a
¼ 100
�0:1=12 ¼ �12000 and

Tn ¼ 12:1=12ð Þn 100þ 12000½ � � 12000:

Hence, after 40 � 12 months,

T480 ¼ ð12:1=12Þ480 12100ð Þ � 12000ð Þ
¼ 1:008 333. . .ð Þ480 12100ð Þ � 12000ð Þ
¼ 53:700 663. . .ð Þ 12100ð Þ � 12000ð Þ
¼ 649 778:023 4. . . � 12000ð Þ
ffi $637 778:

Therefore, Plan A has a slightly larger value after 40 years.

The Most Important Ideas in This Section.
A first-order linear recurrence equation relates consecutive entries in a
sequence by an equation of the form

Sn þ 1 ¼ aSnþ c for 8 n 2 N:

The general solution is given in two parts:

if a ¼ 1; Sn ¼ Aþ nc for 8 n 2 N;
if a 6¼ 1; Sn ¼ anAþ c

1� a
for 8 n 2 N:

A particular solution is obtained by determining a specific, numerical value
for A. In fact, a particular solution is determined by a specific, numerical
value J for any (particular) entry, Sj.

8.2 Solving First-Order Linear Recurrence Equations 345

8.3 The Fibonacci Sequence

Leonardo Fibonacci, an Italian mathematician (c1170–1230), posed the following
problem. Imagine a safe enclosure for keeping rabbits. At the beginning of the year,
a pair of newborn rabbits is placed in it. Rabbits multiply like rabbits, but (for this
example) suppose that a pair will produce a new pair every month as soon as they
are old enough, and they are old enough after one month. How many rabbits will be
in there after a year?

Let Fn denote the number of pairs of rabbits in the sanctuary after n months.
Then

F0 ¼ 1;
F1 ¼ 1;
F2 ¼ 2; // an old pair and a new pair
F3 ¼ 3; // 2 old pairs and a new pair
F4 ¼ 5; // 3 old pairs and 2 new pairs
F5 ¼ 8: // 5 old pairs and 3 new pairs

// Is there a recurrence equation at work here?

At the end of any month,
of pairs of rabbits ¼ # of pairs of rabbits at the beginning of the month

þ # of pairs of rabbits born in that month
Fn ¼ Fn�1

þ # of pairs of rabbits old enough to reproduce in that month
¼ Fn�1
þ # of pairs of rabbits alive two months ago.

The “Fibonacci” sequence F satisfies the “Fibonacci recurrence equation”,

Sn ¼ Sn�1þ Sn�2: ð8:3:1Þ

Continuing by applying this recurrence, we get

F6 ¼ 13;

F7 ¼ 21;

F8 ¼ 34;

F9 ¼ 55;

F10 ¼ 89;

F11 ¼ 144;

F12 ¼ 233:

After a year, there will be 233 pairs of rabbits.

// How many will there be after 10 years, if none died of old age?
// Is there a formula for the entries in the Fibonacci sequence?

346 8 Sequences and Series

Example 8.3.1: Certain Subsets of {1..n}

Call a subset of {1..n} a “good” subset if it does not contain two consecutive
integers, k and k þ 1, and let Gn denote the number of such subsets. What are the
values of Gn?

If n ¼ 1, there are 2 subsets of {1}, ∅ and {1}, and both are good, so G1 ¼ 2.
If n ¼ 2, there are 22 subsets of {1,2}; ∅, {1}, and {2} are good, so G2 ¼ 3.

// The other subset is {1,2} and it’s not good.
If n ¼ 3, there are 23 subsets of {1,2,3}; ∅, {1}, {2}, {3}, and {1,3} are good, so
G3 ¼ 5. // The other subsets are {1,2}, {2,3}, and {1,2,3} and each is bad.
If n ¼ 4, there are 24 subsets of {1,2,3,4}; ∅, {1}, {2}, {3}, and {1,3} are good,
and so are {4}, {1,4}, and {2,4}; hence, G4 ¼ 8.

// G ¼ (2, 3, 5, 8, . . .) and looks like the Fibonacci sequence after its first two
// entries.
// Do the G-values satisfy the Fibonacci recurrence equation when n >¼ 3?

If n >¼ 3 and X is a good subset of {1..n}, then either n 2= X or n 2 X.
If n 2= X, then X is a good subset of {1..(n � 1)};
if n 2 X, then (n � 1) 2= X, so X is equal {n} [Y where Y is a good subset of

{1..(n � 2)}.
In fact, the number of good subsets of {1..n} equals

the number of good subsets X of {1..(n � 1)} plus
the number of good subsets Y of {1..(n � 2)}.

That is, if n >¼ 3, then Gn ¼ Gn�1 þ Gn�2.
Therefore, the sequence of G-values continues like the Fibonacci sequence, and

for n>¼ 1 Gn ¼ Fnþ1:

//X In howmany n-sequences offlips of a coin are there never two heads in a row?
// Or how many n-sequences of H’s and T’s don’t contain “HH”?

The first seven rows of Pascal’s triangle T of the binomial coefficients,
n
k

� 	
,

are
// from Chap. 2

k

n

0
1
2
3
4
5
6

0
1
1
1
1
1
1
1

1

1
2
3
4
5
6

2

1
3
6
10
15

3

1
4
10
20

4

1
5
15

5

1
6

6

1

8.3 The Fibonacci Sequence 347

If we were to add the numbers on the diagonals slanting upward from southwest
down to northeast,

the one from T 0; 0½ � is 1;
the one from T 1; 0½ � is 1;
the one from T 2; 0½ � is 1þ 1 ¼ 2;
the one from T 3; 0½ � is 1þ 2 ¼ 3;
the one from T 4; 0½ � is 1þ 3þ 1 ¼ 5;
the one from T 5; 0½ � is 1þ 4þ 3 ¼ 8;
the one from T 6; 0½ � is 1þ 5þ 6þ 1 ¼ 13;
the one from T 7; 0½ � will be 1þ 6þ 10þ 4 ¼ 21:

These totals are the Fibonacci numbers. //X so far, but will it continue?

//X Is Fn equal
Pk
j¼0

n� j
j

� 	
where k ¼ n=2b c?

// (Do MI on odd & even cases of k þ 1.)

8.3.1 Algorithms for the Fibonacci Sequence

How can we construct an algorithm to determine the value of Fn? That is, given a
value of n, how can we find the value of Fn? We could use recursion, as in

Algorithm 8.3.1. Fib(n)

Begin
If (n < 2) Then

Return(1);
Else

Return(Fib(n - 1) þ Fib(n - 2));
End ;

End.

This algorithm is sure to be correct. But is it efficient? The Tree of Recursive Calls
of Fib from an external call with n ¼ 5 is

Fib(5)

Fib(4) Fib(3)

Fib(3) Fib(2) Fib(2) Fib(1)

Fib(1) Fib(0) Fib(1) Fib(0)

Fib(1) Fib(0)

Fib(2) Fib(1)

348 8 Sequences and Series

The leaves correspond to calls with no sub-calls, calls where n = 0 or 1. Each
leaf returns the value 1; each internal vertex just adds the values returned by the two
vertices below it. For each input integer n, the full binary tree will have Fn leaves
and 2Fn � 1 vertices. If Fn has exponential order, these trees become very large
very quickly.

A second shortcoming of the recursive algorithm is that the same value of the
parameter n occurs in many sub-calls – when n ¼ 5

F5 is evaluated 1 time,
F4 is evaluated 1 time,
F3 is evaluated 2 times,
F2 is evaluated 3 times,
F1 is evaluated 5 times, // are these frequencies always Fibonacci numbers?

and F0 is evaluated 3 times:

Perhaps we can do better if we remember the F-values as we calculate them – in
an array, F say

Algorithm 8.3.2. Fib(n) version #2

Begin
If (n < 2) Then

Return(1);
End;
F[0] 1;
F[1] 1;
For j 2 To n Do
F[j] F[j � 1] þ F[j - 2];

End ;
Return(F[n]);

End.

But we only need the last two entries we evaluated in order to evaluate the next
entry; perhaps we can do better by just keeping those two.

// as A ¼ F[j � 2] and B ¼ F[j � 1]

Algorithm 8.3.3. Fib(n) version #3

Begin
If (n < 2) Then

Return(1);
End;
A 1;
B 1;
For j 2 To n Do

C A þ B ;
A B ;
B C; // or B A þ B; A B – A;

End;
Return(B);

End.

8.3 The Fibonacci Sequence 349

// Might there be another (even better) way, based on a formula for Fn?
// But is there a nice formula?

8.3.2 The Golden Ratio

Let us digress for a moment to introduce you to the “golden ratio”. The ancient
Greeks used it in their theory of aesthetics (beauty). A rectangle with length L and
width W displays the golden ratio when the following occurs:

W L – W

W

L

If a square with side length W is drawn inside it, the second smaller rectangle has
sides in the same proportions (the same ratio) as the large rectangle. That is,

L

W
¼ W

L�W
¼ γ; the “golden ratio”:

Then

γ ¼ W=W

L=W �W=W
¼ 1

γ � 1
:

So γ γ � 1ð Þ ¼ 1;

or γ2 � γ � 1 ¼ 0:
Therefore,

γ ¼
�ð�1Þ �

ffi
ð�1Þ2 � 4ð1Þð�1Þ

q
2ð1Þ

¼ 1� ffiffiffi
5
p

2
¼ 1� 2:236 067 977:::

2
:

That is, γ = þ1.618 033 988. . . or �0.618 033 988. . . .
But the golden ratio must be positive. // and >1
So, the golden ratio,

γ ¼ 1þ ffiffiffi
5
p

2
¼ þ 1:618 033 988. . . :

Let’s denote the other root by β; so

β ¼ 1� ffiffiffi
5
p

2
¼ �0:618 033 988. . . :

350 8 Sequences and Series

Then γ þ β ¼ 1, γ � β ¼ �1, and γ � β ¼ ffiffiffi
5
p

. // are these right?

// Both γ and β satisfy the equation x2 ¼ x þ 1, and they are the only solutions.
// But what about the Fibonacci sequence formula?

8.3.3 The Fibonacci Sequence and the Golden Ratio

The Fibonacci numbers grow fairly quickly. Maybe there is a (simple) geometric
sequence, Sn ¼ rn, that satisfies the Fibonacci RE,

Snþ2 ¼ Snþ1þ Sn for 8n 2 N: // Eq: 8:3:1ð Þ again

If there were, then rnþ2 ¼ rnþ1þ rn for 8n 2 N:

When n ¼ 0; r2 ¼ r þ 1:

Hence, r must be either γ or β.
In fact, we have

Lemma 8.3.1: Any sequence given by Sn ¼ Aγn þ Bβn for 8n 2 N satisfies
the Fibonacci RE. // where A and B may be any numbers at all

Proof.

Snþ1þ Sn ¼ Aγnþ1þBβnþ1
� �þ AγnþBβn½ �

¼ Aγnþ1þAγn
� � þ Bβnþ1þBβn

� �
¼ Aγn γþ1½ � þBβn βþ1½ �
¼ Aγn γ2

� � þBβn β2
� �

¼ Aγnþ2þBβnþ2 ¼ Snþ2:

Furthermore,

Theorem 8.3.2: Sn ¼ Aγn þ Bβn is the general solution of the Fibonacci RE.

Proof. Suppose that T is any particular solution of the Fibonacci RE defined on N.

// not necessarily the sequence for counting rabbit pairs
// We will find values for A and B and then prove that Tn ¼ Aγn þ Bβn for 8n 2 N
// (by MI).

Let’s solve the equations (for A and B) that would guarantee Tn ¼ Aγn þ Bβn

when n ¼ 0 and n ¼ 1: // So our sequence starts correctly.

8.3 The Fibonacci Sequence 351

If

T0 ¼ Aγ0þBβ0 ¼ AþB 1ð Þ
and T1 ¼ Aγ1þBβ1 ¼ AγþBβ 2ð Þ

then γT0 ¼ AγþBγ // multiplying 1ð Þ by γ
and T1 ¼ AγþBβ: // 2ð Þ again

Subtracting, we obtain

γT0 � T1 ¼ Bγ � Bβ ¼ Bðγ � βÞ ¼ B
ffiffiffi
5
p

: // γ � β ¼
ffiffiffi
5
p

So B ¼ γT0 � T1ffiffiffi
5
p :

Hence; A ¼ T0 � B ¼
ffiffiffi
5
p

T0ffiffiffi
5
p � γT0 � T1ffiffiffi

5
p ¼

ffiffiffi
5
p � γ
� �

T0þ T1ffiffiffi
5
p

¼ �βT0þ T1ffiffiffi
5
p :

// No matter how the sequence T starts (no matter what the values for T0 and T1
// are), there are unique numbers A and B such that Tn ¼ Aγn þ Bβn for n ¼ 0
// and 1.

// Continuing the proof by Mathematical Induction that Tn¼ Aγnþ Bβn for 8n 2 N.

Step 1. If n ¼ 0 or 1, then Tn ¼ Aγn þ Bβn, by our “choice” of A and B.
Step 2. Assume that 9 k >¼ 1 such that if 0 <¼ n <¼ k, then Tn ¼ Aγn þ Bβn.
Step 3. If n ¼ k þ 1, then n >¼ 2 so, because T satisfies the Fibonacci RE

Tkþ1 ¼ TkþTk�1
¼ Aγk þBβk
� �þ Aγk�1þBβk�1

� �
// by step 2

¼ Aγkþ 1þBβkþ 1: // by Lemma 8:3:1

▯

This means we can find a formula for the entries in “the Fibonacci sequence”
(for counting rabbits), F ¼ (1,1,2,3,5,8,. . .). This is a particular solution to the
Fibonacci RE which must be given by the formula Fn ¼ Aγn þ Bβn where

A ¼ �βF0þF1ffiffiffi
5
p ¼ �βþ 1ffiffiffi

5
p ¼ γffiffiffi

5
p // γþ β ¼ 1

and B ¼ γF0 � F1ffiffiffi
5
p ¼ γ � 1ffiffiffi

5
p ¼ �βffiffiffi

5
p : // γþ β ¼ 1

Thus; Fn ¼ γffiffiffi
5
p γnþ �βffiffiffi

5
p βn ¼ 1ffiffiffi

5
p γnþ 1 � βnþ 1
� �

: ð8:3:2Þ

352 8 Sequences and Series

// Can this be so?
ffiffiffi
5
p

, γ, and β are all irrational numbers but each Fn is an
// integer!

// Is F12 ¼ 233 really equal to
1ffiffiffi
5
p 1þ ffiffiffi

5
p

2

 !13

� 1� ffiffiffi
5
p

2

 !13
2
4

3
5?

Let’s tabulate a few values: // and see?

The table is a bit corrupted by round-off error, but it shows that we have

Theorem 8.3.3: 8n 2 N, Fn ¼ dγnþ1/
ffiffiffi
5
p c. // the nearest integer

Proof. // We’ll prove that we always have Fn � ½ < γnþ1/
ffiffiffi
5
p

< Fn þ ½.

// Then the nearest integer to γnþ1/
ffiffiffi
5
p

must be Fn.

We’ve seen that 8n 2 N,

Fn ¼ γnþ1/
ffiffiffi
5
p
� βnþ1/

ffiffiffi
5
p

or γnþ1/
ffiffiffi
5
p
� Fn ¼ βnþ1/

ffiffiffi
5
p

:

So γnþ1/
ffiffiffi
5
p
� Fn

��� ��� ¼ βnþ1/
ffiffiffi
5
p��� ��� ¼ βj jnþ1/

ffiffiffi
5
p

: // xyj j ¼ xj j � yj j

Since 0 < jβj < 1, for every positive integer k, 0 < jβjk < 1, // use MI
and so

0 < jγnþ1/
ffiffiffi
5
p
� Fnj ¼ jβnþ1/

ffiffiffi
5
p
j ¼ βj jnþ 1

/
ffiffiffi
5
p

< 1/
ffiffiffi
5
p

< 1=2:

If γnþ1/
ffiffiffi
5
p

>Fn; then γnþ1/
ffiffiffi
5
p � Fn < 1/2; so γnþ1/

ffiffiffi
5
p

<Fnþ 1/2:
If γnþ1/

ffiffiffi
5
p

<Fn; then Fn � γnþ1/
ffiffiffi
5
p

< 1/2; so Fn � 1/2 < γnþ1/
ffiffiffi
5
p

:

n Fn
1ffiffiffi
5
p 1þ ffiffiffi

5
p

2

 !nþ1
� 1ffiffiffi

5
p 1� ffiffiffi

5
p

2

 !nþ1

0 1 0.723 606 797 . . . þ0.276 393 202 . . .
1 1 1.170 820 39 . . . −0.170 820 393 . . .
2 2 1.894 427 19 . . . þ0.105 572 808 . . .
3 3 3.065 247 58 . . . −0.065 247 584 0 . . .
4 5 4.959 674 77 . . . þ0.040 325 224 5 . . .
5 8 8.024 922 36 . . . −0.024 922 359 3 . . .
6 13 12.984 597 1 . . . þ0.015 402 865 1 . . .
7 21 21.009 519 5 . . . −0.009 519 494 16 . . .
8 34 33.994 116 6 . . . þ0.005 883 370 94 . . .
9 55 55.003 636 1 . . . −0.003 636 123 20 . . .

10 89 88.997 752 8 . . . þ0.002 247 247 72 . . .
11 144 144.001 389 . . . −0.001 388 875 47 . . .
12 233 232.999 142 . . . þ0.000 858 372 248 . . .
13 377 377.000 531 . . . −0.000 530 503 223 . . .

8.3 The Fibonacci Sequence 353

Thus,

Fn � 1=2< γnþ1=
ffiffiffi
5
p

<Fnþ 1=2; and hence Fn ¼ dγnþ1=
ffiffiffi
5
p
c: ▯

// Does this provide a better way to evaluate Fibonacci numbers?

8.3.4 The Order of the Fibonacci Sequence

We have just seen that

Fn ffi 1=
ffiffiffi
5
p� �

γnþ1 ¼ 0:447 213 595. . .ð Þγnþ1;
or Fn ffi γ=

ffiffiffi
5
p� �

γn ¼ 0:723 606 797. . .ð Þγn: // surely Fn is H γnð Þ

Theorem 8.3.4: 8n 2 N, γn�1 <¼ Fn <¼ γn. // when is it ¼ ?
// when is it < ?

Proof. // by mathematical induction
Step 1. If n ¼ 0, then γn�1 ¼ γ�1 ¼ 0.618 033 988. . . , // 1/γ ¼ γ � 1

Fn ¼ 1; and γn ¼ γ0 ¼ 1;

If n ¼ 1; then γn�1 ¼ 1; Fn ¼ 1; and γn ¼ γ1 ¼ 1:618 033 988. . . :
If n ¼ 2; γn�1 ¼ 1:618. . . ; Fn ¼ 2; and γn ¼ γ2 ¼ 2:618 033 988. . . : // γ2 ¼ γþ 1

Step 2. Assume that 9 k >¼ 2 such that if 0 <¼ n <¼ k, then γn�1 <¼ Fn <¼ γn.
Step 3. If n ¼ k þ 1, then n >¼ 3 so, because T satisfies the Fibonacci RE

Fkþ1 ¼ Fk þFk�1:

By Step 2 FkþFk�1 >¼ γk�1þ γk�2 ¼ γk: // ¼ by Lemma 8:3:1

Hence; γ kþ1½ ��1 <¼ Fkþ1:

Also by Step 2; Fk þFk�1 <¼ γkþ γk�1 ¼ γkþ1: // ¼ by Lemma 8:3:1

Hence; Fkþ1 <¼ γkþ1: ▯

Since γ/2 ¼ 0.809 016 994. . . < 1, we have 8n 2 N

1=2ð Þγn ¼ γ=2ð Þγn�1 < γn�1 <¼ Fn <¼ γn

354 8 Sequences and Series

and therefore Fn is H(γn). // see Sect. 7.5

//X Prove that 8n 2 P (1/3)γnþ1 < Fn < (1/2)γnþ1 and (0.6)γn < Fn < (0.8)γn.

8.3.5 The Complexity of Euclid’s Algorithm for GCD

// Euclid’s Algorithm and the Fibonacci sequence?
Recall from Chap. 1

Algorithm 1.2.5 Euclid’s Algorithm for GCD(x,y) // for x, y 2 P

Begin
A x;
B y;
R A MOD B;
While (R > 0) Do

A B;
B R;
R A MOD B;

End ;
Output(“GCD(”, x, “,”, y, “)¼”, B); // or Return(B)

End.

We promised that we would prove: If Euclid’s Algorithm requires k iterations of
the while-loop, then

y>¼ 1þ ffiffiffi
5
p

2

 !k

and also k<¼ 3=2ð Þ� lgðyÞb c: // Usually k is much smaller

Consecutive Fibonacci numbers never have a common prime factor and provide a
worst case for Euclid’s Algorithm, which calculates a sequence of remainders, R[j].
Consider a

Walkthrough with x ¼ F12 ¼ 233 and y ¼ F11 ¼ 144.

output: GCD(233,144) = 1.
// all positive remainders are Fibonacci #’s

A B Rj Rj> 0 (3/2)�lg(B)
0 233 ¼ x 144 ¼ y 89 ¼ R0 T 10.75 . . .
1 144 ¼ y 89 ¼ R0 55 ¼ R1 T 9.71 . . .
2 89 ¼ R0 55 ¼ R1 34 ¼ R2 T 8.67 . . .
3 55 ¼ R1 34 ¼ R2 21 ¼ R3 T 7.63 . . .
4 34 ¼ R2 21 ¼ R3 13 ¼ R4 T 6.58 . . .
5 21 ¼ R3 13 ¼ R4 8 ¼ R5 T 5.55 . . .
6 13 ¼ R4 8 ¼ R5 5 ¼ R6 T 4.5
7 8 ¼ R5 5 ¼ R6 3 ¼ R7 T 3.48 . . .
8 5 ¼ R6 3 ¼ R7 2 ¼ R8 T 2.37 . . .
9 3 ¼ R7 2 ¼ R8 1 ¼ R9 T 1.5
10 = k 2 ¼ R8 1 ¼ R9 0 ¼ R10 F 0

8.3 The Fibonacci Sequence 355

Euclid’s Algorithm calculates a strictly decreasing sequence of nonnegative
integer remainders:

x ¼ y�Q 0½ � þR 0½ � where 0 <¼ R 0½ �< y; // outside the loop
// and inside the loop

if R 0½ �> 0; y ¼ R 0½ � �Q 1½ � þR 1½ � where 0 <¼ R 1½ �<R 0½ �;
if R 1½ �> 0; R 0½ � ¼ R 1½ � �Q 2½ � þR 2½ � where 0 <¼ R 2½ �<R 1½ �;
if R 2½ �> 0; R 1½ � ¼ R 2½ � �Q 3½ � þR 3½ � where 0 <¼ R 3½ �<R 2½ �;
. . .

if R j½ �> 0; R j� 1½ � ¼ R j½ � �Q jþ 1½ � þR jþ 1½ � where 0<¼ R jþ 1½ �<R j½ �;
. . . :

// Whenever a remainder is > 0, a next, smaller, nonnegative remainder is
// calculated.

If R[0], R[1], . . . , R[y] were all positive, they would be y þ 1 distinct numbers in
the interval {1..(y � 1)}. But that (consequent) is impossible. Therefore, for some
integer k < y, R[k] ¼ 0 and the while-loop terminates.

The connection with the Fibonacci sequence is given by the following:

Theorem 8.3.5: If Euclid’s Algorithm requires k iterations of the while-loop,
then y >¼ Fkþ1 and k< (1.5)� lg(y).

Proof. Since the remainders are decreasing,

0 ¼ R k½ �<R k � 1½ �< . . .<R 2½ �<R 1½ �<R 0½ �< y:

Here, R[k � 1] to R[0] are k (distinct) positive integers less than y, and so y >¼
k þ 1.

// We continue with the cases: k <¼ 2 and k > 2 separately.

If k<¼ 2; then Fkþ1 ¼ kþ 1; so y>¼ Fkþ1: // F1 ¼ 1; F2 ¼ 2 and F3 ¼ 3

Suppose now that k > 2. We use Mathematical Induction to prove

for j ¼ 1; 2; ::; k;we have Fj <¼ R k � j½ �:

// The remainders, in reverse order, dominate the Fibonacci numbers.

Step 1. Since 0 ¼ R[k] < R[k � 1] < R[k � 2], // k � 2> 0

R k � 1½ �>¼ 1 ¼ F1 and R k � 2½ �>¼ 1þR k � 1½ �>¼ 2 ¼ F2:

Therefore, for j ¼ 1 and j ¼ 2, we have Fj <¼ R[k � j].

356 8 Sequences and Series

Step 2. Assume that 9 q in {2..(k � 1)} such that if 1 <¼ j <¼ q,
then Fj <¼ R[k � j].

Step 3. If j ¼ q þ 1, then 2 <¼ q < q þ 1 <¼ k.
Since (k � q) is between 1 and (k � 2), R[(k � q) þ 1] is calculated as the

remainder when R[(k � q) � 1] is divided by R[k � q].
// and where R[k � q] < R[(k � q) �1]

Thus,

R k � qþ 1ð Þ½ � ¼ R k � qð Þ � 1½ �
¼ R k � q½ � �Q k � qð Þþ 1½ � þR k � qð Þþ 1½ �

>¼ R k � q½ � þR k � qð Þþ 1½ �
// Q k � qð Þþ 1½ �>¼ 1

>¼ R k � q½ � þ R k � q� 1ð Þ½ �
>¼ Fq þFq�1 // by step 2

¼ Fqþ1:

Therefore, for all values of j from 1 to k, we have Fj <¼ R[k � j]. // by MI
In particular,

Fk�1 <¼ R k � k � 1ð Þ½ � ¼ R 1½ � and Fk <¼ R k � k½ � ¼ R 0½ �;

and y ¼ R 0½ � �Q 1½ � þ R 1½ � // where Q 1½ �>¼ 1

>¼ R 0½ � þ R 1½ �
>¼ Fk þ Fk�1 ¼ Fkþ 1:

We saw previously that for 8n 2 N, γn�1 <¼ Fn <¼ γn. // Theorem. 8.3.4
Thus, if Euclid’s Algorithm requires k iterations of the while-loop, then

y>¼ Fkþ1 >¼ γk ¼ 1þ ffiffiffi
5
p

2

 !k

; and so // taking logarithms

lgðyÞ>¼ k� lg γð Þ ¼ k� lg 1:618 033 988 74. . .ð Þ ¼ k� 0:694 241 913 848. . .ð Þ:

Hence; k<¼ lgðyÞ= 0:694 241 913 848. . .ð Þ ¼ lgðyÞ� 1:440 420 089 93. . .ð Þ
< 1:5ð Þ� lgðyÞ: ▯

Because k is an integer, k<¼ 3=2ð Þ� lgðyÞb c:

8.3 The Fibonacci Sequence 357

The Most Important Ideas in this Section.
The Fibonacci sequence F satisfies the “Fibonacci recurrence equation,”

Snþ2 ¼ Snþ1þ Sn for 8 n 2 N

and the boundary values F0 ¼ 1 and F1 ¼ 1. Three algorithms are considered
for evaluating entries in the sequence. But there is a formula for the entries

Fn ¼ dγnþ1=
ffiffiffi
5
p
c for 8 n 2 N;

where xd c is the nearest integer to the real number x and

γ ¼ 1þ ffiffiffi
5
p

2
¼ þ1:618 033 988. . .

is the “golden ratio.” We proved that Fn is H(γn).
The Fibonacci sequence occurs in many (surprising) contexts. In particu-

lar, we proved that if Euclid’s Algorithm for GCD(x,y) requires k iterations of
the while-loop, then y >¼ Fkþ1, and from this, k <¼ 3=2ð Þ� lgðyÞ

The Fibonacci recurrence equation is a “second-order linear recurrence
equation”, and we’ll consider them and their solutions in the next section.

8.4 Solving Second-Order Linear Recurrence Equations

A second-order linear recurrence equation relates consecutive entries in a
sequence by an equation of the form

Snþ2 ¼ aSnþ1þ bSnþ c for 8 n in the domain of S: ð8:4:1Þ

But let’s assume that the domain of S is N. Let’s also assume that not both a and b
are 0; otherwise, Sn ¼ c for 8n 2 {2..}, and the solutions to (8.4.1) are not very
interesting. // What are they?

// First-order RE’s are just a special case of second-order RE’s where b ¼ 0.

When c ¼ 0, the RE is said to be homogeneous (all the terms look the same – a
constant times a sequence entry). // The Fibonacci RE is homogeneous.
Let’s also restrict our attention (for the moment) to a second-order linear,
homogeneous recurrence equation

Snþ2 ¼ aSnþ1þ bSn for 8 n 2 N: ð8:4:2Þ

358 8 Sequences and Series

Just as we did for the Fibonacci recurrence equation, let’s suppose there is a
geometric sequence, Sn ¼ rn, that satisfies (8.4.2).

If there were; then rnþ2 ¼ arnþ1þ brn for 8 n 2 N:

When n ¼ 0; r2 ¼ arþ b:

The “characteristic equation” of (8.4.2) is x2 � ax � b ¼ 0,

which has “roots” r ¼
�ð�aÞ �

ffi
ð�aÞ2 � 4ð1Þð�bÞ

q
2ð1Þ ¼ a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ 4b
p

2
:

Let � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ 4b
p

; r1 ¼ aþ�

2
; and r2 ¼ a��

2
:

Then r1 þ r2 ¼ a, r1 � r2 ¼ �b, and r1 � r2 ¼ �. // are these right?

// The Greek capital letter delta denotes the “difference” in the roots.
// Both r1 and r2 satisfy the equation x2 ¼ ax þ b, and they are the only solutions.

Example 8.4.1a: If Snþ2 ¼ 10Snþ1 � 21Sn for 8n 2 N, the characteristic equa-
tion is x2 � 10x þ 21 ¼ 0. // Or (x � 7)(x � 3) ¼ 0

Here; a ¼ 10; b ¼ �21; a2þ 4b ¼ 100� 84 ¼ 16;� ¼ 4; so r1 ¼ 7 and r2 ¼ 3:

Example 8.4.1b: If Snþ2 ¼ 3Snþ1 � 2Sn for 8n 2 N, the characteristic equa-
tion is x2 � 3x þ 2 ¼ 0. // Or (x � 2)(x � 1) ¼ 0

Here; a ¼ 3; b ¼ �2; a2þ 4b ¼ 9� 8 ¼ 1; � ¼ 1; so r1 ¼ 2 and r2 ¼ 1:

Example 8.4.1c: If Snþ2 ¼ 2Snþ1 � Sn for 8n 2 N, the characteristic equa-
tion is x2 � 2x þ 1 ¼ 0. // Or (x�1) (x � 1) ¼ 0

Here; a ¼ 2; b ¼ �1; a2þ 4b ¼ 4� 4 ¼ 0; � ¼ 0; so r1 ¼ 1 and r2 ¼ 1:

// But what about a formula giving the general solution?

Theorem 8.4.2: The general solution of the homogeneous RE (8.4.2) is

Sn ¼ A r1ð ÞnþB r2ð Þn if r1 6¼ r2; // if � 6¼ 0
and Sn ¼ A rð ÞnþBn rð Þn if r1 ¼ r2 ¼ r: // if � ¼ 0

Proof. Suppose that T is any particular solution of the homogeneous RE (8.4.2).

// We deal with the two cases separately.

8.4 Solving Second-Order Linear Recurrence Equations 359

Case 1. If � 6¼ 0, then the two roots are distinct (but may be “complex” numbers).

// We’ll find values for A and B, then prove that Tn ¼ A(r1)
n þ B(r2)

n for 8n 2 N
// (by MI). We’ll show A(r1)

n þ B(r2)
n starts correctly for specially chosen values

// of A and B, and then show A(r1)
n þ B(r2)

n continues correctly.

Let’s solve the equations (for A and B) that would guarantee Tn ¼ A(r1)
n þ

B(r2)
n when n ¼ 0 and n ¼ 1. If

T0 ¼ A r1ð Þ0þB r2ð Þ0 ¼ A þB 1ð Þ
and T1 ¼ A r1ð Þ1þB r2ð Þ1 ¼ A r1ð Þ þB r2ð Þ; 2ð Þ

then r1ð ÞT0 ¼ A r1ð ÞþB r1ð Þ // multiplying 1ð Þ by r1
and T1¼ A r1ð ÞþB r2ð Þ: // 2ð Þ again

Subtracting, we obtain

r1ð ÞT0 � T1 ¼ B r1 � r2ð Þ ¼ B�: // r1 � r2 ¼ � 6¼ 0

So B ¼ ðr1ÞT0 � T1
�

:

Hence; A ¼ T0 � B ¼ �T0
�
� ðr1ÞT0 � T1

�
¼ ð�� r1ÞT0þ T1

�
¼ �ðr2ÞT0þ T1

�
:

// No matter how the sequence T starts (no matter what the values for T0 and T1
// are), there are unique numbers A and B such that Tn ¼ A(r1)

n þ B(r2)
n for n ¼ 0

// and 1.

// Continuing the proof by Mathematical Induction that Tn ¼ A(r1)
n þ B(r2)

n for
// 8n 2 N.

Step 1. If n ¼ 0 or 1, then Tn ¼ A(r1)
n þ B(r2)

n, by our “choice” of A and B.
Step 2. Assume that 9 k >¼ 1 such that if 0 <¼ n <¼ k, then Tn ¼ A(r1)

n þ
B(r2)

n.
Step 3. If n ¼ k þ 1, then n >¼ 2 so, because T satisfies the homogeneous

RE (8.4.2)

Tkþ1 ¼ aTkþ bTk�1
¼ a A r1ð Þk þB r2ð Þk
h i

þ b A r1ð Þk�1þB r2ð Þk�1
h i

// by step 2

¼ aA r1ð Þk þ bA r1ð Þk�1
h i

þ aB r2ð Þk þ bB r2ð Þk�1
h i

¼ A r1ð Þk�1 a r1ð Þþ b½ � þB r2ð Þk�1 a r2ð Þþ b½ �
¼ A r1ð Þk�1 r1ð Þ2

h i
þB r2ð Þk�1 r2ð Þ2

h i
// “choice” of r1 and r2

¼ A r1ð Þkþ1 þB r2ð Þkþ1:

Thus; if r1 6¼ r2; Tn ¼ A r1ð ÞnþB r2ð Þn for 8 n 2 N:

360 8 Sequences and Series

Example 8.4.1a: If Snþ2 ¼ 10Snþ1 � 21 Sn for 8n 2 N,
then r1 ¼ 7 and r2 ¼ 3. Hence, the general solution of the RE is Sn ¼ A7n þ B3n.

Example 8.4.1b: If Snþ2 ¼ 3Snþ1 � 2Sn for 8n 2 N,
then r1 ¼ 2 and r2 ¼ 1. Hence, the general solution of the RE is

Sn ¼ A2nþB1n ¼ A2nþB:

Case 2. If � ¼ 0, then the roots are (both) equal to r where r ¼ a/2. Also,
b ¼ �a2/4 ¼ �r2. If a were 0, then b ¼ 0; but we assumed that not both
a and b are 0. Hence, r 6¼ 0.

Let’s solve the equations (for A and B) that would guarantee Tn ¼ A(r)n þ
nB(r)n when n ¼ 0 and n ¼ 1. If

T0 ¼ AðrÞ0þ 0BðrÞ0 ¼ A 1ð Þ
and T1 ¼ AðrÞ1þ 1BðrÞ1 ¼ ArþBr; 2ð Þ

then A ¼ T0 and B ¼ T1 � Arð Þ=r:

// No matter how the sequence T starts (no matter what the values for T0 and T1

// are), there are unique numbers A and B such that Tn ¼ A(r)n þ nB(r)n for n ¼ 0
// and 1.

// Continuing the proof by Mathematical Induction that Tn ¼ A(r)n þ nB(r)n for
// 8n 2 N.

Step 1. If n ¼ 0 or 1, then Tn ¼ A(r)n þ nB(r)n, by our “choice” of A and B.
Step 2. Assume that 9 k >¼ 1 such that if 0 <¼ n <¼ k, then Tn ¼ A(r)n þ nB(r)n.
Step 3. If n ¼ k þ 1, then n >¼ 2 so, because T satisfies the RE (8.4.2)

Tkþ1 ¼ aTkþ bTk�1

¼ a AðrÞkþ kBðrÞk
h i

þ b AðrÞk�1þ k � 1ð ÞBðrÞk�1
h i

// by step 2

¼ aArk þ bArk�1
� � þ akBrkþ b k � 1ð ÞBrk�1� �

¼ Ark�1 arþ b½ � þBrk�1 akrþ b k � 1ð Þ½ �
¼ Ark�1 arþ b½ � þBrk�1 k arþ bð Þ � b½ �
¼ Ark�1 r2

� � þBrk�1 k r2
� �� b

� �
// r2 ¼ arþ b

¼ Arkþ1 þBrk�1 k r2
� �þ r2

� �
//� b ¼ r2

¼ Arkþ1 þBrk�1 kþ 1ð Þr2� �
¼ Arkþ1 þ kþ 1ð ÞBrkþ1:

Thus; if r1 ¼ r2 ¼ r; Tn ¼ AðrÞnþ nBðrÞn for 8n 2 N: ▯

8.4 Solving Second-Order Linear Recurrence Equations 361

Example 8.4.1c: If Snþ2 ¼ 2Snþ1 � Sn for 8n 2 N,
then r1 ¼ 1 and r2 ¼ 1. Hence, the general solution of the RE is

Sn ¼ A1nþ nB1n ¼ Aþ nB: // an arithmetic sequence?

// But what about a formula giving the general solution to a nonhomogeneous
// case?

Suppose

Snþ2 ¼ aSnþ1þ bSnþ c for 8n 2 N where c 6¼ 0: // 8:4:1ð Þ again

// Can we somehow use the results for the homogeneous case? Yes.

Suppose that Tn is some particular solution of (8.4.1). If Sn is any (other, particular)
solution of (8.4.1), then

Wn ¼ Tn � Sn is a solution of the homogenous RE. // (8.4.2) again

That is; Wnþ2 ¼ Tnþ2 � Snþ2
¼ aTnþ1þ bTnþ c½ � � aSnþ1þ bSnþ c½ � // T & S satisfy 8:4:1
¼ a Tnþ1 � Snþ1½ � þ b Tn � Sn½ � þ c� c½ �
¼ aWnþ1 þ bWn: // W satisfies 8:4:2

Therefore, any solution Sn of (8.4.1) may be written as Wn þ Tn, where Tn is
some particular solution of the nonhomogeneous RE and Wn is a solution of the
corresponding homogeneous RE. Furthermore,

the general solution of (8.4.1), Gn, is Wn þ Tn,
where Tn is any particular solution of the nonhomogeneous RE and
Wn is the general solution of the corresponding homogeneous RE.

// But how can we find a particular solution of the nonhomogeneous RE?

Particular Solutions

Suppose Snþ2 ¼ aSnþ1þ bSnþ c for 8 n 2 N where c 6¼ 0:

// We want to find simple solutions like Sn ¼ K;

// or when no constant sequence satisfies the REð Þ Sn ¼ Kn; a linear functionð Þ
// or when no linear function satisfies the REð Þ Sn ¼ Kn2: a quadraticð Þ

If Tj ¼ K for 8j 2 N, then

Tnþ2 ¼ aTnþ1 þ bTn þ c
, K ¼ aK þ bK þ c
, K 1� aþ bð Þ½ � ¼ c:

Thus, when a þ b 6¼ 1, there is a unique constant solution, Tk ¼ c

1� ðaþ bÞ
8k 2 N.

// And there is no constant solution when a þ b ¼ 1.

362 8 Sequences and Series

Example 8.4.2a: The constant sequence Tk ¼ 2 for 8k 2 N is a particular
solution of Snþ2 ¼ 10Snþ1 � 21Sn þ 24 for 8n 2 N.

// 10 2½ � � 21 2½ � þ 24 ¼ 20� 42þ 24 ¼ 2
The general solution of the RE is Sn ¼ A7n þ B3n þ 2.

Suppose that a þ b ¼ 1. If Tj ¼ Kj for 8j 2 N, then

Tnþ2 ¼ aTnþ1þ bTn þ c
, K nþ 2ð Þ ¼ aK nþ 1ð Þþ bKn þ c
, K nþ 2ð Þ � a nþ 1ð Þþ bnf g½ � ¼ c
, K nþ 2 � an� a� bn½ � ¼ c
, K 2 � a½ � ¼ c: // aþ b ¼ 1

Thus, when a þ b ¼ 1 but a 6¼ 2, there is a linear solution, Tk ¼ kc

2� a
for

8k 2 N:

// But there is no linear solution when a þ b = 1 and a ¼ 2.

Example 8.4.2b: Linear sequence Tk ¼ 5k for 8k 2 N is a particular solution
of Snþ2 ¼ 3Snþ1 � 2Sn � 5 for 8n 2 N.

// 3 5 nþ 1ð Þ½ � � 2 5n½ � � 5 ¼ 15nþ 15� 10n� 5 ¼ 5 nþ 2½ �

The general solution of the RE is Sn ¼ A2n þ B þ 5n.

Finally, suppose that a þ b ¼ 1 and a ¼ 2. Then b ¼ �1. If Tj ¼ Kj2 for
8j 2 N, then

Tnþ2 ¼ aTnþ1 þ bTn þ c
¼ 2Tnþ1 þ �1ð ÞTn þ c

, K nþ 2ð Þ2 ¼ 2K nþ 1ð Þ2 �Kn2 þ c

, K nþ 2ð Þ2 � 2 nþ 1ð Þ2 þ n2
h i

¼ c

, K n2þ 4nþ 4� 2n2þ 4nþ 2ð Þþ n2½ � ¼ c
, K 4� 2½ � ¼ c:

Thus, when a þ b ¼ 1 and a ¼ 2, there is a quadratic solution, Tk ¼ k2c

2
for

8k 2 N:

Example 8.4.2c: The quadratic sequence Tk ¼ 3k2 for 8k 2 N is a particular
solution of Snþ2 ¼ 2Snþ1 � Sn þ 6 for 8n 2 N.

// 2 3ðnþ 1Þ2
h i

� 3n2
� �þ 6 ¼ 6 n2þ 2nþ 1

� �� 3n2þ 6

// ¼ 3n2þ 12nþ 12 ¼ 3 n2þ 4nþ 4
� � ¼ 3 nþ 2ð Þ2

8.4 Solving Second-Order Linear Recurrence Equations 363

The general solution of the RE is

Sn ¼ Aþ nBþ 3n2:

We end this section with a practical reason for knowing the algebraic solution to
a recurrence equation.

Example 8.4.3: Round-off errors and recurrence equations
Find S10, given that S0 ¼ 1, S1 ¼ 1/9, and Snþ2 ¼ (82/9)Snþ1 � Sn.

// for 8n 2 N
But suppose we attempt this using a machine that rounds numbers to three signifi-
cant figures.

// This imprecision would be extreme but emphasizes (and exaggerates) our point
// that knowing the algebraic solution to a RE might be useful.

Let the symbol “≅” to denote “is stored as” in the machine. Then

S0 ffi 1:00;
S1 ffi 0:111; and 82=9 ffi 9:11:

Using the given RE for calculating later S-values gives

// How much damage did round-off error do?
// Is the correct value of S10 close to �49,400?

The characteristic equation of the RE

Snþ2 ¼ 82=9ð ÞSnþ1 � Sn for 8 n 2 N

is x2 � 82=9ð Þxþ 1 ¼ x� 1=9ð Þ x� 9ð Þ ¼ 0:

Therefore, the general solution of the RE is Gn ¼ A(1/9n) þ B9n.
The calculated sequence appears to be approximating a particular solution of the

form Tn ¼ B9n where B is negative. In the last few rows of the table, the entries are
negative, each entry is about nine times the previous entry.

// in fact, 5490/610 ¼ 9

364 8 Sequences and Series

But the particular solution that begins S0 ¼ 1, S1 ¼ 1/9 is Sn ¼ 1/9n. Therefore,
the correct value of S10 is

1/910 ¼ 1/ 3 486 784 401ð Þ ¼ 2:867 971 991. . . � 10�10

¼ 0:000 000 000 286 797 199 1. . . :

// �49,400 is just a truly awful approximation of this. What went wrong?

The Most Important Ideas in This Section.
A second-order linear recurrence equation relates consecutive entries in a
sequence by an equation of the form

Snþ2 ¼ aSnþ1þ bSnþ c for 8 n 2 N; �ð Þ

where not both a and b are 0. When c ¼ 0, the RE (*) is said to be
homogeneous.

We first dealt with the homogeneous form // with c ¼ 0

Snþ2 ¼ aSnþ1þ bSn for 8 n 2 N: ��ð Þ

The characteristic equation of (**) is x2 � ax � b ¼ 0 which has roots

r1 ¼ aþ�

2
and r2 ¼ a��

2
where � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ 4b

p
:

// these roots may be complex numbers
The general solution of (**) is

Sn ¼ A r1ð ÞnþB r2ð Þn if r1 6¼ r2; // if � 6¼ 0

and Sn ¼ AðrÞnþBnðrÞn if r1 ¼ r2 ¼ r: // if � ¼ 0

The general solution of (*), the nonhomogeneous equation, is Gn ¼ Wn þ
Tn, where Wn is the general solution of the corresponding homogeneous RE
(**) and where Tn is any particular solution of the nonhomogeneous RE (*).
When a þ b 6¼ 1, there is a unique constant solution to (*),

Tk ¼ c

1� ðaþ bÞ for 8k 2 N:

When a þ b ¼ 1 but a 6¼ 2, there is a linear solution to (*),

Tk ¼ kc

2� a
for 8k 2 N:

When a þ b ¼ 1 and a ¼ 2, there is a quadratic solution (*),

Tk ¼ k2c

2
for 8k 2 N:

8.4 Solving Second-Order Linear Recurrence Equations 365

8.5 Infinite Series

Can you add up an infinite number of numbers? How? Why would anyone want to?
And if you could somehow add up an infinite number of positive numbers, could
the total ever be finite? Zeno of Elea (c490–430 BC) who founded the Stoic school
of philosophy in Athens didn’t think so.

8.5.1 Zeno’s Paradoxes

Achilles and the Tortoise. Achilles was the champion sprinter of his time, and the
Tortoise was notoriously slow. Zeno said that if they raced each other, Achilles
(being a fair-minded athlete) would agree to give the Tortoise a head start. But then
Zeno pointed out that when Achilles reached the point where the Tortoise started,
the Tortoise would have moved on; and when Achilles reached that point (where
the Tortoise was), the Tortoise would have moved on; and when Achilles reached
that new point where the Tortoise was, the Tortoise would have moved on:

At any time that the Tortoise is ahead of Achilles,
when Achilles reaches the point where the Tortoise was,
the Tortoise would have moved on, and would still be ahead of Achilles.

From this, Zeno concluded that Achilles can never overtake the Tortoise.

// So even if Achilles can cover 10 meters per second, and the Tortoise (at top
// speed) covers 1 meter in 10 seconds, when the Tortoise starts ahead of Achilles,
// will Achilles never overtake the Tortoise?

Zeno and the Archer. Suppose an Archer is about to launch an arrow at Zeno.
Zeno says that before the arrow can strike me, it must reach the point halfway to me.
And if it reaches that point, it must still reach the point halfway to me. And when it
reaches that point, it must still reach the point halfway to me:

At any point in its flight, the arrow must reach the point halfway to me
before it reaches me. It must reach an infinite number of halfway points,
before it reaches me. Therefore, it can never reach me.

// Is that conclusion correct? Will Zeno’s “argument” protect him from arrows?

Suppose the arrow flies at about 30 meters per second and that Zeno is standing
60 meters from the Archer. The arrow will fly for 2 seconds and then strike Zeno.

// But what about all those midpoints?
It will take 1 second to reach the first midpoint.
From there, it will take half a second to reach the next midpoint.
From there, it will take a quarter of a second to reach the next midpoint.
From there, it will take an eighth of a second to reach the next midpoint.

366 8 Sequences and Series

1þ 1=2 ¼ 2� 1=2

1þ 1=2þ 1=4 ¼ 2� 1=4

1þ 1=2þ 1=4þ 1=8 ¼ 2� 1=8

1þ 1=2þ 1=4þ . . . þ 1/2n ¼ 2� 1/2n // using MI or Theorem 3:6:8

The arrow does reach all these midpoints; it reaches the n þ 1st after (2 � 1/2n)
seconds. The flight of the arrow may be partitioned into an infinite number of
(nonoverlapping) sub-flights, but the total time the arrow is in the air remains 2
seconds.

Maybe we can resolve these paradoxes of Zeno by devising a theoretical method
for adding an infinite number of numbers. It cannot be done by repeated (ordinary)
addition. Maybe we can give a useful idea to describe the sum of entries in an
infinite sequence – at least sometimes.

8.5.2 Formal Definitions of Convergence of Sequences
and Series

In Chap. 2, when we defined infinite sequences, we also wrote that
a sequence S converges to L 2 R [written Sn! L] means
for any number δ > 0, there is an integer M such that

if (n > M), then jSn � Lj < δ.
And we explained this definition by referring to the sequences generated by the
Bisection Algorithm of Chap. 1.

We all know that when a fraction is raised to higher and higher powers, the
values tend to zero. Let us prove that in a formal sense.

Theorem 8.5.1: If �1 < r < þ1 and Sn ¼ Arn þ C where A and C are any
real numbers, then Sn ! C.

Proof. // This may seem obvious, but we want to apply the formal definition.
Suppose that δ is some given positive number.

// We must determine a positive integer M (which may depend on the value of δ)
// and then demonstrate that
// if (n > M), then jSn � Cj < δ.

We use the fact that Sn � Cj j ¼ Arnj j ¼ Aj j � rj jn:
Case 1. If A ¼ 0 or r ¼ 0, then taking M ¼ 1, if (n > M), then jSn � Cj ¼ 0 < δ.

// Any constant sequence converges in the formal sense.

From now on, suppose that A 6¼ 0 and also that r 6¼ 0:

Sn � Cj j ¼ Aj j � rj jn < δ, rj jn < δ/ Aj j:

8.5 Infinite Series 367

Case 2. If 1 <¼ δ/jAj, then since 0 < jrj < 1, we have jrjn < 1 <¼ δ/jAj 8n 2 P.
Then, taking M ¼ 1, if (n > M), then jSn � Cj < δ.

// But what if δ is very small?

Case 3. If δ/jAj < 1, then since 0 < δ/jAj < 1, lg(δ/jAj) is defined but is
< lg(1) ¼ 0.

Since 0 < jrj < 1, lg(jrj) is also negative.

Let B ¼ lg δ=jAjð Þ
lg jrjð Þ and let M ¼ Bd e. // Then M 2 P.

If (n > M), then

n>B so n� lg rj jð Þ<B� lg rj jð Þ // lg rj jð Þ is negative
and n� lg rj jð Þ< lg δ Aj j=ð Þ:
Then lg rj jnð Þ< lg δ Aj j=ð Þ: // lg ab

� � ¼ b� lgðaÞ:

Raising 2 to these powers gives

rj jn < δ= Aj j:

Therefore, if (n > M), then jSn � Cj < δ. ▯
The formal definition of an infinite sum is given as follows:

An infinite series S converges to L 2 R [written
P1
j¼0

Sj ¼ L] means

the sequence of partial sums Tn ¼
Pn
j¼0

Sj converges to L.

A Formula for (Convergent) Infinite Geometric Series

Theorem 8.5.2: If �1 < r < þ1 and Sn ¼ Arn where A is any real number,

then
P1
j¼0

Sj ¼ A

1� r
.

Proof. Let Tn ¼
Pn
j¼0

Sj ¼ Ar0þAr1þAr2þ . . . Arn:

Then Tn ¼ A� rnþ1 � 1
r � 1

// Theorem 3:6:8

¼ A

r � 1

� 	
rnþ1 � A

r � 1

� 	
¼ Ar

r � 1

� 	
rnþ A

1� r
:

Then by Theorem 8.5.1,

Tn ! A

1� r
; so by our definition

X1
j¼0

Sj ¼ A

1� r
: ▯

368 8 Sequences and Series

// Now what? We want to show that this is consistent with our past experience
// and resolves Zeno’s paradoxes.

Recall // from grade school

0:3 ¼ 0:333 333 333. . . // which means

¼ 0:3þ 0:03þ 0:003þ 0:0003þ 0:00003þ . . .

¼ the sum of an infinite geometric sequence with A ¼ 0:3 and r ¼ 0:1

¼ A

1� r
¼ 0:3

1� ð0:1Þ ¼
0:3
0:9
¼ 1

3
:

Resolving Zeno’s Paradoxes

Zeno and the Archer. Letting Tn denote the time the arrow takes to reach the
n þ 1st midpoint,

Tn ¼ 1þ 1=2þ 1=4þ . . . þ 1/2n ¼ 2� 1/2n; // Theorem 3:6:8

and Tn converges to 2: // Theorem 8:5:1

Therefore, the total time the arrow takes to reach all these midpoints is

1þ 1=2þ 1=4þ . . . ¼
X1
j¼0

1
2

� 	j

¼ 2 seconds: // which we knew

Achilles and the Tortoise. Suppose that A gives T a head start of 30m. Let
D0 = 30m:

A covers D0 in t0 ¼ 30m
10m=s

¼ 3 seconds: But in that time;

T has covered D1 ¼ t0� 1=10ð Þm=s ¼ 3s= 10m=sð Þ ¼ 0:3m:

A covers D1 in t1 ¼ ð0:3Þm10m=s
¼ t0�ð1=10Þm=s

10m=s
¼ t0

100
¼ 0:03 seconds:

If at some moment, T is Dn meters ahead of A,

A covers Dn in tn ¼ Dn=10 seconds: But in that time;

T has covered Dnþ1 ¼ tn=10m:

A covers Dnþ1 in tnþ1 ¼ Dnþ1 m
10m=s

¼ tn
100

s:

The time intervals form a geometric sequence with common ratio r ¼ 1/100 ¼
0.01. Adding up all the time intervals when T is ahead of A,

t0þ t1þ t2þ t3þ . . . ¼ 3þ 0:03þ 0:0003þ . . .

¼ A

1� r
¼ 3

1� 0:01
¼ 3

0:99
¼ 300

99
¼ 100

33
¼ 3þ 1=33ð Þ seconds:

// Now, T is not ahead of A.
Therefore, A overtakes T in exactly 3 þ (1/33) seconds.

8.5 Infinite Series 369

There is another way of determining when A overtakes T.
Let DA(t) denote how far down the track A is t seconds after the race begins,
and let DT(t) denote how far down the track T is t seconds after the race begins.
Then

DAðtÞ ¼ 10t and DTðtÞ ¼ 30þ 1=10ð Þt: // meters

A overtakes T when DAðtÞ ¼ DTðtÞ:
But 10t ¼ 30þ 1=10ð Þt
, 100t ¼ 300þ 1ð Þt
, 99t ¼ 300

, t ¼ 300=99 ¼ 100=33 ¼ 3þ 1=33ð Þ // seconds
¼ 3:03030303. . . :

A (Necessary) Condition for Convergence

If a sequence Sn converges to L 2 R, then, because the sequence entries must get
(arbitrarily) close to L, they must get (arbitrarily) close to each other. We can
express this formally.

Lemma 8.5.3: If sequence Sn ! L 2 R, then for any number δδ1 > 0, there is
an integer M1 such that if (both p and q are > M1), then jSp � Sqj < δδ1.

Proof. Suppose that δ1 > 0 is given. // δ1 is given a specific positive value
Recall that Sn ! L means

for any number δ > 0, there is an integer Mδ such that
if (n > Mδ), then jSn � Lj < δ.

Let δ ¼ (δ1)/2 and let M1 ¼ Mδ.
Now, if (both p and q are > M1 ¼ Mδ), then

Sp � Sq
�� �� ¼ Sp � L þ L� Sq

�� ��
¼ Sp � L
� � þ L� Sq

� ��� ��
<¼ Sp � L

� ��� ��þ L� Sq
� ��� �� //X xþ yj j<¼ xj j þ yj j

¼ Sp � L
� ��� ��þ Sq � L

� ��� �� //X �xj j ¼ xj j
< δ þ δ ¼ δ1: ▯

If the terms in a sequence Sn can be added up to give a finite total, then the entries
in S must get smaller and smaller. We can express this formally too.

Theorem 8.5.4: If
P1
j¼0

Sj ¼ L 2 R, then Sn ! 0.

Proof. Suppose that δ > 0 is given. // δ is given a specific positive value

// We need to find Mδ 2 P such that if (n > Mδ), then jSn � 0j < δ.

370 8 Sequences and Series

Let Tn ¼
Pn
j¼0

Sj for each n 2 P. Then the sequence Tn ! L, and by Lemma 8.5.3,

9 M1 2 P such that if (both p and q are > M1), then jTp � Tqj < δ.
If n > (1 þ M1), both n and (n � 1) are > M1. Hence, jTn � Tn�1j < δ.
But Tn � Tn�1 ¼ Sn.
Now if we let Mδ ¼ (1 þ M1),

if ðn>MδÞ; then Sn � 0j j< δ: ▯

// Do all sequences S that converge to 0 have a finite sum?
// Is the converse of Theorem 8.5.4 also true?

Consider the harmonic sequence on P where

Hn ¼ 1=n; so H ¼ 1; 1=2; 1=3; 1=4; . . .ð Þ:
If I walk toward the classroom wall, where my first step is 1 meter, my second

step is a half a meter, my third step is a third of a meter, my fourth step is a quarter
of a meter, and so on, will I eventually reach the wall? If I could walk through the
wall, would I eventually reach the street outside this building? Will I eventually
pass the nearest star in that direction?

Let T[n] denote the partial sum 1 þ 1/2 þ 1/3 þ . . . þ 1/n. // for each n in P
// Will T[n] ever be larger than 3? Larger than 10? Larger than 100?

T 21
� � ¼ T 2½ � ¼ 1þ 1=2:

T 22
� � ¼ T 4½ � ¼ 1þ 1=2þ 1=3þ 1=4 ¼ T 2½ � þ 1=3þ 1=4ð Þ

> T 2½ � þ 1=4þ 1=4ð Þ // 1=3> 1=4

¼ T 2½ � þ 2=4ð Þ ¼ T 21
� �þ 1=2ð Þ

¼ 1þ 2=2:

T 23
� � ¼ T 8½ � ¼ T 4½ � þ 1=5þ 1=6þ 1=7þ 1=8ð Þ

> T 4½ � þ 1=8þ 1=8þ 1=8þ 1=8ð Þ // if k< 8 then 1=k> 1=8

¼ T 22
� �þ 4=8ð Þ ¼ T 22

� � þ 1=2ð Þ
> 1þ 3=2:

n Hn T[n]
1 1/1 1 ¼ 1.0
2 1/2 3/2 ¼ 1.5
3 1/3 11/6 ¼ 1:83
4 1/4 25/12 ¼ 2:083
5 1/5 137/60 ¼ 2:283
6 1/6 49/20 ¼ 2.45
7 1/7 363/140 ¼ 2:592857142
8 1/8 761/280 ¼ 2:717857142
. . .

8.5 Infinite Series 371

If T[2k] > 1 þ k/2, then // k >¼ 2

T 2kþ1
� � ¼ 1þ 1=2þ 1=3þ . . . þ 1=2k

�
þ 1= 2k þ 1

� � þ 1= 2k þ 2
� � þ 1= 2k þ 3

� � þ . . . þ 1= 2k þ 2k
� ��

¼ T 2k
� � þ 1= 2k þ 1

� � þ 1= 2k þ 2
� � þ 1= 2k þ 3

� � þ . . . þ 1= 2k þ 2k
� ��

> T 2k
� � þ 1= 2k þ 2k

� �þ 1= 2k þ 2k
� �þ 1= 2k þ 2k

� �þ . . . þ 1= 2k þ 2k
� ��

¼ T 2k
� � þ 2k= 2k þ 2k

� �
¼ T 2k

� � þ 1=2
> 1þ k=2 þ 1=2 ¼ 1þ kþ 1ð Þ=2:

Therefore by MIð Þ T 2n½ � > 1þ n=2 for 8n 2 2::f g;
and T 22M

� �
> 1þ 2Mð Þ=2>M for 8M 2 P:

In particular; T 26
� �

> 1þ 6=2 > 3;
T 220
� �

> 1þ 20=2 > 10;
and T 2200

� �
> 1þ 200=2> 100:

Thus, the harmonic sequence converges to 0, but the harmonic series does not
converge. The converse of Theorem 8.5.4 is not true. The condition that Sn ! 0 is
necessary but not sufficient for the convergence of the series S1 þ S2 þ S3 þ

// Using calculus and the fact that
Zn
1

1
x
dx ¼ ln(n), you can show that

// 1/2 þ 1/3 þ . . . þ 1/n< ln(n)< 1 þ 1/2 þ 1/3 þ . . . þ 1/(n � 1), and then
// 1/n þ ln(n) < T[n] < 1 þ ln(n).
// So ln(n) < T[n] < 2 � ln(n) (when n > e ¼ 2.718. . .).
// Thus, T[n] is H(ln(n)), and T[n] is H(lg(n)). // see Sect. 7.5.2

The Most Important Ideas in This Section.
We gave a formal definition of the sum of an infinite series to resolve Zeno’s
paradoxes: Achilles and the Tortoise and Zeno and the Archer. Recall from
Chap. 2 that

a sequence S converges to L 2 R [written Sn ! L] means
for any number δ > 0, there is an integer M such that

if (n > M), then jSn � Lj < δ.
Then a formal definition of an infinite sum was given.

An infinite series, S converges to L 2 R [written
P1
j¼0

Sj ¼ L] means

the sequence of partial sums Tn ¼
Pn
j¼0

Sj converges to L.

We proved a formula for (convergent) infinite geometric series:
If �1 < r < þ1 and Sn ¼ Arn where A is any real number, then

(continued)

372 8 Sequences and Series

X1
j¼0

Sj ¼ A

1� r
:

If the terms in a sequence Sn can be added up to give a finite total, then the
entries in S must get smaller and smaller. In fact,

If
X1
j¼0

Sj ¼ L 2 R; then Sn ! 0:

Finally, we proved that the converse of this is not true, by showing that the
harmonic sequence converges to 0, but the harmonic series does not con-
verge; it eventually grows larger than any given number.

Exercises

1. Suppose En is defined recursively on P by

E0 ¼ 0; E1 ¼ 2; and Enþ1 ¼ 2n EnþEn�1f g for n>¼ 1:

Determine the value of E10.
2. Suppose that the function f is defined recursively on P by

f ðnÞ ¼
1 if n ¼ 2k for some k 2 N
f n=2ð Þ if n is even but not a power of 2
f 3nþ 1ð Þ if n is odd:

8<
:

Then f 3ð Þ ¼ f 10ð Þ because 3 is odd

¼ f 5ð Þ because 10 ¼ 2� 5

¼ f 16ð Þ because 5 is odd

¼ 1 because 16 ¼ 24:

(a) Show that f(11) also equals 1.
(b) Show that f(9), f(14), and f(25) all equal f(11) and so all equal 1.
(c) Write a program to find f(27).

// Do you think this function will always evaluate to 1? No matter what n you
// start with? Look up “Collatz’s conjecture” or the “Hailstone problem” on
// the web.

3. We could define a derangement as an n-permutation S of {1..n} where each
Sj 6¼ j and then define Dn to be the number of derangements of {1..n}. Then Dn

is the unique sequence satisfying the recurrence equation

(continued)

8.5 Infinite Series 373

Dn ¼ n� 1ð Þ Dn�1þDn�2f g for n ¼ 3,4,5, . . . // 8:1:3

and initial conditions D1 ¼ 0 and D2 ¼ 1.
(a) Show that D2 ¼ (2)(D1) þ (�1)2.
(b) Use Mathematical Induction to prove that for all integers n >¼ 2,

Dn ¼ ðnÞ Dn�1ð Þþ �1ð Þn:

4. Use Mathematical Induction and (8.1.3) to prove that

for all positive integers n; Dn ¼ n!
Xn
j¼0

ð�1Þj
j!

:

5. Assume that (or look up these two calculus results)

A. for all real numbers x, ex ¼P1
j¼0

x j

j!
, and so e�1 ¼P1

j¼0

ð�1Þj
j!

,

and B. for any positive integer n,

e�1 ¼
Xn
j¼0

ð�1Þj
j!
þEn where Enj j< ð�1Þ

nþ1

ðnþ 1Þ!

�����
����� ¼ 1
ðnþ 1Þ! :

(a) Use the result of the previous question to show

n!

e
¼ Dnþ n!En where n!Enj j< n!

ðnþ 1Þ! ¼
1

nþ 1
<¼ 1=2:

(b) Explain why Dn � ½ <¼ n!/e <¼ Dn þ ½.
(c) Is dn!/ec ¼ Dn?

6. Ackermann’s function is sometimes defined recursively in a slightly different
form.

Rule 1: B 0; nð Þ ¼ nþ 1 for n ¼ 0; 1; 2; . . . ;

Rule 2: B m; 0ð Þ ¼ B m� 1; 1ð Þ for m ¼ 1; 2; 3; . . . ;

and Rule 3: B m; nð Þ ¼ B m� 1;B m; n� 1ð Þð Þ when both m and n are positive:
að Þ Use MI to prove B 1; nð Þ ¼ nþ 2 for all n 2 N:
bð Þ Use MI to prove B 2; nð Þ ¼ 3þ 2n for all n 2 N:
cð Þ Use MI to prove B 3; nð Þ ¼ 23þn � 3 for all n 2 N:
dð Þ Use MI to prove B 4; nð Þ ¼ 2 " 3þ n½ �ð Þ � 3 for all n 2 N:
eð Þ Give an expression using the symbol ‘‘" ’’ for the values of B 5; 1ð Þ and

B 5; 2ð Þ:
7. Suppose that A is a set of 2n objects. Let Pn denote the number of different

ways that the objects in A may be “paired up” (the number of different
partitions of A into 2-subsets). // Assume n is a positive integer.

374 8 Sequences and Series

If n ¼ 2, then A has four elements, A ¼ {x1, x2, x3, x4}.

The three possible pairings are 1: x1 with x2 and x3 with x4;

2: x1 with x3 and x2 with x4;

3: x1 with x4 and x2 with x3: // So P2 ¼ 3

(a) Show that if n ¼ 3 and A ¼ {x1, x2, x3, x4, x5, x6}, there are 15 possible
pairings by listing them all:
1. x1 with x2 and x3 with x4 and x5 with x6
2. . . . // So P3 ¼ 15.

(b) Show that Pn must satisfy the RE Pn ¼ (2n � 1)Pn�1 for 8 n >¼ 2.
(c) Use this recurrence equation and Mathematical Induction to prove

Pn ¼ 2nð Þ! ½2n� n!�= for 8 n>¼ 1:

8. Show that yn ¼ nðn� 1Þ
2

þ c for n > 0 is a solution of the recurrence relation

ynþ 1 ¼ ynþ n:

9. Suppose that a sequence is defined by:
f 0ð Þ ¼ 5 and

f nþ 1ð Þ ¼ 2� f nð Þ þ 1 for n ¼ 0; 1; 2; . . .

(a) Find the value of f 10ð Þ
(b) Prove that the sequence is neither an arithmetic sequence nor a geometric

sequence.
10. (a) Find the General Solution of the recurrence equation

Sn ¼ 3Sn�1 � 10 for n ¼ 1; 2; . . . :

(b) Determine the particular solution where S0 ¼ 15.
(c) Use the formula in (b) to evaluate S6 and check your answer using the

recurrence equation itself.
11. Suppose s0 ¼ 60 and snþ1 ¼ (1/5)sn � 8 for n ¼ 0, 1,

(a) Find s1, s2, and s3.
(b) Solve the recurrence relation to give a formula for sn.
(c) Does this sequence converge? If so, what is the limit?
(d) Does the corresponding series converge? If so, what is the limit?

12. Suppose s0 ¼ 75 and snþ1 ¼ (1/3)sn � 6 for n ¼ 0, 1,
(a) Find s1, s2, and s3.
(b) Solve the recurrence relation to give a formula for sn.
(c) Does this sequence converge? If so, what is the limit?
(d) Does the corresponding series converge? If so, what is the limit?

8.5 Infinite Series 375

13. (a) Show that fn ¼ A � 3n þ B � 2n satisfies the recurrence equation

fn ¼ 5fn�1 � 6fn�2 for n>¼ 2:

(b) Find the particular solution (values for A and B) so that

f0 ¼ 4 and f1 ¼ 17:

14. In how many n-sequences of flips of a coin is there never two heads in a row?
Or how many n-sequences of H’s and T’s do not contain “HH”? For each
positive integer n, let f(n) denote the number of such sequences.
The list of all two-sequences of H’s and T’s that don’t contain “HH” is

HT TH TT; so f 2ð Þ ¼ 3:

(a) List all three-sequences of H’s and T’s that don’t contain “HH”.
(b) List all four-sequences of H’s and T’s that don’t contain “HH”.
(c) Find a recurrence equation satisfied by the sequence f.

15. Suppose that a2 ¼ a þ 1 and suppose Fn denotes the Fibonacci sequence.
(a) Show that a3 ¼ 2a þ 1, a4 ¼ 3a þ 2, and a5 ¼ 5a þ 3.
(b) Prove that for n >¼ 2, an ¼ (Fn�1) � a þ (Fn�2).

16. Suppose Fn denotes the Fibonacci sequence.

Is Fn equal
Xk
j¼0

n� j
j

� 	
where k ¼ n=2b c?

Hint: Use Mathematical Induction but separate the cases of (k þ 1) being odd
or even.

17. Using your favourite programming language (Python, Java, Cþþ, or some-
thing else), write a program that uses Algorithm 8.3.1 to compute and display
several Fibonacci numbers of modest size (perhaps Fib(20), Fib(30) and Fib
(40)). Write a second program that uses Algorithm 8.3.3 to compute and dis-
play the same Fibonacci numbers. What do you notice about the running time
for the programs?

18. Prove jx þ yj <= jxj þ jyj for all real numbers x and y.
19. Prove jxyj ¼ jxj � jyj for all real numbers x and y.
20. Let γ denote the “golden ratio” and let Fn denote the Fibonacci sequence. Prove

that 8n 2 P

1=3ð Þγnþ1 <Fn < 1=2ð Þγnþ1;
and 0:6ð Þγn <Fn < 0:8ð Þγn:

21. For 8n 2 N, let Tn ¼ 1 þ F0 þ F1 þ . . . þ Fn tabulate the first few values of
Tn. Formulate a conjecture about a formula for Tn, and prove that your formula
is correct (by Mathematical Induction).

376 8 Sequences and Series

22. Suppose that Snþ2 ¼ 13Snþ1 þ 48Sn for 8n 2 N.
(a) Find the General Solution of this recurrence equation.
(b) Find the particular solution where S0 ¼ 1 and S1 ¼ 5.

23. Suppose that Snþ2 ¼ 22Snþ1 � 121Sn for 8n 2 N.
(a) Find the General Solution of this recurrence equation.
(b) Find the particular solution where S0 ¼ 1 and S1 ¼ 5.

24. Suppose that Snþ2 ¼ Snþ1 þ Sn þ 2 for 8n 2 N.
(a) Find the General Solution of this recurrence equation.
(b) Find the particular solution where S0 ¼ 1 and S1 ¼ 5.

25. Suppose that Snþ2 ¼ 2Snþ1 � Sn þ 3 for 8n 2 N.
(a) Find the General Solution of this recurrence equation.
(b) Find the particular solution where S0 ¼ 1 and S1 ¼ 5.

26. Suppose that Snþ2 ¼ �Snþ1 þ 2Sn þ 7 for 8n 2 N.
(a) Find the General Solution of this recurrence equation.
(b) Find the particular solution where S0 ¼ 1 and S1 ¼ 5.

27: (a) Is 0:29999999. . . ¼ 0:300000000. . . ?
Hint : 0:29999999. . . ¼ 0:2þ 0:09þ 0:009þ 0:0009þ 0:00009þ . . .

¼ 0:2þA þAr þAr2 þAr3 þ . . .
where A ¼ 0:09 and r ¼ 0:1

¼ 0:2þA= 1� rð Þ by Theorem 8:5:2
(b) Is 0:9999999. . . ¼ 1?
(c) Is 99:99999. . . ¼ 100?
(d) Does every rational number have two different positional representations in

base 10? Or just those with a “terminating” positional representation?
28. In Example 1.3.3 in Chap. 1, when converting fractions from decimal notation

to other bases, we asserted that

0:7 10f g ¼ 0:10110 2f g:

Then 0:7 10f g ¼ 0:1 0110 0110 0110 0110. . . 2f g
¼ 0:1þ 0:00110þ 0:000000110þ 0:0000000000110þ . . . 2f g
¼ 0:1 2f gþAþArþAr2þAr3þ . . .

¼ where A ¼ 0:00110 2f g and r ¼ 0:0001 2f g
¼ 0:1 2f gþA= 1� rð Þ: by Theorem 8:5:2

(a) Convert 0.1, A, and r to base 10.
(b) Check that in base 10, 0.1{2} þ A/(1 � r) really is equal 0.7.

8.5 Infinite Series 377

29. Assume that for all x; ex ¼
X1
j¼0

1
j!
x j: // Look up infinite Series Expansions:

Consider the case that x ¼ 1=3:

(a) Use a machine to calculate e1=3

(b) Add the terms of the infinite series until the last term added is < 0.0005.
(c) Does that partial sum give 3 decimal places of accuracy?
(d) Repeat (a), (b) and (c) for x ¼ �1=3:

// Look up convergence of Alternating Series:

378 8 Sequences and Series

9Generating Sequences and Subsets

The Knapsack Problem is a famous problem with many applications.
Suppose you have (or a cat-burglar finds) a set of n objects U ¼ {O1, O2, …, On}
where each object Oj has a positive “weight” Wj and a positive “value” Vj. Suppose
also that there is a positive value B equal to the total weight you (or the burglar) are
willing to carry in your knapsack:

Find a subset X of U with maximum total value
subject to the constraint that the total weight of X is\¼ B.

One method for solving this problem is to consider all subsets of objects, S,
in turn, and “Process” the subset S as follows:

Find the total weight of S.
If that total weight is\¼ B, then find the total value of S.
If that total value is larger than the largest so far,

then remember S as the solution so far.

We might start with the empty subset; its total weight is\ B, its total value
is zero, but that’s the largest so far, so remember ∅ as the solution so far. After
we’ve looked at all the (nonempty) subsets, our solution so far will be a solution to
the Knapsack Problem.

// But how do we generate all the nonempty subsets “in turn”?
// As we saw in Chap. 2, subsets have characteristic vectors, n-sequences of 0’s
// and 1’s where
// X[j] ¼ 1 if Oj is in the subset
// and X[j] ¼ 0 if Oj is not in the subset.
//
// Can these n-sequences of bits be generated “in turn”?

Actually, the Knapsack Problem is the collection of all “instances” of a Knap-
sack Problem where an instance is determined by specific values for the parameters
n and B and specific values for the entries in the two arrays V and W. A solution

to the Knapsack Problem is an algorithm that determines an optimal subset of
objects in every instance.

Another famous problem is the Traveling Salesman’s Problem. A traveling
salesman wishes to visit each one of n towns (or prospective customers). However,
there is a “cost” (in time or distance) for moving from one town to another town.
The salesman wants to minimize the total cost of his “tour” of visits, including
the trip from his home base to the first town and from the last town back to his
home base.

And there is another “constraint”: he sells a product he claims will cure every-
thing – from measles to melancholia and from insomnia to ingrown toenails. But the
immediate effect of his “snake oil” is to cause blurred vision, a rash, and diarrhea;
so he never wants to return to a town he’s already visited, not even to pass through.

If his home base is t[0] and the other towns are t[1], t[2], to t[n] and the
(nonnegative) cost of going directly from t[j] to t[k] is C[j,k] for all distinct pairs
j and k in {0..n}, then the TSP can be expressed as follows:

Every permutation S ¼ (s1, s2, s3, …, sn) of {1..n} corresponds to a tour for
the salesman:

T ¼ t 0½ �, t s1½ �, t s2½ �, . . . , t sn½ �, t 0½ �ð Þ,

where the total cost of this tour is

C Tð Þ ¼ C 0, s1½ � þC s1, s2½ � þC s2, s3½ � þ . . .þC sn�1, sn½ � þC sn, 0½ �:

Find a tour T* whose total cost is as small as possible.
The TSP in this form has many important theoretical and practical applications. It
would be nice if there were an efficient algorithm to solve it.

// An efficient algorithm to solve it would bring fame and quite probably fortune.

The “total enumeration” algorithm solves it but has order n!:
Generate all the tours T in some order.
Find the cost of T.
Keep track of the best tour so far.

When all the tours have been considered, the best tour so far is the best tour of all,
T*. // But how do we generate all the permutations and tours “in some order”?

The Traveling Salesman’s Problem, like the Knapsack Problem, is really the
collection of all “instances” of a Traveling Salesman’s Problem where an instance is
determined by specific values for the parameters n and transition-cost matrix C.
A solution to the TSP would be an algorithm that determines an optimal salesman’s
tour in every instance.

In this chapter, we develop a strategy for listing all sequences in some finite
set . We want to do it in a manner so we can be sure that every sequence occurs, and
it occurs exactly once. If these are sequences of integers, we can use Lexicographic-
Order. In particular, we want simple algorithms to generate the following: all
k-sequences on {1..n}; all nonempty, increasing sequences; all increasing
k-sequences; all permutations; and all k-permutations.

380 9 Generating Sequences and Subsets

We will use these algorithms to illustrate average-case complexity and show
that the average-case complexity may be “of lower order” than the worst-case
complexity.

9.1 Generating Sequences in Lexicographic-Order

We used a systematic method with a tree diagram in Chap. 2 to generate integer
sequences in Lexicographic-Order. Here let’s try to do it without drawing a tree
(which may be huge). And let’s begin with an example.

// We want to formulate a general strategy for listing sequences in Lexicographic
// Order.

Example 9.1.1: Some Strange Sequences

Let A denote all 5-sequences S ¼ (x1, x2, x3, x4, x5) on {1..5} such that
1ð Þ x1 and x3 are odd: // that is, 1 or 3 or 5
2ð Þ x2 and x4 are even: // that is, 2 or 4
3ð Þ x1\¼ x4: // So x1 6¼ 5:
4ð Þ x5 is not equal x1 or x2 or x3 or x4: // 3,2,3,4,1ð Þ is in A:
List all the elements of A. // How many of them are there? (Is there no formula?)

Before creating the list, we want to determine how the list will start, how to
continue a partial list and how to know when to stop.

What Would Be the Lexicographic-First Sequence, F?

All the sequences that begin with 1 will come before those that begin with 3, (and
those that begin with 3 would come before those that begin with 5). So in F, x1 ¼ 1.
Among all the sequences that begin with x1 ¼ 1, those with x2 ¼ 2 will come
before those with x2 ¼ 4. So in F, x1 ¼ 1 and x2 ¼ 2.
Among all the sequences that begin with x1 ¼ 1 and x2 ¼ 2, those with x3 ¼ 1 will
come before those with x3 ¼ 3 and those with x3 ¼ 5. So in F, x3 ¼ 1.
Then, the smallest possible value of x4 (that can follow 1,2,1…) is 2;

so in F, x4 ¼ 2.
Then, the smallest possible value of x5 (that can follow 1,2,1,2,…) is 3;

so in F, x5 ¼ 3.
Thus, the Lexicographic-First sequence is F ¼ (1, 2, 1, 2, 3).

What Would Be the Lexicographic-Next Sequence After F?

// If we were looking at 5-sequences of letters that might be words in a dictionary,
// after ababc, we would look for ababd. We’d make a change at the right-hand
// end and increase the last entry as little as possible.

9 Generating Sequences and Subsets 381

The Lexicographic-Next sequence after F ¼ (1, 2, 1, 2, 3) is (1, 2, 1, 2, 4).
The Lexicographic-Next sequence after (1, 2, 1, 2, 4) is (1, 2, 1, 2, 5).

But now we cannot increase the rightmost entry.

// If we were looking at 5-sequences of letters that might be words in a dictionary,
// after abczz, we would look for abdaa. We’d make a change as far to the right-
// hand end as possible; increase that entry that can be increased by as little as
// possible, and then reset the following entries to the smallest possible values (just
// as we did to get F).

To get the Lexicographic-Next sequence after (1, 2, 1, 2, 5), we cannot increase x5,
so we take one step to the left. We can increase x4 from 2 to 4. Then, the smallest
possible value for x5 ¼ 3. Hence, the Lexicographic-Next sequence after
(1, 2, 1, 2, 5) is (1, 2, 1, 4, 3).

How Do We Know When to Stop?

// If we were looking at 5-sequences of letters that might be words in a dictionary,
// after zzzzz, we would stop because no entry can be increased.

In the Lexicographic-Last sequence, no entry can be increased; all are as large as
possible. We will discover, as we work from right to left, that no entry can be
increased. Our method of finding the Lex-Next sequence itself will tell us that
we’ve reached the Lex-Last sequence. // and should stop

// This implies that x1 now has the largest value that it can take, and
// in all sequences with that value of x1, the current value of x2 is now has the
// largest value that it can take. And so on, for all the entries.

Example 9.1.1: The List of the Sequences

x1 x2 x3 x4 x5

1. 1 2 1 2 3 // taking the smallest possibility in each place in turn

2. 1 2 1 2 4 // increasing the rightmost place as little as possible

3. 1 2 1 2 5 // ''

4. 1 2 1 4 3 // finding the rightmost place we can increase …

5. 1 2 1 4 5

6. 1 2 3 2 4

7. 1 2 3 2 5

8. 1 2 3 4 5

9. 1 2 5 2 3

10. 1 2 5 2 4

11. 1 2 5 4 3

12. 1 4 1 2 3

13. 1 4 1 2 5

14. 1 4 1 4 2

15. 1 4 1 4 3

16. 1 4 1 4 5

382 9 Generating Sequences and Subsets

Now no entry can be increased, so we’re done. We’ve generated the Lexicographic-
Last sequence in A. // Now, we know A has 33 sequences.

The method that worked in that example was:
Step 1. Generate the Lex-First sequence in by taking the smallest possibilities

for the entries, working from left to right.
Step 2. Having just generated sequence S ¼ (x1, x2, x3, … xk), find the Lex-Next

sequence T:

By finding the largest index j where xj can be increased, and
increasing xj by the smallest possible amount to x′j ¼ xj þ q, and then
resetting the entries following x′j to their smallest possible values.

But stop when we reach a sequence S where no entry can be increased.
When all sequences in have the same length k, we can prove that this method does
indeed generate all sequences in in Lexicographic-Order.

The Most Important Ideas inThis Section.
Lexicographic-Order is a total order, so the elements of a finite set of
sequences, , can be sorted and listed from the first to the last. The general
method to do this is:
Step 1. Generate the Lex-First sequence in .
Step 2. Having just generated sequence S ¼ (x1, x2, x3, … xk), find the

Lex-Next sequence T. Stop when sequence S is the Lex-Last in .

17. 1 4 3 2 5

18. 1 4 3 4 2

19. 1 4 3 4 5

20. 1 4 5 2 3

21. 1 4 5 4 2

22. 1 4 5 4 3

23. 3 2 1 4 5 // Remember x4 must be [= x1.

24. 3 2 3 4 1

25. 3 2 3 4 5

26. 3 2 5 4 1

27. 3 4 1 4 2

28. 3 4 1 4 5

29. 3 4 3 4 1

30. 3 4 3 4 2

31. 3 4 3 4 5

32. 3 4 5 4 1

33. 3 4 5 4 2

9.1 Generating Sequences in Lexicographic-Order 383

9.2 Generating All k-Sequences on {1..n}

Let’s first look at the example with k ¼ 4 and n ¼ 3.

Example 9.2.1: All 4-Sequences on {1, 2, 3}

// The list will have 34 ¼ 81 sequences.

x1 x2 x3 x4
1 1 1 1 // The Lex-First has the smallest possibility in each place.
1 1 1 2 // increasing the rightmost place as little as possible
1 1 1 3 // ''
1 1 2 1 // finding the rightmost place we can increase and resetting…
1 1 2 2

1 1 2 3

1 1 3 1

1 1 3 2

1 1 3 3 // This is the 9th.
1 2 1 1

1 2 1 2

1 2 1 3

1 2 2 1

1 2 2 2

1 2 2 3

1 2 3 1

1 2 3 2

1 2 3 3 // This is the 18th.
1 3 1 1

…

1 3 3 3 // This is the 27th.
2 1 1 1

…

2 3 3 3 // This is the 54th.
3 1 1 1

…

3 3 3 1

3 3 3 2

3 3 3 3 // This is the 81st, the Lex-Last.

9.2.1 Average-Case Complexity

Let c(T) denote the number of entries in T that are assigned a (new) value when T is
constructed. Then c(T) ranges from 1 up to k.

// c(T) is (roughly) the “cost” of T.

384 9 Generating Sequences and Subsets

What Is the Average Cost of Constructing a Sequence? (in example 9.2.1)

c Tð Þ ¼ 1 if in the previous sequence, x4\ 3;
c Tð Þ ¼ 2 if in the previous sequence, x4 ¼ 3, but x3\ 3;
c Tð Þ ¼ 3 if in the previous sequence, x4 ¼ 3, x3 ¼ 3, but x2\ 3;
c Tð Þ ¼ 4 if in the previous sequence, x4 ¼ 3, x3 ¼ 3, x2 ¼ 3, but x1\ 3

or T is the Lex-First sequence:

Now let f(a) denote the number of sequences T where c(T) ¼ a, for a ¼ 1, 2, 3, 4.
// 1 to k

Then

f 1ð Þ ¼ the number of 4-sequences on 1,2,3f g where x4\¼ 2

¼ # choices for x1ð Þ � # for x2ð Þ � # for x3ð Þ � # for x4ð Þ
¼ 3ð Þ � 3ð Þ � 3ð Þ � 2ð Þ ¼ 54;

f 2ð Þ ¼ the number of 4-sequences on 1,2,3f g where x3\¼ 2 and x4 ¼ 3

¼ # choices for x1ð Þ � # for x2ð Þ � # for x3ð Þ � # for x4ð Þ
¼ 3ð Þ � 3ð Þ � 2ð Þ � 1ð Þ ¼ 18;

f 3ð Þ ¼ the number of 4-sequences on 1,2,3f g where x2\¼ 2 and x3 ¼ x4 ¼ 3

¼ # choices for x1ð Þ � # for x2ð Þ � # for x3ð Þ � # for x4ð Þ
¼ 3ð Þ � 2ð Þ � 1ð Þ � 1ð Þ ¼ 6;

and

f 4ð Þ ¼ 1 for the Lex-Firstð Þ
þ the number of 4-sequences on 1, 2, 3f g where

x1\¼ 2 but x2 ¼ x3 ¼ x4 ¼ 3

¼ 1þ # choices for x1ð Þ � # for x2ð Þ � # for x3ð Þ � # for x4ð Þ
¼ 1þ 2ð Þ � 1ð Þ � 1ð Þ � 1ð Þ ¼ 1þ 2 ¼ 3:

// All the sequences have been counted; f(1) þ f(2) þ f(3) þ f(4)
// ¼ 54 þ 18 þ 6 þ 3 ¼ 81.

The average cost of constructing a sequence

¼ the sum of all the costsð Þ= the number of sequencesð Þ:

The 54 sequences that cost 1 assignment will contribute 54 to the sum of the costs;
the 18 sequences that cost 2 assignments will contribute 18 � 2 ¼ 36 to the sum;
the 6 sequences that cost 3 assignments will contribute 6 � 3 ¼ 18 to the sum; and
the 3 sequences that cost 4 assignments will contribute 3 � 4 ¼ 12 to the sum.

9.2 Generating All k-Sequences on {1..n} 385

The average cost of constructing a sequence

¼ the sum of all the costsð Þ= the number of sequencesð Þ:
¼ 54þ 36þ 18þ 12ð Þ= 81ð Þ ¼ 120=81 ¼ 1:481481. . .\ 2:

// Would you believe that for every k and every n 6¼ 1, the average cost is\ 2
// assignments? The exercises will lead you through a proof that

// The average cost of a sequence ¼ nþ n2þ . . .þ nk

nk
¼ n

n� 1

� � nk � 1
nk

� �
:

The following pseudo-code combines the search for the index j (where an
increase may be made) and the “resetting” part of our strategy. But in this imple-
mentation, the Lex-Last sequence is not detected in the search for index j; instead,
the sequences are counted (indexed by the for-loop control variable) as they are
constructed.

Algorithm 9.2.1: Generating All k-Sequences on {1..n} in Lex-Order

Begin
For j 1 To k Do // Lex-First ¼ (1, 1, …, 1).

S[j] 1;
End;

// Print or process sequence S.

For index 1 To (nk � 1) Do // Get the Lex-Next.
j k;
While (S[j] ¼ n) Do

S[j] 1;
j j � 1;

End; // the while-loop
S[j] S[j] þ 1;

// Print or process sequence S.

End; // the for-loop
End. // of Algorithm 9.2.1

Modifying this algorithm slightly, we can generate all 4-sequences on {0,1} in
Lexicographic-Order. Interpreting these sequences as characteristic vectors, we get
a list of all subsets of {1..4} as follows:

x1 x2 x3 x4 Subset

0 0 0 0 ∅

0 0 0 1 { 4}

0 0 1 0 { 3 }

0 0 1 1 { 3,4}

0 1 0 0 { 2 }

0 1 0 1 { 2, 4}

0 1 1 0 { 2,3 }

0 1 1 1 { 2,3,4}

386 9 Generating Sequences and Subsets

// Aren’t these the binary representations of the integers from 0 to 15?

Processing these subsets, perhaps for the Knapsack Problem, could be made
easier and faster if, as we go from one subset S in our list to the next subset T,
a “minimal change” is made to S. Would it be possible to list these 16 subsets so
that in going from S in our list to the next subset T,

either one new element is added to S
or one old element is removed from S?

Any listing of all the n-sequences of bits with minimal changes is known as a
“Gray code.” They say that these are named after Frank Gray, who, in the 1950s,
applied for a patent on a device that produced such a list.

//X Can you develop an algorithm (or computer program) to list all n-sequences
// of bits as a Gray code for any value of n, that is, with minimal changes?

1 0 0 0 {1 }

1 0 0 1 {1, 4}

1 0 1 0 {1, 3 }

1 0 1 1 {1, 3,4}

1 1 0 0 {1,2 }

1 1 0 1 {1,2, 4}

1 1 1 0 {1,2,3 }

1 1 1 1 {1,2,3,4}

x1 x2 x3 x4 Subset

0 0 0 0 ∅

0 0 0 1 { 4}

0 0 1 1 { 3,4}

0 0 1 0 { 3 }

0 1 1 0 { 2,3 }

0 1 1 1 { 2,3,4}

0 1 0 1 { 2, 4}

0 1 0 0 { 2 }

1 1 0 0 {1,2 }

1 1 0 1 {1,2, 4}

1 1 1 1 {1,2,3,4}

1 1 1 0 {1,2,3 }

1 0 1 0 {1, 3 }

1 0 1 1 {1, 3,4}

1 0 0 1 {1, 4}

1 0 0 0 {1 }

9.2 Generating All k-Sequences on {1..n} 387

The Most Important Ideas inThis Section.
All k-sequences on {1..n} may be generated in Lexicographic-Order fairly
easily by Algorithm 9.2.1, with an average cost of \ 2 assignments.
Modifying this algorithm slightly, we can generate all k-sequences on {0,1}
in Lexicographic-Order, and interpreting these sequences as characteristic
vectors, we get a list of all subsets of {1..k}.

A “minimal change” to a subset, S, is

either one new element is added to S
or one old element is removed from S:

A Gray code is any listing of all the objects in some class with minimal
changes between consecutive entries in the list. There are a number of
algorithms to list all k-sequences on {1..n} and all k-subsets on {1..n} in
Gray codes.

9.3 Generating Subsets of {1..n} as Increasing Sequences

If n ¼ 7, the subset {5, 2, 3, 6} of {1..7} may be rewritten in many ways by
changing the order of the elements in the braces:

5, 2, 3, 6f g ¼ 5, 6, 2, 3f g ¼ 2, 3, 5, 6f g ¼ 6, 2, 3, 5f g ¼ . . . // 24 ways?

The most natural listing is {2, 3, 5, 6} where the elements occur in the list between
the braces in increasing order. // in their usual order
If we were to always list them that way, then every nonempty subset of integers
corresponds to a unique increasing sequence of integers.

We want an algorithm to list all (nonempty) increasing sequences on {1..n} in
Lexicographic-Order. But these are sequences of varying lengths. Therefore, we’ll
have to revise our general method to incorporate the fact that prefixes come before
extensions:
Step 1. Generate the Lex-First sequence in by taking smallest possible values for

the entries x1, x2, x3, and so on until we have a sequence in
Step 2. Having generated sequence S ¼ (x1, x2, x3, … xk), find the Lex-Next

sequence T:
(a) By extending S by finding smallest possible values

for the entries xk+1, xk+2, and so on
until we have a sequence in ;

or when S cannot be extended,

388 9 Generating Sequences and Subsets

(b) By finding the largest index j where xj can be increased, and then
increasing xj by the smallest possible amount to x′j ¼ xj þ q, and then
(if necessary) extending (x1, x2, x3, … x′j) by finding smallest
possible values for the entries xj+1, xj+2, and so on
until we have a sequence in .

But stop when we reach a sequence S that cannot be extended and
where no entry can be increased.

This method can be proven to generate all sequences in in Lexicographic-Order.
// very tediously

Let’s look at the example of n ¼ 4. The (nonempty) subsets range in size
from 1 to 4, so the sequences will range in length k from k ¼ 1 to k ¼ 4. In
Lexicographic-Order, prefixes come before extensions; so the sequence (2) will
come before (2, 3, 4). We need all the sequences

S ¼ x1, x2, . . ., xkð Þ on 1::4f g such that 1\¼ x1\ x2\. . .\ xk\¼ 4:

Example 9.3.1: All Nonempty Increasing Sequences on {1..4}
// The list will have 24 � 1 = 15 sequences.

x1 x2 x3 x4 k

1. 1 1 // the Lex-First

2. 1 2 2 // extending the previous (as little as possible)

3. 1 2 3 3 // "

4. 1 2 3 4 4 // "

5. 1 2 4 3 // finding the rightmost place we can increase

6. 1 3 2 // finding the rightmost place we can increase

7. 1 3 4 3

8. 1 4 2

9. 2 1

10. 2 3 2

11. 2 3 4 3

12. 2 4 2

13. 3 1

14. 3 4 2

15. 4 1 // the Lex-Last

Here, the Lex-Last sequence is easy to detect; it’s the only sequence that begins
with n. The following pseudo-code gives the algorithm.

9.3 Generating Subsets of {1..n} as Increasing Sequences 389

Algorithm 9.3.1: Generating All (Nonempty) Subsets of {1..n}
as Increasing Sequences (S[1]..S[k]) in Lex-Order

Begin
S[1] 1; // Lex-First ¼ (1)
k 1;

// Print or process sequence (S[1])
While (S[1]\n) Do // Get the Lex-Next
If (S[k]\n) Then

S[k þ 1] S[k] þ 1;
k k þ 1; // The length goes up

Else // S[k] ¼ n
S[k � 1] S[k�1] þ 1;
k k�1; // The length goes down

End; // the if-statement
// Print or process sequence (S[1]..S[k])

End; // the while-loop
End. // of Algorithm 9.3.1

This algorithm correctly implements the general strategy: it generates the Lex-
First increasing sequence, and whenever the current sequence S is not the Lex-Last,
it produces the Lex-Next increasing sequence after S.

With this algorithm, each new sequence costs exactly one assignment to one
entry in S. // But is this a “minimum-change” order? Is this a Gray code?

Generating All k-Subsets of {1..n}

We will begin with an example.

Example 9.3.2: If n ¼ 7 and k ¼ 4, then there are exactly

7
4

� �
¼ 7!

4!3!
¼ 7� 6� 5

3� 2� 1
¼ 35 subsets: // and increasing sequences

They are listed below as increasing sequences on {1..7} written in Lex-Order along
with the j-value for generating the Lex-Next.

// j is the largest index where S[j] may be increased and a is the number
// of entries assigned a new value as the sequence was constructed.

x1 x2 x3 x4 j a

1. 1 2 3 4 4 4 // the Lex-First

2. 1 2 3 5 4 1

3. 1 2 3 6 4 1

4. 1 2 3 7 3 1

5. 1 2 4 5 4 2

6. 1 2 4 6 4 1

7. 1 2 4 7 3 1

390 9 Generating Sequences and Subsets

// Now no entry can be increased, so we’ve generated the Lexicographic-Last.

We want an algorithm which generates all sequences S ¼ (x1, x2,… , xk) on {1..n}
such that 1\¼ x1\ x2\…\ xk\¼ n.

// How can we design it? What properties of these sequences can we exploit?
// In particular, what are the upper and lower limits on each entry, xi?

Lemma 9.3.1: If S ¼ (x1, x2, …, xk) is an increasing sequence on {1..n}, then
i\¼ xi\¼ n� kþ i for i ¼ 1, 2, . . ., k

Proof. When p and q are integers and p\¼ q, the interval

p::qf g ¼ pþ 0, pþ 1, pþ 2, . . . , pþ q� pð Þf g, so p::qf gj j ¼ q� pð Þþ 1:

8. 1 2 5 6 4 2

9. 1 2 5 7 3 1

10. 1 2 6 7 2 1

11. 1 3 4 5 4 3

12. 1 3 4 6 4 1

13. 1 3 4 7 3 1

14. 1 3 5 6 4 2

15. 1 3 5 7 3 1

16. 1 3 6 7 2 1

17. 1 4 5 6 4 3

18. 1 4 5 7 3 1

19. 1 4 6 7 2 1

20. 1 5 6 7 1 1

21. 2 3 4 5 4 4

22. 2 3 4 6 4 1

23. 2 3 4 7 3 1

24. 2 3 5 6 4 2

25. 2 3 5 7 3 1

26. 2 3 6 7 2 1

27. 2 4 5 6 4 3

28. 2 4 5 7 3 1

29. 2 4 6 7 2 1

30. 2 5 6 7 1 1

31. 3 4 5 6 4 4

32. 3 4 5 7 3 1

33. 3 4 6 7 2 1

34. 3 5 6 7 1 1

35. 4 5 6 7 - 1

9.3 Generating Subsets of {1..n} as Increasing Sequences 391

When 1\¼ p\¼ q\¼ k, {xp, xp+1, …, xq} is a set of q � p þ 1 distinct integers
in the interval {xp.. xq}, so

q� pþ 1\¼ xq � xpþ 1

and q� p\¼ xq � xp:

If p ¼ 1 and q ¼ i; then i� 1\¼ xi � x1\¼ xi � 1 // since 1\¼ x1
so i\¼ xi:

If p ¼ i and q ¼ k; then k � i\¼ xk � xi;

so k � iþ xi \¼ xk\¼ n:

Hence, xi \¼ n� kþ i: ▯

We could summarize this as follows:

x1, x2, . . ., xk�1, xkð Þ is dominated by n� kþ 1, n� kþ 2, . . ., n� 1, nð Þ,
and 1, 2, . . ., k � 1, kð Þ is dominated by x1, x2, . . ., xk�1, xkð Þ:
// When n ¼ 7 and k ¼ 4, x1, x2, x3, x4ð ÞD 4, 5, 6, 7ð Þ; // See Chap: 7:
// and 1, 2, 3, 4ð Þ D x1, x2, x3, x4ð Þ:
Note also that if p ¼ i and q ¼ iþ t then from Lemma 9.3.1, // taking t[¼ 0

t ¼ q� p\¼ xiþ t � xi;
or xi\¼ xiþ t � t:

Now if xi ¼ n� kþ i; // ¼ the upper limit for xi
then n� kþ i\¼ xiþ t � t // for t ¼ 0, 1, 2, . . . k � ið Þ

n� kþ iþ t\¼ xiþ t;
so xiþ t ¼ n� kþ iþ tð Þ: //¼ the upper limit for xiþ t

This implies that if xi \ n� kþ i; //\ the upper limit for xi
then for p ¼ 1, 2, . . .; i� 1ð Þ xp \ n� kþ p: //\ the upper limit for xp

The facts which follow from these results that we may then use in the construc-
tion of our algorithm are:
1. There is only one sequence with x1 ¼ n � k þ 1, and it’s the Lex-Last.

// We can easily detect the Lex-Last sequence by looking at S[1] alone.
// (Also, the Lex-First equals the Lex-Last if and only if n ¼ k).

2. If xj can be increased, then so can xj�1.

// If xj is increased to its upper limit n � k þ j, then xj�1 can be increased,
// but no xq with j\ q can be increased.
// The next j-value needed by the algorithm is the current j-value minus 1.

392 9 Generating Sequences and Subsets

The following pseudo-code generates the sequences in Lex-Order, and with each
sequence S (except the Lex-Last), it gives the largest index j where S[j] may be
increased.

Algorithm 9.3.2: Generating All k-Subsets of {1..n}
as Increasing Sequences (S[1]..S[k]) in Lex-Order

Begin
For j 1 To k Do // Lex-First ¼ (1, 2, …, k)
S[j] j;

End;
// Print or process sequence S

j k;
While (S[1]\n � k þ 1) Do // Get the Lex-Next, T
S[j] S[j]þ 1;
If (S[j]¼ n � k þ j) Then

j j � 1; // One change to S gives T
Else // Reset all entries after S[j]

While (j\k) Do // to the smallest possibility
j j þ 1;
S[j] S[j � 1]þ 1;

End; // the inner while-loop // and now, j ¼ k.
End; // the if-statement

// Print or process sequence S
End; // the outer while-loop

End. // of Algorithm 9.3.2

This algorithm correctly implements the general strategy: it generates the Lex-
First increasing sequence, and whenever the current sequence S is not the Lex-Last,
it produces the Lex-Next increasing sequence after S.

// Is Lexicographic-Order a minimal-change list? A Gray code? Is there such a
// list? What would be a “minimum change”?

Average-Case Complexity of Algorithm 9.3.2

Let c(T) denote the number of entries in T that are assigned a (new) value when T
is constructed. Then c(T) ranges from 1 up to k.

// c(T) is (roughly) the “cost” of T.
What is the average cost of constructing a sequence?

If k ¼ n, then there is only 1 sequence which costs k assignments, so the average
cost is k assignments. From this point on, assume that 1\¼ k\ n.

// Then n � k � 1[¼ 0.
But first, let’s look at the j-values. For each,

S j½ �\ n� kþ j: // because S j½ � may be increased
So S j½ �\¼ n� kþ jð Þ � 1, and
if j\q\¼ k; S q½ � ¼ n� kþ q: // the upper limit for S q½ �

9.3 Generating Subsets of {1..n} as Increasing Sequences 393

The number of such sequences // with a given value of j

¼ the number of increasing j-sequences on 1:: n� kþ j� 1ð Þf g

¼ n� kþ j� 1

j

� �
:

// In Example 9.3.2 where n ¼ 7, k ¼ 4, and n � k � 1 ¼ 2.

// The number of times j ¼ 4 equals
2þ 4
4

� �
¼ 6

4

� �
¼ 15:

// The number of times j ¼ 3 equals
2þ 3
3

� �
¼ 5

3

� �
¼ 10:

// The number of times j ¼ 2 equals
2þ 2
2

� �
¼ 4

2

� �
¼ 6:

// The number of times j ¼ 1 equals
2þ 1
1

� �
¼ 3

1

� �
¼ 3:

These numbers occur in Pascal’s triangle.

Every sequence, except the last one, has a j-value associated with it, and

1 þ 3 þ 6 þ 10 þ 15 ¼ 35. // and 35 is also in the triangle

We can generalize this equation.

Lemma 9.3.2: For all nonnegative integers q and t,

Xt

j¼0

qþ j

j

� �
¼ q

0

� �
þ qþ 1

1

� �
þ qþ 2

2

� �
þ . . .þ qþ t

t

� �
¼ qþ tþ 1

t

� �
:

Proof. // by Mathematical Induction on t

Step 1. If t ¼ 0, then LHS ¼ q
0

� �
¼ 1, and RHS¼ qþ 1

0

� �
¼ 1.

// even if q ¼ 0

Step 2. Assume 9 a nonnegative integer r such that

Xr

j¼0

qþ j
j

� �
¼ qþ rþ 1

r

� �
:

394 9 Generating Sequences and Subsets

Step 3. If t ¼ r þ 1, then

LHS ¼
Xrþ 1

j¼0

qþ j

j

� �
¼

Xr

j¼0

qþ j

j

� �
þ qþ rþ 1

rþ 1

� �

¼ qþ rþ 1

r

� �
þ qþ rþ 1

rþ 1

� �
// by the inductive hypothesis

¼ ðqþ rþ 1Þþ 1

rþ 1

� �
// by the Bad Banana Theorem (Example 2.3.3)

¼ qþðrþ 1Þþ 1

rþ 1

� �
¼ RHS: ▯

// What about the average cost of constructing a sequence?
// The average cost of constructing a sequence
// ¼ (the sum of all the costs)/(the number of sequences).

Let’s look again at the sequences with a certain (fixed) j-value.

S j½ � \ n� kþ j; // because S j½ � may be increased
so S j½ �\¼ n� kþ jð Þ � 1, and
if j\q\¼ k; S q½ � ¼ n� kþ q: // the upper limit for S q½ �

Case 1

If S j½ � ¼ n� kþ jð Þ � 1; then only 1 assignment would be done
to construct the Lex-Next sequence, T:

Case 2

If S j½ �\¼ n� kþ jð Þ � 2; then T is constructed by replacing
S j½ �, S jþ 1½ �. . .S k½ �:

In the first case c(T) ¼ 1, and in the second case, c(T) ¼ k� (j� 1) ¼ (kþ 1)� j.
The number of sequences in the first case, // when S[j] ¼ (n � k þ j) � 1

¼ the number of increasing j� 1ð Þ-sequences on 1:: n� kþ j� 2ð Þf g

¼ n� kþ j� 2

j� 1

� �
:

9.3 Generating Subsets of {1..n} as Increasing Sequences 395

The number of sequences in the second case, // when S[j]\¼ (n � k þ j) � 2

¼ the number of increasing j-sequences on 1:: n� kþ j� 2ð Þf g

¼ n� kþ j� 2

j

� �
:

The total number of sequences S falling into Case 1, setting Q ¼ n � k � 1, is

Xk
j¼1

Qþðj� 1Þ
j� 1

� �
¼ Qþ 0

0

� �
þ Qþ 1

1

� �
þ . . .þ Qþðk � 1Þ

k � 1

� �

¼ Qþðk � 1Þþ 1

k � 1

� �
// by Lemma 9:3:2

¼ n� 1

k � 1

� �
: // as Q ¼ n� k � 1

For a ¼ 1, 2,…, k, let f(a) denote the number of sequences T such that c(T) ¼ a.
Then

f 1ð Þ ¼ the number of sequences in Case 1

þ the number of sequences in Case 2 where a ¼ 1 ¼ kþ 1ð Þ � j

¼ n� 1

k � 1

� �
þ Rþ j

j

� �
where R ¼ n� k � 2 and j ¼ k

¼ n� 1

k � 1

� �
þ Rþ k

k

� �
: // if n ¼ 7 and k ¼ 4, R ¼ 1 and f 1ð Þ ¼ 20þ 5

For 1\a\ k, f(a) ¼ the number of sequences in Case 2 where j ¼ (k þ 1) � a

¼ Rþ j
j

� �
: // R ¼ n� k � 2:

Also, f ðkÞ ¼ 1 for the Lex-First sequenceð Þ
þ the number of sequences in Case 2 where j ¼ kþ 1ð Þ � a ¼ 1

¼ 1þ Rþ j
j

� �
// R ¼ n� k � 2:

¼ Rþ 0

0

� �
þ Rþ 1

1

� �
:

396 9 Generating Sequences and Subsets

(Continued)

Finally, the sum of all the costs

¼
Xk
a¼1

a� f ðaÞ

¼1� f 1ð Þþ 2� Rþ k � 1

k � 1

� �
þ 3� Rþ k � 2

k � 2

� �
þ . . .þ k � 1ð Þ

� Rþ 2

2

� �
þ k � f ðkÞ:

// This looks quite ugly but … using Lemma 9.3.2 and the hints given in the
// exercises, you (too) will be able to prove the remarkable fact that

kþ 1ð Þ � Rþ 0

0

� �
þ k � Rþ 1

1

� �
þ . . .þ 3� Rþ k � 2

k � 2

� �
þ 2

� Rþ k � 1

k � 1

� �
þ 1� Rþ k

k

� �
¼ n

k

� �
:

It then follows that the sum of all the costs ¼ n
k

� �
þ n� 1

k � 1

� �
� 1:

Since
n� 1

k � 1

� �
¼ ðn� 1Þ!
ðk � 1Þ!ð½n� 1� � ½k � 1�Þ! ¼

ðn� 1Þ!
ðk � 1Þ!ðn� kÞ! �

n

n
� k

k

¼ n!

k!ðn� kÞ! �
k

n
¼ k

n
� n

k

� �
;

the sum of all the costs ¼ n
k

� �
þ k

n
� n

k

� �
� 1\ 1þ k

n

� �
n
k

� �
:

Therefore, the average cost is\ 1þ k

n
which is\¼ 2.

// no matter how large n and k are
// so long as k\ n

// In Example 9.3.2 where k ¼ 4 and n ¼ 7,
// the average was 54/35 and 1 þ k/n ¼ 11/7 ¼ 55/35.

The Most Important Ideas in This Section.
All nonempty subsets of {1..n} may be generated as increasing sequences in
Lexicographic-Order fairly easily by Algorithm 9.3.1, where exactly one
entry in the sequence is changed to get the next subset, but the subset sizes
go up or down by 1.

All k-subsets of {1..n} may be generated as increasing sequences in
Lexicographic-Order fairly easily by Algorithm 9.3.2, with an average cost
of\ 2 assignments.

9.3 Generating Subsets of {1..n} as Increasing Sequences 397

A Gray code is a listing of all the subsets with minimal changes between
consecutive entries in the list. There are a number of algorithms to list all
subsets of {1..n}, and all k-subsets of {1..n} in Gray codes. Algorithms 9.3.1
and 9.3.2 do not produce Gray codes.

For all nonnegative integers q and t,

Xt

j¼0

qþ j

j

� �
¼ q

0

� �
þ qþ 1

1

� �
þ qþ 2

2

� �
þ . . .þ qþ t

t

� �

¼ qþ tþ 1

t

� �
:

9.4 Generating Permutations in Lexicographic-Order

We would like a simple algorithm to generate all n! permutations of {1..n} in
Lexicographic-Order. The Lex-First will be (1, 2, 3, …, n � 1, n),
and the Lex-Last will be (n, n � 1, n � 2, …, 2, 1).

If n ¼ 4, then there are 4! ¼ 24 (full) permutations of {1..n}. They are listed
below in Lex-Order along with the j-value for generating the Lex-Next and with
a ¼ the number of entries assigned a new value as the sequence was constructed.

Example 9.4.1: All Permutations of {1..4}

(Continued)

x1 x2 x3 x4 j a

1. 1 2 3 4 3 4 // the Lex-First

2. 1 2 4 3 2 2

3. 1 3 2 4 3 3

4. 1 3 4 2 2 2

5. 1 4 2 3 3 3

6. 1 4 3 2 1 2

7. 2 1 3 4 3 4

8. 2 1 4 3 2 2

9. 2 3 1 4 3 3

10. 2 3 4 1 2 2

11. 2 4 1 3 3 3

12. 2 4 3 1 1 2

13. 3 1 2 4 3 4

14. 3 1 4 2 2 2

15. 3 2 1 4 3 3

16. 3 2 4 1 2 2

398 9 Generating Sequences and Subsets

17. 3 4 1 2 3 3

18. 3 4 2 1 1 2

19. 4 1 2 3 3 4

20. 4 1 3 2 2 2

21. 4 2 1 3 3 3

22. 4 2 3 1 2 2

23. 4 3 1 2 3 3

24. 4 3 2 1 - 2

// Now no entry can be increased, so we’ve generated the Lexicographic-Last.

// Is Lexicographic-Order a minimal-change list?
// What would be a minimal change between two permutations?
// Is there a minimal-change list?

// How do we determine the Lex-Next permutation, T?

What will be the Lex-Next after S ¼ (2, 6, 9, 1, 5, 8, 7, 4, 3)? // Here n ¼ 9.
We must find the largest index j where S[j] may be increased.

S n½ � ¼ 3 cannot be increased because all integers larger than 3 in 1::9f g
occur to the left of S n½ �:
// This happens in every permutation so j is always\n:

S n� 1½ � ¼ 4 cannot be increased because all larger values are left of S n� 1½ �:
S n� 2½ � ¼ 7 cannot be increased because all larger values are left of S n� 2½ �:
S n� 3½ � ¼ 8 cannot be increased because all larger values are left of S n� 3½ �:

But
S[n � 4] ¼ 5 can be increased because some integer larger than 5 in {1..9}

does not occur to the left of S[n � 3].
// 7 and 8 occur to the right

Thus, j ¼ n� 4.
// If we were to continue following our general strategy to find the Lex-Next
// sequence, T
//
// S ¼ (2, 6, 9, 1, 5, 8, 7, 4, 3), so T ¼ (2, 6, 9, 1, ?, , , ,).
//
// S[j] ¼ 5 cannot be increased to 6
// because 6 occurs to the left, but
// S[j] can be increased to 7, so T ¼ (2, 6, 9, 1, 7, ?, , ,).
//
// The smallest value that can follow (2, 6, 9, 1, 7,
// is not1nor2,but is3, so T ¼ (2, 6, 9, 1,7,3,?, ,).
//
// The smallest value that can follow (2, 6, 9, 1, 7, 3,
// is not 1, 2, or 3, but is 4, so T ¼ (2, 6, 9, 1,7,3,4,?,).
//
// The smallest value that can follow (2, 6, 9, 1, 7, 3, 4,
// is not 1, 2, 3, or 4, but is 5, so T ¼ (2, 6, 9, 1,7,3,4,5,?).
//
// The smallest (and only) value that can follow (2, 6, 9, 1, 7, 3, 4, 5 is 8,

9.4 Generating Permutations in Lexicographic-Order 399

// so T ¼ (2, 6, 9, 1, 7, 3, 4, 5, 8).

If S n� 1½ �\ S n½ �, then j ¼ n� 1: // This will happen half the time:

If S n� 1½ �[S n½ � but S n� 2½ �\ S n� 1½ �; then j ¼ n� 2:

// This happens a third of the time:

If S n� 2½ �[S n� 1½ �[S n½ � but S n� 3½ �\ S n� 2½ �; then j ¼ n� 3:

We need to find the largest index j where

S jþ 1½ �[S jþ 2½ �[. . .[S n� 2½ �[S n� 1½ �[S n½ � but S j½ �\ S jþ 1½ �:

And we can do this in a loop where we start with k ¼ n � 1:

While (S[k] > S[k þ 1]) Do

k k � 1;

End.

When this loop terminates S[k]\ S[k þ 1], so

S[k] is less than at least one later entry, namely, S[k þ 1], but
there is no larger index j, where S[j] is less than a later entry.

Therefore, we can set j to be the final k-value. In fact, we can even use the variable j
instead of k in the loop.

There is one snag though, if S is the Lex-Last permutation, our while-loop will
go “off the end” of S when k (or j) becomes zero. One remedy for this is to set S[0]
to be zero at the beginning of the algorithm and never change it. Then when k (or j)
becomes 0, S[k] must be\S[k þ 1]. Furthermore, the final value of k (or j) will be
zero if and only if S is the Lex-Last permutation.

Now we know how to determine j where S[j] may be increased for any S (except
the Lex-Last). How do we find the smallest value larger than the current value of
S[j] such that S[j] may be increased to it? “It” will be the smallest value follow-
ing S[j] in S that’s larger than the current value of S[j] where

S jþ 1½ �[S jþ 2½ �[. . . S n� 2½ �[S n� 1½ �[S n½ � but S j½ �\S jþ 1½ �:

We can start from S[n] and go down the sequence until we find the first entry[S[j].
So starting with m ¼ n, we can use the loop

While (S[j] > S[m]) Do

m m � 1;

End.

This loop is sure to terminate because if m reaches j þ 1, we know that S[j]\S[m].
We will change S[j] to S[m].

// How do we reset the entries in S[j þ 1], S[j þ 2], and so on to the smallest
// possible value?

The entries in S after position j are decreasing

S jþ 1½ �[S jþ 2½ �[. . . S m� 1½ �[S m½ �[S mþ 1½ �[. . .[S n� 1½ �[S n½ �:

400 9 Generating Sequences and Subsets

The smallest of these is S[n] so it can be put into position j þ 1.
The next smallest of these is S[n � 1] so it can be put into position j þ 2.
Maybe we should simply reverse the order of these entries.
But we cannot use the value of S[m] again, and we must use the old value of S[j].

We know that S[m] [S[j] [S[m þ 1].
If we interchange the values of S[m] and S[j], we then have

S jþ 1½ �[S jþ 2½ �[. . . S m� 1½ �[S j½ �[S mþ 1½ �[. . .[S n� 1½ �[S n½ �:
Now, we can reset the entries in S[j þ 1], S[j þ 2] … S[n] to their smallest possible
values by simply reversing the order of these entries.

The algorithm given below in pseudo-code generates each permutation S and
then the j-value of that sequence; it terminates after it generates the Lex-Last which
is the only one with j-value ¼ 0.

Algorithm 9.4.1: Generating All (Full) Permutations of {1..n}
as Sequences (S[1]..S[n]) in Lex-Order

Begin
For i 0 To n Do // Lex-First ¼ (1, 2, …, n)

S[i] i;
End;

// Print or process sequence S
j n � 1;
While (j [0) Do // Get the Lex-Next

// S[j] may be increased
X S[j];
m n;
While (X [S[m]) Do

m m � 1;
End; // the inner while-loop // and now Sm [Sj [Sm+1

S[j] S[m];
S[m] X;

// Interchange Sm and Sj

p j þ 1;
q n; // Reset all entries after S[j]
While (p\q) Do // by reversing them

X S[p];
S[p] S[q];
S[q] X;
p p þ 1;
q q � 1;

End; // the second inner while-loop
// Print or process sequence S

j n � 1; // Find next index j in S
While (S[j] [S[j þ 1]) Do

j j � 1;
End;

End; // the outer while-loop
End. // of Algorithm 9.4.1

9.4 Generating Permutations in Lexicographic-Order 401

Walk through the next four iterations of the body of the loop constructing the
Lex-Next permutation assuming that n ¼ 10, and at this point,

S ¼ 9, 1, 4, 10, 8, 7, 6, 5, 2, 3ð Þ: // with j-value ¼ 9

1. On the next iteration, j ¼ 9 and so X will be S[9] ¼ 2.
(a) Find m and interchange S[m] and S[j]:

(b) Reverse the order of S[j þ 1]..S[n]:

// After S ¼ (9, 1, 4, 10, 8, 7, 6, 5, 2, 3), the Lex-Next is (9, 1, 4, 10, 8, 7, 6, 5, 3, 2).

(c) Find the j-value of this new current permutation:

2. On the next iteration, j ¼ 3 and so X will be S[3] ¼ 4.
(a) Find m and interchange S[m] and S[j]:

(b) Reverse the order of S[j þ 1]..S[n]:

m S[m] X [S[m] the permutation S

10 3 F 9,1,4,10,8,7,6,5,3 ,2

p q p\q the permutation S

10 10 F 9,1,4,10,8,7,6,5 ,3 ,2

j S[j] S[j] [S[j þ 1] the permutation S

9 3 T 9,1,4,10,8,7,6,5,3,2

8 5 T

7 6 T

6 7 T

5 8 T

4 10 T

3 4 F

m S[m] X [S[m] the permutation S

10 2 T 9,1,4,10,8,7,6,5,3,2

9 3 T

8 5 F 9,1,5,10,8,7,6,4,3,2

p q p\q the permutation S

9,1,5,10,8,7,6,4,3,2

4 10 T 9,1,5, 2,8,7,6,4,3,10

5 9 T 9,1,5, 2 ,3,7,6,4 ,8,10

6 8 T 9,1,5, 2,3,4,6 ,7,8,10

7 7 F

402 9 Generating Sequences and Subsets

// After S ¼ (9, 1, 4, 10, 8, 7, 6, 5, 3, 2), the Lex-Next is (9, 1, 5, 2, 3, 4, 6, 7, 8, 10).

(c) Find the j-value of this new current permutation:

3. On the next iteration, j ¼ 9 and so X will be S[9] ¼ 8.
(a) Find m and interchange S[m] and S[j]:

(b) Reverse the order of S[j þ 1]..S[n]:

// After S ¼ (9, 1, 5, 2, 3, 4, 6, 7, 8, 10), the Lex-Next is (9, 1, 5, 2, 3, 4, 6, 7,10, 8).
(c) Find the j-value of this new current permutation:

4. On the next iteration, j ¼ 8 and so X will be S[8] ¼ 7.
(a) Find m and interchange S[m] and S[j]:

(b) Reverse the order of S[j þ 1]..S[n]:

// After S ¼ (9, 1, 5, 2, 3, 4, 6, 7, 10, 8), the Lex-Next is (9, 1, 5, 2, 3, 4, 6, 8, 7, 10).

(c) Find the j-value of this new current permutation:

// On the next iteration, j ¼ 9 and so X will be S[9] ¼ 7.

This algorithm correctly implements the general strategy: it generates the
Lex-First permutation, and whenever the current sequence S is not the Lex-Last,
it produces the Lex-Next permutation after S.

p q p\q the permutation S

10 10 F 9,1,5,2,3,4,6,7 ,10 ,8

j S[j] S[j][S[j þ 1] the permutation S

9 10 T 9,1,5,2,3,4,6,7,10,8

8 7 F

m S[m] X [S[m] the permutation S

10 8 F 9,1,5,2,3,4,6 ,8,10 ,7

p q p\q the permutation S

9 10 T 9,1,5,2,3,4,6,8,10,7

10 9 F

j S[j] S[j][S[j þ 1] the permutation S

9 10 F 9,1,5,2,3,4,6,8,7,10

j S[j] S[j] [S[j þ 1] the permutation S

9 8 F 9,1,5,2,3,4,6,7,8,10

m S[m] X [S[m] the permutation S

10 10 F 9,1,5,2,3,4,6,7 ,10 ,8

9.4 Generating Permutations in Lexicographic-Order 403

Average-Case Complexity of Algorithm 9.4.1

Let c(T) denote the number of entries in T that are assigned a (new) value when T is
constructed. Then c(T) ranges from 2 up to n.

// c(T) is (roughly) the “cost” of T.
// We never just change 1 entry (if n [1).

What is the average cost of constructing a sequence?

// The average cost of constructing a sequence
// ¼ (the sum of all the costs)/(the number of sequences).
// We need a formula for the sum of all the costs.

For A ¼ 1, 2, …, n, let f(A) denote the number of sequences T such that
c(T) ¼ A; that is, in the formation of the Lex-Next permutation T, the last A entries
are assigned new values. Then (j � 1) þ A ¼ n.

For each possible (positive) j-value, how many permutations S are there where

S jþ 1½ �[S jþ 2½ �[. . .[S n� 2½ �[S n� 1½ �[S n½ � but S j½ �\ S jþ 1½ �?

We can construct such a permutation S in 5 steps:
1. Choose A values from {1..n} to put at the end of the sequence.
2. Put the largest of these in position j þ 1.
3. Select 1 of the remaining values to put these in position j.
4. Arrange the remaining A � 2 values in decreasing order in positions j þ 2 to n.
5. Arrange the “un-chosen” n � A values in any order in positions 1 to j � 1.
Then, the number of sequences constructed in this way

¼ n

A

� �
� 1ð Þ � A� 1ð Þ � 1ð Þ � n� Að Þ! // The “steps” are independent:

¼ n!

A!ðn� AÞ!� A� 1ð Þ � n� Að Þ!

¼ n!� A� 1
A!

� �
:

Every permutation except the Lex-Last (where j ¼ 0) can be constructed (using
these 5 steps), so adding these counts should total n! � 1.

Because
A� 1
A!
¼ A

A!
� 1
A!
¼ 1
ðA� 1Þ!�

1
A!

, // the series “telescopes”

Xn
A¼1

1
ðA� 1Þ!�

1
A!

� �

¼ 1
0!
� 1
1!

� �
þ 1

1!
� 1
2!

� �
þ . . .þ 1

ðn� 2Þ!�
1

ðn� 1Þ!
� �

þ 1
ðn� 1Þ!�

1
n!

� �

¼ 1
0!
þ � 1

1!
þ 1

1!

� �
þ . . .þ � 1

ðn� 1Þ! þ
1

ðn� 1Þ!
� �

� 1
n!

¼ 1� 1
n!
:

404 9 Generating Sequences and Subsets

Hence,
Xn
A¼1

n!� A� 1
A!

� �
¼ n!�

Xn
A¼1

A� 1
A!

� �
¼ n!�

Xn
A¼1

1
ðA� 1Þ!�

1
A!

� �

¼ n!� 1� 1
n!

� �
¼ n!� 1:

//X Prove that if x0, x1, x2, …, xn is any sequence, then
Xn
j¼1
ðxj�1 � xjÞ ¼ x0 � xn:

We can now evaluate the frequencies, f(A).

For 1\¼ A\n, f ðAÞ ¼ n!� A� 1
A!

� �
;

and f ðnÞ ¼ 1 for the Lex-First sequenceð Þ

þ n!� n� 1
n!

� �
¼ 1þ n� 1ð Þ ¼ n:

Then f 1ð Þ ¼ 0 // We always have to change at least 2 entries:
f 2ð Þ ¼ n!� 1

2 // Half the time we interchange the last 2 entries:
f 3ð Þ ¼ n!� 1

3 // One third of the time we change the last 3 entries.

Finally, the average cost

¼ 1
n!

Xn
A¼1

A� f ðAÞ

¼ 1
n!

Xn
A¼2

A� f ðAÞ // f 1ð Þ ¼ 0:

¼ 1
n!

Xn�1
A¼2

A� n!� A� 1
A!

� �
þ n� ðnÞ

()
// f ðnÞ ¼ n:

¼
Xn�1
A¼2

A� A� 1
A!

� �
þ n2

n!

¼
Xn�1
A¼2

1
ðA� 2Þ! þ n

ðn� 1Þ!

¼ 1
0!
þ 1

1!
þ 1

2!
þ . . .þ 1

ðn� 3Þ! þ
n� 1
ðn� 1Þ! þ

1
ðn� 1Þ!

¼ 1
0!
þ 1

1!
þ 1

2!
þ . . .þ 1

ðn� 3Þ! þ
1

ðn� 2Þ! þ
1

ðn� 1Þ! :

// When n was 4, the average cost was 64/24¼ 8/3, and
// 1/0! þ 1/1! þ 1/2! þ 1/3! ¼ 1 þ 1 þ 1/2 þ 1/6
// ¼ (6 þ 6 þ 3 þ 1)/6 ¼ 16/6 ¼ 8/3 ¼ 2:6.

The next theorem proves that the average cost is always\ 3.

9.4 Generating Permutations in Lexicographic-Order 405

Theorem 9.4.1: For all n 2 P,
1
0!
þ 1

1!
þ 1

2!
þ . . .þ 1

n!
\¼ 3 � 1

n
,

and equality holds only for n\¼ 3.

Proof. // by Mathematical Induction

Step 1.

If n ¼ 1, then LHS ¼ 1þ 1 ¼ 2 and RHS ¼ 3� 1 ¼ 2:
If n ¼ 2, then LHS ¼ 2þ 1=2 ¼ 5=2 and RHS ¼ 3� 1=2 ¼ 5=2:
If n ¼ 3, then LHS ¼ 5=2þ 1=6 ¼ 16=6 and RHS ¼ 3� 1=3 ¼ 8=3:
If n ¼ 4, then LHS ¼ 8=3þ 1=24 ¼ 65=24 and RHS ¼ 3� 1=4 ¼ 66=24:

Step 2. Assume 9 an integer k [¼ 4 such that

1
0!
þ 1

1!
þ 1

2!
þ . . .þ 1

k!
\ 3� 1

k
:

Step 3. If n ¼ k þ 1, then

kþ 1ð Þ! ¼ kþ 1ð Þ � ðkÞ � k � 1ð Þ![¼ kþ 1ð Þ � ðkÞ � 3ð Þ![kþ 1ð Þ � ðkÞ;
// since k[¼ 4

and so
1

ðkþ 1Þ!\
1

kðkþ 1Þ :
Hence,

LHS ¼ 1
0!
þ 1

1!
þ 1

2!
þ . . .þ 1

k!
þ 1
ðkþ 1Þ!

\ 3� 1
k

þ 1
ðkþ 1Þ! // by Step 2

\ 3� 1
k

þ 1
kðkþ 1Þ // as we just saw

¼ 3� 1
k
� 1
kðkþ 1Þ

� 	
¼ 3� ðkþ 1Þ � 1

kðkþ 1Þ
¼ 3� 1

kþ 1
: ▯

// We get a better result if we use the series expansion for ex given in calculus

// books: ex ¼
X1
j¼0

xj

j!
for 8 x 2 R. The average cost is\

X1
j¼0

1
j!
¼ e1 ¼ 2.718281….

406 9 Generating Sequences and Subsets

9.4.1 Generating All k-Permutations of {1..n} in Lex-Order

Suppose that k ¼ 5 and n ¼ 9.
What will be the next 5-permutation after S ¼ (8, 1, 5, 9, 7)?
We must find the largest index j where S[j] may be increased.

S k½ � ¼ 7 cannot be increased because all integers larger than 7 in
1::9f g occur to the left of S k½ �:

S k � 1½ � ¼ 9 cannot be increased:

But S k � 2½ � ¼ 5 can be increased because some integer larger than 5 in
1::9f g does not occur to the left of S k � 2½ �:

// 6 does not occur at all in S:

Thus, j ¼ 3 ¼ k � 2.

// If we continue following our general method to find the Lex-Next sequence, T
//
// S ¼ (8, 1, 5, 9, 7), so T ¼ (8, 1, ?, ?, ?).
//
// S[j] ¼ 5 can be increased to 6
// because 6 does not occur in S, so T ¼ (8, 1, 6, ?, ?).
//
// The smallest value that can follow (8, 1, 6,
// is (not 1, but is) 2, so T ¼ (8, 1, 6, 2, ?).
//
// The smallest value that can follow (8, 1, 6, 2,
// is 3, so T ¼ (8, 1, 6, 2, 3).
//

For each k-permutation S of {1..n}, define Sþ to be the unique full permutation
of {1..n} obtained by extending S by adding the integers not already there, in
descending order. For example, when k ¼ 5 and n ¼ 9,

if S ¼ 8, 1, 5, 9, 7ð Þ; then Sþ ¼ 8, 1, 5, 9, 7, 6; 4; 3; 2ð Þ:

When we generated all full permutations, we were able to utilize the right-hand
end of S to determine j, the largest index where S[j] may be increased, and also the
smallest increase that can be made to S[j]. We’ll do that again now. We’ll main-
tain a full permutation S where S[k þ 1] [S[k þ 2] [… [S[n � 1] [S[n].
When we find the largest j where S[j]\S[j þ 1], that j will be\¼ k. And when we
find the smallest entry S[m] [S[j] to the right of S[j], we will interchange S[j]
and S[m].

Looking again at the example above, how would the construction of the next full
permutation of {1..9} after

S ¼ 8, 1, 5, 9, 7, 6, 4, 3, 2ð Þ

9.4 Generating Permutations in Lexicographic-Order 407

begin? We know j ¼ 3 and S[j] ¼ 5. Then we find m ¼ 6 and S[m] ¼ 6 and
interchange S[j] and S[m] and get

S1 ¼ 8, 1, 6, 9, 7, 5, 4, 3, 2

 �

:

The smallest possible values to reset S[4] and S[5] to are 3 and 2 at the right-
hand end of S1. Let’s copy them into an auxiliary array R in reverse order, so
R ¼ (2, 3,..) – later we’ll place them in S[4] and S[5]. Now let’s shift “9, 7, 5, 4”
two places right in S. Finally, place the two values from R into S1 to produce

T ¼ 8, 1, 6, 2, 3, 9, 7, 5, 4

 �

:

Then the first 5 entries in T constitute the Lex-Next 5-permutation of {1..9} after
S ¼ (8, 1, 5, 9, 7), and T is a full permutation of {1..9} with the final n � k entries
in decreasing order.

We can modify Algorithm 9.4.1 to generate all k-permutations of {1..n} in
Lexicographic-Order, using the n-sequences just described and assuming the
precondition that 0\ k\ n.

Algorithm 9.4.2: Generating All k-Permutations of {1..n} in Lex-Order
as (S[1]..S[k]), the Beginning of an n-Permutation S

Begin
For i 0 To k Do // Lex-First ¼ (1, 2, …, k)

S[i] i;
End;
For j 1 To (n � k) Do

S[k þ j] (n þ 1)� j;
End;

// First S+ ¼ (1, 2,…, k, n, n � 1, …, k þ 1)
// Print or process the k-permutation (S[1]..S[k])

j k;
While (j [0) Do // Get the Lex-Next

// S[j] may be increased
X S[j];
m n;
While (X [S[m]) Do

m m � 1;
End; // the inner while-loop // And now Sm [Sj [Sm+1

S[j] S[m]; // Interchange Sm and Sj
S[m] X;

If (j\k) Then // Reset all entries after S[j]
t k � j;
For i 1 To t Do
R[i] S[n þ 1 � i];

End;

408 9 Generating Sequences and Subsets

q n;
While (q � t [j) Do // shift n � k entries to the end of S

S[q] S[q � t];
q q � 1;

End; // the inner while-loop

For i 1 To t Do
S[j þ i] R[i];

End;
End; // the if statement

// Print or process the k-permutation (S[1]..S[k])
j k; // Find largest index j where S[j] may be increased
While (S[j] [S[j þ 1]) Do

j j � 1;
End;

End; // the outer while-loop
End. // of Algorithm 9.4.2

Walkthrough the next four iterations of the body of the main while-loop in
Algorithm 9.4.2 constructing the Lex-Next k-permutation on {1..n} where k ¼ 5
and n ¼ 9, and at this point,

S ¼ 8, 1, 5, 9, 7, 6, 4, 3, 2ð Þ: // with j-value ¼ 3

1. On the next iteration, j ¼ 3 and so X will be S[3] ¼ 5.
(a) Find m and interchange S[m] and S[j]:

Since j\ k, more revisions of S are done.
(b1) Calculate t ¼ k � j ¼ 5 � 3 ¼ 2.

Reverse the order of the last t entries of S and copy them into R:

(b2) Shift the block of n � k entries in S t-steps to the right:

m S[m] X [S[m] the permutation S

9 2 T 8,1,5,9,7,6,4,3,2

8 3 T

7 4 T

6 6 F 8,1 ,6,9,7 ,5,4,3,2

i n þ 1 � i S[n þ 1 � i] array R

1 9 2 (2,…)

2 8 3 (2,3,…)

q q � t q � t [j the permutation S

9 7 T 8,1 ,6,9,7 ,5,4,3 ,4

8 6 T 8,1 ,6,9,7 ,5,4 ,5 ,4

7 5 T 8,1 ,6,9,7 ,5 ,7 ,5 ,4

6 4 T 8,1 ,6,9,7 ,9 ,7 ,5 ,4

5 3 F

9.4 Generating Permutations in Lexicographic-Order 409

(b3) Copy the t entries from R into S[j þ 1]..S[k]:

(c) Find the j-value of this new current k-permutation:

// After S ¼ (8, 1, 5, 9, 7, 6, 4, 3, 2), the next S is (8, 1, 6, 2, 3, 9, 7, 5, 4).
// After (8, 1, 5, 9, 7), the Lex-Next 5-permutation is (8, 1, 6, 2, 3).

2. On the next iteration, j ¼ 5 and so X will be S[5] ¼ 3.
(a) Find m and interchange S[m] and S[j]:

(b) Since “j\ k” is false, no further revisions of S are made.
(c) Find the j-value of this new current permutation:

// After S ¼ (8, 1, 6, 2, 3, 9, 7, 5, 4), the next S is (8, 1, 6, 2, 4, 9, 7, 5, 3).
// After (8, 1, 6, 2, 3), the Lex-Next 5-permutation is (8, 1, 6, 2, 4).

3. On the next iteration, j ¼ 5 and so X will be S[5] ¼ 4.
(a) Find m and interchange S[m] and S[j]:

(b) Since “j\ k” is false, no further revisions of S are made.
(c) Find the j-value of this new current permutation:

// After S ¼ (8, 1, 6, 2, 4, 9, 7, 5, 3), the next S is (8, 1, 6, 2, 5, 9, 7, 4, 3).
// After (8, 1, 6, 2, 4), the Lex-Next 5-permutation is (8, 1, 6, 2, 5).

4. On the next iteration, j ¼ 5 and so X will be S[5] ¼ 5.
(a) Find m and interchange S[m] and S[j]:

m S[m] X [S[m] the permutation S

9 4 F 8,1,6,2 ,4,9,7,5 ,3

j S[j] S[j][S[j þ 1] the permutation S

5 5 F 8,1,6,2 ,4,9,7 ,5,3

m S[m] X [S[m] the permutation S

9 3 T 8,1,6,2,4 ,9,7,5,3

8 5 F 8,1,6,2 ,5,9,7 ,4,3

j S[j] S[j][S[j þ 1] the permutation S

5 5 F 8,1,6,2 ,5,9,7 ,4,3

i j þ i R[i] the permutation S

1 4 2 8,1 ,6 ,2,7 ,9 ,7 ,5 ,4

2 5 3 8,1 ,6 ,2 ,3 ,9 ,7 ,5 ,4

j S[j] S[j] [S[j þ 1] the permutation S

5 3 F 8,1 ,6 ,2 ,3 ,9 ,7 ,5 ,4

m S[m] X [S[m] the permutation S

9 3 T 8,1,6,2,5,9 ,7 ,4 ,3

8 4 T

7 7 F 8,1,6,2 ,7,9 ,5,4,3

410 9 Generating Sequences and Subsets

(b) Since “j\ k” is false, no further revisions of S are made.
(c) Find the j-value of this new current permutation:

// After S ¼ (8, 1, 6, 2, 5, 9, 7, 4, 3), the next S is (8, 1, 6, 2, 7, 9, 5, 4, 3).
// After (8, 1, 6, 2, 5), the Lex-Next 5-permutation is (8, 1, 6, 2, 7).

After this walkthrough, it might appear that j ¼ k fairly often. //How often?
We know that the number of k-permutations on {1..n} is

possible values of x1ð Þ # for x2ð Þ. . . # for xk�1ð Þ # for xkð Þ
¼ ðnÞ n� 1ð Þ. . . n� k � 2½ �ð Þ n� k � 1½ �ð Þ
¼ ðnÞ n� 1ð Þ. . . n� kþ 2ð Þ � n� kþ 1ð Þ:

The number of k-permutations on {1..n} where the last entry is not the largest
possible value is

possible values of x1ð Þ # for x2ð Þ. . . # for xk�1ð Þ # for xkð Þ
¼ ðnÞ n� 1ð Þ. . . n� k � 2½ �ð Þ n� k � 1½ �f g � 1ð Þ
¼ ðnÞ n� 1ð Þ. . . n� kþ 2ð Þ � n� kð Þ:

Thus, the fraction of k-permutations on {1..n} where xk may be increased is

n� k

n� kþ 1
:

When k ¼ 5 and n ¼ 9, this fraction is 4/5; so 80% of the iterations have that j ¼ k.
// and only two entries in the sequence are changed.
// Recall that when k ¼ n, it never happens that j ¼ k.

The Most Important Ideas in This Section.
All (full) permutations on {1..n} may be generated in Lexicographic-Order
by Algorithm 9.4.1. All k-permutations on {1..n} may be generated in
Lexicographic-Order by Algorithm 9.4.2, when 0\ k\ n.

We also looked at the “average cost” of generating the full permutations
and found that on average,\ 3 entries are changed. A worst case requires
changing all n entries. The next chapter looks at average-case complexity in
some detail.

j S[j] S[j][S[j þ 1] the permutation S

5 7 F 8,1,6,2 ,7,9 ,5,4,3

9.4 Generating Permutations in Lexicographic-Order 411

Exercises

1. You are given the 5-set of letters {a,b,c,d,e} and the requirement that any
ordering in (i) and (ii) which follow must have the form (consonant, vowel,
consonant, vowel, consonant).
(i) Find the next three 5-sequences in Lexicographic-Order following (b,a,d,e,c).
(ii) Find the next three permutations in Lexicographic-Order following

(b,a,c,e,d).
2. Consider the 5-sequences on {1..7}.

(a) How many are there?
(b) Which is the Lex-First?
(c) Which is the Lex-Last?
(d) Which is the Lex-Next after (2, 3, 4, 6, 7)?

3. Consider the increasing sequences on {1..7} of length [¼ 1.
(a) How many are there?
(b) Which is the Lex-First?
(c) Which is the Lex-Last?
(d) Which is the Lex-Next after (2, 3, 4, 6, 7)?

4. Consider the increasing 5-sequences on {1..7}.
(a) How many are there?
(b) Which is the Lex-First?
(c) Which is the Lex-Last?
(d) Which is the Lex-Next after (2, 3, 4, 6, 7)?

5. Consider the 5-permutations on {1..7}.
(a) How many are there?
(b) Which is the Lex-First?
(c) Which is the Lex-Last?
(d) Which is the Lex-Next after (2, 3, 4, 6, 7)?
(e) Which is the Lex-Next after (2, 3, 4, 7, 6)?

6. Using Lex-Order,
(a) Find the next twelve 7-permutations on {1..9} after (8, 1, 3, 9, 7, 6, 4).
(b) Find the next 7 full permutations on {1..12} after

(8, 11, 10, 1, 12, 5, 3, 9, 7, 6, 4, 2).

7. List all decreasing 3-sequences on {1..6} in Lexicographic Order.
8. The Knapsack Problem and the Greedy Algorithm.

An instance of the Knapsack Problem is a set of n objects U ¼ {O1, O2, O3,
…, On} where each object Oj has a positive weight Wj and a positive value Vj;
together with a positive value B, a bound on the total weight you are willing to
carry in your knapsack.
(a) The usual Greedy Algorithm takes the objects in order of their values until

no more can be taken. (This would solve the problem if all weights were
equal.) Construct an instance where it fails to find an optimum solution.

412 9 Generating Sequences and Subsets

(b) A second Greedy Algorithm takes the objects in order of their “value-
density,” the ratio Vj/Wj, until no more can be taken.

// It’s better to take diamonds than TVs.
(This would solve the problem if all values were equal).
Construct an instance where this version fails to find an optimum solution.

9. Telescoping Series

(a) Prove that if x0, x1, x2, …, xn is any sequence and 0\a\¼ b\n, thenPb
j¼a
ðxj�1 � xjÞ ¼ xa�1 � xb:

(b) Express
Xb
j¼a
ðxj � xj�1Þ as a difference of two x’s.

(c) Express
Xb
j¼a
ðxjþ 1 � xjÞ as a difference of two x’s.

(d) Express
Xb
j¼a

njðn� 1Þ as a difference of two terms.

(e) Express
Xb
j¼a

nk�jðn� 1Þ as a difference of two terms.

10. The average cost for Algorithm 9.2.1 generating all k-sequences on {1..n} in
Lexicographic-Order.

For each k-sequence T, let c(T) be the number of assignments done to pro-
duce T. Then 1\¼ c(T)\¼ k, and for a ¼ 1,2,…k, let f(a) ¼ the number of
sequences T with c(T) ¼ a.

Then f 1ð Þ ¼ nk�1 n� 1ð Þ;
f 2ð Þ ¼ nk�2 n� 1ð Þ;
. . .;
f k � 1ð Þ ¼ nk� k�1ð Þ n� 1ð Þ ¼ n n� 1ð Þ;

and f ðkÞ ¼ 1 for the Lex-Firstð Þþ n� 1ð Þ ¼ n:

Prove that f(1) þ f(2) þ… þ f(k) ¼ nk // the # of k-sequences on {1..n}

//
Xk
a¼1

f ðaÞ ¼
Xk�1
a¼1

nk�aðn� 1Þþ n ¼
Xk�1
a¼1

nk�aþ 1 � nk�a

 �þ n:

// And the series “telescopes”.

The total cost for all the sequences,

TC ¼
Xk
a¼1

a� f ðaÞ ¼
Xk�1
a¼1

a� nk�a n� 1ð Þ þ k � n

¼ n� 1ð Þ � 1� nk�1þ n� 1ð Þ � 2� nk�2þ n� 1ð Þ � 3� nk�3þ
. . .þ n� 1ð Þ � k � 2ð Þ � n2þ n� 1ð Þ � k � 1ð Þ � n1 þ kn

¼ n� 1ð Þ � k � 1ð Þ � n1þ n� 1ð Þ � k � 2ð Þ � n2þ n� 1ð Þ � k � 3ð Þ � n3þ
. . .þ n� 1ð Þ � 2ð Þ � nk�2þ n� 1ð Þ � 1ð Þ � nk�1 þ kn:

9.4 Generating Permutations in Lexicographic-Order 413

// This series can be evaluated by “Triangulation”:
// The term “(n�1)�n1” could be added (k�1) times to give (n�1)�(k�1)�n1;
// write them in the first column.
// The term “(n�1)�n2” could be added (k�2) times to give (n�1)�(k�2)�n2;
// write them in the second column. And so on.
//
// TC ¼ n� 1ð Þ � n1þ n� 1ð Þ � n2þ n� 1ð Þ � n3þ . . .þ n� 1ð Þ � nk�2þ n� 1ð Þ � nk�1

// þ n� 1ð Þ � n1þ n� 1ð Þ � n2þ n� 1ð Þ � n3þ . . .þ n� 1ð Þ � nk�2

// þ . . .

// þ n� 1ð Þ � n1þ n� 1ð Þ � n2þ n� 1ð Þ � n3

// þ n� 1ð Þ � n1þ n� 1ð Þ � n2

// þ n� 1ð Þ � n1 þ kn:

//
// now adding the rows, which can be written as telescoping series
//
// TC ¼ nk � n

// þ nk�1 � n

// þ . . .

// þ n4 � n

// þ n3 � n

// þ n2 � n þ kn

//
// ¼ nkþ nk�1þ nk�2þ . . .þ n4þ n3þ n2 � k � 1ð Þn þ kn

// ¼ nþ n2þ n3þ . . .þ nk�2þ nk�1þ nk:

(a) Prove that when n [1, the average cost of a sequence is

nþ n2þ . . .þ nk

nk
¼ n

n� 1

� � nk � 1
nk

� �
:

(b) When is this average\ 2?
11. Explain why the following method generates all sequences in in

Lexicographic-Order.
Stage 1. Generate the Lex-First sequence in

by taking smallest possible values for the entries x1, x2, x3, and so on
until we have a sequence in .

Stage 2. Having generated sequence S ¼ (x1, x2, x3,…xk), find the Lex-Next
sequence T:
(a) By extending S by finding smallest possible values

for the entries xkþ1, xkþ2, and so on
until we have a sequence in ;

or when S cannot be extended,
(b) By finding the largest index j where xj can be increased, and then

increasing xj by the smallest possible amount to x′j ¼ xj þ q,
and then (if necessary) extending (x1, x2, x3, … x′j) by finding
smallest possible values for the entries xj+1, xj+2, and so on until
we have a sequence in .

But stop when we reach a sequence S that cannot be extended and
where no entry can be increased.

414 9 Generating Sequences and Subsets

12. Hamiltonian Graphs and the TSP
Suppose G is an undirected graph with vertex set V ¼ {x1, x2, …, xn}.
Define a transition-cost matrix for a Traveling Salesman’s Problem by

C i; j½ � ¼ 1 If xi is adjacent to xj
2 Otherwise

�
:

(a) Prove that G has a Hamilton Circuit if there is a traveling salesman’s tour
with total cost\¼ n.

(b) Add a new vertex x0 to G and join x0 to all the other vertices in G and
define a new transition-cost matrix C* so that G has a Hamilton Path if
there is a traveling salesman’s tour with total cost\¼ n þ 1.

(c) Are there corresponding theorems for directed graphs?
13. Algorithm 9.3.2 generates all k-subsets of {1..n}.

(a) What would be a “minimum change” between two k-subsets?
// At least 1 new element must be added and the same number removed.

(b) Is Lexicographic-Order a minimum-change list? (A Gray code?)
(c) Is there such a list when k ¼ 2 and n ¼ 4?

14. Suppose that R and k are certain non-negative integers. Prove that

kþ 1ð Þ � Rþ 0

0

� �
þ k � Rþ 1

1

� �
þ ðk � 1Þ � Rþ 2

2

� �
þ . . .þ 2� Rþ k � 1

k � 1

� �
þ 1� Rþ k

k

� �

¼ Rþ kþ 2

k

� �
:

Hint. Consider using the following triangular pattern and show that

LHS ¼ Rþ 0

0

� �
þ Rþ 0

0

� �
þ Rþ 0

0

� �
þ . . .þ Rþ 0

0

� �
þ Rþ 0

0

� �
þ Rþ 0

0

� �
// ðkþ 1Þ times

þ Rþ 1

1

� �
þ Rþ 1

1

� �
þ Rþ 1

1

� �
þ . . .þ Rþ 1

1

� �
þ Rþ 1

1

� �
// k times

þ Rþ 2

2

� �
þ Rþ 2

2

� �
þ Rþ 2

2

� �
þ . . .þ Rþ 2

2

� �
// ðk � 1Þ times

þ . . .

þ . . .

þ . . .

þ Rþ k � 1

k � 1

� �
þ Rþ k � 1

k � 1

� �
// 2 times

þ Rþ k

k

� �
: // 1 time

9.4 Generating Permutations in Lexicographic-Order 415

Then use Lemma 9.3.2 to add each of the (k þ 1) columns in the pattern.
Then use Lemma 9.3.2 again to add the (k þ 1) column-sums.

15. Algorithm 9.4.1 generates all full permutations of {1..n}.
(a) What would be a “minimum change” between two full permutations?

// At least 2 entries must change, two values could be interchanged.
// Perhaps two consecutive values could be interchanged.

(b) Is Lexicographic-Order a minimum-change list? (A Gray code?)
(c) Is there such a list when n ¼ 3?

16. Ringing the Changes is a type of bell ringing that is peculiarly English,
producing a music all its own, developed in the seventeenth century. It consists
of producing all the note sequences of a set of n bells tuned to the notes of the
major scale. The “peal” corresponds to a minimum-change list of all
permutations of {1..n} where moving from one permutation to the next
interchanges two adjacent values.

// For 4 bells, this takes about a minute; for 6 bells, this takes � 30 minutes.
// For 7 bells, this takes [3 hours; for 8 bells, this takes a day plus � 4 hours.
// For 12 bells, it is estimated this would take � 38 years.

A minimum-change list of all permutations of {1..2} is

12 ! 21
// Now if 2 moves up we return to 12

A minimum-change list of all permutations of {1..3} is

123 ! 132 ! 312 // 3 moves “down” the sequence:
// now make 2 move down its sequence:

213 231 321 // then make 3 move “up” the sequence:
// Now if 2 moves up, we return to 123:

A minimum-change list of all permutations of {1..4} is

1234 ! 1243 ! 1423 ! 4123 // 4 moves “down” the sequence:
// Now make the change in the peal for n ¼ 3:

1324 1342 1432 4132 // Then make 4 move “up” its sequence:
// Now make the change in the peal for n ¼ 3:

3124 ! 3142 ! 3412 ! 4312 // Then make 4 move “down” its sequence:
// Now make the change in the peal for n ¼ 3:

3214 3241 3421 4321 // Then make 4 move “up” its sequence:
// Now make the change in the peal for n ¼ 3:

2314 ! 2341 ! 2431 ! 4231 // Then make 4 move “down” its sequence:
// Now make the change in the peal for n ¼ 3:

2134 2143 2413 4213 // Then make 4 move “up” its sequence:
// Now make the change in the peal for n ¼ 3:

// And if 2 moves up, we return to 1234:

416 9 Generating Sequences and Subsets

Show that this list and its reverse are not the only minimum-change lists for
4 bells.

Is there a minimum-change list of all permutations of {1..n} for any n?
Is there an inductive proof of this?
Could you write a program to give a minimum-change list of all permutations

of {1..n}?
Would you use recursion?

17. The Traveling Salesman’s Problem.
Suppose that transition-cost matrix C is given by the following array:

The tour given by the Lex-First permutation of {1..5}, S ¼ (1, 2, 3, 4, 5) has a
total cost of 67 units. It’s very unlikely that this is the best tour.
(a) The “nearest-neighbor” tour is constructed by going to the nearest neighbor

from t[0], then the nearest-neighbor to that town (not already visited), and
so on to the nearest neighbor (not already visited) until a complete tour has
been constructed. Find the nearest-neighbor tour and show its total cost is
82 units.

// This tour starts well but ends up taking some very costly transitions.
(b) The “Greedy” Tour is constructed by taking the cheapest transition we can

take until a complete tour has been constructed.
// The best transition is from t[1] to t[2] with a cost of 5 units, (the
// smallest entry in C). Construct a tour that utilizes this smallest possible
// cost; that is,
// after t[1] go to t[2] (and before t[2] go to t[1]).
// The next smallest transition we can use is from t[4] to t[1] with a cost
// of 6 units. Construct a tour that also utilizes this second smallest
// possible cost; that is,
// after t[4] go to t[1] (and before t[1] go to t[4]).

(c) Find the Greedy Tour and show its total cost is 53 units. // Is this T*?
(d) Determine the best possible tour T*.

18. Run an implementation or walk through a small case of the execution of

0 1 2 3 4 5

0 * 12 13 9 8 7

1 12 * 5 16 31 8

2 13 30 * 7 32 33

3 9 20 24 * 21 18

4 8 6 20 22 * 15

5 7 18 9 17 19 *

9.4 Generating Permutations in Lexicographic-Order 417

Algorithm 9.4.3: Generating All Nonempty Subsets of {1..n}
as Increasing Sequences (S[1]..S[k]) in a Gray Code

Begin
S[1] 1;
k 1; // The First ¼ (1)
// Print or process sequence S[1]
While (S[1]\n) Do // The Last ¼ (n)

If (S[k] ¼ n) Then
k k � 1;

Else
S[k þ 1] n;
k k þ 1;

End; // the if-statement
// Print or process sequence S[1].. S[k]

If (S[k � 1] ¼ S[k]� 1) Then
S[k � 1] S[k];
k k � 1;

Else
S[k þ 1] S[k];
S[k] S[k]� 1;
k k þ 1;

End; // the if-statement
// Print or process sequence S[1] .. S[k]

End; // the while-loop
End. // of Algorithm 9.4.3

18. Run an implementation or walk through a small case of the execution of

Algorithm 9.4.4: Generating All k-Subsets of {1..n}
as Increasing k-Sequences (S[1]..S[k]) in a Gray Code

Begin
S[1] 1; // First k-sequence ¼ (1, n � k þ 2, n � k þ 3,…, n)
For i 2 To k Do

S[i] n � k þ i;
End;
// Print or process sequence S.

j 2;
While (S[1]\n � k þ 1) Do // Get the Next, T.
If (j [k) Then // only used when k is odd

S[k] S[k]þ 1;
If (S[k] ¼ n) Then

j j � 2;
End ;

// One change to S gives T.

418 9 Generating Sequences and Subsets

Else // j\¼ k.
If(S[j � 1]¼ S[j]� 1) Then

S[j � 1] S[j];
S[j] n � k þ j;
If (S[j � 1] ¼ S[j]� 1) Then

j j � 2;
End;

// One change to S gives T.
Else // S[j � 1]\ S[j] � 1

S[j] S[j]� 1;
If (j\k) Then

S[j þ 1] S[j]þ 1;
j j þ 2;

End;
// One change to S gives T.

End; // the inner if-statement
End; // the outer if-statement
// Print or process sequence S.

End; // the while-loop
End. // of Algorithm 9.4.4

9.4 Generating Permutations in Lexicographic-Order 419

10Discrete Probability and Average-Case
Complexity

Suppose you flip a coin until you get two heads in a row. That might happen on the
first two flips, but it might take 17 flips. In fact, there’s no limit to the number of
flips it might take. If everyone in the class each flipped a coin until they got two
heads in a row and counted how many flips were done, the best case might be 2 and
the worst case might be a fairly large number.

// Could there be someone who takes forever?
// Could a “reasonable” prediction be made of how many flips are needed on
// average? Would you believe 6 flips?

Probability is an idea (an intellectual construct) used to do just that – make
reasonable assertions about how a process behaves on average. In many algorithms,
like searching and sorting, the number of steps depends on the individual input
instance itself (and not just on the size of the input). For such algorithms, we would
like a way to determine the average-case complexity. In particular, we want to
show that on average, QuickSort makes O(nlg(n)) key comparisons when sorting a
list of length n. In a worst case, QuickSort makes n(n � 1)/2 key comparisons,
which is H(n2).

10.1 Probabilistic Models

Consider flipping a coin into the air and letting it fall and then observing the top
face � is it “heads” or “tails”? In engineering or classical physics, you imagine that
if you had enough information about exactly how the coin was sitting on your
finger, how much force was applied by your thumb, and how and where on the coin
the force was applied, you could predict precisely the path of the coin, its spin as it
flew, its landing point, and exactly how it would come to rest. Everyone imagines
that if the coin were flipped again, in exactly the same way it would travel along the
same path as before and land with the same side up as before. If you built a machine

to flip a coin, exactly the same way every time, the outcome would be exactly
the same every time. This describes a “deterministic” model where the past
(application of a certain force to a certain point on the coin) determines the future,
“heads” or “tails”. With enough data, you can predict the outcome.

On the other hand, when I flip a coin, I have no idea what the outcome will be.
Except that it will be heads or tails � never both and never neither. Sometimes
heads, sometimes tails, but no obvious pattern at all. So on any particular flip, it’s
just as likely to be heads as tails, and after a long sequence of flips, I would expect
about the same number of heads as tails. A probabilistic model is a description of a
part of reality that expresses this sort of uncertainty.

// and is almost useless for predicting individual outcomes
The rest of this section introduces the terms we use for probabilistic models and
gives a few examples.

10.1.1 Sample Spaces

An experiment is a process that produces an “outcome”; a sample space for an
experiment is a set of outcomes such that every time the experiment is repeated,
exactly one outcome in the sample space is produced.

Example 10.1.1: Experiments and Sample Spaces
1. A sample space for the experiment: “Pick a number between 1 and 10” might be

the set {1, 2, 3, . . . , 10}. // It could also be all of P.
2. A sample space for the experiment: “Flip a coin” might be the set {H, T}, where

H denotes the outcome “the coin came to rest with head-side up” and T denotes
the outcome “the coin came to rest with tail-side up.”

3. A sample space for the experiment: “Register in MATH 140” might be the set
{A, B, C, D, F} where these letters are the final grade you might obtain as an
outcome.

4. A sample space for the experiment: “Flip a coin until you get 2 heads in a row”
might be the set of all sequences on {H, T} that end with HH where there is no
other occurrence of two consecutive Hs.

10.1.2 Probability Functions

The main element of a probabilistic model is a function P defined on the sample
space, S. If Oj is some outcome, we would like P(Oj) to be

The proportion (or fraction) of outcomes equal to Oj that
a “reasonable person” would expect when
the experiment is repeated a large number of times.

422 10 Discrete Probability and Average-Case Complexity

Then, we would have 0<¼ P Oj

� �
<¼ 1:

Let’s interpret “0 ¼ P Oj

� �
” to mean Oj never occurs

and “P Oj

� � ¼ 1” to mean Oj always occurs:

We would also have
X
Oj2S

P Oj

� � ¼ 1:

The sum of all those proportions accounts for all the outcomes obtained, so it
equals 1.

However, in math courses (this one included), we can study the models them-
selves without worrying much about their connection to the real world (unlike
engineering or physics). We can discuss probability in an abstract form (without
any reference to a “reasonable person”).

A probability function is a real-valued function P defined on some nonempty,
discrete set S satisfying the two probability axioms:

I: 0<¼ P Oj

� �
for all outcomes Oj in the sample space S

II:
X
Oj2S

P Oj

� � ¼ 1:

Sets of possible outcomes are called events, and we calculate the “probability of
an event” as follows: For A � S,

probðAÞ ¼
X
Oj2A

P Oj

� �
: // So prob Sð Þ ¼ 1:

Example 10.1.2: Sample Spaces and Probability Functions
1. For the experiment: “Pick a number between 1 and 10” with S¼{1, 2, . . . , 10}.

We could let P(j) ¼ 1/10 for each j 2 S. // Axioms I and II then hold.

// But are people less likely to pick 1 or 10 than 3 or 4 or 5 or 7?
// Are all ten possibilities equally likely to be chosen?

2. For the experiment: “Flip a coin” with S ¼ {H, T}.
We could let P(H) ¼ ½ and P(T) ¼ ½. // Axioms I and II then hold.

// I think this is the model that best describes what happens when I flip a coin.

3. For the experiment: “Register in MATH 140” with S ¼ {A, B, C, D, F}.
Do you think that if you took this course, you have an equal chance of getting an
A or a B or an F? Could we construct a “reasonable” model if we assume that the
proportions of outcomes for this year will be similar to last year when

P Að Þ ¼ 40% P Bð Þ ¼ 20% P Cð Þ ¼ 15% P Dð Þ ¼ 10% P Fð Þ ¼ 15%?

// Do axioms I and II then hold?

10.1 Probabilistic Models 423

4. For the experiment: “Flip a coin until you get 2 heads in a row” with S equal to
the (infinite) set of all sequences on {H, T} that end with HH but have no other
occurrence of two consecutive Hs. Here, it is more difficult to find any function
that satisfies both axioms, let alone a “reasonable” or “realistic” one.

// But we will near the end of this chapter.

// Do you think it’s “easier” (and “more likely”) to obtain the outcome-
// sequence TTHH than to get
// THH
// (which alternates T and H twenty times and then there’s another H)?

10.1.3 The Special Case of Equally Likely Outcomes

By far the simplest case is when S consists of a finite number of equally likely
outcomes; that is,

S ¼ O1;O2; . . . ;Onf g and

P Oj

� � ¼ 1=n for all Oj 2 S: // Axioms I and II hold:

When all outcomes in S are equally likely, for any event A � S,

probðAÞ ¼
X
Oj2A

PðOjÞ ¼ Aj j � 1=nð Þ where n ¼ Sj j:

Here, the probability of event A is

probðAÞ ¼ Aj j= Sj j;

the number of outcomes in set A divided by the total number of outcomes.
To indicate that this probability function (and the assumption of equally likely

outcomes) is being used, we often use the word “random.”
This basic description of probability has been used since the beginning of

probability theory (for the study of gambling games in the seventeenth century by
Pascal and Fermat, and later by Gauss and Laplace). But this is the crudest model; it
uses no information about the different outcomes and treats all outcomes the same,
and it provides no information about predicting the next outcome. Surprisingly, it is
very useful, and it is a very suitable model for many, many (real world) processes.

Example 10.1.3: The 2 DBs
Suppose that beside your bed you keep 12 books on a shelf of which 2 are what

your mother would call “dirty books” – DBs. Suppose also that she pays a surprise

424 10 Discrete Probability and Average-Case Complexity

visit to your room and you worry that if the 2 DBs are side by side, she will notice
them and be embarrassed. What is the probability that they are side by side?

// To answer that question, we need a probabilistic model:
// an experiment and a sample space S together with
// a probability function that reflects the implicit idea in the question that
// the 2 DBs may be anywhere among the other ten books.
//
// The case we’re interested in is “the 2 DBs are side by side on the shelf”; this
// will be event A. But A must be expressed as a subset of outcomes of the
// experiment.
//
// We’ll give you three solutions.

Solution #1

Experiment: The 12 books were placed in random order on your shelf.
Sample space: All possible orderings of the 12 books
Event A: The orderings with the 2 DBs side by side
jSj ¼ 12!, the number of (full) permutations of 12 objects. // ¼ 479,001,600
To count the number of orderings where the 2 DBs are side by side, suppose we

place them side by side, tape them together, and then arrange the 11 objects on
the shelf. So // by the product rule

jAj ¼ (# ways the 2 DBs may be placed side by side and taped together)
� (# ways 11 objects can be ordered) ¼ 2!�11!. // ¼ 2 � 39,916,800

Thus, probðAÞ ¼ jAj
jSj ¼

2� 11!
12� 11!

¼ 1
6
:

In Solution #1, the arrangement of the 10 “other” books was irrelevant. Perhaps
we can describe a new experiment which disregards the order of the books.

Solution #2

Experiment: 2 places on the shelf are chosen at random (for the DBs).
Sample space: All possible selections of 2 places out of 12
Event A: The 2 places are side by side

Sj j ¼ 12
2

� �
¼ 66, the number of 2-subsets in a 12-set.

If the two selected places are side by side, we know they are places 1 and 2,
or 2 and 3, or 3 and 4, or . . . 11 and 12. Therefore
jAj ¼ 11. //We counted the possibilities without a formula.

Thus, probðAÞ ¼ 11
66

¼ 1
6
: // again!

Finally, let’s construct a solution which reflects what would happen if the last
book you put on the shelf happened to be one of the DBs.

10.1 Probabilistic Models 425

Solution #3

Experiment: The last book was a DB and was placed at random on the shelf
already containing the other 11 books.

Sample space: All possible positions for the 12th book
Event A: The 2 positions beside the DB already on the shelf

jSj ¼ 12, because the last book may be put to the left of the first book
already on the shelf, to the left of the second, . . . , to the left of
the 11th, or to the right of the 11th book already on the shelf.

jAj ¼ 2. // There are 2 positions beside the other DB.

Thus, probðAÞ ¼ 2
12

¼ 1
6
: // again!

When the outcomes are equally likely, probability questions become counting
questions. Sometimes we count permutations, sometimes we count combinations,
and sometimes we simply count possibilities. We count whatever the experiment
produces and use whichever formula or method counts what we want to count.

The Most Important Ideas in This Section.
A probabilistic model consists of three things: an experiment which is a
process that produces an “outcome”; a sample space which is a set S of
outcomes such that every time the experiment is repeated, exactly one
outcome in S is produced; and a probability function which is a real-valued
function P defined on S satisfying the two probability axioms:

I: 0<¼ P Oj

� �
for all outcomes Oj in the sample space S:

II:
X
Oj2S

P Oj

� � ¼ 1:

Sets of possible outcomes are called events, and the probability of an event
A is

probðAÞ ¼
X
Oj2A

PðOjÞ:

When S consists of a finite number of equally likely outcomes, for any event
A � S,

probðAÞ ¼ Aj j= Sj j;

the number of outcomes in set A divided by the total number of outcomes.
When this probability function (and the assumption of equally likely
outcomes) is being used, we will use the word random.

(continued)

426 10 Discrete Probability and Average-Case Complexity

Probability values can only be calculated in the context of some model,
that is, some assumed experiment, some assumed sample space S, and
especially, some assumed probability function on S.

10.2 Conditional Probability

Suppose that we have a friend, Mr. X, who’s not politically correct and is in fact a
male chauvinist pig. He classifies the women he meets according to two main
criteria: Are they coeds or townies, and are they innocent or otherwise? (By
“innocent,” he might mean “politically naïve.”) Below is a “contingency table”
showing the number of women he knows in the four possible classifications.

Coeds Townies
Innocent 10 30

Otherwise 140 20

Suppose also that you meet one of Mr. X’s friends at a party. What is the
probability that she is a coed? She is innocent? She is an innocent coed?

To answer those questions, you must construct a probabilistic model that suits
this situation:

Experiment: You meet one of the women Mr. X has met and
classified.

Sample space: All the women Mr. X has met and classified
Probability function: We will assume that the woman you meet has been

selected at random from the sample space, that is, each
possibility is equally likely.

Event A: She is a coed.
Event B: She is innocent.
Event C: She is an innocent coed.

For each of these events, we need to know the size of the corresponding subset of
the sample space. Let’s add the “marginal totals” to the contingency table � the
totals of the rows, totals of the columns, and the “grand” total.

Coeds Townies
Innocent 10 30 40

Otherwise 140 20 160

150 50 200

(continued)

10.2 Conditional Probability 427

Now we can see that

prob she’s a coedð Þ ¼ 150
200

¼ 3
4

¼ 0:75 ¼ 75%;

prob she’s innocentð Þ ¼ 40
200

¼ 1
5

¼ 0:20 ¼ 20%;

prob she’s an innocent coedð Þ ¼ 10
200

¼ 1
20

¼ 0:05 ¼ 5%:

10.2.1 Combinations of Events

Often, events are taken to be the sentences that describe subsets of the sample space.
Here, event C could be given as “A and B” � she is a coed and she is innocent.
In general, for any pair of events A and B,

prob A and Bð Þ ¼
X

x2A\B
PðxÞ

and prob A or Bð Þ ¼
X

x2A[B
PðxÞ:

When x 2 A \ B, the value of P(x) is added into prob(A) and into prob(B), so

prob A or Bð Þ ¼ probðAÞþ probðBÞ � prob A and Bð Þ: ð10:2:1Þ

Returning to the example of Mr. X’s friends,

prob she is a coed or she is innocentð Þ
¼ prob A or Bð Þ
¼ probðAÞþ probðBÞ � prob A and Bð Þ:
¼ 150

200
þ 40

200
� 10
200

¼ 180
200

¼ 0:90 ¼ 90%:

// All the women except the 20 townies who are otherwise are counted.

In general, for any pair of events,

prob A and Bð Þ<¼ probðAÞ<¼ prob A or Bð Þ<¼ probðAÞþ probðBÞ:

10.2.2 Conditional Probability

If in talking to the friend of Mr. X that you met, you find out that she’s a coed,
does that provide some information as to whether or not she is innocent? Can we

428 10 Discrete Probability and Average-Case Complexity

calculate the probability that she is innocent given the extra information that she is
a coed? We want what’s called the conditional probability of B given A, which
is written

prob B jAð Þ:

// The vertical stroke in this context is read “given” � not “divides evenly into”.
// We want the probability that event B occurs given that event A has occurred.
// So prob(A) must be > 0.

Looking back at the contingency table, if we know she’s a coed, we know she’s one
of the 150 coeds Mr. X knows, so our probabilistic model can be modified:

Experiment: You meet one of the coeds Mr. X has met and classified,
selected at random.

Sample space*: The 150 coeds Mr. X has met and classified
Event B*: She is innocent: // She is an innocent coed?

prob B*ð Þ ¼ jB*j
jS*j ¼

10
150

¼ 1
15

¼ 0:0�6 ¼ 6 2=3%:

But B* is the event A and B in the old sample space and S* is the event A in the old
sample space, so in terms of the original model

prob B*ð Þ ¼ 10/200
150/200

¼ probðA and BÞ
probðAÞ ¼ 0:0�6 ¼ 6 2=3%:

// We asked earlier “if you find out that she’s a coed, does that provide some
// information as to whether or not she is innocent?”
// We now know she’s less likely to be innocent:
// prob(she’s innocent) ¼ 20%,
// prob(she’s innocent j she’s a coed) ¼ 62=3%:

In general, the conditional probability of B given A is only defined when
prob(A) > 0 and is given by

prob B jAð Þ ¼ probðA and BÞ
probðAÞ : ð10:2:2Þ

There are many practical and theoretical applications of conditional probabilities;
we will use coonditional probabilities to determine average-case complexity of
algorithms.

For all x 2 A, we define P(x j A) to be prob({x} j A). Then

P x jAð Þ ¼ probðA and fxgÞ
probðAÞ ¼ PðxÞ

probðAÞ ;

and P(x j A) is a probability function on A.

//X P(x j A)>¼0 and
X
x2A

Pðx jAÞ ¼ 1.

10.2 Conditional Probability 429

It sometimes happens that prob(B jA) is easier to determine directly than
prob(B and A). But, whenever P(A)>0,

prob B and Að Þ ¼ prob B jAð Þ� probðAÞ: ð10:2:3Þ

10.2.3 Independent Events

In probability theory,

two events V and W are independent means
prob V and Wð Þ ¼ probðVÞ� probðWÞ:

// Informally, two events V and W are “independent” if the occurrence of one does
// not change the probability that the other will occur; that is,
// prob(W j V) ¼ prob(W) and prob(V j W) ¼ prob(V).
// Then we would have prob(V and W) ¼ prob(V)�prob(W). // from (10.2.3)

In the example of Mr. X’s friends,

prob she’s a coed and she’s innocentð Þ ¼ 10
200

¼ 0:05 ¼ 5%;

prob she’s a coedð Þ� prob she’s innocentð Þ ¼ 150
200

� 40
200

¼ 3
20

¼ 0:15 ¼ 15%:

Thus, the events “she’s a coed” and “she’s innocent” are not independent.
On the other hand, if I flip a dime and I flip a quarter, the events “the dime is H”

and “the quarter is T” are independent. The result on the first coin has no effect on
the result for the second coin.

10.2.4 Mutually Exclusive Events

Two events V and W are “mutually exclusive” if the occurrence of one excludes the
possibility of the other occurring; that is, the two events cannot occur together.
In probability theory,

events V and W are mutually exclusive means
prob V and Wð Þ ¼ 0:

430 10 Discrete Probability and Average-Case Complexity

Events A and B are mutually exclusive if and only if

prob A or Bð Þ ¼ probðAÞþ probðBÞ: ð10:2:4Þ

// This equation is sometimes taken as the definition of mutually exclusive events.

In the example of Mr. X’s friends, the events “she’s a coed” and “she’s innocent”
are not mutually exclusive, but “she’s innocent” and “she’s otherwise” are mutu-
ally exclusive.

A set of events is said to be mutually exclusive if no two events in the set can
occur together. A sample space for an experiment is a set of mutually exclusive
outcomes.

Theorem 10.2.1: If {A1, A2, A3, . . . , Ak} is a partition of some subset B of the

sample space, then probðBÞ ¼
Xk
j¼1

probðAjÞ.

Proof. Since every outcome in B is in exactly one of {A1, A2, A3, . . . , Ak}, we have

probðBÞ ¼
X
Oi2B

PðOiÞ

¼
X
Oi2A1

PðOiÞþ
X
Oi2A2

PðOiÞþ . . . þ
X
Oi2Ak

PðOiÞ

¼ prob A1ð Þþ prob A2ð Þþ . . . þ prob Akð Þ: ▯

One consequence of this theorem is that for any event A, since A and�A partition
the sample space S,

1 ¼ probðSÞ ¼ probðAÞþ prob �Að Þ;

and so
prob �Að Þ ¼ 1� probðAÞ: ð10:2:5Þ

We end this section entitled Conditional Probability with a somewhat counter-
intuitive application. (This also illustrates a special case of “Bayes’ Theorem”
about “inverting” conditional probabilities).

Example 10.2.1: The Diagnostic Test
Suppose D is some disease that occurs in ½ of 1% of the population and that

there is a very good diagnostic test for this disease. However, because of variations
in people’s body chemistry and in the course of the disease itself, the test is not
absolutely accurate. The sensitivity of the test is the probability that it produces a
positive result when the disease is present. For this test,

prob þ jDð Þ ¼ 98%: // The test “senses” the presence of D 98% of the time:

10.2 Conditional Probability 431

The specificity of the test is the probability that it produces a negative result
when the disease is not present. This should be close to 1 showing that positive
results are “specific” to (and characterized by) the presence of disease D. This test’s
specificity is

prob � j �Dð Þ ¼ 95%:

// The test sometimes produces a positive result in people that don’t have D; such
// results are called false positives. For this test, the probability of a false positive
// result
// prob þ j �Dð Þ ¼ 1� prob � j �Dð Þ ¼ 5%:

Now suppose you take the diagnostic test for D and get a positive result – what is
the probability that (it is a true positive and) you do have the disease? What is the
value of prob(D j þ)?

Solution #1
Let’s imagine the experiment to be as follows: A person is selected at random
from some population S, and the diagnostic test is performed on that person,
producing a positive result or a negative result (i.e., this test is never
“inconclusive”).

“D” represents the subset of the population that has the disease;
“�D” represents the subset of the population that does not have the disease;
“þ” represents the subset of the population that tests positive; and
“�” represents the subset of the population that tests negative.

// By definition, prob(D j þ) ¼ prob(þ and D)=prob(þ). // See 10.2.2.
// So we need to evaluate both prob(þ and D) and prob(þ):

prob þ and Dð Þ ¼ prob þ jDð Þ� probðDÞ // by 10.2.3

¼ 0:98� 0:005 ¼ 0:0049;

and prob þ and �Dð Þ ¼ prob þ j �Dð Þ� prob �Dð Þ // by 10:2:3

¼ 1� prob � j �Dð Þ½ � � 1� probðDÞ½ � // by 10:2:5

¼ 1� 0:95½ � � 1� 0:005½ �
¼ 0:05� 0:995 ¼ 0:04975:

Since events “þ andD” and “þ and �D” partition the event “þ”, by Theorem 10.2.1,

prob þð Þ ¼ prob þ and Dð Þþ prob þ and �Dð Þ
¼ 0:0049þ 0:04975 ¼ 0:05465:

432 10 Discrete Probability and Average-Case Complexity

Thus; prob D j þð Þ ¼ prob þ and Dð Þ=prob þð Þ
¼ 0:0049/0:05465 ¼ 0:089661482 . . . < 9%:

// Does that make sense? That when you get a positive result, the chances of
// actually having the disease is less than 10%.

Solution #2
Let’s look at this again by constructing a contingency table. And to make things

simpler still, let’s assume the population S has 100,000 people.

D �D
þ
�

100000

Since D is a disease that occurs in ½ of 1% of the population, prob(D)¼0.005 and
in the population of 100,000 people, we would “expect” 500 have the disease.

// and 99,500 do not

D �D
þ
�

500 99500 100000

Of the 500 who have the disease, 98% will test positive, and 2% will test negative.
// 98% of 500 ¼ 0.98�500 ¼ 490, and 2% of 500 ¼ 10.

D �D
þ 490

� 10

500 99500 100000

Of the 99,500 who do not have the disease, 95% will test negative, and 5% positive.
// 95% of 99,500 ¼ 0.95�99,500 ¼ 94,525, and 5% of 99,500 ¼ 4,975.

D �D
þ 490 4975

� 10 94525

500 99500 100000

10.2 Conditional Probability 433

Adding the rows gives

D �D
þ 490 4975 5465

− 10 94525 94535

500 99500 100000

Of the 5,465 people who got a positive result, most of them (4,975) got a false
positive, and only 490 (got a true positive because they really) had the disease.
Therefore,

prob D j þð Þ ¼ 490
5465

¼ 0:0049/0:05465 ¼ 0:089 661 482. . . : // again!

// Because the incidence rate of this disease (and most diseases) is so small,
// a large percentage of those with the disease is much smaller
// than a small percentage of those without the disease, so in this case most of the
// positive test results were false positives.

The Most Important Ideas in This Section.
Events may be taken to be the sentences that describe subsets of the sample
space. In general, for any pair of events A and B,

prob A and Bð Þ ¼
X

x2A\B
PðxÞ

and prob A or Bð Þ ¼
X

x2A[B
PðxÞ:

For any pair of events, A and B,

prob A or Bð Þ ¼ probðAÞþ probðBÞ � prob A and Bð Þ
and prob A and Bð Þ<¼ probðAÞ<¼ prob A or Bð Þ<¼ probðAÞþ probðBÞ:

The conditional probability of B given A is only defined when prob(A) > 0
and is given by

prob B jAð Þ ¼ probðA and BÞ
probðAÞ :

Events A and B are independent means prob(A and B) ¼ prob(A)�prob(B).
Events A and B are mutually exclusive means prob(A and B) ¼ 0.

(continued)

434 10 Discrete Probability and Average-Case Complexity

(continued)

So A and B are mutually exclusive if and only if

prob A or Bð Þ ¼ probðAÞþ probðBÞ:
A set of events {A1, A2, A3, . . . , Ak} is said to be mutually exclusive if no

two events in the set can occur together. If {A1, A2, A3, . . . , Ak} is a partition of

some subset B of the sample space, then probðBÞ ¼
Xk
j¼1

probðAjÞ.

10.3 Random Variables and Expected Values

We want to calculate average outcomes when we count the number of operations
algorithms perform. To do this, we need outcomes that are numbers. As a first step
in that direction, we define a random variable to be a function from the sample
space of some experiment into the real numbers. // Some X: S ! R.

Example 10.3.1: Rolling 2 Dice
Consider the experiment of rolling two ordinary dice, a red die and a green die.

// A die is one dice.
There are 36 outcomes from this experiment.
Let X denote the sum of the top two faces. Then, X takes values in the set {2, 3,
. . . , 12}.

// Are those values equally likely? Do they each occur 1/11th of the time?

We can represent the sample space as a 6�6 table and the X-values as entries:

result on the green die
1 2 3 4 5 6

result
on the
red die

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

The sample space for this experiment is all ordered pairs, (r, g), where both r and g
are in {1..6}. With ordinary, unbiased dice all 36 outcomes are equally likely.
The event “X¼4” corresponds to 3 of these outcomes: r ¼ 1 and g ¼ 3, r ¼ 2 and
g ¼ 2, and r ¼ 3 and g ¼ 1. Thus,

prob X ¼ 4ð Þ ¼ 3/36 ¼ 1=12:

10.3 Random Variables and Expected Values 435

We can tabulate the possible values v of X and the probability that X ¼ v.

v prob(X ¼ v)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

36/36

// How can we estimate the average X-value when 2 fair dice are rolled?

10.3.1 Expected Frequency

Imagine rolling these dice 3,600 times. Because prob(X ¼ 4) ¼ 1/12, we should
“expect” the event “X ¼ 4” to occur one twelfth of the time. One twelfth of 3,600
times is 300 times.

In general, when an experiment is repeated N times, the expected frequency of
event A is defined by

EfðAÞ ¼ N� probðAÞ:
Continuing with the “imagined experiment” of rolling these dice 3,600 times,

the average outcome would be equal to the sum of all the outcomes divided by
3,600. We expect 300 of the outcomes to be 4, and adding up all these 4s would
contribute 4�300 ¼ 1,200 to the “sum of all the outcomes.” Let’s extend the
table with columns for Ef and v � Ef when N ¼ 3,600.

v prob(X ¼ v) Ef(X ¼ v) v � Ef
2 1/36 100 200
3 2/36 200 600
4 3/36 300 1,200
5 4/36 400 2,000
6 5/36 500 3,000
7 6/36 600 4,200
8 5/36 500 4,000
9 4/36 400 3,600
10 3/36 300 3,000
11 2/36 200 2,200
12 1/36 100 1,200

36/36 3,600 25,200
¼ 1 ¼ N

436 10 Discrete Probability and Average-Case Complexity

Then, the average value of X in this idealized process of repeating the experiment
3,600 times would be

X ¼ 25,200
3,600

¼ 7:

In an “imagined experiment” of rolling these dice N times, the “average
outcome” would be given by

X12
v¼2

v�N� probðX ¼ vÞ

N
¼
X12
v¼2

v� probðX ¼ vÞ;

which is independent of N. This theoretical average value will be called the
“expected value of X” and is defined formally next.

10.3.2 Expected Values

Suppose that X is a random variable defined on the sample space S of some
probabilistic model with its experiment and probability function. Then for each
outcomeOj, the probabilityP(Oj)may be found. The expected value ofX is defined by

EðXÞ ¼
X
Oj2S

XðOjÞ�PðOjÞ:

// E(X) equals the sum over all possible outcomes of the value of X for that
// outcome times the probability of that outcome.
//X If for each j, X(Oj) ¼ C, then E(X) ¼ C.
//X If for each j, X(Oj) <¼ Y(Oj), then E(X) <¼ E(Y).

// Where are we going with all this probability theory?

For an algorithm A: Oj will be some possible, individual input instance,
X(Oj) will be the number of steps A takes when Oj is the input, and E(X) will be
the average-case complexity of algorithm A.

Theorem 10.3.1: If X and Y are any two random variables defined on the same
sample space S, then E(X þ Y) ¼ E(X) þ E(Y).

Proof. E Xþ Yð Þ ¼
X
Oj2S

Xþ Yð Þ Oj

� ��P Oj

� �
¼
X
Oj2S

X Oj

� �þ Y Oj

� �� ��P Oj

� �
¼
X
Oj2S

X Oj

� ��P Oj

� �þ X
Oj2S

Y Oj

� ��P Oj

� �
¼EðXÞ þ EðYÞ: ▯

10.3 Random Variables and Expected Values 437

When function X maps S into R, we say that X “takes values” in the set

V ¼ X Oj

� �
: Oj 2 S

� 	
: // the “range” of the function

Furthermore, the function X:S ! R partitions the sample space S into sets Av where
for each v2V,

Av ¼ Oj 2 S : X Oj

� � ¼ v
� 	

:

The event “X ¼ v” corresponds precisely to the set Av; hence, we may define an
associated function also denoted by P but having the set V as its domain:

P X ¼ vð Þ ¼ prob Avð Þ: // ¼
X
Oj2Av

P Oj

� �

These functions can be studied without any reference to an experiment in an
abstract form (as in the next subsection), and the expected value of X can be
expressed in terms of this new function:

EðXÞ¼
X
Oj2S

X Oj

� � � P Oj

� �
¼
X
v2V

X
Oj2Av

X Oj

� � � P Oj

� �
¼
X
v2V

X
Oj2Av

v � P Oj

� �

¼
X
v2V

v�

X
Oj2Av

P Oj

� ��
:

So EðXÞ ¼
X
v2V

v�P X ¼ vð Þ:

10.3.3 Probability Distributions

Suppose that X is a random variable taking values in some discrete set V � R.
A probability distribution for X is a function P:V! R such that

I: P X ¼ vð Þ>¼ 0 for all v 2 V; and

II:
X
v 2 V

P X ¼ vð Þ ¼ 1:

Furthermore, the expected value of X is defined by

EðXÞ ¼
X
v2V

v�P X ¼ vð Þ:

438 10 Discrete Probability and Average-Case Complexity

The Most Important Ideas in This Section.
We want to calculate the “expected” number of operations algorithms
perform. To do this, we need outcomes that are numbers. A random variable
is a function from the sample space of some experiment into the real numbers.

When an experiment is repeated N times, the expected frequency of event
A is Ef(A) ¼ N � prob(A). The expected value of a random variable X is
defined by

EðXÞ ¼
X
Oj2S

X Oj

� ��P Oj

� �
:

For an algorithm A: Oj will be some possible, individual input instance,
X(Oj) will be the number of steps A takes when Oj is the input, and E(X) will
be the average-case complexity of algorithm A.

If X and Y are any two random variables defined on the same sample space S,
then E(X þ Y) ¼ E(X) þ E(Y).

A function X:S ! R partitions the sample space S into sets Av where for
each v 2 V, Av ¼ {Oj 2 S: X(Oj) ¼ v}. The event “X ¼ v” corresponds to the
set Av; hence, P(X ¼ v) ¼ prob(Av).

Suppose X is a random variable taking values in some discrete set V � R.
A probability distribution for X is a function P:V! R such that

I: P X ¼ vð Þ>¼ 0 for all v 2 V; and

II:
X
v2V

P X ¼ vð Þ ¼ 1:

The expected value of X is EðXÞ ¼ P
v2V

v�P X ¼ vð Þ.
Expected values can only be calculated in the context of some probability

model, that is, some defined random variable X, with some set of possible
values V for X, and especially some assumed probability distribution on V.

10.4 Standard Distributions and Their Expected Values

In this section, we present a few standard distributions with an underlying experi-
ment and random variable.

10.4.1 The Uniform Distribution

// like rolling a “fair” n-sided die

V ¼ v1; v2; v3; . . . ; vnf g; // any nonempty, finite set

P X ¼ vð Þ ¼ 1=n for all v 2 V; // all values of X are equally likely

10.4 Standard Distributions and Their Expected Values 439

so EðXÞ ¼ v1 1=nð Þþ v2 1=nð Þþ . . . þ vn 1=nð Þ
¼ v1 þ v2 þ . . . þ vn

n
// the ordinary “average” value

Example 10.4.1: Roll a Fair Six-Sided Die
If X denotes the number on the top face of the die when it comes to rest, then

V ¼ 1; 2; 3; 4; 5; 6f g; // Here, does V ¼ S?

P X ¼ vð Þ ¼ 1=6 for all v 2 V ; // All values of X are equally likely:

so EðXÞ ¼ 1þ 2þ 3þ 4þ 5þ 6
6

¼ 21
6

¼ 31=2:

// The average roll is not a possible value. This usually happens, and expected
// values are not rounded to a possible value – better information is conveyed by
// writing fractions as rationals or decimal numbers with several significant
// figures.
//
// Note also that if you roll a red die and a green die, by Theorem 10.3.1,
//
// E Xred þXgreen

� � ¼ E Xredð ÞþE Xgreen

� � ¼ 31=2þ 31=2 ¼ 7: // as we saw before

A binomial experiment consists of: // five things?
1. n identical “trials” where // like flipping a coin n times
2. Each trial results in one of two outcomes, a “success” or a “failure”;
3. The probability of success on any trial is a fixed value, p;

// So the probability of failure on any trial is a fixed value, q ¼ 1 − p.
4. The trials are independent; and

// trials with the properties 2, 3, and 4 are called “Bernoulli trials”
5. We’re interested in the number of successes, X.

// not the order of the successes or which trials are successful

Example 10.4.2: The Marksman
Suppose that a certain marksman fires 5 times in competition. His score is how

many “bull’s eyes” are hit in those five shots. If in practice shooting, he hits the
bull’s eye 80% of the time, what will be his expected score in competition?

// Is this a binomial experiment?

A trial is a single shot fired at a target, the n ¼ 5 shots are (nearly) identical.
A success would be hitting the bull’s eye, and missing it would be a failure.
If we assume that every shot is like his practice shots, we could say that the

probability of success on any trial is a fixed value, p ¼ 80%.

440 10 Discrete Probability and Average-Case Complexity

(If I were shooting and missed the entire target on my first shot, I’d be even more
nervous on the later shots � my shots would not be independent. But let’s
assume that he is very used to the stress of competition, and each shot (trial) is
independent of the others).

We are interested in his score, X ¼ the number of successes in the five trials, and
not in which trials are successful.

// A binomial experiment is a fairly realistic model for this process.

What’s the Probability that X ¼ 2?
Even though we’re not interested in which trials are successful, let’s decompose
the event “X ¼ 2” by looking at all the cases where there are 2 hits and 3 misses. Let
Hj denote “he hits on shot number j” and Mj denote “he misses on shot number j”.
Then

P X ¼ 2ð Þ ¼ P½ ðH1 & H2 & M3 & M4 & M5Þ
or ðH1 & M2 & H3 & M4 & M5Þ
or ðH1 & M2 & M3 & H4 & M5Þ
or ðH1 & M2 & M3 & M4 & H5Þ
or ðM1 & H2 & H3 & M4 & M5Þ
or ðM1 & H2 & M3 & H4 & M5Þ
or ðM1 & H2 & M3 & M4 & H5Þ
or ðM1 & M2 & H3 & H4 & M5Þ
or ðM1 & M2 & H3 & M4 & H5Þ
or ðM1 & M2 & M3 & H4 & H5Þ�:

Because this is a list of mutually exclusive alternatives, // See (10.2.4).

PðX ¼ 2Þ ¼ PðH1 & H2 & M3 & M4 & M5Þ
þPðH1 & M2 & H3 & M4 & M5Þ
þPðH1 & M2 & M3 & H4 & M5Þ
þPðH1 & M2 & M3 & M4 & H5Þ
þPðM1 & H2 & H3 & M4 & M5Þ
þPðM1 & H2 & M3 & H4 & M5Þ
þPðM1 & H2 & M3 & M4 & H5Þ
þPðM1 & M2 & H3 & H4 & M5Þ
þPðM1 & M2 & H3 & M4 & H5Þ
þPðM1 & M2 & M3 & H4 & H5Þ:

10.4 Standard Distributions and Their Expected Values 441

Because the trials are independent,

PðX ¼ 2Þ ¼ PðH1ÞPðH2ÞPðM3ÞPðM4ÞPðM5Þ
þ PðH1ÞPðM2ÞPðH3ÞPðM4ÞPðM5Þ
þ PðH1ÞPðM2ÞPðM3ÞPðH4ÞPðM5Þ
þ PðH1ÞPðM2ÞPðM3ÞPðM4ÞPðH5Þ
þ PðM1ÞPðH2ÞPðH3ÞPðM4ÞPðM5Þ
þ PðM1ÞPðH2ÞPðM3ÞPðH4ÞPðM5Þ
þ PðM1ÞPðH2ÞPðM3ÞPðM4ÞPðH5Þ
þ PðM1ÞPðM2ÞPðH3ÞPðH4ÞPðM5Þ
þ PðM1ÞPðM2ÞPðH3ÞPðM4ÞPðH5Þ
þ PðM1ÞPðM2ÞPðM3ÞPðH4ÞPðH5Þ:

Because P(Hj) ¼ 0.8 and P(Mj) ¼ 0.2 for any j,

PðX ¼ 2Þ ¼ ð0:8Þð0:8Þð0:2Þð0:2Þð0:2Þ
þ ð0:8Þð0:2Þð0:8Þð0:2Þð0:2Þ
þ ð0:8Þð0:2Þð0:2Þð0:8Þð0:2Þ
þ ð0:8Þð0:2Þð0:2Þð0:2Þð0:8Þ
þ ð0:2Þð0:8Þð0:8Þð0:2Þð0:2Þ
þ ð0:2Þð0:8Þð0:2Þð0:8Þð0:2Þ
þ ð0:2Þð0:8Þð0:2Þð0:2Þð0:8Þ
þ ð0:2Þð0:2Þð0:8Þð0:8Þð0:2Þ
þ ð0:2Þð0:2Þð0:8Þð0:2Þð0:8Þ
þ ð0:2Þð0:2Þð0:2Þð0:8Þð0:8Þ:

Because each term has exactly 2 hits and 3 misses, each term is (0.8)2(0.2)3. The
number of terms equals the number of ways to choose 2 out of 5 trials to be
successes. Thus

prob X ¼ 2ð Þ ¼ 5
2

� �
0:8ð Þ2 0:2ð Þ3 ¼ 10 0:64ð Þ 0:008ð Þ ¼ 0:0512:

The number of bull’s eyes he hits ranges from 0 to 5, and for each value v in that
range,

prob X ¼ vð Þ ¼ the number of ways to choose v out of 5 trials to be successesð Þ
� the success-probability raised to the number of successesð Þ
� the failure-probability raised to the number of failuresð Þ

¼ 5

v

� �
pvqn�v:

442 10 Discrete Probability and Average-Case Complexity

So for the marksman, where p ¼ 0.8 and q ¼ 0.2, we have

v prob X ¼ vð Þ ¼ 5
v

� �
pvqn�v v� prob X ¼ vð Þ

0 0:00032 ¼ 1 1ð Þ 0:00032ð Þ 0
1 0:00640 ¼ 5 0:8ð Þ 0:0016ð Þ 0:0064
2 0:05120 ¼ 10 0:64ð Þ 0:008ð Þ 0:1024
3 0:20480 ¼ 10 0:512ð Þ 0:04ð Þ 0:6144
4 0:40960 ¼ 5 0:4096ð Þ 0:2ð Þ 1:6384
5 0:32768 ¼ 1 0:32768ð Þ 1ð Þ 1:6384

1:00000 ¼ 4:0000 ¼ EðXÞ

// That expected value for X is right. If we think of one trial as the experiment,
// “success” is one possible outcome and has probability p ¼ 80%.
// If this (one trial) experiment is repeated N ¼ 5 times,
// the expected frequency of success is Np ¼ 80% of 5 ¼ 4.

Let’s return to a general binomial experiment with n trials and success-
probability p. // Binomial experiments have two “parameters”, n and p.
An outcome of this experiment is a sequence of trial results:

� ¼ R1;R2;R3; . . .Rnð Þ:
Because the trial results are independent, we must have

Pð�Þ ¼ P R1ð Þð Þ P R2ð Þð Þ P R3ð Þð Þ. . . P Rnð Þð Þ:

If k of these results are successes, each of those results has probability p; the other
n � k results are failures, each of which has probability q. Thus,

Pð�Þ ¼ pkqn�k: ð10:4:1Þ

// Outcomes like � from a binomial experiment would be equally likely if and
// only if p ¼ q ¼ ½ and then P(�) ¼ (½)n.

For each k in the range 0 to n, the number of output sequences with exactly k
successes is equal to the number of subsets of size k in the set {1..n}.

10.4.2 The Binomial Distribution

For a binomial experiment with n 2 P trials and success-probability p, where X is
the number of successes,

V ¼ 0; 1; . . . ; nf g;

P X ¼ vð Þ ¼ n
v

� �
pvqn�v for all v 2 V ; // q ¼ 1� p:

and EðXÞ ¼ np:

// Is there a proof that this is indeed a probability distribution and E(X) ¼ np?

10.4 Standard Distributions and Their Expected Values 443

Since p is a probability, 0 <¼ p <¼ 1. Then 0 <¼ q <¼ 1, and for all v 2 V,
pvqn−v >¼ 0 and so P(X ¼ v) >¼ 0. Furthermore,

Xn
v¼0

PðX ¼ vÞ ¼
Xn
v¼0

n
v

� �
pvqn�v

¼ pþ qð Þn // by the Binomial Theorem 3:8:1ð Þ
¼ 1ð Þn
¼ 1:

And EðXÞ ¼
X
v2V

v�PðX ¼ vÞ ¼
Xn
v¼0

v� n

v

� �
pvqn�v ¼

Xn
v¼1

v� n

v

� �
pvqn�v:

But v� n
v

� �
¼ v� n!

v!ðn� vÞ! ¼
v� nðn� 1Þ!

vðv� 1Þ!ð½n� 1� � ½v� 1�Þ! ¼ n� n� 1
v� 1

� �
:

// v> 0:

Thus, EðXÞ ¼
Xn
v¼1

n� n� 1

v� 1

� �
p� pv�1q½n�1��½v�1�

¼ np
Xn�1

w¼0

n� 1
w

� �
pwq½n�1��w // setting w ¼ v� 1

¼ np pþ qð Þn�1 // Binomial Theorem againð Þ
¼ np:

10.4.3 The Geometric Distribution

// like flipping a coin until the first H
A geometric experiment is repeating a Bernoulli trial with success-probability

p until the first success; X is the number of trials required. We assume that
0 < p < 1: //What happens when p ¼ 0? When p ¼ 1?

V ¼ 1; 2; . . .f g; // V ¼ P

P X ¼ vð Þ ¼ qv�1p for all v 2 V; // q ¼ 1� p

and EðXÞ ¼ 1=p

The outcome sequences from a geometric experiment have exactly one success
in them and it’s at the end. Each value of X corresponds to exactly one such
sequence. Therefore, by formula (10.4.1),

P X ¼ vð Þ ¼ qv�1p for all v 2 V :

444 10 Discrete Probability and Average-Case Complexity

Since 0 < p < 1; 0 < q< 1, and for all v 2 V, P(X ¼ v) ¼ qv−1p >¼ 0.
Furthermore, when 0 < q < 1, we may apply Theorem 8.5.2 and obtain

X1
v¼1

P X ¼ vð Þ ¼ q0pþ q1pþ q2pþ q3pþ q4pþ . . .

¼ p

1� q

 �
¼ 1:

This is known as “the geometric distribution” because the probabilities form an
infinite geometric sequence. // Geometry is not involved.

// Is there a proof that E(X) ¼ 1=p?

// If you roll a die until you get a 5, on average it should take
1

1=6
¼ 6 rolls.

// If you flip a coin until you get an H, on average it should take
1

1=2
¼ 2 flips.

EðXÞ ¼
X
v 2 V

v�PðX ¼ vÞ ¼
X1
v¼1

v� qv�1p

¼ 1q0pþ 2q1pþ 3q2pþ 4q3pþ 5q4pþ . . .

// But does the infinite series really have a finite value?
// Do the terms nqn−1 � p converge to zero? (qn tends to zero, but n gets larger and
// larger). Does this product tend to zero?

Consider the partial sums Tn where n 2 P and

Tn ¼ 1q0pþ 2q1pþ 3q2pþ . . . þ nqn�1p: // Does Tn ! 1=p?

Then qTn ¼ 1q1p þ 2q2pþ . . . þ n� 1ð Þqn�1p þ nqnp:

So Tn � qTn ¼ 1q0pþ 1q1pþ 1q2pþ . . . þ 1qn�1p � nqnp

1� qð ÞTn ¼ q0p þ q1p þ q2p þ . . . þ qn�1p � nqnp

¼ p
1� qnð Þ
1� qð Þ � nqnp:

// by Theorem 3.6.8

Since p ¼ 1 − q, we have

pTn ¼ 1� qnð Þ � nqnp;

Tn ¼ 1=p� qn=p� nqn ¼ 1=p� qn 1=p� nf g ¼ 1=pþ qn n� 1=pf g;

10.4 Standard Distributions and Their Expected Values 445

and Tn � 1=p ¼ qn n� 1=pf g ¼ n� 1=pf gqn:
Thus, Tn � 1=pj j ¼ n� 1=pf gqnj j ¼ n� 1=pf gqn < nqn:
The fact that Tn converges to 1/p follows from

Theorem 10.4.1: If k is any positive integer and q is any real number where
0 < q < 1, then nkqn ! 0.

Proof. // Warning: This proof appears to rely on algebraic trickery.
// (One might apply l’Hopital’s Rule from calculus).

// We must show that for every e > 0, 9 M 2 P such that
// if n>¼ M, then jnkqn � 0j ¼ nkqn < e.

Suppose some e > 0 is given. Let b ¼ 1/q; // Then b > 1 and lg(b) > 0.
let B ¼ 1þ max{4, d(kþ1)/lg(b)e}; and

// Then B >¼ 5 and B � 1>¼ (kþ1)/lg(b).
let M ¼ max{d1/ee, 2B}. // Then M >¼ 1/e and M >¼ 2B.
If n>¼ M, then, setting t ¼ blg(n)c, // So t <¼ lg(n) < t þ 1.
we have:
1. 2B <¼ n ¼ 2lg(n) so B <¼ lg(n).
2. Since B is an integer, B <¼ t.
3. t >¼ 5 and t � 1 >¼ (k þ 1)/lg(b).
4. lg(n) � (k þ 1)/lg(b) < (t þ 1)(t �1) ¼ t2� 1 < t2< 2t. // by Theorem 3.6.1
5. lg(n)� (kþ 1)/lg(b) < 2lg(n) ¼ n. // t<¼ lg(n)
6. lg(n)� (kþ1) < n� lg(b). // lg(b)> 0
7. lg(nkþ1) < lg(bn). // lg(xy) ¼ y � lg(x)
8. nkþ1 < bn. // lg is increasing
9. n�nk < (1/q)n.

10. (1/e)�nk < (1/q)n. // n >¼ M >¼ 1/e
11. nk < (1/q)n�e.
Hence, nkqn < e. ▯

The Most Important Ideas in This Section.
Three standard distributions were discussed:
1. The Uniform Distribution // like rolling a “fair” n-sided die

V ¼ v1; v2; v3; . . . ; vnf g and P X ¼ vð Þ ¼ 1/n for all v 2 V :

EðXÞ ¼ v1 þ v2 þ . . . þ vn
n

// the ordinary “average” value

2. The Binomial Distribution // like flipping a coin n times
A binomial experiment consists of:
1. n identical “Bernoulli trials” where
2. Each trial results in a “success” or a “failure”;
3. The probability of success on any trial is a fixed value, p;

446 10 Discrete Probability and Average-Case Complexity

// q ¼ 1 � p

(continued)

4. The trials are independent; and
5. We’re interested in the number of successes, X.

(continued)

V ¼ 0; 1; . . . ; nf g and P X ¼ vð Þ ¼ n

v

� �
pvqn�v for all v 2 V :

EðXÞ ¼ np:

3. The Geometric Distribution // like flipping a coin until the first H
A geometric experiment is repeating a Bernoulli trial with success-

probability p until the first success; X is the number of trials required. We
assume that 0 < p < 1.

V ¼ 1; 2; . . .f g and P X ¼ vð Þ ¼ qv�1p for all v 2 V :

EðXÞ ¼ 1=p:

If k is any positive integer and 0 < q < 1, then nkqn ! 0.

10.5 Conditional Expected Values

Let’s return to the example that began this chapter.

Example 10.5.1: Flipping Until HH
Suppose you flip a coin until you get two heads in a row, and suppose that it takes

exactly X flips. At the beginning of this chapter, we asked “Could a ‘reasonable’
prediction be made of how many flips are needed on average?” Now we can
answer that question with “yes” because we can calculate the expected number of
flips, E(X).

// But how do we find prob(X ¼ n)?

Let’s say that a sequence on {H, T} is “good” if it ends HH and that is the first
and only occurrence of HH. Each repetition of the experiment, “flip a coin until you
get two heads in a row,” produces a good sequence as its outcome.

// Every good sequence is finite, but there are an infinite number of good
// sequences. The sample space for this experiment is the infinite set of all good
// sequences.

For all integers n >¼ 2, define

GðnÞ to be the set of all good n-sequences, and gðnÞ to be GðnÞ

A good sequence � must end in HH; if its length is > 2, it must end in THH and
cannot begin with HH. Then

G 2ð Þ ¼ HHf g so g 2ð Þ ¼ 1;
G 3ð Þ ¼ THHf g so g 3ð Þ ¼ 1;
G 4ð Þ ¼ HTHH;TTHHf g so g 4ð Þ ¼ 2;
G 5ð Þ ¼ THTHH;TTTHH;HTTHHf g so g 5ð Þ ¼ 3;
G 6ð Þ ¼ fTTHTHH;TTTTHH;THTTHH;

HTHTHH;HTTTHH g so g 6ð Þ ¼ 5:

// The sequence g ¼ (1, 1, 2, 3, 5, . . .) begins just like the Fibonacci sequence.
// Is this just coincidence or does it continue like the Fibonacci sequence?

A good sequence either begins with a T or begins with an H. But when n > 2, if
it begins with an H it must begin with HT. // It can’t begin HH.
Therefore, a good sequence of length n þ 1 is either:

“T” followed by a good sequence of length n;

or “HT” followed by a good sequence of length n� 1:

In fact, for n > 2, g(n þ 1) ¼ g(n) þ g(n � 1). // Can you prove this?
Because g(n) begins and continues like the Fibonacci sequence, for n >¼ 2, we

know it is the Fibonacci sequence // “shifted” by 2 units

gðnÞ ¼ Fn�2: // see Sect: 8:3:

// But how do we find prob(X ¼ n)?

When we assume that the coin is “fair” (or that each flip is equally likely to be
H or T), and that coin flips are independent, the probability that n flips produces
any particular sequence on {T, H} equals (½)n. // from (10.4.1)

prob X ¼ nð Þ ¼ the probability that the experiment produces a good
sequence of length n

// X ¼ n corresponds to a subset of outcomes.
¼ the probability that the experiment produces a

sequence in GðnÞ
¼
X

�2GðnÞ
prob n flips produce sequence �ð Þ

¼
X

�2GðnÞ
1=2

� n ¼ GðnÞj j � 1=2

� n // this is>¼ 0:

¼ gðnÞ
2n

¼ Fn�2

2n
ð10:5:1Þ

448 10 Discrete Probability and Average-Case Complexity

¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !n�1

� 1ffiffiffi
5

p 1� ffiffiffi
5

p

2

 !n�1
2
4

3
5 1

2n

� �
// Eq: 8:3:2

¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !n�1
1
2

� �n�1

� 1� ffiffiffi
5

p

2

 !n�1
1
2

� �n�1
2
4

3
5 1

2

� �

¼ 1

2
ffiffiffi
5

p 1þ ffiffiffi
5

p

4

 !n�1

� 1� ffiffiffi
5

p

4

 !n�1
2
4

3
5:

ð10:5:2Þ

//X Is prob(X ¼ 1) ¼ 0? Prob(X ¼ 2) ¼ 1/4? Prob(X ¼ 3) ¼ 1/8?
//X Is prob(X ¼ 4) ¼ 2/16? Prob(X ¼ 5) ¼ 3/32?
// Is this really a probability function? defined on all of P?

For each n, prob(X ¼ n) ¼ g(n)/2n >¼ 0 and // Probability Axiom I holds.
// Does Axiom II also hold?

X1
n¼1

probðX ¼ nÞ ¼
X1
n¼1

1

2
ffiffiffi
5

p 1þ ffiffiffi
5

p

4

 !n�1

� 1� ffiffiffi
5

p

4

 !n�1
2
4

3
5

¼ 1

2
ffiffiffi
5

p
X1
n¼ 1

1þ ffiffiffi
5

p

4

 !n�1

�
X1
n¼1

1� ffiffiffi
5

p

4

 !n�1
2
4

3
5:

// Recall that when rj j < 1; 1þ rþ r2 þ r3 þ r4 þ . . . ¼ 1
1� r

. (Theorem 8.5.2)
We can also prove

Theorem 10.5.1: If j r j < 1, then 1r0 þ 2r1 þ 3r2 þ 4r3 þ 5r4 þ . . . ¼ 1
1� r

� �2

.

Proof. Consider the partial sums Tn where n 2 P and

Tn ¼ 1r0 þ 2r1 þ 3r2 þ . . . þ nrn�1:

Then rTn ¼ 1r1 þ 2r2 þ . . . þ n� 1ð Þrn�1 þ nrn;

so Tn � rTn ¼ 1r0 þ 1r1 þ 1r2 þ . . . þ 1rn�1 � nrn

1� rð ÞTn ¼ r0 þ r1 þ r2 þ . . . þ rn�1 � nrn

¼ 1� rnð Þ
1� rð Þ � nrn: // by Theorem 3.6.8

Because rn converges to 0 // by Theorem 8.5.1
and nrn converges to 0, // by Theorem 10.4.1

1� rð Þ Tn converges to 1
1� rð Þ : Therefore; Tn converges to

1
1� r

� �2

: ▯

10.5 Conditional Expected Values 449

Since 2 <
ffiffiffi
5

p
< 3,

�1 <
1� 3
4

<
1� ffiffiffi

5
p

4
< 0 <

1þ ffiffiffi
5

p

4
<

1þ 3
4

¼ þ 1:

If r ¼ 1� ffiffiffi
5

p

4
, then

1
1� r

¼ 4
4� 4r

¼ 4

4� ð1� ffiffiffi
5

p Þ ¼ 4

3	 ffiffiffi
5

p

and
1

1� r

� �2

¼ 4

3	 ffiffiffi
5

p
� �2

¼ 16

9	 6
ffiffiffi
5

p þ 5
¼ 16

14	 6
ffiffiffi
5

p ¼ 8

7	 3
ffiffiffi
5

p .

Thus,

X1
n¼1

prob X ¼ nð Þ ¼ 1

2
ffiffiffi
5

p
X1
n¼1

1þ ffiffiffi
5

p

4

 !n�1

�
X1
n¼1

1� ffiffiffi
5

p

4

 !n�1
2
4

3
5

¼ 1

2
ffiffiffi
5

p 4

3� ffiffiffi
5

p � 4

3þ ffiffiffi
5

p
� �

¼ 4

2
ffiffiffi
5

p ð3þ ffiffiffi
5

p Þ � ð3� ffiffiffi
5

p Þ
ð3� ffiffiffi

5
p Þð3þ ffiffiffi

5
p Þ

" #

¼ 4

2
ffiffiffi
5

p 2
ffiffiffi
5

p

ð9� 5Þ

" #
¼ 1:

Also,

EðXÞ ¼
X1
n¼1

n� prob X ¼ nð Þ

¼
X1
n¼1

n

2
ffiffiffi
5

p 1þ ffiffiffi
5

p

4

 !n�1

� 1� ffiffiffi
5

p

4

 !n�1
2
4

3
5

¼ 1

2
ffiffiffi
5

p
X1
n¼1

n
1þ ffiffiffi

5
p

4

 !n�1

�
X1
n¼1

n
1� ffiffiffi

5
p

4

 !n�1
2
4

3
5

¼ 1

2
ffiffiffi
5

p 4

3� ffiffiffi
5

p
� �2

� 4

3þ ffiffiffi
5

p
� �2

" #

¼ 8

2
ffiffiffi
5

p 1

7� 3
ffiffiffi
5

p
� �

� 1

7þ 3
ffiffiffi
5

p
� �� �

¼ 4ffiffiffi
5

p 7þ 3
ffiffiffi
5

p� �� 7� 3
ffiffiffi
5

p� �
72 � 3

ffiffiffi
5

p� �2
" #

¼ 4ffiffiffi
5

p 6
ffiffiffi
5

p

49� 9� 5

" #
¼ 4ffiffiffi

5
p 6

ffiffiffi
5

p

4

" #
¼ 6:

// We will derive this expected value again using a recurrence equation.

450 10 Discrete Probability and Average-Case Complexity

Recall that if n>2, then

g nþ 1ð Þ ¼ gðnÞþ g n� 1ð Þ;

so
gðnþ 1Þ
2nþ 1 ¼ gðnÞ

2� 2n
þ gðn� 1Þ

4� 2n�1 :

Therefore, n >¼ 2 and // since prob(X ¼ 1) ¼ 0

prob X ¼ nþ 1ð Þ ¼ 1
2
prob X ¼ nð Þþ 1

4
prob X ¼ n� 1ð Þ; ð10:5:3Þ

and so EðXÞ ¼
X1
n¼1

n� probðX ¼ nÞ

¼ 1� prob X ¼ 1ð Þþ 2� prob X ¼ 2ð Þþ
X1
n¼3

n� prob X ¼ nð Þ

¼ 1� 0þ 2� 1
4
þ
X1
n¼3

n
1
2
prob X ¼ n� 1ð Þþ 1

4
prob X ¼ n� 2ð Þ

 �

¼ 1
2
þ
X1
n¼3

n
1
2
prob X ¼ n� 1ð Þþ

X1
n¼3

n
1
4
prob X ¼ n� 2ð Þ

¼ 1
2
þ 1

2

X1
j¼2

jþ 1ð Þprob X ¼ jð Þþ 1
4

X1
k¼1

kþ 2ð Þprob X ¼ kð Þ

¼ 1
2
þ 1

2

X1
j¼2

j� prob X ¼ jð Þþ
X1
j¼2

prob X ¼ jð Þ
()

þ 1
4

X1
k¼1

k� prob X ¼ kð Þþ 2
X1
k¼1

prob X ¼ kð Þ
()

¼ 1
2
þ 1

2
EðXÞþ 1f gþ 1

4
EðXÞþ 2f g:

Multiplying both sides of the equation by 4 gives

4EðXÞ ¼ 2þ 2 EðXÞþ 1f gþEðXÞþ 2 ¼ 3EðXÞþ 6:

Subtracting 3E(X) from both sides of the equation gives

EðXÞ ¼ 6: ▯

10.5 Conditional Expected Values 451

10.5.1 Conditional Expectation

We just saw that

EðXÞ ¼ 1
2
þ 1

2
EðXÞþ 1f gþ 1

4
EðXÞþ 2f g: ð10:5:4Þ

This equation may be interpreted in the context of “conditional expected values”.

// and derived much more easily using conditional expectation.

If A is an event with prob(A) > 0 and X is a random variable taking values in
set V, then prob(X ¼ v j A) is a probability function, and we can define the expected
value of X conditional on A as follows:

E X jAð Þ ¼
X
v2V

v� prob X ¼ v jAð Þ:

This formula calculates the expected value of X (the theoretical average value of X)
when condition A holds.

Let us try to explain how in Example 10.5.1 we eventually obtained

E # flipsð Þ ¼ E # flips j � starts HHð Þ� prob � starts HHð Þ
þE # flips j � starts HTð Þ� prob � starts HTð Þ
þE # flips j � starts Tð Þ� prob � starts Tð Þ

¼ 2ð Þ� 1=4

þ 2þE # flipsð Þð Þ� 1=4

þ 1þE # flipsð Þð Þ� 1=2:

Each outcome of the experiment is a good sequence � on {H, T}. So the sample
space S for the experiment is all good sequences on {H, T}. The random variable,
X(σ), is the length of σ (the number of flips done). The sample space S may be
partitioned into three parts:
1. Good sequences that begin with HH.
2. Good sequences that begin with HT.
3. Good sequences that begin with T.
If σ is a good sequence that begins with HH, its length must be 2 so the “expected”
length of such sequences equals 2. // E(# flips j σ starts HH) ¼ 2
If σ is a good sequence that begins with HT, σ must be HT followed by a good
sequence s, and the “expected” length of σ must be 2 plus the “expected” length
of s. // E(# flips j σ starts HT) ¼ 2 þ E(# flips j s 2 S) ¼ 2 þ E(# flips)

452 10 Discrete Probability and Average-Case Complexity

If σ is a good sequence that begins with T, σ must be T followed by a good
sequence s, and its “expected” length must be 1 plus the “expected” length of s.

// E(# flips j σ starts with T) ¼ 1 þ E(# flips j s 2 S) ¼ 1 þ E(# flips)
The equation we obtained as (10.5.4) is an instance of

Theorem 10.5.2: If {A1, A2, A3, . . . , Ak} is a partition of the sample space for
a random variable X where each prob(Aj) > 0, then

EðXÞ ¼
Xk
j¼1

E X jAj

� �� prob Aj

� �
:

Proof. The proof is easier to follow if we imitate the last example and emphasize
the role of the underlying experiment, which produces an outcome that we’ll denote
by �. We’ll also denote the event “Aj” by “� 2 Aj” and the value of X on � by X(�).
And we’ll assume that X takes values in set V. Then,Xk
j¼1

EðX jAjÞ� probðAjÞ // may be rewritten as

¼
Xk
j¼1

E Xð�Þ j� 2 Aj

� �� prob � 2 Aj

� �

¼
Xk
j¼1

X
v2V

v� prob Xð�Þ ¼ v j� 2 Aj

� �()
� prob � 2 Aj

� �

¼
Xk
j¼1

X
v2V

v� prob Xð�Þ ¼ v and � 2 Aj

� �
prob � 2 Aj

� �
()

� prob � 2 Aj

� �
by 10:2:2ð Þ

¼
Xk
j¼1

X
v2V

v� prob Xð�Þ ¼ v and � 2 Aj

� �()

¼
X
v2V

v� prob Xð�Þ ¼ v and � 2 A1ð Þþ
X
v 2 V

v� prob Xð�Þ ¼ v and � 2 A2ð Þ

þ . . . þ
X
v2V

v� prob Xð�Þ ¼ v and � 2 Akð Þ

¼
X
v2V

v� prob Xð�Þ ¼ v and � 2 A1ð Þ or Xð�Þ ¼ v and � 2 A2ð Þ½ or . . .

or Xð�Þ ¼ v and � 2 Akð Þ�
¼
X
v2V

v� prob Xð�Þ ¼ v and � 2 A1 or � 2 A2 or ::: or � 2 Akð Þ½ �

¼
X
v2V

v� prob Xð�Þ ¼ v½ � ¼ EðXÞ: ▯

10.5 Conditional Expected Values 453

The Most Important Ideas in This Section.
We showed that if a coin is flipped until the first occurrence of two heads in
a row, then the expected number of flips is 6. Our demonstration used
conditional expectation, and we proved that if {A1, A2, A3, . . . ,
Ak} is a partition of the sample space for a random variable X where each

prob(Aj) > 0, then EðXÞ ¼
Xk
j¼1

E X jAj

� �� prob Aj

� �
. In the next section, we

use this equation to examine algorithm performance on average.

10.6 Average-Case Complexity

Sometimes, the number of steps an algorithm requires depends on the input
instance, as we saw in prime testing using the method of trial divisors, in searching,
and in sorting with BetterBubbleSort or QuickSort. For such cases, how can we
determine the average-case complexity?

There seem to be at least four methods:
1. Run the algorithm on all possible inputs and average.

// But there may be too many cases.
2. Run the algorithm on one random input instance.

// But how do you determine a random input instance?
3. Run the algorithm on a random sample of input instances and average.

// But how do you determine a random sample of input instances?
4. Use the theory of expected values.

In this section, we apply strategy #4.

10.6.1 Applying Expectation to Linear Search

Suppose we are searching array A[1]..A[n] for a target value T. The simplest
probabilistic model for searches is: when T is in A, all positions are equally likely
to contain T, but T is not always in A. That is,

prob T is in the listð Þ ¼ p where 0 <¼ p <¼ 1
and prob T ¼ A j½ � j T is in the listð Þ ¼ 1/n for j ¼ 1; 2; . . . ; n:

The cost of searching is usually taken to be the number of probes, so we want

E # of probesð Þ ¼E # of probes j T is in the listð Þ� p þ
E # of probes j T is not in the listð Þ� q where q ¼ 1� pð Þ:

For Linear Search, determining that T ¼ A[j] when T is in the list, costs exactly
j probes, and determining that T is not in the list costs exactly n probes, so

454 10 Discrete Probability and Average-Case Complexity

E # of probes j T is in the listð Þ ¼
Xn
j¼1

j� 1
n

¼ 1
n

Xn
j¼1

j

 !
¼ 1

n

nðnþ 1Þ
2

� �
¼ nþ 1

2
;

and hence, E # of probesð Þ ¼ nþ 1
2

� �
pþ nq.

10.6.2 Applying Expectation to QuickSort

We assume that the input is a random ordering of the entries in A[1]..A[n] and that
all the entries are distinct. // A is a random permutation of its entries.

In Chap. 4, QuickSort was given as a recursive algorithm.

Algorithm 4.5.1: QuickSort(p,q)

Begin
If (p < q) Then

M ← A[q]; // “partition” A using pivot-value M
j ← p;
For k ← p to (q - 1) Do

If (A[k]< M) Then
x ← A[j];
A[j]← A[k];
A[k]← x;
j ← j þ 1;

End; // the inner if-statement
End; // the for-k loop
A[q]← A[j]; // This is the end of the “partitioning”.
A[j]← M;
QuickSort(p,j − 1); // the first “recursive” sub-call
QuickSort(j þ 1,q); // the second “internal” sub-call

End; // the outer if-statement
End. // the recursive algorithm

Let X(A) denote the number of comparisons of key values done by QuickSort
applied to input A, a list of length n. That is, X(A) is the number of times the
Boolean Expression “A[k]<M” is evaluated inside the for-loop in the main
invocation of QuickSort (where parameter p equals 1 and parameter q equals n)
and in all the recursive sub-calls.

QuickSort works on sublists of the form A[p] .. A[q] by:
1. Setting M to be A[q]; // our “estimate” of the Median
2. “Partitioning” the entries in A[p] .. A[q]

so that after the first partition, we have an index j where

A p½ �;A pþ 1½ �; . . . ;A j� 1½ � < M ¼ A j½ �

and M<¼ A jþ 1½ �;A jþ 2½ �. . . ;A q½ �; and then;

10.6 Average-Case Complexity 455

3. Sorting A[p] .. A[q] is completed by
sorting A[p] .. A[j � 1] and sorting A[j þ 1] .. A[q]. // by QuickSort too
The number of comparisons done in partitioning A[p] ..A[q] is equal to the number

of k-values in the for-loop, namely, q � p. The length of sublist A[p] .. A[j � 1] is
j � p, and the length of the sublist A[j þ 1] .. A[q] is q � j. But no comparisons
of key values will be done unless p is strictly less than q. //And q � p >¼ 1.

Thus,

XðAÞ ¼ the cost of the partition

þ cost of sorting the first sublist;A 1½ �::A j� 1½ �of length j� 1

þ cost of sorting the second sublist;A jþ 1½ �::A n½ �of length n� j

¼ n� 1ð ÞþX A 1½ � ::A j� 1½ �ð ÞþX A jþ 1½ � ::A n½ �ð Þ:

The cost of sorting depends on the outcome of the partition(s). The most costly
cases are

j ¼ 1 and XðAÞ ¼ n� 1ð Þ þX A jþ 1½ � ::A n½ �ð Þ
and j ¼ n and XðAÞ ¼ n� 1ð ÞþX A 1½ � ::A j� 1½ �ð Þ:

// Recall a worst case for QuickSort occurs when A is already sorted.
// Then X(A) ¼ (n � 1) þ (n � 2) þ . . . þ 2 þ 1 ¼ n(n � 1)/2 like MinSort
// and BubbleSort.

However, we want to calculate the expected value of X where the sample space S
we’re interested in is all possible input sequences, A, of length n. It appears that
we’ll need to divide S into cases, one for each j-value produced by the partition
portion of QuickSort. We can set

Sj ¼ A 2 S : the partition part of QuickSort generates index jf g

for j¼1 to n. Then

prob A 2 Sj
� � ¼ prob M is the jth smallest entry in A

� �
¼ prob M is jth entry when A is sorted

� �
¼ 1=n

since M is equally likely to end up in any position A[j] after A is sorted. Each
prob(Sj) > 0, so applying Theorem 10.5.2, we obtain

EðXÞ ¼
Xk
j¼1

E X j Sj
� �� prob Sj

� �

¼
Xn
j¼1

E X j M ends up in A½j�ð Þ� prob M ends up in A½j�ð Þ:

¼
Xn
j¼1

E X j M ends up in A½j�ð Þ� 1
n

� �
:

456 10 Discrete Probability and Average-Case Complexity

Let E[n] denote the expected value of X(A) over all inputs A where

XðAÞ ¼ n� 1ð ÞþX A 1½ �::A j� 1½ �ð Þ þX A jþ 1½ �::A n½ �ð Þ:

But if j ¼ 1; XðAÞ ¼ n� 1ð Þþ 0 þX A jþ 1½ �::A n½ �ð Þ;
and if j ¼ n; XðAÞ ¼ n� 1ð ÞþX A 1½ �::A n� 1½ �ð Þþ 0:

Setting E[0] ¼ 0, we get

E X j M ends up in A½j�ð Þ ¼ n� 1ð ÞþE j� 1½ � þE n� j½ �:

Hence,

E n½ � ¼
Xn
j¼1

ðn� 1ÞþE½j� 1� þE½n� j�f g 1
n

¼ 1
n

Xn
j¼1

ðn� 1Þþ
Xn
j¼1

E½j� 1� þ
Xn
j¼1

E½n� j�
()

¼ n� 1ð Þ þ 1
n

E 0½ � þE 1½ � þE 2½ � þ . . . þE n� 1½ �f g

þ 1
n

E n� 1½ � þE n� 2½ � þ . . . þE 2½ � þE 1½ � þE 0½ �f g

¼ n� 1ð Þþ 2
n

E 0½ � þE 1½ � þE 2½ � þ . . . þE n� 1½ �f g:

Then; E 0½ � ¼ 0 // the default value

E 1½ � ¼ 0

E 2½ � ¼ 2� 1ð Þþ 2=2ð Þ E 0½ � þE 1½ �f g
¼ 1ð Þ þ ð1Þ 0þ 0f g
¼ 1 //< 2lg 2ð Þ ¼ 2

E 3½ � ¼ 3� 1ð Þþ 2=3ð Þ E 0½ � þE 1½ � þE 2½ �f g
¼ 2ð Þ þ 2=3ð Þ 0þ 1f g
¼ 8=3 //< 3lg 3ð Þ ¼ 4:754

E 4½ � ¼ 4� 1ð Þþ 2=4ð Þ E 0½ � þE 1½ � þE 2½ � þE 3½ �f g
¼ 3ð Þ þ 1=2ð Þ 1 þ 8=3f g
¼ 29=6 //< 4lg 4ð Þ ¼ 8

E 5½ � ¼ 5� 1ð Þþ 2=5ð Þ E 0½ � þE 1½ � þE 2½ � þE 3½ � þE 4½ �f g
¼ 4ð Þ þ 2=5ð Þ 11/3þ 29=6f g
¼ 37=5: //< 5lg 5ð Þ ¼ 11:609

10.6 Average-Case Complexity 457

We have E n½ � ¼ n� 1ð Þþ 2=nð Þ E 0½ � þE 1½ � þE 2½ � þ . . .f þE n� 1½ �g:
Multiplying by n gives

nE n½ � ¼ n n� 1ð Þþ 2ð Þ E 0½ � þE 1½ � þE 2½ � þ . . . þE n� 2½ � þ E n� 1½ �f g:

That same equation holds when n is replaced by (n − 1) // when n > 1

n� 1ð ÞE n� 1ð Þ½ � ¼ n� 1ð Þ n� 2ð Þþ 2ð Þ E 0½ � þ E 1½ � þ E 2½ � þ . . . þ E n� 2½ �f g:

Subtracting produces a first order recurrence equation (but having variable
coefficients)

nE n½ � � n� 1ð ÞE n� 1½ � ¼ n n� 1ð Þ � n� 1ð Þ n� 2ð Þþ 2ð Þ E n� 1½ �f g
nE n½ � ¼ n� 1ð Þ n� n� 2ð Þ½ � þ 2ð ÞE n� 1½ � þ n� 1ð ÞE n� 1½ �

¼ n� 1ð Þ 2½ � þ 2þ n� 1ð Þð �½ ÞE n� 1½ �
¼ 2 n� 1ð Þ þ nþ 1ð ÞE n� 1½ �:

When n > 1 E n½ � ¼ 2ðn� 1Þ
n

þ nþ 1
n

E n� 1½ � ð10:6:1Þ

E 2½ � ¼ 2 2� 1ð Þ=2þ 2þ 1ð Þ=2½ �E 1½ �
¼ ð1Þ þ 3=2ð Þ 0f g
¼ 1 //< 2lg 2ð Þ ¼ 2:

E 3½ � ¼ 2 3� 1ð Þ=3þ 3þ 1ð Þ=3½ �E 2½ �
¼ 4=3ð Þ þ 4=3ð Þ 1f g
¼ 8=3 //< 3lg 3ð Þ ¼ 4:754:

E 4½ � ¼ 2 4� 1ð Þ=4þ 4þ 1ð Þ=4½ �E 3½ �
¼ 3=2ð Þ þ 5=4ð Þ 8=3f g
¼ 29=6 //< 5lg 5ð Þ ¼ 11:609:

E 5½ � ¼ 2 5� 1ð Þ=5þ 5þ 1ð Þ=5½ �E 4½ �
¼ 8=5ð Þ þ 6=5ð Þ 29=6f g
¼ 37=5: //< 5lg 5ð Þ ¼ 11:609:

// It appears that E[n] < nlg(n).

We will prove that the average-case complexity of QuickSort is O(nlg(n)) by
proving

Theorem 10.6.1: For 8 n 2 {2.. }, E[n] < 2 � nlg(n).

Proof. // by Mathematical Induction

Step 1. If n ¼ 2, thenE[2] ¼ 1 but 2 � nlg(n) ¼ 2 � 2 � lg(2) ¼ 2 � 2 � 1 ¼ 4.
Step 2. Assume that 9 k 2 {2:: }, where E[k] < 2 � klg(k).

458 10 Discrete Probability and Average-Case Complexity

Step 3. If n ¼ kþ1, then

E kþ 1½ � ¼ 2 ½kþ 1� � 1ð Þ
kþ 1

þ ½kþ 1� þ 1
kþ 1

E k½ � // by 10:6:1ð Þ

¼ 2k
kþ 1

þ kþ 2
kþ 1

E k½ �

<
2k

kþ 1
þ kþ 2

kþ 1
� 2� klgðkÞ // by Step 2

¼ 2k
kþ 1

þ ðkþ 2Þk
kþ 1

� 2� lgðkÞ

<
2k

kþ 1
þ kþ 1ð Þ2� lgðkÞ // kþ 1ð Þ2 ¼ k2 þ 2kþ 1:

<
2ðkþ 1Þ

k
þ kþ 1ð Þ2� lgðkÞ //

k

kþ 1
< 1<

kþ 1
k

:

¼ 2ðkþ 1Þ 1
k
þ lgðkÞ

 �
:

// The theorem will be proven if we show that
1
k
þ lgðkÞ is < lg(k þ 1).

If n >¼ 2 and x > 0, applying the Binomial Theorem (Theorem 3.8.1)

1þ xð Þn ¼
Xn
r¼0

n
r

� �
xrð1Þn�r ¼ 1þ nxþ

Xn
r¼2

n
r

� �
xr > 1þ nx:

//X Prove (1 þ x)n > 1 þ nx directly using Mathematical Induction on n.

Then,

kþ 1
k

� �k

¼ 1þ 1
k

� �k

> 1þ k
1
k

� �
¼ 2:

Therefore; lg 2ð Þ< lg
kþ 1
k

� �k
" #

; // lg is increasing:

that is; 1< k� lg
kþ 1
k

� �
¼ k� lg kþ 1ð Þ � lgðkÞf g: // See Chap: 2

So
1
k
< lg kþ 1ð Þ � lgðkÞ

and
1
k
þ lgðkÞ< lg kþ 1ð Þ: ▯

10.6 Average-Case Complexity 459

The Most Important Ideas in This Section.
If we search array A[1]..A[n] for a target value T, a natural probabilistic
model is:

prob T is in the listð Þ ¼ p where 0<¼ p<¼ 1
and prob T ¼ A j½ � j T is in the listð Þ ¼ 1/n for j ¼ 1; 2; . . . ; n:

Then, for Linear Search, E # of probesð Þ ¼ nþ 1
2

� �
p þ nq.

If the input to QuickSort is a random ordering of the entries in A[1]..A[n],
all the entries are distinct, and X(A) denotes the number of comparisons of
key values done; we proved (with some effort): For 8 n 2 {2.. }, E(# key
comparisons) < 2�nlg(n). Therefore, the average-case complexity of
QuickSort is O(nlg(n)).

Average-case complexity values can only be calculated in the context of
some probability model, that is, some complexity measure given as a random
variable X, some set of values for X, and especially, some assumed probabil-
ity distribution for X.

Exercises

1. Consider two women, Alice and Barbara, who are each about to have a baby.
(a) What is the probability that Alice has a girl?
(b) What is the probability that Barbara has a girl?
(c) What is the probability that both Alice and Barbara have girls?
(d) If Alice gives birth to a girl before Barbara has her baby, what is the

probability that Barbara has a girl?
(e) Are the outcomes Alice has a girl and Barbara has a girl independent

events? Justify your answer.
2. Consider the following pairs of events. For each pair of events, indicate whe-

ther the events are independent, mutually exclusive, both independent and
mutually exclusive, or neither independent nor mutually exclusive.
(a) An eight is drawn from a standard deck of cards. A coin toss results in

heads.
(b) A king is the first card received from the dealer when playing a hand of

Blackjack. A king is the second card received from the dealer when playing
the same hand of Blackjack.

(c) A 4 is rolled on a 6-sided die. A second 4 is rolled on the same 6-sided die.
(d) The sum of two random integers, x and y, is greater than x and greater

than y. The product of the same two integers, x and y, is zero.
3. Suppose that some “experiment” selects a number Q at random from {9, 10,

. . . , 88}.
Let A be the event that 3 j Q. // 3 divides evenly into Q.
Let B be the event that 7 j Q. // 7 divides evenly into Q.

460 10 Discrete Probability and Average-Case Complexity

(a) Find prob(A), prob(B), prob(A and B), prob(A or B), prob(A j B), and
prob(B j A).

(b) Are A and B mutually exclusive? Explain why or why not.
(c) Are A and B independent? Explain why or why not.

4. An “experiment” produces a number n from 1 to 31 inclusive at random. Let A
be the event that n is prime, and let B be the event that n is odd.
(a) Find prob(A), prob(B), prob(A and B), prob(A or B), prob(A j B), and

prob(B j A).
(b) Are A and B mutually exclusive? Explain why or why not.
(c) Are A and B independent? Explain why or why not.
(d) Find E(n).

5. A small delegation of k students is chosen by lot (at random) from a class of
size n to complain about a certain aspect of the course. Assume that Flora and
Mike are in the class and that 1 < k < n.
(a) Is the probability that Mike is in the delegation 1/k? Or 1/n? Or something

else?
(b) What’s the probability that Flora is in the delegation?
(c) Are the events “Mike is in” and “Flora is in” independent?

6. Suppose Mr. X flips coins in some peculiar way so that prob (Mr. X gets
H) ¼ p 6¼ ½, but the prob(you get H) ¼ ½. If you both flip independently,
what is the probability that your coins “match,” that is, you both get H or you
both get T?

7. Suppose A is an event with prob(A) > 0. For all x 2 A, define P(x j A) by

P x j Að Þ ¼ prob A and fxgð Þ
probðAÞ ¼ PðxÞ

probðAÞ :

Prove P(x jA) is a probability function on A; that is, P(x jA)>¼0 andX
x2A

P x jAð Þ ¼ 1:

8. Find an expression for the expected number of probes made during a Binary
Search of an array of length n, when all the entries are different and all are
equally likely to be the target of the search. When is this < lg(n)?

9. If certain entries in an array, X, are much, much more likely than others to be
the target of a search, it has been suggested that the entries should be sorted
from most likely to least likely into an array Y, and then Y should be searched
using Linear Search. Suppose X1 < X2 < … < X10 and past history indicates
the following probabilities that each item will be the target of the search:

X-values X10 X7 X4 X9 X6 X3 X1 X8 X2 X5

Prob T ¼ Xið Þ 0:40 0:22 0:10 0:07 0:06 0:05 0:04 0:03 0:02 0:01

10.6 Average-Case Complexity 461

(a) Calculate the expected number of probes for a Linear Search of array Y.
(b) Calculate the expected number of probes for a Binary search of array X.
(c) Has this example been constructed so that Linear Search is better on

average?
10. Suppose that over the past several years, 4,000 students have taken a certain

course, which has a midterm test. Suppose also that
85% passed the test,
95% of those who passed the test also passed the course, and
92% of those who failed the test also failed the course.
(a) Construct a contingency table.
(b) If one of those students were selected at random, calculate to 5 decimal

places:
(i) prob(he failed the test j he passed the course)
(ii) prob(he passed the test j he failed the course)

11. A die is weighted so that
(i) 3 comes up 7 times as often as 4,
(ii) 4 comes up twice as often as 1, 2, 5 and 6, and
(iii) 1, 2, 5, and 6 are equally likely.
Let X denote the outcome on any roll and let q denote prob(X ¼ 4).
(a) Determine the probability distribution for X and the value of q.
(b) Find E(X), the expected value of X.

12. While dice with 6 sides are, perhaps, the most common, dice are also available
with 4 and 8 sides (among others).
(a) Create a table, similar to the one in Section 10.3 that shows the possible

outcomes of an experiment where a 4-sided die is rolled with an 8-sided
die.

(b) The totals that can occur when rolling such a pair of dice range between 2
and 12. Construct a table that shows the probability that each total will
occur.

(c) How do the probabilities of the totals for two 6-sided dice compare to the
probabilities of the totals for a 4-sided die and an 8-sided die?

(d) Is the expected value for the total of two 6-sided dice the same as the
expected value for the total of a 4-sided die and an 8-sided die?

13. A bankcard “password” is a sequence of 4 digits.
(a) How many passwords are there?
(b) How many have no repeated digit?
(c) How many have the digit “5” repeated j times for all possible values of j?
(d) If a password were generated at random, what would be the expected

number of 5s?

462 10 Discrete Probability and Average-Case Complexity

14. (a) Suppose that X is a “random variable” defined on a sample space S but
X(Oj) ¼ C for every outcome. Prove E(X) ¼ C.

(b) Suppose X and Y are two random variables defined on the same sample
space S. Prove that if for each outcome in S, X(Oj) <¼ Y(Oj), then
E(X) <¼ E(Y).

15. It is known that 85% of individuals who purchase a particular make of laptop
do not make any claims on their guarantee. Suppose 43 customers buy that
make of laptop from a dealer. Compute the probability that at least 3 owners
will make a claim on their guarantee. Hint: Will this be 1 – the probability that
fewer than 3 owners will make a claim?

16. A certain network component receives “encoded messages” from other
components over very “noisy” data channels where 20% of the messages
received contain errors. Assuming that the errors are independent, calculate:
(a) prob(exactly 3 out of 13 messages contain errors).
(b) prob(fewer than 3 out of 13 messages contain errors).
(c) prob(more than 3 out of 13 messages contain errors).
(d) The expected number of error-free messages in 13 transmissions.
(e) Suppose also that the component can detect errors, and when a message is

received that contains an error, the component requests that the message be
sent again. Calculate prob(a message is sent exactly 6 times before it is
correctly received). What is the expected number of times any message
must be sent?

17. If 38% of computer science students in North America last year were women,
(a) What is the probability that the top mark was earned by a woman?
(b) What is the probability that exactly 6 of the 10 top marks were earned by

women?
(c) How many women would you expect in the top 10?

18. Suppose the probability of passing a driving test is 65%.
(a) On a certain afternoon 15 people are tested.

(i) What is the expected number of people who pass?
(ii) What is the probability that exactly 11 people pass?

(b) A certain teenager is determined to get a driving license no matter how
many times he has to take the test until he finally passes.
(i) What is the probability that he passes on his third try?
(ii) What is the expected number of tries it takes to pass?

19. Suppose that in a certain board game player A will win if she rolls a 4 on either
or both of two unbiased dice.
(a) What is the probability she will win on her next roll?
(b) How many rolls should she expect to use to win?

20. For the experiment of flipping a coin until the first occurrence of HH after X
flips in Example 10.5.1
(a) Show prob(X ¼ 2) ¼ 1/4 using formula (10.5.2).
(b) Show prob(X ¼ 3) ¼ 1/8.
(c) Show prob(X ¼ 4) ¼ 2/16.
(d) Show prob(X ¼ 5) ¼ 3/32.

10.6 Average-Case Complexity 463

21. If you flip a quarter and a dime together until both are heads, each trial consists
of two flips where

prob quarter is Hð Þ and dime is Hð Þ½ � ¼ 1=2ð Þ 1=2ð Þ

because the two flips are independent. Therefore, on average it should take

1
1/4

¼ 4 trials; that is, you’ll flip 8 coins:

Explain why this is not the same as flipping one coin until you get 2 heads in
a row.

22. Suppose some “experiment” produces an integer n 2 {2, 3, . . . , 65} at random.
Let X be a random variable associated with this experiment where

when n is the integer produced, then

XðnÞ ¼ ffiffiffi
n

p� �� 1 if n is prime;

otherwise; XðnÞ ¼ p� 1; where p is the smallest prime factor of n:

(a) Determine the possible values for X.
(b) Determine the probability distribution for X.
(c) Find the expected value of X.
(d) How is this connected to the Algorithm 1.2.3 for prime testing?

23. Imagine a gambling game played with an ordinary deck of 52 playing cards.
You pay $2.50 to play and you play by shuffling the deck and then turning
over the top card. You win different amounts depending on which card you
turn over.

If the top card is a diamond; you win $4:50;
If the top card is a picture card; you win $4:50;

but J, Q, or K of diamonds wins $7:00;
If the top card is an ace; you win $5:00;

but the ace of diamonds wins $10:00; and
If the top card is any other card; you win nothing:

(a) Let f be your “payoff”, that is, your win minus $2.50. Then f has a value for
every outcome (card turned up) but only 5 different values. Determine
the probability distribution for these values.

(b) Calculate the expected value of f.
(c) Why is this average payoff per play negative? Does that make sense?

24. InsertionSort appeared in the exercises following Chap. 4. While it can be
implemented in a variety of ways, the general step assumes that A[1]. . .
A[k −1] are in nondecreasing order, and now we must “insert” Q ¼ A[k]
into its correct position among the previous entries.

464 10 Discrete Probability and Average-Case Complexity

(i) If Q < A[1], then all the entries from A[1] to A[k − 1] must be shifted up
one position and then the value of Q may be put into A[1].

(ii) Otherwise, A[1] <¼ Q, and the value of Q may be inserted after the
rightmost entry A[j] which is <¼ Q, provided that all the entries from
A[jþ1] to A[k − 1] have been shifted up one position (because they are
larger than Q).

(a) Assume the input array A is a random permutation of some n-set B ¼ {b1,
b2,. . . , bn}. Prove that after the first k − 1 entries have been sorted so that
A[1] <¼ A[2] <¼ . . . <¼ A[k − 1],

prob A k½ � must be inserted at position jð Þ ¼ 1=k:

// The number of different input arrays ¼ n!. To construct (and later
// count) the input sequences where A[k] must be inserted at position j:
// 1. Choose k elements of B to put into A[1].. A[k].
// 2. Put the jth smallest of these into A[k].
// 3. Arrange the other k − 1 chosen elements in any order in
// A[1] . . . A[k − 1].
// 4. Arrange the “un-chosen” n − k elements in any order in
// A[k þ 1] . . . A[n].

(b) Algorithm InsertionSort

// Rearranges the entries in array A[1] . . . A[n] so that
// A[1] <¼ A[2] <¼ . . . <¼ A[n].

Begin
For k ← 2 To n Do // Insert A[k] into the sorted sub-array.

// A[1] . . . A[k − 1]
Q ← A[k];
j ← k − 1;
If (Q < A[1]) Then

While (j > 0) Do
A[j þ 1] ← A[j];
j ← j − 1;

End; // the while-loop, now j ¼ 0
A[1]←Q;

Else // A[1] <¼ Q.
While (A[j] > Q) Do

A[j þ 1]←A[j];
j ← j − 1;

End; // the while-loop, now A[j] <¼ Q
A[j þ 1]←Q;

End; // the if-then-else statement
End; // the for-loop

End. // of Algorithm InsertionSort

10.6 Average-Case Complexity 465

Show that the expected number of key comparisons for InsertionSort is

ðn� 1Þðnþ 4Þ
4

� �
which is O n2

� �
:

(c) Algorithm InsertionSort#2
// Rearranges the entries in array A[1]. . .A[n] so that
// A[1] <¼ A[2] <¼ . . . <¼ A[n].

Begin
For k ← 2 To n Do // Insert A[k] into the sorted sub-array.

// A[1]. . .A[k − 1]
Q ← A[k];
j ← k − 1;
A[0] ← Q;
While (A[j]> Q) Do

A[j þ 1] ← A[j];
j ← j � 1;

End; // the while-loop, now A[j]<¼ Q even if j ¼ 0
A[j þ 1] ← Q

End; // the for-loop
End. // of Algorithm InsertionSort#2

Determine the Expected number of key comparisons for InsertionSort#2.
Should this run about twice as fast (half as slowly) as BubbleSort?

466 10 Discrete Probability and Average-Case Complexity

11Turing Machines

At the International Congress of Mathematicians held in Paris in 1900, David
Hilbert, a very eminent German professor, proposed a list of 23 problems that he
felt should be undertaken in the new century. The one related to this chapter is the
tenth problem.

Is there a mechanical procedure for determining whether or not
a given polynomial equation with several variables and integer
coefficients has a solution in integers?

// For instance, are there integer values for x, y and z so that
//
// 6x3yz2 þ 3xy2 � 4z3 � 12 ¼ 0?
// (try x ¼ 1, y ¼ 2, z ¼ 3)
// Such equations are named Diophantine equations after
// Diophantus of Alexandria (c 250 AD).

In the 1920s, Hilbert asked a much more general question:

Is there a mechanical procedure for determining whether
a given mathematical statement is True or False?

This became known as the “Entscheidungsproblem” – German for “decision
problem”.

By a mechanical procedure, Hilbert meant a general method for applying the
deductive rules of logic to the axioms, definitions, and known theorems of algebra
and arithmetic to answer the question. But more importantly, the general method
must be a sequence of simple “operations”, unambiguous steps that could be carried
out by an unthinking automaton.

This seems to describe the essential character of a programmable algorithm,
so let us reconsider the question posed in Sect. 1.1.

11.1 What Is an Algorithm?

A number of mathematicians and logicians began to work on Hilbert’s problems.
Among them were Alan Turing and Alonzo Church. The remainder of this chapter
is a description of several of Turing’s ideas. These originated in a paper Turing
published in 1936 entitled “On Computable Numbers, with an Application to the
Entscheidungsproblem”.

Before either of Hilbert’s questions could be answered, the idea of what
constitutes a “mechanical procedure” had to be clarified and formalized in precise
(mathematical) language.

// How could one possibly demonstrate that the answer is “No, there is no such
// procedure.”? If the answer to Hilbert’s second question were “yes”, then
// mathematicians could be replaced by unthinking automatons.

Turing first had to “invent” an unthinking automaton that could carry out a
sequence of simple, unambiguous steps – his invention is now called a “Turing
Machine”. (It was invented long before any electronic computer had been invented).

Turing thought about a human “computer” working with paper and pencil when
doing arithmetic and tried to abstract the essential elements. First, the sheet of paper
could be imagined as a long strip of paper divided into squares that would contain
individual digits of the calculation; second, the digit in any square could be erased
and replaced by some other digit (or a digit could be written in a blank square), and
then the person could move on to an adjacent square and continue the calculation.

The “hardware” of a Turing Machine consists of:
1. A “tape” divided into squares where each square may contain any one of a finite

number of symbols from the machine’s “alphabet”.
// This tape is a medium for input and output and serves as memory.

2. A “read-write head” (RWH) that is positioned on the tape at some square and can
read the symbol in that square, overwrite that symbol with a symbol, and then
move one square left or one square right.

3. A finite set of “states” (like gears in a car), one of which is designated the starting
state, which we denote by s.

The actions of the machine are determined by a finite set of “quintuples” of the
following form:

(p, x: y, dir, q) where

p and q are states of the machine
x and y are symbols in the machine’s alphabet, and
dir is a direction the RWH might move

either L for left or R for right.

However, no two quintuples begin with the same two entries p and x.
The way in which the quintuples control the action of the machine is this:

Suppose the machine is in state p and the RWH is positioned at a square containing
symbol x.

468 11 Turing Machines

If the set of quintuples contains one like (p, x: y, dir, q), then:
1. The machine changes x on the tape to y.
2. The RWH moves one square along the tape in the direction dir.
3. The machine changes to state, q.
But if no quintuple begins “(p, x. . . ” then the machine halts. // or “crashes”

The machine’s alphabet is assumed to contain a special symbol, called the blank,
which we will indicate by the symbol h. // so we can see it
At the start of any computation by the machine, the tape must contain only a finite
number of nonblank symbols, and the RWH is positioned at the leftmost of these
nonblank symbols. // if there is one
And the machine starts in its special “starting” state, s.

// This will make more sense when we do a walkthrough.

Example 11.1.1: A decimal successor Turing Machine

Input: A nonnegative integer N in decimal notation // base 10
Output: N þ 1 in decimal notation

Quintuples:

s, 0: 0, R, sð Þ // In state s, it moves to RHE, the right-hand-end,
s, 1: 1, R, sð Þ // of the string of nonblank symbols:
s, 2: 2, R, sð Þ
s, 3: 3, R, sð Þ
s, 4: 4, R, sð Þ
s, 5: 5, R, sð Þ
s, 6: 6, R, sð Þ
s, 7: 7, R, sð Þ
s, 8: 8, R, sð Þ
s, 9: 9, R, sð Þ
ðs, h: h, L, tÞ // When it goes past the RHE, it steps left and goes to state t

t, 0: 1, L, hð Þ // In state t, it adds 1 to current digit and halts:
t, 1: 2, L, hð Þ
t, 2: 3, L, hð Þ
t, 3: 4, L, hð Þ
t, 4: 5, L, hð Þ
t, 5: 6, L, hð Þ
t, 6: 7, L, hð Þ
t, 7: 8, L, hð Þ
t, 8: 9, L, hð Þ
ðt, 9: 0, L, tÞ // But, if the current digit is 9, it “carries one”.
ðt, h: 1, L, hÞ // For when the input is all 9’s:

// State h is a “halting” state because no quintuple begins with h.
// What happens if the input tape is all blanks?

11.1 What Is an Algorithm? 469

Walkthrough when N ¼ 360499

A palindrome is a word like racecar or level that is the same when written
backwards. Sometimes this is extended to phrases or sentences, but then spaces,
capitals, and punctuation are ignored, as in

or perhaps the world’s first pick-up line – Madam, I’m Adam.
If a string of letters w is given, how easy is it to decide whether or not w is a

palindrome? Is it so easy a Turing Machine could do it? The following example
makes it even easier by restricting the alphabet to just two letters.

Example 11.1.2: An {a,b}-palindrome Turing Machine

Input: A string w of a’s and b’s
Output: Will be expressed by the halting state:

If w is a palindrome, the Turing Machine halts in state “yes”, but
if w is not a palindrome, the Turing Machine halts in state “no”.

Strategy: If w has only one letter, then w is a palindrome.
If w ¼ aXb or bXa, then w is not a palindrome.
And w ¼ aXa or bXb is a palindrome

, X is a palindrome (or X has no letters at all).

Quintuples:

ðs, a: h, R, 1Þ // In state s, it scans the LHE, the left-hand-end:
// If w starts with an a, does it end in an a?

1, a: a, R, 1ð Þ // In state 1, it moves to RHE
1, b: b, R, 1ð Þ
ð1, h: h, L, 2Þ // and goes to state 2:

Was it a car or a cat I saw? Never odd or even.

Marge lets Norah see Sharon’s telegram. Drab as a fool, aloof as a bard.

A man, a plan, a canal: Panama. No lemons, no melon.

470 11 Turing Machines

ð2, a: h, L, 3Þ // Instate 2, it checks that RHE ¼ a
2, b: b, R, noð Þ
ð2, h: h, L, yesÞ // was w ¼ a? or was X ¼ a?½ �
3, a: a, L, 3ð Þ // In state 3, it moves back to LHE
3, b: b, L, 3ð Þ
ð3, h: h, R, sÞ // and starts again:

ðs, b: h, R, 4Þ // If w starts with a b, does it end in a b?

4, a: a, R, 4ð Þ // In state 4, it moves to RHE:
4, b: b, R, 4ð Þ
ð4, h: h, L, 5Þ
5, a: a, R, noð Þ // In state 5, it checks that RHE ¼ b
ð5, b: h, L, 3Þ
ð5, h: h, L, yesÞ // was w ¼ b? or was X ¼ b?½ �
ðs, h: h, R, yesÞ // Is the word with no letters a palindrome?

Walkthrough when w ¼ abbba

11.1 What Is an Algorithm? 471

// What about computer operations?

Example 11.1.3: A binary adder

Input: A string of 0s and 1s, // the summand
then “þ”,
then another string of 0s and 1s // the addend

Output: A string of string of 0s and 1s that is the sum

Strategy: We must add corresponding bits together (and sometimes “carry” 1):
the units bits, then the 2s bits, then the 4s bits, . . .
Let’s work from the RHE; find the next bit x to be added
but, let’s erase bits from the addend as we use them.
To indicate how far to the left we’ve done, let’s replace 0 by a and 1 by b.
Then, we move past the a’s and b’s in the summand to the corresponding
bit y, where we do the addition.

Quintuples:

s, 0: 0, R, sð Þ // In state s, it moves to RHE:
s, 1: 1, R, sð Þ
s, a: a, R, sð Þ // Later, there will be a’s and b’s in the summand:
s, b: b, R, sð Þ
s, þ : þ , R, sð Þ
ðs, h: h, L, 1Þ

ð1, 0: h, L, 2Þ // In state 1, it finds x ¼ 0:
// We’ll do the other cases for x later:

2, 0: 0, L, 2ð Þ // In state 2, it moves left across 0 and 1 toþ :
2, 1: 1, L, 2ð Þ
2, þ : þ , L, 3ð Þ

472 11 Turing Machines

3, a: a, L, 3ð Þ // In state 3, it moves left across a and b to y,
3, b: b, L, 3ð Þ
3, 0: a, R, sð Þ // y ¼ 0, and xþ y ¼ 0, but this is recorded as a:

// Then, we move right to get the next x:
ð3,h: a, R, sÞ // When there is no corresponding bit y because the

// summand is shorter than the addend, we take 0 for
// y and record an a and move right to get the next x:

3, 1: b, R, sð Þ // y ¼ 1 and xþ y ¼ 1, but this is recorded as b:
// Then, we move right to get the next x:

ð1, 1: h, L, 4Þ // In state 1, it finds x ¼ 1:

4, 0: 0, L, 4ð Þ // In state 4, it moves left across 0 and 1 toþ :
4, 1: 1, L, 4ð Þ
4, þ : þ , L, 5ð Þ

5, a: a, L, 5ð Þ // In state 5, it moves left across a and b to y:
5, b: b, L, 5ð Þ
5, 0: b, R, sð Þ // y ¼ 0 and xþ y ¼ 1, but this is recorded as b:

// Then, we move right to get the next x:
ð5,h:b, R, sÞ // When there is no corresponding bit y, take 0 for y

// and record a b and move right to get the next x:
5, 1: a, L, 6ð Þ // y ¼ 1 and xþ y ¼ 10, but this is recorded as a:

// Then, we move to state 6 and carry the one:

6, 0: 1, R, sð Þ
ð6,h: 1, R, sÞ
6, 1: 0, L, 6ð Þ

ð1,þ : h, L, 7Þ // In state 1, it finds no x:

7, a: 0, L, 7ð Þ // In state 7, it replaces a’s by 0s,
7, b: 1, L, 7ð Þ // and it replaces b’s by 1s,
7, 0: 0, L, 7ð Þ // moves to the LHE,
7, 1: 1, L, 7ð Þ
ð7,h: h, R, hÞ // and halts.

Walkthrough // 29 þ 10 ¼ ?

11.1 What Is an Algorithm? 473

474 11 Turing Machines

// What about other computer operations?
// What machine language instructions can be performed by a Turing Machine?
// Can every machine language instruction be performed by a Turing Machine?

11.1.1 The Church-Turing Thesis

Throughout this text, we have written about algorithms – methods for doing
computations or processing data.

// not algorithms to tie your shoes
We used an intuitive and informal “definition” of an algorithm (in Chap. 1) as a
“step-by-step process,” where a “step” was a relatively easy sub-task, but we never
had a formal definition of a “step.” This clouded our idea of complexity, the number
of steps required for the algorithm to complete its job, as a function of the input
size, n. (We never even thought about proving that no algorithm could be devised
for some task.)

All that has changed now that we’ve considered Turing Machines, where a step
is the execution of one quintuple, and the input size is the number of nonblank
symbols on the tape when the machine begins. Turing Machines provide an
objective model of what can be computed and how efficiently the computation
may be done. This assertion is known as the Church-Turing Thesis: Any process
that is an algorithm (in the informal sense) can be realized as a Turing Machine.

The Church-Turing Thesis: Algorithms EQUAL Turing Machines.

// This is not called a theorem because “algorithm” is not defined precisely in
// formal mathematical terms; it remains an informal idea.

This thesis is universally accepted, in part, because several other interpretations of a
“mechanical procedure” were all proved equivalent to Turing Machines.

11.1 What Is an Algorithm? 475

11.1.2 Universal Turing Machine: As a Computational Model

We’ve walked through several examples of the operation of a Turing Machine, M.
It was a fairly simple process:

Given the list of the quintuples of M,
the current contents of M’s tape,
the current state p of M, and
the current symbol x being scanned
we searched through the quintuples for one that began (p, x

If we found the sought for quintuple (p, x: y, dir, q), then we
changed x on the tape to y,
moved one square along the tape in the direction dir,
found the new current symbol z, and
changed to the new current state, q.

Otherwise, no quintuple began with (p, x . . . so the walkthrough halted.

// Could this process be described as an algorithm?
// Could this process be done by a computer program?
// Could this process be done by a Turing Machine, with enough states and tape-
// symbols?

The answer is “yes” to all three questions. Turing himself described how to
construct a Universal Turing Machine, U. The input to U is a description <M> of
(the quintuples of) a Turing Machine M together with a description of the input tape
<w> for M. Then, U simulates the action of M on its own tape.

// until M halts, or forever if M never halts
This Universal Turing Machine is a model of modern, stored program computers;

they accept programs as input and simulate the action of each program on its own
data.

11.1.3 The Halting Problem

When you write programs in some language like Java, part of debugging is making
sure the program never enters a loop from which it never exits, an infinite loop. You
carefully analyze the program and remove any such loop, or program carefully
enough to never introduce any such loop. The Halting Problem is about using a
program to detect infinite loops.

Some programs have a text-file as input, like word-processors. You might write
one to count the symbols, words, sentences, commas, or whatever in a certain block
of text. Your program could also work on a program, input as a text-file, and count
the symbols, words, sentences, commas, or whatever. Compilers and interpreters
are programs that have programs as input.

476 11 Turing Machines

Now imagine a debugging program D that has as its input two text-files: the first
is a program P, and the second is a data-file X to be used as input for P. The
debugger D analyzes the program P and the data X carefully enough to determine
whether or not

P acting on X gets into an infinite loop
or not: // crashes; or terminates “normally”

Suppose the output from D is a Boolean variable H // for “halts”
so that

H is False means P acting on X gets into an infinite loop and never halts.
H is True means P acting on X eventually does halt.

// Besides evaluating H, D might issue some appropriate diagnostic message.

Determining whether or not P halts on X would be an instance of the Halting
Problem. The program D would solve the Halting Problem (for any program and
any data set).

Alan Turing showed that no Turing Machine could solve the Halting Problem for
Turing Machines. We will prove that no program in language J can solve the
Halting Problem for programs written in language J. The debugging program we
imagined simply cannot exist; it cannot be constructed no matter how smart the
programming team tasked to write it is and no matter how much money and brain
power is invested in writing it. The Halting Problem cannot be solved.

Theorem 11.3.1: The debugging program D (described above) cannot exist.

Proof. // We use an indirect argument.
Suppose that there were such a debugging program D that works correctly on

any pair of text-files: the first containing a program P and the second containing a
text-file X used as input for P. That is, for every input-pair P and X:
1. D analyzes the operation of P on input X.
2. D assigns a value to a Boolean variable H, where:

H is set to True if P acting on X eventually halts.
H is set to False if P acting on X never halts.

3. D itself halts, immediately after assigning a value to H.
If we have program D, we can make a small modification to it and construct a new
program E: immediately after D has given a value to H, insert one statement:

While (H) Do
H ← H;

End; // or the equivalent form in language J

// Then, E enters an infinite loop if H is True, but halts, just as D did, if H is False.

11.1 What Is an Algorithm? 477

If program D exists, then so does program E.
But now, suppose we take X to be equal to P, and we use D to determine what

will happen if we ran program P with its own description as input: // P might crash.

If program P acting on itself halts, D sets H ¼ True,
and then E enters an infinite loop.

If program P acting on itself never halts, D sets H ¼ False,
and then E halts immediately.

But what happens if as input for E we take X equal to E, and P equal to E itself?

If program E acting on itself halts, D sets H ¼ True,
and then E enters an infinite loop.

If program E acting on itself never halts, D sets H ¼ False,
and then E halts immediately.

We have a contradiction:

If program E acting on itself halts, then E acting on itself does not halt.
If program E acting on itself does not halt, then E acting on itself does halt.

Therefore, program E cannot exist.
Therefore, program D cannot exist. ▯

Alan Turing’s paper gave a basis for proving that no Turing Machine could
solve the Halting Problem for Turing Machines. This solved Hilbert’s
Entscheidungsproblem.

Is there (a mechanical procedure) a Turing Machine
for determining whether a given mathematical statement, say
“Turing Machine M with input tape w eventually halts”
is True or False?

The answer is “no”.
The Church-Turing Thesis says, in effect, that any task that can be done by a

computer (program) can be done by a Turing Machine. Therefore, any task that
cannot be done by a Turing Machine cannot be done by a computer. Turing
Machines not only provide a context for ascertaining algorithmic complexity, they
determine what is possible to be computed and what numbers are “computable”.

One final idea we want to give you is that if the restriction that “no two
quintuples of a Turing Machine may begin with the same two entries p and x” is
removed, “nondeterministic” Turing Machines are produced. Problems that can be
solved in polynomial time by nondeterministic Turing Machines form the class NP;
problems that can be solved in polynomial time by deterministic Turing Machines
form the class P. The question “Is P ¼ NP?” is thought by some to be the most

478 11 Turing Machines

important question in theoretical computer science. And it is worth $1,000,000 to
the Clay Mathematics Institute.

The Most Important Ideas in This Section.
We said an algorithm is a “step-by-step process” but we never defined a
“step”. Our idea of complexity was the number of steps required by the
algorithm, as a function of the input size, n.

Turing Machines provide an objective model of what can be computed,
and how efficiently the computation may be done. In a Turing Machine, a step
is execution of a quintuple, and the input size is the number of nonblank
symbols on the tape when the machine begins.

The Church-Turing Thesis asserts any process that is an algorithm can be
realized as a Turing Machine. Any process that can be done by a computer
can be done by a Turing Machine, and vice versa.

Turing gave a basis for proving that no Turing Machine could solve the
Halting Problem for Turing Machines, and thereby proved

mathematicians cannot be replaced by unthinking automatons.

Exercises

1. Let T be the Turing Machine whose quintuples are:

s, 0: 0, R, sð Þ 2, 0: 1, L, 1ð Þ 4, 0: 0, L, 3ð Þ
s, 1: 1, R, sð Þ 2, 1: 0, L, 4ð Þ 4, 1: 1, L, 4ð Þ
ðs,h: h, L, 1Þ ð2,h: 1, L, hÞ ð4,h: 0, L, 3Þ

1, 0: 0, L, 1ð Þ 3, 0: 1, L, 1ð Þ
1, 1: 1, L, 2ð Þ 3, 1: 0, L, 4ð Þ
ð1,h: h, L, hÞ ð3,h: 1, L, hÞ

(a) Walk through the operation of machine T applied to the following input
tapes. Assume the RWH starts in state s reading the leftmost nonblank
character.
(i) . . . hhh101hhh. . .
(ii) . . . hhh110hhh. . .
(iii) . . . hhh101101hhh. . .

(b) What function does this machine evaluate? That is, if the input tape contains
the binary representation of the integer n, what is left on the tape when T
halts? {Hint: look at the input and output strings in decimal.}

11.1 What Is an Algorithm? 479

2. Let T be the Turing Machine whose quintuples are:

s, 0: 0, R, sð Þ ð1, 0: h, L, 1Þ ð2, 0: h, L, 2Þ ð3, 0: h, L, 3Þ
s, 1: 1, R, sð Þ ð1, 1: h, L, 2Þ ð2, 1: h, L, 3Þ ð3, 1: h, L, 1Þ
s, 2: 2, R, sð Þ ð1, 2: h, L, 3Þ ð2, 2: h, L, 1Þ ð3, 2: h, L, 2Þ
s, 3: 0, R, sð Þ ð1,h: 0, L, hÞ ð2,h: 1, L, hÞ ð3,h: 2, L, hÞ
s, 4: 1, R, sð Þ
s, 5: 2, R, sð Þ
s, 6: 0, R, sð Þ
s, 7: 1, R, sð Þ
s, 8: 2, R, sð Þ
s, 9: 0, R, sð Þ
ðs,h: h, L, 1Þ

(a) Walk through the operation of machine T applied to the following tape.
Assume the RWH starts in state s reading the leftmost nonblank character.
. . . hhh4207hhh. . .

(b) What does the machine leave on the tape when applied to an input tape
positive integer n written in decimal notation?

// Try a few small examples like 42 and 20 and 07.

3. Let T be the Turing Machine whose quintuples are:

0, 0: 0, R, 0ð Þ 2, 0: 0, R, 4ð Þ 4, 0: 1, R, 3ð Þ
0, 1: 0, R, 1ð Þ 2, 1: 1, R, 0ð Þ 4, 1: 1, R, 4ð Þ

1, 0: 0, R, 2ð Þ 3, 0: 1, R, 1ð Þ
1, 1: 0, R, 3ð Þ 3, 1: 1, R, 2ð Þ

(a) Walk through the operation of machine T applied to the following input
tapes. Assume the RWH starts in state s ¼ 0 reading the leftmost nonblank
character.
(i) . . . hhh110011hhh. . .
(ii) . . . hhh111110hhh. . .
(iii) . . . hhh1001010hhh. . .
(iv) . . . hhh0011001hhh. . .

(b) What function does this machine evaluate? That is, if the input tape contains
the binary representation of the integer n, what is left on the tape when T
halts? // Hint: look at the input and output strings in decimal.

(c) The final state is 0, 1 etc. Interpret this value as a function of the input integer n.

4. Construct the quintuples of a Turing Machine M that operates on (an input
tape containing) a string of a’s and b’s, and halts in a “yes” state if and only
if there are an integer number of a’s followed by the same number of b’s.
The machine is allowed to crash in any state on other input strings.

480 11 Turing Machines

5. Construct the quintuples of a Turing Machine M that operates on (an input tape
containing) a string of a’s, b’s, and c’s, and halts in a “yes” if and only if there
are an integer number of a’s followed by the same number of b’s followed by
the same number of c’s. The machine is allowed to crash in any state on other
input strings.

Hint: If the input tape has no nonblank symbols, halt in the “yes” state. Other-
wise, move from left to right checking that the input string is some a’s followed
by some b’s followed by some c’s. Then, remove 1 c from the right-hand end,
move left to the first b, replace that b by a c, go to the right-hand end, and remove
another c. Then, go back to the left-hand end and remove an a, move right one
square, and begin again in state s.

6. Look up Hilbert’s tenth problem on the Internet. When was it solved? Who
solved it? What is the answer to Hilbert’s question?

7. Look up Hilbert’s problems on the Internet. Were all 23 solved in the twentieth
century? Are any of them on the list of million dollar problems given by the
Clay Mathematics Institute for solution in this century?

11.1 What Is an Algorithm? 481

A.1 Solutions from Chapter 1

1. Using the conversion technique described in Section 1.3, or RPM described in
Section 1.1:

2015 ¼ 2 1007ð Þþ 1 2015 ¼ 1024
1007 ¼ 2 ð 503Þþ 1 þ 512 1536
503 ¼ 2 ð 251Þþ 1 þ 256 1792
251 ¼ 2 ð 125Þþ 1 þ 128 1920
125 ¼ 2 ð 62Þþ 1 þ 64 1984
62 ¼ 2 ð 31Þþ 0
31 ¼ 2 ð 15Þþ 1 þ 16 2000
15 ¼ 2 ð 7Þþ 1 þ 8 2008
7 ¼ 2 ð 3Þþ 1 þ 4 2012
3 ¼ 2 ð 1Þþ 1 þ 2 2014
1 ¼ 2 ð 0Þþ 1 þ 1 2015

2015{10} ¼ 11 111 011 111{2}

2. Yes: 83/2 ¼ 41.5
83/3 ¼ 27.666 666 …
83/5 ¼ 16.6
83/7 ¼ 11.857 142 …

No further values need to be considered because 11 >
ffiffiffiffiffi
83

p
or 112 ¼ 121 > 83.

3. 801 ¼ 3*267
802 ¼ 2*401
803 ¼ 11*73
805 ¼ 5*161 ¼ 5*7*23
807 ¼ 3*269
809 is prime (Try 2, 3, 5, 7, 11, 13, 17, 19 and 23… 292 ¼ 841)

Solutions to Selected Exercises

http://dx.doi.org/10.1007/978-3-319-70151-6_1
http://dx.doi.org/10.1007/978-3-319-70151-6_1

7. If t <¼ ffiffiffiffi
Q

p� �
then t <¼ ffiffiffiffi

Q
p

so t � t <¼ Q // squaring both sides
If t is an integer and t � t <¼ Q then t <¼ ffiffiffiffi

Q
p

// taking the positive square root of both sides
Because t is some integer <¼ ffiffiffiffi

Q
p

, t is less than the largest integer that is
<¼ ffiffiffiffi

Q
p

; that is, t <¼ ffiffiffiffi
Q

p� �
. ▯

8.

n n(n þ 1) þ 17
0 0(1) þ 17 ¼ 17 which is prime
1 1(2) þ 17 ¼ 19 which is prime
2 2(3) þ 17 ¼ 23 which is prime
3 3(4) þ 17 ¼ 29 which is prime
4 4(5) þ 17 ¼ 37 which is prime
5 5(6) þ 17 ¼ 47 which is prime
6 6(7) þ 17 ¼ 59 which is prime
7 7(8) þ 17 ¼ 73 which is prime
8 8(9) þ 17 ¼ 89 which is prime
9 9(10) þ 17 ¼ 107 which is prime
10 10(11) þ 17 ¼ 127 which is prime
11 11(12) þ 17 ¼ 139 which is prime
12 12(13) þ 17 ¼ 163 which is prime
13 13(14) þ 17 ¼ 189 which is prime
14 14(15) þ 17 ¼ 217 which is prime
15 15(16) þ 17 ¼ 247 which is prime
16 16(17) þ 17 ¼ 279 ¼ 17*17
17 17(18) þ 17 ¼ 313 ¼ 17*19
18 18(19) þ 17 ¼ 359 which is prime

14. (a)
jA1� Aj

jAj ¼ 2:35� 2:3456
2:3456

¼ 0:0044
2:3456

¼ 0:0018758. . . �0:19%

(b)
jB1� Bj

jBj ¼ 2:3541� 2:3
2:3541

¼ 0:0541
2:3541

¼ 0:0229811. . . �2:30%

(c)
j A1� B1ð Þ � ðA� BÞj

jA� Bj ¼ j0:05þ 0:0085j
0:0085

¼ 0:0585
0:0085

¼ 6:882352. . . �688:24%

(d) Because A1 > A and B1 < B and A and B are similar in value, the two
small errors, which are in opposite directions, are large relative to the
difference between A and B.

17. GCD(2Nþ1, 3Nþ1) ¼ GCD(N, 2Nþ1) ¼ GCD(1, N) ¼ 1.

484 Appendix A: Solutions to Selected Exercises

A.2 Solutions from Chapter 2

11. (a) 94 ¼ 6,561
(b) (9)(8)(7)(6) ¼ 3,024
(c) (1)(8)(7)(6) ¼ 336

(d)
9
4

� �
¼ 126

(e) Any increasing 4-sequence on X that begins with 3 is a 3 followed by an
increasing 3-sequence on {4..9}, so the number of increasing 4-sequences
on X that begin with 3 is the number of increasing 3-sequences on {4..9},

which is
6
3

� �
¼ 20.

18. Select the 4 letters and then select the 3 digits.

(a) Choose 2 positions for the 2 T’s
and choose another letter to place in the left-most free position for a letter
and choose another letter to place in the right-most free position for a letter
and choose a digit to place in the left-most position for a digit
and choose a digit to place in the middle position for a digit.

Then the number of such license plates ¼ 4
2

� �
(25)(25)(10)(10) ¼

375,000.
(b) The number of 4-letter sequences with at least one “T”

¼ The number of 4-letter sequences minus the number of 4-letter sequences
with no T’s

¼ 264 – 254 ¼ 456,976 – 390,625 ¼ 66,351
The number of 3-digit sequences with at least one “4”
¼ The number of 3-digit sequences minus the number of 3-digit sequences

with no 4’s
¼ 103 – 93 ¼ 1,000 – 729 ¼ 271
Then the number of such license plates ¼ (66,351)(271) ¼ 17,981,121.

A.3 Solutions from Chapter 3

10. Proof.

Since ⎣ f × n⎦ <= f × n < ⎣f × n⎦ + 1,

n – ⎣f × n⎦ >= n – f × n > n – ⎣f × n⎦ – 1.

Appendix A: Solutions to Selected Exercises 485

11. (a) n2 þ n þ 41 ¼ n(nþ1) þ 41.

If n¼ 41 then n2þ nþ 41¼ 41(41þ 1)þ 41¼ 41(43) which is not prime.
If n¼ 40 then n2þ nþ 41¼ 40(40þ 1)þ 41¼ 41(41) which is not prime.

If n ¼ 0 then n2 þ n þ 41 ¼ 0(1) þ 41 ¼ 41 þ 0 ¼ 41 which is prime.
If n ¼ 1 then n2 þ n þ 41 ¼ 1(2) þ 41 ¼ 41 þ 2 ¼ 43 which is prime.
If n ¼ 2 then n2 þ n þ 41 ¼ 2(3) þ 41 ¼ 41 þ 6 ¼ 47 which is prime.
If n ¼ 3 then n2 þ n þ 41 ¼ 3(4) þ 41 ¼ 41 þ 12 ¼ 53 which is prime.
If n ¼ 4 then n2 þ n þ 41 ¼ 4(5) þ 41 ¼ 41 þ 20 ¼ 61 which is prime.
If n ¼ 5 then n2 þ n þ 41 ¼ 5(6) þ 41 ¼ 41 þ 30 ¼ 71 which is prime.
If n ¼ 6 then n2 þ n þ 41 ¼ 6(7) þ 41 ¼ 41 þ 42 ¼ 83 which is prime.
If n ¼ 7 then n2 þ n þ 41 ¼ 7(8) þ 41 ¼ 41 þ 56 ¼ 97 which is prime.
If n ¼ 8 then n2 þ n þ 41 ¼ 8(9) þ 41 ¼ 41 þ 72 ¼ 113 which is prime.
If n ¼ 9 then n2 þ n þ 41 ¼ 9(10) þ 41 ¼ 41 þ 90 ¼ 131 which is prime.
If n¼ 10 then n2þ nþ 41¼ 10(11)þ 41¼ 41þ 110¼ 151 which is prime.
…
If n ¼ 39 then n2 þ n þ 41 ¼ 39(40) þ 41 ¼ 41 þ 1560 ¼ 1601 which is
prime.

(b) Let a¼ ffiffiffi
2

p
and let b¼ ffiffiffi

2
p

. Then both a and b are irrational //Theorem 3.5.4
but a * b ¼ 2 which is rational.
Or let a ¼ ffiffiffi

2
p

and let b ¼ ffiffiffi
8

p
. Then both a and b are irrational

// Theorem 3.5.4 plus the fact that b ¼ 2
ffiffiffi
2

p
.

but a * b ¼ ffiffiffiffiffi
16

p ¼ 4 which is rational.
(c) Let a ¼ 0 and let b ¼ ffiffiffi

2
p

. Then a is rational and b is irrational
but a * b ¼ 0 which is rational. // zero is the only exception

14. Let c ¼ ffiffiffi
2

p ffiffi
2

p
.

If c is rational then take a ¼ ffiffiffi
2

p
and b ¼ ffiffiffi

2
p

. Both are irrational but ab is
rational.
If c is irrational then take a ¼ c and b ¼ ffiffiffi

2
p

. Both are irrational but ab ¼
ffiffiffi
2

p� � ffiffi
2

p	
 ffiffi
2

p

¼ ffiffiffi
2

p� �2
which is rational.

Hence (n – ⎣ f × n⎦) – 1 < n – f × n <= (n – ⎣ f × n⎦). // 2 consecutive integers

so n – f × n = n – ⎣ f × n⎦

and ⎣ f × n⎦ + (1 – f) × n = n.

⎣

⎣

⎦

⎦

486 Appendix A: Solutions to Selected Exercises

15.

Columns 2, 4 and 8 are identical, so the three Boolean expressions are
equivalent.

26. The answer is “yes”.

Theorem: n2 < 3n for 8 integers n 2 N.
Proof. // Here a ¼ 0 and P(n) is an inequality with a LHS and a RHS

// but the induction step is easy only after k ¼ 2 (not 0 or 1)
Step 1. If n ¼ 0 then n2 ¼ 0 < 1 ¼ 3n. // P(0) is True

If n ¼ 1 then n2 ¼ 1 < 3 ¼ 3n. // P(1) is True
If n ¼ 2 then n2 ¼ 4 < 9 ¼ 3n. // P(2) is True

Step 2. Assume 9 k >¼ 2 where k2 < 3k. // P(k) is True
Step 3. If n ¼ kþ 1 then

ðkþ 1Þ2 ¼ k2 þ 2kþ 1

< k2 þ k2 þ k2 // 1< 2<¼ k< k2

¼ 3k2

< 3 3k
� � ¼ 3kþ 1: // by Step2

▯

32. Let r denote the common ratio of this geometric sequence.
If r ¼ 1 then 8n 2 N Sa þ Saþ 1 þ Saþ 2 þ . . . þ Saþ n ¼ nþ 1ð ÞSa.
If r 6¼ 1 then 8n2N Sa þ Saþ 1 þ Saþ 2 þ . . . þ Saþ n ¼ Sa � rnþ 1 � 1ð Þ/ r� 1ð Þ:

Proof.
If r ¼ 1 then each of the (nþ 1) consecutive entries is equal to the first,
so Sa þ Saþ 1 þ Saþ 2 þ . . . þ Saþ n ¼ nþ 1ð ÞSa.
If r 6¼ 1 then from Exercise 31 8n 2 a. . .f g Sn ¼ rn �K ¼ rn� a � Sa;
so Sa þ Saþ 1 þ Saþ 2 þ . . . þ Saþ n ¼ Sa þ rSa þ r2Sa þ . . . þ rnSa

¼ Sað1þ rþ r2 þ . . . þ rnÞ
¼ Sa � rnþ 1 � 1ð Þ= r� 1ð Þ: // see Theorem 3:6:8

▯

Appendix A: Solutions to Selected Exercises 487

35. Proof. // We will prove (c) by mathematical induction. This also
// is also a proof of (a) where r ¼ 2 and (b) where r ¼ 3.

// Here a ¼ 0 and P(n) is an equation with a LHS and a RHS.

Step 1: If n ¼ 0 then LHS ¼ (0þ 1)r0 ¼ 1,

and RHS ¼ ½ðr � 1Þ0þðr � 2Þ�r0þ 1 þ 1

ðr � 1Þ2 ¼ ðr � 2Þrþ 1

ðr � 1Þ2 ¼ 1:

//P 1ð Þ is True
Step 2: Assume 9 k 2 N where P(k) is True.
Step 3: If n ¼ kþ 1 then // in the predicate P

LHS ¼
Xkþ 1

j¼0

ðjþ 1Þr j ¼
Xk
j¼0

ðjþ 1Þr j þ kþ 1½ � þ 1ð Þrkþ 1

¼ ½ðr � 1Þkþðr � 2Þ�rkþ 1 þ 1

ðr � 1Þ2 þ kþ 2ð Þrkþ 1 � ðr � 1Þ2
ðr � 1Þ2 // by Step 2

¼f½rk � kþ r � 2� þ ðkþ 2Þ½r2 � 2rþ 1�grkþ 1 þ 1

ðr � 1Þ2

¼ f½rðkþ 1Þ � ðkþ 2Þ� þ ðkþ 2Þr2 � ðkþ 2Þ2rþðkþ 2Þgrkþ 1 þ 1

ðr � 1Þ2

¼ fðkþ 1Þþ ðkþ 2Þr � ð2kþ 4Þgr� rkþ 1 þ 1

ðr � 1Þ2

¼ fðkþ 1Þrþ r � k � 1� 2grkþ 2 þ 1

ðr � 1Þ2

¼ fðr � 1Þðkþ 1Þþ ðr � 2Þgrðkþ 1Þþ 1 þ 1

ðr � 1Þ2
¼ RHS // in the predicateP

// Therefore, 8 n 2 N;
Pn
j¼0

ðjþ 1Þr j ¼ ½ðr � 1Þnþðr � 2Þ�rnþ 1 þ 1

ðr � 1Þ2 :

// Therefore, when r ¼ 2, 8n 2 N;
Xn
j¼0

ðjþ 1Þ2 j ¼ ½ð2� 1Þnþð2� 2Þ�2nþ 1 þ 1

ð2� 1Þ2

¼ n2nþ1 þ 1

// and when r ¼ 3, 8 n 2 N;
Xn
j¼0

ðjþ 1Þ3 j ¼ ½ð3� 1Þnþð3� 2Þ�3nþ 1 þ 1

ð3� 1Þ2

¼ ½2nþ 1�3nþ 1 þ 1
4

:

488 Appendix A: Solutions to Selected Exercises

36. Proof.

Step 1: If n ¼ q then LHS ¼ q
q

� �
¼ 1, and RHS ¼ qþ 1

qþ 1

� �
¼ 1 ¼ LHS.

Step 2: Assume that 9 an integer k >¼ q where

q
q

� �
þ qþ 1

q

� �
þ qþ 2

q

� �
þ . . . þ k

q

� �
¼ kþ 1

qþ 1

� �

Step 3: If n ¼ qþ 1 then

LHS ¼ q

q

� �
þ qþ 1

q

� �
þ qþ 2

q

� �
þ . . . þ k

q

� �
þ kþ 1

q

� �

¼ kþ 1

qþ 1

� �
þ kþ 1

q

� �
// fromStep 2:

¼ ðkþ 1Þþ 1

qþ 1

� �
// the BadBanana Thm

= RHS: ▯

A.4 Solutions from Chapter 4

7. The integer, k ¼ 2q þ r where q 2 Z and r 2 0; 1f g.
So q<¼ k

2 ¼ qþ r
2 <¼ qþ 1

2 and therefore, k=2b c ¼ q.

Also, q� 1
2 <¼ k�1

2 ¼ ð2qþ rÞ�1
2 ¼ qþ r�1

2 <¼ q and therefore, k�1
2

� � ¼ q. ▯

8. Let k* ¼ k þ 1.
Then k=2d e ¼ k*� 1ð Þ=2d e ¼ k*=2b c // fromQ7

¼ kþ 1ð Þ=2b c: ▯

A.5 Solutions from Chapter 5

39. (a) Proof: (using the indirect method)
Assume that dave, the average degree in G, is >¼ 6. Since dave ¼ (the

sum of the degrees of all the vertices)/jVj, from Eqn. 5.1.1, we get that 2jEj ¼
jVj � dave. Then 2jEj >¼ jVj � 6 and hence jVj <¼ 2jEj/6 ¼ jEj/3.

Let d(G) be any drawing of G in the plane. Because, G has no bridges,
every face of d(G) is bounded by a circuit. Since G has no loops, every
face in d(G) has more than 1 edge in its boundary; and, since G has no pair
of parallel edges, every face has at least 3 edges. Because every edge is
in exactly 2 faces 2jEj >¼ 3jFj and hence jFj <¼ 2jEj/3. Then (from
Thm. 5.5.2)

Appendix A: Solutions to Selected Exercises 489

http://dx.doi.org/10.1007/978-3-319-70151-6_5
http://dx.doi.org/10.1007/978-3-319-70151-6_5

2 ¼ Vj j� Ej j þ Fj j<¼ Ej j=3� Ej j þ 2 Ej j=3 ¼ 0:

Because 2 is not <¼ 0, our assumption must be false, so dave must be < 6.
▯

(b) One example of such a graph is:

40. (a) Proof: (using the indirect method)
Assume that fave, the average face size in some drawing of G, is >¼ 6.

Since fave ¼ (the sum of the sizes of all the faces)/jFj, from Eqn. 5.5.1,
we get that 2jEj ¼ jFj � fave. Then 2jEj >¼ jFj � 6 and hence jFj <¼
2jEj/6 ¼ jEj/3.

Let d(G) be any drawing of G in the plane. Because, G has no bridges,
every face of d(G) is bounded by a circuit. Since G has no vertex of degree
< 3, from Equation (5.1.1), we get that 2jEj ¼ jVj � dave >¼ jVj � 3 and
hence jVj <¼ 2jEj/3. Then (from Thm. 5.5.2)

2 ¼ Vj j� Ej j þ Fj j<¼ 2 Ej j=3� Ej j þ Ej j=3 ¼ 0:

Because 2 is not <¼ 0, our assumption must be false, so fave must be < 6.
▯

(b) One example of such a graph is:

490 Appendix A: Solutions to Selected Exercises

http://dx.doi.org/10.1007/978-3-319-70151-6_5
http://dx.doi.org/10.1007/978-3-319-70151-6_5
http://dx.doi.org/10.1007/978-3-319-70151-6_5

41. (a) Examples of planar drawings are:

(b) The dual of the tetrahedron is the tetrahedron itself.
The dual of the cube is the octahedron.
The dual of the octahedron is the cube.
The dual of the dodecahedron is the icosahedron.
The dual of the icosahedron is the dodecahedron.

(c) Proof.
In a 3-dimensional polyhedron, a vertex is a point where 3 or more faces

meet, so each vertex has degree >¼3. Also, the planar graph of the surface
of the polyhedron is bridgeless, connected and simple.

If s ¼ 3 then all of the faces are triangles. The result given in Q39 gives
us that d must be < 6. The cases where s ¼ 3 and d ¼ 3, 4 and 5 are: the
tetrahedron, the octahedron, and the icosahedron. No other cases are pos-
sible when s ¼ 3.

Octahedron

Tetrahedron

Cube

Dodecahedron

Icosahedron

Appendix A: Solutions to Selected Exercises 491

If d ¼ 3 then all vertices have degree 3. The result given in Q40 gives us
that s must be < 6. The cases where d ¼ 3 and s ¼ 3, 4 and 5 are: the
tetrahedron, the cube, and the dodecahedron. No other cases are possible
when d ¼ 3.

Assume now that both d>¼ 4 and s>¼ 4. From Equation (5.1.1), we get
that 2jEj>¼ jVj � 4 and hence jVj<¼ jEj/2. From Equation (5.5.1), we get
that 2jEj >¼ jFj � 4 and hence jFj <¼ jEj/2. Then (from Thm. 5.5.2) we
would get

2 ¼ Vj j� Ej j þ Fj j<¼ Ej j=2� Ej j þ Ej j=2 ¼ 0:

Because 2 is not <¼ 0, our assumption must be false; the only possible
Platonic Solids are the 5 listed. ▯

42. (a)

(b) Each vertex lies on exactly one of the 12 pentagons, so jVj ¼ (12)(5)¼ 60.
Each vertex has degree 3, so 2jEj ¼ (60)(3). Thus, jEj ¼ 90.

A.6 Solutions from Chapter 6

2. (a) No. See, for example, answer (b).
(b)

492 Appendix A: Solutions to Selected Exercises

http://dx.doi.org/10.1007/978-3-319-70151-6_5
http://dx.doi.org/10.1007/978-3-319-70151-6_5
http://dx.doi.org/10.1007/978-3-319-70151-6_5

(c) Let W(x) denote the number of wins by player x, and Wave denote the
average number of wins over all players. Then

6Wave ¼ total # of wins ¼ total # of games ¼ 6
2

� �
¼ 15: SoWave

¼ 15/6 ¼ 21=2 and
therefore not all players can have the same number of wins.

(d) Let L(x) denote the number of losses by player x. ThenPf W xð Þ � L xð Þ½ � : x 2 Vg ¼ PfW xð Þ : x 2 Vg�PfL xð Þ : x 2 Vg
¼ total # of games � total # of games ¼ 0:

So
Pf W xð Þ � L xð Þ� : x 2 Vnfagg ¼ 0� W að Þ � L að Þ½ �< 0½ and at least

one of the terms in the sum must be negative; i.e. there must be a player
b with more losses than wins.

(e) Theorem: Every tournament contains a directed Hamilton Path.

Proof. Let Tn denote any particular tournament resulting from an
orientation of Kn.
// We will prove the theorem by Mathematical Induction on n.

Step 1. If n ¼ 1 then V ¼ {a} and the trivial path (a) contains all the
vertices exactly once and is a directed Hamilton Path in Tn.

Step 2. Assume 9 k >¼ 1 where every tournament with k players has a
directed Hamilton Path.

Step 3. If n ¼ k þ 1 and T is a tournament with kþ 1 players, select any
player w and remove w, and all arcs to and from w, from T. What
remains is a tournament with k players, Tk. By step 2, there is a
directed Hamilton Path in Tk,

p ¼ v0; e1; v1; e2; v2; e3; . . . ; ek; vkð Þ
where each ei is an arc oriented from vi�1 to vi. Denote by ai the
arc joining w and vi if it is oriented from vi to w, and by bi if it is
oriented from w to vi.
If the edge joining w and vk is oriented from vk to w, then

p1 ¼ v0; e1; v1; e2; v2; e3; . . . ; ek; vk; ak;wð Þ
is a directed Hamilton Path in T.

Otherwise, the edge joining w and vk is oriented from w to vk.
Now, let q be the smallest index where the edge joining w and vq
is oriented from w to vq. Then 0 <¼ q <¼ k.

If q ¼ 0 then
p2 ¼ w; b0; v0; e1; v1; e2; v2; e3; . . . ; ek; vkð Þ

is a directed Hamilton Path in T.

If q > 0 then the edge joining w and vq�1 is oriented from vq�1

to w, and
p3 ¼ v0; e1; v1; e2; . . . ; vq�1; aq�1;w; bq; vq; . . . ; ek; vk

� �
is a directed Hamilton Path in T. ▯

Appendix A: Solutions to Selected Exercises 493

6. There is only one topological sorting of an acyclic digraph D if and only if
D contains a directed Hamilton Path.

7. There are many acyclic orientations – first assign the integers from 1 to jVj to
the vertices, then orient the edges so all arcs go from a lower integer to a
higher one.

11. First topologically sort the vertices.
Algorithm 6.3.2 yields that the number of dipaths from a to b is 46.
Algorithm 6.3.3 yields that the length of a shortest dipath from a to b is 18.
Algorithm 6.3.4 yields that the length of a longest dipath from a to b is 51.

17. The Ford-Fulkerson Algorithm yields a Max-Flow with value 24.
20. (a) In the construction of the flow network N(G) where the vertices of G are

partitioned into two independent sets, L and R: give the arc (s, v) from the
new source s to vertex v in L a capacity equal b(v), give the arc (v, t) to the
new sink t from a vertex v in R a capacity equal b(v), and give all other
arcs a capacity of one unit.
Then any b-matching M in G of size k, corresponds to a feasible flow FM

in N(G) with value k; and, any feasible flow F in N(G) with value
k corresponds to a b-matching MF in G of size k.

(b) // A maximum cardinality 1-matching in G has size 8.
A maximum cardinality 2-matching in G has size 16.

(c) A maximum cardinality 3-matching in G has size 22.

A.7 Solutions from Chapter 7

6. (a) 7 !R 7
(b) 6 R 4 and 4 R 5 but 6 !R 5
(c) 6 R 4 but 4 !R 6
(d) 3 R 5 and 5 R 3 but 3 6¼ 5

8. R is reflexive because the trivial path p ¼ (v) joins any vertex v to itself.
R is symmetric because if a path p joins any vertex v to another vertex w,

then the path pR joins w to v.
R is transitive because if p1 joins vertex v to vertex w, and p2 joins w to another

vertex x, then the concatenation of p1 and p2 joins vertex v to vertex x.
R is an equivalence relation. The equivalence classes of vertices are the vertices

in the connected components.
9. R is reflexive because the trivial dipath p ¼ (v) joins any vertex v to itself.

R is transitive because if p1 joins vertex v to vertex w, and p2 joins w to another
vertex x, then the concatenation of p1 and p2 joins vertex v to vertex x.

If D has no cycles, what properties does R have? Recall that a relation R on S is
anti-symmetric means whenever a and b are distinct elements of S if a R b then
b !R a. If a and b are distinct vertices, and a R b and b R a then

there is a dipath p1 from vertex a to vertex b and
there is a dipath p2 from vertex a to vertex b.

494 Appendix A: Solutions to Selected Exercises

Hence there is a closed dipath p equal the concatenation of p1 and p2.
Then there must be a cycle in D. // by Thm 6.1.1

Thus, if D has no cycles, R is (also) anti-symmetric.
Because R is reflexive, transitive and anti-symmetric it is a Partial Order.

29. (a) f � g and A 2 Rþ

) f << g and A 2 Rþ)Af << g // by #3 of Thm7:5:3

A 2 Rþ) f <<Af // by #2 of Thm7:5:3

) g<< f and f <<Af) g<<Af // by Thm7:5:1

)Af � g

▯

(b) g<< ðgþ f Þ // by #2 of Thm 7:5:3

f << g) f þ gð Þ<< g // by #4 of Thm7:5:3

) f þ gð Þ� g

▯

(c) f1<< g and f2� g
) f1<< g and f2<< g) f1þ f2ð Þ<< g // by #5 of Thm7:5:3

f2 << ðf2þ f1Þ ¼ ðf1þ f2Þ // by #1 of Thm7:5:3

g << f 2 and f2 << ðf2þ f1Þ) g<< ðf2þ f1Þ
) f1þ f2ð Þ� g ▯

(d) f 1<< g1 and f 2<< g2) f 1þ f 2ð Þ<< g1þ g2ð Þ // by #6 of Thm 7:5:3

g1<< f1 and g2<< f 2) g1þ g2ð Þ<< f 1þ f2ð Þ // by #6 of Thm7:5:3

) f1þ f2ð Þ� g1þ g2ð Þ
(e) f 1<< g1 and f 2<< g2)ðf 1� f 2Þ<< ðg1� g2Þ // by #7 of Thm 7:5:3

g1<< f1 and g2<< f2)ðg1� g2Þ<< ðf1� f2Þ // by #7 of Thm 7:5:3

)ðf1� f2Þ� ðg1� g2Þ ▯

30. Let K ¼ 1 and let M ¼ 1. If n >¼ M then
f1þ f2ð Þ ¼ nþ n2 <¼ n3 þ 2n2 ¼ g1þ g2ð Þ;

so f1þ f2ð Þ ¼ nþ n2 << n3 þ 2n2 ¼ g1þ g2ð Þ:

Suppose that K 2 Rþ and M 2 P. If n* ¼ Mþ Kd e, then n* 2 P; n*>¼
M; n*>¼ K, and when n takes the value n*
g1þ g2ð Þ ¼ n3 þ 2n2 ¼ nðn2 þ 2nÞ>¼ Kðn2 þ 2nÞ

> Kðnþ n2Þ ¼ K f1þ f2ð Þ:

So g1þ g2ð Þ ¼ n3 þ 2n2 !<< nþ n2 ¼ f1þ f2ð Þ:

Thus f1þ f2ð Þ ¼ nþ n2 <<< n3 þ 2n2¼ g1þ g2ð Þ
and f1þ f2ð Þ ¼ nþ n2 !� n3 þ 2n2 ¼ g1þ g2ð Þ: ▯

Appendix A: Solutions to Selected Exercises 495

http://dx.doi.org/10.1007/978-3-319-70151-6_6

31. Proof.
Anti-symmetry: Suppose that f 6¼ g.
f SD g) f <<< g // Thm: 7:5:7

) g !<< f

) g !<<< f // Thm: 7:5:5

) g !SD f // contra-positive of Thm: 7:5:7

Transitivity: Suppose that f SD g and g SD h. // Is f SD h?
8K1 2 Rþ; 9M1 K1ð Þ 2 P such that if n>M1 K1ð Þ thenK1 � f nð Þ< g nð Þ:

If K1¼1, 9M1 1ð Þ 2 P such that if n>M1 1ð Þ then 1� f nð Þ< g nð Þ:
8K2 2 Rþ ; 9M2 K2ð Þ 2 P such that if n>M2 K2ð Þ thenK2 � g nð Þ< h nð Þ:

Let K be any element of Rþ, and letM(K) ¼M1(1) þM2(K) // thenM(K) 2 P
If n > M(K) then

n>M1 1ð Þ so f nð Þ< g nð Þ andK � f nð Þ<K� g nð Þ;
also n>M2 Kð Þ soK � g nð Þ< h nð Þ;
and hence K� f nð Þ< h nð Þ:

Thus f SD h. ▯

32. Tabulating the first few values of these sequences gives:

n f ðnÞ gðnÞ
1 1 1 // n ¼ 1 ¼ 2 0ð Þ þ 1 so r ¼ 0
2 2 4
3 6 6
4 24 96
5 120 120

For any r 2 P, we have

f 2rð Þ ¼ 2rð Þ!
< g 2rð Þ ¼ 2rð Þ! 2rð Þ
< f 2rþ 1ð Þ ¼ 2rð Þ! 2rþ 1ð Þ
¼ g 2rþ 1ð Þ ¼ 2rð Þ! 2rþ 1ð Þ // both f and g are increasing integer sequences

If n ¼ 2r then g(n) ¼ f(n) � n and if n ¼ 2r þ 1 then f(n) ¼ g(n).
Let K ¼ 1 and letM ¼ 1. If n >¼ M then f(n) <¼ K � g(n). Therefore f << g.

Recall that f1 !<< f2 means 8K 2 Rþ and 8M 2 P; 9 n*>¼ M where
f1 n*ð Þ>K � f2 n*ð Þ.

Let K be any given positive real number and let M be any given positive
integer.

496 Appendix A: Solutions to Selected Exercises

Let r* ¼ Mþ Kd e: // r* 2 P and r*>M; K
If n* ¼ 2r* then n* >¼ M and g n*ð Þ ¼ f n*ð Þ� n*>K � f n*ð Þ so g !<< f :
Therefore f <<< g.

Recall that f 1 SD f2 means 8K 2 Rþ ; 9M Kð Þ 2 P such that if n>M Kð Þ
thenK� f1 nð Þ< f2 nð Þ:

Therefore, f 1 SD f2 means 9K 2 Rþ such that 8M 2 P; 9 n*>M where
K� f1 n*ð Þ>¼ f2 nð Þ:

Let K ¼ 1 and let M be any given positive integer.
If n* ¼ 2M þ 1 then n*>¼ M and g n*ð Þ ¼ f n*ð Þ>¼ K� f n*ð Þ:
Therefore f !SD g. ▯

Chapter 8

1. Suppose En is defined recursively on P by

E0 ¼ 0; E1 ¼ 2; andEnþ1 ¼ 2n En þEn�1f g for all n>¼ 1:

Determine the value of E10.

E2 ¼ E1þ 1 ¼ 2 1ð Þ E1 þ E0f g ¼ 2 2þ 0f g ¼ 4
E3 ¼ E2þ 1 ¼ 2 2ð Þ E2 þ E1f g ¼ 4 4þ 2f g ¼ 24
E4 ¼ E3þ 1 ¼ 2 3ð Þ E3 þ E2f g ¼ 6 24þ 4f g ¼ 168
E5 ¼ E4þ 1 ¼ 2 4ð Þ E4 þ E3f g ¼ 8 168þ 24f g ¼ 1 536
E6 ¼ E5þ 1 ¼ 2 5ð Þ E5 þ E4f g ¼ 10 1536þ 168f g ¼ 17 040
E7 ¼ E6þ 1 ¼ 2 6ð Þ E6 þ E5f g ¼ 12 17 040þ 1 536f g ¼ 222 912
E8 ¼ E7þ 1 ¼ 2 7ð Þ E7 þ E6f g ¼ 14 222 912þ 17 040f g ¼ 3 359 328
E9 ¼ E8þ 1 ¼ 2 8ð Þ E8 þ E7f g ¼ 16 3 359 328þ 222 912f g ¼ 57 315 840
E10 ¼ E9þ 1 ¼ 2 9ð Þ E9 þ E8f g ¼ 18 57 315 840þ 3 359 328f g ¼ 1 092 153 024

7. (a) The 15 possible pairings are:
1. x1 with x2 and x3 with x4 and x5 with x6
2. x1 with x2 and x3 with x5 and x4 with x6
3. x1 with x2 and x3 with x6 and x4 with x5
4. x1 with x3 and x2 with x4 and x5 with x6
5. x1 with x3 and x2 with x5 and x4 with x6
6. x1 with x3 and x2 with x6 and x4 with x5
7. x1 with x4 and x2 with x3 and x5 with x6
8. x1 with x4 and x2 with x5 and x3 with x6
9. x1 with x4 and x2 with x6 and x3 with x5
10. x1 with x5 and x2 with x3 and x4 with x6
11. x1 with x5 and x2 with x4 and x3 with x6

Appendix A: Solutions to Selected Exercises 497

12. x1 with x5 and x2 with x6 and x3 with x4
13. x1 with x6 and x2 with x3 and x4 with x5
14. x1 with x6 and x2 with x4 and x3 with x5
15. x1 with x6 and x2 with x5 and x3 with x4 // So P3 ¼ 15

(b) Suppose n >¼ 2. Element x1 may be paired with any of the (2n – 1) other
elements in A. This leaves (2n – 2) ¼ 2(n – 1) elements still to be paired,
and that can be done in Pn�1 ways. Thus the number of pairings of
2n elements, Pn ¼ (2n – 1) � Pn�1.

(c) Theorem: Pn ¼ (1)(3)(5) … (2n – 1)
// product of the first n positive odd integers

Proof. // by mathematical induction

Step 1. P1 ¼ 1 which is the first positive odd integer.
Step 2. Assume 9 k >¼ 1 where Pk ¼ (1)(3)(5) … (2k – 1).
Step 3. If n ¼ k þ 1 then n >¼ 2 and

Pkþ 1 ¼ 2 kþ 1½ ��1ð ÞPk // using the RE
¼ 2kþ 1ð Þ� 1ð Þ 3ð Þ 5ð Þ. . . 2k�1ð Þ // by Step 2
¼ 1ð Þ 3ð Þ 5ð Þ. . . 2k�1ð Þ� 2 kþ 1½ ��1ð Þ ▯

8. ynþ 1 ¼ ½nþ 1�ð nþ 1½ � � 1Þ
2

þ c ¼ ½nþ 1�ðnÞ
2

þ c ¼ n n� 1ð Þþ 2n
2

þ c ¼ yn þ n:

9. (a) f 1ð Þ ¼ 11; f 2ð Þ ¼ 23; f 3ð Þ ¼ 47; f 4ð Þ ¼ 95; f 5ð Þ ¼ 191;
f 6ð Þ ¼ 383; f 7ð Þ ¼ 767; f 8ð Þ ¼ 1535; f 9ð Þ ¼ 3071; f 10ð Þ ¼ 6143:

(b) f(1) – f(0) ¼ 6 but f(2) – f(1) ¼ 12 so f is not an arithmetic sequence.
f(1) / f(0) ¼ 11/5 ¼ 121/55 but f(2) / f(1) ¼ 23/11 ¼ 115/55 so f is not an
geometric sequence.

11. (a) s1 ¼ 1=5ð Þs0 � 8 ¼ 1=5ð Þ 60ð Þ � 8 ¼ 12 � 8 ¼ þ 4
s2 ¼ 1=5ð Þs1 � 8 ¼ 1=5ð Þ 4ð Þ � 8 ¼ 0:8 � 8 ¼ �7:2
s3 ¼ 1=5ð Þs2 � 8 ¼ 1=5ð Þ �7:2ð Þ � 8 ¼ �1:44 � 8 ¼ �9:44

(b) In this RE, a¼ 1/5 and c¼ –8 so
c

1� a
¼ �8

4=5
¼ �10 and we have s0 ¼ 60.

The particular solution is sn ¼ an I � c

1� a

h i
þ c

1� a
¼ 1=5ð Þn 60� �10ð Þ½ � þ �10ð Þ
¼ 1=5ð Þn 70½ � � 10:

(c) Yes. The limit is –10.
(d) No. Because the sequence does not converge to zero.

498 Appendix A: Solutions to Selected Exercises

21. n Fn Tn ¼ 1þF0 þF1 þ . . . þFn

0 1 2
1 1 3
2 2 5
3 3 8
4 5 13
5 8 21

Theorem For 8n 2 P; Tn ¼ 1þF0 þF1 þ . . . þFn equals Fnþ 2.
Proof.

Step 1. If n ¼ 0 then Tn ¼ 1 þ F0 ¼ 1 þ 1 ¼ 2 ¼ F2 ¼ F0þ 2.
Step 2. Assume that 9 k >¼ 0 such that Tk equals Fkþ 2.
Step 3. If n ¼ kþ 1 then n >¼ 1 so

Tkþ 1 ¼ 1þF0 þF1 þ . . . þFk þFkþ 1

¼ Tk þFkþ 1

¼ Fkþ 2 þFkþ 1 // by Step 2
¼ Fkþ 3 // by the Fibonacci RE
¼ F kþ 1ð Þþ 2: ▯

23. (a) The General Solution of this Recurrence Equation is

Sn ¼ A rð Þn þBn rð Þn // since r1 ¼ r2 ¼ r

¼ A 11ð Þn þBn 11ð Þn // since r ¼ 11

(b) Find the Particular Solution where S0 ¼ 1 and S1 ¼ 5.

S0 ¼ 1 ¼ A 11ð Þ0 þB 0ð Þ 11ð Þ0¼ A

S1 ¼ 5 ¼ A 11ð Þ1 þB 1ð Þ 11ð Þ1¼ 11Aþ 11B

Then A ¼ 1
B ¼ 5� 11 1ð Þ½ �=11 ¼ �6=11

Hence, the Particular Solution where S0 ¼ 1 and S1 ¼ 5 is

Sn ¼ 1ð Þ 11ð Þn þ � 6=11ð Þn 11ð Þn¼ 11n � 6n 11ð Þn�1

// S0 ¼ 110 � 6 0ð Þ 11ð Þn�1 ¼ 1� 0 ¼ 1

// and S1 ¼ 111 � 6 1ð Þ 11ð Þ0 ¼ 11� 6 ¼ 5:

Appendix A: Solutions to Selected Exercises 499

29. (a) e1/3 ¼ 1.395 612 425…
(b) j termj ¼ 1

j!
1
3

� � j
partial sum

0 1 ¼ 1:000 000 000. . . 1:000 000 000. . . ¼ 1

1 1=3 ¼ 0:333 333 333. . . 1:333 333 333. . . ¼ 4=3

2 1= 6� 3ð Þ ¼ 1=18 ¼ 0:055 555 555. . . 1:388 888 888. . . ¼ 25=18

3 1= 9� 18ð Þ ¼ 1=162 ¼ 0:006 172 839. . . 1:395 061 728. . . ¼ 226=162

4 1= 12� 162ð Þ ¼ 1=1944 ¼ 0:000 514 403. . . 1:395 576 132. . . ¼ 2713=1944

5 1= 15� 1944ð Þ ¼ 1=29160 ¼ 0:000 034 293. . . 1:395 610 425. . . ¼ 40696=29160

(c) Yes.
(d) e�1/3 ¼ 0.716 531 310…

j termj ¼ 1
j!

�1
3

� � j
partial sum

0 1 ¼ þ 1:000 000 000. . . 1:000 000 000. . . ¼ 1

1 �1=3 ¼ �0:333 333 333. . . 0:666 666 666. . . ¼ 2=3

2 þ 1= 6� 3ð Þ ¼ þ1=18 ¼ þ 0:055 555 555. . . 0:722 222 222. . . ¼ 13=18

3 � 1= 9� 18ð Þ ¼ �1=162 ¼ �0:006 172 839. . . 0:716 049 382. . . ¼ 116=162

4 þ 1= 12� 162ð Þ ¼ þ1=1944 ¼ þ 0:000 514 403. . . 0:716 563 786. . . ¼ 1393=1944

5 � 1= 15� 1944ð Þ ¼ �1=29160 ¼ �0:000 034 293. . . 0:716 529 492. . . ¼ 20894=29160

Yes. This partial sum also gives 3 decimal places of accuracy.

Chapter 9

4. (a) [(7)(6)]/[(2)(1)] ¼ 21
(b) (1, 2, 3, 4, 5)
(c) (3, 4, 5, 6, 7)
(d) (2, 3, 5, 6, 7)

7. The sequences are (read left to right, top to bottom):

321 421 431 432 521 531 532 541 542 543
621 631 632 641 642 643 651 652 653 654

8. (a) Let n ¼ 3, B ¼ 8, V1 ¼ 10, W1 ¼ 5, V2 ¼ 7, W2 ¼ 4, V3 ¼ 7, and W3 ¼ 4.
The Greedy Solution is {O1} with total value ¼ 10 and total weight ¼ 5.
The Optimal Solution is {O2, O3} with total value¼ 14 and total weight¼ 8.

(b) Let n ¼ 3, B ¼ 8, V1 ¼ 10; W1 ¼ 5; Ratio1 ¼ 2
V2 ¼ 7; W2 ¼ 4; Ratio2 ¼ 1:75
V3 ¼ 7; W3 ¼ 4; Ratio3 ¼ 1:75

The Greedy Solution is {O1} with total value ¼ 10 and total weight ¼ 5.
The Optimal Solution is {O2, O3} with total value¼ 14 and total weight¼ 8.

500 Appendix A: Solutions to Selected Exercises

9. (a)
Xb
j¼a

ðxj�1 � xjÞ ¼ xa�1 � xa

þ xa � xaþ 1

þ xaþ 1 � xaþ 2

. . .

þ xb�2 � xb�1

þ xb�1 � xb
¼ xa�1 � xb: // All other xj’s “cancel out”:

(b)
Xb
j¼a

ðxj � xj�1Þ ¼ �
Xb
j¼a

ðxj�1 � xjÞ ¼ � xa�1 � xbð Þ ¼ xb � xa�1:

(c) Let yj ¼ xjþ 1 for each index j. Then

Xb
j¼a

ðxjþ 1 � xjÞ ¼
Xb
j¼a

ðyj � yj�1Þ ¼ yb � ya�1 ¼ xbþ 1 � xa:

(d) Let xj ¼ n j for each index j. Then

Xb
j¼a

n jðn� 1Þ ¼
Xb
j¼a

ðnjþ 1 � n jÞ ¼
Xb
j¼a

ðxjþ 1 � xjÞ ¼ xbþ 1 � xa

¼ nbþ 1 � na:

(e) Let xj ¼ nk�j for each index j. Then

Xb
j¼a

nk�jðn� 1Þ ¼
Xb
j¼a

ðnk�jþ 1 � nk�jÞ

¼
Xb
j¼a

ðxj�1 � xjÞ ¼ xa�1 � xb // from part að Þ

¼ nk�ða�1Þ � nk�b ¼ nk�aþ 1 � nk�b:

Chapter 10

3. (a) prob Að Þ ¼ 27=80

prob Bð Þ ¼ 11=80

prob AandBð Þ ¼ 4=80

prob AorBð Þ ¼ prob Að Þþ prob Bð Þ � prob AandBð Þ
¼ 27

80
þ 11

80
� 4
80

¼ 34
80

prob AjBð Þ ¼ prob AandBð Þ=prob Bð Þ ¼ 4=80
11=80

¼ 4
11

prob BjAð Þ ¼ prob BandAð Þ=prob Að Þ ¼ 4=80
27=80

¼ 4
27

Appendix A: Solutions to Selected Exercises 501

(b) A and B are NOT mutually exclusive because prob(A and B) ¼ 4/80 6¼ 0.
(c) A and B are NOT independent because

prob AandBð Þ ¼ 4=80 ¼ 320=6400

6¼ prob Að Þ � prob Bð Þ ¼ 27=80ð Þ � 11=80ð Þ ¼ 297=6400:

5. (a) # delegations that excludeMike ¼ n� 1
k

� �

prob Mike is excludedð Þ ¼
n� 1

k

� �
n

k

� �
¼ ðn� 1Þ!

k!ðn� k � 1Þ! �
k!ðn� kÞ!

n!
¼ n� k

n

prob Mike is includedð Þ ¼ 1� n� k

n
¼ k

n

Alternatively…

delegations that includeMike ¼ n� 1

k � 1

� �

prob Mike is includedð Þ ¼
n� 1

k � 1

� �
n

k

� �
¼ ðn� 1Þ!

ðk � 1Þ!ðn� kÞ! �
k!ðn� kÞ!

n!
¼ k

n

(b) prob(Flora is included) ¼ k

n

(c) # delegations that include both Mike and Flora ¼ n� 2
k � 2

� �

prob Mike and Flora are includedð Þ ¼
n� 2

k � 2

� �
n

k

� �

¼ ðn� 2Þ!
ðk � 2Þ!ðn� kÞ! �

k!ðn� kÞ!
n!

¼ kðk � 1Þ
nðn� 1Þ :

This equals prob Mike is includedð Þ � prob Flora is includedð Þ

, kðk � 1Þ
nðn� 1Þ ¼

kðkÞ
nðnÞ

, k � 1
n� 1

¼ k

n
, n k� 1ð Þ ¼ k n� 1ð Þ
, nk� n ¼ kn� k

, �n ¼ �k

, k ¼ n

502 Appendix A: Solutions to Selected Exercises

Since 1 < k < n, the events “Mike is in” and “Flora is in” are NOT
independent.

6. prob Xgets H and you get Hf g or fXgets T and you get Tgð Þ

¼ prob Xgets H and you get Hð Þþ prob Xgets T and you get Tð Þ
¼ prob Xgets Hð Þ � prob you get Hð Þþ prob Xgets Tð Þ � prob you get Tð Þ
¼ p � 1=2þ 1� pð Þ � 1� 1=2ð Þ
¼ 1=2

9. (a)

(c) Yes

10. (a)

(b) P failed testjpassed courseð Þ ¼ 48
3278

¼ 0:014643075. . . �1:5%

(c) P passed testjfailed courseð Þ ¼ 170
722

¼ 0:235457063. . . �23:5%

T ¼ Prob # probes (#probes) � (Prob)

X10 0.40 1 0.40

X7 0.22 2 0.44

X4 0.10 3 0.30

X9 0.07 4 0.28

X6 0.06 5 0.30

X3 0.05 6 0.30

X1 0.04 7 0.28

X8 0.03 8 0.24

X2 0.02 9 0.18

X5 0.01 10 0.10

1.00 2.82 ¼ Expected # probes

(b) # probes T ¼ Prob (#probes) � (Prob)

1 X5 0.01 0.01

2 X2, X8 0.05 0.10

3 X1, X3, X6, X9 0.22 0.66

4 X4, X7, X10 0.72 2.88

1.00 3.65 ¼ Expected # probes

passed test failed test
passed course 3230 48 3278
failed course 170 552 722

3400 600 4000

Appendix A: Solutions to Selected Exercises 503

13. (a) 104 ¼ 10 000
(b) 10 * 9 * 8 * 7 ¼ 5 040

(c) The number of passwords with the digit “5” repeated j times is
4
j

� �
94�j.

(d)

// np in some binomial experiment

15. Using a Binomial experiment as a model for this process

where a trial is a laptop purchase
a “success” is making a claim on the guarantee

// we’re interested in the number of claims made, X
so n ¼ 43, p ¼ 1 – 85% ¼ 15% ¼ 0.15 and q ¼ 0.85
and X is the number of claims made.

Wewant P X> ¼ 3ð Þ ¼
X43
k¼3

PðX ¼ kÞ // a very long calculation

¼ 1�
X2
k¼0

PðX ¼ kÞ // using the hint

P X ¼ 0ð Þ ¼ 43

0

� �
p0 � q43 ¼ 1� 1� q43 ¼ 1ð Þ 1ð Þ 0:85ð Þ43¼ 0:000 922 600. . .

P X ¼ 1ð Þ ¼ 43

1

� �
p1 � q42 ¼ 43� p� q42 ¼ 43ð Þ 0:15ð Þ 0:85ð Þ42¼ 0:007 000 911. . .

P X ¼ 2ð Þ ¼ 43

2

� �
p2 � q41 ¼ 43� 42

2� 1
0:15ð Þ2 0:85ð Þ41

¼ 903ð Þ 0:0225ð Þ 0:85ð Þ41¼ 0:025 944 554. . .

Hence, P X< 3ð Þ ¼ 0:000 922 600. . . þ 0:007 000 911. . . þ 0:025 944 554. . .
¼ 0:033 868 065. . .

j 4
j

� �
94�j

0 (1)94¼ 6 561

1 (4)93¼ 2 916

2 (6)92¼ 486

3 (4)91¼ 36

4 (1)90¼ 1

Total: 10 000

j j � prob(X¼j)

0 0�6561/10000 ¼ 0.0000

1 1�2916/10000 ¼ 0.2916

2 2� 486/10000 ¼ 0.0972

3 3� 36/10000 ¼ 0.0108

4 4� 1/10000 ¼ 0.0004

E(# of 5’s) ¼ 0.4000 // equals 4� (1/10)

504 Appendix A: Solutions to Selected Exercises

and P X>¼ 3ð Þ ¼ 1 � 0:033 868 065. . . ¼ 0:966 131 934. . .

// Also;
43

0

� �
p0 � q43 þ 43

1

� �
p1 � q42 þ 43

2

� �
p2 � q41

// ¼ f1� 1� q2 þ 43� p� q1 þ 903� p2g� q41

// ¼ 0:7225 þ 5:4825 þ 20:3175f g� q41

// ¼ 26:5225f g� 0:001276956. . .ð Þ ¼ 0:033 868 067. . .

// We should expect about np ¼ 43� 0:15ð Þ ¼ 6:45 claims:

17. (a) 38%
(b) Using a Binomial experiment as a model for this

where the trials correspond to the top 10 marks
a “success” is a woman obtaining a top ten mark

// we’re interested in the number of women that obtain a top ten mark, X
we assume that p ¼ 38%, so q ¼ 62%.

P X ¼ 6ð Þ ¼ 10

6

� �
p6 � q4 ¼ 10� 9� 8� 7

4� 3� 2� 1
0:38ð Þ6 0:62ð Þ4

¼ 210ð Þ 0:003010936. . .ð Þ 0:14776336ð Þ
¼ 0:093 430 276. . .

(c) E(X) ¼ np ¼ (10)(0.38) ¼ 3.8

23. The possible outcomes from the game are summarized in the following table,
with the amount won shown in brackets:

Probability Distribution for f

Diamond Spade, Heart or Club
Ace 1 ($10.00) 3 ($5.00)

Jack, Queen or King 3 ($7.00) 9 ($4.50)
2 through 10 9 ($4.50) 27 ($0.00)

v prob(f ¼ v) v � prob(f ¼ v)

–$2.50 27/52 –$67.50/52

$2.00 18/52 $36.00/52

$2.50 3/52 $7.50/52

$4.50 3/52 $13.50/52

$7.50 1/52 $7.50/52

52/52 E(f) ¼ –$ 3.00/52

¼ –$ 0.057692307…

¼ –5.7692307…cents

Appendix A: Solutions to Selected Exercises 505

The average payoff per play is negative because the person operating the game
(the “house”) needs to cover the cost of operating the game, and wants to
make a profit from it. The money needed for these costs and profits comes
from having a negative average payoff per play.

Chapter 11

1. (a) (i)

(ii)

(iii)

(b) n ! 3n

506 Appendix A: Solutions to Selected Exercises

2. (a)

(b) n ! n MOD 3

4. Let L denote the “language” of strings of a’s and b’s described. Then L ¼
an bn: n 2 Nf g . Furthermore, w 2 L if and only if w is the empty string or w ¼

axb where x 2 L.

ðs; a : h; R; 1Þ 1; a : a; R; 1ð Þ ð2; a : h; L; NoÞ 3; a : a; L; 3ð Þ
ðs; b : h; R; NoÞ 1; b : b; R; 1ð Þ ð2; b : h; L; 3Þ 3; b : b; L; 3ð Þ
ðs; h : h; R; YesÞ ð1; h : h; L; 2Þ ð2; h : h; L; NoÞ ð3; h : h; R; sÞ

Appendix A: Solutions to Selected Exercises 507

Index

A
Absolute error, 25
Achilles and the Tortoise, 366
Ackermann numbers, 336–340
Ackermann’s function, 374
Acyclic, 247
Algorithm, 4, 468
Antecedent, 89
Antisymmetric, 301
Approximation errors, 23–26
Augmenting Path, 275, 297
Arcs, 241
Argument, 93
Arithmetic sequence, 111
Asymptotically dominated, 317
Asymptotically equivalent to, 322
Asymptotic dominance, 316–321
Asymptotic ranking, 325–326
Average-case complexity, 384, 393, 404, 437,

454–460

B
Back-tracking, 209
Bad Banana Theorem, 62–63
BetterBubbleSort, 160
Bi-conditional operator, 91
Big-Oh notation, 316–321
Big-Theta notation, 322–324
Binary search, 140
Binary system, 27
Binary tree, 145, 163
Binomial coefficients, 62
Binomial distribution, 443–444
Binomial experiment, 440
Binomial theorem, 62, 128
Bipartite, 223
Bisection algorithm, 37–41
Bounded, 72

Branching diagram, 145, 161
Breadth-first traversal, 210–216
Bridge, 223
BubbleSort, 156–159

C
Call frame, 174
Capacity, 274
Cantor’s diagonalization process, 104–106
Cardinality, 49
Cartesian product, 50
Casting out nines, 7–8, 123
Center, 294
Characteristic equation, 359
Characteristic sequence, 55
Church-Turing Thesis, 475
Circuit, 199
Clay Mathematics Institute, 198
Clique, 223
Closed, 199
Coloring a graph, 223
Common difference, 112
Common ratio, 114
Comparability property, 301
Complete bipartite graph, 223
Complete graph, 223
Components, 224, 235
Compound interest, 344–345
Conclusion, 93
Conditional

expectation, 452–454
operator, 89
probability, 428–429
syllogism, 95

Conjunction, 86
Connected, 199
Consequent, 89
Contrapositive, 89

Converges, 367
Converse, 89
Cookie problems, 81–86
Cycle, 242

D
Decreasing, 71
Degree, 196
De Morgan’s Laws, 88
Depth-first search, 203
Depth-first traversal, 203–210
Derangements, 334–336
Diagnostic test, 431–435
Diameter, 294
Digraph, 241
Dijkstra’s algorithm, 259–266
Dipath, 242
Directed graph, 241
Directed graph representation, 301
Directed path, 242
Direct proof, 100–101
Disjoint, 49
Disjunction, 87
Disjunctive syllogism, 98
Distance function, 259
Dominated by, 311
Dual, 227
Dynamic programming, 253

E
Edges, 195
Edge-weighted graphs, 217–222
Element, 45
Ellipses, 110
Empty set, 47
Equally likely, 424
Equivalence class, 303
Equivalence relation, 302
Equivalent, 88
Euclid’s algorithm, 19, 355–358
Euler circuit, 196
Euler’s Formula, 227
Eulerian graphs, 196–197
Euler tour, 196
Events, 423
Exchange sorts, 156–162
Exclusive or, 87
Existential quantifier, 92
Expected frequency, 436
Expected value, 437
Experiment, 422

F
False positives, 432
Fibonacci sequence, 346–358, 448
Finish-end, 241
First order linear recurrence equations, 340
Flow Network, 274
Ford-Fulkerson Algorithm, 279
Forest, 202, 235
Four Color Theorem, 232
Full binary tree, 151–153
Full permutations, 59
Full permutations of {1..n}, 398–406
Function, 53

G
Generalized conditional syllogism, 100
General solution, 333
General solution of the Fibonacci RE, 351
Geometric distribution, 444–447
Geometric sequence, 70, 114
Golden ratio, 350, 351
Graph, 195
Gray code, 387, 418
Greatest common divisor, 18–21, 125
Greedy algorithm, 81–86, 217, 412, 413

H
Hall’s Marriage Theorem, 290
Halting problem, 476–479
Hamilton circuit, 197
Hamiltonian graphs, 197, 415
Hamilton tour, 197
Harmonic sequence, 371–373
Hasse diagram, 307
Height of the tree, 163
Hilbert’s problems, 467
Homogeneous, 358

I
Implies, 90
Inclusive or, 87
Increasing, 71
Independent events, 430
Independent set, 223
Indirect proof, 101–106
Infinite series, 366–372
In-neighbors, 241
InsertionSort, 186, 464–466
Internal vertices, 145, 163
Intersection, 49
Inverse, 89

510 Index

K
Key, 137
Knapsack problem, 379, 412
Konigsberg Bridge Problem, 192
Kuratowski, 232
K-permutation, 58–61
K-permutations of {1..n}, 407
K-sequences on {1..n}, 58, 384–387
K-subsets of {1..n}, 60, 390–393, 418

L
Leaf, 163
Leaves, 145, 152, 163
Lemma, 125
Lexicographic first, 381
Lexicographic next, 381
Lexicographic order, 313, 381–383
Linear search, 138, 454
Little-Oh notation, 326
Logarithm, 16–18, 322
Loop invariant, 119
Lower order, 325

M
Matching, 284
Mathematical induction, 106–118
Matrix representation, 300
Max-Flow/Min-Cut Theorem, 278
Maximal/Maximum, 308
Minimal/Minimum, 308
Minimum connector problem, 217
Minimum-cost spanning tree, 217
MinSort, 154–156
Missionaries and Cannibals Problem, 191
Modus Ponens, 94
Modus Tollens, 94
Monotone, 71
Mutually disjoint, 50
Mutually exclusive events, 430

N
Nearest integer, 336
Negation, 86
Neighbors, 196
Newton’s method for square roots, 35
N-factorial, 59
Nonincreasing, 71
N-sequence, 54
N-set, 49
Numerical solutions, 35

O
One-to-one, 53
Onto, 53
Ordered pair, 50
Order of the Fibonacci sequence, 354
Order relation, 306
Orientation, 243
Out-neighbors, 241

P
Palindrome, 470
Parallel, 196
Partial order, 306
Particular solution, 342, 362
Partition, 50
Partition sorts, 171
Path, 196
Permutation, 58, 398, 407
Pigeonhole principle, 51
Planar graphs, 225
Polygon, 200
Post-condition, 40
Power set, 47, 132
Preconditions, 39
Predicate, 92
Premises, 93
Prime, 9, 118
Prime factorization, 14–16
Prime testing, 9–14
Probabilistic model, 422
Probability

distribution, 438
function, 423

Product rule, 51
Proof, 97
Proof by Cases, 99

Q
QuickSort, 171–183, 455–459
Quintuples, 468, 469, 478

R
Radius, 294
Random, 424
Random variable, 435
Rational number, 24, 102
Reachable, 242
Recurrence equation, 333, 358
Recursive algorithm, 171
Recursive calls, 177

Index 511

Reflexive, 301
Relation, 300
Relative complement, 49
Relative error, 25
Ringing the changes, 416
Root, 163
Rooted, 145
Rounding, 25
Round-off errors, 364
Russian Peasant Multiplication, 1, 4, 28, 119

S
Sample space, 422
Searching, 137
Second order linear recurrence equations, 358
Selection sorts, 153
Sensitivity, 431
Sequence, 54
Series, 54, 368
Set, 45
Set-difference, 49
Sigma notation, 55
Simple digraph, 242
Simple dipath, 242
Simple graph, 196
Simple path, 199
Sink, 247
Sorting, 153
Source, 247
Spanning sub-graph, 200
Specificity, 432
Start-end, 241
Strictly-parallel, 242
Strong induction, 117
Strongly asymptotically dominated by, 326
Strongly-connected, 243
Subset, 47

Subsets of {1..n}, 388, 390, 393, 418
Symmetric, 301

T
Tartaglia’s Pouring Problem, 191
Telescoping series, 413
Theorems, 97
Topological sorting, 247
Total order, 306
Towers of Hanoi, 72
Transitive, 301
Traveling salesman’s problem, 380, 415
Tree, 202
Tree diagrams, 66
Tree of Recursive Calls, 177, 183, 348
Trivial path, 199, 242
Truncation, 24
Truth table, 86
Turing machine, 468

U
Uniform distribution, 439
Union, 49
Universal quantifier, 92
Universal Turing machine, 476

V
Valid, 94
Vertex-cover, 284
Vertices, 66, 195

W
Weight of a path, 221
Well-Ordering Principle, 106

Z
Zeno’s paradoxes, 366

512 Index

	Preface
	Contents
	Algorithms, Numbers & Machines
	What is Algorithm
	Integer Algorithms & Complexity
	Machine Representation of Numbers
	Numerical Solutions

	Sets, Sequences & Counting
	Naïve Set Theory
	Sequences
	Counting
	Infinite Sequences & Complexity Functions

	Boolean Expressions, Logic & Proof
	Greedy Algorithm & 3 Cookie
	Boolean Expressions & Truth Tables
	Predicates & Quantifiers
	Valid Arguments
	Examples of Proofs
	Mathematical Induction
	Proofs Promised in Ch. 1
	Proof Promised in Ch. 2

	Searching & Sorting
	Searching
	Branching Diagrams
	Sorting
	Binary Trees with (at least) n! Leaves
	Partition Sorts
	Comparison of Sorting Algorithms

	Graphs & Trees
	Introduction
	Paths, Circuits & Polygons
	Trees
	Edge-weighted Graphs
	Drawing and Coloring

	Directed Graphs
	Introducing Directions
	Strong Connectivity
	Topological Sorting
	Shortest Paths in Digraphs
	Maximum Flow Problem
	Matchings in Bipartite Graphs

	Relations
	Relations & Representations
	Equivalence Relations
	Order Relations
	Relations on Finite Sequences
	Relations on Infinite Sequences

	Sequences & Series
	Examples defined by Recurrence Equations
	Solving 1st-Order Linear Recurrence Equations
	Fibonacci Sequence
	Solving 2nd-Order Linear Recurrence Equations
	Infinite Series

	Generating Sequences & Subsets
	Generating Sequences in Lexicographic-Order
	Generating all k-Sequences on {1..n}
	Generating Subsets of {1..n} as Increasing Sequences
	Generating Permutations in Lexicographic-Order

	Discrete Probability & Average-Case Complexity
	Probabilistic Models
	Conditional Probability
	Random Variables & Expected Values
	Standard Distributions & their Expected Values
	Conditional Expected Values
	Average-Case Complexity

	Turing Machines
	Solutions
	Index

