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Preface

In recent years, more and more Chinese students are going overseas, either as ex-
change students or to pursue degrees. At the same time, more and more students are
coming from other countries to Chinese universities to further their studies. We have
noticed that, in terms of both knowledge transfer and intercultural communication,
the English language has played an indispensable role. Furthermore, it is in the inter-
est of these students to have a smooth transition from one system to another, for their
credits to transfer, and for them to immerse themselves in the new environment as
quickly as possible. To this end, more and more Chinese schools are offering courses
delivered bilingually or in English to enhance students’ international outlook. One
of the greatest challenges in offering Chinese students a course in English is finding
a suitable textbook; the textbook must seriously consider what students have done
in high school, it must meet the national and local official course standards, and it
should resonate with significant international flavors so as to benefit the students.
Single Variable Calculus is a textbook that meets all of these challenges. This textbook
offers a rigorous approach to single variable calculus and incorporates graphical and
numerical approaches and historical notes for many key concepts. All of the impor-
tant topics of a traditional single variable calculus course are thoroughly covered, but
the size of the text is minimized in order to reduce the cost for potential users. It is
also the first ever calculus textbook in China printed in color – a tremendous benefit
for understanding the applications in differential and integral calculus.

In writing the first edition of Single Variable Calculus, we benefited from the con-
tributions of many people, and here I would like to recognize and thank them. We
received useful assistance and valuable suggestions from:
Stanley D Bristol, editor, Rio Salado College, USA
Julie M Clark, primary editor, Hollins University, USA
John Jensen, Rio Salado College, USA
Liao Wenyuan, University of Calgary, Canada
Min Xinchang, Sichuan University, China
Xia Fuquan, Sichuan Normal University, China
Xu Xiaozhan, Sichuan University, China
Xu Youcai, Sichuan University, China
Xiao Yibin, University of Electronic Science and Technology of China, China
Yang Liang, Sichuan University, China
Zhang Liangcai, Chongqing University, China
and students of the years of 2013 to 2017 at Wu Yuzhang College. In particular, I want
to thank Mr. Zhang Shenhang and Wu Zengbao for collecting materials and student
feedbacks for me.

During the past decade, I have used many calculus books either as textbooks or
reference books. These include Calculus by Gilbert Strang; Calculus: Ideas and Appli-

https://doi.org/10.1515/9783110527780-201



VI | Preface

cation by Alex Himonas and Alna Howard; Calculus (3rd edition) by Michael Spivak;
Calculus (7th edition) by Robert Adams and Christopher Essex; Calculus (6th edition)
by James Stewart; Calculus for Engineers (4th edition) by Donald Trim; Calculus of a
Single Variable: Early Transcendental Functions (9th edition) by Ron Larson, Bruce
Edwards and Robert Hostetler; Calculus: Graphical, Numerical, Algebraic (4th edition)
by Ross Finney, Franklin Demana, Bert Waits and Daniel Kennedy; Calculus (10th edi-
tion) by Ron Larson and Bruce Edwards; Calculus: for Business, Economics, and the
Social and Life Sciences (10th edition) by Laurence E. Hoffmann and Gerald L. Brand-
ley; Calculus I and II by JigangMa, Yunzhi Zou and Peter Aitchision; Calculus textbook
(6th and 7th edition) authored collectively by the department ofmathematics at Tongji
University, and Calculus textbook authored collectively by the College of Mathematics
at Sichuan University. I thank those wonderful calculus textbooks for giving me in-
spirations and insights in developing this calculus text. Without borrowing ideas and
adapting materials, this work would have been impossible.

I am very glad that this work is published in Germany. I thank people working
hard on this. These include editor Liu Hui at the World Publishing Corporation, and
editor Ina Talandienė at VTeX for De Gruyter without whose work, this book would
not have achieved this level.

I also want to thank the Department of Mathematics and the Academic Affairs
Office at Sichuan University for their financial support.

The responsibility for any errors in this text lies entirely with me. Corrections and
feedback are very welcome and can be sent to zouyz@scu.edu.cn.

Zou Yunzhi
Department of Mathematics
Sichuan University
Wang Jiang Road 29
Chengdu, China
610065
zouyz@scu.edu.cn; 609181697@qq.com;
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1 Prerequisites for calculus

1.1 Overview of calculus

In this chapter, you will:
– see a big picture of calculus;
– review the definition of a function;
– review properties of a function;
– review basic functions and form new functions using basic functions.

When first introduced to calculus, one probably will ask questions such as “what is
calculus?” and “what can calculus do?”. This book has answers to these questions. To
begin, we start with two problems, the area problem and the tangent problem.

The area problem
We start with an example. Many students start their school day by traveling in cars or
buses from their homes to their schools. We will simplify our discussion by assuming
such a trip is along a straight road of 100 km and the trip duration is 2 hours. If you
kept looking at the speedometer (see Figure 1.1.1), then youwould be able to sketch an
approximate speed/velocity versus time graph.

The velocity graph in Figure 1.1.2 shows a period of acceleration, followed by a
brief period of constant velocity and then a period of deceleration.

Figure 1.1.1: A speedometer.

Figure 1.1.2: Velocity versus time graph.

https://doi.org/10.1515/9783110527780-001



2 | 1 Prerequisites for calculus

How do we know the distance traveled up to time = 1 hour? We note that

distance traveled = speed × time.

However, the problem here is that the speed/velocity on this trip is not constant, and
in order to determine the distance traveled, we subdivide the time interval [0, 1] into
several subintervals. For each subinterval [ti−1, ti], since the elapsed time is very little,
we can approximate the distance traveled by the car during that time interval Δti by
considering the motion as one with constant speed. Multiplying Δti by v(t∗i ), where t∗i
is a sample point in [ti−1, ti], we obtain v(t∗i )Δti, which approximates the real distance
traveled by the car during that time interval. Notice that this is exactly the area of the
shaded rectangle in Figure 1.1.3. Adding up the areas of all these rectangles (assume
there are n such rectangles), we have an approximation of the area of the region R (see
Figure 1.1.4) that is between the t-axis, the curve v(t), and the two lines t = 0 and t = 1,
which is also an approximation of the total distance traveled by the car during this
time interval:

area of region R = distance traveled by the car
≈ v(t∗1 ) ⋅ (t1 − t0) + v(t∗2 ) ⋅ (t2 − t1) +⋯+ v(t∗n ) ⋅ (tn − tn−1).

As seen in Figure 1.1.5, it is easy to see that the more rectangular the region, the
better the approximation. As the width of each rectangle tends to 0, the sum of the
areas of all rectangles will approximate the area that we want to calculate closer and
closer, so we need to investigate the behavior of the limiting procedure when the par-
tition gets smaller and smaller.

Figure 1.1.3: Area of a shaded rectangle approximates the real distance traveled by the car in that
time interval.

Figure 1.1.4: The area of region R is the distance travelled by the car.
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Figure 1.1.5:More rectangles, better approximation.

As seen above, finding the distance traveled is equivalent to finding the area of some
region which may not have a familiar shape such as a triangle, rectangle, circle, etc.
The formulas studied in high school do not apply. Calculus can do the job, as we will
see later.

This idea has a long history andwas used by the ancient Greeks andChinese thou-
sands of years ago. For example, the astronomer Eudoxus used themethod of exhaus-
tion, while Liu Hui used a similar method in order to find the area of a circle, as shown
in Figure 1.1.6.

Figure 1.1.6: Regular polygons approximate a circle.

The tangent problem
Now suppose the distance versus time graph for your trip is shown in Figure 1.1.7.

How can you find the velocity of the car at the instant when t = 1? If we use the
equation

Δs
Δt
=
100 − 0
2 − 0
= 50 km/h,

Figure 1.1.7: Distance versus time graph.
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we obtain the average velocity of the car during the trip, but the question is to obtain
the velocity at the instant t = 1. We can still use the equation, but it now becomes

Δs
Δt
= s(t) − s(1)

t − 1
.

This still gives the average velocity of the car, but during the time interval [1, t].
Starting at t = 1 and imagining the additional distance traveled from t = 1 to t =

1.1 seconds gives ΔsΔt as a very close approximation of the real instantaneous velocity
at t = 1. As shown in Figure 1.1.8, extrapolating, we can make Δt smaller and smaller,
each time improving our approximation of the true value. That is, as t→ 1 andΔt→ 0,
Δs
Δt gets closer and closer to the instantaneous velocity that we want to calculate.

Figure 1.1.8: The slope of the tangent is the instantaneous velocity at the point.

Also, we notice that ΔsΔt is the slope of the secant line to the velocity curve and when
Δt→ 0, the secant line approaches the tangent line of the curve at t = 1. This problem
is the same as finding the tangent line to the graph at t = 1.

NOTE. Theword tangent is derived from theLatinword tangens, whichmeans “touch-
ing”.

Equivalently, we need to determine the limiting process of some function when
the change in one variable tends to 0.

Many of the applications in the practical world fall into two categories of mathe-
matical problems, the tangent problem and the area problem. The area problem can
be solved by integral calculus, whose origins can be traced back to 2 000 years ago. The
tangent problem can be solved by differential calculus, which came much later than
integral calculus. Modern calculus is generally considered to have been developed by
the English physicist and mathematician Isaac Newton and the German mathemati-
cian Gottfried Wilhelm Leibniz in the seventeenth century. Using the work of many
mathematicians, such as Fermat, Descartes, Cavalieri, and Barrow, Newton and Leib-
niz discovered the fundamental theorem of calculus, which is the connection between
integral and differential calculus. It allows one to go fromnonconstant rates of change
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to the total net change or vice versa. In many problems, we usually know one and try
to find the other, as illustrated previously.

Sir Isaac Newton
(1642–1726) was an English physicist and mathematician. He is
widely recognized as one of the most influential scientists of all
time. He was also a key figure in the scientific revolution.

Gottfried Wilhelm von Leibniz
(1646–1716) was a German polymath and philosopher. He occu-
pies a prominent place in the history of mathematics and the
history of philosophy. Most scholars believe Leibniz developed
calculus independently of Isaac Newton, and Leibniz’s notation
has been widely used ever since it was published. He was the
first to describe a pinwheel calculator in 1685 and invented the
Leibnizwheel, used in the arithmometer, the firstmass-produced
mechanical calculator. He also refined the binary number sys-
tem, which is the foundation of virtually all digital computers.
http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Both types of calculus have enormous applications in many scientific fields, for
example in areas such as the physical sciences, actuarial science, computer science,
statistics, engineering, economics, business, medicine, demography, and in other
fields wherever a problem can be mathematically modeled and an optimal solution
is desired. In physics, classical mechanics, and electromagnetism, Newton’s second
law, Maxwell’s theory of electromagnetism, and Einstein’s theory of general relativity
all need calculus. Economists use calculus for the determination of maximal profit.
In the realm of medicine, calculus can be used to find the optimal branching angle of
a blood vessel to maximize blood flow. Calculus is also used to derive dosing concen-
trations from the decay laws for the elimination of a particular drug from the body.
In nuclear medicine, calculus is used to build models of radiation transport in tar-
geted tumor therapies. Chemists also use calculus in determining reaction rates and
radioactive decay.

As already seen, calculus dealswith changes in functions. A function is used to de-
scribe, in a mathematical way, the relationship between two or more changing quan-
tities or variables. In this book, all the functions determine the value of one variable
(the dependent variable) from the value of another variable (the independent variable),
using a specific rule or formula relating the variables. Such a function is called a func-
tion of one variable because there is only one independent variable. All the functions
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in this book are defined on sets of real numbers, so we will first review some basic
mathematical notations and concepts that provide the building blocks for the devel-
opment of calculus. These include sets, numbers, intervals, and functions.

1.2 Sets and numbers

1.2.1 Sets

A set is a collection of elements, ormembers, that are often numbers but may be other
mathematical or nonmathematical objects. Sets can have a finite or infinite number of
members. Sets are denoted by capital letters such as A, B, S, or T and can be defined
simply by listing all elements, such as

S = {1, 2,3,4,5,6,7,8,9, 10}.

Sets can also be defined by giving the characterizing properties of the elements. For
example, the set S defined above can also be defined by any of the following charac-
terizing properties:

S = {natural numbers from 1 to 10 inclusive} or
S = {x ∣ |1 ⩽ x ⩽ 10, where x is a natural number}.

Another example of a set defined by a property is

T = {real numbers that are zeros of sin(x)}
= {x ∣ x = nπ, n is an integer}.

We write

x ∈ S if x is an element of S (or shorter: “x is in S”),
x ∉ S if x is not an element of S (or shorter: “x is not in S”).

For example, if N = {all natural numbers}, then 1 ∈ Nmeans that 1 is a member of the
set of natural numbers (or shorter, “1 is a natural number”). Also, π ∉ N means that
π = 3.141 5926535… is not a member of the set of natural numbers (or shorter, “π is
not a natural number”).

If A, B are two sets, then they can be compared in various ways:

A ⊆ B or in words: “A is a subset of B”
means: every element in A is also an element of B.

A = B or in words: “A equals B”
means: A and B have precisely the same elements.
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A ⊂ B or in words: “A is a proper subset of B”

means: A is a subset of B, but A is not equal to B.

A′ (sometimes Ā) or in words: “the complement of A”

means: the set of all elements that are not in A.

If A, B are sets, then new sets can be created in various ways:

A ∪ B or in words: “A union B”

means: the set of all elements that are either in A or in B or both.

A ∩ B or in words: “A intersect B”

meaning: the set of all elements that are both in A and in B.

A \B or in words: “A minus B”

means: the set of all elements that are in A but not in B.

A × B or in words “the product set of A and B”

(also called the direct product or the Cartesian product)

means: the set of all pairs (a,b) where a ∈ A and b ∈ B.

In particular, R × R is the set of all real number pairs (x,y) ∈ R2 (also referred to
as points of the real planewith respect to a two-dimensional Cartesian coordinate sys-
tem).

It is useful in some circumstances to be able to refer to a special set that has no
members at all. Hence, ∅ denotes the empty set, the only set that contains no ele-
ments.

To illustrate relationships between sets, we often use a Venn diagram, conceived
around 1880 by John Venn. An example of a Venn diagram is shown in Figure 1.2.1.

John Venn (1834–1923) was an English logician and philosopher noted for introducing the Venn dia-
gram, used in the fields of set theory, probability, logic, statistics, and computer science. http://en.
wikipedia.org/wiki/John_Venn

Figure 1.2.1: A Venn diagram.
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1.2.2 Numbers

In the following, the use of the three dots “…” means that the pattern established by
the preceding numbers is followed forever (an infinite number of times). For example,

N denotes the set of all natural numbers, {1, 2,3,4,…}.
Z denotes the set of all integers: {… ,−3, −2, −1,0, 1, 2,3,…}.
Q denotes the set of all rational numbers.A rational number is of the form p

q , where
p and q are integers. There are also irrational numbers. The number√2 cannot be writ-
ten as a quotient of two integers; √2 is an irrational number.

R denotes the set of all real numbers, which includes the rational and irrational
numbers.

C denotes the set of all complex numbers. A complex number has the form a + bi,
where a, b are two real numbers and i is a special number (an imaginary number, not
in R) satisfying i2 = −1. If b = 0, then a + 0i is also a real number.

Obviously, we have

N ⊂ Z ⊂Q ⊂ R ⊂ C, as shown in Figure 1.2.2.

Figure 1.2.2: Sets of numbers.

NOTE. If not specified, all the numbers in this calculus course are real numbers.

We now review some basic knowledge of the real number system R. If a, b, c are
any three real numbers, then the following properties hold (where the notation ab
means multiplication: a × b):
1. a + b and ab are both in the set R (closed under addition and multiplication);
2. a + b = b + a and ab = ba (commutative laws);
3. (a + b) + c = a + (b + c) and (ab)c = a(bc) (associative laws);
4. a + 0 = a (0 is the additive identity);
5. a × 0 = 0;
6. 1 × a = a (1 is the multiplicative identity);
7. a(b + c) = ab + ac (distributive law);
8. for any number a, there is another number written as −a (the negative of a) such

that a + (−a) = 0 (additive inverses);
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9. for any number b ≠ 0, there is another number written 1
b (the reciprocal) such that

b × 1
b = 1 (multiplicative inverses).

NOTE. Subtraction is a special kind of addition inwhich “aminus b” iswritten as a−b
and defined by a−b = a+ (−b). Division is a special kind of multiplication in which “a
divided by b” is written as a

b and defined by a
b = a × (

1
b ). However, the operations of

subtraction and division do not obey the commutative and associative laws. In other
words, a − b ≠ b − a and a/b ≠ b/a.

Also, there is an order relation “<” for real numbers which satisfies the following
properties:
1. For any two real numbers a and b, exactly one of the following is true

a = b, a < b, or b < a.

2. If a < b and b < c, then a < c (transitive property).
3. If a < b, then a + c < b + c. If c > 0, then ac < bc.

The notation “⩾”means greater than or equal to. For example a ⩾ bmeans a is greater
than or equal to b, and a ⩽ bmean a is less than or equal to b.

The real numbers, and their subsets, share the unifying geometric property that
any straight line that is infinitely long in both directions can be made into a number
line, as seen in Figure 1.2.3.

Figure 1.2.3: Number line/axis.

Thismeans thatwe can create a one-to-one correspondence between the real numbers
and points of the number line. A number line preserves our intuitive ideas of ordering
and size of numbers. In particular, the integers…,−3, −2, −1,0, 1, 2,3,… are at equally
spaced points on the number line and “a < b” is exactly identical to the statement
“a is to the left of b on the number line”. Number lines are used as axes in Cartesian
coordinate systems and in other important applications.

1.2.3 The least upper bound property

The term “bounded” is the same as in daily language.

Definition 1.2.1. A set S of real numbers is said to be:
1. bounded above if there is a real numberM such that x ⩽M for all x ∈ S;M is called

an upper bound of S;
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2. bounded below if there is a real numberm such that x ⩾m for all x ∈ S;m is called
a lower bound of S;

3. bounded of it is bounded above and bounded below.

If a set S of real numbers is bounded above, then S has infinitely many upper
bounds. For example, for the set {x ∣ x < 1}, 1, 2, 3 are all upper bounds of S.

The least upper bound, β, of S, if it exists, is unique. The least upper bound of S is
called the supremum of S. We write

β = supS.

In mathematical language, the formal definition of supremum is given as follows.

Definition 1.2.2. β is the supremum of a nonempty set S of real numbers if:
1. x ⩽ β for all x ∈ S;
2. if ε > 0, then there is a number x0 in S such that x0 > β − ε.

Similarly, if S is bounded below, the greatest lower bound of S (the infimum of S),
if it exists, is denoted by infS. The supremum or infimum of a set Smay or may not be
in the set.

Example 1.2.1. The supremum of the set {x ∣ x2 < 4} is 2. The infimum of the set {x ∣
0 ⩽ x < 2} is 0.

An interesting question is whether or not a set of real numbers has an infimum or
supremum. For this purpose, we have to adopt an important axiom that is necessary
to make the real number system a complete one. This axiom is also known as the least
upper bound property, which assumes the existence of a supremum for any nonempty
set of real numbers that is bounded above.

Axiom 1.2.1. If a nonempty set of real numbers is bounded above, then it has a supre-
mum.

Similarly, any nonempty set of real numbers that is bounded below has an infi-
mum. In fact, for any set of real numbers that is bounded below, we take the negative
of each member of the set to form a new set which is bounded above. Then the nega-
tive of the supremum of the new set is the infimum of the original set, so the Axiom
could also be stated as follows.

Axiom 1.2.2. If a nonempty set of real numbers is bounded above/below, then it has a
supremum/infimum.
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1.2.4 The extended real number system

For an unbounded set of real numbers, we have the following definition.

Definition 1.2.3. A nonempty set S of real numbers is unbounded above if it has no
upper bound and unbounded below if it has no lower bound. It is unbounded if it is
either unbounded above or unbounded below.

Example 1.2.2. SetsN,Q,Z,R are all unbounded. The set ofwholenumbers {0, 1, 2,…}
is unbounded above, and the set of negative even integers {… ,−6, −4, −2} is un-
bounded below.

To better describe the term unbounded, it is convenient to introduce two fictitious
points, +∞ (whichweusuallywritemore simply as∞) and −∞. They are called points
at infinity. We define the order relationships between them and any real number x by
−∞< x <∞, as seen in Figure 1.2.4.

Figure 1.2.4: −∞ and∞.

In addition, we define

∞+∞=∞, (−∞) × (−∞) =∞,

(−∞) + (−∞) = −∞, ∞×∞=∞,

∞× (−∞) = −∞, ∞∞ =∞, |−∞| =∞.

If a is a finite real number, then it is natural to define the relations

∞+ a =∞, a −∞= −∞, a
∞
= 0, and a

−∞
= 0.

Furthermore, if a > 0, then we define

a ×∞=∞, a × (−∞) = −∞.

However,

∞−∞, ∞0, 0∞, 1∞, and ∞
∞

are not defined; they are indeterminate forms.
If S is a nonempty set of real numbers without an upper bound, we write

supS =∞.
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If S is a nonempty set of real numbers without a lower bound, we write

infS = −∞.

The real number system with the two points at infinity is called the extended real
number system.

1.2.5 Intervals

Intervals are special and important subsets of real numbers. They often appear as so-
lution sets to inequalities and are important in the definition of many functions. In-
tervals come in various forms as summarized below. In the following, it is assumed
that a and b are real numbers satisfying a < b, except in the definition of the closed
interval [a,b], where we allow the possibility that a = b.

The open interval (a,b), as seen in Figure 1.2.5, is the set of real numbers

{x ∈ R ∣ a < x < b}.

Figure 1.2.5: Open interval (a,b).

The closed interval [a,b] is the set of real numbers

{x ∈ R ∣ a ⩽ x ⩽ b}.

The half-open interval (a,b], as seen in Figure 1.2.6, is the set of real numbers

{x ∈ R ∣ a < x ⩽ b}.

Figure 1.2.6: Half-open interval (a,b].

The half-open interval [a,b) is the set of real numbers

{x ∈ R ∣ a ⩽ x < b}.

The above intervals are intervals with finite length b − a. The following intervals
have infinite length:
the infinite interval [a,∞), as seen in Figure 1.2.7, is the set of real numbers

{x ∈ R ∣ a ⩽ x <∞};
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Figure 1.2.7: Infinite interval [a,∞).

the (open) infinite interval (a,∞) is the set of real numbers

{x ∈ R ∣ a < x <∞};

the infinite interval (−∞,b] is the set of real numbers

{x ∈ R ∣ −∞ < x ⩽ b};

the infinite interval (−∞,∞) is the same as the set R of all real numbers.

NOTES. 1. The closed interval [a,a] is just the single value a.
2. The symbol (a,b), where a and b are real numbers, has many uses in mathe-

matics and it is used in particular to denote a point in the plane defined by a
two-dimensional Cartesian coordinate system. Thus, sometimes it is necessary to
make this clear using words such as “the interval (a,b)” or “the point (a,b)”.

3. The notation {a,b} indicates the set with members a and b, not an interval or a
point.

A neighborhood of x = a means an open interval (b, c) containing a, so that b <
a < c. A δ-neighborhood (δ > 0) of x = a, denoted by U(a,δ), is the open interval (a− δ,
a + δ), or equivalently, all x satisfying |x − a| < δ. That is,

U(a,δ) = {x | |x − a| < δ}.

Since |x−a| stands for the distance between x and a,U(a,δ) represents all the xwhose
distance from a is less than δ. Consequently a is called the center of the neighborhood,
while δ is sometimes called the radius of the neighborhood.

We use the notation ̊U(a,δ) to represent the set {x ∣ 0 < |x−a| < δ}. Thismeans that
̊U(a,δ) is the δ-neighborhood without its center, often called the deleted δ-neighbor-

hood of x = a.
Usually, we say that (a − δ,a) is the left δ-neighborhood of x = a, while (a,a + δ) is

the right δ-neighborhood of x = a. Figure 1.2.8 shows some neighborhoods of a.

Figure 1.2.8: Some neighborhoods of a.
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1.3 Functions

1.3.1 Definition of a function

In previous courses, you have encountered many functions defined by equations. For
example, y = kx + b is a linear function, y = ax2 + bx + c is a quadratic function, and
f (x) = sinx is a trigonometric function. In the practicalworld, the volumeV of a sphere
is also a function of the radius r of the sphere. The rule is given by

V = V(r) = 4
3
πr3.

The temperature of a particular day at a particular place is a function of the time t,
although the explicit rule linking temperature and time may be difficult to find. The
amount of money that you save at a bank is also a function of time, since you receive
interest from the bank.

So what is a function? We now give the formal definition of a function.

Definition 1.3.1 (Function, domain, and range). Let D and R be two subsets of the set
of real numbers R. A function f from D to R is a rule/mapping/correspondence that
assigns to each element x in D exactly one element y in R.

The set D is called the domain of the function. The set of elements in R that are
assigned to one or more elements of D is called the range of the function, as shown in
Figure 1.3.1.

Figure 1.3.1: A function is a mapping between two sets.

There are some conventional notations and terms for describing a function. We some-
times write a function as f ∶ D→ R or y = f (x) and we say that y is a function of x. In
this case, x is a variable, called the independent variable, representing all values from
the domain D. Then y is a variable, called the dependent variable, representing all val-
ues in the range. The essential property of a function is that, for each x ∈ D, there is
just one value of f (x), and if x ∉ D, then the function has no value. The domain D of
a function f is sometimes denoted as Df . For x ∈ D, the corresponding value in R is
denoted as f (x) and we refer to f (x) as the value of the function at x.

The definition of a function can be extended, in an obvious way, to cases where
the domain and/or range are not sets of real numbers. In multivariable calculus, we



1.3 Functions | 15

will meet functions whose domains are pairs of real numbers. However, for most of
the functions that we will work with in this course, the domain and range are subsets
of real numbers.

Most often, functions are described by equations, although functions can be de-
scribed in other ways. Three other common ways to represent a function are verbally
(by a description in words), numerically (by a table of values), and visually (by a
graph). Thus, graphs and tables that appear in newspapers or magazines may also
represent functions, though we usually do not regard them as “functions” when we
see such things.

NOTE. It may help to think of a function as a machine. When you put in an x-value
from the domain of f , the machine gives a unique output value y, depending on this
x-value and the rule f that links x and y, as seen in Figure 1.3.2.

Figure 1.3.2: A function behaves like a machine.

In many situations, the domain of a function is not given. Then we generally as-
sume that the domain is the largest possible set for which the function is defined. We
can then try to determine this domain by using knowledge of algebra and trigonome-
try.

Example 1.3.1. Let f be the function defined by

f (x) = √2 + x.

1. Find the domain and range of f .
2. Find the values of f (1), f (a), f ( 1a ), and

f (x0+h)−f (x0)
h .

Solution. To find the domain,we notice that the real square root function cannot take
a negative input, which means

2 + x ⩾ 0,

so the domain of f is {x ∣ x ⩾ −2}, or in interval notation [−2,∞).
The range of f is the set of numbers that are assigned to each value of x in [−2,∞).

The minimum value of f is 0 when x = −2 and the range of f is {y ∣ y ⩾ 0} or [0,∞).
To find the value of f (1), we replace x by 1 in the formula for f (x) and obtain

f (1) = √2 + 1 = √3.
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Similarly,

f (a) = √2 + a, f( 1
a
) = √2 + 1

a

and

f (x0 + h) − f (x0)
h

=
√2 + (x0 + h) − √2 + x0

h
.

The graph of f (x) = √2 + x is shown in Figure 1.3.3.

Figure 1.3.3: Graph of y = √2 + x.

Example 1.3.2. A rectangular storage container has a volume of 16 cm3. The length
of its base is twice its width. The materials for making the container have a cost of $12
per square centimeter. Express the cost of material as a function of the width of the
base.

Solution. First we draw a diagram, as in Figure 1.3.4. The volume V of the container
is V = 2w ×w × h, so

2w2h = 16 cm3.

The surface area S of the container is

S = 2 × (2w ×w + h × 2w + h ×w).

Figure 1.3.4: A container with dimension 2w ×w × h.
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Therefore, the cost C is

C = 12 × S = 12 × 2 × (2w ×w + h × 2w + h ×w)
= 24 × (2w ×w + 3wh).

Substituting h = 16
2w2 , we have

C = 24 × (2w2 + 3w 16
2w2 )

= 24 × (2w2 + 24
w
)

= 48w2 + 24
2

w
, the domain is w > 0.

1.3.2 Graph of a function

The graph of a function y = f (x) consists of the points (x,y) in the xy-plane whose
coordinates x and y satisfy the equation y = f (x). Graphs of functions are curves in
the xy-plane, but not all curves in the plane are graphs of functions. For example, the
curve in Figure 1.3.5 is a graph of a function and the curve in Figure 1.3.6 is not a graph
of any function. This is because, for each x-value, there must be one and exactly one
y-value assigned to this x-value. The method of determining whether or not a given
curve in the plane is a graph of some function is called the vertical line test. It says
that, if a vertical line intersects a curvemore than once, the curve is not a graph of any
function.

Figure 1.3.5: Vertical line test: it is the graph of some function.

Figure 1.3.6: Vertical line test: it is not a graph of any function.
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1.3.3 Some basic functions and their graphs

Wenow review the following basic functions,which youhave already seen in previous
studies.

Constant functions
The constant functions are given by f (x) = C, where C is a real number. The graph of
a constant function is a horizontal line in the xy-plane, as seen in Figure 1.3.7. The
domain of a constant function is R and the range of a constant function is the set with
only one element, {C}.

Figure 1.3.7: Graph of f (x) = C.

Power functions
The power functions are f (x) = xk . For example, f (x) = x, f (x) = x2, and f (x) = x−3 are
power functions. There are two special power functions: the reciprocal function f (x) =
1
x and the root functions, such as f (x) = x

1
2 , f (x) = x

1
3 , f (x) = x

4
3 ,…. We can obtain

the domain of a power function by using our knowledge of algebra. For example, we
cannot take the square root of a negative number so the domain of f (x) = √x is {x ∣ x ⩾
0}. The domain of f (x) = x−

1
4 is {x ∣ x > 0} because the denominator cannot be zero.

Graphs of some power/root functions are shown in Figure 1.3.8 and Figure 1.3.9.

The sine and cosine functions
The sine function is y = sinx and the cosine function is y = cosx. Their domains are
both all real numbers R and their ranges are also the same, [−1, 1]. Figure 1.3.10 and
Figure 1.3.11 show graphs of sinx and cosx respectively.

Figure 1.3.8: Graphs of some power functions.
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Figure 1.3.9: Graphs of some root functions.

Figure 1.3.10: Graph of y = sin x.

Figure 1.3.11: Graph of y = cos x.

Exponential functions
The exponential functions are f (x) = ax where a > 0 and a ≠ 1. For example f (x) = ex ,
y = 2x , and y = ( 12 )

x are all exponential functions. Figure 1.3.12 shows graphs of some
exponential functions.

Figure 1.3.12: Graphs of some exponential functions.
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1.3.4 Building new functions

Combining functions
New functions can be formed from simpler functions by addition, subtraction, mul-
tiplication, and division. Given two functions f and g, with domains Df , Dg , respec-
tively, we can add, multiply, and divide these functions to create new functions in a
very natural way.

(f + g)(x) = f (x) + g(x), (fg)(x) = f (x)g(x), and

( f
g
)(x) = f (x)

g(x)
, if g(x) ≠ 0.

The domains of these new functions will be Df ∩Dg (with the additional restriction for
f
g that g(x) ≠ 0). This set must be nonempty for the new functions to exist.

For example, the other four basic trigonometric functions are combinations of the
sine and cosine functions in accordance with above rules.
1. The tangent function is tanx = sinx

cosx , with domain

D = {x | x ≠ kπ + π
2
,k ∈ Z}

and range R = R. Figure 1.3.13 shows the graph of y = tanx.

Figure 1.3.13: Graph of y = tan x.

2. The cotangent function is cotx = cosx
sinx with domain

D = {x ∣ x ≠ kπ,k ∈ Z}

and range R = R. Figure 1.3.14 shows the graph of y = cotx.
3. The secant function is secx = 1

cosx with domain

D = {x | x ≠ kπ + π
2
,k ∈ Z}

and range R = (−∞,−1] ∪ [1,∞). Figure 1.3.15 shows the graph of y = secx.
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Figure 1.3.14: Graph of y = cot x.

Figure 1.3.15: Graph of y = sec x.

Figure 1.3.16: Graph of y = csc x.

4. The cosecant function is cscx = 1
sinx with domain

D = {x ∣ x ≠ kπ + π,k ∈ Z}

and range R = (−∞,−1] ∪ [1,∞). Figure 1.3.16 shows the graph of y = cscx.

A linear function has the form f (x) =mx + b, or y =mx + b, and its graph is a straight
line. The number m is its slope and b is the y-intercept. The equation y = mx + b is
called the slope-intercept form of the line. If we know a line has slope m and passes
through a point (x0,y0), then we can obtain its equation in its point-slope form as
follows:

y − y0 =m(x − x0).
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A polynomial function of degree n can be written

f (x) = a0 + a1x +⋯+ anxn, where a0,a1,… ,an are constants and an ≠ 0,

and is a combination of power functions and the constant function. Some examples
of polynomial functions include f (x) = 1 + 2x, f (x) = 2x2 − 3x − 5, and f (x) = x3. The
domain of a polynomial function is the set of all real numbers, R.

A rational function is

P(x) = a0 + a1x +⋯+ anxn

b0 + b1x +⋯+ bmxm
,

where a0,a1,… ,an and b0,b1,… ,bm are constants, an ≠ 0, and bm ≠ 0.A rational func-
tion is simply the quotient of two polynomial functions. Its domain is all real numbers
except those that make the denominator zero.

Composite functions
Another way of constructing new functions from simpler functions is by substituting
the equation for one function into the equation for a second function (a process called
composition of functions) to form a composite function. The formal definition is as fol-
lows.

Definition 1.3.2. Let f and g be two functions with domains Df and Dg , respectively.
The composition f ∘ g of f with g is defined by

(f ∘ g)(x) = f (g(x)),

provided that x is in the domain of g and g(x) is in the domain of f . Therefore, the
domain of f ∘ g is

Df ∘g = {x ∣ x ∈ Dg and g(x) ∈ Df }.

The composition of two functions f (x) and g(x) is illustrated in Figure 1.3.17.

Figure 1.3.17: Composition of two functions.

Example 1.3.3. The function f (x) = sinx2 is the composition of the function u(x) =
sinx and the function v(x) = x2, so f (x) = u(v(x)), or, using another notation, f (x) =
u ∘ v.

Example 1.3.4. The function f is given by

f (x) = 2cos(x2+1).

Describe f as a composition of three functions.
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Figure 1.3.18: Graph of y = 2cos(x2+1).

Solution. Let g(x) = 2x , u(x) = cosx, and v(x) = x2 + 1. Then f (x) = g(u(v(x))), or, in
another notation, f = g ∘ u ∘ v. Figure 1.3.18 shows the graph of f (x).

Example 1.3.5. Find f ∘ g and g ∘ f for the functions defined by the equations

f (x) = (x + 1)2 and g(x) = √x − 9.

Give the domain of each composition.

Solution. The domain of f is (−∞,+∞), the set of all real numbers. The domain of g
is [9,∞).

First consider f ∘ g, which is given by

(f ∘ g)(x) = f (g(x)) = f (√x − 9) = (√x − 9 + 1)2

and is defined whenever g(x) = √x − 9 is defined. Hence f ∘ g has domain [9,∞).
Similarly, the function g ∘ f is given by

(g ∘ f )(x) = g(f (x)) = g((x + 1)2) = √(x + 1)2 − 9

and is defined only when f (x) = (x + 1)2 is in the domain of g, which means

(x + 1)2 ⩾ 9 ⟹
x + 1 ⩾ 3 or x + 1 ⩽ −3.

This implies x ⩽ −4 or x ⩾ 2. Hence the domain of g ∘ f is (−∞,−4] ∪ [2,∞).

Inverse functions
Definition 1.3.3. A function f is called a one-to-one function if, for each number y in
the range of f , there is only one number x in the domain of f such that y = f (x).
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A function is one-to-one if and only if every horizontal line intersects its graph in
at most one place. This method of determining whether or not a function is one-to-
one is called the horizontal line test. If a horizontal line intersects the graph of y = f (x)
at x-values x1 and x2, then f (x1) = f (x2) and this means that f is not one-to-one. The
horizontal line test is illustrated in Figure 1.3.19 and Figure 1.3.20.

Figure 1.3.19: Horizontal line test: one-to-one.

Figure 1.3.20: Horizontal line test: not one-to-one.

The horizontal and vertical line tests suggest that a one-to-one function, y = f (x), also
has a function of the form x = g(y) that goes the other way, and this is why one-to-one
functions are important. That is, one-to-one functions are precisely those functions
that possess inverse functions in accordance with the following definition.

Definition 1.3.4. Let f be a one-to-one function with domain D and range R. Then it
has an inverse function, denoted f −1, with domain R and range D, defined as

x = f −1(y), for any y ∈ R,

where x ∈ D is the unique value linked to y by the original function

f (x) = y.

Another way of putting this is that f −1 reverses the action of f . We have

f ∶ x⟶ y ∶ f maps x to y = f (x),
f −1 ∶ y⟶ x ∶ f −1 maps y = f (x) to x.

This is illustrated in Figure 1.3.21.
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Figure 1.3.21: f and f −1 are inverse to each other.

NOTES. 1. The “reversing” property shows that

f −1(f (x)) = x for all x ∈ D,
f (f −1(y)) = y for all y ∈ R.

2. If f were not one-to-one, then x would not be determined uniquely by y = f (x), so
it would not be possible to define f −1, because the choice for x = f −1(y) would not
be uniquely defined.

3. The functions f and f −1 exchange their domains and ranges. We have

domain of f −1 = range of f ,
range of f −1 = domain of f .

4. Though we defined the inverse function as x = f −1(y), we usually switch the roles
of x and y andwrite the inverse function,with x, y in their usual roles, as y = f −1(x).
In this case, the graphs of f and f −1 are symmetrical about the line y = x. That is,
if (x,y) is a point on the graph of y = f (x), then (y,x) is a point on the graph of
y = f −1(x) and vice versa.

Definition 1.3.5. The logarithm function y = loga x is the inverse of the exponential
function y = ax , where the constant a > 0 and a ≠ 1.

That is, y = loga x is the same relationship as x = ay . The function y = ax has do-
main R and range {y ∣ y > 0,y ∈ R}, whereas y = loga x has domain {x ∣ x > 0,x ∈ R} and
range R.

We list some properties of logarithms.
For any real number a > 0, a ≠ 1, b > 0, b ≠ 1, x > 0, and y > 0, we have:

1. loga(xy) = loga x + loga y (product rule);
2. loga

y
x = loga y − loga x (quotient rule);

3. loga xy = y loga x (power rule);
4. aloga x = x and loga ax = x (undo each other);
5. loga x =

logb x
logb a

(change of base formula);
6. a0 = 1 and loga 1 = 0 (definitions).
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Example 1.3.6. A famous inverse function pair is y = ex and y = lnx, where the tran-
scendental number e ≈ 2.718 is the base of the natural logarithm function, y = lnx.
Their graphs are shown in Figure 1.3.22, along with the line of symmetry, y = x.

Figure 1.3.22: Graphs of y = ex , y = ln x and y = x.

Example 1.3.7. Find the inverse function of f (x) = x3 + 5 and draw a graph showing
both functions and the line of symmetry y = x.

Solution. Wewrite the function as y = x3 +5 andwe solve this equation for x. We have

x3 = y − 5,
x = 3√y − 5.

Hence the inverse function is given by the equation x = 3√y − 5. In order to change this
to the usual notation for functions, y = f −1(x), we interchange x and y. We have

y = 3√x − 5.

Therefore, the inverse function is f −1(x) = 3√x − 5. Figure 1.3.23 shows the graphs of
y = x3 + 5 and y = 3√x − 5 as two solid curves and y = x (line of symmetry for the two
graphs) as a dashed line.

Figure 1.3.23: Graphs of y = x3 + 5, y = 3√x − 5 and y = x.
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The six trigonometric functions sinx, cosx, tanx, cotx, secx, and cscx do not have
inverse functions because none of them is one-to-one on their domain. Furthermore,
you can see that a horizontal line intersects the graph of any of these functions in
infinitely many points. However, if we just take a part of each function for which a
horizontal line intersects the graph in a single point, then we can create an inverse
function for that part of the trigonometric function. These give the well-known so-
called inverse trigonometric functions.

Definition 1.3.6. The definition of the six inverse trigonometric functions are as fol-
lows:
1. The inverse sine function

y = sin−1 x has domain [−1, 1] and range [−π
2
, π
2
].

It is equivalent to siny = x, − π2 ⩽ y ⩽
π
2 .

2. The inverse cosine function

y = cos−1 x has domain [−1, 1] and range [0,π].

It is equivalent to cosy = x, 0 ⩽ y ⩽ π.
3. The inverse tangent function

y = tan−1 x has domain (−∞,∞) and range (−π
2
, π
2
).

It is equivalent to tany = x, − π2 < y <
π
2 .

4. The inverse cotangent function

y = cot−1 x has domain (−∞,∞) and range (0,π).

It is equivalent to coty = x, 0 < y < π.
5. The inverse secant function

y = sec−1 x has domain {x ∣ x ⩽ −1 or x ⩾ 1}

and range [0, π
2
) ∪ (

π
2
,π].

It is equivalent to secy = x, 0 ⩽ y ⩽ π, y ≠ π
2 .

6. The inverse cotangent function

y = csc−1 x has domain {x ∣ x ⩽ −1 or x ⩾ 1}

and range [−π
2
,0) ∪ (0, π

2
].

It is equivalent to cscy = x, − π2 < y ⩽
π
2 , y ≠ 0.
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NOTE. The notations arcsinx, arccosx, arctanx, arccotx, arcsecx, and arccscx are
also used for the corresponding inverse trigonometric functions.

Figures 1.3.24–1.3.29 show the graphs of these functions.

Figure 1.3.24: Graphs of y = sin x and y = sin−1 x.

Figure 1.3.25: Graphs of y = cos x and y = cos−1 x.

Figure 1.3.26: Graphs of y = tan x and y = tan−1 x.

Figure 1.3.27: Graphs of y = cot x and y = cot−1 x.
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Figure 1.3.28: Graphs of y = sec x and y = sec−1 x.

Figure 1.3.29: Graphs of y = csc x and y = csc−1 x.

Piecewise defined functions
A function can be defined by different equations for different parts of its domain. For
instance, the absolute value function y = |x| is defined in two parts, as shown in Fig-
ure 1.3.30, as follows:

y = |x| =
{
{
{

−x, if x < 0
x, if x ⩾ 0.

Figure 1.3.30: Graph of y = |x|.

Example 1.3.8. Let the function f be defined by

f (x) =
{
{
{

x + 1 if x ⩽ 1
2 − (x − 1)2 if x > 1.

Evaluate f (0), f (1), and f (2) and sketch the graph of f .
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Solution. Recall that a function is a rule. For this particular function, the rule is the
following. First look at the value of the input x. If it happens that x ⩽ 1, then the value
of f (x) is x + 1. On the other hand, if x > 1, then the value of f (x) is 2 − (x − 1)2.

Since 0 ⩽ 1, we have f (0) = 0 + 1 = 1.
Since 1 ⩽ 1, we have f (1) = 1 + 1 = 2.
Since 2 > 1, we have f (2) = 2 − (2 − 1)2 = 1.

The graph of f also consists of two parts. When x ⩽ 1, then f (x) = y = x + 1 is the part
of the graph of f that lies to the left of the vertical line x = 1, and it is a straight line
with slope 1 and y-intercept 1. When x > 1, then f (x) = y = 2 − (x − 1)2 is the part of the
graph of f that lies to the right of the line x = 1, and it is a parabola. This is shown in
Figure 1.3.31.

Figure 1.3.31: Graph of f (x) in Example 1.3.8.

Example 1.3.9. The sign function

y = sgn(x) =
{{{
{{{
{

−1, if x < 0
0, if x = 0
1, if x > 0,

which takes the sign of x, is also a piecewise defined function with domain D =
(−∞,+∞) and range R = {−1,0, 1}. Its graph is shown in Figure 1.3.32. In the figure,

Figure 1.3.32: Graph of y = sgn(x).
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the solid dot indicates that the point (0,0) is included on the graph; the open dots
(circles) indicate that the points (0, 1) and (0, −1) are excluded from the graph. Often
we will show only the open dot.

Example 1.3.10. The greatest integer function, y = [x], is the function that gives as out-
put the largest possible integer which is less than or equal to x. For example, [ 45 ] = 0,
[π] = 3, [−1] = −1, and [−2.5] = −3. This is therefore a piecewise defined function with
range Z (set of all integers). A part of its graph is shown in Figure 1.3.33.

Figure 1.3.33: Graph of y = [x].

1.3.5 Fundamental elementary functions

So far, we have reviewed all the basic functions. These simple functions are often re-
ferred to as the fundamental elementary functions and include:
– the constant functions, given by f (x) = C, where C is a real number;
– the absolute value function, y = |x|;
– the power functions y = xn, including the reciprocal function y = 1

x ;
– the general power functions y = xk (where k is any real number), including the

root functions y = m√xn;
– the six basic trigonometric functions y = sinx, y = cosx, y = tanx, y = cotx, y =

secx, and y = cscx;
– the six inverse trigonometric functions y = sin−1 x, y = cos−1 x, y = tan−1 x, y =

cot−1 x, y = sec−1 x, and y = csc−1 x;
– the logarithmic functions y = loga x, a > 0, a ≠ 1;
– the exponential functions y = ax , a > 0, a ≠ 1.

An elementary function referred to in this book is a function built from a finite number
of exponential, logarithm, constant, power, and trigonometric functions and their in-
verses through composition and combinations using the four elementary operations
(+, −, ×, ÷). For example, the function y = 2 sinex2 + tan−1(ln(|x| + 1)) is an elementary
function.
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1.3.6 Properties of functions

Boundedness
Definition 1.3.7. f (x) is said to be:
1. bounded above on the interval I if there is a number M, called an upper bound,

such that f (x) ⩽M for all x ∈ I;
2. bounded below on the interval I if there is a numberm, called a lower bound, such

thatm ⩽ f (x) for all x ∈ I;
3. bounded on the interval I if it is bounded above and below;
4. unbounded above on the interval I if f (x) has no upper bound;
5. unbounded below on the interval I if f (x) has no lower bound.

If f (x) is bounded on the interval I, then there must be a positive number, say, B,
such that |f (x)| ⩽ B for each x ∈ I . Upper and lower bounds of a function arenot unique.
If an upper boundM is found for a function, then any other number greater thanM is
also an upper bound. Similarly, if a lower bound m is found for a function, then any
other number less thanm is also a lower bound.

Example 1.3.11. Find an upper bound and a lower bound for the following functions:
(a) y = x2; (b) f (x) = 2 sin( x

2+1
2 ).

Solution. (a) y = x2 is defined for all x, so its domain is all real numbers. It is not
bounded above since x2 becomes arbitrarily large as x becomes large. It is bounded
below by 0, since x2 ⩾ 0 for all x. The graphs of the two functions are shown in Fig-
ure 1.3.34 and Figure 1.3.35.

Figure 1.3.34: Graph of y = x2.

Figure 1.3.35: Graph of y = 2sin( x
2+1
2 ).
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(b) f (x) = 2 sin( x
2+1
2 ) is defined for all x, so its domain is all real numbers. The sine

function satisfies −1 ⩽ sinx ⩽ 1 for all values of x. Hence, −2 ⩽ 2 sin( x
2+1
2 ) ⩽ 2 for all x.

Hence f (x) has an upper bound 2 and a lower bound −2.

Monotone functions
A function f is calledmonotone increasing (or increasing) on an interval I if

f (x1) ⩽ f (x2) whenever x1 < x2 and x1,x2 ∈ I .

Figure 1.3.36 shows the graph of an increasing function.

Figure 1.3.36: An increasing function.

A function f is calledmonotone decreasing (or decreasing) on an interval I if

f (x1) ⩾ f (x2) whenever x1 < x2 and x1,x2 ∈ I .

Figure 1.3.37 shows the graph of a decreasing function.

Figure 1.3.37: A decreasing function.

Following the definition of increasing functions, it is important to realize that the in-
equality f (x1) ⩽ f (x2) must be satisfied for every pair of numbers x1 and x2 in I with
x1 < x2.
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A function f is called strictly increasing on an interval I, if

f (x1) < f (x2) whenever x1 < x2 and x1,x2 ∈ I .

A function f is called strictly decreasing on an interval I, if

f (x1) > f (x2) whenever x1 < x2 and x1,x2 ∈ I .

For example, the function f (x) = x2 is strictly decreasing on the interval (−∞,0] and
strictly increasing on the interval [0, +∞). The exponential function f (x) = ax is strictly
increasing on (−∞,∞) when a > 1 and strictly decreasing when 0 < a < 1.

Symmetry: even and odd functions
Definition 1.3.8. A function f is said to be an even function if, for each x in thedomain,
the number −x is also in the domain and f (−x) = f (x).

The functions y = cosx, y = |x|, and y = x2 are examples of even functions. The
geometric significance of an even function is that its graph is symmetric about the
y-axis, as seen in Figure 1.3.38 (a). That is, if (x,y) is a point on the graph, then (−x,y)
is also a point on the graph.

Figure 1.3.38: Graphs of some even/odd functions.

Definition 1.3.9. A function f is an odd function if, for each x in the domain, the num-
ber −x is also in the domain and f (−x) = −f (x).

The functions y = sinx, y = x, y = 1
x , and y = 3√x are examples of odd functions.

The geometric significance of an odd function is that its graph is symmetric about the
origin, as seen in Figure 1.3.38 (b). That is, if (x,y) is a point on the graph, then (−x, −y)
is also a point on the graph.

NOTE. Many functions are neither even nor odd. For example, f (x) = x2 − x is neither
even nor odd.
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Example 1.3.12. Determine whether each of the following functions is even, odd, or
neither:

(a) f (x) = x3 − 2x, (b) g(x) = 1 − x2, (c) t(x) = sinx + cosx,

(d) h(x) = ln( 1 − x
1 + x
), for −1 < x < 1.

Solution. (a) f is an odd function, because

f (−x) = (−x)3 − 2(−x) = −x3 + 2x = −(x3 − 2x) = −f (x).

(b) g is an even function, because

g(−x) = 1 − (−x)2 = 1 − x2 = g(x).

(c) t is neither even nor odd, since

t(−x) = sin(−x) + cos(−x) = − sinx + cosx
and t(−x) ≠ t(x), t(−x) ≠ −t(x).

(d) h is odd, because

h(−x) = ln( 1 + x
1 − x
) = ln( 1 − x

1 + x
)
−1
= − ln( 1 − x

1 + x
) = −h(x).

Figure 1.3.39 shows the graphs of the functions. Notice that the graph of t(x) is
neither symmetric about the y-axis nor about the origin.

Figure 1.3.39: Graphs of functions in Example 1.3.12.

Periodicity
Definition 1.3.10. For a function y = f (x), if there exists a positive constantT such that
f (x + T) = f (x) for all values of x in its domain D, then the function f (x) is a periodic
function. The least possible positive value of T is called the period.
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Figure 1.3.40: Graph of a periodic function with period 2.

For example, the four trigonometric functions y = sinx, y = cosx, y = secx, and y =
cscx are periodic functions with period 2π. The two trigonometric functions y = tanx
and y = cotx are periodic functions with period π. Figure 1.3.40 shows a periodic func-
tion with period 2.

Transformations of a function
Given a function y = f (x) and its graph, we can obtain the graphs and equations of
certain related functions. For example, we can shift the graph of y = f (x) upward by k
units, where k > 0. This is called a vertical translation. The new graph is still a graph
of a function, but for each x-value, the corresponding y-value is k more than the orig-
inal one, so we know the new function is y = f (x) + k. Similarly, we can obtain a new
function by shifting the old one k units downward, or k units to the right or k units to
the left. This is summarized as follows.

Vertical and horizontal shifts laws
If the constant k is positive (k > 0), then the graph of:
1. the function y = f (x) + k is obtained by shifting the graph of y = f (x) k units up-

ward;
2. the function y = f (x) − k is obtained by shifting the graph of y = f (x) k units down-

ward;
3. the function y = f (x + k) is obtained by shifting the graph of y = f (x) k units to the

left;
4. the function y = f (x − k) is obtained by shifting the graph of y = f (x) k units to the

right.

Also, we can stretch or shrink the graph of f (x) by k units (k > 1) to obtain a graph of
a new, related function. To find an equation of the new function, let us first consider
the case where we stretch the graph of f (x) vertically by k units. For the same x-value,
the corresponding y-value is now k times the original one, so the new function must
be y = kf (x). Similarly, we can obtain the new function by stretching or shrinking the
old one k units vertically or horizontally. This is summarized as follows.

Vertical and horizontal stretch/shrink law
If the constant k > 1, then the graph of the function:
1. y = kf (x) is obtained by stretching the graph of y = f (x) vertically by a factor of k;
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2. y = 1
k f (x) is obtained by shrinking the graph of y = f (x) vertically by a factor of k;

3. y = f (kx) is obtained by shrinking the graph of y = f (x) horizontally by a factor
of k;

4. y = f ( xk ) is obtained by stretching the graph of y = f (x) horizontally by a factor of k.

If the graph of a function y = f (x) is reflected over the x-axis or the y-axis, then a graph
of a new function is obtained. We now consider the case that the reflection is over the
x-axis. This means that, for each value of x, the corresponding y-value is the negative
of the original one, so the new functionmust be y = −f (x). Similarly, we can obtain the
new function when reflecting the graph of the old one over the y-axis. This is summa-
rized as follows.

Reflection laws
The graph of the function:
1. y = −f (x) is obtained by reflecting the graph of y = f (x) over the x-axis;
2. y = f (−x) is obtained by reflecting the graph of y = f (x) over the y-axis.

A combination of the above laws is illustrated in Figure 1.3.41.

Figure 1.3.41: Transformations of a function.

For example, to obtain the graph of the sinusoid

y = 3 sin(2(x + π
4
)) + 2,

wefirst shift the graph of sinx to the left by π
4 units, then shrink the graph horizontally

by a factor of 2, then stretch the graph vertically by a factor of 3, and, lastly, shift the
graph 2 units vertically and we are done.

1.4 Exercises

1. Find the 0.02-neighborhood and the 0.001-deleted neighborhood of the point a =
3.5. Give your answer in terms of intervals.

2. Find an equation for the line which:
(a) passes through the points (1,3) and (−3,5);
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(b) passes through the point (4,9) and has slope −2;
(c) passes through the point (5,3) and is parallel to the line y = 4x − 5;
(d) passes the point (7, −3) and is perpendicular to the line y = −x + 7.

3. Find f (g(x)), g(f (x)), f (f (x)), g(g(x)), and f (f (f (x))) for each of the following func-
tions:
(a) f (x) = 1

x , g(x) = x; (b) f (x) = √x, g(x) = x3 + 1;
(c) f (x) = ax , g(x) = loga x, a > 0, a ≠ 1; (d) f (x) = 1 − x, g(x) = sinx.

4. Write the function f (x) = tan(esinx2 ) as a composition of four functions.
5. Find the inverse function f −1 for each of the following functions, and then graph

f and f −1 on the same diagram:
(a) f (x) = e2x ; (b) f (t) = t2 − 1, t > 1;
(c) f (θ) = 3θ − 1; (d) f (x) = secx, 0 < x < π

2 .
6. Find the domain and range for each of the following functions, and graph each of

them:
(a) y = x2 + 2x − 1; (b) y = 1 − ln(x − 2); (c) y = √25 − x2;
(d) y = 32−x + 2; (e) y = 2 sin(2x + π3 ) − 1;

(f) y =
{{{
{{{
{

tan(2x − π), x < 0
x2/3, 0 ⩽ x ⩽ 9
√x − 4, x > 9.

7. Discuss the properties (boundedness, symmetry, periodicity) for each of the fol-
lowing functions:
(a) y = |x| − 1; (b) y = ex2 + cosx; (c) y = 1 − sinx; (d) y = secx tanx;
(e) y = √x4 − 1; (f) y = x2+1

x3+x ; (g) y = x2/3;

(h) y = {cosx, x > π
sinx + 2, x ⩽ π.

8. If f (x) = 2 − 5cos(3x), then:
(a) find the domain, range and period of f ;
(b) find all zeros of f in [− π2 ,

π
2 ];

(c) graph f (x) for −π ⩽ x ⩽ π.
9. Describe the transformations required in order to obtain the graphs of the follow-

ing functions from a basic trigonometric function:
(a) y = 1

2 sin(3x); (b) f (x) = −2 cos( 2πx3 ) − 1; (c) y = tan x
2 + 2;

(d) y = − sec(2x); (e) f (x) = −2 sin(2x + π3 ) + 1.
10. Given the graph of f (x), how would you graph (a) f (|x|), (b) |f (x)|, and (c) 1

f (x) ?
11. The Dirichlet function D(x) is defined by

D(x) =
{
{
{

1, when x is rational
0, when x is irrational.

Is D(x) a periodic function? If so, what is its period? Explain.
12. Prove that:

(a) the sum or difference of two odd functions is an odd function;
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(b) the sum or difference of two even functions is an even function;
(c) the product of an even and an odd function is an odd function;
(d) the product of two even functions and the product of two odd functions are

both even functions.
13. In mathematics, hyperbolic functions are analogs of the ordinary trigonomet-

ric, or circular functions. The hyperbolic sine, sinhx, hyperbolic cosine, coshx,
hyperbolic tangent, tanhx, and hyperbolic cotangent, cothx, are defined as

sinhx = e
x − e−x

2
, coshx = e

x + e−x

2
,

tanhx = sinhx
coshx
, and cothx = coshx

sinhx
.

Show that:
(a) sinhx is odd and coshx is even;
(b) cosh2 x − sinh2 x = 1;
(c) sinh2x = 2 sinhx coshx;
(d) cosh(x + y) = coshx coshy + sinhx sinhy;
(e) sinh−1(x) = ln(x +√x2 + 1) (sinh−1 denotes the inverse of sinh);
(f) Can you deduce more identities involving hyperbolic functions?

14. (Telephone bills) A telecom company sells two packages including the basic
fees plus a variable fee charged per minute. Package A has basic fees of $5 per
month and $0.05 per minute. Package B has no basic fees, but has a cost of $0.10
per minute. Alice estimates she will use approximately 120 minutes each month.
Which package is better for her? Explain.

15. (Earthquake intensity) The magnitude R of an earthquake (measured by the
Richter scale) is defined as

R = log( A
A0(δ)
),

where A is the amplitude in µm (micrometers) and the empirical function A0 de-
pends only on the epicentral distance of the station δ.
(a) Find the earthquake magnitude if A = 1 200 and A(δ) = 2.5.
(b) How many times more severe was the 2008 Wenchuan earthquake (R = 8.0,

Sichuan) than the 2014 Ya’an earthquake (R = 6.0, Sichuan), if theA0(δ) is the
same value for both earthquakes?

16. (Compounded interest) If Carina invests $10 000 into her saving account with a
yearly interest rate of 5%, how long will it take until she has doubled her money?

17. The following are economic definitions related to the marketing of a particular
commodity:
(a) The supply function S(x) is a function that determines the unit price, p, of a

product thatmust be charged if x units of the product are available (supplied).
(b) The demand function D(x) for the commodity determines the unit price p =

D(x) that must be charged if x units are demanded by consumers.
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(c) The revenue function R(x) is defined as the number of units sold times the
unit price: R(x) = xp(x).

(d) The cost function C(x) is the cost of producing x units of the commodity.
(e) The profit function is the profit obtained from selling x units of the goods

and is defined to be P(x) = R(x) − C(x). Production is profitable if P(x) > 0.
(f) Theutility functionU(x,y)measures the total utility (or satisfaction) the con-

sumer derives from having x units of the first commodity and y units of the
second. This is a function of two variables.

When S(x) > D(x) there is a surplus and when D(x) > S(x) there is a shortage, as
seen in the figure below. When the supply function and demand function inter-
sect, the supply and demand are equal. At this point, the amount of goods being
supplied is exactly the same as the amount of goods being demanded. The allo-
cation of goods is therefore at its most efficient point, and the economy is said to
be at equilibrium.

Market research indicates that the demand and supply functions for a particular
coffeemaker are given by D(x) = −3x + 27 and S(x) = x2 + 2.
(a) Atwhat level of production x and unit price p ismarket equilibrium achieved?
(b) Sketch the supply and demand curves on the same graph and interpret.



2 Limits and continuity
In this chapter, you will learn about:
– the definition of a limit;
– the properties of a limit;
– one-sided limits;
– how to evaluate limits;
– the squeeze theorem;
– limits of sequences;
– the monotonic and bounded sequence theorems;
– infinitesimal and asymptotic functions;
– continuity and discontinuities;
– the properties of continuous functions defined on closed intervals.

2.1 Rates of change and derivatives

As introduced in Chapter 1, the average rate of change of a particle moving along a
straight line with displacement s, expressed as a function of time t on a time interval
[t1, t2], is

Δs
Δt
= s(t2) − s(t1)

t2 − t1
= change in s
change in t

.

In general, the average rate of change of a function y = f (x) over an interval [a,b] is
defined by

Δy
Δx
= f (b) − f (a)

b − a
= change in y
change in x

. (2.1)

The geometric significance of the average rate of change of f (x) over the interval [a,b]
is that it is the slope of the secant line PQ, as shown in Figure 2.1.1.

Figure 2.1.1: Average rate of change of f (x) over the interval [a,b].

https://doi.org/10.1515/9783110527780-002
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Example 2.1.1. Find the average rate of change of the function f (x) = x3 + x over the
interval [2,5].

Solution. Since f (2) = 23 + 2 = 10 and f (5) = 53 + 5 = 130, the average rate of change
over the interval [2,5] is

f (5) − f (2)
5 − 2

= 130 − 10
3
= 40.

When finding the instantaneous rate of change of f (x) at the point P, one is deter-
mining how fast f (x) is changing at that point. Now consider equation (2.1) over [a,x]
by varying b as a variable x. Then Δx = x − a and x = a + Δx. Then we let Δx→ 0. This
means x→ a but x never actually equals a (otherwise Δx would be 0). Hence, we have
derived the following limit of a quotient:

lim
Δx→0

Δy
Δx
= lim
Δx→0

f (a + Δx) − f (a)
Δx

. (2.2)

Weuse this limitwhereverwewant to know the rate of changeof a functionat a specific
point. For example, a chemist may want to know the rate of change of a chemical
reaction at a particular point in time and a physicist may want to know the velocity
of an object at a particular instant. This limit, if it exists, is given a special name: the
derivative of f (x) at the point x = a. It is denoted by f ′(a) or y′(a).

From a geometric point of view, as Δx → 0, the secant line PQ approaches the
line tangent to the graph of f (x) at the point P and the slope of the secant line PQ
approaches the slope of the tangent line at P. Therefore, the slope of the tangent line
at P can be defined as the derivative of f (x) at P.

So far, we have used the term “limit” several times. It is not hard to understand
the limit limx→a f (x) from an intuitive point of view. If it exists, it is a number that
f (x) approaches in the limiting process. For example, limx→1 x2 = 1, since x2 → 1 as
x→ 1 and limx→π sinx = 0 since sinx→ sinπ = 0 as x→ π. We will discuss the limit in
further details in the next section.

2.2 Limits of a function

2.2.1 Definition of a limit

To introduce the concept of a limit of a function, let us first investigate the behavior
of the function f defined by f (x) = x2 + 2x − 3 for values of x near 2. Table 2.2.1 gives
values of f (x) for some values of x close to 2, but not equal to 2.

In Figure 2.2.1, we see that, when x is close to 2 (on either side of 2), f (x) is close
to 5 = f (2). In fact, it appears that we can make the value of f (x) as close as we please
to 5 by taking x sufficiently close to 2. We express this by saying that “the limit of the
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Table 2.2.1: Some values of f (x) when x is near 2.

x f (x) x f (x)

1.0 0.000000 3.0 12.000000
1.5 2.250000 2.5 8.250000
1.8 3.840000 2.2 6.240000
1.9 4.410000 2.1 5.610000
1.95 4.702500 2.05 5.302500
1.99 4.940100 2.01 5.060100
1.995 4.970025 2.005 5.030025
1.999 4.994001 2.001 5.006001

Figure 2.2.1: Behaviors of f (x) when x→ 2.

function f (x) = x2 + 2x − 3 as x approaches 2 is equal to 5”. The notation for this is

lim
x→2
(x2 + 2x − 3) = 5.

This example shows a result that is probably quite obvious to you, that is, as x
approaches the value 2, the values of f (x) approach the value f (2) = 5. However, in
later applications of the limit, the results will not be so obvious.

In general, we use the following notations for a limit:

lim
x→a

f (x) = L, or lim
x→a

f (x) = L.

In words: “the limit of f (x), as x approaches a, equals L”. In plainer but not formal
language, thismeans: when x gets sufficiently close to a, f (x) gets arbitrarily close to L
(as close to L as we please). The only values of f (x) that matter in defining limx→a f (x)
are those values for x close to a, but with x ≠ a. The limit limx→a f (x) does not require
f (x) to exist at x = a and even if f (a) exists, then this value may or may not be equal to
limx→a f (x).

NOTE. The limit of a function refers to the value that the function approaches, but this
may or may not be the actual function value if it exists. In Figure 2.2.2, limx→2 f (x) = 2,
not 3.
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Figure 2.2.2: The limit of f (x) at amay not necessarily equal f (a).

An alternative way of writing limx→a f (x) = L is

f (x) → L as x→ a,

or, in words, “f (x) tends to L as x tends to a”.

Example 2.2.1. Guess the value of limx→1
x2−1
x−1 .

Solution. We first notice that the function f (x) = x2−1
x−1 is not defined when x = 1, but

that doesn’t matter because the limit limx→1 f (x) only concerns the values of x that
are close to 1, but not equal to 1. Table 2.2.2 gives values of f (x) for values of x that
approach 1.

Table 2.2.2: Some values of f (x) when x is near 1.

x < 1 f (x) x > 1 f (x)

0.5 1.5 1.5 2.5
0.9 1.9 1.1 2.1

0.99 1.99 1.01 2.01
0.999 1.999 1.001 2.001

0.9999 1.9999 1.0001 2.0001

It appears from the table that the limit might be 2. That is,

lim
x→1

x2 − 1
x − 1
= 2.

To emphasize this point, one needs to be aware that the limit limx→a f (x) is the
value that f (x) approaches when x→ a (but does not equal a). It is not a surprise that
limx→1

x2−1
x−1 exists, although the function x2−1

x−1 is undefined at x = 1. Because x is never
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Figure 2.2.3: Behaviors of f (x) when x→ 1.

equal to 1, x − 1 is never 0, and thus for all other x, x2−1
x−1 is equal to (x−1)(x+1)x−1 = x + 1.

Thus, we have

lim
x→1

x2 − 1
x − 1
= lim
x→1
(x + 1) = 2.

It is now clearer to see that when x tends to 1, x + 1 tends to 2, as shown in Figure 2.2.3.
The above examples have given us some visual and numerical approaches to the

limit, so thatwe canmake a guess in these cases. Computer programs or electronic cal-
culators can also be used to evaluate limits, but one needs to be careful since they only
have the capacity to deal with a certain range of numbers. For example, a calculator
may work out

lim
x→0
( 1
x2
− 1
(sinx)2
)

correctly, but it may not be able to work out

lim
x→0
( 1
x100
− 1
(sinx)100

).

As x is very small, both 1/x100 and 1/(sinx)100 may exceed the maximum number that
the computer algebra canworkwith. Table 2.2.3 shows values of 1

x100 −
1

(sinx)100 for some
very small values of x.

Table 2.2.3: Computer fails to evaluate the limit numerically.

1/x∧100 − 1/(sin(x))∧100

1 −31339022.21
0.5 −8.34324E+31
0.2 −7.49E+69
0.1 −1.8143E+99

0.05 −5.3939E+128
0.001 −1.6667E+295

0.0001 #DIV/0!
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You may be the next to invent a better computer, but we will need to know how the
machine works before we make it, so we need to convince ourselves algebraically, in
a mathematical way. First, let us clarify what we meant by saying “f (x) is arbitrarily
close to L, as close as we please.” We need a rigorous definition of the limit. The fol-
lowing definition is credited to Cauchy and Weierstrass.

Definition 2.2.1. For a function f (x) defined on some open interval containing a (but
not necessarily at a itself), we say limx→a f (x) = L if, given any number ε > 0, there is
a corresponding number δ > 0, such that

|f (x) − L| < ε whenever 0 < |x − a| < δ.

NOTE. “ϵ-δ definition of limit” is a formalization of the notion of limit. It was first
given by Bernard Bolzano in 1817. Augustin-Louis Cauchy occasionally used ϵ-δ ar-
guments in proofs. The definitive modern statement was ultimately provided by Karl
Weierstrass. http://en.wikipedia.org/wiki/(ε,δ)-definition_of_limit

Since ε is any positive number, we canmake it as small as wewant. The definition
says that, if limx→a f (x) = L, then, for any given number ε, no matter how small it is,
we can always find a corresponding number δ > 0, such that the distance between f (x)
and Lwill be less than ε as longas x is in thedeleted δ-neighborhoodofa. For instance,
if ε = 0.1, we can make f (x) be within 0.1 units of L by requiring that x be within the
δ0.1 units of a; if ε = 0.01, we can make f (x) be within 0.01 units of L by requiring that
x be within δ0.01 units of a. This is the meaning of “as close as we please”. Figure 2.2.4
illustrates the δ − ε definition of a limit.

Example 2.2.2 (Building blocks). Show that limx→a c = c and limx→a x = a, where c is
a constant and a is any real number.

Figure 2.2.4: ε − δ definition of a limit.
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Proof. Intuitively speaking, these facts are so obvious that they need no proof, but
now we confirm them by using the ε-δ language.

(1) Let f (x) = c. Then given any positive number ε, we could choose δ to be any
positive number, since

|f (x) − c| = |c − c| = 0 < ε, for all x.

(2) Let f (x) = x. Then, given any positive number ε, we can choose δ = ε, so that,
whenever 0 < |x − a| < δ,

|f (x) − a| = |x − a| < δ = ε.

By the formal definition of a limit, we have limx→a c = c and limx→a x = a, as illustrated
in Figure 2.2.5 and Figure 2.2.6.

Example 2.2.3. Prove that limx→0 |x| = 0.

Solution. Given any number ε > 0, choose δ = ε so that, whenever 0 < |x − 0| < δ, we
have

||x| − 0| = |x| = |x − 0| < δ = ε.

Figure 2.2.5: The limit of a constant function.

Figure 2.2.6: The limit of x when x→ a is a.
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Figure 2.2.7: The limit of |x| when x→ 0 is 0.

This means limx→0 |x| = 0. Figure 2.2.7 illustrates this limit.

Example 2.2.4. Prove that limx→1
x2−1
x−1 = 2.

Proof. Given any number ε > 0, in order to find a corresponding number δ such that

|x
2 − 1
x − 1
− 2| < ε whenever 0 < |x − 1| < δ,

we simplify the inequality to obtain

|x
2 − 1
x − 1
− 2| < ε↔ |(x − 1)(x + 1)

x − 1
− 2| < ε

↔ |(x + 1) − 2| < ε
↔ |x − 1| < ε.

This means that, if 0 < |x − 1| < ε, then | x
2−1
x−1 − 2| < ε, so we can choose δ = ε. Then

|x
2 − 1
x − 1
− 2| < ε when |x − 1| < δ = ε,

so, by the definition of the limit, we have limx→1
x2−1
x−1 = 2.

Example 2.2.5. Show that limx→2 x2 = 4.

Proof. For any given number ε > 0, in order for

|x2 − 4| = |(x − 2)(x + 2)| < ε,

we need

|x − 2| < ε
|x + 2|
.
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Because x→ 2, we could assume 1 < x < 3, i.e., |x − 2| < 1. Then 3 < |x + 2| < 5. Now let
the number δ be the minimum of 1 and ε

5 , i.e., δ =min(1, ε5 ). Then δ < 1 and δ < ε
5 , so

whenever 0 < |x − 2| < δ, we have

|x2 − 4| = |x − 2||x + 2| < ε
5
× 5 = ε.

Thus limx→2 x2 = 4 by the formal definition of a limit.

2.2.2 Properties of limits of functions

As x approaches a, can the limit of f (x) be two different values? Of course, the an-
swer is no. If limx→a f (x) exists, it must be unique. Since, as x → a, if f (x) → L and
f (x) →M, then, when x is sufficiently close to a, f (x) can be made arbitrarily close to
L and arbitrarily close toM, L andM must be sufficiently close to each other; as close
as possible. Thus Lmust be equal toM.

Theorem 2.2.1 (Uniqueness). If limx→a f (x) exists, it must be unique.

Proof. Intuitively, if limx→a f (x) = L, limx→a f (x) = M, then f (x) can be made suffi-
ciently close to L and M. Thus, L and M must be sufficiently close to each other. This
indicates that Lmust be equal toM. A rigorous proof can be found in Section 2.7.

Another property is that f (x) must be bounded on some neighborhood of x = a
(except possibly at a) if limx→a f (x) exists. This is because the values of f (x) will be
close to the limit for all values of x in that deleted neighborhood of a.

Theorem 2.2.2 (Boundedness). If limx→a f (x) = L, then there is a deleted neighbor-
hood I of x = a such that f (x) is bounded on I.

Proof. Intuitively, if limx→a f (x) = L, then f (x) is close to L when x is close to a. There-
fore, all values of f (x) should be close to L when x is near a, except possibly at x = a.
This means f (x)must be bounded when x is near a. A rigorous proof can be found in
Section 2.7.

NOTE. A deleted neighborhood of x = a instead of a neighborhood of x = a is neces-
sary. For example, consider the Dirac δ function

f (x) =
{
{
{

0, when x ≠ 0
∞, when x = 0.

For this function, limx→0 f (x) = 0, but it is not bounded on any open interval contain-
ing x = 0. This function is a generalized function and it is used to model some abstrac-
tions such as point charges, point masses, and electron points.
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If limx→a f (x) = L > 0, then,when x is sufficiently close to a, f (x)will be sufficiently
close to L. This means that, on some deleted neighborhood of a, we will have f (x) > 0.

Theorem 2.2.3. If limx→a f (x) = L > 0, then there is a deleted neighborhood of x = a
such that f (x) > 0 for all x in that deleted neighborhood.

Proof. A rigorous proof can be found in Section 2.7.

From Theorem 2.2.3, we deduce the following result.

Corollary 2.2.4. If f (x) > 0 for all x near a, except possibly at x = a, and limx→a f (x)
exists, then limx→a f (x) ⩾ 0.

Proof. If limx→a f (x) < 0, then, as shown above, for all x sufficiently near a,
f (x) < 0. This contradicts the assumption that f (x) > 0 for all x near a (except pos-
sibly x = a).

NOTE. We cannot draw the conclusion that limx→a f (x) > 0. This is because, even if
f (x) is not 0 for all x near a, the limit limx→a f (x)may be 0. For example, |x| > 0 for all
x near 0, but limx→0 |x| = 0.

Corollary 2.2.5 (Order properties). If f (x) > g(x) for all x near a, except possibly at
x = a, and both limx→a f (x) and limx→a g(x) exist, then limx→a f (x) ⩾ limx→a g(x).

Proof. Let h(x) = f (x) − g(x) and the result follows from Corollary 2.2.4.

2.2.3 Limit laws

In the previous section, we tried to use evaluation and graphs to guess the values of
limits and determined the limits of some simple functions. In this sectionwe show the
following properties of limits. These are called the limit laws (or limit rules). These can
be used to calculate the limits of more complicated functions from the known limits
of simpler functions.

Limit laws
If c is a constant and the two limits limx→a f (x) and limx→a g(x) exist, then:
1. limx→a[f (x) + g(x)] = limx→a f (x) + limx→a g(x) (sum rule);
2. limx→a[f (x) − g(x)] = limx→a f (x) − limx→a g(x) (difference rule);
3. limx→a[f (x)g(x)] = limx→a f (x) limx→a g(x) (product rule);
4. limx→a

f (x)
g(x) =

limx→a f (x)
limx→a g(x)

, provided limx→a g(x) ≠ 0 (quotient rule).
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These rules show that the limit operations follow the basic mathematical operations
in a natural way. It is easy to believe that these properties are true. For instance, the
sum rule says the limit of a sum is the sum of the limits. This is because, if f (x) tends
to L and g(x) tends to M as x→ a, it is reasonable to conclude that f (x) + g(x) tends
to L +M as x → a. This gives us an intuitive basis for believing that the sum rule is
true.

Proofs of these limit laws can be found in Section 2.7.

Corollary 2.2.6. If limx→a f (x) exists, using law 3, we have the following:
1. limx→a[cf (x)] = c limx→a f (x), where c is any constant (constant multiple rule);
2. limx→a[f (x)]n = (limx→a f (x))n, where n is a positive integer (power rule).

Proof. For 1, let g(x) in the product rule be g(x) = c. For 2, repeatedly using the product
rule with g(x) = f (x) gives the proof.

Example 2.2.6. Find limx→3(3x2 − 5x + 7).

Solution.

lim
x→3
(3x2 − 5x + 7)

= lim
x→3

3x2 − lim
x→3

5x + lim
x→3

7 (sum/difference rule)

= 3 lim
x→3

x2 − 5 lim
x→3

x + lim
x→3

7 (constant multiple rule)

= 3(lim
x→3

x)
2
− 5 lim

x→3
x + lim

x→3
7 (power rule)

= 3 × 32 − 5 × 3 + 7

= 19.

In fact, using a combination of the sum, difference, and power rules, we state a
more general rule.

Theorem 2.2.7 (Direct substitution rule for polynomials). For any polynomial

f (x) = a0 + a1x + a2x2 +⋯+ anxn where a0,a1,… ,an are constants,

we have

lim
x→c

f (x) = a0 + a1c + a2c2 +⋯+ ancn, where c is a constant.

Example 2.2.7. Find limx→1
x2−2x+5
x3+5x−7 .
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Solution.

lim
x→1

x2 − 2x + 5
x3 + 5x − 7

= limx→1(x2 − 2x + 5)
limx→1(x3 + 5x − 7)

(quotient rule)

= 1
2 − 2 × 1 + 5
13 + 5 × 1 − 7

(direct substitution rule)

= −4.

Example 2.2.8. Find limx→2
x2−7x+10
x2+5x−14 .

Solution. The limit of the denominator is limx→2(x2 + 5x − 14) = 22 + 5(2) − 14 = 0, so
we cannot use the quotient rule that says “the limit of a quotient is the quotient of the
limits”. Instead, a standard approach is to factor the denominator and the numerator,
if possible, and then simplify the expression by canceling factors. The fact that the
denominator has limit zero as x approaches 2 suggests that 2 is a root of the denomi-
nator, so x − 2 is a factor of the denominator. It turns out that x − 2 is also a factor of
the numerator. Thus we have

lim
x→2

x2 − 7x + 10
x2 + 5x − 14

= lim
x→2

(x − 2)(x − 5)
(x − 2)(x + 7)

.

The factor x − 2 can be canceled, because, for all x ≠ 2 and x ≠ −7, the function is equal
to (x − 5)/(x + 7). We have

lim
x→2

x2 − 7x + 10
x2 + 5x − 14

= lim
x→2

x − 5
x + 7
= 2 − 5
2 + 7
= − 1

3
.

Theorem 2.2.8 (Direct substitution rule for rational functions). If c is a constant, for
any rational function P(x)

Q(x) , where P(x) and Q(x) are two polynomials, if Q(c) ≠ 0, then
limx→c

P(x)
Q(x) =

P(c)
Q(c) .

Proof. It follows from the quotient rule and the direct substitution rule for polynomi-
als.

NOTE. We will see later that, for most of the functions we know so far, the direct
substitution rule holds. For example, limx→c cosx = cos c and limx→c√x = √c for any
number c > 0.

Example 2.2.9. Show that limx→c cosx = cos c for any constant c.

Proof. Given a number ε > 0, choose δ = ε. Then, when 0 < |x − c| < δ, we have

|cosx − cos c| = |2 sin x + c
2

sin x − c
2
| ⩽ 2|sin x − c

2
|
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Figure 2.2.8: The limit of cos x when x→ c is cos c.

Figure 2.2.9: The limit of sin x when x→ c is sin c.

< 2|x − c
2
| = |x − c| < ε.

This means limx→c cosx = cos c. Figure 2.2.8 illustrates this limit.

NOTES. 1. |x| ⩾ | sinx| for all x. This equality holds only when x = 0.
2. Similarly, we have the direct substitution rule for sinx, that is, limx→c sinx = sin c

for any c ∈ R, as illustrated in Figure 2.2.9.

Example 2.2.10. Show that limx→c√x = √c for any constant c > 0.

Proof. Given a number ε > 0, choose δ = √cε. Then, if 0 < |x − c| < δ,

|√x −√c| = | (
√x −√c)(√x +√c)
√x +√c

| (conjugate pair)

= | x − c
√x +√c

| < |x − c|
√c
< ε.

This means limx→c√x = √c for any c > 0. Figure 2.2.10 illustrates this limit.

There is also a limit law for function composition. It says that, if g(x) → b as x→ a
and f (u) → L as u→ b, f (g(x)) → L as x→ a.

Theorem 2.2.9 (Substitution rule). Suppose that u = g(x) is defined on some interval
containing a, but not necessarily at a, f (u) is defined on some interval containing b, but
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Figure 2.2.10: The limit of√x when x→ c is√c.

not necessarily at b, and limx→a g(x) = b and limu→b f (u) = L. Then

lim
x→a

f (g(x)) = lim
u→b

f (u) = L.

Proof. See Section 2.7.

This theoremenables us tomake substitutions in evaluating limits. Intuitively, the
theorem is reasonable, because, if x is close to a, g(x) → b and f (g(x)) → L as g(x) → b.

Example 2.2.11. Find limx→2√1 + x.

Solution.

lim
x→2
√1 + x = lim

u→3
√u (substitution u = 1 + x,u→ 3 as x→ 2)

= √3 (direct substitution by Example 2.2.10).

Also, we could write the above in the following way:

lim
x→2
√1 + x = √limx→2(1 + x) = √1 + limx→2 2 =

√1 + 2 = √3.

Example 2.2.12. Find limx→4
√2x+1−3
x−4 .

Solution. If we try to evaluate at x = 4, we obtain an indeterminate form, 0/0. The key
here is to find a hidden factor of x −4 in the numerator that will cancel with this factor
in the denominator. One technique is to rationalize the numerator by making use of
the algebraic identity

(a − b)(a + b) = a2 − b2.

We multiply the numerator and denominator by √2x + 1 + 3, so that the numerator
becomes

(√2x + 1)2 − 32 = 2x − 8,
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thus eliminating the square root. Here are the details:

lim
x→4

√2x + 1 − 3
x − 4

= lim
x→4

(√2x + 1 − 3)
(x − 4)

(√2x + 1 + 3)
(√2x + 1 + 3)

= lim
x→4

(√2x + 1)2 − 32

(x − 4)(√2x + 1 + 3)

= lim
x→4

2x + 1 − 9
(x − 4)(√2x + 1 + 3)

= lim
x→4

2(x − 4)
(x − 4)√2x + 1 + 3

= lim
x→4

2
√2x + 1 + 3

=
limx→4 2

limx→4√2x + 1 + limx→4 3

= 2
√2 × 4 + 1 + 3

= 1
3
.

2.2.4 One-sided limits

In the previous sections, our limits were determined by requiring x to approach the
number a from both the left and the right. However, sometimes we wish to consider
these as separate cases: x approaches a from the left (x → a−) and x approaches a
from the right (x→ a+). The corresponding limits are known as one-sided limits, the
left-hand limit and the right-hand limit, respectively. Here is the notation:

Left-hand limit:

lim
x→a−

f (x) is the limit as x approaches a from the left.

Right-hand limit:

lim
x→a+

f (x) is the limit as x approaches a from the right.

Figure 2.2.11 illustrates the two one-sided limits.

Figure 2.2.11: One-sided limits.
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Example 2.2.13. Investigate the one-sided limits of the function as x → 0+ and
x→ 0−.

f (x) = |x|
x
=
{
{
{

1, when x > 0
−1, when x < 0.

Solution. The left-hand limit, limx→0− f (x), means x approaches 0 from the left, so
we are only concerned with values of x that are less than 0. In this case f (x) = −1 is a
constant function, so

lim
x→0−

f (x) = lim
x→0−
(−1) = −1.

Similarly we have limx→0+ f (x) = limx→0+ (+1) = 1. We indicate this situation symboli-
cally by writing

lim
x→0−
|x|
x
= −1 and lim

x→0+
|x|
x
= 1.

Figure 2.2.12 illustrates these two limits.

Figure 2.2.12: The limit of |x|x when x→ 0 does not exist.

Using the ε-δ language, the definitions of one-sided limits are given as follows.

Definition 2.2.2. The left-hand limit of f (x) as x approaches a from the left is L, written
as

lim
x→a−

f (x) = L,

if, for any given number ε > 0, there is a number δ > 0, such that

|f (x) − L| < ε, whenever a − δ < x < a.

The right-hand limit of f (x) as x approaches a from the right is L, written as

lim
x→a+

f (x) = L,
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if, for any given number ε > 0, there is a number δ > 0, such that

|f (x) − L| < ε, whenever a < x < a + δ.

By comparing the definition of limits and the definition of one-sided limits, we
derive the following result.

Theorem 2.2.10. A limit exists if and only if both one-sided limits exist and are equal.
That is,

lim
x→a

f (x) = L ⇔ lim
x→a−

f (x) = lim
x→a+

f (x) = L.

This means that, if either of the one-sided limits does not exist or if the one-sided
limits are not the same, the function has no limit. Thus, the function f (x) = |x|/x has
no limit as x→ 0, because limx→0− f (x) = −1 ≠ 1 = limx→0+ f (x).

Example 2.2.14. For the greatest integer function f (x) = [x], find limx→1− f (x),
limx→1+ f (x), and limx→1 f (x).

Solution. The notation x→ 1− means x approaches 1 from the left. For these values
of x, [x] = 0, so

lim
x→1−

f (x) = lim
x→1−

0 = 0.

The notation x→ 1+ means x approaches 1 from the right. For these values of x,
[x] = 1, so

lim
x→1+

f (x) = lim
x→1+

1 = 1.

Hence, limx→1 f (x) does not exist, because limx→1− f (x) ≠ limx→1+ f (x), as seen in
Figure 2.2.13.

Example 2.2.15. Use the definition of a one-sided limit to prove that limx→0+ √x = 0.

Figure 2.2.13: The limit of [x] when x→ 1 does not exist.
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Solution. Given ε > 0, let δ = ε2. If 0 < x < δ, then

|f (x) − 0| = |√x − 0| < √δ = √ε2 = ε.

Then, according to the definition of the right-hand limit, limx→0+ √x = 0.

Example 2.2.16. If

f (x) =
{
{
{

x2 − 3x, if x ⩽ 2
x − 3, if x > 2,

find limx→2+ f (x) and limx→2− f (x). Does limx→2 f (x) exist?

Solution. For the right-hand limit, we consider only x > 2. These values of x are
greater than 2, which means f (x) = x − 3, so

lim
x→2+

f (x) = lim
x→2+
(x − 3).

Now, we proceed by using the limit theorems and the usual steps, to obtain

lim
x→2+

f (x) = lim
x→2+
(x − 3) = 2 − 3 = −1.

Similarly, for the left-hand limit limx→2− f (x), we consider only x < 2. These values
of x are to the left of 2, for which f (x) = x2 − 3x, so

lim
x→2−

f (x) = lim
x→2−
(x2 − 3x)

= lim
x→2−
(x2 − 3x) = 22 − 3(2) = −2.

Since the one-sided limits as x→ 2 do not agree, limx→2 f (x) does not exist. Fig-
ure 2.2.14 illustrates these limits.

Figure 2.2.14: The limit of f (x) in Example 2.2.16 when x→ 2 doesn’t exist.
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2.2.5 Limits involving infinity and asymptotes

If we investigate the limit

lim
x→0

1
x2

as x approaches 0, the denominator gets closer and closer to zero, so the fraction 1/x2

gets larger and larger and is unbounded, as seen in Figure 2.2.15. It will not tend to
any finite number. Therefore, the limit does not exist. However, since we introduced
the two symbols ∞ and −∞ in Chapter 1, we now use them to indicate a limit that
does not exist in this unbounded way. For example, limx→a f (x) = ∞ means that f (x)
becomes larger and larger and can be made bigger than any given positive number as
x approaches a. A formal definition is the following.

Figure 2.2.15: Behaviors of y = 1
x2 when x→ 0.

Definition 2.2.3. We say limx→a f (x) =∞ if, for any given numberM > 0 (no matter
how large it is), we can find a number δ, such that

f (x) >M whenever 0 < |x − a| < δ.

Similarly, one can give a definition for limx→a f (x) = −∞ stated as “when x ap-
proaches a, f (x) becomes smaller and smaller and can be less than any given negative
number when x is sufficiently close to a.”

Example 2.2.17. Show that limx→2
1
(x−2)2 =∞.

Proof. Given any positive number M > 0, choose δ = 1
√M . Then, whenever 0 < |x −

2| < δ,

1
(x − 2)2

>
1
δ2
=

1
( 1
√M )

2
=M.

Hence, limx→2 1/(x − 2)2 =∞ by Definition 2.2.3.
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If f (x) is a quotient of two functions, then f (x) →∞ (or −∞) usually implies that
the denominator approaches 0 in the limiting process. This was shown in the example
above, where (x − 2) → 0, when x→ 2, so the reciprocal tends to infinity. In general,
we have the following.

Theorem 2.2.11. If f (x) is not 0 near x = a, except possibly at a, then limx→a |f (x)| =∞
if and only if limx→a

1
f (x) = 0.

Proof. “⟹” Given any number ε > 0, since limx→a |f (x)| = ∞, we can find a number
δ > 0 such that, whenever 0 < |x − a| < δ,

|f (x)| > 1
ε
.

However, then

| 1
|f (x)|
− 0| = | 1

f (x)
| = 1
|f (x)|
< 11

ε
= ε,

so limx→a 1/f (x) = 0.
“⟸” Given any number M > 0, since limx→a 1/f (x) = 0, for the positive number

1/M, we can find a number δ > 0 such that, whenever 0 < |x − a| < δ, we have

| 1
f (x)
− 0| < 1

M
.

This means 1
|f (x)| <

1
M , so |f (x)| >M and therefore limx→a |f (x)| =∞.

Example 2.2.18. Investigate the following limits:
(a) limx→0

2
x2 ; (b) limx→0

1
x .

Solution. (a) Since limx→0 x2 = 0, we have

lim
x→0

2
x2
= 2 lim

x→0

1
x2
= 2 ×∞=∞.

(b) Since limx→0 x = 0, we know that 1/|x| →∞. However, we need to be very care-
ful here. When x→ 0+, this means 1

x > 0, so
1
|x| =

1
x . When x→ 0+, 1

x →∞, so we have

lim
x→0+

1
x
=∞.

However, when x→ 0−, 1
|x| = −

1
x . This means

lim
x→0−

1
x
= −∞.

We conclude that limx→0
1
x does not exist. Figure 2.2.16 illustrates this limit.
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Figure 2.2.16: The limit of y = 1
x when x→ 0 does not exist.

Vertical asymptotes
There is a geometric significance for the limit limx→a+ f (x) = ±∞ or limx→a− f (x) =
±∞. In this case, the line x = a is a vertical asymptote to the graph of f (x).

Example 2.2.19. Find all the vertical asymptotes for the function

f (x) = x + 5
x2 − 2x − 3

.

Solution. To find vertical asymptotes, we need to determine when f (x) → ±∞. This
means we need to investigate when the denominator tends to 0. Factoring the denom-
inator, we obtain

f (x) = x + 5
(x − 3)(x + 1)

.

When x→ 3, the denominator of f (x) tends to 0, but the numerator tends to the
finite number 8, which is not 0, so f (x) → ±∞ when x → 3. This is also true when
x→−1. This means x = −1 and x = 3 are two vertical asymptotes to the graph of f (x).
Figure 2.2.17 shows the graph of f (x).

Figure 2.2.17: Graph of f (x) in Example 2.2.19.
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Example 2.2.20. Find all vertical asymptotes for f (x) = tanx.

Solution. tanx = sinx
cosx , so we need to determine when cosx = 0. This happens when

x = kπ + π2 , k ∈ Z, and in these cases sinx ≠ 0, so when x→ kπ + π2 , k ∈ Z, tanx→±∞.
Thus the vertical asymptotes to the graph of tanx occur exactly when x = kπ + π2 , k ∈ Z.
Figure 2.2.18 shows the graph of tanx.

Figure 2.2.18: Graph of y = tan x.

There is onemore situation in which we use the infinity symbol with a limit. These are
the “limits at infinity”, denoted by

lim
x→∞

f (x) = L, lim
x→−∞

f (x) = L or lim
x→±∞

f (x) = L.

This means that, when x gets sufficiently large (or small), the value of f (x) gets arbi-
trarily close to the number L. For example, we can guess that the limit limx→∞

1
x = 0,

since, as the denominator gets larger, the reciprocal gets smaller. A formal definition
is given below.

NOTE. Sometimes, we use the notation ±∞ to mean positive infinity or negative in-
finity, so limx→±∞ f (x)means limx→∞ f (x) or limx→−∞ f (x). This notation should only
be used when the behavior of f (x) is the same when x→∞ and when x→ −∞. For
example limx→+∞

1
x = 0 and limx→−∞

1
x = 0 can be rewritten as limx→±∞

1
x = 0. If the

behavior of f (x) as x→∞ is different from thatwhen x→−∞, thenwe have to discuss
limx→+∞ f (x) and limx→−∞ f (x) separately.

Figure 2.2.19 illustrates the limit limx→±∞ f (x) = L.
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Figure 2.2.19: Limits at infinity.

Definition 2.2.4 (Limits at infinity).
1. The limit limx→∞ f (x) = L if, for any number ε > 0, there exists a number N > 0

such that

|f (x) − L| < ε whenever x > N .

2. The limit limx→−∞ f (x) = L if, for any number ε > 0, there exists a number N > 0
such that

|f (x) − L| < ε whenever x < −N .

3. The limit limx→±∞ f (x) = L if, for any number ε > 0, there exists a number N > 0
such that

|f (x) − L| < ε whenever |x| > N .

Example 2.2.21. Show that limx→∞
1
x = 0.

Solution. From Theorem 2.2.11, we know the denominator tends to infinity and the
reciprocal tends to 0, but nowweuseDefinition 2.2.4. Given anumber ε > 0,we choose
N = 1

ε , so

|
1
x
− 0| = 1

x
<
1
1
ε
= ε, whenever x > N .

Similarly, we can show that limx→−∞
1
x = 0, so sometimeswewrite limx→±∞

1
x = 0,

as illustrated in Figure 2.2.20.

Figure 2.2.20: The limit of y = 1
x when x→±∞ is 0.
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NOTE. Limit laws also work for limits involving infinity.

Example 2.2.22. Find limx→∞
5x2+x+7
x2+1 .

Solution. We have

lim
x→∞

5x2 + x + 7
x2 + 1

= lim
x→∞

5 + 1
x +

7
x2

1 + 1
x2
(dividing by x2)

=
limx→∞ 5 + limx→∞

1
x + limx→∞

7
x2

limx→∞ 1 + limx→∞
1
x2

(limit laws)

= 5 + 0 + 0
1 + 0
= 5.

Horizontal asymptotes
There is also a geometricmeaning for the limits limx→∞ f (x) = b and limx→−∞ f (x) = b.
In these cases, y = b is a horizontal asymptote to the graph of the function f (x). In Ex-
ample 2.2.22, we know that y = 5 is a horizontal asymptote to the graph of the function.
The graph of a function may have up to two horizontal asymptotes, as seen in the fol-
lowing example.

Example 2.2.23. Find the horizontal asymptotes for the function

y = tan−1 x (Note: tan−1 x = arctanx.)

Solution. The graph of y = tan−1 x and the graph of y = tanx on (− π2 ,
π
2 ) are reflections

in y = x. In fact,

lim
x→ π

2
−
tanx = lim

x→ π
2
−

sinx
cosx
=∞ and lim

x→ π
2
+
tanx = lim

x→ π
2
+

sinx
cosx
= −∞.

x = − π2 and x =
π
2 are two vertical asymptotes of the graph of y = tanx, so

lim
x→∞

tan−1 x = π
2

and lim
x→−∞

tan−1 x = −π
2
.

Therefore, there are two horizontal asymptotes of the graph of y = tan−1 x.

Another example of functions which have two horizontal asymptotes is

f (x) =
{
{
{

x+1
x−1 , x < 0
sinx
x , x > 0.

To the left and to the right, y = 1 and y = 0, respectively, are two horizontal asymptotes.
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Slant asymptotes
Graphs of functions may have slant asymptotes. You already know the graph of the
hyperbola

x2

a2
− y

2

b2
= 1, where a,b are nonzero constants.

It has two slant asymptotes, y = b
ax and y = − bax. A slant asymptote is a nonhorizon-

tal, nonvertical line that the graph of a function gets arbitrary close to when x moves
increasingly far to the left or to the right along the x-axis.

Definition 2.2.5. If there are constantsm and b such that

lim
x→∞
(f (x) −mx − b) = 0 or lim

x→−∞
(f (x) −mx − b) = 0,

then y =mx + b is a slant asymptote to the graph of the function f (x).

But how do we find a slant asymptote if there is one? Notice that, if y =mx + b is a
slant asymptote, then

lim
x→±∞
(f (x) −mx − b) = 0,

so

b = lim
x→±∞
(f (x) −mx).

Thus

lim
x→±∞

f (x) −mx − b
x

= 0.

Therefore,

lim
x→±∞
( f (x)

x
−m − b

x
) = 0.

Since limx→±∞
b
x = 0, we obtain

m = lim
x→±∞

f (x)
x
.

In fact, we can prove the converse is also true. That is, if

lim
x→±∞

f (x)
x
=m and lim

x→±∞
(f (x) −mx) = b,

then

lim
x→±∞
(f (x) −mx − b) = 0,

so y =mx + b is a slant asymptote.
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NOTES. 1. If limx→±∞
f (x)
x =m and limx→±∞(f (x)−mx) = b, then y =mx+b is a slant

asymptote to the graph of f (x).
2. If f (x) behaves differently when x→+∞ and x→−∞, then one has to investigate

the two one-sided limits separately.

Example 2.2.24. Find any slant asymptotes for

f (x) = √x2 + 4x.

Solution. Simplifying gives f (x) = |x|√1 + 4x , when x > 0 or x ⩽ −4. Therefore, x→∞
and x → −∞, f (x) behaves differently. Thus we discuss the two cases separately in-
stead of discussing x→±∞.

Since

lim
x→∞

f (x)
x
= lim
x→∞

|x|
x
√1 + 4

x
= lim
x→∞

x
x
√1 + 4

x
= 1,

lim
x→∞
(f (x) − x) = lim

x→∞
(√x2 + 4x − x)

= lim
x→∞

(√x2 + 4x − x)(√x2 + 4x + x)
√x2 + 4x + x

= lim
x→∞

x2 + 4x − x2
√x2 + 4x + x

= lim
x→∞

4x
√x2 + 4x + x

= lim
x→∞

4x

x√1 + 4x + x
,x > 0,

= lim
x→∞

4
√1 + 4x + 1

= 2.

The slant asymptote to the graph of f (x) as x→∞ is y = x + 2.
Similarly, we find that y = −x − 2 is the slant asymptote to the graph of f (x) as

x→−∞. Figure 2.2.21 shows the graph of this function and its two slant asymptotes.

Example 2.2.25. Determine whether or not the graph of the function f (x) = x2 − √x,
x > 0, has a slant asymptote.

Solution. If a slant asymptote exists, then limx→∞
f (x)
x must exist. However,

lim
x→∞

f (x)
x
= lim
x→∞

x2 −√x
x
= lim
x→∞
(x − 1
√x
) =∞− 0 =∞,

so there is no slant asymptote to the graph of f (x) = x2 −√x, as shown in Figure 2.2.22.
Sometimes, there is a simpler way to identify slant asymptotes for rational func-

tions.
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Figure 2.2.21: Graph of f (x) in Example 2.2.24 and its asymptotes.

Figure 2.2.22: Graph of f (x) in Example 2.2.25.

Example 2.2.26. Find all the asymptotes for

f (x) = 2x
2 + 3x + 2
2x + 1

and find the x- and y-intercepts. Sketch the curve.

Solution. When x→−1/2, f (x) → ±∞, so x = −1/2 is the vertical asymptote. Since

lim
x→±∞

2x2 + 3x + 2
2x + 1

= lim
x→±∞

2x + 3 + 2
x

2 + 1
x
= ±∞,

it has no horizontal asymptote. However, using long division, we have

f (x) = 2x
2 + 3x + 2
2x + 1

= x + 1 + 1
2x + 1
,
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so we have limx→±∞(f (x) − x − 1) = limx→±∞
1

2x+1 = 0. Therefore, y = x + 1 is the only
slant asymptote.

In order to find the intercepts, we plug in x = 0 to obtain the y-intercept 2 and if we
let y = 0, we have 2x2 +3x+2 = 0, which has no real solution, so there is no x-intercept.
This means the graph of the function does not cross the x-axis. The graph is shown in
Figure 2.2.23.

Figure 2.2.23: Graph of f (x) in Example 2.2.26 and its asymptotes.

2.3 Limits of sequences

To better explore limits of functions, we now consider limits of sequences which are
special functions with domain the set of natural numbers N.

2.3.1 Definitions and properties

A sequence is a list of numbers written in a definite order:

a1,a2,a3,… ,an,… .

The number a1 is called the first term, a2 is the second term and in general an is the
nth term of the sequence. Inmany cases, a sequence is defined by giving a formula for
the nth term that is valid for all values of n. Some examples of sequences are
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(1) 1, 1
2 ,

1
3 , …,

1
n , …

(2) 1
1×2 ,

1
2×3 ,

1
3×4 , …,

1
n×(n+1) , …

(3) 2, 1
2 ,

4
3 , …,

n+(−1)n−1
n , …

(4) 1
2 ,

2
3 ,

3
4 , …,

n
n+1 , …

In (1) and (2), as n gets larger and larger, the sequence of numbers comes closer
and closer to 0. In (3) and (4), as n gets larger and larger, we see that the sequence
values come closer and closer to 1, even though no term is actually 1. In other words,
intuitively speaking, we have

lim
n→∞

1
n
= 0, lim

n→∞

1
n × (n + 1)

= 0, and lim
n→∞

n
n + 1
= 1.

To analyze these limits, we use the results for limits of functions, since a sequence can
be viewed as a special function with domain {1, 2,3,…}, the set of positive integers,
range {a1,a2,a3,…}, and the rule f such that f (n) = an. Thus

lim
n→∞

an = limn→∞
f (n).

Therefore, in view of the definition of limits of functions limx→∞ f (x), we have the
precise definition of limits of sequences.

Definition 2.3.1. limn→∞ an = L if and only if, for any given number ε > 0, there is a
number N such that

|an − L| < ε whenever n > N .

Example 2.3.1. Prove that the sequence {xn} = {
2n+1
n } has limit 2.

Solution. It is easy to see that the sequence tends towards 2 as n→∞, so we can
guess the limit of the sequence is 2. However, we now prove this by using the precise
definition of the limit. For a given number ε > 0, we must find an N so that, whenever
n > N ,

|xn − 2| = |
2n + 1
n
− 2| < ε.

Equivalently, 1
n
< ε or 1

ε
< n.

Hence, ifN is anynumber larger than 1
ε , then

1
ε < nwhenever n > N , so limn→∞

2n+1
n = 2.

Example 2.3.2. Show that limn→∞ b
1
n = 1 for any number b > 1.
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Proof. Given a number ε > 0, we want to find a number N such that, when n > N , we
have

|b
1
n − 1| < ε.

Since b > 1 and b
1
n > 1, the above inequality implies

b
1
n − 1 < ε,

so

b
1
n < 1 + ε.

Taking the natural logarithm on both sides gives

1
n
lnb < ln(1 + ε),

so

n > lnb
ln(1 + ε)

.

Nowwe can choose N to be any number that is larger than the number lnb
ln(1+ε) . Accord-

ing to the definition of limits, we now have

lim
n→∞

b
1
n = 1.

Although limn→∞ f (n) is different from limx→∞ f (x), the two limits must have
some sort of connection. We notice that the difference between x→∞ and n→∞ is
that x takes the value of every positive real number, but n only takes the values of all
positive integers. The set of positive integers is a subset of the set of all positive real
numbers. Hence, limn→∞ f (n)must inherit something from limx→∞ f (x). For example,
if limx→∞ f (x) = L, then limn→∞ f (n) must also be L, as shown in Figure 2.3.1. A nice
theorem connecting the limit of a sequence and the limit of a function is due to Heine.

Theorem 2.3.1 (Heine). limx→a f (x) = L if and only if limn→∞ f (xn) = L for every se-
quence {xn} that converges to a.

Proof. See Section 2.7.

Heinrich Eduard Heine (1821–1881) was a Germanmathematician. Heine became known for results on
special functions and in real analysis. In particular, he authored an important treatise on spherical
harmonics and Legendre functions. He also investigated basic hypergeometric series. He introduced
the Mehler–Heine formula. http://en.wikipedia.org/wiki/Eduard_Heine#Selected_Works
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Figure 2.3.1: Limit of a sequence vs limit of a finction as x→∞.

This theorem says that limx→a f (x) = L, if and only if, for any sequence {xn} that con-
verges to a, the corresponding sequence of function values {f (xn)} also converges to L.
It may be hard to determine the existence of limx→a f (x) by investigating all possible
sequences {f (xn)} where xn → a. However, Heine’s theorem enables us to determine
the nonexistence of certain types of limits.

Example 2.3.3. Show that the Heaviside function

f (x) =
{
{
{

0, for x < 0
1, for x > 0

does not have a limit as x→ 0.

Solution. We choose two sequences, both of which converge to 0:

{xn} = −1, −
1
2 , −

1
3 , …, −

1
n , … (all terms are negative)

{x′n} = 1, 1
2 ,

1
3 , …,

1
n , … (all terms are positive)

Then we have

lim
n→∞

f (xn) = limn→∞
f(−1

n
) = 0 and lim

n→∞
f (x′n) = limn→∞

f( 1
n
) = 1.

Therefore, limx→0 f (x) does not exist. Figure 2.3.2 illustrates this limit.

Example 2.3.4. Show that limx→0 sin
1
x does not exist.

Proof. The function f (x) = sin(1/x) is undefined at 0, but the limit may, or may not,
exist. Notice that sin 1

x oscillates between −1 and 1 when x approaches 0, sowe choose
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Figure 2.3.2: Use Heine’s theorem to show a limit doesn’t exist.

two sequences

{xn} = {
1

2nπ
} and {x′n} = {

1
2nπ + π2

}.

Then we have

lim
n→∞

sin 1
xn
= lim
n→∞

sin 1
1

2nπ
= lim
n→∞

sin 2nπ = 0,

lim
n→∞

sin 1
x′n
= lim
n→∞

sin 1
1

2nπ+ π2

= lim
n→∞

sin(2nπ + 1
2
π) = 1.

Hence, by Theorem 2.3.1, we know that limx→0 sin
1
x does not exist. The graph of y =

f (x) is shown in Figure 2.3.3.

Figure 2.3.3: Graph of y = sin 1
x .

Example 2.3.5. Show that limx→∞ sinx does not exist.

Solution. The graph of the sine function oscillates infinitely many times between −1
and 1, as x→∞. Therefore, sinx does not tend to any single value, so limx→∞ sinx
must not exist. We now confirm this analytically. We choose two sequences

{xn} = {2nπ} and {x′n} = {2nπ +
π
2
}.
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Both sequences tend to infinity, but

lim
n→∞

sinxn = limn→∞
sin 2nπ = 0 and lim

n→∞
sinxn = limn→∞

sin(2nπ + π
2
) = 1,

so limx→∞ sinx does not exist.

Some theorems on convergent sequences
Properties of convergent sequences are analogs of those for functions since a se-
quence can be regarded as a function. We state some useful theorems for convergent
sequences. The proofs of them are similar to those for functions.

Theorem 2.3.2. If the sequence {xn} is convergent, then it has a unique limit (there can
only be one limit).

Theorem 2.3.3. If the sequence {xn} is convergent, then the sequence {xn} must be
bounded.

Theorem 2.3.4. If xn > 0 for sufficiently large n (there is a number N such that xn > 0
for all n > N), then limn→∞ xn ⩾ 0.

NOTE. Even if each term of a sequence is not 0, the limit of the sequence can be 0.
For example limn→∞

1
n = 0.

Monotone and bounded sequences theorem
Similar to functions, monotone sequences and bounded sequences are defined as fol-
lows.

Definition 2.3.2. A sequence {xn} is said to be:
1. monotone increasing (also called increasing) if xn ⩽ xn+1 for all n;
2. monotone decreasing (also called decreasing) if xn ⩾ xn+1 for all n;
3. bounded above if there is a numberM, such that xn ⩽M for all n;
4. bounded below if there is a numberm, such that xn ⩾m for all n;
5. bounded if it is bounded above and bounded below;
6. monotone if it is either increasing or decreasing.

For example, the sequence { 1n }, which is 1, 12 ,
1
3 ,… ,

1
n ,…, is monotone decreasing

with an upper bound of 1 and a lower bound of 0. The sequence { nn+1 }, which is 1
2 ,

2
3 ,

3
4…,

n
n+1 ,…, is monotone increasing with an upper bound of 1 and a lower bound

of 1
2 . Also, it is easy to see that, if an increasing sequence is bounded above, it must

be bounded. Similarly, if a decreasing sequence is bounded below, then it must be
bounded. The graph of the sequence { nn+1 } is shown in Figure 2.3.4.
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Figure 2.3.4: Graph of the sequence { nn+1 }.

There is a very important property of monotonic and bounded sequences that says
they must converge. This is an existence theorem that tells us about a case where a
limit exists, but tells us nothing about its value. Hence, the value of the limit must be
found, or estimated, in some other way. The theorem can be explained in an obvious
geometrical way. By the least upper bound property, if the sequence {xn} is increasing
and has boundM, then theremust be a least upper bound, β, such that xn ⩽ β for all n.
The rising values of xn cannot increase above β but eventuallymust become arbitrarily
close to β (otherwise there would be a smaller least upper bound than β). Hence, β is
the limit of the sequence. We now state a theorem about this.

Theorem 2.3.5. A monotonic and bounded sequence must converge.

Proof. See Section 2.7.

Example 2.3.6. Show that the sequence a1 = √2, a2 = √2 +√2, a3 = √2 +√2 +√2,…
converges. Then find limn→∞ an.

Proof. First, we notice that an > 0 and an = √2 + an−1. Nowwe prove by induction that
the sequence {an} is bounded above. For n = 1, a1 = √2 < 2. Now we assume ak < 2 for
k ⩾ 2. Then

ak+1 = √2 + ak ⩽ √2 + 2 = 2,

so by induction, we obtain

an < 2 for all integers n ⩾ 1.

For n ⩾ 2 we have

an
an−1
=
√2 + an−1
an−1
= √

2
a2n−1
+ 1
an−1
⩾ √ 2

22
+ 1
2
= 1,

so an ⩾ an−1. This means the sequence {an} is increasing.
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Nowwe have proved that the sequence is increasing and bounded above, so it has
a limit.

To find the limit, we suppose limn→∞ an = L. Then limn→∞ an−1 = L, so it follows
from

an = √2 + an−1

that L = √2 + L. This means L2 − L − 2 = 0. Solving for L, we have L = −1 (rejected, be-
cause all terms are positive) and L = 2, so limn→∞ an = 2.

The “e” limit
In the following, we show that limn→∞(1 +

1
n )

n has a very unexpected value. We first
use Theorem 2.3.5 to prove the existence of the limit of the corresponding sequence
{xn} = {(1 +

1
n )

n}. We graph the sequence {xn} and see how it looks.
Figure 2.3.5 shows the graph of the sequence {xn}, for n = 1, 2,… 16.
Table 2.3.1 shows numerical values of the sequence {xn} for some integers n.

Figure 2.3.5: Graph of the sequence {(1 + 1
n )

n}.

Table 2.3.1: Select values of the sequence {(1 + 1
n )

n}.

n (1 + 1/n) ∧ n

1 2
2 2.25
3 2.37037037

10 2.59374246
100 2.704813829

1000 2.716923932
10000 2.718145927

100000 2.718268237
1000000 2.718280469

10000000 2.718281694
100000000 2.718281786
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It seems, both from the graph and the table, that {(1+ 1n )
n} ismonotonic increasing

and bounded above, so limn→∞(1 +
1
n )

n should exist. Now we prove this by using the
binomial expansion and by induction.

Theorem 2.3.6. The limit of the sequence (1 + 1
n )

n as n→∞ exists.

Proof. By the binomial expansion, we have

xn = (1 +
1
n
)
n

= 1 + n ⋅ 1
n
+ n(n − 1)

2!
1
n2
+ n(n − 1)(n − 2)

3!
1
n3
+⋯

+ n(n − 1)(n − 2)⋯(n − (n − 1))
n!

1
nn

= 1 + 1 + 1
2!
(1 − 1

n
) + 1

3!
(1 − 1

n
)(1 − 2

n
) +

⋯+ 1
n!
(1 − 1

n
)(1 − 2

n
)⋯(1 − n − 1

n
)

⩽ 1 + 1 + 1
2!
(1 − 1

n + 1
) + 1

3!
(1 − 1

n + 1
)(1 − 2

n + 1
) +⋯

+ 1
n!
(1 − 1

n + 1
)(1 − 2

n + 1
)⋯(1 − n − 1

n + 1
)

+ 1
(n + 1)!
(1 − 1

n + 1
)(1 − 2

n + 1
)⋯(1 − n

n + 1
)

= xn+1.

This shows that {xn} is a monotonic increasing sequence. Furthermore, it is bounded
because

xn = 1 + 1 +
1
2!
(1 − 1

n
) + 1

3!
(1 − 1

n
)(1 − 2

n
) +⋯

+ 1
n!
(1 − 1

n
)(1 − 2

n
)⋯(1 − n − 1

n
)

⩽ 1 + 1 + 1
2!
+ 1
3!
+⋯ 1

n!

⩽ 1 + 1 + 1
2
+ 1
22
+⋯+ 1

2n−1

= 1 +
1 − ( 12 )

n

1 − 1
2
< 3.

Hence, 0 < xn < 3 for all n, so {xn} is a monotonic and bounded sequence. By Theo-
rem 2.3.5, it has a limit.

NOTE. This limit, of course, is unique and is denoted by the letter e, thus

lim
n→∞
(1 + 1

n
)
n
= e.
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As shown in the previous table, using a large value of n, we estimate the value of e ≈
2.71828, correct to five decimal places.

Leonhard Euler
(1707–1783) was a pioneeringSwissmathematician and physicist. He is
considered to be the preeminent mathematician of the eighteenth cen-
tury and one of the greatestmathematicians to have ever lived. Hemade
many important discoveries in mathematics and physics. He also in-
troduced much of the modern mathematical terminology and notation.
A statement attributed to Pierre-Simon Laplace expresses Euler’s influ-
ence on mathematics: “Read Euler, read Euler, he is the master of us
all.” http://en.wikipedia.org/wiki/Leonhard_Euler

In 1683, Jacob Bernoulli looked at the problem of compound interest and, in exam-
ining continuous compound interest, he tried to find the limit of (1 + 1

n )
n as n tends to

infinity. It is believed that Euler proved that e is an irrational number and introduced
e as the base of the natural logarithm. Euler gave an approximation for e to 18 decimal
places e ≈ 2.718281828459045235 (O’Connor, J. J.; Robertson, E. F. “The number e”.
MacTutor History of Mathematics).

The number e is the base of the natural logarithm, lnx, and it has a very special
role in calculus, as we will see later.

There is a similar result for a monotone function defined on some left neighbor-
hood of a point x = a, as stated without proof in the following theorem.

Theorem 2.3.7. If the function f (x) is defined on an interval (c,a) and it is monotone
and bounded on (c,a), then limx→a− f (x) exists.

2.3.2 Subsequences

A subsequence carries much of the information of its mother sequence. We first give
the definition of a subsequence.

Definition 2.3.3. Let {xn} be a sequence. A subsequence {xnk } is a sequence such that
xnk ∈ {xn} and nk < nk+1 for all k ∈N.

This definition tells us that terms of a subsequence must retain the order of the
terms in the parent sequence. For example, both

1, 1
3
, 1
5
,… , 1

2n + 1
,…

and

1, 1
4
, 1
8
,… , 1

2n
,…

are subsequences of the sequence { 1n }, which is 1,
1
2 ,

1
3 ,… ,

1
n ,….
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If a sequence {xn} approaches L as n→∞, then any subsequence of {xnk } must
have the same tendency since all terms in the subsequence are also terms of {xn} and
the order of the terms is also retained as in {xn}.

NOTE. The subscript nk implies that nk ⩾ k.

Theorem 2.3.8. If {xn} converges to L, then any subsequence of {xn} also converges to L.

Proof. If limn→∞ xn = L and {xnk } is a subsequence of {xn}, then, given a number ε > 0,
there is a number, say,M, such that

|xn − L| < ε whenever n >M.

If we choose N to be any number greater than M, then, for every k > N , we have nk >
N >M and

|xnk − L| < ε.

Thus, limk→∞ xnk = L.

A peak term of a sequence is a term that is larger than all subsequent terms. That
is, if xm is a peak term of a sequence {xn}, then, whenever n >m, we have xn < xm.

We now state the Bolzano–Weierstrass theorem, which is a fundamental theorem
in analysis.

Theorem 2.3.9. A bounded sequence {xn} of infinitely many real numbers must have a
convergent subsequence.

Proof. See Section 2.7.

Karl Weierstrass (1815–1897) was a German mathematician cited as the “father of modern analysis”.
Despite leaving university without a degree, he studied mathematics and trained as a teacher, even-
tually teaching mathematics, physics, botany, and gymnastics. http://en.wikipedia.org/wiki/Karl_
Weierstrass

2.4 Squeeze theorem and Cauchy’s theorem

First we investigate an interesting limit. We have

lim
x→0
(x2 sin 1

x
).

What makes this limit interesting is that we cannot use the product limit laws
which state that the limit of a product is the product of the limits, i.e.,

lim
x→a
(f (x)g(x)) = (lim

x→a
f (x))(lim

x→a
g(x)),

provided the limits exist.



2.4 Squeeze theorem and Cauchy’s theorem | 79

Even though limx→0 x2 = 0, limx→0 sin
1
x does not exist, so

lim
x→0

x2 × lim
x→0

sin 1
x
is not defined.

Although you might think 0 times anything is 0, this is not always true. For example,
if you evaluate

lim
x→0

x2( 1
x4
) = (lim

x→0
x2) × (lim

x→0

1
x4
),

then you have the form 0× something. It is obvious that the limit is not 0; instead, it
is∞.

However, notice that

−1 ⩽ sin 1
x
⩽ 1 for all x ≠ 0.

Hence, we have

−x2 ⩽ x2 sin 1
x
⩽ x2 for all x ≠ 0.

Whenwe let x→ 0, both −x2 and x2 approach 0 and therefore all values between them
also approach 0, as shown in Figure 2.4.1.

Figure 2.4.1: Graphs of y = x2, y = −x2 and y = x2 sin 1
x .

The way we solved the above example by “sandwiching” or “squeezing” x2 sin(1/x)
between two other functionswith known equal limits suggests thatwe canwrite down
a principle about a general “sandwiching process”. It is called the sandwich theorem
or the squeeze theorem.
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Theorem 2.4.1. Suppose that f (x) ⩽ g(x) ⩽ h(x) for all x close to a, except possibly for
x = a. If limx→a f (x) = limx→a h(x) = L, then limx→a g(x) = L.

Proof. See Section 2.7.

The squeeze theorem, of course, also works for limits of sequences which are spe-
cial functions.

Example 2.4.1. Find limn→∞
n
2n .

Solution. We have

0 ⩽ n
2n
= n
(1 + 1)n

= n
1 + n + n(n−1)2 +⋯

< n
n(n−1)

2

and

lim
n→∞

n
n(n−1)

2
= lim
n→∞

2
n − 1
= 0,

so limn→∞
n
2n = 0.

Example 2.4.2. Find limn→∞
5n
n! .

Solution. We have

0 ⩽ 5
n

n!
= 5 × 5 × 5 × 5 × 5
1 × 2 × 3 × 4 × 5

× 5n−5

6 × 7 × 8 ×⋯× n
⩽ 5

5

5!
× ( 5

6
)
n−5

and

lim
n→∞

55

5!
× ( 5

6
)
n−5
= 5

5

5!
× lim
n→∞
( 5
6
)
n−5
= 0,

so limn→∞
5n
n! = 0.

Example 2.4.3. Find limn→∞
n√2n + 5n.

Solution. We have

5 = n√5n ⩽ n√2n + 5n ⩽ n√5n + 5n ⩽ 5 × 2
1
n .

Then

5 ⩽ lim
n→∞

n√2n + 5n ⩽ lim
n→∞

5 × 2
1
n = 5 × lim

n→∞
2

1
n = 5,

so limn→∞
n√2n + 5n = 5.
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Example 2.4.4. Show that limx→a f (x) = 0 if and only if limx→a |f (x)| = 0.

Proof. “⟹” If limx→a f (x) = 0, then, given any number ε > 0, we have δ > 0 such that

|f (x) − 0| < ε whenever 0 < |x − a| < δ.

However, this also means ||f (x)| − 0| < ε whenever 0 < |x − a| < δ, so limx→a |f (x)| = 0.
“⟸ ” Assume limx→a |f (x)| = 0. Then, by the inequalities

−|f (x)| ⩽ f (x) ⩽ |f (x)|

and the squeeze theorem, we have limx→a f (x) = 0.

Example 2.4.5. Show that limn→∞ b
1
n = 1 for 0 < b ⩽ 1.

Proof. If b = 1, the statement is true. Now suppose 0 < b < 1. Let b = 1
a . Then a > 1 and

0 ⩽ |b
1
n − 1| = |( 1

a
)

1
n
− 1| = | 1

a
1
n
− 1|

= |a
1
n − 1|
a

1
n
⩽ |a

1
n − 1| = a

1
n − 1.

Moreover,

lim
n→∞

0 = 0 and lim
n→∞
(a

1
n − 1) = 0 by Example 2.3.2.

So, by the Squeeze theorem, limn→∞(b
1
n − 1) = 0. This means limn→∞ b

1
n = 1.

NOTE. Together with Example 2.3.2, we have limn→∞ b
1
n = 1 for any constant b > 0.

Example 2.4.6. Find limx→0
sinx
x (the function sinx requires x to be computed in ra-

dian angle measure, not degree angle measure).

Solution. Computingnumerical data for small values of x suggests that limx→0(sinx)/
x = 1, as does the graph of (sinx)/x. To verify this by using the squeeze theorem we
first need to find bounding functions.

Consider the unit circle with center O (0,0) and radius 1. Let S be the point (1,0)
and label P on the upper half of the circle so that ∡POS has (radian) measure x. Then
P is the point (cosx, sinx). From point P, draw a line perpendicular to the x-axis inter-
secting the axis at point R(cosx,0). Let the line perpendicular to the x-axis at point S
meet OP at point Q(1, tanx).

From Figure 2.4.2, we know that

area(ΔORP) ⩽ area(sector OSP) ⩽ area(ΔOSQ).
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Figure 2.4.2: Diagram for Example 2.4.6.

By the formulas for area of a triangle and area of a sector, these inequalities become

1
2
cosx sinx ⩽ 1

2
x ⩽ 1

2
tanx.

Since x is a small positive number, sinx > 0 and cosx > 0. Multiplying the inequalities
by 2/ sinx gives

0 < cosx ⩽ x
sinx
⩽ 1
cosx
.

Taking reciprocals of the expression (thus reversing the direction of the inequalities)
gives the inequalities

cosx ⩽ sinx
x
⩽ 1
cosx
.

We know from Example 2.2.9 that

lim
x→0

cosx = cos0 = 1 and lim
x→0

1
cosx
=

1
limx→0 cosx

= 1.

Hence, by the squeeze theorem, we find the previous guess for the limit was correct:

lim
x→0

sinx
x
= 1.

Example 2.4.7. Find limx→0
tanx
x .

Solution. We have

lim
x→0

tanx
x
= lim
x→0

sinx
x

1
cosx
= lim
x→0

sinx
x

lim
x→0

1
cosx
= 1 × 1 = 1.
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Example 2.4.8. Find limx→0
1−cosx
x2 .

Solution. We have

lim
x→0

1 − cosx
x2
= lim

x→0

2 sin2 x
2

x2

= 1
2
(lim
x→0

sin x
2
( x2 )
)
2

= 1
2
(lim
t→0

sin t
t
)
2

= 1
2
⋅ 12

= 1
2
.

Example 2.4.9. Use the squeeze theorem to show that

lim
x→∞
(1 + 1

x
)
x
= lim
x→−∞
(1 + 1

x
)
x
= e.

Proof. For any positive number x > 0, there exists a unique integer n such that

n ⩽ x < n + 1.

Therefore,

(1 + 1
n + 1
)
n
< (1 + 1

n + 1
)
x
< (1 + 1

x
)
x
⩽ (1 + 1

n
)
n+1
.

Moreover,

lim
n→+∞
(1 + 1

n + 1
)
n
= lim
n→+∞
(1 + 1

n + 1
)
n+1
(1 + 1

n + 1
)
−1
= e

and

lim
n→+∞
(1 + 1

n
)
n+1
= lim

n→+∞
(1 + 1

n
)
n
(1 + 1

n
)

= lim
n→+∞
(1 + 1

n
)
n
lim

n→+∞
(1 + 1

n
) = e × 1 = e.

By the squeeze theorem, we obtain

lim
x→+∞
(1 + 1

x
)
x
= lim
n→+∞
(1 + 1

n
)
n
= e.

If x tends to negative infinity, let x = −(t + 1) and then t→+∞. Then

lim
x→−∞
(1 + 1

x
)
x
= lim

t→+∞
(1 − 1

t + 1
)
−(t+1)
= lim
t→+∞
(
t + 1 − 1
t + 1
)
−(t+1)
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= lim
t→+∞
( t
t + 1
)
−(t+1)
= lim
t→+∞
( t + 1

t
)
t+1

= lim
t→+∞
(1 + 1

t
)
t+1
= lim
t→+∞
(1 + 1

t
)
t
lim
t→+∞
(1 + 1

t
)

= e × 1 = e.

Therefore, for x→−∞, we also have

lim
x→−∞
(1 + 1

x
)
x
= e.

Figure 2.4.3 shows the graph of the function (1 + 1
x )

x .

Figure 2.4.3: Graph of y = (1 + 1
x )

x .

Example 2.4.10. Find limx→∞(1 +
2
x )

x .

Solution. We have

lim
x→∞
(1 + 2

x
)
x
= lim
x→∞
[(1 + 1x

2
)

x
2
]
2
.

Now, let t = x
2 . Then t→∞ as x→∞, so

lim
x→∞
(1 + 2

x
)
x
= lim
x→∞
[(1 + 1x

2
)

x
2
]
2
= lim
t→∞
[(1 + 1

t
)
t
]
2
= e2.

In order to use our formal definition of limit, it is necessary for us to know the
value L of the limit. For any particular value L, we can use the limit definition to test
whether or not L is the limit of f as x→ a, but using the definition to show that L is not
the limit of f does not tell us whether or not a limit actually exists as x→ a. A useful
criterion for testing the existence of limits of functions is given by the next theorem.

Theorem 2.4.2 (Cauchy’s theorem). The limit limx→a f (x) exists if and only if, for any
given ε > 0, there exists a number δ > 0 (that depends on ε) such that, for any x′ and x″

satisfying 0 < |x′ − a| < δ and 0 < |x″ − a| < δ, we have

|f (x′) − f (x″)| < ε.
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Augustin-Louis Cauchy (1789–1857)wasa Frenchmathematicianwho is reputed to be an early pioneer
of analysis. He is also a profound and prolific mathematician who exercised a great influence over his
contemporaries and successors. His writings cover the entire range ofmathematics andmathematical
physics. http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

Proof. “⟹” If limx→a f (x) exists, then there is a finite number L such that, for any
given number ε > 0, there is a number δ > 0 (corresponding to the number ε/2) such
that

|f (x) − L| < ε
2

whenever 0 < |x − a| < δ.

Choose any two numbers x′ and x″ such that 0 < |x′ −a| < δ and 0 < |x″ −a| < δ. Then

|f (x′) − f (x″)| = |f (x′) − L − (f (x″) − L)|
⩽ |f (x′) − L| + |f (x″) − L|

< ε
2
+ ε
2
= ε.

“⟸ ” Not given here.

Theorem 2.4.3 (Sequence form of Cauchy’s theorem). The limit limn→∞ xn exists if
and only if, for any given ε > 0, there exists an integer N > 0 (that depends on ε) such
that, for any n and m satisfying n > N and m > N, we have

|xn − xm| < ε.

Example 2.4.11. Show that limn→∞ sn does not exist, where

sn = 1 +
1
2
+ 1
3
+⋯+ 1

n
.

Solution. If the limit exists, then, for the number ε = 1
2 , there is an integer N > 0 such

that

|sn − sm| <
1
2

for all n > N andm > N .

If we choose n = 4N andm = 2N , then

|sn − sm| = |1 +
1
2
+⋯+ 1

4N
− (1 + 1

2
+ 1
3
+⋯+ 1

2N
)|

= | 1
2N + 1
+ 1
2N + 2
+⋯+ 1

4N
|

=
1

2N + 1
+

1
2N + 2
+⋯+

1
4N

⩾ 1
4N
+ 1
4N
+⋯+ 1

4N

= 4N − (2N + 1) + 1
4N

= 1
2
.

This is a contradiction, so limn→∞ sn does not exist.
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2.5 Infinitesimal functions and asymptotic functions

One of the great ideas derived from calculus is the one called “infinitesimal”. Calcu-
lus was originally called the infinitesimal analysis. We first give the definition of an
infinitesimal function.

In the following definitions, the letter a could be a finite real number or ±∞. The
connection between infinitesimal functions and limits is given by the following theo-
rem.

Definition 2.5.1. If limx→a α(x) = 0, then we say α(x) is infinitesimal as x→ a.

Theorem 2.5.1. limx→a f (x) = L if and only if the difference α(x) = f (x) − L is infinitesi-
mal as x→ a.

Proof. This is because

lim
x→a

α(x) = 0 ⟺ lim
x→a
(f (x) − L) = 0

⟺ lim
x→a

f (x) − lim
x→a

L = 0 ⟺ lim
x→a

f (x) = L.

Example 2.5.1. Since limx→∞
2x
x+7 = 2,

2x
x+7 − 2 =

−14
x+7 → 0, as x→∞.

Corollary 2.5.2. If limx→a
f (x)
g(x) = L, then f (x) = L ⋅ g(x) + α ⋅ g(x), where α→ 0 as x→ a.

Proof. This follows directly from Theorem 2.5.1.

Definition 2.5.2. We say that two functions α(x) and β(x) are asymptotic as x→ a if
limx→a

β(x)
α(x) = 1, and we write β(x) ∼ α(x), as x→ a.

From Examples 2.4.6, 2.4.7, and 2.4.8, we know that

as x→ 0, sinx ∼ x, tanx ∼ x, 1 − cosx ∼ x
2

2
.

Figure 2.5.1, Figure 2.5.2 and Figure 2.5.3 show graphs of these functions.

Example 2.5.2. Show that arcsinx ∼ x as x→ 0.

Proof. By the definition of inverse functions, we have

x = sin(arcsinx) = x for −π
2
⩽ x ⩽ π

2
.

Then from above, sinx ∼ x as x→ 0, which means

x = sin(arcsinx) ∼ arcsinx as x→ 0.

Figure 2.5.4 shows this pair of asymptotic functions.
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Figure 2.5.1: Graphs of y = x and y = sin x.

Figure 2.5.2: Graphs of y = x and y = tan x.

Figure 2.5.3: Graphs of y = x2
2 and y = 1 − cos x.

Example 2.5.3. Prove that n√1 + x − 1 ∼ 1
nx as x→ 0.

Solution. Recall the factorization

(an − bn)
= (a − b)(an−1 + an−2b + an−3b2 +⋯+ a2bn−3 + abn−2 + bn−1).



88 | 2 Limits and continuity

Figure 2.5.4: Graphs of y = x and y = arcsin x.

Let a = n√1 + x and b = 1. Consider

lim
x→0

n√1 + x − 1
1
nx

= lim
x→0

a − b
1
nx

= lim
x→0

( n√1 + x)n − 1n
x
n [

n√(1 + x)n−1 + n√(1 + x)n−2 +⋯+ n√(1 + x) + 1]

= lim
x→0

1 + x − 1
x
n [

n√(1 + x)n−1 + n√(1 + x)n−2 +⋯+ n√(1 + x) + 1]

= lim
x→0

1
1
n [

n√(1 + x)n−1 + n√(1 + x)n−2 +⋯+ n√(1 + x) + 1]

= 1
1
n (1 + 1 +⋯+ 1)

= 1n
n
= 1.

As a result, we show the graphs of y = x
3 and y =

3√1 + x − 1 in Figure 2.5.5.

Example 2.5.4. Show that x3 + 7x2 − x + 10 ∼ x3 as x→±∞.

Figure 2.5.5: Graphs of y = 3√1 + x − 1 and y = x
3 .
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Figure 2.5.6: Graphs of y = x3 and y = x3 − 2x2 − x + 10 in a small viewing window.

Figure 2.5.7: Graphs of y = x3 and y = x3 − 2x2 − x + 10 in a large viewing window.

Proof.

lim
x→±∞

x3 − 2x2 − x + 10
x3

= lim
x→±∞
(1 − 2

x
− 1
x2
+ 10
x3
) = 1.

Figure 2.5.6 and Figure 2.5.7 show the graphs of the two functions in different viewing
windows.

NOTE. Sometimes anxn is called the dominant term of the polynomial P(x) = a0 +
a1x +⋯+ anxn, an ≠ 0, because P(x) ∼ anxn as x→±∞.

Using asymptotic functions to evaluate limits

When evaluating limits, we can replace the numerator, the denominator, or both of a
quotient by corresponding asymptotic functions, provided that the limits exist.



90 | 2 Limits and continuity

Theorem 2.5.3. If α(x) ∼ α̃(x) and β(x) ∼ β̃(x) as x → a and all of them are nonzero,
then

lim
x→a

α(x)
β(x)
= lim
x→a

α̃(x)
β(x)
= lim
x→a

α(x)
β̃(x)
= lim
x→a

α̃(x)
β̃(x)
.

Proof. For the first equality,

lim
x→a

α(x)
β(x)
= lim
x→a

α(x)
β(x)

lim
x→a

α̃(x)
α(x)
= lim
x→a

α(x)
β(x)

α̃(x)
α(x)
= lim
x→a

α̃(x)
β(x)
.

Using similar ratios, one can deduce the remaining equalities.

Example 2.5.5. Find limx→0
1−cosx
2x2 .

Solution. First note that 1 − cosx ∼ x2
2 as x→ 0. Then

lim
x→0

1 − cosx
2x2
= lim
x→0

x2
2
2x2
= lim
x→0

1
4
= 1
4
.

Example 2.5.6. Find limx→0
(1+x2)

1
3 −1

cosx−1 .

Solution. Observe that, as x→ 0, 1 − cosx ∼ 1
2x

2 and

(1 + x2)
1
3 − 1 ∼ 1

3
x2

by Example 2.5.3. Therefore,

lim
x→0

(1 + x2)
1
3 − 1

cosx − 1
= lim
x→0

1
3x

2

− 12x
2
= − 2

3
.

Example 2.5.7. Find limx→0
tanx−sinx

x3 .

Solution.

lim
x→0

tanx − sinx
x3

= lim
x→0

sinx
cosx − sinx

x3
= lim
x→0

sinx
x3
( 1
cosx
− 1)

= lim
x→0

sinx
x3

1 − cosx
cosx
= lim
x→0

x
x3

x2
2

cosx

= 1
2
. lim
x→0

1
cosx
= 1
2
.

NOTE. This example shows that, if the function is a product of other functions, we
can replace one ormore of the “factors” by asymptotic functions, provided that all the
limits involved exist.
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Definition 2.5.3. If limx→a
f (x)
g(x) = 0 as x→ a, then we say that f (x) is a negligible func-

tionwith respect to g(x) as x tends to a. We denote this by f (x) = o(g(x)) (referred to as
the “small o notation”).

Intuitively speaking, if f (x) = o(g(x)), then f (x) ismuch smaller than g(x) as x→ a.

Example 2.5.8. Both x2 = o(x) and x2 − x3 = o(2x − x2) as x tends to 0, since

lim
x→0

x2

x
= lim
x→0

x = 0 and lim
x→0

x2 − x3

2x − x2
= lim
x→0

x − x2

2 − x
=
0 − 0
2 − 0
= 0.

Theorem 2.5.4. As x→ a, f (x) ∼ g(x) if and only if f (x) = g(x) + o(f (x)).

This theorem says that, if f (x) and g(x) are asymptotic functions as x → a, the
difference between f (x) and g(x) is a negligible function with respect to each of them.
We leave the proof as an exercise.

Example 2.5.9. As x→ 0, sinx ∼ x, so we have sinx − x = o(x). Table 2.5.1 shows the
values of sinx and the difference between x and sinx for some small values of x.

Table 2.5.1: Selected values of sin x and x − sin x for x ≈ 0.

x sin(x) x − sin(x)

0.1 0.099833416646828 0.000166583353172
0.01 0.009999833334167 0.000000166665833

0.009 0.008999878500492 0.000000121499508
0.005 0.004999979166693 0.000000020833307
0.002 0.001999998666667 0.000000001333333

0.0001 0.000100000000000 0.000000000000000

2.6 Continuous and discontinuous functions

2.6.1 Continuity and discontinuity

Themathematical definition of a continuous function corresponds closely to themean-
ing of the word “continuity” in everyday language. We think of a continuous process
as one that takes place gradually, without interruption or abrupt large changes. For
example, the outside temperature changes continuously, the height of a child grows
continuously, etc. The graph of a continuous function is a continuous curve with no
holes, that you can draw without lifting your pencil from the page.

Figure 2.6.1 is the graph of a function defined on [0,4]. It is not continuous at x = 1
and x = 2, because the curve jumps abruptly from one value to another at these places.
The formal definition of continuity is given below.



92 | 2 Limits and continuity

Figure 2.6.1: Continuity and discontinuity.

Definition 2.6.1. A function y = f (x) is continuous at a point x = a, provided
limx→a f (x) = f (a).

NOTES. The definition is implicitly placing three requirements on the function f :
1. a is in the domain of f (x), so that f (a) is defined;
2. the function f (x) is defined for x in a δ neighborhood of x = a and limx→a f (x)

exists (as a finite real number);
3. limx→a f (x) = f (a) (from this, we also have limx→a(f (x) − f (a)) = 0 or equivalently

limΔx→0 Δy = 0).

In other words, f is continuous at a, if it is defined at a and f (x) → f (a) as x→ a.
Thus, a continuous function f at x = a has the property that, at x = a, small changes in
x produce only small changes in f (x). In fact, the change in f (x) can be kept as small
as we please by keeping the change in x sufficiently small, since limΔx→0 Δy = 0.

Figure 2.6.1 shows the graph of a function f (x). This function f is not continuous
at x = 1 since limx→1 f (x) does not exist. This function is also not continuous at x = 2
since limx→2 f (x) is not equal to f (2).

If a function f (x) is not continuous at x = a, we say that f (x) is discontinuous at x =
a or f (x) has a discontinuity at x = a. There are four types of common discontinuities.
For example, in Figure 2.6.1, we say that f has jump discontinuity at x = 1 and f has a
removable discontinuity at x = 2. Figure 2.6.2 shows some types of discontinuities. We
now give a formal definition of these types of discontinuities.

Figure 2.6.2: Some types of discontinuities.
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Definition 2.6.2. If f is discontinuous at x = a, then at x = a:
1. f has a removable discontinuity if limx→a f (x) exists but f (a) ≠ limx→a f (x);
2. f has a jump discontinuity if both limx→a+ f (x) and limx→a− f (x) exist but

limx→a+ f (x) ≠ limx→a− f (x);
3. f has an infinite discontinuity if either limx→a− f (x) or limx→a+ f (x) is∞ or −∞;
4. f has an oscillating discontinuity if f (x) oscillates as x→ a.

Example 2.6.1. The function f (x) = x−1
x2−1 has adiscontinuity at x = 1.Write an extended

function so that f is continuous at x = 1.

Solution. Since f (x) is undefined at x = 1, it must be discontinuous at x = 1 and

lim
x→1

x − 1
x2 − 1
= lim
x→1

x − 1
(x − 1)(x + 1)

= lim
x→1

1
x + 1
= 1
2
.

Because the limit exists but the function value at x = 1 does not, f must have a remov-
able discontinuity there.

We now define

g(x) =
{
{
{

x−1
x2−1 , if x ≠ 1
1
2 , if x = 1.

Notice that g(x) is now continuous at x = 1. The discontinuity at x = 1 has therefore
been removed. Figure 2.6.3 shows the graph of this function.

Figure 2.6.3: Graph of f (x) in Example 2.6.1.

NOTE. The functions f and g also have a discontinuity at x = −1. However, this discon-
tinuity cannot be removed; it is an infinite discontinuity (there is a vertical asymptote
at x = −1).

Since the continuity of a function at point x = a involves a limit, it is sensible to
explore the significance of the two corresponding one-sided limits.



94 | 2 Limits and continuity

Definition 2.6.3. A function f is continuous from the right at x = a if both f (a) and
limx→a+ f (x) exist and

lim
x→a+

f (x) = f (a).

Similarly, f is continuous from the left at x = a if both f (a) and limx→a− f (x) exist and

lim
x→a−

f (x) = f (a).

For example, from Figure 2.6.1, we know that the function f (x) is continuous from
the right at x = 1 and f (x) is continuous from the left at x = 4. Example 2.2.10 shows
that the function √x is continuous from the right at x = 0.

Obviously, if a function is continuous from the left at x = a and also continuous
from the right at x = a, then it must be continuous at x = a, since

lim
x→a+

f (x) = f (a) and lim
x→a−

f (x) = f (a) ⟺ lim
x→a

f (x) = f (a).

Thus,

f (x) is continuous at x = a if and only if
f (x) is continuous from the left and from the right at x = a.

Evaluating limits of a continuous function is easy since, if f is continuous at x = a,
limx→a f (x) = f (a). This means that one can find limx→a f (x) simply by substituting
x = a in f (x) to find the limit f (a).

Direct substitution rule for limits of a function at its continuities
If f (x) is continuous at x = a, then limx→a f (x) = f (a).

2.6.2 Continuous functions

Definition 2.6.4. If f is continuous at each point a in an interval I, then f is said to
be continuous on the interval I.

Theorem 2.2.7 and Example 2.2.9 show that the polynomial functions cosx and
sinx are continuous at every point a ∈ (−∞,∞). We now show that several other ba-
sic functions are also continuous on their domains (we would expect this from their
graphs).

Example 2.6.2. The exponential function f (x) = bx , b > 0, b ≠ 1, is continuous on its
domain (−∞,∞).

Proof. See Section 2.7.



2.6 Continuous and discontinuous functions | 95

Building continuous functions
In Section 2.2.3, it was shown how the limit of a function f (x) whose formula is an
algebraic combination of basic functions could be computed from the limits of those
much simpler basic functions. These same results apply to continuous functions. That
is, continuous functions could be added, subtracted, multiplied, divided (provided
the denominator is not 0), and composed to form new continuous functions. You can
probably understand and appreciate these on the intuitive level, as well as construct
simple proofs for limit theorems.

Theorem 2.6.1. If f (x) and g(x) are continuous at x = a, then the following functions
are also continuous at x = a:
1. (f + g)(x) = f (x) + g(x) (sum rule);
2. (f − g)(x) = f (x) − g(x) (difference rule);
3. (cf )(x) = cf (x) (constant multiple rule);
4. (fg)(x) = f (x)g(x) (product rule);
5. ( fg )(x) =

f (x)
g(x) , provided g(a) ≠ 0 (quotient rule).

Proof. Each of the five parts of this theorem follows from the corresponding limit laws
from Section 2.2.3. For example, we give the proof of number 1. Since f (x) and g(x) are
continuous at a, we have

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a).

Therefore,

lim
x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x) = f (a) + g(a) = (f + g)(a).

This shows that f + g is continuous at a.

Example 2.6.3. Each of the six basic trigonometric functions, sinx, cosx, tanx, cotx,
secx, and cscx, is continuous on its own domain.

Solution. We proved that sinx and cosx are continuous on their domains in Exam-
ple 2.2.9. For the remaining functions, tanx, cotx, secx, and cscx, we have

tanx = sinx
cosx
, cotx = cosx

sinx
, secx = 1

cosx
, and cscx = 1

sinx
.

Then, because the functions sinx and cosx are continuous on R and because the re-
maining trigonometric functions are quotients of 1, cosx, and sinx, by Theorem 2.6.1,
these four trigonometric functions are continuous on their domains.
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Continuity of inverse functions
If y = f (x) is a one-to-one function, then it has an inverse function, x = f −1(y). We claim
that, if y = f (x) is continuous, x = f −1(y) (or y = f −1(x) in the more traditional notation)
is also continuous. For example, if y = 2x+1, then x = (y−1)/2 is its inverse (in this case
you should be aware that x is now the dependent variable and y is the independent
variable). Both of these functions are polynomials and therefore both are continuous
on R.

Because the graphs of a function y = f (x) and its inverse function y = f −1(x) are
reflections across the line y = x, if f is continuous, then f −1 must also be continuous.
Observe, however, that if you reverse the roles of the x- and y-axes in your graph, the
graph of x = f −1(y)will be identical to the graph of y = f (x) in the traditional xy-plane.
Therefore, we have the following theorem (the proof is omitted here).

Theorem 2.6.2. If y = f (x) is a one-to-one continuous function defined on D with range
R, then its inverse y = f −1(x) is also continuous on R.

Example 2.6.4. Determine the intervals on which a logarithmic function and the six
inverse trigonometric functions are continuous.

Solution. A logarithmic function y = logb x (b > 0, b ≠ 1) is the inverse of the expo-
nential function y = bx . Such an exponential function is continuous and one-to-one
on the whole real line with range y > 0. Therefore, its inverse function is continuous
on its entire domain {x|x > 0}.

The six trigonometric functions are also continuous and are one-to-one on their
restricted domains. Therefore, the inverse trigonometric functions are all continuous
on their domains. That is to say:
(1) y = arcsinx is continuous on [−1, 1];
(2) y = arccosx is continuous on [−1, 1];
(3) y = arctanx is continuous on (−∞,∞);
(4) y = arccotx is continuous on (−∞,∞);
(5) y = arcsecx is continuous on (−∞,−1] ∪ [1,∞);
(6) y = arccscx is continuous on (−∞,−1] ∪ [1,∞).

Continuity of composite functions
Anotherway of combining continuous functions f and g to formnew continuous func-
tions is to form the composite function (f ∘ g)(x) = f (g(x)), in which we substitute the
formula g(x) in place of the variable of f (x). Intuitively, if x is close to a, then g(x)
is close to b and, since f is continuous at b, g(x) is close to b, so f (g(x)) is close to
f (b). The continuity properties of the composite function are given in the following
theorem.
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Theorem 2.6.3. If u = g(x) is continuous at x = a, g(a) = b, and f is continuous at u = b,
then f (g(x)) is continuous at x = a. That is,

lim
x→a

f (g(x)) = f (b) = f (g(a)).

Proof. Since f (u) is continuous at b, for any given number ε > 0, we can find a number
δ1 such that

|f (g(x)) − f (g(a))| = |f (u) − f (b)| < ε whenever |u − b| < δ1.

However, limx→a g(x) = bmeans that there exists a number δ such that

|g(x) − b| < δ1 whenever |x − a| < δ.

By the definition of a limit, limx→a f (g(x)) = f (b) and f (g(x)) is continuous at a.

NOTE. If g(x) is continuous at x = a, g(a) = b, and f (x) is continuous at x = b, then

lim
x→a

f (g(x)) = f(lim
x→a

g(x)) = f (g(a)).

Example 2.6.5. Find limx→π 3sinx .

Solution. Since 3x and sinx are continuous and x = π is a point in the domain of 3sinx ,
we have

lim
x→π

3sinx = 3limx→π sinx = 3sinπ = 30 = 1.

Example 2.6.6. Find limx→0
ex−1
x .

Solution. Let u = ex − 1. Then x = ln(u + 1) and u→ 0 as x→ 0. Then

lim
x→0

ex − 1
x
= lim

u→0

u
ln(u + 1)

= lim
u→0

1
1
u ln(u + 1)

= lim
u→0

1
ln(u + 1)

1
u
= 1
ln limu→0(u + 1)

1
u
= 1
lne
= 1.

NOTE. From this example we see that ex − 1 ∼ x as x→ 0 (or ex − 1 ≈ x for small x).

Example 2.6.7. A power function is defined as y = xu, where u ∈ R, u ≠ 0. For some u,
the domain of a power function is all real numbers, but for other u, the domain is re-
stricted to positive numbers, x > 0. The domainmust be determined in each individual
case. Show that y = xu is continuous for x > 0.

Proof. This is because y = xu = eu lnx . The exponential function and the logarithm are
both continuous when x > 0, so y = xu is continuous on x > 0.
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Recall that an elementary function is a function built from a finite number of expo-
nentials, logarithms, constants, power functions, trigonometric functions, and their
inverses through composition and combinations using the four elementary operations
(+, −, ×, ÷). Now, in view of Theorem 2.6.1, Theorem 2.6.2, and Theorem 2.6.3, we con-
clude as follows.

Theorem 2.6.4. Each elementary function is continuous on its domain.

Example 2.6.8. Find all x-values for which f (x) = x3 + ex sinx is continuous.

Solution. By Theorem 2.6.4, x3, ex , and sinx are continuous for all real x-values.
Therefore, the function f (x) = x3 + ex sinx is also continuous for all real x-values.

Example 2.6.9. For the function f (x) = log2(sinx), find all x-values for which f is con-
tinuous.

Solution. By Theorem 2.6.4, the function log2 x is continuous when x > 0 and sinx is
continuous for all real x, so f (x) is continuous when

sinx > 0.

Solving this inequality gives

2nπ + 0 < x < 2nπ + π for all n ∈N.

This means the function f (x) = log2 sinx is continuous on these open intervals. The
graph of f (x) is shown in Figure 2.6.4.

Figure 2.6.4: Graph of the function in Example 2.6.9.
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Example 2.6.10. Find

lim
x→0
(2 + tanx)ln(1+esinx

2
).

Solution. This is a limit of an elementary function when x→ 0 and x = 0 is a point in
its domain, so by the direct substitution rule we have

lim
x→0
(2 + tanx)ln(1+esinx

2
) = (2 + 0)ln(1+esin0

2
)

= 2ln(1+e0)

= 2ln(1+1)

= 2ln 2.

Example 2.6.11. Classify the discontinuity for the function

f (x) = 2
1
x − 1

2
1
x + 1
.

Solution. This function is an elementary function defined for all x except 0, so the
only discontinuity of f (x) occurs at x = 0. Then

lim
x→0+

2
1
x − 1

2
1
x + 1

t= 1x= lim
t→∞

2t − 1
2t + 1
= lim
t→∞

1 − 1
2t

1 + 1
2t
= 1 − 0
1 + 0
= 1,

lim
x→0−

2
1
x − 1

2
1
x + 1
= lim
t→−∞

2t − 1
2t + 1
= lim
t→∞

0 − 1
0 + 1
= −1.

This discontinuity is a jump discontinuity. Figure 2.6.5 shows the graph of f (x).

Figure 2.6.5: Graph of f (x) in Example 2.6.11.

2.6.3 Theorems on continuous functions

A number of results involving continuous functions are very important in the devel-
opment of calculus, including the extreme value theorem and the intermediate value
theorem. First we give the definitions of global extrema.
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Definition 2.6.5. If f has domain D, then:
1. f has an absolute maximum (also called global maximum) at x = a ∈ D if f (x) ⩽ f (a)

for every x ∈ D;
2. f has an absolute minimum (also called global minimum) at x = a ∈ D if f (x) ⩾ f (a)

for every x ∈ D.

NOTE. An absolute maximum can occur at more than one x-value in the domain of f .
The same is true for absolute minima, as shown in Figure 2.6.8. Also, global extrema
may occur at end points or at some interior points of an interval as shown in Fig-
ure 2.6.6 and Figure 2.6.7.

Figure 2.6.6: Global extrema may occur at endpoints.

Figure 2.6.7: Absolute maximum and absolute minimum.

Figure 2.6.8: A function may obtain its global extrema at more than one point.
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If you sketch the graph of a continuous function f on a closed interval [a,b], then you
find that the curve is bounded above and below by two horizontal lines. The curvewill
always have a globalmaximumanda globalminimumsomewhere in the interval. This
is because the two points A(a, f (a)) and B(b, f (b)) are fixed and the graph which is a
continuous curve goes from point A to point B. No matter how many turns or oscilla-
tions there are along the curve, the path cannot increase or decreasewithout bound as
the graphmoves from A to B. The highest points and the lowest points reached are the
global extremumpoints. This observation is confirmed by the following two theorems.

Theorem 2.6.5 (Boundedness theorem). If f is continuous on a closed interval [a,b],
then f must be bounded.

Proof. See Section 2.7.

Furthermore, we conclude that there must be both an absolute maximum and an
absolute minimum somewhere in the closed interval.

Theorem 2.6.6 (Extreme value theorem). If f is continuous on a closed interval [a,b],
then f must have an absolute minimum value f (c) and an absolute maximum value f (d)
at some points c and d in [a,b]. That is,

f (c) ⩽ f (x) ⩽ f (d) for all x ∈ [a,b].

Proof. See Section 2.7.

If a function is not continuous or is continuous only on an open interval, then the
extreme value theorem may not hold. For example, consider the two functions f (x)
and g(x):

f (x) =
{
{
{

x + 1, 0 ⩽ x ⩽ 2
4 − (x − 2)2, 2 < x ⩽ 4

and g(x) = 1
x

for x ∈ (0.5,3).

Graphs of f (x) and g(x) are shown in Figure 2.6.9 and Figure 2.6.10 respectively.

Figure 2.6.9: A function may not have global extrema if it is not continuous.
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Figure 2.6.10: A function may not have global extrema if the interval is not closed.

The function f (x) is defined on the closed interval [0,4], but it is not continuous on
the interval and it has no global maximum value. The function g(x) is continuous at
each point in the interval (0.5,3), but the interval is not closed. This function has no
global extrema in the interval.

NOTE. The extreme value theorem was originally proved by Bernard Bolzano in the
1830s in awork calledFunctionTheory, but thework remainedunpublisheduntil 1930.
Bolzano’s proof consisted of showing that a continuous function on a closed interval
was bounded and then showing that the function attained a maximum and a mini-
mum value. His proof involved what is known today as the Bolzano–Weierstrass the-
orem. http://en.wikipedia.org/wiki/Extreme_value_theorem

Nowwe discuss another theorem on continuous functions defined on a closed in-
terval, named the intermediate value theorem. If your height at birth was 50 cm and
you are now 180 cm tall, then there must have been a time when your height was ex-
actly 170 cm, since you grew continuously and your height could not jump from one
point to another. Similarly, if the temperature changes continuously from negative to
positive, then you would believe that there must have been an instant when the tem-
perature was exactly 0.

Now let us go back to mathematics and explore this in terms of continuous func-
tions. If the graph of a continuous function has one end below the x-axis and the other
end above the x-axis, then the curve must cross the x-axis at least once. This is stated
as the following theorem.

Theorem 2.6.7 (Bolzano’s theorem). If f (x) is continuous on a closed interval [a,b],
and f (a) × f (b) < 0, then there is at least a value c ∈ [a,b] such that f (c) = 0.

Proof. See Section 2.7.
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NOTE. This theorem was first proved by Bernard Bolzano in 1817. Augustin-Louis
Cauchy provided a proof in 1821. http://en.wikipedia.org/wiki/Intermediate_value_
theorem

Bernhard Bolzano
(1781–1848) was a Bohemian mathematician, logician, and philosopher.
http://en.wikipedia.org/wiki/Bernard_Bolzano

This theorem can be extended in an obvious way. For a continuous function f and
any number m between f (a) and f (b), there must be at least one number c between
a and b such that f (c) = m. We can prove this by leaving the shape of the curve un-
touched but shifting the axes up or down bym units.

Theorem 2.6.8 (Intermediate value theorem). If f (x) is continuous ona closed interval
[a,b] and m is any number between f (a) and f (b), then there is at least one value c ∈
[a,b] such that f (c) =m.

Proof. If f (a) <m < f (b), then let g(x) = f (x)−m. Then g(x) is also continuous on [a,b].
Since

g(a) = f (a) −m < 0

and g(b) = f (b) −m > 0, by Bolzano’s theorem, there is a value c ∈ [a,b] such that

g(c) = 0.

This means f (c) =m.
If f (b) < m < f (a), then we let g(x) = m − f (x). By an argument similar to the one

above, we can also find a number c such that f (c) =m.
The intermediate value theorem states that a continuous function takes on every

intermediate value between the function values f (a) and f (b). This means that any
horizontal line y =m between y = f (a) and y = f (b)must intersect the graph of y = f (x)
at least one x-value in the interval [a,b], as seen in Figure 2.6.11 and Figure 2.6.12. If
there is no point of intersection between the line y =m and the graph of y = f (x), then
part of the graph of y = f (x) will be below y =m and some part of the graph of y = f (x)
will be above y =m, so the graphof y = f (x)must jumpover the line y =m at somepoint
and there would be some holes or breaks in the graph of y = f (x). For some functions,
an intermediate valuem will be attained more than once, as in Figure 2.6.13.
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Figure 2.6.11: There is a “c” such that f (c) =m in case that f (a) < f (b).

Figure 2.6.12: There is a “c” such that f (c) =m in case that f (a) > f (b).

Figure 2.6.13: There may be more than one c such that f (c) =m.

For the intermediate value theorem to hold, the function f must be continuous on a
closed interval. The theorem is not true in general for discontinuous functions, even if
the function is defined on a closed interval. For example, consider the two functions

f (x) =
{
{
{

x, 0 ⩽ x ⩽ 2
x + 2, 2 < x ⩽ 4

and g(x) = x,0 ⩽ x < 1.

The function f (x) is not continuous on [0,4], because f (x) cannot take every value
between f (2) and f (4) as shown in Figure 2.6.14. The function g(x) is not defined on a
closed interval, so g(1) does not exist.

Example 2.6.12. Show that the equation 4x3 +3x− 2 = 0 has at least one root between
x = 0 and x = 2.
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Figure 2.6.14: No intermediate values for a discontinuous function.

Proof. Let f (x) = 4x3 + 3x − 2 and look for a number c between a = 0 and b = 2 such
that f (c) = 0. We try

f (0) = 0 − 0 − 2 = −2, so f (0) < 0,
f (2) = 32 + 6 − 2 = 36, so f (2) > 0.

Since f is continuous on [0, 2], it follows from Bolzano’s Theorem that f (x)must have
at least one root x = c in the interval (0, 2).

NOTE. In fact, we can locate a root more precisely by subdividing it into smaller in-
tervals and using the intermediate value theorem again. For example, because f (1) =
5 > 0, we know there must be a root in (0, 1).

Example 2.6.13. Show that the equation sinx = x − 1 has a real root.

Proof. Let f (x) = x − 1 − sinx. Then we must prove that there is a number c such that
f (c) = 0. Note that

f (0) = 0 − 1 − 0 = −1 < 0,

while

f (π) = π − 1 − sinπ = π − 1 > 0.

Since f (x) is continuous on [0,π] (in fact on all ofR), wemay apply Bolzano’s theorem
to conclude the existence of some c in (0,π) such that f (c) = c − 1 − sin c = 0, and c is
therefore a root of the equation sinx = x − 1.

Example 2.6.14. Every polynomial of odd degree has a real root.
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Proof. Let f (x) = a0 + a1x +⋯+ anxn, where n is odd. Assuming that an > 0 (a similar
proof holds if an < 0), we have

lim
x→+∞
(a0 + a1x +⋯+ anxn) = lim

x→+∞
[(a0

xn
+ a1
xn−1
+⋯+ an)xn]

= an lim
x→+∞

xn = +∞.

Similarly,

lim
x→−∞
(a0 + a1x +⋯+ anxn) = an lim

x→−∞
xn = −∞.

Since f (x) is continuous, there must be a sufficiently large x-value, b, such that 0 <
f (b). Similarly there must be a negative x-value a in the other direction for which
f (a) < 0. Hence, by Bolzano’s theorem, there is at least one c with a < c < b such that
f (c) = a0 + a1c +⋯+ ancn = 0, where c is the required root.

Example 2.6.15. If f (x) is continuous on the interval [a,b] and

a < x1 < x2 <⋯ < xn < b,

then show that there exists a number c ∈ [a,b] such that

f (c) = f (x1) + f (x2) +⋯+ f (xn)
n

.

Proof. Let

f (xm) = min{f (x1), f (x2),… , f (xn)} and

f (xM ) = max{f (x1), f (x2),… , f (xn)}.

Then

f (xm) ⩽
f (x1) + f (x2) +⋯+ f (xn)

n
⩽ f (xM ).

Since f (x) is continuous on [a,b] and the interval [xm,xM ] (or [xM ,xm]) is a subset of
[a,b], we know that f (x) is also continuous on the closed interval [xm,xM ] (or [xM ,xm]).
Following from the intermediate value theorem, there exists a number c ∈ [xm,xM ] (or
[xM ,xm]) such that

f (c) = f (x1) + f (x2) +⋯+ f (xn)
n

.
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2.6.4 Uniform continuity

We know that the function y = 1
x is continuous at each point in (0, 1). However, from

the graph of the function y = 1
x , we know that the value of y changes more and more

rapidly as x approaches 0. This means that, even if we keep the change in x, Δx, con-
stant, the change in y, Δy, which depends on the specific x-value in (0, 1), can be
larger than any given number. This is different from other continuous functions, like
y = sinx; if Δx is small, Δy is also small at each point x. We now give the definition of
uniform continuity.

Definition 2.6.6 (Uniform continuity). Let f (x) be defined on an interval I. Then f is
uniformly continuous on I, if, for any given positive number ε, there exists a number δ
(which depends only on ε) such that, for every two points a,b ∈ I, we have |f (a) −
f (b)| < ε whenever |a − b| < δ.

Notice that the number δ is independent of the choices of values of a and b. That
is, f is uniformly continuous if it is possible to guarantee that f (a) and f (b) will be as
close to each other as we please by requiring only that the distance |a − b| between
a and b is less than a sufficiently small value δ that does not depend on the values a
or b.

Example 2.6.16. Prove that y = 1
x is continuous on (0, 1], but not uniformly continu-

ous on (0, 1].

Solution. The function y = 1
x is obviously continuous on (0, 1], since it is an elemen-

tary function (a power function) defined on (0, 1]. We prove by contradiction that the
function is not uniformly continuous on (0, 1].

For a given small number 0 < ε < 1, if y = 1
x is uniformly continuous on (0, 1], there

must be a number δ such that |f (a)− f (b)| < εwhenever |a−b| < δ. Nowwe choose two
numbers a = 1

n and b =
1

n+1 , where n is a positive integer. For a sufficiently large n, the
value of |a − b| will be smaller than δ since |a − b| = | 1n −

1
n+1 | =

1
n(n+1) → 0 as n→∞.

However, for these numbers, we have

|f (a) − f (b)| = | 11
n
−

1
1

n+1
| = |n − (n + 1)| = 1 > ε.

This contradicts the definition of uniform continuity. Therefore, y = 1
x is not uniformly

continuous on (0, 1].

A uniformly continuous function must be continuous, but a continuous function
maynot be uniformly continuous. Auseful theorem todeterminewhether or not a con-
tinuous function is uniformly continuous is given belowwithout a proof. The theorem
is due to Eduard Heine and Georg Cantor.



108 | 2 Limits and continuity

Theorem 2.6.9 (Heine–Cantor theorem). If f (x) is continuous on a closed interval
[a,b], then f (x) is also uniformly continuous on [a,b].

2.7 Some proofs in Chapter 2

Proof of Theorem 2.2.1. Assume limx→a f (x) = L and limx→a f (x) = M, where L ≠ M.
Then |L −M| = d ≠ 0. Now choose ε = d/2 > 0. By the definition of a limit, there exist
two numbers, δ1 and δ2, such that

|f (x) − L| < d
2

whenever 0 < |x − a| < δ1,

|f (x) −M| < d
2

whenever 0 < |x − a| < δ2.

Then, when |x − a| <min{δ1,δ2},

|L −M| = |L − f (x) + f (x) −M|
⩽ |L − f (x)| + |f (x) −M|

< d
2
+ d
2
= d.

This is a contradiction to the assumption that |L −M| = d.

Proof of Theorem 2.2.2. Since limx→a f (x) = L, for any given number ε > 0, there is a
corresponding δ such that

|f (x) − L| < ε whenever 0 < |x − a| < δ.

Now choose ε = 1. Then there is a δ such that |f (x) − L| < 1 whenever 0 < |x − a| < δ.
This means

−1 < f (x) − L < 1 whenever 0 < |x − a| < δ,

so L − 1 < f (x) < L + 1 whenever 0 < |x − a| < δ.
This means that f (x) is bounded on the deleted neighborhood (a,a− δ) ∪ (a,a+ δ)

of x = a.

Proof of Theorem 2.2.3. Since L > 0, L2 > 0. Because limx→a f (x) = L, for a givennumber
ε = L

2 , there is a corresponding δ > 0, such that

|f (x) − L| < L
2

whenever 0 < |x − a| < δ.

This means

−
L
2
< f (x) − L < L

2
whenever 0 < |x − a| < δ,
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so

L − L
2
< f (x) < L

2
+ L whenever 0 < |x − a| < δ.

Therefore, f (x) > L− L2 =
L
2 > 0 for all x in the deleted δ neighborhood 0 < |x−a| < δ

of x = a.

Proof (Limit law 1). Assume limx→a f (x) = L and limx→a g(x) =M, where both L andM
are two real numbers. Then, given any number ε > 0, we have δ1 and δ2 such that

|f (x) − L| < ε
2

whenever 0 < |x − a| < δ1 and

|g(x) −M| < ε
2

whenever 0 < |x − a| < δ2.

Now choose δ to be the smaller one of the two numbers δ1 and δ2, that is, δ =
min{δ1,δ2}. Then, whenever 0 < |x − a| < δ, we have 0 < |x − a| < δ1 and 0 < |x − a| < δ2,
and |(f (x) + g(x)) − (L +M)| ⩽ |f (x) − L| + |g(x) −M| < ε

2 +
ε
2 = ε, so

lim
x→a
(f (x) + g(x)) = L +M.

Therefore,

lim
x→a
(f (x) + g(x)) = lim

x→a
f (x) + lim

x→a
g(x).

This completes the proof.

Proof (Limit law 3). Since limx→a f (x) = L and limx→a g(x) = M, where both L and M
are two real numbers, given any positive number ε > 0, the number ε

|L|+|M|+1 > 0 and
we can find δ1 and δ2 such that

|f (x) − L| < ε
|L| + |M| + 1

whenever 0 < |x − a| < δ1 and

|g(x) −M| < ε
|L| + |M| + 1

whenever 0 < |x − a| < δ2.

Furthermore, for the number ε = 1, we can find a number δ3 such that

|g(x) −M| ⩽ 1 whenever 0 < |x − a| < δ3.

This means

|g(x)| − |M| ⩽ |g(x) −M| ⩽ 1,

so

|g(x)| ⩽ |M| + 1 whenever 0 < |x − a| < δ3.
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We choose δ to be the smallest one of the three numbers δ1, δ2, and δ3, since x −a
must satisfy the three conditions simultaneously. Let δ =min{δ1,δ2,δ3}. Then, when-
ever 0 < |x − a| < δ, we have 0 < |x − a| < δ1, 0 < |x − a| < δ2, and 0 < |x − a| < δ3. Then

|f (x)g(x) − LM| = |f (x)g(x) − Lg(x) + Lg(x) − LM|
⩽ |g(x)||f (x) − L| + |L||g(x) −M|

< (|M| + 1) ε
|L| + |M| + 1

+ |L| ε
|L| + |M| + 1

= ε.

This implies that, for any given number ε > 0, we have found a number δ > 0 such that

|f (x)g(x) − LM| < ε whenever 0 < |x − a| < δ,

so

lim
x→a
[f (x) × g(x)] = LM = lim

x→a
f (x) × lim

x→a
g(x).

This completes the proof.

The proofs of the remaining limit laws are left to the reader.

Proof of the substitution rule. Given any number ε > 0, since limu→b f (u) = L, there is
a number δ1 > 0 such that

|f (u) − L| < ε whenever 0 < |u − b| < δ1.

On the other hand,wehave limx→a g(x) = b, so for thenumber δ1 > 0, there is a number
δ2 such that

|g(x) − b| < δ1 whenever 0 < |x − a| < δ2.

Let δ =min{δ1,δ2}. Then, whenever 0 < |x − a| < δ, we have |g(x) − b| = |u − b| < δ1.
Then

|f (g(x)) − L| = |f (u) − L| < ε.

Proof of Heine’s theorem. “⟹” Given a number ε > 0, since limx→a f (x) = L, there is
δ > 0 such that

|f (x) − L| < ε whenever 0 < |x − a| < δ.

Thus, if limn→∞ xn = a, this means that xn approaches a but is not equal to a, so for
the number δ, there is a number N > 0 such that

0 < |xn − a| < δ whenever n > N .
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In this case,

|f (xn) − L| < ε.

We conclude that limn→∞ f (xn) = L.

We leave the proof of the necessary condition to the reader.

Proof of the monotonic and bounded sequence theorem. We suppose that a sequence
{xn} is a monotonic increasing and bounded above sequence. We show that it must
converge. Since the set {x1,x2,… ,xn,…} is bounded above, it must have the supremum
β according to Axiom 1.2.1 in Chapter 1. That is, β = sup{xn}. We claim that xn → β.
Given any number ε > 0, β − ε is not the supremum of {xn}, so there must be a term,
say, xN , such that xN > β − ε. However, the sequence {xn} is increasing, so

xn > xN for all n > N .

This means that

β − xn < β − xN < ε, for all n > N .

Because β > xn for all n, |xn − β| < ε, for all n > N . This implies

lim
n→∞

xn = β.

The proof of the case that the sequence is decreasing and bounded below is anal-
ogous. In this case, the sequence converges to the infimum of the set {xn|n =N}.

Proof of the Bolzano and Weierstrass theorem. We first prove that the sequence has a
monotonic subsequence. If there are infinitely many peak terms of {xn}, then these
terms, in the same order as they appear in {xn}, consist of amonotone decreasing sub-
sequence. Otherwise, there must be a finite number of peak terms. Let xN be the last
peak term of {xn}, while n1 = N + 1. Then xn1 is not a peak term. Therefore, there must
be a term xn2 after xn1 such that xn2 > xn1 . However, xn2 itself is not a peak term, so there
exists a term xn3 after xn2 such that xn3 > xn2 . Repeating this process, wewill obtain the
sequence {xnk }:

xn1 < xn2 < xn3 <⋯.

This is a subsequence of {xn} and it is monotone increasing. Therefore, we con-
clude that the sequence {xn} has amonotonic subsequence. If the sequence {xn} is also
bounded, so is its subsequence, so any bounded sequence {xn}must have a bounded
monotonic subsequence and, by the monotonic and bounded convergence theorem,
this subsequence is convergent.
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Proof of the squeeze theorem. Given a number ε > 0. Since limx→a f (x) = L, there is a
number δ1 such that

|f (x) − L| < ε whenever 0 < |x − a| < δ1.

This means

L − ε < f (x) < L + ε whenever 0 < |x − a| < δ1.

Similarly, there is a number δ2 > 0 such that

L − ε < h(x) < L + ε whenever 0 < |x − a| < δ2.

Now choose δ =min{δ1,δ2}, so 0 < |x − a| < δ implies that both 0 < |x − a| < δ1 and
0 < |x − a| < δ2 hold. In this case we have

L − ε < f (x) ⩽ g(x) ⩽ h(x) < L + ε.

This means

L − ε < g(x) < L + ε whenever 0 < |x − a| < δ,

so

|g(x) − L| < ε whenever 0 < |x − a| < δ.

Thus, by the definition of a limit, we have limx→a g(x) = L.

Proof of the continuity of an exponential function. To prove that limx→a bx = ba (b > 0,
b ≠ 1) at any point a ∈ (−∞,∞), we investigate

bx − ba = ba(bx−a − 1).

Then

lim
x→a
(bx − ba) = lim

x→a
ba(bx−a − 1)

= ba lim
t→0
(bt − 1) (substitution: t = x − a).

Hence, we need only to consider the limit limt→0(bt − 1). Now we only need to be con-
cerned with those values of t that are close to 0, for instance, −1 < t < 1. We can find
an integer n for each of these t such that

|t| < 1
n

or equivalently 1
n
< t < 1

n
,

so we have

b−
1
n < bt < b

1
n , for b > 1,bx is increasing, or
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b
1
n < bt < b−

1
n in the case that 0 < b < 1,bx is decreasing.

From Example 2.3.2, Example 2.4.4, and the squeeze theorem, we have

lim
n→∞

b
1
n = 1, lim

n→∞
b−

1
n = lim

n→∞
( 1
b
)

1
n
= 1, so lim

t→0
bt = 1.

Therefore, we have

lim
x→a
(bx − ba) = ba lim

t→0
(bt − 1) = 0.

This means that limx→a bx = ba, so bx is continuous at a.

Proof of the boundedness theorem. Assume f is unbounded, say, unbounded above
on [a,b]. This means, for any number M, we can find a number x in [a,b] such that
f (x) >M, so forM = 1, 2,3,… ,n,…, we can find a sequence x1,x2,x3,… ,xn,… such that
each term is in [a,b] and

f (x1) > 1, f (x2) > 2, f (x3) > 3,… , f (xn) > n,… .

This means limn→∞ f (xn) = ∞. However, the sequence {xn} is bounded because a ⩽
xn ⩽ b. Therefore, there is a convergent subsequence, say, {xnk }, such that xnk → c as
k→∞. Because the function f is continuous at c, as a result of Heine’s theorem we
must have limk→∞ f (xnk ) = f (c). This contradicts limk→∞ f (xnk ) = ∞, since {xnk } is a
subsequence of {xn}, so the function f must be bounded above.

A similar argument can be used to prove that f must be bounded below. Therefore,
a continuous function f must be bounded on the closed interval [a,b].

Proof of the extreme value theorem. We prove the case that there is a number d ∈ [a,b]
such that f (d) is the maximum value.

Since f is continuous on [a,b], by the boundedness theorem it must be bounded.
This means the set

S = {f (x) | x ∈ [a,b]}

is a bounded set. Of course, S is nonempty. Then, by the least upper bound property,
we know that there is a numberM such thatM = supS. This implies that f (x) ⩽M for
all x in [a,b]. We show that there is a number d in [a,b] such that f (d) =M. If there is
no x such that f (x) =M, then the function 1

M−f (x) must be continuous on [a,b], so by
Theorem 2.6.5 it must also be bounded. Given any number ε > 0, since M is the least
upper bound of S, M − ε is not the least upper bound. Thus there is an x such that
f (x) >M − ε and ε >M − f (x), so

1
M − f (x)

>
1
ε
.
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Since ε can be any positive number, this means 1
M−f (x) can be made as large as we

please, so 1
M−f (x) is unbounded. This contradicts the previous statement that 1

M−f (x) is
bounded, so there must be a point d such that f (d) =M.

Similarly, there must be a point c such that f (c) =m is the minimum value.

Proof of Bolzano’s theorem. We first prove the case where f (a) < 0 and f (b) > 0.
Let S be the set of all x in [a,b] such that f (x) ⩽ 0. S is nonempty since a ∈ S and

S is bounded above by b. Hence, by the least upper bound property of real numbers,
c = supS exists. That is, c is the least number such that it is greater than or equal to
every number in S. Furthermore, for any number x between b and c, we have f (x) > 0.

We now show that f (c) = 0. If f (c) ≠ 0, assume f (c) > 0. Since f is continuous, we
have

lim
x→c

f (x) = f (c) > 0.

By Theorem 2.2.3, there is a number δ > 0 such that

f (x) > 0 whenever c − δ < x < c + δ,

so supS ⩽ c − δ, which contradicts the assumption that c = supS.
Similarly, if f (c) < 0, then there is also a number δ > 0 such that

f (x) < 0, whenever c − δ < x < c + δ.

Then supSmust be at least c+δ, which also contradicts the assumption that c = supS.
Thus f (c) = 0.

For the case where f (a) > 0 and f (b) < 0, let g(x) = −f (x), which is also continu-
ous on [a,b]. Then there must be a c such that g(c) = 0 and this c, of course, satisfies
f (c) = 0.

2.8 Exercises

1. Find the average rate of change of each of the following functions on the indicated
interval:
(a) f (x) = tanx, [0, π4 ]; (b) g(t) = x2 − 2x, [−2, 2]; (c) r(θ) = sin 2θ, [0, 2π].

2. Part of the graph of a piecewise defined function f (x) is shown below. Find
(a) limx→−3 f (x), (b) limx→0 f (x), (c) limx→3 f (x), and (d) limx→4 f (x), or state they
do not exist.
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Question 2

3. Assume that limx→a f (x) = −8, limx→a g(x) = 0, and limx→a h(x) = 5. Find each of
the following limits, if it exists:
(a) limx→a(f (x) − 2h(x)); (b) limx→a

x2f (x)+g(x)
h(x) ;

(c) limx→a(g(x) − f (x))3; (d) limx→a h(x)
3√f (x).

4. Evaluate each of the following limits:
(a) limx→3(3x2 − 2x + 7); (b) limx→2

x2−4
x+2 ;

(c) limx→−1
x2−2x−3
x+1 ; (d) limx→a

√x+a−√2a
x−a , a > 0;

(e) limh→0
(x+h)2−x2

h ; (f) limΔx→0
√x+Δx−√x
Δx ;

(g) limt→0

1
(1+t2)
−1

t ; (h) limx→ π
2
(cos2 x −√2πx).

5. (Marginal cost) The cost (in dollars) of producing x units of a certain commodity
is modeled by C(x) = 500 + 2x + 0.5x2.
(a) Find the average rate of change of C with respect to x when the production

level is changed from x = 50 to x = 100.
(b) Find the instantaneous rate of change of C with respect to x when x = 80 (this

rate is called themarginal cost).
6. Choose δ so that |f (x)| < 1

1000 , when |x| < δ, for the following functions:
(a) f (x) = 2x; (b) f (x) = sin3x; (c) f (x) = x cosx; (d) f (x) = x2.

7. Use the precise definition of a limit to show that:
(a) limx→2(x + 1) = 3; (b) limx→c sinx = sin c for any c ∈ R;
(c) limx→−1 x2 = 1; (d) limx→2 x3 = 8.

8. Using the function given in question 2, find (a) limx→3− f (x), (b) limx→3+ f (x),
(c) limx→4+ f (x), and (d) limx→4− f (x). (e) Does limx→3 f (x) exist? Explain.

9. Given

f (x) =
{{{
{{{
{

x2 − 1, when x < 0
√x, when 0 ⩽ x < 4
[x], x ⩾ 4,
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find (a) limx→5 f (x), (b) limx→4 f (x), and (c) limx→0 f (x) or explainwhy they do not
exist.

10. The formal definition of “f (x) → L as x→ −∞” is as follows: for any ε > 0, there
is an M > 0, such that _ _ _ _ _ < ε when x < −M. (a) Fill in the blank. (b) Give an
example in which f (x) → 5 as x→−∞.

11. Find the asymptotes and intercepts for the following functions and graph them
(exact turning points are not required):
(a) f (x) = x+2

x2−2x−3 ; (b) f (x) = x2+2x+1
x2−2x−3 ; (c) g(x) = x

x2+1 ;

(d) g(x) = x2+x+1
x−1 ; (e) h(x) = x2−3x−4

x+2 ; (f) f (x) = √2x
2+1

3x−5 ;

(g) f (t) = t3
t2+3t−10 .

12. (Air pollution) Assume the population size p (in thousands of people) of a cer-
tain community t years from now is modeled by p(t) = 2000 − 17

1+4e−t . Further-
more, suppose the average level of carbon monoxide in the air is modeled by
c(p) = 0.5√p2 − p + 17. What happens to the level of pollution c in the long run?

13. Find the limit for each of the following sequences:
(a) limn→∞

2014n
n2+1 ; (b) limn→∞

n
√1+n2
;

(c) limn→∞(1 +
(−1)n+1
√n ); (d) limn→∞

5n+1
7n ;

(e) limn→∞(
1
1⋅2 +

1
2⋅3 +⋯+

1
n⋅(n+1) );

(f) limn→∞
n2+n−1
3n2−n+1 ; (g) limn→∞

3n+6n
4n+5n ;

(h) limn→∞(
12
n3 +

32
n3 +⋯+

(2n−1)2
n3 );

(i) limn→∞
1+a+a2+⋯+an
1+b+b2+⋯+bn (|a| < 1, |b| < 1,ab ≠ 0).

14. Use Heine’s theorem to explain why the following limits do not exist:
(a) limx→0 cos

1
x ; (b) limx→0 sin

1
x2 ; (c) limx→∞

1
x tanx; (d) limx→0 x tan

1
x .

15. For each of the following sequences, determine a5 and then the limit L. After
which N is |an − L| <

1
100 ? You may use a calculator.

(a) 1, − 12 ,
1
3 , −

1
4 ,… ; (b) 1

2 ,
2
4 ,

3
8 ,… ,

n
2n ,… ; (c) 2, 2.2, 2.22, 2.222,… .

16. Use themonotonic and bounded theorems to prove the convergence of the follow-
ing sequences:
(a) {xn} = {

1
3+1 +

1
32+1 +⋯+

1
3n+1 };

(b) {an} = {(1 −
1
2 )(1 −

1
4 )⋯(1 −

1
2n )}.

17. (Prove by induction) Assume x1 =
2
3 and xn+1 =

2
3−xn

. Prove that xn =
2n+1−2
2n+1−1 and

find limn→∞ xn.
18. If xn+1 =

1
2 (xn +

a
xn
), n = 1, 2,3…, x1 > 0, a > 0, prove {xn} ismonotonic and bounded

and find limn→∞ xn.
19. Suppose x1 > 0 and xn+1 =

c(1+xn)
c+xn

, where c > 1.
(a) Show that, when x1 > √c, {xn} is deceasing and bounded below.
(b) Show that, when x1 < √c, {xn} is increasing and bounded above.
(c) Find limn→∞ xn.
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20. Show that bn+1−an+1
b−a ⩽ (n + 1)b

n, for b ⩾ a > 0.
(a) Let a = 1+ 1/(n+ 1) and b = 1+ 1/n. Show that (1+ 1n )

n is monotonically increas-
ing.

(b) Let a = 1, let b = 1 + 1/2n, and deduce that (1 + 1/2n)2n < 4.
(c) Prove that {(1 + 1

n )
n} converges.

21. Give a counterexample for each of the following statements to show that it is false:
(a) if xn→ L and yn→ L, then xn/yn→ 1;
(b) if an < 0 and an→ L, then L < 0;
(c) assume xnyn→ 0; {(i) if xn is bounded, then yn→ 0

(ii) if xn is unbounded, then yn must be bounded.

22. Use the “e” limit limn→∞(1 +
1
n )

n = e to evaluate each of the following limits:
(a) limn→∞(1 +

1
n+1 )

n; (b) limn→∞(1 +
1
n2 )

n;

(c) limm→1− m
2

1−m ; (d) limn→∞(1 +
5
n )
−2n;

(e) limn→∞(
1
1⋅2 +

1
2⋅3 +⋯+

1
n⋅(n+1) )

n; (f) limn→∞(
n+x
n−1 )

n;

(g) limn→∞(1 −
3
n )

3n.
23. Use the squeeze theorem to find each of the following limits:

(a) limn→∞
1

n2+1 +
1

n2+2 +⋯+
1

n2+n ; (b) limx→∞
(arctanx)2

x ;

(c) limx→∞
sinx+2 cos 1

x
x ; (d) limn→∞

n2
3n ;

(e) limn→∞
n√an + bn + cn, a > b > c > 0; (f) limx→0 x[

1
x ];

(g) limx→0 x sin
1
x ; (h) limn→∞

100n
n! .

24. For a sequence {an}, show that limn→∞ an = L if and only if limn→∞ a2n = L and
limn→∞ a2n+1 = L.

25. Use the “e” limit limx→±∞(1 +
1
x )

x = e to evaluate each of the following limits:
(a) limx→∞(1 −

1
x )

x+2; (b) limx→∞(
3x+2
3x−1 )

x ;

(c) limu→∞(
u
1+u )
√u; (d) limx→0(1 + x)

2
x .

26. (Compounded interest) Assume P dollars are invested at an annual interest rate
r and the future value (accumulated value) in the account after t years isM(t).
(a) Show that, if the interest is compounded n times per year, then M(t) =

P(1 + r
n )

nt .
(b) Show that, if the interest is compounded continuously, thenM(t) = Pert .
(c) Suppose$100000 is invested at an annual interest rate of 7%. Compute the fu-

ture value in the account after 10 years if the interest is compounded (i) quar-
terly, (ii) monthly, and (iii) continuously.

27. (Installment loan) Assume Jack has borrowed an amount of $x0 from a bank at
a monthly interest rate of r. He is supposed to pay the bank a fixed amount of $B
each month. If he owes the bank $xn at the end of the nth month, then:
(a) show that xn = (1 + r)xn−1 − B, n = 1, 2,…;
(b) find limn→∞ xn;
(c) find the number B such that Jack pays off the loan by the end of the mth

month.
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28. (Stolz theorem) Assume the sequence {yn} increases, limyn = +∞, and

lim
n→∞

xn+1 − xn
yn+1 − yn

= l, where {xn} is a sequence.

Then limn→∞
xn
yn
= l.

Use Stolz’s theorem to show that:
(a) limn→∞

x1+x2+⋯+xn
n = a, if limn→∞ xn = a; (b) limn→∞(n!)

1
n2 = 1.

29. (Fibonacci sequence) Fibonacci is considered to be the greatest Europeanmath-
ematician of themiddle ages. He was born in Pisa, Italy in approximately AD 1175.
He introduced the sequence of numbers named after him inhis book of 1202 called
Liber Abaci (Book of the Abacus). The Fibonacci sequence is

{1, 1, 2,3,… ,Fn+2 = Fn+1 + Fn,…}.

(a) Find the first 15 terms of the Fibonacci sequence.
(b) Let an =

Fn+1
Fn

. Then:
(i) determine the first 5 terms of the sequence {an};
(ii) show that an+1 = 1 +

1
an

and an+2 = 2 −
1

1+an
and deduce that the sequence

{an} is bounded;
(iii) either by considering an+2 − an or any other method, show that the se-

quence {a2k−1} is increasing and the sequence {a2k} is decreasing.
(c) Show that limn→∞

Fn+1
Fn
= 1+√5

2 .
30. If √1 + ax2 − 1 and sin2 x are asymptotic as x→ 0, find the constant a.
31. If √ax + b − 2 and x are asymptotic as x→ 0, find the constants a and b.
32. Use asymptotic functions to evaluate each of the following limits:

(a) limx→0
tan3x
2x ; (b) limx→0+

sin(xn)
(sinx)m , m,n > 0;

(c) limx→0
tanx−sinx

sin3 x ; (d) limx→0
sinx−tanx

( 3√1+x2−1)(√1+sinx−1)
;

(e) limx→0
1−cosx
x sinx ; (f) limx→0

sinax
tanbx , b ≠ 0;

(g) limx→∞
√x+1−√x
sin√ 1

x

; (h) limn→∞
n3 n√2(1−cos 1

n2
)

√n2+1−n
.

33. Show that f (x)~g(x) as x→ a if and only if f (x) = g(x) + o(f (x)) as x→ a.
34. Assumeboth f (x) and g(x) are infinitesimalwhen x→ a andm is a positive integer.

If limx→a
f (x)
gm(x) = c ≠ 0, then we say that the infinitesimal function f (x) has order

m with respect to the other infinitesimal function g(x) as x→ a.
(a) Show that √1 + x3 − 1 is negligible with respect to x as x→ 0.
(b) Find the order of √1 + x3 − 1 with respect to x as x→ 0.

35. Show that o(x2) + o(x3) = o(x2) and o(x2) − o(x3) = o(x2) as x→ 0.
36. Find the value of a such that each of the following functions is continuous:

(a) f (x) = {x
2 − 1, x < 3
2ax, x ⩾ 3;

(b) f (x) = {2x + 3, x ⩽ 2
ax + 1, x > 2;

(c) f (x) = {e
x , x < 0
a + ln(1 + x), x ⩾ 0;

(d) f (x) =
{{{
{{{
{

e
1
x , x < 0

0, x = 0
xa sin 1

x , x > 0.
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37. Locate and classify the discontinuities for the function whose graph is given in
question 2.

38. Locate and classify the discontinuities for each of the following functions:
(a) f (x) = sinx

|x| ; (b) f (x) = 1
x2−3x+2 ;

(c) g(t) = sin t
t2−1 ; (d) t(θ) = 1

1−e
θ
1−θ
;

(e) f (x) = limn→∞
nx

nx2+1 , −1 ⩽ x < 1; (f) k(y) = y cos 1
y ;

(g) f (x) = [2x] − [x]; (h) h(x) = x2−x
|x|(x2−1) ;

(i) f (x) = limt→∞
1−xetx
x+etx .

39. If limx→a f (x) = L, limx→a g(x) =M, both L andM are finite numbers, and LM ≠ 0,
prove that limx→a(f (x))g(x) = LM . Then find limx→2(x2 + 1)sin

π
x .

40. Evaluate each of the following limits:
(a) limx→π

sin(eπ−x)
x2 ; (b) limx→0

ln(1+x)
sinx ;

(c) limx→0
arctanx

ln(1+sinx) ; (d) limx→0
x(1−cosx)
(1−ex) sinx2 ;

(e) limy→0
3y−1
y ; (f) limΔx→0

ex+Δx−ex
Δx ;

(g) limn→∞(
n√a+ n√b

2 )
n; (h) limn→∞(ln(n + 2) − lnn);

(i) limx→0
(sinx) tan(ln(1+x))

x arcsinx ; (j) limn→∞(1 +
2
n +

3
n2 )

n;

(k) limn→∞[tan(
π
4 +

1
n )]

n.
41. Is it true that a continuous function that is never 0 on an interval never changes

sign on that interval? Explain.
42. (Dirichlet function) Show that the function

D(x) =
{
{
{

1, if x is rational
0, if x is irrational

is discontinuous at every point. Explore the continuity of the function y =
x2D(x) at x = 0 (the Dirichlet function can be written analytically as D(x) =
limm→∞ limn→∞ cos2n(m!πx)).

43. (Riemann function) Explore the continuity of the Riemann function (also called
the Dirichlet ruler function)

R(x) =
{
{
{

1
q , if x = p

q is a rational number in lowest terms
0, otherwise.

44. Prove that the equation x = a sinx + b (a > 0, b > 0) has at least one positive root
that is not more than a + b.

45. If f (x) is continuous on [0, 1], f (0) = 0, and f (1) = 1, then show that, for all positive
integers n, there is a number c such that 0 < c < 1 and (f (c))n + c = 1.

46. Assume f (x) is continuous on [0, 2a] and f (0) = f (2a). Show that there is a number
x0 ∈ [0,a] such that f (x0 + a) = f (x0).
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47. Prove that the function f (x) = 2x − x2 has a negative root.
48. SupposeP(a,b) is a point on theparabola y = x2 andO is the origin. Theperpendic-

ular bisector of the line segmentOPmeets the y-axis at pointQ(0, c). Find lima→0 c
or explain why it does not exist.

49. (Fixed point) If f (x) is continuous on [0, 1] and 0 < f (x) < 1, then show that there
is a number c ∈ (0, 1) such that f (c) = c (this number c is called a fixed point of the
function f (x)).

50. (Clock hands) Explain why there is a time when the hour hand and the minute
hand of a clock coincide in each hour.

51. (Bodyweight) If youweighed 50 pounds at the beginning of year 2014 and by the
end of 2014 you weighed 59 pounds, explain why there was a time point on which
your weight was exactly 54 pounds.

52. (Stabilizing a wobbly table) A table whose four legs are equal in length was put
on an uneven floor and it was unstable initially. By slightly rotating the table, it
can be stabilized on the floor. Set up a mathematical model for this situation and
explain.

53. Consider the function f (x) = {2 − x, x < 0
2 +√x, x ⩾ 0.

Does f (x) have a maximum and a min-

imum value on [−2,4]? How does this example illustrate the extreme value theo-
rem?

54. If g(x) = {−x, x ⩽ 0
1
x , x > 0,

does g(x) have a maximum value and a minimum value on

[−2,4]?Does this example contradict the extreme value theorem?Whyorwhynot?
55. If h(x) = {−x, x ⩽ 0

x2 + 1, x > 0,
does h(x) have a maximum value and a minimum value on

[−2,4]? Is h(x) continuous on [−2,4]? Does this example contradict the extreme
value theorem? Why or why not?

56. Assume, for all x ∈ (−∞,∞), f (x2) = f (x). If f is continuous at x = 0 and x = 1, then
prove that f (x) is constant.



3 The derivative
In this chapter, you will learn about:
– the definition of the derivative;
– how to find derivatives using differentiation rules;
– linearization and the differentials.

The derivative of a function y = f (x) is another function, derived from f (x), that gives
information about how the function f (x) changes, comparedwith changes in the inde-
pendent variable x. Differential calculus studies methods for finding derivatives and
applications of the derivatives in areas of mathematics, sciences, engineering, and
many other disciplines.

3.1 Derivative of a function at a point

3.1.1 Instantaneous rates of change and derivatives revisited

As seen in Chapters 1 and 2, the average rate of change (average velocity) of a car mov-
ing with variable speed during a specified time interval [t1, t2] is given by

v̄ = Δs
Δt
= s(t2) − s(t1)

t2 − t1
.

But what is the velocity of the particle at any given moment in time? How is this “in-
stantaneous” velocity defined? That is, how can you measure the velocity of that car
at a particular moment in time when the car’s velocity is continually changing?

In order to study this problem mathematically, let us suppose that an object is
moving along a straight line with variable velocity and its displacement s (from some
fixed origin point) is given, as a function of time t, by s = f (t). We will try to find a
formula for the velocity of the object at a particular time t0. If Δt is a small positive or
negative time increment, then at time t0 +Δt, the object has displacement f (t0 +Δt), so
the average velocity during the time interval (t0, t0 +Δt) is the change in displacement
divided by the change in time:

f (t0 + Δt) − f (t0)
Δt

.

It is reasonable to expect that, as Δt gets smaller and smaller, the average velocity will
become closer and closer to the velocity at the particular time t0. Hence, we define the
instantaneous velocity of the object at time t0 to be

lim
Δt→0

Δs
Δt
= lim
Δt→0

change in displacement s
change in time t

https://doi.org/10.1515/9783110527780-003
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= lim
Δt→0

f (t0 + Δt) − f (t0)
Δt

= instantaneous velocity at time t0,

provided that this limit exists.
Nowwe consider a more general form. For the function y = f (x), assumeM(x0,y0)

is a point on the graph C of f . We choose a small positive or negative x-increment Δx
which takes us to a nearby point N(x0 +Δx,y0 +Δy) on C. The change in y is Δy, which
is

Δy = f (x0 + Δx) − f (x0).

The secant line MN is the straight line joining M and N , as shown in Figure 3.1.1 and
Figure 3.1.2. Notice that the slopem of the secant lineMN is given by

m = Δy
Δx
= f (x0 + Δx) − f (x0)

Δx
.

It is reasonable to expect that, if N approachesM along the curve, the secant line
will become closer and closer to the tangent line that touches the curve C atM. Also,
the slope of the secant lineMN will approach the slope of the tangent line. Hence, we
define the slope of the tangent line atM to be the limit (if the limit exists) of the slope

Figure 3.1.1: Secant line with positive slope.

Figure 3.1.2: Secant line with negative slope.
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m of the secant line as Δx→ 0, so we have

lim
Δx→0

f (x0 + Δx) − f (x0)
Δx

= lim
Δx→0

Δy
Δx

= the slope of the tangent atM(x0,y0).

Now, we have encountered the same type of limits twice even though they arose
from different backgrounds. We will see that limits of the form

lim
Δx→0

f (x0 + Δx) − f (x0)
Δx

arise in many scientific fields whenever we want to calculate an instantaneous rate of
change, suchas a rate of a reaction in chemistry, or amarginal cost in economics. Since
this type of limit occurs so frequently, it is worthy of being given a special name and
notation. It is called the derivative of the function f atM and it is denoted by f ′(x0).

Definition 3.1.1. The derivative of a function at a point (x0, f (x0)) is written as f ′(x0)
and is defined by

f ′(x0) = lim
Δx→0

f (x0 + Δx) − f (x0)
Δx

.

The process of finding the derivative is called differentiation.

NOTES. The derivative of a function at a point M(x0,y0) is:
1. the slope of the tangent line to the graph of f atM;
2. the instantaneous rate of change of f (x) with respect to x atM.

There are many different notations for the derivative, or the rate of change of a
function. The notation used often depends on how the function f is presented or on
how the derivative is to be used. When a function is defined by an equation y = f (x),
the following are all notations for the derivative of f (or y) with respect to x at x = x0:

f ′(x0),
dy
dx
|
x=x0
,
df
dx
|
x=x0
,
d
dx

f (x)|
x=x0
,

Dxf (x0), ̇y(x0), y′(x0), and (f (x))′x=x0 .

Example 3.1.1. Find the derivative of f (x) = x2 at x = 2.

Solution. We have

f ′(2) = lim
Δx→0

f (2 + Δx) − f (2)
Δx = lim

Δx→0

(2 + Δx)2 − 22
Δx
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= lim
Δx→0

4 + 4Δx + (Δx)2 − 4
Δx = lim

Δx→0

4Δx + (Δx)2

Δx
= lim
Δx→0
(4 + Δx)

= 4,

so the derivative of f (x) = x2 at x = 2 is 4.

Example 3.1.2. Find an equation of the tangent line to the graph of f (x) = 1
x at (1, 1).

Solution. First find the slope of the tangent line. We have

f ′(1) = lim
Δx→0

f (1 + Δx) − f (1)
Δx = lim

Δx→0

1
1+Δx −

1
1

Δx

= lim
Δx→0

1−(1+Δx)
1+Δx
Δx

= lim
Δx→0

−Δx
Δx(1 + Δx)

= lim
Δx→0
− 1
1 + Δx

= −1.

This means the derivative of f (x) at x = 1 is −1, so the slope of the line tangent to the
graph of f (x) at x = 1 is −1. Therefore, the point-slope form of the tangent line at (1, 1)
is

y − 1 = −1 × (x − 1),

which is the same as y = −x + 2 (slope-intercept form). Figure 3.1.3 shows the graph of
f (x) and its tangent at x = 1.

Example 3.1.3. A ball is dropped from rest from the top of a building. In the subse-
quent motion under gravity the displacement of the ball with respect to time is given

Figure 3.1.3: Graphs of y = 1
x and y = −x + 2.
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by s = 1
2gt

2, where g is a constant called gravitational acceleration. Find the velocity
of the ball at any time t. Assume any air resistance is negligible.

Solution. The velocity at time t is the derivative of s(t) at t. We have

v(t) = s′(t) = lim
Δt→0

s(t + Δt) − s(t)
Δt

= lim
Δt→0

1
2g(t + Δt)

2 − 1
2gt

2

Δt

= 1
2
g lim
Δt→0

(t + Δt)2 − t2

Δt

= 1
2
g lim
Δt→0

t2 + 2t ⋅ Δt + (Δt)2 − t2

Δt

= 1
2
g lim
Δt→0

2t ⋅ Δt + (Δt)2

Δt

= 1
2
g lim
Δt→0
(2t + Δt)

= 1
2
g × 2t

= gt,

so the instantaneous velocity at any time t is gt. For example, at t = 1 sec, the velocity
is g × 1 ≈ 9.8m/sec.

Some equivalent limits for finding derivatives at a point
We simplify (at least it looks simpler) the limit

lim
Δx→0

f (x0 + Δx) − f (x0)
Δx

by replacing Δx by h and x0 by a to obtain

lim
Δx→0

f (x0 + Δx) − f (x0)
Δx

= lim
h→0

f (a + h) − f (a)
h

.

If we let x = a + h, then h = x − a. When h→ 0, then x→ a, so we have

lim
h→0

f (a + h) − f (a)
h

= lim
x→a

f (x) − f (a)
x − a

.

Therefore, the derivative of a function f at the point x = a (where y = f (a)) can also
be given by the following two limits:

f ′(a) = lim
h→0

f (a + h) − f (a)
h

or

f ′(a) = lim
x→a

f (x) − f (a)
x − a

.
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Example 3.1.4. Find the derivative of the function f (x) =mx + b at x = a.

Solution. From the definition of the derivative, we have

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

m(a + h) + b − (ma + b)
h

= lim
h→0

ma +mh + b −ma − b
h

= lim
h→0
(mh
h
)

= m,

so
d
dx
(mx + b)|

x=a
=m.

NOTE. At each point on the straight line y =mx + b, the derivative is the same as the
slopem of the line.

Example 3.1.5. Find dy
dx |x=1 for the function y = 1 +√x and find the line tangent to the

graph of y at (1, 2).

Solution. The derivative of f (x) = 1 +√x at x = 1 is given by

dy
dx
|
x=1
= lim

h→0

f (1 + h) − f (1)
h

= lim
h→0

(1 +√1 + h) − (1 +√1)
h

= lim
h→0

√1 + h − 1
h

= lim
h→0

(√1 + h − 1)(√1 + h + 1)
h(√1 + h + 1)

= lim
h→0

h
h(√1 + h + 1)

= lim
h→0

1
(√1 + h + 1)

= 1
2
.

Hence, the slope of the tangent line at (1, 2) is f ′(1) = 1
2 , so an equation of the tangent

line is

y − 2 = 1
2
(x − 1) or y = 1

2
x + 3

2
.

The graph of this curve and its tangent line are shown in Figure 3.1.4.
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Figure 3.1.4: Graphs of y = 1 +√x and y = 1
2 x +

3
2 .

Example 3.1.6. Find the derivative of f (x) = x3 at x = 2 and find the normal line to the
graph of f (x) at x = 2.

Solution. We use the form

f ′(2) = lim
x→2

f (x) − f (2)
x − 2

= lim
x→2

x3 − 23

x − 2

= lim
x→2

(x − 2)(x2 + 2x + 4)
x − 2

= lim
x→2
(x2 + 2x + 4)

= 22 + 2 × 2 + 4
= 12.

Now, when x = 2, y = 23 = 8. Since the slope at x = 2 is 12, the normal line at the
point (2,8) has slope − 112 . The point-slope equation of the normal line to the graph of
f (x) is

y − 8 = − 1
12
(x − 2) or y = − 1

12
x + 49

6
.

Example 3.1.7. Find df
dx |x=0 for the function

f (x) =
{
{
{

x2 sin 1
x , if x ≠ 0

0, if x = 0.

Solution. We have

df
dx
|
x=0
= f ′(0) = lim

x→0

f (x) − f (0)
x − 0

= lim
x→0

x2 sin 1
x − 0

x − 0

= lim
x→0
(x sin 1

x
)

= 0.

The value of the last limit is zero because 0 ⩽ |x sin 1
x | ⩽ |x|, so, by the squeeze theorem

from Chapter 2, we have

0 ⩽ lim
x→0
|x sin 1

x
| ⩽ lim

x→0
|x| = 0 .

This means limx→0(x sin
1
x ) = 0.
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3.1.2 One-sided derivatives

Since the derivative of a function y = f (x) at x = a is defined by the limit

f ′(a) = lim
h→0

f (a + h) − f (a)
h

,

aswe did in one-sided limits, the corresponding two one-sided limits are given special
names.

Definition 3.1.2. The limits

f ′+(a) = lim
h→0+

f (a + h) − f (a)
h

,

f ′−(a) = lim
h→0−

f (a + h) − f (a)
h

are called the one-sided derivatives of f at a. The right-hand derivative of f at a (or the
right derivative) is f ′+(a) and the left-hand derivative of f at a (or the left derivative) is
f ′−(a).

In view of the results we have obtained from limits and one-sided limits, we con-
clude that f ′(a) exists if and only if the two one-sided limits f ′+(a) and f ′−(a) both exist
and are equal. That is,

f ′(a) = L if and only if f ′+(a) = f ′−(a) = L.

Example 3.1.8. Investigate f ′(0) for f (x) = |x|.

Solution. Since

lim
h→0

f (0 + h) − f (0)
h

= lim
h→0

|h|
h

and

f ′+(0) = limh→0+
|h|
h
= 1 but f ′−(0) = limh→0−

|h|
h
= −1,

f ′(0) does not exist.

As seen from the graph of |x|, when x < 0, the slope of the curve (and tangent line)
is −1 and when x > 0, the slope of the curve (and tangent line) is 1. There is a sharp
“corner” in the graph at x = 0, where the slope of the curve abruptly changes from −1
to 1. Whenever this happens, the function has no derivative at this point.
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3.1.3 A function may fail to have a derivative at a point

We have seen that y = |x| has no derivative at x = 0. Intuitively speaking, there is a
corner at x = 0 where f (x) changes abruptly. The analytical reason why there is no
derivative is because the two one-sided derivatives do not match. From a geometrical
point of view, the left derivative is the slope of the “left tangent line”, which is the lim-
iting secant lineMN when the pointM approachesN from the left. The right derivative
is the slope of the “right tangent line”, which is the limiting secant line PN when P ap-
proaches N from the right, as shown in Figure 3.1.5. If the slopes of the two tangents
do not match, then at that point, there will be no unique tangent line. Figure 3.1.6 and
Figure 3.1.7 show cases that a function fails to have a derivative. This lack of derivative
can also be interpreted in terms of rates of change. At any point on the graph of a func-
tion f (x), the instantaneous rate of change of f (x), which is the slope of the curve at

Figure 3.1.5: “Smooth” curves have tangents.

Figure 3.1.6: There is no derivative at N.

Figure 3.1.7: A function has no derivative at a corner.
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that point, must be unique if it exists. You cannot have two different slopes/tangents
at a single point.

Now let us think about another case where the derivative of a function does not
exist: when f (x) has a vertical tangent at x = a. The slope of a vertical line is undefined,
or you could say the slope is ±∞. This happens when

lim
h→0

f (a + h) − f (a)
h

= ±∞,

or, equivalently,

lim
x→a

f (x) − f (a)
x − a

= ±∞.

For example, if y = 3√x, then, at x = 0,

f ′(0) = lim
x→0

f (x) − f (0)
x − 0

= lim
x→0

3√x − 0
x − 0
= lim
x→0

1
3√x2
=∞.

In this case, the graph of f (x) = 3√x has a vertical tangent at x = 0, as seen in Fig-
ure 3.1.9.

There is one other situationwhere a function f (x) fails to have a derivative at x = a.
If f (x) is undefined at x = a, then it is easy to see that f ′(a) does not exist, since, in the
limit

lim
h→0

f (a + h) − f (a)
h

,

f (a) is undefined. If f (a) is defined, as in Figure 3.1.8, but f (x) has a removable or
jump discontinuity at x = a, then we see from the graph that the “left tangent line”
and the “right tangent line” either are not the same, or one (both) tangent line(s) is
(are) vertical. In fact, analytically, we have the following theorem.

Theorem 3.1.1. If the function f (x) has a derivative at x = a, then f is continuous at
x = a. That is, limx→a f (x) = f (a).

Figure 3.1.8: A function has no derivative at any of its discontinuities.
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Figure 3.1.9: A function has no derivative where its tangent is vertical.

Proof. Take the limit

lim
x→a
(f (x) − f (a)) = lim

x→a

f (x) − f (a)
x − a

(x − a)

= lim
x→a

f (x) − f (a)
x − a

lim
x→a
(x − a)

= f ′(a) × 0 = 0.

This shows that limx→a f (x) = f (a), which means that f (x) is continuous
at x = a.

If f (x) has a derivative at x = a, that is, if f ′(a) exists, then we say that f (x) is dif-
ferentiable at x = a. Otherwise, f is not differentiable at x = a. For example, y = |x| is
not differentiable at x = 0. To be differentiable, intuitively, a curvemust be continuous
and smooth (have a unique tangent line at all points). Theorem 3.1.1 says that differen-
tiability implies continuity and thus we also know that f (x) is not differentiable at any
of its discontinuities.

NOTE. Continuity is a necessary but not sufficient condition for a function f to have
a derivative at point x = a. For example, y = |x| is continuous at x = 0, but not differen-
tiable there.

Example 3.1.9. Find a and b such that the function

f (x) =
{
{
{

x2 + 1, when x ⩾ 1
ax + b, when x < 1

is differentiable at x = 1.

Solution. First, f (x) must be continuous at x = 1, so the left and right limits of f as x
approaches 1 must be equal. Thus

lim
x→1+

f (x) = lim
x→1−

f (x) = f (1),
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lim
x→1−
(ax + b) = a + b = 2 = f (1).

Since f (x) needs to be differentiable at x = 1, the two one-sided derivatives must
exist and must be equal to each other. This means we must have

f ′+(1) = f ′−(1).

Hence, we have

lim
x→1−

f (x) − f (1)
x − 1

= lim
x→1+

f (x) − f (1)
x − 1
,

lim
x→1−

ax + b − 2
x − 1

= lim
x→1+

x2 + 1 − 2
x − 1
.

However, since a + b = 2, b − 2 = −a, so

lim
x→1−

a(x − 1)
x − 1
= lim

x→1+
x2 − 1
x − 1
,

a lim
x→1−

1 = lim
x→1+

x + 1,
a = 2.

Therefore, b = 2−a = 0. Moreover, we have f ′(1) = 2. Figure 3.1.10 shows the graph
of f (x).

Figure 3.1.10: Graphs of y = 2x and y = f (x) in Example 3.1.9.

Notice that the line y = 2x is the tangent to the curve y = x2 + 1 at x = 1.
There are other ways in which the derivative fails to exist, but these are unusual.

For example,

f (x) =
{
{
{

x sin( 1x ), if x ≠ 0
0, if x = 0

is continuous at x = 0 but it has no derivative there since

lim
x→0

f (x) − f (0)
x − 0

= lim
x→0

x sin 1
x − 0

x − 0
= lim
x→0

sin 1
x

does not exist.
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Geometrically, this is because this curve oscillates up and down, with large negative
and positive slopes, as x → 0, see Figure 3.1.12. Notice that this is different from the
case shown in Example 3.1.7, where

f (x) =
{
{
{

x2 sin( 1x ), if x ≠ 0
0, if x = 0,

where the factor x2 “smooths out” the oscillations as x→ 0, as shown in Figure 3.1.11.

Figure 3.1.11: Graph of f (x) = x2 sin 1
x .

Figure 3.1.12: Graph of f (x) = x sin 1
x .

3.2 Derivative as a function

If x is equal to a specific number, say, x = a, then the derivative of f at a is the number
denoted by f ′(a). If f (x) is differentiable at any point x in its domain, the derivative
f ′(x) is a variable depending on the value of x. Thus we can think of the values f ′(x)
as defining a function f ′ defined by the equation

f ′(x) = lim
h→0

f (x + h) − f (x)
h

. (3.1)
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This function is defined for all x in the domain of f for which this limit exists. When
y = f (x), the derivative of f as a function can be written

f ′(x), dy
dx
, y′, df

dx
, (f (x))′ or d

dx
f (x).

To find the derivative of f (x) at a point x = a, we can find the derivative of f first and
then substitute x with a, that is,

f ′(x)|x=a = f ′(a).

3.2.1 Graphing the derivative of a function

Notice that the derivative of a function is the slope of that function, so we could graph
the derivative for some simple functions.

Example 3.2.1. Graph the derivative of

f (x) =
{
{
{

2x + 1, when x ⩾ 1
−x + 2, when x < 1.

Solution. The graph of the function f (x) consists of two half lines. When x > 1, the
half line is y = 2x + 1 and has slope 2. When x < 1, the half line is y = −x + 2 and the
slope is −1, so we have

f ′(x) =
{
{
{

2, for x > 1
−1, for x < 1.

The graph of f (x) is shown in Figure 3.2.1. It is no surprise that f (x) has no derivative
at x = 1 since f is not continuous there, as shown in Figure 3.2.2.

NOTE. If the graph is increasing, then the slope must be positive. If the graph is de-
creasing, the slope is negative.

Figure 3.2.1: Graph of f (x) in Example 3.2.1.
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Figure 3.2.2: The derivative of f (x) in Example 3.2.1.

3.2.2 Derivatives of some basic functions

Example 3.2.2. If f (x) = C, where C is a constant, find f ′(x).

Solution. By equation (3.1),

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

C − C
h
= lim
h→0

0 = 0.

This means
d
dx
(C) = 0 or (C)′ = 0.

This example proves that the derivative of a constant function is always zero. This
is to be expected because there is no change in f (x), so the rate of change is of course
0. Geometrically, the graph of a constant function is a horizontal line, whose tangent
line always has slope 0.

Example 3.2.3. Find the derivative of y = xn, where n is a positive integer.

Solution. We use the binomial theorem to expand (x + h)n. We have

y′ = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)n − xn

h

= lim
h→0

(xn + nxn−1h + n(n−1)2 xn−2h2 +⋯+ hn) − xn

h

= lim
h→0
(
nxn−1h + n(n−1)2 xn−2h2 +⋯+ hn

h
)

= lim
h→0
(nxn−1 + n(n − 1)

2
xn−2h +⋯+ hn−1)

= nxn−1.

Therefore,

d
dx
(xn) = nxn−1 or (xn)′ = nxn−1.
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NOTE. This is a special case of the power rule (xu)′ = uxu−1, for u ∈ R. We have proved
that the rule is valid when u is a positive integer.

Example 3.2.4. Find the derivative of y = sinx.

Solution. Use the trigonometric formula

sinA − sinB = 2 cos(A + B
2
) sin(A − B

2
)

as follows:

y′ = lim
h→0

sin(x + h) − sinx
h

= lim
h→0

2 cos( 2x+h2 ) sin(
h
2 )

h

= lim
h→0

cos(x + h
2
)
sin( h2 )
( h2 )

= lim
h→0

cos(x + h
2
) × lim

h
2→0

sin( h2 )
( h2 )

= cosx,

so

d
dx
(sinx) = cosx or (sinx)′ = cosx.

NOTE. In a similar way, one can prove that

d
dx
(cosx) = − sinx or (cosx)′ = − sinx.

Example 3.2.5. Find equations for the line tangent to the graph of f (x) = sinx at the
point x = π

3 and for the normal line at the same point.

Solution. Since

f ′(x) = (sinx)′ = cosx,

we find

f ′(π
3
) = cosx|x= π3 = cos

π
3
= 1
2
.

Thismeans the line tangent to the graphof sinx at x = π
3 has slope

1
2 , so the line normal

to the graph of sinx at the same point has slope −2. When x = π
3 , y = f (

π
3 ) = sin

π
3 =
√3
2 ,

so the point-slope form of the tangent at x = π
3 is

y −
√3
2
=
1
2
(x − π

3
)
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Figure 3.2.3: Graphs of y = sin x, and its tangent and normal at x = π
3 .

and the normal line at x = π
3 is

y −
√3
2
= −2(x − π

3
).

Graphs are shown in Figure 3.2.3.

NOTE. If two coplanar lines are perpendicular to each other, then the product of their
slopes, if both exist, is −1.

Example 3.2.6. Find the derivative of y = ax , where a > 0, a ≠ 1 is a constant.

Solution. We have

y′ = lim
h→0

ax+h − ax

h
= ax lim

h→0

ah − 1
h
.

Let ah − 1 = t. Then h = ln(1+t)
lna and t→ 0 as h→ 0, so the last limit becomes

lim
h→0

ah − 1
h
= lim
t→0

t
ln(1+t)
lna
= lim
t→0

t lna
ln(1 + t)

= lim
t→0

lna
1
t ln(1 + t)

= lna × lim
t→0

1
1
t ln(1 + t)

= lna × lim
t→0

1
ln(1 + t)

1
t

= lna limt→0 1
limt→0 ln(1 + t)

1
t
= lna limt→0 1

ln limt→0(1 + t)
1
t

= lna
lne
= lna.

Hence, we conclude

d
dx
(ax) = ax lna or (ax)′ = ax lna.
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NOTE. In particular, when a = e we have

d
dx
(ex) = ex or (ex)′ = ex ,

since lne = 1, so the derivative of ex is itself at any point x. This function is a fixed point
under the differential operator.

There is another way to define the number e. Since

(ax)′ = ax lim
h→0

ah − 1
h
,

as shown above, the limit

lim
h→0

ah − 1
h
= lim
h→0

a0+h − a0

h

is in fact the derivative of ax at x = 0. That is, this limit is the slope of the tangent line
to ax at x = 0. Numerical and graphical views (see Figure 3.2.4 and Figure 3.2.5) show
that the slope of 2x is less than 1 and the slope of 3x is greater than 1, so it is sensible

Figure 3.2.4: Graphs of y = x + 1, y = 3x and its tangent at x = 0.

Figure 3.2.5: Graphs of y = x + 1, y = 2x and its tangent at x = 0.
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to believe that there is a number such that the exponential function with this base has
slope 1 at x = 0. We define this number by the letter e, so we obtain

lim
h→0

eh − 1
h
= 1.

In other words, e is defined as the number such that this limit is 1. This definition
agreeswith the previous one in Section 2.3 in Chapter 2. Observe that, when h is small,
eh−1
h ≈ 1, which implies that eh ≈ 1 + h, so e ≈ (1 + h)

1
h when h is small. If we take the

limit as h→ 0, we will have e = limh→0(1 + h)
1
h .

Example 3.2.7. Find the derivative of y = lnx for all x > 0.

Solution. Again, we will use limt→0(1 + t)
1
t = e as follows:

y′ = (lnx)′ = lim
h→0

ln(x + h) − lnx
h

= lim
h→0

1
h
ln(x + h

x
)

= lim
h→0

1
h
ln(1 + h

x
) = lim

h→0

1
x
× x
h
ln(1 + h

x
)

= 1
x
lim
h→0

ln(1 + h
x
)

x
h
, t = h

x
, t→ 0 when h→ 0

= 1
x
× lim
t→0

ln(1 + t)
1
t

= 1
x
× lne

= 1
x
.

Thus we have
d
dx
(lnx) = 1

x
or (lnx)′ = 1

x
.

3.3 Derivative laws

In the previous section, using the definition of the derivative, we found the derivative
of some simple functions. Since the derivative is defined as a limit, we can use the
limit laws to help us find derivatives of more complicated functions. In fact, we have
the following theorem.

Theorem 3.3.1. Suppose that f (x) and g(x) are two differentiable functions. Then:
(1) [f (x) ± g(x)]′ = f ′(x) ± g′(x) (sum/difference rule);
(2) [cf (x)]′ = cf ′(x), c ∈ R (constant multiple rule);
(3) [f (x)g(x)]′ = f ′(x)g(x) + f (x)g′(x) (product rule);
(4) [ f (x)g(x) ]

′ = f ′(x)g(x)−f (x)g′(x)
g2(x) , if g(x) ≠ 0 (quotient rule).
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Proof. (1) Let F(x) = f (x) ± g(x). Then

[f (x) ± g(x)]′ = F′(x)

= lim
h→0

F(x + h) − F(x)
h

= lim
h→0

[f (x + h) ± g(x + h)] − [f (x) ± g(x)]
h

= lim
h→0

[f (x + h) − f (x)] ± [g(x + h) − g(x)]
h

= lim
h→0

f (x + h) − f (x)
h

± lim
h→0

g(x + h) − g(x)
h

= f ′(x) ± g′(x).

(2) Let F(x) = f (x)g(x). Then

F′(x) = lim
h→0

F(x + h) − F(x)
h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x)
h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)
h

= lim
h→0
( f (x + h) − f (x)

h
g(x + h)) + lim

h→0
(g(x + h) − g(x)

h
f (x))

= lim
h→0
( f (x + h) − f (x)

h
) lim
h→0

g(x + h) + f (x) lim
h→0
(g(x + h) − g(x)

h
)

= f ′(x)g(x) + f (x)g′(x).

NOTE. We have limh→0 g(x + h) = g(x). Since g(x) is differentiable, it must be contin-
uous.

The proofs of (3) and (4) are left to the reader.

Example 3.3.1. Find the derivative of f (x) = sinx − 2 cosx + π2 and then find f
′(π).

Solution. Use the sum rule and the constant multiple rule to obtain

f ′(x) = (sinx − 2 cosx + π
2
)
′

= (sinx)′ − 2(cosx)′ + (π
2
)
′

= cosx − 2(− sinx) + 0
= cosx + 2 sinx.

Then f ′(π) = (cosx + 2 sinx)|x=π = cosπ + 2 sinπ = −1.
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Example 3.3.2. Find the derivative of y = loga x where x > 0, a > 0, and a ≠ 1.

Solution. Since loga x =
lnx
lna and (lnx)

′ = 1
x , we have

(loga x)′ = (
lnx
lna
)
′
= 1
lna
(lnx)′ = 1

x lna
.

Example 3.3.3. Differentiate y = x2 sinx.

Solution. Using the product rule, we have

dy
dx
= d
dx
(x2) sinx + x2 d

dx
(sinx)

= 2x sinx + x2 cosx.

Example 3.3.4. Differentiate y = xex lnx.

Solution. Use the product rule twice to obtain

y′ = (xex lnx)′

= (xex)′ lnx + (xex)(lnx)′

= (x′ex + x(ex)′) lnx + xex 1
x

= (ex + xex) lnx + ex .

Example 3.3.5. Use the quotient rule to find d
dx (

1
xn ), where n is a positive integer.

Solution. Applying the quotient rule with f (x) = 1, g(x) = xn, we obtain

d
dx
( 1
xn
) =

d
dx (1)x

n − 1 × d
dx (x

n)
(xn)2

= 0 − nx
n−1

x2n
= − n

xn+1
= −nx−n−1.

NOTE. This means (x−n)′ = (−n)x(−n)−1. We have now proved another special case of
the power rule (xu)′ = uxu−1 (for u is a negative integer). If n = 0, then x0 = 1. Moreover,
we have (x0)′ = 0 = 0x−1. Together with Example 3.2.3, we have proved that (xn)′ =
nxn−1 is valid for all integers n (for x ≠ 0). Some special cases of the rule include

(x)′ = 1x1−1 = 1 and ( 1
x
)
′
= (x−1)′ = −x−1−1 = − 1

x2
.

Example 3.3.6. If y = tanx, then show that y′ = sec2 x.
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Solution. Since tanx = sinx
cosx , we find, using the quotient rule,

y′ = (tanx)′ = ( sinx
cosx
)
′

= (sinx)
′ cosx − (sinx)(cosx)′

cos2 x

= cos
2 x + sin2 x
cos2 x

= 1
cos2 x
= sec2 x.

NOTE. Similarly, applying the quotient rule to cotx, cscx, and secx, we have

(cotx)′ = − csc2 x, (secx)′ = secx tanx, and (cscx)′ = − cscx cotx.

Example 3.3.7. Find the line tangent to the graph of the function

y = x + 1
x

at the point (1, 2).

Solution. We first find the derivative of y. We have

y′ = (x + 1
x
)
′
= (x)′ + ( 1

x
)
′

= 1 − 1
x2
.

Then observe that, when x = 1, y′(1) = 1− 11 = 0, so the equation of the tangent line
is

y − 2 = 0(x − 1), or y = 2.

Figure 3.3.1 shows these graphs.

Figure 3.3.1: Graphs of y = x + 1
x and y = 2.
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Example 3.3.8. Biologists use the equation

R =M2(C
2
− M

3
)

to model the reaction of a change in temperature (measured in degrees) of a body to
a dose of medicine, where C is a positive constant and M is the amount of medicine
absorbed in the blood. The sensitivity is defined as the rate of change of Rwith respect
toM, that is, dR

dM . Find the sensitivity of the body to the medicine.

Solution. We have
dR
dM
= (M2(C

2
− M

3
))
′
= (CM

2

2
− M

3

3
)
′

= C ⋅ 2M
2
− 3M

2

3
=MC −M2.

3.4 Derivative of an inverse function

Consider an inverse function x = ϕ(y) of a one-to-one function y = f (x) defined on an
interval I. If the original function is differentiable, then we would expect the function
x = ϕ(y) to also be differentiable. As discussed previously, the inverse of a continuous
function is also continuous. The two functions x = ϕ(y) and y = f (x) have the same
graph (the two equations are the same), although in the function y = f (x) we regard
y as the dependent variable while in the other function, x = ϕ(y), we regard x as the
dependent variable. We first restate the definition of a strictly monotonic function.

Definition 3.4.1. A function f (x) is strictly increasing on an interval I if f (x1) < f (x2)
whenever x1 < x2 in I. It is strictly decreasing if f (x1) > f (x2) whenever x1 < x2 in I. The
function f (x) is said to be strictly monotonic on I if it is either strictly increasing on I
or strictly decreasing on I.

A function that is strictlymonotonic on an interval I clearlymust be one-to-one, so
it must have an inverse function (see Section 1.3.4 on inverse and composite functions
in Chapter 1).

Theorem 3.4.1. Suppose that y = f (x) is differentiable and strictly monotonic on some
interval Iy . Then the inverse function x = ϕ(y) is also differentiable on the interval Ix =
{x|x = ϕ(y) and y ∈ Iy}. Furthermore,

d
dx
[f (x)] = 1

d
dy [ϕ(y)]

, at any x,y satisfying y = f (x)

or simply dy
dx
= 1

dx
dy
, or dy

dx
× dx
dy
= 1.
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Proof. Since y = f (x) is differentiable, the derivative is given by

d
dx
[f (x)] = lim

Δx→0

Δy
Δx
, where Δy = f (x + Δx) − f (x).

Since y = f (x) is one-to-one, we have Δy ≠ 0 as Δx→ 0. Furthermore, since y = f (x) is
differentiable, it is continuous, which means that Δy→ 0 as Δx→ 0. Thus we have

d
dx
[f (x)] = lim

Δx→0

Δy
Δx
= lim
Δy→0

1
Δx
Δy
=

1
limΔy→0

Δx
Δy
.

Since Δy = f (x + Δx) − f (x) and y = f (x), we have

Δy = f (x + Δx) − y, since y = f (x),

so

y + Δy = f (x + Δx).

This means

ϕ(y + Δy) = x + Δx.

Since x = ϕ(y), we have

Δx = ϕ(y + Δy) − x = ϕ(y + Δy) −ϕ(y).

Thus we obtain

lim
Δy→0

Δx
Δy
= lim
Δy→0

ϕ(y + Δy) −ϕ(y)
Δy

= d
dy
[ϕ(y)].

Therefore,

d
dx
[f (x)] = 1

d
dy [ϕ(y)]

.

NOTE. This means that the derivative of the inverse function x = ϕ(y) with respect to
y is the reciprocal of the derivative of the original function y = f (x) with respect to x,
where (x,y) is any point satisfying y = f (x).

Example 3.4.1. If y = 3x − 2, find:
1. dy

dx ;
2. the inverse function of y in the form x = ϕ(y);
3. dx

dy and verify that
dy
dx

dx
dy = 1.
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Solution. Since y = 3x − 2, we find

dy
dx
= (3x − 2)′ = (3x)′ − 2′ = 3(x)′ − 0 = 3.

Solving the equation for x gives

x = y + 2
3
.

This is the inverse of y = 3x − 2, while

dx
dy
= (y + 2

3
)
′
= (y

3
) + ( 2

3
)
′
= 1
3
.

Of course, we have

dy
dx
× dx
dy
= 3 × 1

3
= 1.

The geometric interpretation of this fact is shown in Figure 3.4.1.

Figure 3.4.1: Geometric interpretation of dy
dx and

dx
dy .

Because y = f (x) and x = ϕ(y) are the same equation, the graphs and the tangent
lines at (x,y) are the same. However, the slope/derivative is interpreted differently.
The slope of y = f (x) is the steepness of the tangent line with respect to the positive
x-axis, or tanθ, as shown in Figure 3.4.1, while the slope of x = ϕ(y) is the steepness
of the tangent line with respect to the positive y-axis (in this case y is the independent
variable), or tanα, as shown in Figure 3.4.1. In this case we have

α + θ = π
2
, so tanα = cotθ.
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This means

dx
dy
= tanα = cotθ = 1

tanθ
= 1

dy
dx

.

Rewritten in the inverse notation, we have y = f (x) and x = f −1(y), so

dy
dx
= 1

dx
dy

or [f (x)]′ = 1
[f −1(y)]′

.

Example 3.4.2. Find the derivative of the function y = arcsinx, −1 ⩽ x ⩽ 1.

Solution. Since x = siny is the inverse function for − π2 ⩽ y ⩽
π
2 , −1 ⩽ x ⩽ 1, and the

function x = siny is differentiable and monotonic on the interval (− π2 ,
π
2 ), we have

y′ = (arcsinx)′ = 1
[siny]′y

= 1
cosy
.

We know that, for any angle y, sin2 y + cos2 y = 1, so cosy = √1 − sin2 y (cosy ⩾ 0, since
− π2 ⩽ y ⩽

π
2 ), but siny = x, so we have cosy = √1 − x

2. Hence,

y′ = (arcsinx)′ = 1
cosy
= 1
√1 − x2
.

NOTE. Using the derivative of the inverse function, we show in a similar way that

(arccosx)′ = − 1
√1 − x2
,

(arctanx)′ = 1
1 + x2
,

(arccotx)′ = − 1
1 + x2
.

Now we use another way, different from our previous example, to show that
(lnx)′ = 1

x .

Example 3.4.3. Find the derivative of the function y = lnx, where x > 0.

Solution. The inverse function x = ey is differentiable and monotonic on the interval
(−∞,∞). Hence, using the derivative of an exponential function from Example 3.2.6,
we have

y′ = (lnx)′ = 1
[ey]′y
= 1
ey
= 1
x
.

In the case that x and y are swapped in the inverse function, they play their usual
roles. This means y = f (x) and y = f −1(x), so the graphs of the two functions are reflec-
tions in the line y = x. This theorem then becomes the following.
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Theorem 3.4.2. The derivative of y = f (x) at (x0,y0) is the reciprocal of the derivative
of y = f −1(x) at (y0,x0).

Example 3.4.4. For the function f (x) = ex , find:
1. df

dx and
df
dx |(1,e);

2. the inverse function for f and find df −1
dx ,

df −1
dx |(e,1) for this function.

Solution. If f (x) = ex , then df
dx = e

x and df
dx |(1,e) = e

x |x=1 = e.
Let y = ex . Solving for x, we have x = lny. Swapping x and y, we obtain y = lnx. In

other words, f −1(x) = lnx. For this function,

df −1

dx
= 1
x

and df −1

dx
|
x=e
= 1
e
.

Thus, we see that the derivative of f (x) = ex at (1,e) is the reciprocal of the deriva-
tive of f −1(x) = lnx at (e, 1).

Recall from Chapter 1 that, geometrically, the graph of a function and its inverse
are mirror images of each other through the line y = x. As an example, we present the
graphs of y = x, y = ex , and y = lnx together with a tangent drawn at two mirror image
points on each curve, as shown in Figure 3.4.2.

Figure 3.4.2: Graphs of y = x, y = ex and y = ln x and tangents.

3.5 Differentiating a composite function – the chain rule

So far, we have obtained the derivatives of basic functions such as power functions
(when the exponent is an integer), exponential functions, logarithms, trigonometric
functions, and inverse trigonometric functions. What about a more complicated func-
tion formed by composing those basic functions? For example, how would we dif-
ferentiate the function y = sin(x2)? Notice that y = sin(x2) is a composition of the two
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functions y = sinu and u = x2, andwe already know how to find the derivatives of both
of these functions.We now explore the connection between the two derivatives. Let us
first consider a simple case.

Example 3.5.1. Find the derivative of y = (x2 + 1)2.

Solution. Method 1. We have

y = (x2 + 1)2 = x4 + 2x2 + 1,

so

dy
dx
= (x4 + 2x2 + 1)′ = 4x3 + 4x.

Method 2. Let u = x2 + 1 and y = u2. Then

dy
du
= 2u and du

dx
= 2x,

so

dy
du
× du
dx
= 2u × 2x

= 2(x2 + 1) × 2x = 4x3 + 4x.

Therefore, when y = f (u(x)) we have

dy
dx
= dy
du
× du
dx
.

This pattern is called the chain rule and is stated in the following theorem.

Theorem 3.5.1 (Chain rule). Suppose the function y = f (u) is differentiable on an inter-
val Iu and the function u = g(x) is differentiable on some interval Ix , such that, for any
x ∈ Ix , g(x) = u ∈ Iu . The composition y = f (g(x)) is also differentiable on Ix and

dy
dx
=
dy
du
⋅
du
dx
,

or equivalently d
dx

f (g(x)) = f ′(g(x))g′(x).

Proof. If Δx is an increment in x, then let Δu and Δy be the corresponding increments
in u and y so that

Δu = g(x + Δx) − g(x) = g(x + Δx) − u,
Δy = f (u + Δu) − f (u) = f (g(x + Δx)) − f (g(x)).
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Note that u = g(x) is differentiable at x and y = f (u) is differentiable at u = g(x), so

lim
Δx→0

Δu
Δx
= g′(x) and lim

Δu→0

Δy
Δu
= f ′(u).

By Corollary 2.5.2 from Chapter 2, we write

Δu = g′(x)Δx + α ⋅ Δx, for some α which approaches 0 as Δx→ 0,
Δy = f ′(u)Δu + β ⋅ Δu, for some β which approaches 0 as Δu→ 0.

If we substitute the expression for Δu, we get

Δy = [f ′(u) + β] ⋅ [g′(x)Δx + α ⋅ Δx]

⟹ Δy
Δx
= [f ′(u) + β] ⋅ [g′(x) + α].

IfΔx→ 0, thenΔu→ 0because u(x) is continuous, soboth α→ 0 and β→ 0 asΔx→ 0.
Therefore,

dy
dx
= lim
Δx→0

Δy
Δx

= lim
Δx→0
[f ′(u) + β][g′(x) + α]

= lim
Δx→0
[f ′(u) + β] lim

Δx→0
[g′(x) + α]

= f ′(u)g′(x)
= f ′(g(x))g′(x).

This proves the chain rule.

NOTE. f ′(g(x))means: calculate f ′(u) = df
du and then replace u with g(x).

Example 3.5.2. Find the derivative of the function y = sin(x2).

Solution. Let u = x2. Then both y = sinu and u = x2 are defined and differentiable for
all x ∈ R. By the chain rule, we have

dy
dx
=
dy
du

du
dx
= cosu × 2x = 2x cosu = 2x cosx2.

Example 3.5.3. Find the derivative of the function y = cos(x2 + x).

Solution. Let u = x2 + x. Then y = cosu and u = x2 + x are defined and differentiable
for all x ∈ R. By the chain rule, we have

y′ = dy
dx
= dy
du

du
dx
= − sinu ⋅ (2x + 1) = −(2x + 1) sin(x2 + x).
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There is another way to interpret the chain rule:

f ′(g(x)) = f ′(g(x))g′(x).

It says that the derivative of a composition is the derivative of the outside functionwith
respect to the inside function g(x), multiplied by the derivative of the inside function
with respect to x.

Example 3.5.4. Find the derivative of y = (x2 + 1)10.

Solution. The outside is a power function u10 and the inside is a polynomial function
x2 + 1, so

dy
dx
= 10(x2 + 1)10−1

derivative of the outside function⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
× d

dx
(x2 + 1)

derivative of the inside function⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= 10(x2 + 1)9 × (2x + 0)
= 20x(x2 + 1)9.

Example 3.5.5. Prove (xu)′ = uxu−1, where u ∈ R.

Proof. Since xu = eu lnx and the outside function is ex , the inside function is u lnx. We
have

dxu

dx
= de

u lnx

dx
= eu lnx d(u lnx)

dx
= xu u

x
= uxu−1.

NOTE. From this result, we now have the generalized power rule of differentiation:

(xn)′ = nxn−1 is valid for all n ∈ R at each x where xn is defined.

A special case of the power rule is

(√x)′ = (x
1
2 )′ = 1

2
x

1
2−1 =

1
2
x−

1
2 = 1

2√x
for x > 0.

Example 3.5.6. Find f ′(x) if f (x) = 1
3√x2+2x+3

.

Solution. First rewrite the function f as

f (x) = (x2 + 2x + 3)−1/3 = u−1/3

and then use the power rule for derivatives ( d
duu
−1/3 = − 13u

−4/3) and the chain rule as
follows:

f ′(x) = − 1
3
(x2 + 2x + 3)−4/3 d

dx
(x2 + 2x + 3)

= − 1
3
(x2 + 2x + 3)−4/3(2x + 2).
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Example 3.5.7. Let y = ln |x|, x ≠ 0. Find dy
dx .

Solution. When x > 0, then y = ln |x| = lnx and

dy
dx
= (lnx)′ = 1

x
.

When x < 0, then y = ln |x| = ln(−x), so

dy
dx
= (ln(−x))′ = 1

−x
(−x)′ = 1

−x
× (−1) = 1

x
.

Therefore,

d
dx

ln |x| = 1
x

for all x ∈ R,x ≠ 0.

NOTES. 1. In the case that u is a function of x, using the chain rule, we obtain

d
dx
(ln |u|) = 1

u
du
dx
.

2. The chain rule can be extended to compositions of three or more functions. For
example, if y = f (u), u = g(v) and v = h(x), so that y = f (u) = f (g(h)) = f (g(h(x))),
then we use the chain rule twice to obtain

dy
dx
= dy
du

du
dx
= dy
du

du
dv

dv
dx
,

or, in another notation,

d
dx

f (g(h(x))) = f ′(g(h(x)))g′(h(x))h′(x).

Example 3.5.8. Find the derivative of the function y = esin
2
x .

Solution. We write this as y = eu, where u = sin v and v = 2
x . Then we use the chain

rule as follows:

dy
dx
= dy
du

du
dv

dv
dx

= eu ⋅ cos v ⋅ (− 2
x2
)

= −esin
2
x ⋅ cos 2

x
⋅ 2
x2
.

Example 3.5.9. Find f ′(x) when f (x) = ecos(cotx).
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Solution. We write this as f (x) = eu, u = cos(v), v = cot(x). Then

dy
dx
= dy
du

du
dv

dv
dx

= eu(− sin(v))(−csc2(x))
= ecos v sin(cot(x))csc2(x)
= ecos(cotx) sin(cot(x))csc2(x).

Alternatively, we apply the chain rule directly two times as follows:

f ′(x) = ecos(cotx) ⋅ d
dx

cos(cotx)

= ecos(cotx) ⋅ − sin(cotx) d
dx

cotx

= ecos(cotx) ⋅ − sin(cotx) ⋅ − csc2 x
= ecos(cotx) sin(cot(x))csc2(x).

3.6 Derivatives of higher orders

In mechanics, the first order derivative of the displacement function with respect to
time is the velocity function. If we differentiate the velocity function with respect to
time, we obtain the acceleration function. In fact, this acceleration function is ob-
tained by differentiating the displacement function twice with respect to time.

In mathematics, if we differentiate the function y′ = f ′(x), then we write this as
y″ = [f ′(x)]′ = f″(x). We call this the second order derivative of y = f (x) or simply the
second derivative of y = f (x). In other words, we differentiate f (x) twice to obtain f″.
Similarly, y‴ denotes the third order derivative of y = f (x) (differentiate three times)
and y(n) is the nth order derivative of y = f (x) (differentiate n times). Possible notations
for the nth order derivative of the function y = f (x) are

dny
dxn
, f (n)(x), or y(n).

Example 3.6.1. If f (x) = x sinx, then find f″(x).

Solution. Using the product rule, we have

f ′(x) = d
dx
(x) sinx + x d

dx
(sinx)

= sinx + x cosx.

To find f″(x) we differentiate f ′(x) and obtain

f″(x) = d
dx
(sinx + x cosx)
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= d
dx
(sinx) + d

dx
(x) cosx + x d

dx
(cosx)

= cosx + cosx − x sinx
= 2 cosx − x sinx.

For reference, the graphs of f , f ′, and f″ are shown in Figure 3.6.1. Be aware that
you can interpret f″(x) as the slope of the curve y = f ′(x) at the point (x, f ′(x)) or y =
f″(x) as the rate of change of a rate of change.

Figure 3.6.1: Graphs of f , f ′ and f ″ in Example 3.6.1.

Example 3.6.2. If y = sinx, find y(n).

Solution. Compute the first few derivatives:

y′ = cosx = sin(x + π
2
),

y″ = (cosx)′ = − sinx = sin(x + 2π
2
),

y‴ = (− sinx)′ = − cosx = sin(x + 3π
2
),

y(4) = (− cosx)′ = sinx = sin(x + 4π
2
).

This suggests the following result, which can be proved by induction:

y(n) = sin(n) x = sin(x + nπ
2
).

NOTE. y′, y″, y‴ and y(4) are cosx, − sinx, −cosx, sinx = y, respectively. Hence, all
future derivatives just repeat this sequence of four derivatives.

Example 3.6.3. If y = xa, find y(n).
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Solution. We have

y′ = axa−1,
y″ = a(a − 1)xa−2,
y‴ = a(a − 1)(a − 2)xa−3,
⋮

y(n) = a(a − 1)(a − 2) ⋅ ⋅ ⋅ (a − n + 1)xa−n.

NOTE. If a is a positive integer n, then dn
dxn (x

n) = n! and all higher order derivatives are
zero.

Example 3.6.4. If y = ln(1 + x), find y(n).

Solution. We have

y′ = 1
1 + x
,

y″ = ( 1
1 + x
)
′
= − 1
(1 + x)2
,

y‴ = (−1)21 ⋅ 2 ⋅ 1
(1 + x)3
,

y(4) = (−1)31 ⋅ 2 ⋅ 3 ⋅ 1
(1 + x)4
,

⋮

y(n) = (−1)n−1(n − 1)! 1
(1 + x)n
.

3.7 Implicit differentiation

In Chapter 1,we remarked that,whenanequation is used todefine a function,weoften
use our knowledge to analyze the formula and supply a natural domain and range for
the function. However, for functions defined implicitly by an equation, the domain
and range of the function are not always obvious.

Consider the equation

x2 + y2 = 1.

This equation defines two functions

y = √1 − x2 and y = −√1 − x2, both with domain [−1, 1].

Notice that the graph of the entire equation is the unit circle and the graphs of the
above two functions are semi-circles – one above the x-axis, the other below.
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However, if we consider the folium of Descartes, which is given by

x3 + y3 = 6xy.

The graph is shown in Figure 3.7.1. It is hard to express y explicitly as a function of x.
However, we can still view this equation as defining y in terms of x, because, if we
put an x-value into the equation, we can solve it to find one or more corresponding
y-values.

Figure 3.7.1: Folium of Descartes.

For example, when x = 3 we find that there are three points of intersection between
the line x = 3 and the graph of the equation x3 + y3 = 6xy. Solving the equation when
x = 3, we obtain

27 + y3 = 18y,

which gives y = 3, y = − 32 +
3
2√5, and y = −

3
2 −

3
2√5. A function defined by this equation

might map the domain element 3 to the range element 3 or − 32 +
3
2√5 or −

3
2 −

3
2√5, but

this would be a choice that we make (and we would have to make a choice in order to
have a function).

Notice that the tangents at these three points

(3,3), (3, −3
2
+ 3
√5
2
), and (3, −3

2
− 3
√5
2
)

are not vertical, so the restricted part of the graph which is near any of these points is
the graph of a function. Therefore, we are able to find the derivative of that function
at each point.

The process of finding the derivative of a function defined implicitly by an equa-
tion is called implicit differentiation and is illustrated in the following examples.

Example 3.7.1. If x2 + y2 = 25, then find dy
dx and

dy
dx |(4,3).
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Solution. We differentiate each term in the equation with respect to x. We have

d
dx
(x2) + d

dx
(y2) = d

dx
(25), so

2x + d
dx
(y2) = 0.

Since y2 is a composition of a power function u2 and the function u = y, we must use
the chain rule to find its derivative. We have

d
dx
(y2) = d

dy
(y2) × dy

dx
= 2y dy

dx
,

so

2x + 2y dy
dx
= 0

and

dy
dx
= −x

y
.

When x = 4 and y = 3, dy
dx |(4,3) = −

4
3 . This is the slope of the line tangent to the circle

at (4,3).
In this example, we could have solved for y to obtain

y = ±√25 − x2.

Because we want the derivative at (4,3), we only consider the positive y-values.

dy
dx
= 1
2√25 − x2

× (−2x)|
x=4
= −x
√25 − x2

|
x=4

= −4
√25 − 42

= −4
3
.

Example 3.7.2. Find the tangent line and the normal line to the folium of Descartes

x3 + y3 = 6xy

at the point (3,3).

Solution. Wedifferentiate each termwith respect to x and use implicit differentiation
to obtain

d
dx

x3 + d
dx

y3 = d
dx
(6xy),
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3x2 + d
dy

y3 × dy
dx
= 6(dx

dx
)y + 6x × dy

dx
,

3x2 + 3y2 dy
dx
= 6y + 6x × dy

dx
.

Solving dy
dx gives

dy
dx
= 3x

2 − 6y
6x − 3y2

= x
2 − 2y
2x − y2
.

At (3,3), dy
dx |x=3,y=3 =

x2−2y
2x−y2 |x=3,y=3 =

9−6
6−9 = −1, so the slope of the tangent line at (3,3)

is −1. The slope of the normal line at (3,3) is 1. Therefore, an equation of the tangent
line at (3,3) is

y − 3 = −(x − 3) or y = −x + 6,

so an equation of the normal line is

y − 3 = x − 3 or y = x.

Example 3.7.3. Given the equation

x2 + xy + y2 = 3,

find:
1. y′;
2. the equation of the tangent to x2 + xy + y2 = 3 at the point (1, 1);
3. the points on the curve where the tangent line is horizontal.

Solution. 1. Differentiate both sides of x2 + xy + y2 = 3 with respect to x. Regarding y
as a function of x and applying the chain rule to the y2 term and the product rule to
the xy term, we get

2x + y + xy′ + 2yy′ = 0.

We now solve for y′ to obtain

y′ = −2x − y
x + 2y
.

2.When x = y = 1, y′ = −1. A glance at Figure 3.7.2 confirms that this is a reasonable
value for the slope at (1, 1), so an equation of the tangent to the curve at (1, 1) is

y − 1 = −(x − 1) or x + y = 2.



158 | 3 The derivative

Figure 3.7.2: Graphs of y = 2, y = −2, y + x = 2 and x2 + xy + y2 = 3.

3. The tangent line is horizontal if y′ = 0. Using the expression for y′ from part 1,
we see that y′ = 0 when 2x+ y = 0. However, (x,y)must also satisfy the equation of the
curve, so substituting y = −2x in this equation, we get

x2 − 2x2 + 4x2 = 3,

which simplifies to x = ±1. When x = 1, y = −2x = −2, so one point with horizontal tan-
gent is (1, −2). When x = −1, y = −2x = 2, so the only other point is (−1, 2). Therefore, the
tangent is horizontal at the points (1, −2) and (−1, 2), as can be observed in Figure 3.7.2.

Example 3.7.4. Find d2y
dx2 when the function y = y(x) is implicitly defined by the equa-

tion

x − y + siny
2
= 0.

Solution. Differentiate both sides with respect to x to get

1 − dy
dx
+
1
2
cosy ⋅ dy

dx
= 0,

dy
dx
=

2
2 − cosy

.

Differentiate again with respect to x, using the chain rule twice and the power rule as
follows:

d2y
dx2
=

d
dx
(

2
2 − cosy

) =
d
dy
(

2
2 − cosy

)
dy
dx

= 2 d
dy
((2 − cosy)−1)dy

dx
= −2(2 − cosy)−2(siny)dy

dx

= −2 siny
(2 − cosy)2

⋅ 2
2 − cosy

= − 4siny
(2 − cosy)3

.
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Logarithmic differentiation
In some equations involving exponents and/or products/quotients, it is advantageous
to take logarithms of both sides of an equation before differentiating (often using im-
plicit differentiation).

Example 3.7.5. The function y = y(x) is defined implicitly by xy = yx for x > 0 and
y > 0. Find dy

dx .

Solution. Take the natural logarithm of both sides to get

y lnx = x lny.

Using implicit differentiation and the product rule, we obtain

y′ lnx + y
x
= lny + x

y
y′,

y′ =
lny − y

x
lnx − xy

.

Example 3.7.6. Suppose y = √ (x−1)(x−2)(x−3)(x−4) for x ∈ (−∞, 1) ∪ (2,3) ∪ (4,∞). Find y
′.

Solution. Take the natural logarithm of both sides to obtain

lny = ln√ (x − 1)(x − 2)
(x − 3)(x − 4)

= 1
2
ln| (x − 1)(x − 2)
(x − 3)(x − 4)

|

= 1
2
(ln |x − 1| + ln |x − 2| − ln |x − 3| − ln |x − 4|).

Differentiate implicitly to obtain

1
y
y′ = 1

2
[ 1
x − 1
+ 1
x − 2
− 1
x − 3
− 1
x − 4
],

so

y′ = 1
2
√ (x − 1)(x − 2)
(x − 3)(x − 4)

[
1

x − 1
+

1
x − 2
−

1
x − 3
−

1
x − 4
].

3.8 Functions defined by parametric and polar equations

3.8.1 Functions defined by parametric equations

In physics, you probably have already encountered projectile motion. A ball in space
is given an initial speed of um/sec, at angle α radians to the horizontal. The subse-
quent motion of the ball follows a free fall motion if the air resistance is negligible.
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The motion can be resolved in two directions. Horizontally, it moves with a constant
speed, and its horizontal distance is a function of time. Vertically, it is a motion under
gravity, so we have

{
{
{

x = ucosα ⋅ t
y = u sinα ⋅ t − 1

2gt
2.

At any time t, the ordered pair of numbers (x,y) gives the coordinates of the ball at
that instant. This is an example of a function defined by parametric equations.

In mathematics, the parameterization of a curve is a representation of this curve
through equations expressing the coordinates of the points of the curve as functions
of a variable called a parameter. For example:

(1)
{
{
{

x = t
y = t2;

(2)
{
{
{

x = Rcosθ
y = R sinθ;

(3)
{
{
{

x = 2 sin 2t
y = 3cos 2t;

(4)
{
{
{

x = 7cosu + 3 sin(8u − 1)
y = 7 sinu − 3cos(8u − 1).

If x and y are defined by parametric equations

{
{
{

x = ϕ(t)
y =ψ(t)

where t ∈ [α,β],

then this may or may not define y as a function of x. However, if ϕ and ψ are differ-
entiable at a particular t and ϕ′(t) ≠ 0, then the parametric equations may define a
function y of x in a neighborhood of that point. We consider the question of how to
find dy

dx in this case.
Suppose that ϕ(t) and ψ(t) are differentiable and ϕ′(t) ≠ 0 at a particular t. In

some neighborhood of this t, if there exists an inverse function t = h(x) of x = ϕ(t),

Figure 3.8.1: Graph of a curve defined by parametric equations.
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then apply the chain rule to the composite function y =ψ(h(x)) to get

dy
dx
= dy
dt

dt
dx
.

Recall from Theorem 3.4.2 that the derivative of the inverse function satisfies

dt
dx
= 1
( dxdt )
.

Thus dy
dx is given by the following expression:

dy
dx
=

dy
dt
dx
dt

or dy
dx
= y
′(t)
x′(t)
= ψ
′(t)

ϕ′(t)
. (3.2)

The second derivative of y(x) with respect to x is

d2y
dx2
= d(y

′)
dx
= d(y
′)

dt
dt
dx
=
( d(y
′)

dt )

( dxdt )
or

d2y
dx2
=
( y
′(t)
x′(t) )
′

x′(t)
= y
″(t)x′(t) − y′(t)x″(t)
(x′(t))3

(3.3)

= ψ
″(t)ϕ′(t) −ψ′(t)ϕ″(t)
(ϕ′(t))3

.

NOTE. In equation (3.3), all the primes (derivatives) are with respect to t.

Example 3.8.1. If y = y(x) is defined by the parametric equations

{
{
{

x = t
y = 1 + t2,

then find dy
dx ,

dy
dx |t=2, and the line tangent to the graph of y at the point (2,5).

Solution. We have

dy
dx
=

dy
dt
dx
dt
= (1 + t

2)′

(t)′
= 2t

1
= 2t.

When t = 2, dy
dx |t=2 = 2t|t=2 = 4.

The point (2,5) corresponds to the value of parameter t = 2, so

dy
dx
|
(2,5)
= dy
dx
|
t=2
= 2t|t=2 = 4.
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Therefore, the point-slope form of the tangent line at (2,5) is

y − 5 = 4(x − 2).

We could check this by eliminating the parameter t to get an equation connecting
x and y. We have

y = 1 + x2

and

dy
dx
= 2x and dy

dx
|
t=2
= dy

dx
|
x=2

Note: x=2 when t=2.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= 2 × 2 = 4.

This agrees with the previous calculation.

Example 3.8.2. Find dy
dx and

d2y
dx2 when the function y = y(x) is defined by the paramet-

ric equations

{
{
{

x = ln(1 + t2)
y = t − arctan t.

Solution. Recall from Example 3.4.2 that d
dt (arctan t) =

1
1+t2 . Hence, we have

dy
dx
=

dy
dt
dx
dt
=
1 − 1

1+t2

( 2t1+t2 )
= t
2
.

For the second derivative d2y
dx2 , one needs to be aware that we are going to differentiate

dy
dx with respect to x, not t. We have

d2y
dx2
= d
dx
(dy
dx
) = d

dx
( t
2
).

We cannot say the derivative d
dx (

t
2 ) is

1
2 , since the derivative is with respect to x,

not t! We have to use the chain rule and we obtain

d
dx
( t
2
) = d

dt
( t
2
) × dt

dx
= 1
2
dt
dx

=
1
2
1
dx
dt
=
1
2
⋅

1
2t
1+t2

= 1 + t
2

4t
.

We could also have used equation (3.3) to find

x′(t) = (ln(1 + t2))′ = 2t
1 + t2

and
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y′(t) = (t − arctan t)′ = 1 − 1
1 + t2
= t2

1 + t2

and

x″(t) = ( 2t
1 + t2
)
′
= (2t)

′(1 + t2) − 2t × (1 + t2)′

(1 + t2)2

= 2(1 + t
2) − 4t2

(1 + t2)2
= 2 − 2t2

(1 + t2)2
,

y″(t) = ( t2

1 + t2
)
′
=
(t2)′(1 + t2) − t2 × (1 + t2)′

(1 + t2)2

= 2t(1 + t
2) − t2(2t)
(1 + t2)2

= 2t
(1 + t2)2

.

Therefore,

d2y
dx2
= y
″(t)x′(t) − y′(t)x″(t)
(x′(t))3

=
2t
(1+t2)2

2t
1+t2 −

t2
1+t2

2−2t2
(1+t2)2

( 2t1+t2 )
3

= 1 + t
2

4t
.

3.8.2 Polar curves

The position of point P in a plane can also be given in terms of its directed distance
r from a fixed point O, called the pole, and the counterclockwise angle θ which OP
makes with a fixed half line, called the initial line (the positive x-axis). The angle θ
is normally measured in radians and its principal value is taken to be in the range
[−π,π]. A negative value of this anglemeans that the angle is measured in a clockwise
direction from the x-axis. In Figure 3.8.2, the Cartesian coordinates of the point P are
(x,y) and its polar coordinates are (r,θ).

Figure 3.8.2: Polar coordinates.
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Example 3.8.3. Plot the point P with polar coordinates (2, π3 ) and the point Q with
polar coordinates (3, − π4 ).

Solution. Draw the lineOP thatmakes an angle of π3 radianswith the x-axis andmake
the length OP = 2 units. Then P is the point identified. For Q, the negative value of the
angle means that π

4 is measured in a clockwise direction from the x-axis, so we draw
the line OQ at angle − π4 radians with the x-axis and make OQ = 3 units. Then Q is the
point identified.

NOTE. The point P also has polar coordinates (−2, 4π3 ), (2, −
5π
3 ), and (−2, −

2π
3 ).

We see from Figure 3.8.1, for the point P with coordinates (x,y) and (r,θ),

x = r cosθ, y = r sinθ and r2 = x2 + y2, tanθ = y
x

These are conversion formulas. We could use them to convert the equation of a curve
from its Cartesian form to its polar form, or vice versa.

Example 3.8.4. Use the conversion formulas to find the Cartesian equation of each
of the curves

(1) r = 2; (2) r = −2; (3) r = 2 sinθ; and (4) θ = π
2
.

Solution. (1) Since r2 = 4, its Cartesian equation is x2 + y2 = 22. This curve is a circle
centered at the origin with radius 2.
(2) This is the same as (1).
(3) Since r2 = 2r sinθ, its Cartesian equation is x2 + y2 = 2y or x2 + (y − 1)2 = 1. This

is a circle centered at (0, 1) with radius 1.
(4) x = r cos π

2 = 0, but note θ =
π
2 is not the entire y-axis. Since θ is measured in

counterclockwise direction, it is the positive y-axis only.

NOTE. In general, if θ = α and α > 0, then the graph is a half line which makes an
angle αmeasured in counterclockwise direction with the positive x-axis. If α < 0, then
the graph is a half linewhichmakes an angle −αmeasured in clockwise directionwith
the positive x-axis.

Example 3.8.5. Use the conversion formulas to find the polar equation of each of the
following curves:
(1) x2 + y2 = 9; (2) xy = 25; (3) x2 + y2 = 4x; (4) (x2 + y2)2 = x2 − y2 .
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Solution. We have
(1) r2 = 9, so r = 3 or r = −3;
(2) x = r cosθ, y = r sinθ, so r cosθ ⋅ r sinθ = 25, so r2 = 25

cosθ sinθ , or r
2 = 50/ sin 2θ;

(3) r2 = 4r cosθ, or r = 4cosθ;
(4) (r2)2 = r2 cos2 θ − r2 sin2 θ, so r2 = cos2 θ − sin2 θ, that is, r2 = cos 2θ.

Example 3.8.6. Suppose a function y = y(x) is described by the equation r = 1 + cosθ
in polar coordinates. Find the equation of the tangent line to the function at θ = π

2 .

Solution. Recall the relationship between the polar coordinates r, θ and the rectan-
gular coordinates x, y is x = r cosθ, y = r sinθ (with the same origin and x-axis corre-
sponding to θ = 0). Hence,

{
{
{

x = r(θ)cosθ = (1 + cosθ)cosθ = cos2 θ + cosθ,
y = r(θ) sinθ = (1 + cosθ) sinθ = sinθ + cosθ sinθ.

These are now in the form of parametric equations, so differentiating (using the prod-
uct rule and the chain rule) we obtain

dy
dx
|
θ= π2
=

dy
dθ
dx
dθ
|
θ= π2
= cosθ − sin

2 θ + cos2 θ
− sinθ − 2 sinθ cosθ

|
θ= π2
= 1.

When θ = π
2 , r = 1 + cos

π
2 = 1, in which case the point (x,y) in rectangular coordinates

is

(x,y) = (r cosθ, r sinθ) = (0, 1),

so the equation of the desired tangent line is

y − 1 = x − 0, or y = x + 1.

Graphs are shown in Figure 3.8.3.

Figure 3.8.3: Graphs of r = 1 + cosθ and y = x + 1.
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3.9 Related rates of change

A radar on a post is detecting a speeding car as shown in Figure 3.9.1. If the car is
moving at a rate of change of 100 km/h, then the rate of change of the car detected by
the radar is not 100 km/h, but we can find the equation connecting the two rates of
change. They are called related rates of change.

Figure 3.9.1: Radar detects speeding cars.

The equation connecting the variables is

x2 + h2 = s2, (3.4)

where x and s are both functions of the time t. The rate of change of the speeding car
is dx

dt .
ds
dt is the rate of change of s with respect to the time t, the radar detects exactly

this rate of change.
Now we differentiate each term of the equation with respect to t to find

d
dt
(x2) + d

dt
(h2) = d

dt
(s2).

Using the chain rule, we find

2x dx
dt
+ 0 = 2sds

dt
,

so

ds
dt
= x
s
dx
dt
.

This shows that ds
dt is not equal to

dx
dt . For instance, when x = 50m, s = √502 + 102 ≈

50.99m, and at this instant

ds
dt
= 50
50.99
× 100 ≈ 98.06km/h.
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In general, we may need to calculate the rate at which one quantity is changing
when we know the rate at which a related quantity is changing. To solve the “related
rates” problem, we need to:
1. find an equation linking the variables and then use the chain rule to differentiate

both sides with respect to time;
2. solve for the unknown rate of change using the known rates of change.

Example 3.9.1. Air is being pumped into a spherical balloon so that its volume in-
creases at a constant rate of 100mm3/sec. How fast is the radius of the balloon in-
creasing when the radius is exactly 10mm?

Solution. There are two variables involved: the volume V and the radius r of the bal-
loon. An equation connecting them is

V = 4
3
πr3.

Both V and r are functions of time t and dV
dt = 100mm3/sec is known.

Now, differentiating each term of the equation with respect to t and using the
chain rule, we obtain

dV
dt
= d
dt
(4
3
πr3) = 4π

3
d
dr
(r3)dr

dt

= 4π
3
× 3r2 × dr

dt
,

so
dr
dt
= 1
4πr2

dV
dt

= 1
4πr2
× 100

= 25
πr2
.

When r = 10mm,
dr
dt
= 25
π(10)2
= 1
4π
≈ 0.00796mm/sec.

Thismeans that, at the instant when r = 10mm, the radius r of the balloon is changing
at an approximate rate of 0.00796mm/sec.

3.10 The tangent line approximation and the differential

3.10.1 Linearization

Sometimes we need to estimate the change in one variable by a small change in an-
other variable. For example, if a circular lamina with radius r = 10 cm is heated and
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the radius expands by 0.02 cm, what is the change in its area? This is an easy question
since we have

A(r) = πr2, so
ΔA = A(r + Δr) − A(r) = π(r + Δr)2 − πr2

= 2πrΔr + πΔr2

= 2π × 10 × 0.02 + π × 0.022

≈ 1.258 cm2.

We are lucky here since we can find a nice connection between the change in r and
the change in area: we write the change in area as a function of the change in radius.
Both A(r + Δr) and A(r) are easily evaluated. However, it may be easy to calculate one
particular value f (a) of a function, but difficult or even impossible to compute nearby
values of f . For example with f (x) = √x, it is easy to evaluate f (1) = √1 = 1, but it is
hard to find f (1.02) = √1.02 without a calculator.

Let us go back to the graph of a function to see if it helps us in our dilemma. If you
observe the line tangent to a curve at a point as seen in Figure 3.10.1, you will see that
the curve is very close to its tangent line near the point of contact. The nearer we are
to the point of contact, the closer the tangent line is to the curve. This provides us a
method of finding approximate values of functions.

Figure 3.10.1: Graphs of a function and its tangent at x = a.

That is, we use the tangent line at the point (a, f (a)) as an approximation to the curve
y = f (x) when x is near a. An equation of this tangent line at the point (a, f (a)) is

y = f (a) + f ′(a)(x − a)

and the approximation of the curve values f (x) is

f (x) ≈ f (a) + f ′(a)(x − a). (3.5)
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This is called the linear approximation or tangent line approximation of f at a. The
linear tangent line function L(x) = f (a) + f ′(a)(x − a) is called the linearization of f
at a.

Example 3.10.1. Estimate √1.02 and e0.012 by using linearizations of suitable func-
tions at x = 1 and 0, respectively.

Solution. Let f (x) = √x. Then f ′(x) = 1
2√x and the linear approximation of f at x = 1 is

given by

f (x) ≈ f (1) + f ′(1)(x − 1),

√x ≈ √1 + 1
2√1
(x − 1),

√1.02 ≈ 1 + 1
2
(1.02 − 1) = 1.01.

Let g(x) = ex . Then g′(x) = ex . The linear approximation of g at x = 0 is given by

g(x) ≈ g(0) + g′(0)(x − 0),
ex ≈ 1 + e0x ≈ 1 + x,

so e0.02 ≈ 1+0.02 = 1.02. A calculator gives√1.02 = 1.0099505 and e0.02 = 1.02020134,
so the tangent line approximation gives a good estimate with an error less than 0.02%.

Example 3.10.2. Find the linearization of the function f (x) = √x + 8 at x = −4 and use
it to approximate the numbers √3.98 and √4.05. Are these approximations overesti-
mates or underestimates?

Solution. The derivative of f (x) = √x + 8 is

f ′(x) = 1
2
(x + 8)−1/2 = 1

2√x + 8
,

so we have f (−4) = 2 and f ′(−4) = 1
4 . Putting these values into the equation of its tan-

gent line at x = −4, we see that the linearization is

L(x) = f (−4) + f ′(−4)(x + 4)

= 2 + 1
4
(x + 4) = 3 + x

4
.

That is, the linear approximation of f (x) is

√x + 8 ≈ 3 + x
4

when x is near −4.

In particular, we have

√3.98 = √−4.02 + 8 ≈ 3 − 4.02
4
= 1.995
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and

√4.05 = √−3.95 + 8 ≈ 3 − 3.95
4
= 2.0125.

The linear approximation is illustrated in Figure 3.10.2. We see that the tangent
line approximation is a good approximation to the given function when x is near −4.
We also see that our approximations are overestimates because the tangent line lies
above the curve.

Figure 3.10.2: Graphs of y = √x + 8 and y = 3 + x/4.

NOTE. Of course, a calculator could give approximations for √3.98 and √4.05, but
the linear approximation gives an approximation over an interval of x-values.

3.10.2 Differentials

The differential dy and the differential dx
Linear approximations can be formulated using the idea and notation of differentials.
The Leibniz notation of the derivative dy

dx looks like a quotient of two variables dy
and dx (it is indeed a limit of a quotient in which both the numerator and the de-
nominator tend to zero). This makes it tricky to define dy and dx as separate entities
so that dy

dx behaves like a quotient whether it was one or not, as we have seen in the
chain rule.

If y = f (x), where f is a differentiable function, then the differential dx is an inde-
pendent variable that can be given the value of any real number. The differential dy is
then defined in terms of the differential dx by

dy = f ′(x)dx, (3.6)

so dy is a dependent variable; it is determined by the values of x and dx. If dx ≠ 0, we
divide both sides of dy = f ′(x)dx by dx to obtain

dy
dx
= f ′(x).
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We have seen similar equations before, but now the left side can genuinely be inter-
preted as the ratio of two differentials.

Example 3.10.3. If y = xe−x , then find the differential dy in terms of the differential dx.

Solution. Since

y′ = (xe−x)′ = (x)′e−x + x(e−x)′ = e−x − xe−x ,

dy = (e−x − xe−x)dx.

Example 3.10.4. Find a function y such that dy = x2 dx.

Solution. Let y = x3/3. Then

dy = d(x
3

3
) = (x

3

3
)
′
dx = x2 dx.

NOTE. In fact, this is not the only choice for the function y. We could also use y =
x3/3 + 5 or y = x3/3 − 7. In fact, y = x3/3 + C will work for any constant C.

Theorem 3.10.1. For any differentiable function u(x) and v(x) and any constant k and l,
we have:
(1) d(C) = 0; (2) d(ku(x) ± lv(x)) = kd(u(x)) ± ld(v(x));
(3) d(uv) = udv + vdu; (4) d( uv ) =

vdu−udv
v2 , v ≠ 0.

Proof. Theproofs are not hard andweonly give the proof of (2). Since d(uv)
dx = u

dv
dx +v

du
dx ,

by the product rule of derivatives, multiplying the differential dx on both sides gives
d(uv) = udv + vdu.

Example 3.10.5. If y = e2x sin3x, then find dy.

Solution. We have

dy = d(e2x sin3x) = e2x d sin(3x) + sin(3x)de2x

= e2x ⋅ 3cos3x dx + sin3x ⋅ 2e2x dx = (3e2x cos3x + 2e2x sin3x)dx.

Example 3.10.6. If y is implicitly defined by y + xey = 1, find dy.

Solution. We have

d(y + xey) = d1 ⟹ dy + d(xey) = 0.

Since d(xey) = xdey + ey dx and dey = ey dy, we have

dy + xey dy + ey dx = 0 ⟹ dy = −e
y

1 + xey
dx.
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Linearization and differentiability
Usually, if the function y = f (x) is not linear, the change in y arising from a small
change in x will be nonlinear. As seen previously, if a circular disk is heated, the
radius of the disk has a change Δr. The area A of the disk therefore has a change
ΔA = π(r + Δr)2 − πr2 = 2πrΔr + π(Δr)2. Notice that ΔA is equal to a linear part in Δr
plus a negligible term π(Δr)2 = o(Δr) as Δr→ 0.

Definition 3.10.1. Let y = f (x). The change in y can be linearized at x = a if there is a
number A depending on a such that

Δy = AΔx + o(Δx),

where o(Δx) is negligible with respect to Δx as Δx→ 0.

If y = f (x) can be linearized at x = a, then there is a number A such that Δy =
AΔx + o(Δx). This implies

Δy
Δx
= A + o(Δx)
Δx
.

Taking the limits as Δx → 0 on both sides gives A = dy
dx = f

′(a). Therefore, f (x) has
a derivative at x = a. From the arguments, we also know that, if the linearization of
y = f (x) at x = a exists, the choice of A can only be f ′(a).

On the other hand, if the function f (x) has a derivative at x = a, i.e., limΔx→0
Δy
Δx =

f ′(a) exists, then thismeans that there is a function α(x) (by Corollary 2.5.2 fromChap-
ter 2) such that

Δy
Δx
= f ′(a) + α(x), where α(x) → 0 as Δx→ 0.

Therefore, Δy = f ′(a)Δx + αΔx. Notice that αΔx = o(Δx) as Δx→ 0, so

Δy = f ′(a)Δx + o(Δx). (3.7)

This implies that Δy can be linearized at x = a. Therefore, we have the following theo-
rem.

Theorem 3.10.2. A function y = f (x) can be linearized at x = a if and only if f (x) has a
derivative at x = a.

NOTE. Nowadays, there are somebooks that define the term “differentiable” (at x = a)
to mean that Δy can be linearized at x = a and define dy = AΔx, that is, dy = f ′(a)Δx.
This is the same as the previous definition of dy when dx = Δx.
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Figure 3.10.3: Geometric interpretation of dy.

In fact, when dx = Δx, then there is a nice geometric meaning of the differential dy, as
shown in Figure 3.10.3.

That is, dx and dy are the changes in x and y along the tangent line. The slope of
the tangent line at P is the derivative f ′(x). Thus, f ′(x) = SR

PS =
dy
dx .

NOTE. The tangent line approximation is also called the differential approximation,
since Δy ≈ dy when Δx is small.

Example 3.10.7. Find an approximation of the value sin(0.05) using the differential
approximation.

Solution. Let f (x) = sinx, with f ′(x) = cosx. Use the differential approximations

Δy ≈ dy = f ′(x)Δx = cosxΔx

and

sin0.05 − sin0 ≈ cos0 × (0.05 − 0).

Then

sin0.05 ≈ sin0 + cos0 × (0.05 − 0)
≈ 0 + 1(0.05)
≈ 0.05.

Note that we have chosen a = 0, because 0 is close to 0.05 and both f (0) and f ′(0)
are easily evaluated.

Example 3.10.8. A ball of radius r = 3 cm is heated such that the radius increases by
0.03 cm. Estimate the change in its volume by using a differential approximation.
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Solution. Since V = 4πr3
3 , we have

ΔV ≈ dV = V′(r)Δr = 4πr2Δr.

Now that Δr = 0.03 cm and r = 3 cm, ΔV ≈ 4π32(0.03) ≈ 3.3929 cm3.

Some useful differential approximations
Someuseful differential approximations computed at x = 0 are listed below (assuming
|x| is small). Check these for yourself by using the approximation formula f (x) ≈ f (a) +
f ′(a)(x − a) with a = 0:
1. n√1 + x ≈ 1 + 1

nx;
2. sinx ≈ x;
3. tanx ≈ x;
4. ex ≈ 1 + x;
5. ln(1 + x) ≈ x.

In fact, these are pairs of asymptotic functions when x→ 0.

3.11 Derivative rules – summary

In this chapter, we have proved the following rules of differentiation (provided all the
derivatives involved exist):
(1) d(C)

dx = 0; (2) d(xn)
dx = nx

n−1; (3) d(sinx)
dx = cosx;

(4) d(cosx)
dx = − sinx; (5)

d(ax)
dx = a

x lna; (6) d(ln |x|)
dx =

1
x ;

(7) d(tanx)
dx = sec

2 x; (8) d(cotx)
dx = − csc

2 x; (9) d(secx)
dx = secx tanx;

(10) d(cscx)
dx = − cscx cotx; (11)

d(arctanx)
dx =

1
1+x2 ;

(12) d(arccotx)
dx = −

1
1+x2 ; (13) d(arcsinx)

dx =
1
√1−x2
;

(14) d(arccosx)
dx = −

1
√1−x2
;

(15) d
dx (f (x) ± g(x)) =

d
dx f (x) ±

d
dxg(x);

(16) d
dx (cg(x)) = c(

d
dxg(x)), where c is a constant;

(17) d
dx (

f (x)
g(x) ) =

( ddx f (x))g(x)−f (x)(
d
dx g(x))

(g(x))2 ;

(18) d
dx (f (x)g(x)) = f (x)

d
dxg(x) + g(x)

d
dx f (x);

(19) d
dx f (g(x)) = f

′(g(x))g′(x)or dydx =
dy
du

du
dx (the chain rule);

(20) df (y)
dx =

df (y)
dy

dy
dx (implicit differentiation);

(21) dy
dx =

dy/dt
dx/dt (parametric differentiation).



3.12 Exercises | 175

3.12 Exercises

1. The graph of a function over a closed interval I is given below. Determine the do-
main points at which the graph appears to be (a) differentiable; (b) continuous
but not differentiable; (c) neither continuous nor differentiable.

Question 1 Question 3

2. Values of a function y = f (x) at selected values of x are given in the following table.

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
y 0.5 0.7 1.3 1.5 1.9 2.3 1.5 1.7 2.2 2.5

Estimate y′(0.15) using a symmetric difference quotient.
3. (Particlemotion) A particle Pmoves on the number line. The graph above shows

the position of the particle as a function of time t.
(a) During what time periods is P moving to the left? Moving to the right? And

standing still?
(b) Graph the particle’s velocity and speed (where defined).

4. Use thedefinitionof thederivative f ′(a) = limΔx→0
f (a+Δx)−f (a)
Δx to find thederivative

of each of the following functions at the given point a and then find the tangent
line and the normal line to the graph of the functions at x = a:
(a) f (x) = 1

x , a = 2; (b) f (x) = x
2 + 4, a = 1.

5. Use the limit definition limx→a
f (x)−f (a)

x−a to evaluate the derivative of each of the
following functions at the given point x = a:

(a) f (x) = √x + 1, a = 3; (b) f (x) = {x
2 cos 1

x , x ≠ 0
0, x = 0,

a = 0.

6. Assume f ′(x0) exists. Evaluate each of the following limits:
(a) limΔx→0

f (x0−Δx)−f (x0)
Δx ; (b) limh→0

f (x0+2h)−f (x0)
h ;

(c) limt→0
f (x0)−f (x0−t)

t ; (d) limh→0
f (x0+ah)−f (x0+bh)

h .

7. Let f (x) = {−x, x < 0
x2, x ⩾ 0.

Find f ′+(0) and f ′−(0). Does f ′(0) exist?

8. If f (x) = 2|x − 1| + (x − 1)2, find f ′(1).
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9. Find the constants a and b such that f (x) = {ax + b, x > 1
ax3 + x + 2b, x ⩽ 1

is differentiable every-

where.
10. Find the constants a and b such that f (x) = {xe

x , x ⩽ 0
ax + b, x > 0

is differentiable every-

where.
11. If f (x) = {sinx, x ⩽ 0

x2, x > 0,
then find f ′(x).

12. If f (0) = 0 and f ′(0) = 2, then find limx→0
f (sinx)

x .
13. Assume u and v are two differentiable functions of x, u(2) = 1, u′(2) = −3, v(2) = −1,

and v′(2) = 4. Find the values of:
(a) d

dx (uv)|x=2; (b)
d
dx (

u
v + 2u − v)|x=2; (c) (

2u
v + 7u − 2uv)

′|x=2.
14. Show that:

(a) d
dx (cosx) = − sinx; (b) d

dx (cotx) = − csc
2 x;

(c) d
dx (secx) = secx tanx; (d) d

dx (cscx) = − cscx cotx.
15. Find the derivative of each of the following functions:

(a) y = lnx + cosx − 2 sinx; (b) f (x) = ex + x lnx; (c) s = et
t − 2 sec t + π

2;

(d) V = 4
3πr

3; (e) y = 3x−2
2x+5 ; (f) y = x2+5x−2

x2 ;

(g) y = x2
1−x3 ; (h) y = lnθ

θ ; (i) g(u) = ueu.
16. (Witch of Maria Agnesi) The witch of Maria Agnesi has the Cartesian equation

y = 8a3
x2+4a2 . Find the line tangent to the curve at (2, 1) for a = 1. Also find the normal

line at the same point. http://en.wikipedia.org/wiki/Witch_of_Agnesi
17. (Newton’s serpentine) This curve, named and studied by Newton in 1701, is de-

finedby y = abx
x2+a2 . Find the tangents to the curve at the origin and thepoint (1, 2) for

the case a = 1 and b = 4. http://mathworld.wolfram.com/SerpentineCurve.html
18. Assume y = arctanx. Show that dy

dx =
1

1+x2 .
19. Assume f (1) = 2, f (2) = 3, f ′(1) = 3, and f ′(2) = −1. If g(x) = f −1(x), then find g′(2).
20. Find the derivative of each of the following functions:

(a) ρ = √3r − r2; (b) s = sin( 3πt2 ) + cos(
3πt
2 );

(c) r = (cscθ + cotθ)−1; (d) h = θ2 sec 1
θ ;

(e) y = x2 sin2 x + x cos 2x; (f) y = 1
7 (3x − 2)

7 + (1 − 1
2x )
−1;

(g) h = θ2 sec 1
θ ; (h) f = ( cos t1+sin t )

2;

(i) y = t tan2√2t + 6; (j) θ = tan t2 + tan2 t;
(k) r = cos(tanθ); (l) y = sin(cosx);
(m) y = (sin√x2 + 1)π ; (n) y = √x +√x;
(o) y = etan−1 2x ; (p) y = ln(sin 2x);
(q) y = sin(cos(2x)).

21. Given that f is differentiable, find dy
dx for each of the following functions:

(a) y = f (√x); (b) y = √f (x); (c) y = f ( 1lnx );
(d) y = sin(f (sinx)); (e) y = f (f (e2x)).
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22. Determine each of the following higher order derivatives:
(a) y″ for y = x3 − 2x2 − 1; (b) d3y

dx3 for y = e
2x ;

(c) d4y
dx4 for y = x

2 lnx; (d) d5y
dx5 for y =

1
1+x .

23. Show that dn
dxn (x

n−1e
1
x ) = (−1)

n

xn+1 e
1
x .

24. Find dny
dxn for each of the following functions:

(a) y = ex ; (b) y = cosx; (c) y = sin2 x; (d) y = xn lnx;
(e) y = x2 cosx; (f) y = e−3x .

25. If y = f (x) and dy
dx = y

′, show that:
(a) d2x

dy2 = −
y″
(y′)3 ; (b) d3x

dy3 =
3(y″)2−y′y‴
(y′)5 .

26. Use implicit differentiation to find dy
dx for:

(a) x2 − xy + y3 = 6; (b) y5 + 3x2y2 − 2x4 = 2;
(c) √x + y +√xy = 4; (d) exy = x + y.

27. Given y + x = cos(xy), find dy
dx and the tangent line at (0, 1).

28. Find dy
dx for each of the following functions using logarithmic differentiation:

(a) y = xx ; (b) y = √x+1 sinx(x2+1)(x−2) ;

(c) y = (cosx)√x ; (d) y = (x − a)a(x − b)b(x − c)c .
29. If the function y is implicitly defined by y3 + ( dydx )

3 = x4 + 6 and y(1) = −1, find
d2y
dx2 |(1,−1).

30. Let (x0,y0) be a point on the curve defined by x = √a2 − y2 +a ln
a−√a2−y2

y , 0 < y < a.
Show that the distance between the point (x0,y0) and the point where the tangent
line to the curve at (x0,y0)meets the x-axis is constant.

31. Write the following Cartesian equations in polar form:
(a) x2 + y2 = 2xy; (b) (x2 + y2)2 = 2xy; (c) y = 2x;
(d) x = 2; (e) y = −3.

32. (Lissajous curve) The parametric equations x = A sin(at + δ) and y = B sin(bt)
describe complex harmonic motion. This family of curves was investigated by
Nathaniel Bowditch in 1815 and later in more detail by Jules Antoine Lissajous
in 1857. Graph the curve when A = B = 1, a = 2, δ = 0, and b = 3. Then find the
horizontal tangent lines for 0 ⩽ t ⩽ π

2 .
33. If x = t − sin t and y = 1 − cos t, for 0 < t < 2π, find d2y

dx2 .
34. Show that the length of the portion of any tangent line to the astroid x = acos3 t,

y = a sin3 t cut off by the coordinate axes is constant.
35. Show that the distance from the origin to any normal line to the curve x = a(cos t +

t sin t), y = a(sin t − t cos t) is constant.
36. Sketch the following curves, given in polar form:

(a) r = 2 cosθ; (b) r = 2(1 + cosθ); (c) r = a + a sinθ;
(d) r = a sin 2θ; (e) r2 = 4cos 2θ.
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37. (Cardioid) Find the points on the polar curve r = 2(1 + cosθ) where the tangent
line is horizontal.

38. Use a local linearization to estimate the following numbers:
(a) √8.99; (b) e0.01; (c) sin(0.03); (d) ln(1.02); (e) cos0.03.

39. Find the differential dy for each of the following functions:
(a) y = sin 2x; (b) y = e−x cosx; (c) y = x

1+x2 ; (d) y = tan−1(e−2x).
40. (Sensitivity to change) The equation dy = f ′(x)dx tells us how sensitive the out-

put of f is to a change in input at various values of x. The larger the value of f ′

at x, the greater the effect of a given change dx. Now consider the following two
problems.
(a) Suppose we can determine the radius of a sphere within 1% of its true value.

What effectwould the tolerance of 1%have on our estimate of the surface area
of the sphere (S = 4πR2)?

(b) How accurately should wemeasure the radius R of a sphere approximately so
that, when we calculate the surface area, the error is within 0.5% of its true
value?

41. (*Group activity) Given f (x) = {x
2 sin 1

x , x ≠ 0
0, x = 0,

is f ′(x) continuous?

42. If f (xy) = f (x) + f (y) for all x,y > 0 and f ′(1) = 2, show that f ′(x) = 2
x .

43. Show that, if f (0) = 0, f ′(0) exists if and only if there is a function g(x) which is
continuous at x = 0 and f (x) = xg(x).

44. Let f be the function defined by f (x) = {g(x)cos
1
x , if x ≠ 0

0, if x = 0.
If g(x) is differentiable and

g′(0) = g(0) = 0, then find f ′(0).
45. Assume f (x) = |x − a|g(x) and g(x) is differentiable everywhere. Prove:

(a) if g(a) ≠ 0, then f ′(a) does not exist;
(b) if g(a) = 0, then f ′(a) exists.

46. For what value of k does the equation e2x = k√x have exactly one solution?
47. Assume f (x) = a1 sinx + a2 sin 2x + a3 sin3x +⋯+ an sinnx, where a1,a2,… ,an are

real numbers and n is a positive integer. If |f (x)| ⩽ | sinx| for all x, show that |a1 +
2a2 +⋯+ nan| ⩽ 1.

48. (Hyperbolic function) The hyperbolic functions sinhx, coshx, tanhx, and cothx
are defined in Chapter 1. Show that:
(a) (sinhx)′ = coshx; (b) (coshx)′ = sinhx;
(c) (tanhx)′ = 1

coshx ; (d) (cothx)′ = −1sinhx .
49. (Related rates of change) James is flying a kite at a height of 60 feet above his

head. If the kite moves horizontally at a constant speed of 4 ft/sec, at what rate is
the string being let out when the kite is 80 feet away from him?

50. (Pendulum) When a pendulum with length l performs a simple harmonic mo-
tion, the period of the motion is given by T = 2π√ l

g . In winter, if the length of the
pendulum is shortened by 0.01 cm, what effect will this have on the period?
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51. (Debye’s law) In physical chemistry, Debye’s law about the orientation polariza-
tion P of a gas satisfies

P = 4
3
πN( μ

2

3kT
),

where N , μ, and k are constants and T is the temperature of the gas.
Find the rate of change of P with respect to the temperature T .

52. (Marginal cost) Assume the cost (in dollars) of producing q units of a certain com-
modity is C(q) = 2000 + 2q + 3q2. Find:
(a) the average rate of change of the cost when the production level is changed

from q = 100 to q = 140;
(b) the marginal cost (the instantaneous rate of change of C) with respect to q

when q = 50.
53. (Wage pay plan) A company is willing to pay a graduate in computer science a

starting salary of $56000 and the employee will get a raise of $2 500 each year.
(a) At what percentage rate will the employee’s salary be increasing after 1 year?
(b) What will happen to the percentage rate of change of this employee’s salary

in the long run?
54. (Elasticity) In economics, elasticity is themeasurement of how responsive an eco-

nomic variable is to a change in another. The price elasticity of demand is given
by

E(p) = p
q
× dq
dp
,

where q = D(p) is the amount of a commodity that is demanded by the market at
a unit price p.
Interpret E(p) in terms of the percentage rate of change in demand q and the per-
centage rate of change in price p.





4 Applications of the derivative

In this chapter, you will learn about:
– Fermat’s theorem and the closed interval test;
– the mean value theorem and the first derivative test;
– the extended mean value theorem and L’Hôpital’s rule;
– concavity and the second derivative test;
– Taylor’s theorem and Taylor’s polynomial approximation;
– how to sketch curves using derivatives;
– numerical solutions to equations;
– curvatures.

Derivatives havemany applications in solving a large variety of problems arising from
mathematical or nonmathematical areas of study. In this chapter, we will use deriva-
tives to determine the extreme values for a function, analyze monotonic functions,
find intervals of increase or decrease, prove inequalities, and find limits of some in-
determinate forms using L’Hôpital’s rule. We will also show that derivatives canmake
significant contributions to incredibly diverse parts of mathematics, including curve
sketching, approximating functions by polynomials, numerical approximation of so-
lutions of equations, and curvature of plane curves.

4.1 Extreme values and the candidate theorem

In Chapter 2, we introduced the absolute/global maximum and absolute/global min-
imum of a function defined on an interval I. We know that a continuous function de-
fined on a closed interval must obtain its global extreme values somewhere within the
closed interval. In addition to the global extrema, there are some other extreme val-
ues that may be of interest. For example, you might be the tallest one in your class,
even though you are not the tallest in your school. Your height is still an extreme value
when we consider a small group around you. Returning to mathematics, we have the
following definition for relative/local extrema.

Definition 4.1.1. If f is defined on D, then:
1. f has a localminimum (also called relativeminimum) at x = c ∈ D, if there is aneigh-

borhood U of c, such that f (x) ⩾ f (c) for each x ∈ U ⊂ D.
2. f has a localmaximum (also called relativemaximum) at x = c ∈ D, if there is neigh-

borhood U of c, such that f (x) ⩽ f (c) for each x ∈ U ⊂ D.

NOTE. If there is a local maximum of f at x = c, then the definition states that there is
an interval [a,b] in D with a < c < b such that f (x) ⩽ f (c) for all x ∈ (a,b). Similarly, if

https://doi.org/10.1515/9783110527780-004
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f has a local minimum at x = c, then there is an interval (a,b) containing c such that
f (x) ⩾ f (c) for all x ∈ (a,b). Hence, a local maximum or minimum cannot occur at a
boundary point of the domain of f (there are some books which recognize that f (x)
can have its local extrema at boundary points of its domain, but we will not in this
text).

Figure 4.1.1 shows a graph of a function f with several extrema.

Figure 4.1.1: Local and global extrema.

Notice in Figure 4.1.1 the situations where f could have a local extremum. You should
see that, at any local extremum, the tangent line is either horizontal or does not ex-
ist. For example, at points where x = b, c, and e, the tangent line is horizontal, and
the derivative at these points is zero. However, at the point where x = d, there is no
tangent line, and the derivative does not exist. This gives some clues for finding lo-
cal extrema. Now we confirm this analytically. The following theorem is credited to a
French mathematician, Pierre de Fermat.

Pierre de Fermat (1601 or 1607–1665) was a French lawyer at the Parliament of Toulouse, France, and
a mathematician who is given credit for early developments that led to infinitesimal calculus. In par-
ticular, he is recognized for his discovery of an original method to find the greatest and the smallest
ordinates of curved lines, which is analogous to that of the differential calculus, then unknown, and
his research into number theory. Hemade notable contributions to analytic geometry, probability, and
optics. He is best known for his last theorem, which he described in a note at the margin of a copy of
Diophantus’ Arithmetica. http://en.wikipedia.org/wiki/Fermat

Theorem 4.1.1 (Fermat’s theorem). Suppose f (x) is defined on some open interval I
containing the point x = c and f ′(c) exists. If f has a local maximum or a local minimum
at x = c, then f ′(c) = 0.
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Proof. We only prove the result when f (c) is a local minimum, since the proof for the
local maximum is analogous. For all sufficiently small positive or negative increments
Δx = x − c of x, we have x = c + Δx ∈ I and

f (x) − f (c) ⩾ 0.

Hence, if x − c is positive, then we have f (x)−f (c)
x−c ⩽ 0 and if x − c is negative, we have

f (x)−f (c)
x−c ⩾ 0. Thus,

f ′+(c) = limx→c+
f (x) − f (c)

x − c
⩾ 0 and

f ′−(c) = limx→c−
f (x) − f (c)

x − c
⩽ 0,

by the definition of one-sided derivatives and the properties of limits.
Since f ′(c) exists, the two one-sided derivatives f ′+(c) and f ′−(c) must exist and

f ′+(c) = f ′−(c). However, we have shown that f ′+(c) ⩽ 0 and f ′−(c) ⩾ 0. This only happens
when

f ′+(c) = f ′−(c) = 0,

so f ′(c) = 0.

We give a name of those points at which the derivative of a function f is 0.

Definition 4.1.2. If f ′(c) = 0, then x = c is called a stationary point of the function f .

Example 4.1.1. Find all the stationary points of y = 2x3 − 3x2 + 1.

Solution. Compute

dy
dx
= 6x2 − 6x.

Then solving dy
dx = 0 gives

6x2 − 6x = 0, so 6x(x − 1) = 0.

Therefore, there are two stationary points: x = 1 and x = 0, as shown in Figure 4.1.2.
Fermat’s theorem says that, if f (x) is differentiable, then its local extrema must

occur at a stationary point. If f (x) is not differentiable at a point, then f (x)may or may
not also have a local extreme value at that point, as shown in Figure 4.1.1 (when x = d
and x =m). The next example shows that a function f can have a local minimum (or
maximum) at a point where the derivative f ′(x) does not exist.
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Figure 4.1.2: Graph of y = 2x3 − 3x + 1.

Example 4.1.2. The function f (x) = |x| has no derivative at x = 0, as we saw in Chap-
ter 3. However, it has a local minimum value at x = 0, because f (x) = |x| ⩾ 0 for all x
and f (0) = 0.

We give a special name for those points where the derivative of f is 0 or the deriva-
tive of f does not exist, since they are candidates for extreme values.

Definition 4.1.3. A critical number/point of a function f is an interior point c in the
domain of f such that either f ′(c) = 0 or f ′(c) does not exist.

Theorem 4.1.2 (Candidate theorem). A localmaximumor localminimumof a function
f can only occur at the critical points of f .

Theorem 4.1.2 shows that a local maximum or minimum of a function f on an
open interval Imust occur at a critical point of f . However, these points are only candi-
dates for the extreme values and theymay actually not be an extremum. For example,
when f (x) = x3, with domain R (all real numbers), the derivative always exists. Hence,
the only candidates for local extrema are stationary points. Since f ′(x) = 3x2, solving
f ′(x) = 0 gives only one stationary point, x = 0. However, f (x) has neither a local max-
imum nor a local minimum at the point x = 0, as seen in Figure 4.1.3 (it has a point of
inflection at x = 0, as we will see in Section 4.6).

Figure 4.1.3: Graph of y = x3.
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Nevertheless, the candidate theorem gives a list of candidates for the local extrema
of a function. It does not give any idea whether a candidate is a local minimum or
maximum. Luckily, this is enough for us to determine the global extreme values of a
continuous function over a closed interval.

As we know from the extreme value theorem, if a continuous function f is defined
on a closed interval, then itmust take its globalmaximumandglobalminimumvalues
somewhere in that interval. If f (x) takes its global extrema at an interior point in [a,b],
then the global extremum is also a local extremum. However, the function may take
its global extreme values at one or both of the endpoints of that interval. A graphical
illustration is shown in Figure 4.1.1. Another easy example is f (x) = x, for 0 ⩽ x ⩽ 2,
which takes its global maximum at x = 2 and its global minimum at x = 0. Both of the
two global extrema are at the endpoints of the interval as shown in Figure 4.1.4.

Figure 4.1.4: A function may take its global extrema at endpoints.

In light of the above discussion, we have the following test for global extrema of a
continuous function defined on a closed interval.

Closed interval test for global extrema of a continuous function
If a continuous function f is defined on a closed interval [a,b], then it takes its global
extremevalues either at its critical points or at the endpoints of the interval. To identify
its global extreme values on [a,b], we take the following steps.

Step 1 Find the derivative of f and all its critical points.
Step 2 Evaluate f at these critical points and at the endpoints.
Step 3 Compare all function values found in Step 2. The largest function value is

the global maximum value of f on [a,b] and the smallest value is the global minimum
value of f on [a,b].

Example 4.1.3. Find the global extreme values for the function

f (x) = x3 − 3x2 − 9x − 2 when −2 ⩽ x ⩽ 6.
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Solution. First we find the derivative as follows:

f ′(x) = 3x2 − 6x − 9 = 3(x2 − 2x − 3)
= 3(x − 3)(x + 1).

Therefore, the critical points are x = 3 and x = −1.Nowweevaluate f at these twopoints
and at the two endpoints as follows:

f (3) = −29, f (−1) = 3, f (−2) = −4, f (6) = 52.

We conclude f attains its global maximum value 52 at x = 6 and its global minimum
value −29 at x = 3. The graph is shown in Figure 4.1.5.

Figure 4.1.5: Graph of f (x) = x3 − 3x2 − 9x − 2 for −2 ⩽ x ⩽ 6.

Example 4.1.4. Find the global extreme values of f (x) = x
2
3 (x − 1) when −1 ⩽ x ⩽ 1.

Solution. The product rule gives the derivative

f ′(x) = x2/3 + (x − 1) 2
3
x−1/3 = 3x + 2(x − 1)

3x1/3

= 5x − 2
3x1/3
.

Therefore, f ′(x) = 0 only when x = 2
5 , while f

′(x) does not exist when x = 0. Thus, the
critical numbers of f are 2

5 and 0. The candidates for global extreme values of f are
x = −1, x = 0, x = 2

5 , and x = 1. Evaluating f at these points gives

f (−1) = −2, f (0) = 0, f( 2
5
) ≈ −0.326, f (1) = 0.

Therefore, over the interval [−1, 1], the function f reaches its global maximum value
0 at x = 0 and x = 1. The function f attains its global minimum value −2 at x = −1, as
shown in Figure 4.1.6.

NOTE. A function f (x)may obtain its global extrema at many points in its domain.
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Figure 4.1.6: Graph of f (x) = x
2
3 (x − 1) for −1 ⩽ x ⩽ 1.

Example 4.1.5. The function f (x) = sinx takes on its local and absolute maximum
value of 1 infinitely many times, since sin(2n + 1/2)π = 1 for any integer n. Likewise, it
takes the local and absoluteminimumvalue of −1 infinitelymany times, since sin(2n−
1/2)π = −1 for any integer n.

Example 4.1.6. Find the global extrema for

f (x) = ln x
1 + x2

when 1 ⩽ x ⩽ 2.

Solution. The derivative of f (x) is

f ′(x) = 1 + x
2

x
( x
1 + x2
)
′
= (1 + x

2)
x
(x
′(1 + x2) − x(1 + x2)′

(1 + x2)2
)

=
(1 + x2)

x
× (1 + x

2) − x × 2x
(1 + x2)2

=
1 − x2

x(1 + x2)
.

We see that, at x = 1, x = −1, or x = 0, f ′(x) = 0 or f ′(x) does not exist, but −1 and
0 are not in the interval of interest [1, 2], so the only candidates for extrema are x = 1
(which is both a critical point and an endpoint) and x = 2. Since f (1) = ln 1

1+12 = − ln 2 ≈
−0.693 and f (2) = ln 2

1+22 ≈ −0.916, the global maximum value of f (x) is −0.693 and the
global minimum value is −0.916. The graph of f (x) is shown in Figure 4.1.7.

We have seen how to find candidates for local extreme values and how to find the
global extreme values for functions defined over a closed interval. What happens if
f (x) is definedonanopen interval or half open interval?Howdowedeterminewhether
or not a local extremum candidate is indeed a local maximum or local minimum? We
can sketch some graphs in order to develop our intuitive ideas. For example, if f keeps
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Figure 4.1.7: Graph of f (x) = ln 1
1+x2 for 1 ⩽ x ⩽ 2.

Figure 4.1.8: Cases that functions are not continuous or not defined on a closed interval.

increasing towards the right endpoint, then f may or may not have a global extreme
value; if f is continuous and changes from increasing to decreasing at x = a, then f
takes a local maximum value at x = a. Several cases are shown in Figure 4.1.8.

To further study extreme values, we need to investigate the monotonic behavior
of f over some interval. We thus need the mean value theorem, which plays a central
role in differential calculus and hasmany applications as well, including determining
the monotonicity of functions, proving inequalities, and developing theories.

4.2 The mean value theorem

We start the mean value theorem by considering a mechanics problem. Assume a car
moves along the x-axis back and forth, starting at a point A. It will initially move to-
ward the right but after a while it reverses direction and moves back to the starting
point. Then there should be a time such that the velocity at that instant is zero. In par-
ticular, the velocity at the instant when it makes the turn (reverses direction) must be
zero. You also can see that this is true when a ball is thrown vertically upwards and
eventually falls to the ground. Theremust be an instant in timewhen theball’s velocity
is zero. If a function f (x) is continuous and differentiable on some interval [a,b] and
f (a) = f (b) (the car returns to its starting point), then there must be a point c in (a,b)
such that f ′(c) = 0, as seen in Figure 4.2.1 (note again, the velocity is the derivative of
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Figure 4.2.1: On a smooth curve, there is a horizontal tangent if f (a) = f (b).

the displacement function). This can be confirmed algebraically by Rolle’s theorem,
which is proved using Fermat’s theorem.

NOTE. The first known formal proof was offered by Michel Rolle in 1691 and used
the methods of differential calculus. The name “Rolle’s theorem” was first used by
Moritz Wilhelm Drobisch (Germany) in 1834 and by Giusto Bellavitis (Italy) in 1846.
http://en.wikipedia.org/wiki/Rolle%27s_theorem

Theorem 4.2.1 (Rolle). Let f be a function that satisfies the following three conditions:
1. f is continuous on the closed interval [a,b];
2. f is differentiable on the open interval (a,b);
3. f (a) = f (b).

Then there is a number c ∈ (a,b) such that f ′(c) = 0.

Proof. We consider three separate cases:
1. Case I: f (x) is constant for all x ∈ [a,b]. Then f ′(x) = 0 for every x ∈ (a,b), so the

number c can be taken to be any number in (a,b).
2. Case II: f (x) > f (a) for some x in (a,b). By the extreme value theorem, f attains a

maximum value for some x ∈ [a,b]. However, the maximum cannot be at x = a or x = b
because, by assumption, there is some f (x) > f (a) = f (b), so f must attain itsmaximum
value at a number c in the open interval (a,b). Then f also has a local maximum at c
and f is differentiable at c, so f ′(c) = 0 by Fermat’s theorem.

3. Case III: f (x) < f (a) for some x in (a,b). By the extreme value theorem, f has
an absolute minimum value for some x ∈ [a,b]. However, the minimum cannot be at
x = a or x = b, because, by assumption, there is some f (x) < f (a) = f (b), so f must attain
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its minimum value at a number c in the open interval (a,b). Then f also has a local
minimum at c and f is differentiable at c, so f ′(c) = 0 by Fermat’s theorem.

If any of these three hypotheses fails, then there may not be a number c such that
f ′(c) = 0. This is illustrated in Figure 4.2.2.

Figure 4.2.2: Cases that fail to satisfy conditions in Rolle’s theorem.

However, if f fails to satisfy any one of the three hypotheses, its derivative may still be
zero somewhere in the interval as seen in Figure 4.1.8 (c). Theremay also bemore than
one point where the derivative is 0, as seen in Figure 4.1.8 (c).

Example 4.2.1. Check that the function f (x) = x2 − 3x−4 for −1 ⩽ x ⩽ 4 satisfies all the
hypotheses required by Rolle’s theorem. Find a number c such that f ′(c) = 0.

Solution. Since f (x) is a polynomial, it is continuous on [−1,4] and differentiable at
every point in (−1,4). Then

f (−1) = (−1)2 − 3(−1) − 4 = 0 and f (4) = 42 − 3(4) − 4 = 0.

Therefore, f satisfies all the hypotheses required by Rolle’s theorem. Since

f ′(x) = 2x − 3,

x = 3
2 is a point in (−1,4) such that f

′( 32 ) = 0, as shown in Figure 4.2.3.

Example 4.2.2. UseRolle’s theorem to show that, for any real number k, the equation
x5 − 6x + k = 0 has at most one root in the interval [−1, 1].

Solution. Let f (x) = x5 − 6x + k. Suppose, on the contrary, that there are two roots,
say, a and b, in [−1, 1]. Thenwemust have f (a) = f (b) = 0. By Rolle’s theorem, there is a
number c between a and b (so c ∈ [−1, 1]) such that f ′(c) = 0. That is, f ′(c) = 5c4 −6 = 0.
Solving for c, we obtain c = 4√ 65 > 1, which is a contradiction to c ∈ [−1, 1]. Thus f (x) has
at most one root in the interval [−1, 1].
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Figure 4.2.3: Graph of f (x) = x2 − 3x − 4 for −1 ⩽ x ⩽ 4.

Rolle’s theorem requires that f (a) = f (b). What conclusions can we draw about the
function if the third hypothesis (f (a) = f (b)) is not met? Consider the moving car with
displacement function s(t) and velocity v(t). The average velocity during the time in-
terval [t1, t2] is given by

s(t2) − s(t1)
t2 − t1

.

Intuitively speaking, since the car moves continuously, there should be a time such
that its velocity at that instant is the same as the average velocity of the car during the
time interval (because the average velocity is between the minimum velocity and the
maximum velocity). That is, there is an instant t = t0 such that

v(t0) =
s(t2) − s(t1)

t2 − t1
.

Does this idea that there is a moment when the average rate of change is equal to the
instantaneous rate of change hold for all differentiable functions f ? That is, is there
always a number c ∈ (a,b) such that

f ′(c) = f (b) − f (a)
b − a

? (4.1)

Before proving the statement, we can see that it is reasonable by interpreting it ge-
ometrically. The two graphs in Figure 4.2.4 show the points A(a, f (a)) and B(b, f (b)) on
the graphs of two differentiable functions. In both graphs, the average rate of change
over [a,b] is equal to the instantaneous rate of change at one or more points in the
interval. The slope of the secant line AB is

kAB =
f (b) − f (a)

b − a
and this is the same expression as on the right side of equation (4.1). Since f ′(c) is the
slope of the tangent line at the point (c, f (c)), equation (4.1) says that there is at least
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Figure 4.2.4: Illustrations for the mean value theorem.

one point P(c, f (c)) on the graph where the slope of the tangent line is the same as
the slope of the secant line AB. Thus, the tangent line to the graph of f (x) at x = c is
parallel to the secant line through A and B.

We now establish the mean value theorem, due to the French mathematician
Joseph-Louis Lagrange.

Joseph-Louis Lagrange
(1736–1813 in Paris) was an Italian mathematician and astronomer.
He made significant contributions to the fields of analysis, num-
ber theory, and both classical and celestial mechanics. http://en.
wikipedia.org/wiki/Joseph-Louis_Lagrange

Theorem 4.2.2 (Mean value theorem). Let f be a function that satisfies the following
hypotheses:
1. f is continuous on the closed interval [a,b];
2. f is differentiable on the open interval (a,b).

Then there is a number c ∈ (a,b) such that

f ′(c) = f (b) − f (a)
b − a

, or equivalently

f (b) − f (a) = f ′(c)(b − a).
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Proof. The equation of the secant line AB can be written as

y − f (a) = f (b) − f (a)
b − a

(x − a) or

y = f (a) + f (b) − f (a)
b − a

(x − a).

We apply Rolle’s theorem to a new function h, defined as the difference between f and
the function giving the secant line AB. Let

h(x) = f (x) − f (a) − f (b) − f (a)
b − a

(x − a).

Then

h′(x) = f ′(x) − f (b) − f (a)
b − a

.

It is easy to check that h(x) is continuous on [a,b] and differentiable on (a,b). Further-
more, h(a) = h(b) = 0. Therefore, by Rolle’s theorem, there is a number c in (a,b) such
that h′(c) = 0. That is,

h′(c) = f ′(c) − f (b) − f (a)
b − a

= 0, so

f ′(c) = f (b) − f (a)
b − a

.

Example 4.2.3. Illustrate the mean value theorem with the function f (x) = x2 − x,
a = 0, b = 3.

Solution. Since f is a polynomial, it is continuous and differentiable for all values
of x. By the mean value theorem, there is a c ∈ (0,3) such that

f (3) − f (0)
3 − 0

= f ′(c).

The derivative f ′(x) = 2x − 1, so f ′(c) = 2c − 1 and

f (3) − f (0)
3 − 0

= 3
2 − 3
3 − 0
= 2,

so 2c − 1 = 2, which gives c = 3
2 . We show this graphically in Figure 4.2.5.

Using themeanvalue theorem,we canalsoprovemany inequalities, suchas those
in the next two examples.

Example 4.2.4. Use the mean value theorem to show that

|sinx| ⩽ |x|.
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Figure 4.2.5: At x = 3
2 , the tangent is parallel to the secant.

Solution. Let y = sin t. Then y is continuous and differentiable on [0,x] if x ⩾ 0 and
on [x,0] if x < 0. Since (sin t)′ = cos t, by the mean value theorem, we get

sinx − sin0
x − 0

= cos c, where c is some point in (x,0) or (0,x).

Taking the absolute value on both sides, we obtain

|sinx| = |cos c||x| ⩽ |x|.

Example 4.2.5. Use the mean value theorem to show that

x
1 + x
< ln(1 + x) < x for all x > 0.

Solution. Let f (t) = ln(1+t). Then the function f (t) satisfies all the conditions required
by the mean value theorem on the interval [0,x] and f ′(t) = 1

1+t . Applying the theorem
to the function f (t) on [0,x], we must have some c satisfying 0 < c < x and

ln(1 + x) − ln(1 + 0) = 1
1 + c
(x − 0),

ln(1 + x) = x
1 + c
.

Since

1
1 + x
< 1
1 + c
< 1,

we have

x
1 + x
< x
1 + c
< x.
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Then

x
1 + x
< ln(1 + x) < x.

This completes the proof.

The mean value theorem can be used to establish many of the basic results of
differential calculus, such as the following theorem.

Theorem 4.2.3. If f ′(x) = 0 for all x in an interval (a,b), then f is constant on (a,b).

Proof. Let x1 and x2 be any two numbers in (a,b) with x1 < x2. Since f is differentiable
on (a,b), it must be differentiable on (x1,x2) and be continuous on [x1,x2]. Applying
the mean value theorem to f on the interval [x1,x2], there is a number c such that
x1 < c < x2 and

f (x2) − f (x1) = f ′(c)(x2 − x1).

Since f ′(x) = 0 for all x, we have f ′(c) = 0, so the above equation becomes

f (x2) − f (x1) = 0 or f (x2) = f (x1).

Therefore, f has the same value at any two numbers x1 and x2 in (a,b), so f is
constant on (a,b).

Theorem 4.2.3 can be used to prove some identities as well.

Example 4.2.6. Prove the identity arctanx + arccotx = π/2.

Solution. Although calculus is not needed to prove this identity, the proof using cal-
culus is quite simple. Let

f (x) = arctanx + arccotx.

Then

f ′(x) = 1
1 + x2
− 1
1 + x2
= 0

for all values of x. Therefore, f (x) = C, a constant. To determine the value of C, we
substitute x = 1 (because we can evaluate f (1) exactly) and we have

C = f (1) = arctan1 + arccot 1 = π
2
.

Thus arctanx + arccotx = π/2.
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Definition 4.2.1. If F′(x) = f (x) for all x in an interval (a,b), then F(x) is called an
antiderivative of f (x) on (a,b).

For example, sinx is an antiderivative of cosx, since (sinx)′ = cosx; sinx + 1 is
also an antiderivative of cosx since (sinx + 1)′ = cosx.

Howmany antiderivatives can a function have? What is the relationship between
them? The following theorem gives the answer.

Theorem 4.2.4. If F(x) is an antiderivative of f (x), so that F′(x) = f (x), then all an-
tiderivatives of f (x) have the form F(x) + C, where C is an arbitrary constant.

Proof. Clearly, for any constant C, the derivative of F(x) + C is f (x), so F(x) + C is an
antiderivative of f (x). If G(x) is any other antiderivative of f (x), then G′(x) = f (x). This
means that

F′(x) = G′(x),

so

[G(x) − F(x)]′ = 0.

Then, by Theorem 4.2.3, we have

G(x) − F(x) = C, for some constant C.

Therefore,

G(x) = F(x) + C.

Example 4.2.7. Find all antiderivatives for each of the following functions:

(a) f (x) = cos x; (b) f (x) = e2x ; (c) f (x) = 1
x + 3x; (d) f (x) = 1

1+x2 .

Solution. Since (sinx)′ = cosx, ( 12e
2x)′ = e2x , (ln |x| + 32x

2)′ = 1
x + 3x, and (arctanx)

′ =
1

1+x2 , the antiderivatives of cosx, e
2x , 1

x , and
1

1+x2 are sinx +C,
1
2e

2x +C, ln |x| + 32x
2 +C,

and arctanx + C, respectively, where C is an arbitrary constant.

4.3 Monotonic functions and the first derivative test

4.3.1 Monotonic functions

A function f is increasing if the points (x,y) on the graph of y = f (x) rise as x increases.
It is decreasing if the points (x,y) fall as x increases. A formal definition was given in
Section 1.2.2 and is repeated here for convenience.
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Definition 4.3.1. A function f , defined on a set which includes an interval I, is:
1. increasing on I if, for any x1, x2 ∈ I, f (x1) ⩽ f (x2) whenever x1 < x2;
2. strictly increasing on I if f (x1) < f (x2) whenever x1 < x2;
3. decreasing on I if, for any x1,x2 ∈ I, f (x1) ⩾ f (x2) whenever x1 < x2;
4. strictly decreasing on I if f (x1) > f (x2) whenever x1 < x2;
5. monotonic (or monotone) on I if it is either increasing or decreasing on I.

You probably have already noticed that, if the graph rises, its slope is positive and
if it falls, its slope is negative, as seen in Figure 4.3.1. Our first goal in this section is
to determine intervals on which a function is either increasing or decreasing by using
derivatives. The next theorem shows that the sign of the derivative can indeed be used
to determine intervals where the function is increasing or decreasing. The proof of this
theorem is based on the mean value theorem.

Figure 4.3.1: Positive slope implies increasing and negative slope implies decreasing.

Theorem 4.3.1 (Increasing/decreasing test). Suppose that f is a function defined on
an interval (a,b) and f ′ is defined on (a,b). Then:

if f ′(x) > 0 for all x ∈ (a,b), then f is strictly increasing on (a,b);
if f ′(x) < 0 for all x ∈ (a,b), then f is strictly decreasing on (a,b).

Proof. Suppose f ′(x) > 0 for all x ∈ (a,b) and let x1, x2 ∈ (a,b)with x1 < x2. By themean
value theorem, we have

f (x2) − f (x1) = f ′(c)(x2 − x1),

where x1 < c < x2. Of course, c ∈ (a,b), so f ′(c) > 0 and it follows that

f (x2) − f (x1) = f ′(c)(x2 − x1) > 0.

Hence, for any two numbers x1 < x2 in (a,b),

f (x2) > f (x1) or equivalently f (x1) < f (x2).

This shows that f (x) is strictly increasing on (a,b).
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A similar argument shows that, if f ′(x) < 0 for x ∈ (a,b), f (x) is strictly decreasing
on (a,b).

NOTE. It is also easy to see that, if f ′(x) ⩾ 0 for all x ∈ (a,b), f is increasing on (a,b)
and if f ′(x) ⩽ 0 for all x ∈ I, then f is decreasing on (a,b). If f ′(x) ⩾ 0 for all x ∈ (a,b)
and f ′(x) = 0 at only a few points in the interval, then f (x) is also strictly increasing.
For example, if f (x) = x3, then f ′(x) ⩾ 0 and f ′(x) = 0 only at the point x = 0. This cubic
function is strictly increasing, as seen in Figure 4.3.2.

Figure 4.3.2: Graph of y = x3.

Example 4.3.1. Use the increasing/decreasing test to determine the intervals on
which f is increasing or decreasing, given

f (x) = 4x3 − 18x2 + 15x + 10, −∞ < x <∞.

Solution. The derivative of f is

f ′(x) = 12x2 − 36x + 15 = 3(2x − 1)(2x − 5).

From this factorization, we see that f ′ has two zeros, x = 1
2 and x = 5

2 . These zeros
determine the three intervals, (−∞, 12 ), (

1
2 ,

5
2 ), (

5
2 ,∞), on each of which f

′(x)must have
a constant sign.

A “sign table” is used to determine the sign of f ′ on each interval.

x (−∞, 12 )
1
2 (

1
2 ,

5
2 )

5
2 (

5
2 ,∞)

(2x − 1) − 0 + 0 +
(2x − 5) − 0 − 0 +
f ′(x) = 3(2x − 1)(2x − 5) + 0 − 0 +
behavior of f (x) ↗ increasing 27

2 decreasing − 52 ↗ increasing
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Figure 4.3.3: Rough graph for f (x) in Example 4.3.1.

Thus, for any x ∈ (−∞, 12 ) ∪ (
5
2 ,∞), f

′(x) > 0 and f (x) is strictly increasing, while
f (x) is strictly decreasing on the interval ( 12 ,

5
2 ), since f

′(x) < 0 on the interval ( 12 ,
5
2 ).

We can sketch a rough graph of f (x) as shown in Figure 4.3.3.

NOTE. The derivative f ′(x)must be always positive or always negative for all x-values
in any interval between critical points. The reason for this is that, if x1 and x2 are both
in one such interval and f ′(x1) and f ′(x2) have opposite signs, there must be a c be-
tween x1 and x2 such that f ′(c) = 0 (by the intermediate value theorem applied to the
derivative). This would contradict the definition of the intervals in that the critical
points of f ′ are the endpoints of the intervals. Hence, we can determine the sign of f ′

on one of the intervals simply by testing a single x-value in that interval.

4.3.2 The first derivative test

As we saw from the previous example, once we know the intervals on which the func-
tion is decreasing or increasing, we can sketch a rough graph of the function. From the
graph, we easily see that, if f (x) changes from increasing to decreasing at a point, f (x)
must have a localmaximumat this point; if f (x) changes fromdecreasing to increasing
at a point, then f (x)must have a local minimum at that point. If the function is differ-
entiable, in terms of the sign of the derivative, we could say that, if f ′(x) changes from
positive to negative at x = a, f (x) reaches a local maximum at x = a; if f ′(x) changes
from negative to positive at x = a, then f (x) has a local minimum at x = a. In fact, we
have deduced the first derivative test.

Theorem 4.3.2 (First derivative test). If f (x) is continuous at x = a and is differentiable
on some interval (b,d) containing x = a (perhaps not at x = a), while x = a is a critical
point (that is, f ′(a) = 0 or f ′(a) does not exist), then:
(a) if f ′(x) changes from positive to negative at x = a, then f (x) has a local maximum at

x = a;
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(b) if f ′(x) changes from negative to positive at x = a, then f (x) has a local minimum at
x = a.

Proof. By the mean value theorem, we have

f (x) = f (a) + f ′(c)(x − a) for some point c between x and a.

(a) When b < x < a and f ′(x) > 0, then f ′(c)(x − a) < 0, so f (x) > f (a) for x ∈ (b,a).
When a < x < d and f ′(x) < 0, then f ′(c)(x − a) < 0, so f (x) > f (a) for x ∈ (a, c). There-
fore, if f ′(x) changes from positive to negative at x = a, then f (x) takes a local maxi-
mum at x = a.

A similar argument applies to (b).

Example 4.3.2. If

f (x) = 3
8
x

8
3 − 3

2
x

2
3 , −∞ < x < +∞,

find the intervals of increase and intervals of decrease for f (x). Determine all local
extrema of f .

Solution. First, using the power rule, we find the derivative of f (x) as follows:

f ′(x) = 3
8
× 8
3
× x

8
3 −1 − 3

2
× 2
3
x

2
3−1

= x
5
3 − x−

1
3 = x

5
3 − 1

3√x

= x
5
3 3√x − 1

3√x

= x
2 − 1
3√x
.

There are three critical numbers, x = 1, x = 0, and x = −1. Since f ′(−2) < 0, f ′(−0.5) > 0,
f ′(0.5) < 0, and f ′(2) > 0, we know that f ′(x) < 0 for x ∈ (−∞, 1) ∪ (0, 1) and f ′(x) > 0
for x ∈ (−1,0) ∪ (1, +∞). We construct a sign and behavior diagram in Figure 4.3.4.

We see that the intervals of decrease are (−∞,−1) ∪ (0, 1) and the intervals of in-
crease are (−1,0) ∪ (1, +∞). By the first derivative test, the function has local minima

Figure 4.3.4: Signs of f ′(x) and behaviors of f (x).
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at x = 1 and x = −1 and a local maximum at x = 0. The local maximum value is f (0) = 0.
The local minimum values are the same. We have

f (1) = 3
8
− 3
2
= −9

8
= f (−1).

Example 4.3.3. Show that ex > 1 + x whenever x ≠ 0.

Proof. Let f (t) = et − t − 1. Then f ′(t) = et − 1, which means that

f ′(t)
{
{
{

< 0, when t < 0
> 0, when t > 0.

Case 1: When t < 0, f (t) is strictly decreasing on the interval [x,0]. Hence, f (x) >
f (0) and this implies ex > 1 + x.

Case 2:When t > 0, f (t) is strictly increasing on the interval [0,x]. This means that
f (0) < f (x), so ex > 1 + x.

Hence, whenever x ≠ 0, we have ex > 1 + x.

4.4 Extended mean value theorem and the L’Hôpital rules

4.4.1 Extended mean value theorem

There is an extension of themean value theorem, which is sometimes called Cauchy’s
extended mean value theorem. This theorem deals with two differentiable functions
f (x) and g(x). If we set g(x) = x, then Cauchy’s theorem reduces to the mean value
theorem.

Theorem 4.4.1 (Cauchy). If f and g are continuous on [a,b] and differentiable on (a,b)
and g′(x) ≠ 0, when x ∈ (a,b), then there is at least one number c ∈ (a,b) for which

f (b) − f (a)
g(b) − g(a)

=
f ′(c)
g′(c)
, where c ∈ (a,b).

Proof. Let

h(x) = (f (b) − f (a))g(x) − (g(b) − g(a))f (x).

Then

h(a) = (f (b) − f (a))g(a) − (g(b) − g(a))f (a)
= f (b)g(a) − f (a)g(b),

h(b) = (f (b) − f (a))g(b) − (g(b) − g(a))f (b)
= −f (a)g(b) + g(a)f (b),
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so h(a) = h(b). Since h(x) is also continuous on [a,b] and differentiable on (a,b), by
Rolle’s theorem, there is at least one point c ∈ (a,b) such that h′(c) = 0. This means

h′(x)|x=c = (f (b) − f (a))g′(x) − (g(b) − g(a))f ′(x)|x=c
= (f (b) − f (a))g′(c) − (g(b) − g(a))f ′(c) = 0.

Therefore,

(f (b) − f (a))g′(c) = (g(b) − g(a))f ′(c),

so

f (b) − f (a)
g(b) − g(a)

= f
′(c)
g′(c)
, where c ∈ (a,b).

Example 4.4.1. Let b > a > 0. The function f (x) is continuous on [a,b] and differen-
tiable on (a,b). Prove that there exists a number c ∈ (a,b) such that 2c(f (b) − f (a)) =
(b2 − a2)f ′(c).

Proof. The desired result is equivalent to

f (b) − f (a)
b2 − a2

= f
′(c)
2c
.

This gives hints to use the extended mean value theorem on [a,b] by introducing an-
other function g(x) = x2. By this theorem, there is a number c such that

f (b) − f (a)
g(b) − g(a)

= f
′(c)
g′(c)
.

Notice that g(b) = b2, g(a) = a2, and g′(c) = 2c. This completes the proof.

Example 4.4.2. Assume a function f (x) is twice differentiable on an interval I con-
taining a. Let

R(x) = f (x) − f (a) − f ′(a)(x − a)

for all x ∈ I . Show that there is a number ξ , between a and x, such that

R(x) = f
″(ξ )
2
(x − a)2.

Proof. Let g(t) = (t −a)2. We first notice that R(a) = 0, g(a) = 0.We now apply Cauchy’s
theorem with two functions R(t) and g(t) on the interval [a,x] (assume x > a without
loss of generality). Then there is a number (this time we denote this number by ξ1
instead of c) such that

R(x)
g(x)
=
R(x) − R(a)
g(x) − g(a)

=
R′(ξ1)
g′(ξ1)
.
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Since R′(a) = 0 and g′(a) = 0, we apply Cauchy’s theorem again, this time with func-
tions R′(t) and g′(t), on the interval [a, ξ1]. We will have a number ξ between ξ1 and a
(of course, this number ξ is also between x and a) such that

R′(ξ1)
g′(ξ1)
= R
′(ξ1) − R′(a)
g′(ξ1) − g′(a)

= R
″(ξ )

g″(ξ )
.

Therefore, the above equations imply

R(x)
g(x)
= R
″(ξ )

g″(ξ )
for some ξ between a and x.

Notice that g″(x) = 2 and R″(x) = f″(x). Then we obtain

R(x)
g(x)
= f
″(ξ )
2

for some ξ between a and x.

Because g(x) = (x − a)2, we have R(x) = f″(ξ )
2 (x − a)

2 for some number ξ between a
and x. This completes the proof.

NOTE. This example gives the error when using linear approximation.

Wewill use Cauchy’s theorem to prove the famous L’Hôpital rule for finding limits
of indeterminate forms. We first introduce the indeterminate forms.

4.4.2 The indeterminate forms 0
0 ,∞−∞,

∞
∞ , and 0 ×∞

4.4.2.1 The 0
0 indeterminate form

The function

f (x) = e
x − cosx

x

is undefined at x = 0, but we would still like to know how f behaves near 0 and, in
particular, the value of the limit

lim
x→0

ex − cosx
x
.

In computing this limit, we cannot apply the law that “the limit of a quotient is the
quotient of the limits”, because the limit of the denominator is 0. In fact, the limit
exists but its value is not obvious because both the numerator and the denominator
approach 0 and 0

0 is not defined. This is an example of a 0
0 indeterminate form. In

Chapter 2 we used a geometric argument to show that limx→0
sinx
x = 1, but themethods

used in that proof cannot be adapted to a limit of this kind.
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Definition 4.4.1. If f (x) → 0 and g(x) → 0 as x → a, then f (x)
g(x) is a

0
0 indeterminate

form as x→ a.

In general, if f (x)
g(x) is a

0
0 indeterminate form as x → a, then limx→a

f (x)
g(x) may or

may not exist. In the theorem below, we introduce a systematic method, known as
L’Hôpital’s rule, that in some cases enables us to find the value of a limit of this kind.

Theorem 4.4.2 (L’Hôpital’s rule 0
0 ). Suppose that f and g are differentiable on some

interval containing a except possibly at x = a, g′(x) ≠ 0 on that interval, and f (x)
g(x) is a

0
0

indeterminate form as x→ a. If the limit of the ratio of the derivatives satisfies

lim
x→a

f ′(x)
g′(x)
= L, where L is finite or ±∞,

then

lim
x→a

f (x)
g(x)
= lim
x→a

f ′(x)
g′(x)
= L.

Proof. Since neither the value of f (x) nor the value of g(x) at the point x = a affects
the value of limx→a

f (x)
g(x) , we can define f (a) = g(a) = 0, without changing the value of

limx→a
f (x)
g(x) . By Cauchy’s theorem,

lim
x→a

f (x)
g(x)
= lim
x→a

f (x) − f (a)
g(x) − g(a)

= lim
x→a

f ′(c)
g′(c)
,

where c is a point, dependent on x, somewhere between a and x. As x → a, c must
approach a, so we have

lim
x→a

f (x)
g(x)
= lim
x→a

f (x) − f (a)
g(x) − g(a)

= lim
x→a

f ′(c)
g′(c)
= lim
c→a

f ′(c)
g′(c)
= lim
x→a

f ′(x)
g′(x)
.

NOTE. The rule is named after the seventeenth-century French mathematician Guil-
laume de l’Hôpital (also written l’Hôspital), who published the rule in his 1696 book
Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes (Analysis of the In-
finitely Small for the Understanding of Curved Lines), the first textbook on differential
calculus. However, it is believed that the rule was discovered by the Swiss mathemati-
cian Johann Bernoulli. http://en.wikipedia.org/wiki/L%27Hôpital%27s_rule

NOTES. 1. This theorem could also be extended to the case where a = ±∞.
2. If lim f ′(x)

g′(x) does not exist, the rule will fail. A counterexample is limx→0
x2 sin 1

x
ex−1 .

Example 4.4.3. Find limx→0
ln(1+x)

x .
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Solution. Since limx→0 ln(1 + x) = ln 1 = 0 and limx→0 x = 0, we can apply L’Hôpital’s
rule to obtain

lim
x→0

ln(1 + x)
x
= lim
x→0

(ln(1 + x))′

(x)′
= lim
x→0

1/(1 + x)
1
= lim
x→0

1
1 + x
= 1.

Example 4.4.4. Use L’Hôpital’s rule to show that limx→0
sinx
x = 1.

Solution. Since sinx/x is a 0
0 indeterminate form as x→ 0, we apply L’Hôpital’s rule

to obtain

lim
x→0

sinx
x
= lim
x→0

(sinx)′

(x)′
= lim
x→0

cosx
1
= lim
x→0

cosx = 1.

Example 4.4.5. Prove

lim
x→0

x sinx
1 − e−x2

= 1.

Solution. The function x sinx
1−e−x2

is a 0
0 indeterminate form as x→ 0, so we may apply

L’Hôpital’s rule to evaluate this limit as follows:

lim
x→0

x sinx
1 − e−x2

= lim
x→0

(x sinx)′

(1 − e−x2 )′
= lim
x→0

sinx + x cosx
2xe−x2

.

However,

sinx + x cosx
2xe−x2

is still a 0
0 indeterminate form as x → 0, so we must apply L’Hôpital’s rule again to

obtain

lim
x→0

x sinx
1 − e−x2

= lim
x→0

(sinx + x cosx)′

(2xe−x2 )′
= lim
x→0

2 cosx − x sinx
2e−x2 − 4x2e−x2

= 2
2
= 1.

The∞−∞ indeterminate form
If f (x) →∞ and g(x) →∞ as x→ a, then limx→a(f (x) − g(x)) has an∞−∞ indeter-
minate form, since∞−∞ is undefined. In the next example we show that this limit
can sometimes be evaluated using L’Hôpital’s rule.

Example 4.4.6. Use L’Hôpital’s rule to show that

lim
x→0+
(
1
x2
−

1
sinx
) = +∞.
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Solution. The function 1
x2 −

1
sinx is an∞−∞ indeterminate form as x→ 0+. It can

be written as a fraction which is a 0
0 indeterminate form as x→ 0+ by finding a com-

mon denominator as follows:

1
x2
− 1
sinx
= sinx − x

2

x2 sinx
.

Applying L’Hôpital’s rule, we obtain

lim
x→0+
(
1
x2
−

1
sinx
) = lim

x→0+
sinx − x2

x2 sinx
= lim
x→0+

cosx − 2x
2x sinx + x2 cosx

= +∞,

because, as x→ 0+, the numerator approaches 1 and the denominator is positive and
approaches 0.

The 0 ×∞ indeterminate form
If f (x) → ∞ and g(x) → 0 as x → a, then f (x)g(x) = f (x) × g(x) as x →∞ is also an
indeterminate form, since 0×∞ is undefined. In the next example, we show that this
limit can sometimes be evaluated using L’Hôpital’s rule.

Example 4.4.7. Evaluate the limit

lim
x→∞

x arctan( 1
x
).

Solution. This function has an∞× 0 indeterminate form as x→∞. We can convert
it to a form suitable for L’Hôpital’s rule by rewriting the limit as

lim
x→∞

arctan 1
x

1
x
= lim
t→0

arctan t
t
= lim
t→0

1
1+t2

1
= 1.

The ∞∞ indeterminate form
If f (x) →∞ and g(x) →∞ as x→ a, then f (x)

g(x) is of an
∞
∞ indeterminate form as x→ a,

since ∞∞ is also undefined. The next theorem says that this limit can sometimes be
evaluated using the same process as L’Hôpital’s rule. The proof of the theorem is not
given here.

Theorem 4.4.3. Assume that f and g are differentiable on some interval containing a
(except possibly at a), g′(x) ≠ 0 on that interval, and f (x)

g(x) is an
∞
∞ indeterminate form

as x→ a. If the limit of the ratio of the derivatives satisfies

lim
x→a

f ′(x)
g′(x)
= L, where L is finite or ±∞,

then

lim
x→a

f (x)
g(x)
= lim
x→a

f ′(x)
g′(x)
= L.
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NOTE. This theorem could also be extended to the case where a = ±∞.

Example 4.4.8. Use L’Hôpital’s rule to evaluate the limit

lim
x→∞

lnx
x
.

Solution. We have

lim
x→∞

lnx
x
= lim
x→∞

1
x
1
= 0.

Example 4.4.9. Evaluate limx→0+ x lnx.

Solution. The function x lnx is an∞⋅0 indeterminate form as x→ 0+, but if we write
it as x lnx = lnx

1
x
, it is now an ∞∞ indeterminate form as x→ 0+. Hence,

lim
x→0+

x lnx = lim
x→0+

lnx
1
x
= lim
x→0+

1/x
−1/x2
= lim
x→0+
(−x) = 0.

The 00,∞0, and 1∞ indeterminate forms
If f (x) → 0, g(x) → 0, h(x) →∞, and k(x) → 1 as x→ a, then f (x)g(x) is a 00 indetermi-
nate form as x→ a, h(x)g(x) is an∞0 indeterminate form as x→ a, and k(x)h(x) is a 1∞

indeterminate form as x→ a, since 00,∞0, and 1∞ are all undefined.
The limits of the functions defining these three indeterminate forms may or may

not exist as x→ a, but can sometimes be evaluated using L’Hôpital’s rule. Expressions
like f (x)g(x) where f (x) > 0 can be written as

f (x)g(x) = eg(x) ln f (x).

If we can show, perhaps with the use of L’Hôpital’s rule, that

lim
x→a

g(x) ln f (x) = L, where L is finite,

then

lim
x→a

f (x)g(x) = lim
x→a

eg(x) ln f (x) = eL.

The last equality holds because the exponential function is continuous.

Example 4.4.10. Show that limx→0+ xx = 1.

Solution. The function xx is a 00 indeterminate form as x→ 0+. Using the result of
Example 4.4.9, we have

lim
x→0+

xx = lim
x→0+

ex lnx = e0 = 1.

Another strategy is to set y = f (x)g(x) and take logarithms of both sides, lny =
g(x) ln f (x), as in the next example.
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Example 4.4.11. Show that, for any real number c,

lim
x→∞
(1 + c

x
)
x
= ec .

Solution. The function (1 + c
x )

x is a 1∞ indeterminate form as x →∞. Setting y =
(1 + c

x )
x and taking the natural logarithm of both sides gives

lny = x ln(1 + c
x
).

As x→∞, the expression on the right is an∞⋅0 indeterminate form, that we convert
to a 0

0 indeterminate form as follows:

lim
x→∞

lny = lim
x→∞

x ln(1 + c
x
)

= lim
x→∞

ln(1 + c
x )

1
x

= lim
x→∞

1
(1+ cx )
(− cx2 )

− 1x2
= lim
x→∞

1
(1+ cx )

c

1
= c.

Hence,

lim
x→∞
(1 + c

x
)
x
= lim
x→∞

y = lim
x→∞

elny = ec .

Example 4.4.12. Show that, for any real number c,

lim
x→0
(1 + c

x
)
x
= 1.

Solution. The function (1 + c
x )

x is an∞0 indeterminate form as x→ 0. Following the
method of the previous example, set y = (1+ cx )

x and take the natural logarithmof both
sides to obtain

lny = x ln(1 + c
x
).

The expression on the right is a 0 ⋅ ∞ indeterminate form as x → 0, so, using the
method of Example 4.4.9, we find

lim
x→0

lny = lim
x→0

x ln(1 + c
x
) = lim

x→0

ln(1 + c
x )

1
x

= lim
x→0

1
(1+ cx )
(− cx2 )

− 1x2
= 0.

Hence,

lim
x→0
(1 + c

x
)
x
= lim
x→0

y = lim
x→0

elny = e0 = 1.
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4.5 Taylor’s theorem

4.5.1 The error analysis for the linear approximation

In the previous chapter, we saw that the tangent line approximation, or the lineariza-
tion for a differentiable function f (x) at x = a, is

f (x) ≈ f (a) + f ′(a)(x − a). (4.2)

If we denote the difference between the function and its linearization at x = a by R(x),
we have

f (x) = f (a) + f ′(a)(x − a) + R(x), or
R(x) = f (x) − f (a) − f ′(a)(x − a).

Because

lim
x→a

R(x)
x − a
= lim

x→a

f (x) − f (a) − f ′(a)(x − a)
x − a

= lim
x→a
[ f (x) − f (a)

x − a
− f ′(a)] = 0,

R(x) is negligible with respect to x−awhen x→ a. Using the small o notation, we have
R(x) = o(x − a). Therefore,

f (x) = f (a) + f ′(a)(x − a) + o(x − a). (4.3)

This gives some basic information – even though we do not know the exact error,
we know that the error would be much smaller than Δx = x − a. This agrees with our
intuition that, as x approaches a, the error in a linear approximation approaches zero.

The exact error was given by Example 4.4.2, where we found

R(x) = f
″(ξ )
2
(x − a)2 for some ξ between a and x.

This means that, for some ξ between a and x,

f (x) = f (a) + f ′(a)(x − a) + f
″(ξ )
2
(x − a)2. (4.4)

Observe that

0 < ξ − a
x − a
< 1.

Let θ = ξ−a
x−a and ξ = a + θ(x − a). Then the exact error when we use the tangent line

approximation can also be written

R(x) = f
″(a + θ(x − a))

2
(x − a)2 for some θ between 0 and 1.
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Therefore, for some θ between 0 and 1,

f (x) = f (a) + f ′(a)(x − a) + f
″(a + θ(x − a))

2
(x − a)2. (4.5)

Example 4.5.1. Estimate the error if we use the linearization at x = 0 to approximate
the number sin(0.02).

Solution. The derivative of sinx at x = 0 is 1 and the tangent line to sinx at x = 0 is
f (x) = x. The error is given by

|sinx − x| = |− sin(0 + θx)
2
(x − 0)2|, 0 < θ < 1.

The tangent line estimate of sin0.02 is 0.02, so the error bound is

|sin(0.02) − 0.02| = |− sin(θ × 0.02)
2

(0.02 − 0)2| ⩽ 1
2
× 0.022 = 0.0002.

NOTE. Usinga calculator, toninedecimal places, the valueof sin0.02 is 0.019998667.
The error is therefore

|0.019998667 − 0.02| = 0.0000001333 < 0.0002.

4.5.2 The quadratic approximation

Now, let us look at Figure 4.5.1, showing a linear and a “curved” approximation to ex

at x = 0. Which one is a better approximation? The “curved” approximation is clearly
better. But why is it better? And how do we find such a “curved” approximation?

Figure 4.5.1: Linear and quadratic approximation to y = ex at x = 0.
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If we think about two runners running along a straight line, they may start from the
same position with the same initial velocity, but will they always have the same po-
sition? They will initially, but perhaps not for very long because their accelerations
may be different! The second derivative makes an important difference in their posi-
tions. Now think about a quadratic curve P(x) = c0 + c1(x − a) + c2(x − a)2 which meets
a twice differentiable function f (x) at the point x = a. Assume that, at this point, the
two curves have the same slope (first derivative) and the same second derivative. We
summarize this information as follows:

f (x)meets P(x) at x = a, f (a) = P(a),
they have the same slope at x = a, f ′(a) = P′(a),
they have the same second derivative at x = a, f″(a) = P″(a).

On the other hand, if P(x) = c0 + c1(x − a) + c2(x − a)2, then

P(a) = c0, P′(a) = c1, and P″(a) = 2c2.

Therefore, the coefficients of P(x) are

c0 = f (a), c1 = f ′(a) and c2 =
f″(a)
2
.

Thus, the quadratic curve which approximates f (x)must be

P(x) = f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2

and

f (x) ≈ f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2. (4.6)

Example 4.5.2. Find the quadratic approximation for f (x) = lnx at a = 1.

Solution. First compute the coefficients of the quadratic polynomial as follows:

f (1) = ln 1 = 0, f ′(1) = 1
x
|
x=1
= 1, f″(1) = − 1

x2
|
x=1
= −1.

The quadratic approximation is given by

P(x) = 0 + 1(x − 1) − 1
2
(x − 1)2

and then

f (x) ≈ 0 + 1(x − 1) − 1
2
(x − 1)2.

Figure 4.5.2 shows the linear and quadratic approximation for f (x) = lnx at x = 1.
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Figure 4.5.2: Linear and quadratic approximation to y = ln x at x=1.

Error analysis with a quadratic approximation
As for the error analysis with a quadratic approximation, we assume that f (x) is twice
differentiable on an interval I containing a and that f″(x) is continuous at x = a. Again
we let R(x) = f (x) − P(x), that is, f (x) = P(x) + R(x). Then

f (x) = f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2 + R(x).

Now we evaluate the following limit by using L’Hôpital’s rule. We have

lim
x→a

R(x)
(x − a)2

= lim
x→a

f (x) − f (a) − f ′(a)(x − a) − f
″(a)
2 (x − a)

2

(x − a)2

= lim
x→a

f ′(x) − f ′(a) − f″(a)(x − a)
2(x − a)

= lim
x→a

f″(x) − f″(a)
2

= 0.

The last equality holds because f″(x) is continuous at x = a. The fact that the limit is 0
means R(x) is negligible with respect to (x − a)2. Thus, R(x) = o((x − a)2). Therefore,

f (x) = f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2 + o((x − a)2). (4.7)

This agrees with our intuition that, near x = a, a quadratic approximation is better
than a linear approximation.

To find the exact error, we assume f can be differentiated at least three times on I.
We use a similar argument as used for linear approximation, but this time we apply
the extended value theorem three time with functions R(x) and g(x) = (x − a)3, R′(x)
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and g′(x), and R″(x) and g″(x), respectively, to obtain

R(x) − R(a)
g(x) − g(a)

= R
′(ξ1)

g′(ξ1)
for some ξ1 between a and x,

R′(ξ1) − R′(a)
g′(ξ1) − g′(a)

= R
″(ξ2)

g″(ξ2)
for some ξ2 between a and ξ1,

R″(ξ2) − R″(a)
g″(ξ2) − g″(a)

= R
‴(ξ )

g‴(ξ )
for some ξ between a and ξ2.

Now evaluating R(a), g(a), R′(a), g′(a), R″(a), and g″(a) (all of them are zeros and
g‴(x) = 3!), the above equations give

R(x) = f
‴(ξ )
3!
(x − a)3 for some ξ between a and x.

Thus, for some ξ between a and x, we have

f (x) = f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2 + f

‴(ξ )
3!
(x − a)3. (4.8)

As shown in the previous section, we have

R(x) = f
‴(a + θ(x − a))

3!
(x − a)3 for some θ between 0 and 1.

Then we have

f (a) + f ′(a)(x − a) + f
″(a)
2
(x − a)2 + f

‴(a + θ(x − a))
3!

(x − a)3. (4.9)

Example 4.5.3. Estimate the error in approximating e0.02 when:
1. using a linear approximation at x = 0;
2. using a quadratic approximation at x = 0.

Solution. Let f (x) = ex . Then f (0) = 1, f ′(0) = 1, and f″(0) = 1, so the tangent line to
ex at x = 0 is P1(x) = 1 + x. The quadratic approximation is

P2(x) = 1 + x +
1
2
x2.

The error for the linear approximation is given by

|ex − (1 + x)| = R(x) = |e
0+θx

2
(x − 0)2|, 0 < θ < 1,

so

|e0.02 − (1 + 0.02)| = R(0.02) = |e
0+θ×0.02

2
(0.02 − 0)2|

⩽
e
2
(0.02)2 < 2.72

2
× (0.02)2 = 0.000544.
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When using a quadratic approximation, the error is given by

|ex − (1 + x + x
2

2
)| = R(x) = |e

0+θx

3!
(x − 0)3|, 0 < θ < 1,

so

|e0.02 − (1 + 0.02 + 0.02
2

2
)| = R(0.02) = |e

θ×0.02

3!
(0.02 − 0)3|

< 2.72
3!
× (0.02)3 < 0.0000036267.

This confirms algebraically that the quadratic approximation is better than the linear
one in this situation when x ≈ a.

4.5.3 Taylor’s theorem

The ideas discussed above could easily be extended in order to approximate a function
with a polynomial of degree n, for some positive integer n, assuming that the function
has an nth derivative. That is, we try an nth degree polynomial approximation to f (x)
at x = a of the form

P(x) = c0 + c1(x − a) + c2(x − a)2 +⋯+ cn(x − a)n.

We attempt to make sure that the approximation to f (x) is accurate by choosing the
coefficients ck so that the derivatives of f (x) and P(x) are the same at x = a. That is, we
require

P(a) = f (a), P′(a) = f ′(a), P″(a) = f″(a), … , P(n)(a) = f (n)(a).

That means P(k)(a) = f (k)(a) for k = 0, 1, 2,… ,n. Under these assumptions, by substi-
tuting x = a in the approximation and then differentiating P(x) repeatedly and substi-
tuting a for x each time, it is easy to show that the coefficients are c0 = f (a), c1 =

f ′(a)
1! ,

c2 =
f″(a)
2! ,…, and in general ck =

f (k)(a)
k! , for k = 0, 1, 2,… ,n. Hence, the required approx-

imating polynomial is

Pn(x) = f (a) +
f ′(a)
1
(x − a) + f

″(a)
2!
(x − a)2 +⋯+ f

(n)(a)
n!
(x − a)n

and this polynomial is called the nth degree Taylor polynomial of f centered at a.
Similar to the linear and quadratic approximation, we have the following useful

theorem.

Theorem 4.5.1 (Taylor’s theorem). If f (x) has (n+ 1)th order derivatives in some inter-
val I containing a, then, for any x in this interval,

f (x) = Pn(x) + Rn(x),
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Brook Taylor FRS (1685–1731) was an English mathematician who is best known for Taylor’s theorem
and the Taylor series. The concept of a Taylor series was discovered by the Scottish mathematician
James Gregory and formally introduced by the English mathematician Brook Taylor in 1715. http://en.
wikipedia.org/wiki/Brook_Taylor

where the Taylor polynomial of degree n, Pn(x), is

Pn(x) = f (a) +
f ′(a)
1
(x − a) + f

″(a)
2!
(x − a)2 +⋯+ f

(n)(a)
n!
(x − a)n (4.10)

and the remainder term Rn(x) is given by

Rn(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1 for some c between a and x, (4.11)

Rn(x) = o((x − a)n), (4.12)

or

Rn(x) =
f (n+1)(a + θ(x − a))
(n + 1)!

(x − a)n+1 for some θ between 0 and 1 (4.13)

(the value of θ depends on the values of x, a, and n).

Proof. This theorem can easily be proved by replicating the proofs that we have given
for n = 1 and n = 2.

The remainder Rn(x) of the form Rn(x) = o((x − a)n) is called the Peano remainder,
while Rn(x) =

f (n+1)(c)
(n+1)! (x − a)

n+1 is called the Lagrange remainder. It gives the difference
between the function f (x) and its Taylor polynomial of degree n centered at a. If we
get an upper boundM for f (n+1)(c), then an error bound is given by

|Rn(x)| = |
f (n+1)(c)
(n + 1)!

(x − a)n+1| ⩽ M
(n + 1)!
|x − a|n+1. (4.14)

Example 4.5.4. Find the Taylor polynomial of degree 4 centered at x = 1 for f (x) = √x
and use it to estimate √1.5.

Solution. We first compute the coefficients for this Taylor polynomial. We have

f (x) = √x, f ′(x) = 1
2
x−

1
2 , f″(x) = − 1

4
x−

3
2 , f‴(x) = 3

8
x−

5
2 ,

and f (4)(x) = − 1516x
− 72 . Therefore,

f (1) = 1, f ′(1) = 1
2
, f″(1) = − 1

4
, f‴(1) = 3

8
, and f (4)(1) = − 15

16
.
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The Taylor polynomial of degree 4 centered at x = 1 of f (x) = ex is then given by

P4(x) = 1 +
1
2
1
(x − 1) +

− 14
2!
(x − 1)2 +

3
8
3!
(x − 1)3 +

− 1516
4!
(x − 1)4

= 1 + (x − 1)
2
− 1
8
(x − 1)2 + 1

16
(x − 1)3 − 5

128
(x − 1)4.

Hence,

f (1.5) ≈ P4(1.5)

= 1 + (1.5 − 1)
2
− (1.5 − 1)

2

8
+ (1.5 − 1)

3

16
− 5(1.5 − 1)

4

128
= 1.224 1.

To estimate the error, we differentiate f (4)(x) again to obtain

f (5)(x) = 105
32

x−
9
2 .

Then

|R4(x)| = |
105
32 (1 + θ(x − 1))

− 92

(4 + 1)!
(x − 1)4+1|

= | 105
32 × 5!
(1 + θ(x − 1))−

9
2 (x − 1)5|, 0 < θ < 1,

⩽ 105
32 × 5!
|x − 1|5,

so

|R4(1.5)| =
105

32 × 5!
|1.5 − 1|5 ⩽ 8.545 × 10−4.

Figure 4.5.3 shows the graphs of √x and its Taylor polynomial of degree 4 centered at
x = 1. The value of √1.5 given by a TI-89 graphing calculator is 1.22474487139 and

|1.224 1 − 1.22474487139| = 6.449 × 10−4 ⩽ 8.545 × 10−4.

Figure 4.5.3: Graphs of y = √x and its Taylor polynomial of degree 4 at x = 1.
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To compare with the linear and quadratic approximations, we compute

P1(1.05) = 1 +
(1.5 − 1)

2
|
x=1.5
= 1.25

and

P2(1.05) = 1 +
(1.5 − 1)

2
− 1
8
(1.5 − 1)2|

x=1.5
= 1.2188.

Obviously, the corresponding errors are larger.

NOTES. 1. Taylor’s theorem is sometimes called Taylor’s formula or Taylor’s expan-
sion.

2. It can be shown that the remainder Rn(x) → 0 as n→∞ for most infinitely differ-
entiable functions. This implies that we can make the approximation as good as
we want by using a Taylor polynomial for f of sufficiently large degree.

Maclaurin’s formula
When a = 0, Taylor’s theorem becomes simply

f (x) = f (0) + f
′(0)
1

x + f
″(0)
2!

x2 +⋯+ f
(n)(0)
n!

xn + Rn(x), (4.15)

Rn(x) =
f (n+1)(θx)
(n + 1)!

xn+1, where 0 < θ < 1, (4.16)

where θ is a number depending on the values of x and n. This is given a special name:
theMaclaurin formula orMaclaurin expansion.

Using the small o notation, we write the remainder of the Maclaurin formula as

Rn =
f (n+1)(θx)
(n + 1)!

xn+1 = o(xn). (4.17)

Example 4.5.5. Find the Maclaurin formula for the function f (x) = ex and compute
the error in using the 11 terms of the polynomial (n = 10) to approximate e.

Solution. Since f (x) = f ′(x) =⋯ = f (n)(x) = ex , we have

f (0) = f ′(0) = f″(0) =⋯ = f (n)(0) = 1,

so the Maclaurin expansion for f is

ex = 1 + x + x
2

2!
+ x

3

3!
+⋯ + x

n

n!
+ eθx

(n + 1)!
xn+1, where 0 < θ < 1.

The nth degree polynomial approximation for ex is

ex ≈ 1 + x + x
2

2!
+ x

3

3!
+⋯ + x

n

n!
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and the error (remainder) for this approximation satisfies

|Rn(x)| = |
eθx

(n + 1)!
xn+1| < ex

(n + 1)!
|x|n+1.

When x = 1 and n = 10, we obtain the following approximation for the transcendental
number e:

e ≈ 1 + 1 + 1
2!
+ 1
3!
+ 1
4!
+ 1
5!
+ 1
6!
+ 1
7!
+ 1
8!
+ 1
9!
+ 1
10!

≈ 2.7182818.

The error |Rn| satisfies

|Rn| <
e
11!

1n+1 < 10−7.

Figure 4.5.4 shows the graphs of y = ex and some of its Taylor polynomials.

Figure 4.5.4: Graphs of y = ex and its Taylor polynomial of degree 1, 2, 3 and 5.

In a similar manner, we can find more Maclaurin expansions, such as

sinx = x − x
3

3!
+
x5

5!
−
x7

7!
+⋯ + (−1)n−1 x2n−1

(2n − 1)!
+ R2n,

cosx = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+⋯ + (−1)n x2n

(2n)!
+ R2n+1,

ln(1 + x) = x − x
2

2
+
x3

3
−⋯+ (−1)n−1 1

n
xn + Rn, and

(1 + x)a = 1 + ax + a(a − 1)
2!

x2 +⋯

+a(a − 1)⋯(a − n + 1)
n!

xn + Rn.

This of course leads to some useful approximations, such as

sinx = x − 1
3!
x3 + o(x4) and cosx = 1 − x

2

2!
+ o(x3).
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Figure 4.5.5: Graphs of y = sin x and its Taylor polynomial of degree 5 and 10.

Figure 4.5.5 shows graphs of y = sinx and its Taylor polynomial of degree 5 and 10.
These approximations can also be useful when evaluating limits.

Example 4.5.6. Find limx→0
sinx−x cosx

sin3 x .

Solution. Since

sinx = x − x
3

3!
+ o(x4), x cosx = x − x

3

2!
+ o(x4),

and sin3 x ∼ x3 as x→ 0, we have

lim
x→0

sinx − x cosx
sin3 x

= lim
x→0

x − x
3

3! + o(x
4) − x[1 − x

2

2! + o(x
3)]

x3

= lim
x→0

1
3x

3 + o(x3)
x3
= 1
3
.

4.6 Concave functions and the second derivative test

4.6.1 Concave functions

The sign of the first derivative gives information as regards monotonicity. Fig-
ure 4.6.1 (a) and Figure 4.6.1 (b) show the graphs of two increasing functions on (a,b)
and both graphs join point A to point B. They look different because the first bends
upward on [a,b] and the second bends downward on [a,b]. Both functions have posi-

Figure 4.6.1: Concave up and concave down functions.
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tive first derivatives on the interval (a,b). The graph of the function f in Figure 4.6.1 (a)
is said to be concave up on (a,b) and the graph of the function g in Figure 4.6.1 (b) is
said to be concave down on (a,b).

As seen in Figure 4.6.2 (a), if the graph is concave up on [a,b], then, for any two
points x1 and x2 in [a,b], the chord connecting them must lie above the curve. If the
graph is concave down, then the chord connecting any two points must lie below the
curve. The formal definition of concavity is given below.

Figure 4.6.2: Concave up/down graphs and their chords.

Definition 4.6.1. Suppose f (x) is continuous on I and, for any two values a ≠ b ∈ I,
we have

f(a + b
2
) < f (a) + f (b)

2
.

Then f (x) is concave up on I. Similarly, if, for any two values a ≠ b ∈ I,

f(a + b
2
) > f (a) + f (b)

2
,

then f (x) is concave down on I.

In Figure 4.6.3 (a), the graph is concaveup.Observe that the tangent lines lie below
the curve f and their slopes increase as x increases. That means the derivative f ′(x) is
increasing and therefore the derivative of f ′(x)must be positive, i.e., f″(x) > 0.

Figure 4.6.3: Concave up/down graphs and their tangents.



4.6 Concave functions and the second derivative test | 221

In Figure 4.6.3 (b), observe that the tangent lines lie above the curve f and their
slopes decrease as x increases. Thatmeans thederivative f ′(x) is decreasing and there-
fore the derivative of f ′(x)must be negative, i.e., f″(x) < 0. The following theorem tells
us that, if a function is twice differentiable on an interval, then, indeed, we can use its
second derivative to determine its concavity.

Theorem 4.6.1. Suppose f (x) is a twice differentiable function defined on an interval I.
Then:
1. if f″(x) > 0, then f (x) is concave up on I;
2. if f″(x) < 0, then f (x) is concave down on I.

Proof. Suppose that a, b are any two points in I and a < b. Apply Taylor’s theorem to
f (x) at the point x = a+b

2 to obtain

f (x) = f(a + b
2
) + f ′(a + b

2
)(x − a + b

2
) + f
″(ξ )
2!
(x − a + b

2
)
2
,

where ξ depends on x.
Now evaluating f at x = a and x = b, respectively, we have

f (a) = f(a + b
2
) + f ′(a + b

2
)(a − a + b

2
) + f
″(ξ1)
2!
(a − a + b

2
)
2

= f(a + b
2
) + f ′(a + b

2
)(a − b

2
) + f
″(ξ1)
2!
(a − b

2
)
2
,

f (b) = f(a + b
2
) + f ′(a + b

2
)(b − a + b

2
) + f
″(ξ2)
2!
(b − a + b

2
)
2

= f(a + b
2
) + f ′(a + b

2
)(b − a

2
) + f
″(ξ2)
2!
(b − a

2
)
2
.

Notice that ( a−b2 ) + (
b−a
2 ) = 0, so if we add f (a) and f (b) we obtain

f (a) + f (b) = 2f(a + b
2
) +

f″(ξ1)
2!
(
a − b
2
)
2
+
f″(ξ2)
2!
(
b − a
2
)
2
.

If f″(x) > 0 for every value of x in I, then f″(ξ1) and f″(ξ2) are both greater than 0,
so

f (a) + f (b) > 2f(a + b
2
).

This means

f(a + b
2
) < f (a) + f (b)

2
.

Then, by the definition of concave up, we conclude that f (x) is concave up on I.
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If f″(x) < 0, similar arguments lead to

f(a + b
2
) > f (a) + f (b)

2

for every point a and b in I, so f (x) is concave down on I. This completes the proof.

NOTE. If the function f (x) is twice differentiable on I and concave up, then it can be
shown that the graph of the function lies above the tangent line at each point x = a
in I, as shown in Figure 4.6.3 (a). In fact, by Taylor’s theorem, we have

f (x) = f (a) + f ′(a)(x − a) + f
″(ξ )
2!
(x − a)2.

If f″(x) > 0 for every value of x in I, then f″(ξ ) > 0, so f (x) > f (a) + f ′(a)(x − a), which
means the graph of f (x) is above the line y = f (a) + f ′(a)(x − a), which is exactly the
line tangent to the graph of f (x) at x = a. Similarly, if f″(x) < 0 for all x in I, then
f (x) < f ′(a)+ f ′(a)(x−a). Therefore, the tangent line at x = a is below the graph of f (x).

NOTE. A more general definition of concavity is as follows. Given any points x1 <
x2 < ⋯ < xn in I and any positive numbers 0 < λ1 < λ2 < ⋯ < λn < 1 with ∑ni=1 λi = 1,
if f (∑ni=1 λixi) < ∑

n
i=1 λif (xi), then f (x) is said to be concave up on I. If f (∑ni=1 λixi) >

∑ni=1 λif (xi), then f (x) is said to be concave down on I.

Now, what happens if f″(x) is 0 or f″(x) does not exist at a point? The answer is
that the function may change its concavity there. We give the following definition.

Definition 4.6.2. A point (c, f (c)) on the graph of f is an inflection point (or point of
inflection) of f if f changes its concavity there.

If (c, f (c)) is an inflection point, then there is an interval a < c < b such that either
f (x) is concaveupon (a, c) and concavedownon (c,b), or f (x) is concavedownon (a, c)
and concave up on (c,b). If the function is twice differentiable, then there is also an
interval a < c < b such that f″(x) exists andhas a constant sign on (a, c) (either positive
or negative) and f″(x) exists and has the opposite constant sign on the interval (c,b).
This implies that either f″(c) = 0 and that f is concave up on one of the intervals, (a, c)
or (c,b), and concave down on the other interval. The second derivative does not have
to exist at c in order for it to be an inflection point.

Example 4.6.1. Determine the intervals on which f (x) = x3 is concave up or concave
down and locate any inflection points.

Solution. In order to use the concavity test, we calculate

f ′(x) = 3x2 and f″(x) = 6x.
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We see that, on the interval (0, +∞), f″(x) > 0, so f is concave up. On the interval
(−∞,0), f″(x) < 0, so f is concave down. It follows that, at the junction of these two
intervals, x = 0, the point (0, f (0)) = (0,0) on the graph is an inflection point (note also
that f″(0) = 0 at this point). A sign and behavior diagram is shown in Figure 4.6.4.

Figure 4.6.4: Sign of f ″(x) and behavior of f (x).

Example 4.6.2. Determine the intervals on which

f (x) = 3x4 − 4x3 + 1

is concave up and concave down and locate all of its inflection points.

Solution. We calculate f ′(x) = 12x3 − 12x2 and f″(x) = 36x2 − 24x = 36x(x − 23 ). Hence,
f″(x) > 0 when x < 0 and when x > 2

3 . On these two intervals, f (x) is concave up. Sim-
ilarly, f″(x) < 0 when 0 < x < 2

3 and on this interval f (x) is concave down. Since f (x)
changes its concavity at the point x = 0 (where y = 1) and at x = 2

3 (where y =
11
27 ), the in-

flectionpoints are (0, 1) and ( 23 ,
11
27 ). For reference,we show the graphof y = 3x4−4x3+1

in Figure 4.6.5.

Figure 4.6.5: Graph of f (x) = 3x4 − 4x3 + 1.

NOTE. If f (x) is twice differentiable and (c, f (c)) is an inflection point, then f″(c) = 0.
However, the converse may not be true, as the next example shows.

Example 4.6.3. Find all inflection points on the graph of y = x4.



224 | 4 Applications of the derivative

Figure 4.6.6: Graph of y = x4.

Solution. y′ = 4x3 and y″ = 12x2, so y″ = 0 when x = 0. However, we see that y″ is
defined for all values of x and it does not change sign at x = 0 or any other value of x.
The function f (x) = x4 does not have any points of inflection, even though f″(0) = 0.
In fact, the curve is concave up for all values of x, as shown in Figure 4.6.6.

NOTE. For some functions f (x), an inflection point (c, f (c)) occurs at x = cwhere f″(c)
does not exist, as in the next example.

Example 4.6.4. Locate any inflection points on the graph of the function

y = 3√x.

Solution. The function is continuous on (−∞,+∞). When x ≠ 0, we have

y′ = 1
3x

2
3

and y″ = − 2
9x

5
3
.

Observe that y″(0) does not exist, but y″ changes from being positive when x < 0 to
beingnegativewhen x > 0.Hence the graphchanges fromconcaveup to concavedown
at x = 0, so (0,0) is a point of inflection. The graph of y = 3√x is shown in Figure 4.6.7.

Figure 4.6.7: Graph of y = 3√x.
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4.6.2 The second derivative test

Now we show another way to determine the nature of a critical point. For a twice dif-
ferentiable function f (x), if f ′(a) = 0, we want to determine the nature of the point
(a, f (a)). If, in addition, we have f″(a) > 0, then we can imagine that there is a neigh-
borhood of x = a such that, on this interval, f (x) is concave up, but x = a is the turning
point on that interval, so it would be a localminimum. If, on the other hand, f″(a) < 0,
then f (x) is concave down on a small interval containing a and we would believe that
f (x) reaches a local maximum at x = a.

In fact, we have the following theorem.

Theorem 4.6.2 (Second derivative test). If f (x) hasa continuous secondderivative and
f ′(a) = 0, then:
1. if f″(a) > 0, then f (x) has a local minimum at x = a;
2. if f″(a) < 0, then f (x) has a local maximum at x = a.

Proof. First, we notice that, if f″(x) is continuous and f″(a) > 0, there is a small in-
terval I containing a, where f″(x) > 0 for each x ∈ I . On the other hand, the Taylor
expansion at x = a for f (x) is for some ξ depending on x and a. We have

f (x) = f (a) + f ′(a)(x − a) + f
″(ξ )
2!
(x − a)2 for x ∈ I .

Since f ′(a) = 0, this becomes

f (x) = f (a) + f
″(ξ )
2!
(x − a)2.

By assumption, f″(x) > 0 for each x ∈ I, so f″(ξ ) > 0. Therefore,

f (x) > f (a) for each x ∈ R,

so f (a) is a local minimum.
A similar argument leads to the conclusion that, if f″(a) < 0, f (x) has a local max-

imum at x = a.

NOTE. In fact, f″(x) does not need to be continuous. The second derivative test holds
as long as f″(a) exists. One can deduce this by investigating the change of sign of f ′(x)
in the limit limx→a

f ′(x)−f ′(a)
x−a = f

″(a).

Example 4.6.5. Locate and classify all local extrema of the function

f (x) = 1
3
x3 − x2 + 1

3
.
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Solution. The function is continuous and differentiable on (−∞,∞). Hence, we iden-
tify the local extrema using the first or second derivative tests as follows:

f ′(x) = x2 − 2x = x(x − 2).

The critical points are x = 0 and x = 2. Then

f″(x) = 2x − 2,

so

f″(0) = −2 < 0, f″(2) = 2 > 0.

Therefore, it follows from the second derivative test that f has a local maximum at
x = 0 and a local minimum at x = 2, as seen in Figure 4.6.8.

Figure 4.6.8: Graph of y = 1
3 x

3 − x2 + 1
3 .

Example 4.6.6. Find all local extreme values of the function

f (x) = x −√x, for x > 0.

Solution. The function is continuous and differentiable for x > 0, so we have

f ′(x) = 1 − 1
2x

1
2
.

Solving f ′(x) = 0 gives x = 1
4 . This is the only candidate to be a local extremum of f .

We now find the second derivative of f , which is

f″(x) = (1 − 1
2x

1
2
)
′
= 0 − 1

2
(− 1

2
)x−

1
2−1 = 1

4
x−

3
2 ,

f″( 1
4
) = 1

4
( 1
4
)
− 32
> 0,

so we conclude that f has only one local minimum, which occurs at x = 1
4 . This local

minimum value is f ( 14 ) =
1
4 −

1
2 = −

1
4 . The graph of f is shown in Figure 4.6.9. Observe

that f has no local maximum.



4.7 Extreme values of functions revisited | 227

Figure 4.6.9: Graph of f (x) = x −√x.

Unfortunately, the second derivative test does not tells us whether f (a) is a local ex-
tremum or not when f″(a) = 0. Actually, if f″(a) = 0, f (a) could be a local maximum,
a local minimum or neither. We take, for example, f (x) = x3, f (x) = x4, and f (x) = −x4.
For all three of these, the second derivative at x = 0 is 0, but f (x) = x3 has no extremum
at x = 0, f (x) = x4 has a local minimum at x = 0, and f (x) = −x4 has a local maximum
at x = 0. A further result for determining the nature of a stationary point using higher
order derivatives is given by the following theorem.

Theorem 4.6.3. If f ′(a) = 0, f″(a) = 0,… , f (n−1)(a) = 0, and f (n)(a) ≠ 0, then:
1. if n is odd, f (a) is not a local extreme value;
2. if n is even and f (n)(a) > 0, then f (x) has a local minimum at x = a; if f (n)(a) < 0,

then f (x) has a local maximum at x = a.

Example 4.6.7. Determine thenature of the stationarypoint of f (x) = x3 and g(x) = x4.

Solution. Since

f ′(x) = 3x2 and g′(x) = 4x3,

both f and g have only one stationary point, x = 0. Because

f″(x) = 6x, f″(0) = 0 (inconclusive by the second derivative theorem).

We differentiate f″ again to get the third derivative, f‴(x) = 6 > 0. Since 3 is odd, we
conclude by Theorem 4.6.3 that f (x) has no local extreme value at x = 0. Similarly,
since g″(0) = g‴(0) = 0 and g(4)(0) = 24 > 0, we conclude that g(x) has a local mini-
mum at x = 0.

4.7 Extreme values of functions revisited

From Section 4.1 of this chapter, we know how to find the candidates for extreme val-
ues of a function andwe also knowhow to find global extreme values for a continuous
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function defined on a closed interval. From Section 4.3, we know how to investigate
whether or not a candidate is a local extreme value. If a function is not continuous or
not defined on a closed interval, then it may or may not have local or global extreme
values. This will depend on individual cases.

Example 4.7.1. If f (x) = x2, then f (x) ⩾ f (0) because x2 ⩾ 0 for all x. Therefore, f (0) = 0
is the absolute (and local) minimum value of f . This corresponds to the fact that the
origin is the lowest point on the parabola y = x2. However, there is no highest point on
the parabola, so this function has no maximum value.

Example 4.7.2. For the following equation, find all candidates for extrema of f and
determine the global extrema:

f (x) = 3x4 − 16x3 + 18x2, −1 ⩽ x < 2.

Solution. Differentiating f , we obtain

f ′(x) = 12x3 − 48x2 + 36x = 12x(x − 1)(x − 3).

Hence, f ′(x) = 0 when x = 0, x = 1, and x = 3. The candidates for extrema in this inter-
val [−1, 2) are therefore x = −1, x = 0, and x = 1. On [−1,0) ∪ (1, 2), f ′(x) < 0 and f ′(x) > 0
on (0, 1), so we construct a rough diagram in Figure 4.7.1.

Figure 4.7.1: Rough graph for f (x) = 3x4 − 16x3 + 18x2 for −1 ⩽ x < 2.

The function f starts at the point (−1, f (−1)) and then decreases until x = 0. Then it
starts to rise until x = 1 and it decreases again, so f has a local minimum at x = 0 and
a local maximum at x = 1. Observe that

f (−1) = 37, f (0) = 0, and f (1) = 5.

On the interval [1, 2), the value of f (2) is not defined, but we find

lim
x→2

f (x) = lim
x→2
(3x4 − 16x3 + 18x2)

= 3(24) − 16(23) + 18(22)
= −8.
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This means that, after passing through the point (1,5), the graph of f (x) falls and gets
closer and closer to −8 as x→ 2, but it never reaches −8 for x in [1, 2). Therefore, f (x)
has no global minimum, but it has a global maximum at x = −1, a local minimum at
x = 0, and a local maximum at x = 1. The graph of f (x) is shown in Figure 4.7.2.

Figure 4.7.2: Graph of f (x) = 3x4 − 16x3 + 18x2 for −1 ⩽ x < 2.

Example 4.7.3. Find the extreme values of

f (x) =
{
{
{

3 − 2x2, x ⩽ 1
x + 1, x > 1.

Solution. The function is not continuous at x = 1, since

lim
x→1−

f (x) = lim
x→1−
(3 − 2x2) = 1 but

lim
x→1+

f (x) = lim
x→1−
(x + 1) = 2.

However, it is continuous and differentiable anywhere else. The derivative of f is given
by

f ′(x) =
{
{
{

−4x, x < 1
1, x > 1.

We find that f ′(x) = 0 when x = 0 and f ′(1) does not exist, so the two critical numbers
are x = 0 and x = 1. The domain is unbounded above and unbounded below, so we
have to investigate the behavior of f when x→±∞. We have

lim
x→∞

f (x) = lim
x→∞
(x + 1) =∞,

lim
x→−∞

f (x) = lim
x→−∞
(3 − 2x2) = −∞.

Therefore, f (x) is unbounded above and unbounded below, so it has neither a global
maximumnor a globalminimum. However, at x = 0, f″(0) = −4 < 0, so f (x) has a local
maximum at x = 0.
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We see that f ′(x) changes from negative to positive at x = 1, but f (x) → 1 as x→ 1−

and f (x) → 2 as x→ 1+, so f has a jump discontinuity at x = 1 (it jumps from f (1) = 1
to 2 at x = 1), so f (x) has a local minimum value at x = 1. The local maximum value is
f (0) = 3 − 2(02) = 3. The local minimum value is f (1) = 1. The graph of f (x) is shown in
Figure 4.7.3.

Figure 4.7.3: Graph of f (x) in Example 4.7.3.

Example 4.7.4. The graph of the derivative of a function f defined on a closed inter-
val [−2,5] is shown in Figure 4.7.4. It consists of a semi-circle and two line segments.
Identify any extreme values of f .

Solution. The derivative f ′(x) is positive for −2 < x < 2 and 2 < x < 4 and is negative for
4 < x < 5. There are two stationary points x = 2 and x = 4, since f ′(2) = f ′(4) = 0, so f (x)
increases on the interval (−2, 2), then arrives at a stationary point (2, f (2)), and then
increases again on the interval (2,3). Therefore, f does not have a local extreme value

Figure 4.7.4: Graph of f ′(x) in Example 4.7.4.
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at x = 2. However, f increases on the interval (2,4) and decreases on (4,5). Therefore,
f does have a local extreme value at x = 4. Furthermore, this local maximum is also
the global maximum of f , since f rises to (4, f (4)), then falls, and does not rise again.
We cannot make any conclusion at this moment about the global minimum of f . In
Chapter 5, we shall be able to determine that f takes its global minimum at one of the
endpoints x = −2 and x = 5.

4.8 Curve sketching

The graph of a function y = f (x) can usually be sketched showing all of its most im-
portant features by using the following algorithm.
1. Domain It is oftenuseful to start bydetermining thedomainD of f (the set of values

of x for which f (x) is defined). Note that, at single points where f is undefined,
concavitymay change and the functionmay change from increasing to decreasing
or vice versa.

2. Intercepts The y-intercept is the point (0, f (0)) and this tells us where the curve
intersects the y-axis. The x-intercepts are the points, (c,0), where the graph of f
intersects the x-axis. A function may not have any x-intercepts, or it may be im-
possible to find the x-intercepts if the equation is difficult to solve.

3. Symmetry Determine whether the function is even (f (−x) = f (x) for all x), odd
(f (−x) = −f (x) for all x), periodic (f (x + p) = f (x) for all x and a fixed p), or none
of these. If it is an even function, then we need only to determine the graph for
x ⩾ 0. We can create the graph for x < 0 by reflecting this across the y-axis. If it is
an odd function, then we need only determine the graph for x ⩾ 0 and then reflect
through the point (0,0), the origin. Finding the reflection of a graph in the origin
is equivalent to finding its reflection in the y-axis and then finding the reflection
of this in the x-axis. If the function is periodic with period p, then we need only to
find the graph for 0 ⩽ x ⩽ p or some other interval of length p and we can create
the rest of the graph of f by copying this part for other x-values to the left and
right.

4. Asymptotes Find all horizontal, vertical, and slant asymptotes in order to deter-
mine the behavior of the graph for large x- and y-values (see Section 2.2.5).

5. Intervals of increase or decrease Use the increasing/decreasing test. That is, com-
pute f ′(x) and find the intervals onwhich f ′(x) is positive (f is increasing) and the
intervals on which f ′(x) is negative (f is decreasing).

6. Local maximum and minimum values Find the critical points of f (f ′(x) = 0 or is
undefined) and then use the first derivative test. That is, if f ′(x) changes from
positive to negative at a critical number c, then f (c) is a local maximum and if it
changes from negative to positive, then f (c) is a local minimum. We can also use
the second derivative test to identify the local maxima and minima.
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7. Concavity and points of inflection Compute f″ and use the concavity test. That is,
the curve is concave up where f″(x) > 0 and concave down where f″(x) < 0. In-
flection points occur where the concavity changes from up to down or from down
to up.

8. Sketch the curve Use the information obtained to draw the graph. Sketch the
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points,
and inflection points. Then make the curve pass through these points, rising and
falling on the intervals found in Step 5, with concavity found in Step 7, and ap-
proaching the asymptotes for large y- and x-values. In order to position the graph
reasonably and accurately you may need to compute some points on the graph
for a few additional well-chosen values of x.

The same methods can, to some extent, be used to sketch the graph of an implicitly
defined function F(x,y) = 0.However, except for symmetry, it is generallymuchharder
to determine the same information, such as domain, intercepts, asymptotes, intervals
of increase/decrease, maxima and minima, and concavity.

Example 4.8.1. Sketch the graph of the function f (x) = x4 − 2x3.

Solution. The domain of the function is (−∞,+∞). The y-intercept is (0,0). This is
also an x-intercept; the other x-intercept is (2,0). There is no symmetry and there are
no asymptotes.

The derivative is f ′(x) = 4x3 − 6x2 = 2x2(2x − 3). Solving f ′(x) = 0, we obtain the
critical points x = 0 and x = 3

2 .
The second derivative is f″(x) = 12x2 − 12x = 12x(x − 1). Solving f″(x) = 0 for x, we

obtain x = 0 and x = 1. These points divide the domain into four intervals.We compute
the sign table below.

x (−∞,0) 0 (0, 1) 1 (1, 32 )
3
2 (

3
2 , +∞)

f ′(x) − 0 − −2 − 0 +
f ″(x) + 0 − 0 + + +
f (x) ↘ decreasing 0 ↘ decreasing −1 ↘ decreasing − 2716 ↗ increasing
Concave Up Down Up Up

This shows a local (and absolute) minimum at x = 3
2 , y = −

27
16 and the points of

inflection (1, −1) and (0,0). The graph is shown in Figure 4.8.1. Observe that we have
calculated the point (−1,3) for additional accuracy.

Example 4.8.2. Find the asymptotes of the graph of the function

f (x) = (x − 3)
2

4(x − 1)
.
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Figure 4.8.1: Graph of f (x) = x4 − 2x3.

Solution. Since limx→1− f (x) = −∞ and limx→1+ f (x) =∞, we know that x = 1 is a ver-
tical asymptote (approached on the left through negative y-values and on the right
through positive y-values). We have

lim
x→±∞

f (x)
x
= lim

x→±∞

(x − 3)2

4(x − 1)x
= 1
4
,

lim
x→±∞
[f (x) − x

4
] = lim

x→±∞
[ (x − 3)

2

4(x − 1)
− x
4
] = − 5

4
.

This gives the slant asymptote y = 1
4x −

5
4 as x→∞ and as x→−∞. There are no hor-

izontal asymptotes. The graph is shown later as part of Example 4.8.3 in Figure 4.8.2.

Example 4.8.3. Sketch the graph of f (x) = (x−3)
2

4(x−1) .

Solution. The domain is (−∞, 1) ∪ (1,∞) and the intercepts are the points (3,0) and
(0, − 94 ). There is no symmetry and, as previously discussed in Example 4.8.2, the ver-
tical asymptote is x = 1, the slant asymptote is y = 1

4x −
5
4 , and there is no horizontal

asymptote. We compute the derivatives

f ′(x) = (x − 3)(x + 1)
4(x − 1)2

and f″(x) = 2
(x − 1)3
.

Figure 4.8.2: Graph of f (x) = (x−3)
2

4(x−1) and its asymptotes.
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Then f ′(x) = 0 when x = −1 and when x = 3, but f ′(x) and f″(x) are undefined at x = 1
(where there is a change of concavity). We set up the sign table.

x (−∞,−1) −1 (−1, 1) 1 (1,3) 3 (3, +∞)

f ′(x) + 0 − dne − 0 +
f ″(x) − − − dne + + +
f (x) ↗ increasing −2 ↘ decreasing dne ↘ decreasing 0 ↗ increasing
Concave Down Down Up Up

This shows a local minimum at (3,0), a local maximum at (−1, −2), and a change
of concavity at x = 1 (however, it is not a point of inflection because f (1) is not defined).
The graph is shown in Figure 4.8.2.

4.9 Solving equations numerically

Any equation of the single variable x can be rearranged so that it takes the form
f (x) = 0. It is often important to find specific values of x such that f (x) = 0. We give a
specific name to these values.

Definition 4.9.1. A value of x for which f (x) evaluates to 0 is called a root of the equa-
tion f (x) = 0 (or a zero of the function f ). The solution of the equation f (x) = 0 is the
set of all of its roots.

For any particular function f , a root x = c satisfying f (c) = 0 may exist, but we
may be unable to find its exact value. In this case we often try to find another specific
x-value, x = d, that approximates the root: f (d) ≈ 0, while d ≈ c. In this section we give
a brief introduction to methods for finding such approximate roots.

The sign-change rule: recall the intermediate value theorem from Section 2.6.3 in
Chapter 2: if a function f is continuous on an interval a ⩽ x ⩽ b of its domain and
f (a) × f (b) < 0, then f (x) = 0 has at least one root between a and b.

4.9.1 Decimal search

By this method, we find an interval containing one root of f (x) = 0, perhaps using
graphical means, and then subdivide the interval into two parts, locating the root in
one of these subintervals using the sign change rule described above. This method is
instructive but very inefficient, so we only show it in the form of an example.

Example 4.9.1. Show that the equation xex = 1 has one root and find an approxima-
tion to this root correct to two decimal places (that is, if we round the approximate
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root to two decimal places, then it will be the same as the actual root rounded to two
decimal places).

Solution. We first investigate the equation graphically, rewriting the equation as ex =
1
x and plotting on the same graph both y = ex and y = 1

x , as shown in Figure 4.9.1.

Figure 4.9.1: Graphs of y = ex and y = 1
x .

The roots of xex = 1 are exactly the x-values of the points of intersection of the two
curves y = 1

x and y = e
x . The graph in Figure 4.9.1 indicates that there is only one root

of the equation ex = 1
x , which lies between 0 and 1. Note that there cannot be another

root to the left of the part of the graph shown, because, as x → −∞, 1
x is negative

and ex is positive (y = 0 is a horizontal asymptote for both). Similarly, there is no root
to the right of the part shown; as x →∞, 1

x is decreasing and ex is increasing. Let
f (x) = ex − 1

x , so that we need to find an approximation to the root of f (x) = 0 within
two decimal places of the actual root.
1. We arbitrarily choose x = 0.3 inside the original interval (0, 1). Since f (0.3) ≈
−1.9835 and f (1) ≈ 1.7183 > 0, by the sign-change rule, the root lies in the interval
(0.3, 1). Notice that there is no sign change for the other subinterval (0,0.3) since
f (0) = −1 and f (0.3) ≈ −1.983. This will always be the case – there can only be a
sign change for one of the two subintervals.

2. We arbitrarily choose x = 0.6 inside the previous interval (0.3, 1). Since f (0.3) ≈
−1.9835 < 0 and f (0.6) ≈ 0.15545 > 0, by the sign-change rule, the root lies in the
interval (0.3,0.6).

3. We arbitrarily choose x = 0.5 inside the previous interval (0.3,0.6). Since f (0.5) ≈
−0.3513 < 0 and f (0.6) ≈ 0.15545 > 0, by the sign-change rule, the root lies in the
interval (0.5,0.6).

4. Wearbitrarily choose x = 0.55 inside theprevious interval (0.5,0.6). Since f (0.55) ≈
−0.0849 < 0 and f (0.6) ≈ 0.15545 > 0, by the sign-change rule, the root lies in the
interval (0.55,0.6).
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5. We arbitrarily choose x = 0.57 inside the previous interval (0.55,0.6). Since
f (0.55) ≈ −0.0849 < 0 and f (0.57) ≈ 0.014 > 0, by the sign-change rule, the root
lies in the interval (0.55,0.57).

6. We arbitrarily choose x = 0.56 inside the previous interval (0.55,0.57). Since
f (0.56) ≈ −0.035 < 0 and f (0.57) ≈ 0.014 > 0, by the sign-change rule, the root
lies in the interval (0.56,0.57).

7. We arbitrarily choose x = 0.565 inside the previous interval (0.56,0.57). Since
f (0.565) ≈ −0.01 < 0 and f (0.57) ≈ 0.014 > 0, by the sign-change rule, the root lies
in the interval (0.565,0.57).

8. Both endpoints of the previous interval, rounded to two decimal places, have the
samevalue, 0.57.Hence, the actual root is x = 0.57, rounded to twodecimal places.

4.9.2 Newton’s method

Newton’s method is a procedure or algorithm, superior to the decimal searchmethod,
for approximating the roots of an equation f (x) = 0 (or equivalently, the zeros of the
function f ). As with the decimal search method, we start with an approximate value
x = a for the root, perhaps found by graphical methods. Then we find a better approx-
imation by drawing the tangent to y = f (x) at x = a and taking the next approximation
as the point where this tangent crosses the x-axis. The equation of this tangent line is

y − f (a) = f ′(a)(x − a)

and this line meets the x-axis at point x = a∗ satisfying

0 − f (a) = f ′(a)(a∗ − a),

a∗ = a − f (a)
f ′(a)
.

If the first approximation x = a is reasonably good, then the value of a∗ will be much
closer to the root than a. We keep applying this formula, each time replacing a by
a∗, until an a∗ is found that is sufficiently close to the required zero of f . Figure 4.9.2
illustrates this idea. We write this algorithm more precisely in the following way.

Figure 4.9.2: Illustration for Newton’s method.
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Newton’s algorithm for finding approximate roots
Step 1. Determine an approximate value a0 of a zero of f . Let n = 0.

Step 2. Calculate

an+1 = an −
f (an)
f ′(an)
. (4.18)

Step 3. If f (an) is sufficiently close to 0 (use the sign-change rule to check the
accuracy), then stop – the required approximation is an; otherwise, increase n by 1
and repeat Step 2.

Example 4.9.2. Determine an approximate value for √2, accurate to 10−10, by apply-
ing Newton’s Method.

Solution. The required value√2 is the positive zero of the function f (x) = x2 − 2. Take
a0 = 1.5 as the first guess, basing this on the numerical evidence that a = 1 is too small
(12 < 2) and a = 2 is too large (22 > 2). Since f ′(x) = 2x, the iterative formula is

an+1 = an −
f (an)
f ′(an)
= an −

a2n − 2
2an
,

an+1 =
a2n + 2
2an
.

Hence,

a1 =
a20 + 2
2a0
≈ 1.41666666667.

We test whether or not a1 is within 10−10 of the actual root, using the sign-change rule.

f (1.41666666667 + 10−10) ≈ 6.9444 × 10−3 > 0 and
f (1.41666666667 − 10−10) ≈ 6.9444 × 10−3 > 0.

There is no sign change so the root is not within 10−10 of a1. We repeat the process and
obtain

a2 =
a21 + 2
2a1
≈ 1.41421568628.

Now the test gives

f (1.41421568628 + 10−10) ≈ 6.0076 × 10−6 > 0 and
f (1.41421568628 − 10−10) ≈ 6.007 × 10−6 > 0.

There is still no sign change so the root is not within 10−10 of a2.We repeat the process
and obtain

a3 =
a22 + 2
2a2
≈ 1.41421356237.



238 | 4 Applications of the derivative

Now the test gives

f (1.41421356237 + 10−10) ≈ 2.7409 × 10−10 > 0 and
f (1.41421356237 − 10−10) ≈ −2.9160 × 10−10 < 0.

There is now a sign change so the actual root is between 1.41421356237 − 10−10 and
1.41421356237 + 10−10, so the result is within 10−10 of the last approximation a3 =
1.41421356237, as required.

NOTES. 1. The number of correct digits in this calculation approximately doubles
with each iteration. This is typical of Newton’s method. An accurate approxima-
tion of√2 to 15 places√2 = 1.414213562373 10 and this coincides exactly with our
approximation in the first 11 decimal places. Hence, our approximation is actually
more accurate than 10−10 and the process only required three iterations!

2. There are some cases where Newton’s method fails, because either the iterative
sequence does not converge or it converges to another root which we do not want.
Some examples are shown in Figure 4.9.3 and Figure 4.9.4.

Figure 4.9.3: Newton’s method fails: parallel tangents.

Figure 4.9.4: Newton’s method fails: find a wrong root.

4.10 Curvatures and the differential of the arc length

Intuitively, curvature is the amount by which a geometric object deviates from being
flat, or straight in the case of a line. It is the measure of how sharply the curve bends.
For example, a small circle bends more sharply than a bigger circle. All the points on
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the same circle should have the same curvature. The curvature at every point on a line
is zero. We denote the curvature by the letter K. Before we can define curvature, we
must introduce the concept of arc length.

Definition 4.10.1. The arc length function s = s(x) associated with the graph of a con-
tinuous function f (x) on [a,b] is defined as an increasing, nonnegative function that
is the length of the segment from initial point (a, f (a)) to the terminal point (x, f (x)) for
any x in [a,b]. The length s(a) is defined to be zero.

Figure 4.10.1: Curvature and arc length.

As seen in Figure 4.10.1 (a) and Figure 4.10.1 (b), for the same change in arc length Δs,
the more sharply the curve bends, the bigger the change in the angle α, which is the
angle between the tangent and the positive x-axis measured in counterclockwise di-
rection. Or, if Δs is constant, the more sharply the curve bends, the larger the change
in the angle Δα. On the other hand, if Δα is fixed, the smaller Δs is, the more sharply
the curve bends, so, as the definition of the average rate of change, the “average cur-
vature” over an interval could be defined as ΔαΔs . The curvature at a specific point can
be defined as

lim
Δs→0
|Δα
Δs
|,

provided that the limit exists. The curvature K at a point is the absolute value of the
derivative of α with respect to s, which is dαds .

To find dα
ds , we consider two points, P and Q, on a curve C. Let P have coordinates

(x,y) and let Q be another point nearby with coordinates (x + Δx,y + Δy). Let s be the
arc length function for this curve, so that Δs is the length of the arc PQ. Because Δs is
very small, it is reasonable to approximate the arc by the hypotenuse of the right angle
PQM, as shown in Figure 4.10.2 (it is indeed true that limΔx→0

Δs
|PQ| = 1). Hence, using

the Pythagorean theorem, we have

(Δs)2 ≈ |PQ|2 = (Δx)2 + (Δy)2.
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Figure 4.10.2: Arc length element.

Dividing each term by (Δx)2, we obtain

(Δs)2

(Δx)2
≈ 1 + (Δy
Δx
)
2
.

When we take the limit as Δx→ 0, we have

( ds
dx
)
2
= 1 + (dy

dx
)
2
.

Therefore,

ds
dx
= √1 + (dy

dx
)
2

(4.19)

or

ds = √1 + y′2 dx. (4.20)

On the other hand, dydx = tanα. Using implicit differentiation, we have sec2 α dα
dx = y

″, so
dα
dx = y

″ cos2 α. Notice that tanα = y′, so

cosα = ± 1
√1 + ( dydx )

2
.

Therefore,

dα
ds
=

dα
dx
ds
dx
= y
″ cos2 α
√1 + y′2

= y″

√1 + y′2
( ±1
√1 + y′2

)
2
= y″

(1 + y′2)
3
2
.

Hence, the curvature K is

K = |dα
ds
| =
|y″|
(1 + y′2)

3
2
. (4.21)

We now check whether or not this definition of curvature agrees with our initial
thoughts of curvature in a few examples.
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Example 4.10.1. Find the curvature for each point on the straight line y = mx + b,
wherem, b are constants.

Solution. We find the first and second derivatives first:

y′ =m and y″ = 0.

Since y″ = 0 at each point on the line, by the above definition, we conclude that the
curvature K at each point (x,y) on the line y =mx + b is 0.

If the curve is given by parametric equations

{
{
{

x = ϕ(t)
y =ψ(t),

then

dy
dx
= dy/dt
dx/dt
= ψ
′(t)

ϕ′(t)
and d2y

dx2
= ψ
″(t)ϕ′(t) −ψ′(t)ϕ″(t)
[ϕ′(t)]3

,

so

K = | y″

(1 + y′2)3/2
| =
|ψ
″(t)ϕ′(t)−ψ′(t)ϕ″(t)
[ϕ′(t)]3 |

(1 + (ψ
′(t)

ϕ′(t) )
2)

3
2
=
|ψ
″(t)ϕ′(t)−ψ′(t)ϕ″(t)
[ϕ′(t)]3 |

( [ϕ
′(t)]2+[ψ′(t)]2
(ϕ′(t))2 )

3
2

= |ψ
″(t)ϕ′(t) −ψ′(t)ϕ″(t)
([ϕ′(t)]2 + [ψ′(t)]2)3/2

|, (4.22)

or simply

K = | y″x′ − y′x″

((x′)2 + (y′)2)3/2
|, where the prime is with respect to the parameter t.

Example 4.10.2. Find the curvature for each point on the circle x2 + y2 = R2, where R
is constant.

Solution. The parametric equations for this circle are

{
{
{

x = Rcos t
y = R sin t,

so

x′ = −R sin t, x″ = −R cos t, y′ = Rcos t, and y″ = −R sin t.
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The curvature K at each point is given by

K = | y″x′ − y′x″

((x′)2 + (y′)2)3/2
| = |(−R sin t)(−R sin t) − (Rcos t)(−Rcos t)|

((−R sin t)2 + (R cos t)2)3/2

= R2 sin2 t + R2 cos2 t
(R2 sin2 t + R2 cos2 t)3/2

= R2

(R2)3/2
= 1
R
.

Again, this agrees with our observation that the smaller the radius R of a circle,
the more sharply the curve bends, so the larger the curvature. In addition, it is clear
that every point on a circle has the same curvature.

Osculating circle and radius of curvature
Among all circles that are tangent to a given curve at a specific point, the osculating
circle is the tangent circle that most closely fits the curve, as shown in Figure 4.10.3.
This means the osculating circle and the curve meet at the point, have the same first
and second derivatives at the point, and, of course, have the same curvature there.
The center and radius of the osculating circle at a given point are called the center of
curvature and the radius of curvature of the curve at that point. The coordinates of the
center (ξ ,η) are given by

{{
{{
{

ξ = x − y
′(1+y′2)
y″

η = y + 1+y
′2

y″

and the radius of the curvature is given by R = 1
K .

Figure 4.10.3: Osculating circles.

Example 4.10.3. Find the curvature, center of curvature, and radius of curvature at
the point (−1, −2) on the parabola y = x2 + 2x − 1.

Solution. We find the first and second derivatives for the function first:

y′ = 2x + 2 and y″ = 2,
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so y′(−1) = 0 and y″(−1) = 2. Therefore, the curvature of the curve at (−1 − 2) is

K = 2
(1 + 02)3/2

= 2

and the radius of curvature R at this point is R = 1
K =

1
2 .

The coordinates of the center (ξ ,η) are given by

ξ = x − y
′(1 + y′2)
y″
= −1 − 0 × 1 + 0

2

2
= −1

and

η = y + 1 + y
′2

y″
= −2 + 1 + 0

2

2
= −3

2
.

Thus, the center of curvature is (−1, − 32 ). Figure 4.10.4 shows the graph.

Figure 4.10.4: Graph of y = x2 + 2x − 1 and its osculating circle at x = −1.

4.11 Exercises

1. Find the critical points for the following functions and find the absolute (global)
extreme values on the given intervals:
(a) f (x) = 3x4 − 8x3 − 18x2 + 1, [−2,5]; (b) y = 5x3/5 − x5/3, [−4.2];

(c) y = {x
2, −1 ⩽ x < 0
2 − x2, 0 ⩽ x ⩽ 1;

(d) s(t) = |t3 − 9t|, [−4,4];

(e) r = θ2√3 − θ, [−1,3].
2. (Optimization) A rectangle is inscribed between the parabolas y = 4x2 and y =

30 − x2 (two of its four vertices are on one parabola, the other two vertices are on
the other parabola). What is the maximum area of such a rectangle?

3. (Optimization) A rectangle is inscribed under the arch of the curve y = 4cos x
2

from x = −π to x = π. Find the length and width of the rectangle with the largest
area.

4. Show that the equation x5 + x − 1 = 0 has exactly one root.
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5. If a0 +
a1
2 +⋯+

an
n+1 = 0, show that f (x) = a0 + a1x +⋯+ anxn has at least one root

in (0, 1).
6. If f (x) is continuous on [0,a] anddifferentiable on (0,a), while f (a) = 0, then show

that there is a number ξ ∈ (0,a) such that f (ξ ) + ξf ′(ξ ) = 0.
7. If f (x) is continuous on [0, 1] and differentiable on (0, 1), while f (0) = f (1) = 0 and

f ( 12 ) = 1, show that:
(a) there is a number c ∈ ( 12 , 1) such that f (c) = c;
(b) for any real number λ, there is a number d ∈ (0, c) such that f ′(d) − λ(f (d) −

d) = 1.
8. Use the mean value theorem to prove the following inequalities:

(a) b−a
b < ln

b
a <

b−a
a (b > a > 0);

(b) nyn−1(x − y) < xn − yn < nxn−1(x − y) (n > 1 and x > y > 0).
9. Prove the following identities:

(a) 3arccosx − arccos(3x − 4x3) = π, x ∈ [− 12 ,
1
2 ];

(b) 2arctanx + arcsin 2x
1+x2 = π, for x ∈ [1,∞);

(c) arctan 1+x
1−x = −

3π
4 + arctanx, for x > 1.

10. Graph the function f (x) = sinx sin(x + 2) − sin2(x + 1). What do you find? Explain
why.

11. Find all the antiderivatives for each of the following functions:
(a) y = x3; (b) y = √x; (c) s = 1

√1−t2
;

(d) ρ = sin 2t; (e) k = e−3θ ; (f) g = secy tany;
(g) E(m) =mc2; (h) KE(v) = 5

2v
2; (i) V = 2 ⋅ 3x ;

(j) y = sinx − 3cosx + cot 2x csc 2x + 1
1+x2 + 2.

12. Assume f is an odd function and is differentiable everywhere. Show that, for any
number b > 0, there is a number ξ ∈ (−b,b) such that f ′(ξ ) = f (b)

b .
13. Suppose g(x) is twice differentiable everywhere and g(0) = 0, g(1) = 1, and g(2) = 2.

Show that there is a number c ∈ (0, 2) such that g″(c) = 0.
14. (Darboux’s theorem: intermediate value theorem for derivatives) If a and b

are any two points in an interval I on which a function f (x) is differentiable, then
f ′(x) takes on every value between f ′(a) and f ′(b).
Use this theoremor any othermethod to show that, if a function f (x) is continuous
on [0,3] and differentiable on (0,3), while f (0)+ f (1)+ f (2) = 3 and f (3) = 1, there is
a number η ∈ (0,3) such that f ′(η) = 0. *Group activity: prove Darboux’s theorem.

15. Find critical points for each of the following functions, determine the intervals of
increase and of decrease for each function, and find any local extreme values:
(a) y = 2x3 − 6x2 − 18x + 7; (b) y = x

x2+4 ;

(c) y = lnx
x ; (d) s = cos4 t + sin4 t, 0 < t < π

2 .
16. Find the x-values where a continuous function f (x) takes on local extreme values

if:
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(a) f ′(x) = x2(x − 1)(x + 2)3; (b) f ′(x) = x(x + 1)3(x + 2)2;
(c) f ′(x) = (x−1)(x+1)

2

x .
17. The graph of the derivative of a function f is shown below. Find the x-value(s)

where f takes a local maximum value and, also, find the x-value(s) where f takes
a local minimum value.

Question 17

18. Prove the following inequalities:
(a) 2x

π < sinx < x for x ∈ (0,
π
2 );

(b) tanx > x + 1
3x

3 for x ∈ (0, π2 );
(c) 1 + x ln(x +√1 + x2) > √1 + x2 (x > 0);
(d) sinx > x − x

3

3 for x > 0;
(e) ( sinxx )

3 ⩾ cosx for 0 < |x| < π
2 ;

(f) 1 − (1 − x
n )

nex ⩽ x2
n for x ⩽ n, where n is a positive integer.

19. Let b > a > 0. Assume the function f (x) is continuous on [a,b] and differentiable
on (a,b). Prove that there exists a number ξ ∈ (a,b) such that 2ξ (f (b) − f (a)) =
(b2 − a2)f ′(ξ ).

20. Ifb > a > 0and the function f (x) is continuouson [a,b] anddifferentiable on (a,b),
then show that there is a number c ∈ (a,b) such that f (b) − f (a) = cf ′(c) ln b

a .
21. Let f (x) be continuous on [a,b] and differentiable on (a,b) (ab > 0). Show that

there is a number η such that

1
b − a
|
a b

f (a) f (b)
| = ηf ′(η) − f (η).

NOTE: The 2 × 2 determinant | x y
z w | = xw − yz.

22. Use L’Hôpital’s rule to find each of the following limits:
(a) limx→1

x7−1
x3−1 ; (b) limt→0

e3t−1
2t ; (c) limx→0

x+tanx
sinx ;

(d) limx→−2
x+2

x2+3x+2 ; (e) limx→0
sinx−tanx

x3 ; (f) limθ→0
5θ−3θ
θ ;

(g) limx→0
(1+x)

1
x −e

x ; (h) limx→0
1−cosx2
x3 sinx ; (i) limx→0(cscx − cotx);

(j) limx→∞(xe1/x − x); (k) limx→1(
1

lnx −
1

x−1 ); (l) limy→0(
1
y −

1
ey−1 );

(m) limx→0+ sinx lnx; (n) limx→π(π − x) tan
x
2 ; (o) limx→−∞ x2ex ;

(p) limx→0+ √x lnx; (q) limx→∞
2x2+7
3x3−2x5 ; (r) limx→∞

xn
eax , a > 0;

(s) limt→0+ t1/t ; (t) limx→∞(1 +
3
x +

5
x2 )

x ; (u) limx→0+ (tan2x)x ;
(v) limx→0(cos3x)5/x ; (w) limx→∞(

x
1+x )

x ; (x) limx→∞(ex + x)1/x .
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23. Find limx→∞
x+sinx
x+cosx . Does L’Hôpital’s rule apply to this limit? Explain.

24. For any value of x > 0, by the mean value theorem, there is a number ξ ∈ (0,x)
(depending on x) such that ex − e0 = eξ (x − 0). Let θ = ξ

x . Then θ is a function of x
and 0 < θ < 1. Find limx→0 θ.

25. Find the Taylor polynomial of degree 3 and the corresponding Lagrange remain-
der for each of the following functions at the given point:
(a) f (x) = sinx, a = π

2 ; (b) f (x) = xex , a = 0; (c) f (x) = cosx, x = π.
26. Use the Taylor polynomial of degree 2 for the function √x at x = 4 to estimate the

number√4.3. Also find an error bound for this approximation using the Lagrange
remainder.

27. Use suitable Taylor/MacLaurin expansions to evaluate each of the following lim-
its:
(a) limx→0

cosx−e−
x2
2

x2(x+ln(1−x)) ; (b) limx→+∞(
3√x3 + 3x2 − 4√x4 − 2x3).

28. (*Group activity) If f (x) is twice differentiable on [a,b] and f ′(a) = f ′(b) = 0, then:
(a) write out the Taylor expansion for f (x) at x = a;
(b) write out the Taylor expansion for f (x) at x = b;
(c) by considering the value of f at a+b

2 or by any other method, show that there
is a number c ∈ (a,b) such that

|f″(c)| ⩾ 4
(b − a)2

|f (b) − f (a)|.

29. If f (x) is twice differentiable at x = 0 and limx→0(
sin 2x
x3 +

f (x)
x2 ) = 0, then, by consid-

ering the MacLaurin expansion for sinx at 0:
(a) show that xf (x) = −2x + (2x)

3

3! + o(x
3);

(b) find limx→0
f (x)+2
x2 .

30. (*Group activity) Assume that the function f (x) has a continuous second deriva-
tive for all x ∈ R. If, for any values of h and x, there is a number θ between 0 and 1
such that f (x + h) = f (x) + hf ′(x + θh), while f″(x) ≠ 0, prove that limh→0 θ =

1
2 .

31. Determine the interval(s) where each of the following functions is concave up and
concave down and find any inflection points:
(a) f (x) = 4x3 + 21x2 + 36x; (b) s(t) = t1/3(t − 4);
(c) r(x) = x

x2+1 ; (d) k(θ) = earctanθ .
32. Use the second derivative test to determine the nature of the stationary points for

each of the following functions:
(a) f (x) = 4x3 + 21x2 + 36x − 20; (b) r′(t) = (t − 1)(t + 2)3.

33. The graph of the derivative of a function f is shown below. Find the value(s) of x
at which f has an inflection point.
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Question 33

34. By considering the concavity of a suitable function on a closed interval, prove
each of the following inequalities:
(a) xn+yn

2 > (
x+y
2 )

n, x > 0, y > 0, x ≠ y and n > 1;
(b) n

1
x1
+ 1
x2
+⋯+ 1

xn
⩽ n√x1x2⋯xn ⩽

x1+x2+⋯xn
n , where all xi > 0.

35. (Airplane landing path) Suppose an airplane is flying at altitude H meters when
it begins its descent to an airport runway. The horizontal grounddistance between
the runway and the airplane is hmeters. Assume the landing path of the airplane
is a cubic function, y = ax3 + bx2 + cx + d. By setting up a coordinate system and
considering the values of dy

dx at the point where the airplane starts to descend and
the point where it lands on the runway, find (a) the constants a, b, c, and d and
(b) any inflection point.

36. Find all local extreme values for each of the following functions and discuss the
global extreme values:
(a) f (x) = xe−x ; (b) r(t) = ln t

t ;

(c) y = arctanx − 1
2 ln(x

2 + 1); (d) s(θ) = 4θ − tanθ, 0 ⩽ θ < π;
(e) y = √1 − cosx; (f) f (x) = x

1+x2 .
37. (An example of the Banach contraction mapping principle) Assume f ′(x) =

x
1+x2 . Then:
(a) show that, for any numbers a and b, 2|f (a) − f (b)| ⩽ |a − b|;
(b) prove that the iterative sequence xn+1 = f (xn) converges to a fixed point x∗ of f ,

no matter what the initial value x0 is.
38. Use calculus to prove that the minimum value of the function f (x) = x + 1

x , x ⩾ 1,
is 2 and then show that

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)
abcd

⩾ 16

for any positive integers a, b, c, and d.
39. Find the highest and lowest points on the curve defined by x2 + xy + y2 = 12.
40. Find the largest term in the sequence { n√n}|∞n=1.
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41. Assume f (x) is twice differentiable on [0,∞) and f (0) = limx→∞ f (x) = 0. If, for all
x > 0, f″(x) + ef ′(x) = ef (x), show that f (x) ≡ 0.

42. Sketch a possible graph of a function with the properties given in the table.

x (−∞, 1) 1 (1,3) 3 (3,∞)

f (x) limx→1− f (x) =∞ and limx→1+ f (x) = −∞ 1
f ′(x) + + 0 +
f ″(x) + − +

43. Sketch a possible graph of a function with the following properties:
(a) f (0) = 0, f ′(0) = f ′(2) = f ′(4) = 0;
(b) f ′(x) > 0 for x < 0 and 2 < x < 4, f ′(x) < 0 for 0 < x < 2 and x > 4;
(c) f″(x) > 0 for 1 < x < 3 and f″(x) < 0 for x < 1 and x > 3.

44. Sketch the graph of each of the following functions:
(a) y = e−(x−1)2 ; (b) s(t) = 1

5 (t
4 − 6t2 + 8t + 7);

(c) r(x) = x
x2+1 ; (d) k(θ) = θ2+1

θ .

45. (Optimization) Assume the revenue function R(x) = 6x and the cost function
C(x) = x3 − 6x2 + 15. Determine the value x that maximizes the profit.

46. Show that the equation x3 − 3x2 + 5x − 1 = 0 has a unique solution in the inter-
val (0, 1). Use the decimal search method to find this root correct to two decimal
places.

47. UseNewton’smethod to estimate the real root of the equation x3+3x+1 = 0.Round
your answer to three decimal places.

48. Find the curvature of the curve y = ln secx at each point x in its domain. Then find
the radius of curvature and an equation of the osculating circle at the point (0,0).

49. (Witch of Agnesi) Find an equation for the osculating circle of the curve y = a3
x2+a2 ,

a > 0, at the point (0,a).
50. Find the curvature of the cycloid {x = a(t − sin t)

y = a(1 − cos t),
where a > 0, at the point t = π.



5 The definite integral

In this chapter, you will learn about:
– definite integrals;
– the fundamental theorem of calculus;
– numerical integration.

Integral calculus has a longer history than differential calculus, which allowed us to
find properties of a function at a particular point or instant in time, such as the slope
of the tangent, the concavity, or the velocity of a moving object (derivative of its posi-
tion or distance) and its acceleration (derivative of its velocity). Quite often we want
to reverse this process. For example, it is relatively easy to measure the acceleration
of amoving object as a function of time, or wemay know the acceleration (such as the
acceleration of gravity at the surface of the earth), but it is often difficult to directly
measure the velocity or position of that object. Consequently, if we know the accel-
eration as a function of time, then we need a process of reversing differentiation to
find its velocity and position as a function of time. Integral calculus provides the tools
for this. Another example of this is a biologist who knows the rate at which an insect
population is increasing, who might wish to know what size the population will be at
some future time. In each case, the problem is to find, from a given function f , another
function F such that F′ = f . For obvious reasons, F is called an antiderivative of f .

Integral calculus allows one to go further than just reversing differentiation in that
it can be used to find overall properties of functions, such as the area bounded by a
curve, the volume bounded by a surface, and the length of a curve. It provides a basis
for solving problems in many nonmathematical areas, such as computing the mass,
moment of inertia, or center of gravity of an object even if it has a variable density. It
is used in the computation of the orbits and paths of celestial bodies and space ships.
An engineer who measures the variable rate at which water is flowing in a river may
use integral calculus to compute the total amount of water that has flowed during a
certain time period. The applications of integral calculus are endless, and only a few
are discussed in this chapter.

5.1 Definite integrals and properties

5.1.1 Introduction

We often would like to know the answer to problems that concern a whole function,
problems that concern the total change over time resulting from some constantly
changing process, or many other similar problems. We start this section with two
specific problems of this type: computing the area bounded by the graph of a func-

https://doi.org/10.1515/9783110527780-005
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tion y = f (x) and computing the distance traveled over a period of time by a moving
object that has a variable velocity. The two problems are quite different but we will
see that both can be solved using the same process, called integration. This process
will use the idea of a definite integral of a function. The definition of a definite integral
does not involve calculus, but we will show, in the fundamental theorem of calculus
(FTC), that the definite integral of a function can be computed using antiderivatives
as discussed in the previous chapter. We start with the distance and area problems
that we introduced in Chapter 1.

The distance problem
We model the movement of a particle over time t, moving along the x-axis, with vari-
able velocity v(t) ⩾ 0. We want to know the distance traveled by the particle during
time interval [a,b], that is, from t = a to t = b. We create a partition P of [a,b] into n
subintervals as follows:

P ∶ a = t0 < t1 < t2 <⋯ < tn−1 < tn = b, with
Δti = ti − ti−1 and t∗i ∈ [ti−1, ti] for i = 1, 2,… ,n.

If the ith subinterval, [ti−1, ti], is small, then the speed of the objectwill not change very
much during this time subinterval, so it is approximately v(t∗i ) throughout the subin-
terval (note that t∗i is an arbitrary time in the given subinterval). Hence, the change in
position from t = ti−1 to t = ti is approximately v(t∗i )(ti − ti−1) (velocity × time), as seen
in Figure 5.1.1. Therefore, the total change in a position from t = a to t = b is approxi-
mately

distance traveled from t = a to t = b

≈
n
∑
i=1

v(t∗i )(ti − ti−1) =
n
∑
i=1

v(t∗i )Δti .

Figure 5.1.1: Changes in position are approximated by small rectangles.
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Now we let n→∞ and ‖P‖ =maxi |Δti| → 0. If the limit

lim
‖P‖→0

n
∑
i=1

v(t∗i )Δti

exists for any possible partition of [a,b] and any sample point t∗i in each subinterval
[ti−1, ti], then it is reasonable to define this limit to be the total distance traveled by the
particle during the time interval [a,b]. Of course, if this limit exists, it must be unique.

The area problem
We now try to find the area of the region under the graph of a nonnegative function
f (x) defined on [a,b], above the x-axis and between the vertical lines x = a and x = b.
Let

P ∶ a = x0 < x1 <⋯ < xn = b

be a partition of [a,b] into n subintervals and for i = 1, 2,… ,n and denote the width of
the subinterval [xi−1,xi] by Δxi = xi − xi−1. Let x∗i ∈ [xi−1,xi] be any point in the subin-
terval, as shown in Figure 5.1.2. A product like

f (x∗i )(xi − xi−1) = f (x∗i )Δxi

is the area of a rectanglewith base [xi−1,xi] (the ith subinterval) ofwidthΔxi andheight
f (x∗i ), which is the height of the curve y = f (x) at x = x∗i , as shown in Figure 5.1.2. Intu-
itively, the following sum of the areas of all such rectangles formed by the partition is
the following approximation to the total area A underneath this curve:

A ≈
n
∑
i=1

f (x∗i )Δxi .

Figure 5.1.2: Area of rectangles approximate the area below the curve.
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It is reasonable to suppose that the approximation to the area A will become bet-
ter and better as the number of rectangles increases and the widths of the rectangles
decrease (‖P‖ =maxi |Δxi| → 0), because the narrower the rectangle, the more closely
the rectangle approximates the region under the curve above that subinterval. Conse-
quently, we define the area A under y = f (x) between x = a and x = b and above the
x-axis as the limit

A = lim
‖P‖→0

n
∑
i=1

f (x∗i )Δxi ,

provided that the limit exists for any possible partition of [a,b] and any choice of sam-
ple point x∗i in each subinterval.

For a continuous nonnegative function f on [a,b], there is an even stronger argu-
ment for defining lim‖P‖→0∑ni=1 f (x

∗
i )Δxi to be the area A. In Section 2.6.3, the extreme

value theorem showed that a continuous function on a closed interval must attain its
maximum value and its minimum value at some x-value(s) in that interval. Hence, if
we choose the sample points x∗i of the partition such that f (x∗i ) is the minimum value
of the function on [xi−1,xi] for each i, then all of the rectangles combined will be com-
pletely contained in the region below or on the curve. Hence, with these x∗i , as we take
the limit of the sum, we have

lim
‖P‖→0

n
∑
i=1

f (x∗i )Δxi ⩽ A.

On the other hand, if we instead choose the sample points x∗i of the partition such
that f (x∗i ) is the maximum value of the function on [xi−1,xi] for each i, then all of the
rectangles combined completely contain the region below the curve. Hence, for these
x∗i , as we take the limit of the sum, we find

lim
‖P‖→0

n
∑
i=1

f (x∗i )Δxi ⩾ A.

By the squeeze theorem, it follows that lim‖P‖→0∑ni=1 f (x
∗
i )Δxi = A.

These two problems, andmany others, look different at first sight, but mathemat-
ically speaking, both require evaluating a limit of this type:

lim
‖P‖→0

n
∑
i=1

f (x∗i )Δxi .

Definition 5.1.1 (Definite integral of a function f from a to b). Given any partition of
[a,b], let ‖P‖ = max{Δx1,… ,Δxn} be the maximum length of the subintervals of the
partition. The definite integral of a function f from a to b is written as ∫ba f (x)dx and is
defined as

∫
b

a
f (x)dx = lim

‖P‖→0

n
∑
i=1

f (x∗i )Δxi ,
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provided the limit exists and has the same value for all possible partitions and all
possible choices of the sample points x∗i . When the limit exists, we say that f (x) is
integrable on [a,b]. The sum t∑ni=1 f (x

∗
i )Δxi is called a Riemann sum and sometimes

denoted by Rn.

Using ε-δ language, the precisemeaningof the limit that defines adefinite integral
is the following: for any number ε > 0, there is a number δ > 0 (depending on ε) such
that

|∫
b

a
f (x)dx −

n
∑
i=1

f (x∗i )Δxi| < ε

for any partition with ‖P‖ < δ and for every possible choice of x∗i ∈ [xi−1,xi] in that
partition.

The symbol ∫ is called an integral sign. It was chosen as an elongated S because
an integral is the limit of a sum. The function f (x) is called the integrand. The num-
bers a and b are called the limits of integration; b is the upper limit and a is the lower
limit. The process of calculating the value of an integral is called integration. The def-
inite integral ∫ba f (x)dx is a number and it does not depend on x, so x is a “dummy”
variable. In fact, we could use any variable in place of x without changing the value
of the integral, so that

∫
b

a
f (x)dx = ∫

b

a
f (t)dt = ∫

b

a
f (u)du.

5.1.1.1 Are all functions integrable?
At first sight, it seems that a definite integral for any particular function might never
exist, or at least might be impossible to compute because there are so many variables
involved (choices of the partition, choices of the sample points, etc.). It is true that not
all functions are integrable. In particular, if f fails to be continuous at toomany points
in [a,b], then the integral limit may fail to exist. For example, the Dirichlet function is
not integrable.
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Bernhard Riemann
(1826–1866) was an influential Germanmathematician whomade lasting
contributions to analysis, number theory, anddifferential geometry, some
of them enabling the later development of general relativity. http://en.
wikipedia.org/wiki/Bernhard_Riemann

Peter G. L. Dirichlet (1805–1859) was a German mathematician who made deep contributions to num-
ber theory (including creating the field of analytic number theory) and to the theory of Fourier series
and other topics inmathematical analysis; he is creditedwith being one of the firstmathematicians to
give themodern formal definition of a function. http://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_
Dirichlet

Example 5.1.1. Show that the Dirichlet function

f (x) =
{
{
{

1, when 0 ⩽ x ⩽ 1 and x is rational
0, when 0 ⩽ x ⩽ 1 and x is irrational

is not integrable.

Proof. For any partition of [0, 1], say, 0 = x0 < x1 < x2 < ⋯ < xn = 1, if we choose a ra-
tional point x∗i in each subinterval [xi−1,xi], then f (x∗i ) is always 1, for i = 1, 2,… ,n, so
the Riemann sum gives

n
∑
i=1

f (x∗i )(xi − xi−1) =
n
∑
i=1

1 ⋅ (xi − xi−1) = 1.

Of course the limit as n approaches infinity of this Riemann sum is 1.
However, if instead we choose an irrational point x∗i in each subinterval [xi−1,xi],

then f (x∗i ) is always 0 for i = 1, 2,… ,n, so the Riemann sum becomes

n
∑
i=1

f (x∗i )(xi − xi−1) =
n
∑
i=1

0 ⋅ (xi − xi−1) = 0.

Of course, the limit as n approaches infinity of this Riemann sum is zero.
Now we have two different choices of the sample points in each subinterval re-

sulting in different limits of the corresponding Riemann sum. By the definition of the
definite integral, the definite integral of this function on [0, 1] does not exist. There-
fore, this function is not integrable.

However, it can be proved that the definite integral always exists for several types
of functions, as stated without proof in the following theorems.
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Theorem 5.1.1. A function f defined and continuous on an interval [a,b] is integrable
on [a,b].

Theorem 5.1.2. A function f is integrable on [a,b] if f is bounded and has a finite num-
ber of removable or jump discontinuities on [a,b].

NOTE. Under the definition of integrable functions, we can also deduce that an in-
tegrable function on [a,b] must be bounded. If a function f is unbounded on [a,b],
then, for any partition a = x0 < x1 <⋯ < xn = b, there are some subintervals on which
f is unbounded (say, unbounded above). Given any positive number M, we can then
choose sample points x∗i such that ∑ f (x∗i )Δxi is larger than M. Therefore, the corre-
sponding limit of the Riemann sum will not exist, so an unbounded function is not
integrable.

If a function is integrable, then the limit of the Riemann sum exists for all possi-
ble partitions and for all possible choices of the sample points x∗i in each subinterval
[xi−1,xi]. Therefore, in order to evaluate a definite integral, we can choose a convenient
partition, say, the one inwhich each subinterval has equalwidth and the sample point
in each subinterval is the left endpoint, right endpoint or the midpoint of that subin-
terval. The corresponding Riemann sums are called the left Riemann sum (LRS), the
right Riemann sum (RRS), and the midpoint Riemann sum (MRS), respectively.

Example 5.1.2. Calculate the Riemann sums, LRS, RRM, and MRS, for the function
f (x) = x2 on [0, 1] using five subintervals with equal widths.

Solution. The interval [0, 1]must be divided into five subintervals with equal width,
so the subintervals are

[0, 1
5
], [ 1

5
, 2
5
], [ 2

5
, 3
5
], [3

5
, 4
5
], and [4

5
, 1].

Clearly, Δxi =
1
5 for each subinterval, so:

1. if each sample point x∗i is chosen to be the left endpoint of each subinterval, then

x∗1 = 0, x∗2 =
1
5
, x∗3 =

2
5
, x∗4 =

3
5
, and x∗5 =

4
5

and the corresponding LRS, as seen in Figure 5.1.3, is

5
∑
i=1

f (x∗i )Δxi

= f (0) ⋅ 1
5
+ f( 1

5
) ⋅ 1

5
+ f( 2

5
) ⋅ 1

5
+ f(3

5
) ⋅ 1

5
+ f(4

5
) ⋅ 1

5

= 02 ⋅ 1
5
+ (

1
5
)
2
⋅
1
5
+ (

2
5
)
2
⋅
1
5
+ (

3
5
)
2
⋅
1
5
+ (

4
5
)
2
⋅
1
5
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Figure 5.1.3: LRS for y = x2 over [0, 1] with 5 subintervals.

= 6
25
= 0.24;

2. if each sample point x∗i is chosen to be the right endpoint of each subinterval,
then

x∗1 =
1
5
, x∗2 =

2
5
, x∗3 =

3
5
, x∗4 =

4
5
, and x∗5 = 1

and the corresponding RRS, as seen in Figure 5.1.4, is

5
∑
i=1

f (x∗i )Δxi

= f( 1
5
) ⋅ 1

5
+ f( 2

5
) ⋅ 1

5
+ f(3

5
) ⋅ 1

5
+ f(4

5
) ⋅ 1

5
+ f (1) ⋅ 1

5

= ( 1
5
)
2
⋅ 1
5
+ ( 2

5
)
2
⋅ 1
5
+ (3

5
)
2
⋅ 1
5
+ (4

5
)
2
⋅ 1
5
+ (1)2 ⋅ 1

5

=
11
25
= 0.44;

Figure 5.1.4: RRS for y = x2 over [0, 1] with 5 subintervals.
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3. if each sample point x∗i is chosen to be the midpoint of each subinterval, then

x∗1 =
1
10
, x∗2 =

3
10
, x∗3 =

5
10
, x∗4 =

7
10
, and x∗5 =

9
10

and the corresponding MRS, as seen in Figure 5.1.5, is

5
∑
i=1

f (x∗i )Δxi

= f( 1
10
) ⋅ 1

5
+ f( 3

10
) ⋅ 1

5
+ f( 5

10
) ⋅ 1

5
+ f( 7

10
) ⋅ 1

5
+ f( 9

10
) ⋅ 1

5

= ( 1
10
)
2
⋅ 1
5
+ ( 3

10
)
2
⋅ 1
5
+ ( 5

10
)
2
⋅ 1
5
+ ( 7

10
)
2
⋅ 1
5
+ ( 9

10
)
2
⋅ 1
5

= 33
100
= 0.33.

Figure 5.1.5:MRS for y = x2 over [0,1] with 5 subintervals.

If we wish to use these Riemann sums to approximate the area under the curve
f (x) = x2 on [0, 1], which of these three sums will provide the best approximation?
From Figure 5.1.5, it appears that the midpoint sum is the best in this case. However, if
we increase the number of subintervals, we know that the limit of all three Riemann
sums must be the same. Table 5.1.1 shows some numerical values of these Riemann
sums for several different numbers of subintervals.

Table 5.1.1: Selected values for LRS, MRS, and RRS.

n LRS MRS RRS

5 0.24 0.33 0.44
10 0.285 0.3325 0.385
50 0.3234 0.3333 0.3434
100 0.32835 0.33333 0.33835
200 0.33084 0.33333 0.33584
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From the table, it seems that all three Riemann sums approach 0.3̇ as n (the num-
ber of subintervals) gets large. In fact, this is true, as shown in the following example.

Example 5.1.3. Calculate the Riemann sum Rn for the integral ∫
1
0 x

2 dx, in which all
subintervals have the same length and the smallest value of x in each subinterval is
chosen as the sample point. Compute limn→∞ Rn to find the value of this definite in-
tegral.

Solution. The function f (x) = x2 is continuous on [0, 1], so the definite integral exists
by Theorem 5.1.1. Hence, the value of the integral must be equal to the limit of the
particular Riemann sum, Rn. The partition of [0, 1] into n subintervals by 0 = x0 < x1 <
⋯ < xn = 1 has the common length of the subintervals Δx = (b−a)n =

1−0
n =

1
n , so that

x0 = 0, x1 =
1
n , x2 =

2
n , and in general xi =

i
n . In the subinterval [xi−1,xi] = [

i−1
n , i

n ], the
sample point x∗i will be xi−1 =

i−1
n , as this is the smallest number in the subinterval.

The Riemann sum Rn is therefore

Rn =
n
∑
i=1

f (x∗i )Δx =
n
∑
i=1

f (xi−1)Δx =
n
∑
i=1

x2i−1Δx

=
n
∑
i=1
( i − 1

n
)
2
⋅ 1
n
= 1
n3

n
∑
i=1
(i − 1)2.

Hence,

Rn =
1
n3
(02 + 12 + 22 +⋯+ (n − 1)2)

= 1
n3
(n − 1) ⋅ n ⋅ (2(n − 1) + 1)

6

= (n − 1)(2n − 1)
6n2

.

Thus,

∫
1

0
x2 dx = lim

n→∞
Rn

= lim
n→∞

(n − 1)(2n − 1)
6n2

= lim
n→∞

2n2 − 3n + 1
6n2

=
1
3
.

As seen above, the definite integral can be found by evaluating the limit of a Rie-
mann sum. However, we were fortunate because this limit was easy to determine by
using the following convenient identity:

12 + 22 + ⋅ ⋅ +n2 = n(n + 1)(2n + 1)
6

.

We would not be so lucky with other functions, such as sinx or lnx. There will not be
any identities to help us find the limit in these cases.
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5.1.2 Properties of the definite integral

Whenwe defined the definite integral ∫ba f (x)dx, we assumed that a < b. However, the
definition as a limit of Riemann sums is still valid even if a > b. If we interchange a
and b, then Δx changes from xi − xi−1 to xi−1 − xi . Therefore, we define

∫
b

a
f (x)dx = −∫

a

b
f (x)dx.

In the case where a = b, we have Δx = 0, so we also define

∫
a

a
f (x)dx = 0.

We now list some basic properties of definite integrals. We assume that both f and g
are integrable functions.

Properties of the definite integral
Property 1. When c is any constant, ∫ba c dx = c(b − a). In particular,

∫
b

a
1dx = b − a and ∫

b

a
0dx = 0.

Figure 5.1.6 illustrates this property.

Figure 5.1.6: The definite integral of a constant function is the area of the rectangle.

Property 2. The linearity property tells us

∫
b

a
[kf (x) ± hg(x)]dx = k∫

b

a
f (x)dx ± h∫

b

a
g(x)dx,

where k,h are constants. In particular,

∫
b

a
kf (x)dx = k∫

b

a
f (x)dx, for any constant k.

Property 3. The additive property tells us ∫ba f (x)dx = ∫
c
a f (x)dx + ∫

b
c f (x)dx.

Figure 5.1.7 illustrates the additive property.

Property 4. If f (x) ⩾ 0 for a ⩽ x ⩽ b, then ∫ba f (x)dx ⩾ 0.

Property 5. If f (x) ⩾ g(x) for a ⩽ x ⩽ b, then ∫ba f (x)dx ⩾ ∫
b
a g(x)dx.
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Figure 5.1.7: Additivity properpty of definite integrals.

Property 6. Ifm ⩽ f (x) ⩽M for a ⩽ x ⩽ b, then

m(b − a) ⩽ ∫
b

a
f (x)dx ⩽M(b − a).

Figure 5.1.8 illustrates this property.

Property 7 (Mean value theorem). If f (x) is continuous on [a,b], then there must be
a number c ∈ [a,b] such that

∫
b

a
f (x)dx = f (c)(b − a).

Figure 5.1.9 illustrates this property.

Figure 5.1.8: Estimate a definite integral.

Figure 5.1.9:Mean value theorem for a definite integral.
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NOTE. If f (x) ⩾ 0, the geometric interpretation of this theorem is that there is a num-
ber c in [a,b] such that the area of the region between the x-axis, the curve, and the
vertical lines x = a and x = b is equal to area of the rectangle with base length (b − a)
and height f (c). The value of f (c) is defined as themean/average value of f (x) over the
interval [a,b], so

the average value of f (x) on [a,b] is fave =
∫ba f (x)dx
b − a
.

Before proving these properties, we give two examples to illustrate some of these
properties.

Example 5.1.4. Find ∫30 [x]dx.

Solution. The greatest integer function [x] is not continuous on [0,3], but it is
bounded and has only three discontinuities. By Theorem 5.1.2, it is therefore inte-
grable. Because we know that a definite integral is actually the area under a curve, we
can use geometry to find the value of this definite integral. We have

∫
3

0
[x]dx = ∫

1

0
[x]dx + ∫

2

1
[x]dx + ∫

3

2
[x]dx

= ∫
1

0
0dx + ∫

2

1
1dx + ∫

3

2
2dx

= 0 + 1(2 − 1) + 2(3 − 2)
= 0 + 1 + 2 = 3,

which is the area of the shaded region, as shown in Figure 5.1.10.

Example 5.1.5. Show that

2
e2
⩽ ∫

2

0
ex−x2 ⩽ 2 4√e.

Figure 5.1.10: Area of the region below [x] and above the x-axis for 0 ⩽ x ⩽ 3.
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Proof. Since f (x) = ex−x2 is continuous on [0, 2], it has extreme values on [0, 2] and is
also integrable on [0, 2]. To find its extrema, we take the derivative

f ′(x) = ex−x2(x − x2)′ = ex−x2 (1 − 2x).

The only stationary point is x = 1
2 and the endpoints are x = 0 and x = 2. We compare

the values of the function at these three points:

f (0) = e0−0 = 1, f( 1
2
) = e

1
2−(

1
2 )

2
= e

1
4 = 4√e,

and

f (2) = e2−22 = e−2.

We conclude that the minimum value of f (x) is e−2 and the maximum value of f (x) is
4√e. Therefore,

(2 − 0)e−2 ⩽ ∫
2

0
ex−x2 dx ⩽ 4√e(2 − 0).

This completes the proof. Figure 5.1.11 illustrates this estimation.

Figure 5.1.11: Estimate the integral ∫20 e
x−x2 dx.

Proofs of the properties
Proof of Property 1. Since f (x) = c, for any partition P of [a,b] and any sample point
x∗i in each subinterval [xi−1,xi], we have f (x∗i ) = c and

∫
b

a
f (x)dx = lim

‖P‖→0

n
∑
i=1

f (x∗i )Δxi = lim
‖P‖→0

n
∑
i=1

cΔxi

= c lim
‖P‖→0

n
∑
i=1
Δxi = c(b − a).

Proof of Property 2. For any partition P, a = x0 < x1 <⋯ < xn = b, of [a,b] and any sam-
ple point x∗i in each subinterval [xi−1,xi], we have

∫
b

a
[kf (x) ± hg(x)]dx
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= lim
‖P‖→0

n
∑
i=1
[kf (x∗i ) ± hg(x∗i )]Δxi

= lim
‖P‖→0

n
∑
i=1

kf (x∗i )Δxi ± lim
‖P‖→0

n
∑
i=1

hg(x∗i )Δxi

= k lim
‖P‖→0

n
∑
i=1

f (x∗i )Δxi ± h lim
‖P‖→0

n
∑
i=1

g(x∗i )Δxi

= k∫
b

a
f (x)dx ± h∫

b

a
g(x)dx.

The above limits exist because both f (x) and g(x) are integrable.

Proof of Property 3. Since f (x) is integrable on [a,b], the definite integral ∫ba f (x)dx
exists and does not depend on the partition of [a,b]. If a < c < b, we fix the point c and
subdivide [a, c] and [c,b] in any way. Then

a = x0 < x1 <⋯ < xm = c < xm+1 <⋯ < xn = b

and the Riemann sum

n
∑
i=1

f (x∗i )Δxi =
m
∑
i=1

f (x∗i )Δxi +
n
∑

i=m+1
f (x∗i )Δxi

is one of infinitely many ways of subdividing the interval [a,b]. The limit of this Rie-
mann sum, of course, exists as ‖P‖ → 0. This gives

∫
b

a
f (x)dx = ∫

c

a
f (x)dx + ∫

b

c
f (x)dx.

If c is not in (a,b), the additive property still holds. For example, if a < b < c, then

∫
c

a
f (x)dx = ∫

b

a
f (x)dx + ∫

c

b
f (x)dx

= ∫
b

a
f (x)dx − ∫

b

c
f (x)dx,

so we still have

∫
b

a
f (x)dx = ∫

c

a
f (x)dx + ∫

b

c
f (x)dx.

Proof of Property 4. For each point x∗i in each subinterval of any partition P, we have
f (x∗i ) ⩾ 0 and ∑ni=1 f (x

∗
i )Δxi ⩾ 0, so

∫
b

a
f (x)dx = lim

‖P‖→0

n
∑
i=1

f (x∗i )Δxi ⩾ 0.
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Proof of Property 5. This follows from Property 4, since f (x) − g(x) ⩾ 0 means that

0 ⩽ ∫
b

a
f (x) − g(x)dx.

By the linearity property,

0 ⩽ ∫
b

a
f (x) − g(x)dx = ∫

b

a
f (x)dx − ∫

b

a
g(x)dx.

This implies

∫
b

a
f (x)dx ⩾ ∫

b

a
g(x)dx.

Proof of Property 6. Sincem ⩽ f (x) ⩽M, by Property 5, we have

∫
b

a
mdx ⩽ ∫

b

a
f (x)dx ⩽ ∫

b

a
Mdx.

By Property 1, we have ∫ba mdx =m(b − a) and ∫ba Mdx =M(b − a), so

m(b − a) ⩽ ∫
b

a
f (x)dx ⩽M(b − a).

NOTE. This property says that, even when we do not know the exact value of the
definite integral of f (x) on [a,b], we could estimate the value by bounding the function
as we did in Example 5.1.5.

Proof of Property 7. Since f (x) is continuous on [a,b], it obtains its maximum valueM
and minimum valuem on [a,b]. By Property 3, we have

m(b − a) ⩽ ∫
b

a
f (x)dx ⩽M(b − a).

Dividing this inequality by (b − a), we obtain

m ⩽
∫ba f (x)dx
b − a

⩽M.

Hence, the number ∫
b
a f (x)dx
b−a is between the maximum value and the minimum

value of f (x) on [a,b]. Then, by the intermediate value theorem, we know there must
be a number c ∈ [a,b] such that

f (c) =
∫ba f (x)dx
b − a
.
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5.1.3 Interpreting ∫ba f (x)dx in terms of area

As discussed previously, we know that, if f (x) ⩾ 0, the definite integral ∫ba f (x)dx, if
it exists, is the area under the curve f (x) above the x-axis and between the two lines
x = a and x = b. But what happens if f (x) is negative on [a,b]? By the definition of the
definite integral, it is not hard to see that f (x∗i ) < 0 and in the Riemann sum, f (x∗i )Δxi is
equal to the length of the base times the negative height of the rectangle, so the value
of the definite integral is the negative value of the area of the region that is below the
x-axis, above the graph of f (x), and between the lines x = a and x = b.

Figure 5.1.12: Geometric interpretation of the definite integral.

When f takes negative and positive values as in Figure 5.1.12, there is a more compli-
cated interpretation of the definite integral in terms of areas. By the additive property
of the definite integral,

∫
b

a
f (x)dx = ∫

c

a
f (x)dx + ∫

d

c
f (x)dx + ∫

b

d
f (x)dx

= Area A −Area B +Area C

= (area above the x-axis) − (area below the x-axis)

In anotherwords, the integral ∫ba f (x)dx is the sumof the areas that lie above the x-axis
and under the graph of f (x)minus the sum of those areas that lie below the x-axis and
the above the graph of f (x). A definite integral can thus be interpreted as a net area,
that is, a difference of areas. We have

∫
b

a
f (x)dx = A1 − A2 = (area above x-axis) − (area below the x-axis),
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where A1 is the sum of the area of the regions above the x-axis and below the graph of
f and A2 is the sum of the area of the regions below the x-axis, above the graph of f ,
between the two lines x = a and x = b.

Example 5.1.6. Evaluate the following definite integrals by interpreting each in terms
of areas:

(a)∫
2

0
(x + 1)dx, (b)∫

2

0
(2x − 1)dx, (c)∫

π

0
cosx dx, (d)∫

1

−1

|x|
x
dx.

Solution. (a) Since f (x) = x + 1 ⩾ 0, we can interpret this integral as the area under
the curve y = x + 1 from 0 to 2, as shown in Figure 5.1.13 (a). The graph of f for 0 ⩽ x ⩽ 2
is a trapezoid. Hence, the area is

∫
2

0
(x + 1)dx = 3 + 1

2
⋅ 2 = 4.

(b) The graph of y = 2x − 1 is the straight line shown in Figure 5.1.13 (b). We com-
pute the definite integral as the difference between the areas of two triangles, namely
Area C − Area B in Figure 5.1.13 (b). We have

∫
2

0
(2x − 1)dx = Area C −Area B = 1

2
(3
2
× 3) − 1

2
( 1
2
× 1) = 2.

(c) The graph of cosx for 0 ⩽ x ⩽ π is shown in Figure 5.1.13 (c). By symmetry,
∫π0 cosx dx = 0.

Figure 5.1.13: Graphs for Example 5.1.6.
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(d) The function |x|x has a jump discontinuity at x = 0, but the graph determines
two rectangles, one below the x-axis and one above. Using the idea of net area, we
have

∫
1

−1

|x|
x
dx = 1 − 1 = 0.

In fact, for any integrable odd function f (x), the definite integral ∫a
−a f (x)dx = 0.

5.1.4 Interpreting ∫ba v(t)dt as a distance or displacement

In a similar way, if f (t) = v(t) ⩾ 0 is the velocity of a particle moving along a straight
line, then ∫ba v(t)dt is the distance traveled by the particle during time interval [a,b].
If v(t) ⩽ 0, the particle ismoving in a negative direction and ∫ba v(t)dt is the negative of
the distance traveled by the particle during this time interval. If v(t) has both positive
and negative values on [a,b], this means that the particle moves sometimes to the
right (positive direction) and sometimes to the left (negative direction). The definite
integral∫ba v(t)dt is the distance traveled by the particle in the positive directionminus
the distance traveled in the negative direction. The total distance traveled is given by

∫
b

a
|v(t)|dt.

Suppose a particle ismoving along the x-axis andwe let x(t) represent its position
at time t. Since x′(t) = v(t), that is, thederivative of theposition/displacement function
is the velocity. During the time interval [a,b], the particle moves along the x-axis from
an initial position x(a) to an ending position of x(b). The change in a position of the
particle, x(b)−x(a), is exactly equal to the distance that the particlemoves in apositive
direction minus the distance that the particle moves in a negative direction. That is,

∫
b

a
v(t)dt = ∫

b

a

dx(t)
dt

dt = x(b) − x(a).

In this context,we interpret the definite integral ∫ba v(t)dt as x(b)−x(a), the net change
in a position, where x is an antiderivative of v. This result anticipates the FTC, given
in the next section.

5.2 The fundamental theorem of calculus

As seen in the previous section, the FTC does confirm us that there exists a nice con-
nection between definite integrals and antiderivatives. The first part of the FTC deals
with a function F(x) for x ∈ [a,b] defined by an equation of the form

F(x) = ∫
x

a
f (t)dt,
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where f is a continuous function on [a,b]. Observe that F(x) depends only on x, the
upper limit on the integral sign, and has no connectionwith the variable t since that is
not present in the value of ∫xa f (t)dt. If x is a fixed number, then the integral ∫xa f (t)dt
is a definite number. If we let x vary, then the value of the integral ∫xa f (t)dt also varies
and defines a function of x denoted by F(x). If f (t) happens to be a positive function,
then F(x) can be interpreted as the area under the graph of f from a to x, where x
can vary from a to b, as in Figure 5.2.1 (a), so it is sometimes called the area function.
If f (x) ⩾̸ 0 for all x ∈ [a,b], then F(x) requires a more complicated interpretation in
terms of areas, as illustrated in Figure 5.2.1 (b).

Figure 5.2.1: The area function.

Theorem 5.2.1 (Fundamental theorem of calculus, Part I). Suppose that f is continu-
ous on [a,b]. Define F ∶ [a,b] → R by

F(x) = ∫
x

a
f (t)dt, a ⩽ x ⩽ b.

Then F is continuous, differentiable on (a,b) and F′(x) = f (x) for x ∈ (a,b). That is, F is
an antiderivative of f .

Proof. By definition, the derivative of F at x is

F′(x) = lim
h→0

F(x + h) − F(x)
h

.

Notice that

F(x + h) − F(x) = ∫
x+h

a
f (t)dt − ∫

x

a
f (t)dt

= ∫
x

a
f (t)dt + ∫

x+h

x
f (t)dt − ∫

x

a
f (t)dt
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= ∫
x+h

x
f (t)dt.

Since f is continuouson [x,x+h], or on [x+h,x] if h < 0, the extremevalue theorem
tells us that there are numbers c and d between x and x + h such that f (c) = m and
f (d) = M, where m and M are the absolute minimum and maximum values of f on
the closed interval between x and x + h. Assuming that h > 0 (a similar proof can be
given for the theoremwhen h < 0), theproperties of definite integrals fromSection 5.1.2
establish that

m(x + h − x) ⩽ ∫
x+h

x
f (t)dt ⩽M(x + h − x).

Simplifying these inequalities gives

m ⋅ h ⩽ ∫
x+h

x
f (t)dt ⩽M ⋅ h,

m ⩽ 1
h
∫
x+h

x
f (t)dt ⩽M,

f (c) ⩽ 1
h
[F(x + h) − F(x)] ⩽ f (d).

Then

lim
h→0

f (c) ⩽ lim
h→0

F(x + h) − F(x)
h

⩽ lim
h→0

f (d)

and

lim
h→0

f (c) ⩽ F′(x) ⩽ lim
h→0

f (d).

Since f is continuous and c,d ∈ [x,x+h], it follows that, when h→ 0, both c,d→ x
and both f (c), f (d) → f (x). Hence, by the squeeze theorem, we have

f (x) ⩽ F′(x) ⩽ f (x).

Thus F′(x) = f (x), or

d
dx
∫
x

a
f (t)dt = f (x).

NOTES. 1. The theorem tells us that, for any continuous function f on [a,b], we can
define a function F that is an antiderivative of f on (a,b). In particular, it says that
every continuous function has an antiderivative defined by the equation

F(x) = ∫
x

a
f (t)dt, a ⩽ x ⩽ b.
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2. In the formula ∫xa f (t)dt, there are two variables, namely x and t. The variable
t is the dummy variable of integration and this means we can replace it by any
other letter we like, without changing the meaning or value of the integral. Well,
almost any other variable. There is one variable that is not allowed, namely x. The
reason is simply that x has been already used as the independent variable for the
function F, so we cannot use it to replace t.

3. The theorem can also be written as

d
dx
∫
x

a
f (t)dt = f (x).

4. Functions defined by definite integrals often appear strange at first sight. How-
ever, there are many examples in mathematics and physics of functions defined
by integrals. For example, in the theory of optics we find the Fresnel function

S(x) = ∫
x

0
sin(πt

2

2
)dt.

The graph of S(x) is shown in Figure 5.2.2.

Figure 5.2.2: Graph of the Fresnel function.

In mathematics we have the gamma function

Γ(x) = ∫
∞

0
tx−1e−t dt, x > 0.

Both are defined by integrals. Figure 5.2.3 shows the graph of Γ(x).

Figure 5.2.3: Graph of the Gamma function.
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Example 5.2.1. Find the derivative of the function

F(x) = ∫
x

2
sin(t3 + 1)dt.

Solution. Since the integrand function

f (t) = sin(t3 + 1)

is continuous everywhere, it follows from the FTC that the function F(x) is differen-
tiable everywhere and

F′(x) = f (x) = sin(x3 + 1).

Example 5.2.2. Find the derivative of the function

G(x) = ∫
x

0
√t4 + t2 + 1dt.

Solution. Since the integrand function

g(t) = √t4 + t2 + 1

is continuous everywhere, it follows from the FTC that the function G(x) is differen-
tiable everywhere and

G′(x) = g(x) = √x4 + x2 + 1.

Example 5.2.3. Find d
dx ∫

x2

a sin t2 dt.

Solution. The function sin t2 is continuous everywhere, so we apply the FTC. How-
ever, we have to be careful to use the chain rule in conjunctionwith the FTC. Let u = x2.
Then

d
dx
∫
x2

a
sin t2 dt = d

dx
∫
u

a
sin t2 dt

=
d
du
(∫

u

a
sin t2 dt)du

dx

= sin(u2) ⋅ du
dx

= sin(x4) ⋅ 2x.

Example 5.2.4. Find d
dx ∫

2x
−x2 e
−t2 dt.

Solution. In addition to the chain rule, we need the additive property of the definite
integral, because the lower limit of integration is not a constant in this case. Let u = −x2

and v = 2x. Then
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d
dx
∫
2x

−x2
e−t2 dt = d

dx
(∫

0

−x2
e−t2 dt + ∫

2x

0
e−t2 dt)

= d
dx
(∫

0

u
e−t2 dt + ∫

v

0
e−t2 dt)

= d
dx
(−∫

u

0
e−t2 dt + ∫

v

0
e−t2 dt)

= − d
dx
∫
u

0
e−t2 dt + d

dx
∫
v

0
e−t2 dt

= − d
du
∫
u

0
e−t2 dt ⋅ du

dx
+ d
dv
∫
v

0
e−t2 dt ⋅ dv

dx

= −e−u2 du
dx
+ e−v2 dv

dx
= −e−x4 (−2x) + e−(2x)2 ⋅ 2
= 2e−4x2 + 2xe−x4 .

NOTE. In general, if f is integrable and ϕ and ψ are differentiable, then

d
dx
∫
ψ(x)

ϕ(x)
f (t)dt = f (ψ(x))ψ′(x) − f (ϕ(x))ϕ′(x).

The second part of the FTC shows that, if we know an antiderivative F of a func-
tion f , the value of a definite integral of f on an interval can be computed simply by
evaluating the antiderivative F at the two endpoints of the interval. This is also called
the Newton–Leibnitz theorem.

Theorem 5.2.2 (Fundamental theorem of calculus, Part II). Suppose that f (x) is con-
tinuous on [a,b] and F(x) is any antiderivative of f (x) on [a,b]. Then

∫
b

a
f (x)dx = F(b) − F(a).

Proof. Since ∫xa f (t)dt is an antiderivative of f (x) by the FTC, Part I and since F(x) is
also an antiderivative of f (x), there must be a constant C such that F(x) = ∫xa f (t)dt +C
(see Theorem 4.2.4, Chapter 4). Therefore,

F(a) = ∫
a

a
f (t)dt + C = C and

F(b) = ∫
b

a
f (t)dt + C = ∫

b

a
f (x)dx + F(a).

Then

∫
b

a
f (x)dx = F(b) − F(a). (5.1)
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NOTES. 1. Sometimes we write F(b) − F(a) as F(x)|x=bx=a for the sake of convenience.
2. We know that F′(x) represents the rate of change of y = F(x)with respect to x and

F(b)−F(a) is the net change in ywhen x changes from a to b. Although y could, for
instance, increase, decrease, and then increase again, F(b) − F(a) represents the
net change in y over [a,b], so we reformulate the above theorem as follows. The
definite integral of the rate of change of a function F(x) is equal to its net change
over the interval [a,b], or, in symbols,

∫
b

a
F′(x)dx = F(b) − F(a) = F(x)|ba.

As seen in Theorem 4.2.4, to find an antiderivative of a basic function f (x), we
could use the basic derivative formulas. For example, since

(−cosx)′ = sinx, (ex)′ = ex , ( x
n+1

n + 1
)
′
= xn,

−cosx, ex , and xn+1
n+1 are an antiderivative of sinx, e

x , and xn, respectively.

Example 5.2.5. Find the area of the region bounded by y = x2, y = 0, x = 0, and x = 2.

Solution. The area of the region is the definite integral ∫20 x
2 dx. Since 1

3x
3 is an an-

tiderivative of x2, the FTC, Part II gives

∫
b

a
x2 dx = 1

3
x3|

x=2

x=0

= 1
3
(23 − 03) = 8

3
.

Figure 5.2.4 shows the region.

Example 5.2.6. Evaluate the integral ∫31 e
x dx.

Figure 5.2.4: Region bounded by y = x2, y = 0, x = 0, and x = 2.
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Figure 5.2.5: Region bounded by y = ex , y = 0, x = 1, and x = 3.

Solution. The function f (x) = ex is continuous everywhere and we know that an an-
tiderivative of f is F(x) = ex . Hence, the FTC, Part II gives

∫
3

1
ex dx = F(3) − F(1) = e3 − e.

Figure 5.2.5 shows the region.

NOTE. The FTC, Part II says we can use any antiderivative F of f , so we may as well
use the simplest one, namely F(x) = ex (if we use onewith a nonzero constant C, ex +C,
the constant C would cancel out in the calculation of F(3) − F(1)).

Example 5.2.7. Find the area of the region bounded by y = sinx, y = 0, x = 0, and
x = π.

Solution. An antiderivative of y = sinx is −cosx, since (−cosx)′ = sinx and sinx ⩾ 0
on [0,π]. The area is given by the definite integral

∫
π

0
sinx dx = − cosx|π0

= −(cosπ − cos0)
= −(−1 − 1)
= 2.

Figure 5.2.6 shows this region.

Figure 5.2.6: Region bounded by y = sin x, y = 0, x = 0, and x = π.
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Example 5.2.8. Find the area between the two curves y = √x and y = x2.

Solution. The intersections of the two curves are (0,0) and (1, 1), as seen in Fig-
ure 5.2.7. The curve y = √x is above the curve y = x2, between x = 0 and x = 1. The area
A between the curves is given by

A = ∫
1

0
√x dx − ∫

1

0
x2 dx

= ( 2
3
x

3
2 )|

1

0
− ( 1

3
x3)|

1

0

= 2
3
− 1
3
= 1
3
.

Figure 5.2.7: Region bounded by y = x2 and y = √x.

5.3 Numerical integration

The integrals used to calculate the length of the orbit ofMars or the angular position of
a simple pendulum are among the many integrals that cannot be evaluated by substi-
tution, integration by parts, or indeed any known integration technique. Some other
examples of integrals that cannot be evaluated exactly include

∫
b

a
e−x2 dx, ∫

b

a
sinx2 dx, and ∫

5

1

ex

x
dx.

In each of these cases, the integrands are continuous functions over the stated inter-
vals, sowe know the definite integralsmust exist andhave somefinite value. However,
there is no closed-formantiderivative for any of these functions, sowe cannot compute
the definite integrals exactly. We therefore use numerical methods to approximate the
values of such definite integrals. Two suchnumericalmethods are the trapezoidal rule
and Simpson’s rule.
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5.3.1 Trapezoidal rule

The trapezoidal rule approximates the definite integral ∫ba f (x)dx by partitioning [a,b]
into n equal subintervals of length h = (b−a)n by the points a = x0 < x1 <⋯ < xn = b (so
x1 = x0 + h, x2 = x1 + h, and in general xk = x0 + kh).

The approximation given by this rule is the definite integral of a new function that
is a straight line between any two consecutive points of the partition, (xi−1, f (xi−1)) and
(xi , f (xi)), as seen in Figure 5.3.1. The value of this approximation is given in the next
theorem.

Figure 5.3.1: Trapezoidal approximation.

Theorem 5.3.1 (The trapezoidal rule is also called the trapezium rule). Let a = x0 <
x1 <⋯ < xn = b be a partition of [a,b] into n equal subintervals of length h =

(b−a)
n and

let

y0 = f (x0), y1 = f (x1), … , yn = f (xn).

If f is continuous on [a,b], then an approximate value of the integral ∫ba f (x) is given by

∫
b

a
f (x) ≈ Tn =

1
2
h(y0 + 2(y1 + y2 +⋯+ yn−1) + yn). (5.2)

The error | ∫ba f (x) − Tn| → 0 as n→∞.

Example 5.3.1. Compute the trapezoidal rule approximation, T6, with n = 6 subdivi-
sions for

∫
4

1
√x dx.
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Use the known exact value of this integral, ∫41 √x dx =
2
3x

3
2 |x=4x=1 =

14
3 , to calculate an

upper bound on the error |14/3 − T6|.

Solution. For n = 6, we have h = (4−1)6 =
1
2 . The subdivision of [1,4] is

x0 = 1, x1 =
3
2
, x2 = 2, x3 =

5
2
, x4 = 3, x5 =

7
2
, x6 = 4, so

y0 = 1, y1 = √
3
2
, y2 = √2, y3 = √

5
2
, y4 = √3, y5 = √

7
2
, y6 = 2.

By the trapezoidal rule,

∫
4

1
√x dx ≈ R6 =

1
2
h(y0 + 2(y1 + y2 + y3 + y4 + y5) + y6)

= 1
2
⋅ 1
2
(1 + 2(√3

2
+√2 +√5

2
+√3 +√7

2
) + 2)

≈ 4.661488.

The difference between the exact value and the approximation R6 is |
14
3 − 4.61488| <

0.0052.

5.3.2 Simpson’s rule

If [a,b] is partitioned into an even number of n equal subintervals of length h = b−a
n by

the points a = x0 < x1 < ⋯ < xn = b, then Simpson’s rule for approximating ∫ba f (x)dx
is based on approximating f on two consecutive intervals [xi−1,xi] and [xi ,xi+1] by a
quadratic function of the form y = Ax2 +Bx +C, whose graph is a parabola. The values
ofA, B, and C are determined by requiring the quadratic to go through the correspond-
ing three points of the graph, (xi−1, f (xi−1)), (xi , f (xi)), and (xi+1, f (xi+1)). Most functions
can be more closely fit by parabolas than straight lines, so we expect Simpson’s rule
to be more accurate than the trapezoidal rule. The details of this approximation are
given in Theorem 5.3.2.

Theorem 5.3.2 (Simpson’s rule). For an even number n, let a = x0 < x1 <⋯ < xn = b be
a subdivision of [a,b] into equal subintervals with width h = b−a

n and let

y0 = f (x0),y1 = f (x1),… ,yn = f (xn).

If f is continuous on [a,b], then an approximate value of the integral ∫ba f (x) is given by

∫
b

a
f (x)dx ≈ Sn

= 1
3
h(y0 + 4(y1 + y3 +⋯+ yn−1) + 2(y2 + y4 +⋯+ yn−2) + yn).

The difference | ∫ba f (x) − Sn| → 0 as n→∞.
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Example 5.3.2. Use Simpson’s rule with n = 6 to approximate the integral

∫
√2π

0
sinx2 dx.

Solution. Note that n = 6 is even, as required, and h = (√2π − 0)/6. The subdivision
of [0,√2π] is

x0 = 0, x1 =
√2π
6
, x2 =

2√2π
6
, x3 =

3√2π
6
,

x4 =
4√2π
6
, x5 =

5√2π
6
, x6 =

6√2π
6
.

Thus,

S6 =
1
3
h[y0 + 4(y1 + y3 + y5) + 2(y2 + y4) + y6]

=
√2π
18

{{{
{{{
{

sin02 + 4(sin(√2π6 )
2
+ sin( 3√2π6 )

2
+ sin( 5√2π6 )

2
)

+ 2(sin( 2√2π6 )
2
+ sin( 4√2π6 )

2
) + sin( 6√2π6 )

2

}}}
}}}
}

≈ 0.4046.

NOTE. Amore exact approximation to the integral is ∫
√2π
0 sinx2 dx ≈ 0.43041, so this

particular Simpson’s rule approximation is not very accurate. The reason for this in-
accuracy is that the curve makes a tight turn between x = 1.65 and x = 2.5 that is not
approximated well by parabolas, as seen in Figure 5.3.2 (the curve y = sin(x2) is the
dashed line and the approximating curves are solid lines). The remedy for this is to
significantly increase n, the number of subdivisions of [0, √2π].

Figure 5.3.2: Simpson’s rule to approximate ∫√2π0
sin x2 dx.
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Figure 5.3.3: Trapezoidal approximation to ∫√2π0
sin(x2)dx.

NOTE. The trapezoidal rule gives a much worse approximation of 0.50916. Fig-
ure 5.3.3 shows why this happens. The straight line approximations of the trapezoidal
rule are very poor approximations to the curve for x ⩾ 1.

5.4 Exercises

1. Express each of the following limits of a Riemann sum as a definite integral, as-
suming each ck is chosen from the kth subinterval of a regular partition of the
indicated interval into n subintervals of equal length Δx:
(a) limΔx→0∑nk=1(cos ck)Δx, [0,3]; (b) limΔx→0∑nk=1

e2ck
c2k
Δx, [1,4];

(c) limΔx→0∑nk=1 4
ln(1+x2k)

xk
Δx, [2,6]; (d) limn→∞∑

n
k=1(sin

2 ck − 2ck)
b−a
n , [a,b];

(e) limΔx→0∑nk=1
xk

x2k+4
Δx, [1,3].

2. Let P be a partition of [2,7]. Express lim‖P‖→0∑ni=1(5(x
∗
i )3 − 4x∗i )Δxi as a definite

integral.
3. Express the following limits as definite integrals:

(a) limn→∞(
√1
n3/2 +

√2
n3/2 +⋯+

√n
n3/2 ); (b) limn→∞∑

n
i=1

e
i
n

n ;

(c) limn→∞
1p+2p+⋯+np

np+1 , (p > 0).

4. (*Group activity) Give an argument based on Riemann sums to explain why the
following functions are or are not integrable on [−1, 1]:
(a) f (x) = {

1
x2 , x ≠ 0
0, x = 0;

(b) f (x) = {sin
1
x , x ≠ 0

0, x = 0;

(c) g(x) = {x
2, x ⩾ 0
1, x < 0.

5. Calculate the LRS, RRS, and MRS for the following functions using four subinter-
vals of equal width:
(a) f (x) = cosx, [0,π]; (b) f (x) = 1

x , [1,9]; (c) f (x) = 2x − x2, [−1,3].
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6. Assume ∫ba f (x)dx = 4 and ∫
b
a g(x)dx = −2. Find:

(a) ∫ba 5f (x)dx; (b) ∫aa 4f (u) − 7g
2(u)du;

(c) ∫ab f (t) −
g(t)
3 dt; (d) ∫ba 3f (s) −

g(s)
√2 ds.

7. Use the properties of definite integrals to verify the following inequalities without
evaluating the integrals:
(a) ∫40 (x

2 − 4x + 4)dx ⩾ 0; (b) ∫10
√1 + x2 dx ⩽ ∫10 √1 + x dx;

(c) 2 ⩽ ∫1
−1
√1 + x2 dx ⩽ 2√2.

8. If f (x) is differentiable everywhere, f (3) = 3, and ∫10 f (x)dx = 3, show that there is
a number ξ ∈ (0,3) such that f ′(ξ ) = 0.

9. (a) Assume f (x) is continuous anddifferentiable on [a,b] and 1
b−a ∫

b
a f (x)dx = f (b).

Prove that there is at least one point ε ∈ (a,b) such that f ′(ε) = 0.
(b) Give a counterexample for a function f (x) that is not differentiable.

10. Evaluate each of the following limits:
(a) limn→∞ ∫

n+p
n

sinx
x dx, p > 0;

(b) limh→0
∫x+hx f (t)dt

h , where f is continuous;

(c) limn→∞ ∫
π
4
0 sinn x dx;

(d) limx→+∞ ∫
x+2
x t sin 2

t f (t)dt, where f (x) is differentiable everywhere and
limx→+∞ f (x) = 1.

11. If f (x) is integrable on [a,b], prove that | ∫ba f (x)dx| ⩽ ∫
b
a |f (x)|dx.

12. (Extended mean value theorem of integrals) If both f (x) and g(x) are continu-
ous on [a,b] and g(x) does not change sign over [a,b], show that there is number
ξ ∈ [a,b] such that

∫
b

a
f (x)g(x)dx = f (ξ )∫

b

a
g(x)dx.

13. The mean value of n numbers f (x1), f (x2),… , f (xn) is defined by
f (x1) + f (x2) +⋯+ f (xn)

n
.

If f (x) is continuous on [a,b] and x1,x2,… ,xn are n distinct numbers chosen from
each subinterval of a partition of [a,b] with n subintervals of equal width, show
that

lim
n→∞

f (x1) + f (x2) +⋯+ f (xn)
n

=
∫ba f (x)dx
b − a
.

14. Evaluate the following definite integrals by interpreting them as areas:
(a) ∫1
−1(2 − |x|)dx; (b) ∫42 (

t
2 + 3); (c) ∫3

−1[u]du;

(d) ∫2π0 (cos 2θ)dθ; (e) ∫−12 3dx; (f) ∫2
−1 |2x − 3|dx;

(g) ∫1
−1
√1 − x2 dx; (h) ∫5

−5(x −√25 − x
2)dx.
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15. The graph of f (t) consisting of line segments and a half circle is given below.

Question 15

Assume H(x) = ∫x1 f (t)dt. Then:
(a) find H(−2), H(0), H(1), H(3), and H′(−3);
(b) find the extreme values of H(x) on [−5,3];
(c) find any inflection points of H(x).

16. Find the derivative of each of the following functions:
(a) f (x) = ∫x

−1
√1 + t2 dt; (b) g(t) = ∫t

2

2 (sinu
2)du;

(c) g(y) = ∫3
√y
(s2 + ln s)ds; (d) k(u) = ∫cosusinu e−πt2 dt;

(e) f (x) = ∫x0 (x − 1)
√1 + t4 dt.

17. Find each of the following limits:
(a) limx→0

∫x0 cos t
2 dt

x ; (b) limx→0
x2

∫1cosx e
−t2 dt
; (c) limn→∞∑

n
i=0

i3
n4 ;

(d) limn→∞
1
n ∑

n
i=0 cos(

i
n ); (e) limn→∞ ∫

1
0

xn
1+x dx.

18. If f (x) is continuous on [0, 1], 0 < f ′(x) < 1 for all x ∈ (0, 1), and f (0) = 0, then show
that (∫10 f (x)dx)

2 > ∫10 f
3(x)dx. [Hint: consider F(t) = (∫t0 f (x)dx)

2 − ∫t0 f
3(x)dx.]

19. If f (x) is continuous on [0, 1] and a = ∫10 f (x)dx, then, by considering ∫10 (f (x) −
a)2 dx or by any othermethod, show that ∫10 f

2(x)dx ⩾ (∫10 f (x)dx)
2. More generally,

show that

(∫
b

a
f (x)g(x)dx)

2
⩽ ∫

b

a
f 2(x)dx∫

b

a
g2(x)dx

for any integrable functions f (x) and g(x) on [a,b].
20. Use the FTC, Part II to evaluate each of the following definite integrals:

(a) ∫π0 sinx dx; (b) ∫1
−1

1
1+x2 dx; (c) ∫e1

1
x dx;

(d) ∫21 (x
3 −√x)dx; (e) ∫π/40 sec2 x dx; (f) ∫93 8dx;

(g) ∫1/20
1
√1−x2

dx; (h) ∫10 e
x dx; (i) ∫π0 (e

x + 2 cosx)dx;

(j) ∫21
(x+1)2
x dx; (k) ∫x1 t

2 − 1t dt; (l) ∫xa (cosθ − 2 sinθ)dθ.
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21. Find a function f and a positive number a such that 6 + ∫xa
f (t)
t2 dt = 2√x.

22. Assume the function f is differentiable on [0, 1] and f (0) = 0.
(a) Show that 8∫

1
2
0 f (x)dx ⩽max0⩽x⩽0.5 |f ′(x)|.

(b) If f (1) = f (0) = 0, prove that | ∫10 f (x)dx| ⩽
1
4 max0⩽x⩽1 |f ′(x)|.

23. The Gauss error function is a special nonelementary function that occurs in
probability and statistics. It is defined as erf(x) = 2

√π ∫
x
0 e
−t2 dt. The error function

also occurs in the solutions of the heat equation when boundary conditions are
given by the Heaviside step function.
(a) Show that ∫ba e

−t2 dt = √π2 (erf(b) − erf(a)).
(b) Show that the function y = ex2 erf(x) satisfies the equation y′ − 2xy = 2

√π .
24. If ∫31 f (x)dx + x

2 = f (x), find ∫31 f (x)dx.
25. Find the average value of the following functions on the indicated interval:

(a) y = cosx, [0,π]; (b) y = 3x2 + 2ex , [0,3];
(c) y = secx tanx, [0, π3 ]; (d) y = 1

x , [e,e
2].

26. Are the following statements true or false? Explain.
(a) ∫3
−1

1
x2 dx =

x−1
−1 |

3
−1 = −

1
3 − 1 = −

4
3 ;

(b) ∫ππ
3
secθ tanθ dθ = secθ|ππ

3
= 1

cosπ −
1

cos π
3
= −3.

27. Find the area of the shaded regions.

28. A parabola y = ax2 + bx + c passes through the three points (x1,y1), (x2,y2), and
(x3,y3).
(a) Find, in terms of xi, yi, i = 1, 2,3, the coefficients a, b, and c.
(b) Show that ax3

3 +
bx2
2 + cx is an antiderivative of y.
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(c) Find, in terms of xi, yi, i = 1, 2,3, the area of the region bounded by the
parabola, the x-axis, and the two lines x = x1 and x = x3.

29. Use the trapezoidal rule to find an estimate of the following integralswith n subin-
tervals of equal length:
(a) ∫π/20 cosx dx, n = 5; (b) ∫30 √x + 1dx, n = 10;

(c) ∫10 (cosx
2)dx, n = 4.

30. Use Simpson’s rule to find an approximation of the following integrals with n
subintervals of equal length:
(a) ∫1
−1 e
−x2 dx, n = 10; (b) ∫2

−1 x
√2 + x3 dx, n = 10;

(c) ∫10 (cosx
2)dx, n = 4.

31. Approximate the following integrals by using a Taylor polynomial of degree 3 for
a suitable function:
(a) ∫10 e

−x2 dx; (b) ∫10
6
√4−x2

dx;

(c) ∫10
8

x2+1 dx, n = 10; (d) ∫10 (cosx
2)dx.

32. (Acceleration and velocity) The graph of the acceleration a(t) of a car measured
in ft/sec2 is shown below. Use (a) the trapezoidal rule and (b) Simpson’s rule with
n = 6 to estimate the increase in the velocity of the car during a six-second time
interval.

Question 32

Time 0 5 10 15 20 25 30
Velocity v(t) ft/s 0 48 85 108 125 138 141

33. (Particle motion) The table above shows selected values of the velocity of a par-
ticle moving along a straight line.
(a) Set up an integral that represents the distance traveled by the particle during

the first 30 seconds.
(b) Use the trapezoidal rule with six subintervals of equal length to estimate how

far the particle moved during the first 30 seconds.
34. (Optimization) A certain typeofmachinedepreciates at a continuous rate r = r(t),

where t is the time measured in months since the last overhaul. A fixed costM is
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incurred for each overhaul. The owner wants to determine the optimal time T (in
months) between overhauls.
(a) Set up an integral expression that represents the loss in value of the machine

over the period of time t since the last overhaul.
(b) Let C be given by C(t) = 1

t [M + ∫
t
0 r(s)ds]. What does C represent in this situa-

tion? Why would the owner want to minimize C?
(c) Show that C has a minimum value at the times t = T where C(T) = r(T).



6 Techniques for integration and improper integrals
In this chapter, you will learn about:
– indefinite integrals;
– integration by substitution;
– integration by parts;
– partial fractions;
– substitution in definite integrals;
– integrations by parts in definite integrals;
– improper integrals.

Any function can be differentiated, using the rules of differentiation, provided it has
an equation created from the basicmathematical functions. However, there is no set of
rules for finding antiderivatives of a function and it can be proved that some very sim-
ple functions do not have an antiderivative function given by a formula using only ba-
sic functions. Consequently, we now present several methods that help us to find an-
tiderivative functions, such as integration by substitution, integration by parts, and the
partial fractionsmethod. Finally, in the last section,wewill discuss improper integrals.

6.1 Indefinite integrals

6.1.1 Definition of indefinite integrals and basic antiderivatives

The fundamental theorem of calculus (FTC) reveals the connection between the def-
inite integral of a function on an interval and the antiderivatives of the function on
that interval. To evaluate a definite integral of a function on an interval, the only
thing we need to do is to find an antiderivative of the function. We now focus on some
techniques to find antiderivatives of functions. First, we recall the definition of an
antiderivative.

Definition 6.1.1. A function F is an antiderivative of f if F′(x) = f (x) for all points x in
the domain of f .

Finding an antiderivative of a function on an interval may be very difficult. How-
ever, we know from the FTC, Part I that a continuous function must have antideriva-
tives, since ∫xa f (t)dt is an antiderivative of f . Therefore, we have the following theo-
rem.

Theorem 6.1.1. A continuous function f , defined on an interval I, has antiderivatives.
All of its antiderivatives are given by F(x) +C, where C is an arbitrary constant and F(x)
is an antiderivative of f .

https://doi.org/10.1515/9783110527780-006
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Definition 6.1.2. The collection of all the antiderivatives of a function f , if they ex-
ist, is called the indefinite integral of f and is denoted by ∫ f (x)dx, where ∫ f (x)dx =
F(x) + C and F(x) is an antiderivative of f .

The indefinite integral of a function f is a family of curves, called integral curves.
The difference between any two integral curves is a constant, so these integral curves
are “parallel” to each other.

Example 6.1.1. For the function f (x) = x2, we know that the indefinite integral of f (x)
is ∫x2 dx = x3

3 + C. By assigning specific values to the constant C, we obtain a family
of functions whose graphs are vertical translations of one another, some of which, for
C = −2, −1,0, 1, 2,5, are shown in Figure 6.1.1.

Figure 6.1.1: Some integral curves of y′ = x2.

From the definition of the antiderivative and the indefinite integral, it is easy to
see the following theorem holds.

Theorem 6.1.2. If f (x) has an antiderivative for x ∈ I, then, for x ∈ I:
(a) d

dx [∫ f (x)dx] = f (x); (b) d[∫ f (x)dx] = f (x)dx;
(c) ∫F′(x)dx = F(x) + C; (d) ∫dF(x) = F(x) + C.

By the definition, we know an indefinite integral is the reverse process of differ-
entiation, so from the differentiation rules for basic functions, we have the following
indefinite integral rules for basic functions.

Basic antiderivatives
1. When k is a constant, ∫k dx = kx + C;
2. ∫ 1x dx = ln |x| + C;
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3. ∫xn dx = 1
n+1x

n+1 + C, n ≠ −1;
4. ∫cosx dx = sinx + C;
5. ∫ sinx dx = − cosx + C;
6. ∫ sec2 x dx = tanx + C;
7. ∫csc2 x dx = − cotx + C;
8. ∫ tanx secx dx = secx + C;
9. ∫cotx cscx dx = − cscx + C;

10. ∫ dx
1+x2 = arctanx + C;

11. ∫ 1
√1−x2

dx = arcsinx + C;

12. ∫ax dx = ax
lna + C (provided a > 0, a ≠ 1);

13. ∫ex dx = ex + C, when a is a constant.

Check for yourself that each of the indefinite integrals above is correct by differenti-
ating the right-hand side. For example, to show that ∫ dx

1+x2 = arctanx + C, we use the
known result that d

dx (arctanx) =
1

1+x2 .

NOTE. The notation ∫ dx
√a2−x2

means the same as ∫ 1
√a2−x2

dx.

Example 6.1.2. Find ∫ 1
3√x dx.

Solution. We have

∫
dx
3√x
= ∫

dx
x

1
3
= ∫x−

1
3 dx

=
x−

1
3+1

− 13 + 1
+ C = 3

2
x

2
3 + C.

NOTE. The indefinite integral function 3
2x

2
3 is defined for all x, but the integrand 1

3√x

is not defined at x = 0. Nevertheless, we generally state that 3
2x

2
3 + C is the indefinite

integral of 1
3√x for all x, since the value, or nonexistence of a value, of the integrand

at a single x-value (or even a finite number of x-values) has no effect on the indefinite
integral function and its properties.

Theorem 6.1.3 (Linearity property of indefinite integral). The integral

∫(kf (x) ± hg(x))dx = k∫ f (x)dx ± h∫g(x)dx,

where k and h are any constants.
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Proof. By the linearity property of differentiation, we have

d
dx
(k∫ f (x)dx ± h∫g(x)dx)

= d
dx
(k∫ f (x)dx) ± d

dx
(h∫g(x)dx)

= k d
dx
(∫ f (x)dx) ± h d

dx
(∫g(x)dx)

= kf (x) ± hg(x),

so ∫kf (x) ± hg(x)dx = k ∫ f (x)dx ± h∫g(x)dx + C.
However, this constant C could be merged with any of the indefinite integrals in

the theorem, since the sumor difference of two arbitrary constants is another arbitrary
constant, so we have

k∫ f (x)dx ± h∫g(x)dx + C = k∫ f (x)dx ± h∫g(x)dx.

Example 6.1.3. Find ∫(cosx + 2 sinx)dx.

Solution. Since ∫ cosx dx = sinx + C1 and ∫ sinx dx = − cosx + C2, we have

∫cosx + 2 sinx dx = ∫cosx dx + 2∫ sinx dx

= sinx + C1 + 2(−cosx) + C2
= sinx − 2 cosx + C.

NOTE. Each of the indefinite integrals ∫cosx dx and 2∫ sinx dx produces its own ar-
bitrary constant. However, we can simply combine these two constants into a single
arbitrary constant C.

Example 6.1.4. Find ∫(2 − sec2 x)dx.

Solution. We have

∫(2 − sec2 x)dx = ∫ 2dx − ∫ sec2 x dx

= 2x − tanx + C.

Example 6.1.5. Find ∫ (x+1)
2

x dx.

Solution. We have

∫
(x + 1)2

x
dx = ∫(x

2 + 2x + 1
x
)dx

= ∫(x + 2 + 1
x
)dx
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= ∫x dx + ∫ 2dx + ∫ 1
x
dx

= x
2

2
+ 2x + ln |x| + C.

Example 6.1.6. Find all functions g such that

g′(x) = ex + 2x3 −√x + 2.

Solution. The indefinite integral produces the general antiderivative of g, so it must
give the most general form for g. Hence,

g(x) = ∫(ex + 2x3 −√x + 2)dx.

Using the formulas in the list of basic antiderivatives, we obtain

g(x) = ex + 1
2
x4 − 2

3
x3/2 + 2x + C.

Example 6.1.7. Suppose

f (x) =
{
{
{

sinx, when x > 0
3√x, when x ⩽ 0.

Find ∫ f (x)dx.

Solution. We integrate f (x) separately on the intervals (−∞,0) and (0,∞), obtaining

∫ f (x)dx =
{
{
{

−cosx + C1, when x > 0
3
4x

4
3 + C2, when x ⩽ 0.

Since ∫ f (x)dx must be continuous at x = 0, we have

−cos0 + C1 = C2 ⟹ C2 = C1 − 1.

Thus,

∫ f (x)dx =
{
{
{

−cosx + C1, when x > 0
3
4x

4
3 + C1 − 1, when x ⩽ 0.

6.1.2 Differential equations

In applications of calculus, it is very common to have a situation as in the following
example, where it is required to find a function, based on the knowledge about its
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derivatives. An equation that involves the derivatives of a known function is called a
differential equation. The general solution of a differential equation always involves an
arbitrary constant (or constants). However, there may be some extra conditions given
that will determine the constants and therefore uniquely specify the solution, as in
the next example.

Example 6.1.8. A particle starts from the origin and moves along the x-axis with ve-
locity v(t) = 2t + sin t. Find the position of the particle after 2 seconds.

Solution. If the position function is x(t), then

x(t) = ∫ v(t)dt = ∫(2t + sin t)dt = t2 − cos t + C.

When t = 0, x = 0, which implies 0 = 02 − cos0 + C, so C = 1. Therefore,

x(t) = t2 − cos t + 1.

When t = 2,

x(2) = 22 − cos 2 + 1 ≈ 5.416.

Thus, after 2 seconds, the particle is approximately at the point x = 5.416.

Example 6.1.9. Find f if f ′(x) = 5
x2 +

2
x − 3x + 1 and f (1) = 2.

Solution. The general antiderivative of f ′ is f given by

f (x) = ∫( 5
x2
+ 2
x
− 3x + 1)dx

= −
5
x
+ 2 ln |x| − 3

2
x2 + x + C.

To determine C, we use the fact that f (1) = 2. We have

f (1) = −5 + 0 − 3
2
+ 1 + C = 2

⟹ C = 15
2
.

Therefore, the particular solution we want is

f (x) = − 5
x
+ 2 ln |x| − 3

2
x2 + x + 15

2
.

Example 6.1.10. Find f if f″(x) = 12x2 − 6x + 2, f (0) = 2, and f (1) = 6.
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Solution. The general antiderivative of f″(x) = 12x2−6x+2 is computedwith arbitrary
constant A as follows:

f ′(x) = ∫(12x2 − 6x + 2)dx

f ′(x) = 12x
3

3
− 6x

2

2
+ 2x + A

= 4x3 − 3x2 + 2x + A.

Using the rules of antiderivatives once more, we find (with a second arbitrary con-
stant B)

f (x) = 4x
4

4
− 3x

3

3
+ 2x

2

2
+ Ax + B

= x4 − x3 + x2 + Ax + B.

To determine A and B, we use the given conditions that f (0) = 2 and f (1) = 6. Since
f (0) = 0 + B = 2, we have B = 2. Since

f (1) = 1 − 1 + 1 + A + 2 = 6,

we have A = 3. Therefore, the required function is

f (x) = x4 − x3 + x2 + 3x + 2.

Example 6.1.11. Solve the differential equation y′ = x
y .

Solution. Note that y′ = dy
dx and

dy
dx
= x
y
.

If we put all the terms involving x together and all the terms involving y together, then
we have

y dy = x dx.

We then integrate with respect to y and with respect to x, respectively, to obtain

∫y dy = ∫x dx.

This gives

y2

2
= x

2

2
+ C.

This is the general solution to the differential equation, even though it is given in an
implicit form.
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The technique for solving the differential equation shown above is called sepa-
ration of variables. The type of differential equation is called a separable differential
equation.

Example 6.1.12. The radioactive decay of Sm-151 can be modeled by the differential
equation dy

dt = −0.0077y, where t is measured in years. This means a substance con-
sisting of Sm-151 loses 0.77% of its mass each year. Find the half-life of Sm-151.

Solution. Since

dy
dt
= −0.0077y,

1
y
dy = −0.0077dt,

∫
1
y
dy = ∫−0.0077dt,

lny = −0.0077t + C1,
y = ec1e−0.0077t

= Ce−0.0077t .

Suppose t = 0, y = y0. This means

y0 = Ce0→ C = y0,

so

y = y0e−0.0077t .

When y = y0
2 , we have

y0
2
= y0e−0.0077t ,

ln 1
2
= −0.0077t,

t =
ln 1

2
−0.0077

≈ 90.02 years,

so after approximately 90 years, the substance will have lost half of its mass.

NOTE. If a substance’s decay is modeled by dy
dt = −ky, then its half-life is given by

half-life = ln 2
k
.
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6.1.3 Substitution in indefinite integrals

Often we will not know how to compute an indefinite integral because it is not in the
list of basic antiderivatives from Section 6.1.1 and we do not recognize it as being the
derivative of another function. Integration by substitution is a method for changing
such an integral into another form that we may know how to compute. It is based on
the observation that, if we know an antiderivative formula

∫ f (x)dx = F(x) + C,

we also know the more general formula

∫ f (g(x))g′(x)dx = F(g(x)) + C, (6.1)

where g is any differentiable function.
This follows from the chain rule

d
dx

F(g(x)) = F′(g(x))g′(x) = f (g(x))g′(x).

That is, the composite function F(g(x)) is an antiderivative of the function f (g(x))g′(x).
If we substitute u = g(x) in equation (6.1), then we can write the equation as

∫ f (u)du
dx

dx = F(u) + C.

However, F is an antiderivative of f , so we know

∫ f (u)du = F(u) + C.

Hence, it follows that the substitutionmethod is equivalent to the following equation:

∫ f (u)du
dx

dx = ∫ f (u)du. (6.2)

In other words, we can use differential methods in an integral, allowing us to replace
du
dx dx by du.

In order to use this method, called integration by substitution, to compute an in-
tegral ∫h(x)dx, we first identify in h(x) a possible substitution function u = g(x) and
we differentiate this to give the differential form du = g′(x)dx. If we have chosen g(x)
well, we will be able to use the substitutions, u = g(x) and du = g′(x)dx, to rewrite the
integral totally in terms of the new variable u. That is, for some new function f wewill
have transformed the integral

∫h(x)dx = ∫ f (u)du.
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If our choice of g was a good one, we may be able to find an antiderivative F of f and
write

∫h(x)dx = ∫ f (u)du = F(u)|u=g(x) + C = F(g(x)) + C.

Example 6.1.13. Find ∫ 2 cos 2x dx.

Solution. Since we know how to integrate cosx, set u = 2x, du = 2dx, so that

∫ 2 cos 2x dx = ∫cos 2x ⋅ (2x)′dx u=2x
= ∫cosu du

dx
dx

= ∫cosudu = sinu + C

= sin 2x + C.

NOTE. You might be able to see this result immediately, without the substitution, if
you notice that (sin 2x)′ = 2 cos 2x.

Example 6.1.14. Find ∫e2x dx.

Solution.

∫e2x dx = 1
2
∫e2x d(2x) u=2x= 1

2
∫eu du

= 1
2
eu + C = 1

2
e2x + C.

Example 6.1.15. Find ∫ 2xex2 dx.

Solution. The substitution u = x2 is suggested since u′ = 2x. We have

∫ 2xex2 dx = ∫ex2(x2)′ dx u=x2
= ∫eu du

dx
dx

= ∫eu du = eu + C = ex2 + C.

Example 6.1.16. Evaluate the integral

∫
(lnx)2

x
dx.

Solution. Since

∫(lnx)2 1
x
dx = ∫(lnx)2(lnx)′dx,

the substitution u = lnx is suggested. Calculating du = (lnx)′dx and substituting gives

∫(lnx)2 1
x
dx = ∫u2 du = 1

3
u3|

u=lnx
+ C = 1

3
(lnx)3 + C.
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NOTE. Verify for yourself that 1
3 (lnx)

3 is an antiderivative of (lnx)2(1/x).

Example 6.1.17. Find ∫(2x + 1)(x2 + x + 5)17 dx.

Solution. Let u = x2 + x + 5. Then du
dx = 2x + 1, which gives du = (2x + 1)dx. Hence, the

integral can be written as

∫(x2 + x + 5)17(2x + 1)dx = ∫u17 du

= 1
18
u18 + C

= 1
18
(x2 + x + 5)18 + C.

Example 6.1.18. Find ∫x sin(x2 + 1)dx.

Solution. Let u = x2 + 1. Then we have du = (x2 + 1)′ dx, so

∫x sin(x2 + 1)dx = 1
2
∫ sin(x2 + 1)(x2 + 1)′ dx

= 1
2
∫ sinudu

= − 1
2
cosu + C

= − 1
2
cos(x2 + 1) + C.

NOTE. If you are familiar with this technique, then the u-substitution does not need
to be specified.

Example 6.1.19. Find ∫ sin2 x cosx dx.

Solution. We have

∫ sin2 x cosx dx = ∫ sin2 x d(sinx) = 1
3
sin3 x + C.

Example 6.1.20. Find ∫ tet2 dt.

Solution. We have

∫ tet2 dt = 1
2
∫et2 d(t2) = 1

2
et2 + C.

Example 6.1.21. Find ∫ tanx dx.

Solution. We have

∫ tanx dx = ∫ sinx
cosx

dx = −∫ (cosx)
′

cosx
dx = − ln|cosx| + C.



296 | 6 Techniques for integration and improper integrals

Example 6.1.22. Find ∫cscxdx.

Solution. This problem is considerably more difficult and we use trigonometric for-
mulas to transform it until we find a form suitable for substitution. We have

∫cscx dx = ∫ dx
sinx
= ∫

dx
2 sin x

2 cos
x
2

= ∫
dx

2 tan x
2 cos

2 x
2

= ∫
sec2 x

2
2 tan x

2
dx = ∫

sec2 x
2

tan x
2
dx
2

= ∫
d(tan x

2 )
tan x

2

= ln|tan x
2
| + C.

NOTE. This integral is most often written in the form

∫cscx dx = ln|cscx − cotx| + C,

but this is the same result since

cscx − cotx = 1
sinx
− cosx
sinx
= 1 − cosx

sinx

=
1 − (1 − 2 sin2 x

2 )
2 sin x

2 cos
x
2

=
sin x

2
cos x

2
= tan x

2
.

Example 6.1.23. Find ∫ secx dx.

Solution. We have

∫ secx dx = ∫ 1
cosx

dx

= ∫
1

sin(x + π2 )
d(x + π

2
)

= ∫csc(x + π
2
)d(x + π

2
)

= ln|csc(x + π
2
) − cot(x + π

2
)| + C

= ln|secx + tanx| + C.

Example 6.1.24. Find ∫ 1
a2+x2 dx, a > 0.
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Solution. We have

∫
1

a2(1 + ( xa )
2)
dx = 1

a2
∫

1
1 + ( xa )

2 dx

= 1
a
∫

1
1 + ( xa )

2 d(
x
a
)

= 1
a
arctan x

a
+ C.

Example 6.1.25. Find ∫ 1
√a2−x2

dx, a > 0.

Solution. We have

∫
1
√a2 − x2

dx = 1
a
∫

1
√1 − ( xa )

2
dx

= ∫
1

√1 − ( xa )
2
d( x

a
)

= arcsin x
a
+ C.

Example 6.1.26. Find ∫ 1
√1−x−x2

dx.

Solution. We have

∫
1

√1 − x − x2
dx = ∫ 1
√ 5

4 − (x +
1
2 )
2
dx

= ∫
1

√(√52 )
2 − (x + 1

2 )
2
d(x + 1

2
)

= arcsin
x + 1

2
√5
2

+ C.

6.1.4 Further results using integration by substitution

Integration by substitution may be used to solve other types of problems than those
shown thus far. If the substitution u = g(x) is instead written in the reverse form x =
h(u), for some function h, then dx = h′(u)du and this can be used to transform an
integral in the following way:

∫ f (x)dx = ∫ f (h(u))h′(u)du.

This does not directly help us to compute the integral because the right-hand side
only has an immediate solution, F(h(u)) +C, if we know F (an antiderivative of f ), but
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if we knew this F, thenwewould not need tomake the substitution. However, the new
integral ∫ f (h(u))h′(u)du might be in a form that we know how to compute by some
other method, as we see in the following examples.

Example 6.1.27. Find ∫ dx
1+√x .

Solution. Let √x = t. Then x = t2 and dx = d(t2) = 2t dt, so

∫
dx

1 +√x
= ∫

2t dt
1 + t
= 2∫ t

1 + t
dt

= 2∫(1 − 1
1 + t
)dt = 2∫ 1dt − 2∫ 1

1 + t
dt

= 2t − 2 ln |1 + t| + C
= 2√x − 2 ln(1 +√x) + C.

Example 6.1.28. Find ∫√1 − x2 dx.

Solution. Since√1 − sin2 x = √cos2 x = |cosx|, wemay be able to simplify this integral
by using the substitution x = sin t, with − π2 ⩽ t ⩽

π
2 , to ensure cos t ⩾ 0. Then dx =

cos t dt, so

∫√1 − x2 dx = ∫cos t cos t dt = ∫cos2 t dt

= 1
2
∫(1 + cos 2t)dt

= 1
2
t + 1

4
sin2t + C.

Since x = sin t, with − π2 ⩽ t ⩽
π
2 , we have t = arcsinx and sin2t = 2 sin t cos t =

2 sin t√1 − sin2 t = 2x√1 − x2.
Substituting these results in the equation above we obtain

∫√1 − x2 dx = 1
2
arcsinx + 1

2
x√1 − x2 + C.

Example 6.1.29. Find ∫ 1
x√x2−1

dx.

Solution. Let t = 1
x . Then x =

1
t , giving dx = −

1
t2 dt, so

∫
1

x√x2 − 1
dx = ∫

− 1t2 dt
1
t√

1
t2 − 1
= −∫

dt
√1 − t2

= −arcsin t + C
= −arcsin 1

x
+ C.
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NOTE. In this example, we can also use the substitution x = sec t for − π2 < t <
π
2 , so

that √x2 − 1 = √sec2 t − 1 = tan t and dx = (sec t tan t)dt. Thus,

∫
1

x√x2 − 1
dx = ∫ 1

sec t × tan t
× sec t × tan t dt

= ∫ 1dt = t + C = arccos 1
x
+ C.

Example 6.1.30. Evaluate ∫ √4−x
2

x2 dx.

Solution. Let x = 2 sinθ, where −π/2 ⩽ θ ⩽ π/2. Then dx = 2 cosθ dθ and

√4 − x2 = √4 − 4sin2 θ = 2|cosθ| = 2 cosθ.

Since cosθ ⩾ 0 when −π/2 ⩽ θ ⩽ π/2, we have

∫
√4 − x2

x2
dx = ∫ 2 cosθ

4sin2 θ
2 cosθ dθ

= ∫
cos2 θ
sin2 θ

dθ = ∫cot2 θ dθ

= ∫(csc2 θ − 1)dθ

= − cotθ − θ + C.

Wemust now return to the original variable x. This can be done by using trigonometric
identities to express cotθ in terms of sinθ = x/2. Alternatively, we can draw a diagram,
as in Figure 6.1.2, so we simply read the value of cotθ to obtain

cotθ =
√4 − x2

x
.

Figure 6.1.2: Trigonometric function in a right triangle.
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Since sinθ = x/2, we have θ = arcsin( x2 ), so

∫
√4 − x2

x2
dx = −
√4 − x2

x
− arcsin(x

2
) + C.

NOTE. Although θ > 0 in Figure 6.1.2, check for yourself that the expression for cotθ
is still valid when θ < 0.

6.1.5 Integration by parts

Let u(x) and v(x) be functions of x. Recall the formula for the derivative of the product
of two functions u(x)v(x), which is

(uv)′ = uv′ + u′v, or
d(uv)
dx
= udv

dx
+ vdu

dx
.

Integrating both sides gives

∫
d(uv)
dx

dx = ∫udv
dx

dx + ∫ du
dx

v dx,

uv = ∫udv
dx

dx + ∫ du
dx

v dx.

Thus we have obtained a very useful formula, called integration by parts. There
are several forms of this formula.

Integration by parts formula
Integration by parts makes use of the following integration by parts formula:

∫
du
dx

v dx = uv − ∫udv
dx

dx or (6.3)

∫u′v dx = uv − ∫uv′ dx or (6.4)

∫udv = uv − ∫ v du. (6.5)

Like the substitutionmethod, the integrationbyparts formula allowsus to change
an integral that we cannot compute into an expression involving a new integral that
we may know how to compute.

Example 6.1.31. Find ∫ lnx dx.

Solution. Since

∫ lnx dx = ∫(x)′ lnx dx,
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let u = x, v = lnx, so that the integration by parts formula

∫u′v dx = uv − ∫uv′dx

gives

∫ lnx dx = ∫(x)′ lnx dx

= x lnx − ∫x ⋅ (lnx)′du

= x lnx − ∫x ⋅ 1
x
dx

= x lnx − ∫ 1dx

= x lnx − x + C.

Example 6.1.32. Find ∫x2 lnx dx.

Solution. Choose u = x3
3 , v = lnx, so that u

′ = x2. Then we use integration by parts to
obtain

∫x2 lnx dx = ∫(x
3

3
)
′
lnx dx

= x
3

3
lnx − ∫ x

3

3
(lnx)′ dx

= x
3

3
lnx − ∫ x

3

3
× 1
x
dx

= x
3

3
lnx − x

3

9
+ C.

Example 6.1.33. Find ∫x2ex dx.

Solution. Choose u = ex , v = x2, so that u′ = ex . Integrating by parts gives

∫x2ex dx = ∫(ex)′x2 dx = x2ex − ∫ex(x2)′ dx

= x2ex − 2∫xex dx.

Now we use integration by parts again to obtain

∫x2ex dx = x2ex − 2∫x(ex)′ dx

= x2ex − 2(xex − ∫(x)′ex dx)

= x2ex − 2xex + 2∫ex dx

= x2ex − 2xex + 2ex + C.
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Example 6.1.34. Find ∫x cosx dx.

Solution. Choose u = x, v = sinx, so that ∫x cosx dx = ∫x d(sinx). Then

∫x cosx dx = ∫x d(sinx) = x sinx − ∫ sinx dx = x sinx + cosx + C.

In this example, we might have tried writing ∫x cosx dx = ∫ cosx d( x
2

2 ), so that
u = cosx, v = x2

2 . This time, integrating by parts gives

∫x cosx dx = ∫cosx d(x
2

2
) = x

2

2
cosx − ∫ x

2

2
d(cosx)

= x
2

2
cosx + ∫ x

2

2
sinx dx.

However, the integral on the right-hand side is even more difficult than the original
integral, so this was a bad choice for u(x) and v(x).

In general, when applying integration by parts to an integral, ∫ f (x)dx, we try to
write f (x) as a product, f (x) = g(x)h(x), such that u = g(x) has a simple derivative and
dv = h(x)dx has a simple antiderivative.

Example 6.1.35. Find ∫arctan(√x)dx.

Solution. Let u = arctan(√x) and dv = dx. Then v = x and, by the chain rule of differ-
entiation, du = 1

1+(√x)2 ⋅
d
dx (√x) =

1
(1+x)2√x . Integration by parts gives

∫arctan(√x)dx = x arctan(√x) − ∫ x
(1 + x)2√x

dx

= x arctan√x − 1
2
∫
√x
1 + x

dx.

Now use the substitution √x = t, so that x = t2 and dx = 2t dt, giving

∫
√x
1 + x

dx = ∫ t
1 + t2

2t dt

= 2∫ t
2 + 1 − 1
1 + t2

dt

= 2∫(1 − 1
1 + t2
)dt

= 2(t − arctan t) + C
= 2(√x − arctan(√x)) + C.

Hence, the complete integral is

∫arctan(√x)dx = x arctan(√x) − √x + arctan(√x) + C

= (x + 1)arctan√x −√x + C.
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In the next example, we see that integration by parts must sometimes be applied
repeatedly and may eventually produce the original integral on the right-hand side,
but in such a way that we can find its value.

Example 6.1.36. Evaluate I = ∫ex cosx dx.

Solution. Choose u = cosx, dv = ex dx, so that

v = ex , du = − sinx dx.

Then

∫ex cosx dx = ∫(ex)′ cosx dx = ex cosx − ∫ex(cosx)′dx

= ex cosx + ∫ex sinx dx.

We apply integration by parts a second time to obtain

∫ex cosx dx = ex cosx + ∫ex sinx dx = ex cosx + ∫(ex)′ sinx dx

= ex cosx + ex sinx − ∫ex(sinx)′dx

= ex cosx + ex sinx − ∫ex cosx dx.

Observe that the original integral appears on the right-hand side. Hence, combining
the two values of I on the left-hand side gives the required solution for the integral I
as follows:

I = ∫ex cosx dx = 1
2
ex(sinx + cosx) + C.

Using integration by parts, we can obtain many useful reduction formulas.

Example 6.1.37. If In = ∫ sinn x dx, then prove the reduction formula

In =
n − 1
n

In−2 −
sinn−1 x cosx

n
for all integers n ⩾ 2.

Proof. We have

In = ∫ sinn x dx = ∫ sinn−1 x ⋅ sinx dx

= ∫ sinn−1 x ⋅ (− cosx)′dx



304 | 6 Techniques for integration and improper integrals

= − sinn−1 x cosx − ∫(sinn−1 x)′(−cosx)dx

= − sinn−1 x cosx + ∫(n − 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx + (n − 1)∫ sinn−2 x(1 − sin2 x)dx

= − sinn−1 x cosx + (n − 1)∫(sinn−2 x − sinn x)dx

= − sinn−1 x cosx + (n − 1)(In−2 − In).

Solving for In, we have

In =
n − 1
n

In−2 −
sinn−1 x cosx

n
.

Example 6.1.38 (Tabular method). Find ∫x3ex dx.

Solution. As in example 6.1.33,wewould expect thatwewill need integrationbyparts
three times. However, we can use a shortcut by the tabular method shown below.

The indefinite integral is therefore given by

∫x3ex dx = x3ex − 3x2ex + 6xex − 6ex + C.

(*Group activity) Why does the tabular method work? When does it not work?

6.1.6 Partial fractions in integration

Unlike either integration by substitution or integration by parts, which offer hope but
not certainty of success, using partial fractions always enables us to compute integrals
of the form

∫
p(x)
q(x)

dx,

where p and q are polynomials, provided q(x) can be factored into polynomial factors
of degree 1 or degree 2.
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Ratios of the form R(x) = p(x)/q(x) where p and q are polynomial functions are
called rational functions. The technique of integrating a rational function R is to de-
compose R using partial fractions into a sum of simpler fractions, each of which has a
known antiderivative. The partial fractions decomposition procedure, applied to p(x)

q(x) ,
has the following three main steps, which are all algebraic.
1. If the degree of p(x) is greater than or equal to the degree of q(x), then divide the

polynomial p(x) by q(x) (using polynomial long division) to obtain a quotient (a
polynomial) and a remainder term that is another rational function, r(x)

q(x) , with de-
nominator q(x) but where the degree of q(x) is now greater than the degree of its
numerator r(x).

2. Factor q(x) into linear factors, irreducible quadratic factors (irreducible means
that it cannot be factored into real linear factors), or a combination of both.

3. Decompose the remainder term into a sum of fractions, each with one of the fac-
tors of q(x) as denominator. The numerator of each fraction will be a constant if
the denominator is linear and, if the denominator is quadratic, it will be a lin-
ear polynomial of the form Ax + B. The use of partial fractions when a factor of
q(x) is repeated (appears more than once) is more complicated and is described
in the more formal description of the partial fractions procedure following the
first example. The values of the constants A,B,C,… must be determined using
techniques shown in the examples below.

Example 6.1.39. Compute

∫
x + 2

2x3 − x2 + 2x − 1
dx.

Solution. Because the degree of the numerator of the rational function is less than
the degree of the denominator, we skip the division step. The denominator polynomial
factors as

2x3 − x2 + 2x − 1 = (2x − 1)(x2 + 1).

The factor (2x − 1) corresponds to the real zero 1/2 and the factor x2 + 1 corresponds
to the complex zeros i and −i. Thus, the standard partial fraction decomposition has
three constants A, B, C and it reads

x + 2
(2x − 1)(x2 + 1)

= Ax + B
x2 + 1
+ C
2x − 1
.

The values of A, B, and C must be determined. Clearing fractions by multiplying both
sides by (x2 + 1)(2x − 1) gives the identity

x + 2 = (Ax + B)(2x − 1) + C(x2 + 1).

We generate three equations in the unknowns A, B, and C, by replacing x by three
different numbers. We use the real zero x = 1/2 for one value and x = 0 and x = 1 for
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the others (the complex zeros i and −i can also be used). Substituting these values, we
obtain

x = 1
2
gives 5

2
= C 5

4
⟹ C = 2.

x = 0 gives 2 = B(−1) + C(1) = −B + 2 ⟹ B = 0.
x = 1 gives 3 = (A + B)(1) + C(2) = A + 4 ⟹ A = −1.

Hence, the partial fractions expansion is

x + 2
(2x − 1)(x2 + 1)

= −x
x2 + 1
+ 2
2x − 1
.

Therefore,

∫
x + 2

(2x − 1)(x2 + 1)
dx = ∫ −x

x2 + 1
dx + ∫ 2

2x − 1
dx

= − 1
2
ln(x2 + 1) + ln|x − 1

2
| + C.

NOTES. 1. Check for yourself that the partial fractions expansion is correct by com-
bining the partial fractions back into a single fraction.

2. All polynomials with real coefficients can, in theory, be factored, as in this exam-
ple, into a product of real linear or quadratic factors. However, if the degree of the
polynomial is greater than 4, then it is often not easy to find these factors.

3. Complex number zeros of a real polynomial always occur as complex conjugate
pairs. The product of the linear factors corresponding to a complex conjugate pair
is always a real quadratic factor, like x2 + 1 above, and it is called an irreducible
factor. Irreducible quadratics are not factored into linear (complex) factors in the
standard partial fractions decomposition, but it is possible to work with partial
fractions using complex number factors.

4. The method used previously to determine the coefficients when performing the
partial fraction expansion of a rational function is called the Heaviside cover-up
method, named after Oliver Heaviside.

Oliver Heaviside (1850–1925) was a self-taught English electrical engineer,mathematician, andphysi-
cist who adapted complex numbers to the study of electrical circuits, invented mathematical tech-
niques for the solution of differential equations (later found to be equivalent to Laplace transforms),
reformulated Maxwell’s field equations in terms of electric and magnetic forces and energy flux, and
independently co-formulated vector analysis. Although at odds with the scientific establishment for
most of his life, Heaviside changed the face of telecommunications, mathematics, and science for
years to come. http://en.wikipedia.org/wiki/Oliver_Heaviside

General description of partial fractions
A rational function R(x) = p(x)/q(x) where the polynomial p(x) has a degree greater
than or equal to the degree of the polynomial q(x) can be rewritten by using the poly-
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nomial form of long division as

R(x) = p(x)
q(x)
= Q(x) + r(x)

q(x)
,

where Q(x) and r(x) are polynomials and the degree of r(x) is less than the degree of
q(x). If the degree of p(x) is less than the degree of q(x), then Q(x) is identical to 0 in
this formula and r(x) = p(x). Integration gives

∫R(x)dx = ∫Q(x)dx + ∫ r(x)
q(x)

dx,

where the integral ∫Q(x)dx is easy to compute. Hence, we focus on the second inte-
gral.

From advanced algebra it is known that the polynomial q(x)with real coefficients
can, in theory, be factored as the product of a constant c (the coefficient of the high-
est power of x in q(x)), real linear factors of the form (x − r)m, and irreducible real
quadratic factors of the form (x2 + Ux + V)n (m ⩾ 1 and n ⩾ 1 are integers). If these
factors of q(x) are found, then r(x)

q(x) can be decomposed into a sum of terms of the fol-
lowing types. Each linear factor (x− r)m contributes a group ofm termswith constants
A1,A2,… ,Am, giving

A1
(x − r)1

+ A2
(x − r)2

+⋯+ Am
(x − r)m

. (6.6)

Each irreducible quadratic factor (x2 + Ux + V)n contributes a group of n terms with
constants B1,B2,… ,Bn, C1,C2,… ,Cn, giving

B1x + C1
(x2 +Ux + V)1

+ B2x + C2
(x2 +Ux + V)2

+⋯+ Bnx + Cn
(x2 +Ux + V)n

. (6.7)

The sum of all such groups of terms from all factors of q(x), multiplied by 1
c , is called

the standard decomposition of r(x)/q(x). The individual terms in such sums are called
partial fractions. The values of the real constants A1,B1,C1,… can be determined by
methods given in the examples.

NOTE. In practice, the constant c is usually incorporated, bymultiplication, into one
or more of the factors of q(x).

Any individual fraction in the standard decomposition can be integrated, us-
ing one of the six integrals for partial fractions given below. It is assumed that the
quadratic x2 + Ux + V can be written as (x − a)2 + b2, after completing the square (it
could not be (x − a)2 − b2 since that can be factored). A numerator, Ax + B, of one of
these terms is rewritten as Ax+B = A(x−a) + (B+Aa) in order to apply these formulas.
We have

∫
dx
x − r
= ln |x − r| + C, (6.8)
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∫
dx
(x − r)k

= (x − r)
−k+1

−k + 1
+ C, (6.9)

∫
x − a
(x − a)2 + b2

dx = 1
2
ln((x − a)2 + b2) + C, (6.10)

∫
dx

(x − a)2 + b2
= 1
b
arctan x − a

b
+ C. (6.11)

For k > 1, we have

∫
x − a

((x − a)2 + b2)k
dx = −1

2(k − 1)((x − a)2 + b2)k−1
+ C (6.12)

and

∫
dx

((x − a)2 + b2)k
= x − a
2b2(k − 1)((x − a)2 + b2)k−1

+ 2k − 3
2b2(k − 1)

∫
dx

((x − a)2 + b2)k−1
. (6.13)

NOTE. The last of the integrals above is in an iterative format because it gives a for-
mula for the integral that involves the same integral but with one less power in the
denominator. Consequently, it would have to be applied repeatedly until the integral
on the right is reduced to the form of equation (6.11) (that is, when the power in the
denominator is one).

Example 6.1.40. Evaluate ∫ x
2+1
x2−1 dx.

Solution. Since both polynomials have degree two,we first perform the long division,
obtaining

x2 + 1
x2 − 1
= 1 + 2

x2 − 1
.

Integrating and applying partial fractions to the remainder fraction, we obtain

∫
x2 + 1
x2 − 1

dx = ∫ 1 + 2
(x − 1)(x + 1)

dx = ∫ 1 + 1
x − 1
−

1
x + 1

dx

= x + ln |x − 1| − ln |x + 1| + C.

Example 6.1.41. Write out the form of the partial fraction decomposition of the func-
tion f (x), without evaluating the constants, to obtain

f (x) = x4 + x3 + 1
x(x − 1)(x2 + 3x + 3)(x2 + 1)3

.

Solution. We must use 10 constants, A,B,C,D,E,F,G,H , I , J, and the required partial
fraction expansion is

f (x) = A
x
+

B
x − 1
+

Cx +D
(x2 + 3x + 3)

+
Ex + F
x2 + 1
+

Gx +H
(x2 + 1)2

+
Ix + J
(x2 + 1)3

.
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Example 6.1.42. Find ∫ x+3
6x2+x−2 dx.

Solution. The standardpartial fractiondecompositionof the integrand takes the form

x + 3
6x2 + x − 2

= x + 3
6(x2 + 1

6x −
1
3 )
= x + 3
6(x + 2

3 )(x −
1
2 )

= 1
6
( A
x + 2

3
+ B
x − 1

2
).

Generally, however, the multiplying constant would be combined with the linear fac-
tors, giving the decomposition as

x + 3
(3x + 2)(2x − 1)

= C
3x + 2
+ D
2x − 1
.

To determine the values of C and D, we multiply both sides of this equation by the
product of the denominators (3x + 2)(2x − 1), obtaining

x + 3 = C(2x − 1) +D(3x + 2).

Using x = − 23 (so that 3x + 2 = 0) gives

7
3
= C ⋅ (−7

3
) ⟹ C = −1

and using x = 1
2 (so that 2x − 1 = 0) gives

7
2 = D ⋅

7
2⟹ D = 1, so

∫
x + 3

6x2 + x − 2
dx = ∫ −1

3x + 2
+ 1
2x − 1

dx

= − 1
3
ln |3x + 2| + 1

2
ln |2x − 1| + C.

Example 6.1.43. Find ∫ 1
x(x−1)2 dx.

Solution. The partial fraction decomposition has the form

1
x(x − 1)2

= A
x
+ B
x − 1
+ C
(x − 1)2
.

To determine the values of A, B, and C, we multiply both sides of this equation by a
multiple of the denominators x(1 − x)2, obtaining the identity

1 = A(x − 1)2 + B(x − 1)x + Cx.

Now combining like terms, we have

1 = (A + B)x2 + (−2A − B + C)x + A.
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Both sides must be exactly the same function, so this time, instead of substituting
values for x, we just equate coefficients of like powers of x on both sides:

A + B = 0,
−2A − B + C = 0,

A = 1.

Solving the system of three linear equations, we obtain A = 1, B = −1, and C = 1, so

∫
1

x(1 − x)2
dx = ∫ 1

x
− 1
x − 1
+ 1
(x − 1)2

dx

= ln |x| − ln |x − 1| − 1
x − 1
+ C.

Example 6.1.44. Find ∫ 1
(1+x)(1+x2) dx.

Solution. The form of the partial fraction decomposition is

1
(1 + x)(1 + x2)

= A
1 + x
+ Bx + C

1 + x2
.

Multiplying by (1 + x)(1 + x2), we have

1 = A(1 + x2) + (Bx + C)(1 + x).

Combining like terms, we obtain

1 = (A + B)x2 + (B + C)x + A + C.

If we equate the coefficients, we obtain the system of equations

A + B = 0, B + C = 0, A + C = 1,

which has the solution

A = 1
2
, B = − 1

2
, and C = 1

2
.

Thus,

∫
1

(1 + x)(1 + x2)
dx

= ∫
1

2(x + 1)
− 1
2
x − 1
x2 + 1

dx

= 1
2
ln |x + 1| − 1

4
∫

2x
x2 + 1

dx + 1
2
∫

1
1 + x2

dx

= 1
2
ln |x + 1| − 1

4
ln(x2 + 1) + 1

2
arctanx + C.
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Example 6.1.45. Find ∫ 1
a2−x2 dx, a > 0.

Solution. Start by writing in partial fractions as follows:

1
a2 − x2
= A
a + x
+ B
a − x
.

Solving for A and B, we have A = B = 1
2a and

∫
1

a2 − x2
dx = 1

2a
∫

1
a + x
+ 1
a − x

dx

= 1
2a
(ln |a + x| − ln |a − x|) + C

= 1
2a

ln|a + x
a − x
| + C.

Example 6.1.46. Find ∫ x−2
x2+2x+3 dx.

Solution. The denominator does not factor into real linear factors, so partial fractions
cannot beused.However, the integral is easily converted into a standard integral given
in equation (6.10). Using this integral, we obtain

∫
x − 2

x2 + 2x + 3
dx

= ∫
x + 1 − 3
(x + 1)2 + 2

dx

= ∫
x + 1
(x + 1)2 + 2

dx − 3∫ 1
(x + 1)2 + 2

dx

= 1
2
ln((x + 1)2 + 2) − 3

√2
arctan x + 1

√2
+ C.

Alternatively, we could solve the integral directly using the substitution t = x + 1,
dt = dx. This gives

∫
x − 2

x2 + 2x + 3
dx

= ∫
t − 3
t2 + 2

dt

= ∫
t

t2 + 2
dt − 3∫ 1

t2 + 2
dt

= 1
2
ln(t2 + 2) − 3

√2
arctan t
√2
+ C

= 1
2
ln(x2 + 2x + 3) − 3

√2
arctan x + 1

√2
+ C.

Example 6.1.47. Find ∫ lnx
(1−x)2 dx.
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Solution. Choose u = lnx, dv = 1
(1−x)2 dx, so that we can take v = ∫ 1

(1−x)2 dx =
1

1−x and
du = 1

x dx. Then

∫
lnx
(1 − x)2

dx = ∫udv = uv − ∫ v du

= lnx
1 − x
− ∫

1
x(1 − x)

dx

=
lnx
1 − x
− ∫
(1 − x) + x
x(1 − x)

dx

= lnx
1 − x
− ∫(

1
x
+ 1
1 − x
)dx

= lnx
1 − x
− ln |x| + ln |1 − x| + C

= lnx
1 − x
+ ln |1 − x|
|x|
+ C.

6.1.7 Rationalizing substitutions

Some nonrational functions can be changed into rational functions by means of ap-
propriate substitutions. In that case, we say that the function has been rationalized
and we can then apply the partial fractions method to compute the integral.

Example 6.1.48. Evaluate ∫ 1
x−√x+2 dx.

Solution. Substitute u = √x + 2. Then x = u2 − 2, giving dx = 2udu. Thus

∫
1

x −√x + 2
dx = ∫ 2u
(u2 − 2) − u

du.

The integrand is now a rational function and we integrate using partial fractions as
follows:

∫
2u

(u2 − 2) − u
du = ∫ 2u
(u − 2)(u + 1)

du

= ∫
4

3(u − 2)
+ 2
3(u + 1)

du

= 4
3
ln |u − 2| + 2

3
ln |u + 1| + C

= 4
3
ln |√x + 2 − 2| + 2

3
ln |√x + 2 + 1| + C.

Example 6.1.49. Find ∫ 1
2+sinx dx.
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Solution. Since

sinx =
2 tan x

2
1 + tan2 x

2
,

we substitute u = tan x
2 , so that x = 2arctanu and dx =

2
1+u2 du. This gives

∫
1

2 + sinx
dx = ∫ 1

2 + 2u
1+u2
⋅ 2
1 + u2

du

= ∫
1

u2 + u + 1
du.

The denominator does not factor into real factors, so we cannot use partial fractions.
However, by completing the squarewe can turn this into an integral from the standard
set (see equation (6.11)). We have

∫
1

2 + sinx
dx = d∫ 1

(u + 1
2 )
2 + (√32 )

2
du

= 2
√3

arctan( 2√3
(u + 1

2
)) + C

= 2
√3

arctan( 2√3
tan x

2
+ 1
√3
) + C.

6.2 Substitution in definite integrals

To evaluate a definite integral, we can use the same substitutionsmethod that we saw
in Section 6.1.2. However, now wemust either convert to the original variable in order
to evaluate at the limits, or, if we wish, we can transform the limits using the same
substitution.

Example 6.2.1. Evaluate ∫40
1

1+√x dx.

Solution. Let t = √x, so x = t2 and dx = 2t dt. Transforming the limits of integration,
we find that, when x = 0, t = 0 and, when x = 4, t = 2. Hence, substituting gives

∫
4

0

dx
1 +√x
= ∫

2

0

2t
1 + t

dt = 2∫
2

0

t
1 + t

dt = 2∫
2

0

t + 1 − 1
1 + t

dt

= 2∫
2

0
(1 − 1

1 + t
)dt

= 2(t − ln |1 + t|)|20
= 2{(2 − ln 3) − (0 − ln 1)}
= 2(2 − ln 3).
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Example 6.2.2. Evaluate ∫
1
2
0

x2
√1−x2

dx.

Solution. Let x = sin t (restrict t to [0, π2 ] so that sin t is an increasing function and
sin t ⩾ 0 and cos t ⩾ 0). Then dx = d(sin t) = cos t dt. When x = 0, sin t = 0⟹ t = 0.
When x = 1

2 , sin t =
1
2⟹ t = π

6 . By substitution we obtain

∫
1
2

0

x2 dx
√1 − x2

= ∫
π
6

0

(sin2 t)cos t dt
√1 − sin2 t

= ∫
π
6

0
sin2 t dt

= ∫
π
6

0

1 − cos 2t
2

dt = ( t
2
− 1
4
sin2t)|

π
6

0

= ( π
12
− 1
4
sin π

3
) − (0

2
− 1
4
sin0)

= π
12
−
√3
8
.

Example 6.2.3. Show that the area of the circle with radius r is πr2.

Proof. Since x2 + y2 = r2 is a circle centered at the origin with radius r, y = √r2 − x2,
−r ⩽ x ⩽ r is the upper half of the circle. The area of the circle is four times the area of
the quarter circle in the first quadrant, as seen in Figure 6.2.1. That is,

area = 4 × ∫
r

0
√r2 − x2 dx.

Let x = r sin t, 0 ⩽ t ⩽ π
2 . Then dx = r cos t dt. When x = 0, t = 0 and when x = r, t = π

2 ,
so

∫
r

0
√r2 − x2 dx = ∫

π
2

0
√r2 − r2 sin2 t(r cos t)dt

= ∫
π
2

0
(r cos t)(r cos t)dt = r2 ∫

π
2

0
cos2 t dt

= r
2

2
∫

π
2

0
(1 + cos 2t)dt

Figure 6.2.1: The area of a circle with radius r is πr2.
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= r
2

2
[t + 1

2
sin 2t]

π
2

0

= r
2

2
(π
2
+ 1
2
sinπ − 0)

= πr
2

4
.

Therefore, the area of the circle with radius r is 4 × πr
2

4 = πr
2.

Example 6.2.4. Find the area of the ellipse defined parametrically by

{
{
{

x = acos t
y = b sin t,

where 0 ⩽ t ⩽ 2π.

Solution. The area of the ellipse,A, is four times the areaA1, which is below the curve
and above the x-axis in the first quadrant, as shown in Figure 6.2.2. Observe that, if
x = acos t, dx = −a sin t dt. When x = 0, t = π

2 and when x = a, t = 0. Thus,

A = 4A1 = 4∫
a

0
y dx = 4∫

0

π
2

b sin t(−a sin t)dt

= 4ab∫
π
2

0
sin2 t dt = 2ab∫

π
2

0
(1 − cos 2t)dt

= 2ab(t − sin 2t
2
)|

π
2

0
= 2ab(π

2
− sinπ

2
− 0)

= πab.

Figure 6.2.2: Area of the ellipse x2
a2 +

y2
b2 = 1 is πab.

Example 6.2.5. If f is continuous, find d
dx ∫

x
0 f (x − t)dt.

Solution. Let x − t = u and t = x − u, so dt
du = −1. When t = 0, u = x and when t = x,

u = 0. Then

∫
x

0
f (x − t)dt = ∫

0

x
f (u)(−du) = −∫

0

x
f (u)du = ∫

x

0
f (u)du,
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so

d
dx
∫
x

0
f (x − t)dt = d

dx
∫
x

0
f (u)du = f (x).

Example 6.2.6. Prove that, for any constant a,

∫
a

−a
f (x)dx =

{
{
{

2∫a0 f (x)dx, if f (x) is an even function
0, if f (x) is an odd function.

Proof. We know that ∫a
−a f (x)dx = ∫

0
−a f (x)dx + ∫

a
0 f (x)dx. For the integral ∫

0
−a f (x)dx,

we substitute t = −x so that dx = −dt and we obtain

∫
0

−a
f (x)dx = −∫

0

a
f (−t)dt = ∫

a

0
f (−t)dt = ∫

a

0
f (−x)dx.

Hence,

∫
a

−a
f (x)dx = ∫

0

−a
f (x)dx + ∫

a

0
f (x)dx

= ∫
a

0
[f (−x) + f (x)]dx.

Figure 6.2.3 illustrates the definite integral of an even/odd function.

Figure 6.2.3: Integral of odd/even function over [−a,a].

If f (x) is an odd function, then f (−x) = −f (x) and the integrand is f (−x) + f (x) = 0, so
∫a
−a f (x)dx = 0.

If f (x) is an even function, then f (−x) = f (x) and the integrand is f (−x) + f (x) =
2f (x), so ∫a

−a f (x)dx = 2∫
a
0 f (x)dx.

Example 6.2.7. Evaluate ∫1
−1(

x
1+x2+cosx + cosx)dx.
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Solution. Since x
1+x2+cosx is odd and cosx is even,

∫
1

−1
( x
1 + x2 + cosx

+ cosx)dx

= ∫
1

−1

x
1 + x2 + cosx

dx + ∫
1

−1
cosx dx

= 0 + 2∫
1

0
cosx dx

= 2 sinx|10 = 2 sin 1.

6.3 Integration by parts in definite integrals

The integration by parts formula used for indefinite integration, introduced in Sec-
tion 6.1.5, can be used for definite integrals with minor changes (putting in the limits
of integration). If u = u(x) and v = v(x) are differentiable on [a,b], then the modified
formula is

∫
b

a
udv = uv|x=bx=a − ∫

b

a
v du.

Example 6.3.1. Evaluate ∫
π
2
0 x cosx dx.

Solution. Use integration by parts with u = x, dv = cosx dx so that du = dx and let
v = sinx. Then

∫
π/2

0
x cosx dx = ∫

π/2

0
x(sinx)′dx

= x sinx|x=π/2x=0 − ∫
π
2

0
(x)′ sinx dx

= π
2
− (− cosx)|π/20

= π
2
− 1.

Example 6.3.2. Find ∫
1
2
0 arcsinx dx.

Solution. Use integration by parts with u = arcsinx, dv = dx so that du = 1
√1−x2

dx and
let v = x. Then

∫
1
2

0
arcsinx dx = [x arcsinx]

1
2
0 − ∫

1
2

0

x
√1 − x2

dx

= 1
2
π
6
+ [√1 − x2]

1
2
0

=
π
12
+
√3
2
− 1.
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Example 6.3.3. Given In = ∫
π/2
0 sinn x dx, prove the reduction formula

In =
n − 1
n

In−2 for all integers n ⩾ 3.

Then evaluate I7 = ∫
π/2
0 sin7 x dx.

Solution. Similar to Example 6.1.37, we have

In = ∫
π/2

0
sinn x dx = ∫

π/2

0
sinn−1 x ⋅ (sinx)dx

= ∫
π/2

0
sinn−1 x ⋅ (− cosx)′dx

= − cosx sinn−1 x|π/20 + ∫
π/2

0
(sinn−1 x)′ cosx dx

= (n − 1)∫
π/2

0
(sinn−2 x ⋅ cosx ⋅ cosx)dx

= (n − 1)∫
π/2

0
sinn−2 x ⋅ (1 − sin2 x)dx

= (n − 1)∫
π/2

0
(sinn−2 x − sinn x)dx = (n − 1)(In−2 − In),

so

In =
n − 1
n

In−2.

Since

I1 = ∫
π/2

0
sinx dx = − cosx|π/20 = −(0 − 1) = 1,

we find

I3 =
3 − 1
3

I1 =
2
3
× 1 = 2

3
,

I5 =
5 − 1
5

I3 =
4
5
× 2
3
= 8
15
,

I7 =
7 − 1
7

I5 =
6
7
× 8
15
= 16
35
.

6.4 Improper integrals

6.4.1 Improper integrals of the first kind

An integral ∫ba f (x)dx is a proper integral if f is continuous or piecewise continuous
and the range of integration [a,b] is finite. These are integrals we have been studying.
If the interval of integration is unbounded, the integral is an improper integral of the
first kind.
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Definition 6.4.1. If f is continuous on the infinite interval [a,∞), the improper inte-
gral of the first kind ∫+∞a f (x)dx is defined to be

∫
+∞

a
f (x)dx = lim

b→+∞
∫
b

a
f (x)dx.

When this limit L = limb→+∞ ∫
b
a f (x)dx exists, we write ∫

+∞
a f (x)dx = L and say that

the improper integral is convergent (or we say it converges to L). Otherwise we say that
the improper integral is divergent (or it diverges). Similarly, we define the improper
integral ∫b

−∞
f (x)dx as

∫
b

−∞
f (x)dx = lim

a→−∞
∫
b

a
f (x)dx.

The improper integral ∫∞
−∞

f (x)dx is defined, for any c, to be

∫
∞

−∞
f (x)dx = ∫

∞

c
f (x)dx + ∫

c

−∞
f (x)dx.

We say that ∫∞
−∞

f (x)dx is convergent if and only if both ∫∞c f (x)dx and ∫c
−∞

f (x)dx are
convergent.

Example 6.4.1. Determine whether the integral ∫∞1
1
x dx is convergent or divergent.

Solution. According to the definition, we have

∫
∞

1

1
x
dx = lim

b→∞
∫
b

1

1
x
dx = lim

b→∞
ln |x|b1

= lim
b→∞
(lnb − ln 1) =∞.

The limit does not exist as a finite number, so the improper integral is divergent (di-
verges to infinity). Figure 6.4.1 shows the region below y = 1

x and to the right of x = 1.

Figure 6.4.1: The area of the shaded region is undefined (diverges to infinity).
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Example 6.4.2. Does the improper integral

∫
∞

−∞

1
1 + x2

dx

converge or diverge? If it converges, calculate its value.

Solution. We have

∫
∞

−∞

1
1 + x2

dx = ∫
0

−∞

1
1 + x2

dx + ∫
∞

0

1
1 + x2

dx

= lim
a→−∞
∫
0

a

1
1 + x2

dx + lim
b→∞
∫
b

0

1
1 + x2

dx

= lim
a→−∞

arctanx|0a + limb→∞
arctanx|b0

= lim
a→−∞
(−arctana) + lim

b→∞
(arctanb)

= −(−π
2
) + π

2
= π,

so the integral converges and its value is π. Figure 6.4.2 illustrates this improper inte-
gral.

Figure 6.4.2: The area of the shaded region is π.

Example 6.4.3. Show that the improper integral ∫+∞a
dx
xp (a > 0) converges for all p > 1

and diverges when p ⩽ 1.

Solution. Case 1: when p = 1, we have

∫
+∞

a

dx
x
= lim
b→+∞
∫
b

a

dx
x
= lim
b→+∞

lnx|ba = lim
b→+∞
(lnb − lna) = +∞.

Case 2: when p ≠ 1, we have

∫
+∞

a

dx
xp
= lim

b→+∞
∫
b

a

dx
xp
= lim
b→+∞

1
(−p + 1)xp−1

|
b

a

= lim
b→+∞
(

1
(−p + 1)bp−1

−
1

(−p + 1)ap−1
)

=
{
{
{

+∞, when p < 1
1

(p−1)ap−1 , when p > 1.



6.4 Improper integrals | 321

Therefore, we conclude that, when p ⩽ 1, the improper integral ∫+∞a
1
xp dx (a > 0) di-

verges and, when p > 1, it converges.

Theorem 6.4.1 (Comparison theorem). Assume that f and g are continuous on [a, +∞)
and, for all sufficiently large x, 0 ⩽ f (x) ⩽ g(x). For improper integrals ∫+∞a f (x)dx and
∫+∞a g(x)dx of the first kind, we have:
1. if ∫+∞a g(x)dx converges, then so does ∫+∞a f (x)dx;
2. if ∫+∞a f (x)dx diverges, then so does ∫+∞a g(x)dx.

Proof. Part 1: let t ∈ (a, +∞). Because f (x) ⩾ 0, F(t) = ∫ta f (x)dt is increasing on (a, +∞)
and we have

0 ⩽ ∫
t

a
f (x)dt ⩽ ∫

t

a
g(x)dx ⩽ ∫

+∞

a
g(x)dx.

However, if ∫+∞a g(x)dx converges, say, ∫+∞a g(x)dx = L, then F(t) is increasing and
bounded above on (a, +∞), so the limit limt→+∞ F(t)must exist. That is,

lim
t→+∞

F(t) = lim
t→+∞
∫
t

a
f (x)dx exists,

so ∫+∞a f (x)dx converges.
Part 2 of the theorem is the converse negative proposition of Part 1, so it is true.

Example 6.4.4. Use the comparison test to determinewhether the following integrals
converge or diverge:

(a)∫
+∞

1

1
x3 + 2x + 3

dx, (b)∫
+∞

1

x3/2

1 + x2
dx.

Solution. (a) When x > 1, x3 + 2x + 3 > x3, so

∫
+∞

1

1
x3 + 2x + 3

dx < ∫
+∞

1

1
x3

dx.

By Example 6.4.3, we know that ∫+∞1
1
x3 dx converges, so

∫
+∞

1

1
x3 + 2x + 3

dx

also converges.
(b) When x > 1,

x3/2

1 + x2
=

1
x−3/2 + x1/2

=
1

1
3√x2
+√x
>

1
√x +√x

=
1

2√x
> 0.

Since ∫+∞1
1
x
1
2
dx diverges, by the comparison test, ∫+∞1

x3/2
1+x2 dx also diverges.
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6.4.2 Improper integrals of the second kind

An integral is an improper integral of the second kind if the interval of integration is
bounded but the integrand is not bounded on this interval.

Definition 6.4.2. If f is continuous on the interval (a,b] and limx→a+ f (x) = ±∞ or
the limit does not exist, then ∫ba f (x)dx is an improper integral of the second kind. It is
defined to be

∫
b

a
f (x)dx = lim

ε→a+
∫
b

ε
f (x)dx.

When the limit limε→a+ ∫
b
ε f (x)dx = L exists, we write ∫ba f (x)dx = L and say that the

improper integral is convergent (or we say it converges to L). Otherwise we say that the
improper integral is divergent (or we say it diverges).

Similarly, we define the divergence and convergence of the improper integral
∫ba f (x)dx for which limx→b− f (x) = ±∞ as

∫
b

a
f (x)dx = lim

ε→b−
∫
ε

a
f (x)dx.

The improper integral ∫ba f (x)dx (for which limx→c f (x) = ±∞ for some c ∈ (a,b))
is defined to be the sum of two improper integrals of the second kind. We write

∫
b

a
f (x)dx = ∫

c

a
f (x)dx + ∫

b

c
f (x)dx.

The improper integral ∫ba f (x)dx is convergent exactly when both ∫ca f (x)dx and
∫bc f (x)dx are convergent.

Example 6.4.5. Find ∫52
1
√x−2 dx.

Solution. Wenotefirst that the given integral is improper because limx→2+
1
√x−2 = +∞.

The definition gives

∫
5

2

dx
√x − 2
= lim

t→2+
∫
5

t

dx
√x − 2

= lim
t→2+
[2√x − 2]5t

= lim
t→2+

2(√3 −√t − 2)

= 2√3.

Thus the given improper integral is convergent and has the value 2√3. Figure 6.4.3
shows the region below the curve y = √x − 2 and above the x-axis, and between x = 2
and x = 5.
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Figure 6.4.3: The area of the shaded region is 2√3.

Example 6.4.6. Investigate the convergence of the improper integral ∫1
−1

1
x2 dx.

Solution. The integrand 1
x2 has a discontinuity at x = 0 and limx→0

1
x2 = +∞. Thus,

∫
1

−1

1
x2

dx = ∫
0

−1

1
x2

dx + ∫
1

0

1
x2

dx

= lim
ε1→0−
∫
ε1

−1

1
x2

dx + lim
ε2→0+
∫
1

ε2

1
x2

dx

= lim
ε1→0−
− 1
x
|
ε1

−1
+ lim
ε2→0+
− 1
x
|
1

ε2

= lim
ε1→0−
(−1
ε1
− 1) + lim

ε2→0+
(−1 + 1

ε2
).

Since

lim
ε1→0−
(−1
ε1
− 1) = +∞ and lim

ε2→0+
(−1 + 1

ε2
) = +∞,

we conclude that ∫0
−1

1
x2 dx and ∫

1
0

1
x2 dx both diverge to∞. Therefore, ∫

1
−1

1
x2 dx also di-

verges to∞. The improper integral is illustrated in Figure 6.4.4.

Figure 6.4.4: Graph of y = 1/x2. The area of the shaded region is undefined (diverges to +∞).
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Example 6.4.7. Show that, for b > a, ∫ba
dx
(x−a)p diverges when p ⩾ 1 and converges

when p < 1.

Solution. If p > 0, then the function 1
(x−a)p has a discontinuity at a = 0 and

limx→a+
1
(x−a)p =∞, but if p ⩽ 0, the integrand has no discontinuities on [a,b].

Case 1: when p = 1, we have

∫
b

a

1
(x − a)p

dx = lim
ε→a+
∫
b

ε

1
x − a

dx = lim
ε→a+

ln |x − a|bε

= lim
ε→a+
(ln |b − a| − ln |ε − a|) = +∞.

Case 2: when p ≠ 1, we have

∫
b

a

1
(x − a)p

dx = lim
ε→a+
∫
b

ε

1
(x − a)p

dx = lim
ε→a+

1
1 − p
(x − a)1−p|

b

ε

= 1
1 − p

lim
ε→a+
((b − a)1−p − (ε − a)1−p)

=
{
{
{

1
1−p (b − a)

1−p, when p < 1
+∞, when p > 1.

Thus, ∫ba
1
(x−a)p dx diverges to +∞ when p ⩾ 1 and converges when p < 1.

NOTE. Similarly, it can be proved that ∫ba
1
(b−x)p dx converges for p < 1 and diverges for

p ⩾ 1.

We now prove the following theorem, which offers a way to determine whether or
not some improper integrals converge.

Theorem 6.4.2 (Comparison theorem). Suppose that f and g are continuous on (a,b)
with f (x) ⩾ g(x) ⩾ 0 for all x near a. For improper integrals

∫
b

a
f (x)dx and ∫

b

a
g(x)dx of the second kind, we have:

1. if ∫ba f (x)dx converges, then so does ∫
b
a g(x)dx;

2. if ∫ba g(x)dx diverges, then so does ∫
b
a f (x)dx.

Proof. Similar to Theorem 6.4.1.

Example 6.4.8. Determine the convergence of the improper integral

∫
3

1

1
lnx

dx.
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Solution. Since ln(1 + x) < x for x > 0,

lnx = ln(1 + x − 1) < x − 1 for x > 1.

Then
1

lnx
> 1
x − 1
, for x > 1.

We know ∫31
1
(x−1) dx diverges from Example 6.4.7. Therefore, ∫31

1
lnx dx also diverges.

Figure 6.4.5 shows the region between x = 1 and x = 3, below the curve y = 1
lnx , and

above the x-axis.

Figure 6.4.5: The area of the region is undefined (diverges to infinity).

Example 6.4.9. Determine the convergence of the improper integral

∫
1

0

1
√(1 − x2)(1 − k2x2)

dx, where 0 < k < 1 is a constant.

Solution. For 0 < x < 1 and 0 < k < 1,
1

√(1 − x2)(1 − k2x2)
= 1
√(1 + x)(1 − x)(1 − k2x2)

⩽
1

√(1 − x)(1 − k2x2)

⩽ 1
√1 − k2

1
√1 − x
,

but

∫
1

0

1
√1 − x

dx = lim
b→1−
∫
b

0

1
√1 − x

dx = lim
b→1−
(−2√1 − x)|b0 = 2,

so ∫10
1
√1−x dx converges. Therefore, ∫

1
0

1
√(1−x2)(1−k2x2)

dx converges.
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6.5 Exercises

1. Evaluate each of the following integrals:
(a) ∫ f ′(x)dx; (b) d

dt (∫ f (t)dt); (c) ∫d(f (x)); (d) ∫ f ′(θ)dθ.
2. Find each of the following indefinite integrals:

(a) ∫4x2 dx; (b) ∫x√x dx;

(c) ∫√x√x dx; (d) √x+2
3√x2+1
√x dx;

(e) ∫ (x
2+1)2
x3 dx; (f) ∫(2 − sec2 x)dx;

(g) ∫(cos t + 2 sin t)dt; (h) ∫ sinx3 −
1

cos2 x +
6

1+x2 dx;

(i) ∫(ex + 2x)dx; (j) ∫ 3
√1−x2

dx;

(k) ∫ 1
sin2 x

2 cos
2 x
2
dx; (l) ∫ secx(secx − tanx)dx.

3. Find ∫ f (x)dx if f (x) = {sinx, x < 0
x2, x ⩾ 0.

4. Find f (x) if f ′(x) = ex + 2(1 + x2)−1 and f (0) = −2.
5. Solve the following differential equations:

(a) dy
dx = 2x − 1; (b) r″ − 6t = 0, r(0) = 0, and r′(0) = 1;

(c) y‴(x) = 1; (d) x dx − y dy = 0;

(e) y′ + xy = 0; (f) dP
dt = −kt, P(0) = 1000.

6. The radioactive decay rate of the isotope C-14 in a certain substance is modeled by
dC
dt = −0.0001216C, where t is measured in years and C in grams. If the substance
initially contains 20 g of C-14, then find (a) howmuch is left after 10 000 years and
(b) the time point when 10 g of the C-14 remains.

7. Use a suitable substitution to find the general antiderivative of each of the follow-
ing functions:
(a) ∫(x + 1)20 dx; (b) ∫ dx

(2x−3)5 ; (c) ∫x2(√1 + x3)dx;
(d) ∫ x

(1+x2)2 dx; (e) ∫cos 2x + e−x dx; (f) ∫√1 + 2x dx;
(g) ∫(1 − cos 2x) sin 2x dx; (h) ∫ tan t

2 sec
2 t
2 dt; (i) ∫xe−x2 dx;

(j) ∫ ln
2 x
x dx; (k) ∫ dx

ex+e−x ; (l) ∫ sin4 x cosx dx;
(m) ∫ sinx

√cos3 x
dx; (n) ∫ arctanx1+x2 dx; (o) ∫ x3

1+x2 dx;
(p) ∫ dx

1−cosx ; (q) ∫ dx
(arcsinx)2√1−x2

; (r) ∫x2 3√1 − x dx;

(s) ∫ x2
(1−x)100 dx; (t) ∫cos3 x√sinx dx; (u) ∫ e2x

4√ex+1
dx;

(v) ∫ dx
√1+ex ; (w) ∫ lnx

x√1+lnx dx; (x) ∫ cos√x√x dx;
(y) ∫ dx

x4(1+x2) ; (z) ∫ 1
1+cosx dx; (aa) ∫√tanu sec2 udu;

(bb) ∫ tan(4t + 2)dt; (cc) ∫ ln
6 y
y dy; (dd) ∫ 1

sin2 3x dx;
(ee) ∫ 6cos z

(1+sin z)2 dz; (ff) ∫ x
x2+1 dx; (gg) ∫ 1

θ lnθ ln lnθ dθ;

(hh) ∫ tan2x dx; (ii) ∫ 1
sin 2x − 3cot 3x + x(cosx

2)(sinx2)3 dx.
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8. Assume I1 = ∫
cosx

cosx+sinx dx and I2 = ∫
sinx

cosx+sinx dx. By considering the integrals
I1 + I2 and I1 − I2, find I1 and I2. Similarly, find ∫ cosx

acosx+b sinx dx where a, b are two
nonzero constants and ∫ cosx+3

3cosx+4sinx+25 dx.
9. Use a suitable substitution to find each of the following integrals:

(a) ∫ 1
1+√t dt; (b) ∫√1 − x2 dx; (c) ∫√a2 − x2 dx;

(d) ∫ 1
√a2−x2

dx; (e) ∫√a2 + x2 dx; (f) ∫√t2 − a2 dt;
(g) ∫ 1

√1+ey dy; (h) ∫ 1
√x2+1

dx; (i) ∫ 1
x(x7+1) dx. [Hint: let t =

1
x .]

10. Use integration by parts to find each of the following integrals:
(a) ∫x ln(1 − x)dx; (b) ∫arcsinx dx;
(c) ∫ arctane

x

ex dx; (d) ∫x2e−x dx;
(e) ∫(x sin2 x)dx; (f) ∫ sin(lnx)dx;
(g) ∫arctanx dx; (h) ∫(lnx)2 dx;
(i) ∫e√x dx; (j) ∫(eax cosbx)dx.

11. Use integration by parts to establish the reduction formula for:
(a) ∫xn sinx dx = −xn cosx + nxn−1 sinx − n(n − 1) ∫xn−2 sinx dx;
(b) ∫(lnx)n dx = x(lnx)n − n∫(lnx)n−1 dx;
(c) ∫xneax dx = xneax

a −
n
a ∫x

n−1eax dx, a ≠ 0;

(d) ∫ secn x dx = tanx secn−2 x
n−1 +

n−2
n−1 ∫ sec

n−2 x dx, for n ⩾ 2;

(e) If Im,n = ∫
xm
(lnx)n dx, prove that (n − 1)Im,n = −

xm+1
(lnx)n−1 + (m + 1)Im,n−1.

12. Show that, for k > 1,

∫
dx

((x − a)2 + b2)k
= x − a
2b2(k − 1)((x − a)2 + b2)k−1

+ 2k − 3
2b2(k − 1)

∫
dx

((x − a)2 + b2)k−1
.

13. Evaluate each of the following indefinite integrals:
(a) ∫ x3

x+3 dx; (b) ∫ x2+1
(x+1)2(x−1) dx;

(c) ∫ x2+4x+1
x3−x2+x−1 dx; (d) ∫ 2x2+5

(x2+1)2 dx;

(e) ∫ 2x+3
(x−1)(x+5) dx; (f) ∫ 1

x4−1 dx;

(g) ∫ dx
3√(x+1)2(x−1)4

; (h) ∫ dx
√x+ 4√x ;

(i) ∫ 1
(1+ 3√x)√x dx; (j) ∫ dx

3+cosx .

14. (Logisticmodeling of population growth) In 1838, Pierre Verhulst derived a dif-
ferential equation to describe the self-limiting growth of a biological population
as follows:

dP
dt
= kP(M − P).
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Notice that the rate of reproduction is proportional to both the existing population
P and the amount of available resources M. Alfred J. Lotka derived this type of
equation again in 1925, calling it the law of population growth.
(a) Find the exact solution of the logistic equation if P(0) = P0.
(b) When does the population grow the fastest? Is this critical time an inflection

point of P(t)?
(c) What happens to P when t→∞?
(d) Sketch the graph of P(t), given that P(0) = 10, k = 0.02, andM = 100.

15. Find each of the following definite integrals:
(a) ∫π0 sin 2x dx; (b) ∫20 (x − 1)

20 dx; (c) ∫π
−π

xe−x2

2+x2 + cos
2 x dx;

(d) ∫1
−1

5z
(4+z2)2 dz; (e) ∫20

√x
1+x dx; (f) ∫10 r

√1 − r2 dr;

(g) ∫0
−π/4 tany sec

2 y dy; (h) ∫31
ex
3+ex dx; (i) ∫e

3

1
dx

x√1+lnx ;

(j) ∫π
−π

cosx
√5+4sinx dx; (k) ∫10 x

3√x4 + 9dx; (l) ∫a0
√x2 + a2 dx;

(m) ∫20 y dx, if y = 3 sin t and x = 2 cos t;
(n) ∫π
−π(cosnx cosmx)dx, n,m ∈ Z;

(o) ∫π
−π(cosnx sinmx)dx, n,m ∈ Z;

(p) ∫π
−π(sinnx sinmx)dx, n,m ∈ Z.

16. Given that a < b are two constants, show that ∫ba
1

√(x−a)(b−x) dx = π. [Hint: use the
substitution x = acos2 t + b sin2 t.]

17. Assume f (x) is continuous everywhere. Find dy
dx if y = ∫

x2

0 f (x2 − t)dt.

18. Assume f (x) = {x
2, x < 0,
1

1+x , x ⩾ 0.
Find ∫20 f (x − 1)dx.

19. Assume f (x) is differentiable and f (0) = 0. If g(x) = ∫10 f (xt)dt, show that g′(0) =
f ′(0)
2 .

20. If f (x) = ∫x0 cos((x − t)
2)dt, find f ′(x).

21. Using substitution, show that ∫1x
1

1+t2 dt = ∫
1
x
1

1
1+t2 dt.

22. Show that ∫10 x
m(1 − x)n dx = ∫10 x

n(1 − x)m dx, wherem and n are positive integers.
23. Assume f (x) is continuous on [a,b]. Show that ∫ba f (x)dx = ∫

b
a f (a + b − x)dx.

24. Use the substitution u = π − x to show that

∫
π

0
xf (sinx)dx = π

2
∫
π

0
f (sinx)dx.

By the same or another method, evaluate the integral

∫
π

0

x sinx
1 + cos2 x

dx.

25. The sine integral function Si(x) = ∫x0
sin t
t dt is used in optics.

(a) Find the value of Si(0).
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(b) Find the value(s) of x such that Si(x) has a local extreme value on [−2π, 2π].
(c) Show that Si(x) is an odd function.

26. Find the average value of the function f (x) = √x
2−1
x for 1 ⩽ x ⩽ 2.

27. Evaluate each of the following definite integrals:
(a) ∫10 xe

−x dx; (b) ∫π/20 x sin 2x dx; (c) ∫π/20 u2 cos 2udu;

(d) ∫
π
3
π
4

x
sin2 x dx; (e) ∫e1 ln

2 x dx; (f) ∫π0 e2x sin3x dx;

(g) ∫90 e
√3x+9 dx; (h) ∫π

2

0 sin√x dx; (i) ∫41
lnx
√x dx.

28. Use the trapezoidal rule with intervals of unit length to approximate the integral
∫n1 lnx dx, where n is a positive integer that is greater than 2. Then deduce that
n! ≈ e√n( ne )

n (note: the famous Stirling approximation to n! is n! ≈ 2πn( n3 )
n).

29. (Reduction formulas)
(a) Given that In = ∫

1
0 x

ne−x dx, show that In = nIn−1 − e−1 for n ⩾ 1.
(b) If In = ∫

π/3
0 cosn x dx, show that nIn =

√3
2n + (n − 1)In−2 for n ⩾ 2 and find I3.

(c) If In = ∫
π/4
0 tann x dx, prove that In =

1
n−1 − In−2 for n ⩾ 2 and find I4.

(d) If In = ∫
1
0 x

n(1 − x)
1
2 dx, show that (2n + 3)In = 2nIn−1 for n ⩾ 1 and find I3.

(e) If Im,n = ∫
e
1 x

m(lnx)n dx, prove that (m + 1)Im,n = em+1 − nIm,n−1 and find I1,2.

30. If In = ∫
π
2
0 sinn x dx, use the reduction formula derived in Example 6.3.3 to show:

(a) I2n =
π
2 ×

1
2 ×

3
4 ×

5
6 ×⋯×

(2n−1)
2n ;

(b) I2n+1 = 1 ×
2
3 ×

4
5 ×

6
7 ×⋯×

2n
2n+1 .

31. Determinewhether eachof the following improper integrals converges and, if pos-
sible, determine the value to which it converges:
(a) ∫+∞1

1
x3 dx; (b) ∫+∞1

1
√x dx;

(c) ∫+∞0 e−ax dx, a > 0; (d) ∫+∞0
dx
√x(4+x) ;

(e) ∫∞
−∞

dx
x2+2x+2 ; (f) ∫10

x
√1−x2

dx;

(g) ∫10
1
(1−x)p dx; (h) ∫+∞0 (e

−pt sinat)dt, a > 0 and p > 0;

(i) ∫e0
1

x(ln(x))2 dx.
32. Are the following arguments true or false?

(a) Since x
1+x2 is an odd function, ∫

∞
−∞

x
x2+1 dx = 0.

(b) ∫∞
−∞

x
x2+1 dx = lima→∞ ∫

a
−a

x
x2+1 dx = 0, since

x
1+x2 is an odd function.

(c)

∫
∞

−∞

x
x2 + 1

dx = lim
a→∞
∫
a

0

x
x2 + 1

dx + lim
a→−∞
∫
0

a

x
x2 + 1

dx

= lim
a→∞

1
2
ln(1 + x2)|

a

0
+ lim
a→−∞

1
2
ln(1 + x2)|

0

a

=
1
2
lna2 − 1

2
lna2 = 0.
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33. Suppose that ∫∞
−∞

f (x)dx is convergent. If a and b are two real numbers, show that

∫
a

−∞
f (x)dx + ∫

∞

a
f (x)dx = ∫

b

−∞
f (x)dx + ∫

∞

b
f (x)dx.

34. Determine the convergence of each of the following improper integrals:
(a) ∫+∞1

1
x4+1 dx; (b) ∫+∞0

1
√x2+2x+7

dx; (c) ∫+∞
−∞

1
2 sin(x2)+3+x2 dx.

35. Express the limit limn→∞
n√n!
n as an improper integral and then evaluate the limit.

36. The gamma function Γ(x) is defined by the integral

Γ(x) = ∫
+∞

0
e−t tx−1 dt, x > 0

(the notion Γ is due to Legendre). When x > 0, it is also called an Euler integral of
the second kind. The gamma function has applications in quantum physics, astro-
physics, and fluid dynamics, as well as in statistics.
(a) Use integration by parts or any other method to show that Γ(x + 1) = xΓ(x).
(b) Deduce that Γ(n) = (n − 1)!, where n is a nonnegative integer.
(c) Show that limx→0+ Γ(x) =∞.

37. (Limit comparison test) Let f (x) be anonnegative continuous function on [a,∞),
a > 0.
(a) Assume g(x) is another nonnegative continuous function defined on [a, +∞)

with limx→+∞
f (x)
g(x) = L.

(i) If 0 < L <∞, show that ∫+∞a g(x)dx and ∫+∞a f (x)dx both diverge or both
converge.

(ii) If L = 0, show that, if ∫+∞a g(x)dx converges, so does ∫+∞a f (x)dx.
(iii) If L = +∞, show that, if ∫+∞a g(x)dx diverges, so does ∫+∞a f (x)dx.

(b) If there is a number p > 1 such that the limx→+∞ xpf (x) exists, show that the
improper integral ∫+∞a f (x)dx converges.

(c) If limx→+∞ xf (x) exists (or is+∞), show that the improper integral ∫+∞a f (x)dx
diverges.

38. (Absolute convergence) If the improper integral ∫+∞a |f (x)|dx converges, we say
that the improper integral ∫+∞a f (x)dx converges absolutely. By considering the
nonnegative function ϕ(x) = f (x) + |f (x)| or by any other method:
(a) show that, if ∫+∞a f (x)dx converges absolutely, the improper integral
∫+∞a f (x)dx itself also converges;

(b) determine whether or not ∫+∞0 e−ax cosbx dx converges absolutely, where a
and b are two positive constants.

39. (Normal probability density function) If a randomvariableX satisfies anormal
distribution with mean u and standard deviation σ, then its probability density
function is

f (x) = 1
σ√2π

e−
1
2 (

x−u
σ )

2
.



6.5 Exercises | 331

When u = 0 and σ = 1, it is known as the standard normal distribution. Use a
graphing utility to:
(a) sketch the graph of the probability density function for a standard normal

distribution;
(b) evaluate ∫n

−n f (x)dx for n = 1,3, 10, 100 when u = 0 and σ = 1;
(c) give an argument why the improper integral ∫∞

−∞
f (x)dx converges to 1. [Hint:

consider e−x2 < e−x and ∫∞b e−x dx→ 0 when b→∞.]





7 Applications of the definite integral
In this chapter, you will learn about:
– finding areas between curves;
– finding the volume of a solid;
– finding the length of curves;
– applying integrals to other subject areas.

In this chapter, we show how the definite integral can be used to compute the area be-
tween two curves, the volume of a solid of revolution, the length of a curve, a distance
traveled, the center of mass, fluid pressure, and probabilities. These are just a few of
the applications of the definite integral.

7.1 Areas, volumes, and arc lengths

7.1.1 The area of the region between two curves

We wish to find the area A of a region R between the graphs of the functions f and g
and the two lines x = a and x = b.We already computed the area between two curves in
Example 5.2.8 in Chapter 5. Using that approach and assuming f (x) ⩾ g(x) for a ⩽ x ⩽ b,
we calculate A by calculating the area Af under y = f (x) (above the x-axis) and sub-
tracting from this the area Ag under y = g(x) (above the x-axis), as seen in Figure 7.1.1,
giving the result

A = Af − Ag = ∫
b

a
f (x)dx − ∫

b

a
g(x)dx. (7.1)

We now want to derive the integral formula for the area below the curve y = f (x),
above the curve y = g(x), and between x = a and x = b by using the definition of a def-
inite integral. This approach enables us to apply the results much more flexibly and
generally. We use the idea of an element of area to calculate the area A of R. This ap-
proach is similar to the use of rectangles to approximate the area under a curve when

Figure 7.1.1: Area between two curves.

https://doi.org/10.1515/9783110527780-007



334 | 7 Applications of the definite integral

we interpreted the definite integral as an area. In fact, we are about to give an abbrevi-
ated version of the process used to define the definite integral given in Chapter 5. This
abbreviated form could, if needed, be developed into a full derivation of the definite
integral using limits of Riemann sums. Furthermore, the same approach will be used
in many different applications to find a solution involving a definite integral.

Figure 7.1.2: Vertical area element.

Assuming f (x) ⩾ g(x) for a ⩽ x ⩽ b, a typical element of area is a thin rectangle of height
h(x) = f (x) − g(x) and width Δx, as shown in Figure 7.1.2. The coordinate variable x
locates this rectangle. The height h(x) of the rectangle varies with x. The area of this
element is

ΔA = h(x)Δx = (f (x) − g(x))Δx.

Summing the areas for all elements that fill the space from x = a to x = b gives the
following approximate area A of the region R between y = f (x) and y = g(x):

A ≈∑ΔA =∑(f (x) − g(x))Δx.

The limit asΔx→ 0 (as thewidth of the element goes to zero) is defined to be the actual
area and this is, in fact, the limit of aRiemannsum, so it becomes the followingdefinite
integral:

A = lim
Δx→0
∑(f (x) − g(x))Δx = ∫

b

a
(f (x) − g(x))dx. (7.2)

Similarly, if the region is bounded by two curves x = ϕ(y) and x =ψ(y) and the two
lines y = c and y = d, as shown in Figure 7.1.3, then we could choose horizontal area
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Figure 7.1.3: Horizontal area element.

Figure 7.1.4: Vertical area element for the shaded region bounded by curves in Example 7.1.1.

elements. The area of the region is then given by

A = lim
Δy→0
∑(ϕ(y) −ψ(y))Δy = ∫

d

c
(ϕ(y) −ψ(y))dy. (7.3)

Example 7.1.1. Find the area of the region between the two parabolas x2 = 2y and
y2 = 2x, illustrated in Figure 7.1.4.

Solution. If y2 = 2x, then y = ±√2x and the part of this curve above the x-axis is given
by y = √2x. Hence the required area is below y = √2x and above y = x2

2 , between x = 0
and x = 2. We compute the area using equation (7.2) as follows:

A = ∫
2

0
dA = ∫

2

0
(√2x − x

2

2
)dx

= (√2 ⋅ x
3
2

3
2
−
1
2
⋅
x3

3
)|

2

0
=
4
3
.

Example 7.1.2. Calculate the area of the region between the graphs of the functions
f and g for 0 ⩽ x ⩽ 30, when

f (x) = 6
5
x1/2 − 1

25
x3/2 and g(x) = 1

30
x4/3 − x1/3.
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Figure 7.1.5: Vertical area element for the shaded region bounded by curves in Example 7.1.2.

Solution. As can be seen in Figure 7.1.5, the curve at the top, y = 6
5 x

1/2 − 1
25x

3/2, is
always above the curve at the bottom, y = 1

30x
4/3 − x1/3. Hence the area between the

curves is

A = ∫
b

a
dA = ∫

b

a
(f (x) − g(x))dx

= ∫
30

0
(6
5
x1/2 − 1

25
x3/2) − ( 1

30
x4/3 − x1/3)dx

= (6
5
⋅ 2
3
x3/2 − 1

25
⋅ 2
5
x5/2 − 1

30
⋅ 3
7
x7/3 + 3

4
x4/3)|

30

0
≈ 82.544.

Example 7.1.3. Find the area between the curves x = y2 and x = y+ 2, using horizontal
area elements.

Solution. The curves intersect at the points (1, −1) and (4, 2). Figure 7.1.6 shows the
curves and one horizontal element. Summing the areas of the horizontal elements of
width (y + 2) − y2 and thickness dy gives the area

A = ∫
2

−1
(y + 2 − y2)dy = ( 1

2
y2 + 2y − 1

3
y3)|

2

−1
=
9
2
.

Figure 7.1.6: Horizontal area element for the shaded region bounded by curves in Example 7.1.3.
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7.1.2 Volumes of solids

Volumes of revolutions
A solid of revolution is generated by revolving a two-dimensional region R about an
axis, such as the y- or x-axis. Suppose a body of revolution is generated by revolving
the region R about the x-axis. The area element of R is a rectangle located by the co-
ordinate x with height y = f (x) and thickness Δx. When the area element is rotated
about the x-axis, it creates a cylindrical element of radius f (x), thickness Δx, and vol-
ume ΔV = πf 2(x)Δx = πy2Δx, as in Figure 7.1.7 (a). As x varies from a to b, the area
elements sweep out the region R and the corresponding cylindrical elements fill the
solid of revolution. The approximate volume V of the body of revolution is the sum of
the volumes of the cylindrical elements

V ≈∑ΔV =∑πy2Δx.

Taking the limit as Δx→ 0, the actual volume of the body of revolution is

V = ∫
b

a
dV = ∫

b

a
πf 2(x)dx = ∫

b

a
πy2 dx.

Similarly, revolving the region bounded by x = g(y) between y = c and y = d about the
y-axis (see Figure 7.1.7 (b)) gives the following volume of the revolution:

V = ∫
d

c
dV = ∫

d

c
πg2(y)dy = ∫

d

c
πx2 dy.

Figure 7.1.7: Revolutions about x/y-axis.

Example 7.1.4. Calculate the volume of a right circular cone of height h and base ra-
dius r.

Solution. The cone is generatedby revolving the regionbelow the line segment y = r
hx

(0 ⩽ x ⩽ h) and above the x-axis about the x-axis. The above formula gives the follow-
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Figure 7.1.8: A circular cone is obtained by rotating a triangular region about the x-axis.

ing volume:

V = ∫
h

0
πy2 dx = π r

2

h2
∫
h

0
x2 dx = πr

2

h2
× 1
3
x3|

h

0

= πr
2

3h2
(h3 − 0) = 1

3
πr2hunit3.

Figure 7.1.8 shows a cone.

Volume of a solid with known areas of cross sections
Suppose we want to find the volume of a solid that is not a volume of revolution like
the ones shown in Figure 7.1.9.

Figure 7.1.9: Cross-sections of solids.

Suppose that the cross section of the solid at each point x in the interval is a region
R(x) of known area A(x). We partition the interval [a,b] into subintervals of length Δx
and create a slice of the solid between x = a and x = b. When Δx is small, the volume
element of this slice is therefore ΔV ≈ A(x)Δx. The Riemann sum for all slices between
x = a and x = b is

∑ΔV ≈∑A(x)Δx
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and this approximates the volume of the solid. The exact volume of the solid is de-
fined as the limit as ‖Δx‖ → 0. That is, the volume of a solid of known integrable cross
section area A(x) from x = a to x = b is the integral of A from a to b.

V = ∫
b

a
A(x)dx.

Example 7.1.5. A solid has its base R in the xy-plane. The region R is bounded by the
x-axis, the y-axis, and the lines y = x and x = 2. Each cross section perpendicular to
the x-axis is a half circle, as seen in Figure 7.1.10. Find the volume of the solid.

Figure 7.1.10: A solid with base R and cross sections are half circles.

Solution. The area of a half circle is πr2/2. At each x in (0, 2), the diameter r of the
half circle would be y. The area of the cross section perpendicular to the x-axis is

A(x) =
π( y2 )

2

2
= πy

2

8
= πx

2

8
.

Therefore, the volume of the solid is

V = ∫
2

0

πx2

8
dx = πx

3

24
|
x=2

x=0
=

π
24
(23 − 20) = π

3
unit3.

7.1.3 Arc length

Curves in Cartesian form
If the first derivative of a function f (x) is continuous, then the function f (x) is called
smooth and its graph is a smooth curve.

For a smooth curve in theplane from x = a to x = b andanypartition of the interval,
we approximate the length element of the curve by the hypotenuse of the right triangle
as in Figure 7.1.11. The length element Δs is therefore

Δs ≈ √(Δx)2 + (Δy)2 = √1 + (Δy
Δx
)
2
Δx. (7.4)
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Figure 7.1.11: Arc length element.

We add all the length elements to make the following Riemann sum:

s =∑Δs ≈∑√1 + (Δy
Δx
)
2
Δx.

Taking the limit as the norms of the subdivisions go to zero gives the length of the
curve as a definite integral. We have

s = ∫
b

a
√1 + (f ′(x))2 dx = ∫

b

a
√1 + (dy

dx
)
2
dx. (7.5)

In equation (7.4), we could also have written the expression for Δs as

Δs ≈ √(Δx)2 + (Δy)2 = √1 + (Δx
Δy
)
2
Δy.

This would have lead to the following formula for the length of the curve x = g(y) be-
tween y = c and y = d:

s = ∫
d

c
√1 + (dx

dy
)
2
dy. (7.6)

Example 7.1.6. Calculate the length of the arc y = 1
2 (e

x + e−x) for 0 ⩽ x ⩽ a.

Solution. We have

y′(x) = 1
2
(ex − e−x).

Hence,

s = ∫
a

0
√1 + ( 1

2
(ex − e−x))

2
dx = ∫

a

0
√1 + 1

4
(e2x − 2 + e−2x)dx
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Figure 7.1.12: Graph of y = ex+e−x
2 .

= ∫
a

0
√ 1
4
e2x + 1

2
+ 1
4
e−2x dx = ∫

a

0
√ 1
4
(ex + e−x)2 dx

= 1
2
∫
a

0
(ex + e−x)dx = 1

2
(ex − e−x)|

a

0
= 1
2
(ea − e−a).

Figure 7.1.12 shows the arc.

Curves in parametric form
If the arc is described parametrically by

{
{
{

x = f (t)
y = g(t),

t0 ⩽ t ⩽ t1,

then we derive a formula for the arc length using differentials instead of Δxi and Δyi .
The differential of the arc length is

ds = √dx2 + dy2 = √(dx
dt
)
2
+ (

dy
dt
)
2
dt = √(f ′(t))2 + (g′(t))2 dt,

so

s = ∫
t1

t0
√(f ′(t))2 + (g′(t))2 dt.

Example 7.1.7. Find the arc length of the graph described by

{
{
{

x = a(t − sin t)
y = a(1 − cos t)

for 0 ⩽ t ⩽ 2π, a > 0.
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Solution. We have

ds = √(dx
dt
)
2
+ (dy

dt
)
2
dt = √a2(1 − cos t)2 + a2 sin2 t dt

= a√2(1 − cos t)dt = 2a sin t
2
dt for 0 ⩽ t ⩽ 2π.

Hence,

s = ∫
2π

0
2a sin t

2
dt = −4a cos t

2
|
t=2π

t=0

= −4a(cos 2π
2
− cos 0

2
) = −4a(−1 − 1) = 8a.

The graph is shown in Figure 7.1.13.

Figure 7.1.13: Graph of a cycloid.

Curves in polar form
Suppose the curve is described by r = r(θ) in polar coordinates. Then x = r cosθ and
y = r sinθ. Therefore, the parametric equations for the curve are

{
{
{

x = r(θ)cosθ
y = r(θ) sinθ

and

ds = √[x′(θ)]2 + [y′(θ)]2 dθ

= √[r′ cosθ − r sinθ]2 + [r′ sinθ + r cosθ]2 dθ

= √
r′2 cos2 θ + r2 sin2 θ − 2rr′ cosθ sinθ
+ r′2 sin2 θ + r2 cos2 θ + 2rr′ cosθ sinθ

dθ.

This simplifies to

ds = √r2 + (r′)2 dθ.

Example 7.1.8. Find the circumference of the circle centered at (0,0) with radius R,
given by the polar equation r = R.
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Solution. The circumference c is given by

c = ∫
2π

0
√r2 + (r′)2 dθ = ∫

2π

0
√R2 + 02 dθ

= ∫
2π

0
Rdθ = Rθ|

θ=2π

θ=0
= R(2π − 0)

= 2πR.

Figure 7.1.14 shows the graph of a circle with radius R.

Figure 7.1.14: A circle x2 + y2 = R2.

Example 7.1.9. Find the length of the arc described by r = a(1 + cosθ) for a > 0.

Solution. By symmetry, the desired arc length is two times the portion in the first and
second quadrants, so

s = 2∫
π

0
√r2 + (r′)2 dθ = 2∫

π

0
√a2(1 + cosθ)2 + (−a sinθ)2 dθ

= 2∫
π

0
2a|cos θ

2
|dθ = 4a∫

π

0
cos θ

2
dθ

= 8a sin θ
2
|
π

0
= 8a(sin π

2
− sin0) = 8a.

Figure 7.1.15 shows the graph of r = 1 + cosθ.

NOTE. In general, it is very difficult to evaluate exactly the integral giving the length
of a curve. In most cases, the integrals have to be approximated by using rules such
as the trapezoidal rule or Simpson’s rule. The examples given above were carefully
chosen exceptions.
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Figure 7.1.15: Graph of the cardioid r = a(1 + cosθ).

7.2 Applications in other disciplines

7.2.1 Displacement and distance

Consider a particlemoving along a straight line (say, on the x-axis), with velocity func-
tion v(t), with known position at time t0. Let s(t) be the position of the object at time t
(the position is its distance from a reference point, such as the origin on the x-axis).
Then the net position change during time interval [t0, t] is given by s(t) − s(t0). How-
ever, we know that ds(t)

dt = v(t), so

s(t) = s(t0) + ∫
t

t0
v(u)du

gives the position of the particle at any time t.
Similarly, since the velocity is an antiderivative of the acceleration function a(t),

that is, dv(t)
dt = a(t), we write

v(t) = v(t0) + ∫
t

t0
a(u)du.

Example 7.2.1. Suppose an object is moving along the x-axis with velocity v(t) = t2 −
2t − 3 for t ⩾ 0. When t = 0, its position is x = 3. Let x(t) be the position function and
a(t) be the acceleration function. Find:
1. x(5) and a(5);
2. when the object reverses its direction;
3. the distance traveled by the object from t = 1 to t = 5.

Solution. Since x(0) = 3, we know

x(5) = x(0) + ∫
5

0
(t2 − 2t − 3)dt
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= 3 + ( t
3

3
− t2 − 3t)|

x=5

x=0

= 3 + 5
3

3
− 52 − 3(5) − (0

3

3
− 02 − 3(0))

= 14
3
units.

As regards the acceleration of the object at t = 5, we know

a(5) = dv
dt
|
t=5
= (t2 − 2t − 3)′|t=5

= (2t − 2)|t=5 = 2(5) − 2 = 8units.

Since v(t) = (t − 3)(t + 1), when t = 3, v(3) = 0. The velocity v(t) changes from neg-
ative to positive at t = 3, which means the particle changes from moving towards the
left to moving towards the right, so at t = 3, the object reverses its direction.

One needs to be careful when evaluating distance traveled. The integral ∫51 v(t)dt
gives the net change in the position of the particle instead of the distance traveled by
the particle. To find the distance traveled, we use

distance traveled from t = 1 to t = 5

= ∫
5

1
|v(t)|dt = ∫

3

1
|v(t)|dt + ∫

5

3
|v(t)|dt

= −∫
3

1
(t2 − 2t − 3)dt + ∫

5

3
(t2 − 2t − 3)dt

= −( t
3

3
− t2 − 3t)|

t=3

t=1
+ ( t

3

3
− t2 − 3t)|

t=5

t=3

= −(3
3

3
− 32 − 3(3)) + ( 1

3

3
− 12 − 3(1))

+5
3

3
− 52 − 3(5) − (3

3

3
− 32 − 3(3))

= 16 units.

7.2.2 Work done by a force

The work done by a force is defined as force times displacement, assuming that the
force is constant. If the force is a function F(x) that varies with x, the position of the
object on which the force is acting varies. Then the work done in moving an object
from x = a to x = b along a straight line (the x-axis) is given by

W = ∫
b

a
F(x)dx.

Example 7.2.2. Find the work done by the force F(x) = sin(2x)Newton along the
x-axis from x = πmeters to x = 3

2πmeters.
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Solution.

W = ∫
3π
2

π
sin(2x)dx = − 1

2
cos 2x|

x= 3π2

x=π

= − 1
2
(cos(3π

2
× 2) − cos 2π) = − 1

2
(−1 − 1) = 1 Joule.

7.2.3 Fluid pressure

Each dam is built thicker at the bottom than at the top because the pressure of the
water against it increases with depth. Physicists have found that, in any liquid, the
fluid pressure p depends on the depth h as follows:

pressure = ρ × g × h = Force
Area
,

where ρ is the density of liquid (mass per volume) and g ≈ 9.8 is the gravitational ac-
celeration.

Example 7.2.3. Figure 7.2.1 shows a conical tankwith height 5meters and base radius
1meter is filledwithwater (ρ = 1000 kg/m3). Find the total force against thewall of the
tank exerted by the water.

Figure 7.2.1: A conic tank.

Solution. Wepartition thewater into thin slabs by planes parallel to the base of tank.
The typical slab between y and y + Δy has an area of approximately

ΔA ≈ 2πx√Δx2 + Δy2

= 2πx√1 + (Δx
Δy
)
2
Δy

= 2πx√1 + ( 1
5
)
2
Δy
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=
√26
5
⋅ 2πxΔy.

The force against the wall by this slab is

ΔF = ρ × g × (5 − y) × ΔA = (
√26
5
)ρ × g × (5 − y) × 2πxΔy,

so the total force is

F =
√26
5
∫
5

0
ρ × g × (5 − y) × 2πx dy

=
√26
5

2πρg∫
5

0
(5 − y) × y

5
dy

= (
√26
5
)2πρg

5
⋅ ∫

5

0
5y − y2 dy

=
√26
5

2πρg
5
(5
2
y2 − y

3

3
)|

5

0

=
√26
5

2πρg
5
(5
2
⋅ 52 − 5

3

3
)

≈ 261 512units.

7.2.4 Center of mass

Suppose that a rod has three uniform components, a 5 kgweight on the left, a 10 kg
weight in themiddle, and a 2 kgweight on the right.Where should a fulcrumbe placed
so that the rod balances? This requires finding the center of mass of the compounded
rod.We first assign a scale to the rod so that we can denote locations on the rod simply
as x-coordinates. As seen in Figure 7.2.2, the weights are at x = 2, x = 5, and x = 8.

Figure 7.2.2: Center of mass: compounded rod.

If we place the fulcrum at x = 4, then each weight applies a force to the rod that tends
to rotate it around the fulcrum. This effect ismeasuredby a quantity called themoment
(or torque), which is defined as the force times the distance. Obviously, the moments
are not balanced, since the clockwise moment is 5g × 2 = 10g, whereas the counter-
clockwise moment is 10g × 1+ 2g × 4 = 18g. To get the rod to balance, we need to move
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the fulcrum somewhere to the right. Let x̄ be the position where the fulcrum should
be. Then, equating the clockwise and counterclockwise moments, we have

5g(x̄ − 2) + 10g(5 − x̄) = 2g(8 − x̄),
5x̄ − 10 + 50 − 10x̄ = 16 − 2x̄,

x̄ = 34
3
.

This is the position of the center of mass of the rod.
If a plane laminahas auniformdensity at eachpoint in the lamina, then the center

of mass of the lamina is a purely geometric quantity. In such a case, the center of mass
is called the centroid.

Example 7.2.4. Find the centroid of a uniform lamina which has its shape formed by
y = x2, the x-axis, and the line x = 2.

Solution. This is a two-dimensional problem. We need to find the coordinates (x̄, ȳ)
of the center of mass of the lamina. Luckily, we can find x̄ and ȳ independently.

Partition the lamina into small strips, as shown in Figure 7.2.3. For a typical strip,
its mass is approximated by

Δm ≈ δ ⋅ y ⋅ Δx,

where δ is the uniform density function. The total moments around the y-axis exerted
by these strips are given by

My =∑(Δm ⋅ g ⋅ x) ≈∑(δ ⋅ y ⋅ Δx ⋅ g ⋅ x).

Taking the limit as the norm of the partition tends to 0 gives the integral

My = ∫
2

0
δgxy dx = δg∫

2

0
xy dx.

Figure 7.2.3: Center of mass: a lamina.
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The total mass of the lamina is

m = δ∫
2

0
y dx,

so

δg∫
2

0
xy dx = mgx̄,

δg∫
2

0
xy dx = δ∫

2

0
y dx gx̄,

x̄ =
∫20 xy dx

∫20 y dx
=
∫20 x ⋅ x

2 dx

∫20 x
2 dx
=
( 14x

4)|20
( 13x

3)|20
= 3
2
.

Similarly, we determine the y-coordinate of the lamina as follows:

ȳ = 1
2
∫20 y

2 dx

∫20 y dx
= 1
2
∫20 (x

2)2 dx

∫20 x
2 dx

= 1
2
( 15x

5)|20
( 13x

3)|20
= 1
2
× 3
5
× 22 = 6

5
,

so the centroid is at the point ( 32 ,
6
5 ).

7.2.5 Probability

In probability theory, the probability density function f (x) of a random variable X sat-
isfies:
1. f (x) ⩾ 0;
2. ∫∞
−∞

f (x)dx = 1;
3. P(a < X < b) = ∫ba f (x)dx.

Figure 7.2.4 shows the graph of a probability density function f (x).

Figure 7.2.4: Area of the shaded region is P(a < X < b).
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Example 7.2.5. If the random variable X satisfies the negative exponential distribu-
tion with probability density function

f (t) =
{
{
{

3e−3t , t ⩾ 0
0, otherwise,

find P(X > 5).

Solution. We have

P(X > 5) = ∫
∞

5
3e−3t dt = lim

b→∞
∫
b

5
3e−3t dt

= lim
b→∞
(−e−3t)b5

= − lim
b→∞
(e−3b − e−15)

= −(0 − e−15)
= e−15

≈ 3.059 × 10−7.

7.3 Exercises

1. Find the area of each of the shaded regions.

2. Sketch the following curves and then find the area of the enclosed regions:
(a) y = 5x − x2 and y = x;
(b) x = y2 − 2, y = −1, y = 1, and x = ey ;
(c) y = 12 − x2 and y = x2 − 6;
(d) x = acos3 t and y = a sin3 t, 0 ⩽ t ⩽ 2π;
(e) y = cosx, x = 0, and y = sinx;
(f) y = cosπx and y = 4x2 − 1;
(g) x = a(t − sin t) and y = a(1 − cos t) for 0 ⩽ t ⩽ 2π.

3. (Tschirnhaus’ cubic) In geometry, the curve defined by the polar equation r =
a sec3(θ/3) is known as Tschirnhaus’ cubic. It was studied by Von Tschirnhaus,
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L’Hôpital, and Catalan. It is sometimes known as L’Hôpital’s cubic or the trisectrix
of Catalan. Let t = tanθ/3. Then, by using the triple angle formula, one can obtain
its parametric form

x = a(1 − 3t2) and y = at(3 − t2).

If you eliminate the parameter t, you find that the Cartesian equation of the curve
is

27ay2 = (a − x)(8a + x)2.

Sketch the curve in the case where a = 1 and you will see that part of the curve
forms a loop. Find the area enclosed by the loop.

4. (Area of sectors) The area of a region bounded by the polar curve r = r(θ) and two
half lines θ = α and θ = β can be shown to be 1

2 ∫
β
α r

2(θ)dθ. Now:
(a) find the area of the circle r = R;
(b) find the area of the region enclosed by the cardioid r = a(1 + cosθ);
(c) find the area of the region inside the curves r = 1 + sinθ and r = 3 sinθ.

Question 4 Question 11 Question 12

5. Sketch the curve defined by the polar equation r = a sin 2θ, for 0 ⩽ θ ⩽ π
2 , where a

is a positive constant. Then find the area of the loop.
6. Sketch the regions bounded by the following curves, sketch the solids obtained by

rotating the regions about the specific line, and sketch a typical disk or washer:
(a) y = 2 − 1

2x, y = 0, x = 1, x = 2; about the x-axis;
(b) y = arcsinx, x = 1, y = 0; about the x-axis;
(c) y = 1 + secx, y = 3; about y = 1;
(d) x = y2, x = 1 − y2; about x = 3;
(e) x = a(t − sin t), y = a(1 − cos t), y = 0, for 0 ⩽ t ⩽ 2π; about y = 2a.

7. The region bounded by y = √ x+3
(x+1)(x+2)2 , the x-axis, and 0 ⩽ x ⩽ 1 is rotated about

the x-axis. Find the volume of the resulting solid.
8. The region bounded by y = x

4√(1+x2)5
, the x-axis, and 0 ⩽ x ⩽ 1 is rotated about the

x-axis. Find the volume of the resulting solid.
9. A solid has a base R bounded by y = √4 − x2 and the x-axis. Find the volume of

the solid if each cross section perpendicular:
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(a) to the y-axis is a square;
(b) to the x-axis is a semi-circle whose diameter lies in R.

10. The base of a solid is the region between the curve y = 2√sinx and the interval
[0,π] on the x-axis. The cross sections perpendicular to the x-axis are equilateral
triangles with bases running from the x-axis to the curve. Find the volume of the
solid.

11. (Shell method) In the disk method, we sum the volumes of infinitely many in-
finitesimal disks to find the total volume of a solid. The shell method considers
a representative “shell” with volume 2πxy dx (about the y-axis) or 2πyx dy (about
the x-axis). The total volume is given by

V = ∫
b

a
2πxy dx (about the y-axis), or V = ∫

d

c
2πyx dy (about the x-axis).

(a) Find the volume of the solid obtained by rotating the region enclosed by y =
(x − 1)(x − 2)2 and the x-axis about the y-axis.

(b) Find the volume of the solid obtained by rotating the region enclosed by y =
sin(x2) and the x-axis for 0 ⩽ x ⩽ √π about the y-axis.

12. (Surfacearea) It canbe shown that the surface area obtainedby rotating the curve
y = f (x), for a ⩽ x ⩽ b, about the x-axis is

∫
b

a
2πf (x)ds = ∫

b

a
2πf (x)√1 + [f ′(x)]2 dx.

Find the surface area of a sphere with radius R.
13. (Surface area) The curve C is defined by the parametric equations x = t3 − 3t and

y = 3t2 + 1. The arc of C, joining the point where t = 0 to the point where t = √3, is
rotated about the y-axis. Find the surface area of the resulting solid.

14. (Length of curves) Find the length of each of the following curves:
(a) y = 2

3 (x
2 − 1)3/2, 1 ⩽ x ⩽ 3;

(b) y = ln cosx, 0 ⩽ x < π/3;
(c) x = t3, y = 3t2

2 , 0 ⩽ t ⩽ √3;
(d) x = t − 8√t, y = 16

3
4√t3, 1 ⩽ t ⩽ 4;

(e) x = 8cos t + 8t sin t, y = 8sin t − 8t cos t, 0 ⩽ t ⩽ π
2 ;

(f) r = eθ , 0 ⩽ θ ⩽ π
4 ;

(g) r = a(1 + cosθ), 0 ⩽ θ ⩽ 2π;
(h) f ′(x) = √x2e2x − 1, between x = 0 and x = 3;
(i) y = 3

8x
4
3 − 3

4x
2
3 , 1 ⩽ x ⩽ 8.

15. (Average value) The two variables x and y are related by x4 + y4 = 1 for 0 < x < 1
and 0 < y < 1. (a) Find dy

dx and
d2y
dx2 . (b) Given that y(a1) = b1 and y(a2) = b2 where

0 < a1 < a2 < 1, find themeanvalue of d
2y

dx2 with respect to x over the interval [a1,a2].
16. (Volume of an infinite solid) The cross sections of a solid horn perpendicular to

the x-axis are circular disks with diameters reaching from the x-axis to the curve
y = 1/x, for 1 ⩽ x <∞. Find the volume of the horn.
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17. (Particlemotion) A particle moves along the x-axis with velocity v(t) = 2t − sinπt
for t ⩾ 0. The particle starts in the origin. Find the position of the particle when
t = 4.

18. (Flying distance) A bird is flying at 10m/sec at an altitude of 20m. Sadly, the bird
is accidentally shot by a bullet and starts to drop to the ground. The parabolic
trajectory of the falling body is modeled by h(x) = 20− x

2

5 , where h(x) is the height
of the falling body above the ground and x is the horizontal distance it travels.
Find the distance traveled by the falling body in the air.

19. (Centroid) Find the coordinates of the centroid of the region bounded by the
x-axis, the line x = 1, and the curve y = xe−x .

20. (Water pressure) A dam has the shape of a trapezoid. The height is 20m and the
width is 50m at the top and 30m at the bottom. Find the force exerted on the dam
due to the hydro pressure if the water level is 4m from the top of the dam.

21. (Fundraising). Contributions in response to a fundraising campaign are coming
at the rate of 1 500te−0.25t dollars per week. How much money will be raised after
10 weeks?

22. (Future value) Money is transferred into an account at the rate of r(t) =
500t ln√1 + t dollars per year. If the account pays 5% interest compounded con-
tinuously, how much will accumulate in the account over a six-year period?

23. (Population growth) The rate of change of the population of a certain city ismod-
eled as r(t) = 10000(t+1)e−0.2t thousandpeople per year. If the current population
is 1.5 million, what will the population be 10 years from now?

24. (Probability) If f (x) = {k sin
πx
10 , when 0 ⩽ x ⩽ 10

0, otherwise
is the probability density function of

a random variable X, then find:
(a) the value of k; (b) P(X < 4); (c) the mean of X.





8 Infinite series, sequences, and approximations
In this chapter, you will learn about:
– infinite series;
– tests for convergence;
– alternating series;
– power series;
– Taylor series;
– Fourier series.

An infinite sequence is a set of infinite numbers arranged in a particular order. A se-
ries (also called an infinite series) can be thought of as the sum of the numbers in a
sequence. Of course, it is not possible to actually add infinitely many numbers but,
nevertheless, it is possible to give a meaning to an infinite sum and, in some cases,
find a value for it.

Sequences and series are very important in calculus, in other areas of study, and in
their applications. For example, people have used a sequence of regular polygonswith
five, six, seven,… sides to approximate the circumference of a circle to any desired ac-
curacy. Many very important functions that arise in mathematical physics, chemistry,
and engineering, such as Bessel functions, are defined as infinite series. Physicists
also deal with series when studying fields as diverse as optics, special relativity, and
electromagnetism, where they often analyze phenomena by replacing a function with
the terms from a series representation of the function. Hence, it is important to be fa-
miliar with the basic concepts of sequences, series, and especially the meaning of a
convergent sequence and convergent series.

8.1 Infinite sequences

You have already encountered infinite sequences in Chapter 2. For reference, some
basic definitions are repeated here.

Definition 8.1.1. An infinite sequence, or simply a sequence, is a list of infinitely
many numbers an in the particular order given by increasing values of the index
n = 1, 2,3,4,… of the following form:

{an} = {an}∞n=1 = a1,a2,a3,a4,a5,… ,an,… .

NOTE. Any other letters can be used in place of “a” and “n” without changing this
definition.

A sequence {an} has limit a (a number) if the numbers an are arbitrarily close to a
for all sufficiently large values of the index n.

https://doi.org/10.1515/9783110527780-008
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This is similar to the limit of a function of the form limx→∞ f (x) = a, except here
we replace the variable x by integer values of n. The formal definition is repeated here.

Definition 8.1.2. A sequence {an} is convergent with limit a if, for any number ε > 0
(no matter how small), there is an integer N (that depends on ε) such that

|an − a| < ε for all n ⩾ N .

In this case, we write limn→∞ an = a. A sequence that is not convergent is called diver-
gent.

A particular sequence is often specified by giving a formula for the nth term that
is true for n = 1, 2,3…, as in the next example.

Example 8.1.1. Show that the sequence

{sn} = {1 −
1
2n
} = 1

2
, 3
4
, 7
8
, 15
16
,…

is convergent with limit s = 1.

Solution. Since

|sn − s| = |(1 −
1
2n
) − 1| = ( 1

2
)
n

for any ε > 0,weneed to show that (1/2)n < ε for all sufficiently large n. This is probably
obvious to you, butwe prove it formally as follows.Wefind thisN by taking logarithms
of both sides, which preserves the inequality because the logarithmic function ln(x)
is an increasing function for all x > 0. We have

ln( 1
2
)
n
< ln ε ⟺ −n ln 2 < ln ε ⟺ n > − ln ε

ln 2
.

Hence, |sn − s| = (1/2)n < ε for all n ⩾ N if N is chosen to be any integer larger than
− 2 ln εln 2 ≈ −2.8854 ln ε (note that ln ε < 0 if ε < 1).

We repeat here the theorem on bounded, monotonic sequences {an}, because it
will be used extensively in this chapter.

Theorem 8.1.1 (Bounded monotonic sequence theorem). If a sequence {an} is bound-
ed and monotonic, then it must have a limit L. That is, limn→∞ an = L.
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8.2 Infinite series

8.2.1 Definition of infinite series

Suppose a1,a2,a3,… ,an,… is a sequence of numbers and we add the terms of the se-
quence, giving an expression of the following form:

∞

∑
k=1

ak = a1 + a2 + a3 +⋯+ an +⋯.

This infinite sum is called an infinite series (or just a series).

NOTE. A series can also be denoted by ∑ak , or ∑∞k=1 ak . A series can also start at
other values, such as k = 0 or k = 2, or even at negative values, such as∑∞k=−1 ak+1. The
subscript can be replaced by any other letter such as n or iwithout changing the series,
so∑∞k=1 ak ,∑

∞
n=1 an,∑

∞
i=1 ai, and∑

∞
j=1 aj all denote the same series. In this chapter, most

often we will use k or n as the index, i.e., ∑∞k=1 ak and ∑
∞
n=1 an.

It would be physically impossible to add infinitely many numbers, but we can
sometimes give a meaning to it, as follows. We construct the partial sum sn that is the
sum of the first n terms ak , so we have

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, … .

In general,

sn = a1 + a2 +⋯+ an =
n
∑
k=1

ak .

These partial sums form a new infinite sequence {sn}, which may or may not have a
limit.

Definition 8.2.1. Let ∑∞k=1 ak be an infinite series with partial sums sn = ∑nk=1 ak . If
the sequence of partial sums {sn} is convergent, so that limn→∞ sn = s exists as a real
number, then we say that the series ∑ak is convergent and has sum s and we write

s =
∞

∑
k=1

ak = a1 + a2 + a3 +⋯+ an +⋯.

If ∑ak is not convergent, then the series ∑ak is called divergent.

Thus, whenwewrite∑∞k=1 ak = s, wemean that, by adding sufficientlymany terms
from the start of the series, we get as close as we like to the number s. In limit terms,
we write

lim
n→∞
(a1 + a2 + a3 + a4 +⋯+ an) = s.
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That is, if ∑∞k=1 ak = s, then sn ≈ s when n is large and the difference

r = s − sn = an+1 + an+2 + an+3 +⋯,

called the remainder, approaches zero as n→∞.

Example 8.2.1. Show that the following two infinite series are divergent:
(a) ∑∞k=1 k = 1 + 2 + 3 +⋯+ n +⋯;
(b) ∑∞k=1(−1)

k+1 = 1 − 1 + 1 − 1 + 1 − 1 +⋯+ (−1)n−1 +⋯.

Solution. Series (a) haspartial sums sn = n(n+1)/2 and limn→∞ sn = +∞, so it diverges
to +∞. Series (b) has partial sums sn = 1 if n is odd and sn = 0 if n is even. Hence,
limn→∞ sn does not exist, so the series diverges.

Example 8.2.2 (Telescoping series). Show that the sum of the infinite series
∑∞k=1

1
k(k+1) is 1.

Solution. We use the definition of a convergent series and compute the partial sums.
We note that the method of partial fractions enables us to write

1
k(k + 1)

= 1
k
− 1
k + 1
,

so

sn =
n
∑
k=1

1
k(k + 1)

= 1
1 × 2
+ 1
2 × 3
+⋯+ 1

n × (n + 1)

= (1 − 1
2
) + ( 1

2
− 1
3
) + ( 1

3
− 1
4
) +⋯+ ( 1

n
− 1
n + 1
)

= 1 − 1
n + 1

because all other terms cancel each other.

Hence, limn→∞ sn = limn→∞(1 −
1

n+1 ) = 1 − 0 = 1, so the given series is convergent and
∑∞k=1

1
k(k+1) = 1.

Definition 8.2.2 (Geometric series). Let a ≠ 0 and q be any fixed real numbers. The
infinite series

a + aq + aq2 +⋯+ aqn +⋯ =
∞

∑
k=0

aqk

is called a geometric series and the number q is called the common ratio of the series.

Example 8.2.3. Show that the geometric series

∞

∑
k=0

aqk = a + aq + aq2 +⋯+ aqn +⋯
{
{
{

converges to a
1−q , when |q| < 1

diverges, when |q| ⩾ 1.
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Solution. If q ≠ 1, we write the nth partial sum sn and thenmultiply both sides of this
by q, to obtain

sn = a + aq + aq2 +⋯+ aqn−1,
qsn = aq + aq2 +⋯+ aqn−1 + aqn.

Subtracting the second equation from the first, we obtain the following equation
for sn:

sn − qsn = a − aqn ⟹ sn =
a(1 − qn)
1 − q
.

If −1 < q < 1, we know that qn→ 0 as n→∞, so

lim
n→∞

sn = limn→∞

a(1 − qn)
1 − q
= a
1 − q
.

Thus, when |q| < 1, the geometric series is convergent and its sum is a
1−q , so

a
1 − q
= a + aq + aq2 +⋯+ aqn +⋯ for |q| < 1.

If |q| > 1 (that is, q < −1 or q > 1), then qn →±∞, so limn→∞ sn does not exist and
the sequence {aqn} is divergent.

If q = −1, then qn = 1 if n is even and qn = −1 if n is odd, so limn→∞ sn does not exist
and the series diverges.

If q = 1, then the nth partial sum is sn = a + a + a + ⋯ + a = na →∞ (or −∞).
Therefore, limn→∞ sn does not exist and the geometric series diverges.

Therefore, the geometric series ∑aqk converges when |q| < 1 and diverges when
|q| ⩾ 1.

Example 8.2.4. Determine whether or not the series∑∞k=1(
3
π )

k is convergent. If it con-
verges, find the sum of the series.

Solution. This is a geometric series with common ratio 3/π < 1 and first term 3/π.
Therefore, it converges to

3
π

1 − 3
π
= 3
π − 3
≈ 21.188.

8.2.2 Properties of convergent series

Since the convergence of series is defined by a limit, we expect that the properties of
convergent series are similar to those of limits.
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Theorem 8.2.1. If ∑un and ∑ vn are convergent series and c ∈ R is any constant, then
∑ cun and ∑(un ± vn) are also convergent series and

∑ cun = c∑un, ∑(un ± vn) =∑un ±∑ vn.

Proof. These properties of convergent series follow from the corresponding limit
laws.

Example 8.2.5. Find the sum of the series ∑∞n=1(
3

2n(n+1) +
1
3n ).

Solution. The series ∑ 1/3n is a geometric series with a = 1
3 and q =

1
3 , so

∞

∑
n=1

1
3n
=

1
3

1 − 1
3
= 1
2
.

A previous example showed that

∞

∑
n=1

1
n(n + 1)

= 1,

so, by Theorem 8.2.1, the given series is convergent and

∞

∑
n=1
( 3
2n(n + 1)

+ 1
3n
) = 3

2

∞

∑
n=1

1
n(n + 1)

+
∞

∑
n=1

1
3n

= 3
2
+ 1
2

= 2.

NOTE. Changing a finite number of terms of an infinite series does not affect the con-
vergence or divergence, but it does affect the sum.

This follows from the result that, for any integer N ,

∞

∑
n=1

an =
N−1
∑
n=1

an +
∞

∑
n=N

an.

This shows that ∑∞n=1 an converges if and only if ∑∞n=N an converges, because conver-
gence only depends on the values an as n→∞. This means that we can add a finite
number of terms to a series or delete/change a finite number of termswithout alternat-
ing the series’ convergence or divergence, although usually this will change the sum
of a convergent series.
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A test for divergence
Suppose that the infinite series ∑∞k=1 ak converges with sum s. Then we have

lim
n→∞

sn = limn→∞

n
∑
k=1

ak = s.

Also note that, for n ⩾ 2,

an =
n
∑
k=1

ak −
n−1
∑
k=1

ak = sn − sn−1.

Combining the above two equations, we have

lim
n→∞

an = limn→∞
(sn − sn−1) = limn→∞

sn − limn→∞
sn−1 = s − s = 0.

This establishes the next theorem.

Theorem 8.2.2 (The nth term divergence test). If the infinite series∑∞n=1 an converges,
then the sequence {an} of terms of the series has limit 0. Equivalently, if limn→∞ an ≠ 0,
then ∑an is divergent.

Example 8.2.6. Show that the following series all diverge:
(a) ∑∞n=1

n2
3n2+4 ; (b) ∑∞m=1(−1)

m; (c) ∑∞k=1(
k
k+1 )

k .

Solution. These series all diverge by the nth term divergence test because:
(a) limn→∞

n2
3n2+4 = limn→∞

1
3+4/n2 =

1
3 ≠ 0;

(b) limm→∞(−1)m does not exist;
(c) limk→∞(

k
k+1 )

k = limk→∞(
1

1+ 1k
)k = limk→∞

1
(1+ 1k )

k =
1
e ≠ 0.

The converse of the nth term divergence test is not necessarily true. That is, knowing
that the limit of the terms of a series is zero does not ensure that the series converges.
For instance, the harmonic series∑ 1/n satisfies limn→∞ 1/n = 0, yet∑ 1/n diverges, as
shown in the next example.

Example 8.2.7. Show that the harmonic series

1 + 1
2
+
1
3
+⋯+

1
n
+⋯ =

∞

∑
k=1

1
k

is divergent.

Proof. We show that the partial sums sn become arbitrarily large and can therefore not
approach a limiting value.
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Figure 8.2.1: Graph of y = 1
x and rectangles with area 1,

1
2 ,

1
3 ,… ,

1
n .

As seen in Figure 8.2.1, the partial sum sn, which is the sumof the areas of n rectangles,
all with base 1, is larger than the area below the curve y = 1/x, above the x-axis, and
between the two lines x = 1 and x = n + 1. Therefore,

sn ⩾ ∫
n+1

1

1
x
dx = ln |x|n1 = lnn − ln 1 = lnn,

so sn→∞ as n→∞. Thus limn→∞ sn does not exist and ∑ 1/n diverges.

An alternative solution
If the harmonic series converges with sum s, then its partial sums sn and s2n both have
limits s. This means

s2n − sn→ 0 as n→ 0.

However,

s2n − sn =
1

n + 1
+ 1
n + 2
+⋯+ 1

2n

>
n times

1
2n
+ 1
2n
+⋯+ 1

2n
= 1
2
↛ 0.

This is a contradiction to the assumption that s2n − sn → 0. Therefore, the har-
monic series is divergent (proof by contradiction).

NOTE. The terms in the harmonic series correspond to the nodes on a vibrating string
that produce multiples of the fundamental frequency, the lowest note or pitch one
hears when a string is plucked. For example, 1/2 (one node divides the string into two
parts) produces the harmonic that is twice the fundamental frequency, 1/3 produces a
frequency that is three time the fundamental frequency, etc.
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In Chapter 2, we saw the sequence form of Cauchy’s theorem, which gives suffi-
cient andnecessary conditions for a convergent sequence. Nowwegive the series form
in the following theorem.

Theorem 8.2.3. An infinite series ∑un converges if and only if, for any positive num-
ber ε, there exists an integer N (depending on ε) such that, whenever n ⩾ N, we have

|sn+p − sn| = |un+1 + un+2 +⋯+ un+p| < ε for any positive integer p.

This theorem states that, if a series is convergent, the “tail” of a series, the terms
after uN , must be arbitrarily small, if N is large enough.

8.3 Tests for convergence

8.3.1 Series with nonnegative terms

A series ∑∞k=1 ak with nonnegative terms satisfies ak ⩾ 0 for all k. For each positive
integer n, the partial sum sn+1 of a series ∑ak with nonnegative terms satisfies

sn+1 =
n+1
∑
k=1

ak = (
n
∑
k=1

ak) + an+1 ⩾
n
∑
k=1

ak = sn,

so

s1 ⩽ s2 ⩽⋯ ⩽ sn ⩽⋯.

That is, the sequence {sn} of partial sums is an increasing sequence and is therefore a
monotonic sequence. By the bounded monotone sequence theorem, we know that an
increasing sequence {sn} converges if and only if the sequence {sn} is bounded above.
If the sequence {sn} is not bounded above, then limn→∞ sn = +∞, in which case the
sequence of partial sums {sn} and the series ∑ak both diverge to +∞.

We have already seen that the partial sums of the harmonic series∑∞k=1 1/k are not
bounded above. Therefore, it diverges to +∞.

We now give a number of tests that allow us to detect whether or not a series∑an
with nonnegative terms is convergent. Each test is effective for a particular class of
infinite series. These tests do not help us to find the sum of a series.

The p-series and integral test
Definition 8.3.1. A p-series is a series of nonnegative terms of the following form:

1 + 1
2p
+

1
3p
+⋯+

1
np
+⋯ =

∞

∑
k=1

1
kp
,

where p is a nonzero constant.
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The harmonic series is a p-series with p = 1 and we already know that it diverges.
Now we investigate p-series, for p > 0, p ≠ 1, so that 1

np >
1
(n+1)p for all n. We compare

the partial sums sn to some areas of the plane as follows. Construct the following rect-
angles in a Cartesian coordinate system in R2: rectangle 1 with base the interval [1, 2]
on the x-axis and height 1, rectangle 2 with base the interval [2,3] on the x-axis and
height 1

2p , rectangle 3with base the interval [3,4] and height
1
3p , etc. Continue this pro-

cess until you have n rectangles, the last with base [n,n + 1] on the x-axis and height
1
np . The total area enclosed by these rectangles is the same as the nth partial sum of
the following p-series:

1 ⋅ 1
1p
+ 1 ⋅ 1

2p
+ 1 ⋅ 1

3p
+⋯+ 1 ⋅ 1

np
= sn.

The graph of y = 1
xp and the rectangles are shown in Figure 8.3.1 (a).

Figure 8.3.1: Graph of y = 1
xp and rectangles with area 1,

1
2p ,

1
3p ,….

The graph of y = 1
xp , for x ⩾ 1, is decreasing and does not go above the rectangles.

Hence,

sn ⩾ ∫
n+1

1

1
xp

dx = [ 1
1 − p

x1−p]
n+1

1
=

1
1 − p
((n + 1)1−p − 1).

Notice that, when 0 < p < 1, the integral 1
1−p ((n + 1)

1−p − 1) → ∞ as n →∞, so
sn→∞ and the p-series diverges.

If we move all of the rectangles one unit to the left, then they are all below y = 1
xp

for x ⩾ 1, except for the first rectangle of area 1, as seen in Figure 8.3.1 (b). Therefore,
when p > 1,

sn ⩽ 1 + ∫
n

1

1
xp

dx = 1 + [ 1
1 − p

x1−p]
n

1

= 1 + 1
1 − p
(n1−p − 1) = 1 + 1

1 − p
( 1
np−1
− 1)



8.3 Tests for convergence | 365

< 1 + 1
1 − p
(0 − 1) = 1 + 1

p − 1
= p
p − 1
.

In this case, {sn} is monotonic and bounded above, so a p-series converges when p > 1.
These results are summarized in the following theorem.

Theorem 8.3.1 (The p-series). Let p be a real number. The infinite series

∞

∑
k=1

1
kp

converges if p > 1 and diverges if p ⩽ 1.

The same geometric reasoning that we have used for p-series proves the following
generalization.

Theorem 8.3.2 (Integral test). Let f be a continuous, positive, decreasing function on
[1,∞) and let an = f (n). Then the series∑∞n=1 an is convergent if and only if the improper
integral ∫∞1 f (x)dx is convergent. In other words:
1. If ∫∞1 f (x)dx exists as a real number, then ∑∞n=1 an is convergent. In this case, if the

sum s = ∑∞n=1 an, then ∫
∞
1 f (x)dx ⩽ s ⩽ a1 + ∫

∞
1 f (x)dx.

2. If ∫∞1 f (x)dx does not exist as a real number, then ∑∞n=1 an is divergent.

The comparison test
If two infinite series have similar terms, then knowing the behavior of one of the series
might be enough to determine the behavior of the other. The comparison test shows
one way that this can be done.

Theorem 8.3.3 (The comparison test). Let ∑∞k=1 uk and ∑
∞
k=1 vk be two series of non-

negative terms such that uk ⩽ vk for all k. Then:
1. if ∑∞k=1 vk converges, then ∑

∞
k=1 uk converges;

2. if ∑∞k=1 uk diverges, then ∑
∞
k=1 vk diverges.

Proof. If sun and svn designate the nth partial sums of∑uk and∑ vk , respectively, then

sun = u1 + u2 +⋯+ un ⩽ svn = v1 + v2 +⋯+ vn.

If ∑ vk converges, this means the partial sum of ∑uk is bounded above, so
∑uk converges. If ∑uk diverges, this means the partial sum of ∑uk gets larger and
larger as k →∞, so the partial sum of ∑ vk is unbounded. Therefore, ∑ vk must be
divergent.

NOTE. In using the comparison test, we must, of course, have a series ∑ ck that is
known to converge or diverge for the purpose of comparison. Often, we use either a
p-series (∑ 1/kp) or a geometric series ∑aqk−1.
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(*Group discussion) In Theorem 8.3.3, if we replace the condition “uk ⩽ vk for all k” by
“uk ⩽ cvk for sufficiently large k (where c is a positive constant),” how will this affect
the results of the theorem?

Example 8.3.1. Determine whether the series ∑∞n=1
3

2n2+7n+3 converges or diverges.

Solution. For large n the dominant term in the denominator is 2n2, so we compare
the given series with the series ∑ 1

n2 . Observe that the nth term is bounded above by

3
2n2 + 7n + 3

< 3
2n2
= 3
2
1
n2
.

We know that 3
2 ∑
∞
n=1 1/n

2 is convergent because it is a multiple of a p-series with p =
2 > 1. Therefore, ∑∞n=1 3/(2n

2 + 7n + 3) is convergent by the comparison test.

Example 8.3.2. Determine whether the infinite series ∑∞k=1
1
√2k2+3

converges or di-
verges.

Solution. The dominant part of the kth term is 1
√2k2
= 1
√2k , which is a multiple of

the kth term of the divergent harmonic series, suggesting divergence. To confirm this,
compare it with the harmonic series as follows. For k ⩾ 2,

1
√2k2 + 3

⩾ 1
√2k2 + k2

= 1
√3

1
k
.

Since 1
√3 ∑
∞
k=1

1
k diverges, the given series ∑

∞
k=1

1
√2k2+3

also diverges by the comparison
test.

NOTE. In this example, the comparison test works even though the inequality holds
only for k ⩾ 2. This is because the behavior of the first few terms of a series does not
matter in the comparison test (or any other test for convergence). That is, as long as
the test applies to all terms after a certain point in the series, the conclusions of the
test will still be true.

Theorem 8.3.4 (Limit comparison test). Let ∑∞k=1 ak and ∑
∞
k=1 bk be two series of non-

negative terms. Suppose that

lim
k→∞

ak
bk
= L, where L ≠ 0 and L ≠∞. (8.1)

Then ∑∞k=1 ak and ∑
∞
k=1 bk both converge or both diverge.

Proof. LetA and B be any positive numbers such thatA < L < B. Because an/bn is close
to L for large n, there is an integer N such that, for all n > N , we have

A < an
bn
< B,
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so

Abn < an < Bbn for all n > N .

Hence, if ∑an converges, so does ∑Abn. By the comparison test, ∑bn also converges.
If ∑an diverges, so does ∑Bbn, thus ∑bn diverges.

(*Group discussion) In the limit comparison test theorem, if L = 0 and∑bk converges,
does the series ∑ak have to converge? If L = +∞ and ∑bk diverges, does the series
∑ak have to diverge?

Example 8.3.3. Determine whether the series ∑∞n=1
1

3n−1 converges or diverges.

Solution. The nth term is close to 1
3n for large n, so we apply the limit comparison test

with

an =
1

3n − 1
and bn =

1
3n
.

We obtain

L = lim
n→∞

an
bn
= lim
n→∞

1/(3n − 1)
1/3n
= lim
n→∞

3n

3n − 1
= 1 > 0.

Since the limit L = 1 and ∑ 1/3n is a convergent geometric series, it follows that ∑ 1
3n−1

converges by the limit comparison test.

Example 8.3.4. Determine whether the series ∑∞n=1
n2+3n
√8+n5

converges or diverges.

Solution. The dominant part of the numerator is n2 and the dominant part of the
denominator is √n5 = n5/2. This suggests to compare an =

n2+3n
√8+n5

with bn =
n2
n5/2 =

1
n1/2 ,

which is the nth term of the divergent p-series ∑ 1/n
1
2 . We have

lim
n→∞

an
bn
= lim

n→∞

n2 + 3n
√8 + n5

× n1/2

= lim
n→∞

n5/2 + 3n3/2
√8 + n5

= lim
n→∞

1 + 3
n

√ 8
n5 + 1
= 1.

Since ∑bn = ∑ 1/n1/2 is divergent, the given series diverges by the limit comparison
test.

To effectively use the limit comparison test, we need to have a collection of series
whose behavior we already know. The p-series belongs to the most useful series for
this purpose.
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d’Alembert’s ratio test

Jean-Baptiste d’Alembert
(1717–1783) was a French mathematician, mechanician, physicist,
philosopher, and music theorist. The wave equation is sometimes re-
ferred to as d’Alembert’s equation. The ratio test was first published
by him and is sometimes known as the d’Alembert ratio test. http:
//en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert

Theorem 8.3.5 (The ratio test). Let ∑∞k=1 ak be a series of nonnegative terms and sup-
pose

lim
k→∞

ak+1
ak
= ρ,

where 0 ⩽ ρ ⩽∞. Then:
(1) if ρ < 1, then ∑∞k=1 ak converges;
(2) if ρ > 1, then ∑∞k=1 ak diverges;
(3) if ρ = 1, the ratio test gives no information about the convergence or divergence of
∑∞k=1 ak .

Proof. (1) If an+1
an
→ ρ < 1, then we can choose a number r such that ρ < r < 1. Since

lim
n→∞

an+1
an
= ρ < r,

there exists an integer N such that, for all n ⩾ N , we have an+1
an
< r. That is, for all n ⩾ N ,

an+1 < ran.

Hence, aN+1 < raN , aN+2 < raN+1 < r2aN , aN+3 < raN+2 < r3aN , and, in general,

aN+k < rkaN .

However, the series ∑∞k=0 aN r
k (or equivalently ∑∞k=N aN r

k−N ) is convergent since it is
a geometric series with 0 < r < 1. Since ak ⩽ aN rk−N for each k > N , by the comparison
test,∑∞k=N ak is also convergent. Adding back the first N − 1 terms to the series∑∞k=N ak
gives ∑∞k=1 ak , the original series, which must also be convergent.

(2) If limn→∞ an+1/an → ρ > 1, then the ratio an+1/an will be greater than 1 for
all sufficiently large n, say, n ⩾ M. This means that an+1 > an whenever n ⩾ M, so
limn→∞ an ≠ 0. Therefore, ∑an diverges by the nth term divergence test.
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(3) If limn→∞ an+1/an = 1, then we give two examples. The limit of the ratio is 1 for
the convergent series ∑ 1/n2, because

lim
n→∞

an+1
an
= lim
n→∞

1
(n+1)2

1
n2
= 1.

The limit of the ratio is 1 for the divergent series ∑ 1/n, because

lim
n→∞

an+1
an
= lim
n→∞

1
n+1
1
n
= 1.

Hence, the test fails to give any information about convergence when limn→∞ an+1/
an = 1.

Example 8.3.5. Show that the series
∞

∑
k=1

1
k!
= 1 + 1

2!
+ 1
3!
+⋯ + 1

n!
+⋯

converges.

Solution. We use the ratio test with an =
1
n! . We have

lim
n→∞

an+1
an
= lim
n→∞

1
(n+1)!
1
n!
= lim
n→∞

1
n + 1
= 0 < 1.

Therefore, by the ratio test, the given series is convergent.

Example 8.3.6. Test the convergence of the series
∞

∑
n=1

n!
nn
= 1!
11
+ 2!
22
+ 3!
33
+⋯+ n!

nn
+⋯.

Solution. The terms an =
n!
nn are positive and we have

an+1
an
=
(n+1)!
(n+1)n+1

n!
nn
= (n + 1)!
(n + 1)n+1

× n
n

n!
= (n + 1)n!
(n + 1)n+1

× n
n

n!

= (
n

n + 1
)
n
= (

1
1 + 1

n
)
n
.

Because

lim
n→∞

an+1
an
= lim
n→∞
( 1
1 + 1

n
)
n
= lim
n→∞

1
(1 + 1

n )
n
= 1
e
< 1,

the given series is convergent by the ratio test.



370 | 8 Infinite series, sequences, and approximations

(*Group activity) Raabe’s test: assume limn→∞ n(|
an
an+1
| − 1) = k. Then, if k < 1, ∑an di-

verges and, if k > 1, ∑an converges. This is an extension of the ratio test and is due to
Joseph Ludwig Raabe (1801–1859, a Swiss mathematician). Why does it work? Use this
test to show that ∑ 1

np converges when p > 1 and diverges when p < 1.

The root test (Cauchy’s radical test)
Theorem 8.3.6 (The root test). Let ∑∞k=1 ak be a series of nonnegative terms and sup-
pose

lim
n→∞

n√an = ρ,

where 0 ⩽ ρ ⩽∞. Then:
(1) if ρ < 1, then ∑∞k=1 ak converges;
(2) if ρ > 1, then ∑∞k=1 ak diverges;
(3) if ρ = 1, the test fails to give any information and ∑∞k=1 ak may converge or diverge.

Although the precise proof is not given here, intuitively we have n√an ≈ ρ when n
is large. Therefore, an ≈ ρn for sufficiently large n. By the limit comparison test and the
theorem for geometric series, we have conclusions (1) and (2). For (3), we also have
two examples∑ 1/n and∑ 1/n2. Both limn→∞

n√1/n and limn→∞
n√1/n2 are 1, but one of

them converges and the other diverges. Therefore, if ρ is 1, the root test is inconclusive.

Example 8.3.7. Test the convergence of the series ∑∞n=1
2+(−1)n

3n .

Solution. We have

an =
2 + (−1)n

3n
and 1

3n
⩽ 2 + (−1)

n

3n
⩽ 3
3n
.

Hence,

1
3
⩽

n
√2 + (−1)

n

3n
⩽

n√3
3
,

so limn→∞
n√an =

1
3 . Thus, the given series converges by the root test.

Example 8.3.8. Show that the following series is convergent:

1 + 1
22
+ 1
33
+⋯+ 1

nn
+⋯.

Solution. We use the root test with an =
1
nn , since

n√an =
n
√ 1
nn
=
1
n
→ 0 < 1 as n→∞.

Therefore, we conclude that the series ∑ 1
nn is convergent.
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8.3.2 Series with negative and positive terms

Alternating series test
If the terms of a series alternate in sign and decrease to 0 in absolute value, we imme-
diately conclude that the series converges. The full result is the following.

Theorem 8.3.7 (Alternating series test). Let {un}∞n=1 bea sequence of positive real num-
bers satisfying

u1 ⩾ u2 ⩾⋯ ⩾ un ⩾⋯

(a decreasing sequence) and limn→∞ un = 0. Then the alternating series

∞

∑
k=1
(−1)k−1uk = u1 − u2 + u3 − u4 +⋯

formed from these numbers is convergent.

Proof. We first consider the even partial sums:

s2 = u1 − u2 ⩾ 0,
s4 = s2 + (u3 − u4) ⩾ s2.

In general, s2n = s2n−2 + (u2n−1 − u2n) ⩾ s2n−2 since u2n−1 ⩾ u2n, so

0 ⩽ s2 ⩽ s4 ⩽⋯ ⩽ s2n ⩽⋯.

However, we can also write

s2 = u1 − u2, s4 = u1 − (u2 − u3) − u4 and in general
s2n = u1 − (u2 − u3) − (u4 − u5) −⋯− (u2n−2 − u2n−1) − u2n.

Every term in the parentheses is positive, so s2n ⩽ u1 for all n. Therefore, the sequence
{s2n} of even partial sums is increasing and bounded above. It is therefore convergent
by the bounded monotonic sequence theorem.

Let limn→∞ s2n = s. We compute the following limit of the odd partial sums:

lim
n→∞

s2n+1 = limn→∞
(s2n + u2n+1)

= lim
n→∞

s2n + limn→∞
u2n+1 = s + 0 = s.

Since both the even and the odd partial sums converge to s, the alternating series
∑∞k=1(−1)

k−1uk is convergent with sum s. Figure 8.3.2 illustrates this idea.
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Figure 8.3.2: Graph of the sequence {sn = ∑nk=1(−1)
k−1 1

k }.

Example 8.3.9. Show that the following alternating harmonic series converges:
∞

∑
k=1
(−1)k−1 1

k
= 1 − 1

2
+ 1
3
− 1
4
+⋯.

Proof. If bk =
1
k , for k = 1, 2,3,…, then (i) {bk} is decreasing since bk+1 =

1
k+1 < bk =

1
k

and (ii) limk→∞ bk = limk→∞
1
k = 0. Hence, the conditions of the alternating series test

are satisfied, so the series ∑∞k=1(−1)
k−1bk = ∑∞k=1(−1)

k−1 1
k is convergent.

Example 8.3.10. Decide whether or not the series ∑∞n=1
(−1)nn
4n+1 is convergent.

Solution. It is an alternating series but it does not satisfy the conditions of the alter-
nating series test because, with bn =

n
4n+1 ,

lim
n→∞

bn = limn→∞

n
4n + 1
= lim
n→∞

1
4 + 1

n
= 1
4
≠ 0.

The nth term divergence test shows that this series diverges.

Example 8.3.11. Test the series ∑∞n=1(−1)
n+1 n2

n3+2 for convergence or divergence.

Solution. It is obvious that the series is alternating. If bn =
n2
n3+2 , then

lim
n→∞

bn = limn→∞

n2

n3 + 2
= 0.

To verify that {bn} = {
n2
n3+2 } is decreasing, we compute the derivative of the function

f (x) = x2
x3+2 and find

f ′(x) = x(4 − x
3)

(x3 + 2)2
< 0 for all x > 3√4.

This means that f (x) is decreasing for x ⩾ 2, so, for all n ⩾ 2,

f (n) ⩾ f (n + 1) ⟹ bn ⩾ bn+1.
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Then { n
2

n3+2 } is decreasing for n ⩾ 2. Thus the given series is convergent by the alternat-
ing series test.

NOTE. Again, we only checked whether the conditions of the alternating series test
are satisfied for all n ⩾ 2, since the first few terms of any series do not affect its conver-
gence, as seen in Figure 8.3.3.

Figure 8.3.3: Graph of the sequence { n2
n3+2 }.

Absolute and conditional convergence
A series ∑an is called absolutely convergent if the series of absolute values ∑|an| is
convergent. A series ∑an is called conditionally convergent if it is convergent but not
absolutely convergent.

Example 8.3.12. The series ∑∞n=1(−1)
n−1 1

n2 is absolutely convergent, because

∞

∑
n=1
| (−1)

n−1

n2
| =
∞

∑
n=1

1
n2
= 1 + 1

22
+ 1
32
+⋯

is a convergent p-series with p = 2.

Example 8.3.13. The series∑(−1)n−1 1n is conditionally convergent, since the alternat-
ing harmonic series ∑∞n=1(−1)

n−1 1
n was shown to be convergent in a previous example,

but it is not absolutely convergent because the corresponding series of absolute values
is

∞

∑
n=1
| (−1)

n−1

n
| =
∞

∑
n=1

1
n
= 1 + 1

2
+ 1
3
+⋯.

This is the harmonic series, a divergent p-series with p = 1.

Theorem 8.3.8 (The absolute convergence test). Let∑∞k=1 ak be an infinite series. If the
series ∑∞k=1 |ak | converges, then the series ∑

∞
k=1 ak also converges.
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Proof. Observe the inequality

0 ⩽ (ak + |ak |) ⩽ 2|ak |.

It is true because |ak | is either ak or −ak . If ∑ak is absolutely convergent, then ∑|ak |
is convergent, so∑ 2|ak | is convergent. Therefore, by the comparison test,∑(ak + |ak |)
is convergent. Then

∑ak =∑(ak + |ak |) −∑|ak |

is the difference of two convergent series and it is therefore convergent.

Example 8.3.14. Determine whether the following series is convergent or divergent:
∞

∑
n=1

sinnx
n2
= sin 1

12
+ sin 2

22
+⋯.

Solution. This series has both positive and negative terms, but it is not alternating.
We apply the comparison test to the series of absolute values as follows:

∞

∑
n=1
|sinnx

n2
| =
∞

∑
n=1

| sinnx|
n2
.

Since
| sinnx|

n2
⩽ 1
n2

and ∑ 1/n2 is convergent, we find that ∑| sinnx|/n2 is convergent by the comparison
test. Thus the given series∑(sinnx)/n2 is absolutely convergent and therefore conver-
gent by the absolute convergence test.

NOTE. If we take the absolute values of the terms of any series∑an, then we create a
series∑|an|with nonnegative terms. Then we can use any of the tests for convergence
of series with nonnegative terms in determining whether the series is absolutely con-
vergent: the ratio test, root test, comparison test, integral test, etc.

Example 8.3.15. Test the series ∑∞n=1(−1)
n 2n

2

n! for absolute convergence.

Solution. We use the ratio test as follows:

|an+1
an
| = |
(−1)n+12(n+1)2

(n+1)!
(−1)n2n2

n!

| = 2
(n+1)2−n2

(n + 1)
= 2

2n+1

n + 1
> 1, when n > 1.

Thus limn→∞ |an+1/an| > 1 and therefore∑∞n=1 2
n2/n!diverges, so the series∑∞n=1(−1)

n2n2/
n! is not absolutely convergent. Since |an+1| > |an|, it follows from the nth term diver-
gence test that the series ∑∞n=1(−1)

n2n2/n! diverges.
There are many interesting properties of series that converge absolutely. We now

state without proof the following theorem.
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Theorem 8.3.9. (1) If ∑an is absolutely convergent, then any new series ∑bn formed
by rearranging the order of the terms in∑ak is also absolutely convergent, with the
same sum.

(2) If ∑an = A and ∑bn = B are both absolutely convergent, then the product ∑∞i,k aibk
(of all possible product pairs ai and bk from the two series) is also absolutely con-
vergent, with sum AB.

8.4 Power series and Taylor series

8.4.1 Power series

If u1(x),u2(x),… ,un(x),… are real-valued functions defined on an interval I, then we
can form the infinite series with these functions as

∞

∑
k=1

uk(x) = u1(x) + u2(x) +⋯+ uk(x) +⋯. (8.2)

Such a series may start at other k-values, such as k = 0. Since each function value is
a number, we can use all of the properties and convergence tests for infinite series of
numbers developed in the previous sections. In particular, for a specific number x0 ∈ I,
the series (8.2) becomes an infinite series with constant values as

∞

∑
k=1

uk(x0) = u1(x0) + u2(x0) +⋯+ uk(x0) +⋯. (8.3)

For this particular value of x = x0, this series may converge or diverge. If it converges,
then x0 is called a convergent point; otherwise it is called a divergent point. The set of
all convergent points is called the convergent set of the series. For any point x in the
convergent set, the infinite series in equation (8.3) must have a sum, which we write
as s(x). That is, for each x in the convergent set,

s(x) =
∞

∑
k=1

uk(x) = u1(x) + u2(x) +⋯+ un(x) +⋯.

In this case, s(x) is a function of x defined for all x in the convergent set and it is called
the sum function. We define the partial sum function sn(x) for n = 1, 2,… by

sn(x) = (u1(x) + u2(x) +⋯+ un(x)) =
n
∑
k=1

uk(x).

From the previous theories of infinite series, s(x) is the limiting value of the partial
sums, for each x in the convergent set, written

s(x) = lim
n→∞
(u1(x) + u2(x) +⋯+ un(x)) = limn→∞

sn(x).

The remainder for the partial sum sn(x) is rn(x) = s(x) − sn(x).
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NOTE. TheWeierstrass function f (x) = ∑∞n=0 a
n cos(bnπx), where 0 < a < 1, b is an odd

integer, and ab > 1+ 3π/2, is defined as a series of real-valued functions. This function
is a continuous function but nowhere differentiable. The graph of Weierstrass func-
tion is illustrated in Figure 8.4.1. It was presented and proved by Karl Weierstrass on
18 July 1872.

Figure 8.4.1: Illustration of a Weierstrass function.

Wewill restrict our attention for the next few sections to a special casewhere each
function term is a particular type of the polynomial un(x) = cn(x − a)n, for some con-
stants a and cn. Such a series is called a power series. The formal definition is as fol-
lows.

Definition 8.4.1. Let a be a real number and let {ck}∞k=0 be a sequence of real numbers.
Then an infinite series of the form

∞

∑
k=0

ck(x − a)k = c0 + c1(x − a) + c2(x − a)2 +⋯ (8.4)

is called a power series about a. The numbers c0, c1,… are the coefficients of the power
series.

Notice that, when x = a, all of the terms are 0 for n ⩾ 1, so the power series always
converges when x = a. If a = 0, then this power series is about the origin and it looks
like the following infinite polynomial:

∞

∑
k=0
= c0 + c1x + c2x2 +⋯. (8.5)

Example 8.4.1. For what values of x does the series
∞

∑
k=1
(−1)k−1 x

k

k
= x
1
− x

2

2
+ x

3

3
− x

4

4
+⋯

converge?
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Solution. Let an = (−1)n−1
xn
n and apply the ratio test as follows:

lim
n→∞
|an+1
an
| = lim

n→∞
|
(−1)n x

n+1

n+1
(−1)n−1 x

n

n
| = lim

n→∞
|(−1) x

n+1

n + 1
× n
xn
|

= lim
n→∞
| nx
n + 1
| = |x| lim

n→∞

n
n + 1
= |x|.

By the ratio test, the series converges absolutely if |x| < 1 and diverges if |x| > 1.
The values x = 1 and x = −1 are not covered by this, so we investigate these separately.

When x = 1,

∞

∑
k=1
(−1)k−1 x

k

k
=
∞

∑
k=1
(−1)k−1 (1)

k

k
=
∞

∑
k=1
(−1)k−1 1

k

and this series converges by the alternating series test.
When x = −1,

∞

∑
k=1
(−1)k−1 x

k

k
=
∞

∑
k=1
(−1)k−1 (−1)

k

k
= −
∞

∑
k=1

1
k

and this series diverges since it is a multiple of the harmonic series.
Therefore, when x ∈ (−1, 1] the series converges and elsewhere, when x ⩽ −1 or

1 < x, the series diverges. Figure 8.4.2 shows the graph of f1(x) = ∑10k=1(−1)
k−1 xk

k , f2(x) =
∑50k=1(−1)

k−1 xk
k , and f3(x) = ∑

100
k=1(−1)

k−1 xk
k in a [−2, 2] × [−2, 2] window.

Figure 8.4.2: Graphs of partial sums (n = 10,50, 100) of∑∞k=1(−1)
k−1 xk

k .

In this example, the set of x for which the given series converges is an interval. This
is not a coincidence, since it is true for every power series, as shown in the following
theorems.

Theorem 8.4.1 (Abel). If the power series ∑ cnxn is convergent when x = x0 ≠ 0, then
the power series ∑ cnxn is absolutely convergent at any x satisfying |x| < |x0|. Similarly,
if ∑ cnxn is divergent when x = x0, then the power series ∑ cnxn is divergent at any x
satisfying |x| > |x0|.
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Niels Henrik Abel (1802–1829) was a Norwegian mathematician. His most famous single result is the
first complete proof demonstrating the impossibility of solving the general quintic equation in rad-
icals. He was also an innovator in the field of elliptic functions and discoverer of Abelian functions.
Despite his achievements, Abel was largely unrecognized during his lifetime; hemade his discoveries
while living in poverty and died at the age of 26. http://en.wikipedia.org/wiki/Niels_Henrik_Abel

Proof. Suppose∑ cnxn0 is convergent and |x| < |x0|. Then the nth term cnxn0→ 0 as n→
∞. This means there exists a bound M such that |cnxn0| <M for all n = 0, 1, 2,…. Now,
for any x satisfying |x| < |x0|, we have, for all n,

|cnxn| = |cnxn0 ⋅
xn

xn0
| = |cnxn0| ⋅ |

x
x0
|
n
⩽M| x

x0
|
n
. (8.6)

Hence, if |x| < |x0|, then |x/x0| < 1 and the geometric series ∑M|x/x0|n converges.
Equation (8.6) and the comparison test show that ∑|cnxn| converges. Thus, ∑ cnxn is
also convergent.

For the second part of the theorem, suppose∑ cnxn0 is divergent. If there is a value
of x1 such that |x1| > |x0| and ∑ cnxn1 converges, then, by the first part of the theorem,
it would follow that ∑ cnxn0 is convergent, which is not true. Hence, we have a proof
by contradiction that ∑ cnxn is divergent for |x| > |x0|. This completes the proof of the
theorem.

From this theorem, we deduce the following theorem.

Theorem 8.4.2. If the set of values of x for which the power series ∑ cnxn converges is
not {0} or (−∞,+∞), then theremust be a positive number R such that, when x ∈ (−R, R),
the series ∑ cnxn converges and, when x < −R or x > R, the series ∑ cnxn diverges.

NOTE. When x = R or x = −R, the theorem gives no information and the series ∑ cnxn

may converge or diverge.

The number R is called the radius of convergence of the power series. By conven-
tion, the radius of convergence is R = 0 if ∑ cnxn is convergent only when x = 0 and
R =∞ if∑ cnxn converges for all real numbers x. The interval of convergence of a power
series is the interval that consists of all values of x for which the series converges,
which must be (−R,R), (−R,R], [−R,R), or [−R,R]. Similar results hold for the more
general form of a power series ∑ cn(x − a)n.

Theorem 8.4.3. For a given power series∑ cn(x−a)n, there are only three possibilities:
1. the series converges only when x = a;
2. the series converges for all x;
3. there is a positive number R such that the series converges if |x −a| < R and diverges

if |x − a| > R.
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NOTE. For the more general series ∑ cn(c − a)n, the number R from the theorem is
called the radius of convergence and the series converges for a − R < x < a + R. Hence,
the interval of convergence is (a−R,a+R), [a−R,a+R), (a−R,a+R], or [a−R,a+R].

Example 8.4.2. For what values of x is the series ∑∞n=0
xn
n! convergent?

Solution. We use the ratio test. If an =
xn
n! denotes the nth term of the series, then, for

x ≠ 0, we have

lim
n→∞
|an+1
an
| = lim

n→∞
| x

n+1

(n + 1)!
n!
xn
| = lim

n→∞

|x|
n + 1
= 0 < 1.

By the ratio test, the series converges absolutely for all values of x. Hence, the series
∑∞n=0

xn
n! converges for all x, the radius of converges is infinity, and the interval of con-

vergence is (−∞,∞).

Example 8.4.3. Find the radius of convergence and the interval of convergence of the
series ∑∞n=1

(x−1)n
n .

Solution. Let an =
(x−1)n
n . Then

lim
n→∞
|an+1
an
| = lim

n→∞
|
(x−1)n+1
n+1
(x−1)n
n
| = lim

n→∞
| n
n + 1
(x − 1)| = |x − 1|.

By the ratio test, the given series is absolutely convergent and therefore convergent
when |x − 1| < 1 and divergent when |x − 1| > 1. Now |x − 1| < 1 is equivalent to

−1 < x − 1 < 1 ⇔ 0 < x < 2,

so the series converges when 0 < x < 2 and diverges when x < 0 or x > 2.
The ratio test gives no information when |x − 1| = 1, so wemust consider x = 0 and

x = 2 separately. When x = 0, the series becomes ∑(−1)n 1
n and this is the convergent

alternating harmonic series. If x = 2, the series is ∑ 1/n, which is the divergent har-
monic series. Thus, the given power series converges for 0 ⩽ x < 2. Hence, the radius
of convergence is 1 and the interval of convergence is [0, 2).

When the German astronomer Friedrich Bessel (1784–1846) solved Kepler’s equa-
tion for describing planetary motion, he introduced Bessel functions, one of which is
described in the next example. A Bessel function is defined as a power series. As a
matter of fact, Bessel functions have been applied in many different physical situa-
tions, including the determination of the temperature distribution in a circular plate
and the shape of a vibrating drumhead.
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Friedrich Wilhelm Bessel
(1784–1846) was a German astronomer and mathematician. He was the first
astronomer who determined reliable values for the distance from the sun
to another star by the method of parallax. http://en.wikipedia.org/wiki/
Friedrich_Bessel

Example 8.4.4. Find the domain of the Bessel function of order 0 defined by

J0(x) =
∞

∑
n=0

(−1)nx2n

22n(n!)2
.

Solution. Let an =
(−1)nx2n
22n(n!)2 . Then

lim
n→∞
|an+1
an
| = lim

n→∞
| (−1)

n+1x2(n+1)

22(n+1)((n + 1)!)2
× (−1)

nx2n

22n(n!)2
|

= lim
n→∞

x2

4(n + 1)2
= 0 for all x.

Thus, by the ratio test, the given series converges for all values of x. In other words,
the domain of the Bessel function J0 can be taken to be (−∞,∞).

Example 8.4.5. Find the radius of convergence and the interval of convergence of the
series

∞

∑
n=0

(−3)nxn
√n + 1
.

Solution. Let an =
(−3)nxn
√n+1 . Then

lim
n→∞
|an+1
an
| = lim

n→∞
|
(−3)n+1xn+1
√n + 2

√n + 1
(−3)nxn

| = lim
n→∞
|−3x√n + 1

n + 2
|

= lim
n→∞

3|x|√ 1 + (1/n)
1 + (2/n)

= 3|x|.

By the ratio test, the given series converges if 3|x| < 1 and diverges if 3|x| > 1. Thus,
the series converges if |x| < 1/3 and diverges if |x| > 1/3. This means that the radius of
convergence is R = 1/3.

Wemust now test the convergence at the endpoints of the interval of convergence.
If x = −1/3, the series becomes

∞

∑
n=0

(−3)n(− 13 )
n

√n + 1
=
∞

∑
n=0

1
√n + 1
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= 1
√1
+ 1
√2
+ 1
√3
+⋯.

This is a p-series with p = 1/2 < 1 and it diverges. If x = 1/3, the series is

∞

∑
n=0

(−3)( 13 )
n

√n + 1
=
∞

∑
n=0

(−1)n
√n + 1
.

This series converges by the alternating series test. Therefore, the given power series
converges when −1/3 < x ⩽ 1/3 and the interval of convergence is (−1/3, 1/3].

Example 8.4.6. Find the radius of convergence of the series ∑∞n=0
(2n)!
(n!)2 x

2n.

Solution. Let an =
(2n)!
(n!)2 x

2n. Using the ratio test, we have

lim
n→∞

|an+1|
|an|
= lim

n→∞
|
(2(n+1))!
((n+1)!)2 x

2(n+1)

(2n)!
(n!)2 x

2n
| = lim

n→∞
| (2n + 2)(2n + 1)
(n + 1)2

x2|

= 2x2 lim
n→∞
|
(2 + 1

n )
(1 + 1

n )
| = 4x2.

The series is absolutely convergent, so it is convergent, when 4x2 < 1 or x ∈ (−1/2, 1/2).
It is divergent when 4x2 > 1. Therefore, the radius of convergence is 1/2.

8.4.2 Working with power series

The following properties are important properties of power series and are given with-
out proof.

Theorem 8.4.4. Suppose that∑∞k=0 ak(x − c)
k = s(x) for x ∈ (c −R, c +R), where R is the

radius of convergence. Then s(x) is continuous for x ∈ (c − R, c + R).

Theorem 8.4.5 (Term-by-term integration and differentiation of power series). Sup-
pose that∑∞k=0 akx

k = s(x) for x ∈ (−R,R), where R is the radius of convergence. Then the
series can be integrated or differentiated term by term for any x ∈ (−R,R) as follows:

∫
x

0
s(t)dt = ∫

x

0

∞

∑
k=0

aktk dt =
∞

∑
k=0
∫
x

0
aktk dt =

∞

∑
k=0

ak
xk+1

k + 1
,

ds(x)
dx
= d
dx
(
∞

∑
k=0

akxk) =
∞

∑
k=0

d
dx
(akxk) =

∞

∑
k=1

kakxk−1.

These two series have the same radius of convergence, R, as the original series∑∞k=0 akx
k .

The same applies to a series in the form∑∞k=0 ak(x − c)
k , for x ∈ (c −R, c +R), where

R is the radius of convergence.
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Example 8.4.7. Find the sum of the series ∑∞n=1 nx
n and use that sum to find the sum

of the series ∑∞n=1
n
2n .

Solution. Since

lim
n→∞
| (n + 1)x

n+1

nxn
| = lim

n→∞
|n + 1

n
x| = |x|,

when |x| < 1, this series converges. When x = 1 or x = −1, this series becomes ∑n or
∑n(−1)n. Both of them diverge by the nth term divergence test. Therefore, the radius
of convergence of this series is 1 and the interval of convergence is (−1, 1). Let

s(x) =
∞

∑
n=1

nxn for x ∈ (−1, 1).

Dividing both sides by x and then integrating term by term creates a geometric series
for which we compute the following sum:

s(x)
x
=
∞

∑
n=1

nxn−1,

∫
s(x)
x

dx =
+∞

∑
n=1
∫nxn−1 dx =

∞

∑
n=1

xn + C = x
1 − x
+ C.

Differentiating this result (∫ s(x)x dx = x
1−x + C) creates a formula for s(x) as follows:

s(x)
x
= ( x

1 − x
)
′
= 1
(1 − x)2
,

s(x) = x
(1 − x)2

for x ∈ (−1, 1).

Using x = 1
2 in this equation gives ∑

∞
n=1

n
2n = 2.

It is worth mentioning that term-by-term integration and term-by-term differen-
tiation work for power series because a power series is uniformly convergent on its
interval of convergence (−R,R). This is described, for the reader’s reference, in the fol-
lowing definitions and theorems, given without proof.

Definition 8.4.2. Suppose∑∞k=0 uk(x) is a series with function terms uk(x), all defined
on some interval I and convergent for x ∈ I. Let s(x) = ∑uk(x) be the sum function and
let sn(x) = ∑n−1k=0 uk(x) be the partial sum function for each n. Suppose further that, for
any positive number ε, there exists a natural number N (which depends on ε but not
on x) such that, for every x ∈ I, whenever n ⩾ N , we have

|s(x) − sn(x)| = |un(x) + un+1(x) + un+2(x) +⋯| < ε.

Then we say that ∑uk(x) converges uniformly to the function s(x) on the interval I.
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Theorem 8.4.6. Suppose that the series∑∞k=0 uk(x), defined on I, satisfies the following
two conditions:
(1) for each k = 1, 2,3,… , there is a constant ak > 0 for which |uk(x)| ⩽ ak for all x ∈ I

(ak is an upper bound for |uk(x)| on I);
(2) the series ∑∞k=0 ak , with nonnegative terms, converges.

Then the series ∑uk(x) uniformly converges on the interval I.

The next two theorems show the connection between power series and uniform
convergence.

Theorem 8.4.7. If all uk(x) are continuous on some interval I and∑∞k=0 uk(x) converges
uniformly to s(x) on I, then s(x) is continuous on I and the series ∑uk(x) can be inte-
grated term by term. If further all uk(x) are differentiable on I and the series of differen-
tiated functions∑u′k(x) is also uniformly convergent, then∑uk(x) can be differentiated
term by term, so that s′(x) = ∑u′k(x).

Theorem 8.4.8. The power series∑anxn with radius of convergence R > 0 is uniformly
convergent on any closed interval [a,b] ⊂ (−R,R) and can be differentiated or integrated
term by term.

Example 8.4.8. The series

sinx
12
+ sin(2

2x)
22
+ sin(3

2x)
32
+⋯+ sin(n

2x)
n2
+⋯

is uniformly convergent on any closed interval, since we have

|sin(n
2x)

n2
| ⩽ 1

n2

and ∑ 1/n2 converges. However, if the series is differentiated term by term, the differ-
entiated series becomes

cosx + cos 22x +⋯+ cosn2x +⋯,

which does not converge, since the nth term does not tend to 0.

8.4.3 Taylor series

Recall the one-variable Taylor theorem.

Theorem 8.4.9. If f is differentiable up to order n + 1 in an open interval I contain-
ing a, then, for each x in I, there exists a number c (which may depend on both x and a)
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between x and a such that

f (x) = Pn(x) + Rn(x), (8.7)

where Pn(x) is a polynomial approximation called the Taylor polynomial of degree n to
f (x) and

Pn(x) = f (a) + f ′(a)(x − a) +
f″(a)
2!
(x − a)2 +⋯+ f

(n)(a)
n!
(x − a)n.

The remainder Rn is given by

Rn(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1 (called the Lagrange remainder).

This is a generalization of the mean value theorem. The higher order Taylor poly-
nomials usually provide increasingly better polynomial approximations to f (x) for
x-values in a neighborhood of a.

Based on this theorem, we define the Taylor series, which is a power series.

Definition 8.4.3. Suppose that f has derivatives of all orders on some open interval I
containing a. The Taylor series of f at the point a is the power series

∞

∑
k=0

f (k)(a)
k!
(x − a)k = f (a) + f ′(a)(x − a) + f

″(a)
2!
(x − a)2

+⋯+ f
(k)(a)
k!
(x − a)k +⋯.

For the special case a = 0, the Taylor series becomes

∞

∑
n=0

f (n)(0)
n!

xn = f (0) + f
′(0)
1!

x + f
″(0)
2!

x2 +⋯+ f
(n)(0)
n!

xn +⋯. (8.8)

This case arises frequently enough that it is given a special name, theMaclaurin series
for f .

Given a Taylor series of a function f , wewill usually be interested in answering two
questions: “Forwhat values of x does the Taylor series converge?” and “If it converges,
does it converge to the function f (x) on the interval of convergence?” Let us first look
into an example.

Example 8.4.9. Find the Maclaurin series for sinx.

Solution. The function sinx has derivatives of all orders and for all x-values. The
derivatives are
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f (x) = sinx, f ′(x) = cosx, f″(x) = − sinx,
f‴(x) = − cosx, f (4)(x) = sinx, … .

The fourth derivative is sinx again, so by induction, we give the following formula for
the nth derivative:

f (n)(x) = sin(x + nπ
2
) for n = 0, 1, 2,3,… .

Therefore,

f (n)(0) = sin(nπ
2
) =
{
{
{

0, when n = 2k
(−1)k , when n = 2k + 1,

where f (2k)(0) = 0 and f (2k+1)(0) = (−1)k .
This means the Maclaurin series has only odd-powered terms, and, for all x, the

Maclaurin series of sinx is

x − x
3

3!
+ x

5

5!
−⋯ + (−1)k x2k+1

(2k + 1)!
+⋯.

Figure 8.4.3: Graphs of partial sums (n = 5, 10,50) of∑∞k=0(−1)
k x2k+1
(2k+1)! .

Now let us investigate the graphs of some Maclaurin polynomials of degree 5, 10, and
50 and the graph of sinx. It is easy to see that the larger degree of the polynomial,
the better approximation of the graph to sinx, as shown in Figure 8.4.3. We expect, as
n→∞, the MacLaurin series to tend to sinx. In fact, we have, by the Taylor theorem,

|Rn(x)| = |sin(c +
(n + 1)π

2
)

xn+1

(n + 1)!
|

⩽ |x|
n+1

(n + 1)!
→ 0 as n→∞, for any x.

Hence, for every value of x, we have

lim
n→∞
|sinx − Pn(x)| = limn→∞

|Rn(x)| = 0,
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so

sinx = x − x
3

3!
+ x

5

5!
−⋯ + (−1)k x2k+1

(2k + 1)!
+⋯ =

∞

∑
k=0
(−1)k x2k+1

(2k + 1)!
.

This means that the Maclaurin series for sinx actually converges to sinx for all x!

In general, if limn→∞ Rn(x) = 0 for all x ∈ I, then the Taylor series converges to f (x)
on I. This is summarized in the following theorem.

Theorem 8.4.10. Let a be a real number in the domain of a function f and suppose that
f has derivatives of all orders at a. The Taylor series ∑∞k=0

f (k)(a)
k! (x − a)

k of f converges
to f (x) in an interval I if and only if limn→∞ Rn(x) = 0 for all x ∈ I, where Rn(x) is the
Lagrange remainder

Rn(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1

and c is between x and a.

If |f (n+1)(x)| is bounded by M for a set of x-values satisfying |x − a| ⩽ d, then the
remainder Rn(x) of the Taylor series satisfies Taylor’s inequality and we have

|Rn(x)| =
|f (n+1)(c)|
(n + 1)!

|x − a|n+1 ⩽ M
(n + 1)!

dn+1 for |x − a| ⩽ d.

This inequality is often used to estimate errors in approximations.

Example 8.4.10. Find the Maclaurin series of the function f (x) = ex , find its radius of
convergence R, and show that it converges to ex for all x ∈ (−R,R). Use this to find an
infinite series for the number e.

Solution. The function f (x) = ex has derivatives of all orders throughout the interval
(−∞,+∞) and the nth derivative is f (n)(x) = ex for n = 0, 1, 2,…. Hence, f (n)(0) = e0 = 1
for all n and, therefore, the Maclaurin series for f is

∞

∑
n=0

f (n)(0)
n!

xn = f (0) + f
′(0)
1!

x + f
″(0)
2!

x2 +⋯

=
∞

∑
n=0

xn

n!
= 1 + x

1!
+ x

2

2!
+⋯.

You can check for yourself that the radius of convergence is R =∞, using the ratio test,
but this will also follow from the following analysis. In order to show that ex = ∑∞n=0

xn
n!

for all x, we show that the Lagrange remainder Rn(x) → 0, for all x,

Rn(x) =
ec

(n + 1)!
xn+1 for some c between 0 and x.
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Since ex is an increasing function,

|Rn(x)| = |
ec

(n + 1)!
xn+1| ⩽ e|x| |x|

n+1

(n + 1)!
.

However,

lim
n→∞

e|x| |x|
n+1

(n + 1)!
= e|x| lim

n→∞

|x|n+1

(n + 1)!
= 0,

so limn→∞ Rn(x) = 0 for anyvalue x ∈ (−∞,+∞).We conclude that theMaclaurin series
of ex converges to ex on (−∞,+∞). That is,

ex =
∞

∑
n=1

xn

n!
= 1 + x

1!
+ x

2

2!
+⋯ for all x ∈ (−∞,+∞).

It follows that the radius of convergence is R = +∞. When x = 1, the Maclaurin series
becomes

e = 1 + 1
1!
+ 1
2!
+ 1
3!
+⋯.

Figure 8.4.4 shows the graphs of the second, third, and fourth partial sums (Taylor
polynomials) of theMaclaurin series of ex . The highest degree Taylor polynomial gives
the best approximation.

Figure 8.4.4: Graphs of ex and its Taylor polynomials with n = 1,2,3,5.

Example 8.4.11. Find the Maclaurin series for (1 + x)m where m is constant (this is
called binomial expansion/series).

Solution. Since

f (x) = (1 + x)m ⟹ f (0) = 1,
f ′(x) =m(1 + x)m−1 ⟹ f ′(0) =m,
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f″(x) =m(m − 1)(1 + x)m−2 ⟹ f″(0) =m(m − 1),
⋮

f (n)(x) =m(m − 1)(m − 2)⋯(m − n + 1)(1 + x)m−n,
f (n)(0) =m(m − 1)(m − 2)⋯(m − n + 1).

We obtain the Maclaurin series of (1 + x)m as follows:

1 +mx + m(m − 1)
2!

x2 + m(m − 1)(m − 2)
3!

x3 +⋯

+ m(m − 1)(m − 2)⋯(m − n + 1)
n!

xn +⋯. (8.9)

If un(x) =
m(m−1)(m−2)⋯(m−n+1)

n! xn for each n, then, applying the ratio test for absolute
convergence, we see

|un+1
un
| = |m − n

n + 1
x| → |x| as n→∞.

Therefore, when |x| < 1, the series converges absolutely and the radius of convergence
is R = 1. However, this does not prove that the series converges to (1 + x)m. The series
does in fact converge to (1 + x)m, although the proof is not given here. Thus,

(1 + x)m = 1 +mx + m(m − 1)
2!

x2 +⋯

+ m(m − 1)(m − 2)⋯(m − n + 1)
n!

xn +⋯ for |x| < 1.

Some special cases of the binomial expansion include:
m = −1:

1
1 + x
= 1 − x + x2 − x3 + x4 −⋯ for |x| < 1;

m = 1/2:

√1 + x = 1 + x
2
+

1
2 (

1
2 − 1)
2!

x2 +
1
2 (

1
2 − 1)(

1
2 − 2)

3!
+⋯ for |x| < 1.

Example 8.4.12. Use the fact that 1
1−x = 1 + x + x

2 +⋯ + xn +⋯ with interval of con-
vergence (−1, 1) to show that

ln 2 = 1 − 1
2
+ 1
3
− 1
4
+⋯ and π

4
= 1 − 1

3
+ 1
5
− 1
7
+⋯.

Proof. Integrating the series term by term, we have

− ln(1 − x) = x + x
2

2
+ x

3

3
+ x

4

4
+⋯.
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This is equivalent to

ln(1 − x) = −x − x
2

2
− x

3

3
− x

4

4
−⋯, −1 ⩽ x < 1.

The interval of convergence of the integrated series∑ xn
n is [−1, 1), becausewhen x = −1

the alternating series ∑(−1)n/n converges, but when x = 1 the series ∑ 1/n diverges.
Thus we substitute x = −1 into the equation and obtain

ln2 = 1 − 1
2
+ 1
3
− 1
4
+⋯.

To obtain the second series, we replace x with −x2 in the original series and we obtain

1
1 + x2
= 1 − x2 + x4 − x6 +⋯ for −1 < x < 1.

We integrate term by term to obtain

arctanx = x − x
3

3
+ x

5

3
− x

7

7
+⋯ for −1 ⩽ x ⩽ 1.

This is convergent when x = 1 by the alternating series test, so substituting x = 1 we
find

π
4
= 1 − 1

3
+ 1
5
− 1
7
+⋯.

NOTE. For Taylor series, much of our effort has gone into calculating the derivatives
f (k)(c) for k = 0, 1, 2,…. In fact, many power series/Taylor series can be found by mak-
ing a substitution in a known series, or term-by-term differentiation/integration of
a known series, as the previous examples illustrated. The radius of convergence of
a power series before and after term-by-term differentiation/integration remains the
same, but the interval of convergencemay differ because convergence/divergence can
change at the endpoints of the interval. This is also shown in the previous examples.

Example 8.4.13. Find the Maclaurin series for cosx.

Solution. There is no need to compute cos(n) x this time. From Example 8.4.9, we use
the term-by-term differentiation of the Maclaurin series of sinx and obtain

cosx = 1 − x
2

2!
+ x

4

4!
−⋯ + (−1)k x2k

(2k)!
+⋯ for all x.

We now list some of the most useful Maclaurin series, which we have derived one
way or another:
1. 1

1−x = 1 + x + x
2 + x3 +⋯ =∑∞k=0 x

k , for −1 < x < 1;
2. 1

1+x = 1 − x + x
2 −⋯+ (−1)nxn +⋯ =∑∞k=0(−1)

kxk , for |x| < 1;
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3. sinx = x − x
3

3! +
x5
5! −

x7
7! +⋯ =∑

∞
k=0(−1)

k x2k+1
(2k+1)! , for −∞< x <∞;

4. cosx = 1 − x
2

2! +
x4
4! −

x6
6! +⋯ =∑

∞
k=0(−1)

k x2k
(2k)! , for −∞< x <∞;

5. ex = 1 + x + x
2

2! +
x3
3! +⋯ =∑

∞
k=0

xk
k! , for −∞< x <∞;

6. √1 + x = 1 + 1
2x −

1
22

x2
2! +⋯ = 1 +

x
2 +∑
∞
k=2(−1)

k−1 1⋅3⋅5⋅⋅(2k−3)
2kk! xk , for −1 < x ⩽ 1;

7. ln(1 + x) = x − x
2

2 +
x3
3 −⋯+ (−1)

k−1 xk
k +⋯ =∑

∞
k=1(−1)

k−1 xk
k , for −1 < x ⩽ 1;

8. arctanx = x − x
3

3 +
x5
5 −⋯+ (−1)

k x2k+1
2k+1 +⋯ =∑

∞
k=0(−1)

k x2k+1
2k+1 , for |x| ⩽ 1.

Wenowgive twomore examples of deriving series fromaknownseries by substitution.

Example 8.4.14. Find the Taylor series about a = π
2 for sinx.

Solution. We first try the Maclaurin series of sinx, replacing x with x − π2 , to obtain

sinx =
∞

∑
k=0
(−1)k x2k+1

(2k + 1)!
for x ∈ R ⟹

sin(x − π
2
) =
∞

∑
k=0
(−1)k
(x − π2 )

2k+1

(2k + 1)!
.

However, this is not the Taylor series of sinx about x = π
2 . The trigonometric identity

sinx = cos(x − π2 ) suggests using the same method with the Maclaurin series for cosx.
Substituting x − π

2 in place of x in this series leads to the following required Taylor
series for sinx about x = π

2 :

cosx =
∞

∑
k=0
(−1)k x2k

(2k)!
, −∞ < x <∞ ⟹

sinx = cos(x − π
2
) =
∞

∑
k=0
(−1)k
(x − π2 )

2k

(2k)!
for all x ∈ R.

Example 8.4.15. Find the Taylor series about c = −2 for the function

f (x) = 2x + 1
x2 − 5x + 6

, x ≠ 2,3.

Also find the radius of convergence and the interval of convergence.

Solution. Use partial fractions to simplify and rearrange the function to a function of
x + 2 as follows:

2x + 1
x2 − 5x + 6

= 7
x − 3
− 5
x − 2

=
7

x + 2 − 5
−

5
x + 2 − 4

= −7
5
( 1
1 − x+25
) + 5

4
( 1
1 − x+24
).
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We find expansions of these functions by using

1
1 − x
=
∞

∑
n=0

xn, −1 < x < 1.

Substituting gives

−7
5
( 1
1 − x+25
) = −7

5

∞

∑
n=0
(x + 2

5
)
n
= −
∞

∑
n=0

7(x + 2)n

5n+1
,

5
4
( 1
1 − x+24
) = 5

4

∞

∑
n=0
(x + 2

4
)
n
=
∞

∑
n=0

5(x + 2)n

4n+1
.

The first is valid if |(x + 2)/5| < 1⟹−7 < x < 3 and the second if |(x + 2)/4| < 1⟹−6 <
x < 2. Hence, for −6 < x < 2, we have the Taylor expansion

2x + 1
x2 − 5x + 6

= −
∞

∑
n=0

7(x + 2)n

5n+1
+
∞

∑
n=0

5(x + 2)n

4n+1

=
∞

∑
n=0
[−7(x + 2)

n

5n+1
+ 5(x + 2)

n

4n+1
]

=
∞

∑
n=0
[− 7

5n+1
+ 5
4n+1
](x + 2)n.

The interval of convergence is (−6, 2) and the radius of convergence is 4.

8.4.4 Applications of power series

One of themost commonapplications of power series is approximation. All computers
and calculators give values to functions like ex , sinx, ln(x), and arctanx by computing
the value of an approximation to the function, with accuracy equal to the precision re-
quired. Taylor series give the best general purpose approximation that canbe achieved
with a polynomial approximation.

Example 8.4.16. Calculate the number e with an error of less than 10−6.

Solution. Set x = 1 in the Maclaurin series for ex = 1 + x + x
2

2! +
x3
3! +⋯, giving

e1 = e = 1 + 1 + 1
2!
+ 1
3!
+⋯.

If, after n terms of this series, the remainder is less than 10−6, then the partial sum
with n terms will give the approximation with the required accuracy. The remainder
term from equation (8.7) gives

Rn(1) =
ec

(n + 1)!
1n+1 = ec 1

(n + 1)!
, where 0 < c < 1.
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Hence, 1 ⩽ ec ⩽ e, so

1
(n + 1)!

⩽ Rn(1) ⩽
e
(n + 1)!

< 3
(n + 1)!

and we will have the required accuracy if 3
(n+1)! < 10

−6. By trial-and-error we find

n = 8 ∶ 3
(n + 1)!

≈ 8.26 × 10−6 (fails)

n = 9 ∶ 3
(n + 1)!

≈ 8.27 × 10−7 (works).

Therefore, we choose n = 9 and this gives

e ≈ 1 + 1 + 1
2!
+ 1
3!
+ 1
4!
+ 1
5!
+ 1
6!
+ 1
7!
+ 1
8!
+ 1
9!

e ≈ 2.718281 5, accurate to 10−6 = 0.000001.

Example 8.4.17. Approximate the integral ∫10
sinx
x dx by using a Taylor polynomial

(about 0) of degree 5.

Solution. Using the Maclaurin series of sinx, we obtain

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+⋯, so

sinx
x
= 1 − x

2

3!
+ x

4

5!
− x

6

7!
+⋯.

Therefore, the Taylor polynomial of degree 5 is 1− x
2

3! +
x4
5! (the degree five term is zero).

Hence,

∫
1

0

sinx
x

dx = ∫
1

0
(1 − x

2

3!
+ x

4

5!
)dx = x − x3

3 ⋅ 3!
+ x5

5 ⋅ 5!
|
x=1

x=0

= 1 − 13

3 ⋅ 3!
+ 15

5 ⋅ 5!
≈ 0.94611.

Wenow informally derive the famous Euler formula for the complex number func-
tion eix , which is useful in many areas. The formula says

eix = cosx + i sinx, where i2 = −1.

If we replace x with ix in the Maclaurin series of ex , then we are able to deduce the
formula as follows:

eix = 1 + ix + (ix)
2

2!
+
(ix)3

3!
+
(ix)4

4!
+
(ix)5

5!
⋯
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= 1 + ix − x
2

2!
− i x

3

3!
+ x

4

4!
+ ix

5

5!
−⋯

= (1 − x
2

2!
+ x

4

4!
−⋯) + i(x − x

3

3!
+ x

5

5!
−⋯)

= cosx + i sinx.

Using x = π in Euler’s formula gives the following famous identity, that connects e, i,
π, 1, and 0, the five most important constants in mathematics:

eiπ + 1 = 0.

8.5 Fourier series
Joseph Fourier (1768–1830) was a Frenchmathematician and physicist. He is best known for initiating
the investigation of Fourier series and their applications to problems of heat transfer and vibrations.
The Fourier transform and Fourier’s law are also named in his honor. Fourier is also generally credited
with the discovery of the greenhouse effect. http://en.wikipedia.org/wiki/Joseph_Fourier

While studying the problem of heat conduction in a long thin insulated rod, the
Frenchmathematician Jean-Baptiste Joseph Fourier needed to express a function f (x)
as a linear combination of trigonometric functions of the form sinkx and coskx for
k = 1, 2,3,…. He developed remarkable ideas behind the following results.

If a function f (x) is defined for x ∈ (−π,π) (except, possibly, at a finite set of
x-values), f (x) is the sum of a series of the following form:

f (x) = a0
2
+
∞

∑
k=1
(ak coskx + bk sinkx). (8.10)

This series is called a Fourier series of f . This type of series has a tremendous range
of scientific and engineering applications in the study of heat conduction, wave phe-
nomena, and concentrations of chemicals and pollutants, just to mention a few.

A Fourier series of f (x) can be defined for any other interval of the form (−l, l), in
which case the series would be composed of the functions cos kπx

l and sin kπx
l with

period 2l. Then we have

f (x) = a0
2
+
∞

∑
k=1
(ak cos

kπx
l
+ bk sin

kπx
l
).

Notice that a Fourier series on (−l, l) only involves the functions cos nπx
l and sin nπx

l ,
both of which are periodic with period 2l. Then the sum of the series must be periodic
with period 2l. Hence, the Fourier series not only represents a function f over the in-
terval −l < x < l, but it also provides a periodic extension of f , with period 2l, over the
entire real-number line.
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8.5.1 Fourier series expansion with period 2π

For a function f (x)we first of all need to find the Fourier coefficients a0,a1,b1,a2,b2,…
such that equation (8.10) is true. To determine these coefficients, one can view a
Fourier series as a member of the linear space with a basis of infinite dimensions as
follows:

basis = {1, cosx, sinx,cos 2x, sin 2x,cos3x, sin3x,cos4x, sin4x,…}.

Let us first explore the inner products of a pair of elements in the basis. The fol-
lowing results show that these elements are orthogonal under the inner product
∫π
−π f (x)g(x)dx of two functions f (x) and g(x).

Theorem 8.5.1. If n and k are any positive integers, then:
1. ∫π
−π coskx dx = 0;

2. ∫π
−π sinkx dx = 0;

3. ∫π
−π cosnx sinkx dx = 0;

4. ∫π
−π sinnx sinkx dx = {

π, if k = n
0, if k ≠ n;

5. ∫π
−π cosnx coskx dx = {

π, if k = n
0, if k ≠ n.

Proof. The proof of this theorem is not hard. We only give the proof of 4.

∫
π

−π
sinnx sinkx dx = − 1

2
∫
π

−π
(cos(n + k)x − cos(n − k)x)dx

= 1
2
∫
π

−π
cos(n − k)x dx

=
{
{
{

0, if n ≠ k
π, if n = k.

This is true because, if n = k, ∫π
−π cos(n − k)x dx = ∫

π
−π 1dx = 2π and, if n ≠ k, ∫π

−π cos(n −
k)x dx = − 1

n−k sin(n − k)x|
π
−π = 0.

Some examples of these inner products include

∫
π

−π
sin 2x sinnx dx =

{
{
{

0, if n ≠ 2
π, if n = 2

and

∫
π

−π
cos3x cosnx dx =

{
{
{

0, if n ≠ 3
π, if n = 3.
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It can be proved that the series of equation (8.10) can be integrated term by term
and we assume this is true. To obtain a0, we integrate both sides from x = −π to x = π,
so we have

∫
π

−π
f (x)dx = ∫

π

−π

a0
2
dx +
∞

∑
k=1
∫
π

−π
(ak coskx + bk sinkx)dx

= a0π.

Solving this for a0 yields

a0 =
1
π
∫
π

−π
f (x)dx. (8.11)

To solve for an, when n ≠ 0, we multiply both sides of equation (8.10) by cos(nx) and
integrate the result from −π to π to obtain

∫
π

−π
f (x) cosnx dx

= a0
2
∫
π

−π
cosnx dx +

∞

∑
k=1
∫
π

−π
(ak coskx cosnx + bk sinkx cosnx)dx

= 0 +
∞

∑
k=1
∫
π

−π
(ak coskx cosnx)dx +

∞

∑
k=1
∫
π

−π
(bk sinkx cosnx)dx

= ∫
π

−π
an cosnx cosnx dx = anπ,

since all terms of the summations are zero except the single integral shown for which
k = n (by Theorem 8.5.1). Solving this for an, we have

an =
1
π
∫
π

−π
f (x)cosnx dx. (8.12)

Similarly, when wemultiply equation (8.10) by sinnx and integrate the result from −π
to π, we obtain

bn =
1
π
∫
π

−π
f (x) sinnx dx. (8.13)

Example 8.5.1. Find the Fourier series expansion of the periodic function f (x), with
period 2π, defined on (−π,π] by

f (x) =
{
{
{

0, if −π < x ⩽ 0
x, if 0 < x ⩽ π.

Solution. We compute the Fourier coefficients by equations (8.12) and (8.13).We have

a0 =
1
π
∫
π

−π
f (x)dx = 1

π
(∫

0

−π
0dx + ∫

π

0
x dx) = π

2
,
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an =
1
π
∫
π

−π
f (x)cosnx dx = 1

π
∫
π

0
x cosnx dx (use integration by parts)

= 1
nπ
([x sinnx]π0 − ∫

π

0
sinnx dx) = 1

nπ
[ 1
n
cosnx]

π

0

= 1
n2π
[(−1)n − 1] = {

−2
n2π , when n = 1,3,5,…
0, when n = 2,4,6,… ,

bn =
1
π
∫
π

−π
f (x) sinnx dx = 1

π
∫
π

0
x sinnx dx

= − 1
nπ
([x cosnx]π0 − ∫

π

0
cosnx dx)

= − 1
nπ
(π cosnπ − [ 1

n
sinnx]

π

0
) = −1

n
(−1)n.

Hence, the Fourier series is

π
4
+ (−2 cosx

π
+ sinx) + (0 − sin 2x

2
) + (−2 cos3x

32π
+ sin3x

3
) +⋯.

As with Taylor series, we now have two more questions to solve: “Is the Fourier
series convergent?” and “If the Fourier series converges, does it converge to f (x)?”.We
graph some functions of the first 5, 10, and 20 terms of the series and the graph of f (x)
in Figure 8.5.1.

Figure 8.5.1: Graphs of f (x) in Example 8.5.1 and some partial sums of its Fourier series.
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If we notice that each approximating function passes through the three points
(−π,π/2), (π,π/2), and (3π,π/2), we may understand the following theorem, given
without proof.

Theorem 8.5.2 (Convergence of Fourier series). If the function f is defined for x ∈
(−l, l) and both f and its derivative f ′ are continuous or piecewise continuous on the
interval (−l, l), then f has a Fourier series defined on (−l, l) and f (x) is the sum of its
Fourier series at all points of continuity. At a point c where a jump discontinuity occurs
in f , the Fourier series converges to the average

f (c+) + f (c−)
2
,

where f (c+) stands for the right limit and f (c−) is the left limit of f at the point c.

Hence, by the convergence theorem, in Example 8.5.1, at the endpoints x = (2k +
1)π, k = 0, ±1, ±2,…, the Fourier series of f converges to the value

f (x+) + f (x−)
2

= f (π
+) + f (π−)

2
= π
2
.

Example 8.5.2. Find the Fourier series expansion on (−π,π] of the function

f (x) =
{
{
{

−x, if −π < x < 0
x, if 0 ⩽ x ⩽ π.

Solution. We compute the Fourier coefficients by using formulas (8.11), (8.12), and
(8.13) and the fact that f (x) is an even function (recall that ∫π

−π g(x)dx = 2∫
π
0 g(x)dx

when g is an even function and ∫π
−π g(x)dx = 0 when g is an odd function). We have

a0 =
1
π
∫
π

−π
f (x)dx = 2

π
∫
π

0
x dx = π,

bn =
1
π
∫
π

−π
f (x) sinnx dx = 0 (since f (x) sinnx is an odd function),

an =
1
π
∫
π

−π
f (x)cosnx dx = 2

π
∫
π

0
x cosnx dx (integration by parts)

= 2
nπ
[[x sinnx]π0 − ∫

π

0
sinnx dx]

= 2
nπ
[ 1
n
cosnx]

π

0
= 2
n2π
(cosnπ − 1)

=
2
n2π
[(−1)n − 1].

If n is even, then an = 0 and if n is odd, then an = −
4
n2π , so in the Fourier series expan-

sion of f (x) there are only terms with coefficients of the form a2k+1. We have

a0
2
+
∞

∑
n=1
(an cosnx + bn sinnx)
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= π
2
+
∞

∑
k=0

a2k+1 cos(2k + 1)x =
π
2
+
∞

∑
k=0

−4
(2k + 1)2π

cos(2k + 1)x

= π
2
− 4
π
(cosx

12
+ cos3x

33
+ cos5x

52
+⋯+ cos(2n + 1)

(2n + 1)2
+⋯).

The function f (x) is continuous everywhere on −π < x ⩽ π (including f (π+) = f (π−)).
By the convergence theorem, we have

f (x) = π
2
−
4
π
(
cosx
12
+
cos3x
32
+
cos5x
52
+⋯) for all x ∈ [−π,π]

and the series converges to the periodic extension of f (x) on the entire x-axis.

Wenowuse this Fourier series to find the sums of some infinite series of constants.
For example, in the Fourier series from the previous example, using x = 0, we obtain

f (0) = 0 = π
2
− 4
π
(cos0

12
+ cos0

32
+ cos0

52
+⋯),

so

π2

8
= 1 + 1

32
+ 1
52
+ 1
72
+⋯.

If we let s be the sum of the following series with squares of all possible integers in the
denominators:

s = 1 + 1
22
+ 1
32
+ 1
42
+⋯,

then

s − π
2

8
= (1 + 1

22
+ 1
32
+ 1
42
+⋯) − (1 + 1

32
+ 1
52
+ 1
72
+⋯)

= 1
22
+ 1
42
+ 1
62
+⋯

= 1
4
(1 + 1

22
+ 1
32
+ 1
42
+⋯) = 1

4
s.

Therefore, we have

s − π
2

8
= s
4
⟹ s = π

2

6
,

so

π2

6
= s = 1 + 1

22
+ 1
32
+ 1
42
+⋯.
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8.5.2 Fourier cosine and sine series with period 2π

Youmayhave noticed that, if f (x) is an even functionwith period 2π, the Fourier series
of f only has cosine terms and a constant term and is of the form

f (x) = a0
2
+
∞

∑
n=1

an cosnx.

This is called a Fourier cosine series. This happens because f (x) is an even func-
tion, so f (x) sinnx is an odd function. Therefore, all bn =

1
π ∫

π
−π f (x) sinnx dx = 0 for

n = 1, 2,3,…. Likewise, if f (x) is an odd function with period 2π, then its Fourier series
expansion is of the form

f (x) =
∞

∑
n=1

bn sinnx.

This is called a Fourier sine series.
Sometimes, we need to find a Fourier cosine series or sine series of a function f (x)

defined on the nonsymmetric interval 0 < x < π. If this is the case, we simply extend
the definition of f to the whole interval (−π,π) in such a way that it is the required
even or odd function. If we need an even extension of f over (−π,π), then we define
f (x) = f (−x) when x ∈ (−π,0]. If we need an odd extension of f over (−π,π), then we
define f (x) = −f (−x) when x ∈ (−π,0].

Example 8.5.3. Find the Fourier sine series and the Fourier cosine series for the func-
tion f (x) defined on [0,π] by

f (x) =
{
{
{

0, when 0 < x ⩽ π
2

1, when π
2 < x ⩽ π.

Solution. For the Fourier sine series, we select the odd extension of the function
over (−π,π) with f (x) = 0 for − π2 ⩽ x ⩽ 0 and f (x) = −1 for −π < x < − π2 , as shown in
Figure 8.5.2. We compute the Fourier sine series (and cosine series) from the values
x ∈ (0,π] as follows.

Since f is now an odd function on (−π,π), we only need to compute bn for n =
1, 2,3,…. We have

bn =
1
π
∫
π

−π
f (x) sinnx dx = 2

π
∫
π

0
f (x) sinnx dx = 2

π
∫
π

π
2

sinnx dx

= 2
nπ
[−cosnx]ππ

2
= 2
nπ
(1 + cos nπ

2
)

=
{{{
{{{
{

2
nπ , when n is odd
0, when n = 2,6, 10,…
4
nπ , when n = 4,8, 12,… ,



400 | 8 Infinite series, sequences, and approximations

Figure 8.5.2: Odd/even expansion.

so the Fourier sine series of f (x) is

2
π
sinx + 2

3π
sin3x + 4

4π
sin4x + 2

5π
sin5x + 2

7π
sin7x +⋯

=
{
{
{

f (x), for x ∈ (0,π) and x ≠ π
2

1
2 , for x = π

2 .

For the Fourier cosine series, we select the even extension of the function f (x) over
(−π,π)with f (x) = 0 for − π2 ⩽ x ⩽ 0 and f (x) = 1 for −π < x < −

π
2 . We need only to calcu-

late an, for n = 0, 1, 2,…. We have

a0 =
1
π
∫
π

−π
f (x)dx = 2

π
∫
π

0
f (x)dx = 2

π
∫
π

π
2

1dx = 1,

an =
1
π
∫
π

−π
f (x)cosnx dx = 2

π
∫
π

0
f (x) cosnx dx = 2

π
∫
π

π
2

cosnx dx

= 2
π
[ 1
n
sinnx]

π

π
2

= − 2
nπ

sin nπ
2

=
{
{
{

−2
nπ (−1)

n−1
2 , when n is odd

0, when n is even.

Hence, the desired Fourier cosine series is

1
2
− 2
π
cosx + 2

3π
cos3x − 2

5π
cos5x +⋯.

This Fourier cosine series converges to f (x) on (0,π) when x ≠ π
2 . When x = π

2 , this
series converges to 1

2 .

8.5.3 The Fourier series expansion with period 2l

In practice, very often wewill be interested in a Fourier expansion of a function with a
period that is not 2π. If f (x) is a function defined on the interval (−l, l), then the linear
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transformation z = πx
l gives thenew function F(z) = f ( lzπ ) = f (x), definedon the interval

z ∈ (−π,π), so the previous methods can be applied to F. The Fourier series expansion
for F(z) is

F(z) = a0
2
+
∞

∑
n=1
(an cosnz + bn sinnz),

where

an =
1
π
∫
π

−π
F(z)cosnz dz for n = 0, 1, 2,… and

bn =
1
π
∫
π

−π
F(z) sinnz dz for n = 1, 2,3,… .

Now, substituting back z = πx
l and using f (x) = F(z) gives

an =
1
π
∫
π

−π
F(z) cosnz dz

= 1
π
∫
l

−l
f (x)cos(nπx

l
)d(πx

l
)

= 1
l
∫
l

−l
f (x)cos(nπx

l
)dx for n = 0, 1, 2,… ,

bn =
1
π
∫
π

−π
F(z) sinnz dz

= 1
π
∫
l

−l
f (x) sin(nπx

l
)d(πx

l
)

= 1
l
∫
l

−l
f (x) sin(nπx

l
)dx for n = 1, 2,3,… .

Hence, we have proved the following result.

Theorem 8.5.3. The Fourier series of a function f (x) defined on the interval −l < x < l
is

a0
2
+
∞

∑
n=1
(an cos(

nπx
l
) + bn sin(

nπx
l
)), (8.14)

where

an =
1
l
∫
l

−l
f (x) cos(nπx

l
)dx for n = 0, 1, 2,… and (8.15)

bn =
1
l
∫
l

−l
f (x) sin(nπx

l
)dx for n = 1, 2,3,… .

This expansion is also true for the periodic extension of f (x) over the entire real-number
line. At any point x of continuity of f , the series converges to f (x). That is, when x is a
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point of continuity,

f (x) = a0
2
+
∞

∑
n=1
(an cos

nπx
l
+ bn sin

nπx
l
).

At a point c of jump discontinuity of the periodic extension of f , the series converges to

1
2
(f (c+) + f (c−)).

Example 8.5.4. Find the Fourier series with period 4 of f (x), defined on the interval
(−2, 2] by

f (x) =
{
{
{

0, when −2 ⩽ x < 0
1, when 0 ⩽ x < 2.

Solution. Using formula (8.15) with l = 2, we have

a0 =
1
l
∫
l

−l
f (x)dx = 1

2
∫
2

−2
f (x)dx = 1

2
[∫

0

−2
0dx + ∫

2

0
1dx] = 1,

an =
1
l
∫
l

−l
f (x)cos nπx

l
dx

= 1
2
[∫

0

−2
0 × cos nπx

2
dx + ∫

2

0
1 × cos nπx

2
dx]

= 1
2
[ 2
nπ

sin nπx
2
]
2

0
= 0,

bn =
1
l
∫
l

−l
f (x) sin nπx

l
dx

=
1
2
[∫

0

−2
0 × sin nπx

2
dx + ∫

2

0
1 × sin nπx

2
dx]

= −[
1
nπ

cos nπx
2
]
2

0
=

1
nπ
(1 − (−1)n)

=
{
{
{

0, when n = 2,4,6,…
2
nπ , when n = 1,3,5,… .

Therefore, the Fourier series of f (x) is

1
2
+ 2
π
sin πx

2
+ 2
3π

sin 3πx
2
+ 2
5π

sin 5πx
2
+⋯.

When x ≠ 2k for k = 0, 1, 2,…, this Fourier series converges to f (x). When x = 2k for
k = 0, 1, 2,…, the Fourier series converges to 1

2 . Figure 8.5.3 shows the function f (x)
and several partial sums of the Fourier series of f (x). There are three partial sums,
with the first 5, 10, and 20 terms.
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Figure 8.5.3: Graphs of f (x) and some partial sums of its Fourier series.

8.5.4 Fourier series with complex terms

In electrical fields, engineers often use the series

∞

∑
n=−∞

cnei
nπx
l , where cn =

1
2l
∫
l

−l
f (x)e−i

nπx
l dx, for n ∈ Z, (8.16)

to represent a periodic function f (x)with period 2l. We show how this is related to the
Fourier series defined in the previous subsection.

Recall Euler’s theorem

eix = cosx + i sinx and e−ix = cosx − i sinx.

Let a0, an, bn be the coefficients of the Fourier series of f (x) in equation (8.15). The
series (8.16) can be rewritten as

∞

∑
n=−∞

cnei
nπx
l = c0 +

∞

∑
n=1
(cnei

nπx
l + c−ne−i

nπx
l ), (8.17)

where c0 =
1
2l
∫
l

−l
f (x)dx = a0

2
(8.18)

and the general term (cnei
nπx
l + c−ne−i

nπx
l ) is equal to

= [ 1
2l
∫
l

−l
f (x)e−i

nπx
l dx]ei

nπx
l + [ 1

2l
∫
l

−l
f (x)ei

nπx
l dx]e−i

nπx
l

= 1
2l
[∫

l

−l
f (x)(cos nπx

l
− i sin nπx

l
)dx]ei

nπx
l

+ 1
2l
[∫

l

−l
f (x)(cos nπx

l
+ i sin nπx

l
)dx]e−i

nπx
l

= 1
2
(an − ibn)ei

nπx
l + 1

2
(an + ibn)e−i

nπx
l

= 1
2
(an − ibn)(cos

nπx
l
+ i sin nπx

l
)
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+ 1
2
(an + ibn)(cos

nπx
l
− i sin nπx

l
)

= an cos
nπx
l
+ bn sin

nπx
l
.

Therefore, (8.16) becomes
∞

∑
n=−∞

cnei
nπx
l = c0 +

∞

∑
n=1
(cnei

nπx
l + c−ne−i

nπx
l )

= a0
2
+
∞

∑
n=1
(an cos

nπx
l
+ bn sin

nπx
l
).

Thismeans that the Fourier series in complex form (8.16) is the sameas the real Fourier
series defined in (8.14).

8.6 Exercises

1. Determine whether each of the following series is convergent or divergent and, if
it is convergent, find its sum:
(a) ∑∞n=1(√n + 1 −√n); (b) ∑∞n=1 sin(

nπ
3 ); (c) ∑∞n=1(−1)

n;

(d) ∑∞n=1(
1
2n +

2
3n ); (e) ∑∞n=1

n2
n2+1 ; (f) ∑∞n=1

1
(2n−1)(2n+1) ;

(g) ∑∞n=1√
n+1
n ; (h) ∑∞k=0

1
(ln 3)k ; (i) ∑∞i=2(

2
π )

i−1;

(j) ∑∞j=3 e
jπ−j .

2. For each of the following series, determine the values of x forwhich the series con-
verges.When the series converges, it defines a function of x. What is the function?
(a) ∑∞n=1

xn
2n ; (b) ∑∞k=1

(2x+1)k
5k ; (c) ∑∞i=0 3

i+2xi ; (d) ∑∞n=1(lnx)
n.

3. Test the following series for convergence (there may be more than one correct
method):
(a) ∑∞n=2

1
n(lnn)2 ; (b) ∑∞n=1

lnn
n2 ;

(c) ∑∞n=3
1

n(lnn)(ln(lnn)) ; (d) ∑∞k=1
k2−k

k4−2k+3 ;

(e) ∑∞n=1
arctann
√n3+n+1
; (f) ∑∞k=1

k lnk
√(k+2)5 ;

(g) ∑∞n=3
3n

2n+5n ; (h) ∑∞n=1
4n3−3

n(n2+1)(√n+5) ;

(i) ∑∞i=1√
i2+i−1
4i5+3i+5 ; (j) ∑∞n=1

en
1+e2n ;

(k) ∑∞n=1
1+n
1+n2 ; (l) ∑∞n=1

lnn
n ;

(m) ∑∞n=2
1
(lnn)lnn ; (n) ∑∞n=1

1
1+an , (a > 0);

(o) ∑∞n=1 n sin
1
n ; (p) ∑∞i=1 sin(

1
i2 );

(q) ∑∞n=1(
n√2 − 1); (r) ∑∞n=1

4n
n! ;

(s) ∑∞n=1
n3n
n+4n ; (t) ∑∞j=1

j5
5j ;

(u) ∑∞n=1
2nn!
nn ; (v) ∑∞n=1

n!2n
(2n)! ;

(w) ∑∞n=1(1 −
1
n )

n2 ; (x) ∑∞n=1(
n

3n−1 )
2n;



8.6 Exercises | 405

(y) ∑∞n=3
n
(lnn)n ; (z) ∑∞n=1

ln(n+2)
(a+ 1n )

n , (a > 0);

(aa) ∑∞n=1
1

n2−lnn .
4. Determine whether each of the following series converges absolutely, converges

conditionally, or diverges:
(a) ∑∞n=1(−1)

n+1 2+n
n2 ; (b) ∑∞n=1(−1)

n+1(0.99)n; (c) ∑∞n=2
(−1)n+1
n lnn ;

(d) ∑∞n=1(−1)
n sin

nπ
2

n ; (e) ∑∞n=1(−1)
n+1 n

4n−1 ; (f) ∑∞n=1
(−1)n
ln(n+1) ;

(g) ∑∞n=1
cosnx
n2 ; (h) ∑∞n=1

(−1)n+1
n2−lnn ; (i) ∑∞k=1

(−1)k−1
√k ;

(j) ∑∞k=1
(−1)k−1 lnk

k .
5. Give an example of an alternating series ∑(−1)n−1an satisfying an > 0 and

limn→∞ an = 0, while ∑(−1)n−1an diverges.
6. Determine the convergence of each of the following series at x = 1 and x = 3:

(a) ∑∞n=2
(x−2)n
n lnn ; (b) ∑∞n=1

(x−2)n sinn
2n ; (c) ∑∞k=1

(x−2)k
k3k+2k .

7. Show that limn→∞
b3n
n!an = 0, where a, b are two nonzero constants. [Hint: consider

the convergence of the series ∑ b3n
n!an .]

8. Assume both∑u2n and∑ v2n are convergent. Prove that∑unvn,∑(un + vn)2,∑(un −
vn)2, and ∑

un
n are all convergent.

9. If the sequence {xn}with positive terms is decreasing and∑(−1)nxn diverges, does
the series ∑ 1

(1+xn)n
converge? Explain.

10. Let f (x) = {
sinx
x , if x ≠ 0

1, if x = 0.
(a) Is f (x) differentiable at x = 0? Justify your answer.
(b) Is there a number c ∈ ( π2 ,π) such that f

′(c) = − 4π2 ? Explain.
(c) Is there a number d ∈ (0, 3π2 ) such that f (d) = 0? Explain.
(d) Prove that the function y = sinx

x decreases on (0, 1).
(e) Assume x1 = 1 and xn+1 = sinxn.

(i) Does limn→∞ xn exist? Explain (you may use the fact that x > sinx for all
x > 0).

(ii) By considering the partial sum, show that the series ∑∞n=1(xn+1 − xn) con-
verges. Does it converge absolutely or conditionally?

(iii) Does the series ∑∞n=1(−1)
n−1 sinxn converge? Explain.

(iv) Does the series ∑∞n=1(−1)
n−1 xn+1

xn
converge? Explain.

(v) Show that the series ∑∞n=1 |
xnxn+2
x2n+1
− 1| converges.

11. By considering

1
3
+ 1
4
⩾ 1
4
+ 1
4
= 1
2
, 1

5
+ 1
6
+ 1
7
+ 1
8
⩾ 4 × 1

8
= 1
2
, … ,

show that the partial sum s2n ⩾ 1 + n/2 and deduce that the harmonic series
∑∞n=1 1/n diverges (the original proof was due to the French philosopher Nicolas
Oresme (1323–1382)).

12. (The integral test remainder estimates) Assume f is a positive, decreasing, and
continuous function and an = f (n). Show that the error in the nth partial sum sn
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of ∑an is bounded by the improper integral

|sn −
∞

∑
n=1

an| ⩽ ∫
∞

n
f (x)dx.

13. (Alternating series remainder estimate) If the alternating series ∑∞k=1(−1)
k−1ak

(a) satisfies ak ⩾ 0 and ak → 0 as k→∞ and (b) {ak} decreases for all n ⩾ N , then
the error in the nth partial sum of ∑(−1)k−1ak is bounded by an+1. We have

|sn −
∞

∑
k=1
(−1)k−1ak| ⩽ an+1.

Using the result above, howmany terms of the series∑∞k=1(−1)
k−1/k should we use

to approximate the true sum with error less than 1/100000?
14. (Zeno’s paradox) Zeno’s paradox is about a race between Achilles and a tortoise.

The tortoise begins with a head start of 100 meters and Achilles seeks to overtake
it. After a certain elapsed time from the start, Achilles reaches point A, where the
tortoise started, but the tortoise hasmovedahead topointB. After a certain further
interval of time, Achilles reaches point B, but the tortoise has moved ahead to a
point C, etc. Zeno then concluded that Achilles can never pass the tortoise. Why
is this argument wrong?

15. (Euler’s constant γ ≈ 0.577 215664…) The Euler constant γ is defined as

γ = lim
n→+∞
(1 + 1

2
+ 1
3
+⋯+ 1

n
− lnn).

(a) Show that ln(n + 1) − lnn ⩾ 1
n+1 .

(b) By considering ln(n + 1) ⩽ 1 + 1
2 +

1
3 + ⋯ +

1
n ⩽ 1 + lnn, or any other method,

show that the sequence {γn}

γn = 1 +
1
2
+ 1
3
+⋯+ 1

n
− lnn

is bounded and monotonic and therefore limn→∞ γn exists.
(c) Let sn = ∑nk=1(−1)

k−1/k and show that

s2n = (1 +
1
2
+ 1
3
+⋯+ 1

2n
) − (1 + 1

2
+ 1
3
+⋯+ 1

n
)

and sn→ ln 2 as n→∞.
16. (Riemann’s rearrangement theorem) If∑an is a conditionally convergent series

andm is any real number, then there is a rearrangement of ∑an which converges
tom.
(a) Rearrange the series 1− 12 +

1
3 −

1
4 +

1
5 −⋯+(−1)

n 1
n +⋯ so that it converges to 2.

(b) Prove this theorem.
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17. Find the radius of convergence and the interval of convergence of the following
series:
(a) ∑∞n=1 x

n; (b) ∑∞n=1
nxn
n+1 ; (c) ∑∞n=0

(x−5)n
10n ;

(d) ∑∞n=1
n
3n (x − 3)

2n; (e) ∑∞n=1
n(x−1)n
4n(n2+1) ; (f) ∑∞n=1

2n−1
2n x2n−2;

(g) ∑∞n=1
1
2nn (x − 1)

n; (h) ∑∞n=1
n(2x+3)n
n+1 ; (i) ∑∞n=1

3n(x−2)2n+1
(n+2)2 ;

(j) ∑∞n=1
n!xn
nn4n ; (k) ∑∞n=0

2nxn
ln(n+2) ; (l) ∑∞n=1

1
an+bn x

n, (a > b > 0);

(m) ∑∞n=1(
x+1
3n )

n.
18. (Weierstrass’s nowhere differentiable continuous function) In Weierstrass’s

original paper, the function was defined to be

f (x) =
∞

∑
n=0

an cos(bnπx)

= cos(πx) + acos(bπx) + a2 cos(b2πx) + a3 cos(b3πx) +⋯,

where 0 < a < 1, b is a positive odd integer, and ab > 1 + 3π/2. The proof that
this function is continuous but nowhere differentiable was given by Weierstrass
on 18 July 1872 (extended reading: http://en.wikipedia.org/wiki/Weierstrass_
function). Use a graphing utility to graph the sumwith its first three terms for the
case a = 2/3 and b = 9. Describe the graph that you see.

19. The function s(x) is defined by a series as

s(x) =
∞

∑
k=1

kxk−1 = 1 + 2x + 3x2 + 4x3 +⋯+ nxn−1 + .

(a) Find the domain of s(x).
(b) Rewrite s(x) in terms of the basic functions listed in Chapter 1.
(c) Prove the Nicole Oresme theorem

1 + 1
2
× 2 + 1

4
× 3 +⋯+ 1

2n−1
× n +⋯ = 4.

20. If a function g(x) is defined by

g(x) =
∞

∑
k=2

(−1)kxk

k(k − 1)
= x2

1 ⋅ 2
− x3

2 ⋅ 3
+ x4

3 ⋅ 4
−⋯+ (−1)

nxn

n(n − 1)
+⋯,

write g(x) in terms of the basic functions listed in Chapter 1. [Hint: use term-by-
term differentiation twice.]
Find the value of

1
1 ⋅ 2 ⋅ 22

−
1

2 ⋅ 3 ⋅ 23
+

1
3 ⋅ 4 ⋅ 24

−⋯+
(−1)n

n(n − 1)2n
+⋯.

21. Find the value of the following series:
(a) ∑∞n=1

22n+1
5n ; (b) ∑∞n=1

1
n3n ; (c) ∑∞n=1

n2
5n .
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22. (Geometric distribution) Assume a certain product is “bad” with a probability p
and “good”with a probability q = 1−p. Each product is independent. An inspector
is checking on the product line. The number X of products up to and including
the first bad product that is identified is a random variable that has a geometric
distribution. Show that:
(a) P(X = n) = qn−1p and P(X ⩽ n) = 1 − qn;
(b) E(X) = 1

p (the expected value of a discrete random variable X is defined as
E(X) = ∑∞n=1 nP(X = n)).

23. If f (x) = ∑∞n=1
xnn!
nn , then:

(a) find the interval of convergence;
(b) find the radius of convergence;
(c) use the first three terms of this series to approximate f (− 12 ) and estimate the

error.
24. (Long division) Use long division to find the first three terms of the MacLaurin

series for the function y = ln(1+x)
1+2x .

25. Find the following Taylor series for f (x) centered at the given value of a, assuming
that f has a power series expansion (you do not need to show that Rn(x) → 0):
(a) f (x) = 1

x2+3x+2 , a = −4; (b) f (x) = cosx, a = − π3 ;

(c) ∑∞n=1
(−1)n−1
22n−1

1
(2n−1)!x

2n−1, a = π
2 .

26. Use a Maclaurin series derived in this chapter to obtain the Maclaurin series for
the following functions:
(a) f (x) = (1 − x) ln(1 + x); (b) f (x) = arcsinx;
(c) g(x) = 1+x

(1−x)2 ; (d) k(x) = xe−2x .
27. Find the sum, in terms of e, of

∞

∑
k=1

k2

k!
= 1

2

1!
+ 2

2

2!
+ 3

2

3!
+⋯ + n

n

n!
+⋯.

28. How many terms of the Maclaurin series for ln(1 + x) are required in order to esti-
mate the value of ln3 to within 0.0001? Show your work.

29. Use the first five terms of the Maclaurin series for the given function f (x) to esti-
mate the value of the following integrals:
(a) ∫10

1
1+x4 dx; (b) ∫0.50 ex2 dx.

30. Assume f (x) = {{
{

e−
1
x2 , x ≠ 0

0, x = 0.
Show that f ′(0) = f″(0) = f‴(0). Does the Taylor series

for f (x) converge to f (x)? Explain.
31. (Bailey–Borwein–Plouffe formula) If m is an integer that is less than 8, show

that

∫
1/√2

0

xm−1

1 − x8
dx = 2−

m
2

∞

∑
n=1

1
16n(8n +m)

.
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Then prove the following Bailey–Borwein–Plouffe formula for π:

π =
∞

∑
n=0

1
16n
( 4
8n + 1
− 2
8n + 4
− 1
8n + 5
− 1
8n + 6
).

Compared with π = 4∑∞n=1(−1)
n−1/(2n − 1), which one converges “faster”?

32. (Harmonic numbers) The harmonic numbers are Hn = 1 + 1/2 + 1/3 +⋯+ 1/n for
n = 1, 2,3,…. Prove that

∞

∑
n=1

Hnxn =
ln(1 − x)
x − 1

for |x| < 1.

33. (Irrational numbers e) Write the Maclaurin series for ex . Then:
(a) state the series that represents e;
(b) find rn = n!e − [n!e] where [x] is the greatest integer function;
(c) deduce that 0 < rn <

1
n and then show that e is irrational.

34. Find the Fourier series expansion for the functions over each of the following in-
tervals:
(a) f (x) = {x, −π < x < 0

2x, 0 ⩽ x < π;
(b) f (x) = {e

x , −π < x < 0
1, 0 ⩽ x ⩽ π;

(c) f (x) = x
π , −π ⩽ x < π; (d) f (x) = {2x + 1, −2 ⩽ x < 0

1, 0 ⩽ x < 2.
35. (Integration/differentiation term by term) For a piecewise continuous func-

tion, it can be shown that its Fourier series can be integrated or differentiated
term by term. Assume that a piecewise continuous function defined on [−π,π]
has a Fourier series expansion with coefficients a0, an and bn.
(a) Show that

∫
x

−π
f (s)ds = 1

2
a0(x + π) +

∞

∑
n=1

1
n
(an(sinnx) − bn(cos(nx) − cos(nπ))).

(b) Find the Fourier series expansion for the periodic function f (x) with period
2π and

f (x) = x(2π − x)
4
, x ∈ [0, 2π].

(c) (Riemann hypothesis) The Riemann zeta function is

ζ (s) =
∞

∑
n=1

1
ns
= 1 + 1

2s
+

1
3s
+⋯+

1
ns
+⋯.

It is known that ζ (1) = ∞. For any even integer s, the value of ζ (s) is also
known. For example, ζ (2) = π2

6 , ζ (4) =
π4
90 , and ζ (6) =

π6
945 . However, the value

of zeta for odd integers is not known. The roots of ζ (s) are all complex num-
bers of the form a + bi. The Riemann hypothesis states that all the complex
roots of ζ (s) have a real part of a = 1

2 , that is, all the complex roots of ζ (s)
lie on the line x = 1

2 in the complex plane. It stands today as one of the most
important unsolved problems of mathematics.
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(i) Use the result found in (b) to show that ∑∞n=1
1
n2 =

π2
6 .

(ii) Use term-by-term integration on the series found in (b) and show that
∑∞n=1

1
n4 =

π4
90 .

36. Find the Fourier sine and cosine expansion for the following functions:
(a) f (x) = {x, 0 ⩽ x < π

2
1, π

2 ⩽ x < π;
(b) f (x) = sinx, (0 < x ⩽ π);

(c) f (x) = x2, (0 ⩽ x ⩽ 2).
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