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Preface

This textbook provides an introduction to the concepts, methods, and results of
scheduling theory. It is written for graduate students and advanced undergrad-
uates who are studying scheduling, as well as for practitioners who are inter-
ested in the knowledge base on which modern scheduling applications have
been built. The coverage assumes no background in scheduling, and for sto-
chastic scheduling topics, we assume only a familiarity with basic probability
concepts. Among other things, our first appendix summarizes the important
properties of the probability distributions we use.
We view scheduling theory as practical theory, and we have made sure to

emphasize the practical aspects of our topic coverage. Thus, we provide algo-
rithms that implement some of the solution concepts we describe, and we
use spreadsheet models where appropriate to calculate solutions to scheduling
problems. Especially when tackling stochastic scheduling problems, we must
balance the need for tractability and the need for realism. Thus, we stress heur-
istics and simulation-based approaches when optimization methods and ana-
lytic tools fall short. We also provide many examples in the text along with
computational exercises among our end-of-chapter problems.

Coverage of the Text

Thematerial in this book can support a variety of course designs. An introductory-
level course covering only deterministic scheduling can draw from Chapters 1–5,
8–10, 12–14, and 16–17. A one-quarter course that covers both deterministic and
stochastic topics can use Chapters 1–11 and possibly 15. Our own experience
suggests that the entire book can support a two-quarter sequence, especially with
supplementary material we provide online.
The book contains two appendices. The first reviews the salient properties of

well-known probability distributions, as background for our coverage of sto-
chastic models. It also covers selected topics on which some of our advanced
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coverage is based. The second appendix includes background derivations
related to the “critical ratio rule,” which arises frequently in safe scheduling
models.
Our coverage is substantial compared with that in other scheduling text-

books, but it is not encyclopedic. Our goal is to enable the reader to delve into
the research literature (or in some cases, the practice literature) with enough
background to appreciate the contributions of state-of-the-art papers.
For the reader who is interested in a more comprehensive link to the research

literature than our text covers, we provide a set of online Research Notes. The
Research Notes represent unique material that expands the book’s coverage and
builds an intellectual bridge to the research literature on sequencing and sche-
duling. In organizing the text, we wanted to proceed from simple to complex
and to maintain technological order. As much as possible, each new result is
based only on previous coverage. As a secondary guiding principle, the text
minimizes any discussion of connections between models, thus keeping the
structure simple. Scheduling theory did not develop along these same lines,
however, so research-oriented readers may wish to look at the bigger picture
without adhering to these principles with the same fidelity. One purpose of
our Research Notes is to offer such a picture. Another purpose is to provide
some historical background. We also mention open research questions that
we believe should be addressed by future research. Occasionally, we provide
more depth on topics that are not sufficiently central to justify inclusion in
the text itself. Finally, for readers who will be reading research papers directly
from the source, we occasionally need to discuss topics that are not crucial to
the text but arise frequently in the literature.

Historical Background

This book is an updated version of Baker’s text, so some historical background is
appropriate at the outset. Introduction to Sequencing and Scheduling (ISS) was
published by John Wiley & Sons in 1973 and became the dominant textbook in
scheduling theory. A generation of instructors and graduate students relied on
this book as the key source of information for advanced work in sequencing and
scheduling. Later books stayed abreast of developments in the field, but as refer-
ences in journal articles would indicate, most of those books were never treated
as fundamental to the study of scheduling.
Sales of ISS slowed by 1980, and Wiley eventually gave up the copyright.

Although they found a publishing house interested in buying the title, Baker
took back the copyright. For several years, he provided generous photocopying
privileges to instructors who were still interested in using the material, even
though some of it had become outdated. Finally, in the early 1990s, Baker
revised the book. The sequel was Elements of Sequencing and Scheduling

xiv Preface



(ESS), self-published in 1992 and expanded in 1995. Less encyclopedic than its
predecessor, ESS was rewritten to be readable and accessible to the student
while still providing an intellectual springboard to the field of scheduling theory.
Without advertising or sales reps, and without any association with a textbook
publishing house, ESS sold several hundred copies in paperback through 2007.
Another generation of advanced undergraduate and graduate students used the
book in courses, while other graduate students were simply assigned the book as
a required reading for independent studies or qualifying exams. Current
research articles in scheduling continue to cite ISS and/or ESS as the source
of basic knowledge on which today’s research is being built.
Perhaps the most important topic not covered in ESS was stochastic schedul-

ing. With the exception of the chapter on job shop simulations, almost all the
coverage in ESS dealt with deterministic models. In the last 15 years, research
has focused as much on stochastic models as on deterministic models, and sto-
chastic scheduling has become a significant part of the field. But traditional
approaches to stochastic scheduling have their limitations, and new approaches
are currently being developed. One important line of work introduces the
notion of safe scheduling, an approach pioneered by Trietsch and others, and
more recently extended in joint work by Baker and Trietsch. This book updates
the coverage of ESS and adds coverage of safe scheduling as well as traditional
stochastic scheduling. Because the new material comes from active researchers,
the book surpasses competing texts in terms of its timeliness. And because the
book retains the readability of its earlier versions, it should be the textbook of
choice for instructors of scheduling courses. Finally, its title reinforces the
experiences of two generations of students and scholars, providing a thread that
establishes this volume, now in its second edition, as the latest update of a clas-
sic text.

New in the Second Edition

The second edition adds coverage of two major advances in stochastic schedul-
ing and also addresses a few other new topics. One major development involves
the application of branch and bound techniques and mathematical program-
ming models to some safe scheduling problems. That new work, incorporated
in Chapters 7 and 8 shows that the toolkit developed for deterministic schedul-
ing can be applied to safe scheduling as well. The second major development
builds on the validation of lognormal distributions for various empirical data
sets. That new work implies that we can implement the full spectrum of ana-
lytics and modeling to scheduling, most importantly in project scheduling.
Accordingly, Chapter 18 is a new chapter devoted to project analytics. The pre-
vious Chapter 18 is now Chapter 19, with an expanded coverage of hierarchical
safe scheduling for projects. We also expanded Appendix A to include project

Preface xv



analytics background material, including coverage of mixtures, which occur
often, especially in projects. We also added a section on the lognormal tail dis-
tribution to Appendix B. Chapter 6 now includes a section on fuzzy scheduling
and on robust scheduling. These approaches have been promoted as alterna-
tives to stochastic scheduling that ostensibly avoid the need to fit stochastic
distributions to observed processing times, but we argue that the distribu-
tion-based approach remains the most useful one. That argument is especially
valid now that stochastic scheduling models in general, and safe scheduling
models in particular, can rely on validated distribution models.
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1

Introduction

1.1 Introduction to Sequencing and Scheduling

Scheduling is a term in our everyday vocabulary, although we may not always
have a good definition of it in mind. Actually, it’s not scheduling that is a com-
mon concept in our everyday life; rather it is schedules. A schedule is a tangible
plan or document, such as a bus schedule or a class schedule. A schedule usually
tells us when things are supposed to happen; it shows us a plan for the timing of
certain activities and answers the question, “If all goes well, when will a partic-
ular event take place?” Suppose we are interested in when dinner will be served
or when a bus will depart. In these instances, the event we are interested in is the
completion of a particular activity, such as preparing dinner, or the start of a
particular activity such as a bus trip. Answers to the “when” question usually
come to us with information about timing. Dinner is scheduled to be served
at 6:00 p.m., the bus is scheduled to depart at 8:00 a.m., and so on. However,
an equally useful answer might be in terms of sequence rather than timing: That
is, dinner will be served as soon as the main course is baked, or the bus will
depart right after cleaning and maintenance are finished. Thus, the “when”
question can be answered by timing or by sequence information obtained from
the schedule.
If we take into account that some events are unpredictable, then changes

may occur in a schedule. Thus, we may say that the bus leaves at 8:00 a.m.
unless it is delayed for cleaning and maintenance, or we may leave the con-
dition implicit and just say that the bus is scheduled to leave at 8:00 a.m. If
we make allowances for uncertainty when we schedule cleaning and mainte-
nance, then passengers can trust that the bus will leave at 8:00 a.m. with
some confidence. Using a time buffer (or safety time) helps us cope with
uncertainty.

1
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Intuitively, we think of scheduling as the process of generating the schedule,
although we seldom stop to consider what the details of that process might be.
In fact, although we think of a schedule as something tangible, the process of
scheduling seems intangible, at least until we consider it in some depth. For
example, we often approach the problem in two steps: sequencing and schedul-
ing. In the first step, we plan a sequence or decide how to select the next task. In
the second step, we plan the start time, and perhaps the completion time, of
each task. The determination of safety time is part of the second step.
Preparing a dinner and doing the laundry are good examples of everyday

scheduling problems. They involve tasks to be carried out, the tasks are well
specified, and particular resources are required – a cook and an oven for dinner
preparation and a washer and a dryer for laundry. Scheduling problems in
industry have similar elements: they contain a set of tasks to be carried out
and a set of resources available to perform those tasks. Given tasks and
resources, together with some information about uncertainties, the general
problem is to determine the timing of the tasks while recognizing the capability
of the resources. This scheduling problem usually arises within a decision-
making hierarchy in which it follows some earlier, more basic decisions. Dinner
preparation, for example, typically requires a specification of the menu items,
recipes for those items, and information on how many portions are needed.
In industry, analogous decisions are usually part of the planning function.
Among other things, the planning function might describe the design of a com-
pany’s products, the technology available for making and testing the required
components, and the volumes that are required. In short, the planning function
determines the resources available for production and the tasks to be scheduled.
In the scheduling process, we need to know the type and the amount of each

resource so that we can determine when the tasks can feasibly be accomplished.
When we specify the tasks and resources, we effectively define the boundary of
the scheduling problem. In addition, we describe each task in terms of such
information as its resource requirement, its duration, the earliest time at which
it may start, and the time at which it is due to complete. If the task duration is
uncertain, we may want to suppress that uncertainty when stating the problem.
We should also describe any logical constraints (precedence restrictions) that
exist among the tasks. For example, in describing the scheduling problem for
several loads of laundry, we should specify that each load requires washing to
be completed before drying begins.
Along with resources and tasks, a scheduling problem contains an objective

function. Ideally, the objective function should consist of all costs that depend
on scheduling decisions. In practice, however, such costs are often difficult to
measure or even to completely identify. The major operating costs – and the
most readily identifiable – are determined by the planning function, while
scheduling-related costs are difficult to isolate and often tend to appear fixed.
Nevertheless, three types of decision-making goals seem to be prevalent in
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scheduling: turnaround, timeliness, and throughput. Turnaround measures the
time required to complete a task. Timeliness measures the conformance of a
particular task’s completion to a given deadline. Throughput measures the
amount of work completed during a fixed period of time. The first two goals
need further elaboration, because although we can speak of turnaround or time-
liness for a given task, scheduling problems require a performance measure for
the entire set of tasks in a schedule. Throughput, in contrast, is already a meas-
ure that applies to the entire set. As we develop the subject of scheduling in the
following chapters, we will elaborate on the specific objective functions that
make these three goals operational.
We describe a scheduling problem by providing information about tasks,

resources, and an objective function. However, finding a solution is often a fairly
complex matter, and formal problem-solving approaches are helpful. Formal
models help us first to understand the scheduling problem and then to find a
good solution systematically. For example, one of the simplest and most widely
used models is the Gantt chart, which is an analog representation of a schedule.
In its basic form, the Gantt chart displays resource allocation over time, with
specific resources shown along the vertical axis and a time scale shown along
the horizontal axis. The basic Gantt chart assumes that processing times are
known with certainty, as in Figure 1.1.
A chart such as Figure 1.1 helps us to visualize a schedule and its detailed ele-

ments because resources and tasks show up clearly. With a Gantt chart, we can
discover information about a given schedule by analyzing geometric relation-
ships. In addition, we can rearrange tasks on the chart to obtain comparative
information about alternative schedules. In this way, the Gantt chart serves
as an aid for measuring performance and comparing schedules as well as for
visualizing the problem in the first place. In this book, we will examine graph-
ical, algebraic, spreadsheet, and simulation models, in addition to the Gantt

1 2
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2

4

4

4

3

3
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Resource 1

Resource 2

Resource 3
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Figure 1.1 A Gantt chart.
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chart, all of which help us analyze and compare schedules. In essence, models
help us formalize the otherwise intangible process we call scheduling.
Many of the early developments in the field of scheduling were motivated by

problems arising in manufacturing. Therefore, it was natural to employ the
vocabulary of manufacturing when describing scheduling problems. Now,
although scheduling work is of considerable significance in many nonmanufac-
turing areas, the terminology of manufacturing is still frequently used. Thus,
resources are usually calledmachines and tasks are called jobs. Sometimes, jobs
may consist of several elementary tasks called operations. The environment of
the scheduling problem is called the job shop, or simply, the shop. For example, if
we encounter a scheduling problem faced by underwriters processing insurance
policies, we could describe the situation generically as an insurance “shop” that
involves the processing of policy “jobs” by underwriter “machines.”

1.2 Scheduling Theory

Scheduling theory is concerned primarily with mathematical models that relate
to the process of scheduling. The development of useful models, which leads in
turn to solution techniques and practical insights, has been the continuing
interface between theory and practice. The theoretical perspective is also largely
a quantitative approach, one that attempts to capture problem structure in
mathematical form. In particular, this quantitative approach begins with a
description of resources and tasks and translates decision-making goals into
an explicit objective function.
We categorize the major scheduling models by specifying the resource con-

figuration and the nature of the tasks. For instance, a model may contain one
machine or several machines. If it contains one machine, jobs are likely to be
single-stage activities, whereas multiple machine models usually involve jobs
with multiple stages. In either case, machines may be available in unit amounts
or in parallel. In addition, if the set of jobs available for scheduling does not
change over time, the system is called static, in contrast to cases in which
new jobs appear over time, where the system is called dynamic. Traditionally,
static models have proven to be more tractable than dynamic models and have
been studied more extensively. Although dynamic models would appear to be
more important for practical application, static models often capture the
essence of dynamic systems, and the analysis of static problems frequently
uncovers valuable insights and sound heuristic principles that are useful in
dynamic situations. Finally, when conditions are assumed to be known with cer-
tainty, the model is called deterministic. On the other hand, when we recognize
uncertainty with explicit probability distributions, the model is called stochastic.
Two kinds of feasibility constraints are commonly found in scheduling pro-

blems. First, limits exist on the capacity of machines, and second, technological
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restrictions exist on the order in which some jobs can be performed. A solution
to a scheduling problem is any feasible resolution of these two types of con-
straints, so that “solving” a scheduling problem amounts to answering two
kinds of questions:

•Which resources should be allocated to perform each task?

•When should each task be performed?

In other words, a scheduling problem gives rise to allocation questions and
sequencing questions. From the start, the scheduling literature has relied on
mathematical models to help answer such questions. In more recent develop-
ments, referred to as safe scheduling, the models use safety time to mitigate dis-
ruptions due to uncertainty.
Traditionally, many scheduling problems have been viewed as problems in

optimization subject to constraints – specifically, problems in allocation and
sequencing. Sometimes, scheduling is purely allocation (e.g. choosing the prod-
uct mix with limited resources), and in such cases mathematical programming
models are usually appropriate for determining optimal decisions. These gen-
eral techniques are described in many available textbooks and are not empha-
sized in our coverage. At other times, scheduling is purely sequencing. In these
cases, the problems are unique to scheduling theory and account for much of
our emphasis in the chapters that follow.
The theory of scheduling also includes a variety of methodologies. Indeed, the

scheduling field has become a focal point for the development, application, and
evaluation of combinatorial techniques, simulation procedures, and heuristic
solution approaches. The selection of an appropriate method depends mainly
on the nature of the model and the choice of objective function. In some cases,
it makes sense to consider alternative methods. For this reason, it is important
to study methodologies as well as models.
A useful perspective on the relation of scheduling problems and their solu-

tion techniques comes from developments in a branch of computer science
known as complexity theory. The notion of complexity refers to the computing
effort required by a solution algorithm. Computing effort is described by
order-of-magnitude notation. For example, suppose we use a particular
algorithm to solve a problem of size n. (Technically, n denotes the amount
of information needed to specify the problem.) The number of computations
required by the algorithm is typically bounded from above by a function of n.
If the order of magnitude of this function is polynomial as n gets large, then
we say the algorithm is polynomial. For instance, if the function has order of
magnitude n2, denoted O(n2), then the algorithm is polynomial. On the other
hand, if the function is O(2n), then the algorithm is nonpolynomial (in this
case, exponential). Other things being equal, we prefer to use a polynomial
algorithm because as n grows large, polynomial algorithms are ultimately
faster.
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A class of problems called NP-complete problems includes many well-known
and difficult combinatorial problems. These problems are equivalent in the
sense that if one of them can be solved by a polynomial algorithm, then so
can the others. However, many years of research by mathematicians and com-
puter scientists have not yielded a polynomial algorithm for any problem in this
class, and the conjecture is that no such algorithm exists. Optimization pro-
blems as difficult as these, or even more difficult, are called NP-hard problems.
The usefulness of this concept, which applies to many scheduling problems, is
that if we are faced with the need to solve large versions of an NP-hard problem,
we know in advance that wemay not be able to find optimal solutions with avail-
able techniques. We might be better off to use a heuristic solution procedure
that has a more modest computational requirement but does not guarantee
optimality. NP-hard instances exist for which it would take less time to actually
perform the work in the shop (using any reasonable sequence) than to solve the
problem optimally on the fastest available computer. Therefore, the reliance on
heuristics is often the rule in practice, rather than the exception. Finally, some
solution procedures involve simulation. Although simulation is inherently
imprecise, it can produce nearly optimal solutions that are completely satisfac-
tory for practical purposes. In that respect, simulation is conceptually similar to
the use of heuristics.
We will have occasion to refer to the computational complexity of certain

algorithms. We will also mention that certain problems are known to be
NP-hard. This is relevant information for classifying many of the problems
we introduce, but the details of complexity theory are beyond the scope of
our main coverage. For a thorough introduction to the subject, see Garey
and Johnson (1979).

1.3 Philosophy and Coverage of the Book

Scheduling now represents a body of knowledge about models, techniques, and
insights related to actual systems. If we think of scheduling as including pure
allocation problems, the formal development of models and optimization tech-
niques for modern scheduling theory probably began in the years preceding
World War II. Formal articles on properties of specialized sequencing problems
gained recognition in the 1950s, and textbooks on the subject date from the
1960s. An early collection of relevant papers is Muth and Thompson (1963),
and the seminal work in the field is Conway,Maxwell, andMiller (1967). Articles
and textbooks, not to mention the demand for solving scheduling problems in
government and industry, stimulated even more books in the field during the
1970s and 1980s. The better-known examples are Coffman (1976) and French
(1982), in addition to the first precursor of this volume, Baker (1974). Eventually,
additional perspectives were compiled by Morton and Pentico (1993), Blazewicz
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et al. (1993), Pinedo (1995), Brucker (1995), Leung (2002), and T’Kindt and
Billaut (2002). Now the field of deterministic scheduling is well developed,
and there is a growing literature on stochastic models, including safe scheduling.
With this perspective as background, we can think of scheduling knowledge

as a tree. Around 1970, it was possible to write a textbook on scheduling that
would introduce a student to this body of knowledge and, in the process, exam-
ine nearly every leaf. In a reasonable length text, it was possible to tell the stu-
dent “everything you always wanted to know” about scheduling. But over the
last three decades, the tree has grown considerably. Writing a scheduling text
and writing a scheduling encyclopedia are no longer similar tasks.
This material is a text. The philosophy here is that a broad introduction to

scheduling knowledge is important, but it is no longer crucial to study every leaf
on the tree. A student who prepares by examining the trunk and the major
branches will be capable of studying relevant leaves thereafter. This book
addresses the trunk and the major branches: it emphasizes basic knowledge that
will prepare the reader to delve into more advanced sources with a firm sense of
the scope of the field and the major findings within it. Thus, our first objective is
to provide a sound basis in deterministic scheduling, because it is the foundation
of all scheduling models. As such, the book can be thought of as a new edition of
its precursors, Baker (1974) and (2005). But we also have a new objective: to
present the emerging theory of safe scheduling (Baker and Trietsch 2007)
and to anticipate the future directions in which it may develop. There are grow-
ing concerns after half a century of intensive development that scheduling the-
ory has not yet delivered its full promise. One reason for this shortcoming could
be the fact that most scheduling models do not address safety time. For this rea-
son, we believe that our second objective is an important one.
Our pedagogical approach is to build from specific to general. In the early

chapters, we begin with basic models and their analysis. That knowledge forms
the foundation onwhich we can build a broader coverage in later chapters, with-
out always repeating the details. The priority is on developing insight through
the use of specific models and logical analyses. In the early chapters we concen-
trate on deterministic scheduling problems, along with a number of optimal and
heuristic solution techniques. That foundation is followed by a chapter introdu-
cing stochastic scheduling and another chapter with our initial coverage of safe
scheduling. Thereafter, we address safe scheduling issues as extensions of the
deterministic models, in the spirit of building from the specific to the general.
We approach the topic of scheduling with a mathematical style. We rely on

mathematics in order to be precise, but our coverage does not pursue the math-
ematics of scheduling as an end in itself. Some of the results are presented as
theorems and justified with formal proofs. The idea of using theorems is not
so much to emphasize mathematics as it is simply to draw attention to key
results. The use of formal proofs is intended to reinforce the importance of
logical analysis in solving scheduling problems. Similarly, certain results are

1.3 Philosophy and Coverage of the Book 7



presented in the form of algorithms. Here, again, the use of algorithms is not an
end in itself but rather a way to reinforce the logic of the analysis. Scheduling is
not mainly about mathematics nor is it mainly about algorithms, but we use
such devices to develop systematic knowledge and understanding about the
solution of scheduling problems.
The remainder of this book consists of 18 chapters. Chapter 2 introduces the

basic single-machine model, deals with static sequencing problems under the
most simplifying set of assumptions, and examines a variety of scheduling criteria.
By the end of Chapter 2, we will have encountered some reasonably challenging
sequencing problems, enough to motivate the study of general-purpose optimi-
zation methodologies in Chapter 3 and heuristic methods in Chapter 4. In
Chapter 5, the discussion examines a variation of the single-machine model that
has been the subject of intensive study and that also happens to be highly relevant
for safe scheduling. Chapter 6 introduces stochastic models, and in Chapter 7, we
introduce the most basic safe schedulingmodels. In Chapter 8, we relax several of
the elementary assumptions and analyze the problem structures that result.
The second section of the book deals with models containing several

machines. Chapter 9 examines the scheduling of single-stage jobs with parallel
machines, and Chapters 10 and 11 examine the flow shopmodel, which involves
multistage jobs and machines in series. Chapter 12 takes a look at the details of
workflow in the flow shop. Chapter 13 treats the case where it is more econom-
ical to batch jobs into groups, or families, and sequence among groups and
within groups in two separate steps. Chapter 14 is an overview of the most
widely known scheduling model, the job shop, which also contains multistage
jobs but which does not have the serial structure of the flow shop. Chapter 15
discusses simulation results for job shops. To a large extent, the understanding
of models, techniques, and insights, which we develop in the preceding chap-
ters, is integrated in the study of the job shop. Similarly, the knowledge devel-
oped in studying this material builds the integrative view necessary for success
in further research and application in the field of scheduling.
In the third section of the book, we focus on nonmanufacturing applications

of scheduling. Chapter 16 covers basic project scheduling, and Chapter 17 dis-
cusses the added complications of resource constraints. Chapter 18 shows how
to obtain reliable data with which to feed project scheduling models. Finally,
Chapter 19 extends project scheduling to include safe scheduling considera-
tions. Two technical appendices support our coverage of stochastic models.
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2

Single-machine Sequencing

2.1 Introduction

The pure sequencing problem is a specialized scheduling problem in which an
orderingof the jobs completelydetermines a schedule.Moreover, the simplest pure
sequencing problem is one in which there is a single resource, or machine, and all
processing times are deterministic. As simple as it is, however, the one-machine
case is still very important.The single-machineproblem illustrates a varietyof sche-
duling topics in a tractablemodel. It provides a context inwhich to investigatemany
different performance measures and several solution techniques. It is therefore a
buildingblock in thedevelopmentof a comprehensiveunderstandingof scheduling
concepts. In order to completely understand the behavior of a complex system, it is
vital tounderstand its parts, and quite often the single-machine problemappears as
a part of a larger scheduling problem. Sometimes, it may even be possible to solve
the imbedded single-machine problem independently and then to incorporate the
result into the larger problem. For example, inmultiple-operation processes, a bot-
tleneck stage may exist, and the treatment of the bottleneck by itself with single-
machine analysis may determine the properties of the entire schedule. At other
times, the level at which decisionsmust bemademay dictate that resources should
be treated in the aggregate, as if jobs were coming to a single facility.
In addition to the limitation to a single machine, the basic problem is char-

acterized by these conditions:

C1. There are n single-operation jobs simultaneously available for processing
(at time zero).

C2. Machines can process at most one job at a time.
C3. Setup times for the jobs are independent of job sequence and are included

in processing times.
C4. Job descriptors are deterministic and known in advance.
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C5. Machines are continuously available (no breakdowns occur).
C6. Machines are never kept idle while work is waiting.
C7. Once an operation begins, it proceeds without interruption.

Under these conditions there is a one-to-one correspondence between a
sequence of the n jobs and a permutation of the job indices 1, 2,…, n. The total
number of distinct solutions to the basic single-machine problem is therefore
n!, which is the number of different sequences of n elements. Whenever a
schedule can be completely characterized by a permutation of integers, it is
called a permutation schedule, which is a classification that extends beyond
single-machine cases. In describing permutation schedules, it is helpful to
use brackets to indicate position in sequence. Thus [5] = 2 means that the fifth
job in sequence is job 2. Similarly, d[1] refers to the due date of the first job in
sequence.
After covering some preliminaries in Section 2.2, we review the elementary

sequencing results in Section 2.3 for problems containing no due dates and in
Section 2.4 for problems involving due dates. Section 2.5 introduces two ways
in which decision-making flexibility is sometimes added to the basic model.
The chapter is organized to show how differences in the choice of a criterion
often lead to differences in the optimal schedule. In the next chapter, we exam-
ine several general-purpose methodologies that can be applied to single-
machine problems.

2.2 Preliminaries

In dealing with job attributes for the single-machine model, it is useful to dis-
tinguish between information that is known in advance and information that is
generated as the result of scheduling decisions. Information that is known in
advance serves as input to the scheduling process, and we usually use lowercase
letters to denote this type of data. Three basic pieces of information that help to
describe jobs in the single-machine case are:

Processing time (pj): The amount of processing required by job j.

Release date (rj): The time at which job j is available for processing.

Due date (dj): The time at which the processing of job j is due to be
completed.

Under condition C3 the processing time pj generally includes both direct pro-
cessing time and facility setup time. The release date can be thought of as an
arrival time – the time when job j appears at the processing facility – and in
the basic model, the assumption in condition C1 is that rj = 0 for all jobs.
Due dates may not be pertinent in certain problems, but meeting them is a com-
mon scheduling concern, and the basic model can shed some light on objectives
oriented to due dates.
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Information that is generated as a result of scheduling decisions represents
output from the scheduling function, and we usually use capital letters to denote
this type of data. Scheduling decisions determine the most fundamental piece of
data to be used in evaluating schedules:
Completion time (Cj): The time at which the processing of job j is finished.

Quantitative measures for evaluating schedules are usually functions of job
completion times. Two important quantities are:

Flowtime (Fj): The time job j spends in the system: Fj =Cj − rj.

Lateness (Lj): The amount of time by which the completion time of job j
exceeds its due date: Lj =Cj − dj.

These two quantities reflect two kinds of service. Flowtime measures the
response of the system to individual demands for service and represents the
interval a job waits between its arrival and its departure. (This interval is some-
times called the turnaround time.) Lateness measures the conformity of the
schedule to a given due date and takes on negative values whenever a job is com-
pleted early. Negative lateness represents earlier service than requested; positive
lateness represents later service than requested. In many situations, distinct
penalties are associated with positive lateness, but no benefits are associated
with negative lateness. Therefore, it is often helpful to work with a quantity that
measures only positive lateness:

Tardiness (Tj): The lateness of job j if it fails to meet its due date or zero
otherwise: Tj =max{0, Lj}.

Schedules are generally evaluated by aggregate quantities that involve infor-
mation about all jobs, resulting in one-dimensional performance measures.
Measures of schedule performance are usually functions of the set of comple-
tion times in a schedule. For example, suppose that n jobs are to be scheduled.
Aggregate performance measures that might be defined include the following:

Total flowtime:
F =

n

j= 1
Fj

Total tardiness:
T =

n

j= 1
Tj

Maximum flowtime: Fmax = max
1 ≤ j ≤ n

{Fj}

Maximum tardiness: Tmax = max
1 ≤ j≤ n

{Tj}

Number of tardy jobs or the total unit
penalty:

U =
n

j=1
δ Tj ,

where δ(x) = 1 if x > 0 and δ(x) = 0 otherwise

Maximum completion time: Cmax = max
1 ≤ j ≤ n

{Cj}
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Under our basic assumptions, Cmax = Fmax = pj, and this quantity is also
known as themakespan. (These three performance measures may not be iden-
tical, however, under a different set of assumptions.)
With this notation, it is convenient to refer to the minimization of total flow-

time as the F-problem and similarly for the T-problem, the Cmax-problem, and
so on. Total flowtime, for example, is simply the sum of each of the job flow-
times. In this type of function, each job makes a direct contribution to the per-
formance measure, because each individual flowtime time is part of the sum. On
the other hand, for the Fmax-problem, some jobs maymake only an indirect con-
tribution to the performance measure. That is, job j may not be scheduled so
that it attains the largest flowtime, but its scheduling may cause the delay of
the job that does.
Instead of total flowtime, we could just as easily take mean flowtime as a per-

formancemeasure. Themean value is simply the total value divided by the num-
ber of jobs, or F/n. Similarly, total tardiness could be scaled by 1/n to yield mean
tardiness, and U could be scaled to yield the proportion of jobs tardy.
Each of these measures is a function of the set of job completion times, so that

their general form is

Z = f C1,C2,…,Cn

Furthermore, these quantities belong to an important class of performance
measures called regular measures. A performance measure Z is regular if:

a) The scheduling objective is to minimize Z.
b) Z can increase only if at least one of the completion times in the schedule

increases.

More formally, suppose that Z = f(C1, C2,…, Cn) is the value of the measure that
characterizes schedule S and that Z = f(C1,C2,…,Cn) represents the value of the
same measure under some different schedule S . Then Z is regular as long as the
following condition holds:

Z >Z implies thatCj >Cj for some job j

The aggregate measures introduced above are all regular measures, as are many
important scheduling criteria, and we will deal mainly with regular measures.
The definition is significant because it is usually desirable to restrict attention
to a limited set of schedules called a dominant set. To verify that a set D is a
dominant set of schedules for regular measures of performance, we can use
the following reasoning:

1) Consider an arbitrary schedule S (which contains completion times Cj) that
is excluded from D.

2) Show that there exists a schedule S in D, in which Cj ≤Cj for all j.

3) Therefore Z ≤ Z for any regular measure, and so S is at least as good as S.
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4) Hence, in searching for an optimal schedule, it is sufficient to consider only
schedules in D.

For example, assumption C6 could be relaxed to allow idle time, but inserted
idle time would never lead to a schedule that is better than the best permutation
schedule. We prove this property to illustrate the four-step reasoning
given above.

∎ Theorem 2.1 In the basic single-machine problem with a regular perfor-
mance measure, schedules without inserted idle time constitute a dominant set.

Proof. Let S represent a schedule containing inserted idle time. In particular,
suppose that under S the machine is idle for some interval (a, b).
Let S represent a schedule that is identical to S through time a and in which

all the processing that occurs in S after time b is moved forward in time by
an amount b − a > 0. Then any job j for which Cj ≤ a under schedule S will have
Cj =Cj under S . Also, any job j for whichCj > a under Swill haveCj =Cj− b−a

under S . Hence, Cj ≤Cj for all j.

It follows that Z ≤ Z for any regular measure of performance, so that remov-
ing inserted idle time can never lead to poorer performance. Therefore, sche-
dules without idle time constitute a dominant set. □

Similarly, it is possible to show that in the basic single-machine problem, the
set of permutation schedules is a dominant set for any regular measure of per-
formance. In other words, assumption C7 could be relaxed, allowing jobs to be
preempted, but preemption would never lead to a schedule that is better than
the best permutation schedule. The proof of this claim – reiterated below as
Theorem 2.2 – also follows the four-step argument of Theorem 2.1.

∎ Theorem 2.2 In the basic single-machine problem with a regular perfor-
mance measure, schedules without preemption constitute a dominant set.

As a consequence of these two theorems, it follows that conditions C6 and C7
need not be stated as explicit assumptions in the single-machine problem with
regular performance measures, because they characterize dominant sets of
schedules under assumptions C1–C5.

2.3 Problems Without Due Dates: Elementary Results

2.3.1 Flowtime and Inventory

Sometimes, the costs associated with scheduling decisions involve service to
customers, as reflected by their time spent in the system, and the scheduling
objective is rapid turnaround. In other situations, the costs involve investment
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in system resources, as reflected by the behavior of in-process inventories,
and the scheduling objective is to maintain low inventory levels. The intimate
relation between these two objectives can be illustrated in the basic single-
machine model.
The time spent by a job in the system is its flowtime, and the “rapid turna-

round” objective can be interpreted as minimizing total flowtime. The “low
inventory” objective can be interpreted as minimizing the average number of
jobs in the system. Let J(t) denote the number of jobs in the system at time t,
and let J be the time average of the J(t) function. For the basic single-machine
model, the behavior of J(t) is easy to visualize. At time zero, n jobs are in the
system, so J(0) = n. There is no change in J(t) until the completion of the first
job, which occurs at time F[1] = p[1]. Then J(t) drops to (n − 1) and remains there
until the completion of the second job, which occurs at time F[2] = p[1] + p[2].
Continuing in this manner, we can see that J(t) is a decreasing step function over
the entire length of the schedule, as shown in Figure 2.1. Also, the length of the
schedule is equal to Fmax = p1 + p2 + + pn, which is independent of the
sequence in which the jobs are processed. For the interval [0, Fmax], consider
the sum

A= np 1 + n−1 p 2 + + 2p n−1 + p n

This sum is just the area under the J(t) function, expressed as the sum of the
vertical strips in Figure 2.1. Thus J =A/Fmax.
Now recall that

F = F 1 + F 2 + + F n

J[t]

t

n

n– 1

n– 2

2

1

p[1] p[2] p[n– 1] p[n]p[3] . . .

Figure 2.1 The J(t) function.
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This sum is also equal to A, expressed as the sum of the horizontal strips shown
in Figure 2.2. Thus F =A. Combining and rearranging these two relations, the
algebraic result is

A= F = JFmax

Since Fmax is a given constant, J is directly proportional to F. As a result, the job
sequence that minimizes F (total flowtime) simultaneously minimizes J (average
in-process inventory). Whether the vantage point is one of optimizing customer
service or minimizing in-process inventory levels, the problem is the same: Find
the sequence that minimizes F.
This relation between flowtime and inventory extends well beyond the single-

machine sequencing problem. It arises in the dynamic environment (where jobs
arrive over time), in infinite-horizon models (where new work arrives continu-
ally), in probabilistic systems (where processing times are uncertain), and in
situations where the inventory costs may vary among jobs. Much of the theo-
retical work in scheduling has been directed to the total flowtime problem and
its generalizations. What might at first seem to be undue emphasis on the turn-
around criterion is not really so restrictive, in light of this relation between flow-
time and inventory, because total flowtime actually encompasses a broader
range of scheduling-related costs.

2.3.2 Minimizing Total Flowtime

Consider the J(t) graph and the problem of minimizing total flowtime, F. An
equivalent problem is that of minimizing the area under the J(t) function.
The selection of a sequence can be interpreted as the construction of a path
on the J(t) graph from the point (0, n) to the point (Fmax, 0). The path consists

J[t]

t

n

n– 1

n– 2

2

1

p[1] p[2] p[n– 1] p[n]p[3] . . .

Figure 2.2 An alternative view of the J(t) function.
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of n vectors with given slopes, −1/pj. Figure 2.3 shows the J(t) graph for one such
sequence, along with the corresponding Gantt chart.
Clearly, the area can be minimized by placing the steepest slope to the left,

then the next steepest slope, and so on. This configuration amounts to sequen-
cing the processing times in nondecreasing order. Sequencing the jobs in non-
decreasing order of processing times is known as shortest processing time (SPT)
sequencing, for obvious reasons, but it is also known by a variety of other names,
such as shortest operation time and shortest imminent operation. Theorem 2.3
formalizes the optimality of SPT, and its proof illustrates a useful technique,
called the method of adjacent pairwise interchange.

∎ Theorem 2.3 Total flowtime is minimized by shortest processing time
(SPT) sequencing (p[1] ≤ p[2] ≤ ≤ p[n]).

Proof. Consider a sequence S that is not the SPT sequence. That is, somewhere
in S there must exist a pair of adjacent jobs, i and j, with j following i, such that
pi > pj. Now construct a new sequence, S , in which jobs i and j are interchanged
in sequence and all other jobs finish at the same time as in S. The situation is
depicted in Figure 2.4, where B denotes the set of jobs preceding jobs i and j in
both schedules and A denotes the set of jobs following i and j in both schedules.
We use the notation k A when job k is a member of set A. In addition, p(B)
denotes the total processing time for the jobs in set B, that is, the point in time at
which job i begins in S and at which job j begins in S . Also, we temporarily adopt
the notation Fk(S) to represent the flowtime of job k under schedule S.

J[t]

t

n

n– 1

n– 2

n– 1 n

2

1

1 2 3

p[1] p[2] p[n– 1] p[n]p[3] . . .

. . .

Figure 2.3 The J(t) function for a schedule and its Gantt chart.
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We first show that n
j= 1Fk is smaller under S than under S:

n

j= 1

Fk S =
k B

Fk S + Fi S + Fj S +
k A

Fk S

=
k B

Fk S + p B + pi + p B + pi + pj +
k A

Fk S

n

j= 1

Fk S =
k B

Fk S + Fj S + Fi S +
k A

Fk S

=
k B

Fk S + p B + pj + p B + pj + pi +
k A

Fk S

By construction,

k B

Fk S +
k A

Fk S =
k B

Fk S +
k A

Fk S

Therefore,
n

k = 1

Fk S −
n

k =1

Fk S = pi−pj > 0 □

In words, the interchange of jobs i and j reduces the value of F. Therefore, any
sequence that is not an SPT sequence can be improved with respect to F by
interchanging an adjacent pair of jobs. It follows that the SPT sequence itself
must be optimal.
The essence of this argument is a proof by contradiction. First, we assume that

some non-SPT sequence is “optimal.” Then we show with a pairwise inter-
change of an adjacent pair of jobs that a strict improvement can be made in this
“optimal” sequence. Therefore, we conclude that it is impossible for a non-SPT
sequence to be optimal.

Jobs in B Jobs in A

Jobs in B Jobs in A

i j

j i

S

S′

p(B)

p(B)

Figure 2.4 A pairwise interchange of adjacent jobs.

2.3 Problems Without Due Dates: Elementary Results 19



It is also instructive to interpret the logic as a proof by construction:

1) Begin with any non-SPT sequence.
2) Find a pair of adjacent jobs i and j, with j following i, such that pi > pj.
3) Interchange jobs i and j in sequence, thereby improving the performance

measure.
4) Return to Step 2 iteratively, improving the performance measure each time,

until eventually the SPT sequence is constructed.

The validity of either argument is not affected by ties – that is, by the existence of
a pair of jobs with pi = pj. Moreover, the method of adjacent pairwise inter-
change is useful in other situations, as we shall see later on.
Another perspective on Theorem 2.3 may be helpful. We can express the sum

of the flowtimes as

n

j=1

Fj =
n

j=1

j

i= 1

p i =
n

j= 1

n− j+ 1 p j 2 1

This last sum can be viewed as the scalar product of two vectors with given ele-
ments – one containing the integers 1, 2,…, n in descending order and the other
containing the processing times in order of sequence. It is well known that in
order to minimize such a scalar product, one sequence should be decreasing (or
at least nonincreasing) and the other should be increasing (or at least nonde-
creasing). Since the terms (n − j + 1) are already decreasing, the minimum is
achieved by taking the pj in nondecreasing order.
Associated with Theorem 2.3 are several related properties. First, by virtue of

the relationship between flowtime and inventory, SPT sequencing minimizes J
as well as F. Second, if the waiting time of job j is defined as the time it spends in
the system prior to the start of its processing, then SPT minimizes total waiting
time. Third, SPT minimizes the maximum waiting time. Finally, SPT also mini-
mizes total completion time.

2.3.3 Minimizing Total Weighted Flowtime

In a common variation of the F-problem, jobs do not have equal importance.
One way of distinguishing the jobs is to assign a value or weight, wj, to each
job and to incorporate these weights into the performance measure. The
weighted version of total flowtime is total weighted flowtime, defined by

Fw =
n

j= 1

wjFj

where we can think of weights as unit delay costs. We shall specifically examine
the extensions of the flowtime–inventory relation and the optimality of SPT.
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In the presence of weights, it is natural to define holding costs to be propor-
tional to the value of in-process inventory. Job j contributes wj to the value of
total in-process inventory while it awaits completion, and we can define a func-
tion V(t) to be the total value of inventory in the system at time t. The V(t) func-
tion is a step function, but unlike J(t), this step function decreases in steps of wj

rather than steps of 1. Figure 2.5 depicts V(t). If V denotes the time average of
V(t) over the processing interval, we can again derive two expressions for the
area under the V(t) graph. Summing vertical strips, as shown in Figure 2.5,
we obtain

A=
n

j= 1

p j

n

i= j

w i =VFmax

Summing horizontal strips in a manner similar to that of Figure 2.2, we obtain

A=
n

j= 1

wjFj = Fw

If we now equate the two expressions forA, we obtain the generalized flowtime–
inventory relation:

Fw =VFmax

Observing that Fmax is a constant, we conclude that V is directly proportional to
Fw and that the sequence that minimizes one minimizes the other.
Having seen that the optimal rule for minimizing total flowtime is shortest-

first sequencing, we should expect that the optimal rule for the total weighted
flowtime should be a weighted version of SPT. As before, the nature of the opti-
mal rule can be deduced from the graphical model. In this case, we seek a path
on the V(t) graph that connects the point (0, n

j= 1wj) with the point (Fmax, 0).

w[n] + w[n – 1]

V [t]

t

Σwj

w[n]

p[1] p[2] p[n – 1] p[n]p[3] . . .

Figure 2.5 The V(t) function.
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This time, the vectors that make up the path have slopes of −wj/pj, and to min-
imize the area under V(t), we again place the steepest slope first. In effect, the
optimal rule is shortest weighted processing time (SWPT) sequencing, stated for-
mally below.

∎ Theorem 2.4 Total weighted flowtime is minimized by SWPT sequencing
(p[1]/w[1] ≤ p[2]/w[2] ≤ ≤ p[n]/w[n]).

A proof by the method of adjacent pairwise interchange is analogous to the
proof of Theorem 2.3.
The optimality of SWPT for the Fw problem may seem at first to be a special-

ized scheduling result. However, an examination of the vast literature on indus-
trial engineering, operations research, information systems, and related fields
will reveal that the sequencing model with a weighted flowtime objective is a
rich model indeed. A specialized bibliography on the model has been compiled
by Rau (1973).
Lastly, note that SPT and SWPT represent different sequences in general, so

when the job set contains unequal weights, SWPT minimizes Fw and V but not
necessarily the mean number of jobs in the system or the total flowtime.

2.4 Problems with Due Dates: Elementary Results

2.4.1 Lateness Criteria

Recall that job lateness is defined as Lj =Cj − dj, or the discrepancy between the
due date of a job and its completion time. A somewhat remarkable result is that
minimum total lateness is achieved by SPT.

∎ Theorem 2.5 Total lateness is minimized by SPT sequencing.
Proof. By definition,

L=
n

j=1

Lj =
n

j=1

Cj−dj =
n

j=1

Fj−dj =
n

j=1

Fj –
n

j= 1

dj = F −
n

j= 1

dj

The last term is the sum of the given due dates and is therefore a constant.
Because L differs from F by a constant that is independent of sequence, the
sequence that minimizes L must be the sequence that minimizes F, and this
sequence is given by SPT. □

This result is somewhat remarkable because a sequencing rule that ignores
due date information is optimal for a due date-oriented criterion. However,
another interpretation of the result might be that L is only superficially a due
date-oriented performance measure.
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Instead of using SPT, an intuitive approach to meeting due dates might well
be to sequence the jobs according to some measure of due date urgency. One
obviousmeasure of urgency for a given job is the time until its due date. Sequen-
cing the jobs by earliest due date (EDD) cannot guarantee, however, that L will
be minimized, because only SPT guarantees that. Instead we can show that EDD
sequencing minimizes the maximum lateness in the schedule.

∎Theorem 2.6 Maximum lateness and maximum tardiness are minimized by
earliest due date (EDD) sequencing (d[1] ≤ d[2] ≤ ≤ d[n]).

Proof. We again employ the method of adjacent pairwise interchange
(see Figure 2.4). Consider a sequence S that is not the EDD sequence. That
is, somewhere in S there must exist a pair of adjacent jobs, i and j, with j
following i, such that di > dj. Now construct a new sequence, S , in which jobs
i and j are interchanged and all other jobs complete at the same time as in
S. Then

Li S = p B + pi – di Lj S = p B + pj – dj

Lj S = p B + pi + pj – dj Li S = p B + pj + pi – di

from which it follows that Lj(S) > Li(S ) and Lj(S) > Lj(S ). Hence,

Lj S > max Li S , Lj S

Let LAB =max{Lk|k A or k B}, and notice that LAB is the same under both S
and S . Then

Lmax S = max LAB, Li S , Lj S ≥ max LAB, Li S , Lj S = Lmax S

In other words, the interchange of jobs i and j does not increase the value of Lmax

and may actually reduce (improve) it. Therefore, an optimal sequence can be
constructed as follows:

1) Begin with an arbitrary non-EDD sequence.
2) Find a pair of adjacent jobs i and j, with j following i, such that di > dj.
3) Interchange jobs i and j.
4) Return to Step 2 iteratively until an EDD sequence is constructed. At each

iteration, Lmax either remains the same or is reduced. Because an EDD
sequence can be reached from any other sequence in this manner, there
can be no other sequence with a value of Lmax lower than that corresponding
to EDD sequencing.

Again, ties do not disturb the logic. A similar argument establishes that EDD
minimizes Tmax, beginning with the inequality

Tmax S = max 0, Lmax S ≥ max 0, Lmax S =Tmax S □
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A second measure of urgency for a given job is the time until its due date less
the time required to process it. This urgency measure is called slack time, and, at
time t, the slack time of job j is represented as (dj − t − pj). In particular, among
jobs with identical due dates, the longest is most urgent. Slack time may appear
to be a more sophisticated quantification of urgency than the due date alone.
Nevertheless, there is little to be said for optimality of minimum slack time
(MST) sequencing in the single-machine problem. Its only general property
involves a mirror image of Theorem 2.6, which is of questionable usefulness
in this situation.

∎ Theorem 2.7 Among schedules with no idle time, the minimum job late-
ness is maximized by minimum slack time (MST) sequencing (d[1] − p[1] ≤
d[2] − p[2] ≤ ≤ d[n] − p[n]).

Proof. The proof is a mirror image of the proof of Theorem 2.6 and utilizes an
adjacent pairwise interchange argument. Observe that Lmin is not a regular
measure of performance – hence the need, in Theorem 2.7, to restrict consid-
eration to schedules without inserted idle time. □

An important variation of the basic model involves the designation of both a
primary and a secondary measure of performance. The primary measure is the
dominant criterion, but if there are alternative optima with respect to the pri-
mary measure, we then want to identify the best sequence among those alter-
natives with respect to a secondary measure.
For example, suppose that a tardiness-based measure (such asTmax) is the pri-

mary measure and that several sequences are considered “perfect” because they
contain no tardy jobs. Furthermore, suppose that F is the secondary measure.
Then, to construct a perfect sequence that minimizes F, we can employ a result
known as Smith’s rule:

Job i may be assigned the last position in sequence only if

(S1) di ≥
n

j= 1
pj and

(S2) pi ≥ pk among all jobs k such that dk ≥
n

j=1
pj

This rule should seem quite logical, for if some other job were to come last
in sequence, then there would be room for improvement. If (S1) is violated,
then total tardiness can be reduced by shifting some job that satisfies (S1) to
the last position. If (S1) holds but (S2) is violated, then F can be reduced,
without increasing tardiness, by interchanging the last job with a job that
satisfies (S2). Once Smith’s rule has identified the last among n jobs, there
remain (n − 1) jobs to which the rule can be applied. If we continue in this
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fashion, the rule eventually constructs an optimal sequence, working
backward.

∎ Example 2.1 Consider a problem containing n = 5 jobs, as described in
the table.

Job j 1 2 3 4 5

pj 1 2 3 4 5

dj 9 13 11 15 10

It is not hard to verify (using EDD) that a perfect sequence exists. The only job
that satisfies (S1) is job 4, which is placed last. At the next stage, jobs 2 and 3
both satisfy (S1), and job 3 is chosen to be fourth, according to (S2). Next, jobs
1, 2, and 5 all satisfy (S1), and job 5 is chosen to be third. Finally, job 2 is chosen
to be second, leaving job 1 to be first. In this manner, Smith’s rule generates a
perfect sequence with F = 38. In contrast, EDD yields F = 42.

2.4.2 Minimizing the Number of Tardy Jobs

If the EDD sequence should yield zero tardy jobs, or should it yield exactly one
tardy job, then it is an optimal sequence for U. If it yields more than one tardy
job, however, the EDD sequence may not be optimal. An efficient algorithm for
the general case is given below. The solution method assumes a particular form
for an optimal sequence, shown in Figure 2.6.
The form is as follows:

• First, a set (B) of early jobs, in EDD order.

• Then, a set (A) of late jobs, in any order.

The early jobs are assumed to be in EDD order without loss of generality
because if any sequence (or subsequence) of jobs has no tardiness, then by The-
orem 2.6 we know that the EDD sequence for those jobs must have no tardiness.

Algorithm 2.1 Minimizing U

Step 1. Index the jobs using EDD order and place all jobs in B. Let set A
be empty.

Step 2. Calculate the completion times of jobs in B. If no job in B is late, stop: B
must be optimal. Otherwise, identify the first late job in B. Suppose that turns
out to be the kth job in sequence.

Step 3. Identify the longest job among the first k jobs in sequence. Remove that
job from B and place it in A. Return to Step 2.

Next, we illustrate the implementation of the algorithm with an example.
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∎ Example 2.2 Consider a problem containing n = 5 jobs, as described in
the table.

Job j 1 2 3 4 5

pj 1 7 6 4 3

dj 2 8 9 10 12

In the example, the jobs are already indexed by EDD, as required in Step 1 of the
algorithm. In Step 2, job 3 is found to be the first late job. In Step 3, the longest
job in the sequence up to and including job 3 is job 2; thus job 2 is removed from
B and placed in A. In the next pass at Steps 2 and 3, job 3 is removed from B and
placed in A. Thereafter, no tardy jobs remain in B. The algorithm therefore
yields two optimal sequences, 1-4-5-2-3 and 1-4-5-3-2, corresponding to the
two different ways of sequencing the late jobs.
The weighted version of theU-problem, in which the objective is to minimize

Uw = n
j= 1wjδ Tj , is NP-hard and requires a general solution method such as

we describe in Chapter 3.

2.4.3 Minimizing Total Tardiness

The performance objective of “meeting job due dates” is one of the scheduling
criteria most frequently encountered in practical problems. While meeting due
dates is only a qualitative goal, it usually implies that time-dependent penalties
are assessed on late jobs but that no benefits derive from completing jobs early.
This interpretation leads naturally to the tardiness measure as a quantification
of the scheduling objective, and a fundamental sequencing problem is the min-
imization of total tardiness. The difficulty of dealing with this measure, and with
most other tardiness-based performance measures, arises from the fact that
tardiness is not a linear function of completion time. This means that finding
optimal solutions often requires that we draw on general techniques of combi-
natorial optimization. Furthermore, because of the complexities of combinato-
rial methods, there is apt to be more attention paid to efficient heuristic
techniques. In the next chapter, we shall discuss general-purpose combinatorial
optimization techniques and demonstrate their application to the total tardiness

B B B B A A A

Late jobsEarly jobs

Figure 2.6 The form of a sequence that minimizes U.
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criterion. Here, we examine how much progress we can make with simpler
techniques.
A logical first approach to the tardiness problem is to analyze an adjacent pair-

wise interchange. Consider a schedule S, in which jobs i and j are adjacent in
sequence, and the schedule S that is identical to S except that jobs i and j
are interchanged (see Figure 2.4). We seek conditions that will tell us which
job should appear earlier in the sequence. Rather than comparing T for both
sequences, it suffices to compare the contributions to T that come from jobs
i and j, because the total contributions of the other jobs are the same in both
sequences. Thus let

Tij =Ti S +Tj S = max p B + pi – di, 0 + max p B + pi + pj – dj, 0

and

Tji =Tj S +Ti S = max p B + pj – dj, 0 + max p B + pi + pj – di, 0

where, as before, p(B) denotes the time at which job i or job j can be started. To
begin, let us assume that pi ≥ pj and di ≥ dj. When the processing times and due
dates of jobs i and j are ordered similarly, as in this assumption, we say that the
processing time and due date parameters are agreeable. (Formally, two sets of
parameters, uj and vj, are agreeable if ui < uj implies vi ≤ vj.) For the time being,
we shall refer to the case of agreeable processing times and due dates as Case 1.

Case 1.1 p(B) + pi ≤ di

Tij = max p B + pi + pj – dj, 0

Tji = max p B + pj – dj, 0 + max p B + pj + pi – di, 0

Notice that Tij is at least as large as the first maximum in Tji (because pi ≥ 0) and
at least as large as the second (because di ≥ dj). Therefore, if one or both of the
maxima in Tji are zero, we will have Tij ≥ Tji. Now suppose that neither term in
Tji is zero. Then

Tij –Tji = p B + pi + pj – dj – p B + pj – dj – p B + pj + pi – di

Tij –Tji = – p B – pj + di ≥ – p B – pi + di ≥ 0

Therefore, Case 1.1 yields Tij ≥ Tji, so it is preferable to have job j precede job i.

Case 1.2 di < p B + pi

Tij = p B + pi – di + p B + pi + pj – dj

Tji = max p B + pj – dj, 0 + p B + pj + pi – di

Tij –Tji = p B + pi – dj – max p B + pj – dj, 0
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If the maximum in the last term is zero, then the condition specifying Case 1.2
implies that Tij ≥ Tji; and if the maximum in the last term is positive,

Tij –Tji = p B + pi – dj – p B + pj – dj = pi – pj ≥ 0

Therefore, Case 1.2 yields Tij ≥ Tji, so it is preferable to have job j precede job i.
These two cases reveal that when the processing times and the due dates are

agreeable, the shorter job (or, equivalently, the job with the earlier due date)
should come first. We state this partial result more formally as follows.

∎ Theorem 2.8 If processing times and due dates are agreeable for all pairs of
jobs, then total tardiness (T) is minimized by SPT sequencing with ties broken
by EDD (or, equivalently, by EDD with ties broken by SPT).

Proof. The proof follows directly from adjacent pairwise interchange analysis,
with the same interpretation as in the proof of Theorem 2.6. □

Furthermore, although Theorem 2.8 assumes that all pairs of jobs have agree-
able parameters, it can be shown that if any two jobs are agreeable, then they
should be sequenced by EDD/SPT even if some other jobs are sequenced
between them. Now we turn to the more complicated situation, where the para-
meters are not agreeable. Let pi ≥ pj and di < dj.

Case 2.1 p B + pi ≤ di

Tij = max p B + pi + pj – dj, 0

Tji = max p B + pi + pj – di, 0 ≥Tij

Therefore, Case 2.1 yields Tji ≥ Tij, so it is preferable to have job i (the job with
the earlier due date) precede job j.

Case 2.2 di < p(B) + pi

Case 2.2.1 p B + pi + pj ≤ dj

Tij = p B + pi – di
Tji = p B + pj + pi – di ≥Tij

Therefore, Case 2.2.1 yields Tji ≥ Tij, so it is preferable to have job i (the job with
the earlier due date) precede job j.

Case 2.2.2 p B + pj ≤ dj < p B + pi + pj

Tij = p B + pi – di + p B + pi + pj – dj

Tji = p B + pj + pi – di

Tij –Tji = p B + pi – dj
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Therefore, Case 2.2.2 yields the result that it is preferable to have job i (the job
with the earlier due date) precede job j unless p(B) + pi > dj, in which case job j
(the shorter job) may precede job i.

Case 2.2.3 dj < p B + pj

Tij = p B + pi – di + p B + pi + pj – dj

Tji = p B + pj – dj + p B + pj + pi – di

Tij –Tji = pi – pj ≥ 0

Therefore, Case 2.2.3 yields Tij ≥ Tji, so it is preferable to have job j (the shorter
job) precede job i.
We can now combine the various subcases and conclude that, for Case 2, job i

may come first except when

p B + pi > dj

in which case job j should come first. In fact, we can combine Case 2 with Case 1
and restate the result as follows.

∎Theorem 2.9 If jobs i and j are the candidates to begin at time t, then the job
with the earlier due date should come first, except if

t +max {pi, pj} > max {di, dj},

in which case the shorter job should come first.

This decision rule is specific – it provides a choice between any pair of can-
didate jobs – but the outcome may depend on t. That is, the rule could choose
job i in favor of job j early in the schedule but job j in favor of job i late in the
schedule. More importantly, the rule does not tell us whether jobs i and j should
come early in the schedule or late in the schedule. Thus, the decision rule is a
weaker result than those in Theorems 2.3–2.7 because it does not sequence the
jobs unambiguously.
We can look at this result from another perspective. Suppose we define the

modified due date (MDD) of job j at time t to be

dj = max dj, t + pj

In words, MDD is either the original due date or else the earliest time at which
the job could possibly be completed, whichever is later. It is a dynamic quantity,
because it may change as time passes. Therefore, if we give priority to the job
with the earliest MDD, then the choice between jobs i and j may be different
early in the schedule than it is late in the schedule. The MDD priority rule is
consistent with the prescriptions of Cases 1 and 2: if jobs i and j are the candi-
dates to begin at time t, then the job with the earlier MDD should come first.
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Again, the MDD rule is weaker than such rules as SPT and SWPT. It tells us
that if we examined an optimal sequence, we would find that each pair of jobs is
sequenced consistently with MDD; however, starting at time zero and sequen-
cing the jobs by MDD may not produce an optimal schedule. To put it another
way, theMDD rule represents a necessary condition for optimality, but it is not a
sufficient condition.
We conclude our treatment of the T-problem with some specialized results

concerning optimal sequences:

• If the EDD sequence produces no more than one tardy job, it yields the min-
imum value of T.

• If all jobs have the same due date, then T is minimized by SPT sequencing.

• If it is impossible for any job to be on time in any sequence, then T is mini-
mized by SPT sequencing.

• If SPT sequencing yields no jobs on time, then it minimizes T.

The weighted version of the total tardiness problem is even more difficult to
solve than the T-problem, which itself is NP-hard, and we postpone its discus-
sion until we examine more general methods of solution in Chapter 3.

2.5 Flexibility in the Basic Model

The most basic version of the single-machine model is restricted to conditions
C1–C7, as listed at the outset of this chapter; but this characterization did not
include the specification of an objective function. Once we specified a class of
objective functions (regular measures of performance), two of the conditions
became superfluous, but the alternative possibilities for an objective function
led to a variety of sequencing insights, as covered in Sections 2.3 and 2.4. In this
section, we highlight two ways in which decision-making flexibility can be added
to the basic model: (i) allowing due dates to be treated as decisions and
(ii) allowing job selection as a possible decision.

2.5.1 Due Dates as Decisions

Normally, we treat due dates as given parameters. This approach reflects the
premise that in many realistic circumstances, the due date is determined by the
customer – or by a higher planning level in the hierarchy – and becomes part
of the specification of the job to be carried out, just like the processing time.
Often, however, the producer can set the due date or at least influence it. We
might appropriately think of the due date as a matter of negotiation between
the producer and the customer. Nevertheless, a reasonable model of the due
date as a negotiated parameter would introduce much more complexity.
A simple step in this direction is to treat the due date as a decision variable,
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possibly subject to some constraint that represents a proxy for the negotiation
process.
Suppose that the due date can be selected at the job’s release date (rj). The

selection of the due date represents a target for the flow allowance or the
amount of time that the job will spend in the system. We might select due dates
according to one of the following rules:

CON: constant flow allowance: dj = rj + γ
SLK: equal slack flow allowance: dj = rj + pj + β
TWK: total work flow allowance: dj = rj + αpj

where each rule contains a single tightness parameter (γ, β, or α) that must be
specified. For equal release dates, however, any one of these due date rules will
result in agreeable due dates and processing times. By Theorem 2.8, it follows
that SPT (which will be equivalent to EDD) minimizes total tardiness.
When due dates are completely discretionary, it is not difficult to minimize

total tardiness: for any schedule we could select the due dates to be loose enough
that no job would be late. However, in an environment where due dates can be
selected, it seems reasonable to seek the tightest due dates possible. Tight due
dates correspond to short flow allowances and thus represent commitments to
customers that orders will be filled promptly. Of course, such commitments
would be meaningless if there were no hope that they could be met. Therefore,
we impose the constraint that no job is allowed to be tardy, and we examine how
to set the due dates so they are as tight as possible.
To measure the tightness of a set of due dates, we use the sum of the due

dates or

D=
n

j= 1

dj

The problem becomes one of minimizing D, subject to the requirement
that Cj ≤ dj.
In principle, we can easily find an optimal solution to this problem. For any

schedule, the tightest possible set of due dates is obviously given by dj =Cj.
Therefore, D can be minimized by minimizing the sum of the completion times
or, equivalently, total flowtime. Since we know by Theorem 2.3 that this is
accomplished by SPT, our solution can be found by constructing an SPT sched-
ule of the jobs, computing the completion time of each job in this schedule, and
setting the due date of each job equal to its completion time. This optimal solu-
tion requires that the due date of each job depends on specific information
about every other job in the schedule, which we refer to as a comprehensive
information base. A more practical approach is to rely on such rules as
CON, SLK, and TWK, in which the selection of a due date depends only on
information about the job itself (its release date and its processing time) and
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on a tightness parameter. Next, we might ask whether one of those three limited
information rules is best.
It is possible to show that for any set of n jobs, CON due dates are dominated

by either SLK or TWK due dates. That is, D will never be larger under SLK or
TWK than it is under CON.

∎ Example 2.3 Consider a problem containing n = 3 jobs, as described in the
table below, with rj = 0 for all jobs.

Job j 1 2 3

pj 1 2 16

Suppose our problem consisted of just the first two jobs. Then the tightness
parameters would be selected as follows:

CON: γ = 3 For which D = 6

SLK: β = 1 For which D = 5

TWK: α = 1.5 For which D = 4.5

In this case, the optimal (full information) value is D = 4. When our problem
consists of all three jobs, the results are as follows:

CON: γ = 19 For which D = 57

SLK: β = 3 For which D = 28

TWK: α = 1.5 For which D = 28.5

Here, the optimal (full information) value is D = 23. Our two examples demon-
strate that either TWK or SLK can be the best of the three rules. The examples
also illustrate the fact that CON is always dominated. A computational study
(see Baker and Bertrand, 1981) suggests that TWK tends to be the best rulemost
of the time and that its advantage grows with larger problem sizes and with var-
iability among processing times. Therefore, in practice, a good approach is to
use TWK and adjust α by trial and error to maintain the shop due date perfor-
mance on target.

2.5.2 Job Selection Decisions

In the basic sequencing model, the workload is given, and due dates are given,
and the scheduling task is to find the best sequence. When due dates are deci-
sions, as in the previous section, we face a variation of the basic sequencing
model that allows for additional flexibility. When, instead, the workload is a
decision, we face a different kind of flexibility. Specifically, in the job selection
model, we must decide which of the available jobs to accept (and which to
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reject). As in the basic model, processing times and other parameters are given,
along with a penalty (or opportunity cost) for each job rejected. For the jobs
selected, the scheduling task remains one of finding the best sequence.
In the job selectionmodel, the objective thus has two components: a time-based

performancemeasure, such as total flowtime, and an economicmeasure, the total
penalty. Because rejected jobs are simply removed from the scheduling problem, a
suitable representation for the economic measure is a lump-sum penalty ej > 0,
incurred if job j is rejected. This penalty could represent a contractual payment
or an opportunity cost, such as lost profit or the inefficiency cost of assigning
the job to some other resource. A more direct way of representing the economic
measure, however, is to associate revenue with each job that is processed.
Consider the performance measure for accepted jobs. Standard scheduling

objectives, such as makespan (Cmax), weighted flowtime (Fw), and maximum
tardiness (Tmax), are not intrinsically economic criteria. In addition, they meas-
ure time intervals, whereas the rejection penalty is a lump sum. Therefore, the
most consistent scheduling objectives are also lump-sum measures, such as the
maximum number of on-time jobs or the minimum weighted number of tardy
jobs. Nevertheless, the scheduling and economic components may not be com-
mensurable, so in some cases we may prefer to adopt a weighting factor to com-
bine them into a single objective function.
Perhaps the simplest nontrivial model involves lump-sum revenues and costs.

Suppose job j is characterized by a processing time pj, a due date dj, and a tar-
diness penalty wj, which is incurred if the job is accepted and completed after its
due date. If job j is accepted, then it generates revenue of vj; otherwise, it is
rejected. No direct cost is associated with a job’s rejection. (All parameters
are assumed to be positive.) For the solution, we define the following sets:

A = the set of accepted jobs
R = the set of rejected jobs
Z = the set of late jobs
Y = the set of on-time jobs

We use lowercase to denote the number of jobs in each set: a = the number of
accepted jobs, etc. Thus n = a + r and a = y + z = n − r. Finally, for a given job set
S, we can write the objective function as follows:

F S =
A

vj –
Z

wj

The expression F(S) is meant to convey that, conceptually, the first step is to
select the jobs in A, after which the next step is to sequence them optimally.
Suppose the revenues and costs are identical: vj = v and wj =w. That means
the net revenue for an accepted job completed late is v −w. If v −w > 0, then
acceptance is preferred to rejection, even if tardiness occurs; it is optimal to
accept all jobs and then maximize the net benefit, vn −wz(S). This criterion cor-
responds to minimizing the number of tardy jobs z(S), which is achieved with
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Algorithm 2.1. Thus, this particular case reduces to a well-known scheduling
problem without rejection that can be solved in polynomial time.
If v−w≤ 0, then rejection isnoworse than acceptancewith tardy completion. In

this case, it is optimal to complete all accepted jobs on time and reject the rest.The
objective function becomes av = vy(S). We can maximize this quantity by maxi-
mizing the number of on-time jobs, which is also accomplished byAlgorithm 2.1.
In the identical parameter case, the problem reduces to finding two sets –

an on-time set and its complement. Furthermore, the impact on the objec-
tive function of completing a job on time versus placing it in the comple-
mentary set is the same for all jobs. However, when the parameters are
job dependent, we cannot rely on Algorithm 2.1 to provide an optimal solu-
tion. Moreover, the general form of the problem involves finding three sets
– an on-time set of accepted jobs, a tardy set of accepted jobs, and the set of
rejected jobs. Given that a job will not be accepted and completed on time,
the choice between rejecting the job and accepting it but completing it late is
dictated by the value of vj − wj. Moreover, that preference can be determined
at the outset. Thus, let cj =max{0, vj − wj}. When cj = 0, if job j is not com-
pleted on time, it should be rejected. Similarly, when cj > 0, if job j is not
completed on time, it should still be accepted. Even when these observations
are applied, the general problem remains challenging. To obtain optimal
solutions, we would need to implement more powerful techniques, such
as those described in Chapter 3.

2.6 Summary

The single-machine model is fundamental in the study of sequencing and sche-
duling. It is considered a rather simple scheduling problem because it does not
have distinct sequencing and resource allocation dimensions. Nevertheless, as
the T-problem begins to illustrate, the sequencing problem itself may some-
times be fairly complicated. Even in this fundamental type of problem, the
set of feasible solutions can be quite large, and the determination of an optimum
can be a formidable task. In some special cases, optima can be found readily,
most notably in the minimization of Fw, Tmax, and U; but in general, it may
be necessary to resort to general-purpose methodologies, such as those
described in the next chapter.
Several important scheduling objectives can be illustrated in the single-

machine model, and these often give rise to a variety of solution strategies.
Graphical and algebraic methods have been used to prove the optimality of
SWPT for total weighted flowtime and the optimality of EDD for maximum tar-
diness, respectively. In those cases, knowledge of an optimal pairwise job order-
ing allows the optimal sequence to be constructed with a simple sorting
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mechanism. A more intricate construction is required to minimize the number
of tardy jobs. For more complicated criteria, including total tardiness, we need
to use general-purpose methodologies, although in cases where the parameters
are agreeable, the solution may be found more easily.
These observations underscore the significance of the single-machine model

in our understanding of scheduling decisions. Also, as we noted at the beginning
of this chapter, the solution of practical scheduling problems can make direct
use of these results in certain situations or at least build on this basic under-
standing in approaching more complicated situations.

Exercises

2.1 Prove that in the basic single-machine problem, schedules without pre-
emption constitute a dominant set (Theorem 2.2).

2.2 An obvious definition of longest processing time (LPT) sequencing is

p 1 ≥ p 2 ≥ ≥ p n

In general, LPT exhibits properties that are antithetical to those of SPT. In
particular, assuming a schedule with no idle time, prove:
a) LPT maximizes F.
b) LPT maximizes J.
c) LPT maximizes L.
d) LPT maximizes total waiting time.

2.3 Use an adjacent pairwise interchange argument to prove that SWPTmini-
mizes Fw; i.e. prove Theorem 2.4.

2.4 A single-machine facility operates around the clock and faces the problem
of sequencing the production work for the six customer orders described
in the table below.

Order 1 2 3 4 5 6

Hours 20 27 16 6 15 24

a) What production sequence will minimize the total flowtime of these
orders, assuming all six arrived at the same time? What is the total
flowtime in this schedule?

b) Suppose that customer orders 2 and 6 are considered three times as
important as the rest. What production sequence would you propose?
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c) Now suppose you wish to use a due date setting rule to assign due dates
to the various orders. Find the sum of the due dates under the CON,
SLK, and TWK rules. Compute how close each result is to the optimal
sum of due dates.

2.5 The following problem involves the sequencing of one machine.

Operation j A B C D E F

Processing time pj 12 2 6 14 8 13

Due date dj 41 4 44 16 35 30

The manager mainly wants to minimize the maximum lateness but also
wants to reduce the number of late operations.
a) What sequence do you suggest? Justify your choice.
b) Calculate Lmax and U for your solution.
Is this result optimal for one of these measures? For both? Explain.

2.6 The least cost testing sequence problem. An item is subjected to a series of n
tests (e.g. hardness, weight, and length). Associated with the ith test are
two known constants: Ki, the cost per item of carrying out the ith test,
and Ri, the probability of rejecting the item on the ith test. The tests
are independent in the sense that they may be run in any order, and
the constants Ki and Ri are independent of test order. For a given sequence
of tests, an item is subjected to each test in the sequence in turn as long as
the tests accept the item; if an item is rejected by any test, no further tests
are performed. Determine the test sequence that minimizes the total
expected cost of testing an item.

2.7 The following sequence might be called the VIP sequence:

w 1 ≥w 2 ≥ ≥w n

Suppose that a scheduling objective is to minimize Fw and that weighting
factors are assigned according to processing times. Show that:
a) If wj = αpj (weighting factors are directly proportional to processing

times), then all sequences are equivalent.

b) If wj = αpβj where β > 0, then VIP is optimal when β > 1, but it is the
worst sequence when 0 < β < 1. Discuss specifically the case when
β = 0.

c) If pj = p (all processing times are equal), then VIP is optimal.
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2.8 Prove the following:
a) If the EDD sequence produces no more than one tardy job, then it

yields the optimal value of T.
b) If all jobs have the same due date, then T is minimized by SPT

sequencing.
c) If all jobs have the same processing time, then T is minimized by EDD

sequencing.
d) If it is impossible for any job to be on time in any sequence, then T is

minimized by SPT sequencing.
e) If SPT yields no jobs on time, then it minimizes T. How would you

break ties in this case?
f) An optimal solution to the T-problem must satisfy the MDD rule.
g) To minimize T, any two jobs with agreeable processing times and due

dates must be in SPT/EDD sequence (as prescribed by Theorem 2.8)
even if some other jobs are inserted between them.
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3

Optimization Methods for the Single-machine Problem

3.1 Introduction

In the previous chapter, we explored fundamental performance measures for
the single-machine problem and observed that different scheduling procedures
were appropriate for different measures. In the T-problem, we encountered a
relatively simple problem statement for which the determination of an optimal
sequence was not a simple matter. Although wemade some progress toward the
solution of the T-problem with adjacent pairwise interchange methods, we
deferred discussion of a complete solution until we could examine more pow-
erful optimization techniques. In this chapter we introduce some general-
purpose optimization methods for sequencing and scheduling problems and
illustrate their application to the T-problem.
As a general setting, suppose that a cost function, denoted gj(t), is incurred

when job j completes at time t. We assume only that gj(t) is nondecreasing.
Typical scheduling problems involve minimizing the maximum gj(t) value
(the maximum cost problem) or minimizing the sum of gj(t) values (the total
cost problem). We first examine the solution of the maximum cost problem.
Let P represent the total processing time of the jobs to be scheduled. Obvi-

ously, P is equal to the completion time of the last job. The following result
identifies the job that should be placed last.

∎ Theorem 3.1 When the objective is to minimize the maximum cost, job i
may be assigned the last position in sequence if gi(P) ≤ gk(P) for all jobs k i.

Proof. Suppose S is an optimal schedule that does not conform to the theorem, as
depicted in Figure 3.1, and adapt the notation so that gi(S) denotes the cost for
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job i in schedule S. Let j denote the last job in sequence, and let G(S) denote the
maximum cost among jobs other than i and j. Then, for schedule S,

gi S ≤ gj S

gmax S = max gj S ,G S

Construct schedule S by inserting job i into the last position. Let G(S ) be
defined analogously to G(S). As a result,

gi S ≤ gj S gj S ≤ gj S G S ≤G S

Hence, gmax(S ) = max{gi(S ), gj(S ), G(S )} ≤max{gj(S), G(S)} = gmax(S), and
schedule S is no worse than schedule S. □

The solution algorithm implied by Theorem 3.1 is straightforward. We com-
pute P and find the job with minimum cost at time P. This job is assigned the
last position in sequence. Removing this job from consideration, we reapply the
procedure to the remaining (n − 1) jobs, and we continue until all jobs have been
sequenced.
As a familiar example, suppose the cost function takes the special form

gj(t) = max{0, t − dj}. This special case corresponds to the Tmax problem. The
algorithm proceeds by computing P and finding the minimum value of
gj(P) = max{0, P − dj}. Clearly, the job with the largest djwill attain the minimum
value, so it may be placed last. Continuing in this fashion, we construct the
EDD sequence, from the end of the schedule to the beginning.
Theorem 3.1, along with the accompanying algorithm, provides a straightfor-

ward means of finding a solution to the maximum cost problem. For each posi-
tion in sequence, the algorithm must find the minimum value of gj(P); thus, the
computational effort is O(n2) to construct an optimal sequence.
The rest of this chapter is mainly devoted to the total cost problem. Although

the techniques we cover are general, we shall use the T-problem to illustrate
their application.

Sʹ

S

Ci

C′iC′j

Cj

i

i

j

j

. . .

. . .

Figure 3.1 Inserting job i into the last position.
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3.2 Adjacent Pairwise Interchange Methods

We have seen that an adjacent pairwise interchange argument can prove the
optimality of certain sequencing rules (e.g. SWPT minimizes Fw or EDD mini-
mizes Tmax). The thrust of the adjacent pairwise interchange argument may
be stated as follows: A sequence is sought for which all adjacent pairwise inter-
changes lead to poorer performance – this will be an optimal sequence. It is
important to recognize, however, that there are limitations to this approach.
Suppose that the single-machine problem is concerned with minimizing Z

and that a sequence S is found for which all adjacent pairwise interchanges lead
to an increase in Z. Does this information imply that S is the optimal sequence?
The answer, as we have seen, is certainly yes when Z is F and S corresponds
to SPT sequencing, but the answer is not always yes.

∎ Example 3.1 Consider the following three-job problem, with the criterion
of minimizing total tardiness.

Job j 1 2 3

pj 1 2 3

dj 4 2 3

The optimal sequence is 2-1-3, with T = 3. However, if all six sequences are
examined, the complete set of solutions can be depicted as in Figure 3.2, where
each sequence is linked to those sequences that can be obtained from it by an
adjacent pairwise interchange.
Note that for sequence 3-1-2, all (two) adjacent pairwise interchanges lead

to an increase in T, yet 3-1-2 is not an optimal sequence. This example shows
that the adjacent pairwise interchange property will not be sufficient to identify
optimal sequences in the T-problem, but might lead only to identification of a
local optimum. In the previous chapter we observed a clue as to why this local

2–1–3

1–3–2 3–1–2

3–2–1

2–3–1

1–2–3

T = 4

T = 5

T = 5

T = 4

T = 4T = 3

Figure 3.2 Feasible sequences for the three-job example.
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optimality might arise: In general, the result of an adjacent pairwise interchange
between a given pair of jobs may depend on where in the sequence the inter-
change occurs. In particular, the decision rule that emerges involves the time
at which the interchange occurs. By contrast, the decision rule that emerges
from an adjacent pairwise interchange in the F-problem involves only a com-
parison of the processing times of the jobs being interchanged.
The adjacent pairwise interchangemethod is sufficient to prove optimality for

only a limited class of sequencing rules. For sequencing rules that employ only
information about individual jobs in constructing a sequence, a crucial property
involves the transitivity of the optimal job ordering. (An ordering relation R
between two jobs is transitive whenever iRj and jRk imply iRk.) For such rules
as SWPT, EDD, and MST, the optimal sequence is characterized by a transitive
pairwise ordering of the jobs. In the case of the measure T, however, we can
conclude only that the optimal sequencing rule (whatever it might be) is not
transitive.
These observations point to a simple way of using adjacent pairwise inter-

change methods in solving new sequencing problems. We first analyze an inter-
change and derive a condition that specifies how two jobs should be ordered.
If this condition turns out to be transitive, the ordering will indeed be optimal.
Otherwise, a more complicated approach will be needed to locate an optimum.

3.3 A Dynamic Programming Approach

A regular measure of performance, Z, is a function of job completion times, and
when the function is additive, we can write

Z =
n

j=1

gj Cj

For example, if Z is total tardiness, then

gj Cj = max 0,Cj−dj

As another example, if Z is weighted number of late jobs, then

gj Cj =wjδ max 0,Cj−dj

When Z has an additive form, as in these examples, we can find an optimal
sequence with a dynamic programming approach. Dynamic programming is
a general optimization technique for making sequential decisions. Here, for
example, we have to decide which job comes first, which comes second, and
so on. Dynamic programming applies to problems that can be partitioned into
subproblems, each involving a subset of the decisions, in such a way that the
following optimality principle holds: Suppose we have already made the first
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k decisions (optimally or not), then the remaining (n − k) decisions can be opti-
mized by considering only the subproblem that involves them. For example,
suppose we wish to find the shortest driving route from San Francisco to
New York. If we are contemplating a route that goes through Chicago, then
regardless of how we get there, we will have to follow the shortest path from
Chicago to New York if the route we are contemplating is to achieve the optimal
distance. The optimality principle is satisfied in sequencing (in other words, a
sequencing problem can be partitioned appropriately) whenever the objective
function is additive.
To apply dynamic programming for our sequencing problem, let J denote

some subset of the jobs, and let p(J) denote the total time required to process
the jobs in set J. For convenience, we use (J − j) to denote the set J with the
element j removed. Suppose that a sequence has been constructed in which
the jobs in set J precede all other jobs. Let

G J = the minimum cost for the subproblem consisting of the jobs in set J

Next, suppose that job j is assigned the last position in this subset, so that it
completes at time p(J), as shown in Figure 3.3.
Given that job j comes last, the value of G(J) is the sum of two terms, the cost

incurred by job j and the minimum cost incurred by the remaining jobs. This
latter term, which we can write as G(J − j), is the optimal value obtained by
solving the subproblem involving only the jobs in set (J − j). If we compare
all possible jobs j that could come last in set J and select the best one, we shall
find the minimum cost for the set J. In symbols,

G j = min
j J

gj p J +G J − j 3 1

where

G ϕ = 0 3 2

and ϕ denotes the empty subset.
Finally, let X denote the set of all jobs. Because the cost function G is defined

on subsets of jobs, the minimum total cost can be written G(X), where

G X = min
j X

gj p X +G X− j 3 3

Set J
p(J)

Other jobs

j. . .

Figure 3.3 The form of a sequence in dynamic programming.
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At each stage, the function G(J) measures the total cost contributed by the
jobs in set J, when set J occurs at the beginning of the schedule and is sequenced
optimally. The recursion relation (3.1) indicates that in order to calculate the
value of G for any particular subset of size k, we first have to know the value
of G for subsets of size (k − 1). Therefore, the procedure begins with the value
of G for a subset of size zero, from Eq. (3.2). Then, using Eq. (3.1), we can cal-
culate the value of G for all subsets of size 1, then the value of G for all subsets
of size 2, and so on. In this manner, the procedure considers ever larger sets J,
ultimately using Eq. (3.3) to determine which job should be scheduled last.
The optimal value of Z is G(X). If we keep track of where minima in
Eq. (3.1) occur at each stage, then, after finding G(X), we can reconstruct the
optimal sequence.

∎ Example 3.2 Consider the following four-job problem, with the criterion of
minimizing total tardiness.

Job j 1 2 3 4

pj 5 6 9 8

dj 9 7 11 13

The essential dynamic programming calculations are displayed in Table 3.1.
To illustrate these calculations, consider the set J = {1, 2, 4} that is encoun-

tered at Stage 3. For this set p(J) = 19, the total processing time for the jobs
in this set. If job 1 comes last in the set, then its tardiness is g1(19) = 10, and
for the remaining jobs, G({2, 4}) = 1 from Stage 2. Thus, the total contribution
from this set, when job 1 comes last, is 11. An adjacent column indicates that if
job 2 comes last, then g2(19) = 12 and G({1, 4}) = 0, totaling 12; and if job 4
comes last, g4(19) = 6 and G({1, 2}) = 2, totaling 8. The minimum of these three
totals is 8, which is designated as G(J) in the table; this is achieved when job 4
comes last, as indicated by the column in which G(J) is shown.
To reconstruct the optimal sequence in the example, note that at Stage 4 the

lowest tardiness is achieved when job 3 comes last. Since this leaves jobs 1, 2,
and 4 to be sequenced, we examine the set {1, 2, 4} that was evaluated at Stage
3. Here, as we have seen in detail, the calculations show that job 4 should come
last in this set; thus job 4 should occupy the next to last position in the optimal
sequence. Continuing in this fashion, we construct the optimal sequence 2-1-4-
3 for which the total tardiness is G(X) = 25.
The number of subsets considered by the dynamic programming procedure

is 2n, since that is the total number of subsets of n elements. Finding G(J) for
each subset J involves a minimization over all possible jobs that could come
last, so the computational effort required for dynamic programming grows in
proportion to n2n. In this respect, dynamic programming is typical of many
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Table 3.1

Stage 1

J {1} {2} {3} {4}

p(J) 5 6 9 8

j J 1 2 3 4

gj[p(J)] 0 0 0 0

G(J − j) 0 0 0 0

G(J) 0 0 0 0

Stage 2

J {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

p(J) 11 14 13 15 14 17

j J 1 2 1 3 1 4 2 3 2 4 3 4

gj[p(J)] 2 4 5 3 4 0 8 4 7 1 6 4

G(J − j) 0 0 0 0 0 0 0 0 0 0 0 0

G(J) 2 3 0 4 1 4

Stage 3

J {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

p(J) 20 19 22 23

j J 1 2 3 1 2 4 1 3 4 2 3 4

gj[p(J)] 11 13 9 10 12 6 13 11 9 16 12 10

G(J − j) 4 3 2 1 0 2 4 0 3 4 1 4

G(J) 11 8 11 13

Stage 4

J {1, 2, 3, 4}

p(J) 28

j J 1 2 3 4

gj[p(J)] 19 21 17 15

G(J − j) 13 11 8 11

G(J) 25

Optimal sequence: 2-1-4-3 Tj = 25
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general-purpose procedures for combinatorial optimization, in that the effort
required to solve the problem grows at an exponential rate with increasing
problem size. This trait makes dynamic programming an inefficient procedure
for finding optimal sequences in some of the simple problems we have exam-
ined. For example, when Fw is the criterion, we could employ dynamic program-
ming with

gj t =wjt

Also, when U is the criterion, we could employ dynamic programming with

gj t = 1 if t > dj

= 0 if t ≤ dj

But in both instances it is computationally more efficient to use the special-
ized results developed in Chapter 2. In particular, the Fw-problem and the
U-problem can be solved by algorithms that require no more computational
effort than is required to sort n numbers. (The most efficient procedure for sort-
ing has a computational requirement that grows at a rate that is asymptotically
proportional to nlog n.) On the other hand, for problems in which efficient opti-
mizing procedures have not been developed, such as minimizing total weighted
tardiness or weighted number of tardy jobs, dynamic programming may be a
reasonable approach.
Although the computational demands of dynamic programming grow at

an exponential rate with increasing problem size, the approach is still more
efficient than complete enumeration of all feasible sequences, for the computa-
tional effort of complete enumeration grows with the factorial of the problem
size. Because dynamic programming considers certain sequences only indi-
rectly, without actually evaluating them explicitly, the technique is sometimes
called an implicit enumeration technique. Although it is more efficient than
complete enumeration, the fact that its computational requirement exhibits
exponential growth places a premium on the ability to curtail the dynamic pro-
gramming calculations whenever possible. Such a strategy is described in the
next section.
In the exposition above, we organized the dynamic programming calculations

by treating the subsets in the order of their size: computingG(J) for all subsets of
size k, then all subsets of size (k + 1), and so on until reaching the subset of size n.
Although this might be the most natural way to organize the calculations, other
schemes are also possible. In fact, the most convenient way to implement
dynamic programming on a computer uses an alternative scheme. The only
requirement is that at the time we treat set J, we should already have treated
all the subsets of J.
For computer implementation, we assign each subset a label. We can think of

this label as the sum of the labels of all jobs in the subset, where each job has its
own label. To ensure that the label of a subset will tell us unambiguously which
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jobs are contained in the subset, we use binary notation. Specifically, the label
for job k is 2k−1. For example, a 4-job problem contains 16 subsets, including the
empty subset, as listed in Table 3.2.
Note that the binary representation allows us to translate sets into labels and

labels into sets. For the set {1, 2, 4}, for example, the label is just the sum of the
individual job labels 20, 21, 23, or 11. The label 11, when converted to binary
notation (1011), reveals that jobs 1, 2, and 4 are members of the subset.
In a computer program, we store the value ofG(J) at a location with an address

equal to the label of J. In the basic recursion (3.1), we want quick access to the
value of G(J − j). Knowing the label of J, we can obtain the label of (J − j) simply
by subtracting the label of job j, or 2j−1. This quick-access lookup for the value of
G(J − j) lies at the heart of the calculations. It is imbedded in aminimization loop
that determines the choice of j that yields G(J).
An outer loop provides a scheme for generating all the subsets. Let b(i) take on

the value 1 or 0 to reflect that job i is in or out of the subset. Start with b(i) = 0 for
all i. To generate the next set, the loop proceeds as follows:

• Find the smallest integer j for which b(j) = 0. (If all b(i) = 1, then stop: All sub-
sets have been generated.)

• Set b(j) = 1.

• For all i < j, set b(i) = 0.

Table 3.2

Subset Label Binary

ϕ 0 0000

{1} 1 0001

{2} 2 0010

{1, 2} 3 0011

{3} 4 0100

{1, 3} 5 0101

{2, 3} 6 0110

{1, 2, 3} 7 0111

{4} 8 1000

{1, 4} 9 1001

{2, 4} 10 1010

{1, 2, 4} 11 1011

{3, 4} 12 1100

{1, 3, 4} 13 1101

{2, 3, 4} 14 1110

{1, 2, 3, 4} 15 1111
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In effect, the b-vector contains the binary representation of the label of set J,
and we could add the labels of the jobs in J to compute the label for J. However,
it is simpler to maintain the label of the set being treated by simply adding
2i−1 whenever b(i) is switched from 0 to 1 and subtracting 2i−1 whenever b(i)
is switched from 1 to 0.
In summary, the computer implementation of dynamic programming

requires two efficient devices, a scheme for labeling subsets and an algorithm
for generating subsets. The labeling scheme provides efficient access to the
value for a previously treated subset, while the generating algorithm ensures
that all subsets are treated in a suitable order.

3.4 Dominance Properties

In the previous chapter, we encountered dominance properties involving
schedules. We saw that schedules without preemption and without inserted idle
time constitute a dominant set. Restricting attention to the dominant set reduces
the number of alternatives – and therefore the computational effort – involved in
searching for an optimal solution.
Now, we examine dominance properties involving jobs. For the Tw-problem, a

simple dominance property is illustrated by the following result.

∎ Theorem 3.2 Suppose that Tw is the measure of performance and that for
some job k, the condition dk ≥ p(X) holds. Then there exists an optimal schedule
in which job k is assigned the last position in sequence.

Proof. Let S represent a schedule in which job k is not the last job. Construct
schedule S by removing job k and inserting it in the last position in sequence.
Under the condition in the theorem, the shift does not increase the tardiness of
job k. Moreover, all other jobs complete as early or earlier after the shift, so the
tardiness of all jobs is no greater in schedule S than in schedule S . Thus, the total
weighted tardiness in any schedule will not become larger as a result of assigning
job k to the last position. □

Theorem 3.2 states that it is sufficient for job k to follow all other jobs. This
result defines a dominant set of sequences, in which k is the last job. In effect, the
problem is reduced in size, for it remains only to determine how to assign the
first (n − 1) positions to the remaining (n − 1) jobs. If we were enumerating
sequences, this result would cut the search effort by a factor of n.
Another type of dominance property involves a relationship between a specific

pair of jobs. Such a result states that it is sufficient for job i to follow job j or, equiv-
alently, for job j to precede job i. If we were enumerating sequences, this result
would cut the search effort by a factor of 2, and in combination, several such
results could have a major impact. Some useful dominance properties of this
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type have been developed for the T-problem. Recall from the previous
section that p(J) represents the sum of processing times in set J and that X
denotes the set of all jobs. Let

Ai = the set of jobs that have been shown to follow job i in an optimal sequence,
sometimes called the after set.

Ai = the complement of set Ai, defined as Ai =X −Ai.
Bi = the set of jobs that have been shown to precede job i in an optimal sequence,

sometimes called the before set.

The next result gives conditions under which job i precedes job j in an optimal
sequence.

∎ Theorem 3.3 In the T-problem, an optimal schedule exists in which job j
follows job i if one of the following conditions is satisfied:

a) pi ≤ pj and di ≤max{dj, p(Bj) + pj}
b) di ≤ dj and dj ≥ p(Ai) − pj
c) dj ≥ p(Ai)

Condition (a) generalizes Theorem 2.8. Condition (c) generalizes Theorem
3.2 and holds for the Tw-problem as well. Conditions (a) and (b) extend to
the Tw-problem if we also require wi ≥wj. We can prove condition (a) by inter-
changing jobs i and j. Also, we can prove conditions (b) and (c) by shifting job j
to a position immediately after job i.
When we encounter a pair of jobs i and j that satisfies one of the conditions of

Theorem 3.3, we can add job i to Bj and add job j toAi. Each condition is based in
part on information about the sets Bj or Ai. Initially, these sets may be taken to
be empty. If one of the conditions holds for the pair of jobs i and j, then the sizes
of Bj and Ai increase. This increase, in turn, may make it possible to satisfy the
conditions for additional job pairs and thus for the size of the original problem
to be reduced even further.
We collect the dominance information systematically in a dominance matrix

D. The generic element of D is dij = 1 if job j follows job i, and dij = 0 otherwise.
Two quantities that appear in Theorem 3.3 are denoted as follows:

Qi = p Ai and Rj = pj + p Bj

Also, let |Aj| and |Bj| denote the sizes of the setsAj and Bj, respectively. Then a
computational display for collecting the dominance information is shown in
Table 3.3 as an expanded D-matrix. The matrix is filled in by testing pairs of
jobs to determine whether one of the conditions in Theorem 3.3 holds. Each
time one of the conditions succeeds, Ai and Bj are updated.
Once the matrix is filled in, it may be possible to reduce the size of the prob-

lem. If |Bj| = n − 1, then job jmay be assigned the last position in sequence, and n

3.4 Dominance Properties 49



can effectively be reduced by 1. If |Aj| = n − 1, then job jmay be assigned the first
position in sequence, and n can similarly be reduced by 1. (In this case, the prob-
lem that remains is reformulated by subtracting pj from each due date.) When
no more of these reductions are possible, we invoke an optimization procedure.
As it happens, dynamic programming is well suited to finding an optimal

sequence in the presence of dominance properties. Thus, we assume that a
dominance matrix has been determined, and we next wish to exploit that infor-
mation in dynamic programming. Basically, this means that we want to carry
out the dynamic programming calculations, but instead of examining all 2n sub-
sets, we want to limit consideration to undominated subsets. As we saw in the
previous section, the key elements for computer implementation are a labeling
scheme and a generation procedure.
The labeling scheme consists of a mechanism for assigning labels to jobs; then

the label for a particular subset is simply the sum of the labels for the jobs con-
tained in the subset. Suppose we renumber the jobs so that i < jwhenever dij = 1;
that is, whenever job i dominates job j. LetNj denote the set of jobs with a lower
number than job j:

Nj = i i < j

Let Lj denote the label for job j, and let L(S) denote the sum of labels for the
jobs contained in set S. Then

Lj = L Nj −L Bj Nj + 1

In words, we sum the labels of all jobs numbered lower than j. Then we sub-
tract the labels of all jobs in this set that dominate j. Then we add one. (If we had
no dominance properties available, this scheme would reduce to the binary
labeling scheme described in the previous section.)
The generation algorithm is only slightly modified from the one introduced

for the basic form of dynamic programming. Recall that we renumber the

Table 3.3

Job j

Job i d11 d12 … d1n Q1 |A1|

d21 d22 … d2n Q2 |A2|

dn1 dn2 … dnn Qn |An|

R1 R2 … Rn

|B1| |B2| … |Bn|
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jobs so that i < j whenever job i dominates job j. The main loop proceeds as
follows:

• Find the smallest integer j for which b(j) = 0. (If all b(i) = 1, then stop: All sub-
sets have been generated.)

• Set b(j) = 1.

• For i < j, if b(i) = 1 and J Ai = ϕ, set b(i) = 0.

Here the only difference from the basic form of dynamic programming lies
in the condition J Ai = ϕ. As we examine set J, we normally compute G(J)
from Eq. (3.1) by considering all subsets in which one job is removed from J.
In the presence of dominance properties, however, we can limit ourselves to
removing only those jobs that do not dominate other jobs in J.

∎ Example 3.3 Consider a five-job problem with the criterion of minimizing
total tardiness, in which we encounter the following dominance matrix:

D=

--- 0 1 0 0

0 --- 0 0 1

0 0 --- 0 0

0 0 0 --- 1

0 0 0 0 ---

Specifically, the matrix shows three dominance relations: Job 3 follows job 1
and job 5 follows job 2 and job 4. The labeling scheme yields the labels shown in
order below:

Job j 1 2 3 4 5

Lj 1 2 3 7 5

Then the generation algorithm produces the subsets J in the following order:

Subset Label Indicator

ϕ 0 00000

{1} 1 00001

{2} 2 00010

{1, 2} 3 00011

{1, 3} 4 00101

{1, 2, 3} 6 00111

(Continued)
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(Continued)

Subset Label Indicator

{4} 7 01000

{1, 4} 8 01001

{2, 4} 9 01010

{1, 2, 4} 10 01011

{1, 3, 4} 11 01101

{1, 2, 3, 4} 13 01111

{2, 4, 5} 14 11010

{1, 2, 4, 5} 15 11011

{1, 2, 3, 4, 5} 18 11111

This list contains 15 feasible subsets, including the empty set. Without
dominance properties, the list would contain 25 or 32 subsets. In addition,
the labels are not all consecutive: In particular, labels 5, 12, 16, and 17 are miss-
ing. (We say that such a labeling is not compact.) In a computer implementation,
this means that space would have to be reserved for 19 values of G(J), even
though only 15 of them would ever be used. Although the gaps in this example
do not present much of a difficulty, larger problems may have several wide gaps.
Once the labeling scheme is carried out, the size of the maximum label predicts

how much computer storage capacity will be needed in order to find the optimal
solutionbydynamic programming.The computational effort required to solve the
problem is, however, drivenmainly by the number of feasible subsets. The advan-
tage of using the dominance conditions is therefore to reduce the computational
requirement, but there is usually a substantial reduction in storage capacity aswell.

3.5 A Branch-and-bound Approach

A useful method for solving many combinatorial problems is a general-purpose
strategy known as branch and bound. As its name implies, the approach consists
of two fundamental procedures. Branching is the process of partitioning a large
problem into two or more subproblems, and bounding is the process of calcu-
lating a lower bound on the optimal solution of a given subproblem.
The branching procedure replaces an original problem by a set of new pro-

blems that are:

a) Mutually exclusive and exhaustive subproblems of the original.
b) Partially solved versions of the original.
c) Smaller problems than the original.

3 Optimization Methods for the Single-machine Problem52



Furthermore, the subproblems can themselves be partitioned in a similar
fashion. As an example of a branching procedure, let P(0) denote a single-
machine sequencing problem containing n jobs. The problem P(0) can be parti-
tioned into n subproblems, P(1), P(2), …, P(n), by assigning the last position in
sequence. Thus, P(1) is the same problem, but with job 1 fixed in the last posi-
tion; P(2) is similar, but with job 2 fixed in the last position; and so on. Clearly,
these subproblems are smaller than P(0) because only (n − 1) positions remain
to be assigned, and obviously each P(i) is a partially solved version of P(0). In
addition, the set of subproblems P(i) is a mutually exclusive and exhaustive par-
tition of P(0) in the sense that if each P(i) is solved, the best of these n solutions
will represent an optimal solution to P(0). Therefore, the P(i) satisfy conditions
(a), (b), and (c) above.
Next, each of the subproblems can be partitioned (see Figure 3.4). For

instance, P(2) can be partitioned into P(12), P(32), …, P(n2). In P(12), jobs 1
and 2 occupy the last two positions of the sequence in that order; and in P
(32), jobs 3 and 2 occupy the last two positions. Therefore, the second-level par-
tition P(i2) bears the same relation to P(2) as the first-level partition P(i) bears to
P(0). That is, the partitions at each level satisfy conditions (a), (b), and (c). At
level k, then, each subproblem contains k-fixed positions and can be further
partitioned into (n − k) subproblems, which form part of level (k + 1). If this
branching procedure were to be carried out completely, there would be n!

P(0)

P(2) P(n)

P(n2)P(32)

P(s)

P(12)

P(1)

. . .

. . .

. . .

. . .

. . .

. . .

Figure 3.4 A branching scheme for single-machine problems.
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subproblems at level n, each corresponding to a distinct feasible solution to
the original problem. In other words, exhaustive pursuit of the branching tree
would be equivalent to complete enumeration of all sequences. The function of
the bounding process is to provide a means for curtailing this enumeration.
The bounding procedure calculates a lower bound on the solution to each

subproblem generated in the branching process. Suppose that at some inter-
mediate stage, a complete solution has been obtained that has an associated
performance measure Z. Suppose also that a subproblem encountered in
the branching process has an associated lower bound b > Z. Then the sub-
problem need not be considered any further in the search for an optimum.
That is, no matter how the subproblem is resolved, the resulting solution can
never have a value better than Z. When such a subproblem is found, its
branch is said to be fathomed. By not branching any further from fathomed
branches, the enumeration process is curtailed because feasible solutions of a
fathomed subproblem are evaluated implicitly rather than being constructed
explicitly.
A complete solution that allows branches to be fathomed is called a trial solu-

tion. It may be obtained at the very outset by applying a heuristic procedure (i.e.
a suboptimal method capable of obtaining good solutions with limited compu-
tational effort); or it can be obtained in the course of the tree search, perhaps by
pursuing the tree directly to the bottom as rapidly as possible.
We can now illustrate how these concepts are applied in the T-problem, once

we introduce some convenient notation. Let s denote a partial sequence of jobs
from among the n jobs originally in the problem. Also, let js denote the partial
sequence in which s is immediately preceded by job j. We can treat s as an
ordered set of jobs, so that

s = the complement of s

p s =
j s

pj

Let P(s) represent a subproblem at level k in the branching tree, where k ≤ n.
This subproblem will be the original problem P(0) with the last k positions in
sequence assigned, where s specifies the positions. Associated with P(s) is a
value, vs, which is the contribution of assigned jobs to total tardiness. That is,

vs =
j s

Tj

The Tj values in this sum can be calculated because the completion time of
each job in the partial sequence s is known even though the complete sequence
has not yet been determined.
Normally, the branching process partitions P(s) into (n − k) subproblems.

Each subproblem, P(js), is constructed by selecting some job j to be last in s ,
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where j can be chosen (n − k) distinct ways. Because the completion time of job j
in the partial sequence js is p(s ), the value associated with P(js) is

vjs = max 0, p s −dj + vs

Subproblem P(s) may be treated as a single-machine sequencing problem
containing (n − k) jobs. This means, in particular, that Theorem 3.2 may be
invoked: If there exists a job i in s such that di ≥ p(s ), then it is sufficient in sol-
ving P(s) to place job i last. In this situation, we need not partition P(s) into (n −
k) subproblems. Instead, we can partition P(s) into just one subproblem, P(is).
Thus, it may be possible to exploit dominance properties within the branching
tree so that some branches are avoided. Curtailing the branching process with
dominance properties is sometimes called elimination.
In the bounding process, we seek a means of calculating a lower bound bs on

the total tardiness cost associated with any completion of the partial sequence s.
One way of calculating a bound is obvious:

bs = vs 3 4

A slightly stronger bound can be obtained by pursuing the fact that some job
in s must be completed at p(s ). We may use

bs = vs + min
j s

max 0, p s −dj 3 5

More complicated procedures may be employed for calculating even stronger
lower bounds. In fact, the most successful computational advances for solving
the T-problem involve a careful analysis of the computational costs and benefits
of using complex lower bounds.
Once bs is calculated, it may be possible to determine whether a completion

of the subproblem P(s) might lead to an optimum. Suppose a trial solution is
available with a total cost of Z. When we compare Z and bs, if bs < Z, then a
completion of s could possibly be optimal. Therefore, the subproblems P(js)
must be constructed and examined. On the other hand, if bs ≥ Z, then no com-
pletion of the partial sequence s could ever achieve a total tardiness less than Z,
so its completions need not be enumerated in the search for an optimum. In this
case, the branch corresponding to s is fathomed, and the search is somewhat
shortened.
The branch-and-bound algorithm maintains a list of all subproblems that

have not been eliminated by dominance properties and whose own subpro-
blems have not yet been generated. These are called active subproblems. At
any stage of the algorithm, it is sufficient to solve all active subproblems to
determine an optimal solution to P(0). In the following version of the algorithm,
the active list is ranked by lower bound, smallest first. At each stage, the first
subproblem on the active list is replaced by its own subproblems. This strategy
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is equivalent to continuing the branching process from the subproblemwith the
lowest bound, wherever that may be in the branching tree. The algorithm ter-
minates when a trial solution appears at the head of the active list, because then
no other subproblem could lead to a better solution. Also, in this form of the
algorithm, no trial solution is obtained until the branching process itself reaches
the bottom of the branching tree at some stage.

Algorithm 3.1 Branch and Bound

Step 1. (Initialization) Place P(0) on the active list. The value associated with
this node is v0 = 0 and p ϕ = n

j= 1pj
Step 2. Remove the first subproblem, P(s), from the active list. Let k denote the

number of jobs in the partial sequence s. If k = n, stop: The complete
sequence s is optimal. Otherwise, test Theorem 3.2 for P(s). If the property
holds, go to Step 3; otherwise, go to Step 4.

Step 3. Let job j be the job with the latest due date in s . Create the subproblem
P(js) with

p js = p s −pj, vjs = vs, and bjs = vs

Place P(js) on the active list, ranked by its lower bound. Return to Step 2.

Step 4. Create (n − k) subproblems P(js), one for each j in set s . For P(js), let

p js = p s −pj, vjs = vs + p s −dj, and bjs = vjs

Now place each P(js) on the active list, ranked by its lower bound. Return to
Step 2.

Algorithm 3.1 invokes three important options, all of which are open to some
scrutiny. First, the algorithm employs the lower bounds given in Eq. (3.4). An
obvious alternative is to use Eq. (3.5).
A second option involves the use of a trial solution. At any stage, the best trial

solution yet found can be used in reducing the list of active subproblems. First,
no subproblem need ever be placed below the trial solution on the active list, for
such a subproblem can never lead to an optimum. Second, whenever a complete
sequence is placed on the active list, all subproblems with greater bounds can be
discarded. However, no trial solution can be encountered until the branching
process has reached level n. An obvious alternative is to obtain a trial solution
in Step 1. For instance, if the branch-and-bound approach is used in the T-prob-
lem, then an initial trial solution can be obtained using the MDD decision rule,
as described in Chapter 2.
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A third option involves the branching tactic itself – that is, the selection of the
subproblem with the smallest bound as the candidate for further branching. This
tactic is known as jumptracking, because the branching process tends to jump
from one part of the branching tree to another at successive stages in the algo-
rithm. An alternative is a tactic known as backtracking, in which the branching
process first proceeds directly to level n along some path to obtain a trial solution.
Then the algorithm retraces that path upward until it reaches a level on which
unsolved subproblems remain. It selects one of these and again proceeds toward
level n along a single path. The process may actually reach another trial solution,
or it may fathom the branch it pursues by utilizing the value of the on-hand trial
solution. In either case, the algorithm again backtracks up to the first level at
which an unfathomed branch remains and then proceeds toward level n.
The characteristics of jumptracking and backtracking are considerably differ-

ent. Backtracking maintains relatively few subproblems on the active list at any
one time, while jumptracking tends to construct a fairly large active list. This is a
disadvantage for jumptracking, mainly because each time it places a subproblem
on the ranked list, it must search the list to determine exactly where on the list to
place the subproblem. This searching may become quite time consuming in
problems of moderate size. (This disadvantage may be remedied somewhat
by clearing the list below any trial solution that is placed on it.) In addition,
the list size requirement may restrict computerized versions of the algorithm
when storage capacity does not readily accommodate a large list. On the other
hand, an advantage in jumptracking is that the trial solutions it encounters tend
to be very close to optimal, while the early trial solutions obtained by backtrack-
ing may be relatively poor. Thus, jumptracking usually does less branching in
total, and this feature may compensate for its larger time per branch. Jump-
tracking branches from every subproblem that has a bound less than the value
of an optimal sequence, and it may also generate some nonoptimal trial solu-
tions. Backtracking may, in addition, branch from several subproblems that
have bounds greater than the optimal value and may also generate very many
nonoptimal trial solutions.
In addition to the trade-offs associated with the choice of branching tactics,

trade-offs arise with other choices. For example, the lower bound in Eq. (3.5) is
stronger than the bound in Eq. (3.4) and would be more effective in curtailing
the branching process, yet more calculations are involved in computing the
stronger bounds. Similarly, we can eliminate branches that violate the condi-
tions of Theorem 3.3, again at the expense of additional computations. Also,
starting the algorithm initially with a good trial solution can curtail the branch-
ing process considerably, yet more effort must be invested to obtain a better ini-
tial trial solution. In many respects, Algorithm 3.1 is a general prototype for a
whole array of branch-and-bound methods, and the specific choice of tactics
might be described as something of an art.
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∎ Example 3.4 Consider the following five-job problem, with the criterion of
minimizing total tardiness.

Job j 1 2 3 4 5

pj 4 3 7 2 2

dj 5 6 8 8 17

The branching tree for this example problem is displayed in Figure 3.5. The
lower bound vs for each subproblem is entered just below the corresponding
node in the figure. The order of branching is indicated by the number that
appears just above the corresponding node. Initially, the tree consists of P(0),
with v0 = 0 and p(ϕ) = 18. At Step 2, the initial problem is removed from the
active list and subsequently replaced by P(1), P(2), P(3), P(4), and P(5). As shown
in the figure, v1 = 13, v2 = 12, v3 = 10, v4 = 10, and v5 = 1. The jumptracking strat-
egy calls for branching next from P(5), since it is first on the active list. At the
next stage, P(35) and P(45) both have the lowest bound on the active list, and
the tie between them is broken arbitrarily in favor of the latter, so that the

P(2) P(3) P(4)

P(54)P(53)

P(153) P(253) P(453) P(154) P(254) P(354) P(135) P(235) P(435) P(145)

P(2435)P(1435)

P(12435)

P(245) P(345)

P(5)

P(15) P(25) P(35) P(45)

P(0)

P(1)

13 12

7

10 10

1

1

3 2

991112

6

1010
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9

12 11
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10

17 151314

8

4

5

Figure 3.5 The branching tree for the example problem.
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subproblems of P(45) are created. At this point, P(35) is alone at the head of the
active list and so its subproblems are generated next. Thereafter, the active list
contains three subproblems with lower bounds of 10: P(3), P(4), and P(435). In
this type of situation, it is a good idea to break ties by branching from the prob-
lem that is closest to being completely solved, in this case, P(435). In other
words, priority is given to the subproblem with the largest k. Eventually, at
the 10th branching iteration, the tree reaches the trial solution P(12435) for
which v12435 = 11. At this point, the trial solution is first on the active list, since
k is being used as a tiebreaker; therefore, the algorithm terminates in Step 2. In
effect, all branches have been fathomed at this stage, for the active list contains
the 17 subproblems shown in Table 3.4. The optimal sequence 1-2-4-3-5 has a
total tardiness equal to 11.

3.6 Integer Programming

The two main general-purpose approaches to finding optimal solutions in
sequencing problems are dynamic programming and branch and bound, as
described in previous sections. Although these descriptions (and the research

Table 3.4

Subproblem Bound

P(12435) 11 trial solution

P(453) 11

P(25) 11

P(1435) 12

P(235) 12

P(15) 12

P(2) 12

P(135) 13

P(253) 13

P(1) 13

P(153) 14

P(345) 15

P(354) 16

P(245) 17

P(254) 18

P(145) 18

P(154) 19
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articles from which those descriptions are taken) provide a road map for imple-
mentation, both approaches require some adaptation to the particular objective
function of interest. Moreover, both require computer code to make the neces-
sary calculations in all but the smallest problems, and the coding phase can be a
challenge. Because the details of implementation are usually problem depend-
ent, no general software exists for solving sequencing problems by dynamic
programming or branch and bound. To find solutions using these methods,
it is necessary to write computer code and tailor it to the type of problem being
addressed.
On the other hand, general optimization software is widely available (and

familiar to a broad audience) in the form of mathematical programming
packages. An example would be Excel’s Solver, which can be used on a spread-
sheet platform without formal computer code. To use such a tool, we need only
formulate the sequencing problem, and the software can then perform the
desired optimization using an integer programming (IP) algorithm. Neverthe-
less, some alternative approaches exist, as we illustrate with the Uw-problem
and the T-problem.

3.6.1 Minimizing the Weighted Number of Tardy Jobs

As discussed in Chapter 2, the U-problem can be solved using Algorithm 2.1.
However, no simple extension of that algorithm exists for the Uw-problem.
One possibility is to attack the Uw-problem with an IP approach.
The given parameters are processing times pj, due dates dj, and weightswj that

apply as lump-sum penalties to the tardy jobs. To formulate the problem,
renumber the jobs so they conform to EDD ordering. (Recall that any set of
on-time jobs can be sequenced in EDD order without causing tardiness.) Then
let xj = 1 if job j completes on time and xj = 0 otherwise. The problem can then
be expressed as follows:

Maximize
n

j= 1

wjxj 3 6

Subject to
j

i=1

pixi ≤dj, for j= 1,2,…,n 3 7

xj = 0 or 1, for j= 1,2,…,n 3 8

This is a rather simple formulation, which actually maximizes the weighted
number of on-time jobs, a criterion that is equivalent to minimizing Uw. The
constraints ensure that each on-time job is completed by its due date. The opti-
mization model contains n binary variables and n constraints, and it can be built
conveniently on a spreadsheet for the purposes of implementing Solver to find a
solution.
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∎ Example 3.5 Consider the following six-job problem, with the criterion of
minimizing the weighted number of tardy jobs.

Job 1 2 3 4 5 6

Process time 64 79 19 27 6 27

Due date 82 83 106 118 142 155

Weight 9 8 5 10 7 7

A spreadsheet formulation of the integer program is displayed in Figure 3.6.
To specify the model for Solver, we provide the following information:

•Maximize the objective function, B5.

• Take C4:H4 as the decision variables, all of which are binary variables.

• Satisfy the constraints I7:I12 ≤K7:K12.

The model contains 6 decision variables and 6 constraints, and the optimal
solution shown in Figure 3.6 provides for completing jobs 3 and 4 late, for a total
tardiness penalty of 12. Equivalently, the total weight for on-time jobs is 32 when
the remaining 4 jobs are positioned at the start of the sequence.
The spreadsheet platform affords the user considerable flexibility in model

layout; the configuration shown in Figure 3.6 is just one of many possible ways
to display the model on a spreadsheet.
The problem of minimizing the weighted number of tardy jobs can be solved

effectively using the IP model in Eqs. (3.6)–(3.8). In fact, problems containing as
many as 100 jobs can be solved in a few seconds using an IP approach and a

Figure 3.6 Spreadsheet layout for the IP solution to Example 3.5.
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spreadsheet platform. To provide some perspective on this result, consider two
alternative approaches to finding a solution: (i) enumerating all possible
sequences and choosing the best one and (ii) applying the dynamic program-
ming algorithm in Eqs. (3.1)–(3.3). The enumeration code requires the system-
atic generation of all n! job sequences. For each sequence, the code must
calculate the value of the objective function, compare that value with the best
value previously encountered, and save the better of the two. Such a code is rel-
atively straightforward, but the number of sequences to be examined requires
more and more time as the problem size increases. The dynamic programming
code requires the systematic generation of subsets of jobs, which amounts to a
smaller number than the number of sequences in enumeration. To get a sense of
the computational requirements, these methods were compared with the
requirements of an Excel-based IP approach. In each case, they were implemen-
ted with a computer that is representative of the hardware and software in
current use.
Although the example problem can be solved in a fraction of a second by

complete enumeration, a 10-job problem would take a few seconds. A 12-job
problem would take a few minutes, and we can expect that the time required
would grow roughly in proportion to n! if we tested larger problem sizes. We
can estimate that a 25-job problem would take around two weeks to solve. In
practice, then, we would not expect to see problems larger than a dozen jobs
solved by this method.
Dynamic programming solutions can be obtained more rapidly – in less than

a second for problems as large as 15 jobs. However, we can anticipate that the
time required increases roughly in proportion to n2n, so that 30-job problems
would take an hour or two. For larger sizes, we might begin to find that memory
capacity may be inadequate to support the calculations.
By comparison, IPmethods work quite well. To test solution times for IP, a set

of randomly generated but nontrivial test problems was created, and the average
solution time was recorded. (Complete enumeration and dynamic program-
ming have time requirements that depend on the number of jobs but not on
the details of other problem parameters. In contrast, the time requirements
of IP vary somewhat with the configuration of processing times, due dates,
and weights, so these experiments involved a sample of problems, based on
which an average solution time was calculated.) Thus 30-job problems were
solved in less than a second, and 100-job problems in just a few seconds.
Such a quick solution of problems containing 100 jobs means that IP is a viable
methodology for practical use, at least for the Uw-problem. More powerful
branch-and-bound solutions have been presented in the research literature,
but the ability to solve problems containing as many as 100 jobs with standard
software in a matter of seconds renders the Uw-problem “solved” in practi-
cal terms.
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However, the performance measure in the Uw-problem does not have to dis-
tinguish how late the tardy jobs are in the schedule, so in that respect it tends to
be an easier problem to solve than most other sequencing problems. We look
next at a different problem and an alternative IP approach.

3.6.2 Minimizing Total Tardiness

TheT-problem is a challenging problem to solve, and we can use it to illustrate a
different IP approach than the method for the Uw-problem. The given para-
meters are processing times pj and due dates dj. To formulate the problem,
we can assign job numbers arbitrarily. The key binary variables are xik = 1 if
job i is assigned to the kth position in sequence and xik = 0 otherwise. We refer
to xik as the sequence-position variable. Another set of variables is the tardiness
of kth job in sequence, denoted by tk. With these variables, a mixed-integer pro-
gram for the single-machine tardiness problem can be expressed as follows:

Minimize
n

k =1

tk 3 9

Subject to
n

i=1

xik = 1 for all positions k 3 10

n

k = 1

xik = 1 for all jobs i 3 11

n

i= 1

pi
k

u= 1

xiu −
n

i=1

dixik ≤ tk 3 12

xik = 0 or 1; tk ≥ 0 3 13

The objective function in Eq. (3.9) is the sum of the tardiness values, which
need not be integer valued. The sequence-position variables, on the other hand,
must be binary. Thus, the model contains (n2 + n) variables, of which n2 are
binary. Constraints (3.10) and (3.11) describe a feasible job sequence, with
one job assigned to each sequence position and one position occupied by each
job. These are sometimes called assignment constraints because they occur in
the classical assignment model. Constraint (3.12) calculates the lateness of
the job in position k (on the left-hand side of the inequality) and compares it
with the tardiness assigned to the job in position k. Because the tardiness
variables are nonnegative by Eq. (3.13), minimization of the objective function
will drive the value of tk in Eq. (3.12) to equal the lateness of the job in position
k if that job is tardy, and the value will be zero if the lateness of that job is
negative or zero.
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∎ Example 3.6 Consider the following five-job problem, with the criterion
of minimizing total tardiness.

Job 1 2 3 4 5

Process time 40 78 73 11 22

Due date 54 66 143 145 149

A spreadsheet formulation of the integer program is displayed in Figure 3.7.
The sequence-position variables appear in rows 9–13, with rows corresponding
to jobs and columns to positions in sequence, as indicated by the labels.
The tardiness values appear in row 8 and again in row 21, and the objective
function appears in cell B8. To specify the model for Solver, we provide the
following information:

•Minimize the objective function, B8.

• Take C8:G13 as the decision variables with C9:G13 as binary variables.

• Satisfy the row sum constraints H9:H13 = 1.

Figure 3.7 Spreadsheet layout for the IP solution to Example 3.6.
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• Satisfy the column sum constraints C14:G14 = 1.

• Satisfy the tardiness definitions in constraints C19:G19 ≤C21:G21.

The model contains 30 decision variables and 15 constraints, and the optimal
solution shown in Figure 3.7 corresponds to the sequence 1-2-5-3-4, in which
jobs 2, 4, and 5 are tardy, with a total tardiness of 135.
Again, the layout shown in Figure 3.7 is just one of many possible ways to dis-

play the model on a spreadsheet. For example, users more comfortable with
integer programs in “standard form” might prefer a layout containing 30 col-
umns, one for each variable. In any case, a software package such as Excel’s
Solver accommodates a variety of layouts and displays its solution directly on
the spreadsheet. Moreover, the use of sequence-position variables, which is well
suited to the T-problem, may not be the most efficient way to attack other
sequencing problems with an IP approach.
The IP model for the T-problem has more variables and constraints than the

model for the Uw-problem of the previous section. We might also expect that
the computational properties are different as well. Again, a brief test of the IP
model on a sample of randomly generated but nontrivial tardiness problems
suggests the possibilities. In this case, 20-job problems can be solved in a few
seconds by either dynamic programming or IP. However, 30-job problems
might take an hour or two with dynamic programming, whereas the median
solution time is around five minutes with IP. Beyond about 40 jobs, the time
requirements for the IP approach may become prohibitive.
Other IP approaches to sequencing problems are available. For the

T-problem, the evidence indicates that the sequence-position formulation
is the most effective, but a small amount of research suggests that different
formulations might work better for other performance measures. Neverthe-
less, if we were faced with the need to solve a 25-job problem, the
IP approach is a practical way to obtain a solution. On the other hand,
if we were faced with a 100-job problem, we would have to investigate
the research literature to find a sophisticated procedure that was up to
the task.

3.7 Summary

Challenging combinatorial optimization problems are encountered even in the
simplest of scheduling problems. The previous chapter and Theorem 3.1 dealt
with the relatively few situations in which we can easily characterize or con-
struct the optimal solution. However, for most tardiness-based criteria, we must
call on general-purpose techniques. Nevertheless, the methodologies described
in this chapter contain many optional features that can determine their effec-
tiveness in a given implementation. Some of these options are reviewed below.
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The dynamic programming approach (Section 3.3) is a highly flexible implicit
enumeration strategy that can be applied directly to many single-machine
sequencing problems. Although no important design options arise in applying
the technique to a given class of problems, an intriguing question is how to
develop an efficient computer code for the algorithm. Because the computa-
tional demands of dynamic programming grow exponentially with problem
size, it is particularly crucial to use an efficient code, even for moderate-sized
problems. We discussed a strategy based on a labeling scheme and a set gener-
ation algorithm, but other strategies exist. We left open the question of how to
identify alternative optima when they occur.
Dominance properties (Section 3.4) provide conditions under which certain

potential solutions can be ignored. By exploiting dominance properties, the
extensive calculations required by dynamic programming can be curtailed sub-
stantially. Based on this strategy, solution algorithms for the Tw-problem have
been successful on problems of up to 30 jobs (Schrage and Baker 1978). Con-
sidering the improvements in CPU performance since these results were
obtained, a speedup matched by memory and storage capacity improvements,
we might expect dynamic programming to handle about up to roughly 40 jobs
on a modern personal computer.
The branch-and-bound approach (Section 3.5) illustrates how implementing

an optimization technique can require a good deal of judgment. This judgment
must be exercised in the choice of a lower bound calculation, the potential use of
an initial trial solution, the incorporation of complicated dominance checks,
and the specification of a branching mechanism. In spite of the existence of
these options, and the fact that they cannot be evaluated independently,
branch-and-bound approaches have met with success in the solution of a wide
variety of problems. For example, the T-problem has been attacked with
branch-and-bound techniques that have been successful on problems as large
as 500 jobs (Szwarc et al. 2001).
No comparable results are available for the Tw-problem, however. As it turns

out, NP-hard problems belong to two broad classes: NP-hard in the strong sense
(or the strict sense) and NP-hard in the ordinary sense. (Usually, the qualifier is
used only for the former.) For the latter category, optimal solutions can be
obtained by algorithms that are pseudopolynomial. As the term suggests, pseu-
dopolynomial algorithms perform as efficiently as polynomial ones in practice
but fail to meet the strict formal definition of a polynomial algorithm. For exam-
ple, a pseudopolynomial algorithm may be polynomial in the total processing
time but not in the number of processing times, which is typically the relevant
measure of problem size. If that total processing time is small enough, the pseu-
dopolynomial algorithm will perform efficiently. The existence of a pseudopo-
lynomial solution usually implies that we can solve practical instances of
the problem without prohibitive computational demands. Conversely, pro-
blems for which we can efficiently solve large instances – say, hundreds of
jobs – are typically pseudopolynomial. This is the case for the T-problem, which
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has been shown to be pseudopolynomial by Lawler (1977). The Tw-problem, in
contrast, is known to be NP-hard in the strong sense.
One complication with both dynamic programming and branch and bound is

that no generic solvers exist. Instead, solutions are typically obtained from spe-
cially tailored code. In many situations, however, it is also possible to use an IP
approach. The advantage of IP is that generic solvers are available and can even
be implemented in spreadsheets.
Now, armed with some general optimization capabilities, we can investigate

more complex problems in sequencing and scheduling. Ideally, we try to analyze
the special structure of the problem and deduce the form of an optimal solution.
However, sequencing and scheduling problems are notoriously difficult, and
although we can make some progress with this type of analysis, we will often
find its power is limited. When our analysis does not completely solve the prob-
lem, we can rely on such general techniques as dynamic programming, branch
and bound, or IP.

Exercises

3.1 Consider the problem of minimizing the maximum weighted tardiness.
Describe the optimal sequence in the following special cases.
a) All jobs have the same due date.
b) Weights and due dates are agreeable. In other words, wi > wj implies

di ≤ dj.

3.2 The following six jobs await sequencing on one machine.

Job j 1 2 3 4 5 6

Processing time pj 12 2 6 14 8 13

Due date dj 41 4 44 16 35 30

Cost factor cj 3 5 2 4 3 5

When job j completes at time t, the cost function takes the following form:

fj t = cj max 0, t−dj
2

Find the optimal sequence for minimizing the maximum value of fj(t).

3.3 Use dynamic programming to minimize U in the following example.

Job j 1 2 3 4 5

pj 1 6 4 7 3

dj 2 7 8 13 15
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3.4 Formulate the problem of minimizing Tmax as a dynamic programming
problem by writing the appropriate recursion relations.

3.5 Describe how to identify multiple optima (assuming they exist) when
using dynamic programming to solve the T-problem.

3.6 Solve the following T-problem by branch and bound.

Job j 1 2 3 4

pj 5 6 9 8

dj 9 7 11 13

a) Use Eq. (3.5) to compute bounds.
b) Use Eq. (3.4) to compute bounds.

3.7 Consider the example T-problem from Section 3.5.

Job j 1 2 3 4 5

pj 4 3 7 2 2

dj 5 6 8 8 17

Show which branches of the tree can be fathomed by using condition (a)
of Theorem 3.3. Discuss the pros and cons of including this condition in
the analysis.

3.8 Prove Theorem 3.3.
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4

Heuristic Methods for the Single-machine Problem

4.1 Introduction

In earlier chapters, we studied the basic single-machine sequencing model, pay-
ing particular attention to the variations that arise for different objective func-
tions. For some objective functions, such as total flowtime, we saw that an
optimal solution can be obtained by a procedure as simple as sorting the jobs.
For other objective functions, such as total weighted tardiness, no simple solu-
tion procedure is available, and we have to resort to more general techniques of
combinatorial optimization.
As mentioned earlier, the computational effort required to solve problems

using combinatorial procedures grows remarkably fast as the size of the prob-
lem increases. Suppose, for instance, that a computer application for the
dynamic programming algorithm allows us to generate and evaluate 1 000
000 subsets per second. Then the solution of a 25-job problem would consume
roughly half a minute of computer time, but a 35-job problem would take
roughly 9 hours to solve, and a 45-job problem would take over a year. If
we need a quick answer to a 45-job problem, the dynamic programming
approach will hardly be suitable. In the case of branch-and-bound algorithms,
we cannot guarantee a better performance because it is impossible to predict the
computational effort precisely: It depends on the parameters in each specific
problem.
Although it would be difficult to designate any one problem size as typical of

practical problems, we believe that the ability to solve problems containing
30–50 jobs is usually sufficient for most practical needs. (Additional jobs are
likely to be scheduled at a later time.) But we may also encounter the single-
machine model as a component of more complex problems involving such
features as precedence constraints, multiple machines, or multiple operations
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per job. The ability to solve 30-job single-machine problems does not imply that
we can solve optimally for 30 jobs in more complex problems. In multimachine
models, single-machine submodels may have to be solved repeatedly, perhaps as
many as 2n times. Therefore, it is important to assess the computational
demands of an optimizing technique whenever its use is contemplated. When
those demands are substantial, we may want to consider suboptimal methods,
or heuristic procedures, which are capable of obtaining good solutions with lim-
ited computational effort. In contrast to such methodologies as dynamic pro-
gramming or branch and bound, these techniques do not guarantee that an
optimum will be found, yet they are relatively simple and effective.
In this chapter, we introduce some generic heuristic procedures that have

proven useful in solving scheduling problems. We describe their application
to deterministic single-machine problems but mainly for illustration: The same
procedures can be adapted to stochastic single-machine problems, as well as a
variety of other scheduling problems. In later chapters, when we deal with more
complicated models, we will refer to these techniques.
Because heuristic procedures do not reliably produce optimal schedules, it is

logical to ask just how suboptimal they might be. In an experimental setting, a
researcher might attempt to answer this question by solving several problems
using a heuristic procedure and then estimating either the frequency with which
optimal solutions are produced or the average deviation from optimality. Such
performance measures give us some insight into the reliability of a particular
procedure. In this chapter, we illustrate how heuristic procedures can be eval-
uated taking that approach.

4.2 Dispatching and Construction Procedures

As we noted earlier, some of the simplest solution methods require only the
sorting of jobs. For example, in the F-problem, sorting the jobs according to
SPT produces an optimal sequence. Actually, at the time the machine becomes
idle, it is not really necessary to sort all of the waiting jobs – we need only iden-
tify the shortest waiting job and schedule that one to be next. More specifically,
we use the term sorting to describe the use of a ranking scheme with the prop-
erty that the relative ranking of two jobs does not change with time. In other
words, sorting involves static priorities. In addition, if a new job is added to a
sorted set, the relative ranking of the original jobs does not change. To deter-
mine whether the new job should be the next one scheduled, we do not have to
resort the entire set of jobs – we need only compare the new job to the current
job with highest priority.
More generally, we use the term dispatching to describe a procedure that uses

a decision rule to select the next job each time the machine becomes free. Dis-
patching includes dynamic as well as static sorting rules. To illustrate a dynamic

4 Heuristic Methods for the Single-machine Problem72



version, consider the T-problem. A simple yet effective heuristic rule ranks jobs
by the MDD criterion. Recall from Chapter 2 that the modified due date of job j
at time t is defined by

dj t = max dj, t + pj 4 1

We also saw there that if jobs i and j are the candidates to begin at time t, then
the job with the earlier modified due date should come first. We then noted that
if we use the rule as a dispatching procedure, we may not obtain the optimal
solution.

∎ Example 4.1 Consider a problem containing n = 3 jobs with known proces-
sing times and due dates.

Job j 1 2 3

pj 8 9 12

dj 15 13 10

dj 0 15 13 12

Suppose that MDD is implemented as a dispatching procedure for the three-job
problem in Example 4.1. At time t = 0, the modified due dates are given by dj 0 ,

so the ranking of the jobs at time zero is 3-2-1. Therefore, job 3 is selected to be
first and completes at time 12. The next decision takes place at time t = 12, and
the scheduling problem appears as follows:

Job j 1 2

pj 8 9

dj 15 13

dj 12 20 21

Here, themodified due dates are given by dj 12 , and the rule selects job 1 before

job 2, which reverses the ranking of the two jobs at time zero. The final sequence
is 3-1-2, with T = 23, which happens to be suboptimal.
As the example illustrates, a dispatching procedure ranks all the unsched-

uled jobs each time a decision arises because the ranking may change over
time. The result is a selection of the most urgent job when the machine
becomes available. A sorting rule is easier to implement when it is static,
because the jobs need to be ranked only once. A dynamic rule, such as
MDD, requires repeated reranking of the jobs, but the computations are mod-
est. In actual practice, a static sorting rule typically permits the use of a phys-
ical label for each job, displaying a number, which represents a relatively
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simple way to convey scheduling priorities. A dynamic rule does not lend itself
easily to physical labels, but a computerized decision support system can
update the priorities easily.
For another dynamic dispatching example, we turn to the more complex

Tw-problem. A heuristic approach is to generalize MDD to the weighted
modified due date (WMDD) rule, defined as nondecreasing order of the quan-
tity max{dj − t, pj}/wj. Dispatching by this rule involves sorting the jobs and
selecting the job with the smallest WMDD as the next job. The sequence is
dynamic, because the dispatching criterion depends on t.
One useful way to judge heuristics is to trace their behavior in special cases and

to check that they reduce to good decision rules. For example, if all weights are
equal, then WMDD reduces to the MDD rule. Also, if all due dates are zero,
WMDD reduces to SWPT, which is optimal when all jobsmust be late. However,
unlike MDD, WMDD is not guaranteed to sequence even two jobs optimally.

∎ Example 4.2 Consider a problem containing n = 2 jobs with known proces-
sing times, due dates, and weights.

Job j 1 2

pj 2 5

dj 8 6

wj 3 2

For job 1, theMWDD is calculated as 8/3 = 2.7. For job 2 the calculation is 6/2 = 3.
Thus, by the WMDD heuristic, job 1 should precede job 2, leading to a total
weighted tardiness of 2. The opposite sequence, by contrast, has no tardiness.
The desired sequencing can be detected in two ways. One is by trial and error.

The other is by invoking a test based on an exact generalization of MDD. Sup-
pose that jobs i and j are considered for the next two positions (without any
other job inserted between them), and let s+j =max{dj − pj − t, 0}. If

pi
wi

1−
s+j
pi

≤
pj
wj

1−
s+i
pj

4 2

then i can precede j with at most the same total weighted tardiness. When we
apply this test for the sequence 1-2 in Example 4.2, the test fails:

2
3

1−
1
2

>
5
2

1−
6
5

This result indicates that job 2 should precede job 1 if both of them are to be
scheduled in the next two positions. In particular, the test can be applied to
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the first two jobs in any proposed sequence, taking t = 0. For later pairs of jobs,
however, we need to know the value of t.
A construction procedure, like a dispatching procedure, builds a schedule

from scratch, normally adding jobs to the schedule one at a time, but it does
not necessarily add the jobs in order from earliest to latest. For example, one
logical way to construct a schedule in the T-problem is to choose a job to be
last in sequence. Because we know what time the last job will complete, we
can select the job that will incur the least amount of tardiness when it finishes
last. What remains is a problem consisting of (n − 1) jobs, which we can resolve
the same way. This approach is sometimes called a greedy procedure, in that it
makes the next selection in the most favorable way, without regard to the con-
sequences that might arise later in the algorithm. (A greedy algorithm could also
focus on choosing the first job in sequence, but in tardiness-related problems,
the last-to-first structure is often more productive.)
In this particular application of a greedy procedure, we make k comparisons

when there are k jobs left to be scheduled. Thus, the computational effort is
O(n2). An illustration follows.

∎ Example 4.3 Consider a problem containing n = 5 jobs with known proces-
sing times and due dates.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 4 7 10 6

In this example, we know that the last job in sequence will complete at time 16.
The job that would have the smallest tardiness if it were to complete at 16 is job
1. Once we assign job 1 to be last, we know that the fourth job will complete at
time 14. Among the unscheduled jobs, the smallest tardiness at time 14 would
occur for job 4, so we assign it to be fourth. Continuing in this fashion, the
algorithm constructs the sequence 2-5-3-4-1, with a total tardiness of T = 10.
In the special case of the T-problem, the greedy algorithm reduces to a famil-

iar device for static dispatching, namely, the EDD rule. In more complicated
problems, greedy algorithms may not be as recognizable, but they tend to pro-
vide at least adequate results and are sometimes surprisingly effective. (For
example, in this case, MDD –which is also greedy – yields T = 8, which happens
to be optimal.)
Another widely used construction procedure is the insertion procedure,

which works as follows. Consider the subproblem consisting of just jobs 1
and 2. Optimize their sequence (by comparing the alternatives 1-2 and 2-1).
Next, keeping the relative order of the first two jobs fixed, find the best location
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in which to insert job 3. In other words, if 1-2 is the better of the two-job alter-
natives, consider the three alternatives 3-1-2, 1-3-2, and 1-2-3. If 2-1 is the bet-
ter of the two-job alternatives, consider the three alternatives 3-2-1, 2-3-1, and
2-1-3. At stage k, we obtain a solution to the k-job subproblem consisting of the
first k jobs. Then at stage (k + 1), we keep the relative order of the first k jobs
fixed in that sequence and consider inserting job (k + 1) into each of the (k +
1) possible positions. We select the best of these (k + 1) alternatives for consid-
eration at the next stage, and we stop when we have generated the best n-job
alternative. The insertion procedure usually requires a computational effort
of O(n3).
As an illustration, we use the data in Example 4.3. At the initial stage, we com-

pare the two-job sequences 1-2 and 2-1:

Job j 1 2 Job j 2 1

Tj 0 1 Tj 0 0

Based on this comparison, we retain the partial sequence 2-1 and next consider
where to insert job 3:

3-2-1 T = 0 2-3-1 T = 0 2-1-3 T = 0

Here, we arbitrarily break the tie in favor of the first sequence encountered, 3-2-
1. At the next stage, we have four partial sequences to consider:

4-3-2-1 T = 6 3-4-2-1 T = 6 3-2-4-1 T = 0 3-2-1-4 T = 2

Here, we retain the partial sequence 3-2-4-1 and examine five ways to convert it
to a complete sequence:

5-3-2-4-1 12 3-5-2-4-1 12 3-2-5-4-1 10 3-2-4-5-1 12 3-2-4-1-5 10

Thus, the insertion procedure generates a solution with T = 10, producing two
sequences that achieve this value. (As mentioned earlier, however, this value is
not optimal.)
We turn now to the question of how well these procedures perform. One

approach to answering this question involves a comparison of heuristic proce-
dures using a common set of test problems. For the purposes of illustration, we
use a set of twelve 20-job Tw-problems selected from a testbed developed by
Rinnooy Kan et al. (1975). These test problems, reproduced in Table 4.8 at
the end of the chapter, are known to be relatively difficult to optimize.
These test problems were solved with a variety of dispatching procedures,

including a random dispatching mechanism. The same problems were also
solved using the greedy and insertion procedures. For the WMDD dispatching
rule, we also tested the improvement available by meeting the condition of
Eq. (4.2). For each problem, the experiment recorded the ratio of the heuristic
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solution to the optimal solution. Three performance measures were tallied: a
count of the number of times the optimum was found, the average ratio of
the heuristic solution to the optimal solution, and the maximum solution ratio.
The results are summarized in Table 4.1. As the table clearly shows, most basic
dispatching procedures were not especially effective in solving the Tw-problem.
WMDD was the clear winner, followed by the greedy and insertion techniques.
A decent heuristic usually gets within 10% of the optimum, and a really good
one reliably gets within 1–2%. So WMDD is a decent heuristic, but there is still
room for testing other kinds of heuristic approaches. In addition, WMDD
applies only to the Tw-problem, so we must study additional heuristics if we
want to tackle other objective functions.
The combination of WMDD and the correction of Eq. (4.2) is not a pure dis-

patching or constructionprocedure because it involves revisiting earlier decisions
after later ones reveal they could be improved. Indeed, the correction step is a
rudimentary example of a search technique. Search techniques, such as those
we describe in later sections, are fundamentally different than construction pro-
cedures. Whereas construction methods start from scratch and build one sched-
ule, search procedures assume that a solution has already been built, and they
examine a series of alternative solutions in an effort to find improvements.

4.3 Random Sampling

It may seem surprising to speak of random sampling methods in connection
with deterministic scheduling problems. However, random sampling has been
employed directly in other combinatorial settings andmay provide a viable solu-
tion strategy for many scheduling problems.

Table 4.1

Algorithm Optimizing frequency Average ratio Maximum ratio

Random 0 of 12 1.86 2.51

SPT 0 of 12 1.67 2.90

MST 0 of 12 1.49 1.79

EDD 0 of 12 1.46 1.77

SWPT 0 of 12 1.35 1.96

Greedy 0 of 12 1.22 1.39

Insertion 0 of 12 1.20 1.44

WMDD 4 of 12 1.02 1.10

WMDD + correction 5 of 12 1.02 1.10

4.3 Random Sampling 77



The essence of a sampling procedure is easy enough to describe. Using some
random device, construct and evaluate N sequences, and identify the best
sequence in the sample.We can view random sampling as a solutionmethod that
lies on a continuumbetween a specialized heuristic procedure and an optimizing
procedure. Many heuristic procedures, such as the greedy algorithm described
earlier, generate one sequence, while an optimizing procedure, such as branch
and bound, enumerates all n! sequences, at least implicitly. A random sampling
procedure constructs some intermediate number of sequences and selects the
best one. The design of a sampling scheme must resolve two tactical questions:

1) How to specify a particular device for carrying out sampling?
2) How to draw conclusions about the best sequence in the sample?

Much of the literature on sampling techniques has attempted to provide some
insight into the answers to these questions, which we next explore in more
detail.
It is not easy to draw substantive conclusions about the best sequence found in

the sample. The ideal information is the likelihood that a sample contains an opti-
mumor the distance from optimality. Unfortunately, these relationships are gen-
erally known only qualitatively: A larger sample is more likely than a smaller
sample to contain anoptimum, and thebest sequence ina larger sample also tends
tobe closer to theoptimal value. Butwithout quantitative informationabout these
relationships, there is virtually no logical way to select a sample size. In principle,
there is a certain probability p that on a particular trial, a specified sampling pro-
cedure will construct an optimum for a given problem. Therefore, because sam-
pling is essentially donewith replacement, theprobability that anoptimumwill be
found in a sample of size N is [1 − (1 − p)N]. The difficulty is to estimate p.
In the basic single-machine problem, there is perhaps one situation in which

we can draw a quantitative conclusion. Suppose that a sequence is constructed
by assigning the first position in sequence, then the second, and so on. In order
to assign the first sequence position, suppose that a random device is used and
that each job is assigned to this position with probability 1/n. After this assign-
ment, suppose that each remaining job is assigned to second position with
probability 1/(n − 1). If we continue in this manner, then we will assign each
position by an equally likely selection device. In this structure, all of the n!
sequences are equally likely to be included in the sample. If the optimum is
unique, then p = 1/n!, so in this procedure we can conclude that the best
sequence in a sample of size N is an optimum with probability [1 − (1 − 1/
n!)N]. On the subject of how close to optimal the best sequence in the sample
may be, it is still not possible to provide quantitative conclusions. In order to
suggest the kind of behavior that might occur, a set of random sampling
experiments was conducted with the 20-job test problems. Three different
sample sizes were tested, and the results are shown in Table 4.2 and compared
with the random dispatching and the greedy algorithm from Table 4.1. (The
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random dispatching procedure is equivalent to random sampling with a sam-
ple size of N = 1.)
Table 4.2 shows that solution efficiency improves with sample size, which we

should have expected. We also observe that the sampling procedure is not
nearly as effective as the greedy heuristic even for a sample size of 500, which
involves a computational effort much greater than that of the greedy heuristic.
More generally, we should think in terms of selection devices that are not

equally likely, and we should recognize that such mechanisms might yield a
value of p much larger than 1/n!. The following is an example of a simple
method for performing biased random sampling. We begin by ordering the jobs
according to some ranking rule. To assign the first position in sequence, we
select the job in jth position on the ordered list with probability p1j (j = 1, 2,
…, n). These probabilities are “biased” in the sense that they favor the first
job on the list to the second, the second to the third, and so on. Next, we remove
the assigned job from the list, and we assign the second position by selecting the
job in jth position on the updated ordered list with probability p2j (j = 1, 2,…, n
− 1). In this approach, we use a discrete distribution pkj at the kth stage. A typical
approach would use a set of pkj values that follow a truncated geometric distri-
bution. In this case the selection device corresponds to

pkj = πjQk , j= 1,2,…,n+ 1– k

where Qk is a normalizing constant. With this structure, the first job on the
ordered list has the highest probability of being selected, the second job has
the second highest probability, and so on. In addition, the probabilities decrease
in a geometric manner, but the nature of the decrease can be controlled by
selecting the parameter π. For example, if there are eight jobs and we set π =
0.6, then the probabilities are as follows:

j 1 2 3 4 5

pkj 0.297 0.238 0.190 0.152 0.122

Table 4.2

Algorithm Optimizing frequency Average ratio Maximum ratio

Random 0 of 12 1.86 2.51

Sampling (N = 20) 0 of 12 1.59 2.08

Sampling (N = 100) 0 of 12 1.51 1.90

Sampling (N = 500) 0 of 12 1.41 1.72

Greedy 0 of 12 1.22 1.39
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A larger value of π would make the jobs early on the list more likely to be
selected, while a smaller π would distribute the selection probabilities more
equally. Thus, we can bias the random selection process of the basic sampling
method toward a given job ordering and thereby improve the efficiency of the
sampling. For the 20-job test problems, Table 4.3 compares some biased sam-
pling plans with the equally likely plan described in Table 4.2.
The results suggest that biased random sampling improves on pure random

sampling. In other words, the intelligent choice of a job ordering and a bias in
the randomization are worth more than a large amount of sampling. In
Table 4.3, the performance of random sampling with a sample size of 500
was virtually matched by the performance of biased sampling with a sample size
of only 20. In fact, with SWPT as the initial ordering, the biased sampling pro-
cedure was even better on average.
In short, random sampling is a procedure for obtaining good solutions to

combinatorial problems with simple, straightforward logic and limited compu-
tational effort. In more complicated problems, both in and out of the scheduling
field, sampling techniques have provided effective heuristic procedures. How-
ever, as the results in our next computational experiments suggest, sampling
is not always competitive with other general-purpose heuristic procedures.
Its virtues are ease of implementation and flexibility. The flexibility derives from
many tactical options. These options include the initial ordering of the jobs for
biased sampling, the selection of a probability distribution for assigning prob-
abilities to positions, and the determination of sample size. The art of applying
random sampling lies in specifying these tactics in order to arrive at an effective
sampling procedure. Different tactics may performwell in different types of pro-
blems, so it may take some experimentation to determine the tactics that are
best suited to any particular application. Finally, random sampling is potentially
useful in combination with other heuristics. For example, each random sample

Table 4.3

Algorithm
Optimizing
frequency

Average
ratio

Maximum
ratio

Sampling (N = 500) 0 of 12 1.41 1.72

Sampling (π = 0.8, N = 20; MST) 0 of 12 1.46 1.76

Sampling (π = 0.8, N = 20; EDD) 0 of 12 1.42 1.62

Sampling (π = 0.8, N = 20; SWPT) 0 of 12 1.30 1.82

Sampling (π = 0.8, N = 100; SWPT) 0 of 12 1.25 1.60

Sampling (π = 0.8, N = 500; SWPT) 0 of 12 1.21 1.53

Greedy 0 of 12 1.22 1.39
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could be subjected to the insertion heuristic; this combination is very likely to
improve on the basic sampling procedure.

4.4 Neighborhood Search Techniques

The basic elements in the neighborhood search approach are the concept of a
neighborhood of a solution and a mechanism for generating neighborhoods.
The generating mechanism is a method of taking one sequence as a seed and
systematically creating a collection of related sequences. For example, the adja-
cent pairwise interchange (API) operation might serve as a generating mechan-
ism. If the seed sequence were 1, 2, 3,…, n, then any of the following sequences
could be formed by a single API:

2,1,3,4, , n– 2,n– 1,n

1,3,2,4, , n– 2,n– 1,n

1,2,3,4, , n– 1,n– 2,n

1,2,3,4, , n– 2,n,n– 1

This is a list of (n − 1) distinct sequences, called the neighborhood of the seed
sequence, for this particular generating mechanism.
It is not difficult to envision other methods of generating neighborhoods. The

last-insertion (LI) mechanism inserts the last job of the seed into other posi-
tions. In this case, if the seed sequence were 1, 2, 3, …, n, the neighborhood
of the seed would be

n,1,2, …, n– 1

1,n,2, …, n– 1

1,2,3, …, n,n– 1

which is again a list of (n − 1) sequences.
The choice of a generating mechanism determines the size of the neighbor-

hood. For example, a neighborhood could be generated by all pairwise inter-
changes, not just the adjacent ones. This PI neighborhood contains a list of
n(n − 1)/2 sequences. A generalization of the LI neighborhood described above
is to insert the job in sequence position i into position j, where j i. In this inser-
tion neighborhood, there are n(n − 1) sequences. In general, given a seed and
a generating mechanism, any sequence that can be formed from the seed by
a single application of the generating mechanism is defined to be in the
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neighborhood of the seed. In this context, a search algorithm requires the spec-
ification of a generating mechanism. A general description of a neighborhood
search algorithm is given below.

Algorithm 4.1 Neighborhood Search

Step 1. Obtain a sequence to be an initial seed and evaluate it with respect to the
performance measure.

Step 2. Generate and evaluate all the sequences in the neighborhood of the seed.
If none of the sequences is better than the seed with respect to the perfor-
mance measure, stop. Otherwise proceed.

Step 3. Select one of the sequences in the neighborhood that improved the per-
formance measure. Let this sequence be the new seed. Return to Step 2.

Within this general framework, we must specify certain tactical options:

1) A method of obtaining the initial seed.
2) A generating mechanism.
3) A method of selecting a particular sequence to be the new seed.

∎ Example 4.4 Consider a problem containing n = 5 jobs with known proces-
sing times and due dates.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 7 4 10 6

Suppose again that the objective is to minimize T and that the tactical options
are handled as follows:

1) The initial seed is the sequence 1-2-3-4-5.
2) The generating mechanism is API.
3) The first improvement in the neighborhood becomes the new seed.

Table 4.4 traces the implementation of Algorithm 4.1 on the five-job example.
The initial sequence, 1-2-3-4-5, attains the valueT= 14.An improvement occurs
in the first neighborhood, and the sequence 1-3-2-4-5 (withT = 12) becomes the
new seed by virtue of being the first improvement in the neighborhood. Again, an
improvement is found in the search of the new neighborhood, and the new seed
is the sequence 1-3-2-5-4, with T = 10. Next, a search of the new neighborhood
produces no improvement, and the search procedure terminates.
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The search procedure of Algorithm 4.2 always terminates with a solution that
is a local optimum with respect to the given neighborhood structure. Unfortu-
nately, there is no general way to know whether the terminal sequence is also a
global optimum. For example, in the T-problem, sorting by MDD can reveal
whether a solution is locally optimal with respect to the API neighborhood,
but not whether the solution is globally optimal. Similarly, in the Tw-problem,
satisfying Eq. (4.2) is equivalent to local optimality but not global optimality. As
in other kinds of search procedures, it is possible to augment the basic algorithm
and improve its chances of finding a global optimum in a number of ways, for
example:

1) Generate several sequences to serve as initial seed. Employ the full search
procedure for each initial seed, and take the best terminal sequence found.

2) In each neighborhood, keep track of all sequences that improve on the seed.
Use each of these as a seed for a new neighborhood.

3) Choose a generating mechanism that creates large neighborhoods.

Table 4.4

Stage 1

Seed 1-2-3-4-5 T = 14

Neighborhood 2-1-3-4-5 T = 14

1-3-2-4-5 T = 12 ∗Selection
1-2-4-3-5 T = 19

1-2-3-5-4 T = 12

Stage 2

New seed 1-3-2-4-5 T = 12

Neighborhood 3-1-2-4-5 T = 12

1-2-3-4-5 T = 12

1-3-4-2-5 T = 15

1-3-2-5-4 T = 10 ∗Selection
Stage 3

New seed 1-3-2-5-4 T = 10

Neighborhood 3-1-2-5-4 T = 10

1-2-3-5-4 T = 12

1-3-5-2-4 T = 10

1-3-2-4-5 T = 12

Search terminates with T = 10
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Although these and other augmentation methods are eminently logical, they
still cannot offer a guarantee that a global optimum will be found. Neverthe-
less, a few experimental studies have indicated that even the fundamental
version of the neighborhood search algorithm is fairly reliable as a general-
purpose heuristic procedure. As an illustration, Algorithm 4.2 was applied
to the 20-job test problems, with API neighborhoods and then with all PI
neighborhoods. It was also tested with LI neighborhoods and all-insertion
(AI) neighborhoods. Finally, the algorithm was initialized with two procedures,
the greedy algorithm and the insertion algorithm. In Table 4.5, the neighbor-
hood and the initial seed are indicated in parentheses, along with a summary of
results. In each case, the first improvement in the neighborhood identified the
new neighborhood.
The neighborhood search procedure was especially effective when it invoked

the larger neighborhoods. As the table shows, the LI neighborhood had little
impact, and the API neighborhood achieved modest gains. The PI and AI neigh-
borhoods, which areO(n2) in size, providedmore effective performance. No sin-
gle combination dominated the others in this experiment, although the best
value for each of the three tabulated performance criteria was obtained by start-
ing with the greedy algorithm.
The neighborhood search technique generally appears to be a promising heu-

ristic procedure for solving sequencing problems. Several options exist, how-
ever, including efficient methods of finding an initial seed, selecting a
generating mechanism, and proceeding to a new seed. In the context of these
open issues, the implementation of a neighborhood search procedure remains
very much an art.

Table 4.5

Algorithm Optimizing frequency Average ratio Maximum ratio

Greedy 0 of 12 1.22 1.39

NS(API, greedy) 0 of 12 1.089 1.26

NS(PI, greedy) 10 of 12 1.003 1.04

NS(LI, greedy) 0 of 12 1.21 1.39

NS(AI, greedy) 9 of 12 1.0004 1.004

Insertion 0 of 12 1.20 1.44

NS(API, insertion) 2 of 12 1.078 1.22

NS(PI, insertion) 9 of 12 1.001 1.007

NS(LI, insertion) 0 of 12 1.20 1.44

NS(AI, insertion) 3 of 12 1.009 1.04
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4.5 Tabu Search

The basic neighborhood search procedure is sometimes called a descent tech-
nique, because each new seed represents a lower value of the objective function
(assuming that the objective is to minimize). If we were to graph the value of the
objective function for the seed as a function of the seed number, the graph
would be a decreasing function. In a large problem, the decrease might be rapid
in the early stages of the search but much slower toward the end of the search, as
in Figure 4.1.
One of the problems of neighborhood search procedures is their tendency to

become “trapped” at local optima. It is eminently sensible, of course, to follow a
path of ever-improving solutions, but such a path may not lead to a global opti-
mum. At times it might be desirable to try a new seed that is worse than the old
seed, as a means of escaping the trap and finding a path to an optimal solution.
The flexibility to occasionally move to a worse solution is a feature of tabu
search procedures.
In its basic form, a tabu search procedure can be viewed as a modified form of

neighborhood search. Each time a neighborhood is generated and a new seed
selected, we call the change from one seed to the next amove. A move is defined
by the mechanism that generates neighborhoods and by the rule for selecting a
solution in the neighborhood. In tabu search, the custom is to select the best
value of the objective function in the neighborhood.
At the outset, a tabu search procedure operates much like a neighborhood

search. Instead of stopping when a local optimum is encountered, however, a
tabu search strategy accepts a new seed, even if its solution value is worse than
that of the current seed. Of course, when the new seed is worse than the pre-
vious seed, the procedure could cycle indefinitely. To avoid this type of cycling,
we designate a move back to the previous seed as tabu. In the same spirit, we
might also designate a move back to the second or third previous seeds as tabu.
In other words, we keep a list of tabu moves, a list that may be longer in length
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Figure 4.1 Improvement of the objective function in neighborhood search.
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than onemove. At each stage, the procedure selects the best solution from those
in the neighborhood that are not on the tabu list.
Different possibilities exist for designating a move as tabu. Conceptually, the

most straightforward is to keep sequences on the tabu list and thus prohibit a
return to a previously encountered sequence. The tabu list is finite and generally
fairly small. In some applications, a list size of one has been reasonably effective,
but the original expositions of tabu search tended to recommend lists as long as
seven moves. More recently, researchers have been experimenting with
dynamic list sizes.
Whereas the neighborhood search procedure contains a built-in device for

termination – the discovery of a local optimum – tabu search must have a ter-
mination rule imposed. Usually, the number of moves is fixed at the outset to
ensure a certain level of computational effort. An alternative stopping rule is to
limit the number of consecutive moves at which no improvement occurs. For
purposes of comparison, the tabu search procedure was applied to the 20-job
test problems with the neighborhoods and initial solutions illustrated earlier.
The length of the tabu list was set at seven. The termination conditions were
either (i) three consecutive seeds in which the tardiness increased or
(ii) seven consecutive seeds without an improvement in the best solution yet
found. The results are compared with neighborhood search in Table 4.6.
As the table shows, tabu search performed about as well as neighborhood

search in each case. In fact, for the large neighborhoods, the solutions obtained
by tabu search matched those obtained by the neighborhood search exactly.

Table 4.6

Algorithm Optimizing frequency Average ratio Maximum ratio

Tabu (API, greedy) 0 of 12 1.087 1.26

NS(API, greedy) 0 of 12 1.089 1.26

Tabu (PI, greedy) 10 of 12 1.003 1.04

NS(PI, greedy) 10 of 12 1.003 1.04

Tabu (LI, greedy) 0 of 12 1.21 1.38

NS(LI, greedy) 0 of 12 1.21 1.39

Tabu (AI, greedy) 9 of 12 1.0004 1.004

NS(AI, greedy) 9 of 12 1.0004 1.004

Tabu (PI, insertion) 9 of 12 1.001 1.007

NS(PI, insertion) 9 of 12 1.001 1.007

Tabu (AI, insertion) 3 of 12 1.0087 1.04

NS(AI, insertion) 3 of 12 1.0087 1.04
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The size of the neighborhood again seemed to have a major influence on the
quality of the heuristic solution, with the PI neighborhoods leading to optimal
solutions in a majority of cases.

4.6 Simulated Annealing

Tabu search overcomes one of the problems of neighborhood search – the
local optimum trap. Advocates of tabu search usually recommend an aggres-
sive philosophy in the selection of a new seed. According to this philosophy,
the best non-tabu solution in the neighborhood should always be selected.
In terms of the graph in Figure 4.1, this tactic tends to bring the curve down
as steeply as possible at each stage. An alternative philosophy is to bring the
curve down slowly. This approach is characteristic of simulated annealing
procedures.
Annealing is a term borrowed from the physical sciences. The term refers to a

process of cooling material slowly until the material reaches a stable (frozen)
state. Early in this process, at high temperatures, particles in the material will
sometimes change to higher-energy states, but at low temperatures such behav-
ior is much less likely. At very low temperatures, particles virtually always move
to lower-energy states whenever the opportunity arises. Eventually, the move-
ment toward low-energy states leads to freezing.
In simulated annealing, we can think of each stage of the search as being car-

ried out under a lower temperature than that which occurred at the previous
stage. The value of the objective function is analogous to the temperature of
the material being cooled. Early in the search (at high temperatures), there is
some flexibility to move to a worse solution, but later in the search (at lower
temperatures), less of this flexibility exists. Thus, the value of the objective func-
tion tends to fluctuate widely at the start of the search but hardly at all toward
the end of the search, as in Figure 4.2.
To make this procedure more precise, suppose we are interested in minimiz-

ing the value of an objective function Z, and we employ the logic of a neighbor-
hood search. At stage i the objective function is Zi, corresponding to the Z-value
for the ith seed. The procedure selects randomly from the solutions in the
neighborhood of the ith seed. When the jth neighbor is generated, with objec-
tive function value Zj, it may or may not become the next seed. If Zj < Zi, then, as
in the standard descent method, the jth neighbor becomes the next seed. On
the other hand, if Zj ≥ Zi, there is still some chance that the jth neighbor will
become the next seed, even though it is worse than the current seed. Let ΔZ =
Zj − Zi. Then the probability that the jth neighbor at stage i becomes the next
seed is

qij = min 1, exp –ΔZ T i
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where T(i) denotes the temperature at stage i. Two features of this probability
function are important. First, the probability decreases as temperature
decreases, other things being equal. Thus, as the search proceeds, there is a
decreasing probability of moving to a worse solution. Second, the probability
that a candidate will be selected to be the next seed is always 1 if there is
improvement in the objective function, but if the objective function increases,
then the probability varies inversely with the increase.
Finally, the search procedure requires a temperature schedule. After sampling

from the neighborhood of the seed a specified number of times, we reduce the
temperature and continue the search. For example, the temperature schedule
may follow a geometric pattern, with T(i + 1) = πT(i), where 0 < π < 1 and
T(1) equal to the mean processing time.
For purposes of illustration, simulated annealing was used to solve the 20-job

test problems, with the two larger neighborhoods (PI and AI). The temperature
schedule followed a geometric pattern with π = 0.9 and 40 stages. At this com-
putational effort, the performance of simulated annealing was roughly compa-
rable with the other heuristic solutions. (By comparison, the neighborhood
search procedure with PI neighborhoods converges after an average of 16 stages
on these test problems.) Then additional runs were made with 80 stages. The
results are reported in Table 4.7.
Clearly, the performance of simulated annealing is sensitive to the planned

computational effort, as measured here by the number of stages in the
temperature schedule. In addition, simulated annealing seemed to work
more effectively in conjunction with PI neighborhoods than with AI
neighborhoods.
This experiment was based on a very simple version of the simulated anneal-

ing procedure. Obviously, there are alternative parametric designs with different
values of π and different numbers of stages. Alternative structural designs exist
as well. In some implementations, several new seeds are generated at each
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Figure 4.2 Improvement of the objective function with simulated annealing.
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temperature, with a certain “equilibrium” condition dictating when to proceed
to a lower temperature.

4.7 Genetic Algorithms

A genetic algorithm (GA) may be viewed as a neighborhood search procedure
that has similarities to several heuristics we have covered but also a radically
different logic. Normally, a GA maintains a list of b promising solutions at
each stage, and algorithmic iterations aim to generate better ones by search-
ing a special type of neighborhood. Rather than define a neighbor by changing
a single sequence, a GA combines two existing sequences, selecting some fea-
tures from one and the remainder from the other. (In principle, a GA can
combine more than two existing sequences, but here we illustrate the concept
using exactly two.) Because new candidates can be viewed as offspring of the
existing ones, the terminology is borrowed from evolution and genetics.
Thus, in each generation, we start with b parents (sequences), which are
the fittest (best-performing) survivors of former generations (iterations).
Pairs of parents are selected – typically at random – to produce offspring.
Each parent contributes genes (subsequences) to the offspring, and mutations
(random changes) may also occur. The algorithm usually terminates after
a prespecified number of generations, but other stopping rules can be
imposed. The fittest of all survivors in the last generation is selected as the
solution.

Table 4.7

Algorithm Optimizing frequency Average ratio Maximum ratio

NS(AI, greedy) 9 of 12 1.0004 1.004

NS(PI, greedy) 10 of 12 1.003 1.04

Annealing (40; PI, greedy) 1 of 12 1.018 1.06

Annealing (40; AI, greedy) 1 of 12 1.016 1.08

Annealing (80; PI, greedy) 9 of 12 1.004 1.04

Annealing (80; AI, greedy) 3 of 12 1.010 1.06

NS(PI, insertion) 9 of 12 1.001 1.007

NS(AI, insertion) 3 of 12 1.009 1.04

Annealing (80; PI, insertion) 8 of 12 1.001 1.01

Annealing (80; AI, insertion) 4 of 12 1.008 1.02
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Algorithm 4.2 Genetic Algorithm

Step 1. Choose the population size b > 2 and the number of generations, K.
Select b initial schedules by other heuristics (such as random search). Let
k = 0.

Step 2. Increase k by 1. Generate at least b/2 offspring of pairs of individuals.
(Offspring may be subject to random mutations.)

Step 3. Evaluate the offspring. If k < K, select the best b schedules out of all par-
ents and offspring and return to Step 2. If k = K, stop (the best schedule found
so far is the solution).

Within this general framework, we must answer certain tactical questions:

1) How to obtain the first generation of schedules?
2) How do parents generate offspring?
3) How to match parents for breeding?

The first generation of schedules can be generated randomly or by imple-
menting one of the heuristic procedures described earlier in Section 4.2. For
example, we could create b schedules by implementing b different dispatching
procedures
In sequencing problems, the simplest mechanism for generating offspring fol-

lows one parent for the first few jobs and takes the remaining jobs in the same
order as in the other parent. The last few jobs cannot simply be copied from the
other parent, however, because that could cause duplications of jobs in the new
sequence and omissions of other jobs. Therefore, a complementary offspring
can be constructed in which the last few jobs are copied from one parent
and the first jobs appear in the same sequence as in the other parent. Some
schemes use both offspring, whichmay then be referred to as a son and a daugh-
ter. The number of jobs to select from each parent is a secondary design choice.
We can set this parameter randomly, or we can generate all possible offspring
based on this mechanism. In addition, following the analog of evolution, a GA
allows random mutations, which are created by performing a small number of
random insertions in the creation of an offspring.
Thematching of parents can be random, or some systematic procedure can be

adopted. For example, the best parent can be matched with the bth best parent,
the second best with the (b − 1)st best parent, and so on. Alternatively, the best
and second best parents can be matched, then the third and fourth best, and so
on. In nature, the very best survivors may have more than their proportional
share of matches, and this feature can also be emulated.
GA implementations used for research are usually described openly, but com-

mercial codes are often proprietary. In the next section, we introduce a propri-
etary variation on the GA approach that happens to be conveniently available to
users of Excel.
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4.8 The Evolutionary Solver

Most of the algorithms we discuss, both optimization algorithms and heuristic
algorithms, require specialized computer code for implementation. As yet, there
are very few “off-the-shelf” codes available for sequencing, although the Internet
may become a source in the future. Nevertheless, one widely used platform for
calculations and algorithms is the electronic spreadsheet, Excel in particular. In
this section, we describe an Excel-based approach to heuristic solution of
sequencing problems.
For the purposes of illustration, we work with Example 4.4, introduced earlier,

which is a T-problem containing five jobs.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 7 4 10 6

In a spreadsheet implementation, we create modules for the problem data, the
job sequence, the measure of performance, and the relevant calculations.
Figure 4.3 shows a typical layout for themodel. Borrowing from the terminology
of optimization, the key parts of the model are:

• The problem data (cells C4:G6).

• The objective function (cell C8).

• The decision variables (the sequence in the range C12:G12).

• The relevant constraints (to be specified later).

The decisions in this model appear as the highlighted cells in row 12, and any
permutation of the integers 1–5 can be entered there. Based on that sequence,
we find the processing times in row 13 using a lookup procedure, referencing

Figure 4.3 Spreadsheet layout for the T-problem example.
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the data cells. In our example, the formula in cell C13 is INDEX( $C$5:$G$5,
C12), and this formula is copied to the right. Then the completion times in row
14 are calculated as we would by hand, by adding the current processing time to
the completion time of the previous job in sequence.
The due dates in row 15 are obtained by referencing the data cells. In our exam-

ple, the formula in cell C15 isINDEX($C$6:$G$6,C12), and this formula is cop-
ied to the right. In row 16, we calculate the tardiness of each job. For example, the
formula in cell C16 is MAX(0,C14-C15), and this formula is copied to the right.
The objective function in cell C8 calculates the sum of the tardiness values, using
the formula SUM(C16:G16).With this layout, we could enter any job sequence in
row 12, and the value of the objective function would appear in cell C8.
The optimization problem corresponding to our example is to choose the

sequence in row 12 to minimize the value of the performance measure in cell
C8. The software is Analytic Solver Platform (ASP). Briefly, ASP contains an
upgraded version of the solver that comes with Excel. ASP actually contains four
different optimization-type algorithms, one of which uses its Evolutionary Engine,
an advanced GA that applies to many other types of problems but is specifically
well suited to sequencing problems. Here, we refer to the Evolutionary Solver as a
shorthand reference to the Evolutionary Engine in ASP software. In what follows,
we assume that ASP has already been installed as an Excel add-in.
When ASP opens, it superimposes its task pane on the right-hand side of the

spreadsheet, as shown in Figure 4.3. If the task pane is hidden, we can click on
the Model icon (on the left-hand side of the ASP ribbon) to make it visible.
In anticipation of using the Evolutionary Solver, the first step is to select the

Platform tab in the task pane, and in the Transformation section, proceed to the
first entry, Nonsmooth Model Transformation. The drop-down menu that
accompanies it offers three choices, and we should choose Never. (This choice
prevents ASP from making an inefficient transformation of the optimization
problem we’re about to specify.)
Next we select theModel tab, where we specify the optimization problemwith

the following steps:

1) With cell C8 selected, specify the objective using the ASP ribbon
(Optimization Model > Objective >Min > Normal). Alternatively, with cell
C8 selected, select the folder icon for Objective in the task pane and click
on the green cross in the header of the task pane. This step assumes that
the objective is to be maximized, so we double-click the icon for $C$8.
The Change Objective window appears, in which we select the radio button
for Min, as shown in Figure 4.4.

2) With the range C12:G12 selected, specify the decisions (Optimization
Model > Decisions > Normal). Alternatively, with the range C12:G12
selected, select the folder icon for Variables in the task pane and click on
the green cross.
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3) With the range C12:G12 still selected, specify the constraints (Optimization
Model > Constraints > Variable Type/Bound > AllDifferent). Alternatively,
with the range C12:G12 still selected, select the folder icon for Constraints
in the task pane and click on the green cross. The Add Constraint window
then appears, in which we select dif from the drop-down menu, as shown in
Figure 4.5.

The AllDifferent constraint ensures that the decision variable cells will comprise
a legitimate permutation (in this case, a permutation of the integers 1–5.) In
other words, the decision cells must correspond to a feasible sequence. The task
pane captures the problem specification, as shown in Figure 4.6.
Next we select the Engine tab, specify the Standard Evolutionary Engine from

the drop-down menu, and uncheck the box for Automatically Select Engine, as
shown in Figure 4.7. The General section of the task pane lists a number of
options, most of which can be left at their default values. The Evolutionary
Solver will search for the best solution it can find, and its effectiveness is influ-
enced by several user-determined parameters that are specified on this list.
The most important of these parameters set the stopping conditions that
control the termination of the search. A good generic set of parameters would
be the following:

Figure 4.4 Specifying the objective and direction of optimization.

Figure 4.5 Specifying the alldifferent constraint.
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Max time = 15 seconds nodefault value is given initially

Population size = 25 nodefault value is given initially

Mutation rate = 7 5 default value

Convergence = 0 01 default value

Global search =Genetic Algorithm default value

The Convergence option tells the Evolutionary Solver to stop its search if
99% of the 25 best solutions found lie within 0.01% of each other. If that con-
figuration occurs, the search terminates before reaching the specified
Max Time.
In the Limits section of the task pane, the following choices are suitable:

Max subproblems = leave blank

Max feasible solutions = leave blank

Tolerance = 0

Maximum time without improvement = 10 s

Figure 4.6 The problem
specification.
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As a result, ceilings on the number of subproblems or the number of feasible
sequences do not impede the search. In addition, the search terminates if no
improvement in the objective has been found in the last 10 seconds of searching.
To invoke the algorithm, we can use the ribbon (Solve Action > Optimize >

Solve Complete Problem), or we can click on the green triangle near the top of
the Output tab. If the Max Time option takes effect, the search will stop after
running for 15 seconds with an offer to continue. When we choose Stop, a mes-
sage appears in the task pane reporting that Solver stopped at the user’s request.
If the Max Time without Improvement takes effect, a message appears in the

Figure 4.7 Information on the Engine tab.
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task pane reporting that Solver cannot improve the current solution. If the Con-
vergence condition prevails, the message in the task pane reports that Solver has
converged.
In general, the time limits can be adjusted according to the user’s patience, but

we have found that runs of roughly 15–30 seconds produce good results for
sequencing problems up to 20 jobs. In fact, optimal or near-optimal solutions
are usually found in far less time. In our five-job example, the Evolutionary
Solver converges rapidly to a total tardiness value of 7, obtained by the sequence
3-5-2-1-4. For the set of 20-job problems in Table 4.8, the Evolutionary Solver
(running with a 30-second time limit) produced optimal solutions in 10 out of
the 12 problems, with an average ratio of 1.00008 and a maximum ratio of
1.0006. These results do not take advantage of the fact that the user can always
rerun the Evolutionary Solver starting with the best solution found in the pre-
vious run. The user can also repeat the run after enlarging the population size or
increasing the mutation rate if a run terminates with convergence or lack of
improvement. Because the Evolutionary Solver contains random elements, it
is usually desirable to make several runs under the same parametric settings
to see whether improvements can be made.

4.9 Summary

Challenging combinatorial optimization problems are encountered even in the
simple single-machine scheduling problem. Earlier, we discussed the relatively
few cases in which general optimal solutions are known. For other cases, includ-
ing most tardiness-based criteria, general-purpose optimization techniques
must be brought to bear on the problem. Nevertheless, such techniques require
a great deal of computational effort for even medium-sized problems, and in
stochastic problems, the computational demands can be an order of magnitude
greater. In situations where this effort is prohibitive, heuristic methods are
appropriate.
For scheduling problems with straightforward structure, dispatching and

construction procedures offer a way to build good schedules quickly. Dispatch-
ing procedures are sometimes effective, but it is often difficult to devise a logical
dispatching rule for any given objective. For example, the Uw-problem offers a
simple yet challenging single-machine problem for which there does not seem
to be a reliable dispatching rule. The greedy and insertion algorithms, which do
not have to be tailored to a particular objective function, tend to be more robust
than dispatching procedures, yet they still require modest computational effort.
Random sampling, particularly biased random sampling, is an alternative

approach to solving combinatorial scheduling problems. Although their perfor-
mance in most sequencing problems is unremarkable, they can be adapted to
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many different types of problems, and their tactical choices can be refined for
the situation at hand.
The neighborhood search procedure embodies a simple but effective concept

for solving sequencing problems. Its primary tactical options include the initi-
alizing phase (to obtain the first seed), the choice of a mechanism for generating
neighborhoods, and a rule for determining the new seed. With a certain amount
of “fine-tuning” for these options, neighborhood search procedures can be rea-
sonably effective at finding near-optimal solutions, as our brief experiments
with the Tw-problem suggest. In addition, the neighborhood search approach
is flexible and can be adapted to a variety of problem structures.
The neighborhood search procedure also provides a framework for more

sophisticated search algorithms – such as tabu search, simulated annealing,
and GAs – that overcome the local optimality trap. These other heuristic pro-
cedures have their own tactical options, and much remains to be learned about
how those options should be chosen.
In general, implementing neighborhood search procedures requires special-

ized code. However, the Evolutionary Solver is a more recent innovation that
provides an off-the-shelf implementation of a GA. That is, without having to
write specialized code, we can invoke a sophisticated heuristic procedure that
happens to be especially well suited to the problem of finding the best sequence.
As a result, it provides users with an accessible and practical tool for finding
solutions to the single-machine sequencing problem.
We draw attention to the options in each of these techniques for two reasons.

First, in the gap between the concept of a solution methodology and its imple-
mentation, many important details need to be specified, even for the basic sin-
gle-machine problem. Moreover, these details can influence performance in a
significant way. Second, the treatment of more complicated models often
includes a suggestion that a particular optimization technique or a particular
heuristic strategy is suitable for a given scheduling problem. On these occasions,
we should be sensitive to the fact that implementation itself may involve a host
of tactical questions, even after the general methodology is selected, and resol-
ving those questions is a computational art.
Various combinations of procedures sometimes work effectively. For exam-

ple, when we studied the insertion procedure, we assumed the jobs were
ordered arbitrarily, but they might as well have been ordered by a sorting
or dispatching heuristic, such as MDD. The result is a combined heuristic
that usually works better than the insertion heuristic alone. The idea of run-
ning several heuristics and selecting the best outcome is also used frequently
and becomes especially attractive in a parallel-processor computing
environment.
Now, armed with a variety of both heuristic and optimizing capabilities, we

can proceed to more complex problems in sequencing and scheduling.
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Table 4.8 Twelve test problems for the Tw-problem.

pi 90 91 92 94 95 95 96 97 98 99

99 99 100 101 102 103 104 104 104 105

di 657 754 940 289 204 941 686 509 621 103

356 462 909 790 290 26 7 540 680 0

wi 8 13 15 8 5 7 12 15 8 8

11 5 14 13 15 6 7 14 12 13

90 94 94 94 96 97 97 98 99 100

101 102 102 103 103 104 104 105 106 107

107 195 673 921 0 298 430 500 697 256

513 478 644 0 0 267 622 859 60 271

7 11 15 14 15 9 12 15 10 14

8 12 12 6 14 8 12 13 10 11

89 91 93 94 94 95 95 96 97 97

97 98 98 99 99 100 100 101 101 112

40 171 9 368 464 68 441 867 0 521

978 639 740 14 976 730 959 811 908 20

9 9 7 6 10 6 10 13 8 5

14 6 8 15 14 6 10 10 5 8

87 90 92 93 98 98 98 98 99 99

99 100 100 101 101 102 102 103 106 113

969 1041 363 258 415 494 1340 1366 242 986

1139 215 736 270 714 593 1350 619 1263 976

10 13 6 6 6 12 13 6 5 5

10 12 12 6 9 7 14 12 5 12

93 96 98 98 99 101 101 101 102 102

102 104 104 104 105 105 106 107 109 109

1365 1076 1269 1324 1334 387 496 1100 279 351

755 376 1068 1349 444 1380 457 380 871 1138

13 5 5 12 10 6 8 12 10 8

15 8 6 8 11 10 14 11 9 10

86 93 93 94 96 97 98 99 100 100

101 101 102 102 103 103 104 104 110 113

544 1193 1304 940 1207 407 721 318 220 873

223 889 236 1185 465 1392 691 932 364 774

14 11 8 6 12 14 12 13 13 15
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Table 4.8 (Continued)

7 12 14 10 10 5 8 11 10 8

55 68 70 73 77 78 85 86 89 89

92 93 94 94 98 108 126 138 143 170

109 169 1039 1158 1107 0 767 993 643 667

75 612 780 816 721 555 1166 529 0 1237

10 9 7 6 13 9 12 15 14 10

6 8 12 13 12 5 13 8 8 6

51 71 71 76 81 81 81 90 94 98

107 107 110 112 115 116 117 119 142 148

0 0 365 646 516 873 932 326 87 0

254 613 783 0 0 1169 326 0 382 1150

15 11 7 11 9 10 14 6 10 8

6 10 9 6 14 14 9 11 9 13

74 74 82 85 86 96 99 103 108 110

112 115 119 123 124 126 127 129 139 142

290 595 415 0 0 555 894 1183 80 362

229 0 232 0 231 864 785 0 0 1001

7 5 10 14 11 8 13 6 9 13

12 6 5 9 13 10 9 5 10 11

60 71 71 76 81 82 93 104 108 108

108 109 113 115 116 118 118 120 122 145

404 394 534 308 778 917 482 472 702 803

1142 1115 811 1191 672 1139 1329 710 534 591

7 13 15 11 15 7 13 10 15 8

5 7 15 7 5 5 11 8 12 13

53 58 69 75 75 83 89 91 93 97

97 99 105 114 117 123 123 133 137 138

508 740 663 1097 1194 764 663 711 831 543

815 511 1032 424 786 816 823 489 587 521

9 7 8 12 9 7 14 9 15 14

10 15 14 10 14 14 8 7 5 8

68 79 80 86 89 94 96 97 100 105

106 109 109 112 118 119 120 124 127 135

(Continued)
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Exercises

4.1 Solve the following 10-job T-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

a) Find a solution using the best dispatching rule among SPT, EDD,
and MDD.

b) Find a solution using the greedy heuristic procedure.
c) Find a solution using the insertion procedure.
d) Find a solution using a neighborhood search procedure (adjacent pair-

wise interchanges), initialized by a sequence that takes the jobs in
EDD order.

e) Find a solution using a neighborhood search procedure (last-insertion
neighborhoods), initialized by a sequence that takes the jobs in
EDD order.

4.2 Computer-based approach to Problem 4.1. Solve the following 10-job T-
problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

a) Find a solution using a neighborhood search procedure (adjacent pair-
wise interchanges), initialized by a sequence that takes the jobs in
EDD order.

Table 4.8 (Continued)

437 521 678 841 746 520 610 1112 772 566

928 472 910 499 498 1084 617 1153 1120 974

7 5 13 7 6 7 12 12 12 8

8 8 12 9 15 6 12 5 14 10
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b) Find a solution using a neighborhood search procedure (all-insertion
neighborhoods), initialized by a sequence that takes the jobs in
EDD order.

c) Find a solution using a neighborhood search procedure (all pairwise
interchanges), initialized by a sequence that takes the jobs in
EDD order.

d) Find a solution using a tabu search procedure, initialized by a sequence
that takes the jobs in EDD order.

e) Find a solution using a simulated annealing procedure, initialized by a
sequence that takes the jobs in EDD order.

f) Find a solution using random sampling, initialized by a sequence that
takes the jobs in EDD order and terminated so that the computational
effort is roughly equal to the average computational effort in part (c).

4.3 Software-based approach to Problem 4.1. Solve the following 10-job
T-problem using the Evolutionary Solver.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

4.4 Solve the following 10-job Uw-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

a) Find a solution using the best dispatching rule among SWPT, EDD,
and WMDD.

b) Find a solution using the greedy heuristic procedure.
c) Find a solution using the insertion procedure.
d) Find a solution using a neighborhood search procedure (adjacent pair-

wise interchanges), initialized by a sequence that takes the jobs in
EDD order.

4.5 Software-based approach to Problem 4.4. Solve the following 10-job Uw-
problem using the Evolutionary Solver.
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Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

4.6 Solve the following 10-job Tw-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

a) Find a solution using the best dispatching rule among SWPT, EDD,
and WMDD.

b) Find a solution using the greedy heuristic procedure.
c) Find a solution using the insertion procedure.
d) Find a solution using a neighborhood search procedure (adjacent pair-

wise interchanges), initialized by a sequence that takes the jobs in
EDD order.

4.7 Software-based approach to Problem 4.4. Solve the following 10-job Tw-
problem using the Evolutionary Solver.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

4.8 Suppose that an equally likely mechanism is used for generating a ran-
dom sample of sequences when there are eight jobs. How many
sequences must be evaluated in order to yield a probability of 1/2 that
an optimum will be found in the sample (assuming that a unique opti-
mum exists)? How many sequences must be evaluated in complete
enumeration?
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5

Earliness and Tardiness Costs

5.1 Introduction

In earlier chapters, we examined the basic single-machine model with regular
measures of performance, which are nondecreasing in job completion times.
Most of the literature on scheduling theory, and therefore much of our under-
standing of scheduling problems, relates to such regular measures as total flow-
time, number of tardy jobs, and total tardiness. The total tardiness criterion, in
particular, has been a standard way of measuring conformance to due dates,
although it ignores the consequences of jobs completing early and penalizes
only those jobs that finish late. However, this emphasis began to change with
the growing interest in just-in-time (JIT) production, which espouses the notion
that earliness – as well as tardiness – should be discouraged. In a JIT scheduling
environment, a job that completes early must be held in inventory until its due
date, whereas a job that completes after its due date may disrupt a customer’s
operations. Therefore, an ideal schedule is one in which all jobs finish exactly on
their assigned due dates. Of course, JIT encompasses a much broader set of
principles than those relating to due dates, but schedulingmodels with both ear-
liness and tardiness (E/T) costs address a fundamental scheduling dimension of
the JIT approach.
In this chapter, we examine the implications of the E/T criterion in the basic

single-machine model. The goal of finishing all jobs exactly on their due dates
can be translated into a scheduling objective in which a job incurs a cost related
to the deviation between its completion time and its due date. Let Ej and Tj rep-
resent the earliness and tardiness, respectively, of job j. These quantities are
defined as

Ej = max 0, dj−Cj = dj−Cj
+

Tj = max 0, Cj− dj = Cj−dj
+
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Assuming that the cost functions are linear, we associate with each job a unit
earliness cost αj > 0 and a unit tardiness cost βj > 0. The basic E/T objective
function for a schedule S can then be written as f(S), where

f S =
n

j=1

αj dj−Cj
+
+ βj Cj−dj

+

or, in light of the definitions given above,

f S =
n

j=1

αjEj + βjTj

In some formulations of the E/T problem, due dates are given, whereas in
others, the problem is to optimize the due dates and the job sequence simulta-
neously. Some of the simplest results for E/T problems have been derived for
models in which all jobs have a common due date. A more general model allows
distinct due dates, but as we shall see, solutions to problems with distinct due
dates appear to be intrinsically different from solutions to problems with a com-
mon due date. In a similar vein, some models prescribe identical costs, but
others permit differences among jobs or differences between the earliness cost
and the tardiness cost.
With so many variations of the E/T problem, it is sometimes difficult to sort

out exactly which results apply to which variations. However, a useful organiz-
ing principle is to think in terms of two main models: one with a common due
date and one with distinct due dates. In these initial models, earliness and tar-
diness costs are symmetric, and they are the same for all jobs. Each of the two
main models supports more elaborate assumptions, such as the following:

• Treating due dates as decisions may capture the practice in some shops of
setting due dates internally, as targets to guide the progress of shop floor
activities.

• Allowing asymmetric earliness and tardiness costs allows us to reflect differ-
ent economic consequences for earliness than for tardiness.

• Imposing different costs for different jobs allows us to distinguish among jobs
and/or customers.

The primary role of earliness and tardiness cost functions is to guide solutions
toward the target of meeting all due dates exactly. A perfect schedule – one in
which all due dates are exactly met – is not difficult to recognize, but it may be
difficult to achieve. However, it may not be obvious how to compare imperfect
schedules. Different cost functions can be seen as suggestions for measuring
suboptimal performance when only the ideal has been well specified. In princi-
ple, modeling the economic implications more accurately can provide us with
more realistic models, but typically the price is reduced tractability.

5 Earliness and Tardiness Costs106



5.2 Minimizing Deviations from a Common Due Date

5.2.1 Four Basic Results

An important special case in the family of E/T problems involves minimizing
the sum of absolute deviations of the job completion times from a common
due date. In particular, the objective function can be written as

f S =
n

j= 1

Cj−d =
n

j= 1

Ej +Tj 5 1

where, in the latter form, it is understood that the due dates are identical. With
the objective function in that form, it is clear that earliness and tardiness are
penalized at the same rate for all jobs. We refer to this case, where dj = d and
αj = βj = 1, as the basic E/T problem.
At the outset, we give a somewhat simplified characterization of the optimal

solution. Ideally, we would like to construct the schedule so that the due date
is, in some sense, in the middle of the jobs. If d is too tight, then it is not pos-
sible to fit enough jobs in front of d, because no job can start before time zero.
Thus, for a given set of jobs, we might discover that d is too tight; this gives rise
to the restricted version of the problem. Otherwise, d is not too tight, giving
rise to the unrestricted version. For example, if the due date is larger than the
time required to process all jobs, then we have the flexibility to place any of the
jobs in front of d, so the problem is unrestricted. Later, we shall see how to
determine a more precise boundary between the restricted and unrestricted
versions.
We first consider the unrestricted version of the problem. As an initial step,

we look for dominance properties. For the unrestricted version, three important
properties hold, and we can establish each one using a proof by contradiction.

∎Theorem 5.1 In the basic E/T problem, schedules without inserted idle time
between successive jobs constitute a dominant set.

Proof. Suppose that there exists an optimal schedule S with an idle interval of
length t between consecutive jobs i and j, with j following i. Suppose that job
i is early (Ci < d). Then total cost can be reduced if we shift job i (and any
jobs that precede it) later by an amount Δt, where Δt ≤min{t, d − Ci}. If
primes denote values after the shift, then for all jobs k, we have Tk = Tk

and Ek ≤ Ek (with a strict inequality for at least one job). Similarly, suppose
job j is tardy (Cj > d). Then total cost can be reduced if we shift job j (and
any jobs that follow it) earlier by an amount Δt, where Δt ≤min{t, Cj − d}.
Because of the common due date, any schedule must have either job i early
or job j tardy, so we have shown how to improve schedule S. Therefore, S cannot
be an optimal schedule. □
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Theorem 5.1 allows us to consider only schedules in which jobs are contig-
uous, but it does not allow us to assume that the first job starts at time zero.
We can describe a schedule by specifying a sequence of the jobs and a start time
for the first job in sequence, after which processing will be continuous. In prin-
ciple, this means that the search for an optimum must consider n! different
sequences and for each sequence, the best start time.

∎ Theorem 5.2 In the basic E/T problem, jobs that complete on or before the
due date can be sequenced in LPT order, and jobs that start on or after the due
date can be sequenced in SPT order.

Proof. Suppose S denotes an optimal schedule in which some adjacent pair of
early jobs is not in LPT order. Then a pairwise interchange of these two jobs
will reduce the total earliness cost and leave the total tardiness cost unchanged.
Likewise, if S is an optimal schedule containing an adjacent pair of jobs that
starts late and that violates SPT order, then an adjacent pairwise interchange
will reduce the total tardiness cost and leave the total earliness cost unchanged.
In either case, S cannot be an optimal schedule. □

Theorem 5.2 specifies how to sequence the jobs that complete early and how
to sequence the jobs that start late. In principle, there could also be a single job
that starts before the due date and completes after the due date – that is, a strad-
dling job. The following result, however, shows that schedules with a straddling
job need not be considered.

∎ Theorem 5.3 In the basic E/T problem, an optimal schedule exists in which
some job completes exactly at the due date.

Proof. Suppose S is an optimal schedule in which job i starts before the due date
and completes after it. In symbols,

Ci−pi < d <Ci

Let b denote the number of early jobs in sequence, and let a denote the num-
ber of tardy jobs. Suppose that a > b. Consider shifting the entire schedule ear-
lier so that job i completes exactly at time d. In other words, all jobs will
complete earlier by an amount Δt =Ci – d > 0. Then the increase in earliness
cost is bΔt, while the decrease in tardiness cost is aΔt. The net impact on total
cost is (b − a)Δt, which is negative. On the other hand, suppose that b ≥ a. In this
case, shift the entire schedule later so that job i starts exactly at time d. In other
words, Δt = d − (Ci − pi) > 0. This time the impact on total cost is (a − b)Δt,
which is nonpositive. In either case, therefore, we can find a schedule with
the property of the theorem that is at least as good as S. □

As a consequence of Theorem 5.3, we may schedule each job either entirely
before the due date or entirely after it. This means that a solution can be
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partitioned into two sets of jobs, an early set, which includes the one job pre-
cisely on time, and a tardy set. Once the membership in the two sets is known,
the sequence of the jobs within each set can be determined by Theorem 5.2. The
resulting schedule is sometimes called a V-shaped sequence, because except for
ties, the first set is sequenced in decreasing order of processing times, and the
second is processed in increasing order of processing times.We can also refer to
it as an LPT/SPT sequence. Once we know how jobs are assigned to the early set
and the tardy set, sequencing the jobs is straightforward. Therefore, the search
for an optimum need only consider the 2n ways of forming sets, instead of all n!
sequences. Even if we know the optimal job sequence, Theorem 5.3 is critical.
Without it, we would have a potentially infinite number of schedules to evaluate
because the starting time of the first job in sequence would remain unresolved.
Theorem 5.3 allows us to limit our attention to those schedules in which some
job’s completion time falls precisely at the due date – that is, to a finite set of
possible schedules. As we shall see, these three properties generalize when
we examine problems that are more complicated.
The detailed analysis of this problem demonstrates that many optimal solu-

tions may exist. Let B represent the set of jobs completing on or before the due
date, and let b denote the number of jobs in B, or the cardinality of B, denoted by
|B|. Similarly, let A represent the set of jobs completing after the due date, and
let a = |A|. Furthermore, let Bi denote the index of the ith job in B, and let Ai
denote the index of the ith job inA. The earliness cost for job Bi is the sum of the
processing times of all jobs in B that complete later. In symbols,

EBi = pB i+ 1 + pB i+ 2 + + pBb

where EBb = 0. The total cost for the jobs in B then becomes

CB =
b

i= 1

EBi =
b

i=1

pB i+ 1 + pB i+ 2 + + pBb

With some algebraic manipulation, this sum can be rewritten as

CB = 0pB1 + 1pB2+ + b−2 pB b−1 + b−1 pBb 5 2

Similarly, the total cost for the jobs in A is

CA = apA1 + a−1 pA2+ + 2pA a−1 + 1pAa 5 3

The objective function is the sum of CB and CA, and the processing times are
given. When a and b are known, this sum of products is minimized by matching
the smallest coefficient in the sum with the largest processing time, the next
smallest coefficient with the next largest processing time, and so on, with ties
broken arbitrarily. Thus, the smallest coefficient is zero and appears only in
CB. Therefore, the longest job is assigned to B and, in light of Theorem 5.2,
appears first in sequence. The next smallest coefficient is 1, appearing in both
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CB and CA. This means that one of the next two longest jobs can be assigned to
A, as its last job, and the other to B, as its second job. Continuing in this fashion,
we ultimately find that the shortest job is either the last job in B or the first job in
A. At intermediate stages, there are two ways to assign each pair of jobs that
must be split between the sets A and B. (If n is even, we can create a fictitious
additional job with zero processing time to complete the last pair.) Thus, the
total number of potentially optimal schedules is 2r, where

r =
n−1
2

if n is odd

=
n
2

if n is even

(Actually, this observation assumes that the processing times are unique. If
there are ties, the number of optimal schedules is even greater.) The implied
procedure for constructing optimal schedules is as follows.

Algorithm 5.1 Solving the Basic E/T Problem

Step 1. Assign the longest job to set B.
Step 2. Find the next two longest jobs. Assign one to B and one to A.
Step 3. Repeat Step 2 until there are no jobs left, or until there is one job left, in

which case assign this job to either A or B. Finally, order the jobs in B by LPT
and the jobs in A by SPT.

Next, we provide an example that illustrates the application of Algorithm 5.1.

∎ Example 5.1 Consider the jobs described in the following table, with a given
common due date of d = 24.

Job j 1 2 3 4 5 6

pj 1 3 4 6 7 9

Following the first step of Algorithm 5.1, we assign job 6 to B. Then we split
jobs 4 and 5 between A and B, and we split jobs 2 and 3 between A and B. Lastly,
we assign job 1 to either A or B. The eight resulting schedules, each with total
cost of 30, are listed in Table 5.1. Only four distinct sequences appear in the list
of optimal schedules. Those occur because of the choice in Step 3 to assign the
last job either to the end of B or the beginning of A. In either case, the sequence
is the same, but the schedule is different. (The total processing time in set B is
affected by this choice.) Finally, the start time of the schedule is the difference
between the due date and the total processing time in B.
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In light of the fact that there can be many optimal schedules in the basic
E/T problem, we might be interested in a secondary measure of perfor-
mance. In particular, suppose the secondary objective is to minimize
the total processing time in set B. In Algorithm 5.1, this is accomplished
by assigning the shorter job to B each time Step 2 is executed and if n is
even, by assigning the shortest job to A in Step 3. We refer to this imple-
mentation as Algorithm 5.1∗, which can be implemented to run in
O(n log n) time.
Two insights emerge from this discussion. First, the implementation of Algo-

rithm 5.1∗ dictates the values of a and b. In particular, if n is even, we can min-
imize the sum of Eqs. (5.2) and (5.3) by taking b = a; if n is odd, we take b = a + 1.
A more formal statement follows.

∎ Theorem 5.4 In the basic E/T problem, an optimal schedule exists in which
job [b] completes at time d, where b = n/2 , and x denotes the smallest inte-
ger greater than or equal to x.

This result has another application. Suppose that the sequence of jobs is given
and not necessarily optimal. Then Theorems 5.1 and 5.3 hold for schedules con-
taining the given job sequence, and we can use Theorem 5.4 to determine which
job should complete exactly at the due date.
Assume for convenience that the jobs are indexed in SPT order, with pn as the

longest processing time. When we implement Algorithm 5.1∗, the total proces-
sing time in set B can be written as

Δ= pn + pn−2 + pn−4+ 5 4

In other words, we calculate Δ by taking the jobs in longest-first order and
summing every other processing time.

Table 5.1

Jobs in set B Jobs in set A Sequence Time for set B Start time

6-5-3-1 2-4 6-5-3-1-2-4 21 3

6-5-3 1-2-4 6-5-3-1-2-4 20 4

6-5-2-1 3-4 6-5-2-1-3-4 20 4

6-5-2 1-3-4 6-5-2-1-3-4 19 5

6-4-3-1 2-5 6-4-3-1-2-5 20 4

6-4-3 1-2-5 6-4-3-1-2-5 19 5

6-4-2-1 3-5 6-4-2-1-3-5 19 5

6-4-2 1-3-5 6-4-2-1-3-5 18 6
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The significance of Δ relates to the definition of the restricted and unre-
stricted versions of the problem. The definition of the unrestricted version given
earlier was vague in that it was based on the notion that the due date should not
be too tight. Now that we have developed Eq. (5.4), we can be more precise. The
value of Δ in Eq. (5.4) is the smallest value of d consistent with an unrestricted
version of the problem. In other words, the problem is unrestricted for d ≥Δ and
restricted for d <Δ.When the problem is restricted, Algorithm 5.1may not pro-
duce an optimal schedule. When the problem is unrestricted, Algorithm 5.1∗

guarantees an optimal schedule.
We can see from Table 5.1 that in our example, Δ = 18. Given the job set in

this example, if the common due date were d = 18, the problem would still be
unrestricted, and Algorithm 5.1∗ would produce an optimal schedule. For d <
18, the problem would be restricted.
Algorithm 5.1∗ thus achieves a feasible unrestricted solution whenever one

exists. But this variation of Algorithm 5.1 maximizes the idle time before start-
ing the first job and thus maximizes the makespan, Cmax. To prepare the
machine for the next set of jobs, however, it may be safer as a secondary objec-
tive to minimize the makespan. Let Algorithm 5.1∗∗ be defined by reversing all
the optional choices of Algorithm 5.1∗ – that is, we select the longer job for B in
Step 2 and assign the shortest job to B in Step 3 if n is even (yielding b = a + 2
rather than b = a). Instead of Eq. (5.4), Algorithm 5.1∗∗ yields

Δ∗∗ = pn + pn−1 + pn−3+

If d ≥Δ∗∗, Algorithm 5.1∗∗ yields an unrestricted solution and achieves the
minimal makespan as a secondary objective. If Δ < d <Δ∗∗, then the E/T prob-
lem is unrestricted, but minimizing the secondary objective becomes NP-hard
(in the ordinary sense). In Example 5.1, as long as the due date is 21 or more,
Algorithm 5.1∗∗ solves the E/T problem optimally. In Table 5.1, the solution of
Algorithm 5.1∗∗ is in the first row and that of Algorithm 5.1∗ in the last. For d =
24, the former yields Cmax = 33 and the latter Cmax = 36. Finally, when n is even,
Algorithms 5.1∗ and 5.1∗∗ yield two distinct b values, n/2 and 1 + n/2. This
implies that for any sequence (optimal or not), it does not matter if job [1 +
n/2] completes exactly on the due date or starts exactly on the due date. Indeed,
this job can even straddle the due date without compromising optimality.

5.2.2 Due Dates as Decisions

One variation of the basic E/T problem treats the due date as a decision variable.
As we discussed in conjunction with the T-problem in Section 2.4.3, this formu-
lation involves the objective of choosing the due date to be as tight as possible.
Treating the due date as a decision in the E/T problem is equivalent to solving
the unrestricted version of the basic problem by Algorithm 5.1∗. Suppose we
solve a particular unrestricted version with given due date d1. Consider the
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problem consisting of the same set of jobs but a due date of d2 > d1.We can solve
this second problem simply by taking the solution for d1 and shifting the entire
schedule later by (d2 − d1). As long as d1 and d2 give rise to unrestricted versions
of the problem, then the optimal values of their E/T objective functions must be
the same. In other words, the optimal total cost in an unrestricted instance of
the basic problem is constant as the due date is varied.
As for the restricted version, which we shall examine in the next section, it is

very similar to the unrestricted version. Every feasible solution to the restricted
version is also a feasible solution to the unrestricted version consisting of the
same jobs and a sufficiently later due date. (The reverse is not true, however.)
In fact, if we start with a restricted version and increase the value of the due date
d, we find that the optimal total cost is nonincreasing in d. Furthermore, as we
noted earlier, the optimal total cost eventually levels off when d is large enough
to give rise to the unrestricted version. In short, we can think of the relationship
between the optimal total cost and the due date as depicted by the graph in
Figure 5.1. As the graph shows, Δ is the smallest value of d at which the optimal
total cost attains its minimum.
If d is a decision variable, then one way to find an optimal solution is to set

d =Δ and then utilize Algorithm 5.1∗. Thus, faced with a problem in which d is a
decision, we find a solution by solving the unrestricted version of the basic E/T
problem.

5.3 The Restricted Version

The restricted version of the problem occurs when d <Δ. In that case, Theo-
rems 5.1 and 5.2 still hold, but Theorem 5.3 does not: The optimal solution
may contain a straddling job. It turns out that V-shaped schedules still consti-
tute a dominant set. (This is not as obvious as it was in the unrestricted version.

Optimal
total
cost

Due dateΔ

Figure 5.1 Optimal total cost as a function of the due date.
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In a V-shaped schedule, the shortest job may be the last job to complete on or
before the due date, the first job to start on or after the due date, or a straddling
job.) Finally, Theorem 5.4 does not hold either, because it requires Theorem 5.3.
In the restricted version of the problem, it is tempting to assume that the

schedule should start at time zero. This seems logical at first because the
restricted version arises when the due date is too tight. We would prefer to place
b selected jobs in set B, but sufficient time is not available prior to the due date. It
makes sense that the schedule would then be compressed toward time zero.
Nevertheless, this intuitive argument fails.

∎ Example 5.2 Consider a problem containing n = 3 jobs with known proces-
sing times and a given due date of d = 5.

Job j 1 2 3

pj 1 1 10

There are six schedules with zero start time, and the minimum cost is 14,
achieved by the sequences 1-2-3 and 2-1-3. However, if the start time of either
schedule is delayed until time 3, then the cost drops to 11. As this example
shows, it may be optimal to have a delay at the start of the schedule. It can
be shown that an optimal schedule always exists in which either (i) the schedule
starts at time zero, or (ii) some job completes exactly at the due date.
No simple way exists, comparable with the matching procedure in Algo-

rithm 5.1, to find an optimal solution to the restricted version of the basic E/T
problem. Indeed, the restricted version is NP-hard. Nevertheless, a pseudopoly-
nomial solution algorithm based on dynamic programming is capable of solving
problems containing several hundred jobs inmodest amounts of computer time.
Although no simple technique exists for finding an optimum, a remarkably

effective heuristic is available. The procedure builds a V-shaped schedule that
starts at time zero. This means that the maximum completion time equals the
sum of the job processing times. At each stage of the procedure, let L denote the
amount of time available before the due date, and let R denote the amount of
time available after the due date. As shown in Figure 5.2, we initially have

L R

dEarly jobs Late jobs Σpj

Figure 5.2 Layout for the heuristic procedure.
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L= d and R=
n

j= 1

pj−d

From this starting point, we fill the positions in the job sequence from both
ends toward the middle. Taking the jobs in longest-first order, we use the
following decision rule:

If L > R, assign the next job to the first available position in sequence.
If L ≤ R, assign the next job to the last available position in sequence.

When we assign job j to the first position in sequence, we subtract pj
from L; when we assign job j to the last position in sequence, we subtract
pj from R.

∎ Example 5.3 Consider the following six-job example, with d = 90.

Job j 1 2 3 4 5 6

pj 1 10 11 48 50 53

The step-by-step construction of the sequence is detailed in Table 5.2. The
sequence constructed by the procedure, 6-4-1-2-3-5, yields a total cost of 198.
We can add a simple test to this procedure that will sometimes identify a sit-

uation where the total cost can be reduced by delaying the start of the schedule.
Let e denote the number of jobs that finish before the due date. Equivalently,
(n − e) is the number of jobs that finish on or after the due date. Suppose we
delay the start of the schedule by a small amount, Δt. Then e jobs will have their
costs reduced by Δt, and (n − e) jobs will have their costs increased by Δt. The
delay leads to a reduction in the total cost if

eΔt > n−e Δt

Table 5.2

L R Assignment Sequence

L = 90 R = 83 Place job 6 first 6-X-X-X-X-X

L = 37 R = 83 Place job 5 last 6-X-X-X-X-5

L = 37 R = 33 Place job 4 first 6-4-X-X-X-5

L = −11 R = 33 Place job 3 last 6-4-X-X-3-5

L = −11 R = 22 Place job 2 last 6-4-X-2-3-5

L = −11 R = 12 Place job 1 last 6-4-1-2-3-5
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Algebraically, this is equivalent to the condition e > n/2. Thus, if more than
half the jobs are early, then the start of the schedule should be delayed, at least
long enough to make the last early job complete exactly at the due date.
Suppose we invoke this test in our example for the sequence 6-3-2-1-4-5,

which is a V-shaped alternative to the heuristic solution in the example above,
but with a total cost of 210. In this solution, four jobs complete before the due
date of 90, so e > n/2. The fourth job in sequence, job 1, finishes at time 75 when
the schedule starts at time zero. Therefore, a delay of 15 is desirable: It reduces
the total cost to 180, which is optimal for this example.

5.4 Asymmetric Earliness and Tardiness Costs

A generalization of the basic model derives from the notion that earliness and
tardiness should be penalized at different rates. As noted earlier, α may repre-
sent a holding cost, while β represents a tardiness cost. These costs are likely to
be different, especially because α tends to be determined by endogenous factors,
whereas β tends to be exogenous. In particular, let

f S =
n

j=1

αEj + βTj

This problem is in many respects a straightforward generalization of the basic
E/T problem. Again, it gives rise to a restricted version as well as an unrestricted
version. In the unrestricted version, an optimal solution has the following prop-
erties, generalizing Theorems 5.1–5.3:

1) There is no inserted idle time.
2) Jobs that complete on or before the due date should be sequenced in LPT

order, and jobs that start late should be sequenced in SPT order.
3) One job completes at time d.

These results are again straightforward to prove by contradiction. As a result
of Theorem 5.3, it again follows that an optimal schedule is V-shaped.
Next, the components of the objective function, analogous to (5.2) and (5.3),

are the total cost for B, and the total cost for A,

CB = 0pB1 + αpB2+ + b−2 αpB b−1 + b−1 αpBb 5 5

CA = aβpA1 + a−1 βpA2+ + 2βpA a−1 + βpAa 5 6

The objective function is the sum of CB and CA, and the processing times are
given. This sum of products can be minimized by matching the smallest coef-
ficient in the sum with the largest processing time, the next smallest coefficient
with the next largest processing time, and so on, with ties broken arbitrarily. An
alternative statement of the algorithm, with a precise tie-breaking mechanism,
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is given as Algorithm 5.2. This procedure finds an optimal schedule and
minimizes the total processing time in set B. Thus, it is analogous to
Algorithm 5.1∗.

Algorithm 5.2 Solving the E/T Problem with Different Earliness and
Tardiness Costs

Step 1. Initially, sets B and A are empty, and the jobs are in LPT order.
Step 2. If α|B| < β(1 + |A|) then assign the next job to B; otherwise, assign the

next job to A.
Step 3. Repeat Step 2 until all jobs have been scheduled. Finally, order the jobs

in B by LPT and the jobs in A by SPT.

If α|B| = β(1 + |A|), the algorithm allocates the next job to A. If we allocate
such jobs to B instead, we obtain a version that is analogous to Algorithm 5.1∗∗.
As an illustration, consider Example 5.1, with d = 24, and suppose that α = 5 and
β = 2. Again, the SPT ordering is as follows:

Job j 1 2 3 4 5 6

pj 1 3 4 6 7 9

The steps in Algorithm 5.2 are listed in Table 5.3.
As a result of applying the algorithm, jobs 6 and 3 are assigned to B, and jobs 1,

2, 4, and 5 are assigned to A. All processing times are distinct, and the decision
rule in Step 2 of the algorithm encounters no equalities, so only one optimal
schedule can be produced. The sequence 6-3-1-2-4-5, with a start time of 11,
yields a total cost of 84.
As in the basic E/T problem, two additional results apply. First, we can restate

Theorem 5.4 more generally.

Table 5.3

|B| |A| α β α|B| β(1 + |A|) Outcome

0 0 5 2 0 2 Assign job 6 to B

1 0 5 2 5 2 Assign job 5 to A

1 1 5 2 5 4 Assign job 4 to A

1 2 5 2 5 6 Assign job 3 to B

2 2 5 2 10 6 Assign job 2 to A

2 3 5 2 10 8 Assign job 1 to A
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∎ Theorem 5.4a In the basic E/T problem with unit earliness cost α and unit
tardiness cost β, an optimal schedule exists in which the bth job in sequence
completes at time d, where b = nβ/(α + β) .

In our example, the theorem implies that b = 12/7 = 2, as we observe in
Table 5.3. When nβ/(α + β) = nβ/(α + β), the alternative version of the algo-
rithm would produce b = nβ/(α + β) + 1, and job [nβ/(α + β) + 1] can straddle
the due date.
The second result involves the total processing time for set B in the optimal

schedule. Let

Δ= pB1 + pB2+ + pB b−1 + pBb 5 7

As before, the problem is unrestricted for d ≥Δ. Recall that in the simpler
problem with α = β, we can calculate Δ in Eq. (5.4) directly from given para-
meters, before solving the problem. Here, in the case of different earliness
and tardiness costs, we cannot compute Δ in advance. We must solve the prob-
lem in order to calculateΔ in Eq. (5.7). In our example, jobs 6 and 3 make up set
B; therefore, Δ = 13. For d < 13, this problem corresponds to the restricted
version.
In the restricted version of the problem, Theorems 5.1 and 5.2 still hold, and

V-shaped schedules constitute a dominant set. We can also generalize the deci-
sion rule described in the previous section: Instead of the condition L > R, we
now use αL > βR. In addition, we can generalize the condition that indicates
delaying the start of the schedule to e > nβ/(α + β).
To suggest how effective the heuristic might be, it was tested on two sets of

randomly generated problems, one with α = β and the other with α β. First, job
processing times were generated, and the solution to the unrestricted version
was obtained, thus allowing Δ to be calculated. Next, a due date was randomly
sampled between Δ/2 and Δ. The resulting problem was solved optimally and
by the heuristic method. This process was repeated for each of 20 problems for
each problem size in both sets of test problems. Table 5.4 summarizes the com-
putational results for the 160 problems, where average error represents the per-
cent deviation of the heuristic method from the optimum, averaged over the
20 replications. The main observations are (i) that the average error is usually
below 1%, and (ii) that the heuristic finds an optimal solution roughly one-third
of the time.

5.5 Quadratic Costs

In some cases, large deviations from the due date are highly undesirable, and it
might be more appropriate to use squared deviations from the common due
date as the performance measure. Thus, consider the objective function:
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f S =
n

j= 1

Cj−d
2
=

n

j= 1

E2
j +T2

j 5 8

This objective is the quadratic analog of the absolute deviation criterion in
Eq. (5.1). Moreover, suppose that d is a decision variable. If the values of the
completion times Cj were known, then the best choice of d for minimizing f
(S) would be the mean completion time:

μ=
1
n

n

j=1

Cj

With this choice of the due date, we would rewrite the objective function as

f S =
n

j= 1

Cj−μ
2

which, except for a factor of n, is the definition of the completion time variance.
When the due date is given, the reasoning of Section 5.2.2 applies. As long as the
problem is unrestricted, the optimal schedule assigns completion times so that
their mean is equal to the given due date. Therefore, the unrestricted version of
the quadratic E/T problem is equivalent to minimizing the variance of comple-
tion times.
In spite of its equivalence to the completion time variance problem, the quad-

ratic E/T problem is not easily solved. For the unrestricted problem with objec-
tive function (5.8), Theorems 5.1 and 5.2 hold, but μ need not coincide with any
completion time, so Theorems 5.3 and 5.4 do not hold. Only enumerative
approaches have been developed for this problem, and some progress has been
made with heuristic procedures. In fact, the most successful heuristic solutions
have been obtained using neighborhood search techniques, where the neighbor-
hoods are generated by pairwise interchanges.

Table 5.4

α = β α β

Problem
size

Average
error (%)

Number of
optima

Average
error (%)

Number of
optima

n = 8 0.40 10 1.52 5

n = 10 0.24 9 0.84 5

n = 12 0.26 4 0.66 7

n = 15 0.32 4 0.07 10
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5.6 Job-dependent Costs

An obvious direction for generalization is to permit each job to have its own
costs αj and βj. Specifically, the objective function takes the form

f S =
n

j=1

αjEj + βjTj

When αj = βj, the tardiness cost matches the earliness cost for any particular
job, but the costs may differ among jobs. Even the unrestricted version of this
case is NP-hard. However, a pseudopolynomial solution algorithm based on
dynamic programming is capable of solving problems containing several hun-
dred jobs in modest amounts of computer time.
In the more general case where αj βj, versions of Theorems 5.1–5.3 hold, so

an optimal solution has the following properties:

1) There is no inserted idle time.
2) Jobs that complete on or before the due date can be sequenced in nonin-

creasing order of the ratio pj/αj, and jobs that start late can be sequenced
in nondecreasing order of the ratio pj/βj, thus forming an LWPT/SWPT
sequence.

3) One job completes at time d.

We can again restate Theorem 5.4 more generally, to specify a condition for b.

∎Theorem 5.4b In the basic E/T problem with unit earliness costs αj and unit
tardiness costs βj, an optimal schedule exists in which the bth job in sequence
completes at time d, where b is the smallest integer satisfying the inequality

i B

αi + βi ≥
n

j= 1

βj

As in the unrestricted version of the basic E/T problem, the search for an opti-
mal schedule must enumerate the set of schedules consistent with these proper-
ties. However, no property analogous to the matching property is available to
speed up this search. In principle, all 2n dominant sets must be examined.

5.7 Distinct Due Dates

The general E/T problem contains different due dates in the job set. This feature
tends to make it more difficult to determine a minimum-cost schedule than in
the problems discussed thus far. However, if the due dates are treated as deci-
sion variables, the problem turns out to be relatively easy to solve.When the due
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dates are completely flexible, we can select any sequence we wish (using a
secondary objective) and set dj =Cj. In addition, if we choose total flowtime
F as the secondary objective, we can trade-off total E/T costs with total flowtime,
using the following objective function:

f S =
n

j= 1

αEj + βTj + γFj

The solution is given by SPT, with the schedule starting at time zero. This
solution also minimizes D = Σdj (which is typically the objective when due dates
are decisions, as in Section 2.4.3).
In the general case, we assume that due dates are given and distinct and that

the objective function is

f S =
n

j= 1

αjEj + βjTj

This problem is NP-hard even in the symmetric case with identical costs.
Moreover, Theorems 5.1 and 5.2 do not extend to this case. In particular,
inserted idle time may be desirable. Although the best sequence without
inserted idle time is not necessarily the best sequence after allowing idle time,
the search for an optimal schedule can be decomposed into two subproblems:
(i) finding a good job sequence and (ii) scheduling inserted idle time. The second
step involves scheduling the start times of all jobs, and we next examine this
problem in more detail.
Consider the scheduling problem for a given job sequence, and assume that

the jobs are numbered by sequence position. A schedule can be partitioned into
blocks, which are sets of contiguous jobs in the schedule. Idle time is inserted
between blocks but not within blocks. We can think of the schedule as if jobs
were made available (or released) to the shop intermittently, in groups. The
groups correspond to the blocks, and the time at which a block is permitted
to start is called its release date. In an optimal schedule, the last job in any block
cannot be early, and the first job in a block cannot be tardy unless it starts at time
zero (which can happen only in the first block).
The procedure begins by assigning the first job to the first block and schedul-

ing it to complete at its due date or, if this is not feasible, to start at time zero.
Jobs are then considered in the order in which they appear in the given
sequence. If job j is early when appended to the existing block, then it is resched-
uled to complete at its due date, thus starting a new block. Otherwise, job j is
appended to the existing block, starting when job (j − 1) completes. At this stage,
if we can achieve a better total cost by shifting all jobs in the block earlier, we do
so. This shift is possible only if we have inserted idleness, or a gap, between
the previous block and the current block. (If the current block starts at time
zero, then it has a gap of zero.) If the gap between the blocks is consumed
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(becomes zero) before the block’s cost is minimized, we merge the blocks. Any
further shift now applies to the merged block. We can characterize an optimal
release date of a block by adapting Theorem 5.4b to apply only to the jobs inside
the block. Because the due dates are distinct, instead of requiring the bth job to
finish precisely on time, we now require at most (b − 1) jobs to be strictly early
and at most (n − b) jobs to be strictly tardy. (To satisfy both conditions, at
least one job would have to be precisely on time.) A block that cannot satisfy
this adapted condition must start as soon as possible: It should be merged
with the previous block – and the merged block must then satisfy the same
condition – or start at time zero.

∎ Example 5.4 Consider the following nine-job example, with unit earliness
cost α = 1 and unit tardiness cost β = 3.

Job j 1 2 3 4 5 6 7 8 9

pj 1 4 3 6 2 7 6 2 5

dj 4 6 7 10 28 31 35 38 40

We take the jobs in numbered order, which is also the EDD sequence.
Job 1 is due at time 4, so it can avoid costs by starting at 3. Job 2 cannot
follow job 1 and complete on time, so we schedule it immediately following
job 1, leading to completion at time 8. The cost of jobs 1 and 2 is 1 × 0 + 3 ×
2 = 6.
We examine the possibility of starting job 1 earlier. If it starts at time 2, its

earliness cost is 1, but job 2 starts at time 3, completes at 7, and incurs a cost
of 3. The total cost for the two-job block is 4, an improvement. If the block starts
at time 1, its cost drops to 2, and if the block starts at time zero, its total cost rises
to 4. So we keep jobs 1 and 2 as a block starting at time 1.
Next, consider job 3. Added to the block, job 3 completes at time 9, and

the three-job block incurs a cost of 8. If the block starts at time zero, its total
cost drops to 7, so we start the schedule at time zero. No further shifting is
possible.
Next, consider job 4, which can start at time 8 and complete at time 14, mak-

ing it late by 4. No shifting is possible. Job 5 could start at time 14, but it would
then be quite early, so we start a new block consisting of job 5 alone, starting at
time 26.
Next, consider job 6. Added to the second block, job 6 completes at time 35.

The total cost for the second block is then 12, and we probe for cost reduction
by starting the block earlier. We can shift the block to start as early as time
22, in which case job 6 completes at its due date, and the block incurs total
cost of 4.
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Next, consider job 7. Added to the second block, job 7 completes at time 37.
We can shift the block 2 time units earlier, starting at time 20, to minimize the
total cost in the block.
Next, consider job 8, which would be early if appended to the second block.

We start a third block at time 36, allowing job 8 to complete at its due date.
Finally, consider job 9. Added to the third block, job 9 completes at time 43.

The third block can be shifted earlier to reduce the total cost incurred by its jobs,
but when the block is shifted earlier by one time unit, the time gap between the
second and third blocks disappears. Those two blocks become merged, and no
shift to an earlier start can reduce total costs.
The full schedule consists of two blocks, one starting at time zero with job 1,

and the second starting at time 20 with job 5. Jobs 1–4 constitute the first block,
in which the jobs are processed without inserted idle time, so the block com-
pletes at time 14. Jobs 5–9 constitute the second block, in which the jobs are
processed without inserted idle time, completing at time 42. In the second
block, four of the five jobs are early or on time, satisfying the condition of The-
orem 5.4a. This condition does not apply to the first block because it could not
be shifted earlier than time zero.
For the special case of symmetric and identical costs (αj = α = β = βj), it is

computationally easy to decide how far back to push a block. At each stage,
the procedure tries to maintain b > a, where b denotes the number of nontardy
jobs in the block, and a denotes the number of tardy jobs in the block. When
job j is added at the end of the block, if b > a or if the schedule starts at time
zero, then no improvement is possible at this stage. Otherwise, job j, along
with the preceding jobs in its block, should be shifted earlier until one of three
possibilities occurs: (i) the start of the entire schedule is shifted back to time
zero, (ii) some job in the block completes exactly at its due date, or (iii) the
inserted idle time following the previous block is squeezed to zero and the
blocks are merged. When one of these three conditions is encountered, we
proceed to the scheduling of job (j + 1), and we stop when all jobs are sched-
uled. An algorithm for scheduling inserted idle time for a given sequence can
be implemented in polynomial time, even when the costs are not symmetric
and identical, although a slightly more efficient implementation is possible
in the special case. The computational efficiency is relevant because such a
procedure must be incorporated into a routine that searches for the optimal
sequence.
Given that the idle time can easily be optimized for a specified job sequence,

the task remaining is to locate the best sequence. Branch-and-bound
approaches to finding the optimal sequence have demonstrated the capability
to solve problems containing at least 20 jobs, but larger problems are some-
times difficult to handle. Computational tests on small problems indicate that
a neighborhood search heuristic yields solutions that average within 2% of
optimum.
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5.8 Summary

The earliness/tardiness problem has received considerable attention as JIT con-
cepts have become more prominent in practice. The E/T problem represents a
departure from most basic single-machine models because it involves a perfor-
mance measure that is not regular. In the major results we have covered, we can
discern two classes of problems. One class involves a common due date for all
jobs; the other class accommodates different due dates. Solutions to the model
with common due dates involve certain key features, namely, V-shaped sche-
dules and no idle time between jobs, as described by Theorems 5.1 and 5.2.
It is worth contemplating how these properties might provide guidance for

scheduling in complex systems with E/T criteria. The desirability of avoiding
inserted idle time suggests that dispatching procedures can be effective.
(Dispatching procedures allow a scheduling decision to be made in real time
when a machine becomes idle, rather than in advance.) The optimality of V-
shaped sequences presents some difficulties, however, because it calls for a
changeover from longest-first dispatching to shortest-first dispatching. Further-
more, during the first phase, we should skip some long jobs and allocate them to
the second phase. The optimal dispatching rule can therefore be viewed as a
dynamic priority scheme that changes dramatically during processing. In con-
trast, static sequencing rules such as SPT or EDD have unchanging relative prio-
rities. Thus, the lesson we draw is that E/T criteria with common due dates are
likely to require relatively sophisticated dispatching procedures.
In addition, it is important to distinguish between the restricted and unre-

stricted versions of the common due date problem. In the unrestricted version
(or equivalently, the version in which the due date is a decision), the due date
coincides with a job completion time, and a specific decision rule determines the
optimal location of the due date in any job sequence, as described by Theorems
5.3 and 5.4. However, the restricted version of the problem does not have these
properties and is therefore more difficult to solve. If this result has a practical
lesson, it may point to the difficulty of finding a good schedule when the due
date is relatively tight. In other words, costs will be lower – and finding an opti-
mum will be easier – if we can operate in a situation where the due date is not
restrictive. Although this principle is not surprising, it suggests that in setting a
due date, a scheduler should consider where the boundary lies between a restric-
tive due date and a nonrestrictive one.
The second, more important class of problems has distinct due dates.

Problems in this class are intrinsically more difficult to solve, and few effective
techniques have been established. Solving these problems involves two steps:
sequencing the jobs and determining inserted idle time, where the best
allocation of idle time depends on the job sequence. In general, it appears that
inserting idle time is not a complex problem for a given sequence, but only
branch-and-bound techniques, or some form of enumerative search, can be
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effective at finding the optimal sequence. The lesson from this class of problems
may be that dispatching procedures – even sophisticated ones – do not provide
the best hope for effective solutions. This observation suggests that in the pres-
ence of due dates and nonregular measures of performance, wemust either plan
idle time explicitly or negotiate earlier deliveries with reduced costs.
Compared with regular performance measurements, the E/T problem may

provide a more realistic modeling of the true economic implications of schedul-
ing decisions. Similarly, stochastic models that are based on the E/T problem
can include a more realistic accounting of the economic implications of ran-
domness. Indeed, this analysis leads to the specification of safety time. In the
next two chapters, we develop this idea further.

Exercises

5.1 Prove that V-shaped schedules comprise a dominant set for the restricted
version of the basic E/T problem.

5.2 Consider the following 10-job E/T problem with a common due date that
is also a decision variable.

Job j 1 2 3 4 5 6 7 8 9 10

p j 32 26 7 55 98 80 41 23 24 100

a) Take αj = βj = 1. Find an optimal sequence that makes the due date as
small as possible.

b) Repeat (a) when αj = 2 and βj = 4.

5.3 Consider the following five-job E/T problem with a due date as a decision.

Job j 1 2 3 4 5

pj 1 6 4 7 3

αj 5 7 2 4 3

βj 1 2 8 6 5

Find an optimal solution by enumerating the nondominated schedules.

5.4 Generalize the E/T problem with a common due date by incorporating a
unimodal loss function – that is, a function that attains a minimum at a
point that we call the due date and is monotone nonincreasing
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(nondecreasing) before (after) the due date. For example, the quadratic
loss model is a special case of this generalization. Prove that an optimal
solution for this generalized model is V-shaped, both for the restricted
and unrestricted versions. (Hint: If a sequence is not V-shaped, it must
contain a consecutive subset of three jobs such that the longest one is
between two shorter ones. Show that the existence of such a set leads
to contradiction.)

5.5 Suppose that the due date is a decision and that there is a disincentive for
choosing the due date to be loose. In particular, a due date penalty is added
to the objective function of the basic E/T problem. The objective function
to be minimized takes the following form:

f S =
n

j=1

Ej +Tj + γd

where 0 < γ < 1.
a) Show that Theorems 5.1–5.3 hold for this problem.
b) Find the analogy to Theorem 5.4 for this problem.

5.6 Consider the unrestricted version of basic E/T problem with job-
dependent earliness and tardiness penalties and a common due date. Sup-
pose that the penalties are all symmetric, αj = βj. Construct a four-job
example for which an optimal solution contains no job finishing late.

5.7 Consider the basic E/T problem with due dates as decisions, and suppose
that the due dates follow the SLK rule. (See Chapter 2.) That is, each job
has equal slack, so the form of the due date for job j is dj = pj + k.
a) Find an expression for the sum of earliness and tardiness in the form of

a scalar product that can be minimized by matching the smallest coef-
ficient with the largest processing time, the second smallest coefficient
with the next largest processing time, and so on.

b) Find the optimal value of k.
c) Now suppose that the due dates follow the CON rule. That is, each job

has the same flow allowance, or dj = k. Repeat (a) and (b) for this case,
and show that, for any given set of processing times, the optimal value
of the objective function is the same for CON and SLK.

Bibliography

Bagchi, U., Chang, Y., and Sullivan, R. (1987). Minimizing absolute and squared
deviations of completion times with different earliness and tardiness penalties
and a common due date. Naval Research Logistics Quarterly 33: 227–240.

5 Earliness and Tardiness Costs126



Baker, K.R. and Scudder, G.D. (1990). Sequencing with earliness and tardiness
penalties: a review. Operations Research 38: 22–36.

Cheng, T.C.E. (1984). Optimal due date determination and sequencing of n jobs on a
single machine. Journal of the Operational Research Society 35: 433–437.

De, P., Ghosh, J., andWells, C. (1989). A note on the minimization of mean squared
deviation of completion times about a common due date. Management Science
35: 1143–1147.

Fry, T., Armstrong, R., and Blackstone, J. (1987). Minimizing weighted absolute
deviation in single machine scheduling. IIE Transactions 19: 445–450.

Hall, N. and Posner, M. (1991). Earliness–tardiness scheduling problems, I:
weighted deviation of completion times about a common due date. Operations
Research 39: 836–846.

Hall, N., Kubiak, W., and Sethi, S. (1991). Earliness–tardiness scheduling problems,
II: deviation of completion times about a restrictive common due date.
Operations Research 39: 847–856.

Hassin, R. and Shani, M. (2005). Machine scheduling with earliness, tardiness and
non-execution penalties. Computers & Operations Research 32: 683–705.

Kanet, J. (1981a). Minimizing the average deviation of job completion times about a
common due date. Naval Research Logistics Quarterly 28: 643–651.

Kanet, J. (1981b). Minimizing variation of flow time in single machine systems.
Management Science 27: 1453–1459.

Raghavachari, M. (1986). A V-shape property of optimal schedule of jobs about a
common due date. European Journal of Operations Research 23: 401–402.

Sundararaghavan, P. and Ahmed, M. (1984). Minimizing the sum of absolute
lateness in single-machine and multimachine scheduling. Naval Research
Logistics Quarterly 31: 325–333.

Szwarc, W. (1989). Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Naval Research Logistics Quarterly
36: 663–673.

Szwarc,W. andMukhopadhyay, S.K. (1995). Optimal timing schedules in earliness–
tardiness single machine sequencing. Naval Research Logistics Quarterly 42:
1109–1114.

Bibliography 127



6

Sequencing for Stochastic Scheduling

6.1 Introduction

As we discussed in Chapter 2, the basic single-machine sequencing model is
characterized by seven conditions:

C1. There are n single-operation jobs simultaneously available for processing
(at time zero).

C2. Machines can process at most one job at a time.
C3. Setup times for the jobs are independent of job sequence and are included

in processing times.
C4. Job descriptors are deterministic and known in advance.
C5. Machines are continuously available (no breakdowns occur).
C6. Machines are never kept idle while work is waiting.
C7. Once an operation begins, it proceeds without interruption.

Such conditions, which help us analyze the problem, may also restrict the appli-
cability of the model. Specifically, by adopting conditions C4 and C5, we limit
ourselves to deterministic models, with all parameters assumed to be known. In
this chapter, we explore a relaxation of condition C4, allowing processing times
to be random. We assume that condition C5 remains unchanged. However,
if we relax C5 and allow machine breakdowns, the effect is ultimately quite
similar to relaxing C4 because the time required to process a job becomes
uncertain.When processing times are random, the problem that results is called
a stochastic scheduling problem.
As discussed in Chapter 2, conditions C6 and C7 are inconsequential for reg-

ular performance measures in the deterministic version of the basic model –
that is, inserted idle time and job preemption provide no advantage. However,
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preemption can sometimes be advantageous in the stochastic case, potentially
making the stochastic problem more difficult to solve. For that reason, we
continue to require C7 as we begin our analysis of stochastic scheduling
problems.
If we relax condition C4, we permit due dates and job weights to be uncertain,

as well as processing times, but such models have limited practical significance.
Therefore, we treat due dates and weights as deterministic. As a consequence,
the EDD sequence is well defined (except for ties). In contrast, the SPT sequence
is not well defined, because processing times are not known in advance.
However, it is still possible to order jobs by nondecreasing expected processing
times. This sequence is known as shortest expected processing time (SEPT).
Similarly, the shortest weighted expected processing time (SWEPT) sequence
is also well defined.
Historically, stochastic scheduling analysis has focused on the same perfor-

mance measures considered in deterministic scheduling (F, T, Lmax, Tmax, U,
etc.) and has sought to minimize their expected values. Thus, typical
stochastic models aim to minimize E[F], E[T], E[Lmax], E[Tmax], E[U], etc.
We refer to such models as stochastic counterparts of the corresponding deter-
ministic problems. For example, the stochastic counterpart of the F-problem is
a stochastic scheduling problem in which the objective function is the expected
total flowtime, E[F]. More generally, for deterministic models that seek to min-
imize the total cost or the maximum cost, stochastic counterparts seek to min-
imize the expected total cost or the expected maximum cost.
In this chapter, we first discuss counterpart models and how to solve them.

In addition to analyzing stochastic counterparts of deterministic problems,
we also examine the potential usefulness of deterministic counterparts. In
other words, we explore whether the deterministic representation can tell
us something about the solution to a stochastic problem. Next, we turn
our attention to sequencing rules for performance measures based on the
maximum cost and the total cost. This discussion highlights the tendency
of the deterministic counterpart to produce optimistic performance mea-
sures, and we address this bias in more detail. To support optimal sequencing
decisions, we then introduce the concepts of stochastic dominance and
association.

6.2 Basic Stochastic Counterpart Models

Webegin our coverage of stochastic scheduling with an examination of stochas-
tic counterpart problems. The objective in such problems is the expected value
of a performance measure such as total flowtime, maximum tardiness, total
cost, and the like. To help clarify the nature of stochastic counterpart models,
we explore a numerical example.
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∎ Example 6.1 Consider a problem containing n = 5 jobs with stochastic
processing times. The due date and expected processing time for each job
are shown in the following table.

Job j 1 2 3 4 5

E[pj] 3 4 5 6 7

dj 8 5 15 20 12

Suppose that two factors influence these processing times, the weather and the
quality of raw materials. Each factor has two equally likely conditions (good and
bad), so together they define four states of nature: GG (when both conditions are
good), GB, BG, and BB. Each job has a different processing time under each state
of nature as follows.

State Job j 1 2 3 4 5

GG pj 2.6 3.5 3.8 3.2 6.4

GB pj 2.8 3.9 4.4 5.5 6.6

BG pj 3.2 4.1 5.6 6.5 7.4

BB pj 3.4 4.5 6.2 8.8 7.6

Assume that the four states are equally likely, or in other words, each
combination of five processing times, or each scenario, occurs with probability
0.25, and we can interpret the table as a discrete probability distribution.
Suppose also that we are interested in total tardiness as a measure of
performance. We begin by examining the EDD sequence, 2-1-5-3-4. As a first
step, we reorder the columns of the given data set to produce Table 6.1.
Next, we calculate the job completion times for each state, as shown in

Table 6.2.

Table 6.1

Sequence 2 1 5 3 4

State Processing times

GG 3.5 2.6 6.4 3.8 3.2

GB 3.9 2.8 6.6 4.4 5.5

BG 4.1 3.2 7.4 5.6 6.5

BB 4.5 3.4 7.6 6.2 8.8
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From these results, we can compute the tardiness of each job for each state, as
shown in Table 6.3.
As Table 6.3 shows, the total tardiness in the sequence depends on which state

occurs, and the value of total tardiness ranges from a low of 1.8 to a high of 20.7.
Taking into account the fact that the four states are equally likely, we can
calculate the mean tardiness as 11.1 by taking the average of the figures in
the last column.
We could make similar calculations for several other expected-value

performance measures, giving rise to the results shown in Table 6.4, all for
the EDD sequence.

Table 6.2

State Completion times

GG 3.5 6.1 12.5 16.3 19.5

GB 3.9 6.7 13.3 17.7 23.2

BG 4.1 7.3 14.7 20.3 26.8

BB 4.5 7.9 15.5 21.7 30.5

Table 6.3

State Tardiness Total

GG 0.0 0.0 0.5 1.3 0.0 1.8

GB 0.0 0.0 1.3 2.7 3.2 7.2

BG 0.0 0.0 2.7 5.3 6.8 14.8

BB 0.0 0.0 3.5 6.7 10.5 20.7

Average 11.1

Table 6.4

Scenario F Cmax L Lmax T Tmax U

GG 57.9 19.5 −2.1 1.3 1.8 1.3 2.0

GB 64.8 23.2 4.8 3.2 7.2 3.2 3.0

BG 73.2 26.8 13.2 6.8 14.8 6.8 3.0

BB 80.1 30.5 20.1 10.5 20.7 10.5 3.0

Average 69.0 25.0 9.0 5.5 11.1 5.5 2.8
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In Table 6.4, we can recognize the expected tardiness value of 11.1, and we can
see the expected value of the other 6 listed performancemeasures. Of course, if a
different sequence is selected, then all these results can change. Thus, the
example gives rise to seven stochastic counterpart problems, each aiming to
minimize the relevant value in the last row of the table.
In stochastic counterpart models, it is convenient to assume that processing

times are probabilistically independent. In words, independencemeans that the
processing time realized for one of the jobs does not depend on which
processing time is realized for any of the other jobs. Without this assumption,
it is seldom possible to find analytic solutions that hold in general. In our
coverage, however, we want to develop practical and flexible approaches to
stochastic scheduling, so we do not necessarily limit ourselves by requiring
independent processing times. For instance, in Example 6.1, we assumed
independent factors that influenced all processing times in the same direction,
but the resulting processing times were not independent – they were correlated.
Nevertheless, the small size of our example enabled us to enumerate the
states of nature, treat the set of possible outcomes as a discrete probability
distribution, and calculate the required expected values.
In relaxing condition C4, we assume that processing times are random

variables with given distributions. The basic stochastic scheduling model
contains n such random variables, and a small table such as the one in Example
6.1 may not be sufficient to fully capture the probability distributions involved.
However, the approach illustrated in our analysis of the example can still be
applied if we rely on a table that is drawn from a much larger data set describing
the probability distributions. Technically, we generate an r × n table of
processing times resembling Table 6.1, where r is the number of scenarios,
or the sample size, and n is the number of jobs. Typically, the scenarios are
equally likely, but they could also be assigned probabilities. Row i contains
n sampled processing times, one for each job, while column j includes r samples
for the processing times of job j. If the table is exhaustive, as was the case in
Table 6.1, then the data represent an exhaustive sample, and the table is
essentially a discrete probability model. On the other hand, if the distribution
is very large (or infinite, which would be the case for a continuous distribution),
then any r × n table drawn from that distribution would be a sample. A sampling
approach could accommodate both probabilistically independent and probabil-
istically dependent cases.
In this chapter, we represent random processing times with the aid of an r × n

table. As the foregoing discussion indicates, such a table may hold an exhaustive
sample, which represents a discrete probability model, or it may hold a limited
sample, which can represent a set of equally likely scenarios observed in histor-
ical records or produced by simulation. This interpretation leads to a general
technique of sample-based analysis, in which we rely on discrete probability
models or simulation outcomes in our analysis. In Chapter 7, we extend our
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purview to continuous distributions as well. (See Appendix A for background
on generating samples.)
In our second example, processing times are independent, and we can

illustrate the simulation interpretation of the sample-based approach.

∎ Example 6.2 Consider a problem containing n = 5 jobs with stochastic
processing times. The expected processing time for each job is shown in the
following table. These match the values in Example 6.1.

Job j 1 2 3 4 5

E[pj] 3 4 5 6 7

dj 8 5 15 20 12

Here, the processing times are randomly distributed with a range of 4. In other
words, the processing time for job 1 occurs randomly between 1 and 5, the
processing time for job 2 occurs randomly between 2 and 6, and so on.
For the purposes of illustration, we work with a sample of 10 scenarios

corresponding to the realizations shown in Table 6.5.
At the top of the table, we calculate the average of the 10 processing time

realizations for each of the jobs, mainly as a check on the accuracy of the
sampling. For example, job 1 has an average processing time of 2.984 in the
sample, very close to its expectation of 3. The other averages are also close
to their expectations.

Table 6.5

Job 1 2 3 4 5

Average 2.984 3.891 5.122 6.195 7.280

Scenario

1 3.710 4.086 3.152 4.689 6.589

2 2.390 2.197 6.395 5.965 7.699

3 4.317 4.263 6.232 5.616 8.468

4 1.138 4.117 5.879 7.325 5.566

5 2.836 2.564 6.144 7.793 8.124

6 2.686 3.734 3.439 7.770 6.325

7 2.533 4.915 5.287 4.745 8.160

8 2.610 2.850 4.546 4.833 8.683

9 3.394 5.721 5.591 6.741 5.102

10 4.229 4.460 4.557 6.477 8.081
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The basic idea of sample-based analysis is to find scheduling decisions that are
optimal for the sample. To the extent that the simulated sample mimics reality,
the sample represents the range of possible realizations. By increasing the
sample size r, we can approximate the true optimal solution as precisely as
we may wish. (Normally, a sample of size 10 is too small for the precision we
seek, but a sample of 1000 is reliable enough for many applications.) We can
even view the data in Example 6.1 as a special case of a sample in which the
scenarios happen to be exhaustive. With this interpretation, a sample is
operationally equivalent to a list of equally likely scenarios that represent
possible random outcomes.
Starting with the sample in Table 6.5, we can explore the problem

numerically. For example, suppose we adopt total flowtime as a measure of
performance and begin with the sequence 1-2-3-4-5, which orders the jobs
by SEPT. For each of the ten scenarios, we fix this sequence and compute
the flowtime of each job under each scenario, as shown in Table 6.6. From these
values, we compute the resulting value of F, shown in the right-hand column of
the table.
Next, we find the average value, 65.522, which is shown at the top of the

right-hand column in Table 6.6. In this column, as in the previous table, we
display an average at the top.
Having evaluated the objective function for the sequence 1-2-3-4-5, our task

is now to examine other job sequences and find the one that minimizes F. That
search may be tedious, but it is at least straightforward. It turns out that the
value of 65.522 is the minimum possible value for this sample, indicating that
the sequence 1-2-3-4-5 is optimal for F.

Table 6.6

Job 1 2 3 4 5 F

Scenario Flowtimes 65.522

1 3.710 7.796 10.948 15.637 22.225 60.317

2 2.390 4.587 10.982 16.947 24.646 59.553

3 4.317 8.581 14.813 20.428 28.897 77.036

4 1.138 5.255 11.134 18.459 24.026 60.012

5 2.836 5.400 11.544 19.336 27.460 66.575

6 2.686 6.420 9.859 17.629 23.954 60.548

7 2.533 7.448 12.735 17.480 25.641 65.838

8 2.610 5.460 10.006 14.839 23.522 56.437

9 3.394 9.115 14.706 21.447 26.549 75.211

10 4.229 8.689 13.246 19.722 27.804 73.690
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Our main point is that sample-based analysis (conveniently implemented, for
example, in a spreadsheet) is an appropriate general tool for solving stochastic
counterpart problems, even though it relies on numerical calculations rather
than analytic results. Later in this chapter, we describe a software alternative
for implementing this type of analysis. In some cases, however, analytic results
are available, sparing us the need to use sample-based analysis at all.
Consider the stochastic counterpart of the F-problem. In other words, proces-

sing times are random, and the objective is to minimize the expected value of
total flowtime. We can also consider the related problem of minimizing the
expected value of total lateness, because of the algebraic relationship between
flowtime and lateness.

∎ Theorem 6.1 E[F] and E[L] are minimized by shortest expected processing
time (SEPT) sequencing (E[p[1]] ≤ E[p[2]] ≤ ≤ E[p[n]]).

Proof. We first prove the theorem for E[F]. Repeating Eq. (2.1),

n

j=1

Fj =
n

j=1

j

i= 1

p i =
n

j= 1

n− j+ 1 p j

If we interpret p[j] as a random variable, this equation remains valid. Thus,
the total flowtime is a weighted sum of random processing times (with
deterministic weights). Therefore,

E F =E
n

j= 1

Fj =
n

j= 1

E Fj =
n

j= 1

n− j+ 1 E pj

By the same argument that we used as an alternative proof for Theorem 2.3,
this sum is minimized by SEPT. To prove the result for E[L], note that Theorem
2.5 still holds – that is, L = F −D so E[L] = E[F] – E[D] (where D = dj). □

Theorem 6.1 shows how to solve two particular stochastic counterpart mod-
els optimally, but it does not say that total flowtime and total lateness are mini-
mized by SEPT in every scenario. Rather, we proved that SEPT minimizes them
on average. In the 10 scenarios of Example 6.2, sequences other than SEPT are
optimal. (In the first scenario, for example, F is minimized by the sequence 3-1-
2-4-5.) But such an observation is made in hindsight, and we cannot rely on
hindsight for sequencing decisions, so SEPT is the best we can do ex ante, before
the realizations are revealed. Thus, the theorem tells us that in Example 6.1, the
sequence 1-2-3-4-5 is optimal for minimizing E[F], and it is not necessary to
resort to sample-based optimization.
Using the same approach, we can also solve the weighted versions of these two

problems, as stated in Theorem 6.2. We emphasize that Theorems 6.1 and 6.2
do not require the processing times to be stochastically independent.
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∎ Theorem 6.2 E[Fw] and E[Lw] are minimized by shortest weighted expected
processing time (SWEPT) sequencing (E[p[1]]/w[1] ≤ E[p[2]]/w[2] ≤ ≤
E[p[n]]/w[n]).

Now consider the stochastic counterpart of minimizingmaximum lateness, as
approached by sample-based analysis. For every row in the sample, EDD is an
optimal sequence. But this is true for any processing time outcomes – that is,
we could sequence the jobs by EDD irrespective of their processing time
realizations. In fact, this would be true for an exhaustive sample.

∎Theorem 6.3 E[Lmax] and E[Tmax] are minimized by earliest due date (EDD)
sequencing (d[1] ≤ d[2] ≤ ≤ d[n]).

In other words, EDD sequencing remains optimal when our model contains
stochastic processing times.

6.3 The Deterministic Counterpart

Consider how we might use a deterministic sequencing model in a stochastic
environment. The most obvious way is to use the mean processing times,
E[pj], in place of pj. That is, we can approach the stochastic problem by substi-
tuting expected values for random variables and proceeding as if the problem
were deterministic. We refer to the resulting model as the deterministic
counterpart.
For instance, take the deterministic counterpart in Example 6.1. The first step

is to suppress all randomness and treat processing times as if they were
deterministic, with values equal to their expectations. This gives rise to the data
set shown in the following table.

Job j 1 2 3 4 5

pj 3 4 5 6 7

dj 8 5 15 20 12

Suppose we construct the EDD sequence, 2-1-5-3-4, and calculate the deter-
ministic values of the seven performance measures of interest. We obtain the
values shown in Table 6.7.
Some of these values happen tomatch those in Table 6.4, but some do not. For

example, the tardiness in the deterministic counterpart isT = 11, which does not
quite match the expected tardiness of 11.1 that we obtained in Table 6.3. Thus,
as the example shows, the deterministic counterpart may not generate a value
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equal to the expected performance measure in the original stochastic problem.
This comparison raises an interesting question, however: When does the
deterministic counterpart generate a correct expected value? And related to
that, when is the optimal sequence for the deterministic counterpart also
optimal for the stochastic problem? Although these are not always easy
questions to answer, the deterministic counterpart is often used in practice
because it simplifies the analysis.
In Examples 6.1 and 6.2, the solution to the deterministic counterpart of the

total flowtime problem is F = 65 for the sequence 1-2-3-4-5. Here, the determin-
istic counterpart provides the optimal sequence, and the value of its objective is
equivalent to that of the true expected value. In fact, this result is imbedded in
the proof of Theorem 6.1, which tells us how to sequence optimally. Part of that
proof used the following equality:

E F =
n

j= 1

n− j+ 1 E pj

This formula states that the optimal expected total flowtime can be calculated as
the objective function for the corresponding deterministic counterpart, which is
F = 65 in the example. To reach this result using the sample-based analysis of
Example 6.2, we would need a sample size much larger than 10. (When we
repeated the analysis with a random sample of size 1000, the estimated value
of the objective function was 64.982, which is within 0.03% of the theoreti-
cal value.)
With regard to Theorem 6.3 and the optimization of E[Lmax] and E[Tmax], the

result is different. In these problems, the deterministic counterpart may not
provide an optimal value of the objective function. Consider the results
for Example 6.1 and compare Tables 6.4 and 6.7. As we noted, the EDD
sequence yields E[Lmax] = 5.5, whereas in the deterministic counterpart, EDD
yields Lmax = 5. Based on this comparison, it might intuitively seem as if the
deterministic counterpart should yield an objective function no greater than
that in the original stochastic problem, but that is not the case for all objectives.
In Table 6.4, we found E[U] = 2.8, whereas Table 6.7 yields a deterministic coun-
terpart withU = 3.0. These examples illustrate that we cannot always rely on the
deterministic counterpart to produce solutions to stochastic scheduling pro-
blems, although it happens to be valid for the F-problem and the L-problem.

Table 6.7

Objective F Cmax L Lmax T Tmax U

EDD 69 25 9 5 11 5 3
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6.4 Minimizing the Maximum Cost

In this section, we examine the stochastic counterpart of the Tmax problem, or
its more general form, minimizing the expected maximum cost. (Recall the
problem described in Section 3.1.) At the outset, keep in mind that the expected
maximum cost is not necessarily identical to the maximum expected cost.
However, minimizing the latter objective appears to be easier. For minimizing
the maximum expected cost, Z =max{E[g1(C1)], E[g2(C2)], …, E[gn(Cn)]}, the
solution is given by a direct generalization of Theorem 3.1.

∎ Theorem 6.4 When the objective is to minimize the maximum expected
cost, job i may be assigned the last position in sequence if E[gi(P)] ≤ E[gk(P)]
for all jobs k i, where P denotes the time to complete all jobs.

Proof. By assumption, processing times do not depend on the job sequence
(condition C2), so the distribution of P does not depend on the sequence.
Because gi is nondecreasing, E[gi(t)] is also nondecreasing in t. Therefore, we
can replace gi(P) by E[gi(P)] for all i and apply the reasoning in the proof of
Theorem 3.1. □

Now consider the following special case:

gj Cj = 1 Cj > dj

= 0 Cj ≤dj

Here, we have

Pr Cj > dj = Pr job j is tardy = E gj Cj

This set of relationships proves the following corollary of Theorem 6.4.

Corollary 6.1 The EDD sequence minimizes the maximum tardiness
probability.

As another way of looking at this result, suppose we define the service level for
job j as Pr{Cj ≤ dj}, the probability that the job is on time. Then Corollary 6.1 also
states that the EDD sequence maximizes the minimum service level.
To exploit Theorem 6.4, we still need a procedure to implement the result of

the theorem as it applies to sequencing, and we can use the sample-based
approach. To solve an instance with a given sample, we initially take P as the
sum of the n elements in each row. If we calculate gi(P) for each job in each
row, then the average of these results estimates E[gi(P)]. At the first scheduling
stage, we can select the job with the minimal average and schedule it last. At the
next scheduling stage, P is reduced for each row by the processing time of the
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job that has just been scheduled. To illustrate this procedure in a numerical
example, we introduce the following form of the cost function gi(t):

gj t = δ t−dj aj + bj t−dj

where aj, bj ≥ 0 and aj + bj > 0; δ(x) = 1 if x > 0, and δ(x) = 0 otherwise. Equiva-
lently, gj(Tj) = δ(Tj)(aj + bjTj). By selecting the parameters aj and bj appropri-
ately, we can produce a variety of models. For example, if aj = 0 and bj > 0 for
all j, then the cost is equal to a job’s weighted tardiness. If bj = 0 and aj > 0
for all j, then the cost is equal to a job’s weight if it is tardy. The special case
bj = 0 and aj = 1 for all j corresponds to the U-problem.

∎ Example 6.3 Consider a problem containing n = 5 jobs with stochastic
processing times. The due date and expected processing time for each job
are shown in the following table.

Job j 1 2 3 4 5

E[pj] 3 4 5 6 7

dj 8 5 15 20 12

Furthermore, the processing time distributions are the same as in Example 6.1,
with four equally likely states of nature.

State Job j 1 2 3 4 5

GG pj 2.6 3.5 3.8 3.2 6.4

GB pj 2.8 3.9 4.4 5.5 6.6

BG pj 3.2 4.1 5.6 6.5 7.4

BB pj 3.4 4.5 6.2 8.8 7.6

In addition, the parameters of the cost function gj(Tj) = δ(Tj)(aj + bjTj) are given
in the following table.

Job j 1 2 3 4 5

aj 2.0 3.0 4.0 5.0 1.0

bj 0.8 0.4 0.1 0.2 0.3

The analysis for the stochastic data of Example 6.3 is summarized below. Each
stage shows the cost for every relevant job and state combination. Once a job is
placed in the sequence, it is no longer under consideration for subsequent
stages.

6 Sequencing for Stochastic Scheduling140



The last of these stages is trivial, because only one job remains. The proce-
dure is the same at each stage – only the set of jobs under consideration
changes. As shown in Table 6.8, the optimal sequence is 2-1-3-5-4. At each
stage (that is, in each table), the choice is based on the minimum expected cost
in the bottom row, and this value is shown in bold. The maximum of these
values (4.8) gives the optimal value of max{E[gi(P)]}. By way of comparison,
the optimal sequence in the deterministic counterpart is different (2-1-3-4-
5), and the maximum cost is 4.9. (For that sequence, the value of the maximum
expected cost is also 4.9.) But we still don’t know the optimal value of the
expected maximum cost.
We can identify the optimal sequence for both expected maximum cost and

maximum expected cost in one special case. This case occurs when all the cost
functions are ordered such that for any two jobs, i and k, and for all t ≥ 0, either
gi(t) ≥ gk(t) or gk(t) ≥ gi(t). In other words, no two cost functions intersect each
other. When the functions are ordered, their order dictates the optimal
sequence. We have already encountered a special case of this result in the
optimality of EDD for Tmax and Lmax. More generally, we have the following
dominance property.

∎ Theorem 6.5 Consider two jobs, i and k. If gi(t) ≥ gk(t) for any t ≥ 0 and the
objective is to minimize the expected maximum cost, then there exists an
optimal sequence in which job i precedes job k.

Proof. Assume an optimal solution exists in which job k precedes job i
and other jobs are possibly sequenced between them. For any set of n non-
negative processing time realizations, we obtain gi(Ci) ≥ gk(Ci) ≥ gk(Ck). The
first inequality holds by the hypothesis of the theorem; the second inequality
holds because job i completes after job k by assumption. If we insert job k
after job i, letting Ck and Ci denote the completion times after this resequen-
cing, then Ck =Ci and Ci < Ci. It follows that gk(Ck) ≤ gi(Ci) and gi(Ci ) ≤ gi(Ci),
so the objective function cannot increase. Because that is true for any possible
set of realizations, the result does not depend on the processing time
distributions. □

Corollary 6.2 Consider two jobs, i and k. If gi(t) ≥ gk(t) for any t ≥ 0 and the
objective is to minimize the maximum expected cost, then there exists an
optimal sequence in which job i precedes job k.

Corollary 6.2 holds because the proof of the theorem also implies that the
maximum expected value cannot be larger in another sequence. But, unless
all cost functions are ordered, it would be a mistake to assume that the same
sequence minimizes both objective functions. An example helps to underscore
this point.
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Table 6.8

Stage 1 (select job 4 as [5])

Job j 1 2 3 4 5

GG 11.2 8.8 4.5 0.0 3.3

GB 14.2 10.3 4.8 5.6 4.4

BG 17.0 11.7 5.2 6.4 5.4

BB 20.0 13.2 5.6 7.1 6.6

Expected 15.6 11.0 5.0 4.8 4.9

Stage 2 (select job 5 as [4])

Job j 1 2 3 4 5

GG 8.6 7.5 4.1 N/A 2.3

GB 9.8 8.1 4.3 N/A 2.7

BG 11.8 9.1 4.5 N/A 3.5

BB 13.0 9.7 4.7 N/A 3.9

Expected 10.8 8.6 4.4 N/A 3.1

Stage 3 (select job 3 as [3])

Job j 1 2 3 4 5

GG 3.5 5.0 0.0 N/A N/A

GB 4.5 5.4 0.0 N/A N/A

BG 5.9 6.2 0.0 N/A N/A

BB 6.9 6.6 0.0 N/A N/A

Expected 5.2 5.8 0.0 N/A N/A

Stage 4 (select job 1 as [2])

Job j 1 2 3 4 5

GG 0.0 3.4 N/A N/A N/A

GB 0.0 3.7 N/A N/A N/A

BG 0.0 3.9 N/A N/A N/A

BB 0.0 4.2 N/A N/A N/A

Expected 0.0 3.8 N/A N/A N/A

Stage 5 (select job 2 as [1])

Job j 1 2 3 4 5

GG N/A 0.0 N/A N/A N/A

GB N/A 0.0 N/A N/A N/A

BG N/A 0.0 N/A N/A N/A

BB N/A 0.0 N/A N/A N/A

Expected N/A 0.0 N/A N/A N/A
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∎ Example 6.4 Consider the scheduling of two jobs, 1 and 2, with random
processing times and with the following generic cost function parameters.

Job j 1 2

dj 0 2

aj 0 0

bj 0.7 2

The processing time distributions of the two jobs are independent and
identically distributed as follows.

State Job j 1 2 Probability

A pj 1 1 0.5

B pj 2 2 0.5

There are two possible sequences, 1-2 and 2-1. For each possible sequence, there
are four equally likely configurations of the processing times for jobs 1 and 2: AA,
AB, BA, and BB. If we make the required calculations, we find the following:

Sequence 1-2 has a maximum expected cost of 2.
Sequence 1-2 has an expected maximum cost of 2.175.
Sequence 2-1 has a maximum expected cost of 2.1.
Sequence 2-1 has an expected maximum cost of 2.1.

Thus, for minimizing the maximum expected cost, the optimal sequence is 1-2,
and the optimal value is 2. However, for minimizing the expected maximum
cost, the optimal sequence is 2-1, and the optimal value is 2.1. Example 6.4
demonstrates the following proposition.

Proposition 6.1 The sequences that minimize the maximum expected cost
and the expected maximum cost are not necessarily identical.

Although the optimal sequences need not be identical, a useful relationship
exists between them. We state it here but defer the proof until the next section.

∎Theorem 6.6 Suppose S1 and S2 are two sequences (not necessarily distinct)
that minimize the maximum expected cost and the expected maximum cost,
respectively. Let ZL and ZU denote the maximum expected cost and the
expected maximum cost of S1. Then Z2, the objective function value of S2, satis-
fies ZL ≤ Z2 ≤ ZU.

For instance, in Example 6.4, ZL = 2.0 ≤ Z2 = 2.1 ≤ ZU = 2.175. The problem of
minimizing the expected maximum cost does not satisfy the optimality
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principle, and therefore we cannot solve it by dynamic programming. This is the
case because the objective is neither additive nor can it be transformed into an
additive objective. Theorem 6.6, however, allows us to use a branch-and-bound
approach, with ZL and ZU providing lower and upper bounds for partial
sequences.

6.5 The Jensen Gap

In Example 6.1, we saw that the expected value of a maximum is at least as large
as the maximum of the component expected values. This is a special case of a
general rule, known as Jensen’s inequality. For convenience in notation, let

E h g =E h g1 C1 , g2 C2 ,…, gn Cn

and let

h E g = h E g1 C1 , E g2 C2 ,…, E gn Cn

For now, let h denote the maximum function, and with this notation, the exam-
ple indicates that E[max{g}] ≥max{E[g]}. Generally, Jensen’s inequality states
that for any random variable X and any convex function h, we always have
E[h(X)] ≥ h(E[X]). In words, for a convex function, the expected value of the
function is at least as large as the function evaluated at the expected value. Thus,
imagine that we estimate the expected value of a complicated convex function of
some random variable by substituting the expected value of the random variable
and then evaluating the function. The calculations may be simpler, but our esti-
mate would be biased downward. The maximum function is convex, so the
result discussed above is an instance of the convex case. Because Tj is defined
by max{0, Cj − dj}, the same rule applies for the T-problem.
For any function h, convex or not, we refer to the difference E[h(g)] − h(E[g])

as the Jensen gap. In stochastic instances of the Tmax problem and the Lmax prob-
lem, the objective function value often exceeds the value in the deterministic
counterpart and cannot fall below it, so it has a nonnegative Jensen gap. In
the single-machine problem with Cmax, L, or F objectives, the objective function
of the stochastic problem and the objective function of the deterministic coun-
terpart are always the same. This agreement corresponds to a zero Jensen gap,
which occurs when h is linear.
In the E[U] case of Example 6.1, we observed a negative Jensen gap under

EDD: The stochastic objective function is E[U] = 2.8, whereas the deterministic
counterpart is U = 3.0. This case illustrates that the Jensen gap does not have to
be nonnegative in scheduling problems. (The sign of the Jensen gap can be pos-
itive or negative for the U-problem because the objective is associated with a
step function, which is not convex.)
With this background, we are ready to prove Theorem 6.6.
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Proof of Theorem 6.6. By Jensen’s inequality, ZL ≤ ZU. For the same reason, Z2 is
at least equal to the maximum expected cost of S2, which, in turn, is bounded
from below by ZL (due to the optimality of S1). Therefore, ZL ≤ Z2. As for ZU, it
is a feasible expected maximum cost, so it must be an upper bound on the
minimum expected maximum cost. □

6.6 Stochastic Dominance and Association

The expected value of a sum is equal to the sum of its component expected
values. That is, E[Σgj(Cj)] = ΣE[gj(Cj)]. Cast in terms of the previous section,
the sum function is linear, so its Jensen gap must be zero. Its additive structure
enables us to use dynamic programming to find solutions to stochastic pro-
blems when the objective function is a sum. A difficulty arises, however, in gen-
eralizing dominance conditions from the deterministic case to the stochastic
case. Ideally, the most convenient generalization would be to adopt the deter-
ministic counterpart – that is, we would like to use E[pj] instead of pj in the var-
ious dominance conditions. However, this approach turns out to be unreliable.

∎ Example 6.5 Consider the problem of sequencing two jobs with stochastic
processing times and the objective of minimizing expected total tardiness.

Job j 1 2

dj 2.9 3

E[pj] 1.9 2

The processing time distributions of the two jobs are distributed as follows.

State Job j 1 2 Probability

A pj 1 2 0.9

B pj 10 2 0.1

If we replace pj by E[pj], the two jobs have agreeable parameters. In the deter-
ministic counterpart, therefore, we apply condition (a) of Theorem 3.3 and
sequence job 1 first. This yields T = 0 with probability 0.9 and 16.1 otherwise,
so that E[T] = 1.61. But if we reverse the sequence, T is 0.1 with probability 0.9
and 9.1 otherwise, so E[T] = 1. The example demonstrates the following.

Proposition 6.2 The stochastic T-problem and its deterministic counterpart
may not be optimized by identical sequences, and dominance conditions that
apply for the deterministic counterpart are not necessarily valid in the stochastic
case.
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To summarize, we can use general combinatorial optimization methods to
solve for the optimal sum of expected values, and the result will also minimize
the expected value of the sum. However, because deterministic dominance rela-
tionships may not apply, we should expect these methods to take longer in the
stochastic case than in the deterministic case. For this reason, we would like to
identify circumstances under which counterpart dominance rules would
still hold.
When E[p1] ≤ E[p2], we say that p1 is (weakly) smaller than p2 by expectation.

We also write p1 ≤ex p2. Example 6.5 demonstrates that p1 ≤ex p2 is not sufficient
to generalize deterministic dominance rules requiring p1 ≤ p2, because the
worst-case realization of p1 could be larger than that of p2. However, stochastic
ordering relationships exist that preclude a worst-case reversal. We say that one
random variable, X, is stochastically smaller than another, Y (denoted X ≤st Y), if
Pr{X ≤ t} ≥ Pr{Y ≤ t} for any t. This implies that the cdf of X, FX(t), is at or above
the cdf of Y, FY(t). That is, FX ≥ FY everywhere. We also refer to this relationship
as stochastic dominance, and if it applies to several pairs of random variables, we
say that they are stochastically ordered (because the dominance relationship is
transitive). Stochastic dominance is a strong relationship in the sense that ≤st
implies ≤ex. A useful way to visualize this relationship is to recall that the
expected value of a nonnegative random variable is given by the area above
its cdf below 1 and to the right of the origin (see Figure 6.1). However, if FX ≥ FY,
then the area above FX cannot exceed the area above FY. Therefore, the expected
value of X cannot exceed the expected value of Y.
The definition of ≤st does not require statistical independence. For example,

let X and Y be two independent and identically distributed (iid) random vari-
ables, and let Z be any nonnegative random variable (including the degenerate
case, in which Z = 0 with certainty). Then X ≤st Y + Z and X ≤st X + Z. The first
relationship holds between independent random variables. When Z = 0 with
certainty, we have that iid random variables X and Y are each stochastically
smaller than the other. But in the second relationship, X and X + Z are statis-
tically dependent because of a common element shared by the two random vari-
ables. When random variables are positively correlated as a result of common
causes of variation affecting more than one of them in the same direction, they
satisfy the definition of associated random variables. Random variables are asso-
ciated if the correlation between any positive nondecreasing functions of each is
nonnegative. Independent random variables are associated, but negatively

FX

E[X ] 

Figure 6.1 Depicting the
expected value as an area
above the cdf.
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correlated ones are not. Association may arise not only by adding the same
random variable to two or more independent random variables but also by mul-
tiplying two or more positive random variables by the same positive element.
We introduce associated processing times because in practical settings,

common causes of variation often affect more than one job in the same
direction. For example, if a regular worker is faster than the replacement and
the regular worker will be sick tomorrow with some positive probability, then
for scheduling purposes, a positive dependence is introduced among all of
tomorrow’s processing times. As another example, if the quality of a particular
tool deteriorates, then the jobs that require it may all take longer. In general,
various causes are likely to introduce positive dependence among different
subsets of jobs.
When processing times behave as associated random variables, the comple-

tion time variance is higher than for independent random variables, for all but
the first job. For independent random variables, the variance of a sum equals the
sum of the variances. But, by definition, two associated random variables have a
nonnegative covariance, and the variance of a sum with positive covariance is
higher than the sum of the variances. So, in effect, the independence assumption
is optimistic for the variance of a completion time. Finally, if two jobs have
processing times that are associated, then their costs are also associated because
the cost functions are nondecreasing. This relation, in turn, implies that the
variance of performancemeasures based on processing times that are associated
random variables is also higher than the variance for independent proces-
sing times.
Two nonnegative random variables, X and Y, are linearly associated if there

exist four independent nonnegative random variables, R, S, Z, and B, and two
nonnegative parameters, α and β, such that X = (R + αZ)B and Y = (S + βZ)B.
If we set α = β = 0 and B = 1 with certainty, then X = R, Y = S, and they are inde-
pendent by assumption (and thus associated). At the other extreme, if R and S
are 0 with certainty, thenX and Y are proportional (and thus associated). Here, B
models a multiplicative bias shared by X and Y, whereas Z represents any
additive element they may share. In what follows, we assume linear association.
Furthermore, we treat the special case α = β = 1. Less restrictive assumptions
may suffice, but this one is simple to present yet still more realistic than the
independence assumption.

∎ Theorem 6.7 If X and Y are linearly associated, that is, X = (R + Z)B and Y =
(S + Z)B where R, S, Z, and B are independent nonnegative random variables,
then X ≤st Y if and only if R ≤st S, and X ≤ex Y if and only if R ≤ex S.

Theorem 6.7 allows us to generalize existing results based on statistical inde-
pendence to the case of linearly associated random variables. For example, it can
be shown that if p1 ≤st p2, where p1 and p2 are independent, then Pr{p1 ≤ p2} ≥ 0.5.

6.6 Stochastic Dominance and Association 147



We can extend that result to stochastically ordered, linearly associated
random variables. Furthermore, if p1 ≤st p2, then E[(p1 − t)+] ≤ E[(p2 − t)+].
To demonstrate this inequality, consider that E[(pj − t)+] is the area above the
cdf of job j and below 1 to the right of t (Figure 6.2). Because the cdf of the sto-
chastically smaller random variable is above the other, the relevant area must be
smaller. This argument, as stated, is correct forS andT, but it is inheritedbyX and
Y through linear association. So, informally, it is a good bet to assume that p1 ≤ p2
in this case. However, Example 6.5 demonstrates that it is not necessarily a good
bet when all we know is that p1 ≤ex p2. The relationship in that case was by expec-
tation, but without stochastic dominance. Example 6.5 is predicated on the fact
that the worst-case performance of p1 was worse than the worst-case perfor-
mance of p2. But when the two processing times are stochastically ordered, such
a worst-case reversal cannot happen.

∎ Theorem 6.8 In the Tw-problem, let jobs 1 and 2 satisfy p1 ≤st p2, d1 ≤ d2,
and w1 ≥w2, then job 1 precedes job 2 in an optimal sequence. Furthermore,
if we subject the jobs to linear association, the result remains true.

Proof. In Figure 6.3 (which elaborates on Figure 6.2), the expected tardiness of a
job is depicted as a tail to the right of its due date, above the distribution that
applies to it and below the upper horizontal line of 1. The relevant distributions

F1

E[(p2–t)+] – E[(p1–t)+]

F2

t

E[(p1–t)+]

Figure 6.2 E[(p1 − t)+] and E[(p2 − t)+] as areas.

F1

F1+2

d1 d2

F2

Figure 6.3 Comparing two sequences with stochastic dominance.
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are either Fk if job k is scheduled first (k = 1, 2) or F1+2 if job k is scheduled sec-
ond. These three distributions also reflect any preceding jobs that have already
been scheduled or any jobs scheduled between jobs 1 and 2. As the figure shows,
job 1 is stochastically smaller and has a lower due date, per the condition of the
theorem. Let TF,d denote the area of the tail above distribution F (where F = 1, 2
or 1 + 2) to the right of due date d (where d = 1, 2). TF,d measures an expected
tardiness; for instance, T1+2,1 is the expected tardiness of job 1 if it is sequenced
second and is thus subject to the completion time distribution F1+2. We start
with the sequence 1-2, assuming the two jobs are adjacent. By an adjacent pair
interchange, the tardiness cost of job 1 increases by w1(T1+2,1 − T1,1) ≥
w1(T1+2,2 − T1,2), whereas the tardiness cost of job 2 decreases by w2(T1+2,2 −
T2,2) ≤w2(T1+2,2 − T1,2). But because w2 ≤w1, w2(T1+2,2 − T1,2) ≤w1(T1+2,2 −
T1,2), so the gain is bounded from above by a lower bound of the loss
and the change cannot decrease but may increase the total weighted tardiness.
Now allow additional jobs (which need not be stochastically ordered) between
jobs 1 and 2. If we interchange the two jobs, all these intermediary jobs will
follow a stochastically larger job so their expected tardiness cannot decrease.
Hence, such jobs cannot provide incentive to perform the interchange
either. To show that linear association will not change the result, invoke
Theorem 6.7. □

Corollary 6.3 For linearly associated processing times that are stochastically
ordered, if expected processing times and due dates are agreeable for all pairs of
jobs, then the expected total tardiness E[T] is minimized by SEPT sequencing
with ties broken by EDD (or, equivalently, by EDD with ties broken by SEPT).

Although Theorem 6.8 generalizes one dominance condition subject to a
relatively strong assumption, even with this assumption in place, it remains
difficult to generalize other deterministic dominance conditions. For example,
generalizing Theorem 3.2 requires that a job will not be tardy with probability
one. Hence, we are still left with the conclusion that the optimal solution to sto-
chastic problems will always take significantly longer to find than the solution to
their deterministic counterparts.

6.7 Using Analytic Solver Platform

In Chapter 4, we introduced an Excel-based approach for solving deterministic
sequencing problems, using the Evolutionary Solver in Analytic Solver Platform
(ASP). In Section 6.2, we introduced a sample-based approach for solving
stochastic problems. In this section, we return to ASP and describe how its
simulation capability can facilitate sample-based analysis.
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Once ASP has been installed, it provides a specialized set of commands on the
drop-down menus of its ribbon, as shown in Figure 6.4. We illustrate the use of
these capabilities with an example.

∎ Example 6.6 Consider a problem containing n = 5 jobs with stochastic
processing times and known due dates. For each job, the processing time follows
a lognormal distribution with mean value and standard deviation as given in
the table.

Job j 1 2 3 4 5

E[pj] 2 3 1 6 4

σj 1.4 1.8 0.8 2.4 2.0

dj 12 7 4 10 6

The first step in building a suitable Excel model is to construct the spreadsheet
for the deterministic counterpart, as discussed in Section 4.8. The deterministic
model is modified slightly, as shown in Figure 6.4, and contains two identical
rows. Row 6 (Mean time) and row 8 (Outcome) initially contain the same data
– mean processing times for the jobs. Row 7 contains the standard deviations,
which would not apply in the deterministic case. However, when we convert to
the stochastic model, row 8 holds probabilistic outcomes. In other words, we
want the entries in row 8 to behave like lognormal random variables.
To incorporate probabilistic features into the model using ASP, we first place

the cursor on cell C8 and select SimulationModel > Distributions > Common >

Figure 6.4 Spreadsheet layout for the deterministic counterpart.
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LogNormal. ASP displays a probability distribution function (pdf ), as shown in
Figure 6.5, and in the Parameters window on the right, we can specify the mean
and standard deviation by referencing cells C6 and C7, respectively. These are
relative addresses, so when we copy cell C8 and paste the contents to D8:G8,
each of those cells takes the mean and standard deviation from the two cells
directly above it. At this stage, for example, cell D8 contains the formula
PsiLogNormal(D6,D7). (We could equivalently enter this formula in cell
D8 and avoid using the drop-down menu on the ribbon.) Furthermore, the cells
in the range C8:G8 then contain the random samples drawn from the lognormal
distributions; and from these values, the spreadsheet computes the resulting
tardiness in cell H18.
Having incorporated probabilistic descriptions of the inputs, the next step is

to define themodel output so that ASP can save these values during a simulation
run. In the spreadsheet model, we have just one output, the total tardiness, as
calculated in cell H18.We place the cursor onH18 and from the ASP ribbon, we
select Simulation Model > Results > Statistic >Mean. Then, we select the cell
for which to compute the mean (H18) and then the cell where the statistic will
be placed (C11). This selection adds the function =PsiMean(H18) in cell C11.
(We could equivalently enter this formula directly in cell C11 and avoid using
the drop-down menu on the ribbon.)
ASP allows the user to configure a simulation experiment by choosing several

design parameters. The relevant options can be displayed by selecting Options
> Options from the ribbon. (See Figure 6.6.) Most of these options can be left at

Figure 6.5 Lognormal probability distribution function.
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their default values.We usually start by setting the Trials per Simulation param-
eter to 1000. The number of trials corresponds to the sample size in sample-
based analysis. This figure is the number of times that the model output in cell
H18 is recalculated for different random values of the inputs in cells C8:G8. We
also usually select the Latin Hypercube method of sampling, as this represents a
systematic method of sampling that provides more efficient results than if we
used an uncoordinated method for drawing samples.
To execute the simulation run, we select Solve Action > Simulate > RunOnce.

This choice causes ASP to sample from each of the input probability distribu-
tions, calculate the resulting values for the output cell, and repeat for the num-
ber of trials. The status bar at the bottom of the task pane then displays the
message, Simulation finished successfully. In this mode, ASP will not automat-
ically run the simulation when we make another entry. However, if we select
Solve Action > Simulate > Interactive, then ASP is placed in automatic mode,
and a new simulation will be executed whenever the spreadsheet is recalculated.
(Automatic mode is indicated when the light bulb in the Simulate icon appears
in yellow.)
ASP stores the simulation results for the output cell in the cell itself. By

double-clicking on the output cell, we can display the results in various formats.

Figure 6.6 Simulation options in ASP.
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Figure 6.7 shows the frequency distribution, or histogram, for the tardiness
calculated in cell H18.
When the simulation finishes, cells C8:G8 display the processing times drawn

in the last of the 1000 simulated samples. Similarly, cell H18 displays the cor-
responding tardiness value. However, we are more interested in the mean value
of tardiness because that is the objective function for the stochastic counterpart.
We can obtain the simulated mean by placing the cursor on cell H18, selecting
SimulationModel > Results > Statistic >Mean from the ribbon, and then select-
ing cell C11, leading to a display similar to that shown in Figure 6.8. (We can also
record the mean value on the spreadsheet without using the ribbon by entering
the formula =PsiMean(H18) in cell C11.)
The value 23.11 recorded in cell C11 is an estimate of the mean tardiness for

the sequence 2-4-5-1-3. This estimate is subject to sampling error, which
becomes smaller as the number of trials becomes larger. A standard measure
of the precision in this estimate is the confidence interval for the mean. ASP
allows this value to be computed along with the estimated mean, but in a dif-
ferent cell. To place this value in the spreadsheet, we first make sure that the
cursor is on cell H18. Next, from the ribbon, we select Simulation Model >
Results > Statistic >MeanCI and then select cell G11. The formula that appears
in G11 is =PsiMeanCI(H18,0.95), meaning that this is half the width of a
95% confidence interval for the mean in cell H18.
As shown in Figure 6.8, the simulation run produces a value of 0.73 for this

statistic, indicating that there is a 95% chance that the true mean lies within
±0.73 of the estimated value, 23.11. In this case, the confidence interval is about
3.2% of the estimate (on either side), which may or may not be sufficient

Figure 6.7 Summary of simulation results.
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precision for our purposes. If we repeat the simulation with a sample size of
10 000, the confidence interval drops to 0.24 for an estimated mean of 23.21
(or about 1.0% on either side). If this level of precision is adequate for our
purposes, we would keep the sample size set at 10 000.
Having fine-tuned the simulation parameters, we can search for a sequence

that minimizes the expected tardiness. Our search tool is the Evolutionary
Solver, which we introduced in Chapter 4 and for which we provided a default
set of search parameters. In this example, we specify the objective function cell
as C11 (the estimated mean tardiness), which we want to minimize. The
decision variables appear in row 14, and we impose the requirement that they
satisfy the alldifferent constraint. Running the Evolutionary Solver produces the
sequence 3-5-2-1-4, with (estimated) mean tardiness of 8.66.
Integrating simulation with the Evolutionary Solver creates a powerful search

tool for solving stochastic scheduling problems. We refer to the ASP User’s
Guide for additional detail.

6.8 Non-probabilistic Approaches: Fuzzy
and Robust Scheduling

So far, we have restricted our attention to minimizing the expected value of an
objective addressed by a counterpart deterministic model. In this section we dis-
cuss two noncounterpart approaches that have been studied in the literature,
fuzzy scheduling and robust scheduling. However, these methods have not been

Figure 6.8 Displaying the simulation results on the spreadsheet.
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widely applied; their main attraction lies in the mathematical challenges
they pose.
Fuzzy logic is a practical and successful approach for controlling complex

processes by the correct combination of possible adjustments that apply to
multiple measurements. Suppose we need to control temperature and pressure,
and we have several possible levers – or responses –with which to control them.
Furthermore, using any single lever to adjust temperature may affect pressure in
an undesirable way and vice versa. We want to find the right combination of
levers. Before the advent of fuzzy logic, the solution would attempt to build a
controller that could respond to any combination of temperature and pressure
correctly, often a very challenging task. The basic idea of fuzzy logic is that the
usefulness of a particular response depends on the distance from target as per a
continuous function with values between 0 and 1. But similar functions –
known as membership functions – apply to all possible responses. Using those
membership values as weights (which usually requires normalization), one
response is selected randomly and applied briefly; thus, a high weight response
is more likely to be selected. A new measurement then induces new member-
ship values, and a new brief response is selected accordingly. In effect, this
creates a self-adjusting mixed response that has been shown by experience to
work very well. It revolutionized the control of complex processes. That impres-
sive practical success led to numerous attempts to apply fuzzy logic to other
problems, including sequencing and scheduling decisions. However, selecting
a sequence is not akin to the adjustment of a complex process by a mixture
of responses: We cannot correct the choice very frequently based on new mea-
surements. Nonetheless, when we wish to guide a random search with more
than one objective, the fuzzy model may yet prove useful, as in each selection
a different criterion may be selected based on membership weights.
Robust scheduling builds on the principles of decision theory. Decision theory

models traditionally assume a finite set of possible actions and a finite set of out-
come states, giving rise to a list of scenarios. Moreover, the models assume that
the actual realization is included in these scenarios. We refer to this structure as
a scenario model. This form is not appropriate when the number of possible
actions or possible states is quite large or infinite, but in cases similar to Example
6.1, they are conceptually plausible.
A fundamental assumption in decision theory is that most decision makers

are risk averse, which implies they are more concerned with avoiding excessive
losses than with maximizing rewards, and in that respect they prefer conserv-
ative choices. One way to capture this conservatism is to minimize the maxi-
mum possible cost, often called the minimax cost criterion. The minimax
cost criterion is especially attractive when we need protection against worst-
case results and probabilities are not a major consideration. However, most
of the literature on robust scheduling focuses on a relative measure of cost
rather than an absolute measure – namely, regret. Regret is the difference
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between the result achieved by a particular decision in the random state that
ultimately occurs and the best result that could have been achieved in that state.
Decision makers facing uncertainty know that it is impossible to predict the
future or to always select the best possible schedule; however, they might well
assume that their decisions will subsequently be judged based on hindsight,
after uncertainties are resolved. Therefore, the argument goes, risk-averse
decision makers may choose to minimize regret.
But what does minimizing regret actually mean in the context of stochastic

scheduling problems? One interpretation could be that the objective is to
minimize expected regret, with the expectation taken over the distribution of
random outcomes. However, minimizing expected regret is not really a distinct
research area for scheduling, due to the following well-known property.

Property 6.1 For any performance measure, the minimum expected regret is
achieved by minimizing the expected value of the performance measure.

Therefore, this interpretation of minimizing regret does not lead to new concep-
tual challenges because expected-value performance measures have been stud-
ied extensively, as the foregoing sections demonstrate. In addition, the notion of
conservative decision-making usually focuses on worst cases, not probability
distributions. Instead of minimizing expected regret, we can apply the minimax
criterion to regret – that is, seek to minimize the maximum regret. It turns out
that even scheduling problems that are easy to solve when the objective is an
expected value become difficult when the objective is minimax cost or minimax
regret. As an illustration, consider Example 6.7.

∎ Example 6.7 Consider a problem containing n = 5 jobs with stochastic pro-
cessing times. The randomness in processing times is described by four equally
likely states of nature: GG, GB, BG, and BB. Each job has a different processing
time under each state of nature as follows.

State Job j 1 2 3 4 5

GG pj 2.7 3.7 3.4 7.8 6.3

GB pj 2.5 4.9 5.3 4.7 8.2

BG pj 2.6 2.9 4.5 4.8 8.7

BB pj 3.4 5.7 5.6 6.7 5.1

What is the best sequence using a minimax criterion for total flowtime?

For instance, the GG state-specific solution is determined by shortest-first
sequencing of the five processing times that occur in state GG, or 1-3-2-5-4.
The corresponding total flowtime is 58.6 (listed under Best in Figure 6.9). When
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GB occurs, the best sequence is 1-4-2-3-5, with total flowtime of 64.8, and sim-
ilarly for BG (1-2-3-4-5, with total flowtime 56.4) and BB (1-5-3-2-4, with total
flowtime 72.3). These results give rise to the state-specific Regret Table shown
at the bottom right of Figure 6.9.
In the state-specific Regret Table, each row corresponds to one of the four

states, and each column corresponds to one of the sequences that produces
minimum total flowtime in one of the states. The table entry is zero if the total
flowtime for that sequence in that state is actually the minimum for that state.
(For instance, in state BG, the sequence 1-2-3-4-5 produces the total flowtime of
56.4, and this is the minimum for BG.) The table entry is positive if the sequence
does not produce the minimum; in that case, the entry is the difference between
the total flowtime produced and the minimum value for the state. That differ-
ence is the quantitative representation of regret. (For instance, in state BG, the
sequence 1-4-2-3-5 produces total flowtime of 58.6, whereas the minimum for
that state is 56.4, so the regret is measured as the difference, 2.2.) Thus, the
Regret Table shows that, of the four sequences identified so far, the minimax
regret is 2.8, associated with 1-2-3-4-5, as determined by comparing the four
values below the Regret Table. However, in this example, the minimax regret
is actually produced by a sequence that is not one of the four identified so
far. The optimal sequence is 1-3-2-4-5. Its maximum regret is computed by
comparing its Total Flowtime in each state with the Best Flowtime in each state
and recording the differences. The largest difference, 2.7, represents its

Figure 6.9 Calculations for Example 6.7, showing results for the sequence (1-3-2-4-5).
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maximum regret. As the example shows, it is possible that none of the four
state-specific optimal sequences minimizes the maximum regret, and for that
reason it may be necessary to expand the Regret Table and evaluate all possible
sequences to find the optimum, perhaps using one of the optimization methods
described in Chapter 3. Finding the minimax regret is known to be an NP-hard
problem for the F-problem.
When minimax cost is the objective in Example 6.7, a similar analysis applies.

Once again, in this example, theminimax cost is not attained by one of the state-
specific minimax cost sequences. (Finding the minimax cost is also known to be
NP-hard for the F-problem with scenarios.) Instead, an enumerative search is
required to find the optimal sequence, which is 1-3-5-2-4, obtaining a
maximum flowtime of 72.8. In brief, the sequence 1-3-5-2-4 achieves maximum
flowtime of 72.8 and maximum regret of 11.3, whereas the sequence 1-3-2-4-5
achieves maximum flowtime of 75.0 and maximum regret of 2.7. Thus, we can
see from this example that minimax cost and minimax regret are, in general,
optimized by different sequences. To achieve optimal results on one measure
may well require a sacrifice in the other measure. For this reason, it is not
obvious which criterion to use, even when agreement exists that a risk-averse
approach is desirable.
Our analysis so far essentially relies on the scenario model in which the set

of scenarios must be finite and exhaustive. In practice, however, the assump-
tion that we can list all possible scenarios is rarely applicable, and simulated
scenarios are not usable for this purpose because they are not guaranteed to
include the actual outcome. Instead, the range model is an alternative formu-
lation that is suited to instances in which a finite set of exhaustive scenarios
does not exist. In the range model, we specify a range for each realization.
(These ranges represent intervals that are deemed likely to occur, but because
probability distributions are not specified, no clear guidelines exist for deter-
mining them.) In this setting, given any regular performance measure repre-
senting a proxy for cost, solving for the minimax value simply requires
substituting the longest possible processing times into a deterministic model.
Furthermore, if those longest times are not finite, the minimax cost is
unbounded, in which case minimax cost scheduling is neither challenging
nor interesting. But the optimization of minimax regret remains challenging
(and perhaps that is why the term robust scheduling is typically interpreted as
driven by minimax regret rather than minimax cost). Nonetheless, the
minimax regret solution can be found by limiting attention to extreme
realizations in which each processing time lies at either the minimum or
the maximum of its range. Thus, even if we allow for an infinite number of
possible realizations, the range model allows us to consider only 2n realiza-
tions to identify a minimax regret solution. That is, conceptually, we can treat
extreme solutions as exhaustive scenarios. The following example illustrates
the range model.
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∎ Example 6.8 Consider a problem containing n = 4 jobs, with random pro-
cessing times symmetrically distributed between the following minimum and
maximum values.

Job j 1 2 3 4

Minimum 46 42 40 10

Maximum 48 54 58 90

Expected 47 48 49 50

In keeping with the philosophy of risk-averse decision-making, we don’t need to
know the probability distribution for each processing time, but knowledge of
expected processing times allows us to compare the minimax regret solution
to the SEPT sequence. Because it is sufficient in the range model to consider
only extreme realizations, the example problem can be formulated as a sce-
nario-based model with 2n = 16 scenarios. In the data set, the range maxima
and the expected values appear in increasing order when we sequence the jobs
1-2-3-4. This sequence is therefore both the minimax cost sequence and the
SEPT sequence, with E[Fmax] = 560 and E[F] = 480. Because we use ranges, sol-
ving for E[Fmax] here is not more difficult than solving for SEPT, but the two
optimal sequences need not agree in general.
Next consider minimax regret. First, we list the 16 extreme scenarios and for

each one find the best possible total flowtime by taking the processing times in
shortest-first order. Then, for each job sequence, we compare its total flowtime
to the best possible value and record the largest difference for all 16 realizations–
that is, the maximum regret. Finally, we search for the minimum value among
the 4! possible job sequences to identify the minimax regret. In the example, the
minimax regret is 104, achieved by the sequence 1-2-4-3. A comparison of the
16 extreme realizations for this sequence reveals a maximum flowtime of 592.
The summary of these results in Table 6.9 reveals that the two minimax objec-
tives are in conflict, optimized by different sequences. The minimax cost
sequence (1-2-3-4) guarantees total flowtime of at most 560, but with maximum
regret of 134. The minimax regret sequence (1-2-4-3) can reduce this value to
104, but only with exposure to a total flowtime of 592. In other words, the min-
imax regret sequence achieves an advantage (30) over the minimax cost
sequence, but only by risking a larger disadvantage (32) in the worst case. In
addition, the minimax regret sequence sacrifices a small amount (1) in the
expected flowtime. However, because E[F] is an average over all extreme states,
it makes sense to give a reduction in expected flowtime more weight than a
reduction in maximum regret. Furthermore, extensive numerical experience
suggests that theminimax regret sequence can carry amuch higher risk in terms
of expected flowtime than in this example, as we discuss next.
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We ran tests on problem instances containing n = 7 jobs, with ranges gener-
ated randomly. Table 6.10 summarizes the results. We observed, for example,
that the same sequence is optimal for all three objectives in about 30% of the
instances. In the remaining 70%, at least two of the objectives conflicted. In
addition, expected flowtime and minimax regret were in conflict only 35% of
the time, whereas minimax cost was in conflict with one of the other two objec-
tives almost two-thirds of the time. When expected flowtime and minimax
regret conflict, the sacrifice in one objective to optimize the other favors
expected flowtime by almost an order of magnitude, if we value the measures
as equivalent. The strong suggestion is that the SEPT sequence is the best choice
for risk-neutral decision makers and can also serve as a decent heuristic for
either minimax criterion, but the minimax cost sequence is preferred in risk-
averse situations.
In summary, several major problems arise in the pursuit of minimax regret

that make it impractical. First, in the scenario-based approach, practicability
is significantly reduced by the requirement that all possible final outcomes must

Table 6.9

Sequence Maximum cost Maximum regret Expected flowtime

1-2-3-4 560 134 480

1-2-4-3 592 104 481

Difference 32 30 1

Table 6.10

Conflicts Percent (%)

0 30 One sequence optimizes all three objectives

2 35 Expected flowtime and minimax regret are optimized by the
same sequence

2 5 Expected flowtime and minimax cost are optimized by the same
sequence

2 7 Minimax cost and minimax regret are optimized by the same
sequence

3 24 Expected flowtime, minimax cost, and minimax regret are each
optimized differently

100

35 Expected flowtime and minimax regret are in conflict

65 Expected flowtime and minimax cost are in conflict

63 Minimax regret and minimax cost are in conflict
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be listed among the scenarios. That requirement rules out sampling and simu-
lation. Second, solving for either minimax cost or minimax regret under the sce-
nario-based approach is also a challenging combinatorial problem. Third, when
using ranges, there is no “robust”means of identifying minimum andmaximum
values for the ranges guaranteed to work, let alone work for the worst case.
Finally, and most importantly, the minimax regret criterion is not an effective
risk management tool. Instead of ameliorating potentially crippling risks, as
proper risk management should, it provides expensive insurance against rela-
tively affordable risks and often does so while increasing the risk of the
worst-case scenario.

6.9 Summary

When we think about what makes a sequencing problem difficult to solve, we
might conclude, in light of our coverage in previous chapters, that some problems
are difficult because of variation in the data. Problems in which all jobs have the
same weight and require the same processing time are easily solved. In those
cases, either EDD or Algorithm 2.1 can solve all our basic problems (F, T, Lmax,
Tmax, U). Difficulties in finding an optimal sequence arise when parameters are
not identical – that is, when variation is present. Viewed from this perspective,
stochastic problems compound solution difficulties by introducing another
source of variation – that is, random variation – in addition to variation in
due dates or in expected processing times. Consider the following objectives that
are relatively easy to optimize in the deterministic case: F, Fw, L, Lmax,Tmax, andU.

• For Fw (and therefore also for F and L), we can use the deterministic counter-
part to find an optimal solution in the stochastic case – that is, by replacing pj
by its expected value.

• For Lmax and Tmax, ideas developed for the deterministic models in Chapter 2
can be applied in the stochastic case, but we cannot rely on the deterministic
counterpart to give us the objective function value.

• The U-problem resists simple generalization of the deterministic optimal
approach.

• For problems such as T and Tw that are already NP-hard in the deterministic
case, stochastic variation compounds the computational difficulty of finding
optimal solutions by dynamic programming or branch and bound.

In this chapter, we developed several results that reveal the similarities and the
differences between deterministic and stochastic models. In some instances, we
saw that stochastic dominance is sufficient to retain some of the dominance
properties characteristic of deterministic models, but in other cases, even sto-
chastic dominance is insufficient. For this reason, we should not expect meth-
ods such as branch and bound and dynamic programming to solve stochastic
problems of the same size that they can handle in the deterministic case.
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We also showed that in some cases the deterministic approach may be less
applicable. For example, dynamic programming cannot handle the maximum
cost problem because E[max{gj}] is not an additive performance measure. Given
such difficulties in the stochastic environment, it is important to identify effi-
cient solutions, or at least partial solutions, where they exist, and that has been
the main thrust of the chapter. For problems that are beyond the reach of the
methods we have introduced thus far, it remains important to develop practical
heuristic approaches.
To handle general processing time distributions that are not necessarily sta-

tistically independent, we introduced sample-based analysis and showed how to
compare sequences numerically. This approach is inherently more time con-
suming than the use of deterministic counterparts, but it remains practical
and can be implemented in a spreadsheet. Nevertheless, sample-based analysis
is intrinsically a heuristic approach, because a simulated sample cannot repre-
sent a model perfectly; it can identify solutions that are likely to be optimal, but
it cannot guarantee optimality. Furthermore, the use of large samples is an addi-
tional computational burden. For instance, suppose we have a stochastic prob-
lem that we wish to solve by sample-based analysis with a sample of 1000
(roughly 210) using dynamic programming. Then, every function evaluation
takes 1000 times longer than would be the case in the deterministic counterpart.
If we assume the computational requirement in dynamic programming is
roughly proportional to 2n, then a given computational effort will solve for
10 fewer jobs in the stochastic case than in the deterministic counterpart.
For example, if 25 deterministic jobs can be sequenced in half a minute of com-
putation time, only 15 stochastic jobs can be sequenced in the same time.
A similar reduction in tractable problem size occurs with branch-and-bound
approaches.
The availability of user-friendly simulation software, such as ASP, expands the

set of models that we can analyze with a sample-based approach. Thus, if we can
determine an optimal sequence easily but encounter computational difficulty in
evaluating the optimal value of the objective, we can enlist the help of ASP to
make the evaluation easier. More importantly, we can integrate the Evolution-
ary Solver to produce a flexible and effective heuristic procedure for solving sto-
chastic sequencing problems.
We also discussed two other approaches to scheduling under uncertainty,

specifically fuzzy scheduling and minimizing maximum regret. These methods
do not rely on probability distributions for processing times. Dubois et al. (2003)
provide a widely cited survey on fuzzy scheduling, and the seminal paper on
minimizing maximum regret in a scheduling context is due to Daniels and Kou-
velis (1995). However, with respect to these two topics, the gap between
research and practice remains substantial. The literature on minimizing the
maximum cost – which we also discussed – is much more sparse. In
addition, arguably, it emphasizes the importance of the worst case too much
even when it is extremely unlikely. (Similar criticism applies to regret as well.)
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In the next chapter we discuss amore practical approach designed to control the
likelihood of a very bad outcome.

Exercises

6.1 Consider a problem containing n = 5 jobs with stochastic processing
times. The randomness in the processing times can adequately be repre-
sented by three states of nature: good, normal, and bad, with probabilities
of 0.2, 0.5, and 0.3, respectively.

State Job j 1 2 3 4 5

Good pj 5 3 7 6 8

Normal pj 7 6 8 10 12

Bad pj 9 12 10 15 14

dj 10 22 40 31 25

a) Find the minimum value of the expected total flowtime, along with the
sequence that achieves it. Compare the optimal value with that of the
deterministic counterpart.

b) Find the minimum value of the expected maximum tardiness, along
with the sequence that achieves it. Compare the optimal value with
that of the deterministic counterpart.

c) Find the minimum value of the expected number of jobs tardy.
Compare the optimal value with that of the deterministic counterpart.

6.2 Consider a problem containing n = 5 jobs with stochastic processing
times, each of which follows a normal distribution with known mean
and standard deviation.

Job j 1 2 3 4 5

μj 17 20 24 25 30

σj 3 4 2 5 3

dj 60 80 70 50 90

a) Find the minimum value of the expected total flowtime, along with the
sequence that achieves it. Compare the optimal value with that of the
deterministic counterpart.

b) Find the minimum value of the expected maximum tardiness, along
with the sequence that achieves it. Compare the optimal value with
that of the deterministic counterpart.
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6.3 Shown below is a sample of 10 observations for the processing times of n =
5 jobs in a sequencing problem.

Job j 1 2 3 4 5

dj 60 80 70 50 90

Job 1 Job 2 Job 3 Job 4 Job 5

Sample 1 17.79 23.80 19.74 26.90 32.63

Sample 2 15.65 18.34 25.40 14.98 26.80

Sample 3 22.59 18.62 21.75 25.53 30.56

Sample 4 15.29 20.98 22.85 31.80 33.86

Sample 5 15.56 20.39 24.09 22.45 28.16

Sample 6 19.00 18.05 20.28 25.71 28.99

Sample 7 18.00 19.16 20.75 25.02 30.86

Sample 8 18.37 19.06 25.86 24.14 23.24

Sample 9 14.35 14.68 22.69 26.55 24.73

Sample 10 16.61 22.99 20.99 26.12 28.43

a) Find the minimum value of the expected maximum tardiness, along
with the sequence that achieves it.

b) Find the minimum value of the maximum expected tardiness, along
with the sequence that achieves it.

c) Find the minimum value of the expected number of jobs tardy.

6.4 Show that SWEPT is optimal for minimizing E[Fw].

6.5 Consider a problem containing n = 5 jobs with stochastic processing
times. The randomness in the processing times can adequately be repre-
sented by three states of nature: S1, S2, and S3, with probabilities of 0.3,
0.4, and 0.3, respectively.

State Job j 1 2 3 4 5

S1 pj 5 3 7 6 8

S2 pj 7 6 8 10 12

S3 pj 9 12 10 15 14

dj 10 22 40 31 25
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In addition, the parameters of the cost function gj(Tj) = δ(Tj)(aj + bjTj) are
given in the following table.

Job j 1 2 3 4 5

aj 2.0 3.0 4.0 5.0 1.0

bj 0.6 0.3 0.1 0.4 0.3

a) Find the minimum value of the expected maximum cost.
b) Compare the value in (a) with that of the deterministic counterpart.
The proof of the new version of Theorem 6.8 already shows that.

Furthermore, careful reading of the new version of the Theorem shows
that there is no assumption the two jobs must be adjacent (which is
why the proof includes the case of intermediate jobs).

6.6 Consider a problem containing n = 5 jobs with stochastic processing
times, each of which follows a normal distribution with known mean
and standard deviation.

Job j 1 2 3 4 5

μj 17 20 24 25 30

σj 3 4 2 5 3

dj 60 80 70 50 90

a) Find the minimum value of the expected maximum tardiness, along
with the sequence that achieves it. Use ASP and Evolutionary Solver
to produce a solution.

b) Find the minimum value of the maximum expected tardiness, along
with the sequence that achieves it. Does the sequence match the
sequence in (a)?

6.7 Consider the range model with total flowtime criterion and minimax
regret objective. We say that two ranges are ordered if the one with the
smaller or equal lower limit also has a smaller or equal upper limit, with
at least one inequality strict. It can be shown that jobs with ordered ranges
should appear in that order in the optimal minimax regret sequence. (Note
that two unequal ranges are not ordered only if one is strictly nested within
the other, with no equal limit, as is the case for any two ranges in
Example 6.8.)
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a) Suppose all ranges have a lower limit of 0 (or any other equal value).
Show that the minimax cost solution also attains the minimax regret.

b) Suppose processing times are stochastically ordered where the cdf of
job j is Fj(x). Let a and b be small positive numbers such that a +
b < 1, and let the range limits for job j be F −1

j a and F −1
j b – where

if F −1
j x = y then Fj(y) = x – so each range has a confidence level of 1 −

a − b; for instance, for a 95% confidence interval, we may set a = b =
2.5%. Show that SEPT minimizes expected flowtime, minimax cost,
and minimax regret.

c) Suppose all processing times are lognormal with the same cv. Does the
result of (b) apply?

6.8 It can be shown that any two lognormal random variables with the same cv
are stochastically ordered by SEPT. Revisit Example 6.6 but now assume
all jobs have cv = 0.6. Show that job 3 must be first. Are there any addi-
tional dominance conditions in the example that may apply by virtue of
stochastic dominance?
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7

Safe Scheduling

7.1 Introduction

In Chapter 6, our coverage of stochastic scheduling was confined to stochastic
counterparts of models with regular performancemeasures. Indeed, thosemod-
els are the most prominent subjects in the literature on stochastic scheduling.
However, the typical stochastic model misses an important part of the problem:
It fails to account for safety time. To use an analogy, imagine that we attempted
to build stochastic inventory models by relying only on the analysis of average
behavior and making no provisions for safety stock. Just as safety stocks are vital
to practical inventory policies, safety time is vital to practical scheduling poli-
cies. However, the optimal determination of safety time has no counterpart
in deterministic scheduling. Safe scheduling departs from the dominant para-
digm in stochastic scheduling by considering safety time explicitly.
In stochastic inventory theory, safety stocks are usually determined in one of

two ways – by meeting service-level targets explicitly or by minimizing the
expected total cost due to overstocking and understocking and thereby deriving
service-level constraints implicitly. We can use analogous approaches in safe
scheduling, where, as in Chapter 6, processing times are random. To use serv-
ice-level constraints, we replace the deterministic definition of “on time” by a
stochastic one. Define the service level for job j as SLj = Pr{Cj ≤ dj}, the proba-
bility that job j completes by its due date.
Let bj denote a given target for the service level. Then the form of a service-

level constraint for job j is

SLj = Pr Cj ≤ dj ≥ bj

We say that job j is stochastically on time if its service-level constraint is met;
otherwise, the job is stochastically tardy. A complete sequence is called
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stochastically feasible (or just feasible, when the context is clear) if all jobs are
stochastically on time. The use of service-level constraints is simple and popular
in practice. For example, to meet the 8:00 a.m. scheduled departure of the North
bus, a prospective traveler might choose a service-level target of, say, 95% and
then aim to leave home early enough to be stochastically on time. However, rely-
ing on arbitrary service levels may yield inferior economic results. For instance,
depending on the costs involved and the distribution of the travel time to the
station, the 95% target may be suboptimal; a target of 90% might be better,
or perhaps 99% is better. In any event, we should reserve the service-level
approach for cases where the relevant costs are unknown or difficult to estimate.
The alternative to arbitrary service-level constraints is to explicitly consider

economic factors. If we can model the true economic costs of various decisions
and outcomes, then we can look for a schedule that minimizes the expected total
cost. Because a comprehensive economic objective function includes the cost of
creating a buffer as well as the cost of failing to meet due dates, the solution
automatically yields optimal safety. Often, however, we encounter practical pro-
blems of acquiring good cost data, especially when some cost elements are sub-
jective. When costs are hard to identify, we fall back on the service-level
approach.
Both alternatives allow us to incorporate considerations of safety, but they do

not specify the overall scheduling problem. As in the deterministic case, two
major formulations of the safe scheduling problem exist. One formulation treats
due dates (and possibly release dates) as given and determines which jobs to
accept and to reject and how to sequence the accepted jobs. The other formu-
lation treats due dates and release dates as decisions and adjusts those choices in
the process of minimizing expected total cost while accepting all jobs. In either
case, optimal safety time is a by-product of the analysis.
In this chapter, we discuss several problems contained in this framework,

starting with models that take due dates as decisions. We introduce the serv-
ice-level approach in Section 7.2 and examine the trade-off between tardiness
and due date tightness in Section 7.3. As an example of the economic approach,
we study the stochastic version of the E/T problem in Section 7.4, again treating
due dates as decisions. As in all the preceding chapters, we assume processing
times do not depend on the sequence, so the completion time distribution of
any subset of jobs depends only on which jobs are included. We demonstrate
the usefulness of sample-based analysis, which requires no additional assump-
tions, but most of our coverage in those sections also assumes independent and
normally distributed processing times. In Section 7.5 we consider lognormal
processing times. We then turn to safe scheduling models with due dates as
given parameters. In Section 7.6 we look at the possibility of release dates as
decisions. In Section 7.7, we discuss the service-level approach to the stochastic
counterpart of the U-problem, and we introduce the economic approach in
Section 7.8.
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7.2 Meeting Service Level Targets

7.2.1 Sample-based Analysis

In this section, we consider setting due dates to meet a given set of service-level
targets. Recall from Chapter 2 (Section 2.5.1) that when we can set due dates, we
generally want them to be as tight as possible – that is, we wish to minimize

D=
n

j= 1

dj 7 1

while maintaining stochastic feasibility. As an example, we consider a model
with a discrete probability distribution for each of the processing times. We
use the sample-based approach introduced in Chapter 6.

∎ Example 7.1 Consider a problem containing n = 5 jobs, each with its own
service-level target. The stochastic nature of processing times is represented by
10 distinct states of nature, and for each state the processing time of each job is
known. The given information is shown in the following table. The problem is to
find due dates for the jobs that are as tight as possible while meeting each job’s
service-level target.

Job j 1 2 3 4 5

E(pj) 3.00 4.00 4.02 4.04 5.00

Service level 90% 70% 60% 80% 60%

State 1 2.60 2.55 3.50 1.05 3.90

State 2 3.12 4.75 4.20 3.95 5.00

State 3 2.76 3.03 3.70 3.15 4.30

State 4 3.18 5.05 4.35 4.55 5.40

State 5 3.28 5.00 4.30 6.35 5.90

State 6 2.68 2.61 3.60 1.15 4.15

State 7 2.86 2.86 3.80 3.35 4.65

State 8 3.26 4.90 4.25 5.95 5.75

State 9 2.94 4.15 4.10 3.75 4.80

State 10 3.32 5.10 4.40 7.15 6.15

Suppose we fix the job sequence by taking the jobs in nondecreasing order of
their expected processing times, or 1-2-3-4-5. (This is the SEPT sequence, as
defined in Chapter 6.) Knowledge of the job sequence allows us to calculate
the completion time for each job in sequence for each of the 10 states. For
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job j, and for any particular state, the sum of the first j processing times in the
corresponding row of the sample yields Cj, as shown in Figure 7.1. In general, let
Cj(k) denote the value of the kth element in this list when it is sorted smallest to
largest. For the purpose of exposition, we ignore the possibility of ties in the
sorted list. Now suppose that we set dj =Cj(k), for some integer k. Then job j
is early in (k − 1) rows; it is exactly on time in one row (namely, row k); and
it is tardy in the remaining (r − k) rows. In general, even with ties, the serv-
ice-level constraint is satisfied by setting

dj =Cj bjr 7 2

where x denotes the smallest integer greater than or equal to x. In Eq. (7.2) this
integer is the rank of the completion time among the sorted values for job j.
Furthermore, any earlier due date violates stochastic feasibility, and any later
due date is not as tight as possible.
The calculations are summarized in Figure 7.1, which shows the completion

times for each state. For example, to calculate the due date for job 4, its required
service level of 80% leads us to the eighth-ranked completion time (in ascending
order) out of the 10 in the column of completion times corresponding to job 4.
The eighth smallest value is 18.36. The due dates corresponding to the other
service-level targets are shown in the table, leading to D = 62.89.
As this example illustrates, we can determine the tightest due dates that meet

service-level targets provided we already know the job sequence. The sample-
based approach allows us to handle cases in which the processing times are not

Figure 7.1 Detailed calculations for Example 7.1.
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independent. (They are highly correlated in Example 7.1.) Furthermore, when
the sample is produced by simulation, it can be drawn from any distribution,
thus making the sample-based approach widely applicable. However, the more
challenging problem is to find the optimal sequence, a problem that we discuss
later. For the time being, we can easily imagine some logical heuristic rules for
sequencing the jobs.
As noted, the sequence we evaluated corresponds to SEPT. This ruleminimizes

expected total flowtime (Theorem 6.1). We might observe, however, that SEPT
uses information aboutmeans but ignores information about variability and serv-
ice-level targets, so it omits some potentially relevant information. With a bit
more calculation effort, we can sequence the jobs using a so-called greedy algo-
rithm (see Chapter 2, Section 4.2) by augmenting a partial sequence with the job
that produces the smallest increment to the objective function. For minimizingD
subject to stochastic feasibility, this is equivalent to selecting the unscheduled job
with the earliest due date (EDD) if it were to come next.We refer here to the opti-
mal due date for the job, recognizing that this value depends on which jobs have
previously been scheduled. For this reason, the EDD rule is a dynamic rule. In
Example 7.1, EDD yields the sequence 1-3-5-2-4, which achieves D = 65.01.
A sequence is called adjacent pairwise interchange (API) stable if it is optimal

in its API neighborhood. API stability is a necessary condition for optimality,
but the SEPT sequence may not be API stable. In our example, the SEPT
sequence, 1-2-3-4-5, is not API stable, but we can achieve an improvement
by finding an API-stable sequence starting with SEPT. The best possible
improvement is obtained by interchanging jobs 2 and 3, thus obtaining 1-3-
2-4-5, with an objective function value of 62.39. With this sequence as the
new seed, we achieve a further improvement by interchanging jobs 2 and 4,
to obtain 1-3-4-2-5, with an objective function value of 62.21. Finally, interchan-
ging jobs 3 and 4 yields the API-stable sequence 1-4-3-2-5, with an objective
function value of 61.91. As it happens, this sequence is optimal.
As the example demonstrates, performing an API search starting with SEPT

can outperform the greedy heuristic. But the simpler greedy heuristic yields
good results in one important special case, as stated in the following property.

Property 7.1 When all service-level targets are equal (bj = b), the greedy heu-
ristic yields an API-stable sequence.

Proof. At any stage, let job i be the one selected next by the greedy heuristic (that
is, di is the minimal possible due date in the first unscheduled position), and
suppose job k follows directly. If we interchange B-i-k to B-k-i (where B is
the set of all previously scheduled jobs), dk is at least as large as the previous
di, but the new di is equal to the former dk (because the completion time dis-
tribution of the second job is the same and so is its service-level target). Hence,
the sum of the two is minimized by keeping job i ahead of job k, for any k. This is
true for all positions, so the greedy sequence is API stable. □
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7.2.2 The Normal Model

For the time being, we assume that the processing times are independent ran-
dom variables and that, in particular, the processing time for job j follows a nor-
mal distribution withmean μj and standard deviation σj. (See Appendix A.1.3 for
background on the normal distribution.) We use the normal because it is trac-
table, familiar, and plausible for many scheduling applications.
The assumption of normal processing times leads to a convenient result: In

any sequence, the completion time of job j also follows a normal distribution
because the sum of normal random variables is normally distributed. Using
notation, let Bj denote the “before set” or the set of jobs preceding job j in
the schedule. Then Cj follows a normal distribution with mean E[Cj]
= i Bj

μi + μj and variance V[Cj] = i Bj
σ2i + σ2j . To simplify the notation,

we write μBj
for i Bj

μi and σ2Bj
for i Bj

σ2i . Once we know the properties

of the random variable Cj (which depends on the job sequence), we can deter-
mine the optimal choice of dj.
To represent the service-level requirement in the normal case, let zj represent

the standard normal variate at which the cumulative distribution function (cdf )
equals bj. In standard notation, Φ(zj) = bj. Then the appropriate choice for the
due date of job j is

dj = μBj
+ μj + zj σ2Bj

+ σ2j
1 2

7 3

In this expression, the optimal due date dj depends on the previous jobs in
sequence via the set Bj, and the objective function (7.1) can be expressed as

D=
n

j= 1

μBj
+ μj + zj σ2Bj

+ σ2j
1 2

7 4

We can interpret this expression as the sum of two components: expected total
flowtime and total safety time. This interpretation applies to any distribution,
but Eq. (7.4) is specific to independent normal processing times.

∎ Example 7.2 Consider a problem containing n = 5 jobs with stochastic pro-
cessing times. The processing times are independent, each drawn from a normal
distribution with the mean and standard deviation shown in the table, and each
job has been assigned a service level, also shown in the table.

Job j 1 2 3 4 5

E(pj) 20 21 22 23 24

σj 4.0 2.0 3.5 4.5 4.0

bj 90% 80% 75% 80% 70%
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Example 7.2 contains five jobs with given service-level targets and illustrates
the necessary calculations. Suppose we fix the job sequence as 1-2-3-4-5. Then
the optimal due dates can be determined individually for each job. The relevant
calculations are shown in Figure 7.2, as they might be calculated on a spread-
sheet, and we elaborate on the details for job 4.
Job 4 has a mean completion time equal to the sum of the first four mean pro-

cessing times, or 86. To find the variance of its completion time, we sum the
variances of the first four jobs, obtaining 52.5. The corresponding standard devi-
ation is the square root of this figure, or about 7.25. Job 4 has a service-level
target of 80%, corresponding to a z-value of 0.842 in the standard normal dis-
tribution. Thus, using the formula in Eq. (7.3), we can meet the service level by
setting d4 = 86 + 0.842 (7.25) = 92.1. Similar calculations apply for the other
jobs. As Figure 7.1 shows, the sum of the five optimally calculated due dates
is D = 343.2.
Thus, we can make the calculations for the normal case using spreadsheet

technology, provided we already know the job sequence. Once again, we can
explore heuristic rules for finding a good job sequence.
By definition, if our current solution is not API stable, an API neighborhood

search will improve the schedule. As shown in Figure 7.2, the SEPT rule, which
corresponds to the sequence 1-2-3-4-5, achievesD = 343.2. The EDD rule – that
is, the greedy heuristic – yields the sequence 2-3-5-1-4, which achieves

Figure 7.2 Detailed calculations for Example 7.2.
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D = 351.2. Accordingly, we select 1-2-3-4-5 as the seed for our API search. By
interchanging jobs 1 and 2, we reduce the objective function value to 342.7. This
sequence is API stable and turns out to be optimal as well.
In our example, SEPT was not optimal but much better than the greedy heu-

ristic. For large n, a special property applies. A heuristic is asymptotically opti-
mal if, as n grows large, the relative difference between the heuristic solution
and the optimum becomes negligible. More formally, let f(S∗) denote the objec-
tive function value with the optimal sequence, S∗, and let f(SH) be the value asso-
ciated with a heuristic. We say that the heuristic is asymptotically optimal if
[f(SH) − f(S∗)]/f(S∗) approaches 0 as n approaches ∞. That turns out to be the
case for the SEPT heuristic, no matter which distribution applies, as long as pro-
cessing times are independent. To understand why SEPT is asymptotically opti-
mal, recall thatD consists of the expected total flowtime and the sum of all safety
times. Under the independence assumption, and if no single job can dominate
too many other jobs combined, then as n grows large, expected total flowtime
grows at a rate ofO(n2), whereas total safety time grows a rate ofO(n3/2). There-
fore, total safety time becomes negligible compared with expected total flow-
time, which is minimized by SEPT.
We can conclude that, when combining SEPTwith an API search, it is enough

to perform the search on the first several jobs. Due to asymptotic optimality, we
don’t need to worry about the other jobs: As n grows large, SEPT is already an
excellent sequence for the last jobs even without API. Extensive numerical expe-
rience shows that following SEPT by an API neighborhood search on the first
few jobs yields the optimal solution more often than not. As an added touch, we
recommend breaking ties by smallest variance and further ties by highest serv-
ice-level target. Doing so is likely to impose the correct sequence between jobs
with the same mean.

7.3 Trading Off Tightness and Tardiness

7.3.1 An Objective Function for the Trade-off

When due dates are decisions, an inherent trade-off arises. If due dates are cho-
sen to be very loose, it may be possible to complete all required work on time,
but the resulting schedule may also be inefficient. On the other hand, if due
dates are chosen to be very tight, the schedule may be efficient, but due dates
may be missed too often, and jobs may be excessively tardy. In the previous sec-
tion, we avoided excessive tardiness by imposing service-level constraints that
force sufficiently loose due dates. In this section, we seek a balance between tight
due dates and job tardiness. The trade-off between due date tightness and job
tardiness is captured by an objective function that combines a due date compo-
nent with a tardiness component:
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G d =D+ γ
n

j= 1

max 0,Cj−dj

G d =
n

j=1

dj + γ
n

j= 1

Tj

7 5

We write G(d) as shorthand forG(d1, d2,…, dn). We can also rewrite Eq. (7.5) as
a total of job-by-job contributions to the overall objective:

G d =
n

j=1

Gj dj =
n

j=1

dj + γTj 7 6

In this expression, the term Gj(dj) represents the contribution of job j. The
parameter γ arbitrarily determines the weight given to total tardiness relative
to the sum of the due dates. As we shall see, the choice of γ determines the
optimal service level for the jobs.
In the deterministic single-machine model, it is not difficult to minimizeG(d).

In Eq. (7.6), we can write dj + γTj =max{dj, (1 − γ)dj + γCj}, so that for a fixed
sequence, if γ ≤ 1 then G(d) is minimized with dj = 0 (assuming due dates are
constrained to be nonnegative). On the other hand, if γ > 1 then G(d) is mini-
mized by setting dj =Cj. In both cases G(d) is proportional to the sum of the
completion times (which equals total flowtime, F): For γ > 1,G(d) = F (with zero
tardiness), whereas for γ ≤ 1,G(d) = γF (because dj = 0 so total tardiness is F). To
minimize F, we sequence the jobs according to shortest processing time (SPT).
In the stochastic version of this problem, the objective is to minimize the

expected value of the function in Eq. (7.6), which may be expressed as

H d =E G d =
n

j=1

dj + γE Tj 7 7

In this form, each job contributes Hj(dj) = dj + γE[Tj] to the total. The problem
consists of finding a set of due dates and a sequence of the jobs that produces the
minimum value of H(d) in Eq. (7.7).

7.3.2 The Normal Model

As in the deterministic counterpart, we know that when γ ≤ 1, the due dates should
be set to zero (and H(d) = γE[F] ≤ E[F], which is minimized by SEPT), so in what
follows we assume γ > 1. As in Section 7.2.2, we assume that the processing times
pj are independent and follow a normal distribution with mean μj and standard
deviation σj. This means that the completion time of job j follows a normal distri-
bution and that the expressions for E[Cj] andV[Cj] apply aswell.Oncewe know the
properties of the random variable Cj, we can determine the optimal choice of dj.
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Let zj = (dj − E[Cj])/(V[Cj])
1/2 be the standardized due date, and use asterisks to

denote optimal values. Because γ does not depend on j, the optimal standardized
due date is the same for all jobs, so we may write it without an index.

∎ Theorem 7.1 Given the mean and standard deviation of the normal distri-
bution for Cj, the optimal choice of the due date dj is given by

Φ z∗ =
γ−1
γ

As before,Φ(∙) denotes the standard normal cdf or, equivalently, the probability
(SLj) that job j completes on or before its due date. In other words, the optimal
service level for job j is given by the ratio (γ − 1)/γ. This result is a version of the
well-known critical fractile rule, sometimes also called the newsvendor property
of inventory theory. (See Appendix B for details on the critical fractile rule.)
Theorem 7.1 implies that the appropriate choice for the due date of job j is

dj = μBj
+ μj + z

∗ σ2Bj
+ σ2j

1 2
7 8

In this expression, as in Eq. (7.3), the due date dj depends on the previous jobs in
sequence1 via the set Bj, and our objective is summarized in Eq. (7.7). From the
algebra of critical fractile analysis with the normal distribution (see Appendix
B), we can rewrite Eq. (7.7) by incorporating the optimal choice of dj. The objec-
tive becomes

H d∗ =
n

j=1

μBj
+ μj + γϕ z∗ σ2Bj

+ σ2j
1 2

7 9

In this formula, ϕ(z∗) is the standard normal probability density function cor-
responding to the optimal service level of Theorem 7.1. As in Eq. (7.4), the
objective function is composed of the expected total flowtime and a safety time
component.

∎ Example 7.3 Consider a problem containing n = 5 jobs with stochastic pro-
cessing times as described in the following table.

Job j 1 2 3 4 5

E(pj) 24 25 26 28 30

σj 8 7 4 5 6

1 A small value of γ may theoretically lead to a negative due date, but such cases reflect the
limitations of the normal probability model, so we ignore them.
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The processing times are independent, each drawn from a normal distribu-
tion with the mean and standard deviation shown in the table. In addition,
γ = 10.

In this model, the greedy heuristic yields an API-stable sequence. In effect,
Property 7.1 extends to the tightness/tardiness trade-off and applies for any
probability distribution. In this example, we have (γ − 1)/γ = 0.9, so the optimal
service level is 90%, and the corresponding z-value is 1.282, for which γϕ(z∗) =
1.75. Using this value in Eq. (7.9), we can calculate the potential contribution of
all five jobs in the first position (with Bj empty); that is, we compare the values μj
+ 1.75σj of the five jobs and, in the spirit of the greedy algorithm, select the smal-
lest. This means job 3 is scheduled first. For the second position, we have μB = 26
and σ2B = 16, so we consider the four unscheduled jobs and compare values of

26 + μj + 1 75 16 + σ2j
1 2

from Eq. (7.9). Accordingly, we schedule job 2 next,

update Bj, and continue in the same manner. The final greedy heuristic
sequence is 3-2-1-4-5, with an objective value of 475.1. The detailed calculations
are shown in Figure 7.3.
Although we have introduced the tightness/tardiness trade-off as a new

model, its relation to the model of Section 7.2 is revealing. When we compare
the objective functions, H(d∗) in Eq. (7.9) withD in Eq. (7.4), we can see that the

Figure 7.3 Detailed calculations for the jobs in Example 7.3.
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two functions are structurally similar. We can express their common form as
follows:

Objective =
n

j= 1

μBj
+ μj + θ σ2Bj

+ σ2j
1 2

7 10

In this expression, which applies for the case of normal distributions, either θ =
z, as in Eq. (7.4), for minimizing the sum of stochastically feasible due dates, or θ
= γϕ(z∗), as in Eq. (7.9), in the optimal tightness/tardiness trade-off. For a given
θ, the same sequence will be optimal for both models, but the service levels, and
therefore the due dates, will not be the same for both models: The trade-off
model requires lower service levels.

7.3.3 A Branch-and-bound Solution

As Examples 7.2 and 7.3 illustrate, we can determine the value of H(d∗) in
Eq. (7.9) provided we already know the job sequence. But the more challenging
problem, which we examine next, is to find the optimal sequence.
We attack the sequencing problem with a branch-and-bound approach,

although the details differ from the B&B approach of Chapter 3. In particular,
we build a job sequence from the start of the problem (not from the end, as in
Chapter 3). Thus, each partial sequence specifies the ordered subset of jobs at
the beginning of the schedule. If we let π represent a partial sequence of jobs,
and P(π) represent the subproblem of optimally completing the partial
sequence, then the forward-looking branching scheme takes the form of the tree
shown in Figure 7.4, depicting each node as corresponding to a problem in
which the initial partial sequence has been specified. (A comparison with
Figure 3.4 reveals that the essential difference lies in the direction of augmenting
partial sequences.)
The branching tree starts with the empty sequence and the corresponding

problem P(0) at Level 0. Level 1 of the tree contains n nodes P(1), P(2), …,
P(n), according to the choice of the first job in sequence. At Level k of the tree,
the first k positions in sequence have been assigned. With the partial sequence
known, we can calculate the mean and variance of each completion time Cj in
the partial sequence and evaluate contributions to the objective function in
Eq. (7.9) made by the jobs in the partial sequence.
Finally, if we fill out the entire tree, Level n contains all n! possible sequences.

The best of those sequences is the optimal solution. However, the computa-
tional effort required to enumerate all those partial and full sequences can
become prohibitive for large values of n, so the purpose of a B&B algorithm
is to limit the enumerative task where possible by exploiting patterns in the
parameters of the problem instance. Techniques for this purpose include
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dominance properties, adjacent pairwise interchanges, lower bounds, and an
initial solution.
Static Dominance. The basic dominance condition between two jobs, i

and j, states that an optimal solution exists in which job i precedes job j.
In other words, when searching for an optimal sequence, we need not
consider any sequences in which job j appears in sequence before job i.
A dominance property is static if it holds independently of the other jobs
in the schedule. For example, a job dominates another if it has smaller mean
and variance.

Property 7.2 If μi ≤ μj and σi ≤ σj then an optimal schedule exists in which job i
precedes job j.

Even when one job does not have a smaller mean and variance, it may still dom-
inate another based on the relative differences in the two means and variances.

Property 7.3 If μi < μj and μj − μi ≥ θ(σi − σj) then an optimal schedule exists in
which job i precedes job j. (A sufficient condition is μj − μi ≥ θσi.)

P(0)

P(1) P(2)

P(23)

P(π)

P(21)

P(n)

P(2n). . .

. . .

. . .. . .

. . .
. . .

Figure 7.4 A portion of the branching scheme (B&B tree) for an n-job problem.
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Properties 7.2 and 7.3 can be proven with pairwise interchange arguments.
Satisfying Property 7.2 implies satisfying Property 7.3, but not the other way
around, so it is efficient to check Property 7.2 first. These static dominance con-
ditions can be evaluated once at the outset and then applied as needed during
the generation and evaluation of partial sequences. Furthermore, if job j is domi-
nated by job i by virtue of the sufficient condition of Property 7.3, then every job
beyond job j in SEPT order is also dominated.
If we are augmenting a partial sequence and we find that job i dominates job j

while neither appears in the partial sequence, then we need not consider the
augmented partial sequence constructed by appending job j next. That is, only
jobs that are not dominated by other unscheduled jobs have to be considered.
Dominance conditions can reduce the search effort required to find an optimal
schedule, but the extent to which dominance conditions apply may depend on
the specific data in a given problem instance. For that reason, it is difficult to
predict their effectiveness at curtailing the search effort.
Adjacent Pairwise Interchanges. We have already seen that requiring API sta-

bility can be helpful for heuristic applications. The same often applies to B&B as
well. Suppose that job j appears immediately after job i somewhere in the
sequence, and consider the conditions under which it would be better to inter-
change the two jobs. The completion times of jobs not involved in the inter-
change are unaffected by the swap, so the overall objective is improved if and
only if the total contribution from jobs i and j is improved. The mean time
to process the jobs preceding i and j can be denoted by μB and the variance
of that time by σ2B.
For the sequence i-j, the contribution of the two jobs to the objective is

h i, j = μB + μi + θ σ2B + σ
2
i

1 2
+ μB + μi + μj + θ σ2B + σ2i + σ2j

1 2

The expression h(j,i), for the reverse sequence j–i, is similar, and the change in
the objective due to the interchange is

gij σ
2
B = h j, i – h i, j = μj−μi + θ σ2B + σ

2
j

1 2
− σ2B + σ2i

1 2
7 11

Using Eq. (7.11), the interchange is undesirable (and the i–j order is at least as
good as the reverse) as long as gij(σ2B) ≥ 0, which we call the API condition.

∎ Theorem 7.2 A necessary condition for a sequence to be optimal is that
every pair of adjacent jobs i and j (with j following i) satisfies the API condition,
gij(σ2B) ≥ 0.

Unfortunately, the API condition does not lead to a universal rule for determin-
ing whether j should follow i because the condition depends on σ2B and therefore
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on the jobs making up the partial sequence that precedes i and j. Nevertheless,
the API condition can be used to eliminate some partial sequences and therefore
curtail an enumerative search. Specifically, suppose that we are about to aug-
ment a partial sequence π by appending job i. Suppose further that the last
job in π is job j. If the API condition holds, then the augmented sequence πi
is dominated and can be eliminated.
For another perspective on the API condition, assume jobs i and j are in strict

SEPT order (μi − μj < 0) but σ2i −σ
2
j > 0. In this case, Property 7.2 does not apply,

and Property 7.3 may or may not hold, depending on θ. Under those conditions,
Eq. (7.11) is monotone decreasing in σ2B, so there exists a threshold value
σ2B i, j ≥ 0 for which the optimal sequence of jobs i and j, if adjacent, switches
from j–i to i–j. We can calculate this value in advance by,

σ2B i, j = max 0,
θ

2

σ2i − σ2j
μj−μi

+
μj−μi
2θ

2

−σ2i 7 12

As we add jobs to a partial sequence, the value of σ2B increases. Once it reaches
the threshold for (i, j), we never have to consider a partial sequence in which job
i immediately follows job j.
Lower Bounds. Suppose that we have a partial sequence π and we wish to com-

pute a lower bound on the value of the objective function that can be obtained
by completing the sequence. The component of the objective function corre-
sponding to the jobs j in π has already been determined from Eq. (7.10). Let
π denote the set of unscheduled jobs. In the set π , we take the set of means
μj in smallest-first order and take the set of standard deviations σj in smal-
lest-first order and treat these values as if they were paired. Then we calculate
the values of Hj(dj) generated by these fictitious jobs and add them to the com-
ponent for the partial sequence. This total is a lower bound on the value that
could be achieved by completing the partial sequence in the best possible
way. (A formal proof follows a pairwise interchange argument.)
Thus, if we ever encounter a partial sequence π for which the lower bound on

the value of the objective function is greater than or equal to the value for a
known sequence, we conclude that completing π can never lead to a full
sequence with a better value than the known sequence. Such a condition, which
amounts to fathoming P(π), tells us that we do not need to solve P(π), and we can
thus eliminate it and curtail the tree search.
Initial Solution. Given that we are using a B&B algorithm, it makes sense to

begin by finding a good initial solution that can be effective at fathoming partial
sequences with relatively few jobs. That is, we can implement a heuristic pro-
cedure to construct a feasible solution before the tree search begins, on the
chance that a good feasible solution may eliminate some partial sequences
and reduce the search effort. For this purpose, we can implement a sorting rule,
such as SEPT, or, with additional computational effort, the greedy heuristic.
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As an example, we apply the B&B approach to Example 7.3 using these tools,
starting with a heuristic initial solution. Suppose we implement SEPT, which
corresponds to the sequence 1-2-3-4-5 and yields an objective function of 482.6.
Next, we investigate static dominance properties. In this example, Property

7.2 reveals that job 4 dominates job 5 and job 3 dominates both job 4 and
job 5. Property 7.3 reveals that jobs 1 and 2 dominate job 5.
We begin the tree search starting with P(0), the empty sequence. The candi-

dates for first position in sequence are only jobs 1, 2, and 3 because the other
jobs are dominated. Thus, the first level of the tree contains P(1), P(2), and P(3).
The detailed calculation of the lower bound for P(2) is shown in Figure 7.5. For
this calculation, the initial partial sequence contains job 2 followed by four fic-
titious jobs (F1–F4) characterized by increasing means and variances. Similar
calculations provide lower bounds for P(1) and P(3), as shown in the full search
tree of Figure 7.6. These three lower bounds are well below the objective for the
initial heuristic, so no fathoming is possible yet, and we proceed to Level 2.
Branching from P(1), we generate nodes for P(12) and P(13). (The static dom-

inance properties eliminate the other two partial sequences that begin with job
1.) To evaluate P(12), we first apply the API condition and discover that P(21)
dominates P(12). Similarly P(31) dominates P(13). Thus, P(12) and P(13) are
eliminated. Branching from P(2) yields one undominated augmented sequence,
P(21), and branching from P(3) yields three undominated augmented

Figure 7.5 Lower bound calculation for partial sequence P(2).

7 Safe Scheduling182



sequences. The lower bounds for these four remaining partial sequences are
shown in Figure 7.6.
At Level 3, the only undominated candidate to follow P(21) is job 3, but P(213)

is dominated by P(231), so the P(213) branch can be fathomed. The partial
sequences that survive the API condition are P(321), P(324), and P(341). Their
lower bounds are shown in Figure 7.6.
At Level 4, we branch from P(321), yielding the full sequence 3-2-1-4-5 with

objective 475.1, the best value thus far. This value allows us to fathom P(341)
because its lower bound is larger than 475.1. The remaining node is P(324),
which leads to the full sequence 3-2-4-1-5. Its value of 475.8 is larger than
the best solution yet found, so the node is eliminated. Alternatively, we could
check to see that 3-2-4-1 is not API stable, allowing its elimination one level
earlier.
The full tree search is shown in Figure 7.6, demonstrating that only three

complete sequences need to be evaluated during the B&B algorithm (as com-
pared with 120 feasible permutations that would be evaluated by complete
enumeration).
In summary, the B&B algorithm builds job sequences starting from time 0,

augmenting partial sequences in all possible ways. For each partial sequence
encountered, we first check dominance properties, allowing us to eliminate
dominated partial sequences and to pursue only those that remain. If the dom-
inance condition fails, we then compute the corresponding lower bound to see
whether the partial sequence can be compared with the value of an existing
solution and fathomed. If the lower bound does not permit fathoming, then
the partial sequence remains active and is ultimately augmented by adding some

P(21)

P(213) P(312) P(314) P(321) P(324) P(341) P(342)

P(31)

P(3)

P(32) P(34)
472.7 469.7 471.5

475.3473.7475.1

P(32145) P(32415)

475.8475.1

464.5
P(2)

P(23)

P(1)
476.8

P(13)P(12)

P(0)

472.0

481.8

482.6SEPT

Figure 7.6 The B&B tree for Example 7.3.
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unscheduled job to it. The augmented partial sequence is then examined for
dominance or fathoming, and the process continues until the best job sequence
is discovered.
The B&B approach has implications for finding optimal solutions to the prob-

lem of minimizing D subject to feasibility constraints. As we observed earlier,
the objective functions H(d∗) in Eq. (7.9) and D in Eq. (7.4) are structurally sim-
ilar and can be expressed in a common form by defining θ appropriately. Thus,
the B&B approach illustrated for the tightness/tardiness trade-off applies as well
to minimizing the sum of stochastically feasible due dates.
Computational experiments with the B&B algorithm on random problem

instances indicate that problems with well over 100 jobs can be solved in a matter
of seconds, on average. Heuristic procedures such as the greedy algorithm can be
used to solve very large instances quickly. In similar models with job-dependent θ
values (for which Property 7.1 does not hold), another plausible heuristic rule
would be to sequence the jobs in SEPT order followed by an API neighborhood
search, which is asymptotically optimal for the case of common θ values.

7.4 The Stochastic E/T Problem

In the previous two sections, we examined the problem of finding the tightest
due dates that satisfy given service-level constraints and the problem of trading
off tightness and tardiness. We noted that both problems effectively seek to
minimize an objective function composed of expected total flowtime and an
adjustment for safety time or for the cost of failing to meet due dates. In this
section, we examine an economic model that captures the costs of failing to
meet due dates but without considering the flowtime. In particular, we consider
the stochastic version of the E/T problem with due dates as decisions, adopting
the notation introduced in Chapter 5 for job-dependent earliness and tardiness
costs. The unit earliness cost αj and the unit tardiness cost βj apply to the dif-
ference between each job’s completion time (Cj) and its due date (dj). (We con-
sider job-dependent parameters; otherwise, the sequencing problem could be
solved by sorting according to smallest variance first.) Thus, the objective func-
tion takes the form

G d =G d1,d2,…,dn =
n

j= 1

αjmax 0, dj−Cj + βjmax 0, Cj−dj

=
n

j= 1

αjEj + βjTj

We still assume that the processing times pj are independent and follow a nor-
mal distribution with mean μj and standard deviation σj. The expected value of
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G(d), or expected total E/T cost, becomes our objective function in the stochas-
tic case, and we can express it as

H d =E G d =
n

j=1

αjE Ej + βjE Tj 7 13

Setting due dates loosely, in such a way that idling occurs between jobs, can only
reduce Eq. (7.13) because by ignoring flowtime the model does not account for
the inefficiency that idling represents. Therefore, we assume that no idling is
permitted. The optimal choice of due dates is again determined by a critical
fractile rule, as stated in the following result.

∎ Theorem 7.3 Assume all jobs are processed with no inserted idle time and
the objective is to minimize the expected total E/T cost. Given the mean and the
standard deviation of the normal distribution for Cj, the optimal choice of the
due date dj is given in standardized form by

Φ z∗j =
βj

αj + βj

A derivation of this property appears in Appendix B. For a given job sequence,
we calculate optimal due dates by applying Theorem 7.3 separately to each job,
thereby minimizing expected total E/T cost. Recall that in the problem of deter-
mining the tightest feasible due dates, service levels are given. In the tightness/
tardiness trade-off, service levels are determined by the critical fractile (γ − 1)/γ,
where γ is given. In Theorem 7.3, service levels are also derived from a critical
fractile property, but one in which job-dependent unit costs are given and jobs
may therefore have different service levels.
From the result in Theorem 7.3, we can compute optimal due dates as we did

in Eq. (7.8). In the stochastic E/T model, we obtain

dj = μBj
+ μj + z

∗
j σ2Bj

+ σ2j
1 2

7 14

Then, as in Eq. (7.9) we can calculate the objective function:

H d∗ =
n

j= 1

αj + βj ϕ z∗j σ2B + σ
2
j

1 2
7 15

For convenience, we define cj = αj + βj ϕ z∗j and sj = σ2B + σ
2
j

1 2
so that the

contribution from job j to the objective function in Eq. (7.15) is simply cjsj.
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In the spirit of the deterministic counterpart, suppose that we also consider
setting due dates equal to expected completion times:

dj =E Cj = μBj
+ μj

These due dates amount to using safety times of zero, or equivalently, z∗j = 0.

The expected E/T cost for job j is then obtained by replacing z∗j by 0 in

Eq. (7.15). This cost must be at least as high as the optimal expected E/T cost
associated with job j in Eq. (7.15) because ϕ(z) is maximized at z = 0.
As in the previous sections, we can get a feel for the calculations involved

by examining a numerical example such as Example 7.4, which contains five
jobs with nonidentical pairs of unit costs for earliness and tardiness. Sup-
pose we fix the job sequence as 1-2-3-4-5. Then the critical fractiles and
optimal due dates can be determined individually for each job. The relevant
calculations are shown in Figure 7.7, and we elaborate on the details for
job 3.

∎ Example 7.4 Consider a problem containing n = 5 jobs with stochastic pro-
cessing times as described in the following table.

Job j 1 2 3 4 5

E(pj) 21 24 30 32 36

σj 4 3 2 3 5

αj 3 2 1 3 4

βj 6 8 5 9 4

cj 9 10 6 12 8

The processing times are independent, each drawn from a normal distribution
with mean and standard deviation shown in the table.
Job 3 has a mean completion time equal to the sum of the first three mean

processing times, or 75. To find the variance of its completion time, we sum
the variances of the first three jobs, obtaining 29. The corresponding standard
deviation is the square root of this figure, or about 5.39. Job 3 has a service-level
target of 83.3%, corresponding to a z-value of 0.967 in the standard normal dis-
tribution. Thus, we can meet the service level by setting d3 = 75 + 0.967(5.39) =
80.2. However, our objective function does not require the due date as such.

Instead, we use the formula in Eq. (7.15) or αj + βj ϕ z∗j sj = 6(0.25)(5.39)

= 8.073. Similar calculations apply for the other jobs. As Figure 7.7 shows,
the sum of the five optimally calculated costs is H(d∗) = 84.00.
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Also shown in Figure 7.7 is the calculation of expected costs obtained by set-
ting each due date equal to the expected completion time. The key difference in

the cost calculation lies in substituting ϕ(0) for ϕ z∗j in Eq. (7.15). With this

substitution, the cost becomes H(d) = 102.04. This figure is over 20% greater
than the optimal value, a substantial difference that suggests the cost penalty
that might be incurred when we use a deterministic counterpart as a proxy
for a stochastic problem.
As these calculations illustrate, we can determine optimal due dates provided

that we already know the job sequence. Again, however, the larger problem is
to find the optimal sequence. Just as a B&B approach worked for the tightness/tar-
diness trade-off, we can attack the stochastic E/T problem in a similar fashion. The
search tree is the same as the one in Figure 7.4. In addition, the components
needed for a solution algorithm are (i) a dominance property to accelerate the
search, (ii) a lower bound for partial sequences, and (iii) an effective heuristic pro-
cedure to use at the start. These components exist and resemble those encoun-
tered earlier when we addressed the problem of trading off tightness and tardiness.
Dominance. In the stochastic E/T problem, a pairwise dominance condition
holds, similar to that in Property 7.2.

Figure 7.7 Detailed calculations for the jobs in Example 7.4.
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Property 7.4 For two jobs i and j, if ci ≥ cj and σi ≤ σj, then an optimal schedule
exists in which job i precedes job j.

Again, this static dominance condition is determined at the outset and used dur-
ing branching, when the B&B procedure augments a partial sequence. If we dis-
cover that job i dominates job j while neither appears in the partial sequence,
then we need not consider the augmented partial sequence constructed by
appending job j next. A version of the API condition applies as well.
Lower Bounds. Suppose we have a partial sequence of the jobs, denoted by π, so
that π denotes the set of unscheduled jobs. In the set π , we take the set of coef-
ficients cj in largest-first order and, separately, the set of standard deviations σj
in smallest-first order, and we treat these values as if they were paired in the set
of unscheduled jobs. These are fictitious jobs due to the rearrangement of coef-
ficients and standard deviations. Next we calculate each fictitious job’s contri-
bution to the objective and add it to the portion for the partial sequence π. This
total provides a lower bound on the value that could be achieved by completing
the partial sequence in the best possible way. The justification is based on the
following two properties.

Property 7.5 For any sequence of positive coefficients cj, the expression
n
j= 1cjsj is minimized by sequencing the jobs in nondecreasing order of σj.

Property 7.6 For any sequence of σj-values, the expression
n
j=1cjsj is mini-

mized by sequencing the jobs in nonincreasing order of cj.

Initial Solution. Once again, a simple sorting rule can be used to initiate the B&B
search. In this case, a logical sorting rule takes the jobs in nondecreasing order of
the ratio σj cj, yielding the sequence 4-2-1-3-5, with an expected cost of 76.97.
The B&B solution begins by testing dominance conditions and discovering

that job 1 dominates job 5 and that job 4 dominates jobs 1, 2, and 5. Thus,
our branching tree has only two nodes at Level 1 of the search tree, P(3) and
P(4), as displayed in Figure 7.8.
At Level 2, the two-job partial sequences under consideration start with jobs 3

or 4 and contain ordered pairs consistent with the dominance conditions. As
shown in Figure 7.8, this amounts to four nodes. We can also observe that
P(34) and P(43) comprise the same jobs, but the value of the partial sequence
is lower for P(34). Any completion of a full sequence starting with 3-4 will there-
fore have a lower cost than a full sequence starting with 4-3, so we can eliminate
sequences that begin with 4-3. This elimination leaves only three partial
sequences in the tree, P(34), P(41), and P(42).
At Level 3, the same “subset elimination” condition eliminates P(341) in favor

of P(413), P(412) in favor of P(421), and P(423) in favor of P(342). P(415) is
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Figure 7.8 The branch-and-bound tree for Example 7.4.



fathomed based on its lower bound of 82.84, which exceeds the value of the ini-
tial solution. Pruning the tree in this way leaves only three partial sequences to
be examined further. When these are followed all the way to the bottom of the
tree, generating five complete sequences, we find that the optimal sequence is 3-
4-2-1-5, with an objective function of 75.38.
The stochastic E/T problem can thus be solved by the same B&B approach

described in the previous section, just as the approach can be adapted to mini-
mizing the sum of stochastically feasible due dates. In each of these three cases,
however, large problem sizes are likely to demand prohibitive amounts of
computational effort. Fortunately, large versions of the problem can be solved
very effectively by a sorting heuristic that gives priority to the smallest ratio of
σ2j cj (4-3-2-1-5 in Example 7.4). This heuristic procedure is often optimal for

small versions of the stochastic E/T problem, and for large n, it is asymptotically
optimal. Among all possible sorting rules, only those consistent with this sorting
rule are asymptotically optimal.
Because asymptotic optimality does not require normal processing times, the

heuristic sorting rule is effective for any processing time distribution. Further-
more, we can use the sorting heuristic to find an initial seed and then perform
neighborhood searches on the first several jobs (say, 5–10) to see whether an
even better sequence can be found. For subsequent jobs, we can rely on the
asymptotic optimality of the heuristic. We can use this sorting rule as a crude
heuristic even when jobs are not statistically independent. To estimate job para-
meters for that purpose, we use their marginal distributions. After the sequence
is determined, we can set the due dates using the critical fractile rule, which does
not require statistical independence or normality. Although the use of marginal
distributions is not theoretically precise, this method can at least generate a rea-
sonable seed for a neighborhood search.

7.5 Using the Lognormal Distribution

The normal distribution as a model for processing times is convenient because
it implies that completion times, which are sums of processing times, follow
normal distributions as well. Among standard probability distributions that
could be used to model realistic processing times, only the normal offers a
straightforward characterization for sums of random variables. However, some
features of the normal distribution are drawbacks: It is symmetric, it allows for
negative outcomes, and when truncated at zero, its cv is relatively small. As we
discuss in Appendix A, the lognormal distribution has much wider practical
validity: It can approximate the normal very well for low variance processing
times, and – unlike the normal – it is also applicable for high variance proces-
sing times. It may well be the most useful standard distribution for that purpose:
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It is asymmetric (skewed to the right), its outcomes are positive, and its cv can be
small or large, without limit. However, sums of lognormal distributions are not
lognormal, implying that it would be difficult to model completion times
exactly. Nevertheless, the lognormal also serves as a reasonable approximation
for the sum of lognormal random variables, using the Fenton–Wilkinson
approximation (FWA). We adopt this approximation as our default, because
it is effective and computationally efficient, but it would also be possible to
use simulated samples instead.
For the time being, we retain the assumption that processing times are

independent random variables (with mean μj and standard deviation σj). If
the distribution is lognormal, the processing time random variable has a loga-
rithm described by a normal distribution with mean mj and standard deviation
sj. The parameters of the two distributions are related as follows:

s2j = ln 1 + σ2j μ2j 7 16

mj = ln μj −s2j 2 7 17

Let J denote the set consisting of the initial jobs in sequence, up to and includ-
ing job j (that is, Bj and {j}). Given a job sequence, we know that the total pro-
cessing time for the jobs in J (equal to Cj) follows a distribution with mean μJ
= kϵJμk and variance σ2J = kϵJσ

2
k . Using the FWA, we treat Cj as a lognormal

random variable, so that its logarithm, Yj, follows a normal distribution. The
variance (s2J ) and mean (mJ) corresponding to Yj follow Eqs. (7.16) and (7.17):

s2J = ln 1 + σ2J μ2J 7 18

mJ = ln μJ −s2J 2 7 19

Thus, the service level of job j can be calculated as follows:

SLj = Pr Cj ≤ dj = Pr Yj ≤ ln dj

Suppose that we want to determine the minimum due date for which SLj ≥ bj.
Let zj represent the value at which the cdf of the standard normal distribution
equals bj or Φ(zj) = bj. Then the appropriate choice for the due date of job j is

ln dj =mJ + zjsJ 7 20

Thus, dj = exp(mJ + zjsJ), and the objective function can be expressed as

D=
n

j= 1

exp mJ + zjsJ

For some perspective, substitute mJ from Eq. (7.19) into Eq. (7.20), and rear-
range terms to yield dj = μJ exp(sJ(zj − sJ/2)). In general, sJ cannot be negative
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so dj > μJ only if zj > sJ/2. Therefore, even for zj > 0, the due date may be less than
the mean completion time. In other words, safety time may not be positive even
for service-level targets above 0.5.
To get a feel for the calculations involved, we return to Example 7.2 with the

job sequence 1-2-3-4-5 but this time assuming that the lognormal distribution
applies. The relevant calculations are shown in Figure 7.9, as they might be
calculated on a spreadsheet, and we elaborate on the details for job 4.
The completion time for job 4 has the samemean and standard deviation as in

the normal case: μJ = 86.0 and σJ = 7.25. The corresponding normal parameters,
from Eqs. (7.16) and (7.17), arem = 4.45 and s = 0.0841. Job 4 has a service-level
target of 80%, corresponding to a z-value of 0.842 in the standard normal dis-
tribution. Thus, using the formula in Eq. (7.18), we can meet the service level by
setting ln(d4) = 4.45 + 0.842(0.0841) = 4.522. Then d4 = exp(4.522) = 91.98. Sim-
ilar calculations apply for the other jobs. Figure 7.9 shows the calculations for
both the normal and lognormal cases. In the lognormal case, the sum of the five
optimally calculated due dates is D = 342.7, which is within 0.2% of the value
obtained using the normal distribution.

Figure 7.9 Detailed calculations for Example 7.2 with lognormal processing times.
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As this example illustrates, we can make the calculations for the normal case
or the lognormal case using spreadsheet technology, provided we already know
the job sequence. The example also demonstrates that for low variation jobs, the
normal and the lognormal models approximate each other closely.
Once again, we can explore heuristic rules for finding a good job sequence.

For example, as shown in Figure 7.9, the SEPT rule achieves D = 342.7 using
the FWA. If we perform an API search, we again obtain the sequence 2-1-3-
4-5, which achieves D = 342.3 (an optimal value). We assume independent pro-
cessing times, so as j grows large,Cj is approximately normal. Therefore, SEPT is
asymptotically optimal in the lognormal model and so is its combination with
API on the first few jobs.
To minimizeD + γE(T) when processing times are lognormal using the FWA,

optimal due dates are obtained by dj = exp(mJ + z∗sJ), where z∗ achieves a service
level of (γ − 1)/γ. As shown in Appendix B, once due dates are optimized, the
objective function is given by

D+ γE T =
n

j=1

γμJΦ sJ −z
∗ =

n

j= 1

μJΦ sJ −z∗

Φ −z∗

In this expression, because we assume independent processing times, sJ tends to
decrease when j grows large. This suggests that it is generally desirable to use
SEPT, again, to associate large s with small μ, but because s depends on the
sequence, this is still just a heuristic. An even better heuristic is to rely on Prop-
erty 7.1 and select the next job as the one that increases the objective function
the least.
Appendix B also develops the expression needed to solve the E/Tmodel.With

optimal due dates, the contribution of a job to the objective is μ[αΦ(z∗ − s) +
βΦ(s − z∗)], for z∗ =Φ−1[β/(α + β)], and the objective function is given by

n

j= 1

μJ αjΦ z∗j −sJ + βjΦ sJ −z
∗
j

and, again, the same heuristics are useful.
No analytic solution has been developed for any of the above three lognormal

models. One noteworthy special case arises in minimizing the sum of due dates
with equal service-level targets or in minimizing the objective for the tightness/
tardiness trade-off. It is predicated on the following theorem (which does not
require stochastic independence).

∎ Theorem 7.4 For two jobs j and k, if pj ≤st pk then for minimizing D subject
to a constant service-level constraint or for minimizing D + γE(T), job j domi-
nates job k.
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In other words, stochastically ordered jobs must appear in SEPT order even if
separated by other jobs, as can be proven based on an adjacent pairwise inter-
change argument.

7.6 Setting Release Dates

Our safe scheduling models have so far treated due dates as decision variables.
We turn next to a different set of problems, in which due dates are given. First,
consider the stochastic E/T problem with a common due date, as it is a special
case that can teach us something about the more general case with distinct due
dates. This problem contains random processing times, but in other ways, it is
identical to the deterministic version, which has been thoroughly analyzed.
Thus, a logical first approach in the stochastic case might be to adopt the fea-
tures of the deterministic counterpart wherever possible. The deterministic
solution builds on Theorems 5.1, 5.2, and 5.3. These three results state:
(i) Inserted idle time provides no benefit, (ii) a V-shaped schedule is optimal,
and (iii) one job completes at the due date. In the stochastic case, of course,
we would not expect the last condition to hold, but we might hope the other
properties apply. However, as we might guess from examples with the normal
distribution, V-shaped schedules may not be optimal because they do not
account for variance. The remaining question is whether inserted idle time pro-
vides no potential benefit. Unfortunately, this feature does not carry over to the
stochastic problem, either. To illustrate, we consider an example with a com-
mon due date and identical earliness and tardiness costs among the jobs.

∎ Example 7.5 Consider the following three-job instance with a common due
date and identical costs for earliness and tardiness.

Job j 1 2 3

E(pj) 3.4 1 1

dj 10 10 10

αj 1 1 1

βj 1 1 1

The processing times depend on which of two states of nature occur, as
described in the following table.

State Job j 1 2 3 Probability

S1 pj 1 1 1 0.2

S2 pj 4 1 1 0.8
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In this instance, p1 is a random variable, but the other two jobs have determin-
istic processing times. In the deterministic counterpart, job 1 comes first, and
the other jobs follow in either order. The optimal schedule begins at time 5.6, so
that the second job completes at time 10, and the total E/T cost is 2.
Now suppose we implement the sequence 1-2-3 in the stochastic case. If we

start job 1 at time 5.6, the expected total cost is 3.52. If we explore other starting
times, we find that starting job 1 at time 5.0 leads to an expected total cost of 3.4,
which is the best objective for this sequence. If we schedule job 1 last, the best we
can do is to start the schedule at time 8, leading to an expected total cost of 4.4.
Next, we explore the possibility of inserting idle time in the sequence 1-2-3.

Suppose we start the schedule at time 5 but constrain the second job from start-
ing earlier than time 9. In other words, when job 1 completes at time 6 (which
occurs with probability 0.2), the machine is idle until time 9, when job 2 starts.
This schedule achieves an expected total cost of 2.6, which is better than we
could achieve with no inserted idle time.
This example reveals a complicating factor in stochastic problems with E/T

criteria: It may be helpful to allow inserted idle time between jobs, even though
(for the case of a common due date) such idle time would not be beneficial in the
deterministic counterpart. Thus, we must pay attention to the general case in
which inserted idle time is permitted.
In Example 7.5 the constraint on the start time for the second job is essentially

a release date, rj, for job j. If the machine is available before rj, the machine must
wait to start job j; but if the machine becomes free after rj, the job can start
immediately. It is not always necessary to assign an explicit release date to each
job. We may start a search for optimal release dates under the assumption that
each job has its own release date, but it is ultimately sufficient to describe a
schedule by specifying only release dates that have a positive probability of actu-
ally delaying a job. We refer to such release dates as active. A release date that is
not active is redundant because it never causes a machine to wait.
As discussed in Section 5.7, release dates define blocks. A block is a sequence

of jobs processed without delay. If no release date is specified for a job, it is in the
same block as the preceding job. (The only exception would be for the first job: If
no release date is specified for the first job, then processing starts at time 0.) In
the stochastic case, adjacent blocks may be processed with or without a gap
between them, but the expected size of the gap is positive. In the optimal sched-
ule for Example 7.5, we place job 1 first in sequence and take r2 = 9. Job 1 thus
belongs to block 1, whereas the other two jobs make up block 2, and the
expected gap is 0.2 × 3 = 0.6.
Suppose we are given a set of jobs with distinct due dates and E/T costs, and

suppose further that the job sequence is given. The task then is to set release
dates that minimize the total expected E/T penalty. It is possible to show that
the total expected E/T cost is a convex function of the release dates. Essentially,
we need to search for the best combination of release dates to minimize this
total expected penalty.

7.6 Setting Release Dates 195



When we use a sample-based model, we can find the best combination of
release dates by a numerical search, because the problem is convex and thus
not difficult in practice.

∎ Example 7.6 Consider a problem containing n = 5 jobs with stochastic pro-
cessing times. The due date and expected processing time for each job are
shown in the following table.

Job j 1 2 3 4 5

E(pj) 3 4 5 6 7

dj 8 5 17 20 12

The probability distributions are based on four equally likely states of nature.

State Job j 1 2 3 4 5

GG pj 2.6 3.5 3.8 3.2 6.4

GB pj 2.8 3.9 4.4 5.5 6.6

BG pj 3.2 4.1 5.6 6.5 7.4

BB pj 3.4 4.5 6.2 8.8 7.6

The earliness and tardiness costs are given in the next table.

Job j 1 2 3 4 5

αj 2 1 2 1 4

βj 5 4 3 3 1

If the jobs are sequenced by EDD (2-1-5-3-4), the optimal release dates are given
in the following table.

Job j 2 1 5 3 4

rj 0 3.9 0 13.0 0

In this solution, release dates of zero allow the job to start as soon as themachine
is available. Thus, jobs 2, 5, and 4 may start as soon as the machine completes
their predecessors. Job 1 waits until job 2 is finished and follows immediately if
job 2 completes at time 3.9 or later. (These completion times correspond to
states GB, BG, and BB.) On the other hand, if job 2 completes at time 3.5 (state
GG), then the machine remains idle – and job 1 must wait until time 3.9. In this
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situation, we say that job 1 has an active release date, meaning that the release
date constrains the start of job 1 in at least one scenario. Similarly, job 3 is
assigned an active release date, although it does not correspond to a possible
completion time of job 5.
Our model determines optimal release dates for a given sequence, but we still

do not have an efficient algorithm for finding the best sequence. For the time
being, heuristic procedures such as neighborhood search represent the state
of the art in searching for the optimal sequence.
As a footnote to our discussion of release dates, it is possible to show that

inserted idle time is never beneficial for the tightness/tardiness trade-off when
due dates are decisions. In general, inserted idle time cannot help when the
delayed release is associated with a cost that exceeds the earliness penalty,
and this is automatically the case for D + γE(T). In the stochastic E/T problem,
however, inserted idle time could be valuable in separating the jobs into distinct
one-job blocks and reducing the variance of each completion time to the smal-
lest level possible. Such a tactic has little practical significance, so for that reason
we assumed no inserted idle time in Theorem 7.3.

7.7 The Stochastic U-problem: A Service-level
Approach

Thus far, we have studied safe scheduling models in which due dates (or release
dates) are decisions. In this section, we turn to models in which due dates are
given and release dates are all zero, but we continue to rely on service-level con-
siderations, which are the distinguishing features of safe scheduling.
In Chapter 2, we stated the U-problem most simply as minimizing the num-

ber of late jobs. The solution algorithm constructed a “before” set B consisting of
on-time jobs followed by an “after” set A containing late jobs. This structure can
be interpreted as postponing the processing of late jobs so that the remaining
jobs can be completed on time. In principle, the set of late jobs can be postponed
indefinitely without altering the scheduling objective. Thus, we may equiva-
lently consider the late jobs to be rejected, and Algorithm 2.1 can be viewed
as a procedure for minimizing the number of rejected jobs (or maximizing
the number of accepted jobs) in the deterministic version of the problem.
Accordingly, we pose the stochastic version of the U-problem similarly, as a
problem of accepting or rejecting jobs. Thus, for the stochastic U-problem with
service-level constraints, we define set B as the set of jobs that satisfy their given
service-level constraints and set A as the set of jobs that do not. The objective is
to maximize the number of stochastically on-time jobs or, equivalently, to min-
imize the number of jobs in A.
To emphasize the parallels between the deterministicU-problem and the sto-

chastic U-problem with service-level constraints, we look first at a basic special
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case in which processing ties are stochastically ordered and service-level targets
are identical. In this formulation, each job is described by a stochastic proces-
sing time, pj, and a deterministic due date, dj. The objective is to maximize the
number of jobs for which SLj = Pr{Cj ≤ dj} ≥ b.
The solution method assumes the same form for an optimal sequence that

appears in the deterministic solution, as reproduced in Figure 7.10. The form
is as follows:

• First, a set B of stochastically on-time jobs, in EDD order.

• Then, a set A of stochastically late jobs, in any order.

Recall that, in the deterministic version, we can assume jobs in set B appear in
EDD order. (If any sequence of jobs has no tardiness, then by Theorem 2.6 we
know that the EDD sequence for those jobsmust have no tardiness.) Likewise, in
the stochastic version, we can assume that the jobs in B appear in EDD order.
This form is justified by Corollary 6.1 which states that the EDD sequence
minimizes the maximum tardiness probability or equivalently maximizes the
minimum service level. In other words, if any sequence of jobs is stochastically
feasible for a given service level b, then the EDD sequence for those jobs is sto-
chastically feasible. Building on this result, we can adapt the solution algorithm
for the deterministic U-problem to the stochastic version, as specified in
Algorithm 7.1.

Algorithm 7.1 Minimizing Uwith Identical Service-level Targets and Stochas-
tically-ordered Jobs

Step 1. Index the jobs using EDD order and place all jobs inB. Let setA be empty.
Step 2. For each job in B, determine whether its service level is met. If all jobs in

Bmeet the service level, stop: Bmust be optimal. Otherwise, identify the first
stochastically tardy job in B. Suppose that turns out to be the kth job in
sequence.

Step 3. Identify the job with the largest E[pj] among the first k jobs in sequence.
Remove that job from B and place it in A. Return to Step 2.

B B B B A A A

Late jobsEarly jobs

Figure 7.10 The form of a sequence that maximizes the number of stochastically
feasible jobs.
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The implementation of Step 2 requires that we analyze the probability
distribution of Cj, the completion time of the jth job in sequence, to calculate
the corresponding service level attained. This requirement raises the same
challenge we confronted in other safe scheduling models – that is, the need
to determine the properties of the random variable Cj. For a general solution,
we would need to rely on a sample-based approach, but a direct approach is
possible in special cases. One such case occurs when b ≥ 0.5 and the proces-
sing times are independent and normally distributed with agreeable means
and variances; that is, if μi < μk then σi ≤ σk.

∎ Example 7.7 Consider a problem containing n = 5 jobs, as described in
the table.

Job j 1 2 3 4 5

E[pj] 10 70 60 40 30

σj 2 12 12 8 5

dj 20 75 80 120 150

The processing times are independent, each drawn from a normal distribution
with mean and standard deviation shown. SLj ≥ b = 0.8 is required.

The parameters are agreeable and b > 0.5, so Algorithm 7.1 is applicable.
The structure for the necessary calculations is shown in Figure 7.11, in a
spreadsheet format. The jobs are already indexed by EDD, as required in
Step 1. In Step 2, the first stochastically tardy job is job 2, as summarized
in Figure 7.11. In Step 3, the longest job among the first two in sequence
is job 2; thus job 2 is removed from B and placed in A. In the next pass
at Steps 2 and 3, job 3 is removed from B and placed in A. Thereafter,
no stochastically tardy jobs remain in B. The algorithm yields two optimal
sequences: 1-4-5-2-3 and 1-4-5-3-2, corresponding to the two different ways
of sequencing the late jobs.
Even with stochastic ordering, the similarity in the solution procedures for the

deterministic and stochastic versions does not completely generalize. The main
complication relates to the sequencing of the stochastically on-time jobs – those
in set B. In Algorithm 7.1, we relied on EDD sequencing in set B, but EDD is not
necessarily optimal when we allow job-dependent service-level requirements bj,
as the following example demonstrates.

∎ Example 7.8 Consider the problem of sequencing two jobs with stochastic
processing times and the following parameters.
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Job j 1 2

dj 5.0 6.0

bj 0.5 0.9

E(pj) 1 3.5

Job 1 has a deterministic processing time, but job 2 has a processing time that
follows a uniform distribution on the interval (1, 6).

Because p1 = 1 ≤ p2, the processing times are stochastically ordered (p1 ≤st p2).
Figure 7.12a describes the situation for the EDD sequence. Two vertical seg-
ments with height 1, occurring at times 0 and 1, mark the start and finish of

Figure 7.11 Summary of calculations for Example 7.7.
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job 1. The uncertainty in C2 is represented by a linear cdf. Finally, the two serv-
ice-level requirements are represented by vertical bars with heights bj at the
respective due dates dj. Clearly, job 1 exceeds its service-level requirement
because its cdf reaches a height of 1 prior to d1. But job 2 fails tomeet its require-
ment because by d2, its cdf does not reach the height of b2. Figure 7.12b demon-
strates, however, that if we interchange the jobs and sequence against EDD
order, then both service-level constraints are met.
Figure 7.12 illustrates a stochastic Gantt chart. In a regular Gantt chart, jobs

are always depicted as rectangles, and job 1 is depicted this way in Figure 7.12a
because its start and finish times are not uncertain. The height of its rectangle is
equal to 1, and we can interpret the vertical line at time 1 as the cdf of C1. The
same job appears in Figure 7.12b, but in that case, its start time and finish time
are uncertain and represented by cdfs. The area between the start cdf and the
completion cdf of job 1 is the same in both figures and equals the expected pro-
cessing time of the job. The horizontal line at the top of the figure can be inter-
preted as part of the cdf of the start time of the activity. As the figure
demonstrates, a stochastic Gantt chart shows the probability of completion
as a function of time (because it involves cdfs) and can also be used to check
whether particular service levels are met.
Example 7.8 shows that the reliance on EDD sequencing for set B has its lim-

itations. To make progress, we need a procedure for determining whether a fea-
sible sequence exists for any given set of accepted jobs. As it happens, a relatively
simple procedure is available. This feasibility check resembles the backward
sequencing of Theorems 3.1 and 6.4. It starts by checking whether any job
would satisfy its service-level constraint if scheduled last in set B. (The distribu-
tion of the last job’s completion time does not depend on knowledge of the job
sequence.) Any such job may be scheduled last in B and removed from further

Probability
of

completion b2Job 1
cdf

Job 2
cdf b1

d1 d2 Time

(a)

Probability
of

completion
Job 1
cdfJob 2

cdf
b2
b1

d1 d2 Time

(b)

Figure 7.12 Graph for Example 7.8: (a) sequence 1-2 and (b) sequence 2-1.
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consideration. The procedure is then repeated for the remaining jobs in B.
Because the procedure is constructive, it builds a sequence from back to front
and yields a feasible sequence whenever the set of jobs is feasible.
Next, we must embed the feasibility check in the logic for accepting or reject-

ing jobs. If the jobs are stochastically ordered, we can adapt the logic of Algo-
rithm 7.1, using the feasibility check in place of EDD sequencing.

Algorithm 7.2 Minimizing U with Service-level Constraints and Stochasti-
cally Ordered Jobs

Step 1. Sequence the jobs by SEPT (ties may be broken arbitrarily), and place all
jobs in the unresolved set, so that sets A and B are empty.

Step 2. Tentatively add the first unresolved job to B and apply the feasibility
check. If the result is feasible, record the sequence and add the job to B per-
manently. Otherwise add the job to A.

Step 3. If the unresolved set is not empty, return to Step 2. Otherwise, stop. The
last recorded sequence of the jobs in B is optimal.

Algorithm 7.2 does not require stochastic independence: It applies for linearly
associated processing times as well. To illustrate the application of the algo-
rithm, we find the solution to Example 7.9 (which contains stochastically
ordered and linearly associated processing times).

∎ Example 7.9 Consider a problem containing n = 5 jobs. The due date
and expected processing time for each job are shown in the follow-
ing table.

Job j 1 2 3 4 5

E(pj) 6 8 10 12 14

dj 17 16 34 40 25

Each job has a different processing time under four states of nature, as
follows.

State Job j 1 2 3 4 5

1 pj 4.1 5.6 7.0 8.4 9.8

2 pj 5.3 7.2 9.0 10.8 12.6

3 pj 6.4 8.8 11.0 13.2 15.4

4 pj 8.2 10.4 13.0 15.6 18.2
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The service-level targets for the jobs are shown in the following table.

Job j 1 2 3 4 5

bj 90% 60% 50% 80% 60%

In Step 1, all jobs are unresolved, and the SEPT order is 1-2-3-4-5. When
we consider the set {1}, we find that job 1 meets its target service level
because it is certain to complete by its due date (d1 = 17.0), so in Step 2,
we add job 1 to set B. When we consider the set {1, 2}, we find that job
1 cannot meet its target if it follows job 2 (as per EDD), but job 2 meets
its target if it follows job 1. Therefore, in Step 2, we add job 2 to B and
record the sequence 1-2. As we continue through the SEPT list, jobs 1,
2, 3, and 4 are each feasible, so they are added to B consecutively. After
we add job 4, we record the sequence produced by the feasibility check,
1-2-4-3. But tentatively adding job 5 leads to infeasibility – no job can
be feasibly scheduled in the last position. Therefore, job 5 is rejected,
and the optimal solution is |A| = 1.
Suppose we use EDD (2-1-5-3-4) for the feasibility check of the jobs in set B.

Because job 1 cannot feasibly follow job 2, it is rejected; jobs 5 and 3 are then
accepted, but job 4 is rejected in the last position. Thus, |A| = 2, demonstrating
again that EDD is suboptimal for general bj. However, if bj > bk implies dj ≤ dk
then these parameters are called agreeable. It turns out that when due dates and
service level targets are agreeable, then EDD is valid. In other words, we can
extend Algorithm 7.1 for this case.

∎ Theorem 7.5 For stochastically ordered processing times, if the service-level
constraints and the due dates are agreeable, then the number of jobs thatmust be
rejected to meet all service-level constraints is minimized by Algorithm 7.1.

Proof. For the time being, assume that processing times are independent. If all
jobs are stochastically feasible, the theorem holds, so assume at least one job is
stochastically tardy. Therefore, during the execution of Algorithm 7.1, we
encounter infeasibility at least once. Whenever this happens, consider two
cases. In Case 1, the longest job by expectation in the infeasible set is the last
one. Therefore, we know with certainty that to achieve feasibility for the other
jobs in the subset, it is sufficient to reject this one. We also know, by an argu-
ment similar to that in the proof of Theorem 6.8, that it is the best choice for
minimizing the necessary rejections among the jobs that follow the subset. In
Case 2, the longest job by expectation is not last. To complete the proof for inde-
pendent processing times, it remains to show that rejecting this job renders the
last job feasible. We leave this part of the proof as an exercise. The final step is to
remove the independence assumption and extend these results to linearly asso-
ciated jobs by invoking Theorem 6.7. □
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Here is a summary of the results known for the problem of maximizing the
number of stochastically on-time jobs. The problem is NP-hard in general.
However, if we know that the processing times are stochastically ordered, then
we can find solutions with the general feasibility check and Algorithm 7.2. If we
also know that due dates and service-level targets are agreeable, then we can find
solutions with EDD as a basis for the feasibility check and Algorithm 7.1. In both
cases, the result extends to linearly associated processing times.

7.8 The Stochastic U-problem: An Economic Approach

As discussed in the previous section, we can interpret the stochasticU-problem
as constructing a schedule containing two sets – a set of stochastically on-time
jobs and a set of stochastically tardy jobs – with the objective of minimizing the
number in the latter set. Alternatively, we can interpret the problem as one of
accepting or rejecting jobs – with the understanding that accepted jobs must be
stochastically on time – and minimizing the number of rejected jobs. Rather
than counting jobs, an economic approach to theU-problem involves specifying
the revenues and costs for various outcomes and then maximizing an objective
corresponding to expected net revenue. If we can capture the revenues and
costs, then the economic objective function may reflect reality better than
the traditional summary measure.
In the stochastic case, we can distinguish between a job that is rejected

intentionally and a job that is tardy by chance. That is, we may accept a job
with the intention of completing it on time, but the stochastic nature of its
processing time (and the processing times of preceding jobs) may result in tar-
diness despite our intention. This structure leads to a more elaborate model:
Every job that is completed early or on time represents a reward of RE, a tardy
job generates a reward of RT < RE, and the reward for rejecting a job is RR. We
require

RE >RR >RT 7 21

Our objective is to maximize the expected total reward. The assumption in
Eq. (7.21) is economically sound: If RR were not strictly larger than RT, we would
have no incentive to reject a job – that is, we would actually process all jobs even
if they were stochastically tardy because the reward would be greater than for
rejecting them. Similarly, if RR were not strictly smaller than RE, we would reject
all jobs right away. Thus the conditions of Eq. (7.21) allow for the most general
schedule structure, given that the rewards are lump sums and not a function of
earliness or tardiness.
By subtracting RR from all rewards, we change the total expected reward

by a constant, but the optimal sequence does not change. Therefore, without
loss of generality, we may assume that RE > 0, RR = 0, and RT < 0 when we
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search for an optimal schedule. After this adjustment, any optimal solution
must be nonnegative because by rejecting all jobs, we can guarantee a total
reward of zero.
To facilitate rejection decisions, we can use the service-level notion and derive

a constraint that all accepted jobs must satisfy. As usual, let SLi denote the prob-
ability that job j is on time. Then the expected reward E[Rj] for job j when it is
accepted becomes

E Rj =RESLj +RT 1– SLj

This contribution is not positive unless

E Rj =RESLj +RT 1– SLj > 0

implying that the service level is above breakeven when

SLj > −
RT

RE−RT
7 22

The right-hand side of this inequality serves as a legitimate probability because
RT < 0. Furthermore, rejecting any job can only help reduce the tardiness of
other jobs, so the optimal solution cannot call for accepting any job whose
expected reward is negative. Therefore, if Eq. (7.22) is violated for any accepted
job at any sequence position, that sequence cannot be optimal. The condition in
Eq. (7.22) is necessary for each job, but not sufficient for optimality. For exam-
ple, it may be suboptimal to accept an early job whose service level barely satis-
fies the service-level target given by Eq. (7.22). Although the direct result of
accepting such a job would be a positive expected reward for the job, the con-
sequence may be to reduce the service levels of later jobs and lead indirectly to a
net loss.

∎ Example 7.10 Consider a problem containing n = 5 jobs, with accept/reject
decisions possible. The processing times are independent, normally distributed
random variables. The reward for completing a job on time is 20, and the pen-
alty for completing a job late is 10. Our objective is to find the schedule with the
maximum expected profit (net reward). The due date and expected processing
time for each job are shown in the following table.

Job j 1 2 3 4 5

E(pj) 30 40 50 60 70

σj 5 7 4 5 6

dj 60 80 90 120 160
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We illustrate the calculations needed to evaluate the sequence 1-2-3-4-5. In the
layout shown, expected rewards that would literally display as negative in the last
row of calculations are replaced by zero to signify rejection. The problem size in
this example is small enough that we can enumerate the possible sequences, and
we discover that the maximum total expected reward is 13.19, as shown in
Figure 7.13. In this example, it is optimal to accept jobs 2 and 5 that are exposed
to tardiness (as indicated by service levels of 88 and 97%, respectively) but for
which the service level exceeds the break-even value of 58.3%.
It is possible to construct examples showing that the EDD sequence may not

be optimal for the accepted jobs. In general, however, it is still necessary to
search among all possible sequences for an optimal solution, although the
break-even service-level target helps to curtail the search.
Although no optimization algorithm for this problem has been developed and

tested, we can produce good solutions using the Evolutionary Solver (see
Chapter 4) with a spreadsheet layout such as the one shown in Figure 7.14.
The Evolutionary Solver can also be implemented with a sample-based model
as demonstrated by Example 7.11.

Figure 7.13 Spreadsheet model and calculations for Example 7.10.
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∎ Example 7.11 Consider a problem containing n = 5 jobs, with accept/reject
decisions possible. The reward for completing a job on time is RE = 20, and the
penalty for completing a job late is RT = −10. Due dates and expected processing
time for each job are shown in the following table.

Job j 1 2 3 4 5

E(pj) 3.0 4.0 5.0 6.0 7.0

dj 7.8 7.5 17.0 20.0 12.0

Each job has a different processing time under four states of nature, as follows.

Figure 7.14 Spreadsheet model and calculations for Example 7.11.
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State Job j 1 2 3 4 5

1 pj 2.6 3.5 3.8 3.2 6.4

2 pj 2.8 3.9 4.4 5.5 6.6

3 pj 3.2 4.1 5.6 6.5 7.4

4 pj 3.4 4.5 6.2 8.8 7.6

In Figure 7.11 we show the calculations that are needed in a sample-basedmodel
such as Example 7.9. Here, again, we illustrate the EDD sequence, which turns
out to produce the maximum expected total revenue of 65.

7.9 Summary

In this chapter, we introduced safe scheduling and discussed several problems
that have a safe scheduling flavor – that is, problems in which safety time plays a
key role. Using an analogy to stochastic inventory theory, we identified twomain
approaches to sizing time buffers: meeting service-level constraints or minimiz-
ing expected net revenue. We looked first at the problem of choosing due dates
that are as tight as possible while maintaining stochastic feasibility.
Next we considered the tightness/tardiness trade-off. In that problem, due

date tightness and job tardiness are balanced by a single arbitrary parameter,
but its value ultimately determines the service-level target that characterizes
the optimal solution. We examined a B&B algorithm for that problem, relying
on three components: (i) an effective heuristic procedure that produces a good
initial solution, (ii) dominance properties that limit the amount of branching
needed, and (iii) a lower bound calculation that eliminates unproductive partial
solutions. The algorithm could also be adapted to minimizing the sum of due
dates while meeting given service levels.
Thirdly, we examined the stochastic E/T problem, in which the objective is to

minimize the expected total cost due to earliness and tardiness. In that problem,
the economics of earliness cost and tardiness cost lead individually to optimal
service levels for the jobs, and, again, a B&B algorithm can provide optimal solu-
tions to the sequencing problem. In Appendix B, we show that the optimal due
dates for the tightness/tardiness problem are optimal for the stochastic E/T
problem with a particular choice of unit earliness and tardiness costs. Further-
more, the tightness/tardiness objective can be viewed as the sum of total flow-
time and the E/T objective.
In conjunction with the three problems, we studied different ways to model

the stochastic behavior of processing times. The most general of these uses a
table of realizations to represent a discrete probability distribution or a sample
of equally likely outcomes. A sample-based approach is quite flexible and
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accommodates such traits as correlation and linear association. An alternative
approach is to assume that processing times are independent and follow a
standard distribution. Our examples focusedmostly on the normal distribution.
With that assumption, completion times are also normally distributed, provid-
ing tractability in the analysis. However, as long as we are willing to assume sto-
chastic independence, even when the normal assumption does not apply,
completion times are likely to be very close to normally distributed, meaning
that the B&B algorithms should produce solutions that are at least very close
to optimal. In Section 7.5, we also looked briefly at the use of the lognormal dis-
tribution, which exhibits several properties that make it an appealing choice for
stochastic scheduling models. This is especially true if we replace the assump-
tion of stochastic independence with linear association, where completion times
are approximately lognormal. We demonstrated the types of calculations
involved in using the lognormal and pointed out that under the independence
assumption, it is closely approximated by the normal distribution in the context
of safe scheduling models but that it also allows us to remove the independence
assumption and replace it by linear association without sacrificing too much
tractability.
No polynomial solution is known for any of the three safe scheduling pro-

blems with due dates as decisions. (We elaborate on their complexity in the
Research Notes that accompany this book.) For each of the problems, we iden-
tified a sequencing heuristic that is asymptotically optimal, meaning that we can
essentially find optimal schedules for problems with a very large number of jobs,
while the B&B algorithm can be applied to small- or medium-size instances. An
important lesson, however, is that the B&B approach, which has been refined
through many applications to deterministic sequencing problems, provides via-
ble solutions for some stochastic sequencing problems as well.
We then turned to problems in which due dates are given. We first explored

the stochastic E/T problem with a common due date and found that release
times and inserted idle times could play a key role. Those features make it dif-
ficult to find optimal solutions. We then studied two variations of the stochastic
U-problem, summarizing what we know about the problem from a service-level
perspective and an economic perspective.
Finally, we point out one important feature of the stochastic models in Chap-

ters 6 and 7: The scheduling decisions are essentially made at the start of the
problem, with potential randomness described by probability distributions.
When the schedule is executed, and one or more of those random variables
are realized, the model allows for no opportunity to revisit the scheduling deci-
sions. In some applications, we can imagine the possibility of waiting until ran-
dom variables are observed and then rescheduling in some way. Such dynamic
models tend to be difficult to analyze and are beyond the scope of our coverage.
Static models, however, can always serve as a heuristic basis for dynamic deci-
sions, providing a base plan that we can update dynamically over time.
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Exercises

7.1 Consider the problem of minimizingD subject to stochastic feasibility. For
n independent stochastic jobs, we say that the service-level constraints bj
and the due dates dj are agreeable if bj > bk implies dj ≤ dk.
a) Construct a counterexample to show that when service levels and pro-

cessing times are agreeable, SEPT may not minimize D.
b) It has been conjectured that if service levels and processing times are

agreeable, and the processing times are stochastically ordered, then
SEPT minimizes D. Prove the conjecture for the special case where
all service levels are equal.

7.2 Consider the problem of finding the minimum value of D with normally
distributed processing times and a given service level corresponding to z =
1. Construct a three-job example to show that the EDD heuristic proce-
dure does not always produce the minimum value of D.

7.3 Find the optimal solution to Example 7.2 using a branch-and-bound
procedure.

7.4 Consider a problem containing n = 5 jobs. The expected processing time
for each job is shown in the following table.

Job j 1 2 3 4 5

E(pj) 6.0 8.0 10.0 12.0 14.0

Assume that four equally likely states of nature exist, with the processing
time realizations shown below.

State Job j 1 2 3 4 5

31 pj 4.1 5.6 7.0 8.4 9.8

32 pj 5.3 7.2 9.0 10.8 12.6

33 pj 6.4 8.8 11.0 13.2 15.4

34 pj 8.2 10.4 13.0 15.6 18.2

a) Suppose all service levels are 50%. Find the sequence and the individual
due dates that minimize D.

b) Suppose all service levels are 75%. Find the sequence and the individual
due dates that minimize D.
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c) Suppose that jobs 1 and 4 have service levels of 75% and that the other
service levels are 50%. Find the sequence and the individual due dates
that minimize D.

7.5 Consider a problem containing n = 6 jobs with stochastic processing
times. The processing times are independent, each drawn from a normal
distribution with the mean and standard deviation shown in the table, and
each job has been assigned a service level, also shown in the table.

Job j 1 2 3 4 5 6

E(pj) 20 24 28 30 32 36

σj 3.0 2.5 2.0 3.5 4.0 2.0

bj 90% 80% 85% 90% 85% 80%

a) Compare the performance of the SEPT, EDD, and SEPT followed by
API search heuristics to discover which rule generates the minimum
value of D.

b) Suppose instead that the processing times follow lognormal distribu-
tions. For each of the three rules in (a), calculate the difference between
the lognormal approximation for D and the normal approximation
for D.

7.6 Consider the lower bound calculation in the problem of finding optimal due
dates when service-level targets are given. For the jobs in a partial sequence,
the sum of their due dates can be computed precisely. For the set of
unscheduled jobs, the lower bound calls for taking the corresponding set
of means μj in smallest-first order and the standard deviations σj in smal-
lest-first order and treating these values as if they were paired (i.e. as if both
belonged to the same job). Then the sum of due dates generated by these
fictitious unscheduled jobs is added to the component for the partial
sequence. Prove that this total is a lower bound on the value that could
be achieved by completing the partial sequence in the best possible way.

7.7 Consider the threshold of Eq. (7.12), where jobs i and j satisfy μi − μj < 0
and σ2i −σ

2
j > 0.

a) Show that Eq. (7.12) yields 0 if and only if Property 7.3 holds. In other
words, if we check the simpler Property 7.3 first, we do not need the
max structure in Eq. (7.12).

b) Given a partial sequence that does not include jobs i and j, with
σ2B ≥ σ

2
B i, j , show that job i precedes job j in an optimal sequence of

the remaining jobs, even if other jobs are scheduled between them.
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In other words, for jobs in SEPT order that do not satisfy Property 7.3,
we obtain a similar but dynamic dominance condition.

7.8 Consider a problem containing n = 5 jobs with stochastically independ-
ent processing times, each drawn from a lognormal distribution with the
mean and coefficient of variation shown in the table.

Job j 1 2 3 4 5

E(pj) 1.00 1.01 1.02 1.2 1.21

cvj 0.4 0.4 0.4 2.0 2.0

The target service level, b, is 65% for each of the five jobs. (Recall that our
default is to use the FWA for calculations.)
a) Find the EDD solution and show that it is optimal. (Hint: By Theorem

7.4 only 10 candidate sequences need be considered. But only two of
them are API stable.)

b) What is the EDD solution for b = 0.6? Compare with SEPT in terms of
API stability and objective function value. Starting with SEPT, per-
form an API neighborhood search and compare the result to the
EDD sequence.

c) What is the EDD solution for b = 0.7? Compare with SEPT in terms of
API stability and objective function value.

d) Observe that the jobs are indexed in SEPT order and their variances are
also increasing. Explain why Property 7.2 does not necessarily hold.

e) Suppose now we wish to minimize D + γE(T) instead. For this partic-
ular example, show that SEPT is optimal for any γ level.

7.9 Consider a problem containing n = 5 jobs with stochastic processing
times, each of which follows a normal distribution with known mean
and standard deviation. In addition, job due dates are decision variables.

Job j 1 2 3 4 5

μj 17 20 24 25 30

σj 3 4 2 5 3

a) Find the optimal sequence and the optimal due dates for minimizing
D + γE(T) when γ = 2.

b) Repeat (a) for γ = 10.

7.10 Consider a problem containing n = 5 jobs with stochastic processing
times and due dates as decisions. The randomness in the processing
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times can be represented adequately by three states of nature: good, nor-
mal, and bad, with probabilities of 0.2, 0.5, and 0.3, respectively.

State Job j 1 2 3 4 5

Good pj 5 3 7 6 8

Normal pj 7 6 8 10 12

Bad pj 9 12 10 15 14

The earliness and tardiness costs are given in the next table.

Job j 1 2 3 4 5

αj 2 1 2 1 4

βj 5 4 3 3 1

Find the optimal sequence and the optimal job due dates for minimizing
the expected E/T cost.

7.11 The purpose of this exercise is to prove the proposition that no transitive
sorting algorithm can solve the stochastic E/T problem optimally. Con-
sider three jobs with (α1 + β1)ϕ(z∗1) = (α2 + β2)ϕ(z∗2) = 1, (α3 + β3)ϕ(z∗3) = 5,
σ21 = σ22 = 1, and σ23 = 22. Any transitive sorting rule must sequence iden-
tical jobs consecutively, because they have the same values. To prove that
no such rule exists, show that the optimal sequence places job 3 between
the two identical jobs.
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8

Extensions of the Basic Model

8.1 Introduction

The basic single-machine model provides an opportunity to study a variety of
scheduling criteria as well as a number of solution techniques. These themes
have been central to the coverage in the preceding chapters. The assumptions
of the basic model are highly specific, however, and for the results and insights
to be of some general value, the assumptions must be extended to more com-
plicated and realistic situations.We have already taken this route with respect to
some assumptions. This chapter deals with additional models in which the
assumptions of the basic model are relaxed.
We introduced the basic model with seven assumptions, two of which turned

out to be derived conditions for regular measures. The assumptions were:

C1. There are n single-operation jobs simultaneously available for processing
(at time zero).

C2. Machines can process at most one job at a time.
C3. Setup times for the jobs are independent of job sequence and are included

in processing times.
C4. Job descriptors are deterministic and known in advance.
C5. Machines are continuously available (no breakdowns occur).
C6. Machines are never kept idle while work is waiting.
C7. Once an operation begins, it proceeds without interruption.

In our coverage of stochastic models, we relaxed C4 and explored the
implications of scheduling with uncertain information. We also encountered
a situation in which it becomes desirable to violate C6. In this chapter, we
examine variations of the basic model with a special focus on conditions
C1, C3, C4, C6, and C7.
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We can generalize condition C1 in several ways. For instance, the jobs to be
scheduled may not all be available simultaneously. Instead, jobs may become
available intermittently and therefore have different release dates. This pattern
gives rise to a dynamic version of the single-machine model, in contrast to the
static version prescribed by the original assumptions. Problems with nonsimul-
taneous arrivals are discussed in Section 8.2. ConditionC6–whichwe questioned
in the previous chapter – and condition C7, which turned out to be implicit in the
basic model, must both be revisited in the case of nonsimultaneous arrivals.
Another generalization of C1 occurs when precedence restrictions exist

among sets of jobs. Such constraints express technological requirements or
management policies and give rise to sets of related jobs. In this case, jobs with
predecessors are not truly available for processing at time zero. Problems with
related jobs are discussed in Section 8.3.
Condition C3 can be generalized by allowing sequence-dependent setup

times. This situation arises when the setup time is not a constant for each
job but depends on the previous job in sequence. Such a model relies on the
“traveling salesperson problem,” which is treated in detail in Section 8.4. In
Section 8.5, we turn our attention to stochastic versions of the traveling sales-
person problem, in which conditions C3 and C4 are relaxed together.

8.2 Nonsimultaneous Arrivals

The static version of a single-machine problem refers to the situation in which
all jobs are simultaneously available for processing. Many sequencing problems,
however, require models that accommodate different release dates. For example,
jobs may occur in response to customer demands that appear over time. Alter-
natively, the single-machine model may represent a bottleneck facility, and the
arrival of jobs to that facility may be staggered due to upstream operations.
When release dates are different, the set of available tasks changes over time,

giving rise to a dynamic version of the single-machinemodel. An immediate con-
sequence of allowing different release dates is the need to reexamine the questions
of inserted idle time (condition C6) and job preemption (condition C7). To illus-
trate the role these two factors play, consider the two-job example shown below.

∎ Example 8.1 Consider a problem containing n = 2 jobs, with a criterion of
total job tardiness. In addition, let rj denote the release date of job j.

Job j 1 2

rj 0 1

pj 5 2

dj 7 4
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Only one sequence satisfies conditions C6 and C7 by avoiding all inserted idle
time and preemption, that is, the sequence 1-2 (see Figure 8.1a). That sequence
has a total tardiness of 3.
When inserted idle time is permitted, the sequence 2-1 (Figure 8.1b) yields a

total tardiness of 1. Furthermore, if a job can be preempted and later resumed
from the point in its processing at which the interruption occurred, then a total
tardiness of zero can be achieved, as shown in Figure 8.1c.
The type of preemption illustrated in Figure 8.1c is called the preempt–

resumemode. In this mode, the total processing time required by job j is always
pj, and this amount is unaffected by the number of times the job is interrupted.
When the preempt–resume mode applies, inserted idle time can never be
beneficial in the static version of the problem. For that reason, in deterministic
problems, schedules without inserted idle time constitute a dominant set for all
regular measures.
The opposite extreme is the case in which a job must be restarted each time it

is interrupted. This type of preemption is called the preempt–repeatmode. The
difference between the two modes of processing is reflected in the way that
scheduling decisions are made. In a preempt–repeat mode, no advantage exists
in starting a job unless it can be completed. In deterministic situations, then,
jobs might as well be scheduled as if no preemption is permitted, and schedules
without preemption constitute a dominant set.
When the preempt–resume mode applies, properties associated with basic

transitive rules are essentially unchanged. Consider, for example, the dynamic
version of the Tmax-problem. The optimal rule is keep the machine assigned to
the available job with the earliest due date. The machine is assigned at comple-
tion times and at release dates as follows:

• At each job completion, examine the set of available jobs, and assign the
machine to process the job with the earliest due date.

• At each job release, compare the due date of the newly available job with the
due date of the job currently being processed. If the due date of the new job is
tighter, allow the new job to preempt the job being processed; otherwise,
simply add the new job to the set of waiting jobs.

(a)

(b)

(c)

1

1

1

1

1

1

2

2

2

3

3

8

7

5 7

Figure 8.1 Three schedules for the two-job example.
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In this case, the key information on which scheduling decisions are based –
that is, the due date – does not change over time. By contrast, consider the
dynamic version of the F-problem in preempt–resume mode. The optimal
rule is, keep the machine assigned to the available job with minimum
remaining processing time. The key information in this case is a job’s remain-
ing processing time, which changes while it is being processed. Thus, a job
may enter the system with a large processing time (and correspondingly low
priority), but after some partial processing, it will have a smaller remaining
processing time (and higher priority). This dynamic sequencing rule is
known as shortest remaining processing time (SRPT) sequencing. In pre-
empt–resume mode, the dynamic adaptation of EDD or SPT requires no
look-ahead features, even though jobs are released intermittently. At each
decision point (a completion time or a release date), the necessary informa-
tion is obtained from only the current set of available jobs. As a result, the
actual scheduling decisions can be made at chronologically ordered points in
time and each time on the basis of current status. Such a decision-making
structure is called dispatching, and its significance lies in the fact that dis-
patching is easier to implement than decision-making based on look-ahead
information.
A further consideration arises in the dynamic application of SPT to mini-

mize F. Intuitively, one might think that the rule should apply for stochastic
processing times as well. Indeed, it does apply when the remaining expected
processing times are monotone decreasing as processing progresses, which is
often the case. But processing time distributions exist for which the informa-
tion that a job has been processed for a relatively long period implies that it is
expected to take even longer from now on (see Appendix A). In such cases, we
may have to preempt a job when its remaining expected processing time
exceeds that of a waiting job. Thus, we obtain a more sophisticated form of
dispatching where in addition to completions and releases, we have to add
a new type of decision point to the rule and switch jobs when the remaining
expected time of the current job exceeds the shortest expected time of a
waiting job.
In short, a crucial feature of the dynamic single-machine model is the nature

of job preemption. If processing can be carried out in preempt–resume mode,
then some of the scheduling rules for optimal sequencing in the static problem
can be extended. In particular, transitive job orderings can sometimes be
adapted as optimal dispatching procedures, and inserted idle time is not a
concern. On the other hand, if processing requires preempt–repeat mode, then
inserted idle time can be helpful, but the comparison of permutation schedules
to find an optimum becomes more difficult. Even problems that are relatively
simple in the basic model require the use of general-purpose optimization
techniques under preempt–repeat mode. In what follows, we assume that the
preempt–repeat mode applies unless otherwise specified.

8 Extensions of the Basic Model218



8.2.1 Minimizing the Makespan

In the basic single-machine model, the schedule length, or makespan, is always
equal to the sum of the processing times. In the dynamic model, the makespan
may include idle time. The objective of minimizing the makespan, Cmax, also
denoted M, is related to the throughput of the schedule. Because throughput
is defined as the amount of work completed per unit time, and because the
amount of work in the n-job model is fixed, we maximize throughput by
minimizing the makespan.
In the dynamic version of the model, it is not difficult to show that M is

minimized by a dispatching rule that always schedules the available job with
the earliest release date (ERD), breaking ties arbitrarily. (The optimality of this
rule extends to cases with stochastic processing times.) This type of rule belongs
to the family of nondelay dispatching procedures, which never permit a delay
(via inserted idle time) when the machine becomes available and work is
waiting. In the dynamic model, any nondelay procedure will create a schedule
consisting of one or more blocks (similar to the blocks discussed in Chapter 5).
The first job in a block begins at its release date, but subsequent jobs in the block
may be delayed past their own release dates. The first job also has the minimum
release date in the block. The last job in a block completes before the release
date of any job that appears later in the schedule.
An interesting generalization of the dynamic makespan problem involves

the case in which each job has a given delivery time, qj, in addition to a pro-
cessing time and a release date. The delivery takes place immediately after the
job completes, and deliveries can be done in parallel. The makespan is deter-
mined in this case by the latest delivery among the n jobs. Another interpre-
tation of this model is possible. Think of all jobs as requiring three operations.
The first and third operations are carried out in departments where the
resources are plentiful, and no resource constraints apply. In effect, the jobs
can be performed in parallel in these departments. The second operation
occurs at a bottleneck facility, where the jobs must be processed one at a time.
The problem is specified by a triplet (rj, pj, qj) for each job j, where rj denotes
the processing time of the first operation, pj the second operation, and qj the
third operation. (Sometimes, these parameters are called the head, body,
and tail of each job.) The objective is to minimize the makespan of the
three-department schedule.
The problemwe have posed is NP-hard, but it is revealing to examine a simple

heuristic solution method. Consider the nondelay dispatching procedure that
always selects the available job with the largest tail (LT), qj. (For the time being,
we refer to this as the LT procedure.) The LT procedure is an intuitively appeal-
ing one. Obviously, we prefer to schedule jobs with large tails early and jobs with
short tails later. The procedure follows this guideline in a nondelay mode, as
described below.
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Algorithm 8.1 The Largest Tail (LT) Procedure

Step 1. Initially, let t = 0.
Step 2. If there are no unscheduled jobs at time t, set t equal to the minimum

release date among unscheduled jobs; otherwise, proceed.
Step 3. Find job j with the largest qj among unscheduled jobs available at time t.

Schedule job j to begin at time t.
Step 4. Increase t by pj. If all n jobs are scheduled, stop; otherwise, return to

Step 2.

The makespan generated by the LT procedure can be written as follows:

M = ri +
k

j= i

pj + qk 8 1

for some job i that initiates a block and for some job k in the block called the
critical job. (For convenience, we assume that the jobs are renumbered
according to their sequence in the solution.) If it turns out that qk ≤ qj for
all jobs j from i to k, then M is optimal. Otherwise, it is possible that M can
be improved.

∎ Example 8.2 Consider a five-job problem in which each job is character-
ized by a release date, a processing time, and a delivery time, as shown in
the table.

Job j 1 2 3 4 5

rj 0 2 3 0 6

pj 2 1 2 3 2

qj 5 2 6 3 1

At time t = 0, the LT procedure chooses between jobs 1 and 4 and selects 1.
When job 1 completes at time t = 2, the procedure chooses between jobs 4 and
2 and selects 4. Continuing in this fashion, the procedure builds the sequence
1-4-3-2-5, with a makespan of M = 13. This schedule contains only one block,
initiated by job 1. In addition, the maximum completion time of 13 occurs for
job 3. Thus, in Eq. (8.1), we have i = 1 and k = 3. However, the optimality
condition is not satisfied, because q3 > q1 and q3 > q4. This means that the
optimal makespan may be less than 13, because the optimality condition is
sufficient but not necessary.
This model is symmetric: We could just as easily solve the reversed problem

(in which jobs enter the third department first and complete in the first
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department); the optimal makespan will be the same. The implication of sym-
metry is that the LT procedure should be executed twice: once for the original
problem and once for the reversed problem. In our numerical example, the
application of the LT procedure to the reversed problem yields a makespan
of M = 12. (As it turns out, this is not an optimal solution either.)
Thus, Algorithm 8.1 uses an intuitive decision rule to construct a schedule,

and in some cases it is possible to confirm the optimality of this schedule by
means of a special condition. The condition fails if the critical job has a tail
longer than some job that appears earlier in the same block. To find an optimal
solution to the problem, a general optimization method is required. Existing
computational evidence suggests that branch-and-bound methods work
quite well.

8.2.2 Minimizing Maximum Tardiness

In the basic single-machine model, Lmax (or Tmax) is minimized by EDD sequen-
cing. It is natural to ask whether a nondelay implementation of EDD is optimal
in the dynamicmodel. It turns out that the dynamic version of the Lmax-problem
is NP-hard and the problem itself is essentially equivalent to the makespan
problem studied in the previous section. To see this equivalence, suppose that
we are given the release dates, processing times, and due dates for each of n jobs,
with the objective of minimizing maximum lateness:

Lmax = max Cj−dj

Next, denote by dmax the maximum of the due dates in the job set, and con-
sider the makespan problem created by taking qj = dmax − dj. We can write

Lmax = max Cj−dj = max Cj− dmax−qj = max Cj + qj −dmax

Clearly, in searching for an optimal schedule, we can ignore the constant dmax;
what remains is the minimization of the makespan in the head–body–tail prob-
lem. Thus, the analysis of the optimal schedule for that problem carries over to
the minimization of Lmax. In fact, we can use any constant d in the role of dmax.

∎ Example 8.3 Consider a five-job Lmax-problem in which we are given the
release date, processing time, and due date for each job.

Job j 1 2 3 4 5

rj 0 2 3 0 6

pj 2 1 2 3 2

dj 6 9 5 8 10
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The transformation given by qj = 11 − dj yields Example 8.2 in the previous
section.
From this perspective, we can see that the LT procedure is equivalent to the

nondelay implementation of EDD because the largest tail corresponds to the
smallest due date. Furthermore, the sufficient condition for optimality applies.
We state the result formally below.

∎ Theorem 8.1 In the dynamic Lmax-problem, a nondelay implementation of
the EDD rule yields

Lmax = ri +
k

j= i

pj−dk

for some job i that initiates a block and for some job k in the same block, where
the jobs are numbered in order of appearance in the schedule. If dk ≥ dj for all
jobs j from i to k, then Lmax is optimal.

Proof. The formula for Lmax is obvious, so we address the last sentence of the
theorem. Consider the relaxed problem in which we eliminate all jobs except
those from i to k in the final sequence. Next, set the release dates of the remain-
ing jobs equal to ri. This relaxed problem is essentially a basic single-machine
problem, with ri serving as time 0. Because it is a relaxation of the original
problem, its optimal Lmax is no larger than the optimal solution to the original
problem. But its optimal Lmax is attained by the EDD sequence, which will place
job k last and result in no change to its lateness. Now, the original problem and
the relaxed problem have equal objective function values, so the solution to the
original must be optimal. □

The effectiveness of Algorithm 8.1 for minimizing Lmax can sometimes be
enhanced by exploiting symmetry, as mentioned earlier, and solving the
reversed problem (where the tail comes first and the head follows the body).
Specifically, the algorithm should be implemented twice, once for the original
problem and once for the reversed problem. However, even with enhancements
such as this, the nondelay implementation of EDD remains a heuristic
procedure and does not guarantee optimality.
In general, locating an optimal schedule may require a branch-and-bound

procedure. The standard approach would be to search in the tree of permu-
tation schedules. Suppose that a partial sequence at level k corresponds to a
specific assignment of the first k jobs in sequence. (This branching structure
complements the structure introduced in Chapter 3, which focused on the last
k jobs.) The associated subproblem requires the nonpreemptive sequencing
of the remaining (n − k) jobs, but an excellent lower bound for this problem
is represented by the value obtained by using preempt–resume EDD
scheduling (which can never do worse than preempt–repeat scheduling).
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The preempt–resume solution is constructed by using a one-pass dispatching
rule, and this calculation can be made quite efficiently. Finally, in the stochas-
tic counterpart, any look-ahead approach would be difficult, but at least we
can implement the nondelay EDD rule without any detailed information on
the processing time distributions.

8.2.3 Other Measures of Performance

In general, whenever the preempt–resume version of the problem can be solved
readily, the branch-and-bound approach should be considered seriously for the
preempt–repeat version. However, it may be possible to make additional
improvements by exploiting special structure. Indeed, it is possible to solve
the Lmax-problem for hundreds of jobs in this way. The dynamic U-problem
and the dynamic T-problem represent another level of difficulty, however,
because the corresponding preempt–resume solution is not obvious.
Turning now to heuristic solution procedures, the following property gives a

sufficient condition for a certain nondelay schedule to be optimal.

∎ Theorem 8.2 In the dynamic Lmax-problem, suppose that the nondelay
implementation of EDD yields a sequence of the jobs in EDD order. Then this
nondelay schedule is optimal.

Proof. Without loss of generality, we assume that the schedule contains just one
block. Consider the relaxed problem generated by setting all release dates equal
to zero. The optimal solution to the relaxed problem is given by the
EDD sequence. Constraining the release dates to their original values does
not disturb the feasibility of this sequence, so it must be optimal for the original
problem, too. □

Theorem 8.2 is slightly weaker than Theorem 8.1 for the Lmax-problem, but an
analogous theorem applies for SPT in the F-problem and for SWPT in the
Fw-problem. Two slightly more restrictive results, involving EDD and SPT,
follow from corresponding versions of Theorem 8.2.

∎ Theorem 8.3 In the dynamic Lmax-problem, if the release dates and due
dates are agreeable, then the nondelay implementation of EDD is optimal.

∎ Theorem 8.4 In the dynamic F-problem, if the release dates and processing
times are agreeable, then the nondelay implementation of SPT is optimal.

For the dynamic F-problem, we might expect that the nondelay adaptation of
SPT performs quite well, even when the hypothesis of Theorem 8.4 does not
hold. There are, however, alternative heuristic procedures available. One alter-
native is a rule that always chooses the job that will complete earliest. This is
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sometimes called the first off first on (FOFO) rule. Note that the FOFO rule may
be considered an adaptation of the SPT principle to the dynamic model. Also,
FOFO is not a dispatching procedure because it may use look-ahead informa-
tion: The job that will complete earliest may not be available at the time the
machine becomes free. An additional alternative is to give priority to the job
with the smallest sum of earliest start time rj and earliest finish time rj + pj. This
rule, which amounts to choosing the job with minimal (2rj + pj), seems to be the
best of the three heuristic procedures, in limited testing.
For the dynamic T-problem, we can follow the logic behind Theorem 8.2 to

the following result.

∎ Theorem 8.5 In the dynamic T-problem, if the release dates, processing
times, and due dates are all agreeable, then the nondelay implementation of
MDD is optimal.

Again, we might expect the nondelay adaptation of MDD to perform quite
well, even when the hypothesis of Theorem 8.5 does not hold. If we are inter-
ested in obtaining optimal solutions to the dynamic T-problem, a branch-and-
bound approach is appropriate, although the computational effort might be
greater than for the static version.
The dynamicU-problem is NP-hard but can be solved efficiently in the case of

agreeable release dates and due dates. (In practice, due dates are often agreeable
with release dates, as, for example, when due dates are set by the rules CON,
SLK, or TWK.) The solution procedure generalizes Algorithm 2.1. Recall from
that previous discussion that we can partition the optimal schedule into two
sets, B (in which all jobs are on time) followed by A (in which all jobs are late).

Algorithm 8.2 Minimizing U (Dynamic Version with Agreeable Parameters)

Step 1. Order the jobs by ERD, and place all jobs in B. Let set A be empty.
Step 2. Compute the completion times of jobs in B. If no jobs in B are late, then

stop: B must be optimal. Otherwise, identify the first late job in B. Suppose
this job is the kth job in sequence.

Step 3. Remove one job from B so that the latest completion time among
the first (k − 1) jobs will be minimized. Place this job in A, and return to
Step 2.

This description leaves Step 3 a little vague. In order to find the job indicated,
two observations are helpful. First, we need to consider only the last block in the
schedule. Second, if we were to remove the last job (say, job u) from the block,
the reduction of the latest completion time for the jobs in Bwould be pu. For any
other job j in the block, the reduction would equal the smaller of pj or the
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minimum waiting time (i.e. the difference between release date and start time)
among jobs (j + 1) through u. From this information we can identify the job
creating the largest reduction as the one to remove in Step 3.

8.3 Related Jobs

In the basic single-machine model, the only type of constraint is the resource
capacity constraint represented by a single processor. Another type of
constraint in some scheduling problems is a technological restriction, which
specifies the admissible sequence of two jobs. Such constraints create a set of
related jobs and reduce the set of feasible solutions. However, that does not
necessarily mean that optimal solutions can be found more readily.
Each technological restriction on the sequence of a job pair is called a prec-

edence constraint. The notation i j denotes the fact that job i precedes job j. In
other words, job j is not permitted to begin until job i is complete. When i j,
job i is said to be a predecessor of job j, and job j is a successor of job i. Job i is also
called a direct predecessor of job j if no job k exists such that i k j. In words,
if job i is a direct predecessor of job j, then it is permissible for jobs i and j to be
adjacent, in that order, in the schedule.
As an example, consider the computer programs submitted for processing by

a payroll department. Program A reads daily employee time cards, sorts the
information, and updates themonthly records that aremaintained in a database.
Program B reads from the database and prints out paychecks. On the last day of
the month, both programs are submitted, but B cannot be run until A is
complete. Therefore, A B.
To illustrate the effect of adding precedence constraints to a sequencing

problem, consider the F-problem with three jobs, a, b, and c, and suppose that
pa < pb < pc. Then, without precedence constraints, the optimal sequence is
clearly a-b-c. Now suppose we impose one precedence constraint, c a.
Although job b “ought” to follow job a and precede job c on the basis of its
processing time, it is not immediately clear in this situation whether sequence
c-a-b or sequence b-c-a is most desirable. (We can, however, rule out the
sequence c-b-a with a simple adjacent pairwise interchange.) Thus, the exist-
ence of precedence constraints can complicate even the simplest scheduling
problems.With more than three jobs andmore than one precedence constraint,
the problem is considerably more difficult to solve.
In the following sections, we examine the effects of adding precedence

constraints in situations where the performance measure would normally
lead us to sort the jobs but where precedence constraints may conflict with
the order dictated by sorting. We illustrate the concepts for the Tmax-
problem and the F-problem, but further generalization of the concepts is
possible.
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8.3.1 Minimizing Maximum Tardiness

Suppose we are dealing with related jobs in a dynamic model, where we are
given release dates, processing times, and due dates. If the objective is to
minimize Lmax (or Tmax), then, on the basis of the precedence constraints, we
can make some simple revisions in the given data that may help us find a
solution.
Let i and j denote two related jobs, with i j. Suppose, in the given data, that

we have rj < ri + pi. In spite of this information, we know that in any feasible
schedule job j cannot start any earlier than the completion time of job i because
of the precedence constraint. Therefore, we can reset rj = ri + pi. In a comple-
mentary fashion, suppose that we are given di > dj − pj. Then, we can reset di =
dj − pj. This revision is allowable because even by making the due date of job
i tighter, we will not directly affect the maximum lateness. Specifically, after
the revision we obtain

Li =Ci−di =Ci− dj−pj ≤ Cj−pj − dj−pj =Cj−dj = Lj

Therefore, the lateness (or tardiness) of job i will still not be larger than the
lateness (or tardiness) of job j.
The net effect of this revision is as follows. If job i is a predecessor of job j, then

either the given information contains agreeable release dates and due dates
consistent with the precedence constraint or else we can easily revise the para-
meters of jobs i and j so that agreeability occurs. We can then proceed as if there
were no precedence constraint, although we may still need to call on a general-
purpose solution procedure.
When all release dates are zero, it is sufficient to revise only the due dates. In

fact, a consistent scheme is to reset the due date of job i equal to the minimum
due date among its successors, if that minimum is lower than di. Thereafter, we
can create an optimal schedule by applying the EDD rule with the revised due
dates while respecting precedence constraints.
For the general criterion of minimizing the maximum cost with zero release

dates, we based the solution algorithm for the single-machine model on Theo-
rem 3.1. If precedence constraints exist, we amend the statement of the theorem
slightly: When the objective is to minimize the maximum penalty, job i may be
assigned the last position in sequence if job i has no unscheduled successors and
gi(P) ≤ gj(P) for all jobs j i without unscheduled successors. Theorem 6.4,
which adapts Theorem 3.1 to the stochastic case, can also be extended this way.

8.3.2 Minimizing Total Flowtime with Strings

For the F-problem, we begin with an observation that resolves the conflict
between sorting and precedence constraints. Suppose that we have a single
relevant precedence constraint i j and that pj ≤ pi. That is, job i precedes
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job j, but j is shorter than i and hence preferable to i for the F criterion. In this
situation, an optimal sequence exists in which jobs i and j are adjacent, in that
order. To see why this result holds, imagine that instead the optimal sequence
had some job k between i and j. Job k would have to satisfy pk ≤ pi or pk ≥ pj. In
the first case, it would be at least as good to place k in front of i; in the second
case, it would be at least as good to place k after j. Thus, it is not advantageous to
have an intervening job between i and j.
We next consider the sequencing of job strings. A string is a set of jobs that

must appear together (contiguously) and in a fixed order. The sequencing
problem for job strings is one of sequencing these special job sets. Suppose
the problem consists of s strings and that

nk = number of jobs in string k (1 ≤ k ≤ s)
pkj = processing time of job j in string k (1 ≤ j ≤ nk)

From the given information we define

pk =
nk

j= 1

pkj = total processing time in string k

Also, let

F k, j = flowtime of job j in string k

F k = F k,nk = flowtime of string k

First, if the objective is to minimize total string flowtime, that is, s
k = 1F k ,

then the strings may each be treated as pseudojobs, yielding an optimal
sequence characterized by a string-based version of SPT. In particular, the
optimal string sequence is given by p[1] ≤ p[2] ≤ ≤ p[s].
On the other hand, if the objective is to minimize total job flowtime, that is,
s
k = 1

nk
j=1F k, j , then in general a different sequence is optimal, as stated in

the following theorem.

∎Theorem 8.6 In the single-machine problem with job strings, total flowtime
is minimized by sequencing the strings in the order

p 1

n 1
≤
p 2

n 2
≤ ≤

p s

n s

Proof. Define a quantity qkj to represent the processing time in string k that fol-
lows job j, that is, a residual processing time:

qkj =
nk

i= j+ 1

pki
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where qkj is understood to be zero when j = nk. Note that qkj is given. Hence,

F =
s

k = 1

nk

j= 1

F k, j =
s

k =1

nk

j= 1

F k −
nk

i= j+1

pki

=
s

k = 1

nk

j= 1

F k −qkj

=
s

k = 1

nk

j= 1

F k −
s

k = 1

nk

j= 1

qkj

Note that the last double sum is a constant, independent of sequence.
Consequently, minimizing F is equivalent to minimizing the first double
sum, which is

s

k =1

nk

j=1

F k =
s

k = 1

nkF k

Minimizing this sum corresponds to minimizing total weighted flowtime for
the strings, where the weighting factor associated with string k is just nk. Hence,
by Theorem 2.4, the optimal string sequence must be in nondecreasing order of
the ratio pk/nk. □

The concept of a job string may seem restrictive because it requires a
collection of jobs to be processed in a specific sequence. However, the concept
helps structure situations where the string requirement is not strictly necessary.
For example, recall the situation where sorting and precedence conflict. In
particular, job i directly precedes job j and pj ≤ pi. Then, as we saw earlier,
we may assume that jobs i and j appear together in sequence, so we can treat
(i, j) as a string for the purpose of constructing an optimal schedule.
As another example, there may be a contiguity constraint, under which a col-

lection of jobs must be performed together but without specification of their
sequence. This structure arises in scheduling groups of jobs, where each group
represents a product family. Each family must be performed contiguously
because they share a common major setup or perhaps a common resource.
In this situation, the collection of jobs within a group can be ordered optimally
(by SPT), and then the ordered set (augmented by the group setup time, if it
applies) can be treated as a string for the purpose of sequencing all the groups,
at which point Theorem 8.6 applies.
The significance of Theorem 8.6 extends even further. Define a job module to

be a set S of jobs such that for each pair of jobs i and j in the set, no job k exists
outside the set that satisfies i k j. In words, a job module is a set of jobs that
could feasibly be sequenced contiguously. Furthermore, the notation s t,
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where s and t are strings, implies that each job in string s precedes every job in
string t. Suppose that a job module consists of two strings, u and v, with u v
and pv/nv ≤ pu/nu. (This is a situation inwhich the precedence constraint between
strings conflicts with the sorting of strings.) Then, for minimizing total flowtime,
an optimal sequence exists in which strings u and v are adjacent, in that order.
Furthermore, the two strings u and v can then be treated as a single string, and it
may be possible to reapply the result to this new string and some other string.
For certain precedence structures, this modular approach to building a job

sequence can lead us to an optimal schedule. In the next subsection, we examine
the details of this approach.

8.3.3 Minimizing Total Flowtime with Parallel Chains

A chain is a special precedence structure in which each job has at most one
direct predecessor and one direct successor. The jobs in a chain do not neces-
sarily have to be sequenced contiguously, although it is permissible to do so; this
flexibility distinguishes a chain from a string. Suppose that a job set consists of
several chains in parallel. As a result of Theorem 8.6, this job structure can be
sequenced by the following algorithm.

Algorithm 8.3 Parallel-chains Algorithm for F

Step 1. Initially, each job is a string.

Step 2. Find a pair of strings, u and v, such that u directly precedes v and pv/nv ≤
pu/nu. Replace the pair by the string (u, v). Then repeat this step. When no
such pair can be found, proceed to Step 3.

Step 3. Sort the strings in nondecreasing order of p/n.

If no precedence constraints exist, then Step 2 produces no two-job strings,
and Step 3 is equivalent to SPT. Otherwise, Step 2 identifies string pairs for
which sorting and precedence conflict and also reconciles the conflict. Finally,
when we reach Step 3, sorting and precedence are no longer in conflict, at least
for the strings that exist at that stage, and the sort prescribed by Step 3 produces
an optimal sequence.

∎ Example 8.4 Consider the F-problem with n = 9 jobs shown in Figure 8.2a,
where the processing time for each job is shown above the corresponding node
in the network.

Five precedence constraints are shown as arcs in the network; these form par-
allel chains. Step 2 first combines jobs 1 and 2 into a string and then combines the
string (1, 2) and job 3 into a single string. Jobs 5 and 6 are similarly combined and
so are jobs 7 and 8. When Step 2 is complete, we have five strings and one
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precedence constraint: String (7, 8) precedes job 9. This precedence constraint,
however, is consistent with nondecreasing p/n order. The five strings are shown
in Figure 8.2b, with the value of ps/ns shown above the node corresponding to
string s. Step 3 sorts the five strings into the optimal sequence 5-6-4-7-8-1-2-
3-9, with F = 245.
These concepts can most generally be extended to series–parallel precedence

structures. A networkN exhibits series–parallel structure if it consists of a single
node or if N can be partitioned into two subnetworks N1 and N2 that are them-
selves series–parallel and where one of the following conditions is satisfied:

• N1 is in series withN2 (for every pair (i, j) with i N1 and j N2, we have i j).

• N1 is in parallel with N2 (for every pair (i, j) with i N1 and j N2, i and j are
not related).

∎ Example 8.5 Consider the F-problem with n = 8 jobs and the network
structure shown in Figure 8.3, where the processing time for each job is shown
above the corresponding node in the network.
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Figure 8.2 The example problem in (a) and after applying Step 2 in (b).
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Figure 8.3 An eight-job example.
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Series–parallel structures can be described by a decomposition tree. In this
type of tree, there are two kinds of nodes. Nodes without successors correspond
to individual jobs and are numbered accordingly. Other nodes have two
successors and correspond to a partition of a network or a subnetwork. These
decomposition nodes are designated S or P, depending on whether the appro-
priate partition is series or parallel. Figure 8.4 displays a decomposition tree for
Example 8.5, thus demonstrating that it has a series–parallel precedence
structure.
In order to find optimal sequences for series–parallel-structured job sets, the

solution algorithm processes nodes N in the decomposition tree for which the
subnetworks N1 and N2 have previously been processed. If the decomposition
for N is of the series type, then N is processed by forming the string (N1, N2).
If the decomposition is of the parallel type, then N is processed by applying
Algorithm 8.3 to the parallel chainsN1 andN2. In either case, the jobs contained
in N are formed into an optimal sequence.
To demonstrate this procedure, we list the steps involved in sequencing the

jobs in the example.

Subnetwork pair Type Resolution

4, 5 Parallel (4, 5)

6, 7 Parallel (7, 6)

2, 3 Series (2-3)

(4, 5), (7, 6) Series (4, 5-7, 6)

(2, 3), (4, 5-7, 6) Parallel (4, 5-7, 2-3, 6)

1, (4, 5-7, 2-3, 6) Series (1-4, 5-7, 2-3, 6)

(1-4, 5-7, 2-3, 6), 8 Series (1-4, 5-7, 2-3, 6-8)

S S

3

2

S8

1

P

P

P

7

6

5

4

S

Figure 8.4 A decomposition tree for the example in Figure 8.3.
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The first two string pairs are resolved by SPT sequencing of the job pairs. The
next two string pairs are resolved by their series structure: Job 3 must follow job
2, and job module (7, 6) must follow (4, 5). At this stage the p/n values are 6 for
string (2-3), 4 for job 4, 5 for string (5-7), and 7 for job 6. Algorithm 8.3 then
forms the sequence (4-5-7-2-3-6). Finally, jobs 1 and 8 are added according
to their series relationships with the subnetwork already sequenced. The result
is the optimal sequence 1-4-5-7-2-3-6-8 with F = 186.
Job sets in which series–parallel structures apply can thus be optimized

efficiently by exploiting the parallel-chains algorithm in combination with
the decomposition tree. Furthermore, no more general case of precedence
structure is known that yields an efficient algorithm of the type described
above. For general precedence structures, we would apparently need to
employ a general-purpose solution procedure. For example, we could use
dynamic programming but with precedence constraints in the role of
dominance conditions.

8.4 Sequence-Dependent Setup Times

In many realistic problems, setup times depend on the type of job just com-
pleted as well as on the type about to be processed. In those situations, it is
not valid to absorb the setup time for a job in its processing time, and explicit
modifications must be made. The time interval in which job j occupies the
machine is expressed sij + pj, where i is the job that precedes j in sequence, sij
is the setup time required for job j after job i is completed, and pj is the amount
of direct processing time required to complete job j.
Setup times that are sequence dependent are commonly found where a single

facility produces several different kinds of items or where a multipurpose
machine carries out an assortment of tasks. The use of a single system to
produce different chemical compounds may require that some amount of
cleansing be carried out between process runs on different compounds to
ensure that tolerably low impurity levels are maintained. Sometimes, the
extent of the cleansing depends on both the chemical most recently processed
and the chemical about to be processed. Similar setup properties can be found
in the production of different colors of paint, strengths of detergent, and
blends of fuel. The same observations apply to certain assembly lines where
retooling, inspection, or rearrangement of work stations could represent
the setup activity.
In the basic single-machine problem, the makespan, M, is a constant. With

sequence-dependent setups, however, the makespan depends on which
sequence is chosen:

8 Extensions of the Basic Model232



F 1 = s0, 1 + p 1

F 2 = F 1 + s 1 , 2 + p 2

F n−1 = F n−2 + s n−2 , n−1 + p n−1

F n = F n−1 + s n−1 , n + p n

where state 0 corresponds to an initial state, usually an idle state. Also, if we
define the state (n + 1) as a terminal state (perhaps identical to state 0), then
the schedule makespan becomes

M = F n + s n , n+1
=

n+ 1

j=1

s j−1 , j +
n

j= 1

pj 8 2

The second summation is a constant, so the problem ofminimizingmakespan
is equivalent to minimizing the first summation. This sum represents the total
nonproductive time in the full sequence, beginning and ending in the idle state.
The type of structure represented by this makespan problem is often inter-

preted as a traveling salesperson problem (TSP). In the classical formulation,
a salesperson must visit clients in each of n cities. The salesperson wishes to
choose a tour that goes to each city exactly once and returns to the point of ori-
gin. Given the distances between all pairs of cities, the salesperson’s task is to
find the tour with minimum total travel distance. An alternative formulation
considers travel times in place of distances. In the sequencing problem, sij
(the setup time for job j when it immediately follows job i) corresponds to
the travel time between city i and city j. Although the classical version of the
TSP usually involves a symmetric matrix (sij = sji), that need not be the case
in the sequencing problem, so our default assumption is that travel times are
asymmetric. In addition, our TSP formulation ignores the processing time of
a job, although that could be easily modeled as the time the salesperson must
spend in a city. This formulation demonstrates that the crux of the makespan
problem is minimizing total setup times, regardless of processing times.

∎ Example 8.6 Consider scheduling a process line that manufactures four
types of gasoline: racing fuel, premium, regular, and unleaded. The matrix
of setup times, sij, is shown in Table 8.1. In a full production cycle, during
which one batch is devoted to each product, the amount of nonproductive
time (that is, setup time) depends on the sequence in which these fuels are
produced.

The total amount of setup time differs in each of the six distinct sequences
that include all four products, as listed below.
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Sequence Setup time

1-2-3-4-1 30 + 20 + 60 + 20 = 130

1-2-4-3-1 30 + 80 + 10 + 30 = 150

1-3-2-4-1 50 + 30 + 80 + 20 = 180

1-3-4-2-1 50 + 60 + 15 + 40 = 165

1-4-2-3-1 90 + 15 + 20 + 30 = 155

1-4-3-2-1 90 + 10 + 30 + 40 = 170

The TSP is NP-hard, but state-of-the-art algorithms are capable of solving
very large problems, with thousands of cities. Although the solutions of really
large instances rely on parallel processing and can consume years of CPU time,
problems with hundreds of cities can be solved on personal computers. In the
following subsections we limit our investigation to basic solution approaches for
the TSP. To reinforce the concepts of Chapters 3 and 4, we examine two
optimizing approaches – dynamic programming and branch and bound – as
well as some simple heuristic procedures.
The following discussions assume that if an idle state is required in the

formulation of the problem, it has already been included in the sij matrix. Also,
for convenience, we use the terminology of the classical problem and refer to
cities and distances or travel times rather than to jobs and setup times.

8.4.1 Dynamic Programming Solutions

With some slight modifications, the dynamic programming approach can be
adapted to solve the TSP. The important structural modification is that a solu-
tion must correspond to a complete cycle, in which the tour returns to its start-
ing point. Let J and S denote disjoint subsets of the n cities, choose a city
i arbitrarily, and designate it as the origin of the tour. Now let X denote the
set of all cities, excluding i. The optimal tour can be interpreted as consisting
of the sets {i}, S, {k}, J, {i}. In other words, the tour begins at city i, proceeds

Table 8.1

Product (1) (2) (3) (4)

Racing (1) — 30 50 90

Premium (2) 40 — 20 80

Regular (3) 30 30 — 60

Unleaded (4) 20 15 10 —
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to the cities in set S, visits a particular city k, then proceeds to the cities in set
J, and finally returns to i. Sets S and J do not contain k or i. Also, if J contains
c cities, then S must contain (n − c − 2) cities. With this structure, an optimal
tour can be described by the principle of optimality. Consider the portion of
the tour that starts at city k and returns to i. This portion must be the shortest
possible path from city k that passes through the cities in J and finishes at city i.
(If this were not the case, the tour could not be optimal.) Now define

f k, J = the length of the shortest path from city

k that passes through the cities in J and finishes at city i

Then the length of the optimal tour is given by

f i,X = min
j X

sij + f j,X− j

where, in general,

f k, J = min
j J

skj + f j, J − j

and where

f k,ϕ = ski

By using these recursion relations, we can construct the optimal tour by first
considering sets J of size 1, then sets J of size 2, and so on, until enough
information has been accumulated to calculate f(i, X). Table 8.2 displays the
calculations for the 4 × 4 matrix of Table 8.1, yielding an optimal processing
sequence (as indicated in the original table) of 1-2-3-4-1.
This dynamic programming approach to the TSP is similar to the general

dynamic programming approach presented in Chapter 3. The only major differ-
ence in the structure of this formulation is that the function at the heart of the
recursion has two arguments instead of one.

8.4.2 Branch-And-Bound Solutions

An alternative optimization approach is the technique of branch and bound. In
fact, one of the earliest research studies on branch and bound (Little et al. 1963)
dealt with solving the TSP. This approach is worth examining in detail because
it helps illustrate the flexibility inherent in branch-and-bound methods.
The branching scheme creates two subproblems at all levels: one subproblem

containing a specific element of the sijmatrix constrained to be part of the solu-
tion and the other subproblem prohibiting that same element. For example, a
partition of the original problem might require the (1, 3) element to be in the
tour of one subproblem and prohibit the (1, 3) element in the complementary
subproblem.
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Lower bounds for a given sij matrix may be calculated by a method called
reduction. Since any feasible solution contains exactly one element in each
row, it is possible to subtract a constant from any row without altering the rel-
ative desirability of any feasible solution. In effect, this subtraction reduces the
length of all tours by the same constant and, in particular, does not affect which
of the feasible tours is optimal. In the reduction process, we subtract the min-
imum element from each row. Then, similarly, we can subtract the minimum
element from each column. The matrix that emerges has at least one zero ele-
ment in every row and in every column, and the sum of the subtraction con-
stants serves as a lower bound on the optimal solution because this distance
must be part of any feasible tour. To illustrate these steps specifically, consider
the TSP (denoted P) associated with the matrix in Table 8.3a.
Reduction. By subtracting the minimum element in each row, the original

matrix is reduced to the one shown in Table 8.3b. The sum of the elements
subtracted is 20, which is a lower bound on the optimal solution. At this point,
we have at least one zero in every column as well, as required.
Branching. The algorithm next partitions the problem by forcing one of the

zero elements to be part of the tour on one branch and prohibiting the same

Table 8.2

Let i = 1

Stage 1

f(2, ϕ) = 40

f(3, ϕ) = 30

f(4, ϕ) = 20

Stage 2

f(2, {3}) = 20 + 30 = 50 f(2, {4}) = 80 + 20 = 100

f(3, {2}) = 30 + 40 = 70 f(3, {4}) = 60 + 20 = 80

f(4, {2}) = 15 + 40 = 55 f(4, {3}) = 10 + 30 = 40

Stage 3

f(2, {3, 4}) = min{20 + 80, 80 + 40} = 100

f(3, {2, 4}) = min{30 + 100, 60 + 55} = 115

f(4, {2, 3}) = min{15 + 50, 10 + 70} = 65

Stage 4

f(1, {2, 3, 4}) = min{30 + 100, 50 + 115, 90 + 65} = 130

Optimal tour: 1-2-3-4-1

Distance: 130
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element on the other branch. To decide which zero element to choose, one log-
ical method is to select the element that, when prohibited, would permit the lar-
gest possible reduction in thematrix. Therefore, we label each zero element with
the sumof theminimumelement remaining in its rowand theminimumelement
remaining in its column, as shown in Table 8.3c. This rule selects element (2, 1).
The original problem is partitioned into two subproblems: P(21), which contains
the (2, 1) element, and P(∗21), which prohibits the (2, 1) element.
Bounding. The reduction procedure can now be applied to each subproblem.

Since the (2, 1) element is part of the tour in P(21), the (1, 2) element must be
prohibited if the solution is to form a complete tour. In addition, we can also
eliminate elements (2, j) for j 1 and elements (i, 1) for i 2. The matrix that
results (Table 8.4a) can be reduced to the matrix shown in Table 8.4b (by sub-
tracting 2 from the second column and 2 from the first row), leading to a bound
of 24 (by adding 2 + 2 to the previous bound of 20). Meanwhile, P(∗21) can be
reduced to the matrix shown in Table 8.4c, which has a bound of 25 (20 plus the
label on the (2, 1) element in the reduced matrix for P).
At the next stage, either subproblem could be partitioned further. Suppose the

strategy is always to partition the subproblem that is closest to being fully solved.
(In Chapter 3 we called this strategy backtracking.) Under this strategy, P(21) is
partitioned next. As indicated by Table 8.4b, several zero elements are equally
desirable according to the selection rule. Such ties can be broken arbitrarily.
Therefore, let element (5, 4) be the basis for the next partition. Thus we partition
P(21) into subproblems P(21, 54) and P(21, ∗54), which can both be reduced.
These two subproblems (shown in Table 8.5a, b) have bounds of 26.
The list of unsolved problems and their lower bounds becomes

P(21, 54) (26)

P(21, ∗54) (26)

P(∗21) (25)

Table 8.3

(a) (b) (c)

P P (reduced) P (reduced)

— 4 8 6 8 — 0 4 2 4 — 04 4 2 4

5 — 7 11 13 0 — 2 6 8 05 — 2 6 8

11 6 — 8 4 7 2 — 4 0 7 2 — 4 02

5 7 2 — 2 3 5 0 — 0 3 5 02 — 00

10 9 7 5 — 5 4 2 0 — 5 4 2 04 —
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Once again, we partition the problem that is closest to being fully solved. In P
(21, 54), the desirable zero element is (4, 3). The list becomes

P(21, 54, 43) (26)

P(21, 54, ∗43) (29)

P(21, ∗54) (26)

P(∗21) (25)

The problem P(21, 54, 43) is essentially fully solved because only one feasible
tour includes the elements (2, 1), (5, 4), and (4, 3). The complete tour must be 2-
1-5-4-3-2, a solution with a value of 26. The fact that a trial solution has been
found with a tour of length 26 allows two other branches of the tree to be
fathomed. In particular, no completion of P(21, 54, ∗43) or of P(21, ∗54) can pos-
sibly improve on this trial solution, because their bounds are already at or above
26. The tree structure at this stage is shown in Figure 8.5. Below each node is the
corresponding lower bound, designated “F” if the node has been fathomed.

Table 8.4

(a) (b) (c)

P(21) P(21) P(�21)

— — 4 2 4 — — 2 02 2 — 04 4 2 4

0∗ — — — — 0∗ — — — — — — 04 4 6

— 2 — 4 0 — 02 – 4 00 4 2 — 4 02

— 5 0 — 0 — 3 02 — 00 02 5 00 — 00

— 4 2 0 — — 2 2 02 — 2 4 2 04 —

Table 8.5

(a) (b)

P(21, 54) P(21, �54)

— — 00 — 00 — — 2 0 2

0∗ — — — — 0∗ — — — —

— 00 — — 00 — — — 4 0

— 3 03 — — — 3 0 — 0

— — — 0∗ — — 0 0 — —
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One subproblem, P(∗21), remains. Proceeding from this subproblem, we can
find a new trial solution (1-2-3-5-4-1) with a value of 25, and the solution tree
that results is shown in Figure 8.6. Now, all unsolved subproblems have bounds
of 26 or more, so no feasible solution can be better than the trial solution. The
trial solution is therefore an optimum.

P

20

25

21

24

26

26

26F

29F

21,54

21,54,43 21,54,*43

21,*54

*21

Figure 8.5 The partial tree for the example problem.

P

20

25

25

25

25

21

24

26

21,54 *21,*23 *21,23

*21,23,*12 *21,23,12

*21,23,12,35 *21,23,12,*35

*21

21,*54

21,54,*4321,54,43

26 29F

26F 29F

29F

31F

Figure 8.6 The final tree for the example problem.
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Although the branching tree encountered in the TSP differs from the permu-
tation tree illustrated in Chapter 3, it does illustrate the general characteristics:
At each level, it replaces a problemwith (two)mutually exclusive and exhaustive
subproblems, and these subproblems are smaller, partially solved versions of the
original. The calculation of lower bounds is accomplished in this tree via reduc-
tion, which identifies distances that are unavoidable in any feasible solution. The
solution procedure could be enhanced with alternative methods of obtaining
bounds. For example, an alternative is to solve the assignment problem associ-
ated with the matrix: That is, choose n elements from the matrix, with exactly
one element in each row and exactly one in each column, such that their sum is a
minimum. (The optimal solution to the assignment problem can be found with
a polynomial algorithm, but that solution produces only a bound because it does
not guarantee that the optimal assignment corresponds to a single tour.)

8.4.3 Heuristic Solutions

A fairly simple greedy procedure for the TSP is known as the “closest unvisited
city” algorithm, in which the sequence is constructed by the greedy approach of
always selecting the closest city not yet visited. (In terms of the sequencing
model, this rule amounts to dispatching according to the shortest setup time.)
In the problem of Table 8.3a, for example, suppose that city 5 is the origin. The
closest city to the origin, corresponding to the minimum element in row 5, is
city 4. Excluding city 5, the closest to 4 is city 3. The closest unvisited city to
3 is 2 and the closest to 2 is 1. The heuristic procedure thus constructs the
sequence 5-4-3-2-1-5, which has a tour length of 26. Had this sequence been
known at the outset of the backtracking scheme depicted in Figure 8.6, the
branches corresponding to subproblems P(21, 54) and P(21, ∗54) could have
been fathomed as soon as they were created, improving the speed with which
an optimum would have been located. The heuristic procedure need not be
evaluated only in terms of its usefulness as part of a branch-and-bound scheme–
it is important in its own right. Although the closest unvisited city algorithm
cannot guarantee optimal solutions, its importance may lie in its ability to
generate good solutions rapidly in problems where the cost of implementing
an optimum-seeking method is prohibitive.
Several variations of this heuristic procedure have been developed that pre-

serve the essence of the closest unvisited city approach. The first variation
involves an interpretation of “closest.” If the original sij matrix (Table 8.4a) is
used in the calculations, then absolute distances are used to identify a closest
city. Alternatively, if the reduced sijmatrix (Table 8.4b) is used, then relative dis-
tances identify a closest city. A second variation involves a look-ahead feature
that permits a closest unvisited pair of cities to be added to the tour. Under this
variation, we again choose the origin arbitrarily. Then, instead of examining the
paths from the origin to (n − 1) other cities, we evaluate the paths from the origin
to (n − 1)(n − 2) ordered pairs of cities, and we add to the tour the pair associated
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with minimum distance. The third variation involves several applications of the
algorithm: Instead of choosing the origin city once, arbitrarily, we apply the pro-
cedure n times, each time using a different city as the origin. Then we take the
best of the n tours as the solution. This variation follows the principle that a
heuristic procedure is often strengthened by the opportunity to choose among
several solutions. These three variations in fact describe eight closest unvisited
city algorithms, as listed in Table 8.6. Tests on randomly generated problems
suggest that the closest unvisited city algorithm produces solutions within
10% of optimum for n ≤ 20, but that performance of the algorithm deteriorates
when considerable variability appears in the elements of the sij matrix.
The insertion procedure is an alternative heuristic approach. We begin with a

randomly selected pair of cities, constituting a tour of length 2. Then a third city
is inserted to minimize the resulting three-city tour; then a fourth city is
inserted, and so on, until a complete tour has been constructed. Suppose, for
example, that the method is applied to the problem in Table 8.3a, with the cities
taken in numbered order. The “seed” pair 1-2 forms a two-city tour. A three-city
tour is selected by evaluating the tours 3-1-2 and 1-3-2. (The latter has
the shorter tour.) A four-city tour is formed by inserting job 4 somewhere
in the three-city tour. In other words, a tour is selected from among 4-1-3-2,
1-4-3-2, and 1-3-4-2. At the last stage, a full tour is selected from among four
candidates, producing a tour of length 26. Just as the closest unvisited city
algorithm is sensitive to which city is designated as origin, the insertion
procedure is sensitive to which pair of cities is designated as initial seed and
to the order in which jobs are considered for insertion. Heuristic rules for these
facets of the algorithm have not been thoroughly developed, but we could repeat
the algorithm several times, each time beginning with a different seed pair.
The general-purpose search methods described in Chapter 3 can also be

employed in the TSP. Indeed, search methods are often tested on the TSP in
order to confirm their effectiveness.

Table 8.6

Algorithm Variations

1 Absolute distances No look ahead Arbitrary origin

2 Absolute distances No look ahead All origins

3 Absolute distances Look ahead Arbitrary origin

4 Absolute distances Look ahead All origins

5 Relative distances No look ahead Arbitrary origin

6 Relative distances No look ahead All origins

7 Relative distances Look ahead Arbitrary origin

8 Relative distances Look ahead All origins
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8.5 Stochastic Traveling Salesperson Models

In this section, we explore stochastic counterparts and extensions of the TSP
under the assumption of sequence-dependent, normally distributed, and sto-
chastically independent travel times. For convenience, we ignore the fact that
the normal distribution allows negative realizations. We also avoid models in
which sequences with large variances – rather than small variances – provide
better results. Usually, increasing variance is detrimental, but our Research
Notes explore cases in which larger variances are beneficial.
Let the travel time between cities i and k have mean μik and standard deviation

σik. For normally distributed travel times, two parameters suffice for the length
of each tour: the mean μ (given by Σμik along the tour) and the standard
deviation σ (given by [ σ2ik]

0.5). We briefly consider the stochastic counterpart
of the makespan problem and then explore the stochastic counterpart of the
tightness/tardiness trade-off.
In the stochastic counterpart of the makespan problem with sequence-

dependent setup times, we seek the minimum value of the expected makespan.
From Eq. (8.2), we have

E M = E
n

j= 1

s j−1 , j +E
n

j=1

pj 8 3

In the first expectation, we assume that the idle state serves as the initial and
final state and is included among the n setup states in the sum of setup times. In
the second expectation, the expected value of a sum is the sum of its component
expected values, so the second expectation is simply the sum of the mean
processing times, which is a constant for any choice of sequence. To model
stochastic travel times literally, we could calculate the sum of the setup time
and the processing time for each pair of cities and use the result as travel time.
The stochastic counterpart thus becomes the problem of finding a sequence
that minimizes the sum of the expected travel times in a tour. This is equivalent
to the deterministic counterpart, which is defined by an n × n matrix of mean
setup times and which can be solved by the methods of Section 8.4.
A stochastic safe scheduling problem can be formulated based on themakespan

in thecaseof the tightness/tardiness trade-off, under theassumption that the travel
times each follow normal distributions. In particular, we use a single due date,
denoted by d, and we define the tardiness in the schedule by T =max{0,M − d}.
Our criterion is d + γE[T] with γ > 1, as in Section 7.3, except that in this case only
one due date applies and tardinessmeasures the difference between themakespan
of the full tour and theduedate. Because travel times are assumed to follownormal
distributions, themakespan isalsonormallydistributed.Drawingonthe formula in
Eq. (B.16), or on the reasoning in Section 7.3, we obtain the objective function

d + γE T = μ+ γϕ z σ 8 4
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where z is the argument for which ϕ(z) = (γ − 1)/γ and the due date takes the
form d = μ + zσ.
If a particular tour minimizes both the mean and the standard deviation, then

it is clearly optimal for Eq. (8.4). To discover whether such a tour exists, we solve
two TSPs. The first uses a travel time matrix containing means μik, so the
solution minimizes the sum of the means along the tour, thus identifying the
tour that minimizes the mean of the makespan. The second TSP uses a travel
time matrix containing variances σ2ik , so the solution minimizes the sum of the
variances along the tour, thus identifying the tour that minimizes the variance of
the makespan. That tour also minimizes the standard deviation of the make-
span, which could not have been accomplished except by working with a tour
made up of variance terms.
If the optimal tour for both TSP matrices is the same, then it minimizes the

objective in Eq. (8.4). In general, however, the tours that minimize mean and
standard deviation will differ, creating a potential trade-off between the mean
of the tour length and the standard deviation of the tour length. (For this rea-
son the solution to the deterministic counterpart, which corresponds to mini-
mizing only the mean, may not provide an optimal tour in the stochastic
case.) In other words, if we characterize each possible tour by its mean and
standard deviation, we must search for the combination that mini-
mizes Eq. (8.4).
Imagine that we construct a graph in which points correspond to the

μ–σ pairs for all possible tours, with the mean along the horizontal axis
and the standard deviation along the vertical axis. If we connect all pairs
of points by straight lines, the outside boundary forms a polygon called the
convex hull, and the candidates for optimal tour correspond to points that
appear on the lower left boundary of the convex hull, starting from the
tour that minimizes the mean, moving counterclockwise, and ending with
the tour that minimizes the standard deviation. No other tour can be
optimal.
Unfortunately, no efficient procedure is available for searching directly among

the candidate points in the convex hull of μ–σ points. However, we can search
systematically on the boundary of the convex hull of μ–σ2 points, where (it is
possible to show) all candidate points lie. We illustrate the search procedure
with an example.

∎ Example 8.7 Consider the sequencing of n = 7 jobs with sequence-
dependent stochastic travel times. The travel times follow independent normal
distributions with known means and variances, and the objective is to optimize
the tightness/tardiness trade-off when γ = 6 (for which γϕ(z) = 1.5). The follow-
ing two arrays list the parameters of the normal distributions, first for means μik
and then for variances σ2ik .
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From\to 1 2 3 4 5 6 7

1 9 999 156.6 158.5 199.7 146.5 112.5 131.5

2 133.4 9 999 150.4 137.7 118.4 116.8 166.9

3 182.8 188.3 9 999 152.3 197.2 187 132.6

4 184.6 153.3 133.5 9 999 112.9 194.8 187.7

5 149.4 200.1 182.7 169.6 9 999 120.6 197.3

6 174.3 193.7 126.5 116.7 112.5 9 999 112.1

7 179 190.8 186.2 186.7 208.4 111.8 9 999

From\to 1 2 3 4 5 6 7

1 99 999 639.8 510.6 3402.5 0.5 1.4 316.1

2 204.6 99 999 900.1 3.8 2.6 5.7 165.5

3 2 516.1 2 544.3 99 999 393.3 379.4 177.7 1 19.6

4 846.3 95.2 161.3 99 999 0.8 2 925.5 3 458.6

5 98.9 245.4 1 459.9 287.6 99 999 13.8 19.5

6 648.9 1948 140.6 4.9 0.7 99 999 0.5

7 2 396.3 3 435.7 96.5 3907.9 1 626.4 0.1 99 999

Figure 8.7 shows the mean–variance pairs for all 720 possible tours feasible for
these seven jobs. The candidate tours correspond to the following points.

Tour Mean Variance

0.00 930.4 1764.2

0.01 934.1 1024.2

0.14 940.7 831.9

0.44 984.2 688.4

1.00 1120.4 598.9

The first candidate on this list is theminimum–mean tour, (1-2-3-7-6-4-5-1),
obtained by solving the deterministic counterpart; and the last candidate is the
minimum–variance tour, (1-5-7-3-6-4-2-1), obtained by solving the TSP with
variances as travel times. The other candidates are yet to be identified. Our basic
solution procedure does not enumerate all possible tours or construct the full
convex hull. Instead, it systematically identifies the tours on the lower left
boundary of the convex hull. The procedure finds the optimal tour by solving
a relatively small number of TSPs.
At any stage of the procedure, we focus on two candidate tours, starting with

the two tours that minimize μ and σ2. We connect these two points by a straight
line or search segment. Let λ be the argument for which the test function
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(1 − λ)μ + λσ2 is constant along the search segment. At the first stage, λ = 0
corresponds to the minimum–mean tour, and λ = 1 corresponds to the
minimum–variance tour. The constant can be found by equating the value of
the test function at the endpoints of the search segment:

1−λ μ0 00 + λσ
2
0 00 = 1−λ μ1 00 + λσ21 00

In this case, the values of the means and variances come from the minimum–
mean and minimum–variance tours. Their means and variances are identified
by the subscripts λ = 0.00 for the minimum–mean tour and λ = 1.00 for the
minimum–variance tour. A general formula for the desired value of λ is

λ=
μR−μL

μR−μL − σ2R− σ2L
8 5

where the subscripts R and L denote the right-hand and left-hand endpoints of
the search segment. In our example, the calculation yields

λ=
1120 4−930 4

1120 4−930 4 − 598 9−1764 2
= 0 14

The tour corresponding to λ either identifies a new member of the candidate
set or matches an endpoint. In this case, the value λ = 0.14 identifies a candidate
point. We construct its travel time matrix with elements 1−λ μik + λσ

2
ik and

solve the resulting TSP, obtaining a tour with a mean of μ0.14 = 940.7 and
σ20 14 = 831.9.
Next, we create two search segments. The left-hand segment connects the

points corresponding to λ = 0.00 and 0.14; the right-hand segment connects
the points corresponding to λ = 0.14 and 1.00. On each segment, we calculate
a value of λ that identifies a new candidate if possible and that establishes the
next search segment. The procedure continues in this fashion as long as new
candidates are identified.

0
1 000
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3 000
4 000
5 000
6 000
7 000
8 000
9 000

10 000
11 000
12 000
13 000
14 000
15 000

800 900 1000 1100 1200 1300 1400

Figure 8.7 The complete set
of mean–variance pairs for
Example 8.7.
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In our example, searching between λ = 0.00 and 0.14 leads to a new candidate
at λ = 0.01, but searching from that value toward λ = 0.00 or 0.14 does not lead to
any new values. Similarly, searching between λ = 0.14 and 1.00 leads to a new
candidate at λ = 0.44. Searching between λ = 0.44 and 1.00 does not produce
a new value, and neither does searching between λ = 0.14 and 0.44. Thus, the
search terminates with five candidates. When their μλ and σλ values are substi-
tuted in the expression for the objective function (8.4), we obtain the
results below.

Tour Mean Variance d + γE[T]

0.00 930.4 1764.2 216.4

0.01 934.1 1024.2 205.1

0.14 940.7 831.9 206.9

0.44 984.2 688.4 246.5

1.00 1120.4 598.9 380.1

Thus, the optimal tour (1-2-3-7-6-4-5-1) corresponds to λ = 0.01, achieving
an optimal value of the objective function equal to 205.1. In addition, the tour
that corresponds to λ = 0.14 (that is, 1-3-7-6-4-2-5-1) is second best, and the last
two tours are worse than the deterministic counterpart.
The following proposition summarizes the result at the heart of the solution

procedure.

Proposition 8.1 For the stochastic version of the tightness/tardiness trade-off
with normally distributed travel times, there exists a value of λ, with 0 ≤ λ ≤ 1,
such that the optimal solution of a deterministic TSP with travel times defined
by 1−λ μik + λσ

2
ik is optimal.

The value λ in Proposition 8.1 is not unique, but the procedure illustrated in
the example finds a value that produces an optimal tour.
The solution procedure illustrated in Example 8.7 can be used in a variety of

settings. For instance, close examination of Example 8.7 reveals that some indi-
vidual travel times have high coefficients of variation but no tour in the candi-
date set has cv larger than 0.27. As a result, even if the distributions are not
normal, the tour length will often be approximately normal, and the normal
model will be valid. Furthermore, in the more practical case governed by log-
normal distributions rather than normal distributions, the Fenton–Wilkinson
approximation, introduced in Chapter 7, allows us to use essentially the same
solution procedure, albeit without guarantee of optimality.
Computationally, the solution procedure depends on the ability to calculate

the optimal tour length for a number of TSPs. Fortunately, a variety of
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computational approaches exist for the TSP. For the tightness/tardiness trade-
off, modern solvers allow us to solve versions with hundreds of jobs, but TSPs of
25–30 jobs can be solved in a matter of seconds with spreadsheet-based integer
programming software. Empirical studies also indicate that the number of TSPs
that the procedure solves en route to an optimal solution is quite small and
appears to grow roughly linearly with problem size. The same studies indicate
that a heuristic method designed to avoid searching far from optimum and to
terminate after two iterations tends to produce solutions that are within 1% of
optimality.
Although we have illustrated the solution procedure for the tightness/tardi-

ness trade-off, it applies as well to the solution of other models involving due
dates and stochastic travel times. One example is minimizing the due date
for which the service level, SL, satisfies a given target, b, where SL = Pr{M ≤
d}, and we require b ≥ 0.5. In both problems, the reasoning of Chapter 7 applies.
For the tightness/tardiness problem, we set θ = γϕ(z) as the price of a standard
deviation unit, and we can express Eq. (8.4) as d + γE[T] = μ + θσ. In the service
level problem, we set θ = z =Φ−1(b) and express the objective function in an
identical form, μ + θσ. It follows that the same candidate set applies for both
models. Another example in which similar analysis applies is the complemen-
tary problem of maximizing the service level for a given due date, provided it is
not smaller than the mean of the deterministic counterpart. Both problems are
solved by selecting the best tour in the candidate set. In each case, the assump-
tion of normality in setup and/or processing times leads to normality in tour
lengths, but that would be approximately true for most practical probability dis-
tributions including the lognormal.

8.6 Summary

Generalizations of the basic single-machine model extend its applicability but
lead to new difficulties in obtaining solutions. In some cases, the optimal solu-
tion to a problem involving the basic model can be directly adapted to the gen-
eralized model. At other times, however, a direct adaptation is not possible, and
new solution approaches are required.
Dynamic models, in which jobs become available intermittently, require that

assumptions regarding job preemption be carefully scrutinized. If jobs can be
processed in a preempt–resume mode, no idle time need ever be inserted in
a schedule, and dispatching procedures can be employed. On the other hand,
if the preempt–repeat mode applies, or if preemption is prohibited, then
inserted idle time can be justified, and look-ahead procedures become useful
in determining schedules. Moreover, even simple sequencing problems in the
latter model appear to require general-purpose techniques for finding optimal
schedules, and the branch-and-bound approach appears to be quite effective
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whenever the corresponding preempt–resume problem is easily solved. Never-
theless, dispatching is especially useful in stochastic environments, and practi-
tioners often prefer to avoid inserted idle time.
The generalization of SPT sequencing to strings and chains suggests that

optimal rules may sometimes involve properties of job modules rather than
the properties of individual jobs. In the Fw-problem with series–parallel prec-
edence constraints, we also saw the need for a decomposition tree as a prelim-
inary step in implementing the optimal sequencing procedure. When
considering stochastic counterpart models without preemption, the Fw-
problem is still simple to extend by replacing each processing time by its
expectation.
Sequence-dependent setup times create complications even in the makespan

problem, where they lead to TSPs with a city corresponding to each job. How-
ever, state-of-the-art algorithms can cope with TSPs containing thousands of
cities. Nonetheless, progress with other performance measures has been lim-
ited. For practical purposes, solving for flowtime or tardiness, even for a single
tour, can currently be addressed only by heuristics, except for relatively small
problem sizes.
We introduced stochastic travel times into the TSP and explored the stochas-

tic version of the makespan problem. We highlighted several related objectives
that require small variances and not just small means, and we showed how to
find solutions in the case of the normal distribution with stochastically inde-
pendent but sequence-dependent travel times. These solutions rely on methods
that have been successful in solving deterministic problems. In principle, they
proceed by optimizing tour lengths based on a convex combination of the mean
and the variance for each segment. The same approach has been shown to work
as an effective heuristic for minimizing expected tardiness when given a due
date and for lognormal travel times with linear association. We discuss those
issues further, as well as models in which larger variances are beneficial, in
our Research Notes.
Although the assumptions cited in Chapter 2 may have seemed somewhat

restrictive, the array of extensions considered in this chapter enrich the basic
model and demonstrate that its usefulness is actually quite broad. One aspect
of condition C1 that was preserved throughout, however, was the availability
of only a single machine. In the remaining chapters, we investigate more general
models in which several machines are present.

Exercises

8.1 Construct an example to show each of the following properties for the
dynamic single-machine model.
a) When no preemption is permitted, EDD sequencing does not guaran-

tee minimum Tmax.
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b) When no preemption is permitted, SPT sequencing does not guaran-
tee minimum F.

c) In preempt–resume mode, shortest weighted remaining processing
time (the dynamic analogy of SWPT) does not guarantee minimum Fw.

8.2 Give a complete solution to the F-problemwith jobs a, b, and c and a single
precedence constraint.

8.3 Eight jobs are to be processed at a single machine. The processing times
and due dates are given below.

Job j 1 2 3 4 5 6 7 8

pj 2 3 2 1 4 3 2 2

dj 5 4 13 6 12 10 15 19

Furthermore, the following precedence relationships must be satisfied:

2 6 3

1 4 7 8

Determine the sequence that will minimize the maximum lateness subject
to the given precedence restrictions.

8.4 Develop a sequencing rule that will minimize Fw for the single-machine
problem with job strings.

8.5 Consider the set of nine jobs depicted in Figure 8.8. Prove that the prec-
edence structure is series–parallel. (Hint: When partitioning to two sets
N1 and N2, it is sufficient to find one partition that satisfies one of the
conditions and then consider each of its parts in the same manner.)

1

2

3

4

9

8

7
6

5
Figure 8.8 Nine-job example.
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8.6 For n cities, suppose it is required to go from city i to city k and visit all
other cities once each on the way. Show that the problem is identical to
the TSP. Does your demonstration apply when the terminal city, k, is not
specified?

8.7 In the optimal solution to the TSP for the matrix shown below (which
includes the matrix in Table 8.3), does the optimal tour for the matrix
in Table 8.3 appear intact as part of the larger optimum?

— 4 8 6 8 2

5 — 7 11 13 4

11 6 — 8 4 3

5 7 2 — 2 5

10 9 7 5 — 2

8 4 3 6 5 —

8.8 Find a solution to the TSP in the previous exercise using the closest
unvisited city procedure with the following.
a) Absolute distances, no look ahead, and city 2 as the origin.
b) Relative distances, no look ahead, and city 2 as the origin.
c) Absolute distances, look ahead, and city 5 as the origin.

8.9 Consider a noncyclic problem of sequencing n jobs with sequence-
dependent setup time such that the machine starts at some initial state
and has to be left at some specified final state. Describe an equivalent
TSP model. Similarly, show that any cyclic TSP model could be formu-
lated as an instance of this noncyclic problem. (That is, show that the two
problems are mathematically equivalent.)

8.10 Consider scheduling families of contiguous jobs when each family has a
major family setup time. In other words, each family is scheduled once, as
a batch of jobs processed in sequence and preceded by a single family
setup. The family setup times are not sequence dependent.
a) Show how tominimize the total flowtime while taking the setup times

into account.
b) Repeat (a) for the total weighted flowtime.

8.11 Consider the scheduling of n = 3 jobs with sequence-dependent stochas-
tic setup times. The facility is already set up to process job 1 first. Then,
after the other two jobs are completed, the facility will be in its desired
final state. Processing times are deterministic, and each job takes 50 time
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units. In addition, each possible setup time follows a normal distribution.
The task is to schedule jobs 2 and 3 and set their due dates to satisfy spe-
cified requirements (listed below) while taking into account both proces-
sing times and setup times. The following two arrays describe the
distribution parameters.

Mean setup time from i to j Standard deviation of setup time from i to j

To To

From

1 2 3

From

1 2 3

1 — 40 45 1 — 6 9

2 0 — 60 2 0 — 8

3 0 50 — 3 0 12 —

a) Minimize the due date, d, for delivering all jobs (together) subject to a
service level constraint, SL ≥ 0.75. (Hint: To select the best sequence,
processing times contribute a constant to d (because they are
deterministic).)

b) Minimize d + γE[T] for γ = 1.725. Compare d with part (a). (Hint: Let
za be the argument for which ϕ(za) = 0.75 – that is, za = 0.6745 – and
let zb be the argument for which ϕ(zb) = (γ − 1)/γ where γ = 1.725, then
za = γϕ(zb).)

c) Repeat (b) but for γ = 4 (for which SL = 0.75 is optimal).
d) Minimize the sum of individual job due dates, D = d1 + d2 + d3, such

that the service levels for each job will be at least 75%. (Hint: To select
the best sequence, processing times do not matter (because they are
equal for all jobs), and for the same reason, d1 can also be ignored.
However, they must be considered for the purpose of calculating D
once the best sequence has been selected.)

e) MinimizeD + γE[T1] + γE[T2] + γE[T3] for γ = 1.725. CompareDwith
part (d).

f) Repeat (e) but for γ = 4 (for which SL = 0.75 is optimal).
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9

Parallel-machine Models

9.1 Introduction

In general, scheduling requires both sequencing and resource allocation
decisions. When there is only one resource, the allocation of that resource is
completely determined by sequencing decisions. As a consequence, in the
single-machine model, no distinction exists between sequencing and resource
allocation. To appreciate that distinction we must examine models with more
than one machine. Scheduling theory covers three basic types of multimachine
models: parallel systems, serial (flow shop) systems, and hybrid (job shop)
systems. In parallel systems, jobs consist of one operation, as in the single-
machine model; but in flow shops and job shops, the structure of jobs is more
complicated. This chapter treats the case of parallel machines, whereas the fol-
lowing chapters introduce the other multimachine models.
A simple setting in which we can investigate the effects of parallelism is the

problem of scheduling single-operation jobs in the presence of several parallel
machines. As in the basic model, n jobs are simultaneously available at time
zero. We also havem parallel machines available for processing, and we assume
that a job can be processed by at most one machine at a time. In the basic par-
allel-machine model, the machines are identical and the jobs are unrelated.
When we address the fundamental performance measures in this setting, solu-
tions reflect resource parallelism.

9.2 Minimizing the Makespan

In the basic single-machine model, the makespan is equal to a constant for any
sequence of n given jobs, so the makespan problem needs no analysis. In the
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static parallel-machine model, the sequence of jobs on any particular machine is
immaterial; thus, the makespan problem is purely one of allocating jobs to
machines. However, the makespan problem is still very challenging.
The simplest makespan problem arises when the jobs are unrelated and we

permit preemption. With preemption allowed, the processing of a job may
be interrupted, and the remaining processing can be completed subsequently,
perhaps on a different machine. The formula for theminimummakespan,M∗, is
given by

M∗ = max
n

j= 1

pj
m
, maxj pj 9 1

It should not be hard to see why this result holds: The formula states that
either the work is allocated evenly among the machines, or else the length of
the longest job determines the makespan. A method of constructing an optimal
schedule follows.

Algorithm 9.1 Minimizing M with m Parallel, Identical Machines

Step 1. Select some job to begin on machine 1 at time zero.
Step 2. Choose any unscheduled job and schedule it as early as possible on the

same machine. Repeat this step until the machine is occupied beyond time
M∗ or until all jobs are scheduled.

Step 3. Reassign the processing scheduled beyond M∗ to the next machine
instead, starting at time zero. Return to Step 2.

This problem does not have a unique solution, and the construction method
in Algorithm 9.1 produces only one of many optimal schedules. In particular,
the method makes no attempt to minimize the number of preemptions.

∎ Example 9.1 Consider a makespan problem with m = 3 machines in which
we wish to schedule the following eight jobs.

Job j 1 2 3 4 5 6 7 8

pj 1 2 3 4 5 6 7 8

From Eq. (9.1), M∗ = 12. The schedule in Figure 9.1 results from the applica-
tion of Algorithm 9.1 to this eight-job set (in numerical order). The schedule
shown in Figure 9.1 achieves the optimal makespan of 12 and involves preemp-
tions of jobs 5 and 7. Because the processing time of the longest job cannot
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exceed M∗, preempted jobs are never scheduled on different machines at the
same time (which would be infeasible), and it is also clear that they actually start
on the machine on which they are scheduled at time 0. In this instance, it would
not be difficult to construct a schedule that achieves the optimal makespan with
no preemptions at all. In general, however, minimizing the number of preemp-
tions in an optimal schedule is a challenging problem: It is NP-hard even for just
two machines.

9.2.1 Nonpreemptable Jobs

If we prohibit job preemption, then the problem of minimizing the makespan is
NP-hard in the strong sense. (The two-machine case, however, is not quite as
difficult and can be solved by a pseudopolynomial algorithm.) Therefore, the
determination of optimal schedules for the makespan requires such general-
purpose methods as branch-and-bound or dynamic programming. In the case
of branch and bound, it is not easy to obtain tight lower bounds; in the case
of dynamic programming, the number of states tends to be extremely large
form ≥ 3. Thus, general-purpose techniques have not had much success except
on relatively small problems.
Although optimal solutions to the makespan problem are difficult to obtain,

some heuristic procedures perform quite well. A plausible way to build a sched-
ule in practice is as follows. First, construct a list of the jobs, in some order.
Then, remove the first job from the list, and place it in the schedule as early
as possible. Next, repeat this step without changing the existing partial schedule,
each time removing the first job on the list and placing it in the schedule to start
at the earliest feasible time. We can think of this procedure, called list schedul-
ing, as a dispatching mechanism for real-time decisions. That is, the list could
represent a queue of waiting jobs. As some job finishes and its machine becomes
free, the first job in the queue gets assigned to the free machine.
For deterministic processing times, the optimal schedule can always be pro-

duced by some list-scheduling procedure. In other words, given any schedule,
some list could have produced it. Unfortunately, there is no obvious way to
order the list so that it produces the optimal makespan. However, we at least

1 2

5 6 7

8

12

mch 3

mch 2

mch 1

7

3 4 5

Figure 9.1 An optimal schedule for the eight-job example.
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know that to search for an optimal schedule, we can limit attention to list sche-
dules – that is, to n! possibilities. The number of dominant schedules is thus no
larger with parallel machines than it would be for a complicated single-machine
problem. As a consequence, we can use neighborhood searches to sequence the
list, or many of the other heuristic procedures covered in Chapter 4. The same
idea applies to heuristic solutions of the stochastic counterpart.
No known ordering of the list can reliably produce optimal makespans. Thus,

any simple ordering rule will sometimes produce suboptimal results. This raises
the question of how poor the performance of a list-scheduling procedure might
be. A performance guarantee is a bound on the performance of a particular solu-
tion method. In the case of makespan problems, it is an upper bound on the
suboptimality of the makespan produced by a given heuristic procedure.
More formally, let M denote the makespan produced by the heuristic proce-

dure (in this case, list scheduling), and let M∗ denote the optimal makespan.
A typical performance guarantee might take the form

M ≤ rM∗

In this case, r > 1 (sometimes called an error bound) represents an upper
bound on the ratio of the heuristic solution to the optimal solution. Thus,
the performance of the heuristic procedure, as measured by this ratio, is guar-
anteed to be no worse than r for any instance of the problem. For list scheduling,
the following result provides a performance guarantee.

∎ Theorem 9.1 List scheduling for unrelated, nonpreemptable jobs yields a
makespan satisfying M/M∗ ≤ 2 − 1/m.

Proof. Consider a schedule produced by a list-scheduling procedure that
achieves a makespan of M. Let k denote a job that finishes at time M, so that
job k starts at time M − pk. At this point, all m machines must have been occu-
pied continuously since time zero, and the amount of completed work must
have been at most all the work in the set of jobs, exclusive of job k. Hence,

m M−pk ≤
n

j= 1

pj−pk

Algebraic rearrangement yields

M ≤
n

j=1

pj
m

+
pk m−1

m
9 2

From Eq. (9.1), we know thatM∗ is at least as large as n
j=1 pj m and at least

as large as pk. It follows that

M ≤M∗ +M∗ m−1 m

or, more simply, M/M∗ ≤ 2 − 1/m. □
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Theorem 9.1 gives us an error bound on the result produced by an arbitrary
list-scheduling procedure: Themakespan cannot be as poor as twice the optimal
value. However, this is merely an upper bound. By constructing schedules in a
few examples, we could discover that the actual makespan produced by a list-
scheduling procedure will often bemuch closer to the optimum than this bound
suggests, and we might wonder whether Theorem 9.1 is too pessimistic. As it
happens, there are cases in which the performance of a list-scheduling proce-
dure is as poor as the bound in Theorem 9.1.

∎ Example 9.2 Consider a makespan problem with m = 4 machines in which
we wish to schedule the following seven jobs.

Job j 1 2 3 4 5 6 7

pj 3 3 3 1 1 1 4

When the list is ordered numerically, the list-scheduling procedure produces
the schedule shown in Figure 9.2, with a makespan of M = 7. It should not be
difficult to see that the optimal solution has a makespan of M = 4. The perfor-
mance ratio is exactly 2 − 1/m, and similar examples can be constructed for
other values of m.
As this example demonstrates, not only does Theorem 9.1 provide an upper

bound on the performance ratio, but no tighter upper bound is possible. For this
reason, we refer to the formula in Theorem 9.1 as a worst-case performance
ratio or, more simply, as a worst-case bound. Furthermore, under a mild
condition on the processing times, worst-case performance is likely only when
(n/m) is small, as we show next.

1

2

3

4 5 6

7

7

Figure 9.2 A list schedule for the seven-job example.
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Let pmax denote the largest processing time in the set, so that Eq. (9.2) implies

M−M∗ ≤
pmax m−1

m
9 3

Suppose that we generate the processing times so that in the limit as n ∞,
pmax/ pj 0 (in words, no job by itself dominates the total processing time).
We then say that the processing times satisfy the regularity condition. For
instance, if jobs are sampled independently from some distribution with a finite
variance, the regularity condition is satisfied. Recall from Chapter 7 that a heu-
ristic is asymptotically optimal if, in the limit as n ∞, the difference between
the heuristic solution and the optimum becomes relatively negligible (i.e. r 1).

∎ Theorem 9.2 List scheduling is asymptotically optimal for the parallel-
machine makespan problem with unrelated, nonpreemptable jobs that satisfy
the regularity condition.

Proof. We must show that in the limit as n ∞, (M −M∗)/M∗ 0.
From Eq. (9.3), we have pmax(m − 1)/m ≥ (M −M∗), and from Eq. (9.1) we
have pj/m ≤M∗. The ratio of these inequalities implies that (M −M∗)/M∗ ≤
pmax(m − 1)/ pj. But pmax/ pj 0 by the regularity condition, so (M −M∗)/
M∗ 0. □

When processing times are independent with finite variances, the asymp-
totic optimality result in Theorem 9.2 also holds for the stochastic counter-
part. This is true because as n ∞, the coefficient of variation of the total
processing time on each machine tends to be zero. Even if processing times
are not independent, any list is asymptotically optimal if we use it for dis-
patching decisions. Asymptotic optimality is important because it is increas-
ingly used as an indicator of heuristic quality. Typically, sequencing problems
are easy for small n and difficult for large n. However, when we discover a
heuristic procedure that is computationally easy to implement and yet asymp-
totically optimal, we have a valuable result. In practical terms, we can solve
the problem as follows:

• For small n, use some form of implicit or even explicit enumeration.

• For medium n, start with an asymptotically optimal heuristic, and use it as a
seed for a neighborhood search.

• For largen, skip theneighborhood search or limit it to the first few jobson the list.

When we introduced asymptotic optimality in Chapter 7, we linked it to a
specific heuristic procedure. In that case, asymptotic optimality was also instru-
mental in selecting the heuristic. In contrast, Theorems 9.1 and 9.2 apply to a list
schedule with any ordering. Thus, asymptotic optimality does not discriminate
among list-scheduling heuristics for the parallel-machine makespan problem.
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However, some orderings tend to perform better than others. From the proofs
of Theorems 9.1 and 9.2, we can infer that it is desirable to make the last job
(“job k”) relatively short. To this end, an effective heuristic procedure is list sche-
duling according to the longest processing time (LPT). In Example 9.2, LPT list
scheduling produces an optimal makespan. For LPT list scheduling, an
improved performance guarantee exists.

∎ Theorem 9.3 In the parallel-machine makespan problem with unrelated,
nonpreemptable jobs, LPT list scheduling yields a makespan satisfyingM/M∗ ≤
4/3 − 1/3m.

Proof. If n ≤ 2m, then it is not hard to see that LPT yields the optimal sequence.
Therefore, the theorem must be true in that case. Henceforth, we assume that
n > 2m, and for convenience, we assume that the jobs are indexed by LPT, so
job n starts last and pn is the shortest processing time. Consider two cases.
Case 1 (job n finishes last): Our task is equivalent to showing that

M−M∗

M∗ ≤
m−1
3m

If we replace M −M∗ by an upper bound and M∗ by a lower bound and still
show that the inequality holds, the theorem must be true because such bounds
can only increase the left-hand side. In Eq. (9.2), we can substitute pn for pk and
obtain

M ≤

n
j= 1pj
m

+ pn
m−1
m

However, pj/m is a valid lower bound on M∗, so M ≤M∗ + pn(m − 1)/m.
Rearranging terms, we obtain our upper bound on M −M∗:

M−M∗ ≤ pn
m−1
m

Because n > 2m, at least one machine must process three or more jobs, each
requiring at least pn. Thus, we can use 3pn as our lower bound onM∗. Therefore,
an upper bound on (M −M∗)/M∗ is given by (m − 1)/3m, thus completing the
proof for Case 1.
Case 2 (some other job finishes last): Let k be the index of the job that finishes

last, and denote themakespan of the first k jobs in the LPT schedule byM(k). For
optimal values, M∗(n) ≥M∗(k), and, in general, for a given list, M(n) ≥M(k),
although in this case M(n) =M(k).
Case 2a: If k ≤ 2m, then (as mentioned earlier) LPT is optimal. Therefore,

M(k) =M∗(k), so we haveM(n) =M(k) =M∗(k) ≤M∗(n). Therefore,M(n) is opti-
mal, and the theorem holds.
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Case 2b: If k > 2m, then Case 1 holds for the first k jobs, soM(k)/M∗(k) ≤ 4/3 −
1/3m. Because M(n) =M(k), we have M(n)/M∗(n) =M(k)/M∗(n). Because
M∗(n) ≥M∗(k), we have M(k)/M∗(n) ≤M(k)/M∗(k). Combining these results
we finally obtain M(n)/M∗(n) =M(k)/M∗(n) ≤M(k)/M∗(k) ≤ 4/3 − 1/3m. □

The following brief table compares the error bounds for list scheduling
(Theorem 9.1) and LPT list scheduling (Theorem 9.3), for different numbers
of machines.

Machines m 2 3 4 5 10 20

List scheduling 1.50 1.67 1.75 1.80 1.90 1.95

LPT scheduling 1.17 1.22 1.25 1.27 1.30 1.32

Obviously, the specification of LPT ordering improves the worst-case perfor-
mance of list scheduling dramatically.
An even more effective heuristic than LPT is available, but it requires some-

what more computational effort. Suppose we are given a possible valueM of the
makespan, and we wish to determine whether we can construct a schedule that
is consistent with this value. We might use a heuristic procedure known as first-
fit decreasing (FFD). The first step in FFD is to order the jobs according to LPT.
At each stage, we attempt to assign the first job on the list to the first machine on
which the job will fit. Specifically, we add the job to the existing partial schedule
so that it completes on or before M. If no such machine exists, the procedure
fails. If such amachine does exist, we remove the job from the LPT list and add it
to the existing partial schedule. Then, we repeat this process until all jobs have
been scheduled or until a failure occurs.
The FFD routine is an intuitively appealing procedure for determining

whether a makespan of M is valid for a given set of jobs. It is only a heuristic
procedure because it may sometimes fail when a feasible schedule actually
exists. (In computational terms, determining whether M is valid is no easier
than solving the makespan problem itself.) However, FFD serves our heuris-
tic purposes as an efficient device for testing the validity of a particular
trial value.
In themultifit algorithm, we search for the smallest feasible value ofM, using

FFD to test each trial value. This search can be conducted in an interval between
the lower bound on M, which is given by Eq. (9.1), and an upper bound on M,
which could be as simple as max[2 n

j=1pj m, maxj{pj}], although any feasible

solution is likely to provide a better upper bound. It can be shown that themulti-
fit algorithm yields a makespan satisfying M/M∗ ≤ 72/61, or about 1.18. This
bound is tighter than that of LPT form> 2 and almost as tight form = 2. How-
ever, it does not follow that multifit will always produce a better makespan
than LPT.
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∎ Example 9.3 Consider a makespan problem with m = 3 machines in which
we wish to schedule the following nine jobs.

Job j 1 2 3 4 5 6 7 8 9

pj 3 3 3 2 2 2 2 2 2

The makespan generated by LPT is M = 7, which turns out to be optimal.
The multifit algorithm, by contrast, fails to build a feasible schedule for any
trial makespan less than M = 8 (yielding M/M∗ = 1.14). Therefore, in this
instance, the multifit algorithm does not perform as well as LPT. However,
it makes sense to use LPT first, to at least find an upper bound, and then
use the multifit algorithm to see whether a better makespan can be achieved.
This combined procedure is asymptotically optimal and also performs rela-
tively well for small n.
Theorems 9.1 and 9.3 provide performance guarantees for increasingly more

detailed heuristic procedures for identical parallel machines and unrelated jobs.
Additional results have been developed for uniform machines, a case in which
job j has a processing time of pj on the first machine and a processing time of pj/
si on the ith machine. In other words, we can think of si as the relative speed of
machine i. For uniformmachines (without preemption), it makes more sense to
schedule according to the time a job will be completed than the time it can start;
otherwise, we may schedule a long job on a slow machine and increase the
makespan unnecessarily. With this interpretation, a list schedule assigns the
next job on the list to the machine that could finish it first. Identifying the cor-
responding machine, however, requires looking ahead to determine when a fas-
ter machine will be available. With this look-ahead refinement in place, the
performance ratio for LPT list scheduling on uniform machines is 19/12 or
about 1.58. Even naive dispatching (assigning the next job on the list to the first
available machine, regardless of speed) is still asymptotically optimal, as long as
processing times are finite on all machines. The proof of Theorem 9.2 fails only
for the more general case of unrelatedmachines, where each machine processes
each job at a different speed.

9.2.2 Nonpreemptable Related Jobs

If there are precedence relations among the jobs, we say the problem involves
related jobs, as explained in Section 8.3. When we add precedence relations to
the makespan problem with parallel machines, we do not make the problem any
easier – it remains NP-hard. It comes as no surprise, then, that we have results
only for special cases. In this section, we focus on results that provide additional
perspective on the makespan problem without precedence relations.
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The first special case requires that the precedence relations take the form of
an assembly tree. In an assembly tree (sometimes called an intree), no job has
more than one direct successor. Furthermore, in such a tree, the final job –
the job without any successors – is called a terminal job. In addition, let pj =
1 for all jobs, so that we have unit-length tasks. For this special case, we can solve
themakespan problemwith an algorithm consisting of a labeling phase followed
by a scheduling phase.

Algorithm 9.2 Minimizing M with an Assembly Tree and Unit-length Jobs
(Labeling Phase)

Step 1. Assign the label zero to the terminal job.
Step 2. Suppose labels 1, 2,…, j − 1 have been assigned. Assign the label j to all

jobs with no unlabeled successors.
Step 3. Repeat Step 2 until labels have been assigned to all jobs.

The scheduling phase is essentially a list-scheduling procedure, with jobs in
nonincreasing label order to the extent the precedence constraints allow. The
labeling phase assigns to each job j a label equal to the length of time required to
process the jobs that follow job j on the (unique) path connecting job j and the
terminal job. Then, when the scheduling phase places the jobs with the largest
labels into the schedule, it essentially gives priority to the jobs that initiate the
longest paths in the remaining tree. See Figure 9.3 for an illustration. In the fig-
ure, job 1 receives the label 0, jobs 2-4 are labeled 1, 5–7 are labeled 2, 8–11 are
labeled 3, 12–16 are labeled 4, and job 17 receives the highest label, 5. In the
scheduling phase, job 17 is processed on one of the machines in the first period,
and we can select any two additional jobs with label 4, except job 13 (which is
not yet feasible), and so on. The longest path is often called the critical path.
This interpretation echoes the result for the case without precedence relations.
Although that problem was NP-hard, the LPT heuristic proved to be very effec-
tive.We can interpret the LPT heuristic as giving priority to the job that initiates
the longest path in the remaining network of jobs. Thus, the two solution algo-
rithms are structurally similar.
Algorithm 9.2 provides an optimal schedule when the problem contains unit-

length jobs and a tree structure. Although a tree has just one terminal job, we
can apply the algorithm to the scheduling of several trees by creating a dummy
terminal job to serve as successor to the terminal jobs of each of the trees. If we
assign the label zero to the dummy job, then each label represents the work
remaining on the direct path from the node until completion (including the
node itself ).
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We can also solve the makespan problem in the case of arbitrary prece-
dence structure and two machines. Again, the algorithm is a list-scheduling
procedure, with jobs ordered by label number. The labeling procedure also
exhibits a longest-path flavor, but its precise tie-breaking mechanism
accounts for its optimizing properties. The key to the algorithm is the
notion of lexicographic ordering of two sequences. By lexicographic we
essentially mean the order in which two sequences, interpreted as words,
would appear in a dictionary. More formally, suppose we have sequences
L = (L1, L2, …, Lr) and H = (H1, H2, …, Hs). Then we say that L is lexicograph-
ically smaller than H if either

1) Lj =Hj for j ≤ i − 1 and Li <Hi, or
2) Lj =Hj for 1 ≤ j ≤ r and r < s.

In other words, L is lexicographically smaller than H if their elements agree
up to the (j − 1)st element, but the jth element of L is smaller than the jth ele-
ment of H. Alternatively, L is lexicographically smaller than H if L is shorter
than H, and the two sequences agree up to the length of L. The labeling phase
of the procedure is shown below as Algorithm 9.3. We assume a single termi-
nal job.
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Figure 9.3 An example of implementing Algorithm 9.2.
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Algorithm 9.3 Minimizing M with Two Machines, Related Jobs, and Unit-
length Jobs (Labeling Phase)

Step 1. Assign the label zero to the terminal job.
Step 2. Suppose the first (j − 1) labels have been assigned. Consider each job

whose successors all have labels. For job k, let L(k) denote the sequence of
labels, in nonincreasing order, belonging to its direct successors. Choose
the job with the lexicographically smallest L(k), and assign it label j.

Step 3. Repeat Step 2 until labels have been assigned to all jobs.

Figure 9.4 provides an illustration. In this case each job has a unique label, so it
is convenient to refer to jobs by their labels. After allocating the label zero to the
terminal job, only job 1 can be labeled. Next, both jobs 2 and 3 could be labeled.
For job 2 the list of immediate successors is (1) and for job 3 it is (1, 0); (1, 0) is
lexicographically larger than (1), so job 2 is selected. When comparing jobs 3
and 4 – which are both ready to be labeled after 2 – the lists are (1, 0) and
(2), thus dictating the order, and so on.
Although Algorithm 9.3 generalizes the longest-path notion of Algorithm 9.2

to arbitrary precedence relations, this generalization provides optimal schedules
only for two machines and only for unit-length jobs. Beyond two machines, no
further generalization seems possible, even with unit-length jobs. With regard
to the number of machines, the makespan problem is NP-hard for m ≥ 3, even
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7 6 5 3 1 0
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Figure 9.4 An example of implementing Algorithm 9.3.
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for sets of unit-length jobs, but we can still use the algorithm as a heuristic. If so,
the corresponding worst-case bound is given by Theorem 9.4 (which we present
without proof ).

∎ Theorem 9.4 For them-machine makespan problem with nonpreemptable
jobs, arbitrary precedence relations, and m machines, Algorithm 9.3 yields a
makespan satisfying M/M∗ ≤ 2 − 2/m.

9.2.3 Preemptable Jobs

We can apply some of the results for nonpreemptable jobs in problems contain-
ing preemptable jobs. The key is to think of each job as a chain of unit-length
jobs. (Recall from Chapter 8 that each job in a chain has at most one direct pred-
ecessor and one direct successor.) Figure 9.5a shows an example containing a set
of related jobs with different processing times to be scheduled on twomachines.
Each job corresponds to a node in the figure, and next to each node is the job’s
processing time. Figure 9.5b represents the same job set incorporating the chain
structure. Specifically, jobs 5, 6, and 7 are represented by chains, and in this case
the chains are of length two.
If there were no preemption, then we could construct a schedule from

Figure 9.5a. In this case, it would not be hard to see that an optimal makespan
on two machines has length M = 7. In order to build a schedule from
Figure 9.5b, we use Algorithm 9.3, which we know is optimal for unit-length
jobs on two machines. The resulting schedule appears in Figure 9.6, with a
makespan of M = 6.

5
2 2 2

1 1 1 1 1 1

1 1 1

1 1 1

1 1

6 7

1 2

(a) (b)
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52 62 72

51 61 71

1 2 3

4

Figure 9.5 A seven-job example in (a) and its preemptable representation in (b).
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Clearly, the opportunity to preempt jobs creates some useful flexibility, and
we should generally expect that the optimal makespan will be no worse if jobs
are preemptable than if the jobs are nonpreemptable. The question that remains
is whether schedules like the one shown in Figure 9.6 are in fact optimal when
jobs are preemptable. The answer is that a shorter schedule than the one in
Figure 9.6 is possible.
In order to find this schedule, we return to Figure 9.5b and replace each node

with a chain of half-unit-length jobs. We then use Algorithm 9.3 to construct a
schedule. The resulting makespan is M = 5.5, as shown in Figure 9.7.
For a two-machine problem, assume that we are given related jobswith integer

processing times. Then, to find the optimal makespan for the preemptable ver-
sion of the problem, we can apply Algorithm 9.3 to the set of related jobs formed
when the jobs in the original job set are represented by chains of half-unit length.

9.3 Minimizing Total Flowtime

Whereas the makespan problem is essentially a problem in the optimal alloca-
tion of jobs to machines, the minimization of F and Fw requires that we recog-
nize sequencing as well as allocation decisions. The generalization to parallel
machines of optimal sequencing properties for the basic single-machine
model is fairly straightforward for the F-problem but surprisingly difficult for
the Fw-problem.
Consider first the problem of minimizing F. Adopt the following notation:

pi[j] = processing time of the jth job in sequence on the ith machine
Fi[j] = flowtime of the jth job in sequence on the ith machine
ni = number of jobs processed by the ith machine

51 71 62 4 1

61 52 72 2

6

3mch 1

mch 2

Figure 9.6 A schedule for the job set in Figure 9.5b.

51 71 62 53 73 64 41 42 11 31 22

61 52 72 63 54 74 21 12 32

5.5

mch 1

mch 2

Figure 9.7 An optimal
schedule for the example
with preemptable jobs.
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Then the objective function is

F =
m

i= 1

ni

j=1

Fi j =
m

i= 1

ni

j= 1

ni− j+ 1 pi j

As in the basic single-machine F-problem (see Chapter 2), we can deter-
mine a schedule by matching the integer coefficients (ni − j + 1) with the
processing times (pi[j]). The objective function corresponds to the scalar
product of the coefficients vector and the processing times vector. The coef-
ficients are

1,2,…,n1,1,2,…,n2,…,1,2,…,nm

Unlike the single-machine case, the parallel-machine case allows some discre-
tion in the choice of the coefficients, because the ni are arbitrary, subject to n1 +
n2 + + nm = n. Nevertheless, it should be clear that the scalar product cannot
be minimized unless the ni differ by at most one; that is, their values must satisfy
the following inequality:

ni−nk ≤ 1, for all pairs i,k

In particular, if n is an even multiple of m, it is optimal to assign the same
number of jobs to each machine: That is, n1 = n2 = = nm. Once we determine
the ni values, we construct an optimal schedule by matching the processing
times in nonincreasing order with the coefficients in nondecreasing order.
Thus, we assign them longest jobs to m different machines, the nextm longest
jobs tom different machines, and so on, until all jobs are assigned. We can think
of this procedure as an assignment ofm jobs at a time, which means that several
optimal schedules exist, because the individual job-to-machine assignments are
not specified at any stage of the algorithm. There is also no need to consider
scheduled preemptions.

∎ Example 9.4 Consider the F-problem with m = 2 machines in which we
wish to schedule the following six jobs.

Job j 1 2 3 4 5 6

pj 1 2 3 4 5 6

For two parallel machines the coefficients vector is (1, 1, 2, 2, 3, 3). Therefore,
jobs 5 and 6 are assigned to be last on different machines, then jobs 3 and 4 are
assigned to different machines, and finally jobs 1 and 2 are assigned to be first on
different machines. The algorithm might construct the schedule shown in
Figure 9.8, or it might alternatively construct a different schedule, but one with
the same optimal value of F.
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We can also construct an optimal schedule using a list-scheduling algorithm
with the jobs ordered by SPT. Except for ties in processing times, the list-
scheduling algorithm produces a unique schedule, which matches one of the
schedules produced by them-jobs-at-a-time approach. The list-scheduling algo-
rithmhas two special virtues. First, the algorithm is a dispatching procedure,with
scheduling decisions implemented in the order that they are made. Second, the
algorithm can be extended in an obvious way to problems with dynamic arrivals,
which is not the case for them-jobs-at-a-timeprocedure.Thus, theF-problemon
parallel machines is easy to solve by a highly intuitive approach.
A slight adaptation of the same approach can solve the F-problem when the

machines are uniform. A dispatching algorithm for this case can be based on a
list in SPT sequence, but it requires looking ahead. The first unscheduled job on
the list should be assigned to the machine on which it would finish first. It is
possible that a slow machine may not be used at all or used only for a short time
relative to the makespan, but inserted idleness is not needed. The F-problem
remains efficiently solvable even in case of unrelated machines, where each
machine processes each job at a different speed. The known polynomial-time
solution formulates the problem as a network flow model, but for this reason
it does not lead to intuitive scheduling insights.
By contrast, the Fw-problem is NP-hard even for identical machines. Dynamic

programming formulations are possible, but the “curse of dimensionality” ren-
ders a dynamic programming procedure impractical for problems of even mod-
erate size. Two theoretical properties apply to this problem. First, any optimal
solution must have SWPT job orderings at each machine. (If this were not true,
a simple pairwise interchange on one machine could improve the schedule.)
Second, we can calculate a simple lower bound on the optimum value of Fw. Let

B(1) = the minimal value of Fw for the given job set if there were only one
machine (obtained via SWPT)

B(n) = the minimal value of Fw for the given job set if there were n machines
(obtained by assigning each job to a different machine)

Then a lower bound for m machines (1 ≤m ≤ n) is

B m =
1
2m

m−1 B n + 2B 1 9 4

1 3 5mch 1

2 4 6mch 2

Figure 9.8 An optimal solution to the six-job F-problem.
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Clearly, B =max{B(m), B(n)} is also a valid lower bound and may be better
because of the rare occasions in which B(m) < B(n).
We can easily imagine two heuristic strategies for solving the Fw-problem.

One approach incorporates the m-jobs-at-a-time mechanism into a heuristic
procedure denoted by Hm, which works as follows:

Step 1. Form a priority list of all unscheduled jobs according to some rule, R.
Step 2. Assign the first m jobs on the list to different machines. Repeat Step 2

until all jobs are scheduled.
Step 3. Apply SWPT sequencing to each machine.

The complementary heuristic procedure, called H1, is a list-scheduling
algorithm, which assigns one job at a time.

Step 1. Form a priority list of all unscheduled jobs according to some rule, R.
Step 2. Assign the first job on the list to the machine with the least amount of

processing. Repeat until all jobs have been assigned.
Step 3. Apply SWPT sequencing to each machine.

∎ Example 9.5 Consider the Fw-problem with m = 5 machines in which we
wish to schedule the following 10 jobs.

Job j 1 2 3 4 5 6 7 8 9 10

pj 5 21 16 6 26 19 50 41 32 22

wj 4 5 3 1 4 2 5 4 3 2

pj/wj 1.2 4.2 5.3 6.0 6.5 9.5 10.0 10.2 10.7 11.0

UnderHm an initial ordering must be specified in Step 1. If we choose longest
weighted processing time (LWPT), then the jobs are initially in reverse numer-
ical order. At the first stage, jobs 10 through 6 are assigned to different
machines, and at the second stage, the remaining jobs are assigned to different
machines. Clearly, Step 2 of the procedure does not specify exactly how this sec-
ond assignment should be made. If the first five assignments were actually fixed,
we could show that the optimal assignment of the remaining jobs would be to
match the largest weighting factor with themachine having the smallest amount
of processing already assigned. Pursuing this rule of thumb, and subsequently
applying Step 3 of the procedure, we construct the schedule displayed in
Figure 9.9a, with Fw = 1078. (The procedure is summarized in Table 9.1.)
Under H1, with the jobs ordered by LWPT, the procedure simply assigns the

jobs one at a time to the least loaded machine, as described in Table 9.2, and
finally reorders all jobs so that SWPT prevails on each machine. The schedule
that results is slightly better (with Fw = 1070) than the one produced above by
Hm, as shown in Figure 9.9b.
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Figure 9.9 Schedules for the example problem from (a) Hm and (b) H1.

Table 9.1

1. Initial job list {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

2. Assignment phase

Stage Processing commitments Job (wj) Machine assigned

1 (0, 0, 0, 0, 0) 10(2) 1

9(3) 2

8(4) 3

7(5) 4

6(2) 5

2 (22, 32, 41, 50, 19) 5(4) 1

4(1) 4

3(3) 3

2(5) 5

1(4) 2

3. SWPT at each machine

Machine Sequence

1 5-10

2 1-9

3 3-8

4 4-7

5 2-6

(See Figure 9.9a)
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Some experimental research has studied several variations of these heuristic
procedures and concluded that their relative behavior is extremely difficult to
characterize. The study found that:

• H1 and Hmmay produce different schedules, and either method may produce
different schedules when the initial ordering R is varied.

• There is no “best rule” R for H1 or for Hm.

Those general conclusions aside, however, the most effective variation of the
15 procedures considered in the study was definitely H1 used with R = SWPT.
Not only did this combination produce the best schedule inmost of the test pro-
blems, but it also has the virtues of list scheduling. In particular, it is a dispatch-
ing procedure (Step 3 of H1 can be omitted), and it can easily be adapted to
dynamic problems. The test problems used in these comparisons contained
n = 100 jobs and up to m = 6 machines. The number of jobs was thus relatively

Table 9.2

1. Initial job list {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

2. Assignment phase

Processing commitments Job Machine assigned

(0, 0, 0, 0, 0) 10 1

(22, 0, 0, 0, 0) 9 2

(22, 32, 0, 0, 0) 8 3

(22, 32, 41, 0, 0) 7 4

(22, 32, 41, 50, 0) 6 5

(22, 32, 41, 50, 19) 5 5

(22, 32, 41, 50, 45) 4 1

(28, 32, 41, 50, 45) 3 1

(44, 32, 41, 50, 45) 2 2

(44, 53, 41, 50, 45) 1 3

3. SWPT at each machine

Machine Sequence

1 3-4-10

2 2-9

3 1-8

4 7

5 5-6

(See Figure 9.9b)
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large compared with the number of machines. A comparison when the
number of jobs is only two or three times the number of machines has not been
reported.
The effectiveness of H1 with R = SWPT observed for a large number of jobs

suggests that it may be an asymptotically optimal heuristic. Indeed, if job pro-
cessing times and weights are obtained by independent sampling from distribu-
tions with finite variances, asymptotic optimality is virtually certain. Formally,
we say it holds with probability one (w.p.1), alternatively described as almost
surely.

∎ Theorem 9.5 When processing times and weights are sampled from distri-
butions with finite variances, Algorithm H1 with R = SWPT is asymptotically
optimal w.p.1; that is, if the algorithm yields Z and the optimal value is Z∗, then
as n grows large, (Z − Z∗)/Z∗ tends to zero w.p.1.

We provide the proof in our Research Notes.

9.4 Stochastic Models

As we have seen, the parallel-machinemakespan problemwith nonpreemptable
jobs is generally difficult to solve in the deterministic case. Logically, we would
expect that the stochastic counterpart is even more difficult to solve. However,
one special case exists in which the solution is surprisingly accessible. That is the
case of exponentially distributed processing times with dispatching.
Judging by the number of research papers devoted to exponential processing

times, we might think they are common in practice, but that is not the case. The
exponential distribution is often an appropriate model for arrival processes and
sometimes for waiting times, but it rarely fits physical processing times. Never-
theless, the exponential distribution is interesting to study because it possesses
special characteristics that make it an important boundary case and because its
special characteristics are conducive to elegant theoretical models. As discussed
in Appendix A, the exponential distribution lies on the boundary between dis-
tributions with increasing and decreasing completion rates, whereas our intu-
ition and much of the empirical data – especially in the context of machine
scheduling (as contrasted with complex projects) – suggest that increasing
completion rates (ICRs) are more typical.

9.4.1 The Makespan Problem with Exponential Processing Times

As a rule, the analysis of stochastic models tends to be more complex than the
analysis of their deterministic counterparts. Sometimes, however, the stochastic
aspects of a problemmake heuristics more robust than in the deterministic case.
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One such instance is the m-machine makespan problem with nonpreemptable
jobs. In the special case of exponentially distributed and independent processing
times, longest expected processing time (LEPT) dispatching minimizes the
expected makespan.
By itself, the optimality of a specific dispatching rule for a highly specialized

distribution such as the exponential may not be of crucial importance. Never-
theless, this special case helps us understand the general case, in two ways. First,
the result confirms the usefulness of adapting the LPT rule for stochastic pro-
cessing times. Second, the result highlights a broader question: Should we allo-
cate jobs to machines in advance or use a dispatching rule?
This model illustrates a positive Jensen gap. Suppose we have a two-machine

problem in which the machines are loaded equally according to mean proces-
sing times. Then the deterministic counterpart yields a makespan equal to half
the total processing time. However, in the stochastic case, the probability that
both machines finish simultaneously is negligible. On average, one machine
finishes earlier than half the total processing time, while the other machine
finishes later than half the total processing time. The makespan is always the
later of the two finish times; therefore, the expected makespan extends beyond
the deterministic makespan by a positive amount equal to the Jensen gap.
In the optimal schedule for the deterministic two-machine problem, the time

between the last two job completions must not exceed the processing time of
the last job to finish. Moreover, this time difference reveals how close the sched-
ule is to splitting the work equally between the two machines. Thus, it makes
sense to have the shortest job finish last, suggesting that LEPT has merit in
the stochastic case, at least to the same extent that LPT is a good heuristic
for the deterministic case. (These arguments apply to m> 2 and for other dis-
tributions as well.)

∎ Example 9.6 Consider the M-problem with m = 2 machines in which we
wish to schedule n = 2 jobs with exponential processing times.

Job j 1 2

μj 1 1

To find the expected makespan, we utilize a fundamental algebraic identity:
max{A, B} =A + B −min{A, B}. Taking the expectation we get E[max{A, B}] = E
[A + B] – E[min{A, B}]. In general, the minimum of two exponential random
variables with means a and b (i.e. with completion rates 1/a and 1/b) is an expo-
nential random variable with a completion rate of 1/a + 1/b and thus a mean of
1/(1/a + 1/b). In our example, E[min{p1, p2}] = 1/(1/1 + 1/1) = 1/2. Hence, E
[max{p1, p2}] = 2 – 1/2 = 3/2. This involves a Jensen gap of 1/2 or 50% of the
deterministic counterpart makespan.
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In Example 9.6 there is no opportunity to benefit from dispatching because
the optimal schedule allocates one job to each machine. To appreciate the more
general case, we consider an example with more than two jobs.

∎ Example 9.7 Consider the M-problem with m = 2 machines in which we
wish to schedule n = 4 jobs with exponential processing times, as shown in
the following table.

Job j 1 2 3 4

μj 1 2 3 4

The minimal makespan for the deterministic counterpart isM = 5 and can be
found by the LPT heuristic: Jobs 4 and 3 are allocated to machines 1 and 2 first;
then at time 3, job 2 is allocated to machine 2; and at time 4, job 1 is allocated to
machine 1. In the stochastic counterpart, LEPT dispatching is optimal, as noted
earlier, and a tedious calculation reveals that the expected makespan is 6.271.
Without dispatching – that is, if we assign jobs to machines at the outset –
the expected makespan would be even greater. Specifically, if we use the optimal
deterministic counterpart assignment instead of dispatching, the expected value
increases to 7.004.
Knowledge of the optimal dispatching rule should not be considered a full

solution. We may also want to know the mean of the resulting makespan or
its cdf. However, in deriving the makespan distribution for the LEPT dispatch-
ing rule, we must explicitly account for 2(n − 2) distinct possible allocations of
jobs to machines. Thus, we can “solve” the stochastic counterpart in terms of
specifying the optimal dispatching rule for minimizing the expected makespan,
but we cannot calculate the value of that expectation in polynomial time. In
practice, we can resolve this calculation problem by using simulation, but the
logic required is more complicated than in the sample-based methodology
we introduced in Chapter 6. In this case, each scenario requires its own sequen-
cing decisions. In other words, after generating a set of processing times in a
given scenario, we must simulate the job-to-machine assignments that LEPT
dispatching would generate. Only then can we compute the makespan for that
scenario.

9.4.2 Safe Scheduling with Parallel Machines

We continue with the m-machine makespan problem with nonpreemptable
jobs and independent exponential processing time distributions. The LEPT dis-
patching rule then maximizes the likelihood that the last job will be the shortest
one. Thus, LEPT dispatching is not only optimal but also yields the stochasti-
cally minimal makespan. To understand why this property is important for safe
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scheduling, consider two parallel-machine, safe-scheduling problems in
which due dates are decisions. In meeting a service-level target, we minimize
a due date d subject to a service-level constraint on the makespan, SL =
Pr{Cmax ≤ d} ≥ b. In trading off tightness and tardiness, we optimize d + γE[T]
= d + γE[max{0, Cmax – d}] and determine the optimal due date as a by-product
of the optimization. For these two objectives, there is no reason to believe that
the same sequence (or dispatching rule) is necessarily optimal for both. How-
ever, when a stochastically minimal sequence (or dispatching rule) exists, it
must be the optimal sequence for both objectives.

∎ Theorem 9.6 Suppose a sequence exists that yields a stochastically minimal
makespan distribution. Then this sequence is optimal for minimizing d subject
to a service-level constraint SL ≥ b and for minimizing d + γE[T].

∎ Example 9.8 Revisit Example 9.7 with the objective of minimizing d + γE[T]
with γ = 10.

Job j 1 2 3 4

μj 1 2 3 4

Recall from Chapter 7 that the optimal service level is given by (γ − 1)/γ = 0.9.
Here, knowledge of the optimal dispatching rule is not sufficient because we
cannot calculate the correct safety time without a distribution for themakespan.
As we mentioned earlier, deriving this distribution is a challenging analytic
problem, which would be exponentially more complicated for larger n. How-
ever, we can estimate the desired value using simulation. Building a simulation
model with Analytic Solver Platform, as described in Chapter 6, we estimate the
optimal due date at 11.125.

9.5 Summary

As noted at the outset of this chapter, problems of scheduling single-stage jobs
with parallel processors contain both allocation and sequencing dimensions.
The determination of optimal schedules is often rendered difficult by the need
to make both kinds of decisions, and the thrust of analytic results has been
aimed primarily at makespan problems for good reason: Makespan problems
involve only allocation. Indeed, in single-machine models, the makespan crite-
rion is seldom an important consideration unless sequence-dependent setup
times are involved.
From a practical viewpoint, the emphasis on makespan in the parallel-

machine case is quite reasonable, because a generic heuristic procedure for
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nonpreemptable jobs would be to solve the allocation problem first and then the
sequencing problem. In other words, we should distribute the processing load
among machines as evenly as possible and then determine an optimal sequence
on each machine separately. Although an even distribution of the load (i.e. a
minimal makespan) is not necessarily optimal for measures other than the
makespan, it tends to provide good schedules. Moreover, this two-phase
method of determining a schedule is a more practicable way of managing the
large combinatorial problem represented by scheduling with parallel machines.
The main exception to this approach is the F-problem, for which a straightfor-
ward optimization procedure exists.
In stochastic instances, the separation of allocation and sequencing is less

effective. A simple four-job example demonstrated that significant differences
inmakespanmay occur with and without dispatching, and using dispatching for
the makespan objective implies that we cannot first allocate and then sequence.
Furthermore, there is an inherent conflict between the twomost important per-
formance measures, namely, makespan and flowtime.
The important makespan results are the construction of an optimal sched-

ule using Algorithm 9.1 for unrelated, preemptable jobs, the longest-first or
“critical path” priorities contained in Algorithms 9.2 and 9.3, and the LPT
list-scheduling procedure. Other specialized algorithms and heuristic proce-
dures are largely based on the concepts underlying these fundamental
results. Optimization in the stochastic model requires us, in practice, to
use simulation. Finally, although different list-scheduling policies do lead
to pronounced differences in the makespan, we showed that they are all
asymptotically optimal, which means that they all converge to the optimal
value as n grows large.
The minimization of total flowtime with parallel processors involves a gener-

alization of single-machine analysis, but the minimization of total weighted
flowtime or total tardiness is not easily accomplished. For the total weighted
flowtime problem, it is possible to find an optimal schedule using an m-
dimensional dynamic programming approach, but its computational require-
ments are severe. Fortunately, experimental evidence has indicated that, at least
for large problems, simple heuristic approaches consistently produce schedules
within 1% or 2% of optimum. The simplest heuristic of them all – SWPT dis-
patching – is asymptotically optimal, which explains its superior performance
for large problems.
Asymptotic optimality of list scheduling applies to stochastic problems if pro-

cessing times are independent and have finite variances. This is true even if we
allocate jobs to machines in advance. If we use any list as the basis for dispatch-
ing, the result is asymptotically optimal even if processing times are correlated
(as long as they do not depend on the sequence itself ). Therefore, we can expect
to obtain good performance from simple heuristics, such as list scheduling
based on LEPT for makespan. For the total flowtime problem, SEPT is known
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to be optimal, even for preemptable jobs, provided that the processing time dis-
tributions exhibit ICRs. In the weighted version, we would expect that SWEPT
is an effective heuristic.

Exercises

9.1 Consider a makespan problem involving three identical machines and the
following set of eight jobs. Assume that no preemption is permitted.

Job j 1 2 3 4 5 6 7 8

pj 1 2 3 4 5 6 7 8

a) What is the makespan generated by an SPT list schedule?
b) What is the makespan generated by an LPT list schedule?
c) What is the minimum makespan?

9.2 The following 11 operations are to be scheduled on four parallel machines.

Job j A B C D E F G H I J K

pj 12 6 7 8 2 3 15 17 20 14 19

Management’s goals are:

•Minimize F, the overall time in the shop.

• Reduce M, the maximum time in the shop.
a) What sequence do you suggest? Justify your choice.
b) Present your result in a Gantt chart, and calculate the F and M

values.
c) Is this result optimal for one of these measures? For both? Explain.

9.3 The following 12 operations are to be scheduled on three parallel
machines.

Job j A B C D E F G H I J K L

pj 12 6 7 8 2 3 15 17 20 14 19 10

Solve the problem using a list schedule and test the following variations:
a) Use random order, and compare results with the bound in

Theorem 9.1.
b) Use SPT order, and compare results with (a) and the bound in

Theorem 9.1.
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c) Use LPT order, and compare results with (b) and the bound in Theo-
rem 9.3.

9.4 Consider the scheduling of n nonpreemptable jobs onm identical parallel
machines using an SPT list schedule. Show that this procedure assigns the
jobs to machines in rotation. That is, if the jth job on the list is assigned to
machine i (1 ≤ i ≤m − 1), then the (j + 1)st job will be assigned to machine
(i + 1); and if the jth job on the list is assigned tomachinem, then the (j + 1)
st job will be assigned to machine 1.

9.5 Consider the makespan minimization problem on m machines with
machine release dates. Show that Theorem 9.2 still applies.

9.6 Construct a two-machine example to show that SWPT list scheduling
does not guarantee minimum Fw.

9.7 In the following example, there are eight jobs and three parallel, identical
machines. The table gives the processing times for each job and the
(unique) direct successor, Sj, for each job.

Job j 1 2 3 4 5 6 7 8

pj 1 3 4 2 1 2 2 2

Sj – 1 1 1 2 2 4 4

a) Find a schedule that minimizes the makespan, assuming that no pre-
emption of the jobs is permitted.

b) Find a schedule that minimizes the makespan, assuming that preemp-
tion is permitted.
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10

Flow Shop Scheduling

10.1 Introduction

This chapter deals with a model based on the design in which machines are
arranged in series. In this design, jobs flow from an initial machine, through sev-
eral intermediate machines, and ultimately to a final machine before complet-
ing. Traditionally, we refer to this design as a flow shop, even though an actual
shop may contain much more than a single serial configuration.
In a flow shop, the work in a job is broken down into separate tasks called

operations, and each operation is performed at a different machine. In this con-
text, a job is a collection of operations with a special precedence structure. In
particular, each operation after the first has exactly one direct predecessor,
and each operation before the last has exactly one direct successor, as shown
in Figure 10.1. Thus, each job requires a specific sequence of operations to
be carried out for the job to be complete.
The shop contains m different machines, and in the “pure” flow shop model,

each job consists of m operations, each of which requires a different machine.
The machines in a flow shop can thus be numbered 1, 2, …, m; and the opera-
tions of job j are numbered (1, j), (2, j), …, (m, j), so that they correspond to the
machine required. For example, p53 denotes the operation time on machine 5
for job 3. Figure 10.2 represents the flow of work in a “pure” flow shop, in which
all jobs require one operation on each machine.
Figure 10.3 represents the flow of work in a more general flow shop. In the

general case, jobs may require fewer than m operations, their operations may
not always require adjacent machines, and the initial and final operations
may not always occur at machines 1 and m. Nevertheless, the flow of work is
still unidirectional, and we can represent the general case as a pure flow shop
in which some of the operation times are zero.
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With machines in series, the conditions that characterize the flow shopmodel
are similar to the conditions of the basic single-machine model:

C1. A set of n unrelated, multiple-operation jobs is available for processing at
time zero. (Each job requiresm operations, and each operation requires a
different machine.)

C2. Setup times for the operations are sequence independent and included in
processing times.

C3. Job descriptors are known in advance.
C4. All machines are continuously available.
C5. Once an operation begins, it proceeds without interruption.

Onedifference from thebasic single-machine case is that inserted idle timemay
be advantageous. In the single-machinemodel with simultaneous arrivals, we can

. . .

Figure 10.1 The precedence structure of a job in a flow shop.
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Figure 10.2 Workflow in a pure flow shop.
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Figure 10.3 Workflow in a general flow shop.
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assume that themachine need never be kept idlewhenwork iswaiting. In the flow
shop case, however, we may need inserted idle time to achieve optimality.

∎ Example 10.1 Consider a problem containing n = 2 jobs in a four-machine
flow shop.

Job j 1 2

p1j 1 4

p2j 4 1

p3j 4 1

p4j 1 4

Suppose that F is the measure of performance. The two schedules shown in
Figure 10.4a, b are the only schedules with no inserted idle time, and in either
schedule, F = 24. The schedule in Figure 10.4c is an optimal schedule, with F =
23. Note that in this third schedule, machine 3 is kept idle at time t = 5, when

1

(a)

(b)

(c)

2

1 2

1 2

1 2

1 2

1 2

2 1

2 1

2 1

2 1

2 1

2 1

Figure 10.4 Three schedules for Example 10.1.
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operation (3, 1) could be started, in order to await the completion of operation
(2, 2). For minimizing the makespan, the advantage of the schedule in
Figure 10.4c is even larger, a makespan of 12 instead of 14.
In the single-machine model, there is a one-to-one relation between a job

sequence and a permutation of the numbers 1, 2, …, n. To find an optimal
sequence, it is necessary to examine (at least implicitly) each of the sequences
corresponding to the n! different permutations. Similarly, in the flow shop prob-
lem, there are n! different job sequences possible for each machine and poten-
tially as many as (n!)m different schedules. As we search for an optimum, it
would obviously be helpful if we could ignore many of these possibilities. In
the next section we discuss the extent to which the search for an optimum
can be reduced. Then, we examine the casem = 2, which is an interesting prob-
lem in its own right and a building block for solving larger problems. We then
look at optimization methods and heuristic approaches, and we introduce some
variations of the basic model.

10.2 Permutation Schedules

Example 10.1 illustrates that it may not be sufficient to consider only schedules
in which the same job sequence occurs on eachmachine. On the other hand, it is
not always necessary to consider (n!)m schedules in determining an optimum.
The two dominance properties given below indicate how much of a reduction
is possible in flow shop problems.

∎ Theorem 10.1 With respect to any regular measure of performance in the
flow shopmodel, it is sufficient to consider only schedules in which the same job
sequence occurs on the first two machines.

Proof. Consider a schedule in which the sequences on machines 1 and 2 are dif-
ferent. Somewhere in such a schedule we can find a pair of jobs, i and j, with
operation (1, i) preceding an adjacent operation (1, j) but operation (2, j) pre-
ceding (2, i), as in Figure 10.5a. For this pair, we can impose on machine 1
the order of the jobs on machine 2 (j before i), without adversely affecting
the performance measure. If we interchange operations (1, i) and (1, j), resulting
in the schedule shown in Figure 10.5b, then

• with the exception of (1, i), no operation is delayed,

• operation (2, i) is not delayed, and

• earlier processing of (2, j), and other operations as well, may result.

Therefore, the interchange would not increase the completion time of any
operation on machine 2 or on any subsequent machine. This means that no
increase in any job completion time could result from the interchange and
hence no increase in any regular measure of performance. The same argument
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applies to any schedule in which job sequences differ on machines 1 and 2, so
the property must hold in general. □

∎ Theorem 10.2 With respect to the makespan of the flow shop model, it is
sufficient to consider only schedules in which the same job sequence occurs on
the last two machines.

Proof. Consider a schedule in which the sequences on machines (m − 1) and m
are different. Somewhere in such a schedule we can find a pair of jobs, i and j,
with operation (m, j) preceding an adjacent operation (m, i) but operation (m −
1, i) preceding (m − 1, j). As a result of interchanging operations (m, i) and (m, j),

• with the exception of (m, j), no operation is delayed,

• operation (m, j) completes no later than (m, i) in the original schedule, and

• earlier processing of operations (m, i) and (m, j) may result.

Therefore, the interchange would not lead to an increase in the makespan of the
schedule. Again, this type of argument applies to any schedule in which job
sequences differ onmachines (m − 1) andm. Therefore, the property must hold.□

The implication of these two theorems is that in searching for an optimal
schedule, it is necessary to consider different job sequences on different
machines with these two general exceptions:

1) For any regular measure, it is sufficient for the same job order to occur on the
first two machines, so that (n!)m−1 schedules constitute a dominant set.

2) For makespan problems, it is also sufficient for the same job order to occur
on the last two machines, so that (n!)m−2 schedules constitute a dominant set
for m> 2.

A permutation schedule is simply a schedule with the same job order on all
machines – a schedule that is completely characterized by a single permutation

1, i

(a)

(b)

1, j

1, j

1, i

2, j 2, i

2, j 2, i

. . . . . . 

. . . 

. . . 

. . . 

. . . 

Figure 10.5 A pairwise interchange of two adjacent operations on machine 1.
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of the job indices 1, 2, …, n. As a consequence of Theorems 10.1 and 10.2, we
may consider only permutation schedules in the following cases:

• Optimizing a regular measure of performance when m = 2.

• Optimizing makespan when m = 2 or 3.

In addition, the makespan problem is symmetric: If we can solve the problem
with the machine order reversed, then we can reverse the optimal permutation,
and we will have an optimal solution to the original problem. Even when it is
sufficient to deal only with permutation schedules, and even when we can
exploit symmetry, it may still be difficult to locate optima efficiently. The next
section deals with one flow shop problem that is relatively easy to solve.

10.3 The Two-machine Problem

10.3.1 Johnson’s Rule

The objective of minimizing makespan in the two-machine flow shop model is
also known as Johnson’s problem. The results originally obtained by Johnson
(1954) are among the very first formal results in the theory of scheduling. In
the formulation of this problem, job j is characterized by processing time p1j,
required on machine 1, and p2j, required on machine 2 after the operation
on machine 1 is complete. For convenience in the exposition, however, we
use aj in place of p1j and bj in place of p2j. (We return to the use of double sub-
scripts when there are several machines.) There exists some optimal sequence
satisfying the following rule for ordering pairs of jobs.

∎Theorem 10.3 (Johnson’s Rule). Job i precedes job j in an optimal sequence if
min{ai, bj} ≤min{aj, bi}.

In practice, an optimal sequence is directly constructed with an adaptation of
Theorem 10.3. The positions in sequence are filled by a one-pass mechanism
that, at each stage, identifies a job that should fill either the first or last available
position.

Algorithm 10.1 Implementing Johnson’s Rule

Step 1. Find the minimum processing time among unscheduled jobs.
Step 2. If the minimum time in Step 1 occurs onmachine 1, place the associated

job in the first available position in sequence and go to Step 4; otherwise, go
to Step 3. (Ties for the minimum time on machine 1 may be broken
arbitrarily.)
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Step 3. Theminimum in Step 1 occurs onmachine 2, so place the associated job
in the last available position in sequence. (Ties for the minimum time on
machine 2 may be broken arbitrarily.) Go to Step 4.

Step 4. Remove the assigned job from consideration, and return to Step 1 until
all sequence positions are filled.

We illustrate the algorithm with an example.

∎ Example 10.2 Consider a problem containing n = 5 jobs in a two-machine
flow shop.

Job j 1 2 3 4 5

aj 3 5 1 6 7

bj 6 2 2 6 5

Table 10.1 shows how an optimal sequence is constructed in five stages using
Algorithm 10.1. At each stage, Step 1 identifies minj{aj, bj}. Then Step 2 fills one
position in sequence, and the process is repeated. The sequence that emerges is
3-1-4-5-2. The schedule produced by the algorithm, shown in Figure 10.6, has a
makespan of 24.

Table 10.1

Stage Unscheduled jobs minj{aj, bj} Assignment Partial schedule

1 1,2,3,4,5 a3 [1] = 3 3-x-x-x-x

2 1,2,4,5 b2 [5] = 2 3-x-x-x-2

3 1,4,5 a1 [2] = 1 3-1-x-x-2

4 4,5 b5 [4] = 5 3-1-x-5-2

5 4 a4 = b4 [3] = 4 3-1-4-5-2

3 1 4 5 2

3 1 4 5 2

Figure 10.6 The schedule produced by Algorithm 10.1 for Example 10.2.
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An alternative exists for implementing Johnson’s rule that provides a different
perspective on the structure of optimal schedules. In this implementation,
shown as Algorithm 10.2, we first partition the jobs into two sets, according
to whether the first operation is shorter or longer than the second operation.
Then, we sequence the jobs with shorter first operations by applying SPT to
their aj values, and we sequence the jobs with longer first operations by applying
LPT to their bj values. Finally, we arrange the two sequences in tandem to pro-
duce a full sequence for the solution.

Algorithm 10.2 Implementing Johnson’s Rule

Step 1. Let U = {j|aj ≤ bj} and V = {j|aj > bj}.
Step 2. Arrange the members of setU in nondecreasing order of aj, and arrange

the members of set V in nonincreasing order of bj.
Step 3. An optimal sequence is the ordered set U followed by the ordered

set V.

In Step 1 of the algorithm, including jobs with aj = bj in U rather than in V is
arbitrary. Such jobs may be assigned to set U or to set V. However, Algo-
rithm 10.2 reduces the total flowtime relative to the alternative implementa-
tions. For the same reason, we may choose to break ties in Step 2 by placing
the shortest bj in U and the shortest aj in V, but in principle we can break such
ties arbitrarily.

10.3.2 A Proof of Johnson’s Rule

This section provides two perspectives on Johnson’s Rule. First, we justify Algo-
rithm 10.1. Second, we address Theorem 10.3 and exploit the potential for using
an adjacent pairwise interchange argument. For convenience, we number the
jobs according to their position in sequence.
In the two-machine model, the completion time for operation k of job j can be

calculated recursively as follows:

C1j =C1, j−1 + aj

C2j = max C1j,C2, j−1 + bj

where C10 =C20 = 0, and we assume that jobs are processed as early as possible
(as in Figure 10.6). If we add a constant p to all operation times, then we simply
increase the completion time of job j by jp on machine 1 and by (j + 1)p on
machine 2. In particular, the makespan increases by (n + 1)p, but the optimality
of a sequence will not be affected by the transformation.
If aj = 0, then there exists an optimal sequence in which job j comes first.

(To show this property, suppose no such optimal sequence exists. Then
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interchange job jwith the first job in the optimal sequence, and confirm that the
makespan does not get worse.) From symmetry, if bj = 0, then there exists an
optimal sequence in which job j comes last.
These two properties – adding a constant to processing times and sequencing

a zero processing time – justify Algorithm 10.1. Given a set of jobs, we can cal-
culate the constant p = −mini[min{ai, bi}] and add it to all processing times. This
creates at least one processing time of zero. If aj = 0, then we can assign job j to
the first position in sequence. This corresponds to Step 2 of Algorithm 10.1.
Similarly, if bj = 0, then we can assign job j to the last position in sequence. This
corresponds to Step 3 of Algorithm 10.1. Thus, Algorithm 10.1 is optimal by
construction.
We turn now to Johnson’s rule itself and interpret it as a sorting rule, one that

can be justified with an adjacent pairwise interchange argument. Suppose that
there exists a schedule S containing a pair of adjacent jobs i and j, with j follow-
ing i, satisfying min{ai, bj} >min{aj, bi}, thus violating Johnson’s rule. We con-
struct schedule S by interchanging jobs i and j. We want to show that this
interchange cannot increase the makespan and may reduce it. For this purpose,
we use the notion of total idle time onmachine 2, denoted i2.We can express the
makespan as follows:

M = i2 +
n

j=1

bj

In other words, our objective is to minimize i2 because the sum of processing
times on machine 2 is constant.
Let b0 = 0 and define

yj =
j

k =1

ak −bk−1

Assuming that jobs are processed on machine 1 without inserted idle time, yj
represents the difference between two times: the time required to process the
first j jobs on machine 1 and the time required to process the first (j − 1) jobs
onmachine 2. Before job j starts onmachine 2, there must have been at least this
much idle time onmachine 2, so i2 ≥ yj. Thus, we obtain i2 = max{yj}, allowing us
to express the makespan as

M = i2 +
n

j=1

bj =maxj yj +
n

j=1

bj

Thus, we are interested in minimizing maxj{yj}. We rewrite the given condi-
tion min{ai, bj} >min{aj, bi} as follows:

max −ai, −bj < max −aj, −bi 10 1
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To both sides we add the constant P, where

P =
k B

ak + ai + aj−
k B

bk

and B denotes the set of jobs preceding i and j. Adding P to Eq. (10.1) yields

max P−ai,P−bj < max P−bi,P−aj 10 2

Now observe that

P−ai =
k B

ak + aj−
k B

bk = yj S

P−bj =
k B

ak + ai + aj−
k B

bk −bj = yi S

P−bi =
k B

ak + ai + aj−
k B

bk −bi = yj S

P−aj =
k B

ak + ai−
k B

bk = yi S

Hence Eq. (10.2) becomes

max yj S , yi S < max yi S , yj S

so that the interchange leaves the objective function no worse off and may actu-
ally improve it. The remaining step in the proof is to show that Johnson’s rule is
transitive.
In a rigorous sense, transitivity may not hold if there are ties. Here lies an

insight that did not arise in our single-machine cases.When we implement sort-
ing rules such as SPT for a single machine, we are indifferent to tie-breaking
mechanisms, and moreover, each different way of breaking a tie leads to an
alternative optimum. Thus, SPT is necessary and sufficient for optimality. How-
ever, in the two-machine flow shop problem, Johnson’s rule is sufficient but not
necessary, and we may not be indifferent when ties occur. We provide an exam-
ple to illustrate this point.

∎ Example 10.3 Consider a problem containing n = 3 jobs in a two-machine
flow shop.

Job j 1 2 3

aj 4 2 4

bj 3 2 5
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The sequence 1-2-3 has the property that min{ai, bj} ≤min{aj, bi} for consec-
utive pairs 1-2 and 2-3. However, its makespan of 15 is not optimal. The prob-
lem lies in the fact that min{ai, bj} ≤min{aj, bi} does not hold for the pair 1-3. In
other words, it is possible in this example to construct a sequence with the prop-
erty that adjacent pairs satisfy Johnson’s inequality, but nonadjacent pairs do
not. This feature can occur only when there are ties, and it reflects the fact that
Johnson’s rule is not rigorously transitive. Thus, we could state the rule as a
strict inequality. Then it would be transitive, but it might not order a given
job set completely. On the other hand, when we state the rule as in Theorem
10.3, it orders a set of jobs completely; but only when we break ties correctly
does it permit us to construct optimal sequences inO(n log n) time. Fortunately,
Algorithms 10.1 and 10.2 always break ties correctly. In the example, Algo-
rithms 10.1 and 10.2 both yield the sequence 2-3-1 (although 3-1-2 is also an
optimal sequence).

10.3.3 The Model with Time Lags

Time lags (start lags and stop lags) allow for splitting and overlapping of jobs.
That is, processing can begin at machine 2 on an early portion of a job, while
the later portion is still at machine 1. We define a start lag uj as the required
delay between the start of a job’s first operation and the start of its second
operation. Analogously, a stop lag vj is the required delay between the com-
pletion of a job’s first operation and the completion of its second. A typical
application would be a situation where each job is a batch consisting of
several discrete and identical units. Once the first unit completes at
machine 1, it can immediately begin processing at machine 2. In that case,
the start lag represents the time to process one unit on machine 1, and the
stop lag represents the time to process one unit on machine 2. In other
words, we would be using a “transfer batch” of size 1. Obviously, we can also
model larger transfer batches with the use of time lags. In the case of start
lags and stop lags, the optimal permutation schedule is characterized by a
rule analogous to Johnson’s rule: Specifically, job i precedes job j in an opti-
mal sequence if

min ai + di, bj + dj ≤ min aj + dj, bi + di 10 3

where

dj = max uj−aj, vj−bj 10 4

The form of Eq. (10.4), in which dj is usually negative, reflects the fact that one
of the two time lags will always guarantee the other. If we have dj = uj − aj ≥ vj −
bj, then a schedule that meets the start-lag constraint will automatically satisfy
the stop-lag constraint. On the other hand, if we have dj = vj − bj ≥ uj − aj, then
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a schedule that meets the stop-lag constraint will automatically satisfy the
start-lag constraint. In either case, dj represents the time required between
the completion of the first operation and the start of the second operation. Some
expositions refer to dj as the transfer lag.

10.3.4 The Model with Setups

In light of condition C2 for the basic two-machine model, setup times are
assumed to be not only sequence independent but also contained in processing
times. For certain applications, however, it is useful to treat the setup times
explicitly. For this purpose we define s1j as the setup time for job j on machine
1 and s2j as the setup time on machine 2.
In the basic model, under C2, the first operation of a job must complete on

machine 1 before setup of machine 2 can begin. This feature is sometimes
called an attached setup time, meaning that the setup is “attached” to the
job and cannot be done while the job is somewhere else. Stated another
way, the setup cannot be scheduled in anticipation of arriving work. We
can analyze this version of the two-machine flow shop problem in the original
manner. Specifically, let Aj = s1j + aj and Bj = s2j + bj, and then adapt Johnson’s
rule to construct the optimal sequence: job i precedes job j in an optimal
sequence if min{Ai, Bj} ≤min{Aj, Bi}. The uppercase notation denotes a com-
pound processing time, with “processing” taken to mean both setup time and
run time.
As a variation, suppose that the setup times are separable. In other words,

the setups at machine 2 can be detached and scheduled in anticipation of arriv-
ing work. Assume, nevertheless, that each job must be completed at machine 1
before it can begin work at machine 2. Under these assumptions, we can
develop a schedule by using the time-lag model. Specifically, the start lag is
uj = s1j + aj − s2j and the stop lag is vj = bj. It follows that the transfer lag is
dj =max{s1j − s2j, 0}, from which Eq. (10.3) can be used to construct an optimal
sequence.

10.4 Special Cases of the Three-machine Problem

For the makespan criterion and m = 3 machines, it is sufficient to consider
only permutation schedules in the search for an optimum, yet it is difficult
to generalize the two-machine result. Indeed, the general three-machine
problem is NP-hard. However, there are several special cases in which
the three-machine problem can be solved efficiently, with procedures that
resemble Johnson’s rule for the two-machine problem. In the cases listed
below, it is possible to find an optimum without resorting to enumerative
search.
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Case 1. Machine 1 dominates machine 2: min{p1j} ≥max{p2j}.
Solution: Apply Johnson’s rule to the pseudo-two-machine problem formed

by aj = p1j + p2j and bj = p2j + p3j. The optimal sequence in the pseudoproblem

is optimal for the original. (This procedure is sometimes called Johnson’s
approximate method.)

Case 2. Machine 3 dominates machine 2: min{p3j} ≥max{p2j}.
Solution: Johnson’s approximate method.

Case 3. Regressive second stage: p2j ≤min{p1j, p3j} for all j.
Solution: Johnson’s approximate method.

Case 4. Machine 2 dominates machine 1: min{p2j) ≥max{p1j}.
Solution: Solve the two-machine problem corresponding to machines 2 and 3.

Let job k denote the first job in this sequence. Generate additional sequences by
inserting in first position jobs with p1j ≤ p1k. Among these sequences (the two-
machine solution sequence and the additional sequences), the one with the
smallest makespan in the three-machine problem is optimal.

Case 5. Machine 2 dominates machine 3: min{p2j} ≥max{p3j}.
Solution: A symmetric version of the procedure in Case 4.

Case 6. Johnson’s extended rule: If job i is preferred to job j under Johnson’s rule
for each of the two-machine subproblems represented by machine pairs 1-2, 2-
3, and 1-3, and if these (i, j) preference orderings form a complete sequence,
then such a sequence is optimal for the three-machine problem.

Case 7. Constant second stage: If p2j is a constant, and if shortest processing
time (SPT) priority applied to machine 1 yields the same sequence as longest
processing time (LPT) priority applied to machine 3, then this sequence is
optimal.

Case 8. Lower bound condition: Let M denote the makespan corresponding to
an optimal sequence to the pseudoproblem of Johnson’s approximate method,
and let M denote the actual makespan in the three-machine problem for the
same sequence. That sequence is optimal if

M =M +
n

j=1

p2j

Some experimental studies have explored the likelihood of these conditions in
sample problems. In test problems, processing times were first drawn at random
from a uniform distribution. This procedure gives rise to what might be called a
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“random shop” problem structure. However, the existing flow shop literature
suggests a number of other interesting structures as well. Below we list six dif-
ferent structures that formed the basis of the test data:

S1. Random shop: Processing times are independent samples drawn from a uni-
form distribution.

S2. Ordered shop: Two relationships apply: (i) If job i has a smaller processing
time than job j on machine k, then job i also has a processing time no larger
than that of job j on each other machine; and (ii) if job i has its rth smallest
processing time on machine k, then so does every other job.

S3. Constant second stage: Processing times for machines 1 and 3 are independ-
ent samples drawn from a uniform distribution; processing times on machine
2 are constant.

S4. Correlated shop: If the processing time of a job is large on one particular
machine, then the job’sprocessing timesonothermachines also tend tobe large.

S5. Trend shop: Processing times are positively correlated with machine
number.

S6. Correlation-trend shop: A combination of S4 and S5.

Structures S4 and S6 were included because they seem to represent relatively
difficult flow shop problems to solve by enumerative techniques.
For each of the six shop structures, test problems were created with 5, 20, and

50 jobs. For each combination of shop structure and problem size, 50 job sets
were created, for a combined total of 900 test problems. Overall, at least one of
the eight conditions held in approximately half the test problems, and in the vast
majority of problems where at least one of the conditions held, the lower bound
condition (Case 8) was successful. Correlation in the test data (S4 and S6) led to
fewer successes as problem size increased, while the opposite was true for trend
alone (S5). In addition, Case 8 accounted for most of the successes. In fact, for
structures S1, S4, S5, and S6, it was, with one exception, the only condition that
applied in any of the 600 test problems. For S2 and S3, Case 6 provided some
degree of success, as well as Case 8.
We conclude that the three-machine special cases, in which the optimal solu-

tion can be found by a polynomial algorithm, are likely to occur reasonably often
in sample problems. Moreover, among the various procedures that have been
designed to detect special cases, the lower bound condition is by far the most
powerful. The results also indicate that unless special shop structure is involved,
the other conditions are virtually ineffective at detecting special cases.

10.5 Minimizing the Makespan

Except for the very special cases mentioned in the previous section, we need
general-purpose procedures to solve the makespan problem with m = 3.
For this purpose, branch-and-bound methods have been reasonably
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successful. For flow shop problems with more than three machines,
the same branch-and-bound approaches have also been used to find
optimal permutation schedules. Although permutation schedules are not
a dominant set for makespan problems when m ≥ 4, it seems plausible that
the best permutation schedule should be close to the optimum. However, it
has been shown that the worst-case behavior of permutation schedules is
not even bounded by a constant but may be roughly as large as 0.5m1/2.
Nevertheless, permutation schedules are asymptotically optimal for large
n (i.e. n m), for minimizing the makespan and for minimizing maximum
tardiness.
Asymptotic optimality does not necessarily reveal what might happen in prac-

tice with flow shop problems of moderate size. However, the focus on permu-
tation schedules brings to mind the various solution techniques discussed in
Chapters 3 and 4 for finding the optimal job sequence in the single-machine
model. In this section we build on that similarity and describe optimizing
approaches and heuristic approaches for permutation schedules in the m-
machine makespan problem.

10.5.1 Branch-and-Bound Solutions

The branching tree for the flow shop problem has the same structure as the per-
mutation tree for single-machine schedules shown in Figure 7.4, where π repre-
sents a partial permutation occurring at the beginning of the sequence. In other
words, the job sequence is constructed in a forward direction as we proceed
down the tree. For each node on the tree, corresponding to a partially solved
problem P(π), we require a lower bound on the makespan associated with
any completion of the corresponding partial sequence π. Again, we denote by
π the set of jobs not contained in π.
For a given partial sequence π, let Ci(π) denote the completion time on

machine i for the last job in π. This completion may also determine the earliest
time at which some unscheduled job could begin processing at machine i. How-
ever, there may be other conditions that delay the start of the next job at
machine i. Suppose that a particular job j is a candidate to be added to the partial
sequence π. Then the earliest time that job j could begin processing on machine
i may instead be determined by the work required on job j before it reaches
machine i. This amount of work is p1j + p2j + + pi−1,j. Since we do not yet
know which unscheduled job will be next, we can take the most favorable case
and conclude that the earliest time at which the next job will start on machine i
is at least

min
jϵπ

p1j + p2j+ + pi−1, j

We can use a similar logic, starting from machine k < i, and conclude that the
earliest time at which the next job will start on machine i is at least
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Ck π + min
jϵπ

pkj + pk +1, j+ + pi−1, j

Thus, as the first component of the lower bound, we define the earliest time at
which some unscheduled job could begin processing on machine i as follows:

ri π = max
k ≤ i

Ck π + min
jϵπ

i−1

u= k

puj

Once processing does begin on machine i, the amount of processing yet
required on that machine is jϵπ pij. This is the second component of the lower

bound. As a third component, observe that after the last job finishes onmachine
i, it must still be processed by subsequent machines. In the most favorable case,
that amount of time is

qi π = min
jϵπ

m

u= i+ 1

puj

where qm = 0. Putting together the three components, we obtain the following
lower bound on the makespan, from the perspective of machine i:

bi π = ri π +
jϵπ

pij + qi π

This bound assumes that machine i will be the bottleneck. This premise
accounts for the second component in the bound: When machine i is truly a
bottleneck, there will be no inserted idle time in its remaining operations. Obvi-
ously, at the time we make the calculation, we do not know whether any par-
ticular machine will be the bottleneck; therefore, we take as a lower bound
the maximum of the bi values:

LB1 π = max
i

ri π +
i π

pij + qi π

In the literature on branch-and-bound procedures, LB1, or minor variations
of it, are calledmachine-based bounds. For our purposes, we can think of LB1 as
a lower bound based on the premise of a single bottleneck machine.
We can extend the notion of a machine-based bound and recognize two bot-

tleneck machines instead of just one. The rationale for doing so is that the two-
machine makespan problem can be solved efficiently by Algorithm 10.1 as part
of the lower bound calculation. Also, by treating (m − 2) of the machines as non-
bottlenecks, we are assuming that work on those machines can be performed in
parallel. In this context, we find it convenient to use a shorthand notation for
partial sums of processing times over several adjacent machines. Let

Pj i,h =
h

u= i

puj
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where Pj(i, h) = 0 if h < i.
If we assume that machines i and h are bottlenecks, then machines prior to i

and machines following h are treated as simple nonbottlenecks. Thus, we have
the first and third components of the lower bound as before:

ri π = max
k ≤ i

Ck π + min
jϵπ

Pj k, i−1

qi π = min
jϵπ

Pj h+ 1,m

For the second component, machines i and h are treated as bottlenecks, and
processing on machines between i and h is treated as if it occurs on a dominated
machine, as inCase 1 of Section 10.4. Thus, the second component corresponds
to the makespan of a three-machine pseudoproblem in which the processing
times are pij, Pj(i + 1, h − 1), and phj, for each unscheduled job j in π . Denote
this solution by Mih. Then the lower bound can be written as follows:

LB2 π = max
i,h

ri π +Mih + qh π

where the maximum is taken over all pairs of machines (i, h). Experimental
studies have shown that LB2 is a very effective lower bound, but its computa-
tional requirement is O(n3 log n), which is substantial. One way to limit the
amount of computation done at each node is to use only i = h. This amounts
to using just one bottleneck machine, which corresponds to using LB1.
Another simplification is to use only h =m. This simplification reduces the
computational burden by a factor of n at each node by considering only bot-
tleneck pairs that include the last machine. Either simplification reduces the
effort required to compute a bound at each node, but since the resulting
bounds may be less tight, the optimization procedure requires more effort
in its tree search. In large problems, it makes sense to utilize the strongest pos-
sible bound because the tree search is quite extensive. We illustrate the calcu-
lations with an example.

∎ Example 10.4 Consider a problem containing n = 4 jobs in a four-machine
flow shop.

Job j 1 2 3 4

p1j 4 2 3 5

p2j 3 8 2 4

p3j 7 2 4 3

p4j 3 5 1 5
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The first node generated by the branch-and-bound algorithm corresponds to
the subproblem P(1), for which job 1 is assigned the first position in sequence
and π = {2, 3, 4}. For this partial sequence the values of Ci(π) are 4, 7, 14, and 17.
The lower bound calculations for LB1 are shown below.

i ri π + j π pij + qi π Max

1 4 + 10 + 7 = 21

2 7 + 14 + 5 = 26

3 14 + 9 + 1 = 24

4 17 + 11 + 0 = 28 28

For the other partial solutions at the first level of the branching tree, similar
calculations yield bounds of 27 for P(2), 28 for P(3), and 27 for P(4).
The use of LB2 can improve the lower bound for P(2) and P(4). To illustrate,

consider the calculation of LB2 for P(2) when the two bottleneck machines are
i = 2 and h = 4. The subproblem for these two machines uses the data
shown below.

Job j 1 3 4

Machine i = 2 3 2 4

Nonbottleneck 7 4 3

Machine h = 4 3 1 5

The optimal sequence for this subproblem is 4-1-3, with a makespan of 18.
Because we also have r2 = 10 and q4 = 0, it follows that LB2 = 10 + 18 + 0 =
28. A similar set of calculations for P(4) shows that LB2 = 28 as well.
Computational results indicate that 3-machine problems containing as many

as 1000 jobs can be solved in less than an hour of computer time. Problems with
4–10 machines and a total of up to 1000 operations can often be solved in a
matter of minutes. However, some problems of this size require very extensive
searching.

10.5.2 Integer Programming Solutions

An integer programming (IP) formulation can be built for the flow shop model
and the makespan objective. The formulation uses sequence-position variables
xik and corresponding assignment constraints, as in the single-machine model
(Section 3.6.2). In addition, two other types of variables are useful:

Ikj = idle interval onmachine k prior to the start of the job in sequence position j.
Hkj = idle time of the job in sequence position j after finishing on machine k.
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Starting at the completion of the job in position j on machine k, we can
measure the time until the start of the job in position (j + 1) on machine
(k + 1) in two ways. First, we can add the idle interval on machine k prior
to the start of the job in sequence position (j + 1), the processing time on
machine k of the job in sequence position (j + 1), and the idle time for the
job in sequence position (j + 1) after finishing on machine k. This is the
sum of three terms:

Ik , j+1 +
n

i= 1

pkixi, j+ 1 +Hk , j+1

As an alternative, we can add the idle time for the job in sequence position
j after finishing on machine k, the processing time on machine (k + 1) of the
job in sequence position j, and the idle interval on machine (k + 1) prior to
the start of the job in sequence position (j + 1). This is also the sum of
three terms:

Hk, j +
n

i= 1

pk +1, ixi, j + Ik + 1, j+1

Thus, one set of compatibility constraints in the model must ensure that these
two sums are identical or

Ik , j+1 +
n

i= 1

pkixi, j+ 1 +Hk , j+1−Hk, j−
n

i= 1

pk + 1, ixi, j− Ik + 1, j+1 = 0

which applies for all sequence positions 1 ≤ j ≤ n − 1 and all machines 1 ≤ k ≤
m − 1. A special version of this equation applies for the first job:

Ik1 +
n

i=1

pkixi1 +Hk1− Ik +1,1 = 0, for allmachines 1 ≤ k ≤m– 1

To minimize the makespan, we can write the objective as follows:

MinimizeM =
n

i= 1

pmi +
n

j= 1

Imj

The first sum in this expression, representing the total processing time
required on the last machine, is simply a constant, so tominimize themakespan,
we must minimize the sum of idle times on the last machine, n

j= 1Imj. The

model contains n2 + 2mn variables and n(m + 1) constraints.
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∎ Example 10.5 Consider the following six-job, three-machine problem,
with the criterion of minimizing the makespan.

Job 1 2 3 4 5 6

Operation 1 75 36 62 8 25 32

Operation 2 43 48 26 10 12 83

Operation 3 67 50 18 37 18 57

A spreadsheet formulation of the integer program is displayed in Figure 10.7.
The I-variables and H-variables appear in rows 8–13, and the assignment vari-
ables appear in rows 14–19. The given array of processing times appears in rows
4–6, and these are re-sorted, in rows 22–24, after a job sequence is determined

Figure 10.7 Spreadsheet layout for the IP model of Example 10.5.
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by the assignment variables. This layout is convenient for computing the
expressions in the constraints. To specify the model for Solver, we provide
the following information:

•Minimize the objective function, H10 corresponding to the sum.

• Take B8:G19 as the decision variables with B14:G19 as binary variables.

• Satisfy the row sum constraints H14:H19 = 1.

• Satisfy the column sum constraints B20:G20 = 1.

• Satisfy the compatibility constraints B25:G26 = 0.

The model contains 72 decision variables and 23 constraints, and the optimal
solution shown in Figure 10.7 corresponds to the sequence 4-2-5-6-1-3. This
sequence contains 82 units of idle time on machine 3. Together with total pro-
cessing time of 247 on machine 3, the result is a makespan of 329.
Experiments reported in the literature indicate that three-machine problems

with as many as 100 jobs can be solved in a few seconds. Also, 10-machine pro-
blems with 10 jobs can also be solved in a few seconds. However, the most
sophisticated branch-and-bound algorithms are still more powerful than IP
models.
A different IP approach is illustrated in amodel for a three-machine flow shop

with synchronous transfers. In this application, a machining center contains
three stations around a rotary table. One station is a loading/unloading (L/U)
station, where parts are placed into the production line and later removed from
the line. The two other stations each house a multipurpose machine. A job
moves from the L/U station to the first machine, then to the second machine,
and finally back to the L/U station, where it leaves the center. We can think of
the parts as traveling along a clock face from loading at 12 o’clock to a first oper-
ation at 4 o’clock to a second operation at 8 o’clock and then back to 12 o’clock
to unload. The parts move around the machining center on a rotary table that
transfers all resident parts simultaneously. (See Figure 10.8.)

L/U station

Station 2 Station 1

Figure 10.8 Flow shop layout for
synchronous transfers.
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For the purposes of notation, let Lj be the loading time for job j and let Uj be
the unloading time. In addition let Aj be the processing time for job j on the first
machine and let Bj be the processing time for job j on the second machine. The
schedule consists of a series of time intervals, or cycles, within which each job
experiences one operation before the rotary table transfers it to the next station.
If we let [j] represent the job in sequence position j, then the cycle times yj
become

y1 = L 1

y2 = max L 2 ,A 1

y3 = max L 3 ,B 1 ,A 2

yk = max U k−3 + L k ,B k−2 ,A k−1 , for 4 ≤ k ≤ n

yn+ 1 = max U n−2 ,B n−1 ,A n

yn+ 2 = max U n−1 ,B n

yn+ 3 =U n

The objective then becomes

M =
n+3

j= 1

yj 10 5

To formulate the problem of minimizing the makespan, we use sequence-
position variables, (xij = 1 if job i occupies sequence position j). Thus, a set of
assignment constraints is necessary to ensure that a full sequence exists or

n

j=1

xij = 1, i= 1,2,…,n 10 6

and
n

i= 1

xij = 1, j= 1,2,…,n 10 7

In addition let yk denote the kth cycle time, as above, so that we require

yk ≥
n

i= 1

Uixi,k−3 +
n

i= 1

Lixik , k = 1,2,…,n+ 3 10 8

yk ≥
n

i= 1

Aixi,k−1, k = 2,3,…,n+ 1 10 9
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yk ≥
n

i=1

Bixi,k−2, k = 3,4,…,n+ 2 10 10

Here we define xij = 0 for j < 0 or j > n. The problem can thus be posed asmini-
mizing Eq. (10.5) subject to Eqs. (10.6)–(10.10), with the xij variables as binary
variables. This formulation contains (n2 + n + 3) variables and (5n + 3)
constraints.

∎ Example 10.6 Consider the following five-job problem, with the criterion of
minimizing the makespan.

Job 1 2 3 4 5

Loading 2 7 6 4 1

Machine 1 3 11 3 6 7

Machine 2 2 3 5 7 7

Unloading 3 2 3 2 2

A spreadsheet formulation of the integer program is displayed in Figure 10.9.
The assignment variables appear in the range F4:J8, and the cycle times appear
in cells F3:M3. For instance, we see that H5 = 1: ColumnH is associated with the
third job in the sequence, and row 5 is associated with job 2, so we know that job
2 is scheduled in the third position. The sum of the cycle times, computed in cell

Figure 10.9 Spreadsheet layout for the IP model of Example 10.6.
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N3, serves as the objective function. The given array of L/U times and machine
times appears in the columns of B4:E8, and these are re-sorted after a job
sequence is determined by the assignment variables, in the rows of F10:J13. This
layout is convenient for computing the components of cycle time in rows 14–16:
Row 14 provides U[k+3] + L[k] values, whereas rows 15 and 16 are appropriately
shifted operation times; for instance, H16 shows the processing time of the first
job (job 5) onmachine 2, which is 7 time units.We can now see that cells F3–M3
are the maxima of those three rows; for instance, H3 = 7 is associated with H14
(loading job 2) or with H16 (processing job 5 onmachine 2), whereas job 4 takes
only 6 on machine 1 during the same cycle. To specify the model for Solver, we
provide the following information:

•Minimize the objective function, N3.

• Take F4:J8 and F3:M3 as the decision variables with F4:J8 as binary variables.

• Satisfy the row sum constraints N4:N8 = 1.

• Satisfy the column sum constraints F9:J9 = 1.

• Require feasible cycle times: for example, H14:H16 ≤H3.

The model contains 33 decision variables and 28 constraints, and the optimal
solution shown in Figure 10.9 corresponds to the sequence 5-4-2-3-1, for which
the schedule length is 41.
Research studies indicate that 10-job problems can be solved in less than a

second of CPU time, but 20-job problems may take as much as an hour. Nev-
ertheless, the IP approach is competitive with specialized algorithms that have
been designed for the scheduling of synchronous flow shops.
The two types of flow shop problems discussed here show how the flow shop

structure can lend itself to IP modeling. The use of IP, however, is not limited
to the makespan objective and can be adapted to several other objective
functions.

10.5.3 Heuristic Solutions

The branch-and-bound approach has two inevitable disadvantages typical of
combinatorial optimization methods. First, the computational requirements
can be severe for large problems. Second, even for moderate-sized problems,
there is no guarantee that the solution can be obtained quickly because the
search effort depends on the data in the problem. Heuristic algorithms avoid
these two drawbacks: They can obtain solutions to large problems with limited
computational effort, and their computational requirements are predictable
for problems of a given size. The drawback of heuristic approaches, of course,
is that they do not guarantee optimality; and in some instances it may even be
difficult to judge their effectiveness. The heuristic methods described in this
section are representative of the many such techniques for the makespan
problem.
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A useful guideline for sequencing jobs in the flow shop can be stated quali-
tatively as follows: give priority to jobs having the strongest tendency to progress
from short times to long times in the sequence of operations. Although there
might be other ways of implementing this principle, the slope index makes
the following calculation for each job:

SIj =
m

i=1

m−2i+ 1 pij

Then a permutation schedule is constructed by sequencing the jobs in non-
decreasing order of their slope indices, SIj.
Form = 2, the slope index sequences the jobs in nonincreasing order of (p2j −

p1j). This method is slightly different from Johnson’s rule and does not guaran-
tee an optimum. In Example 10.2, however, the heuristic yields the sequence 1-
3-4-5-2. Although this is different from the sequence constructed by Johnson’s
rule, it still has an optimal makespan. In the job set of Example 10.4, the slope
index values are −1 for job 1, −3 for job 2, 4 for job 3, and 1 for job 4. The slope
index thus generates the sequence 2-1-4-3, for which the makespan is M = 29
(as compared with the lower bound of 28).
Another heuristic method for makespan problems is the Campbell, Dudek,

and Smith (CDS) algorithm. This algorithm uses Johnson’s rule in a heuristic
fashion and creates several schedules from which a “best” schedule can be cho-
sen. The algorithm corresponds to a multistage use of Johnson’s rule applied to
a pseudoproblem, derived from the original, with processing times aj and bj.
At stage 1, aj = p1j and bj = pmj. In other words, the first and last processing
times for each job comprise the pseudoproblem. At stage 2, aj = p1j + p2j and
bj = pm−1,j + pmj. Here, the first two and last two processing times, aggregated
for each job, comprise the pseudoproblem. In general, at stage i,

aj =
i

k = 1

pkj and bj =
m

k =m− i+ 1

pkj

For each stage i, the job sequence obtained from the pseudoproblem is used to
calculate a makespan for the original problem. The procedure consists of (m −
1) stages, some of which may generate the same sequence, after which the algo-
rithm selects the best makespan calculated. Ties can be broken arbitrarily,
although it is not difficult to incorporate tie-breaking rules. For instance, we
can break ties by using the job ordering that occurred in the previous stage.
The computational effort for the CDS algorithm is greater than that of the slope
index method, but the CDS algorithm has tended to produce better solutions in
computational tests.
When we apply the CDS algorithm to Example 10.4, there are three stages.

At stage 1, the pseudoproblem to be solved by Johnson’s rule is the
following.
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Job j 1 2 3 4

aj 4 2 3 5

bj 3 5 1 5

The optimal sequence for this problem is 2-4-1-3. At stage 2, the pseudopro-
blem is

Job j 1 2 3 4

aj 7 10 5 9

bj 10 7 5 8

The optimal sequence for this problem is 3-1-4-2, using an arbitrary means of
breaking ties. At stage 3, the pseudoproblem is

Job j 1 2 3 4

aj 14 12 9 12

bj 13 15 7 12

The optimal sequence for this problem is 4-2-1-3. Thus, the CDS algorithm
selects three sequences to be evaluated. The best makespan among the three
(from the original processing time data) is M = 29.
In addition to the slope index method and the CDS method, which are both

specialized to the flow shop model, we can use general-purpose heuristic tech-
niques. For instance, we can apply the insertion heuristic to the permutation
sequences that define flow shop schedules. Computational experiments suggest
that although the insertion heuristic requires more effort than the CDS algo-
rithm, the additional effort produces slightly better solutions. Similarly, neigh-
borhood search, simulated annealing, and tabu search procedures have also
been tested in flow shop problems. The experimental results indicate that heu-
ristic procedures can generate solutions that are on average within about 1% of
optimum.

10.6 Variations of the m-Machine Model

10.6.1 Ordered Flow Shops

A special case of the flow shop problem is the ordered flow shop. The special case
is defined by two conditions: (1) If job j has a smaller processing time than job k
onmachine i, then job j also has a processing time no larger than that of job k on
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each other machine; and (2) if job j has its rth smallest processing time on
machine i, then so does every other job. These conditions tend to occur when
the jobs being scheduled represent orders and the items comprising the orders
have similar unit processing times on all machines. In this situation, the oper-
ation processing times reflect the order sizes.
Condition (1) of the ordered flow shop makes it possible to refer to the size of

a job. That is, we can identify a longest job or a shortest job, since the ordering of
jobs by their operation times for one machine will be identical to the ordering
for any other machine. In particular, we can use SPT to refer to a shortest-first
ordering of the jobs and LPT to refer to a longest-first ordering.
For the ordered flow shop, a dominant set of schedules exists for the make-

span problem. Dominant schedules are determined by pyramid sequences,
which are orderings of the jobs in which the first k jobs (1 ≤ k ≤ n) are in SPT
order and the remaining jobs are in LPT order. Another way to think of a pyr-
amid sequence is in terms of the position assigned to the longest job. In a pyr-
amid sequence, if the longest job appears in position j, then the jobs in positions
1 to j are in SPT order, while the jobs in positions j to n are in LPT order.
The dominance of pyramid sequences does not dictate an optimal sequence; it

simply reduces the number of sequences among which we have to search. The
number of pyramid sequences is 2n−1, which is much smaller than the number
of feasible sequences. For example, if n = 15, the number of pyramid sequences
is 32 768, whereas the number of permutations is over 1.3 trillion.
For the ordered flow shop, the optimal schedule for the F-problem is given by

the SPT sequence. This result may not seem surprising given the optimality of
SPT in the single-machine model, but the F-problem is NP-hard for the general
flow shop model, even when m = 2.

10.6.2 Flow Shops with Blocking

In certain production settings, limited waiting space exists between adjacent
machines. Equivalently, a policy constraint may limit the number of jobs
between machines, as we often see, for example, in the kanban system of
just-in-time production. When this waiting space is full, any job completed
by the upstream machine must remain in place until space becomes available,
so that machine is blocked. An extreme blocking case occurs when there is no
waiting space between machines at all, so a job can be in the system only if it
occupies a machine. If we limit ourselves to permutation schedules, however,
then the model without waiting space is equivalent to the more general case.
For example, if we want to allow space for k jobs to wait between two adjacent
machines, we can insert k dummy machines between them with processing
times of zero, and these dummy machines can then hold up to k jobs in queue
as required. In light of this equivalence, we assume that flow shops with blocking
allow no queues between machines.
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Consider the casem = 2 with the makespan objective. For the first (n − 1) jobs,
there is no advantage in allowing a job to depart frommachine 2 before machine
1 is ready to deliver the next job. Therefore, we can think of a schedule as a
sequence of n + 1 (unequal) intervals such that during period 1, machine 1 pro-
cesses job [1], in interval (n + 1) machine 2 processes job [n], and otherwise at
interval j, machine 1 processes job [j] and machine 2 processes job [j − 1]. This
structure occurs because if job j follows job i, then there exists an interval during
whichmachine 1 is occupied by job j andmachine 2 by job i. If we define dummy
jobs – job 0 and job (n + 1) – at the beginning and the end of the schedule with
processing times of zero, then the duration of interval j is max{a[j], b[j−1]}. The
shortest path from job 0 to job (n + 1) through all other jobs is an instance of the
traveling salesperson problem (TSP) with distance elementsDij given bymax{aj,
bi}. This TSP has a special structure that allows for solution in polynomial time
using a procedure known as the Gilmore and Gomory algorithm. In contrast,
however, whenm ≥ 3, the problem cannot be formulated as a TSP, and in a prac-
tical sense, it is even more complex than the TSP. Example 10.6 is a three-
machine flow shop with blocking, in which only permutation schedules are
allowed.

10.6.3 No-Wait Flow Shops

In certain production settings, once the processing of a job begins, subsequent
processing must be carried out with no delays in the operation sequence. In
other words, no waiting is allowed before or during any operation. Such a
requirement is frequently encountered in some process industries, particularly
where material is formed while it is hot. Delays between operations result in
cooling that makes the forming operation prohibitively difficult.
Consider the problem of minimizing makespan when no waiting is permitted.

For simplicity, assume we are seeking an optimal permutation schedule. (In the
general case, some jobs may have no operations on certain machines, so the set
of permutation schedules is not dominant.) Suppose that jobs i and j are adja-
cent in sequence and that job i precedes job j. A certain delay would be incurred
in the processing of job j if the two jobs were released to a shop at the same time
and job i were processed first. Let Ihj denote the idle time incurred by job j prior
to its operation on machine h. To process job j without any delays so that it will
be completed at the same moment, the idle time must be incurred before the
start of job j on machine 1. Now suppose that job j is followed in sequence
by job k. The delays incurred in the processing of job k do not depend on what
happened before job j in sequence, but only on the operation times of job j itself
when it is processed without delay. Let Dij denote the total delay (measured
from the start of job i) incurred by job j when it follows job i in sequence. Recall
the notation Pj(g, h) for the sum of processing times of job j on machines g
through h (inclusive), but let Pj(g, 0) = 0 (for any g and j). Because the structure
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of this problem is the same for any number of machines, we can assume that
operation (1, i) starts at time zero, and we can write

Dij = I1j + I2j+ + Imj = max
1≤ h≤m

Pi 1,h −Pj 1, h−1

The right-hand side reflects the fact that if there is no waiting, then operation
(h, j) is ready to start Pj(1, h − 1) time units after the start of operation (1, j), but
machine h is not free until time Pi(1, h). Thus, the machine for which the expres-
sion Pi(1, h) − Pj(1, h − 1) is maximized dictates Dij. By the same token,Djk is the
total delay (measured from the start of job j) incurred by job k when it follows
job j in sequence. If the schedule consisted of only these three jobs, then an
expression for the makespan of the schedule associated with the sequence i–
j–k would be

M =Dij +Djk + p1k + p2k+ + pmk

In general, an expression for the makespan is

M =
n−1

j=1

D j , j+ 1 +
m

h=1

ph, n

Thus, the makespan is the sum of two quantities: (i) a sum of sequence-
dependent delay terms and (ii) the total processing time of the last job in
sequence. The structure of this expression closely resembles the criterion in
the TSP (see Chapter 8), and, with some modification, this makespan problem
can be recast as a TSP.
In the TSP, each city corresponds to a job, and the intercity distances corre-

spond to the delay pairs Dij. In addition, one dummy city must be added to the
problem (corresponding to an idle state) to which the distance from city i is the
sum of the operation times for job i and from which the distance to all other
cities is zero, as shown in Table 10.2.

Table 10.2

— D12 D13 … D1n
m

h= 1

ph,1

D21 — D23 … D2n
m

h= 1

ph,2

…

Dn1 Dn2 Dn3 … — m

h= 1

ph,n

0 0 0 … 0 —
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∎ Example 10.7 Consider a problem containing n = 4 jobs in a five-machine
flow shop.

Job j 1 2 3 4

p1j 4 2 5 3

p2j 5 4 3 9

p3j 7 6 2 9

p4j 9 8 1 8

p5j 3 7 6 4

We can verify that the corresponding TSP has the following distance matrix.

− 13 17 6 28

4 − 16 3 27

5 6 − 5 17

13 17 22 − 33

0 0 0 0 −

For instance, if job 2 follows job 1, then P1(1, h) − P2(1, h − 1) is maximized for
h = 4 with D12 = 4 + 5 + 7 + 9 − 2 − 4 − 6 = 13. Thus, if job 2 is selected to follow
job 1, then to avoid waiting, it should start 13 time units after the start of job 1.
Suppose the closest unvisited city algorithm (see Chapter 8) is used to find a
solution to this problem. If city 1 is chosen as an origin, then the procedure con-
structs the sequence 1-4-2-3, with a makespan of 56.
An instance where no wait and blocking merge is the two-machine case

with a makespan objective: The same sequence is optimal for both the block-
ing case and the no-wait case. Given an optimal blocking solution, it is always
possible to schedule starting times on machine 1 so that no waiting is
required on machine 2, and yet the makespan does not exceed the blocking
case. Given an optimal no-wait solution, queueing is not needed between
machines. But for more than two machines, the no-wait requirement is
stronger: Any no-wait sequence ensures no blocking (without increasing
the makespan), but a blocking solution may not satisfy the no-wait require-
ment because it may involve waiting on some machines. Indeed, for the
no-wait case, we can model the problem as a TSP for any number of
machines, whereas for the blocking case, only a two-machine model leads
to the TSP formulation. One conceptual difference between the two models,
even with just two machines, is that once we determine the sequence in the
blocking case, we can simply release jobs into the system by dispatching,
whereas in the no-wait case we must devise an explicit schedule and compute
the release dates in advance.
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10.7 Summary

In the development of scheduling models more general than single-machine
models, the flow shop represents themost direct extension to jobs with multiple
operations requiring distinct multiple resources. In the analysis of flow shop
problems, scheduling theory has been strongly influenced by Johnson’s two-
machine result, very possibly because it is the only optimal scheduling rule
applicable to a large class of flow shop problems. One disadvantage of this influ-
ence might be the disproportionate attention paid to the makespan criterion,
because that is the focus of Johnson’s rule. In view of the many intriguing
and practical variations of the single-machine model, it is remarkable that no
similar progress has been made with the flow shop using other performance
measures.
On the other hand, the pivotal influence of Johnson’s rule has had some

definite advantages. First, by emphasizing the properties of permutation
schedules, the original result focused flow shop research on problems of
manageable size. Multiple-resource problems are certainly more difficult
than single-resource problems. In a sense, the multiple-resource structure
potentially represents a situation in which each resource is itself associated
with a combinatorial problem and in which these several problems are
closely interrelated. In such a case, it is an acceptable simplification to deal
with only a limited set of alternatives. In the flow shop model, the problem
of finding a best permutation schedule is no larger than related single-
machine problems, and it seems plausible that the best permutation sched-
ule should be close to optimal, even if permutation schedules do not con-
stitute a dominant set.
A second advantage of the Johnson influence is that the two-machine

analysis seems to capture the essence of larger makespan problems.
As we have seen, Johnson’s rule is an element in solving special cases
of the three-machine model, in calculating tight lower bounds for an opti-
mization procedure, and in implementing the CDS heuristic algorithm.
This feature suggests that the two-machine case may be the key to
resolving larger problems with other criteria. For example, if we were faced
with a flow shop problem with several machines and setups, a reasonable
solution strategy would be to adapt the CDS heuristic procedure using a
pseudoproblem based on the form of the two-machine model with
setup times.

Exercises

10.1 Consider the following three-job two-machine flow shop makespan
problem.
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Job j 1 2 3

aj 4 2 4

bj 3 2 5

a) Show that there is an optimal schedule in which job 1 precedes job 2.
b) Show that there is an optimal schedule in which job 2 precedes job 3.
c) Show that there is an optimal schedule in which job 3 precedes job 1.

10.2 The times required to complete eight jobs on two machines are shown in
the table that follows. Each job must follow the same sequence, begin-
ning with machine A and moving to machine B.

Job j 1 2 3 4 5 6 7 8

Machine A (aj) 16 3 9 8 2 12 18 20

Machine B (bj) 5 13 6 7 14 4 14 11

a) Determine a sequence that will minimize throughput time.
b) Construct a chart of the resulting sequence, showing B’s idle times.
c) For the sequence in (a), how much could B’s idle time be reduced by

splitting the last two jobs (7 and 8) in half?

10.3 Consider the following three-job flow shop example.

Job j 1 2 3

aj 4 4 3

bj 7 1 2

Show that Johnson’s condition is not necessary for optimality in the two-
machine makespan problem.

10.4 Show that the jobs in the sequence produced by Algorithm 10.2 will sat-
isfy Johnson’s rule; that is, if job i precedes job j in that sequence, then
min{ai, bj} ≤min{aj, bi}.

10.5 Consider the two-machine problem with makespan objective and setup
times. Suppose that the setup times are separable – that is, setups may be
scheduled in anticipation of arriving jobs. Show that the rule for con-
structing an optimal sequence takes the following form:

Job iprecedes job jin an optimal sequence if min e1i,e2j ≤ min e1j,e2i
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where e1i (e2i) denotes the initial (final) idle time on machine 2
(machine 1) when job i is scheduled by itself.

10.6 Consider a flow shop with three proportional machines. In other words,
the processing times satisfy pij = cipj. For a problem that involves mini-
mizing some regular measure of performance, is the proportional-
machine structure any easier than the general three-machine problem?
Is there an optimal permutation schedule?

10.7 How many different schedules are candidates for the optimal makespan
in the four-job, four-machine flow shop problem?

10.8 For a flow shop problem containing n jobs and m machines, what is the
order of magnitude of the computational effort required by:
a) The slope index method?
b) The CDS algorithm?
c) The insertion heuristic?

10.9 Find the optimal makespan for the following flow shop problem. If there
is an additional constraint of no wait in process, does the optimal make-
span change? Does the optimal sequence change?

Job j 1 2 3 4

p1j 9 13 15 20

p2j 11 17 18 24

p3j 8 12 14 18

p4j 6 10 12 15
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11

Stochastic Flow Shop Scheduling

11.1 Introduction

The analysis of stochastic flow shop problems has not proceeded very far and
remains challenging. With few exceptions, research on the stochastic flow shop
has been limited to the makespan as a performance measure, and much of the
work addresses only the two-machine problem. In the stochastic flow shop
model, the makespan typically exhibits a positive Jensen gap even with two
machines, so the problem is inherently more complex than its deterministic
counterpart. Nevertheless, the deterministic counterpart provides an effective
heuristic for large n. For small and medium numbers of jobs, we can use neigh-
borhood search heuristics to improve upon the performance of the determin-
istic counterpart. With more than two machines, we can at least adapt some of
the heuristic procedures developed for the deterministic counterpart, which
often depend on the two-machine solution in one way or another. Some special
cases of the stochastic, two-machine makespan problem exist – not necessarily
practical ones – in which optimal sequences can be found readily. In the context
of safe scheduling for the stochastic flow shop, however, we must also recognize
the need for safety time.
We begin our coverage in Section 11.2 with stochastic counterparts of models

covered in the previous chapter, under the assumption of stochastic independ-
ence. In Section 11.3, we introduce safe scheduling models, again subject to sto-
chastic independence. In Section 11.4, we study the implications of introducing
linear association into both stochastic counterpart and safe scheduling models.
In all these cases, we limit ourselves to permutation flow shops with a makespan
objective.
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11.2 Stochastic Counterpart Models

Few analytic results exist for the stochastic m-machine case. Those that are
available rely on very restrictive assumptions. Therefore, we focus on the
two-machine case. We use Aj and Bj to denote stochastic processing times
on the two machines, but we retain aj and bj for the expected values. For general
distributions without special conditions on processing times, the only full solu-
tion known for a stochastic counterpart applies to the two-job problem.

∎ Theorem 11.1 In the two-job stochastic flow shop problem, job 1 precedes
job 2 in an optimal sequence if E[min{A1, B2}] ≤ E[min{A2, B1}].

Proof. When job 1 precedes job 2, the makespan is given by A1 + max{A2, B1} +
B2. Furthermore, A1 + max{A2, B1} + B2 =A1 +A2 + B1 + B2 −min{A2, B1}. In
words, the makespan is the total processing time of all operations minus the
time during which the two machines operate in parallel. By symmetry, A1 +
A2 + B1 + B2 −min{A1, B2} is the makespan of the same shop when job 2 is first.
The condition then follows by comparing the expected values of the two make-
span expressions. □

Theorem 11.1 generalizes Johnson’s rule for two jobs in the deterministic
case, which calls for job 1 to be first if min{a1, b2} ≤min{a2, b1}. The theorem
holds for any processing time distributions, but the calculations become more
tractable if we assume independent processing time distributions because we
can calculate the cdf of the minimum using the formula

Fmin t = 1− 1−FX t 1−FY t

where FX(t), FY(t), and Fmin(t) denote the cdfs of X, Y, and their minimum. The
expected value of the minimum can then be calculated as the area above the cdf
and below 1 to the right of the origin. However, the formula does not lead to a
closed-form calculation of the minimum for all distributions. Alternatively, we
can use sample-based analysis to estimate the information we need. Such an
approach would likely be needed as well when processing times are not
independent.
To pursue the analysis beyond the two-job problem, we must make a more

specific assumption about the distribution of processing times. To start, we con-
sider exponential processing times. (As we mentioned in Chapter 9, the expo-
nential is not necessarily very practical, but it is significant as a boundary
case, and it sometimes provides us with general insights.) Suppose we have
two exponential random variables, one with a mean of x and the other with a
mean of y. Equivalently, we say that one has a completion rate (or processing
rate) of 1/x and the other has a completion rate of 1/y. The minimum of the
two exponential random variables is an exponential random variable with
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processing rate (1/x + 1/y). Therefore, the condition in Theorem 11.1 can be
rewritten for the exponential case. The condition for job 1 to precede job 2,

E min A1, B2 ≤E min A2, B1 11 1

implies the reverse ordering of processing rates, or

1
a1

+
1
b2

≥
1
a2

+
1
b1

11 2

Algebraic rearrangement yields

1
a1

−
1
b1

≥
1
a2

−
1
b2

11 3

In words, the job with the larger difference in processing rates should come first.

∎ Example 11.1 Consider the scheduling of two jobs with independent expo-
nentially distributed processing times. The mean of each processing time is
given in the following table.

Machine Job 1 Job 2

1 4 5

2 5 8

The processing rates associated with these means are 0.25 and 0.2 for job 1
and 0.2 and 0.125 for job 2. Since the difference for job 2 (0.0875) exceeds
the difference for job 1 (0.05), job 2 should be scheduled first. This sequence
reverses the solution of the deterministic counterpart and demonstrates that
applying Johnson’s rule to themean values in a stochastic problem does not nec-
essarily produce an optimal sequence. For this example, the expected makespan
is 19.333 for the sequence 2-1 and 19.5 for sequence 1-2. The standard devia-
tions are 10.424 and 10.548, respectively. The difference in both measures is on
the order of 1%, and the optimal sequence is advantageous on both counts.

∎ Example 11.2 Consider the scheduling of two jobs with independent expo-
nentially distributed processing times. The mean of each processing time is
given in the following table.

Machine Job 1 Job 2

1 1 1

2 1 1 + 7
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In Example 11.2, the calculations yield an expected makespan of 5.861 for the
sequence 2-1 and 6.146 for sequence 1-2. The standard deviations are 3.801 and
3.942, respectively. For the optimal sequence, the advantage in the mean is
about 4.8%, and the advantage in the standard deviation is about 3.7%. The para-
meters of this example illustrate the maximum percentage improvement of the
correct sorting rule for a two-job problem with exponential processing times.
Johnson’s rule, when applied to the means, results in a tie, but if we reduce
a1 infinitesimally, the sequence 1-2 becomes the deterministic optimum,
whereas the sequence 2-1 remains the optimal solution for exponential proces-
sing times.
Sorting by the difference inmean processing rates (1/aj − 1/bj) involves a tran-

sitive sequencing relation and can be extended to n jobs. Thus, at the very least,
it provides a reasonable heuristic procedure for the n-job problem. In the expo-
nential case, this sorting rule, which we refer to as Talwar’s rule, turns out to be
optimal.

∎ Theorem 11.2 (Talwar’s rule). In the stochastic two-machine flow shop
problem with exponential processing times, the expected makespan is mini-
mized by sequencing the jobs so that (1/a[1] − 1/b[1]) ≥ (1/a[2] − 1/b[2]) ≥ ≥
(1/a[n] − 1/b[n]).

(We omit the proof.)
In the n-job case, the condition for job j to precede job (j + 1) can be written as

1
aj
−

1
b j+1

≥
1

a j+ 1
−
1
bj

This condition involves a comparison between two means. Because they are
means of exponential distributions, the cdf for min{Aj, B(j+1)} lies entirely above
the cdf for min{A(j+1), Bj}. In other words, stochastic dominance holds in the
comparison for each pair of successive jobs. This feature also holds when there
are n jobs; that is, Talwar’s rule yields not only a minimal expected makespan
but also a stochastically minimal makespan.
When the problem involves distributions other than the exponential, we have

to rely on heuristic procedures. One plausible heuristic sorts the jobs by (1/
a[1] − 1/b[1]) ≥ (1/a[2] − 1/b[2]) ≥ ≥ (1/a[n] − 1/b[n]), as in Theorem 11.2. We
refer to this procedure as Talwar’s heuristic. Another possibility, of course, is
solving the deterministic counterpart – that is, applying Johnson’s rule to the
means – and using the sequence in the stochastic problem.We refer to that pro-
cedure as Johnson’s heuristic. Johnson’s heuristic may require a tie-breaking
rule: When comparing processing times with the same mean, the one with
the lower variance is considered smaller. Yet another heuristic procedure, which
we refer to as the adjacent pairwise interchange (API) heuristic, starts with any
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sequence, such as the deterministic counterpart sequence, and tries to improve
on it with an API neighborhood search. We call a pair of adjacent jobs stable if
they satisfy Theorem 11.1. We call a sequence stable if every pair of adjacent
jobs is stable. The API heuristic checks all adjacent job pairs in the initial
sequence starting with the first two jobs, and if an unstable pair is found, the
two jobs are interchanged. After each such interchange, the job that was moved
downstream is stable with respect to its upstream neighbor, but the one that
moved upstream may have to be interchanged repeatedly until it reaches a sta-
ble position, possibly as the first job. Then, the heuristic repeats its check of all
pairs and stops when all adjacent pairs are stable.
Computational experiments with lognormal distributions for processing

times indicate that none of these three heuristic methods dominate the others:

• Johnson’s heuristic is best when little or no overlap exists among the job pro-
cessing time distributions. When overlap exists, Johnson’s heuristic deterio-
rates compared with the other heuristics.

• Talwar’s heuristic performs relatively well when the processing time distribu-
tions exhibit substantial amounts of variation.

• The API heuristic seems to have robust performance in many situations. It
performs nearly as well as Johnson’s heuristic when little or no overlap exists,
but it does not deteriorate as much when overlap is present.

The API heuristic requires O(n2) tests and always results in a stable sequence.
The procedure is not guaranteed to find an optimal sequence. In fact, more than
one stable sequence can exist. The heuristic is guaranteed only to converge to
some stable sequence, but that does not mean it will locate the best one or that
the optimal sequence is stable. However, if any transitive sorting rule is optimal,
then the API heuristic will converge to it. For example, when all distributions are
exponential, the API heuristic yields the optimal (Talwar) sequence.
Although the API heuristic cannot verify whether a sequence is optimal, we

can theoretically determine whether the stable sequence it yields is unique by
simply checking all pairwise relationships. If the stable sequence is not unique,
even for a single instance, then no transitive optimality condition exists for that
family of distributions in general. However, as we pointed out earlier, the for-
mulas in the pairwise evaluation might be intractable for many types of prob-
ability distributions. Therefore, we can approximate the desired evaluation
either by using sample-based analysis or by assuming a particular family of dis-
tributions for all processing times. For the latter approach, if we were to assume
an exponential distribution for each processing time, we would generate the
sequence of Talwar’s heuristic. Amore flexible approach is to evaluate Theorem
11.1 by assuming the normal distribution applies. The normal distribution has
two parameters, unlike the exponential, so we can try to match its mean and
standard deviation with those of the distributions in the problem data. In other
words, we use the normal distribution as an approximation to the actual
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processing time distribution. The formulas for the normal case are tractable, as
we show next.
In general, for any random variables X and Y,

min X ,Y =X−max X−Y , 0

and therefore,

E min X ,Y =E X −E max X −Y , 0

Define W = X − Y so that

E min X ,Y =E X −E W +

Suppose that X and Y are independent normal random variables. Then, W is
normal with mean μw = μx − μy and variance σ2w = σ

2
x + σ

2
y . In addition – as shown

in Appendix B – E[W+] = σw[ϕ(z) + zФ(z)], where ϕ and Ф denote the density
function and cdf of the standard normal and z = μw/σw. The expected minimum
is then given by

E min X ,Y = μx−σw ϕ z + zΦ z 11 4

∎ Example 11.3 Consider the following five-job, two-machine flow shop
problem in which the jobs have normally distributed processing times on the
two machines, A and B.

Job j 1 2 3 4 5

Mean A 9.94 10.14 10.15 10.30 10.45

Standard deviation A 0.32 0.02 0.73 0.91 0.27

Mean B 10.16 10.16 10.26 10.45 10.46

Standard deviation B 0.74 0.11 0.76 0.20 0.05

The application of Johnson’s rule to the deterministic counterpart leads to the
sequence 1-2-3-4-5. Using Eq. (11.4), Table 11.1 records the differences

Table 11.1

Job index 2 3 4 5

1 0.033 0.006 0.166 −0.037

2 0.032 0.275 0.005

3 0.168 −0.037

4 −0.305
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between E[min{Ai, Bj}] and E[min{Aj, Bi}] for these jobs, with job i correspond-
ing to a row and j to a column. For instance, the calculations for E[min{A1, B2}]
yield μw = μx − μy = 9.94 − 10.16 = −0.22, σ2w = 0.322 + 0.112 = 0.33842, so z =
−0.22/0.3384 = −0.6502, leading to E[min{A1, B2}] = 9.94 − 0.3384(0.3229 −
0.6502 × 0.2578) = 9.8874. Similarly, E[min{A2, B1}] = 9.8546. The first entry
in the table (recorded to three decimal places) is the difference 9.8874 −
9.8546 = 0.033.
When the entry in row i and column j is negative, then placing job i directly

ahead of j is stable. Here, no pair in the Johnson sequence is stable except the
last. In the API heuristic, we work from left to right, so the first interchange
occurs between jobs 1 and 2. As a result, jobs 1 and 3 become adjacent and
unstable, so we interchange job 3 with job 1, obtaining 2-3-1-4-5. With the first
pair now unstable, we interchange jobs 2 and 3, obtaining 3-2-1-4-5. Job 4 then
migrates to the first position in a similar manner, giving us a stable API
sequence, 4-3-2-1-5. However, it is not the only stable sequence. For example,
the sequence 4-3-5-2-1 is also stable. Thus, no transitive optimality condition
can hold for the normal distribution.
Although more than one stable solution exists in Example 11.3, the API heu-

ristic yields a sequence that is slightly superior to the deterministic counterpart
sequence in terms of the mean but with a higher standard deviation. Using Ana-
lytic Solver Platform with a sample size of 10 000, we estimated the mean for the
API sequence at 62.07 and themean for thedeterministic counterpart sequence at
62.11, with standard deviations of 1.24 and 0.96, respectively. However, in some
instances, the deterministic counterpart sequence could yield a lower expected
makespan than theAPI sequence.Thus, evenwhen the deterministic counterpart
sequence is not stable, the API heuristic is not guaranteed to improve on it.
The existence of more than one stable sequence proves that there can be no

transitive sorting rule for normal processing times. Suppose, however, that all
processing times are distributed normally with equal means μ but different var-
iances, V(Aj), V(Bj), and so on. Then, by Eq. (11.4),

E min A1,B2 = μ−ϕ 0 V A1 +V B2
1 2

and similarly,

E min A2,B1 = μ−ϕ 0 V A2 +V B1
1 2

Therefore, E[min{A1, B2}] ≤ E[min{A2, B1}] if and only if V(A1) + V(B2) ≥V
(A2) + V(B1)], or equivalently,

V A1 −V B1 ≥V A2 −V B2

In this special case, then, the API Heuristic does lead to a transitive sorting
rule. This rule tends to place operations with high variance at the beginning
or end of the schedule, whereas for operations performed in parallel, it favors
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low variances. Such placement aims to reduce the Jensen gap, which tends to be
large when two high variance activities are performed in parallel. The following
example elaborates on this point.

∎ Example 11.4 Consider a two-job, two-machine flow shop problem with
independent processing times. Let A1 = B2 = 1 − ε (where 0 ≤ ε ≤ 1), with cer-
tainty, and let A2 and B1 be independent exponential random variables with
mean 1.

Initially, assume ε = 0, creating a tie when we solve the deterministic counter-
part. For both sequences, themakespan in the deterministic counterpart is exactly
3. If we make ε slightly positive, however, the sequence 1-2 becomes the unique
solution to the deterministic counterpart, with a makespan of 3 − 2ε. The make-
span of sequence 2-1 is longer, at 3 − ε, and this is also the expected value of the
makespan in the stochastic counterpart. If we use the sequence 1-2 in the stochas-
tic counterpart, the two exponentials are processed in parallel. The expected value
of the larger of the two is 1.5. Therefore, the expected value of the makespan
under the sequence 1-2 is 3.5 − 2ε. In other words, the optimal sequence for
the deterministic counterpart is suboptimal in the stochastic problem.
In addition, the variance of the makespan for sequence 2-1 is 2, whereas the

variance of the makespan for sequence 1-2 is 1.25. The example thus also shows
that when the makespan is the objective for the stochastic problem, the
sequence that minimizes the mean may not minimize the variance.
The deterministic counterpart is a good starting sequence for the API Heu-

ristic because Johnson’s rule is asymptotically optimal for any independent pro-
cessing time distributions. For this result to hold, we require all jobs to satisfy
two regularity conditions:

R1 1 u Σj= 1,…,u E Aj +E Bj ≥ 2δ where δ > 0; u= 1,2,…

R2 1 u j= 1,…,u V Aj +V Bj ≤ γ2 where γ is finite; u= 1,2,…

If, for example, processing times tend to decrease according to a geometric
progression, then asymptotic optimality is not guaranteed. Condition R1 rules
that out. Similarly, condition R2 requires that the average variance in the sys-
tem, defined by (1/n) Σj=1,…,n(V(Aj) + V(Bj)), should not be an unbounded
increasing function of n. The conditions aremet, for instance, if jobs are selected
at random from some pool of potential jobs, all with finite variances.

∎ Theorem 11.3 Consider a stochastic, two-machine flow shop with inde-
pendent processing time distributions subject to regularity conditions R1 and
R2. Let sJ denote the deterministic counterpart sequence (from Johnson’s rule),
s∗ the optimal sequence, andM(s) the makespan associated with the sequence s.
Then, as n ∞, E[M(sJ) −M(s∗)]/E[M(s∗)] 0 with probability 1.
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The formal proof is beyond our scope. Essentially, it shows that the Jensen gap
is bounded from below by 0 and from above by a function that is proportional to
the square root of the total variance in the system, Σi=1,…,n(V(Ai) + V(Bi)).
Because the Jensen gap is nonnegative, E[M(s∗)] cannot be lower than themake-
span of the deterministic counterpart, which in turn cannot be lower than the
deterministic counterpart makespan of sJ. Moreover, because the total variance
grows in proportion to the number of jobs and the average variance of each, the
square root becomes relatively negligible for large n.
As a consequence of Theorem 11.3, the advantage of Talwar’s rule over the

deterministic counterpart solution becomes negligible for large n, even in the
case of exponential processing times. It is therefore plausible that this advantage
tends to decrease with n.

11.3 Safe Scheduling Models with Stochastic
Independence

In the safe scheduling problem with due dates as decisions, we start by consid-
ering two basic problems that also apply in the case of the flow shop model:
(i) minimizing d subject to a service-level constraint and (ii) minimizing
d + γE[T]. The same sequence is not guaranteed to solve both versions even
for the same optimal service level.
The analysis of makespan behavior in the stochastic flow shop is mathemat-

ically challenging. One of the few cases in which algebraic derivations are pos-
sible is the two-job, two-machine case with simplified processing time
distributions.

∎ Example 11.5 Consider a two-job, two-machine flow shop problem with
the following processing time specifications.

Machine Job 1 Job 2

1 1 U

2 U 1

The processing times denoted 1 are deterministic. The processing times
denoted U follow a uniform distribution with a range of (0, 3).

In Example 11.5, we might first compare the deterministic counterparts for
the two sequences. Sequence 1-2 leads to a makespan of 3.5, whereas sequence
2-1 leads to a makespan of 4. Thus, in the deterministic counterpart, the
sequence has an effect on the makespan.
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The stochastic analysis of the makespan requires expressions for the sum of
two random variables and for the maximum of two random variables. We omit
the details but show the results graphically in Figure 11.1. We can show alge-
braically that both sequences have an expected makespan of 4, and their cdfs
intersect at 13/3, corresponding to a service level of SL = 0.605.
First, consider the problem of minimizing d subject to the service-level target

SL = 0.6. The sequence 2-1 attains SL = 0.6 for d = 4.317, just to the left of the
intersection depicted in Figure 11.1. At that value, the cdf for sequence 2-1 lies
above the cdf for sequence 1-2. Therefore, the sequence 1-2 attains SL = 0.6 for a
slightly larger value of d. Because the objective is to minimize the due date,
sequence 2-1 provides the better solution.
Now consider the problem of minimizing d + γE[T] with γ = 2.5, which

requires an optimal service level of SL = 0.6. Recalling that E[T] can be depicted
as an area above the cdf to the right of the due date (see Figure 6.2), it can be
shown that d + γE[T] is minimized by the sequence 1-2 with d = 4.324. This rel-
atively simple example demonstrates that even with a common service-level tar-
get, the two safe scheduling formulations do not necessarily lead to the same
optimal sequence.
Examples of this type rely on the property that the cdfs of the two makespan

distributions intersect each other shortly after the due dates that achieve the
prescribed service levels. For any SL ≥ 0.605, the sequence 1-2 is optimal for
both objectives. If a stochastically minimal sequence exists (as in the case of
two machines and exponential processing times), then its cdf does not intersect

1.0

0.8

0.6

S
er

vi
ce

 le
ve

l

0.4

0.2

0.0
1 2 3 4

Makespan

5 6 7

Sequence 1–2
Sequence 2–1

Figure 11.1 Comparison of the cdfs for two sequences in Example 11.5.
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the cdf of any other sequence. A stochastically minimal sequence would be opti-
mal for both objectives.
For the objective of minimizing d + γE[T], our general analysis parallels that of

previous chapters, as summarized in the steps below.

1) The optimal due date is given by the critical fractile formula

SL = Pr M ≤ d∗ =
γ – 1
γ

2) Assuming – as an approximation – that the makespan M follows a normal
distribution with mean μ and standard deviation σ, we can also write

d∗ = μ+ z∗σ

so that z∗ represents the optimal standard normal variate corresponding
to d∗.

3) The optimal value of the objective function can then be calculated as
H(d∗), where

H d∗ = d∗ + γE T = μ+ γϕ z∗ σ

We simulated sequences for a seven-job, five-machine flow shop with inde-
pendent normally distributed processing times with a sample-based analysis
using 1000 realizations. For a particular sequence, the estimated mean make-
span was 126.12, and the estimated standard deviation was 5.35. A chi-square
goodness-of-fit test did not reject the hypothesis that the makespan distribution
was normal. For γ = 10, corresponding to a service level of 90%, we would there-
fore set z∗ = 1.282 and obtain H(d∗) = 135.50.
The formula for H(d∗) also highlights the marginal economic trade-off

between mean and standard deviation. Specifically, we should be willing to
increase μ by up to γϕ(z∗) units for every unit decrease in σ or 1.75 in our
instance. This is formally true only when the optimal service level is used,
but otherwise it is even more important to decrease σ.
Two extensions of Theorem 11.3 apply to safe scheduling. Specifically, John-

son’s rule is asymptotically optimal for any independent processing time distri-
butions, not only for the stochastic counterpart model in Theorem 11.3 but also
for safe scheduling. We consider a stochastic n-job, two-machine flow shop
model with independent processing time distributions subject to regularity con-
ditions R1 and R2 given earlier. Again, we use sJ to denote the deterministic
counterpart sequence (given by Johnson’s rule) and s∗ to denote the (unknown)
optimal sequence.

∎ Theorem 11.4 Consider the objective of minimizing d subject to a service-
level constraint SL ≥ b. Let d∗(s) denote the optimal value associated with the
sequence s. Then, as n ∞, [d∗(sJ) − d∗(s∗)]/d∗(s∗) 0 with probability 1.
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∎ Theorem 11.5 Consider the objective of minimizing Z(s) = d + γE[T]. Let
Z∗(s) denote the optimal value of the objective function associated with the
sequence s. Then, as n ∞, [Z∗(sJ) − Z∗(s∗)]/Z∗(s∗) 0 with probability 1.

These last two theorems portray the state of the art in safe scheduling for the
flow shop model. Thus far, the only safe scheduling results apply to the make-
span problem. However, the state of the art resembles the traditional analysis of
flow shop models, where little progress has been made beyond analyzing the
makespan, except for special cases.

11.4 Flow Shops with Linear Association

We next remove the stochastic independence assumption and replace it by lin-
ear association, building on the results of Appendix A.4. As usual, we focus on
the makespan objective. Theorems A.4, A.5, and A.6 assume a job shop envi-
ronment, but a flow shop is a special case, so those theorems apply. Propositions
A.1 and A.2 are also valid, suggesting that with safe scheduling models, we can-
not rely on the initial solution to remain correct after the adjustment. Instead, it
is necessary to calculate due dates and compare sequences after the adjustment.
With this background, we address some flow shop models specifically.
The two-machine, two-job model is solved by comparing twominima, and we

prefer to run job 1 first if E[min{A1, B2}] ≤ E[min{A2, B1}]. By Theorem A.3 and
Corollary A.1, our preference to schedule job 1 first does not change after
adjustment. That is, we can sequence by the initial processing times, and the
result is optimal for the linearly associated times. By serially implementing The-
orem A.2 (according to which the sum of adjusted random variables is equal to
the adjusted sum of their initial values) and TheoremA.3, we can see that the cdf
of the makespan of a flow shop subject to linear association is given by the initial
cdf of the same shop adjusted afterward. By applying Theorem A.1, we obtain
the following result.

∎ Theorem 11.6 For a shop with linearly associated processing times with a
common factor Q, let s1 and s2 be two sequences, let M(sj) be the adjusted
makespan of sequence sj, and let M (sj) be the initial makespan of the same
shop. If M (s1) ≥ex M (s2), then M(s1) ≥ex M(s2), and if M (s1) ≥st M (s2), then
M(s1) ≥st M(s2).

Thus, for the stochastic counterpart m-machine flow shop, the optimal
sequence subject to an independent processing time assumption remains opti-
mal if we introduce a common factor and obtain linearly associated processing
times. Furthermore, if a stochastically dominant sequence exists, it remains sto-
chastically dominant. As an example, suppose that we have independent
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exponentially distributed raw processing times subject to a common factor ele-
ment that need not be exponential. Then Talwar’s rule can be applied to the raw
processing times, and the result remains stochastically minimal after introdu-
cing the factor even though the adjusted distributions are not exponential.
By Theorem A.3, the optimal initial solution of the no-wait two-machine

model remains optimal under linear association. In fact, practically all the
results we presented for deterministic counterpart models remain valid for
the linearly associated case. To cover safe scheduling flow shop models, we
make use of Theorems A.5 and A.6 that provide the variance and coefficient
of variation of adjusted variables. Theorem A.6 indicates that the squared coef-
ficient of variation (scv) of the product exceeds the sum of the scv’s of the com-
ponents, and therefore the coefficient of variation of the product exceeds that of
either component. In our context, themore important aspect of this observation
is that the coefficient of variation of the makespan cannot be less than that ofQ.
Recall Example A.1 and Propositions A.1 and A.2: They could be recast for this
chapter without any substantial change. In particular, empirical results and the
lognormal central limit theorem (Appendix A) suggest that approximating the
makespan by a lognormal approximation of a normal random variable would be
appropriate.

11.5 Empirical Observations

Finding the minimum expected makespan for the stochastic flow shop is a chal-
lenging problem, and our main practical tools are likely to be heuristic proce-
dures. For the two-machine case, we have only heuristic methods available
unless we know that the processing time distributions are exponential. (Even
in that special case, we can calculate the optimal sequence, but finding the dis-
tribution of the makespan, or even its mean, remains a formidable computa-
tional task.) For more than two machines, we might try to adapt heuristic
procedures that perform well in the deterministic counterpart, but it would also
be desirable to develop some general insights into this complicated problem.
In Example 11.3, we found that the API heuristic generated a better sequence

for the stochastic problem than Johnson’s rule as applied to the deterministic
counterpart. Thus, compared with Johnson’s sequence, the optimal stochastic
sequence can have a higher makespan in the deterministic counterpart but a
lower mean in the stochastic counterpart. This relationship implies that the Jen-
sen gap must be smaller for the optimal sequence than for the sequence
obtained from the deterministic counterpart. Similar observations could be
made in Examples 11.1 and 11.2. In the former, the optimal makespan of
19.33 is associated with a deterministic counterpart makespan of 18 – a Jensen
gap of 1.33, whereas the deterministic makespan of 17 leads to 19.50 – a Jensen
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gap of 2.50. Based on such examples, we might guess that the best sequence is
one with a small Jensen gap. Similarly, wemight guess that the best sequence for
safe scheduling is also one with a small Jensen gap.
We call a schedule dense if its deterministic counterpart makespan is small –

that is, if it exhibits relatively little idle time. Otherwise, the schedule is called
loose. In a deterministic context, we would say that dense is “good,” and loose is
“bad.” We might hypothesize that dense and loose schedules should perform
roughly equally when stochastic processing times are involved. The intuitive
reasoning would be that loose schedules provide protection with the very idle-
ness built into them, so they should exhibit lower variance.
To elaborate on this argument, dense schedules are vulnerable to the Jensen

gap because they are finely tuned and have little margin for stochastic variation.
Stochastic processing times should therefore inflate the mean makespan of the
deterministic counterpart. On the other hand, loose schedules contain more
idle time and should be better able to absorb stochastic variations. The idle time
should provide protection from a similar kind of inflation. Given the limits of
our current theoretical knowledge, however, such hypotheses can only be tested
empirically. To that end, we turn to empirical results obtained by simulation.
We explored the properties of dense and loose schedules in a seven-job, five-

machine flow shop example. Using a sample-based approach with 1000 realiza-
tions, we compared all 5040 permutation schedules.We then tested each sched-
ule to estimate themean and the standard deviation of its makespan. The results
allowed us to develop some quantitative perspective on the nature of the Jensen
gap and the relationship between means and standard deviations. (The approx-
imately normal makespan distribution that we discussed earlier belongs to one
of those 5040 sequences.)
Figure 11.2 shows the Jensen gap as a function of the deterministic counter-

part makespan for each permutation (called the nominal makespan). As
expected, the Jensen gap is decreasing in the nominal makespan. Although
the Jensen gap indicates the extent of the bias that occurs when the determin-
istic counterpart is used as a predictor of the stochastic outcome, it does not
follow that schedules with large Jensen gaps are necessarily poor. In fact, the
experiment showed just the opposite. Figure 11.3 plots the mean makespan

8

6

4

2

0
105 110 115 120

Jensen gap

125 130 135

Figure 11.2 The Jensen gap as a function of the nominal makespan.
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of each sequence as a function of the nominal makespan, showing that dense
schedules produce the smaller expected makespans. (The data points in this fig-
ure can be obtained from Figure 11.2 by adding the nominal makespan to the
Jensen gap.) The mean makespan is increasing in the nominal makespan. Thus,
our intuitive hypothesis is not supported. The implication is that solving the
deterministic counterpart produces a good sequence for the stochastic problem.
At the same time, however, predicting the value of the expected makespan
requires that we adjust for the Jensen gap. Given the state of the art, simulation
is still the best way to estimate the bias.
As discussed earlier, we might expect that looser schedules would exhibit lar-

ger means and smaller variances than dense schedules. In Figure 11.4, we show
the relationship between mean and standard deviation of the makespan for the
5040 sequences. Contrary to our intuition, the smaller makespan values tend to
be associated with smaller standard deviations.
In these experiments, the best schedules exhibited the largest Jensen gaps. In

an empirical sense, the observation that large Jensen gaps were associated with
low variance suggests that Jensen gaps somehow decrease variance. Neverthe-
less, when it comes to predicting schedule length, dense schedules may lead to
prediction errors unless we allow for the Jensen gap. A dense schedule with a
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Figure 11.3 The mean makespan as a function of the nominal makespan.
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Figure 11.4 The standard deviation as a function of the expected makespan.
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Jensen gap correction (as well as a buffer for safety time) should therefore per-
form very well in practice because it tends to have low variance and low mean.
However, if we do not take the Jensen gap into account, we may be better off
with a loose schedule and a makespan that is more likely to be achieved.
Figure 11.5 depicts a ranking of options for predicting schedule length. At the

top, the most desirable option is to use a dense schedule but correct for the Jen-
sen gap and add a buffer for safety time. We denote this combination by D + J +
B (for dense + Jensen + buffer). Next come either dense schedules with a Jensen
correction but no safety time (D + J) or loose schedules with a Jensen correction
and a safety time buffer (L + J + B). We cannot order these options because both
are suboptimal in different ways, so they are depicted in parallel. These two
options dominate loose schedules with a Jensen correction but no safety time
(L + J), which in turn dominates loose schedules without any correction or
buffer (L). At the very bottom comes the raw dense schedule (D), because its
inaccurate prediction is likely to lead to disappointment.
In spite of these results, it would be a mistake to conclude that high Jensen

gaps are always associated with low variance. For instance, in Examples 11.1
and 11.2, we saw that Talwar’s rule produced makespans with low Jensen gaps
and low variances when compared with Johnson’s rule. Along similar lines, an
exploratory simulation study identified a case where sequences tended to yield
very similar Jensen gaps but quite different variances. The particular simulation
tested the hypothesis that the API heuristic yields superior results for the case of
normal distributions with equal means, for which the pairwise-improvement
condition is transitive. An experiment was devised to study different allocations
of variance to jobs with equal means, subject to the same total variance in the
system. When Johnson’s rule compares two operations with the same mean, a

D + J

D + J + B

L + J

L

Legend:

D = Dense schedule
L = Loose schedule
J = Jensen correction
B = Buffer

D

L + J + B

Figure 11.5 Some dominance
relationships among schedules.
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tie occurs. We break such ties in favor of the smaller variance. With this tie-
breaker in place, it is possible to allocate the variances so that the API heuristic
reverses the Johnson sequence. Figures 11.6 and 11.7 portray the results of such
a simulation, in which mean operation times are 10 and the total variance of
each job is 2. The variance is allocated to operations starting with 0 on machine
A and 2 onmachine B for job 1, finishing with 2 onmachine A and 0 onmachine
B for job n. Across the set of n jobs, the variance is monotone increasing on the
first machine andmonotone decreasing on the second. Using the tiebreaker, the
Johnson sequence is 1 – 2 − − n, and the API sequence is the reverse (n, n − 1,
…, 1). The results fail to confirm the hypothesis that API is the superior
sequence in this case: No discernible difference in the mean is observed (essen-
tially the same Jensen gap occurs in both cases), as depicted in Figure 11.6,
where the horizontal axis denotes the nominal makespan and the two graphs
practically overlap. However, the API heuristic yielded a significantly higher
standard deviation, as depicted in Figure 11.7.
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Figure 11.6 The Jensen gap of the two sequences as a function of the number of jobs.
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Figure 11.7 The standard deviation of the two makespans.
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Whereas the disappointing results for the API heuristic in the transitive normal
case are somewhat surprising, they support another hypothesis called the vari-
ance effect. It states that if we ignore the mean job processing times and schedule
by variances – as if the variance were the processing time – then Johnson’s rule
tends to yield sequences with low variance. The converse was also observed
empirically: Scheduling by −σ2j tends to yield sequences with high variance.

Now consider the case where the mean and the variance are agreeable. We
expect that Johnson’s sequence might often be optimal in such a case because
our empirical evidence suggests that the two criteria (reducing themean and the
standard deviation) would be satisfied at the same time. When all means are
equal, then means and variances are agreeable, but in Figures 11.6 and 11.7,
we saw that API reverses the Johnson sequence. Thus, we might expect the
API heuristic to be inferior when agreeability holds because it may lead the
API heuristic away from the Johnson sequence. Indeed, the empirical results
for the Johnson sequence in such cases were good, but not perfect. Consider
the case of exponential processing times, where Talwar’s sequence is optimal
but not identical to Johnson’s sequence. This is a case where means and var-
iances are agreeable. Furthermore, the API heuristic, when based on the true
distributional values in Theorem 11.1 rather than a normal approximation, con-
verges to Talwar’s sequence in this case. Thus, there must be instances where
the API heuristic is superior to Johnson’s rule.

11.6 Summary

Although the two-job, two-machine stochastic flow shop model is easy to solve,
this result does not lead to significant inroads even for the two-machine case with
n jobs. One heuristic based on the two-job result combined with API is useful
sometimes, but it also has a tendency to produce unnecessarily high variance.
Thus, with one notable exception – Talwar’s rule – all stochastic flow shopmod-
els are difficult to solve even for medium-sized instances and even form = 2. Even
Talwar’s rule – on top of the fact that it requires the strong assumption that pro-
cessing times are exponential– is not sufficient for safe scheduling purposes. If we
wish to determine optimal safety time, then as a practical matter, we must use
simulation to estimate the cdf of the makespan. (For this case, calculating the
makespan distribution analytically requires exponential complexity.) This situa-
tion suggests that we should use heuristics and rely on sample-based analysis.
For twomachines, we saw that using the deterministic counterpart (Johnson’s

rule) is asymptotically optimal. Furthermore, the deterministic counterpart is
also asymptotically optimal for safe scheduling. Empirical experience suggests
that this result extends to m machines, but formal proofs have not yet been
developed.
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When processing times are exponential, Talwar’s rule yields sequences with
low mean and low variance. Nonetheless, empirical results suggest that pursu-
ing a low Jensen gap by using schedules that aren’t dense can actually lead to
makespan distributions with a higher mean and a higher variance than those
of the deterministic counterpart sequence. This is surprising, especially when
we consider that Johnson’s rule tends to yield a large Jensen gap. Nevertheless,
this observation reinforces the usefulness of Johnson’s heuristic. But there is an
important caveat: Because the Jensen gap tends to be large for the deterministic
counterpart, it is imperative to recognize it for scheduling purposes and allow
enough time for it. Otherwise, the schedule is practically guaranteed to be mis-
leading, and practitioners would be justified if they were to conclude that the
best deterministic counterpart sequence is not desirable in practice. Thus, using
the deterministic counterpart may not be successful unless safe scheduling prin-
ciples are pursued to account for the true mean, including the Jensen gap.
We also saw that when linear association is involved, the Jensen gap is not

necessarily the most important issue for effective safe scheduling. The dominat-
ing issue may well be that the standard deviation of the makespan is likely to
grow almost linearly with the mean, so we must not use safety times that tend
to zero for large n. Again, the problem is easy to resolve once we understand the
issue. Also, if the Jensen gap is expressed as a fraction of the makespan, it
remains constant under linear association. Furthermore, Johnson’s heuristic
can safely be applied to the initial processing times, ignoring the adjustment
for linear association, because it is sufficient to apply the adjustment to the final
results.
The conclusions we obtained for the flow shop can be considered special cases

of job shops, and thus they are also useful as a heuristic guide for more complex
shops and for project scheduling.

Exercises

11.1 The following array records the differences E[min{Ai, Bj}] − E[min{Aj,
Bi}] for a set of five jobs, with job i corresponding to a row and j to a col-
umn.When the entry in row i and column j is negative, then placing job i
directly ahead of j is stable.

Job 2 Job 3 Job 4 Job 5

Job 1 −6.00 2.91 6.09 0.71

Job 2 6.01 −2.50 1.00

Job 3 3.66 0.77

Job 4 0.99
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a) Using the API heuristic, find a stable job sequence, starting with the
sequence 1-2-3-4-5.

b) Is the sequence in (a) the only stable sequence?

11.2 Consider the following five-job, two-machine flow shop problem with
expected makespan objective. Each processing time follows a normal dis-
tribution, with the parameters for mean and standard deviation given in
the table.

Job j 1 2 3 4 5

μAj
8 12 15 10 14

μBj
12 15 14 8 10

σAj 1 2 3 1 2

σBj 2 2 3 2 1

Find a solution using Talwar’s heuristic, Johnson’s heuristic, and the API
heuristic. Initialize the API heuristic with the solution generated by John-
son’s heuristic.

11.3 Find the solution to the problem in the previous exercise using the Evo-
lutionary Solver.

11.4 Consider a two-machine, three-job example with independent normally
distributed processing times.

Job j 1 2 3

μAj
20 19 20

μBj
20 19 20

σAj 5 1 5

σBj 5 2 5

a) Find the Johnson sequence (with ties broken by the smaller variance).
b) Find a stable sequence. Is it the only stable sequence?
c) Using simulation, compare the two sequences found above with the

sequence 1-2-3, and determine which is optimal for the stochastic
counterpart. Based on the results, is it true that an optimal sequence
must be stable?
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11.5 Consider the following five-job, two-machine flow shop problem. Each
processing time follows a normal distribution, with the parameters for
mean and standard deviation given in the table.

Job j 1 2 3 4 5

μAj
8 12 15 10 14

μBj
12 15 14 8 10

σAj 1 2 3 1 2

σBj 2 2 3 2 1

a) Estimate the mean and the standard deviation of the makespan for the
job sequence 1-2-3-4-5, by simulation. Using these estimates, compute
the due date for which the sequence provides a service level of 75%.

b) Using the simulation results from part (a), compute the optimal due
date for minimizing the function H(d) = d + γE[T], with γ = 5.

c) Find the job sequence that minimizes the value of H(d) = d + γE[T],
with γ = 5.

11.6 Show that the complexity of the API heuristic is O(n2). Does your proof
extend to the complexity of finding all stable sequences?

11.7 Prove that if a transitive rule can generate an optimal sequence for the
stochastic counterpart two-machine flow shop problem, then API is
guaranteed to converge to that optimal solution. Does your proof suffice
to show that if there is only one stable sequence, then the sequence is
optimal?
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12

Lot Streaming Procedures for the Flow Shop

12.1 Introduction

Lot streaming is the process of splitting a job into sublots so that its operations
can be overlapped.We can think of lot streaming as a special type of lot splitting.
The term lot splitting refers to breaking a given lot size into smaller sublots dur-
ing production. The lot size itself is a predetermined quantity, typically set by
the customer or by planning processes that precede scheduling. The opportu-
nity to split lots arises in the short term – in the implementation of a detailed
schedule – and two cases are worth distinguishing. The more common case
involves interrupting a job, performing other kinds of work, and later returning
to finish the interrupted job.We refer to this phenomenon as preemption, which
is motivated by a desire to implement appropriate priorities in a situation where
two or more jobs compete for limited resources.
The second case involves overlapping operations for a given job. Before an

entire job is complete on a particular machine, some portion of the job is moved
ahead to a downstream operation.We refer to this case as lot streaming, which is
motivated by a desire to move a job through several work stations as quickly as
possible. Lot streaming is distinct from preemption because it deals with a
particular job: Rather than give priority to another job, the objective is to
expedite the current job. Expediting by preemption can cause cascading insta-
bility, so it is often considered bad practice. By contrast, expediting a job by lot
streaming tends to smooth the flow of materials. For this reason, even in envir-
onments that discourage preemption, expediting by lot streaming may be
advantageous.
The concept of lot streaming appears in various places in the literature on

production. For example, one motivation for group technology is the potential
benefit for lead time and work-in-process inventory levels when operations are
overlapped in a manufacturing cell. In addition, the concepts of synchronous
manufacturing include the distinction between process batch and transfer
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batch. The process batch is essentially the predetermined lot size, whereas the
transfer batch is the size of a sublot moved from one operation to the next, per-
mitting operations to overlap and throughput to be increased. In highly repet-
itive JIT production, the aim is to reduce setups enough to make the process
batch very small. In those circumstances, we need not distinguish between
the process batch and the transfer batch. However, when setup times remain
large, the use of a small transfer batch is attractive.
The basic lot streaming model is a one-job flow shop model in which the lot

size is known. To accelerate the job as much as possible, we look for a minimum
makespan. Even when the overall criterion is something other than the make-
span, minimizing the makespan of individual jobs improves performance. One
example concerns utilization: As we saw in Chapter 10, reducing the makespan
reduces total idleness of the machines, so this objective is associated with
increased throughput. As another example, if we were solving an instance of
the T-problem for n jobs in a flow shop (which is quite a difficult problem),
a reasonable strategy would be to build a good schedule without lot streaming
and then apply lot streaming procedures locally for each job to reduce job com-
pletion times (and hence total tardiness) even further. Contemporary research
addresses more complex environments such as job shops, parallel machines,
and assembly systems, as well as other objectives. Models may involve explicit
consideration of several jobs, which gives rise to a sequencing problem as well as
a lot streaming problem. In this chapter, however, we focus on the basic model.
In addition to serving as a building block for more complex models, it has domi-
nated research for a long time. Studying the basic model serves as a good intro-
duction to more general lot streaming models.

∎ Example 12.1 Consider a lot streaming problem consisting of 100 units to
be processed sequentially by five machines with unit processing times of 5, 9, 4,
7, and 6.

Without lot streaming, the job is in process for a time of 3100. When we
invoke lot streaming and split the job into two equal sublots, this time drops
to 2000, as shown in Figure 12.1.

12.2 The Basic Two-machine Model

12.2.1 Preliminaries

The production model is a flow shop made up of m machines. A job lot, con-
sisting of U identical items, must proceed in sequence through m operations,
one at each machine. The processing time per unit at machine i is denoted
by pi. Thus, without lot streaming, the makespan for the lot becomes
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M =U
m

i=1

pi

If the lot can be split, then lot streaming may allowM to be reduced. To describe
a schedule containing sublots, we let Lij represent the size of the jth sublot on
machine i. (It may be useful to think about Lij as the number of items contained
in the jth transfer lot emanating frommachine i.) As a convenient alternative, it
is sometimes helpful to use decision variables xij, denoting the relative size of the
jth sublot on machine i. That is,

xij =
Lij
U

where, for each machine i,

j

Lij =U

or equivalently,

j

xij = 1

As in the flow shop model, we can work with the reversed problem, in which
the machines and sublots are reversed in sequence. More formally, the proces-
sing time on the ith machine in the reversed problem is pm−i+1. The optimal
solution can always be obtained by solving the reversed problem and reversing
the schedule.

50 50

50 50

50 50

50 50

50 50

2000

Figure 12.1 A solution to Example 12.1 with two equal sublots.
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We are ultimately interested in solving a form of the problem in which the
variables Lij are integers, corresponding to the discrete number of units in each
sublot. Typically, this discrete version of the problem can be formulated as an
integer linear program. Anticipating that this may be a difficult problem to
solve, however, we may at least gain some insight from solving a continuous ver-
sion of the problem, in which we relax the integer restrictions. We might actu-
ally be able to implement the continuous solution directly if it happens to be
integer, or if we are willing to round off fractions in the continuous solution.
(Such rounding may be acceptable if U is large and the number of sublots is
small.) In addition, the optimal makespan in the continuous version serves as
a lower bound on the optimal makespan in the discrete version, and the make-
span produced by rounding the continuous solution serves as an upper bound.
In some models, it is even possible to find the optimal integer solution by a pol-
ynomial search in the neighborhood of the optimal continuous solution.
In the discrete version, we can minimize the makespan by assigning just one

item to each sublot – that is, by setting Lij = 1. Nevertheless, practical consid-
erations may make it undesirable to have a large number of unit-sized sublots.
For example, material handling equipment may be limited, or difficulties may
arise in tracking a large number of small sublots. Therefore, we formulate
the basic lot streaming problem with a constraint on the number of sublots.
In general, the transfer lots betweenmachines i and (i + 1) may differ from the

transfer lots between machines (i + 1) and (i + 2). Thus, the general form of the
model allows for variable sublots. However, there may be technological con-
straints that affect the formation and movement of sublots; and in some appli-
cations, we may want to preserve the integrity of sublots throughout the
schedule. If the sublot size is the same at each machine (Lij = Lj), we call the sub-
lots consistent. Any set of consistent sublots satisfies the conditions of an
ordered flow shop (see Chapter 10), if we think of the sublots as jobs. Thus,
if a set of consistent sublots is determined, we should want to sequence them
in a pyramid sequence (an SPT/LPT sequence).
In some applications, a requirement may be imposed that each machine, once

started, must process the entire lot continuously, with no idling. Such a restric-
tion, when imposed on the first machine, does not affect the optimal makespan,
and by symmetry, the same is true for the last machine. Thus, in the two-
machine problem, the no-idling restriction does not affect the optimal make-
span. When imposed on intermediate machines in larger problems, however,
this restriction may increase the optimal makespan.
The least restrictive model allows variable sublots and intermittent idling. By

comparison, the assumption of no idling is a special case, and the assumption of
consistent sublots is also a special case. Thus, the model with variable sublots
and intermittent idling dominates the others. From a scheduling point of view, it
is unwise to impose additional restrictions, such as consistent sublots or no
idling, unless a technological reason requires it. The only exception is the
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two-machine model, where performance is not sacrificed by assuming consist-
ent sublots or no idling.
No dominance exists between a model prescribing variable sublots with no

idling and a model prescribing consistent sublots with intermittent idling,
but either model dominates the case of consistent sublots with no idling.

12.2.2 The Continuous Version

We begin the analysis with the two-machine case, which is the simplest lot
streaming model. The concept of variable sublots does not really apply to the
two-machine problem because only one set of transfers occurs. Therefore,
we can assume the use of consistent sublots. Specifically, let s denote the num-
ber of sublots. For convenience, we can rescale the problem so that p1 = 1 and p2
= q, and we can take U = 1. Sublot k must be preceded by (k − 1) sublots on
machine 1 and followed by (s − k) sublots on machine 2. Thus, the makespan
must satisfy

M ≥
k

j= 1

xj + q
s

j= k

xj 12 1

When k = s, the inequality simplifies to M ≥ 1 + qxs > 1, and when k = 1, it sim-
plifies to M ≥ q + x1 > q. Thus, we have

M > max 1,q 12 2

In addition, the inequality in Eq. (12.1) must be satisfied as an equation for at
least one index k. Let c denote such an index. We refer to sublot c as critical,
and we have

M =
c

j=1

xj + q
s

j= c

xj 12 3

The following property characterizes the solution that minimizes makespan.

∎ Theorem 12.1 In the optimal solution for a two-machine lot streaming
problem, all sublots are critical.

Proof. Assume there is a schedule S that attains the optimal makespanM, but in
which sublot k is noncritical. We will show how to increase the size of sublot k
and reduce the sizes of all other sublots in order to improve the makespan. By
definition of a noncritical sublot, we have

M−
k

j= 1

xj−q
s

j= k

xj =Δ > 0 12 4
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Now construct schedule S (with primes denoting its sublot sizes) by setting

xk = xk 1−δ + δ and xj = xj 1−δ for all j k

where 0 < δ <Δ/(Δ + 1 + q −M). We know this fraction is no larger than one,
because any form of lot streaming yields M ≤ 1 + q. If M is the makespan for
schedule S , then

M =
c

j= 1

xj + q
s

j= c

xj 12 5

for some index c . If c = k, then substitution in Eq. (12.5) for xj yields

M = 1−δ
k

j= 1

xj + q
s

j= k

xj + δ 1 + q 12 6

From Eq. (12.4) we have k
j= 1xj + q s

j= kxj =M−Δ. Substituting this relation
into Eq. (12.6) yields

M = 1−δ M−Δ + δ 1 + q =M + δ Δ+ 1+ q−M −Δ <M 12 7

where the inequality is obtained from the definition of δ. In other words, if we
have c = k, then we can improve on the optimal makespan. On the other hand, if
c k, then substitution in Eq. (12.5) for xj allows us to write

M ≤ 1−δ
c

j=1

xj + q
s

j= c

xj + δmax 1, q 12 8

which, in view of Eq. (12.1), gives us

M ≤ 1−δ M + δmax 1,q 12 9

We know from Eq. (12.2) that M>max{1, q}. Thus, it follows that M <M, so
again, we can improve on the optimal makespan. Thus, in either case, we can
improve on the optimum, which contradicts the assumption that S is an optimal
schedule. Hence, all sublots must be critical in an optimal solution. □

From Theorem 12.1 it follows that the optimal schedule contains no idling, so
successive sublots satisfy the relation xj+1 = qxj. From this relation we obtain

xj = q
j−1x1

and because the proportions must sum to 1, we have

s

j=1

xj = x1
s

j=1

qj−1 = 1
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Therefore, the optimal set of sublot sizes is described by the proportions

xj =
qj−1

1 + q + q2+ + qs−1
=
qj−1 1−q

1−qs
12 10

Equivalently, successive sublots satisfy the relation Lj = qLj−1 = qj−1L1, or, in the
original item scale,

Lj =
Uqj−1 1−q

1−qs
12 11

Both Eqs. (12.10) and (12.11) describe a geometric pattern of sublot sizes.
The optimal makespan must be equal to the time required by the first sublot

on machine 1 plus the time required for the entire lot on machine 2. In the
rescaled model, this sum is x1 + q. In the original time scale, we obtain

M =Up1
1−qs+ 1

1−qs
12 12

All of these results assume that p1 p2, so that q 1. In the special case q = 1, we
obtain equal sublots Lj =U/s, and M =Up1(1 + s)/s.

∎ Example 12.2 Consider a two-machine lot streaming problem containing
U = 40 units. The processing times are p1 = 5 and p2 = 4, and we seek a schedule
with s = 4 sublots.

We have q = 0.8, so it follows from Eq. (12.11) that the optimal sublot sizes are
approximately Lj = (13.55, 10.84, 8.67, 6.94). From Eq. (12.12), the correspond-
ing makespan is M = 227.75. Without lot streaming the makespan would be
M = 360, so lot streaming improves the makespan by nearly 37%. The four-
sublot schedule is shown in Figure 12.2.
When the number of sublots becomes quite large, the makespan approaches

M =Umax p1,p2 12 13

13.55 10.84 8.67 6.94

6.94

227.75

8.6710.8413.55

Figure 12.2 The continuous solution for Example 12.2.
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In Example 12.2, this limit is 200. Therefore, we can compare the reduction of
37% in the makespan achieved with four sublots to a reduction of 44.4%, which
represents a bound on the reduction that any amount of lot streaming could
achieve. In other words, the use of four sublots achieves about 83% of the benefit
that could be obtained using 40 sublots.
The determination of optimal sublot sizes for the continuous version of the

model can be generalized to m machines with a no-idling constraint and a pre-
scribed number of transfers between each pair of machines. In that case, we apply
the two-machine solution of Eq. (12.11) to adjacent machine pairs and thereby
construct the optimal schedule and the optimalmakespan formmachines. In that
m-machine solution, sublots are variable rather than consistent because for each
pair of consecutive machines, we may have different q values.

12.2.3 The Discrete Version

Now we require that the sublots correspond to an integer number of items.
Looking back at Example 12.2, we can see that a naive roundoff rule will not
be satisfactory, because such a rule could lead us to round all the fractional sub-
lot sizes in the same direction.We thus need a more sophisticated procedure for
finding integer sublot sizes.
Let Sj denote the cumulative number of items in the first j sublots, that is,

Sj = L1 + L2+ + Lj

Suppose we have a trial valueM of the makespan. Define the late start time, LSj,
for the jth sublot on machine 2 as the latest time at which the jth sublot could
begin onmachine 2 and still allow for all remaining work to be done onmachine
2 by time M:

LSj =M−p2 U −Sj−1

For feasibility, we must complete the jth sublot on machine 1 no later than LSj,
so that

p1Sj ≤M−p2 U −Sj−1 12 14

or

Sj ≤
M−p2 U −Sj−1

p1
12 15

This is a recursive formula for calculating Sj in terms of Sj−1. Equivalently, it cal-
culates the values of Lj in sequence, starting with L1. To initialize the process, we
use S0 = 0, and we terminate the process if Sj should reach U.
Observing that Sj is increasing in Sj−1, we choose each Sj in turn to be as large

an integer as Eq. (12.15) will permit, but not larger than U. If Ss < U, then our
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trial value ofMmust have been infeasible, and the next trial value for the make-
span should be slightly larger. If so, in order to find the appropriate increment in
the trial makespan, let

fj = min
M−p2 U −Sj−1

p1
,U −Sj

An interpretation of fj is as follows. If we operated machine 1 continuously and
transferred the jth sublot as late as possible (just in time for it to start at machine
2), then fj would be the fraction of the next item that machine 1 would have
processed when the jth sublot arrived. In the actual schedule, we need not trans-
fer the jth sublot as late as possible.
Next, let ej = 1 − fj. Then the appropriate increment to M is given by

ΔM = p1 minj ej

The search procedure begins with the optimal makespan in Eq. (12.12) because
it is a lower bound on the discrete optimum. If the trial value proves to be infea-
sible, then we increase it by ΔM and test the new trial value. We repeat these
steps until the trial value is feasible, which signals optimality. The optimal
schedule is not always unique, and we can sometimes find an alternative opti-
mum by solving the reversed problem.
The above procedure requires at most s iterations, so it is polynomial in s. This

is a significant result, because the alternative is solving an integer program. It
can also be shown that the problem is fully polynomial, even though being pol-
ynomial in s is only sufficient to show that it is pseudopolynomial.
As an illustration, we return to Example 12.2. The continuous optimum was

227.75, but because we have integer pi in this example, we know that the optimal
makespan must be integer. Thus, we start with a trial makespan of M = 228.
Using Eq. (12.15), we obtain

S1 ≤ min 228– 4 40 5, 40 = 13 6; S1 = 13; e1 = 0 4

S2 ≤ min 228– 4 27 5, 40 = 24 0; S2 = 24; e2 = 1 0

S3 ≤ min 228– 4 16 5, 40 = 32 8; S3 = 32; e3 = 0 2

S4 ≤ min 228– 4 8 5, 40 = 39 2; S4 = 39; e4 = 0 8

We have S4 < U, so the trial makespan is infeasible. We increment by ΔM =
p1(minj{ej}) = 5e3 = 1.0 and obtain a new trial makespan of M = 229. Repeating
the procedure, we obtain

S1 ≤ min 229– 4 40 5, 40 = 13 8; S1 = 13

S2 ≤ min 229– 4 27 5, 40 = 24 2; S2 = 24

S3 ≤ min 229– 4 16 5, 40 = 33 0; S3 = 33

S4 ≤ min 229– 4 7 5, 40 = 40 0; S4 = 40
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Now, S4 =U, so the trial makespan is optimal. We have M = 229 and optimal
sublot sizes of Lj = (13, 11, 9, 7). As shown in Figure 12.3, only the third sublot
is critical, due to the integer constraints in the problem.

12.2.4 Models with Setups

In general, setups may apply to the whole batch, to each sublot, or to each item.
When setups occur for each item, setup time can be included in the item pro-
cessing time, and our models require no change. For simplicity, we treat the
other cases separately, starting with batch setups (although both could apply
in practice). If a setup is required once on each machine before the batch
can start, two possibilities exist. A setup is called attached if it cannot start until
the arrival of the first sublot; otherwise, the setup is separable and can be per-
formed in advance, before the first item arrives.
Let SUk denote the setup time on machine k. In the case of a separable setup,

consider two possibilities: (i) If SU1 ≥ SU2, then for the purpose of optimizing
the sublots, we can ignore both setups and just add SU1 to the makespan;
(ii) otherwise, we can subtract min{SU1, SU2} from both setups and add it to
the makespan without changing the fundamental problem. Therefore, without
loss of generality, we can ignore SU1 and redefine SU2 as max{0, SU2 − SU1}.
Next, let h1 = SU2/p1 denote the number of items that can be processed on
machine 1 while machine 2 is being set up. No incentive exists to send any items
to machine 2 before it is ready for them, so L1 ≥ h1. More precisely, the contin-
uous version is solved by setting L1 tomax{L1, h1}, where L1 is the value obtained
for the basic model without setups. Subsequent sublots should be geometric
(because the no-idling principle remains intact), but the final sublot may be
reduced to avoid exceeding U items in total. If h1 > L1, it may happen that
not all of the s sublots planned will actually be needed.
When the setup is attached, we can ignore SU1 because it just adds a constant

to the makespan, and we should still follow the no-idling principle. However,
SU2 should not be reduced because the setups cannot be performed in parallel.
In this case, the first sublot should be smaller than it would be without setups.

229

13 11 9 7

791113

Figure 12.3 The discrete solution for Example 12.2.
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When L1 reaches machine 2, it takes SU2 + L1p2 to finish processing it. Dur-
ing this time, machine 1 can process h1 + L1q items, and we can always adjust
L1 to a high enough value to justify sending these items to machine 2 immedi-
ately without further delay. Thus, we obtain L2 = h1 + L1q > L1q (which demon-
strates that L1 is indeed smaller than L1). Thereafter, we use geometric lots and
obtain

Lj = Lj−1q = h1q
j−2 + L1q

j−1 = h1 + L1q qj−2

To determine L1, we start by setting L1 = 1, and if we can finish all the other
items without requiring more than s sublots in total, then this is the optimal
solution. Otherwise, we should increase L1 to ensure that s sublots will suffice.
We define

Q=
1−qs−1

1−q
, if q 1

= s−1, if q = 1

Then, based on the no-idling requirement, we can show that

L1 =
U −Qh1
Q+ qs−1

We next consider the case of sublot setups. By nature, such setups are
attached. For example, we may need to stop the machine to mount the items
that need to be processed. The general solution follows similar analysis to that
of the attached setup, but the details are beyond our scope. Instead, we address
the special case of q = 1 (i.e. p1 = p2 = p), because it provides insight as to the
general trade-off involved in this model. We must balance the number of sub-
lots: Too few, and we lose the benefit of lot streaming; too many, and we waste
too much time on setups, increasing the makespan.
Again, the key idea is the requirement of no idling. This implies that Lj should

be set up and processed on machine 2 during the same period that Lj+1 is set up
and processed onmachine 1. Define h2 = {(SU2 − SU1)/p} as the number of items
that can be processed on machine 1 while machine 2 is being set up but after
machine 1 has completed its own setup (with a symmetric interpretation if h2 <
0). Therefore, Lj+1 = Lj + h2, so that the sublots form an arithmetic series with a
sum of L1s + h2s(s − 1)/2. Thus,U = [L1 + h2(s − 1)/2]s, and L1 =U/s − h2(s − 1)/2.
The makespan includes the time to set up and process the first sublot on
machine 1, the time to process all items on machine 2, and the time for s setups
on it. We thus obtain M = SU1 + (L1 +U)p + SU2s. Substituting for L1 and h2,
and after some algebra, we obtain

M = pU s+ s+ 1 SU1 + SU2 2
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This expression could also be derived by studying the reversed problem, so it
should not be surprising that the effect of the two setups is symmetric. Setting
the derivative with respect to s equal to 0, we obtain

s=
2pU

SU1 + SU2

To ensure an integer number, it is optimal to round down if s /s > s/ s and
round up otherwise. Finally, solutions with discrete sublots for all the models
discussed in this subsection can be obtained by the same approach that we out-
lined earlier for the case without setups.

12.3 The Three-machine Model with Consistent Sublots

12.3.1 The Continuous Version

For the three-machine problem, we first consider the case in which consistent
sublots are required. Recall from our preliminary comments that this require-
ment may increase the makespan beyond what might otherwise be attainable.
However, our approach to the three-machine problem can also be used for the
m-machine case.
For the special case of two sublots (s = 2), we can specify the solution with a

simple decision rule as follows.

Algorithm 12.1 Solving the 3 × 2 Lot Streaming Problem

Case 1. For (p2)
2 − p1p3 > 0 and p1 ≥ p3,

set x1 =
p1

p1 + p2
and x2 =

p2
p1 + p2

Sublots are in the ratio p1 : p2.

Case 2. For (p2)
2 − p1 p3 > 0 and p1 < p3,

set x1 =
p2

p2 + p3
and x2 =

p3
p2 + p3

Sublots are in the ratio p2 : p3.

Case 3. For (p2)
2 − p1p3 ≤ 0,

set x1 =
p1 + p2

p1 + 2p2 + p3
and x2 =

p2 + p3
p1 + 2p2 + p3

Sublots are in the ratio (p1 + p2) : (p2 + p3).
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In particular, the inequality (p2)
2 ≤ p1p3 appears to define the case of a “short”

operation time on machine 2, analogous to a dominated machine in the stand-
ard flow shop model. Obviously, the solution depends on whether machine 2 is
dominated.
When more than two sublots exist, we might guess that the optimum is of the

geometric form Lj = qLj−1 = qj−1L1, but that is not always the solution.

∎ Example 12.3 Consider a three-machine lot streaming problem withU = 90
units and processing times p1 = 2, p2 = 4, and p3 = 3. The job is to be processed in
three sublots.

This case provides a counterexample to the optimality of geometric lots.
The optimal makespan of 490 is achieved with sublot sizes of Lj = (20, 40,
30), as shown in Figure 12.4. (We might call this solution a pyramid
sequence.) Geometric sublots based on q = 2, q = 0.75, or q = 1.167 lead to lar-
ger makespans. However, geometric sublots would be optimal when machine
2 is dominated, in which case they should maintain the ratio (p1 +
p2) : (p2 + p3).
In general, the optimal choice of consistent sublots can be found by linear pro-

gramming (LP). Two LP formulations are of interest, and both generalize to
more than three machines. We present the models with the number of
machines denoted bym. The natural formulation uses sublot completion times
as variables.

Variables

tij = completion time for sublot jonmachine i

Lj = size of sublot j

Objective function

minimize tms

20 40

20 40

20 40 30

490

30

30

Figure 12.4 A counterexample to the optimality of geometric sublots.
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Constraints

L1 + L2+ + Ls =U
t11 ≥ p1L1
tij ≥ ti−1, j + piLj 2 ≤ i ≤m, 1 ≤ j≤ s
tij ≥ ti, j−1 + piLj 1 ≤ i ≤m, 2 ≤ j≤ s

This LP formulation contains (2ms – s –m + 2) constraints and s(m + 1) vari-
ables. If we replace the constraints tij ≥ ti−1,j + piLj with the corresponding equa-
tions, we obtain a no-idling version of the model.
An alternative structure focuses on the idle periods that occur in the schedule.

Let zij denote the idle period immediately preceding the jth sublot on machine i.
(These variables would be zero for j > 1 in a no-idling version of the model.) As a
first step, we express zij in terms of the sublot completion times:

zij = max 0, ti−1, j− ti, j−1

The first machine can be scheduled without any idle time; therefore, z1j = 0. In
addition, the first sublot need not encounter any delay. Thus, for i ≥ 2,

ti1 = L1 p1 + p2+ + pi−1

For the remaining combinations of (i, j), we can substitute for tij in terms of
idle periods. That is,

tij = zi1 + piL1 + zi2 + piL2 + + zij + piLj

Hence, the generic equation for zij becomes

zij = max 0, zi−1,1 + pi−1L1 + zi−1,2 + pi−1L2 + + zi−1, j + pi−1Lj

− zi1 + piL1 − zi2 + piL2 − − zi, j−1 + piLj−1

In an LP framework, this relationship can be represented by a single
inequality:

zij ≥ zi−1,1 + pi−1L1 + zi−1,2 + pi−1L2 + + zi−1, j + pi−1Lj

− zi1 + piL1 − zi2 + piL2 − − zi, j−1 + piLj−1

If the right-hand side is negative, then the variable zijwill appear as zero in the
LP solution, and the constraint will be a strict inequality. Equivalently, we can
rewrite this constraint as follows:

zi1+ + zij− zi−1,1+ + zi−1, j + pi−pi−1 L1+ + Lj−1 −pi−1Lj ≥ 0

With this type of constraint at its heart, the formulation can be posed in terms
of the variables Lj and zij. Furthermore, the makespan is equal to total idle time
on the last machine plus the total processing time on the last machine. The
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latter is a constant and can be left out of the optimization, so the objective func-
tion is simply the sum of idle periods on machine m.

Variables

zij = length of idle period preceding sublot jonmachine i

Lj = size of sublot j

Objective function

minimize zm1 + zm2+ + zms

Constraints

L1 + L2+ + Ls =U
j

k =1

zik −
j

k =1

zi−1,k + pi−pi−1
j−1

k =1

Lk −pi−1Lj ≥ 0

where the range for the last constraint is 2 ≤ i ≤m, 1 ≤ j ≤ s.
The fact that no idle time need occur on the first machine allows us to avoid

constraints defining z1j and also to avoid using those variables explicitly in the
model. The formulation thus contains (ms – s + 1) constraints and ms variables.
For example, a problem containing 5machines and 6 sublots requires a linear pro-
gramwithdimensions25 × 30,ascomparedwith51 × 36with the first formulation.

12.3.2 The Discrete Version

For the discrete version, we seek a solution to the linear programs described
previously, but with the added requirement that the Lj values must be integers.
Thus, we can find a solution by solving an integer LP model, based on the for-
mulations given earlier.

12.4 The Three-machine Model with Variable Sublots

12.4.1 Item and Batch Availability

We turn our attention to the general version of the problem, in which the sublot
sizes are allowed to vary. By way of background, however, we must first discuss
the way in which items can be moved between machines. Problems involving
batching and lot splitting require an assumption about the timing of movement,
although in the two-machine problem, it is not usually necessary to make such
an assumption explicit. Under item availability (or item flow), each item can be
delivered immediately after its processing is complete. Under batch availability
(or batch flow), the completion of a sublot determines when each of its items is
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available for the next operation. For example, when each sublot requires a setup
and a teardown, batch availability is implied. In a particular application, the
technology for moving items between machines may dictate which assumption
is appropriate.
Item availability is the more general case: Any schedule that can be achieved

under batch availability can also be achieved under item availability, but the
reverse is not true. On the other hand, item availability cannot achieve improve-
ments over batch availability when the problem requires consistent sublots.
Thus, we can assume batch availability whenever the problem requires consist-
ent sublots. To put it another way, when we examined the problem with con-
sistent lots in the previous section, there was no reason to distinguish item
availability from batch availability. We can also assume consistent sublots when
we have batch availability. Therefore, in what follows, we assume item
availability.
In the three-machine problem with item availability, an optimal schedule

need not have consistent sublots. To illustrate this point, let U = 24 and s = 2
for processing times p1 = 1, p2 = 2, and p3 = 1. According to Case 1 of Algo-
rithm 12.1, an optimal solution for consistent sublots is given by the proportions
x1 = 1

3 and x2 = 2
3. For Lj = (8, 16) we obtainM = 72. An optimal solution for item

availability is given by

x11 =
1
3
, x12 =

2
3
; and x21 =

2
3
, x22 =

1
3
,

with a makespan of 64. The two schedules are compared in Figure 12.5. In the
schedule with variable sublots, the shaded area represents items transferred

8 16

8

8

16

16

72

8 24 40 64

Figure 12.5 Solutions with consistent sublots and variable sublots.
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from machine 1 to machine 2 as part of the second sublot, at time 24, but from
machine 2 to machine 3 as part of the first sublot, at time 40.
In the previous section, we addressed the three-machine problem with con-

sistent sublots, which implies batch availability. In the most general case, which
we address next, we assume only item availability and allow variable sublots. We
can then solve the no-idling case by applying the two-machine solution, first to
machines 1 and 2, then to machines 2 and 3. (It is straightforward to extend that
approach for m > 3.) For this purpose we assume we know how many transfer
lots are required between each pair of adjacent machines. In summary, we
assume item availability, variable sublots, and a given number of transfer lots
for every pair of adjacent machines. Under these assumptions, we know how
to solve the no-idling case (for any m). In what follows, we examine the case
where idling is permitted.

12.4.2 The Continuous Version

In the three-machine model, any feasible makespan can be achieved while sche-
duling the first and third machines to operate continuously. On the first
machine, we start each operation as soon as the machine becomes available.
On the third machine, we start each operation as late as possible without delay-
ing subsequent operations beyond the makespan. In general, we define the
machines that operate continuously as the partition set or simply the partition.
Therefore, machines 1 and 3 are always in the partition for the three-machine
problem.
We define a no-wait schedule as one in which no queueing of sublots occurs.

There must be an optimal schedule that is a no-wait schedule. If this were not
true, then there would be some sublot that waits between its completion on one
machine and its start on the next machine. It would then be possible to enlarge
this sublot and shrink some earlier sublot, so that no wait would occur and the
makespan would be no larger.
Suppose the partition is {1, 3}. Then one condition for a no-wait schedule is

the following:

Lj+1 p1 + p2 = Lj p2 + p3 12 16

In words, Eq. (12.16) states that the time it takes to process a sublot on the first
two machines is equal to the time to process the previous sublot on the last two
machines. This condition is necessary for machines 1 and 3 to run continuously.
Now, let

q =
p2 + p3
p1 + p2

Consistent with Eq. (12.16), we construct a set of geometric sublots with the
relation
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Lj = qLj−1 = qj−1L1

As in Eq. (12.11), it follows that

Lj =
Uqj−1 1−q

1−qs

for q 1, and Lj =U/s for the special case q = 1. This solution will be a no-wait
schedule at machine 2 if machine 2 can process each sublot as soon as it
becomes available from machine 1. We write this requirement as

p1 L1 + L2+ + Lj+ 1 ≥ p1L1 + p2 L1 + L2+ + Lj

It follows that

p1 L2+ + Lj+1 ≥ p2 L1 + L2+ + Lj

p1L1 q + q2+ + qj ≥ p2L1 1 + q+ + qj−1

qp1L1 1 + q+ + qj−1 ≥ p2L1 1 + q+ + qj−1

qp1 ≥ p2

which we can equivalently express as

p2
2 ≤ p1p3 12 17

If Eq. (12.17) holds, we obtain consistent sublots, and the case above duplicates
Case 3 in Algorithm 12.1. If Eq. (12.17) does not hold, then {1, 3} cannot be the
optimal partition; instead, the optimal partition must be {1, 2, 3}. In this case, we
decompose the problem into a two-machine subproblem for machines 1 and 2,
which determines the transfers from machine 1 to 2, and a separate two-
machine subproblem formachines 2 and 3, which determines the transfers from
machine 2 to 3. We can then solve each of the two-machine subproblems using
the analysis of Section 12.2. That case, then, duplicates the variable sublot model
with no idling.
As an illustration, we revisit Example 12.3, for which the optimal solution for

consistent sublots is shown in Figure 12.4. Because Eq. (12.17) fails, the problem
decomposes into a pair of two-machine subproblems. Betweenmachines 1 and 2,
the transfer lots are determined by solving the two-machine problem with pro-
cessing times of 2 and 4. The transfer lots are therefore in the ratios 1 : 2 : 4.
Between machines 2 and 3, the transfer lots are determined by solving the
two-machine problem with processing times of 4 and 3. These transfer lots are
in the ratios 16 : 12 : 9. The resulting makespan is 451.39, as shown in
Figure 12.6. (The two shaded areas in the figure show the first two sublots trans-
ferred frommachine 2 to 3.) The makespan represents an improvement of about
8% compared with the optimum for consistent sublots shown in Figure 12.4.
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12.4.3 The Discrete Version

We can extend the notion of decomposition to the discrete case in an analogous
fashion. Again, the key condition is whether machine 2 is dominated. If condi-
tion (12.17) holds, then {1, 3} is the optimal partition, and no decomposition is
needed. In that case, we invoke a three-machine extension of the solution pro-
cedure for two machines (details below). On the other hand, if Eq. (12.17) fails,
then the optimal partitionmust be {1, 2, 3}. In this case, we decompose the prob-
lem into a subproblem for machines 1 and 2, and a separate subproblem for
machines 2 and 3. Each subproblem is solved by the two-machine procedure
for the discrete version, described in Section 12.2.
To complete the exposition, we extend the two-machine procedure for dis-

crete sublots to three machines when machine 2 is dominated. As before, let
Sj denote the cumulative number of items in the first j sublots, that is,

Sj = L1 + L2+ + Lj

Suppose we have a trial value M of the optimal makespan. Then, the late start
time for the jth sublot on machine 3 is

LSj =M−p3 U −Sj−1

For feasibility, we must complete the jth sublot on machine 2 no later than LSj;
therefore,

p1Sj + p2Lj ≤M−p3 U −Sj−1 12 18

where machine 2 processes Lj without delay after it completes on machine 1.
Since Lj = Sj − Sj−1, we may write Eq. (12.18) as

p1Sj + p2 Sj−Sj−1 ≤M−p3 U −Sj−1 12 19

or

Sj ≤
M + p2Sj−1−p3 U −Sj−1

p1 + p2
12 20

451.39

Figure 12.6 The continuous solution to the Example 12.3 with variable sublots.
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This is a recursive formula for calculating Sj in terms of Sj−1. Equivalently, it cal-
culates the values of Lj in sequence, starting with L1. To initialize the process, we
use S0 = 0, and we terminate the process if Sj should reach U.
Observing that Sj is increasing in Sj−1, we choose each Sj in turn to be as large

an integer as Eq. (12.20) will permit, but not larger than U. If Ss < U, then our
trial value ofMmust have been infeasible. Our next trial value for the makespan
will be slightly larger. If so, the appropriate increment in the trial makespan is
(p1 + p2)(minj{ej}), where ej = 1 − fj and

fj = min
M + p2Sj−1−p3 U −Sj−1

p1 + p2
, U −Sj

The search procedure begins with the optimal makespan of the continuous ver-
sion as a trial makespan. If the trial value proves to be infeasible, then we
increase it appropriately and test the new trial value. We repeat these steps until
the trial value is feasible.
Again, we revisit Example 12.3. As in the continuous version, Eq. (12.17) fails,

and the problem decomposes. Between machines 1 and 2, the transfer lots are
determined by solving the two-machine problem with processing times of 2 and
4. The transfer lots are therefore 13, 26, and 51. Between machines 2 and 3, the
transfer lots are determined by solving the two-machine problem with proces-
sing times of 4 and 3. The transfer lots are therefore 39, 29, and 22. The resulting
makespan is 452. (As it happens, this figure is equal to the makespan in the con-
tinuous case, rounded up.)

∎ Example 12.4 Consider a lot streaming problem on three machines, with
U = 90 units, as in Example 12.3, but with processing times p1 = 3, p2 = 2,
and p3 = 4. The job is to be processed in three sublots.

In this case, the condition in Eq. (12.17) holds, so {1, 3} is the optimal partition,
and no decomposition is needed. The continuous solution therefore takes the
geometric form Lj = qLj−1 = qj−1L1, with q = 1.2, yielding sublot sizes of 24.73,
29.67, and 35.60, and a makespan of 483.65. Using Eq. (12.20) for this trial make-
span, we obtain transfer lots of 24, 29, and 35. When we compute S3 = 88 <U, we
must iterate, using the values of ei = {0.27, 0.47, 0.67}. The next trial makespan is
483.6 + 5 × 0.27 = 485, which turns out to be feasible. Themaximal values of Sj are
25, 55, and 91, implying transfer lots of 25, 30, and 35, as shown in Figure 12.7.

12.4.4 Computational Experiments

A computational comparison of alternative solutions with the continuous ver-
sion of the three-machine problem is revealing. For this purpose, 6000 test pro-
blems were randomly generated, and the makespan was obtained by each of five
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methods. The study tracked the relative error (suboptimality) in the solution,
where the optimal makespan is given by the variable-sublot solution. Alterna-
tively, we can constrain the solution to have no idling, consistent sublots, equal
sublots, or equal sublots and no idling. Such constraints may increase the make-
span substantially over what is optimally possible, or they may have no impact at
all. The virtue of such constraints is that they render the problem readily solv-
able. In fact, formulas exist for the optimal makespan in three of the cases: equal
sublots, no idling, and equal sublots with no idling. Simple algorithms are avail-
able for consistent sublots and, as discussed in Section 12.4.2, for the optimal
solution. The study distinguished the subset of problems in which machine 2
was dominant from the subset in which it was dominated. Statistics were com-
piled on the average and maximum values of the relative error. The average
values appear in Table 12.1.
The table confirms some important structural results. For example, the con-

sistent sublots procedure yields optimal solutions when machine 2 is domi-
nated, and the no-idling procedure yields optimal solutions when machine 2
is dominant. For that matter, equal sublot solutions also have no idling in
the latter case, as the table indicates.

25 30

25 30

25 30 35

485

35

35

Figure 12.7 Optimal solution to Example 12.4 (with machine 2 dominated).

Table 12.1

Procedure Sublots

Machine 2 dominant Machine 2 dominated

3 5 8 3 5 8

Equal sublots, no idling 0.10 0.094 0.076 0.20 0.24 0.24

No idling 0.0 0.0 0.0 0.12 0.17 0.19

Equal sublots 0.10 0.094 0.076 0.074 0.072 0.059

Consistent sublots 0.044 0.028 0.014 0.0 0.0 0.0
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On average, the suboptimality in the consistent-sublot solution is small, aver-
aging about 4 or 5% in the problems with three sublots and machine 2 domi-
nant, declining to about 1% with eight sublots. Considering that the
consistent-sublot solution will in fact be optimal when machine 2 is dominated,
this means that the amount of suboptimality tends to be quite small in problems
with random processing times.
The largest amount of suboptimality observed for consistent-sublot solutions

was 9.7%. This figure, along with maximum values for the other cases, is shown
in Table 12.2.
Table 12.2 emphasizes the role of machine dominance. For example, the no-

idling solution is optimal whenmachine 2 is dominant, but it may be suboptimal
by 50% ormore whenmachine 2 is dominated. The equal sublot solutionmay be
suboptimal by as much as 10–20%, but this figure is not too sensitive to whether
machine 2 is dominant.
An additional study examined the improvement in the makespan that results

from increasing the number of sublots. Intuitively, we should expect the
improvement to show diminishing returns to the number of sublots. This pat-
tern has been demonstrated analytically in the two-machine case with consist-
ent sublots and in them-machine case with variable sublots. Moreover, by using
just two sublots, we can realize at least half the gain associated with any number
of sublots. To demonstrate that the same result applies with consistent sublots
with more than two machines, Tables 12.3 and 12.4 summarize computational
results for three-machine cases. Again, the metric is the percentage improve-
ment, but here the base case is the makespan for one sublot – that is, without
lot streaming. The computations are based on an additional set of 1000 test
problems.
Both tables describe a clear pattern of diminishing returns, as anticipated. For

every solution procedure, more than half of the potential benefit from 10 sublots
is obtained with just two sublots, and roughly 80% of the benefit is obtained with
3 sublots. The relative performance of the various procedures remains consist-
ent with the outcomes discussed earlier in connection with Table 12.1.

Table 12.2

Procedure Sublots

Machine 2 dominant Machine 2 dominated

3 5 8 3 5 8

Equal sublots, no idling 0.17 0.16 0.14 0.49 0.66 0.77

No idling 0.0 0.0 0.0 0.48 0.65 0.76

Equal sublots 0.17 0.16 0.14 0.13 0.13 0.11

Consistent sublots 0.097 0.077 0.056 0.0 0.0 0.0
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Furthermore, when machine 2 is dominated, consistent sublots and variable
sublots perform equivalently, whereas when machine 2 dominates, the advan-
tage of variable sublots diminishes as s grows.

12.5 The Fundamental Partition

Earlier, we introduced partitions for the three-machine model to address the
case of variable sublots. In the m-machine case, we can also identify partitions,
and a particular one can lead to a solution of them-machine problem with var-
iable sublots. This partition has a role in the optimal solution of the consistent-
sublot case as well, thus providing a connection between the two cases. To illus-
trate this role, we revisit the three-sublot Example 12.3. The optimal variable-
sublot solution involves ratios of 4 : 2 for the sublots in the first transfer
(between machines 1 and 2) and ratios of 3 : 4 for the second transfer (between
machines 2 and 3). In the consistent-sublot solution, the ratio of the first two

Table 12.4

Procedure Sublots

Machine 2 dominated

2 3 5 8 10

Equal sublots, no idling 0.177 0.236 0.283 0.310 0.318

No idling 0.227 0.289 0.328 0.343 0.347

Equal sublots 0.237 0.316 0.379 0.415 0.427

Consistent sublots 0.275 0.360 0.421 0.449 0.457

Variable sublots 0.275 0.360 0.421 0.449 0.457

Table 12.3

Procedure Sublots

Machine 2 dominant

2 3 5 8 10

Equal sublots, no idling 0.246 0.328 0.394 0.430 0.443

No idling 0.300 0.388 0.446 0.472 0.478

Equal sublots 0.246 0.328 0.394 0.430 0.443

Consistent sublots 0.268 0.360 0.429 0.463 0.472

Variable sublots 0.300 0.388 0.446 0.472 0.478
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sublots is 4 : 2, and the ratio of the last two sublots is 3 : 4. In general, the ratio of
any two successive sublots in the consistent-sublot case must match the optimal
ratio that applies to some set of adjacent machines. For more downstream sub-
lots, the ratio of successive sublots must either follow the same ratio or match
the ratio of a subsequent set of adjacent machines.

12.5.1 Defining the Fundamental Partition

A machine can belong to a partition only if it operates continuously from the
beginning of the first sublot until the end of the last sublot. Pairs of machines
that appear consecutively in a partition set, along with all machines that may
reside between them, form the sections of the partition. We are not obligated
to include all machines that operate continuously in a partition, but, as in
the special case of three machines, we always include machine 1 and machine
m. The fundamental partition is then defined as the partition with the minimal
number of machines such that the machines in the partition can operate con-
tinuously with no waiting and no change in sublots within each section of the
partition. Let

P i,k = pi + pi+1+ + pk

In words, P(i, k) represents the aggregate processing time per unit onmachines i
through k. Define quv = P(u + 1, v)/P(u, v − 1) and suppose that two successive
lots satisfy Lj = quvLj−1. If no waiting occurs at the intermediate machines, then
the first (v − u) machines can complete the second sublot precisely when the last
(v − u) machines complete the first sublot. Thus, no waiting occurs at machine v
if no waiting occurs at the (v – u − 1) intermediate machines. This result is
assured if quv ≥ quw for all u < w < v. The following algorithm uses these obser-
vations to generate the fundamental partition.

Algorithm 12.2 Generating the Fundamental Partition

Step 1. Initialize: Set u = 1 and place machine 1 in the partition.
Step 2. Find maxv>u{quv}. Break ties in favor of the largest v.
Step 3. Add machine v to the partition immediately after machine u. If v =m,

stop. Otherwise, let u = v and return to Step 2.

To illustrate Algorithm 12.2, consider Example 12.1. After inserting machine 1
in the partition, we compare the values 9/5 (for v = 2), (9 + 4)/(5 + 9) = 13/14, (9 +
4 + 7)/(5 + 9 + 4) = 20/18, and (9 + 4 + 7 +6)/(5 + 9 + 4 + 7) = 26/25 (for v = 5). The
maximum, 9/5, is obtained for v = 2, so we addmachine 2 to the partition. Return-
ing to Step 2 with u = 2, we now compare the values 4/9 (for v = 3), (4 + 7)/(9 + 4)
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= 11/13, and (4 + 7 + 6)/(9 + 4 + 7) = 17/20 (for v = 5). The maximum is obtained
for v = 5 =m, so we addmachine 5 to the partition and stop with the final partition
{1, 2, 5}.We denote the kthmachine in the partition asmachine [k]. It is also useful
to record the ratios, namely, q[1][2] = q1,2 = 9/5 = 1.8 and q[2][3] = q2,5 = 17/20 = 0.85.
Assume there are K sections (i.e. K + 1 machines) in the partition. Then, by con-
struction, q[1][2]> q[2][3]> > q[K][K+1]. In our example the final partition becomes
{1, 2, 5}, corresponding to K = 2 sections, with q[1][2] = q1,2 = 1.8 > q[2][3] =
q2,5 = 0.85.
We can use the fundamental partition to solve them-machine variable-sublot

problem by specifying geometric sublots for each part. Therefore, when only
machines 1 and m are in the fundamental partition, the solution of the varia-
ble-sublot case yields consistent sublots, and the optimal solution features geo-
metric sublots with ratios q1m. It is also straightforward to apply the solution
approach of the discrete version to each partition. Limiting our attention to
other consistent-sublot cases, we assume that at least three machines (two sec-
tions) make up the fundamental partition. For the case s = 2, the following algo-
rithm provides an optimal solution.

Algorithm 12.3 Solution for Consistent Sublots and s = 2

Step 1. Find the fundamental partition and let u = 2.
Step 2. If [u] =m (machine [u] is the last machine in the partition), go to

Step 4.
Step 3. If P(1, [u] − 1) ≤ P([u] + 1, m), let u = u + 1 and return to Step 2.
Step 4. Let L1 =U/(1 + q[u−1][u]) and L2 =U − L1 (i.e. L2/L1 = q[u−1][u]).

To illustrate, consider Example 12.1 again. Starting with u = 2 (in this case,
machine 2), we find P(1, [u] − 1) = P(1, 1) = p1 = 5 ≤ P([u] + 1, m) = P(3, 5) = 4
+ 7 + 6 = 17. Hence, we increment u to 3 and return to Step 3. This time [3]
= 5 =m, so we go to Step 4, where we set L1 =U/(1 + q[u−1][u]) = 100/(1 +
0.85) = 54.05 and L2 =U − L1 = 45.95. Figure 12.8 displays the Gantt chart for
this solution. Here, the two sublots are both critical on machines 2 and 5, which
are the two machines that bound section 2 of the fundamental partition. (A
small idle interval occurs on machine 4.) In section 1, however, the second sub-
lot has to wait for the first sublot to complete on machine 2 before it can be
processed, whereas it arrives to machine 5 exactly when machine 5
becomes free.
The proof that Algorithm 12.3 provides the optimal solution for the two-

sublot case is based on the observation that it selects as u the first value for
which P(1, [u] − 1) > P([u] + 1, m). As a result, we have P([u − 1], m) > P(1,
[u]), because [u − 1] ≤ [u] − 1. If we increase L2 by Δ > 0, we add ΔP([u − 1],
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m) to the completion time of the second sublot on machines [u − 1] to m and
save ΔP(1, [u]) on machines 1 through [u], but the savings are not sufficient to
compensate for the increase. To justify not decreasing L2 either, we invoke the
same observation for the symmetric problem, where decreasing L2 implies
increasing L1. This is a special case of our general result, which we now state
formally.

∎ Theorem 12.2 Optimal consistent sublots exist such that Lj+1 = q[u−1][u]Lj
for some u and for all 1 ≤ j < s − 1. Furthermore, for any 1 ≤ k ≤ s − j − 1, Lj+k+1 =
q[v−1][v]Lj+k, where v ≥ u denote machines in the fundamental partition.

The formal proof of the theorem is complicated and beyond the scope of our
coverage. Essentially, the theorem holds because if we partition the sublots
and allocate the resulting subsets to the sections of the fundamental partition,
then the makespan includes the sum of the partial makespans obtained by each
subset of sublots on the section of machines with which it is associated. For this
purpose, if the ratio between sublot j – 1 and sublot j corresponds to one
section in the fundamental partition and the ratio between sublot j and sublot
j + 1 corresponds to another, subsequent section, then sublot j is the last sublot
associated with the former section and sublot j + 1 is the first sublot associated
with the latter. In particular, because progressive sublots are associated with
progressive sections of the fundamental partition, the theorem mandates sub-
lots with a pyramid structure, as befits the ordered flow shop that is obtained if
we treat each sublot as a job.

54.1 45.9

54.1

54.1

54.1

54.1

45.9

45.9

45.9

45.9

1951.35

Figure 12.8 Optimal solution to Example 12.1.

12 Lot Streaming Procedures for the Flow Shop366



12.5.2 A Heuristic Procedure for s Sublots

The more generalm × n problem with consistent sublots can be solved by LP, as
discussed earlier. No procedure as efficient as Algorithm 12.3 is available. How-
ever, we can build a good heuristic procedure for the m × n problem using the
solution to the m × 2 problem.
Recall that the two-sublot solution involves a single ratio that specifies the

allocation of work between the two sublots. To utilize this solution as a heuristic
for the s-sublot problem, we simply set the ratio of successive sublots equal to
this value and construct the corresponding geometric sublots.
In Example 12.1, we found that the criticalmachines are u = 2 and v = 5, and the

optimal allocation of work is 0.5405 to the first sublot and 0.4595 to the second,
for a ratio L2/L1 = 0.85. Using this ratio in a four-sublot solution, we obtain sublot
sizes approximately as follows: 31.4, 26.7, 22.7, and 19.3. When this allocation is
employed on the 5 × 4 problem, the makespan is 1384.5, which is about 0.2%
above the optimum. In this case, it is also easy to find the optimum. If we assume
the optimum is not given by the allocation presented above, then by Theorem
12.2 we should base at least one sublot ratio on the first section of the fundamen-
tal partition (because there are only two sections in the fundamental partition). If
we set L1 = 1 (tentatively), it follows that L2 = 1.8, L3 = 1.8 × 0.85, and L4 = 1.8 ×
0.852. Together, the sum is 1 + 1.8 + 1.8 × 0.85 + 1.8 × 0.852 = 5.63, and hence we
should multiply all tentative values by 100/5.63 = 17.8, yielding 17.8, 32.0, 27.2,
and 23.1, with a makespan of 1381.5. Thus, we have sublots 1 and 2 with a ratio
that is dictated by the first section of the fundamental partition, whereas sublots 2,
3, and 4 have ratios based on the second section (sublot 2 belongs to both subsets
of the sublots, and similarly machine 2 belongs to both sections of the fundamen-
tal partition). Indeed, the makespan of 1381.5 improves upon the previous result,
but if we were to set another sublot with the ratio of section 1, the makespan
would increase to 1489.2. The model is convex (it can be formulated as an
LP), so we need not check the option of setting even more sublots per
section 1: That would yield a yet worse result.
A brief computational study has investigated the two-sublot heuristic proce-

dure on randomly generated problems. In the test problems, the procedure
yielded an average relative error of only 1.2%, as compared with 4.6% for the
equal sublot heuristic. In addition, it produced an optimal makespan in a major-
ity of the test problems.

12.6 Summary

The lot streaming model extends our ability to produce good schedules, even
though we limited our coverage to the analysis of the flow shop lot streaming
problem with a single process batch. More general models in more general
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environments, such as multiple jobs in a job shop, are based on this foundation
and many of the insights are similar. Lot streaming analysis raises important
issues in modeling, such as the use of consistent sublots, the appropriateness
of item availability, and the need for integer solutions.
Two features of simple models seem to capture key aspects of lot streaming

analysis. Obviously, equal sublots are seldom optimal; but the two-sublot solu-
tion of Algorithm 12.2, together with the notion of geometric sublot sizes, seems
to provide a useful construct for larger problems. The usefulness of a two-sublot
solution recalls a similar finding in Chapter 10, where solving the two-machine
case provided a key to solving larger flow shop problems.
A second important feature is the condition for a dominatedmachine 2 in three-

machine models, as expressed by the condition (p2)
2 ≤ p1p3. Much of our analysis

of the three-machine case hinged on the outcomeof this condition, which suggests
that dominance may be a key to solving larger problems. We also discussed par-
titioning of a larger set of machines and found that partitions are defined such that
any intermediate set of machines within a partition are dominated. Again, this
result recalls an analogous finding for the flow shop model, where three-machine
problems can be solved by two-machine procedures when dominance occurs.
Withrespect toseveral jobs,adisquietingexampleillustrates thedifficultiesposed

by the n-job model. A reasonable approach might be to sequence the jobs without
lot streaming and then simply to split each job independently into optimal sublots.
Although this hierarchical solution scheme is appealing, it may not be optimal.

∎ Example 12.5 Consider a two-job, two-machine problem in which two sub-
lots are required for each job, as described in the following table.

Job 1 Job 2

p1 7 14

p2 14 42

Example 12.5 shows that hierarchical solutions may not be optimal. The opti-
mal flow shop sequence without lot streaming is 1-2. When lot streaming is
applied to the individual jobs of this sequence, the resulting schedule
is described in Table 12.5, with a makespan of 58.33. The optimal schedule is
shown in Table 12.6, with a makespan of 57. In the optimal schedule, the sub-
lots of jobs 1 and 2 alternate, indicating that the schedule cannot be produced by
the hierarchical scheme.
If we restrict attention to equal sublots, the result for the two-machine case is

different. When we apply lot streaming with equal sublots to a given flow shop
sequence, Johnson’s rule implies that no incentive exists to resequence those
sublots.
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If we allow a different number of sublots on each job, this implication remains
true, although the optimal job sequence may change. The solution to an n-job
problem using equal sublots is therefore straightforward to construct, although
it is suboptimal on two counts. First, it is not as good as the hierarchical schedule
based on optimal sublots (yielding 58.33 in our example), and second, that
schedule is potentially inferior to a schedule in which sublots are resequenced
and work reallocated (57 in our example). In Example 12.5, equal sublots yield a
makespan of 59.5 or about 4.4% above the optimum.
In this chapter, we have addressed a number of lot streaming problems, all of

which are characterized by deterministic conditions and the makespan crite-
rion. In general, stochastic conditions and different criteria lead to rather diffi-
cult problems. A brief guide to some of the existing results can be found in our
Research Notes.

Exercises

12.1 A special case of the model with consistent sublots is generated by the
requirement that all sublot sizes be equal. Suppose there are m machines
and s sublots. Construct a formula for the makespan in the case of equal
sublots.

Table 12.5

Machine Job 11 Job 12 Job 21 Job 22

Sublot times 1 2.33 4.67 3.50 10.50

2 4.67 9.33 10.50 31.50

Machine Job 11 Job 12 Job 21 Job 22

Completion times 1 2.33 7.00 10.50 21.00

2 7.00 16.33 26.83 58.33

Table 12.6

Machine Job 11 Job 12 Job 21 Job 22

Sublot times 1 1 6 2 12

2 2 12 6 36

Machine Job 11 Job 21 Job 12 Job 22

Completion times 1 1 3 9 21

2 3 9 21 57
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12.2 Consider the two-machine model with s sublots. Let M1 represent the
makespan when there is one sublot and no lot streaming. Let M0 repre-
sent the limit of the makespan as the number of sublots approaches
infinity. Thus, M1 −M0 denotes the potential improvement from lot
streaming.
a) Show that when there are two sublots in the schedule, themakespan is

improved by at least half of the potential improvement.
b) Generalize the result in (a), and show that when there are s sublots in

the schedule, the makespan is improved by at least (s − 1)/s of the
potential improvement. (Hint: The improvement analysis can be
based on the makespan for equal sublot sizes; the optimal schedule
is known to be at least as good.)

12.3 Consider lot streaming for a job lot consisting of 1200 items requiring
three operations. The operation times (in order) are 2, 3, and 6 minutes.
a) What is the makespan of the schedule when the job is scheduled in

one large lot at each operation?
b) What is the makespan of the schedule when lot streaming is used and

s = 2?
c) What is the makespan of the schedule when lot streaming is used and

s = 3?
d) What is the makespan of the schedule when lot streaming is used and

the sublots are size 1?
e) What percentage of the improvement between the schedule in (d) and

the schedule in (a) is achieved by the schedule in (c)?

12.4 In the three-machine problem with consistent sublots, geometric
sublots are optimal if machine 2 is dominated – that is, if (p2)

2 ≤ p1p3.
Assume that processing times are all randomly drawn from the same
distribution.
a) Suppose that processing times are all randomly drawn from a uniform

distribution on the interval (1, 2). Using simulation, estimate the
probability that machine 2 will be dominated.

b) Find the probability in (a) when the processing times are all randomly
drawn from a normal distribution with mean 10 and standard devia-
tion 1.

c) Find the probability in (a) when the processing times are all randomly
drawn from a lognormal distribution withmean 10 and standard devi-
ation 1.

12.5 Construct a two-machine, two-job example with a different number of
equal sublots on each job, demonstrating that the optimal job sequence
may change when the number of sublots of one job increases.
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12.6 Construct a three-machine, two-job, two-sublot example, demonstrating
that even with equal sublots interleaving may be optimal when m ≥ 2.

12.7 Consider lot streaming for a job lot consisting of a large number of items
requiring three operations. The operation times per item are (in order) 2,
1, and 3.
a) What is the makespan of the schedule when the job is scheduled in

one large lot at each operation?
b) What is the makespan using equal sublots and s = 2?
c) What is the makespan using no idling and s = 2?
d) What is the makespan using equal sublots, no idling, and s = 2?
e) What is the makespan without restrictions and s = 2?

12.8 Consider lot streaming for a job lot consisting of 1000 items requiring
five operations. The operation times per item are (in order) 5, 9, 4, 7,
and 6 minutes.
a) What is the makespan of the schedule when the job is scheduled in

one large lot at each operation?
b) What is the makespan using equal sublots and s = 3?
c) What is the makespan using no idling and s = 3?
d) What is the makespan using equal sublots, no idling, and s = 3?
e) What is the makespan using consistent sublots and s = 3?
f) What is the makespan using variable sublots and s = 3?
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13

Scheduling Groups of Jobs

13.1 Introduction

In some settings, the grouping of jobs is a desirable or necessary tactic, usually
because of some technological feature of the processing capability. By exploiting
this feature, we can find optimal schedules easily, or we can at least identify a
relatively small set of dominant schedules and thereby avoid searching a very
large number of alternatives.
The motivation for grouping often relates to the existence of changeover

times, or setup times, on a machine. For example, jobs might belong to a par-
ticular family due to similarities in their required tooling or their container size.
As a result of this similarity, a job does not need a setup when following another
job from the same family, but a known “family setup time” is required when a job
follows a member of a different family. We call this a family scheduling model.
Typically, the family scheduling model contains a large number of jobs but a
relatively small number of families.
We can almost think of the family scheduling model as one in which the

elements to be scheduled are the families. Because the jobs are given, we know
the processing time for each family, and we know that some changeover time
will be required. Thus, we might be tempted to recast the problem as one of
scheduling families, except that our measures of performance relate to the
individual completion times of the jobs rather than to the completion times
of families.
The motivation for grouping may instead be the capability of the machine to

process several jobs at once. For example, jobs might be placed in an oven for a
heat treat operation. The oven has a finite capacity, so several jobs can be pro-
cessed simultaneously. As in baking cookies, a group of jobs processed together
is called a batch, and we call this a batch processing model. Typically, the
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capacity of the processor is related to the weight, size, or simply the number of
jobs in a batch.
We can almost think of a batch processing model as one in which the ele-

ments to be scheduled are the batches. Here, again, however, the batch comple-
tion times would not tell the whole story. Instead, we have the flexibility to
allocate jobs to batches in different ways, and it is the completion times of
the individual jobs that determine the measure of performance.
In Section 13.2 we elaborate on the family schedulingmodel, relating the anal-

ysis to known results from the basic single-machine model and highlighting the
more prominent generalizations. In Section 13.3, we examine a simple form of
batching, where the jobs are not available until their batch completes, and we
introduce the analysis of batch availability. Section 13.4 deals with problems
involving a batch processor. We emphasize two criteria, namely, total flowtime
and maximum lateness. However, we address other performance measures
where results are available.

13.2 Scheduling Job Families

In the family scheduling model, we use the pair (i, j) to refer to job j of family i.
We let f denote the number of families, n the number of jobs, and ni the number
of jobs belonging to family i. Thus, n1 + n2 + + nf = n. In addition, pij denotes
the processing time of job (i, j), and si denotes the setup time required in order to
process a job in family i following a job in some other family. When f = 1, the
problem reduces to the single-machine model, where, for example, SPT mini-
mizes total flowtime and EDD minimizes maximum lateness. Therefore, we
assume that f > 1.
In principle, any family scheduling model can be viewed as a single-machine

model with sequence-dependent setup times. If a job follows a member of the
same family, then its setup time is zero; otherwise, its setup time is the family
setup time. We know that sequence-dependent setup times tend to make solu-
tions difficult to find. (Recall the traveling salesperson problem presented in
Chapter 8.) However, by exploiting the special structure of family scheduling,
we can sometimes avoid the enumerative techniques that would ordinarily be
required when setups are sequence dependent.
A simplifying assumption for family scheduling is the requirement of pre-

cisely f setups in the schedule, one for each family. Such a requirement may
reflect long setups, or it may result from a desire to minimize the time spent
on setup in situations where capacity is scarce. This condition may also be
imposed simply to make the problem more tractable. We refer to this assump-
tion as the group technology (GT) assumption. (In current parlance, the GT prin-
ciple calls for the grouping of similar elements.) We refer to an optimal solution
subject to the GT assumption as a GT solution.
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The makespan is minimal in a GT solution, because additional setups would
only make the makespan greater. Let pi denote the total processing time for
family i, or

pi =
ni

j= 1

pij

Then the makespan for a GT solution is given by

M =
f

i=1

si + pi

Because the elements of this sum are given, the makespan in a GT solution is a
fixed quantity and cannot be influenced by sequencing.

13.2.1 Minimizing Total Weighted Flowtime

The next simplest problem in family scheduling is the F-problem under the GT
assumption. A two-level approach works well in this case. Within families, we
know that jobs should be sequenced according to SPT. (If this were not the case,
an adjacent pairwise interchange would improve total flowtime.) We can then
treat the family as a job string and exploit the sequencing rule for strings. (See
Chapter 8.) In other words, we treat the family as if it were a single entity or
composite job. In this case, there is a setup time for the string, along with its
processing times, but the essential result is unchanged: The optimal sequence
exhibits nondecreasing ratios (si + pi)/ni. We state this result formally below,
omitting the proof.

∎ Theorem 13.1 In the F-problem under the GT assumption, the jobs within
a family should be scheduled according to SPT, and the families should be
scheduled in nondecreasing order of (si + pi)/ni.

The same two-level reasoning applies to the Fw-problem. Let wij denote the
weighting factor of job (i, j), and let

wi =
ni

j=1

wij

Within families, the jobs should be ordered by SWPT. Again, we can treat the
families as composite jobs. In this case the composite jobs have processing times
equal to (si + pi) and weighting factors equal to wi. The optimal schedule applies
the SWPT rule to the composite jobs as follows.
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∎ Theorem 13.2 In the Fw-problem under the GT assumption, jobs within a
family should be scheduled according to SWPT, and families should be sched-
uled in nondecreasing order of (si + pi)/wi.

The proof of Theorem 13.2 follows from straightforward arguments based on
adjacent pairwise interchanges, first for jobs within families and then for
families. Thus, with respect to the Fw criterion, we use the SWPT rule at both
levels. First, the rule determines the sequencing of jobs within families. Then,
with the families treated as composite jobs, the SWPT rule determines the opti-
mal sequence of the families.
Without the GT assumption, families may be split and processed in separate

batches. In this case, we do not know in advance how many setups will occur,
and the optimization of total flowtime is more difficult.

∎ Example 13.1 Consider the F-problem for three jobs representing two
families, with a setup time of 1 for either family.

Job (i, j) (1, 1) (1, 2) (2, 1)

pij 2 7 4

Suppose family 1 comes first. The flowtimes of the three jobs are then 3, 10, and
15, for a total of 28. If the family sequence is reversed, then the total flowtime is still
28. But suppose we sequence the jobs (1, 1), (2, 1), and (1, 2), with a setup for each
one. In this schedule, the flowtimes are 3, 8, and 16, for a total of only 27. This very
small example illustrates the fact that the optimal solution of the F-problem (and
therefore, also the Fw-problem) may be attained only by splitting the families.
For the general case, it is possible to use a dynamic programming solution

procedure that exploits the fact that, for each family, the jobs appear in SWPT
order in the optimal schedule, although not necessarily as a block of adjacent
jobs. The multidimensional structure of this dynamic programming algorithm
makes it computationally demanding even for small problems, and its signifi-
cance is mainly conceptual. Because the GT solution is relatively straightfor-
ward to construct, it is of interest to study conditions under which we can
limit ourselves to schedules in which each family is processed in a single batch.

∎ Theorem 13.3 In the Fw-problem for the family scheduling model, suppose
all jobs in each family have identical processing times and weights. Then there
exists an optimal solution that is a GT solution.

Proof. We consider a schedule S in which there are at least two separate batches
of family i. In particular, suppose that the first batch of family i contains a jobs
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and the second batch of family i contains b jobs. Assume temporarily that a > 1
and b > 1. Suppose also that the two batches are separated by k jobs of other
families with a total weight of wk taking up an interval of length t. We also
use pii and wii to denote the processing time and weight of all individual jobs
in family i.
Now consider the effects of inserting the last job from the first batch of family i

into the second batch, thereby creating schedule S . As a result, k jobs are accel-
erated by an amount pii, and the job that was moved is delayed by an amount t +
si. Hence, the effect on total weighted flowtime is (t + si)wii − piiwk. If this quan-
tity is negative, schedule S is better than schedule S. If it is positive, construct
schedule S by inserting the first job from the second batch into the first batch. In
this case, k jobs are delayed by pii, and the job that was moved is accelerated by
t + si. The effect on total weighted flowtime becomes piiwk − (t + si)wii, which is
negative, so schedule S is better than S. Now relax the assumption that a, b > 1.
If we insert from a one-job batch to another batch, we also save a setup, which
improves the flowtime of any subsequent jobs even further.
One of the two insertions, resulting in either S or S , will improve Fw, or at

least leave it no worse. As long as the batch from which we removed a job
for that insertion is not empty, we can repeat the process until one of the
two batches disappears and its jobs are consolidated into the other batch (at
which stage we also save a setup). Thus, given any solution that does not rep-
resent a GT schedule, we can construct a better GT schedule. □

Theorem 13.3 identifies a special case in which we can limit attention to GT
solutions and avoid dynamic programming. Qualitatively, Theorem 13.3 states
that we should not split a family when its jobs are identical, suggesting that the
reason for splitting a family is to exploit differences among its jobs.

13.2.2 Minimizing Maximum Lateness

Suppose that each job has its own due date, dij. Under the GT assumption, it is
possible to attack the Lmax-problem using the EDD rule in a two-level approach,
although a slight adjustment is necessary at the family level. At the job level, the
result is straightforward: Jobs in each family should be sequenced according to
EDD. Within a family, however, any one of the jobs could produce the maxi-
mum lateness.
Suppose that jobs in family i are indexed by EDD and that the family begins its

setup at time t. Then, the lateness of job (i, j) becomes

Lij = t + si + pi1 + pi2+ + pij−dij
= t + si + pi− dij + qij

where qij denotes the processing time in the family beyond job (i, j), or
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qij = pi− pi1 + pi2+ + pij

The maximum lateness among jobs in family i becomes

maxj Lij = t + si + pi−minj dij + qij

From this expression, we can see how to adapt the EDD rule for families.
Define the family due date, di, as follows:

di =minj dij + qij

This quantity, which is independent of the time at which family i begins pro-
cessing, can easily be determined once the family is ordered by EDD. This def-
inition of a family due date allows us to use the two-level approach.

∎ Theorem 13.4 In the Lmax-problem under the GT assumption, the jobs
within a family should be scheduled according to EDD. Then the families should
be ordered by EDD, using family due dates.

Proof. The first part of the theorem, regarding the sequence of jobs within
families, followsTheorem 2.6. Therefore, we examine the sequencing of families.
Consider a sequence S that is not the EDD sequence. That is, somewhere in S
there must exist a pair of adjacent families, i and k, with k following i starting
at time t in the schedule, such that di > dk. Now construct a new sequence, S ,
in which families i and k are interchanged and all other families complete at
the same time as in S. Let ix denote the job in family i that achieves themaximum
lateness in the family, and let ky denote the analogous job in family k. Then,
denoting by Li(S) the maximum lateness in S for family i, we have

Li S = t + si + pi1 + pi2+ + pix−dix = t + si + pi−di

Lk S = t + sk + pk1 + pk2+ + pky−dky = t + sk + pk −dk

Lk S = t + sk + si + pi + pk −dk

Li S = t + si + sk + pk + pi−di

It follows that Lk(S) > Li (S ) and Lk(S) > Lk(S ). Hence,

Lk S > max Li S , Lk S

As a consequence,

Lmax S ≥Lmax S

In other words, the interchange of families i and k does not increase the value
of Lmax and may actually reduce it. The validity of the theorem follows from this
result. □

This theorem, like Theorem 13.2 earlier, shows how to extend an elementary
result for the basic single-machine model to the GT scheduling model.
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In the case of the Lmax-problem, it may be desirable to split families when the
GT assumption does not apply. Without the GT assumption, this problem is
known to be NP-hard. It is possible to use a dynamic programming approach
to find an optimal schedule, but it is even more computationally demanding
than the one cited earlier for the Fw-problem. Therefore, we are interested in
conditions for the optimality of a GT solution, such as the following.

∎ Theorem 13.5 In the Lmax-problem for the family scheduling model, sup-
pose all jobs within a family have identical due dates. Then there exists an opti-
mal solution that is a GT solution.
Proof. Recall that our notation takes job ix as the job within family i for which

the maximum lateness occurs. We first show that there is no incentive to split
family i prior to job ix. In other words, job ix should appear in the first batch of
family i. To see why, imagine a schedule S in which job ix does not appear in the
first batch. Thus, somewhere in the schedule, there is a batch of family i jobs,
followed by jobs from other families and then followed by another batch of fam-
ily i jobs, and this second batch contains job ix. Construct schedule S by shifting
the first batch of family i jobs later, so that it is immediately followed by the sec-
ond batch of family i jobs. Although some jobs in family i are thereby delayed,
none will have a lateness larger than that of job ix because they are scheduled in
a single batch with job ix, and by definition job ix attains the maximum lateness
among these jobs when they are scheduled together. Because this shift saves the
setup that preceded the first batch of family i jobs, the maximum lateness in
family i is decreased by this shift. Meanwhile, no job in any other family com-
pletes later in schedule S than in schedule S. Therefore, schedule S is at least as
good as schedule S, and there is no incentive to split family i prior to job ix.
Under the hypothesis of the theorem, all jobs in the family have the same due

date and so job ixmust be the last job in the family. Therefore, there is no incen-
tive to split family i at all. □

Theorem 13.5 echoes the result of Theorem 13.3, showing that the GT solu-
tion occurs when jobs within a given family have identical urgencies. This result
reinforces the notion that, in the minimization of Lmax and Fw, it is not desirable
to split a family into multiple batches unless the jobs differ in the value of a key
parameter.

13.2.3 Minimizing Makespan in the Two-Machine Flow Shop

We can also address the scheduling of job families in the flow shop setting, at
least under the GT assumption. The makespan problem for the two-machine
case is of particular interest because, like the problems discussed above, its solu-
tion would reduce to ordering the jobs if there were only one family and no need
for setups. (In the flow shop case, that ordering would be given by Johnson’s
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rule, as discussed in Chapter 10.) Our notation is aij for the processing time of
the jth job in family i on the first machine and bij on the second machine. Addi-
tionally, s1i and s2i denote the family setup times on machines 1 and 2, respec-
tively. The setup on machine 1 merely adds a constant delay to any schedule, so
for the purposes of scheduling jobs in a family, we can safely assume s1i = 0. Ini-
tially, we assume that family setup times are attached (see Section 10.3), which
means that they can begin only when a job from the corresponding family is
available at the machine.
The problem can be decomposed into two levels. In the lower-level problem,

we determine an optimal sequence for the jobs within each family. In the higher-
level problem, we then schedule the families, treating the jobs in each family as a
string. (It can be shown that there exists an optimal solution where the jobs
within families are sequenced by their lower-level optima.)
First, we solve the lower-level problem when there are family setup times.

Although it would be convenient to ignore setups and rely on Johnson’s rule
to schedule jobs within families, that procedure is not always optimal.

∎ Example 13.2 Consider a two-machine family scheduling problem consist-
ing of one three-job family, with no family setup on machine 1 and a family
setup of length s2 = 5 on machine 2.

Job j 1 2 3

aj 10 8 2

bj 12 5 1

The sequence 1-2-3, which is prescribed by Johnson’s rule, yields a makespan
of 33, but the sequence 3-1-2 yields a makespan of only 29.
Suppose we ignore setup times and construct a job sequence for family i using

Johnson’s rule, renumbering the jobs in the order obtained. As the example
demonstrates, this sequence does not guarantee optimality within the family.
Nevertheless, an optimal sequence exists in which Johnson’s rule applies to
all the jobs after the first. Although we can often narrow the set of possibilities,
we may have to test all jobs in the family at the first sequence position to deter-
mine the solution to the lower-level problem.
Next, we examine the effects of the lower-level solution on the higher-level

problem. Each family will appear in the schedule with its individual jobs
sequenced by the lower-level rule. Also, a setup time will initiate the processing
of the jobs comprising the family, as shown in Figure 13.1.
As reflected in the figure, we postpone the start of s2i just long enough to avoid

any intermittent idling on that machine thereafter. This can be done without
increasing the family makespan Mi. Similarly, we forbid intermittent idling
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on machine 1. Let I1i denote the run-in time (for family i), and let I2i denote the
run-out time, as shown in the figure. The run-in time represents the period dur-
ing which only machine 1 can process the family, so machine 2 remains idle
unless an operation from the previous family is in process. The run-out time
is defined symmetrically as the period when only machine 2 can process the
family. Let

Ai = s1i +
ni

j= 1

aij

and

Bi = s2i +
ni

j= 1

bij

Then, because there is no intermittent idling,

I1i =Mi−Bi 13 1

and

I2i =Mi−Ai 13 2

Equations (13.1) and (13.2) show that by minimizingMi, we also minimize I1i
and I2i. The run-in and run-out times are important for optimizing the higher-
level problem: They are the parameters of an equivalent problem that we can
solve by Johnson’s rule. Define the body of family i, Ci, as the period during
which the twomachines can operate in parallel, so thatMi = I1i +Ci + I2i. Hence,
Ci =Ai + Bi −Mi. It follows that I1i =Ai −Ci and I2i = Bi −Ci. By minimizingMi,
we maximize Ci, which can only help our objective. Conceptually, each family
can now be replaced by a single representative job such that the representative
operation on machine 1 takes Ai and the representative operation on machine 2
takes Bi. Because the body can be processed in parallel, the representative job
has a start lag of I1i and a stop lag of I2i (as analyzed in Section 10.3.3). When
we apply Eq. (10.4), we obtain di = −Ci, so the higher-level problem is solved by
Johnson’s algorithmwith job processing times given byAi−Ci= I1i andBi−Ci=
I2i. That is, in the higher-level problem, family i precedes family k in an optimal
sequence if min{I1i,I2k} ≤min{I1k,I2i}.

I1i

I2i

Figure 13.1 A two-machine schedule for a family containing four jobs.
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We can also analyze separable setups (see Section 10.3.4), for which the family
setup on machine 2 may take place before any job from the family completes its
work at machine 1. In this case, the solution is simplified because Johnson’s rule
holds within families and a two-level approach finds the optimal schedule under
the GT assumption.
Once again, as in the problems discussed earlier, we can relax the GT assump-

tion by permitting families to be split.

∎ Example 13.3 Consider a two-machine family scheduling problem consist-
ing of a two-job family and a one-job family, as described in the table. Suppose
that setups are attached and all setups require one time unit.

Job (i, j) (1, 1) (1, 2) (2, 1)

aij 1 5 3

bij 3 1 5

The example demonstrates that splitting families can be advantageous in the
two-machine flow shop. There are two GT solutions, but neither is optimal, as
shown in Figure 13.2.
We can expect that problems containing more than twomachines will usually

be much more difficult than the two-machine case, and heuristic methods will
often be appropriate.

1,1

GT solution 1–2

Machine 1

Machine 2

GT solution 2–1

Split solution

Machine 1

Machine 2

Machine 1

Machine 2

1,1

1,1

1,1

1,2

1,2

1,2

1,2

17

15

2,1

2,1

2,1

2,1

1,1

1,1

1,2

1,2

14

2,1

2,1

Figure 13.2 Three schedules for Example 13.3.
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13.3 Scheduling with Batch Availability

In the models considered thus far, grouping permits the adjacent processing of
several jobs in order to reduce the total number of setups. In these models, jobs
complete individually and become available for delivery one at a time. This
mode is sometimes called item availability. In contrast, under batch availabil-
ity, all the jobs in a batch become available at the same moment. Batch availa-
bility is characteristic of systems in which jobs are transported and delivered in
containers such as boxes, pallets, or trucks. For example, a key step in the man-
ufacture of printed circuit boards is often the insertion operation. Each board
has several components inserted into it (or mounted onto it) and is then placed
in a rack. When the number of boards in the rack reaches a certain level, the
operator stops production and transfers the rack to a subsequent operation.
The number of boards in the rack constitutes the batch size, in which transfers
occur, and the time required by the operator to check and move the rack
between stations plays the role of the setup time between batches.
Sequencing problems involving batch availability tend to be more difficult

than their analogs with item availability, and relatively few results exist. We look
first at the minimization of total flowtime when there is only one family. (The
Fw-problem, which is a generalization, is known to be NP-hard.)

∎ Example 13.4 Consider the F-problem for one family containing the six
jobs shown in the table below, with a setup time of s = 2. We omit the subscript
for family index because the problem contains only one family.

Job j 1 2 3 4 5 6

pj 1 2 4 5 6 10

If we schedule the jobs in this sequence and in batches of size 2, we can
describe the schedule in symbols as s12s34s56. The batches are described next.

Batch Jobs Completion

1 {1, 2} 5

2 {3, 4} 16

3 {5, 6} 34

In other words, two jobs complete at time 5, twomore complete at 16, and the
last two complete at 34. The total flowtime is F = 2(5) + 2(16) + 2(34) = 110.
For later reference, we provide an alternative expression for total flowtime. In

any schedule, batch i contains ni jobs, each of which completes at Ci, the
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completion time of batch i. Thus, at one level, we can think of total flowtime in
the form

F =
i

niCi 13 3

The batch completion time Ci, in turn, is the sum of the processing times
(including setup time) for each of the first i batches, or

Ci =
i

k = 1

s+ Pk 13 4

where Pk denotes the total processing time in the kth batch and where the
batches are indexed in the order of their appearance in sequence. The first batch
contributes to all of these Ci values, the second batch contributes to all but the
first, and so on. We can thus write total flowtime as follows:

F =
i

s+Pi n− n1 + n2+ + ni−1

Now suppose that e(i) denotes the index of the first job in batch i. Then, we
may rewrite this expression:

F =
i

s+Pi n−e i + 1 13 5

In our example, we have

F = 2 + 3 6 + 2+ 9 4 + 2+ 16 2

= 30 + 44 + 36

= 110

In the F-problem, some simplifications are possible. Most importantly, we can
limit consideration to SPT sequences.

∎ Theorem 13.6 In the F-problem with batch availability and one family,
there is an optimal schedule in which the jobs appear in nondecreasing order
of their processing times.

This property, which should not be surprising, is demonstrated by means of a
pairwise interchange: For any allocation of jobs to batches, we can retain the
number of setups and interchange a non-SPT pair without increasing F.
In light of Theorem 13.6, we can assume (as in our example above) that the

jobs are numbered according to SPT and that they appear in numbered
sequence in the optimal schedule. The problem becomes one of partitioning
the n jobs and forming batches.
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The search for an optimal schedule can be accomplished using a dynamic pro-
gramming approach that locates optimal partitions in the sequence of the n
jobs. Suppose that the schedule for the first (k − 1) jobs has been determined
and that it ends with the completion of a batch. Let G(k) denote the minimum
contribution to total flowtime from jobs k through n. This minimum value can
be found, in turn, by considering all possible sizes for the first batch in this
set. Thus,

G k =minj g k, j k < j ≤ n+ 1

where g(k, j) represents the minimum contribution to total flowtime from jobs k
through n when the first batch contains jobs k through (j − 1). In light of
Eq. (13.5), we have

g k, j = n−k + 1 s+ pk + pk + 1+ + pj−1 +G j 13 6

The recursion in Eq. (13.6) produces the optimal value of total flowtime as
G(1), starting the calculations with G(n + 1) = 0.
To illustrate the solution algorithm, we return to Example 13.4 and start with

G(7) = 0. The calculated values of g(k, j) are shown in Table 13.1. For instance,
we obtain the optimal size of the first batch from g(1, 3) as follows:

g 1, 3 = 6−1 + 1 2 + 1 + 2 +G 3 = 6 5 + 72 = 102

where G(3) = 72 had previously been calculated.
Retracing the steps leading to the optimal value will reveal that the optimal

schedule is s12s34s5s6.
A second property helps anticipate the structure of the solution and will be of

interest later on.

∎ Theorem 13.7 In the F-problem with batch availability and one family, the
batch sizes form a nonincreasing sequence.

Table 13.1

j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 G(k)

k = 6 — — — — — 12 12

k = 5 — — — — 28 36 28

k = 4 — — — 49 51 69 49

k = 3 — — 73 72 80 108 72

k = 2 — 92 89 93 107 145 89

k = 1 107 102 103 112 132 180 102
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Proof. Suppose that the optimal schedule S does not satisfy the theorem. Then
there must be a pair of adjacent batches i and k, with k following i, such that a,
the size of batch i, and b, the size of k, satisfy a ≤ (b − 1). Form schedule S by
moving the first job from batch k into batch i. Jobs not contained in these two
batches complete at the same time in S as in S, so their contributions to total
flowtime can be ignored. The one job moved between batches is accelerated by
the construction of S . Its flowtime is improved by the time required to set up
and process the other jobs of batch k in schedule S, which we may write as

Δ1 = s+ pk2+ + pkb

Meanwhile, the reallocation delays the completion of batch i and hence
each job remaining in it, by an amount equal to the processing time, pk1, of
the job that was moved. We can write the resulting increase in the total
flowtime as

Δ2 = apk1 ≤ b−1 pk1 ≤ pk2+ + pkb =Δ1−s

The last inequality holds because the jobs are in SPT order. Thus, Δ2 <Δ1, so
that the total flowtime of S is smaller than the total flowtime of S. At the outset,
we assumed that S was optimal, so this is a contradiction. Therefore, we must
have a ≥ b as provided in the theorem. □

We did not make use of Theorem 13.7 in the solution of our example prob-
lem, although it would allow us to skip some of the calculations tabulated ear-
lier. In particular, the calculations leading to g(2, 3) = 92 and g(1, 2) = 107 can be
skipped. In both cases, the leading batch of size 1 would be followed by a batch
of size 2, thus violating the nonincreasing property prescribed by the theorem.
When the jobs are all identical, some analytic simplifications are possible.

First, ignoring the integer requirement, the optimal number of batches is given
by the following expression:

k =
1
4
+
2np
s

−
1
2

where p denotes the common processing time. Then, the size of batch i is
given by

bi =
n
k
+

k + 1 s
2p

−
is
p

This formula reinforces the notion that the batch sizes are generally unequal
and (in the spirit of Theorem 13.7) nonincreasing in size.
Problems with multiple families and batch availability are somewhat more

complicated, and no general results have been developed. However, when the
GT assumption applies, two-level solutions exist.

13 Scheduling Groups of Jobs386



13.4 Scheduling with a Batch Processor

A batch processor can accommodate several jobs simultaneously, and all jobs
require the same amount of processing capacity. Batch availability is implicit
in its mode of operation. In a batch processing scenario, we usually let B denote
the capacity of the processor: This is the maximum number of jobs that can be
processed at any one time. We let p denote the time required to process the jobs
in any batch. This time is fixed and independent of the number of the jobs in the
batch, and we sometimes refer to a fixed batch processor. Once processing is
initiated on a batch processor, the batch cannot be interrupted, nor can other
jobs be started. Batch processors can be found in various settings. For example,
several layers of fabric are cut simultaneously on a cutting machine, several
printed circuit boards are tested simultaneously, and several gears are heat trea-
ted simultaneously. Transportation of items between workstations can also
occur in batches. We can view the cutter, tester, oven, or transporter as a batch
processor. By contrast, we call the processor in the single-machine model a dis-
crete processor, although we can also think of a discrete processor as a batch
processor with B = 1.
We briefly consider the case of n jobs simultaneously available for schedul-

ing on a batch processor. For any regular performance measure, it is desirable
to start processing at time zero and to use batches of the maximum possible
size for as long as possible. Such a schedule is called a full-batch schedule. The
composition of the batches is irrelevant if the performance measure isM or F,
and all full-batch schedules are optimal in these two cases. If the performance
measure is Lmax, a full-batch schedule is optimal if the jobs are initially
sequenced by EDD, and if the performance measure is Fw, a full-batch
schedule is optimal if the jobs are initially sequenced in nonincreasing order
of their weighting factors (sometimes called the VIP sequence). In what fol-
lows, we turn to scheduling problems for which the solutions may not be
so obvious.

13.4.1 Minimizing the Makespan with Dynamic Arrivals

Makespan minimization is obvious when all jobs are simultaneously available,
but a more interesting problem arises when dynamic arrivals occur. In the
dynamic single-machine problem, the optimal makespan is obtained by
sequencing the jobs according to earliest release date (ERD). In the case of
a batch processor, we first sequence the jobs by ERD and then assign jobs
to batches. An optimal assignment has the property that only the first batch
may need to be partially empty. This procedure is called the first-only-empty
(FOE) algorithm. Here, x denotes the smallest integer greater than or
equal to x.
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Algorithm 13.1 FOE Algorithm

Step 1. Let m = n/B and let k = n − B(m − 1).
Step 2. Assign jobs 1, 2, …, k to the first batch.
Step 3. Assign the remaining jobs, one at a time and in ERD order, to the first

batch with available capacity.
Step 4. Construct a detailed schedule by starting each batch at either the time its

last job arrives or the time the previous batch finishes.

The FOE algorithm produces an optimal makespan.

∎ Example 13.5 Consider the following set of n = 11 jobs, and suppose that
the capacity of the batch processor is B = 3, with p = 4.

Job j 1 2 3 4 5 6 7 8 9 10 11

rj 0 2 5 7 8 8 10 11 13 14 15

From Step 1 of the FOE algorithm, we calculate the number of batches asm =
4 and the size of the first batch as k = 2. Thus, the first two jobs make up the first
batch, and the remaining jobs are assigned to batches as follows, with starting
times shown:

Batch Jobs Start

2 {3, 4, 5} 8

3 {6, 7, 8} 12

4 {9, 10, 11} 16

The final batch starts at time 16, so the makespan must beM = 20. The opti-
mality of the FOE algorithm is proved next.

∎Theorem 13.8 In the batch processor scheduling model, the FOE algorithm
produces the minimum makespan.

Proof. For the purposes of this proof, let si denote the start time of the ith batch
in the schedule, and let m denote the number of batches. Obviously, if sm = rn,
then the theorem holds. This leaves us to consider the case of sm > rn, for which
we know that the last two batches are consecutive (by construction). Suppose
that the number of consecutive batches at the end of the schedule is denoted h,
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where h ≥ 2. Then we know that the first batch in this set is the only member of
the set that may not contain B jobs and it starts at the release date of its last job,
or sm−h+1 = rn−hB, so that job (n − hB) completes as early as possible. We also
know that job (n − hB) must appear in a different batch than job (n − hB +
B), which must appear in a different batch than job (n − hB + 2B). Thus, the
set of jobs from job (n − hB) to job n also completes as early as possible.
Prior to the last h batches, the problem decomposes, and we can apply a similar
argument to show that the set of remaining jobs completes as early as
possible. □

13.4.2 Minimizing Makespan in the Two-Machine Flow Shop

The two-machine flow shop problem with batch processors also has a relatively
straightforward solution. In this model, the two batch processors may differ, so
we use subscripts 1 and 2 to distinguish their respective capacities and proces-
sing times. From the perspective of the first machine, where all jobs are simul-
taneously available, it is desirable to use a full-batch policy. When we do so, the
completion time of the jth full batch onmachine 1 is simply jp1. This is the com-
pletion time as well for jobs (j − 1)B1 + 1 to jB1.
From the perspective of the second machine, jobs arrive dynamically and are

assigned to the second batch processor with the objective of minimizing Cmax

on the second machine. From our discussion of the FOE algorithm, we know
that all batches on machine 2, except possibly the first, should be full batches.
For trial makespanM to be feasible, the start time on machine 2 of the kth batch
from the end must be no later than s =M − kp2. This is also the start time for
jobs n − kB2 + 1 through n − (k − 1)B2. The last of these jobs appears onmachine
1 in batch number [n − (k − 1)B2]/B1 , which finishes at time f = [n − (k − 1)
B2]/B1 p1. Thus, for M to be feasible, we require that times s and f be compat-
ible; that is, s ≥ f, or

M−kp2 ≥ n− k−1 B2 B1 p1

M ≥ kp2 + n− k−1 B2 B1 p1

Thus, the makespan will be determined by the tightest of these inequalities,
so that

M =maxk kp2 + n− k−1 B2 B1 p1 13 7

where k = 1, 2, …, n/B2 .

∎ Example 13.6 Consider the problem of scheduling n = 18 jobs on two
machines. The jobs have the following characteristics.
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Machine i 1 2

Bi 5 3

pi 5 4

From Eq. (13.7), and considering k = 1, 2, …, 6, we have

M = max 24, 23, 27, 26, 30, 29 = 30

Thus the optimal makespan is 30, and the constraining batch is k = 5. The fifth
batch from the end on machine 2 contains jobs 4-6. Job 6 appears in the second
batch on machine 1 and therefore completes on machine 1 at time 10. The last
five batches on machine 2 then require total processing time of 20 even when
done consecutively, so the schedule cannot complete before time 30. Figure 13.3
displays the schedule and the number of jobs assigned to each batch, along with
selected batch completion times.

13.4.3 Minimizing Total Flowtime with Dynamic Arrivals

If all jobs are simultaneously available, as in the basic single-machine model,
then, as mentioned earlier, many of the single-machine results carry over to
the scheduling of a single-batch processor. In fact, the batch processor version
tends to be easier, because any full-batch schedule is optimal for several mea-
sures of performance. When we turn to the dynamic version of the model with
nonpreemptable jobs, we might expect that solutions are not as easy to find. In
the single-machine model, the dynamic versions of the F-problem, the Lmax-
problem, and the U-problem are all NP-hard. For the batch processor model,
there is some hope that solutions for these criteria can be found with limited
computational requirements.
A dynamic programming approach is available for the F-problem. For con-

venience, we address the problem of minimizing the sum of completion times,

5 5 5 3

3 3 3 3

30145

5 10

33

Figure 13.3 Optimal schedule for Example 13.6.
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which is equivalent to the F-problem in the sense that the performance mea-
sures differ by a constant. To simplify the decisions, it is sufficient to consider
initiating a batch either when a job arrives and the processor has been idle or
when a batch completes and at least one job is waiting. If we were given a sched-
ule in which a batch started at some other time, then we could shift that batch to
an earlier time and improve the schedule. As a consequence, we need only con-
sider schedules in which each batch starts either immediately after the previous
batch or at a job release date.
These observations permit us to think of scheduling as deciding whether to

initiate a batch when the processor has been idle and, if so, how many consec-
utive batches to run. Viewed in this light, scheduling decisions need be contem-
plated only at release dates. Thus, if there are n jobs, then there are at most n
times (corresponding to the values of the release dates rj) at which scheduling
decisions need to be made.
Let a(t) denote the number of available jobs waiting to be processed at time t,

and as before, let B and p denote the capacity of the processor and its processing
time, respectively. Suppose that we schedule h batches consecutively, starting at
time rj. In that case, the start time of the kth batch in that sequence is

tk = rj + k−1 p

and its size is

bk = min B, a tk

The value a(tk) must equal the sum of the number of jobs left behind by the
(k − 1)st batch and the number of jobs arriving between tk−1 and tk. Using this
recursive relation, we can write

a tk = a tk−1 −B + + i tk−1 < ri ≤ tk

where [x]+ = max{x, 0} and |X| denotes the number of elements in set X.
In order to implement the dynamic programming algorithm, take the pair (rj,

aj) as a state, where aj is shorthand for a(rj). Define the function G(rj, aj) as the
minimum sum of completion times for the state (rj, aj). Then, the dynamic pro-
gramming recursion takes the following form:

G rj,aj = min G rj+ 1, aj + 1 ,minh S j,h +G rj ,aj

where S(j, h) denotes the sum of completion times for the jobs contained in the
next h consecutive batches, rj denotes the first release date after the h consec-

utive batches complete, and aj denotes the number of available jobs waiting to

be processed at time rj . Expressed in symbols, we have

S j,h =
h

k =1

rj + kp bk
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rj = min ri ri > rj + hp

aj = a rj + hp + 1

The solution is found by calculating G(r1, 1), starting with the ending condi-
tion that G(rn+1, x) = 0 for any x. The computational effort for each state is at
worst linear in the number of jobs, n, and the total number of states cannot
exceed n2. Thus, the algorithm requires an effort of O(n3).

13.4.4 Batch-Dependent Processing Times

In the batch processor model, the processing times are typically a fixed constant,
whichwehavedenotedp. A slightlymorecomplicatedmodel allows thebatchpro-
cessing time to depend on the jobs assigned to the batch. Suppose that job j has a
distinct processing time, pj. When several jobs are assigned to a batch, the batch
processing time is the maximum processing time among its assigned jobs. This
generalization of the fixed batchmodel is motivated by the problem of scheduling
burn-in operations for electronic components, and we refer to it as the burn-in
model. Each component must be tested under high-temperature conditions for
a given lengthof time, called the burn-in time.Different component types canhave
different burn-in times. The number of components that can be tested simultane-
ously is often larger than the number of any one type that is available for testing, so
there is an incentive tomix component types in any test batch. The temperature is
common todifferent types, andnosignificantharmisdoneby testing a component
for longer than its required burn-in time. Therefore, the length of the batch run is
determined by the longest required burn-in time in the batch.
For the burn-in model, we can develop a solution algorithm for the F-problem

based on some dominance properties. First, suppose we have determined an
assignment of jobs to batches and numbered the batches from 1 to b. Batch
k has processing time Pk, which denotes the maximum processing time among
the jobs assigned to the batch. Also, let nk denote the number of jobs assigned to
batch k. With this notation we can write the performance criterion as

F =
b

k = 1

nk
k

i= 1

Pi 13 8

An alternative expression for the total flowtime follows from interchanging
the order of summation:

F =
b

i=1

Pi n−
i−1

j=1

nj 13 9

An adjacent batch interchange argument shows that in an optimal schedule,
the batches should be sequenced in nondecreasing order of Pk/nk.
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A second dominance property assumes that the jobs are numbered in SPT
order. Then it is possible to show that there is an optimal schedule in which
all batches contain consecutively numbered jobs. This property simplifies the
search for an optimum considerably. We can imagine the jobs listed in
sequence, and we can view the scheduling problem as deciding where the batch
boundaries should be placed among the (n − 1) possible locations.

∎ Example 13.7 Consider a burn-in problem containing the following set of
n = 8 jobs, and suppose that the capacity of the batch processor is B = 3.

Job j 1 2 3 4 5 6 7 8

pj 4 6 7 9 12 18 20 24

With eight jobs, we know that any schedule will necessarily have at least three
batches and as many as eight. The three-batch solutions, along with their F-
values, are listed below.

Batches Processing times Completion times F

{1, 2, 3}{4, 5, 6}{7, 8} 7, 18, 24 7, 25, 49 194

{1, 2, 3}{4, 5} {6, 7, 8} 7, 12, 24 7, 19, 43 188

{1, 2} {3, 4, 5} {6, 7, 8} 6, 12, 24 6, 18, 42 192

Similarly, we could enumerate the list of four-batch schedules, five-batch
schedules, and so on, up to a single eight-batch schedule. Any schedule added
to the list could be eliminated before evaluating its total flowtime if we encoun-
tered an adjacent pair of batches in conflict with the desired ordering of the ratio
Pk/nk. For example, consider the schedule made up of the batches {1} {2} {3, 4, 5}
{6, 7, 8}. The second batch has a ratio of 6, but the third batch has a ratio of 4.
Therefore, this schedule does not belong to the dominant set unless we inter-
change the second and third batches.
Although these two dominance properties limit the number of dominant

schedules, the set of undominated candidates may still be quite large. We
can take a branch-and-bound approach, based on the enumeration of partial
schedules. A partial schedule consists of a set of batches at the start of the sched-
ule. To this partial schedule, we append all possible batches. Admissible candi-
dates for the appended batch must (a) contain a set of consecutive jobs, (b)
contain at most B jobs, and (c) exhibit a Pk/nk ratio no smaller than that of
the last batch in the existing partial schedule. In our example, suppose we
had the partial schedule {1, 2} on hand and were considering admissible candi-
dates for the second batch. Batch {3} is admissible, but {3, 4} and {3, 4, 5} are not
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admissible because their Pk/nk ratios are smaller than the ratio of 5 for the batch
in the existing partial schedule. Conditions (a) and (b) prohibit any other batch
containing job 3, although batches without job 3 are admissible.
For any partial schedule, there is a contribution to the performance measure

from the jobs already scheduled. In addition, to pursue a branch-and-bound
approach, we need a lower bound on the contribution from the remaining jobs.
A straightforward way to obtain such a bound is to schedule the remaining jobs
on B parallel, discrete processors in SPT order. A batch processor with capacity
B is less flexible than B separate processors each with unit capacity, so the par-
allel-machine solution will always be at least as good as any potential batch
processor solution for the same job set.

13.5 Summary

We have examined two types of scheduling models involving groups of jobs. In
the family scheduling model, jobs belonging to the same family tend to be
scheduled together in order to avoid nonproductive setup time. In various
batching models, the several jobs assigned to the same batch are processed
together and share the same completion time.
Scheduling job families is evidently more complicated than scheduling

individual jobs, and only a few results for the basic single-machine model carry
over to scheduling families. Optimal schedules for the Lmax-problem and
the Fw-problem are direct generalizations in the case of the GT model.
However, the two-level approach at the heart of these generalizations has dis-
tinct limits.
In order for the two-level approach to work, there must be an efficient way of

sequencing jobs within families. (This would not be the case, for example, in the
T-problem.) In addition, the optimal sequencing within families must be inde-
pendent of the time at which the family begins processing. (This would not be
the case, for example, in the U-problem.) Without these properties, the two-
level approach will not lead to an efficient algorithm for optimization, although
it may provide a reasonable heuristic procedure. Little is known, however, about
the effectiveness of such two-level heuristic procedures.
In the general case, where the GT scheduling model does not apply, few

avenues seem to be available. While a dynamic programming formulation is
possible for the Lmax- and Fw-problems, even this approach is computationally
demanding. For the special case of total flowtime,Mason and Anderson (1991)
develop dominance conditions that are useful in enumerative search proce-
dures and in branch-and-bound procedures. Their computational experience
suggests that problems containing up to 30 jobs can be optimized with such
methods, although they point out that solution times are noticeably affected
by the size of setup times relative to processing times and by the number of
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families relative to the number of jobs. For the flow shop problem, general
methods such as tabu search and simulated annealing appear to offer the
best prospects for effective performance with reasonable computational
requirements.
Batch availability introduces the simplest form of job dependence in that all

jobs in the same batch complete at the same time. Few results have been
obtained for sequencing models with batch availability, and we highlighted
the F-problem as the one case that has received significant attention.
The more prevalent form of grouping into batches occurs in conjunction with

the scheduling of a batch processor. For static problems involving a single-batch
processor, solutions are often not difficult to find. Dynamic models, where jobs
are released intermittently, call for more sophisticated solution techniques, but
dynamic programmingmethods appear to work well. The burn-inmodel, which
introduces the feature of batch-dependent processing times, gives rise to a dif-
ficult class of problems in the batch processing category. Uzsoy (1994)
addressed a version of this model in which the jobs have different capacity
requirements and showed that the makespan and total flowtime problems
are both NP-hard.

Exercises

13.1 Consider the problem of scheduling twelve jobs that belong to three
families, assuming that the GT assumption applies. In the following
table, the family is denoted fj, the setup time is denoted sj, the processing
time is denoted pj, and the due date is denoted dj.

Job j 1 2 3 4 5 6 7 8 9 10 11 12

fj 1 1 1 1 2 2 2 3 3 3 3 3

sj 5 5 5 5 8 8 8 2 2 2 2 2

pj 6 16 80 61 97 12 55 23 32 46 55 67

dj 26 33 137 157 75 52 162 65 136 81 30 121

a) Find the optimal GT schedule for the F-problem.
b) Find the optimal GT schedule for the Lmax-problem.

13.2 Consider the problem of scheduling four families with item availability,
where family i requires a setup time. Each family contains three jobs. The
objective for scheduling is to minimize total job completion time.
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Setup time

Processing times

Job 1 Job 2 Job 3

Family 1 5 5 11 8

Family 2 10 6 5 3

Family 3 8 3 5 7

Family 4 2 12 15 4

a) If no setup times existed, what would be the optimal value of the
objective?

b) What is the optimal GT schedule and the corresponding value of the
objective?

c) Suppose the GT assumption in (b) is relaxed. What is the optimal
schedule and the corresponding value of the objective?

13.3 Consider the problem of scheduling n families with batch availability,
where family i requires setup time si. Suppose that the GT assump-
tion holds.
a) Describe how to construct an optimal schedule for the F-problem.
b) Describe how to construct an optimal schedule for the Lmax-problem.

13.4 Consider the GT scheduling model with the criterion of minimizing the
maximum cost, where each job’s cost function is a nondecreasing func-
tion of completion time.
a) Devise an algorithm that will find an optimal schedule.
b) Determine the computational effort required to execute the algo-

rithm in (a).

13.5 Consider the problem of scheduling n simultaneously available jobs on a
single machine with a fixed batch processor. For each of the following
performance measures, describe and justify a full-batch schedule that
will provide an optimal solution.
a) Total flowtime.
b) Total weighted flowtime.
c) Maximum lateness.
d) Maximum weighted lateness.
e) Number of tardy jobs.

13.6 Consider a burn-in problem containing the following set of n = 10 jobs,
and suppose that the capacity of the batch processor is B = 3.
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Job j 1 2 3 4 5 6 7 8 9 10

pj 2 5 7 8 8 10 11 13 14 15

a) Find the optimal schedule for the F-problem and the corresponding
total flowtime.

b) Repeat (a) for a capacity of B = 4.

13.7 Consider the lower-level sequencing problem in the two-machine flow
shop model with groups of jobs and attached setups.
a) Show that, without loss of generality, we can take the group setup

time on machine 1 to be s1 = 0 (for convenience, we omit the family
index and index the jobs by Johnson’s rule).

b) Prove that Johnson’s rule applies to all jobs after the first.
c) Suppose we consider shifting job s (s 1) to the first position. Show

that there is no incentive to do so if a1 ≤ as.
d) Show that there is no incentive to shift job s unless it belongs to V as

defined in Algorithm 10.2 (that is, unless as > bs).
e) Show that there is no incentive to shift job s if s2 + bs ≤ as.
f) Show that adding a job can reduce the optimal makespan.

13.8 Consider the problem of scheduling families of jobs in a two-machine
flow shop with a GT policy. Prove that an optimal solution exists where
the sequence within each family is given by the lower-level optimum.
(Hint: Recall from the discussion in this chapter that this solution max-
imizes the body of each family and thus minimizes the run-in and the
run-out times.)
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14

The Job Shop Problem

14.1 Introduction

The classical job shop scheduling problem differs from the flow shop problem in
one important respect: The flow of work is not unidirectional. The elements of
the problem are a set of mmachines and a collection of n jobs to be scheduled.
Each job consists of several operations with the same linear precedence struc-
ture as in the flow shop model. Although a job can have any number of opera-
tions, the most common formulation of the job shop problem specifies that each
job has exactlym operations, one on eachmachine. It is not difficult, however, to
adapt the main ideas to general cases in which a job visits the same machine
more than once or skips some machines. Because the workflow in a job shop
is not unidirectional, we can think of each machine in the shop as having the
input and output flows of work shown in Figure 14.1. Unlike the flow shop
model, there is no initial machine that performs only the first operation of a
job, nor is there a terminal machine that performs only the last operation of
a job.
In the flow shop, machine k performs the kth operation of any job, and there is

no need to distinguish between operation number and machine number. In the
job shop, by contrast, it is appropriate to describe an operation with a triplet (i, j,
k) to denote that for job i, operation j requires machine k. A problem setting can
then be described by listing the processing times of all operations identified by
such triplets.
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∎ Example 14.1 Consider a four-job, three-machine job shop problem with
the following processing times.

Job 1 Job 2 Job 3 Job 4

Operation pijk Operation pijk Operation pijk Operation pijk

Machine 1 (1, 1, 1) 4 (2, 2, 1) 4 (3, 3, 1) 3 (4, 3, 1) 1

Machine 2 (1, 2, 2) 3 (2, 1, 2) 1 (3, 2, 2) 2 (4, 1, 2) 3

Machine 3 (1, 3, 3) 2 (2, 3, 3) 4 (3, 1, 3) 3 (4, 2, 3) 3

Alternatively, we may use the pair (i, j) to denote the jth operation of job i and
a separate routingmatrix k(i, j) to represent the machine required by operation
(i, j). Table 14.1 provides the data for Example 14.1 in the alternative format: (a)
operation processing times and (b) operation machine assignments. The set of
machine assignments for a given job constitutes its routing. For example, job 2
has a machine routing of 2-1-3.

Arriving
jobs

Leaving
jobs

Machine
k

In-process jobs In-process jobs

Figure 14.1 Workflow in a job shop.

Table 14.1

(a) Processing times (b) Routings

Operation Operation

1 2 3 1 2 3

Job 1 4 3 2 Job 1 1 2 3

Job 2 1 4 4 Job 2 2 1 3

Job 3 3 2 3 Job 3 3 2 1

Job 4 3 3 1 Job 4 2 3 1
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Aside from routings, the job shop model reflects the same assumptions that
apply in the flow shop model. To complete a problem statement, we must spec-
ify a performance measure. The problem is then one of constructing a feasible
schedule that optimizes the performance measure.
A graphical description of the job shop problem contains the jobs and a Gantt

chart to be filled in. The graphical job description of Example 14.1 is given in
Figures 14.2 and 14.3. Figure 14.2a consists of a collection of rectangles, each
with a job–operation–machine triplet. The length of the rectangle is equal to
the processing time of the corresponding operation, using the scale of the Gantt
chart. The sequential numbering of operations for a given job indicates the
operation sequence.
If we place the operation rectangles as compactly as possible on the Gantt

chart in some arbitrary fashion, as in Figure 14.2b, the chart describes the work-
load for each machine but is unlikely to represent a valid schedule. A feasible
schedule is shown in Figure 14.3a. A schedule is a feasible resolution of the
resource constraints when no two operations ever occupy the same machine
simultaneously. Another requirement is feasible resolution of the logical con-
straints, which means that all operations of each given job can be placed on
a time axis in precedence order without overlapping. A graphical display of this
property is shown in Figure 14.3b.
When we examined the flow shop problem in Chapter 10, it appeared at first

glance that we might need to examine (n!)m schedules in the search for an opti-
mum. Subsequently, we found that, for large problems, the subset of permuta-
tion schedules was likely to contain very good solutions even if it could not be
guaranteed to contain an optimum. In a sense, the first step in analyzing the job

Job 1

(a)

(b)

111 122 133

233221212

313

412

111 221 331 431

412322212122

133 233 313 423

423 431

322 331

Job 2

Job 3

Job 4

Machine 1

Machine 2

Machine 3

Figure 14.2 Job and machine requirements in Example 14.1.
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shop model is to locate a similar “very good” subset for more detailed explora-
tion. This subset should be straightforward to construct and as small as possible.
Section 14.2 discusses such a subset of schedules, and Section 14.3 describes
how to generate the schedules of this subset systematically. Section 14.4
describes a procedure for solving the job shop problem with the makespan cri-
terion. Section 14.5 addresses neighborhood search techniques.

14.2 Types of Schedules

In principle, the number of feasible schedules for any job shop problem is infi-
nite, because we can insert an arbitrary amount of idle time between adjacent
pairs of operations. Once we specify the operation sequence for each machine,
however, this kind of idle time cannot be helpful for any regular measure of per-
formance. Rather, it is desirable to schedule the operations as compactly as pos-
sible. Superfluous idle time exists in a schedule if we can begin some operation
earlier in time without altering the sequence on any machine. Adjusting the
start time of some operation in this way is equivalent to moving an operation

(a)

(b)

221

212

313 423

111

212

313

412 423 431

322 331

221 233

122 133

412 322

111 431 331

Job 1

Job 2

Job 3

Job 4

Machine 1

Machine 2

Machine 3

122

133233

Figure 14.3 Two views of a feasible schedule for Example 14.1.
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rectangle to the left on the Gantt chart while preserving the rest of the schedule.
This type of adjustment is thus called a local left-shift. Given an operation
sequence for each machine, there is only one schedule in which no local left-
shift is possible – a schedule in which every operation starts as early as possible
for the given sequence. The set of all schedules in which no local left-shift is
possible is called the set of semiactive schedules and is equivalent to the set
of all schedules containing no superfluous idle time. This set dominates the
set of all schedules, which means that it is sufficient to consider only semiactive
schedules when we want to optimize any regular measure of performance.
The number of semiactive schedules is at least finite, although it may well be

quite large. The exact number is usually difficult to determine. For the classical
job shop problem, in which each job has exactly one operation on eachmachine,
each machine must process n operations. The number of possible sequences is
therefore n! for each machine. If the sequences on each machine were entirely
independent, there would be (n!)m semiactive schedules. However, the prece-
dence structure and machine routing for each job usually render some of the
potential combinations infeasible.

∎ Example 14.2 Consider a two-job, two-machine job shop problem with the
following routings.

Operation

1 2

Job 1 1 2

Job 2 2 1

Although (n!)m = 4 in this case, there are only three semiactive schedules that
are feasible. It is sometimes helpful to use a network model to represent the
feasibility conditions in a job shop problem. Figure 14.4a displays the four
operations of Example 14.2, with arcs denoting the precedence structures
within each job’s sequence of operations. We label each node with the pair

(a) (b)

1, 1 1, 2

2, 1 2, 2

1, 1 1, 2

2, 1 2, 2

Figure 14.4 Network representation of Example 14.2.
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(i, j) to denote the jth operation of job i. Using the routingmatrix of the example,
we draw a dotted arc between pairs of nodes corresponding to the same
machine. Thus, in Figure 14.4b, operations (1, 1) and (2, 2) are connected this
way, as are operations (2, 1) and (1, 2). We call these disjunctive arcs, whose
direction remains undetermined. The construction of a schedule ultimately
sequences the operations that require a givenmachine. This construction deter-
mines the direction of the disjunctive arc, in effect by choosing a precedence
relation consistent with the sequence.
Figure 14.5 shows all four ways of resolving the directions of the disjunctive

arcs in Example 14.2. Three of these are feasible, but the fourth, shown in
Figure 14.5d, is infeasible. One way to identify infeasibility is to locate a cycle
in the network. In this instance, no operation in the network of Figure 14.5d
is initially schedulable because each operation has a predecessor.
Once we have chosen directions for the disjunctive arcs and obtained a fea-

sible schedule, we can schedule the operations from left to right (in time
sequence). An unscheduled operation is schedulable if all of its predecessors
are already scheduled. At each stage we identify the schedulable operations
and place one of them into the schedule as early as possible, without violating
any precedence relations. Then we repeat the process until all operations have
been scheduled. The resulting schedule is semiactive.
When makespan is the criterion of interest, computing its value is equivalent

to finding the longest path in the precedence network after all disjunctive arcs
have been resolved. This path is known as the critical path, and the operations
on it are called critical. In Example 14.2, if all the operations are of length 1, then
the schedule corresponding to Figure 14.5a will have length 2, while the other
two feasible schedules will have length 4. In this instance, all operations are

(a) (b)

1, 1 1, 2

2, 1 2, 2

1, 1 1, 2

2, 1 2, 2

(c) (d)

1, 1 1, 2

2, 1 2, 2

1, 1 1, 2

2, 1 2, 2

Figure 14.5 Alternative resolutions of disjunctive arcs in Example 14.2.
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critical in all three schedules. This particular schedule also demonstrates that
there may be two or more critical paths in parallel. Each such critical path con-
sists of a chain of operations with precedence constraints between them and no
idling between successive operations. If the longest path did not involve prec-
edence constraints between consecutive operations, we could shorten it by pro-
cessing these operations in parallel. A critical path must start on some machine
where one or more critical operations are performed consecutively. Then,
unless the critical path is defined by a single machine, the critical path shifts
to another machine, where again one or more operations are critical. Similar
shifts of the critical path may occur downstream (including shifts back to a
machine that was already on the critical path). Consecutive operations on the
critical path that are processed on the same machine constitute blocks. Each
block has one or more operations and each operation belongs to one block.
If all blocks have a single operation, the makespan must equal the time to finish
one job, and therefore it must also be optimal. Otherwise, there must be at least
one block of consecutive operations on the critical path that are processed on
the same machine. If the critical path is defined by a single machine, there is
exactly one such block, and the makespan is again optimal. Accordingly, we
generally assume that the critical path has more than one block and at least
one of these blocks has more than one operation.
Larger versions of the job shop problem also have the feature that (n!)m tends

to overstate the number of feasible schedules. For instance, in terms of prece-
dence relationships, our two-job Example 14.2 is contained in the four-job,
three-machine problem of Example 14.1, so the number of semiactive schedules
in that problem must certainly be smaller than (4!)3. Again, the main point is
simply that the number of semiactive schedules is finite, albeit quite large. For-
tunately, it is possible to find a dominant subset among the semiactive
schedules.
In a semiactive schedule, the start time of a particular operation is constrained

either by the processing of a different job on the same machine or by the pro-
cessing of the directly preceding operation on a different machine. In the former
case, when the completion of an earlier operation on the same machine is con-
straining, it may still be possible to find obvious means of improvement. Sup-
pose, in Example 14.1, that the job sequence 4-3-2-1 is used at each machine.
The associated semiactive schedule is displayed in Figure 14.6a. Although no
local left-shifts are possible in this schedule, we can easily make an improve-
ment. For instance, we can start operation (1, 1) earlier than at time 18 without
delaying any other operation. In fact, we can start operation (1, 1) at time 0, and
the remaining operations of job 1 can also be started earlier without delaying
any of the other operations. On the Gantt chart, such an alteration would cor-
respond to shifting operation (1, 1) to the left and beyond other operations
already scheduled on machine 1. This type of adjustment – in which we alter
the sequence and begin some operation earlier, without delaying any other
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operation – is called a global left-shift. The set of all schedules in which no global
left-shift is possible is called the set of active schedules. It is clearly a subset of
the set of semiactive schedules.
Just as the set of semiactive schedules dominates the set of all schedules, so the

set of active schedules dominates the set of semiactive schedules. In other
words, when optimizing any regular measure of performance, we need to con-
sider only active schedules. The number of active schedules is a function of both
the routings and the processing times in a given problem, but the number of
semiactive schedules is a function of only the routings. Whereas one semiactive
schedule corresponds to each feasible combination of machine sequences, as
discussed previously, we can often transform several semiactive schedules into
the same active schedule through a series of global left-shifts.
In addition, we can often transform a given semiactive schedule into several

different active schedules by a series of global left-shifts. For example, suppose
we left-shift the operations in Figure 14.6a as far as possible, in the job order 3-2-
1. (We cannot left-shift the operations of job 4 at all.) The active schedule that
emerges is shown in Figure 14.6b and has a makespan of 18. Alternatively, sup-
pose we left-shift the operations in the job order 1-2-3. The active schedule that
results is shown in Figure 14.6c and has a makespan of 15.
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Figure 14.6 Four feasible schedules for Example 14.1.
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The number of active schedules tends to be large, and it is sometimes con-
venient to focus on a smaller subset called the nondelay schedules. In a nonde-
lay schedule, no machine is kept idle at a time when it could begin processing
some operation. For example, in Figure 14.6b, machine 1 remains idle at time 5
when it could start on operation (3, 3). Therefore, the schedule in Figure 14.6b
is not a nondelay schedule. If the job sequence on machine 1 were changed to 1-
3-2-4, then we would obtain a nondelay schedule (see Figure 14.6d). By exam-
ining the idle intervals in Figure 14.6c, we can determine that the schedule
shown there is also not a nondelay schedule. This particular schedule shows
that there may be alternatives in constructing a nondelay schedule from a given
active schedule.
All nondelay schedules are active schedules because they allow no left-shift-

ing. On the other hand, many active schedules are not nondelay schedules.
Therefore, the number of nondelay schedules can be significantly less than
the number of active schedules. Our dilemma is that there is no guarantee that
the nondelay subset will contain an optimum.
In summary, active schedules are generally the smallest dominant set in the

job shop problem. Nondelay schedules are smaller in number but not dominant.
Nevertheless, we can usually expect the best nondelay schedule to provide a very
good solution, if not an optimum. In a sense, the role of the nondelay schedules
is similar to the role of permutation schedules in large flow shop problems:
Although the set is not always dominant, it tends to produce a solution close
to the optimum.

14.3 Schedule Generation

Procedures for generating schedules are fundamental to both optimal and heu-
ristic solution techniques for job shop problems. Depending on how we deter-
mine operation start times, we can classify a generating procedure as a single-
pass mechanism or an adjusting mechanism. In a single-pass procedure, we fix
the start time of an operation permanently the first time it is assigned. Thus, a
single pass through the list of operations generates a full schedule. In an adjust-
ing procedure, we may reassign some start times as we add subsequent opera-
tions to the schedule. On the one hand, adjusting procedures seem to resemble
the way schedulers develop manual solutions to a job shop problem – that is,
revising the information on a Gantt chart. On the other hand, such revisions
are essentially neighborhood search techniques. As such, they tend to work best
when they are based on good initial schedules. Single-pass mechanisms can be
used to create such initial schedules and are useful even if we intend to revise the
schedule later. Furthermore, restricting attention to single-pass procedures is
not a severe limitation in theory because for any given schedule (even an optimal
one), some single-pass procedure is capable of producing it.
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An important class of single-pass procedures for generating schedules
is the class of dispatching procedures. As discussed in earlier chapters,
dispatching has the property that we can execute the actual decisions
affecting a given machine in the same order that they are made. This means
that we do not have to determine scheduling decisions all at once, but
only as they are needed. In the job shop problem, a scheduling
decision is usually needed whenever a machine becomes idle. The decision
is either to leave the machine idle or else to begin processing one of the
operations waiting for it. With a dispatching procedure, we can
postpone making this type of decision as long as possible, in order to take
into account the latest shop data. For this reason, dispatching procedures
are rather common in practice, where they can easily adapt to dynamic
job arrivals, machine breakdowns, and other factors that affect shop status
over time.
Dispatching procedures are single-pass procedures in two respects. Not only

do they make one pass through the list of operations, assigning an irrevocable
starting time to each, but they also make one pass in time from the beginning
of the schedule to the end. They construct the schedule left to right on the
Gantt chart. A different kind of single-pass approach, for example, would
be a job-at-a-time procedure. This type of mechanism makes a single pass
through the operations, job by job. It schedules all the operations of a given
job before proceeding to schedule the operations of other jobs. Such an
approach makes one pass through the list of operations, but several passes
in the time dimension.
Schedule generation procedures treat operations in an order that is con-

sistent with the precedence relations of the problem. In other words, no
operation is considered until all of its predecessors have been scheduled.
Once we schedule all the predecessors of an operation, that operation
becomes schedulable, regardless of the time at which the next decision is
required. Generation procedures operate with a set of schedulable opera-
tions at each stage, determined simply from precedence structure. The num-
ber of stages for a one-pass dispatching procedure is equal to the number of
operations, or nm. At each stage, the operations that have already been
assigned starting times make up a partial schedule. Given a partial schedule
for any job shop problem, we can construct a unique set of schedulable
operations. Let

PS(k) = a partial schedule containing k scheduled operations
SO(k) = the set of schedulable operations at stage k, corresponding to a
given PS(k)

sj = the earliest time at which operation j SO(k) could be started
fj = the earliest time at which operation j SO(k) could be finished

For convenience, we use the single subscript j as an operation index.
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For a given active partial schedule, the potential start time for schedulable
operation j, denoted sj, is determined by the completion time of the direct
predecessor of operation j and the latest completion time on the machine
required by operation j. The larger of these two quantities is sj. The
potential finish time fj is simply sj + pj, where pj is the processing time of oper-
ation j.
A systematic approach to generating active schedules works as follows.

Algorithm 14.1 Active Schedule Generation

Step 1. Let k = 0 and begin with PS(k) as the null partial schedule. Initially, SO(k)
includes all operations with no predecessors.

Step 2. Determine f∗ =minj SO(k){fj} and the machine m∗ on which f∗ could be
realized.

Step 3. For each operation j ϵ SO(k) that requires machinem∗ and for which sj <
f∗, create a new partial schedule in which operation j is added to PS(k) and
started at time sj.

Step 4. For each new partial schedule created in Step 3, update the data set as
follows:

a) Remove operation j from SO(k).
b) Form SO(k + 1) by adding the direct successor of j to SO(k).
c) Increment k by one.

Step 5. Return to Step 2 for each partial schedule created in Step 3 and updated
in Step 4, and continue in this manner until all active schedules have been
generated.

The key condition that yields active schedules is the inequality sj < f∗,
employed in Step 3. By definition of f∗, it is impossible to add to PS(k)
any operation that completes prior to f∗. In addition, any schedule that con-
tained PS(k) and left machine m∗ idle through time f∗ would not be an active
schedule, because some schedulable operation could be left-shifted into that
idle interval. For the next scheduling decision, then, machine m∗ must be
assigned some processing prior to f∗. The possibilities to be explored are
operations j requiring machine m∗ and for which sj < f∗ (including the job
by which f∗ was defined). If m∗ is not unique, then we must extend Step
3 to every operation that requires the use of one of the machines associated
with f∗.
To illustrate how Algorithm 14.1 generates partial schedules, consider Exam-

ple 14.1. Suppose that we reach stage k = 6 with PS(6) as the partial schedule
shown in Figure 14.7. It follows that
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SO 6 = 1, 2 , 2, 2 , 3, 3 , 4, 3

f ∗ = min f12, f22, f33, f43 = min 9, 10, 8, 7 = 7

m∗ = 1

Thus, we must assign some operation to machine 1 and start work on it prior
to time f∗ = 7.
For machine 1, s22 = 6, s33 = 5, and s43 = 6. Since each of these three potential

start times is less than f∗, we can form three active partial schedules for stage k =
7. These correspond to the following:

1) Start (2, 2) at time 6; SO(7) = {(1, 2), (2, 3), (3, 3), (4, 3)}.
2) Start (3, 3) at time 5; SO(7) = {(1, 2), (2, 2), (4, 3)}.
3) Start (4, 3) at time 6; SO(7) = {(1, 2), (2, 2), (3, 3)}.

The third partial schedule on this list is contained in the full schedule shown
in Figure 14.6b.
We can modify the structure of Algorithm 14.1 in Steps 2 and 3 so that it gen-

erates only nondelay schedules. Instead of identifying the earliest potential fin-
ish time in Step 2, we identify the earliest possible start time. Then, in Step 3, we
consider only those alternatives in which an operation begins at this time. In our
example, we generate only one nondelay schedule for stage k = 7:

Start 3, 3 at time5; SO 7 = 1, 2 , 2, 2 , 4, 3

That is one of the alternatives among the active schedules, but the other alter-
natives involve delaying machine 1 while work is available.
Algorithm 14.1 illustrates a tree-structured approach to schedule generation.

The nodes in the tree correspond to partial schedules, and each time a new
operation is added to a partial schedule, the algorithm proceeds from one level
of the tree to the next. If we construct the tree in its entirety, then it enumerates
all active schedules (or all nondelay schedules if we modify the algorithm

1

4 3 2

43

Figure 14.7 A partial schedule for Example 14.1.
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accordingly). The enumeration tree could be the basis for an optimum-seeking
approach using branch and bound. Unfortunately, in moderate-sized job shop
problems, the computational effort of typical branch-and-bound applications
based on this enumeration tree is quite demanding.
In contrast to an optimizing procedure, a suboptimal approach that generates

only one complete schedule might entail a light computational effort even in
very large problems. In Step 3 of the generation procedure, we create several
branches in the tree of partial schedules, identifying all conflicts at a given
machine. An enumeration procedure must resolve these conflicts in all possible
ways at each stage. By contrast, a heuristic procedure that is designed to gen-
erate only one schedule can resolve a conflict in just one way. This means that
the procedure must specify a rule for selecting one operation from among the
conflicting operations. For a given priority rule R, Algorithm 14.1 can be
adapted as a heuristic procedure by altering Step 3 as follows.

Step 3. For each operation j SO(k) that requires machinem∗ and for which sj <
f∗, calculate a priority index according to a specific priority rule. Find the
operation with the smallest index and add this operation to PS(k) as early
as possible, thus creating only one partial schedule, PS(k + 1), for the
next stage.

The remaining problem is to identify an effective priority rule. To suggest the
kinds of information that can be used effectively, the following list contains
some common priority rules:

SPT (shortest processing time): Select the operation with the minimum proces-
sing time.

FCFS (first come first served): Select the operation that arrived at the machine
earliest.

MWKR (most work remaining): Select the operation associated with the job
having the most work remaining to be processed.

LWKR (least work remaining): Select the operation associated with the job hav-
ing the least work remaining to be processed.

In makespan problems, research studies tend to find that no single priority
rule dominates all others, although the most successful rules are often those
favoring jobs with much processing remaining. The MWKR rule and similar
priority schemes often produce a good makespan. (In Example 14.1, MWKR
produces a makespan of only 14.) The SPT rule sometimes produces good sche-
dules, too. When relatively simple priority rules such as these are in effect, non-
delay dispatching tends to be better than active dispatching for generating
heuristic schedules. In stochastic cases, nondelay scheduling is even more
attractive because we prefer to process an available job rather than leave a
machine idle and wait for the arrival of another job that is subject to random
delays.
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When the criterion is total flowtime, SPT and LWKR are usually more effec-
tive than other rules, and, again, nondelay dispatching tends to perform better
than active dispatching.
Research experiments have demonstrated that schedule generation based on

priority dispatching rules is a practicable method of finding good solutions to
job shop problems, although, of course, optimal solutions cannot be guaranteed.
This line of research supports the use of nondelay schedules as a basis for sched-
ule generation, rather than the set of active schedules. For makespan problems,
the most suitable priority assignments seem to favor jobs with a heavy
unprocessed workload, while for total flowtime problems, the most suitable
assignments seem to favor jobs with a light unprocessed workload. These
tendencies are in line with our observations for parallel machines, where SPT
minimizes total flowtime but LPT is effective in reducing the makespan.
For criteria other thanmakespan and total flowtime, the study of priority rules

for the static job shop model has been limited. Most of our knowledge about
priority rules has come from studies of the dynamic job shop model, which
we examine in the next chapter.

14.4 The Shifting Bottleneck Procedure

Perhaps the most effective optimization algorithm for minimizing the make-
span in the job shop problem is the shifting bottleneck procedure. (We shall
see where its name comes from as we examine its detailed structure.) Essen-
tially, this procedure is a branch-and-bound solution that employs especially
powerful bounds by focusing on the machines that are most likely to dictate
theminimal solution. Furthermore, these bounds are relatively easy to compute.
The algorithm has also been adapted as a heuristic procedure, which calls for

scheduling one machine at a time. At any stage of the procedure, we have a set X
of machines already scheduled, along with its complement, X . We select a
machine from the set X and schedule all of its operations, allowing it to be
moved to set X. This step allows us to revise the information pertaining to
the other machines in X , and then, based on this information, we select the next
machine to schedule. We then repeat the process iteratively until all machines
are scheduled. Selecting the machine to schedule next is obviously a key feature
of the procedure.

14.4.1 Bottleneck Machines

For background, we draw on the solution of the “head–body–tail” (HBT) prob-
lem for a single machine. The HBT model occurs as a subproblem when we
implement the shifting bottleneck approach. As presented in Chapter 8, the
HBT model involves n jobs, with each job characterized by a release date (ri),
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a processing time (pi), and a delivery time (qi). The problem requires sequencing
the jobs on one machine to minimize the latest delivery time. In Chapter 8, we
also outlined a multimachine interpretation of the same model, in which ri
represents time spent at earlier operations in the shop and qi represents time
spent at later operations.
Although the HBT problem is NP-hard, it is possible to solve relatively

large versions of the problem by using an algorithm due to Carlier (1982).
Moreover, an effective heuristic procedure, known as the largest tail (LT)
procedure, is available for this problem. The LT procedure was introduced
in Algorithm 8.1.
We use the HBTmodel in two ways. First, when we select a machine from set

X, we schedule its operations by solving the HBT problem corresponding to the
selected machine. (Strictly speaking, we sequence the operations on that
machine by resolving its disjunctive arcs in a feasible manner.) Second, for each
machine remaining in set X , we solve a derived HBT problem in order to deter-
mine which machine is most critical. A machine is critical if the solution to its
HBT problem is maximal among the machines in X . This machine is called the
bottleneck machine because it tends to constrain the overall length of the job
shop schedule, given the scheduling commitments already made.
Consider a particular machine k in the job shop problem. Suppose that (i, j)

denotes an operation that takes place on that machine. All n jobs will ultimately
be processed on machine k, even though the jobs require processing elsewhere.
We can think of the information about the n jobs, with respect to machine k, as
comparable with the three job parameters in the HBT model, and we use this
information to construct a derived HBT problem. First, for each job i, there is an
earliest possible time at which it could be released for processing on machine k.
Before any scheduling has been done, this time is simply the sum of all the oper-
ation times for job i, over all the predecessors of operation j, as if all such opera-
tions were on nonbottleneck machines. This time interval plays the role of the
release date in the derived HBT problem. Second, the processing time for oper-
ation (i, j) plays the role of the processing time in the derived HBT problem.
Third, after operation (i, j) completes, there is a minimum amount of time still
required to finish the job. This time is simply the sum of all the operation times
for job i, over all the successors of operation j, as if all such operations were on
nonbottleneck machines. In symbols, the derived problem will have the follow-
ing parameters for operation (i, j):

ri =
u < j

piu

pi = pij

qi =
u > j

piu
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Next, suppose we solve the derived problem and obtain a value for the latest
delivery time, denoted Mk. If Mk is the optimal solution to the derived HBT
problem, then Mk is a lower bound on the optimal makespan of the job shop
problem because the HBT formulation assumed optimistic conditions about
the predecessors and successors of operation (i, j). In particular, those opera-
tions were all assumed to be processed on nonbottlenecks. Among all m
machines, the largest of the HBT solution values provides an even stronger
bound. Let b denote the machine k on which the largestMk occurs. In symbols,
our lower bound becomes Mb =maxk{Mk}. Machine b is called the bottleneck
machine.

14.4.2 Heuristic and Optimal Solutions

To the extent that we are simply trying to identify a bottleneckmachine, we may
want to save time and solve the various derived HBT problems by using some
heuristic method, such as the LT procedure. Only if we wish to compute lower
bounds in the process would we need to use an optimizing method for the
derived HBT problems.
Having identified a bottleneck machine, we next want to schedule its opera-

tions. More specifically, we want to resolve the disjunctive arcs corresponding
to all the operations that require the bottleneck machine. In other words, we
want to specify the sequence of operations on the bottleneck machine. This
sequence is provided by the solution of the derived HBT problem that gave rise
to Mb.
After we remove the bottleneck machine from set X and sequence its

operations, we can update the parameters of the derived HBT model for
machines remaining in X . First, consider how the derived parameter ri
might be affected. Initially, we set ri equal to the sum of the operation
times for job i prior to the given machine, a sum that we can think of
as the longest path from the start of the network to node (i, j), with dis-
junctive arcs ignored. After some disjunctive arcs have been resolved, we
can still think of ri as longest such path, but its value may have increased
by the resolution of certain disjunctive arcs in the sequencing of the bot-
tleneck machine.
We treat the derived parameter qi in an analogous fashion. Initially, we set qi

equal to the length of the longest path to the end of the network from node (i,
j), again with disjunctive arcs ignored. The sequencing of the bottleneck
machine resolves certain disjunctive arcs that may increase the length of this
path.
Therefore, each time we identify a bottleneck machine and sequence

its operations, we update the longest path calculations that give rise
to the ri and qi parameters of HBT problems for machines remaining
in X . Once this updating process is complete, we can proceed to the next
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iteration and find a new bottleneck machine. Repeating this procedure m
times will resolve all disjunctive arcs and allow us to build a complete
schedule.
When used as a heuristic method, the shifting bottleneck procedure

requires a subroutine for solving derived HBT problems and a criterion
for designating a bottleneck machine. The subroutine could be as simple
as the LT procedure, or it could be a full-fledged optimization
algorithm. Similarly, the bottleneck criterion could be largest makespan
value, Mb, or it could be something simpler to compute, such as the largest
workload, or the largest makespan value if preemption were allowed, either
of which is straightforward to calculate. Computational comparisons sug-
gest that these choices do not lead to very substantial differences in overall
performance.
To illustrate the shifting bottleneck approach, we apply it in heuristic fashion

to Example 14.1. Figure 14.2 depicts the jobs involved and provides us with a
convenient basis for constructing the HBT problems. Initially, the three derived
problems take the forms shown below, along with their solutions from the LT
heuristic procedure:

Machine 1 Job i 1 2 3 4

ri 0 1 5 6 Solution

pi 4 4 3 1 1-2-3-4(12)

qi 5 4 0 0

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1(11)

qi 2 8 3 4

Machine 3 Job i 1 2 3 4

ri 7 5 0 3 Solution

pi 2 4 3 3 3-4-2-1(12)

qi 0 0 5 1

At this stage, we choose a bottleneck machine by breaking the tie
between machines 1 and 3. Suppose we choose the latter. This fixes the
operation sequence on machine 3 and, as a result, may alter the derived
HBT problems on the other two machines. For example, when we recon-
struct the derived problem for machine 1, we find that q2 = 6. This follows
from the fact that operation (2, 2) on machine 1 must be followed by oper-
ation (2, 3), which in turn must be followed by operation (1, 3) according
to the fixed sequence on machine 3. The new derived problems are
shown below:
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Machine 1 Job i 1 2 3 4

ri 0 1 5 6 Solution

pi 4 4 3 1 1-2-3-4(14)

qi 5 6 0 0

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1(13)

qi 2 10 3 9

This time, machine 1 is the unique bottleneck, so we fix its sequence and
reconstruct the derived problem for machine 2, obtaining the following:

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1(13)

qi 2 10 4 9

At this stage, we have determined the sequence at each of the machines as
follows:

Machine 1 1-2-3-4

Machine 2 2-4-3-1

Machine 3 3-4-2-1

We can now construct a schedule for the entire job shop problem by following
the rules for active schedule construction and breaking ties arbitrarily. (The ties
may change the order in which we place operations into the schedule, but in this
case, they do not affect the final schedule.) Figure 14.8 shows the resulting
schedule, with a makespan of M = 14.

1

2

3 4 2 1

14

4 3 1

2 3 4

Figure 14.8 Heuristic solution for Example 14.1.
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Webuilt this schedulewithaheuristic procedureusing theLTalgorithmtosolve
the derived problem.When we wish to find an optimal solution using the shifting
bottleneck approach, the algorithmic requirements aremore demanding. First, we
must find optimal solutions to the derivedHBT problem, so that we always have a
lowerboundonhand. Second, insteadof constructinga solutionby schedulingone
machine at a time (and moving it from X to X), we must be more patient. In the
optimization approach, we enhance the schedule simply by resolving one disjunc-
tive arc at a time and then updating the search for the bottleneck machine. In the
branch-and-bound tree, each resolution of a disjunctive arc gives rise to a node at
the next lower level of the tree. Paired with it is another node corresponding to the
reverse resolution of the same disjunctive arc. For each of these nodes, the newly
calculated value ofMb, based on optimization of the derived HBT problems, pro-
vides a lower bound on the eventual solution.
In this branch-and-bound algorithm, each time we resolve a disjunctive arc,

we may change which machine represents the bottleneck. This shifting desig-
nation of the bottleneck as we proceed through the construction of a schedule
gives the algorithm its name. Among optimization algorithms, the shifting bot-
tleneck approach appears to represent the best computational procedure for
finding optimal solutions. It is also effective when implemented as a heuristic
procedure, although, in the next section, we describe an alternative approach
that relies on neighborhood search concepts.

14.5 Neighborhood Search Heuristics

We continue to assume that the objective is to minimize the makespan. As we
have seen, a job shop schedule can be expressed by a set ofm job permutations
that designate the sequence of operations on eachmachine. For instance, the set
in Figure 14.8 is {1-2-3-4, 2-4-3-1, 3-4-2-1}. Equivalently, the schedule is deter-
mined by n(n − 1)/2 disjunctive arcs at each machine. For instance, considering
machine 1 in Figure 14.8, we can identify disjunctive arcs from (1, 1) to (2, 2), (3,
3), and (4, 3), from (2, 2) to (3, 3) and (4, 3), and from (3, 3) to (4, 3). Similar sets
of arcs apply in the other machine sequences. Every feasible semiactive schedule
can be represented by a unique set of permutations.
Given a feasible schedule, we may try to improve on it using a neighborhood

search, which we illustrate using adjacent pairwise interchange (API) neighbor-
hoods. For convenience in ensuring feasibility, we limit our attention to APIs
within blocks – that is, involving pairs of critical operations on a common
machine. This is permissible because, given any feasible but suboptimal solu-
tion, a succession of APIs on the evolving critical paths can lead to optimality.
This property is called connectivity. In more detail, starting with any suboptimal
schedule, we perform selected APIs on the critical path. The critical path
changes, but at each stage, at least one API opportunity within some block
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on the current critical path can bring us closer to an optimal sequence. Thus,
although individual APIs in the succession may lengthen themakespan, an opti-
mal schedule will eventually be reached. Our next theorem establishes this
result formally, and the proof shows how such a series of APIs can be identified
when an optimal sequence is known.

∎Theorem 14.1 Any suboptimal feasible schedule S can be transformed to an
optimal schedule by a finite succession of adjacent pairwise interchanges on
evolving critical paths, starting with the critical path of S and ending with an
optimal critical path.

Proof. Let S∗ be an optimal schedule and suppose (i1, j1, k) precedes (i2, j2, k) in
S∗. That is, there is a disjunctive arc oriented from (i1, j1, k) to (i2, j2, k) in this
optimal solution. If the same orientation applies in S, we say that the order of
these operations in S agreeswith S∗. If the opposite orientation applies, the order
is in conflict. Two operations (i1, j1, k1) and (i2, j2, k2) are contiguous if the start-
ing time of (i2, j2, k2) coincides with the completion time of (i1, j1, k1) in a semi-
active schedule. Contiguous operations in a critical path involve either the same
job (such that i1 = i2, j1 = j2 − 1 and k1 k2) or the same block (such that i1 i2
and k1 = k2). By definition, all operations on a critical path are contiguous. Con-
sider the contiguous operations within the blocks of any critical path of S. If the
ordering of all pairs agrees with S∗, then the length of this path cannot exceed
the longest path in S∗, thus contradicting the assumption that S is suboptimal.
Therefore, the order of at least one pair of these operations is in conflict with S∗.
Select any such pair and reverse its order by an API on that machine. If the result
is not optimal, repeat the process. Each such API removes the conflict between
the orientations of one disjunctive arc in the two sequences. Because the num-
ber of the disjunctive arcs is finite, the number of necessary APIs must also be
finite, which completes the proof. □

In particular, connectivity implies that any randomized search using this
neighborhood will eventually reach an optimal solution. To illustrate,
Figure 14.9a traces the critical path of the solution in Figure 14.8 by shading
the critical activities. The critical path includes operations (1, 1), (2, 2), (2, 3),
and (1, 3). Therefore, there are only two APIs to consider: interchanging (1, 1)
with (2, 2), as depicted in Figure 14.9b, and interchanging (2, 3) with (1, 3), as
depicted in Figure 14.9c. Interchanging (1, 1) with (2, 2) does not change the
makespan but leads to a dead end because the only API available on the critical
path is to reverse that interchange. Interchanging (2, 3) with (1, 3) increases the
makespan to 15. At this stage, we know that the starting solutionwas locally opti-
mal in theAPIneighborhood. Suppose, however, thatweperform the latter inter-
change– in the spirit of tabu search (TS) or simulated annealing (SA)– and study
the new critical path, (2, 1), (4, 1), (3, 2), (1, 2), (1, 3), and (2, 3). We then can
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exchange (3, 2) and (1, 2), reducing themakespan to 13, as in Figure 14.9d. It can
be shown that this solution is optimal, illustrating connectivity in the example.
The solution is neither active nor unique:Machine 1 can process job 4 before job
3– anAPI step–without delaying job 3, thus obtaining another optimal solution.
An additional optimal solution is associated with yet another API step.
Wementioned TS and SA because both allow consideration of inferior neigh-

bors in the hope of discovering a better sequence later. That same notion lies
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Figure 14.9 Performing API on the heuristic result.
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behind the search illustrated in Figure 14.9. Alternatively, we could identify the
necessary second interchange by observing that after the first API, job 1 is in
process on machine 2 when machine 3 becomes ready for it. That conflict
accounts for the increase inmakespan. In otherwords, after the firstAPI, the crit-
ical path changes, and another operation of a job that we interchanged becomes
critical on anupstreammachine. Thus, the secondAPI onmachine 2was directly
indicated by the first change to promote the progress of job 1. Similarly, after an
interchange, themakespanmay increase because the job that was delayed causes
delays on downstream machines. Such delays may be handled by APIs on those
machines to postpone the same job that was postponed by the initial API and
therefore promote other jobs thatmay be ready earlier. Thus, any proposed inter-
change may induce a cascading sequence of APIs on other machines, all on the
evolving critical path. If the objective is improved after two APIs, we can accept
both even though the first alone was detrimental. Effectively, this neighborhood
–which we call the enhanced neighborhood– checks neighbors defined by a suc-
cession of induced APIs. An option in the heuristic procedure is to restrict the
number of induced APIs tested without improvement.
An operation that is neither first nor last in its block is called internal. Inter-

changing two adjacent internal operations cannot advance the start time of the
block or its completion time, so it cannot immediately reduce the makespan.
Thus, we may restrict our neighborhood by excluding APIs between internal
operations. Similarly, we can also exclude APIs between the first two operations
on a critical path if their block has three or more operations and, symmetrically,
between the last two. In other words, for immediate benefit, only interchanges
near the boundary between two successive blocks of the critical path need be
considered. Unfortunately, this restricted neighborhood does not guarantee con-
nectivity. This problem can be ameliorated by employing multiple seeds. Com-
putational experience involving multiple seeds suggests that on balance the
restricted neighborhood is significantly more efficient. Incidentally, in an
enhanced neighborhood, when an initial interchange induces other APIs on
upstream or downstream machines, the induced APIs automatically occur near
the boundary between two successive blocks of the evolving critical path. In
other words, induced APIs are legitimate for the evolving restricted neighbor-
hood. Therefore, it is sufficient to enforce the restriction for the first API only.
For instance, in Figure 14.9a, both API candidates were near a boundary and
belonged to the restricted neighborhood. The second interchange, initiated
in Figure 14.9c, occurred between operations (3, 2) and (1, 2), which were
the last two jobs in the first block.
The two neighborhoods that we introduced – both with and without

enhancement – can be used in a variety of search algorithms. More complicated
neighborhoods have also been proposed with good results reported. In partic-
ular, a study of advanced TS methods produced the best heuristic solutions for
most open benchmark problems in the literature and found several new optimal
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solutions as well. The neighborhood structure in that experiment includes a fea-
ture akin to genetic algorithms (GAs): A set of elite solutions – defined by their
relatively small makespan – is used to generate new seeds for the search. Under
GAs, such starting points are the offspring that we consider as candidate solu-
tions, but in that experiment they were just starting points for TS in the
restricted API neighborhood. These starting points were rarely elite solutions
by themselves, so additional search was warranted. The experiment thus com-
bined the strengths of GA and TS.
Earlier results had suggested that SA can achieve good results efficiently, so

the question arises whether TS is better than SA. A definitive answer is not yet
in. The superiority of TS performance may be due to the clever neighborhood
structure and to highly efficient makespan-updating calculations. But the same
neighborhood structure and updating calculations could be applied to other
search approaches. Furthermore, a search technique tested earlier relied on a
shifting bottleneck structure and that technique could also be revisited. At
the moment, however, neighborhood search algorithms represent the most
effective approach to solving large versions of the job shop problem.

14.6 Summary

The job shop model has been a central paradigm for scheduling since the early
days of scheduling theory. This chapter introduced the static version of the job
shop problem and showed that, for regular measures of performance, the set of
active schedules is the relevant dominant set. However, the job shop problem is
challenging to solve, even when we limit attention to active schedules. The com-
putational demands of solving even moderately sized problems (such as 15-job,
15-machine problems) often become prohibitive. Although systematic optimi-
zation techniques are available for job shop problems, their computational lim-
itations have drawn attention to heuristic procedures. In particular, priority
dispatching rules are very useful in practice. Most of our knowledge about pri-
ority dispatching, however, derives from experimental studies of the dynamic
version of the job shop model, which is our focus in the next chapter.
The shifting bottleneck approach constituted a major breakthrough and is

currently the leading optimization technique for the job shop problem. The
technique has been refined, and it has also been tested as a heuristic procedure,
with promising results. Because of the equivalence between the HBT problem
and the Lmax problem, the shifting bottleneck procedure can also be used
directly in solving the job shop problem with Lmax criterion. At present, it
appears possible to adapt the procedure to such other criteria as total flowtime
or total tardiness, although such extensions have not yet been studied in depth.
Nevertheless, problems with more than about 200 operations remain out of
reach of current optimization approaches.
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For any benchmark problem whose optimal solution is not known, the best
available solution is the tightest upper bound on the optimal solution. Many
existing upper bounds have been found by a highly tailored TS application
(Nowicki and Smutnicki 2005). Exploiting the structure of the job shop prob-
lem, we can define efficient neighborhoods that either reduce the number of
irrelevant neighbors that need to be examined or increase the chance that we
examine only neighbors that are likely to provide improvement. Currently, such
search heuristics are the most effective approach to all but small-scale versions
of the static problem. In particular, the TS we mentioned searches the restricted
API neighborhood and generates new search seeds by reference to an evolving
set of stored superior (or elite) solutions, which require the use of long-term
memory. It also utilizes a particularly efficient way to calculate makespans.With
that in mind, subsequent research suggests that the success of that approach is
not specific to the TS framework but to the other ingredients (Watson
et al. 2006).
To date, stochastic job shops have only been addressed by heuristics.

A practical heuristic approach to stochastic job shop scheduling is to use dis-
patching at the machine level, which typically implies nondelay scheduling.
In Chapter 17, in a similar context, we discuss the notion of a scheduling policy.
A policy determines in advance how to make dispatching decisions when two or
more operations are available. A simple example of a policy is a priority list, but a
policy can also incorporate more complex decision rules, such as added prec-
edence constraints, that can prevent some inferior nondelay schedules and yet
utilize dispatching. To compare different policies, it is possible to use sample-
based analysis; and for a given sample, searchmethods (such as GA) can seek the
best policy.

Exercises

14.1 Consider the following four-job, three-machine job shop problem.

Processing times Machines

Operation Operation

1 2 3 1 2 3

Job 1 4 2 3 Job 1 1 2 3

Job 2 2 4 4 Job 2 1 3 2

Job 3 3 5 3 Job 3 3 2 1

Job 4 4 3 5 Job 4 2 1 3
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a) Draw charts (see Figure 14.2) that show the job processing require-
ments and the machine requirements in this problem, thus identify-
ing a lower bound for the makespan.

b) Draw a network diagram for the operations in this problem, showing
all precedence requirements and all disjunctive arcs.

14.2 Revisit the problem in Exercise 14.1. Consider the partial schedule
that contains the following assignments. At machine 1, jobs 1, 2,
and 4 are sequenced in that order without idle time. At machine 2,
jobs 4, 1, and 3 are sequenced in that order without idle time. At
machine 3, job 3 is sequenced first, and the next time that a schedul-
ing decision must be made occurs at time 6. At time 6 on machine 3,
what scheduling alternatives are available? Which would be appropri-
ate for a nondelay schedule? Which would be appropriate for an
active schedule?

14.3 Revisit the problem in Exercise 14.1 and construct a full schedule using a
priority dispatching rule.
a) Use FCFS and break ties with SPT and LWKR if needed. Calculate the

makespan.
b) Use SPT and break ties with LWKR and FCFS if needed. Calculate the

makespan.
c) Use LWKR and break ties with SPT and FCFS if needed. Calculate the

makespan.
d) Use MWKR and break ties with LPT and FCFS if needed. Calculate

the makespan.

14.4 Consider a series–parallel job shop in which jobs require three
operations. The initial operation can be performed either at
machine 1A or machine 1B, which are identical. The jobs then pro-
ceed to machines 2 and 3 in sequence. The operation times are
shown below:

Machine 1 2 3

Job A 10 4 1

Job B 12 2 1

Job C 9 4 3

Job D 8 2 3

Job E 7 4 2

Job F 13 1 1
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a) Find a schedule that minimizes the makespan.
b) Show a Gantt chart for your schedule.

14.5 Revisit the problem in Exercise 14.1. Construct a schedule using a neigh-
borhood search algorithm based on adjacent pairwise interchanges and
calculate the resulting makespan.

14.6 Revisit the problem in Exercise 14.1. Construct a schedule using the
shifting bottleneck heuristic algorithm and calculate the resulting
makespan.

14.7 Show that in an enhanced neighborhood, when an initial API induces
other APIs on upstream or downstream machines, they automatically
apply within the evolving restricted neighborhood.

14.8 Consider Figure 14.9. Show that the critical path has parallel operations.
Show that the API between (4, 1, 2) and (2, 1, 2) makes no difference to
the makespan but reduces the number of critical activities. Suggest an
additional API that will reduce total flowtime without increasing the
makespan.
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15

Simulation Models for the Dynamic Job Shop

15.1 Introduction

One of the most thoroughly studied and widely applied areas of scheduling
research involves the dynamic version of the job shop model. When we refer
to the “dynamic” version, we mean that jobs are released and arrive at the shop
over time. In the dynamic version of simpler models, we have assumed that
information about all arrivals is known in advance and that the list of arrivals
is finite – no larger than, say, 100 jobs. The dynamic job shop model usually
connotes a different setting: Information about arriving jobs is not known in
advance – even the timing of arrivals is unknown – and the arrivals are ongoing.
Some studies involve performance measures for thousands of jobs. Because dif-
ferent studies involve different numbers of jobs, it is common to use mean
values (of flowtime, tardiness, etc.) instead of totals as performance measures.
Because the timing of arrivals is uncertain, we assume that jobs arrive ran-

domly, so that the shop itself behaves like a network of queues. In this context,
scheduling is typically carried out by means of dispatching decisions: Each time
a machine becomes free, we must decide what it should do next. These schedul-
ing decisions are unavoidable in the operation of such a system. Furthermore,
research has demonstrated substantial differences among dispatching proce-
dures, so it makes sense to seek out the decision rules that promote good
performance.
The effects of dispatching procedures in queueing networks are very difficult

to describe by means of analytic techniques. Nevertheless, the study of schedul-
ing in dynamic job shops has made considerable progress with the use of com-
puter simulation models. The rationale for using simulation methods in job
shop studies is the same as the rationale for simulation in any other complex
system: Short of testing alternative policies in the actual system, we cannot fully
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anticipate how different operating procedures will affect performance. Experi-
mentation with a computer simulation model has made it possible to compare
alternative dispatching rules, test broad conjectures about scheduling proce-
dures, and develop greater insight into job shop operation. The purpose of this
discussion is to convey the flavor of job shop simulation experiments. After
examining the typical features of simulation models, we highlight some of
the major insights that have emerged from years of research on this topic.

15.2 Model Elements

The literature on the dynamic job shop model includes simulations of both
actual and hypothetical systems. The hypothetical shops, in particular, typically
consist of a small number of machines, usually less than 10. Models of actual
shops sometimes contain dozens of machines, but no evidence has been found
that the number of machines has a crucial influence on the relative performance
of scheduling rules. Aside from the question of scale, several issues arise in the
building of a model. It is desirable for the model to be somewhat simplified in
order to isolate the effects of scheduling and to permit generalization of the
experimental results. On the other hand, if the model is too simple, the conclu-
sions may not apply under other, more realistic conditions. The successful work
in this area exemplifies a blend of simple structure and elaborate detail, and the
following list of model assumptions is typical:

1) Jobs consist of strictly ordered operation sequences.
2) A given operation can be performed by only one type of machine.
3) There is only one machine of each type in the shop.
4) Processing times as well as due dates are known at the time of arrival.
5) Setup times are sequence independent.
6) Once an operation starts, it cannot be interrupted.
7) An operation may not begin until its predecessors are complete.
8) Each machine can process only one operation at a time.
9) Each machine is continuously available for production.

The first five of these assumptions have sometimes been relaxed in simulation
experiments, either to achieve a better representation of reality in the simulation
of an actual shop or to examine the sensitivity of basic findings to alternative
assumptions about the environment. The remaining assumptions are virtually
standard in job shop studies.
The input to the simulation model is a job file that describes the entire set of

jobs. The arrivals occur randomly over time, and the operation times are sam-
ples from a given probability distribution. (There has been little indication that
the nature of the arrival process or the service process is critical in comparing
scheduling rules, although greater variability in arrivals or operation times tends
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to magnify differences between rules.) The description of an arriving job also
includes the number of its operations, which may vary among jobs or remain
fixed, and its machine routing. In the closed job shop, each job must have
one of a number of specified routings, representing a fixed line of products.
By contrast, the pure job shop accommodates virtually any possible machine
routing, as might be found with custom-ordered products. Finally, an aggregate
description of workflow is contained in a routing matrix, R, in which element rij
represents the proportion of jobs that proceed to machine j after completion of
an operation on machine i. Values of r0j indicate the destinations of jobs upon
arrival to the shop, and ri,m+1 indicates the proportion of jobs that leave the shop
after an operation on machine i. Thus, if there aremmachines, the Rmatrix has
(m + 1) rows and columns. The two extreme cases are the pure job shop, in
which these proportions are equally distributed, and the pure flow shop, in
which only one routing exists. Routing matrices for these two cases are dis-
played in Tables 15.1 and 15.2, respectively, for a four-machine shop.

Table 15.1

A 1 2 3 4 L

Arrive — 1/4 1/4 1/4 1/4 —

1 — — 1/4 1/4 1/4 1/4

2 — 1/4 — 1/4 1/4 1/4

3 — 1/4 1/4 — 1/4 1/4

4 — 1/4 1/4 1/4 — 1/4

Leave — — — — — —

Table 15.2

A 1 2 3 4 L

Arrive — 1 0 0 0 —

1 — — 1 0 0 0

2 — 0 — 1 0 0

3 — 0 0 — 1 0

4 — 0 0 0 — 1

Leave — — — — — —
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The output of the simulation is a set of statistics that describes the behav-
ior of the model over a simulated interval of operation. The statistical anal-
ysis of simulation outcomes is a topic beyond the scope of this coverage, but
many articles on job shop experiments discuss statistical interpretations.
Usually, the experiments are aimed at characterizing system performance
in the long run, after the system reaches statistical equilibrium. Therefore,
the first portion of the experiment is a warm-up period, after which perfor-
mance data is gathered. To the extent that the experiments are aimed at
obtaining qualitative insights and understanding, it may not be critical to
invoke sophisticated statistical tests. However, an important feature of the
experimentation is typically the maintenance of a stored or reproducible
job file. (In the past, high-speed memory was at a premium, and good sim-
ulation models relied on the ability to reproduce the same set of random
variables. Today, it is not difficult to store large samples in high-speed mem-
ory. For this reason, we have assumed that samples are stored. Most of the
seminal results reported in this chapter, however, were obtained with repro-
ducible files.) With a consistent set of input data, we can repeat a simulation
several times, using the same input each time and varying only the schedul-
ing rules. This approach helps focus on performance differences among
scheduling rules and to remove those differences that could occur simply
due to random factors.

15.3 Types of Dispatching Rules

Detailed scheduling decisions in a job shop are usually determined by dispatch-
ing rules. At the completion of any operation, a machine becomes free, and the
dispatching rule specifies what the machine should do next. One of the options,
of course, is to keep the machine idle for a certain period, but, in the spirit of
nondelay schedules, most dispatching rules immediately assign work to the
machine as long as work is available. This assignment is based on priorities
determined for each of the waiting jobs.
Two types of classifications are important in describing priority rules. First, a

rule is local if we base priority assignment only on information about the jobs
represented in the individual machine queue. The SPT and LWKR rules, intro-
duced in the previous chapter, are two examples of local rules. By contrast, a rule
is global if it uses information from machines other than the one at which the
decision is pending. Examples of global rules include the following:

AWINQ (anticipated work in next queue): Select the waiting operation whose
direct successor operation will encounter the queue with the least work wait-
ing. This includes work that has not yet arrived there but that is anticipated to
arrive before the direct successor operation can begin.
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FOFO (first off first on): Select the operation that will complete earliest. If
this operation is not yet in the queue, the machine remains idle until it
arrives.

Intuitively, global rules ought to be more effective than local rules, but there is
no strong evidence to that effect, and it is not easy to determine which global
rules are good. Moreover, the information base required for global rules may be
so extensive as to preclude implementation in many shops. Simulation studies
have mainly examined local rules.
A second classification of dispatching rules involves the dynamics of the infor-

mation base. A rule is static if its relative assignment of priorities does not
change over time and dynamic otherwise. A little elaboration on this distinction
might be helpful. The simplest set of static rules provides that each operation of
a given job has the same priority. For example:

ERD (earliest release date): Select the operation associated with the job that
arrived at the shop (i.e. was released) earliest.

EDD (earliest due date): Select the operation associated with the job that has the
earliest due date.

Certain rules, including SPT and LWKR, are static with respect to a particular
operation, but dynamic with respect to a particular job, in the sense that indi-
vidual operations of the same job acquire different relative priorities. Here are
other examples:

MST (minimum slack time): Select the waiting operation associated with the job
that has minimum slack time. Slack time is equal to the difference between
the due date and the earliest possible finish time of the job.

ODD (operation due date): Select the operation that has the earliest operation
due date. We determine an operation due date by dividing the interval
between the job due date and its release date into as many subintervals as
there are operations. The end of each subinterval represents a due date for
the corresponding operation.

A dynamic version of ODD results if we replace the release date by the current
(dispatching) time. Furthermore, slack-oriented versions can be developed by
incorporating remaining work into the priority calculation. Some other
dynamic rules are listed below:

S/OPN (slack per operation): Select the operation associated with the job that
has the minimum ratio of slack time to remaining operations.

TSPT (truncated SPT): Select the operation with the shortest operation time
(as under SPT), except when an operation has waited in the queue more
than W time units. Operations with queue times larger than W receive
overriding priority and are dispatched by first-come, first-served (FCFS)
priority.
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MDD (modified due date): Select the operation associated with the job that has
the earliest modified due date. The modified due date is either the original
due date or the earliest possible finish time, whichever is larger.

It is not difficult to devise a plausible dispatching rule, as the foregoing exam-
ples should demonstrate. In some situations, the rationale for using a particular
rule may be that it helps produce rapid turnaround, but in other instances the
motivating factor may be the need to meet due dates. Simulation research has
examined a wide variety of alternative rules and identified a few simple but
effective rules for each situation. The following sections suggest the tenor of
these findings.

15.4 Reducing Mean Flowtime

The most commonly used measure of turnaround in a job shop has been mean
job flowtime. An equivalent measure is mean number of jobs in the system,
because the flowtime–inventory relationship described in Chapter 2 also per-
tains to the dynamic job shop. In light of the fact that SPT minimizes F in sin-
gle-machine problems, it is natural to expect that shortest-first strategies should
perform well in the job shop setting. Therefore, it is not surprising to find that
the major comparative studies have found that SPT minimizes mean flowtime
when compared with the dozen or so simple dispatching rules that are fre-
quently considered as alternatives.
Conway (1965a) performed an elaborate study, using mean number of jobs

in the system, J, as the performance measure. Conway simulated a pure job
shop containing nine machines and operating under the assumptions listed
in the previous section. The experiments gathered statistics on about 9000
jobs and reported results for over 30 priority rules. Table 15.3 reproduces
some of those results, dramatizing the effectiveness of the SPT rule. Even
the global rule AWINQ did not match the performance of SPT, although both
performed substantially better than ERD, which essentially ignores both job
traits and shop status in determining priorities. In search of a rule that per-
forms better than SPT, Conway investigated the performance of several com-
bination rules, two of which appear in Table 15.3. A combination of SPT and
LWKR computes job priorities under each rule separately and then takes a
weighted sum of the two values, weighting the SPT priority value by α and
the LWKR priority value by (1 − α). Different values of the weighting param-
eter α generate a parametric set of combination rules. Conway’s experiments
showed that the proper choice of α could improve slightly over SPT, but a poor
choice of α could lead to worse performance. There were also tests of combi-
nation rules using SPT and AWINQ, and in Conway’s study one of these pro-
duced the smallest value of J.
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The effectiveness of combination rules has limited practical value, for several
reasons. First, any combination rule requires the specification of a weighting
parameter, and it takes considerable effort to find an “optimal” value of α for
a given situation. The range of desirable α values might well be sensitive to shop
utilization and certain job parameters. Moreover, the added benefits of using a
combination rule – and a global rule as well, if AWINQ is involved – seemmar-
ginal at best compared with the performance under SPT. Because the pure SPT
rule is so much easier to implement, and because it accounts for nearly all of
the good performance of the combination rules, it is, for all practical purposes,
considered the best rule where the objective is to minimize mean flowtime.
Conway’s findings are representative of similar results in several other
investigations.
Conway also studied whether the SPT rule was sensitive to the precision of

processing time information in situations where priority assignments must
employ estimates. His experimentation was motivated by the fact that in prac-
tice it is not always possible to have completely reliable information in advance
about operation times. Instead, an estimate of each processing time is available,
but the actual time is often subject to some uncertainty. Therefore, Conway
described the quality of the estimates in terms of their precision. In the model,
actual times were uniformly distributed random variables ranging from a spe-
cified proportion β below the estimate to the same proportion above the esti-
mate. For example, if a particular operation had an estimated time of 10
hours and the quality parameter βwas set at 0.2, then the actual time was equally
likely to be any value between 8 and 12 hours. Of course, the case β = 0 corre-
sponds to the implementation of SPT with perfect information. As shown in
Table 15.4, the SPT rule is remarkably insensitive to imperfect information.
Even when the estimate is allowed to be off by 100% from the true value

Table 15.3

Dispatching rule J

Simple rules

ERD 57.51

FCFS 58.87

SPT 23.25

LWKR 47.52

AWINQ 34.03

Combination rules

SPT, LWKR (α = 0.985) 22.98

SPT, AWINQ (α = 0.96) 22.67
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(β = 1.0), the deterioration in performance is very slight, suggesting that SPT can
still be effective when available information is unreliable. (When viewed in light
of our current knowledge about the applicability of SEPT in a stochastic envi-
ronment, this result should not be surprising.)
Table 15.4 also displays the result of simulating the performance of a two-

class rule, which places “short” jobs in a high priority class and “long” jobs in
a low priority class. The dispatching rule selects jobs in the queue from the high
priority class whenever they are available and from the low priority class only
when no high priority jobs are present. Within classes, however, dispatching
uses FCFS priority. The dividing line between short and long in the study
was arbitrarily taken as the mean of the processing time distribution. The sig-
nificance of this rule is that it requires only a two-way classification of jobs,
which is a coarse method of discrimination compared with SPT. Even though
the performance of the two-class rule does not approach that of SPT, the use of a
short–long distinction accounts for a significant improvement over a rule such
as FCFS, which is completely blind to job characteristics. It is possible to envi-
sion a family of similar rules with three classes, four classes, and so on. In this
family, a larger number of classes represent a finer discrimination among tasks
until, in the limiting case, SPT represents perfect short–long discrimination.
The two-class rule is the simplest rule in this family. Although it is the least
demanding in terms of the quality of information required, it nevertheless
accounts for about two-thirds of the benefit that SPT itself achieves over FCFS.
The mechanism by which SPT reduces mean flowtime should not be difficult

to understand. By giving priority to short tasks, it accelerates the progress of
several short jobs at the expense of a few long jobs. The SPT rule reduces mean
flowtime, but long jobs tend to encounter very long delays. In other words, the
turnaround is good for most of the jobs but extremely poor for the few long jobs
assigned low priorities. Several suggestions for ameliorating this aspect of per-
formance have been proposed, but all involve sacrificing some of the benefits of
SPT. Conway first investigated TSPT, under which SPT is the normal

Table 15.4

Dispatching rule J

SPT (β = 0) 23.25

SPT (β = 0.1) 22.23

SPT (β = 1.0) 27.13

2CLASS 35.29

FCFS 58.87
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dispatching mode, but operations receive special priority once their waiting
time in a given queue exceeds a certain value, W. The parametric performance
of this rule is described in Table 15.5.
In Conway’s study, the average waiting time per operation observed under

FCFS was 7.27 and under SPT was only 2.78. Therefore, truncation at W =
32 still allows individual waiting times to be far above average, yet any earlier
truncation appears to sacrifice most of the benefits of SPT. A second suggestion
involves the use of SPT in a relief role (RSPT). Under this rule the normal dis-
patching mode is FCFS, but when the length of an individual queue grows too
long, the local dispatchingmechanism switches over to SPT. In particular, when
the length of any queue reaches a certain number Q, then priorities within that
queue are reassigned according to SPT. However, once the queue length drops
below Q, the dispatching rule reverts to FCFS. Since FCFS is the normal dis-
patching mode, long jobs do not typically encounter excessive delays. Long jobs
sometimes encounter temporary delays, however, while SPT provides relief to
individual machines facing severe congestion. The mean queue length under
pure FCFS was 6.54 and under SPT was 2.58. Therefore, a queue length param-
eter of Q = 9 allows machine queues to grow beyond their mean length before
the dispatching rule suspends FCFS. At the same time, the parameter Q = 9
retains over half the benefit of SPT sequencing.
Compromise mechanisms such as TSPT and RSPT are necessary in systems

that will not tolerate the long flowtimes associated with long jobs under SPT.
Nevertheless, it is important to recognize that different mechanisms will exhibit

Table 15.5

Dispatching rule J

Truncated SPT

TSPT (W =∞) 23.25 (SPT)

TSPT (W = 32) 32.85

TSPT (W = 16) 44.20

TSPT (W = 8) 53.50

TSPT (W = 4) 55.67

TSPT (W = 0) 58.87 (FCFS)

Relief SPT

RSPT (Q = 1) 23.25 (SPT)

RSPT (Q = 5) 29.49

RSPT (Q = 9) 38.67

RSPT (Q =∞) 58.87 (FCFS)
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different performance trade-offs, and any departure from a desirable pure rule
should be explored thoroughly in order to avoid losing the advantages the pure
rule achieves. In the case of TSPT and RSPT, the data in Table 15.5 suggest that
RSPT is more effective at preserving the turnaround performance of pure SPT
while meeting the objections raised about long jobs.

15.5 Meeting Due Dates

15.5.1 Background

When the scheduling objective involves meeting job due dates, the most signif-
icant performance measures are likely to be tardiness-based criteria, such as the
proportion of jobs tardy or mean job tardiness. In such instances, it becomes
relevant to consider dispatching strategies that employ due date information,
as exemplified by many of the rules described earlier. In addition, the tardiness
criterion appears to present a much more complex problem than the minimi-
zation of mean flowtime, because several factors can affect performance.
To begin with, consider the distribution of job latenesses. Since lateness is just

the algebraic difference between the completion time and a (given) due date, we
can expect that the mean of this distribution will be minimized by SPT. Never-
theless, it is not only the lateness mean that accounts for good tardiness perfor-
mance but also the lateness variance. Figure 15.1 shows four hypothetical
distributions of job lateness, with the due date (zero lateness) represented by
the vertical axis. The distribution in Figure 15.1a represents the performance
of a dispatching procedure that ignores both processing time and due date
information. Figure 15.1b represents the performance of SPT, which tends to
minimize mean lateness while allowing some jobs to become quite late.
Figure 15.1c represents the performance of a low variance type of rule that
attempts to schedule jobs for completion as close to their due dates as possible.
While the low variance is achieved at the expense of an increased mean, the
trade-off may still be desirable unless the mean increases so much that a large
proportion of the jobs becomes tardy, as in Figure 15.1d.
Experts have advocated three main types of approaches in determining prio-

rities using due date information:

• Allowance-based priorities

• Slack-based priorities

• Ratio-based priorities

A job’s flow allowance is the time between its release date and its due date. As
time passes, a job’s remaining allowance shrinks. Under allowance-based prior-
ity rules, the urgency of a job is related to its remaining allowance. If we are
dispatching at time t, the remaining allowance of job j may be expressed as
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aj(t) = dj − t, where aj(t) is the remaining allowance and dj is the due date. A basic
allowance-based priority system gives priority to the smallest aj(t). Since t is the
same for all jobs when we are making a dispatching decision, the job with the
smallest aj(t) will also have the smallest dj. Thus, the simplest allowance-based
rule is just the earliest due date (EDD) rule.
A job’s slack time is its remaining allowance adjusted for remaining work. The

slack for job j is sj = aj(t) − Pj, where sj is the slack time and Pj is the time required
by the remaining operations of job j. The simplest slack-based priority rule is the
minimum slack time (MST) rule, which gives priority to the smallest sj. Slack-

(a)

(b)

(c)

(d)

Figure 15.1 Hypothetical
distributions of job lateness for four
priority rules.
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based priorities enjoy considerable popularity, but there is reason to be cautious
about them. The intuitive justification for MST rules is that when two jobs have
the same allowance, the longer job is more urgent because its due date allows
less delay. However, SPT sequencing is often effective at meeting due dates,
even though it does not explicitly use due date information. One structural
problem with slack-based priorities is that by “netting out” remaining work
against the remaining allowance, MST priorities incorporate some anti-SPT
scheduling compared with EDD priorities, at least among jobs with similar
due dates. At the margin, this effect may well be undesirable. (One way to ame-
liorate the problems with slack-based rules is to use max{sj, 0} instead, but if so
we need another rule when comparing jobs that are already doomed to be late.)
The third approach resembles slack-based priorities but uses ratio arithmetic

instead. For instance, the simplest form of the critical ratio is aj(t)/Pj or the
remaining allowance divided by the remaining work. In other words, critical
ratio priorities measure urgency by the ratio of remaining allowance and
remaining work rather than their difference, as in MST. Sometimes, remaining
work is augmented by standard queue allowances in the critical ratio. Priorities
based on smallest critical ratio (SCR) have some practical appeal in that the ratio
value of 1 provides a standard for whether a job is running late. However, neg-
ative ratios are difficult to interpret, and SCR is open to the criticism that, like
MST, it induces some anti-SPT performance at the margin. (Consider a case
where two jobs have the same due date and just one operation remaining.
The longer job will have a smaller slack, and when we divide the slack by its
processing time, we exacerbate the effect of MST.)
Another factor in measuring urgency is the number of operations remaining

on a job. When two jobs have the same remaining allowance and remaining
work, the job with the larger number of operations is intuitively more urgent
because it will encounter more opportunities for queueing delay, other things
being equal. This reasoning leads to priority indices based on remaining allow-
ance per operation (A/OPN) or slack per operation (S/OPN). Although these
rules have performed well in some research experiments, they, along with
SCR, have some practical drawbacks. First, ratio priorities may work in the
wrong direction when their numerators are negative. Among jobs with negative
slack, the job with minimum S/OPN might not be the logical dispatching
choice. Second, ratio priorities are dynamic: As two jobs wait in queue, their
relative priorities may change. This feature could be perplexing to people carry-
ing out the schedule, although dynamic priorities may actually be effective.
An alternative way to recognize the number of remaining operations is to use

operation milestones. After a job’s due date is assigned, we can set milestones in
place to show when each operation should complete if the job is to progress
smoothly toward on-time completion. These milestones are called operation
due dates, and they essentially break up a job’s flow allowance into as many seg-
ments as the number of operations in the job. These segments then play the role
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of flow allowances for each operation, and they pace the job through the shop.
Once operation due dates have been established, we can dispatch jobs by pri-
ority rules that use only the operation processing time and the operation due
date in one of the three types of approaches. The allowance-based approach
thus leads to earliest operation due date (ODD) priorities; the slack-based
approach leads to minimum operation slack time (OST); and the ratio-based
approach leads to smallest operation critical ratio (OCR).
Table 15.6 presents selected results reported by various investigators whose

research involved some of these rules. Three measures of performance are con-
sidered in the table: mean tardiness (MT), proportion of jobs tardy (PT), and
conditional mean tardiness (CMT). Algebraically, we have

Table 15.6

Performance
measure Best rule(s) Other rules compared Author(s)

MT MST S/OPN, SPT Gere (1966)

SPT S/OPN, EDD Conway et al. (1967) and
Carroll (1965)

S/OPN SPT Weeks (1979)

SPT, ODD MST, OST, SCR, OCR Kanet and Hayya (1982)

A/OPN SCR, S/OPN Miyazaki (1981)

SPT, EDD MST, SCR Baker and Bertrand (1981)

MST, SPT,
EDD

OST, S/OPN, ODD,
SCR

Muhlemann et al. (1982)

PT S/OPN, SPT EDD, MST Conway et al. (1967)

SPT MST, EDD, S/OPN Elvers (1973)

SPT EDD, ODD, MST, SCR,
OST, S/OPN

Muhlemann et al. (1982)

SCR, A/OPN S/OPN Miyazaki (1981)

SPT MST, OST, EDD, ODD,
SCR, OCR

Kanet and Hayya (1982)

SPT, S/OPN,
MST

EDD Elvers and Taube (1983)

CMT S/OPN SPT, EDD Conway et al. (1967)

SCR SPT, EDD, ODD, MST,
S/OPN, OST

Muhlemann et al. (1982)

OCR SPT, EDD, ODD, MST,
OST, SCR

Kanet and Hayya (1982)
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CMT=
MT
PT

or, in other words, CMT represents the MT computed for the set of tardy
jobs. The information in Table 15.6 must be interpreted in light of some qua-
lifications. First, different researchers used different experimental conditions,
which may account for their apparently conflicting conclusions, as discussed
later. Second, the table reflects only the simpler rules discussed earlier and
ignores rules that involve an additional parameter, such as TSPT. The table
has been slightly simplified in other ways, but it conveys some distinct
impressions:

• For PT, the SPT rule is consistently very effective.

• For CMT, critical ratio priorities are effective.

• For MT, the results are quite mixed.

In order to understand why the picture is mixed for theMT criterion, we need
to examine some additional factors.
Absolute performance at meeting due dates is affected by how tight the due

dates are. For example, tighter due dates tend to produce larger values of MT
and PT, if other conditions remain unchanged. Beyond that, evidence exists that
the relative performance of priority rules is also affected by due date tightness, at
least for PT and for MT. The research evidence suggests the presence of cross-
over points, with one rule performing best for tighter due dates and another per-
forming best for looser due dates. To some extent, the conflicting evidence in
Table 15.6 may reflect the fact that different research experiments happen to
have been conducted on opposite sides of a crossover point. This possibility
has led to a search for rules that are robust with respect to due date tightness.
One candidate is the MDD rule.
A variety of decision rules can be used to set due dates. If rj denotes the release

date for job j, then we set the job’s due date equal to dj = rj + aj, where aj = aj(rj)
represents the original flow allowance. The following list describes a number of
ways to set the original flow allowances. (Here,mj denotes the number of opera-
tions for job j.)

CON aj = k constant flow allowances

SLK aj =Pj + k equal slack

NOP aj = kmj proportional to number of operations

PPW aj =Pj + kmj processing plus waiting time

TWK aj = kPj proportional to total work

The parameter k would be chosen differently for each rule in order to achieve
a given average flow allowance. Some evidence exists that the due date assign-
ment rule can influence the performance of certain priority rules, so another
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possible explanation for the conflicting results in Table 15.6 might be that dif-
ferent due date rules were used in different research studies.
Not only are there alternative rules for setting job due dates, but similar

choices also arise for setting operation due dates. Once a job’s due date is
set, we divide its original flow allowance into as many segments as there are
operations. These segments, which determine operation due dates, can be con-
stant for all operations of the given job. Alternatively, they can reflect equal
slack, or they can be proportional to total work. Thus, if we use the subscripts
(i, j) to denote the ith operation of job j and adopt the convention d0j = rj, then
we have

CON dij = di−1, j + aj mj

SLK dij = di−1, j + pij + aj−Pj mj

TWK dij = di−1, j + ajpij Pj

Kanet and Hayya (1982) compared CON and TWK as alternatives for setting
operation due dates and found TWK to be superior. Using the TWK method,
they observed that operation-based versions of EDD, MST, and SCR produced
better tardiness performance than the job-based versions. Thus, in terms of
Table 15.6, we might hypothesize that some of the conflicting evidence about
such rules as ODD and OST may reflect differences in the choice of a decision
rule for setting milestones.
In summary, the existing results comprise a mixed and apparently inconsist-

ent set of results on priority rules for minimizing mean tardiness. At the same
time, there are certain aspects of the experimental conditions, often overlooked,
that might account for the inconsistencies in these studies.

15.5.2 Some Clarifying Experiments

Our brief review of simulation results leads directly to certain interesting ques-
tions. First, a question remains about how to set operation due dates for oper-
ation-based priority rules. The work of Kanet andHayya indicates that TWK is a
better rule than CON for setting milestones, but the SLK rule was not included
in their comparisons. In addition, they did not investigate whether their results
held for different ways of setting job due dates.
Once we gain insight into how to set milestones, we can compare the two

approaches for recognizing the remaining number of operations, by comparing
S/OPN with OST and A/OPN with ODD.We can also design an effective oper-
ation-based version of the MDD rule. Define an operation’s modified due date
as its original ODD or its early finish time, whichever is larger. The rule then
gives priority to the job with minimum modified operation due date (MOD).
A second question involves setting job due dates. Some authors have simply

assumed TWK to be desirable, but some single-machine experiments have
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suggested that there may be a crossover effect. The performance of due date
rules still requires some additional study.
Once we gain insight into the setting of job due dates, we can make a mean-

ingful comparison of priority rules, in which we incorporate considerations of
due date tightness and recognize that the priority rule must be considered in
conjunction with the due date rule. This comparison should reconcile many
of the conflicting implications surrounding MT as a criterion.
Below, we summarize the experimental investigation in Baker (1984), which

was aimed at answering these questions. The simulation model represented a
four-machine job shop. Jobs arrived randomly and had four operations on aver-
age, and no successive pair of operations required the same machine. The spe-
cific number of operations was equally distributed among the integers from 2 to
6, and the routings were those of a pure job shop. The operation times were
random samples from an exponential distribution with a mean of 1. Thus,
the average operation time was taken as the unit of time, so that the mean
amount of work per job was 4 time units. In such a system, the mean arrival
rate determines shop utilization, defined as the ratio of work required to capac-
ity available. In this model, the mean operation time was 1, and the mean num-
ber of operations per job was equal to the number of machines in the shop;
therefore, utilization was equal to arrival rate.
The primary experiments were conductedwith a utilization level of about 90%.

A second job set was created, with a utilization of about 80%. This second data
set allowed the experiments to be repeated, in order to verify the results observed
in the primary data set. As it turned out, the utilization level – although it has a
large effect on mean flowtime – was not a major factor in terms of which rule is
best, and qualitatively similar results were observed in both data sets.
To provide some perspective on the numerical values observed in the experi-

ments, the theoretical value of mean flowtime is 40 for a utilization of 90%. This
value represents the long-run or equilibrium value of mean flowtime, based on
the assumption that FCFS priorities apply at each machine. In other words, if we
could get perfect information under FCFS about all future events in the shop,
and thereby know at the time of a job’s arrival the precise time of its ultimate
completion, we could then set due dates so that each job would complete exactly
on time. In that case, the average flow allowance would be 40. Without full
information about the future, some tardiness inevitably occurs when the aver-
age flow allowance is 40, but this level anchors the tardiness scale. Table 15.7
shows the flow allowances that were included in the experiments. Also shown
are the values of MT and PT observed in the simulation when FCFS priorities
were imposed and constant flow allowances were assigned. We can see, for
example, that allowances of 40 (or 20 in the 80% data set) represent moderately
tight due dates for FCFS, in that roughly 40% of the jobs are late. Improved per-
formance can result from a better choice of priority rule and a more effective
way of setting due dates.
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As the parameters in Table 15.7 indicate, the experiments were designed with
reference to theoretical mean flowtime. Thus, if a mean allowance of 40 repre-
sents “moderately tight” due dates for the case of 90% utilization, then a mean
allowance of 20 represents “moderately tight” for the case of 80% utilization
because the underlying theory tells us that the mean flowtimes are half as large.
Suppose we want to test the effect of utilization. This experimental design
involves changing the utilization but maintaining the ratio of mean flow allow-
ance to mean flowtime derived from theory. In this framework, flow allowances
with a mean of 50 in the case of 90% utilization are considered comparable with
flow allowances of 25 in the case of 80% utilization. It is important to interpret
flow allowances in terms of the system’s utilization. If we increased the workload
by raising the arrival rate, while keeping the flow allowances the same, then a
higher proportion of jobs would be tardy. In other words, the frequency of tar-
diness does not reflect the size of the flow allowances alone, but only in the con-
text of the average level of congestion in the system.
We could adopt a different convention. For example, some experiments have

held mean flow allowance constant while raising utilization. Under our frame-
work, that experimental design is viewed as tightening the due dates because
mean flowtime was allowed to increase while the mean flow allowance was
maintained. The crossover phenomena observed in those experiments can be
interpreted as crossovers in tightness.

15.5.3 Experimental Results

Operation Milestones. Table 15.8 shows the MT outcomes in an experiment
that compared the three methods of setting milestones (CON, SLK, and
TWK). These methods correspond to the rows of the table, while the columns

Table 15.7

Utilization Value

Flow allowance

15 20 25 30

80% MT 6.48 4.10 2.48 1.46

PT 0.56 0.40 0.27 0.15

Utilization Value

Flow allowance

30 40 50 60

90% MT 14.82 9.86 6.28 3.87

PT 0.58 0.42 0.30 0.20
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represent three ways of setting job due dates. The priority rule in these experi-
ments wasODD, the utilization was 80%, and the average flow allowance was 20.
The table shows that for each choice of due date rule, TWKmilestones led to the
best tardiness performance. Furthermore, the combination of TWK for job due
dates with TWK for milestones produced the lowest values of MT.
The robustness of this result was tested several ways. First, the tightness of the

job due dates was varied by changing the average allowance to 15 and to 25.
Then the priority rule was changed to OST and to MOD. Then the utilization
was raised to 90%. In every comparison, TWK milestones produced the lowest
value ofMT. In addition, the combination of TWK for job due dates with TWK
for milestones consistently produced the lowest MT.
Earlier research had concluded that milestones assigned on the basis of work

content were more effective than those assigned by equal spacing. The results in
Table 15.8 reinforce that notion, demonstrating that the dominance of TWK
milestones is robust to certain changes in tightness, utilization, and priority rule.
Therefore, in subsequent experiments, the TWK rule was used to set all
milestones.
Due Date Assignment Rules. The five methods of setting job due dates

(CON, SLK, NOP, PPW, and TWK) were compared for 10 of the priority rules
at different tightness levels. The tightness levels were those implied by the four
flow allowances given for each data set in Table 15.7. In every comparison
except under FCFS, the TWK method produced the lowest values of MT and
PT. This set of results provides strong evidence that the TWK rule is a reliable
and effective method for setting due dates, at least in this tardiness range.
A few additional experiments were conducted in search of a crossover for the

due date rule at larger flow allowances. This idea was motivated by the single-
machine results in earlier studies, which indicate that the crossover occurs only
when the due dates are quite loose. In fact, a similar crossover was eventually dis-
covered for the job shop model, but it occurred only when tardiness levels were
already extremely low. Although TWK was not superior in these cases, its per-
formancewas still very close to the best. (Some details are presented later.) For all
practical purposes, the TWK rule provided superior tardiness performance.

Table 15.8

Job due date rule

SLK PPW TWK

Operation CON 2.28 2.92 1.49

Due date SLK 2.11 2.08 1.47

Rule TWK 1.45 1.18 0.87
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Allowance-based Rules. Figure 15.2 shows the graph of MT as a function of
the average allowance for the priority rules EDD, ODD, A/OPN, andMDD. The
graph emphasizes the fact that MT is a function of due date tightness. By
smoothing the points produced by the simulation runs, the graph suggests
the shape of these functions and shows the existence of crossover points. For
example, the MDD rule produced the lowest MT at an average allowance of
30; ODD produced the lowest value at 40; and A/OPN produced the lowest
at 50. All of the rules produced very little tardiness (MT ≤ 0.01) at 60.
In the region of the graph, the operation-based rules performed quite well.

The rule A/OPN nearly avoided tardiness for average allowances of 50 and
above, but its tardiness performance deteriorated quickly when the allowances
were tightened.
Slack-based Rules. Figure 15.3 shows a similar graph for the priority rules

MST, OST, and S/OPN. Two features of the figure resemble Figure 15.2:
The slack-based rules performed well under tight due dates, and there was a
visible crossover in the graphs of the two operation-based rules. If we superim-
posed Figures 15.2 and 15.3, the comparison would show A/OPN and S/OPN to
be quite similar, while ODD would be slightly better than OST.
This pair of comparisons (which was reinforced by similar results for the case

of 80% utilization) suggests that no significant advantage lies in using slack-
based rules. Although the anti-SPT effect might be minor, S/OPN and OST
appear to produce performance comparable with A/OPN and ODD, respec-
tively, but the allowance-based rules are slightly simpler.
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Figure 15.2 Mean tardiness
performance for allowance-
based rules.
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Critical Ratio Rules. Figure 15.4 shows a graph of the critical ratio rules SCR
and OCR, along with S/OPN. Comparing the two critical ratio rules, we observe
that the operation-based version achieved smaller MT values when flow allow-
ances were small, but the job-based version was preferable when allowances
were large. This same type of crossover occurred for MST and OST in
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Figure 15.3 Mean tardiness
performance for slack-based rules.
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Figure 15.4 Mean tardiness
performance for critical ratio rules
and S/OPN.
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Figure 15.3. These results suggest that the pacing induced by operation mile-
stones improves performance when due dates are relatively tight but provides
little benefit when due dates are relatively loose.
The comparison between the critical ratio rules and S/OPN in Figure 15.4 is

also instructive. As in the case of A/OPN discussed earlier, the S/OPN rule
achieved very small levels ofMT for relatively long flow allowances, but perfor-
mance deteriorated rapidly when allowances were shortened. By contrast, the
critical ratio rules yielded more tardiness for loose due dates, but they were less
sensitive to shortening the flow allowances.
This comparison is interesting in light of an earlier claim that SCR and S/OPN

are equivalent. Although this equivalence does not hold for our definition of
SCR (time remaining divided by work remaining), one variation is to replace
the numerator in the critical ratio by job slack. If, in addition, we interpret “work
remaining” as the allowance for remaining operations, and if those allowances
are set by the CON rule for determining milestones, then SCR does become
identical to S/OPN. However, the MT performance of SCR seems better with-
out the changes.
ModifiedOperation DueDates. MDDdid not always produce extremely low

MT values, as Figure 15.2 indicates. However, the foregoing discussion suggests
that an operation-based form can be more effective. The simulation runs cer-
tainly confirmed this point, as shown in Figure 15.5. The graph reproduces the
results for A/OPN and ODD along with the results for MOD and SPT. Not only
did MOD produce very small tardiness levels, but also its performance deterio-
rated far less quickly than the performance of other rules as due dates were
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Figure 15.5 Mean tardiness
performance for selected rules.

15.5 Meeting Due Dates 447



tightened. Additional studies have confirmed the robustness of modified due
date priorities.
The results in Figure 15.5 are reproduced in Table 15.9. As the data indicate,

MOD did not dominate the other rules, for at an average allowance of 60, its
tardiness level was slightly higher than that of A/OPN, ODD, and S/OPN. How-
ever, the absolute value of MT was very small under those conditions.
As Figure 15.5 shows, the SPT rule exhibited its own kind of robustness, with

a tardiness “curve” that was relatively flat. As a result, SPT produced less tardi-
ness than all of the other rules except MODwhen due dates were very tight, and
SPT produced more tardiness than all of the other rules (except FCFS) when
due dates were very loose. The flatness of the SPT curve created crossovers with
most other priority rules, which may account for much of the conflicting evi-
dence in the literature.
The performance of the MOD priority rule against the MT criterion was

remarkable in these experiments. In addition, its performance on the PT crite-
rion was also quite good. As stated earlier, in reference to Table 15.6, the SPT
rule appears to be the benchmark for comparisons involving PT. Table 15.10,

Table 15.9

Allowance factor

Priority rule 30 40 50 60

ODD 3.90 1.13 0.28 0.0061

S/OPN 7.54 1.60 0.0024 0.0043

A/OPN 6.94 2.09 0.0024 0.0029

MOD 1.43 0.48 0.14 0.0092

SPT 3.00 2.22 1.84 1.48

Table 15.10

Allowance factor

Priority rule 30 40 50 60

ODD 0.40 0.15 0.05 0.006

S/OPN 0.56 0.24 0.01 0.002

A/OPN 0.54 0.30 0.009 0.003

MOD 0.14 0.06 0.03 0.01

SPT 0.08 0.04 0.03 0.02
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which shows PT values, demonstrates that MOD generated PT performance
that was almost as robust as the performance of SPT.
Crossovers in Due Date Rules. As mentioned earlier, some exploratory runs

with very loose due dates revealed a crossover effect in the choice of the due date
rule. In particular, the priority rules A/OPN and MOD were investigated in a
region of due dates more loose than the region in Figures 15.2–15.5. Under
TWK due dates, a small amount of tardiness persisted for average allowances
up to 100. On the other hand, under NOP due dates, there was no tardiness
at all for allowances of 80 and above with the A/OPN priority rule, and there
was no tardiness at 90 and above with the MOD rule. In graphical terms, these
results suggest that tardiness curves for NOP due dates exhibit smaller x-
intercepts in graphs such as Figures 15.2–15.5, compared with curves for
TWK. Nevertheless, this effect may be of little practical significance because
even the TWK rule yields very little tardiness in the region where NOP yields
none.

15.6 Summary

After looking at the main results relating to mean flowtime, we gave an over-
view of a simulation study on tardiness-oriented dispatching in a job shop. For
minimizing the proportion tardy (PT), the evidence is quite strong that SPT is
effective. For minimizing the CMT, the evidence is more limited, but it con-
sistently suggests that the use of critical ratio priorities is effective. For the cri-
terion of MT, there appears to be conflicting evidence in the research
literature. It may be possible to explain such conflicts by recognizing that
MT performance varies with due date tightness, and we can think of a graph
in which MT performance is represented by a curve. Not surprisingly, if we
increase flow allowances (and thereby loosen due dates), then MT drops. This
relation gives rise to downward-sloping MT curves. More importantly, the
shape of the MT curve depends critically on the priority rule in effect, as indi-
cated in Figures 15.2–15.5.
The SPT rule exhibits a very flat MT curve, which gives rise to perfor-

mance crossovers with nearly all of the other priority rules tested. In partic-
ular, SPT is relatively effective when due dates are very tight but not when
due dates are loose. Thus, a particular experimental comparison might find
SPT performance to be good or bad, depending on how tight the due dates
are set.
The MOD rule also exhibits a relatively flat MT curve. It provides superior

MT performance when due dates are tight, and it is close to the best rules when
due dates are loose. This robustness appears to make MOD a desirable choice
under conditions where we cannot guarantee loose due dates.
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As a general guideline, operation-oriented priority rules perform better on the
MT criterion than job-oriented rules. One such approach, embodied inMOD, is
to set operation milestones and use them in priority calculations. In these cases,
the evidence indicates that milestones should not be equally spaced; rather, they
should reflect the work content in individual operations, as in the TWK rule.
A second operation-oriented approach, embodied in the A/OPN rule, is to

use the number of remaining operations as a denominator in the priority cal-
culation. In particular, the A/OPN rule exhibits a relatively steep MT curve,
which makes it undesirable when due dates are tight. Nevertheless, the
A/OPN rule appears superior when due dates are loose. This result suggests that
A/OPN may be a desirable choice in situations where we can systematically
keep tardiness very small.
In general, slack-based rules offer no great advantage over simpler allowance-

based rules. For example, S/OPN producesMT performance very similar to that
of A/OPN. Where S/OPN achieves better MT performance than A/OPN, the
ODD and MOD rules seem even better.
Finally, the evidence is quite strong that due dates should reflect work con-

tent, in light of the fact that TWK was usually the best of the due date assign-
ment rules studied. Some evidence, however, indicates that the NOP rule could
yield efficient due dates for avoiding tardiness completely. However, we might
wonder what information besides work content can be helpful in setting
due dates.
The simulation approach is inherently suited to the study of stochastic job

shops. However, in a true stochastic system, we don’t know the processing time
in advance. In most of the studies we reported, by contrast, the jobs are gener-
ated randomly but are assumed known when it comes time to actually apply the
various rules. We noted one exception –Conway’s finding that SEPT is as effec-
tive as SPT for minimizing average flowtime. One consequence of treating job
parameters as known is that no Jensen gap occurs. Thus, we may still want to
study the effect of using dispatching rules that are based on known distributions
rather than known realizations. On the one hand, adapting rules such as MDD
or its derivatives (such asMOD) to stochastic times is conceptually easy:We can
calculate the expected modified due date, E[max{dj, t + pj}], and use it instead of
MDD. On the other hand, we need research to determine whether this refine-
ment is important.
When we consider more complex job shops, we may have to deal with addi-

tional heterogeneity in jobs and machines. The economics associated with per-
forming different jobs may justify the use of weights inmeasures of performance
and in priority rules. The economics of acquiring different machinesmay lead to
a shop configuration in which some machines are busier than others. In such a
setting, throughput as well as due date performance becomes important. When
throughput is at stake, it is important to focus on bottlenecks, and wemay find it
helpful to treat heavily loaded machines and lightly loaded machines differently.
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For example, operation due dates are especially useful on heavily loaded
machines, but lightly loaded machines may function well with only flowtime-
oriented priority rules such as SWPT. We discuss these issues in more detail
in our Research Notes.
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16

Network Methods for Project Scheduling

16.1 Introduction

This is the first in a module of four chapters covering classical and emerging
project scheduling techniques. Here, we introduce the quintessential network
methods for project scheduling, namely, critical path method (CPM) and pro-
gram evaluation and review technique (PERT). Although we mention some
modern insights, essentially this chapter could have been written in the early
1960s. However, several of the historical assumptions it is based on can no
longer be considered tenable or necessary. It is not that these weaknesses
were not known – most of them were already covered in the textbooks of
the 1970s – but that they have been allowed to stand due either to inertia or
to a lack of better models. The next chapter focuses on sequencing and briefly
touches developments spanning half a century. The third chapter is about proj-
ect analytics and introduces recent results that make it possible to generate valid
simulated samples for a new project, based on historical information regarding
other projects. The last chapter completes themodule by adding safe scheduling
analysis, based on such simulated samples. The chapter also shows how to
implement safe scheduling hierarchically. Altogether, but especially in Chapters
18 and 19, themodule presents a contemporary version of the PERT/CPM com-
bination, which we also call PERT 21 (or PERT for the twenty-first century).
Network models are widely used in the formulation of resource allocation

problems and sequencing problems, so it is appropriate to think of network
models as fundamental in scheduling. The purpose of this chapter’s introduc-
tory treatment of network models is twofold. The first objective is to describe
the elements of network models: many of the scheduling problems discussed
later can be visualized more clearly and analyzed more effectively with the
use of network concepts. The second objective is to discuss the basic elements
of CPM and PERT, which are well-known approaches to network scheduling.
CPM and PERT emerged independently in the late 1950s and are regarded as

tools for planning and scheduling large, nonrepetitive projects. However, their
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potential usefulness has amuch broader scope. They have won rapid acceptance
as practical techniques and have been employed successfully in a variety of
areas, including research and development, construction, maintenance, market-
ing, and production.
For the purpose of using network methods in project scheduling, a project

represents a collection of well-defined tasks called activities. When all of these
activities are carried out, the project is completed. (In job shop terminology, a
project is called a job and an activity is called an operation.) The activities of a
project are subject to logical constraints, which restrict activity scheduling to
feasible sequences. Within a feasible sequence, however, activities may be
started and stopped independently of each other, as long as the logical con-
straints are not violated. The graphical representation of logical relationships
among project activities is more precisely called an activity network model,
but, for simplicity, we refer to network models. As we shall see, the network
model not only depicts logical constraints, but it also provides a structure for
analysis.
Section 16.2 describes the construction of network models to display logical

information. Section 16.3 discusses the fundamentals of analyzing simple,
deterministic networks. Section 16.4 discusses a classic trade-off involving cost
and time. Section 16.5 describes the stochastic approach of PERT along with a
critical look at some of its assumptions.

16.2 Logical Constraints And Network Construction

Network representations of logical constraints were introduced in Chapter 8 for
describing sets of related jobs. In the same way, a network model can be used to
describe the precedence relationships among activities in a project. The partic-
ular network model employed in previous chapters represented activities as
nodes in the network and represented direct precedence relations as directed
arcs. This type of network is called an activity-on-node (AON) network because
of its structure. An alternative model, the activity-on-arc (AOA) network, is fre-
quently employed in project scheduling.
Networks are made up of nodes and directed arcs. In an AOA network, the

arcs represent activities and nodes represent events. The distinction between
activities and events in AOA networks is subtle but important. Activities are
processes and are associated with intervals of time over which they are per-
formed; events are stages of accomplishment and are associated with points
in time. For example, in the development of a prototype of an automobile emis-
sion control device, “testing cold weather performance” might be an activity,
whereas “test completed” would be an event.
In a network, the direction of an arc indicates the direction of a precedence

relation. For instance, if A directly precedes B, an appropriate AOA network
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representation is given in Figure 16.1. Here, event 1 (node 1) represents the start
of activityA, and event 3 represents the completion of activity B. Event 2 has two
interpretations: it can be considered the completion of activity A or the start of
activity B. The network structure indicates that these two events are not logi-
cally distinct. In other words, whereas they may occur temporally at different
points, they occur logically at the same point.
If two activities,C andD, are allowed to be concurrent, butC directly precedes

E andD directly precedes E, the network representation is shown in Figure 16.2.
Here, the interpretation of node 6 in logical terms is the completion of both
activities C and D (or equivalently, the start of activity E, which requires that
both C and D be complete). Similarly, if F directly precedes G and F directly
precedesH, whereG andH can be concurrent, then the network representation
is shown in Figure 16.3. Here, the interpretation of node 9 in logical terms is the
completion of activity F or, equivalently, the potential start of either activityG or
activity H, or both.
Several conventions are usually prescribed for the construction of AOA net-

works. Here are the principal rules:

1) The network should have a unique starting event (a single origin node).
2) The network should have a unique completion event (a single termi-

nal node).

6

5

4

7
E

C

D

Figure 16.2 Activities C and D directly precede
E, in an AOA representation.

21 3
BAFigure 16.1 Activity A directly precedes B, in an

AOA representation.

F

G

H
8 9

10

11

Figure 16.3 Activity F directly precedes G and
H, in an AOA representation.
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3) The nodes should be numbered so that for any activity, the completion event
has a larger number than the starting event. (Such a numbering can always
be found unless the network contains logical inconsistencies that would lead
to circular precedence relationships.)

4) No activity should be represented by more than one arc in the network.
5) No two activities should share both a starting event and a completion event.

In particular, we want to be able to identify activities by the node numbers of
their starting and ending events and to do so uniquely.

Rule 5 may create a problem for the basic AOA network, as in the following
example:

∎ Example 16.1 Consider the following simple project (planning and holding
a fund-raising concert).

Activity ID Predecessors

Plan concert A —

Advertise B A

Sell tickets C A

Hold concert D B, C

Figure 16.4 shows a simple AOA network representation for the example.
However, a reference to activity (2, 3) would be ambiguous: it could refer to
either activity B or activity C.
For informal purposes or hand calculations, this network diagram is suffi-

cient. To avoid violating Rule 5, however, we must include a dummy activity
(dotted arc), as shown in Figure 16.5. The dummy activity allows the same

A

B

C
D

1 2

3

4

5

Figure 16.5 Revision of Figure 16.4, using a dummy arc.

A

B

C

D
21 3 4

Figure 16.4 An AOA network for Example 16.1.
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logical relationships to be accommodated without violating Rule 5 or some
other rule. No physical process corresponds to the dummy activity, but it is
often necessary to use dummy activities to exhibit correct logical relationships
under the standard conventions. Also, computer programs for project schedul-
ing techniques often rely on the ability to use dummy activities.
Given these conventions, the task of constructing a suitable network requires

two types of input: a detailed list of the individual activities and a specification of
their precedence relations. To help provide the latter information, we answer
the following questions for each activity:

Which activities precede it? (What controls its start?)
Which activities follow it? (What are its consequences?)
Which activities may be concurrent with it?

With this information available, the next step is to draw an intelligible net-
work diagram. Often, this will be a trial-and-error process. It is desirable, but
not always possible, to adhere to the following guidelines:

Avoid drawing arcs (arrows) that cross.
Draw arcs as straight lines.
Avoid too wide variation in arc lengths.
Keep the angles between arcs as large as possible.
Maintain a left-to-right component in each arc.

The use of AON networks leads to a different approach to constructing net-
work diagrams for project scheduling. Recall that in an AONnetwork, the nodes
represent activities and the arcs represent the logical constraints. Because each
arc corresponds to a direct precedence relation between two activities, we need
not introduce dummy activities. For example, Figure 16.6 is the AON network
for the fund-raising concert of Example 16.1.
The direct correspondence of arcs with precedence information and the

observation that dummy activities appear to be unnecessary for expressing log-
ical constraints make AON networks somewhat easier to construct than AOA
networks. For this reason, when network models are used in formulating sche-
duling problems that contain logical constraints, we often prefer the AON type
of network. Nevertheless, in practical applications of CPM and PERT, good rea-
sons exist for using AOA networks. First, when computer programs perform the

B

C

A D

Figure 16.6 AON network for the activities in
Example 16.1.
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requisite calculations for large projects, the computational task can be carried
out more efficiently with AOA formulations. Second, the event orientation of
AOA networks can be advantageous from a project management point of view.
In particular, events in the network represent milestones – points in time when
project status can be conveniently updated, prospects can be reevaluated, and
plans can be revised. Because of the particular usefulness of event-oriented net-
works in project scheduling, our coverage of CPM and PERT in the following
sections emphasizes AOA networks.

16.3 Temporal Analysis of Networks

The underlying motivation of temporal analysis involves the question, “When
will the project be complete?” A closely related question is, “Which activities
will contribute directly to the duration of the project?” To help answer both
questions, the network is first analyzed under the simplifying assumption that
all activity durations are known constants, pj.
In the standard terminology, “time” refers to a point in time and is associated

with the occurrence of an event, whereas “duration” refers to an interval in time
and is associated with an activity. Corresponding to each event in the network
are two time values: an early event time (ET), which is the earliest point in time
at which the event could possibly occur; and a late event time (LT), which is the
latest point in time at which the event could possibly occur without delaying the
completion of the project. These are complementary definitions, and they sug-
gest complementary methods of calculation.

Algorithm 16.1 Calculation of Early Event Times

Step 1. Assign an ET of zero to the origin event.
Step 2. Using the node numbering convention of Rule 3, consider the events in
numerical order. For each event, make the following calculations: (a) to the
ET of each directly preceding event, add the duration of the connecting activ-
ity; (b) select the maximum of the sums calculated in (a).

Algorithm 16.2 Calculation of Late Event Times

Step 1. Assign an LT equal to the project due date to the terminal event. (As a
default project due date, use the ET of the project completion event.)

Step 2. Consider the events in reverse numerical order. For each event, make
the following calculations: (a) from the LT of each directly succeeding event,
subtract the duration of the connecting activity; (b) select theminimum of the
differences found in (a).
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A forward pass calculates ET values, and a backward pass calculates LT
values. If the project does not have an explicit due date, the backward pass is
initialized by using the ET for the terminal event as the due date. Once all
ET and LT values are computed, attention shifts to activity information. In par-
ticular, four quantities are calculated for each activity.

Early start time (ES): The earliest time at which the activity could possibly be
started (equal to the ET of the activity’s starting event).

Early finish time (EF): The earliest time at which the activity could possibly be
completed (equal to the sum of the ES and the activity duration).

Late finish time (LF): The latest time at which the activity could be completed
without delaying the project beyond its due date (equal to the LT of the activ-
ity’s completion event).

Late start time (LS): The latest time at which the activity could be started with-
out delaying the project beyond its due date (equal to the difference between
LF and the activity duration).

∎ Example 16.2 Consider the following project.

Activity ID Direct predecessors Duration

A — 5

B — 4

C — 3

D A 1

E C 2

F C 9

G C 5

H B, D, E 4

I G 2

The network diagram corresponding to this example is shown in Figure 16.7,
where each arc is labeled with both activity ID and duration. The forward and
backward passes produce the ET and LT values displayed in Figure 16.8. The ET
values of nodes 2 and 3 are 5 and 3, respectively, because the only predecessor of
activitiesA andC is the start node. Node 4 then receives an ET ofmax{5 + 1, 4, 3
+ 2} = 6. Node 5 receives an ET of 3 + 5 = 8, and the terminal node has ET =max
{3 + 9, 6 + 4, 8 + 2} = 12. Implementing Algorithm 16.2, we calculate LT for
nodes 5 and 4 as 12 − 2 = 10 and 12 − 4 = 8, respectively. Node 3 then receives
LT =min{8 − 2, 12 − 9, 10 − 5} = 3. Node 2 is addressed next with LT = 8 − 1 = 7,
and finally node 1 receives LT =min{8 − 4, 3 − 3, 7 − 5} = 0. (Because no project
due date was given, the LT for event 6 is taken to be 12, its ET. For this reason,
we can anticipate that the LT of node 1 should be 0.)
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One of the motivating questions has now been answered. Assuming that
activity durations are deterministic, the ET of the terminal event represents
the minimum project length. The project can be completed by this time pro-
vided sufficient resources are available. To address the second question, it is
necessary to understand what accounts for the project length.
Activities that contribute directly to the duration of the project are called crit-

ical. Any delay in a critical activity will ultimately cause a delay in the comple-
tion of the project. The chain of arcs formed by the critical activities is called the
critical path; it is the longest path from the origin event to the terminal event
and may not be unique. In Example 16.2 the critical path is C–F. Because the
logical constraints require that the activities on the critical path be carried
out sequentially, event 6 cannot be realized prior to time 12. In general, if
the project is to be completed by the ET of the terminal event, we cannot
tolerate any delay along the critical path.
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6A(5)

B(4)

D(1)

E(2)C(3)

G(5)

F(9)

H(4)

I(2)

Figure 16.7 Network model for the example project.

4

6

5

2

12 12

3

33

1

2

5

4

3 2

1
00

75

8

9

5

8 10

4

6

Figure 16.8 Network for the example project with ET and LT shown for each event.
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For noncritical activities, however, some scheduling flexibility exists. Con-
sider the scheduling of activities G and I in Example 16.2. Activity G can start
no earlier than time 3, and to avoid delaying the project, activity Imust be com-
pleted by time 12. Because seven units of time are required to carry out activities
G and I in sequence, and because an interval of length nine is available, some
flexibility remains. The two extra units of time can be absorbed before or after
either activity, or perhaps in some combination, as shown in Figure 16.9. This
kind of flexibility is called float or slack. Along the critical path (or critical paths,
if there are several), no float exists, whereas along other paths, some amount of
float occurs. To quantify the scheduling flexibility, we can use various measures
of float.
To describe the various measures of float concisely, consider activity j and let

pj = duration of activity j

i= start node of activity j

k = endnode of activity j

ETi = early event time corresponding to node i, etc

Then the four measures of float are

Total float TF = LTk −ETi−pj

Safety float SF = LTk −LTi−pj

Free float FF = ETk −ETi−pj

Independent float IF = max 0, ETk −LTi−pj

3 12

3 12

G I

G I

G I

Time

Figure 16.9 Three different ways of scheduling activities G and I.
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Of the four measures, the most frequently used is total float, which – as
observed above – actually measures float along a path. The total float represents
the delay in start time that could be absorbed by an activity without delaying the
project, assuming no other activity on the path is delayed further. The safety
float is similar but assumes that the direct predecessors of an activity have
already been delayed as much as possible. Free float measures the delay in start
time that could be absorbed by an activity without preventing any other activity
from being started at its own ES. Finally, independent float represents the delay
in start time that can be absorbed by an activity unconditionally – that is, inde-
pendent of any scheduling decisions made elsewhere in the network. The cal-
culations of the four types of float for Example 16.2 are summarized in
Table 16.1. The critical activities are identified by the condition TF = 0.
Returning to the two questions posed at the outset of this section, we can see

how the temporal analysis of a network provides answers. If we assume that
activity durations are known constants, then the duration of a project is equal
to the length of the longest path in the network. The critical activities, those that
lie along this longest path, are the activities that contribute directly to project
length. Any delay in a critical activity will lead to a delay in the project. Further-
more, for noncritical activities, the amount of scheduling flexibility available and
the nature of that flexibility can be represented by the various measures of activ-
ity float.
The assumption of constant, deterministic activity durations on which tem-

poral analysis is based certainly has some shortcomings. To address these lim-
itations, and to develop more practical forms of network analysis, the basic
project model has historically been extended in two important ways. One (asso-
ciated with CPM) treats each activity duration as a function of the resources

Table 16.1

Activity TF SF FF IF

A 2 2 0 0

B 4 4 2 2

C 0 0 0 0

D 2 0 0 0

E 3 3 1 1

F 0 0 0 0

G 2 2 0 0

H 2 0 2 0

I 2 0 2 0
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applied, leading to a resource allocation problem in which resource levels (and
therefore activity durations) are decisions. The other extension (associated with
PERT) allows activity durations to be probabilistic and answers the motivating
questions in probabilistic terms. These extensions are discussed in the next two
sections.

16.4 The Time/Cost Trade-off

The first generalization of the basic model treats activity durations as decision
variables. The premise is that activity durations can be shortened by the appli-
cation of greater amounts of labor, capital, or both.More simply, this means that
the expenditure of more money can reduce the duration of an activity. A time/
cost trade-off therefore exists for each activity in the project, and an aggregate
trade-off exists between project duration and project expense. Decreasing the
project duration by spending more money is also known as crashing.
To illustrate the structure of a time/cost model, suppose that the relationship

between activity duration and cost satisfies the following properties:

1) Each activity duration is a linear function of the costs incurred in carrying
out the activity.

2) Each activity has a minimum feasible duration and a maximum feasible
duration.

Under these conditions, the time/cost trade-off for a given activity can be
represented by the graph shown in Figure 16.10, using the following notation:

a=minimum feasible duration

b=maximum feasible duration

p= activity duration

c= cost per unit time of expediting the activity

K = total cost incurred in carrying out the activity

c0 = vertical intercept

Within this framework, it is possible to formulate several problems in finding
minimum-cost project schedules.
Suppose that, in addition to the activity-related costs described in

Figure 16.10, there is also a fixed overhead cost, cf, incurred on a daily basis until
the project is completed. Example 16.3 illustrates the decision procedure
involved in finding a minimum-cost schedule.
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∎ Example 16.3 Consider the following project, where the fixed cost cf = $450
per day.

Activity ID Predecessors aj bj cj c0j

A — 1 day 3 $400 $1400

B A 3 7 100 1100

C A 2 4 400 1800

D C 2 5 200 1300

First, suppose that all activities are scheduled at their maximum durations,
with a total cost of $6500 (activity A costs $1400 – 3 × $400 = $200, and simi-
larly, we obtain 400, 200, 300, and $5400 for B, C, D, and the fixed costs). The
corresponding network diagram, displayed on a time scale, is shown in
Figure 16.11a. To reduce fixed costs, a reduction must be made in the length
of the project. In other words, the length of the critical path (A–C–D) must
be shortened in a manner that reduces costs. Among the critical activities, D
is the least expensive to expedite. A two-day reduction in its duration (costing
$400) achieves a reduction in overhead costs of $900. The net reduction is $500,
reducing the total cost from 6500 to $6000. At this stage, activity B is also critical
(see Figure 16.11b) and the alternatives for reducing the length of the project are

1) Expedite activity A at $400 per day.
2) Expedite activities B and C at $500 per day.
3) Expedite activities B and D at $300 per day.

Clearly, the third alternative is most desirable, but a reduction of only one day
is possible, because activityDmust be at least two days in length (Figure 16.11c).

K = c0– cp

K

(Duration)

(C
os

t)

a b
p

Figure 16.10 The time/cost function for an individual activity.
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This change costs $300 but saves $450, leading to a total cost of $5850. A further
improvement requires alternative 1 in the above list. ActivityA can be scheduled
at its minimal duration, and the resulting total cost is lowered to $5750
(Figure 16.11d). The cost of a further one-day reduction in the project length,
achieved by crashing activities B and C, would more than offset the savings in
overhead cost; therefore, the cost of $5750 is optimal.
As this simple example illustrates, when variable activity costs and fixed proj-

ect costs are of concern, it can be expected that total cost will exhibit a U shape,
resembling the function sketched in Figure 16.12. In such a case, finding an

A

B

C D

A B
C D

A B
C D

A B
C D

Cost = $6500

Cost = $6000

Cost = $5850

Cost = $5750

1210730

10730

9730

7510

(a)

(b)

(c)

(d)

Figure 16.11 A sequence of schedule modifications in Example 16.3.
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optimal project length – and an associated project schedule – is a meaningful
optimization problem.
For larger projects, the heuristic solution method illustrated above will sel-

dom be practicable. With a great many more activities present, there will be
more stages at which several paths are critical. The identification of all alterna-
tives for reducing project length in such cases can be a formidable task, not to
mention the large number of stages that might also occur. Furthermore, as we
progress through a process of greedily collecting the best crashing opportu-
nities, as described above, we may find it necessary to reverse an early crashing
decision. Therefore, solutions to large-scale time/cost problems rely heavily on
more sophisticated techniques.
When the cost functions are linear, as in Figure 16.10, the problem can be

solved by linear programming. Let activity j be characterized by start node i
and completion node k. In other words, activity j can also be referred to as activ-
ity (i, k). The basic decision variables are the activity durations or, equivalently,
the times at which the nodes in the network are realized. Let

N = number of nodes in the network
xi = early event time of node i (ETi)
pik = duration of activity (i, k)

Then the length of the project is (xN − x1) or simply xN if x1 is taken to be zero.
The two feasibility constraints on activity durations may be expressed as

pik ≤ bik for each activity i,k

pik ≥ aik for each activity i,k

and the relationship between ETs and activity durations may be written

xk −pik −xi ≥ 0, for each activity i,k

Project cost

Project
length

Optimum

Figure 16.12 The total cost curve.
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The objective function is simply the sum of project costs and activity costs, or

cf xN +
j

c0j−cjpj

Because the sum of the c0j values is a constant, the objective is essentially to
minimize cf xN − jcjpj. The full linear program, with activities represented by
double subscripts (i, k) is shown below:

Minimize cf xN −
i,k

cikpik

Subject to

xk −pik −xi ≥ 0, for all i,k

pik ≤ bik , for all i,k

pik ≥ aik , for all i,k

xi ≥ 0, for all i

pik ≥ 0, for all i,k

16.5 Traditional Probabilistic Network Analysis

Historically, PERT included the earliest practical modeling of stochastic proces-
sing times in scheduling applications, including rudimentary safe scheduling.
PERT was devised for the US Navy, and its first application was an R&D project
related to the development of the Polaris missile. By nature, development pro-
jects involve highly uncertain activity times. In the original application, many
activities were subcontracted to external contractors, so the activity durations
were perceived to be stochastically independent and not subject to simple crash-
ing. Completion times, however, were known to be dependent because a delay
in one completion time can cause delays downstream. The challenge was to
model this type of stochastic behavior. However, to keep the framework simple,
the analysis essentially (and intentionally) ignored the dependencies created by
the precedence relations. This simplification has been universally adopted and
practiced for many years, although it has also been increasingly criticized. In this
section, we describe the simplified framework and some of the criticisms.

16.5.1 The PERT Method

Once again, the motivating question is, “When will the project be complete?”
The objective of probabilistic analysis is to answer this question with explicit
recognition that activity durations are uncertain. Let
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pj = duration of activity j (treated as a random variable)
μj =mean of pj, or E[pj]
σ2j = variance of pj

The analysis therefore recognizes that pj is a random variable and begins with
the assumption that μj and σ2j are known. The PERT model requires two basic

assumptions:

A1. The activities in the network are statistically independent.
A2. The critical path in the network (as defined below) contains a large enough
number of activities so that the central limit theorem applies when analyzing
its length.

The mean of a sum of random variables is equal to the sum of the means. For
independent random variables, the variance of a sum also equals the sum of the
variances. Furthermore, the central limit theorem states that (under mild reg-
ularity conditions) the distribution of the sum of a large number of independent
random variables is approximately normal, and the approximation improves as
the number of components in the sum grows. Therefore, if Lπ denotes the dura-
tion along path π in the network and if there are many activities on the path,
then Lπ can be treated as a normal random variable with mean

μπ =
j π

μj 16 1

and variance

σ2π =
j π

σ2j 16 2

This analysis ignores the possibility that some activities along the path will be
delayed by activities outside the path. Starting with a deterministic counterpart
approach, PERT identifies the critical path by taking μj to be the duration of activ-
ity j and performing the deterministic temporal analysis described in Section 16.3.
However, depending on the realizations of the stochastic elements, this path is not
certain to be critical. Therefore, we also refer to it as the nominal critical path.
Let λ denote the nominal critical path, and let Lλ denote its length – that is, Lλ

is the nominal project makespan. PERT treats Lλ as having an approximately
normal distribution with parameters μλ and σ2λ , calculated by Eqs. (16.1) and
(16.2) with π = λ. Accordingly, the distribution of the project length is taken
to be normal with parameters μλ and σ2λ . The motivating question posed earlier
can then be answered in probabilistic terms. If we use the PERT approximation,
the probability that the project will be completed by a due date d is

Pr Lλ ≤ d =Φ
d−μλ
σλ
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where Φ(z) denotes the cumulative distribution for a standard normal random
variable.
To support this analysis, the method relies on knowledge of μλ and σ2j . PERT

was developed under the assumption that no data will be available to estimate
these parameters, and it may be difficult for even knowledgeable personnel to
provide good estimates. For such situations, PERT provides a mechanism for
obtaining μj and σ2j from subjective estimates that were considered easier to

obtain in practice. For a given activity, let

a = an optimistic duration; that is, an estimate of the activity duration under the
most favorable conditions

b = a pessimistic duration; that is, an estimate of the activity duration under the
least favorable conditions

m = the most likely duration

These three parameters are incorporated in a beta distribution as a probabi-
listic model for the duration of the activity. (The original choice of the beta dis-
tribution was arbitrary but never used explicitly in the model except for
estimation purposes. Nonetheless, it unduly influenced subsequent research
and development for a very long time.) Parameters a and b are the minimum
and maximum values of the distribution, and m is the mode. Depending on
the choice of those parameters, the beta distribution can be symmetric or else
skewed in either direction, as depicted in Figure 16.13. Based on its professional
judgment, the original PERT team recommended the following calculations to
approximate μj and σ2j :

μj =
a+ 4m+ b

6
16 3

σj =
b−a
6

16 4

Both of these formulas are merely convenient rules of thumb. Suppose that we
consider the range between a and b as 100%, with a = 0% and b = 100%. If the
mode is between 5 and 95%, then a beta distribution exists that approximately
satisfies Eqs. (16.3) and (16.4). On this scale, a mode of 50% yields a symmetric
beta distribution, and any other value gives rise to a skewed distribution. Even
when μj and σ2j are not known at the outset, PERT offers simple calculations

for the two parameters from estimates of a, m, and b. In addition, perhaps
because PERT was originally developed for a project where activities were
assigned to independent contractors, an important assumption was that activity
durations were statistically independent. (Historical evidence indicates that this
assumption has often caused major problems. More typically, activity durations
are positively correlated.)
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∎ Example 16.4 Consider the following project, and suppose that we wish to
estimate the probability that the project will be completed by time 15.

Activity Predecessors aj mj bj μj σ2j

A — 2 4 12 5 2.78

B — 3 6 9 6 1.00

C A 1 2 9 3 1.78

D A 1 4 7 4 1.00

E B 1 2 3 2 0.11

F B 4 7 10 7 1.00

G C 1 2 9 3 1.78

H D, E 4 5 12 6 1.78

I F 1 3 5 3 0.44

We illustrate the PERT calculations for Example 16.4, where the last two col-
umns in the table follow Eqs. (16.3) and (16.4) using the given values of a,m, and

a

(a)

(b)

m b

a m b

Figure 16.13 The density functions of two beta distributions, (a) skewed to the right and
(b) skewed to the left.
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b. The next step is to construct the network diagram and label activity j with its
mean duration, μj, as shown in Figure 16.14. Then, by using these mean values,
we can identify the nominal critical path as B–F–I. From Eqs. (16.1) and (16.2),
we find that the length of the path B–F–I has a mean of 6 + 7 + 3 = 16 and a var-
iance of 1.00 + 1.00 + 0.44 = 2.44. If we use the probabilistic characteristics of
this path as a model for the project duration, then under the independence
assumption, the probability that the project will be completed by time
15 becomes

Pr Lλ ≤ 15 =Φ
15−16

2 440 5 ≈0 26

In summary, PERT recognizes that the duration of the project is a random
variable and that questions about the completion of the project can be answered
only in probabilistic terms. The PERT approach utilizes mean values and deter-
ministic analysis to identify the critical path, λ. Then, assumptions A1 and A2
are invoked to characterize the length of this path, Lλ. The properties of the ran-
dom variable Lλ are then substituted for the duration of the project to make
statements about project completion. Finally, where information about the
duration of individual activities is scarce, PERT uses amodel that is loosely asso-
ciated with the beta distribution to generate means and variances for activity
durations. Although many theoretical objections can be raised to PERT, in con-
temporary terms, its practical value has proven to be very real. In many cases,
the advent of PERT made available a powerful planning tool when no compa-
rable tool had formerly existed. Furthermore, the roots of safe scheduling can be
traced back to the original PERTmodel. Also, in the years since PERTwas intro-
duced, several refinements have been developed to compensate for some of its
theoretical shortcomings.

C(3)

A(5)

D(4)

H(6)

E(2)

F(7)

I(3)

G(3)

5

4

2

7

63

1

B(6)

Figure 16.14 Deterministic analysis using mean values, for Example 16.4.
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16.5.2 Theoretical Limitations of PERT

The objections that are most often raised about PERT fall into two categories:
problems arising at the project level and problems arising at the individual activ-
ity level. Perhaps the most popular indictment of PERT is that its estimate of
mean project duration is biased downward. Whereas the true mean project
duration takes the form E[maxπ{Lπ}], PERT substitutes maxπ{E[Lπ]}. Because
the maximum function is convex, a positive Jensen gap is likely to exist.
The extent of the error that is involved in this calculation depends on the

structure of the network and the properties of activity distributions. For exam-
ple, suppose that a project consists of four different path lengths that are inde-
pendent and have normal distributions. (This structure occurs only if the
project is composed of four independent chains of activities that share start
and finish events.) Figure 16.15a depicts a case where the length of the nominal
critical path is likely to be exceeded by another path length. In that case, a large
Jensen gap may be expected. By contrast, Figure 16.15b depicts a case where the
nominal critical path is very likely to be the longest, as all other paths are prac-
tically certain to complete earlier. In this case, the Jensen gap is negligible.
Under the independence assumption, the distribution of project completion

time in a series–parallel network structure can be calculated by a decomposition
procedure akin to the one illustrated in Section 8.3. However, most project net-
works include activities that cross from one path to another and are therefore
difficult to analyze. The most basic network structure that resists analysis is the

(a)

(b)

Figure 16.15 Distribution of individual paths in a network for two hypothetical projects.
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interdictive graph, shown in Figure 16.16. Any project network that has the
interdictive graph embedded in it cannot be decomposed. In such cases, only
bounds or approximations can be obtained analytically, and simulation remains
the best approach to estimating completion times. Simulation was proposed for
this purpose as early as 1963, but at the time it had not become an effective tool.
Today, with much more powerful and ubiquitous computers, simulation pro-
vides a practical resolution of the Jensen gap issue. Serendipitously, simulation
is also an excellent way to deal with dependent processing times.
A second shortcoming in PERT concerns its identification of critical activities.

By using a deterministic counterpart to identify the critical path, PERT neces-
sarily partitions the activities into two distinct subsets: the critical activities and
the noncritical activities. Because the network is probabilistic, however, it is pos-
sible that an activity that lies on the nominal critical path may not lie on the
longest path in a particular realization of the project. In fact, that is precisely
why the Jensen gap arises. Furthermore, the two-way partition in PERT may
not reflect the likelihood that the various activities will be critical. For instance,
in Example 16.4, PERT identifies activities B, F, and I as critical. Nevertheless, an
intuitive argument can be made that B is somehow “more critical” than F
because B is critical whenever F is critical and B is also critical when B–E–H
turns out to be the longest path. Define the criticality (or criticality index) of
an activity as the probability that it will lie on the longest path. (For example,
when we use sample-based analysis, the criticality of an activity is estimated
by the proportion of times in which it is on the longest path.) The problem with
the deterministic counterpart analysis of PERT is that it leads to criticalities of

DA

C

B E

3

2

1 4

Figure 16.16 The
interdictive graph.
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either 0 or 1, whereas criticalities should ideally be probabilities. Moreover, the
PERT substitute is not even an effective rounding approach, as we demonstrate
with an example.

∎ Example 16.5 Consider the following project.

Activity Predecessors aj mj bj

A — 7 9 11

B — 7 8 10

C A 1 3 5

D A 1 3 7

E B 1 3 7

F B 1 3 5

G C 1 1 1

H F 1 1 1

The network depiction of this project is given in Figure 16.17.We assume that
aj, mj, and bj are each realized with probability 1/3. (We are not using the beta
approximation, opting for a discrete distribution instead. We can retain the
names aj, mj, and bj, however, because the likelihood of mj is still maximal.)
One feature in this example is that parallel critical paths exist under some rea-
lizations. For instance, there is a probability of 1/272 = 1/729 that the project
duration will be 9, which requires all the realizations to be aj. In such a case,
both A and B are critical, but they clearly cannot belong to the same path.
We then allocate the criticality to the two paths (and to the activities along

C

D

E
H

G

F

B

A

3

1

2 4

5

6

Figure 16.17 Network representation for Example 16.5.
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the paths) equally. This allocation would not be necessary when continuous dis-
tributions are involved, in which case the probability of two paths attaining the
same length is zero. Using this allocation rule, Table 16.2 lists the criticalities of
Example 16.5 obtained by enumerating all 729 possible realizations.
The following properties emerge.

1) Although the nominal critical path is A−C−G, the analysis reveals that A−C
−G will be the longest path with a probability of 0.27, which is less than the
probability that A−D will be the longest path (0.30).

2) Although the PERTmethod identifies activityC as critical, it is on the longest
path with a probability of only 0.27.

3) Although the PERT method identifies activity B as noncritical, it is on the
actual longest path with a probability of 0.42.

The example demonstrates that we cannot compute the true criticality indices
using PERT. Furthermore, the activities along a single path may be critical to
different degrees, suggesting that criticality is more a trait of individual activities
than of entire paths. Unfortunately, the difficulties inherent in a mathematical
analysis of the problem are substantial, and simulation is often more suitable.
A third problem with the PERT calculations involves its assumption A1 that

the activity durations are independent. A comprehensive analytical treatment of
more general situations requires a model for dependence among activities, and
it may be quite difficult to formulate (much less analyze) such a model. How-
ever, linear association provides a first approximation for practical dependence.
Field data shows that ignoring dependence is more likely to cause disappoint-
ment with project performance than the Jensen gap (even though the latter has
received more attention in the literature). The same data suggests most projects
can be modeled well by using linear association or, in some cases, by a mixture
of two linearly associated processing time distributions. (One advantage of

Table 16.2

Activity Criticality

A 0.58

B 0.42

C 0.27

D 0.30

E 0.24

F 0.19

G 0.27

H 0.19
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simulation is that it can accommodate dependence, including models based on
linear association or mixtures.)
At the level of individual activities in the network, another set of PERT

assumptions can be challenged.

1) There is no reason to assume that the true form of the distribution of an
activity duration follows a beta distribution. (Empirical evidence supports
the assumption that it is lognormal instead.)

2) Regardless of the true distribution, its mean and variance may not be those
prescribed in Eqs. (16.3) and (16.4). (Indeed, the empirical evidence suggests
that variance is often higher than can be modeled by the beta approximation
used in PERT.)

3) The estimates on which the entire procedure is based (i.e. estimates of a, m,
and b) may be inaccurate. (Again, empirical evidence shows that such esti-
mates are highly unreliable.)

These issues reflect a deeper problem: PERT is based on an implicit assump-
tion that projects are completely unique, and therefore all activities are unique.
As such, historical experience with other projects is assumed irrelevant. That
assumption led to the use of subjective estimates. But whereas projects are
sometimes unique, they are rarely unique when we drill down to the activity
level. For instance, architecturally designed buildings are unique, but they typ-
ically comprise standard components. Therefore, activity distributions may
often be estimated from historical data or historical experience in a reliable
manner. Subjective estimates are justified only when such history does not exist,
and even then there is no particular reason to use the PERT method: it has
dominated merely because it was the first approach proposed for this purpose,
and no better way was known. In reality, the estimates of a, m, and b could be
subject to political and psychological biases, and even though the original PERT
paper suggested a program of calibration – which would have resolved some of
these issues – that recommendation had been virtually ignored for decades.

16.6 Summary

Network models are building blocks for scheduling and are especially popular
for project planning. Because logical constraints often appear as basic elements
in scheduling problems, the ability to visualize and describe logical relationships
with network structures is a fundamental aspect of scheduling. We encountered
AON networks earlier in the book, but in this chapter we relied on the AOA
network as a model for precedence relationships.
As suggested earlier, the significance of CPM and PERT lies primarily in their

role as useful tools for project planning and project management. The historical
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success of these network-based techniques in finding rapid acceptance among
practitioners can be attributed to several factors. First, the basic model provides
information in a useful form. It analyzes the project in a way that makes perti-
nent information explicit and that can be used as a basis for communication
throughout the administrative organization. In addition, the model accommo-
dates sufficient detail so that important aspects of the project will not be over-
looked, and it provides a framework for testing and evaluating alternative
project management strategies. The methodology also helps managers focus
on what’s important (the critical path) and delegate other issues.
A focus on the critical path should include questioning the assumptions

behind the model. Specifically, the precedence relationships that dictate the
critical path should be examined. One anecdote involves the construction of
a skyscraper, where installing windows was the last activity on the critical path.
When asked why windows could not be installed on lower floors, while the
upper floors were completed, the answer was that experience revealed that win-
dows might be broken due to mishaps during construction. However, the
expected savings by avoiding such breakage did not even nearly justify the delay
in project completion.
The basic aim of CPM and PERT is to answer two questions: (1) When will

the project be complete? and (2) Which activities will be critical? The
answers are straightforward using a deterministic perspective and CPM,
but the PERT approach to the stochastic problem is open to criticism.
Regarding question (1), the main criticism is that the PERT answer is biased
due to the inherent Jensen gap. Regarding question (2), the main criticism is
that the PERT answer is oversimplified, and in some cases could be mislead-
ing. Of course, the fact that CPM assumes deterministic times is even more
open to criticism.
Additional criticisms have been offered regarding the PERTmodel for activity

durations. According to Woolsey (1992), estimates of the mode are relatively
easy to elicit (although this does not imply that they are necessarily accurate
and precise), but when asking for estimates of a and b, we often get highly unre-
liable answers based on political calculations of the acceptability of the answer.
Woolsey’s evidence may be anecdotal, but similarly troubling criticism comes
from generic research by Tversky and Kahneman (1974). They discovered that
people, even experts, tend to greatly underestimate the necessary range between
a and b: when asked to provide a confidence interval of 98%, respondents come
up with intervals that miss the mark in about 30% of the cases. In our context,
that error is roughly equivalent to estimating a confidence interval of about two
standard deviations rather than six. Tversky and Kahneman speak to honest
mistakes, whereas Woolsey questions the sincerity of the estimates. In combi-
nation, these two causes could inject serious error into the picture. The obser-
vation (made earlier) that the independence assumption is not reliable only
exacerbates the problem.
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The basic versions of CPM and PERT address two central aspects of project
planning by supplying information about the length of the project and by iden-
tifying the particular activities on which the project duration depends. The sim-
plest approach to these topics is through temporal analysis of deterministic
networks with constant activity durations. The analysis is enriched by the
two extensions introduced in this chapter: the time/cost trade-off and stochastic
analysis of project timing.
More advancedmodels allow different kinds of precedence constraints, which

make it possible to model start lags and stop lags between activities (see
Chapter 10). Even more complex networks have a stochastic structure, allowing
activities to be repeated due to quality problems or skipped until more informa-
tion becomes available. We recommend approaching such network models by
simulation.

Exercises

16.1 The following is a list of logical relations among a set of project tasks.

Predecessor Successor

A D

A E

A F

B D

B F

C E

C F

a) Draw an AON representation of the project network.
b) Draw an AOA representation of the project network.

16.2 The table below describes the elements of a project.

Task Predecessors Duration

A — 5

B — 9

C — 8

D A 6
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(Continued)

Task Predecessors Duration

E A 10

F C 7

G C 3

H D,E 9

I G 8

J B,F 10

a) Draw an AON representation of the project network.
b) Draw an AOA representation of the project network.
c) Calculate the length of the critical path.
d) List the critical activities.

16.3 Revisit the project of the previous exercise. For each activity in the
project:
a) Calculate the total float.
b) Calculate the safety float.
c) Calculate the free float.
d) Calculate the independent float.

16.4 The table below describes the elements of a project.

Task Predecessors Duration

A — 5

B — 9

C — 8

D A 6

E A 10

F C 7

G B,C,D 3

H C,D,E 12

I E,G 8

J B,D,F 10

a) Draw an AON representation of the project network.
b) Draw an AOA representation of the project network.
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c) Calculate the length of the critical path.
d) List the critical activities.

16.5 Revisit the project of the previous exercise. For each activity in the
project:
a) Calculate the total float.
b) Calculate the safety float.
c) Calculate the free float.
d) Calculate the independent float.

16.6 For the project of Example 16.4, identify all the embedded interdictive
graphs.

16.7 Show that TF ≥ SF ≥ IF and TF ≥ FF ≥ IF, but SF and FF are not ordered.

16.8 The table below describes the elements of a project.

Task Predecessors a m b

A — 1 4 7

B — 1 5 9

C A 3 6 9

D B 1 2 3

E A 1 2 9

F C,D 2 4 6

G C,D,E 2 9 10

H F 2 2 2

a) Draw an AOA representation of the project network.
b) Using PERT, calculate the mean length of the critical path.
c) Identify which activities are critical.
d) Find the probability that the project will be completed by time 20.

16.9 The table below describes the elements of a project. The project contains
six activities, each represented by its start node and finish node in the
network diagram. Each activity duration follows a normal duration,
and each can be shortened to its minimum duration, both measured
in days. The daily cost of shortening each activity is listed in the last
column.
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Start node Finish node Normal Minimum Cost

1 2 9 6 20

1 3 8 5 25

1 4 15 10 30

2 4 5 3 10

3 4 10 6 15

4 5 2 1 40

a) Draw an AOA representation of the project network.
b) What is the normal project length and the minimum project

length?
c) Find the minimum cost of completing the project at each possible

length in the interval represented by the answers in (b).
d) Suppose that overhead costs amount to 60 per day and that total

project costs are the sum of overhead costs and crashing costs.
For each of the project lengths in (c), find the total project cost.

16.10 Build a simulation model for the project in Example 16.4, but replace
each beta distribution by a normal distribution with the same mean
and variance.
a) Estimate the mean and variance of the project duration.
b) Estimate the probability that the project will be completed by

time 15.
c) Estimate the criticality of each activity.
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17

Resource-Constrained Project Scheduling

17.1 Introduction

In this chapter, we synthesize much of the previous material to address the
deterministic resource-constrained project scheduling model. Later we discuss
stochastic counterpart models, briefly. Recall from Chapter 1 that scheduling
decisions are generally subject to both precedence constraints and resource
constraints. The resource-constrained project scheduling model contains both
types of constraints. The preceding chapters have dealt with a variety of situa-
tions in which one or both of these types of constraints are relaxed or at least
simplified. In a sense, the difficulties in those simpler problems are superim-
posed in resource-constrained project scheduling.
A general precedence structure accommodates arbitrary precedence con-

straints, such as those found in the network models of Chapter 16. In that anal-
ysis, however, the critical path calculations assume that resources of the
appropriate type and amount are sufficiently available, so resource capacities
are never binding on scheduling decisions. Chapter 8 covered some problems
involving precedence constraints, but with only one resource (machine). In flow
shop and job shop problems, where more general resource models apply, prec-
edence relations are restricted to special structures.
A general resource structure contains multiple units of each of several differ-

ent resources. Chapter 9 introduced models with resource parallelism but only
for one resource type, and the multiple-resource models of the flow shop and
the job shop contain only one unit of each resource. The extension to parallel
resource structure involves combinatorial problems in a whole new dimension.
The relation of this topic to the material in earlier chapters can therefore be

interpreted in two ways. First, the resource-constrained project scheduling
problem can be formulated by adding explicit resource requirements and
resource capacities to the basic network model of CPM and PERT. Alterna-
tively, the problem can be formulated by allowing general precedence structures
in the job shop model and replacing machines by machine groups, for
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parallelism. In essence, a project is a single but complex job, and project activ-
ities are analogous to job shop operations. We cover the job shop perspective
first, to stress that the philosophy of solving job shop problems carries over
to project scheduling.
Project scheduling has important applications, and in practice, such problems

are almost always analyzed using heuristic procedures. For that reason, we ulti-
mately emphasize simple heuristics rather than optimization approaches.

17.2 Extending the Job Shop Model

In the terminology of network models, we can state the problem as scheduling a
project consisting of several activities in the presence of limited resources. The
purpose of this section is to show how the job shop approach of Chapter 14 can
be adapted to the resource-constrained project scheduling problem, in which
general precedence structures and general resource structures apply.
To begin, suppose that each activity requires a specific resource and a single

unit of each resource is available. In other words, two activities that require the
same resource cannot be scheduled in parallel. Let

P j = the set of all direct predecessors of activity j

S j = the set of all direct successors of activity j

P j = the number of elements inP j

Rj = the resource type required by activity j

Also, let n denote the total number of activities to be scheduled, and let m
denote the number of resource types.
The concepts of schedule classification carry over directly from the job shop

discussion. Therefore, where regular measures of performance are concerned, it
is sufficient to examine active schedules in the search for an optimum. In this
context, an active partial schedule is a feasible schedule for a subset of the activ-
ities with the property that no scheduled activity can start earlier without delay-
ing some other activity in the partial schedule. As in Chapter 14, PS(k) refers to a
partial schedule containing k activities. For a given partial schedule, let uj denote
the number of activities in P(j) that is contained in the partial schedule. Then the
set SA(k) of schedulable activities corresponding to a given PS(k) is defined by

SA k = j uj = P j for j PS k

In words, after completing the scheduled activities in PS(k), any unscheduled
activity for which all direct predecessors are scheduled is a schedulable activity.

484 17 Resource-Constrained Project Scheduling



Given an active partial schedule PS(k) and an activity j in the corresponding
set SA(k), the conditional early start and early finish times associated with activ-
ity j are defined, respectively, by

ESj = max max Ci iϵP j , max Ci iϵPS k andRi =Rj

EFj =ESj + pj

The formula for ESj reflects the fact that an activity’s start time is dictated by
both precedence and resource constraints. When resource constraints apply,
ESj and EFj are defined with respect to a given partial schedule. As a result, activ-
ity j may appear in several of the schedulable sets SA(k) that occur successively
in the construction of a complete schedule, and the associated ESj (and EFj) can
change as those schedulable sets expand. Specifically, ESjmay change whenever
the resource that activity j requires is engaged by another activity that has been
appended to the partial schedule.
When arbitrary precedence structures are introduced into the job shop

model, the procedure for generating all active schedules is a straightforward
extension of Algorithm 14.1, as given below.

Algorithm 17.1 Active Schedule Generation

Step 1. Let k = 0 and begin with PS(k) as the null partial schedule. Initially, SA(k)
includes all operations with no predecessors.

Step 2. Determine EF∗ =minjϵSA(k){EFj} and the resource type R∗ on which EF∗

could be realized.
Step 3. For each activity j ϵ SA(k) that requires resource type R∗ and for which

ESj < EF∗, create a new partial schedule in which activity j is added to PS(k)
and started at time ESj.

Step 4. For each new partial schedule PS(k + 1) created in Step 3, update the
data set as follows:

a) Remove activity j from SA(k).
b) For each activity i ϵ S(j), increment ui by one.
c) Form SA(k + 1) by adding to SA(k) those activities i ϵ S(j) for which ui =

|P(i)|.
d) Increment k by one.

Step 5. Return to Step 2 for each partial schedule created in Step 3 and updated
in Step 4, and continue in this manner until all active schedules have been
generated.

One way to structure a heuristic procedure is to choose just one partial sched-
ule (one of the schedulable activities) among the alternatives created at Step 3.
The next step in extending the job shop model is to incorporate resource par-

allelism. The simplest such model contains only one resource type but allows
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activities to require more than one unit of the resource. (This kind of single-
resource model is particularly relevant to certain construction andmaintenance
problems in which labor is the key resource.) The crucial difference occurs in
Step 3, where it is necessary to examine not just single activities but groups of
activities as well. Basically, a new partial schedule can be generated at Step 3 for
any subset of schedulable activities that can be accommodated by available
resources. The task is then to eliminate the subsets that do not result in active
partial schedules and keep all the rest for Step 4. The partial schedules are
denoted PS(k + a) in Step 4 because several activities might have been added
to PS(k). Although a complete schedule for n activities may be generated in
fewer than n stages, the implementation of Step 3 involves an additional com-
binatorial effort. Conceptually, the approach can be extended to problems con-
taining several resource types. Further generalizations of Algorithm 17.1 could
also be pursued for problems in which resource substitutability is possible or in
which activities require several different resources simultaneously. Finally, once
the generation scheme is designed, we can embed it in a branch-and-bound pro-
cedure for determining an optimal schedule.
Lower bounds in the resource-constrained project scheduling problem can be

developed using the concepts introduced in Chapter 14 in connection with the
job shop problem. For example, an activity-based bound can be obtained by
ignoring all resource constraints, and a resource-based bound can be obtained
by ignoring all precedence constraints. To illustrate the calculation of an activ-
ity-based bound, consider a problem containing general precedence structure
and unit resource availabilities (so that Algorithm 17.1 applies), and assume that
makespan is the criterion. For each activity j let πj denote the length of the longest
path in the project network from the completion of activity j to the end of the proj-
ect. (Inotherwords,πj is thecritical path length for the subproject containingall the
successors of activity j.) Then, by ignoring the resource constraints, we can con-
struct the following lower bound on the makespan for a given partial sched-
ule PS(k):

b1 = max
j SA k

ESj + pj + πj

In this type of calculation, ESj depends on the commitments in the partial
schedule, but πj has to be calculated only once for each activity.
To illustrate the derivation of a resource-based bound, letUR denote the set of

unscheduled jobs that require resource R. Then, by ignoring the precedence
constraints, we can construct the following lower bound on the makespan:

b2 =maxR max Cj j PS k and Rj =R +
i UR

pi

These two simple bounds can be strengthened somewhat by accommodating
some resource constraints in the activity-based bound or some precedence

486 17 Resource-Constrained Project Scheduling



information in the resource-based bound. A combination activity-based bound
explicitly considers the resource availabilities, one at a time. Temporarily, num-
ber the activities in setUR in nondecreasing order of their critical path length, πj.
(In this way, activities near the end of the project will appear relatively early in
the numbered list.) Then, taking the activities in numbered order, calculate

vj = max vj−1,πj + pj

where v0 = 0. Let the last (and largest) of these vj be denoted VR. Then

b3 =maxR VR+ max Cj j PS k and Rj =R

A combination resource-based bound explicitly considers precedence rela-
tions among all activities that require a given resource. This time, number
the activities in set UR in nondecreasing order of their early start times, ESj.
(In this way, activities near the beginning of the project will appear relatively
early in the numbered list.) Then, taking the activities in numbered order,
calculate

wj = max wj−1,ESj + pj

where w0 = 0. Let the last of these wj be denoted WR. Then

b4 =maxR WR

Obviously, the bounds b3 and b4 are at least as tight as b1 and b2 and generally
tighter, although they require some additional calculations. A composite bound
is therefore B =max{b3, b4}.

∎ Example 17.1 Consider a project containing 10 activities and two resource
types, as described in the following table. The last column is calculated from the
information in the previous columns.

Activity pj Rj P( j) πj

A 4 1 — 2

B 3 2 — 5

C 2 1 — 5

D 4 2 — 8

E 4 2 D 4

F 2 1 B 3

G 2 2 C 3

H 1 1 E 3

I 2 2 A 0

J 3 1 F,G,H 0
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As an instance of the calculations of πj in Example 17.1, take activity D. It is
followed directly by E and later by H and J, with processing times of 4, 1, and 3,
so πD = 4 + 1 + 3 = 8. To illustrate the bound calculations, suppose that at an
intermediate stage in the generation of active schedules, we have the partial
schedule shown in Figure 17.1. In this partial schedule, activity A occupies
resource 1 beginning at time 0, and activity D occupies resource 2 beginning
at time 0. With these two activities constituting PS(2), the set of schedulable
activities is SA(2) = {B, C, E, I}. The sets U1 and U2 are {C, F, H, J} and {B, E,
G, I} with total processing times of 2 + 2 + 1 + 3 = 8 and 3 + 4 + 2 + 2 = 11,
respectively. Given this partial schedule, the conditional project network is
depicted in Figure 17.2. In this figure, the constraints imposed by the partial
schedule are accounted for, but any additional resource constraints are not.
Figure 17.2 shows that the early start times of the schedulable activities are

Resource 2

Resource 1
A

D

?

?

Figure 17.1 A partial schedule for Example 17.1.
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Figure 17.2 The conditional project network given PS(2).
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ESB = ESC =ESE = ESI = 4

We now can calculate b1 for B, C, E, and I:

b1 = max 4 + 3 + 5, 4 + 2+ 5, 4 + 4 + 4, 4 + 2+ 0 = 12

Next, we have

max Cj j PS 2 and Rj = 1 = 4 = max Cj j PS 2 and Rj = 2

so

b2 = max 4 + 8, 4 + 11 = 15

In calculating b3, the activities requiring resource 1 are considered in the
order J−H−F−C (because in this order, their πj values – 0, 3, 3, 5 – are nonde-
creasing) and V1 = 8. The activities requiring resource 2 are considered in the
order I−G−E−B, and we list the V2 calculations in detail:

vI = max v0,π1 + p1 = max 0, 0 + 2= 2

vG = max 2, 3 + 2 = 5

vE = max 5, 4 + 4 = 9

vB = max 9, 5 + 3 = 12 =V2

Thus,

b3 = max 4 + 8, 4 + 12 = 16

Finally, W1 = 13 and W2 = 15, so b4 = 15. We trace the calculation of W1.
Figure 17.2 shows that the early start times for U1 = {C, F, H, J} are 4, 7, 8,
and 9. These values lead to the following calculations:

wC = max w0, ESC + pC = max 0, 4 + 2 = 6

wF = max 6, 7 + 2 = 9

wH = max 9, 8 + 1 = 10

wJ = max 10, 9 + 3 = 13 =W1

As a result, b3 is the tightest bound for this PS(2), indicating that the make-
span must be at least 16 for this partial schedule.
For resource-constrained project scheduling problems with criteria other

than makespan, the basic approach is similar. First, a tree-structured schedule
generation scheme, such as Algorithm 17.1, forms the basis for constructing
schedules. An activity-based bound is obtained by ignoring resource constraints
and evaluating the resulting CPM network. A resource-based bound is obtained
by ignoring precedence constraints and evaluating the resulting single- or
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parallel-machine sequencing problem. The success of such an approach
depends on tightness of these bounds and on the computational effort they
require.

17.3 Extending the Project Model

To illustrate how the temporal analysis of CPM can be useful in resource-
constrained problems, consider the project model in which all activities
require only one resource type. Let

aj = resource units required to perform activity j

A= total resource units available

An early start schedule is constructed by starting each activity at its own early
start time, as calculated by CPM. If the resources required in this schedule never
exceed availabilities, then this schedule achieves the minimum possible dura-
tion. Similarly, a late start schedule is constructed by starting each activity at
its late start time, and if this schedule is resource feasible, then it achieves
the minimum possible duration. If neither schedule is feasible, it is still possible
to extract some information for the calculation of a lower bound on project
duration.
Let Gt denote the set of activities in process at time t in some given schedule

with duration D. In addition, let

rE t =
j Gt

aj for the early start schedule

rL t =
j Gt

aj for the late start schedule

rS t =
j Gt

aj for some arbitrary schedule S

In other words, rE(t) represents the resource consumption at time t under the
early start schedule. If we examine cumulative resource consumptions, we
find that

t

u=1

rE u ≥
t

u= 1

rS u ≥
t

u=1

rL u 17 1

where we are treating time as discrete. The following properties address the
question of whether a feasible schedule can be found to achieve the given dura-
tion D.
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∎ Theorem 17.1 If Σt
u=1 rL(u) > tA for any 1 ≤ t ≤D, then no feasible schedule

of length D exists.

Proof. Under the hypothesis of the theorem, and the inequalities in Eq. (17.1), it
follows that Σt

u=1 rS(u) > tA. In other words, there are insufficient resources
available to carry out the activities in an arbitrary schedule of length D. □

An analogous argument for the reversed project establishes a symmetric result.

∎ Theorem 17.2 If D
u=D− t + 1rE u > tA for any 1 ≤ t ≤D, then no feasible

schedule of length D exists.

∎ Example 17.2 Consider a project containing 10 activities that require a sin-
gle-resource type, as described in the following table.

Activity pj P( j) aj ESj LFj

12 4 — 1 0 10

13 3 — 4 0 7

14 2 — 3 0 7

15 4 — 4 0 4

56 4 15 3 4 8

37 2 13 2 3 9

47 2 14 6 2 9

67 1 56 4 8 9

28 2 12 5 4 12

78 3 37,47,67 3 9 12

Suppose thatA = 7, and consider whether it is possible to complete the project
by time 12, which is the length of the critical path. First construct the resource
profile of the late start schedule, shown in Table 17.1. For t = 9, we have tA = 9 ×
7 = 63, but 9

u= 1rL(u) = 69, so the critical path length cannot possibly be

Table 17.1

Time, t 1 2 3 4 5 6 7 8 9 10 11 12

Resources, rL(t) 4 4 4 4 7 10 11 12 13 4 8 8

Cumulative resources 4 8 12 16 23 33 44 56 69 73 81 89
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achieved. (A similar conclusion can be reached by applying Theorem 17.2 to the
early start schedule.) Suppose instead that A = 8. Then neither theorem will
apply, yet we can’t conclude that a schedule of length 12 can be found when
8 resource units are available.
It is alsopossible todevelop a resource-basedboundusing the information in the

early and late start schedules. Let the total resource requirement in the project be

Q=
D

u=1

rE u

Then a feasible schedule of length D cannot exist unless

Q ≤DA 17 2

In effect, Eq. (17.2) yields a lower bound on project durationD, but this bound
can be strengthened somewhat by examining the first part of the early start
schedule and the last part of the late start schedule. Let τ represent the first
period u at which rE(u) > A. Then the resources that are not used in the begin-
ning of the early start schedule sum to

τ−1

u=1

A−rE u

These resources cannot be utilized by any feasible schedule. Analogously, let η
represent the latest time u at which rL(u) > A. Then an additional expression for
resources that cannot be utilized by any feasible schedule of duration D is

D

u= η+1

A−rL u

Therefore, the inequality (17.2) can be amended to reflect usable resource
capacity. A feasible schedule of length D cannot exist unless

Q ≤DA−
τ−1

u= 1

A−rE u −
D

u= η+1

A−rL u 17 3

This bound is sometimes called the skyline bound because it makes use of the
profile of resource requirements in the schedule.
Theorems 17.1 and 17.2 and the bound in Eq. (17.3) are all based on condi-

tions that can be examined before a schedule generation procedure begins. To
adapt the bounds for use at intermediate stages of a branch-and-bound scheme,
the inequalities must be generalized to accommodate fluctuating resource avail-
abilities. In addition, the same type of analysis can be extended to problems in
which several resource types exist and problems in which activities require dif-
ferent resources simultaneously.
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As we saw in the last two sections, the problem is amenable to branch-and-
bound solutions: Algorithm 17.1 is a viable approach for generating a branch-
and-bound tree structure, and lower bounds can be obtained by extending both
the job shop model and the project model. Indeed, there is a rich literature on
branch-and-bound solutions to the resource-constrained project scheduling
problem, including several other tree generation options and more elaborate
bounds. At this time, however, none of these solutions are capable of solving
anything but small problems.

17.4 Heuristic Construction and Search Algorithms

The resource-constrained project scheduling problem is NP-hard in the strong
sense and may be intractable for n > 50. The majority of practical projects report-
edly have 50–100 activities, whereas a “large” project might have as many as 300.
Therefore, project scheduling software packages invariably rely on heuristics, usu-
ally keeping the details proprietary. Here, we consider heuristics that generalize
those described in Chapter 4, and we limit our scope to the nonpreemptive case.
It is difficult to judge the performance of heuristics except by testing them

against each other, but for tractable instances (of up to about 30–50 activities),
such tests can also compare heuristics with the optimal solution. The best-
performing commercial scheduling packages seem to achieve results similar to
those obtained by a priority-based construction heuristic inwhich priority is deter-
mined on the basis of earliest late-finish time (LFT). There are two good reasons to
favor this priority rule. First, the LFT acts as an activity due date, so the priorities
reflect the properties of EDD and tend to reduce the maximum tardiness. But the
maximum tardiness among the activities equals the tardiness of the whole project,
so this priority list is likely to produce relatively short project lengths. (Recall from
Chapter 8 that in the dynamic single-machinemodel, minimizing the makespan is
equivalent to minimizing maximum tardiness.) Second, LFT priority is logically
feasible automatically because an activity’s predecessor must have an earlier
LFT and so appears earlier in the priority list. Nevertheless, such a simple heuristic
cannot guarantee optimality and should not be the only heuristic in use. Anoppor-
tunity exists to improve on the performance of the typical commercial package by
usingmore advanced heuristics such as we explore in this section.We usually start
with some priority list and develop it into a schedule. Improvements can then be
sought by changing the list by such mechanisms as a neighborhood search.

17.4.1 Construction Heuristics

The two major construction heuristic approaches for project scheduling are
parallel and serial, and both are based on priority lists. These approaches
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can be used either in the forward direction or in reverse. We can even construct
sequences from both ends toward the middle. For illustration, we describe the
forward direction.
The parallel approach is based on dispatching logic. It can accept any priority

list – logically feasible or not – and yields a nondelay sequence. We construct
the sequence from beginning to end, and whenever resources are free, we sched-
ule the highest-priority schedulable activity. (In Section 17.2, we defined an
activity as schedulable once its predecessors have been completed, but here
we must also consider the availability of resources.) The result is a nondelay
schedule because we always schedule at least one schedulable activity when
available. To illustrate, we revisit Example 17.2, and we schedule it by LFT pri-
ority with ties broken by LPT and any remaining ties broken in favor of the high-
est resource consumption. This ranking yields the list 15, 13, 14, 56, 47, 37, 67,
12, 78, and 28. (We need the tiebreaker to decide that 13 should precede 14,
78 should precede 28, and 67 should follow both 37 and 47. The latter two have
the same duration and require the second tiebreaker to place 47 ahead of 37.)
Recall that in this example, if we use A = 8, Theorems 17.1 and 17.2 do not indi-
cate whether a schedule of length 12 is feasible. Therefore, it is interesting to
examine the heuristic for A = 8. Figure 17.3 shows the results as a Gantt chart
in which the vertical scale shows the resource consumption of an activity and
the horizontal scale shows its duration. Shaded areas denote resource idleness
between activities. Proceeding with the priority list, activity 15 is scheduled first
at time zero, leaving enough free resources to schedule activity 13 in parallel.
The next decision point is at time 3, when 4 resource units are released by activ-
ity 13, and activity 14 is now scheduled, leaving 1 resource unit unutilized. Only
activity 12 fits in the single free resource slot, and it is scheduled in parallel to
14 and 15, even though activities with higher priorities remain unscheduled.
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Figure 17.3 Scheduling Example 17.2 by the parallel approach.
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Activity 56 becomes schedulable next, and 37 follows because it is schedulable
right after 14, whereas 47 is not yet schedulable. Both 12 and 37 complete
at time 7, and 28 becomes schedulable. At time 8, activity 56 completes,
but no activity is schedulable until 28 completes at time 9. The remaining
activities on the list (47, 67, and 78) are then scheduled consecutively.
The makespan is 15.
One feature of the parallel approach is that increasing a processing time may

make the schedule shorter. This can happen if the increased duration prevents a
low-priority activity from starting too soon and subsequently delaying a high-
priority one. For instance, in Example 17.2, if we increase the duration of 37 from
2 to 4 and use the same priority list, the makespan decreases to 14.
In the serial approach, only the highest-priority activity is considered schedul-

able, and resources may remain idle if they don’t suffice for that activity, even if
they could have accommodated other activities. When we schedule an activity,
however, we use the earliest possible slot even if higher-priority activities have
already been scheduled with later starting times. That is, during the procedure
we may leave resources unused, but we may still allocate them in subsequent
steps. As a result, the schedule is active but not necessarily nondelay, so this
approach cannot be used for dispatching. Figure 17.4 illustrates the use of
the serial approach in the same example with the same priority list as before.
Activities 15, 13, 14, 56, and 47 are scheduled according to the list, with non-
decreasing starting times. When activity 37 is then considered, it is possible
to fit it before 47, in parallel to 56, yielding an active schedule. However, an idle
slot of one time unit exists just ahead of activity 37 (utilized by 12 in the parallel
approach). This outcome demonstrates that the serial approach may allow
resources to remain idle even when an activity is available to start. As the proc-
ess continues, activity 12 is also scheduled earlier than higher-priority activities,
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Figure 17.4 Scheduling Example 17.2 by the serial approach.
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but it delays no activity with a higher priority because they have all been sched-
uled as early as possible in previous steps. For that reason, activity 37 starts ear-
lier at the expense of 12, in accordance with the prescribed priority. The
makespan is 14, which happens to be optimal.
As noted before, the LFT priority list is logically feasible. Other priority lists

generated by CPM logic share this advantageous trait. In general, however, pri-
ority lists may not be logically feasible. For example, if we use LPT to prioritize,
logical feasibility is not guaranteed. This is not a problem in the parallel
approach, but it is crucial in the serial approach: During the process, the next
activity on the list must be schedulable as soon as enough resources are released
by earlier activities or the procedure cannot continue. However, if we wish to
test only a small number of lists, we can make any list comply by preprocessing.
One way to do that is to allow unlimited resources and record the order in which
the parallel approach schedules activities; this order becomes the required pre-
processed list. Alternatively, we can adapt the heuristic to allow skipping the
highest-priority activity if it is logically infeasible and scheduling the first logi-
cally feasible activity as soon as resources are sufficient. This approach requires
returning to the skipped activities and is identical to the preprocessing alterna-
tive. In effect, the same preprocessing steps are intermingled with scheduling
activities. Although the parallel approach does not require preprocessing, it per-
forms the equivalent function – skipping logically infeasible activities and
returning to them later – during the scheduling process. Again, preprocessing
is not always necessary.
Both approaches have advantages. The serial approach can produce all active

schedules. If we were given the optimal priority list, then the serial approach
would produce an optimal schedule. However, we don’t know the optimal pri-
ority list, and we want to avoid evaluating many different lists. Therefore, we
can’t easily exploit the fact that the serial approach produces active schedules.
In contrast, the parallel approach produces only nondelay schedules. In a given
problem instance, the parallel approach may not be able to generate the optimal
schedule. However, nondelay schedules are an appealing subset in practice, and
the parallel approach is relatively easy to implement. It may also be desirable to
try out both approaches. In Section 17.5, we also consider adding precedence
constraints to a priority list so that we can enable dispatching while preventing
selected low-priority activities from preceding high-priority ones.

17.4.2 Neighborhood Search Improvement Schemes

Once a schedule is constructed, we can improve on it by neighborhood searches
(including genetic algorithms, tabu search, and simulated annealing) following
the template of Chapter 4. We have already discussed such approaches in
Chapter 14, for the job shop. But although project scheduling is a generalization
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of the job shop, we cannot describe a schedule with a sequence of permutations,
so the approach of Chapter 14 is not directly applicable.

∎ Example 17.3 Consider the following project containing four resource
types. Activity j requires aij units of resource type i. For each type, the availability
is Ai = 7.

Activity pj P( j) a1j a2j a3j a4j

12 1 — 6 3 4 5

13 4 — 5 4 3 2

14 2 — 1 1 2 3

16 3 — 2 4 2 4

17 4 — 2 2 4 3

18 2 — 2 3 3 4

25 2 12 1 1 3 3

58 4 25 5 3 2 3

68 3 12, 13, 16 2 3 4 2

78 4 14, 17 2 3 3 2

The project network is given in Figure 17.5.
Critical path analysis shows that the length of this project (without accounting

for resource constraints) is 8, but the limit on resource 3 implies a makespan of
at least 13 time units. (This resource has a load of 86, so 7 resource units would
require more than 12 time units.) Suppose we take a serial approach using the
logically feasible priority list obtained by sorting activities by their origin node
first and destination node second. In this case, the list is {12, 13, 14, 16, 17, 18,

2 5

63

1

4 7

8

Figure 17.5 A project network for Example 17.3.
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25, 58, 68, 78}. The serial approach yields a makespan of 17. Activity 17 is sched-
uled earlier than activity 16 because 13 and 16 cannot run in parallel due to
resource constraints. However, after interchanging 68 and 78, the makespan
improves to 16. The schedule is summarized in Table 17.2.
When we introduced neighborhood search in Chapter 4, we illustrated the

procedure with unrelated jobs, but when precedence constraints apply, we
may have tomodify search procedures accordingly and work with blocks of jobs.
Suppose we want to construct adjacent pairwise interchange (API) neighbor-
hoods for a feasible four-job sequence a-b-c-d, but with precedence restrictions.
If the two adjacent activities b and c are logically unrelated, then interchanging
these two activities yields a logically feasible sequence. Suppose instead that b is
an immediate predecessor of c, which makes the interchange infeasible. If we
wish to start activity c earlier, we can exchange the block b-c with a to obtain
the new sequence b-c-a-d. Similarly, if the intention is to start activity b later, we
can switch to the partial sequence a-d-b-c. More generally, blocks may contain
more than two activities, which are identified iteratively.
To illustrate a modified API, consider Example 17.2. Suppose we start with

the sequence {12, 13, 14, 15, 28, 37, 47, 56, 67, 78}, which is logically feasible.
If we wish to shift activity 67 to an earlier position, we must also shift activity
56 with it, obtaining the sequence {12, 13, 14, 15, 28, 37, 56, 67, 47, 78}. We can
repeat this modified API two more times with the same block to obtain the
sequence {12, 13, 14, 15, 56, 67, 28, 37, 47, 78}. If we next wish to shift activity
67 earlier, we must append activity 15 to the block. In the same example, if we
try to shift activity 78 to an earlier position, activities {37, 47, 56, 67, 78} must be
shifted as a block, and the resulting sequence is {12, 13, 14, 15, 37, 47, 56, 67, 78,
28}. To shift the activity earlier, the block must be expanded to include {13, 14,
and 15}, and the modified API yields the feasible sequence {13, 14, 15, 37, 47, 56,
67, 78, 12, 28}. After that interchange, activity 78 cannot be shifted further. In
general, all sequences generated by the modified API from any logically feasible
initial sequence are logically feasible. Furthermore, all the logically feasible
sequences that can be reached by a series of adjacent job interchanges can also
be reached by adjacent block interchanges. In a similar way, we can define mod-
ified insertion steps andmodified pairwise interchanges (consisting of twomod-
ified insertions). For insertion steps, feasibility forbids inserting an activity
earlier than a predecessor.

Table 17.2

Activity 12 13 14 16 17 18 25 58 68 78

Start time 0 1 1 5 3 8 7 9 13 10

Finish time 1 5 3 8 7 10 9 13 16 14

498 17 Resource-Constrained Project Scheduling



An alternative approach is conceptually simpler, at least in the API case: For-
bid any API that violates a precedence constraint. It can be shown that a series of
permissible API steps exists that is equivalent to modified API. In our example
above, the first modified API step changed our sequence from {12, 13, 14, 15, 28,
37, 47, 56, 67, 78} to {12, 13, 14, 15, 28, 37, 56, 67, 47, 78}, but the following two
unmodified API steps lead to the same result: interchanging 56 and 47 followed
by interchanging 67 and 47. The difference between the two approaches is that
the former may demonstrate an immediate improvement, whereas the latter
may increase the makespan temporarily in its partial steps. Therefore, the mod-
ified approach is recommended when we wish to decide whether to postpone or
advance a particular activity. Incidentally, in the context of genetic algorithms, it
is desirable that mutations avoid infeasibility. Modified perturbations can serve
as feasible mutations. Implementations that allow infeasibility simply reject
mutations that cause it, but the question is whether it is more effective to pre-
vent infeasible mutations or to allow them tentatively.
Biased random sampling is a popular way to generate distinct sequences for a

search. In Chapter 4, we saw that it is not necessarily a very effective approach in
the single-machine tardiness problem. In project scheduling, however, it has the
advantage that if we make the random choices at decision points of a dispatch-
ing procedure, only logically feasible sequences are selected. Therefore, random
sampling is less wasteful in project scheduling than in the single-machine
model. For project scheduling, simple priority rules such as LFT can be used
to bias the random selection and improve its effectiveness.

17.4.3 Selecting Priority Lists

We now return to the selection of priority lists. Many priority lists have been
recommended for project scheduling. Three prominent priority rules are the
following.

1) (LST) Select activity j according to smallest LSj (dynamically calculated).
2) (Delta) Select activity j according to smallest δjk, where

δjk = max
j k

max 0, EFj−LSk

3) (LFT) Select activity j according to smallest LFj.

The LST rule minimizes slack, so it is analogous to MST. However, because
we update the latest start time as we proceed, based on the current project infor-
mation, all LSj values remain nonnegative. The LST priority list is logically fea-
sible, which is convenient in constructing schedules, but the rationale for LST is
not necessarily persuasive. In Chapter 2, for example, we saw that in the single-
machine case, MST maximizes the minimum lateness. In Chapter 15, we saw
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that slack-related priority rules were sometimes effective but not necessarily for
the criterion of maximum tardiness.
The Delta rule aims to reduce the potential incremental delay in the whole

project caused by scheduling activity j before activity k. The pair of activities
having maximal δjk is scheduled by LFT, but, in general, the sequences gener-
ated by LFT and by the Delta rule are not identical.
The LFT rule derives its effectiveness from emulating the EDD rule, which

minimizes maximum tardiness in the single-machine case. But even in the sin-
gle-machine case, EDD is not guaranteed to be optimal with nonzero release
dates. That fact may explain why no single rule is always superior in the project
scheduling context. It may also explain why a rule like MST, with properties of
dubious value in the single-machine case, seems to perform well in project
scheduling.
In general, running multiple heuristics, possibly in both directions and also

from both ends to the middle, is often a good meta-heuristic. Dozens of priority
rules have been proposed and tested for the project scheduling problem. How-
ever, some intuitively appealing rules do not seem to perform better than ran-
dom dispatching. Therefore, at some point, adding more rules may become less
effective than generating trial sequences by biased sampling. A similar argument
also suggests that (at least for sequences that are logically feasible) we should
run both serial and parallel list scheduling heuristics. There is clear empirical
evidence, however, that parallel scheduling is likely to outperform serial sche-
duling for any single list. The serial approach becomes advantageous only when
we performmultiple runs. For instance, it is known to perform better in the con-
text of biased sampling. LFT seems to be the best list to use for biased sampling.
(However, any of these considerations may change in the stochastic case.)
To illustrate, we return to Example 17.3 using the LFT priority list with ties

broken by LPT. This tiebreaker is identical to LST because the slack is given by
LFj − pj, and the tie implies that LFj values are equal for all candidate activities.
Any remaining ties can be broken in favor of the resource with the largest total
load, given here by the order 3, 4, 1, 2. (These tie-breaking selections are moti-
vated by the largest-fit heuristic covered in Chapter 9.) The resulting list is {12,
17, 25, 14, 13, 16, 78, 68, 58, 18}. For this list, both the parallel and serial
approaches yield a makespan of 15, which happens to be optimal. The schedule
is summarized in Table 17.3.

Table 17.3

Activity 12 13 14 16 17 18 25 58 68 78

Start time 0 5 3 9 1 13 1 9 12 5

Finish time 1 9 5 12 5 15 3 13 15 9

500 17 Resource-Constrained Project Scheduling



Once a priority list has been adopted, its implications can be influenced by
adding precedence constraints, colloquially known as soft constraints, to the
technological requirements of the original problem, to signal that they do
not come from technological requirements. Soft constraints can even be
reversed or removed during the course of building a schedule. We can account
for resource limits by adding soft constraints between pairs of activities that
compete for the same resources, but because we may have machine groups
instead of single machines, we should allow for the possibility that activities
can run in parallel. Hence, not every pair of competing activities requires a soft
constraint.
For instance, we can enforce the sequencing decisions of Table 17.3 by adding

a soft constraint between activity 12 and 17 (observing that 12 cannot run in
parallel to any other activity due to its resource requirements) and similarly
between the pairs of activities {17, 13}, {25, 14}, {14, 13}, {13, 16}, {16, 18},
{13, 58}, {78, 58}, and {58, 18}. In general, different sets of soft constraints might
lead to the same final result. Finally, for stochastic sequencing, our subject in the
next section, we introduce another type of soft constraint that may also be useful
in deterministic sequencing.

17.5 Stochastic Sequencing with Limited Resources

Although deterministic models for project sequencing with limited resources
have been researched intensively since the early 1960s, and although the original
PERT model considered stochastic scheduling and included safe scheduling
considerations, the optimal sequencing of stochastic project activities under
resource constraints did not receive much attention until the twenty-first cen-
tury. Some purely theoretical work is based on distributional assumptions (such
as independent exponential activity durations), but more realistic models are
based on simulated scenarios, so they essentially use sample-based techniques.
These models address the problem of minimizing the expected makespan – that
is, they are stochastic counterpart models. They also assume early start times;
that is, activities start as soon as their predecessors are complete and sufficient
resources have been allocated to them. Typically, they assume that activities
whose predecessors have been completed can be started as soon as resources
are allocated to them, ignoring the possible need for other preparations. Because
of this last assumption –which is usually implicit – resources of a given type are
considered completely interchangeable. (The deterministic models we covered
make the same assumption, which is tantamount to assuming all necessary pre-
parations are modeled as explicit project activities. But in practice, all but the
smallest projects are scheduled hierarchically, with preparation and staging
activities often ignored at higher levels of the hierarchy. In the deterministic
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case, it is very easy to schedule preparations for any given high-level schedule,
but that is not necessarily the case in a stochastic environment.) Furthermore,
randomness applies to activity durations but not to the logical structure of the
project. A final assumption is that all activities will be completed eventually. In
this section, we briefly discuss such models, limiting ourselves to tractable heu-
ristic procedures even though branch-and-bound models have been proposed
and may be useful for small projects.
If we treat resources of the same type as truly interchangeable, and if we

ignore the need for preparations beyond the availability of resources, it becomes
attractive to sequence activities dynamically, based on the actual durations once
they are realized. That is, whenever we have enough resources to support at least
one schedulable activity – which occurs upon activity completions – we select
and dispatch the next activity (essentially, by the parallel approach), so the
sequence cannot be predicted in advance. The sequencing problem then boils
down to specifying a policy for the dispatching decisions. The simplest possible
policy would be a priority list. More elaborate policies impose soft constraints
that prevent some low-priority activities from being scheduled too early. When
we apply a policy to each simulated scenario in our sample, we can easily esti-
mate its expected makespan by taking the average of the results and then choose
the best policy.
We saw in Section 17.4 that the serial approach cannot be used for dispatch-

ing but may lead to the best active schedule, which is not necessarily a nondelay
schedule. The parallel approach uses a priority list to make dispatching deci-
sions, and using it with such a list constitutes a dispatching policy. However,
as we saw in our analysis of Example 17.2, the parallel approach may schedule
a low-priority activity too early and thereby increase the makespan. Referring
specifically to Example 17.2, suppose we have a second scenario in which activ-
ity 37 takes 4 time units instead of 2. As mentioned earlier, when we apply the
parallel approach to that scenario – with the priority list {15, 13, 14, 56, 47, 37,
67, 12, 78, 28} – the makespan is reduced to 14, which is optimal for both sce-
narios. If both scenarios are equally likely, the expected value is 14.5. Now sup-
pose we enhance the priority list by adding a soft start–start constraint
requiring 28 not to start before 47. A start–start constraint allows one activity
to start as early as another activity, but no earlier, allowing the two activities to
run in parallel. In the example, such a constraint would allow 28 to run in par-
allel to 47 (if sufficient resources were available), but it would not allow 28 to
delay 47.
In a stochastic environment, the price of using soft constraints is loss of flex-

ibility, possibly leading to increased makespan. Start–start soft constraints pro-
vide more flexibility than finish–start soft constraints, but in principle we may
use both to enhance a priority list and support dispatching. In our example, this
soft constraint does not alter the makespan in the second scenario but reduces
the makespan of the first scenario to 14, reducing the expected makespan from
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14.5 to 14. As a rule, we want to specify only a subset of the possible soft con-
straints. In Example 17.2, adding a start–start constraint between each pair of
successive activities in the priority list would lead to suboptimal makespan of
16 with a schedule that is neither active nor nondelay; unnecessary finish–start
constraints would be even more deleterious.
As in the deterministic case, because we use a sample with a finite number of

scenarios, we can find a good priority list (for the sample) by using a neighbor-
hood search. However, if we want to also use soft constraints, we must avoid
adding a constraint that conflicts with any existing (hard or soft) constraint.
Recall that the parallel approach allows logically infeasible priority lists, but
when we add a soft constraint, it restricts the selection of schedulable activities.
When a soft constraint conflicts with an existing constraint (hard or soft), the
process will abort because at some stage there will be no schedulable activity
even though resources are available and not all activities are complete. The
point is that the parallel process can change the sequence of activities that have
no direct or indirect precedence between them, but it cannot resolve cycles. To
avoid cycles, we can record all hard-and-soft precedence constraints in a matrix.
Soft constraints can then be added only between unrelated activities, but the
matrix must be updated for each such addition because a new soft constraint
implies that the same type of constraint exists between all predecessors of
the first activity and all successors of the second activity. A simpler way is to
require the priority list to be logically feasible and then restrict the soft con-
straints to the direction of the activities in the list. For instance, requiring
28 not to start before 47 is in the order of the priority list. Because that is easier,
we can try more priority lists without increasing the total computation time.
Currently, the most effective approach is the use of a genetic algorithm that
searches for a combination of a priority list and suitable soft constraints. Soft
constraints may be generated by random mutations, and if they are restricted
to the direction of a feasible list, they will be feasible too. Recall that except
for mutations, a genetic algorithm creates new schedules by combining parts
of two existing schedules. Furthermore, doing so for two feasible sequences
yields a feasible sequence. In this context, it is useful to list soft constraints
by their ordinal position in the priority list rather than by naming the activities
they apply to explicitly. That way, when we change the priority list, as long as the
new list is logically feasible, the soft constraints that become part of the offspring
will not cause infeasibility.

17.6 Summary

The scheduling of a project in the presence of limited resources is a challenging
decision-making problem. It is a full-blown scheduling problem in the sense
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that solutions must cope with both technological precedence constraints and
resource availability constraints. In its general forms, it is a combinatorial
problem of such magnitude that virtually all existing methods for finding opti-
mal schedules are impractical for problems of realistic dimensions. The prob-
lem is especially frustrating because it initially appears simple. First, the
problem is fairly easy to formulate and visualize. Second, the problem extends
the CPM and PERT models, which themselves have been readily and widely
adapted to practical network scheduling problems. Third, the substantial lit-
erature on the subject contains any number of sophisticated and clever opti-
mum-seeking schemes, yet the barrier of computational practicality still
exists.
For relatively small problems, optimal solutions have been achieved mostly by

branch and bound and also by integer programming. An integer programming
approach can harness the power of classical-constrained optimization techni-
ques and accommodate fairly general criteria. A branch-and-bound approach,
based on the implicit enumeration of all active schedules, is more flexible in its
structure and may provide better insights into the nature of the solution. In
addition, the tree structure embedded in the branching procedure provides a
basis for implementing heuristic techniques.
Just as in the job shop problem, priority dispatching procedures and biased

sampling schemes appear to be effective heuristic devices. On the one hand,
such suboptimal approaches are quite rapid and are the most flexible in their
ability to accommodate realistic criteria and decision constraints. On the
other hand, they achieve their speed and flexibility at the expense of failing
to guarantee optimality. As mentioned earlier, many heuristic programs are
commercially available, although their details have often been withheld on
proprietary grounds. Evidence suggests, however, that these commercially
available heuristics could be significantly improved by utilizing state-of-art
alternatives.
We also discussed stochastic sequencing models devised to minimize the

expected duration; that is, they address the stochastic counterpart problem.
Practicable approaches rely on sample-based analysis with dynamic dispatch-
ing guided by priority lists and soft precedence constraints, including start–
start soft constraints. The state of the art utilizes a genetic algorithm to find
good priority lists and soft constraints. It is also possible to address such pro-
blems by branch and bound, but that approach has proven to be impractical
for anything but small projects. Last but not least, using the deterministic
counterpart sequence but adding safety time where appropriate is a reason-
able heuristic approach to project scheduling. In the next two chapters, we
elaborate on such aspects; that is, we assume that the sequencing problem
has been addressed and what remains is to schedule release dates and
due dates.
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Exercises

17.1 Consider Example 17.1, where we showed that if A and D are scheduled
at time 0, a lower bound for the makespan is 16.
a) Construct a full schedule with makespan 16 for this PS(2).
b) Show that the schedule in part (a) is an optimal solution. (Hint: Given

the feasible solution of part (a), it is sufficient to show the same lower
bound for PS(0). One way to do so is by studying the reversed project,
where there are only twoPS(2) that satisfyAlgorithm17.1, one ofwhich
isnondelay.Calculateb4 for thenondelayPS(2), and showthat the other
is inferior – for instance, by calculating b4 for it too.)

17.2 Consider the project described in the following table. Each of the tasks
A–H has a given duration pj, a set of predecessors P(j), and a resource
requirement aj. The total number of resource units available is 5.

Activity pj P( j) aj

A 5 — 3

B 3 — 2

C 4 — 2

D 1 A 2

E 4 A 2

F 3 D, E 1

G 5 B, D 1

H 6 C 3

a) Draw an AOA network for this project.
b) Ifno resource limit existed,whatwouldbe the lengthof the critical path?
c) Construct an early start schedule for the project.
d) Construct a late start schedule for the project.
e) Use the schedules in (c) and (d) to compute bounds on the project

duration.

17.3 Revisit the project in the previous exercise. Find the minimummakespan
by comparing three schedules constructed using heuristic procedures.
a) Apply the LST priority rule and calculate the makespan.
b) Apply the Delta priority rule and calculate the makespan.
c) Apply the LFT priority rule and calculate the makespan.
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17.4 Consider the project described in the following table. Each of the tasks
A–L has a given duration pj, a set of predecessors P(j), and a resource
requirement aj. The total number of resource units available is 5.

Activity pj P(j) aj

A 6 — 2

B 8 — 3

C 4 — 3

D 4 A 4

E 4 A 2

F 12 B, E 3

G 14 B, E 1

H 6 B, C, E 4

I 8 D, F 2

J 16 D, F, G 1

K 2 D, F, G 1

L 12 H, K 3

a) Draw an AOA network for this project.
b) If no resource limit existed, what would be the length of the criti-

cal path?
c) Construct an early start schedule for the project.
d) Construct a late start schedule for the project.
e) Use the schedules in (c) and (d) to compute bounds on the project

duration.

17.5 Revisit the project in the previous exercise. Find the minimummakespan
by comparing three schedules constructed using heuristic procedures.
a) Apply the LST priority rule and calculate the makespan.
b) Apply the Delta priority rule and calculate the makespan.
c) Apply the LFT priority rule and calculate the makespan.

17.6 Consider the project described in the following table. Each of the tasks
A–J has a given duration pj, a set of predecessors P(j), and a resource
requirement aj. The total number of resource units available is 10.
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Activity pj P( j) aj

A 1 — 7

B 4 A 1

C 3 A 4

D 2 A 3

E 2 A 5

F 2 B 8

G 2 C 2

H 3 D 6

I 1 G, H 9

J 3 I 10

a) Draw an AOA network for this project.
b) If no resource limit existed, what would be the length of the criti-

cal path?
c) Construct an early start schedule for the project.
d) Construct a late start schedule for the project.
e) Use the schedules in (c) and (d) to compute bounds on the project

duration.

17.7 Revisit the project in the previous exercise. Find the minimummakespan
by using a parallel approach and LFT priority.

17.8 Consider Example 17.2, where the infinite resource critical path is 12 but
for 8 capacity units and the list {15, 13, 14, 56, 47, 37, 67, 12, 78, 28}, the
serial approach yielded a makespan of 14.
a) Prove the optimality of the serial list.
b) Suppose you can release resources early if they are not required

downstream, to reduce idleness. Let the reduction of resource
requirements by such release be our secondary objective, to be pur-
sued without increasing the makespan. Show that the parallel list
solution (Figure 17.3) involves 12 fewer idle resource time units then
the optimal solution (Figure 17.4). (Hint: The total area of the white
rectangular blocks is a constant, and a direct comparison of the gray
areas in the two figures shows a difference of 10.)

c) Suppose now that 37 takes 4 time units instead of 2. Compare the
results of the parallel and serial approaches.
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d) Suppose we have nine capacity units. Compare the performance of
the two approaches with the same list, in terms of makespan and idle-
ness (assuming early release of resources is allowed as in part b).

e) Can the makespan be reduced relative to the better schedule found
above by adding resource units?

17.9 Consider Example 17.3, where the initial list was {12, 13, 14, 16, 17, 18,
25, 58, 68, 78} and an optimal list for serial construction is {12, 17, 25, 14,
13, 16, 78, 68, 58, 18}.
a) Prove the optimality of the serial list.
b) List a series of modified API steps that leads from the initial list to the

optimal list.
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18

Project Analytics

18.1 Introduction

The methods of analytics constitute the main bridge from theory to practice.
Those methods analyze data to reveal facts that must be addressed by any prac-
ticable theory. If such facts are congruent with the theory, we say the theory is
valid, and we expect valid theory to guide us toward successful implementation.
In our context, a project scheduling framework that does not involve validation
is simply not credible. Classical PERT assumptions, including statistical inde-
pendence and reliance on the beta distribution, are examples of what we
now recognize as invalid theory. Project analytics replace the flawed PERT
assumptions and support project management in general. In this chapter, we
argue that the beta distribution should be replaced by the lognormal, and the
independence assumption should be replaced by a model of dependence such
as linear association. To fully justify these claims, however, we must show how
to resolve various implementation challenges.
Unfortunately, the bulk of stochastic scheduling research has focused on

mathematically convenient distributions that have rarely been validated. That
is, with few exceptions, no attempt has been made to prove that the stochastic
models fit actual observations. Similarly, the vast majority of that research also
relies on the assumption that processing times are statistically independent.
We discuss evidence that the lognormal distribution is often valid but that
estimates may be subject to distortion by hidden earliness and rounding errors.
In addition, activity durations are likely to be positively correlated. We lay the
groundwork for simulating reliable analytics-based samples of activity
durations.
In Appendix A we discuss how to use a Q–Q chart to judge whether

a given sample is likely to represent a normal distribution and, if so, how to
estimate the parameters of that distribution. In this chapter, we show how to
apply that method to a new project based on historical data from similar
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projects and thus validate the assumption that project activity durations follow
the lognormal distribution. We also show how to obtain estimates of the log-
normal parameters m and s.
Suppose we have a sample of n independent and identically distributed obser-

vations that we believe are lognormal. We can test that belief with a normal
Q–Q chart based on the logarithms of the observations. In practice, however,
we often know that the observations are not identically distributed. In such
cases, we can first try to convert them to identically distributed variables before
proceeding with the analysis. In particular, a typical project has several activities,
each with its own estimated duration, ej. (Those estimates are known in advance
and ideally rely on historical data rather than subjective judgment.) As the proj-
ect unfolds, the activity time realizations, pj, are observed. If we treat ej as deter-
ministic, or even as a lognormal variate, it follows that pj/ej is also lognormal,
even though ej and pj are likely to be correlated. Furthermore, if the estimates
are accurate (or unbiased), then pj/ej is basic (that is, has a mean of 1), so each
ratio will have a lognormal distribution. However, there is no compelling reason
to assume that all these distributions will have the same coefficient of variation
(cv) and thus that their logarithms will have the same standard deviation (s).
Therefore, the n activities may not be identically distributed even after conver-
sion to ratios. When that is the case, there is no conceivable way to use the data
to prove or disprove that the original distributions were lognormal. In practice,
however, if we assume the same cv applies – at least to planned durations of the
same order of magnitude –we obtain good Q–Q charts, thus validating not only
the lognormal assumption but also the equal-cv assumption. In such a Q–Q
chart, the intercept is our estimate of the mean (m) and the slope estimates
s. (To use the results specifically for activity j, we should add ln(ej) to the esti-
mate of m and take the exponent.) Furthermore, even when the same cv
assumption fails, we can often identify mixtures of very few cv levels that will
serve our purposes.
Several issues remain to be addressed. First, as briefly mentioned above, there

is usually a need to partition project activities into subsets of similar planned
duration. Each of these subsets then acquires its ownQ–Q chart. Indeed, typical
projects involve activities whose planned durations are too dissimilar to be
pulled together into a single Q–Q chart. Section 18.2 deals with basic partition-
ing by planned duration or other known differences. Second, historical activity
durations are often provided in rounded terms, which may mask the true dis-
tribution. Section 18.3 concerns rounding of estimates. Third, the Parkinson
effect often applies: The reported duration of an activity is heavily influenced
by the time allotted to it, although it may take longer. Nevertheless, we must
be able to obtain valid parameter estimates even when observations are dis-
torted by the Parkinson effect, an approach we discuss in Section 18.4. In addi-
tion, there may be reasons why a project represents a mixture of distributions.
For instance, in a construction project some activities may be sensitive to
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weather, while others are not. We cannot predict the behavior of the next proj-
ect reliably without accounting for such mixtures and understanding their root
causes, as discussed in Section 18.5. We also have to be aware of possible bias in
our data, especially estimation bias. We address this concern in Section 18.6. In
practice, some projects run faster than expected, whereas other projects are sys-
temically slower. This behavior implies stochastic dependence among the dura-
tions within a project but would not occur if durations were independent.
Specifically, after we encounter a few shorter-than-expected durations, it
becomes more likely that they will be followed by short durations, whereas
longer-than-expected durations early in a project will tend to be followed by
other, longer ones. In Section 18.7, we discuss how to model that behavior
by linear association, allowing us to generate random samples under the
assumption that the durations of the next project will also be subject to
dependence.
Our analysis implies that the PERT model is not credible because it is based

on the independence assumption, does not correct for bias, and relies on sub-
jective estimates. Furthermore, empirical evidence reveals that some activities
have very high cv, whereas the beta approximation in PERT has a limited cv that
is inadequate for cv > 0.66. For these reasons the PERT method cannot yield
reliable samples for medium and high variation cases. Our modeling rests on
much more solid ground when we rely on the lognormal distribution.

18.2 Basic Partitioning

Typical projects involve activities with a wide range of planned durations. They
are also often composed of several distinct subprojects. For example, when the
project network is a large assembly tree, each major branch of the tree is usually
a subproject that may be performed with a large degree of autonomy. Subpro-
jects may still be subject to common problems, such as funding, but they may be
largely independent from each other. The first step in analyzing activities of his-
torical projects is to partition them into subsets reflecting planned duration and
any known subproject structure. Incidentally, project data available in the public
domain today rarely include subproject structure, but planned durations are
documented and can be used for partitioning.
A useful rule of thumb is that the ratio between the longest and shortest

planned activity duration in each subset should not exceed four or five.
Instances with much larger differences may behave well (thanks to the normal-
ization we achieve by using ratios of actual to planned times), but we should at
least check for possible systemic differences. More disparate activities often
belong to different hierarchical levels. Longer ones are more likely to involve
several subactivities and therefore may exhibit less variation on a proportional
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basis. Very short activities often exhibit small variation for other reasons. Par-
titioning by planned duration is a reliable approach in either case.
We illustrate partitioning with field data from a construction project in Yere-

van, Armenia. The project had 107 activities with planned durations between 1
and 62 days. In this case, both early and tardy activities were quite common, but
all 12 activities planned for less than two days reportedly completed precisely on
time and so did a very high proportion of activities planned for exactly two days.
That, by itself, indicates that partitioning is helpful here, rather than analyzing
all 107 activities together. Furthermore, even if we separate out all activities
planned for two days or less, we still have a ratio of 15 for the maximum time
in the remainder to the minimum time, so we should check further.
Consider Figure 18.1, where the horizontal axis measures the planned

duration (on a logarithmic scale) and the vertical axis measures ln(pj/ej). We
should clarify that in this figure, some points represent a single activity,
whereas others represent a larger number. For instance, all 11 activities planned
for a single day are represented by the leftmost single point on the planned
duration axis, and the 3 points visible for 2-day activities represent 1, 11, and
6 activities (from top to bottom). We observe that the range of values for
ln(pj/ej) is highest for medium-sized activities, and henceforth we focus on these
activities, defined as having planned durations from 4 to 15. A full analysis
includes separate treatment for long activities – which are important precisely
because they are long – and for short activities. More formally, all activities with
planned durations between 1 and 4, with 4 itself excluded, make up the first sub-
set of the partition, denoted by [1, 4). The other two subsets are with planned
durations of [4, 16) and [16, 64). All of them involve max-to-min ratios of no
more than 4, and it is impossible to create fewer than 3 subsets that follow
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Figure 18.1 ln(pj/ej) as a function of planned duration.
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the rule of thumb. Figure 18.1 supports this particular partition also by the
clearly higher proportional variation that the middle group exhibits.
A partition into, say, [1, 3), [3, 15), and [15, 75) would also be justified, with
almost the same membership in each subset: Only the activity planned for
15 would shift. As this example demonstrates, there may be room for some flex-
ibility, but partitioning by planned duration is generally useful. Henceforth, we
assume this initial partition has been followed and our discussion will concern
analysis of a single subset.
There are 61 activities with planned durations between 4 and 15. On the left

side of Figure 18.2, we show the Q–Q chart of their ln(pj/ej) values. Although we
observe several values with the same ln(pj/ej) but different scores, the regression
line has R2 = 0.976. Taking the square root, 0.988, we find that it passes the nor-
mality test with a probability of almost 0.25. That is, we cannot reject normality.

18.3 Correcting for Rounding

As we have seen for the planned durations [4, 15), we cannot reject the hypoth-
esis that the ln(pj/ej) values follow a normal distribution. However, even if the
underlying distribution is normal (after the logarithmic transformation), pro-
blems with the data may make it impossible to confirm normality without some
remedy. One type of deviation from normality is due to rounding. Although
processing times are continuous, reported processing times are usually rounded
to integers, sometimes using excessively coarse units, such as reporting in weeks
when some activities take less than a day. Planned durations are virtually always
given in integers, so the computed ratios are rational numbers, such as 12/7 or
1/3. Thus, one problem is rounding error. A related problem occurs when two
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Figure 18.2 Q–Q charts before and after correcting for rounding.
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or more realizations are reported as equal, although it is virtually impossible for
two realizations from a continuous distribution to be precisely equal. Because
we associate each of these reportedly equal points with a different score, if many
points are rounded to the same value, the Q–Q chart exhibits a flat horizontal
segment for this value, causing a reduction in R2. The left side of Figure 18.2
shows several such flat horizontal segments: At the top, we observe four points
corresponding to the ratio 12/7 (for which ln(pj/ej) = 0.539) and at the bottom,
two points corresponding to the ratio 1/3 (for which ln(pj/ej) = −1.099). In
between, most ln(pj/ej) values appear more than once, and in particular, the
ratios 8/7, 5/6, 4/5, and 1/2 each appear at least five times. Empirical evidence
suggests that normality is often rejected due to this cause, but in our context
that should not be a valid reason for rejection.
A common remedy is to assign all such points the same score. One way to do

so is to use the average of all the relevant scores. That is, we replace each hor-
izontal strip, say, with k observations, by k overlapping repetitions of a single
observation at their horizontal average. For instance, if two activities, with
scores of 1.16 and 1.22, have the same reported ln(pj/ej), we treat them as
two repetitions of the same ln(pj/ej) value, each with a score of (1.16 + 1.22)/
2 = 1.19. The right-hand side of Figure 18.2 shows the Q–Q chart after this
treatment. The regression line has R2 = 0.9892 (as compared with 0.976 on
the left). The probability associated with the normality test rises to slightly above
0.5. The regression parameters on the two sides are quite close: The main dif-
ference is the increase in R2. For medium-sized activities in this project, then, we
cannot reject the hypothesis that they are all lognormal with the same cv. From
Eq. (A.2), using 0.3718 (from the left-side chart) as our s estimate, we calculate
cv2 = exp(0.37182) − 1 or cv = 0.385. If instead we use 0.3768 (from the right-side
chart), we get cv = 0.391. Our estimates for μj are 0.911ej and 0.913ej, so in this
example, correcting for rounding does not make a big difference. However, in
general, the correction for rounding can mean the difference between accepting
and rejecting normality.
We can choose to remedy rounding as soon as we discover repetitions due to

suspected rounding in the sample, or we can postpone it until it becomes clear
that normality would be rejected without the correction.

18.4 Accounting for the Parkinson Effect

Another common deviation from normality (after log-transformation) is asso-
ciated with the Parkinson effect. As discussed in Appendix A, the Parkinson
effect describes a distribution of actual activity times when they are influenced
by a predicted or targeted activity time. When random factors lead toward a
faster-than-predicted outcome, the reported time gets matched to the target,
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but when similar factors lead toward a slower-than-predicted outcome, the
actual time is reported faithfully. The left side of Figure 18.3 is the Q–Q chart
of a development project from the Eurasia Foundation in Armenia. The project
had 52 activities with planned durations between 4 and 48 weeks. Preliminary
analysis suggests that we should analyze activities of up to 15 weeks separately,
and here we focus on these (41) activities. A subset of 15 activities is reported
exactly on time – that is, with pj/ej = 1 and ln(pj/ej) = 0. Four activities are
reported as strictly early, with pj/ej < 1 and ln(pj/ej) < 0. Because of the large pro-
portion of observations with ratios of unity, there is a wide flat segment in the
chart for ln(pj/ej) = 0. Largely due to that reason, the chart fails the normality
test with a probability of about 0.005. Rounding helps, as the right-side chart
demonstrates, but the test remains marginal (a low pass). Even after the round-
ing correction, the Q–Q chart still has an inverted S shape. Such a shape, spe-
cifically for observations with ln(pj/ej) = 0, is likely when the number of ratios
that is ostensibly rounded is excessive. In other words, we suspect that a sizable
Parkinson effect exists. The question is how to demonstrate that and how to
estimate the parameters so we can use them later for prediction in similar
projects.
This task is a bit more challenging than dealing with rounding alone, in part,

because the reported processing time can exactly match the plan for two rea-
sons: possibly due to the Parkinson effect of a faster-than-predicted outcome
(in which case we refer to the relevant observations colloquially as Parkinso-
nian) or else due to rounding (to which we refer colloquially as on time). For
instance, in the Armenian construction project, four activities (out of 61) were
deemed to be on time; that is, we treated them as rounded to unity and the result
was deemed normal. In general, however, we may have a mixture of two types of
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Figure 18.3 Normal Q–Q plot of ln(pj/ej) for a development project before (left) and after
correcting for rounding (right).
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activities with unity ratios, so we must somehow decide howmany observations
are on time and howmany are Parkinsonian. For the time being, assume that we
have made that decision, perhaps tentatively. On-time activities and strictly
tardy activities are similar in the sense that all of them are reported correctly,
at least approximately. All other activities are strictly early but possibly Parkin-
sonian. Hence, by the assumption, we know exactly how many activities are
reported correctly because they are strictly tardy (denoted nT), how many are
on time but rounded to unity (denoted nO), how many are early and reported
correctly (denoted nE), and how many are Parkinsonian (denoted nP).
Our task now is to construct a Q–Q chart for which the regression line would

be linear under the normality assumption, in spite of the Parkinson effect, and
such that its intercept will still provide an estimate ofm and its slope will provide
an estimate of s. To that end, it is straightforward to estimate pP by nP/(nE + nP).
Because pP is the fraction of early activities that cannot be used in the Q–Q chart
(their true duration is unknown), we modify Blom’s scores for the remaining
early activities. Instead of zk =Φ−1((k − 0.375)/(n + 0.25)), which applies to full
samples and to correctly reported activities, we use zk =Φ−1((k − 0.375)/
(n(1 – pP) + 0.25)). The adjustment reflects the effective reduction in sample
size that applies to early activities. That is, we use the unadjusted
zk =Φ−1((k − 0.375)/(n + 0.25)) values for the nT strictly tardy activities; the
same applies to the nO on-time activities, but we use adjusted scores of zk =
Φ−1((k − 0.375)/(n(1 – pP) + 0.25)) for the nE strictly early activities. That leaves
out the nP Parkinsonian observations, which are simply omitted from the chart.
Returning to the Eurasia project, assume now that six of the activities are on

time, so nine are Parkinsonian. Because nE = 4, our estimate of pP is 9/(4 + 9) =
0.692. The left side of Figure 18.4 is the Q–Q chart of ln(pj/ej) for the updated
data, but excluding the nine Parkinsonian observations. After correcting for
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rounding, we obtain the right side of the figure, which passes the normality test
comfortably.
It is not our intention to prove that exactly nine out of the 15 points are Par-

kinsonian or that the estimated parameters (m = 0.14 and s = 0.76) are exact.
Rather we show that if that were the case, then the sample would be plausible.
Hence there is a way to fit the model to the data, which is essentially what val-
idation is all about.With that inmind, we chose to assume that exactly six points
are due to rounding by a heuristic designed to increase the likelihood the chart
will pass the normality test. The key is that if the fit is good, then the regression
standard error, denoted SEY and reported in standard software output, should
be relatively small. In our particular case, we compared SEY (after rounding, as
in the right side of Figure 18.4) for 0, 5, 6, 7, and 15 on-time activities (including
the assumed rounding). Here, 0 corresponds to the assumption that all those
points are Parkinsonian, and 15 corresponds to the assumption that none is Par-
kinsonian. Respectively, we obtain the following SEY values: 0.098 22, 0.085 72,
0.085 65, 0.086 86, and 0.120 34. The assumption we chose, six on-time but
rounded activities, is associated with the minimum SEY value, 0.085 65. It is also
interesting to compare the respective R2 values, which are 0.9749, 0.9827,
0.9823, 0.9815, and 0.9581. Here, the maximum is associated with nO = 5, that
is, five on-time observations rather than nO = 6, yet we focus on SEY, and for the
purpose of the heuristic, we essentially ignore R2 altogether. We don’t recom-
mend using R2 for selection purposes because it applies to samples with differ-
ent sizes. (A related statistic, R2-adjusted, is often used to decide whether to add
explaining variables to a regression with a given sample size. It can be shown
that maximizing R2-adjusted is then equivalent to minimizing SEY. Hence,
for the purpose of deciding whether to add an explaining variable, our heuristic
would be equivalent to maximizing R2-adjusted.)
To conclude this section we discuss how to run normality tests when the Par-

kinson effect occurs. Unlike the case with complete samples, with or without
rounding, unless pP = 1, there are no standard tests available. Although relevant
theoretical results exist for censored samples, they do not apply for pP < 1, and
they are not tabulated sufficiently to cover all pure Parkinson instances. The
issue is important not only for testing Q–Q charts but also for analysis of var-
iance (ANOVA), on which we rely later. For these statistical tests, it is required
to have complete samples. If n(1 − pP) is sufficiently large –which implies pP < 1
– it is possible to trim the sample by randomly removing a proportion pP of the
tardy and on-time activities. By assumption, the remaining trimmed sample
retains a proportion of (1 − pP) of the strictly early activities, and the same pro-
portion also applies to the on-time and tardy activities. Thus the trimmed sam-
ple is a random sample where all activities have the same probability of being
retained, namely, (1 − pP). However, a random sample from a complete popu-
lation or from a larger random sample is a complete sample, to which we can
apply standard tests. Because the trimming is random, we may choose to repeat
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it several times and use average results. However, trimming is problematic when
pP is large, impossible when pP = 1, and definitely requires throwing information
away. For those reasons, we avoid trimming as much as possible in what follows.
Fortunately, when pP = 1 the sample is censored (it retains only positive rea-

lizations), and tests for censored Q–Q charts are available. Furthermore, if pP is
too large, the implication is that very few early activities are reported correctly,
and in such cases we can choose to ignore those early activities and perform the
analysis as if the sample is fully censored. Nevertheless, it is still useful to be able
to test for any pP value. To that end, we adopt a better approach, also adopted by
major statistical software packages even for complete samples: to compare the
fit – as judged by R2 – to a large simulated sample and reject normality if R2 is
lower than that of 5% of the simulated sample. (5% is the conventional threshold
but we can use any other predetermined threshold.) Next, we discuss how to run
this simulation.
During the Q–Q chart construction described above, before correcting for

rounding, we obtain a list of nT scores for the ratios of actual to planned dura-
tions of the activities originally reported as tardy, the average score of the nO on-
time activities (whose logarithm is zero), and nE scores for the ratios of activities
reported strictly early. Altogether, there are (n − nP) scores in the final chart.We
also obtain the R2 value associated with the Q–Q chart after correcting for
rounding, if necessary. To construct a Q–Q chart for a random set of n simu-
lated values obtained from a normal distribution subject to similar Parkinson
effects, we need to allocate the same (n − nP) scores to a subset of the n simu-
lated independent standard normal realizations. Equivalently, we need to select
nP simulated values to ignore and select which simulated values play the role of
the on-time activities. We start by sorting the sample by descending size, and we
allocate the highest nT scores to the highest simulated values in the sample. Next
we allocate the average score associated with the nO observations to the average
of the next nO values in the sample, so we have nO identical points (as was also
the case originally). It is not necessary tomake that average match any particular
value because shifting the Q–Q chart vertically or horizontally does not change
the R2 value ultimately reached. Next, we select nE simulated values randomly
from the subset of the lowest (nE + nP) simulated values and allocate to them the
lowest scores. Finally, we fit a regression line and record the R2 value. Repeating
that process r times, we can then sort the R2 results and estimate the probability
that our original data is indeed normal subject to the Parkinson distribution
with a normal core by its rank in the sampled list: The higher the original R2

ranking, the higher the plausibility of the hypothesis.
The prevalence of the Parkinson effect probably depends on the industry and

on culture, but it is noteworthy that in a large set of Belgian construction pro-
jects, on-time activities – Parkinsonian or otherwise – tended to be very short,
one or two periods. Hence, at least in established industries with relatively small
variation, such as construction, the Parkinson effect is not likely to apply to long
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(and thus important) activities. Furthermore, the Eurasia project is one of five
projects by the same organization, but none of the other four exhibited clear
evidence of the Parkinson effect. To determine how important it is in other
industries and cultures requires more research. In conclusion, there is no doubt
the Parkinson effect is sometimes real, but it is an open question how likely it is
to occur in practice and how damaging it may be when it occurs. Theoretically,
it is important because it enables us to show that the lognormal distribution
applies, sometimes even when direct evidence seems to contradict it. Further-
more, performing analytics to identify the Parkinson effect where it prevails can
help improve operations by changing the practice. Such change is not necessar-
ily easy, but it can be facilitated by better addressing the real variation in the
system that the same analytics reveal. Similarly, in instances with excessive
rounding (that is, rounding to time units that are too crude), the analytics
approach can motivate more precise reporting.

18.5 Identifying Mixtures

In the Parkinson case, the distribution we observe is not lognormal even if the
core is lognormal. The lognormal distribution may also apply, in spite of con-
tradictory observations, in a mixture of two or more lognormal distributions.
For example, tests were carried out on 24 projects from the Belgian data set.
After accounting for rounding and for the Parkinson effect, 16 of those projects
passed lognormality tests. Further research focusing on the eight failing projects
has shown that three of them pass the tests after removing one or two clear out-
liers. The five remaining projects can all be explained as mixtures of a few log-
normal distributions. The existence of an outlier can also be interpreted as a
mixture in which the outlier represents a distinct distribution. Therefore, anal-
ysis of mixtures is important to consider when performing the analysis.
In project applications, in addition to equipment failures that are directly

analogous to machine breakdowns, the effects of bad weather on some activities
may be similar to the samemodel: Good weather is akin to an upmachine, and it
can go up and down several times during an activity. We also know that some
weather events are rare but more disruptive than others and thus increase the
coefficient of variation sizably. When some activities are subject to weather dis-
ruptions but others are not, we may observe a mixture.
We illustrate mixtures by analyzing project C2014-03 from the Belgian data

set, which is one of the eight projects that did not pass the first normality test.
Focusing on activities planned for one week – the smallest time unit used in this
case – the left side of Figure 18.5 shows the Q–Q plot of ln(pj/ej) for the 73
activities in this subset. Of those, no activity is early and 45 are reported pre-
cisely on time. It is quite unlikely that all 45 on-time points are due to rounding
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and the right side of the figure supports the analysis under the assumption that
the on-time points reflect hidden earliness – that is, we hypothesize that a
strong pure Parkinson effect is present. Even if rounded, lognormality is rejected
for the right-side chart, with a probability below 5%. Furthermore, based on the
estimated parameters, there should not be so many points near and below zero.
However, if we assume the tardy points and the on-time points reflect two dis-
tinct distributions, lognormality cannot be rejected. Figure 18.6 shows the Q–Q
chart of the tail with the scores it would have if it were a complete sample, before
and after rounding. Both sides pass the normality test with probabilities of about
0.25 and 0.75 (based on statistical tables for curtailed normal samples). In this
project, activities planned for more than a week are also apparently lognormal,
but with different parameters. Therefore, the project exhibits a mixture of three
distributions, although we cannot estimate the parameters of the points that are
planned for one week and finished early or on time.
In Figure 18.6, all values are strictly positive, and we might ask whether some

on-time observations should be added to the subset. However, using the esti-
mated parameters (m = 1.69 and s = 0.61), we find that the probability an obser-
vation might belong to this subset is associated with a very small z-value of
−2.77. This value corresponds to a probability of about 0.003, so the chance that
one on-time observation has been missed in a subset of 73 − 41 + 1 = 29 obser-
vations is less than 8%.
In this case, the partition is based on observing how different the tail is from

the other observations. In general, we need a way to partition sets of activities
that do not pass normality tests. In principle, this is a cluster analysis problem,
and it can be addressed with cluster analysis tools. As a rule, one should not
expect a perfect resolution, but it helps when we can use related field informa-
tion such as subproject structure. When dealing with published data sets,
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however, only final results are provided, and the analysis must be based purely
on those data. Success in this case is showing that a mixture of very few lognor-
mal distributions fits the data. With the data we have, it is always possible to fit
the data usingmany lognormal distributions: In the extreme case, each activity
could have its own expected ratio. However, when very few (mi and si) pairs can
cover a full project, the evidence is more compelling.
Once planned durations and all project-specific information (such as subproject

structure) have been utilized, we may still not be able to identify a mixture that
passes the normality test. In that case, we can adopt the heuristic of minimizing
the standard error, SEY.We start with theQ–Qchart that failed the normality test
and remove from it the activity that will decrease SEYmost. Then we continue to
remove observations this way as long as SEY decreases (but with the caveat that
once we drop below three activities, it is no longer possible to estimate a standard
error).WhenSEYhas beenminimized,weare leftwithone subset thatmay (ormay
not) pass a normality test and a complementary subset of removed observations.
We can now repeat the procedure on the removed observations. Ideally, there will
be very few sub-subsets. Single points that donot fitwellwith larger subsets should
be considered as outliers, and if we have toomany that we can’t explain, their pres-
ence suggests it may be difficult to make predictions for future projects.
Once a mixture is identified, we must find its cause if we want to use it for

prediction in future projects. If the cause is analogous to machine breakdown
(for instance, bad weather), then every future activity in similar projects may
be subject to the same problem, and the mixture distribution applies to each
activity separately. On the other hand, we may be able to identify subsets of
activities that have different distributions for some other identifiable reason,
and that information can be used in future projects to partition similar activities
in advance, applying to each subset its own distribution.
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18.6 Addressing Subjective Estimation Bias

The first step in understanding variation in our context is to realize that activity
durations are always subject to random effects that make it impossible to predict
them exactly. To describe those effects, we fit a distribution to historical data,
with estimated parameters such as mean and variance. These estimates are sub-
ject to error. In general, estimation error often includes estimation bias, which is
usually measured as an additive average deviation from the true expected value
of the estimated distribution. In our context, however, we are applying that
measurement to log-transformed data, so with respect to the original data,
we consider multiplicative bias.
Estimation bias is due to such factors as the following:

•Mistakes caused by human error.

• Failure to anticipate possible problems.

• Optimism and pressure to produce attractive estimates from project cham-
pions who tend to emphasize opportunities.

• Pessimism and pressure to produce cautious estimates from skeptics who
tend to emphasize risks.

Most of these factors involve subjective judgment or personal traits. Historically,
when PERT was first developed, practitioners pointed out that different people
exhibit different biases. In response, the authors of the seminal PERT paper sug-
gestedcalibrating subjectiveestimatesbystudying theaccuracyof estimatesbyeach
person who provides them, over time, so that the average bias can be corrected in
future estimates. Fielddata suggests that somemanagersprovide relatively accurate
estimates, but, in general, that historical PERT recommendation has been observed
in the breach. It certainly failed to enter standard PERT coverage in the literature.
Therefore, in a practical sense, we can say that calibration is not part of PERT.Nev-
ertheless, it is oftenpossible toproduceobjective estimatesusing regressionanalysis
of historical durations of similar activities. In one published instance, the analysis of
historical data suggested that a good estimate of the duration, pj, of one company’s
programming project was given by the regression model

ln pj = 0 249 + 1 034 ln Subs −0 423Mgr5

where Subs denotes the number of subroutines andMgr5 is an indicator variable
that takes the value 1 if a particularmanager is responsible for the task, and 0 oth-
erwise. The regression indicates that programming takes over 1/3 less time under
Manager 5on average (although themodel does not tell us the cause). This regres-
sion had SEY = 0.8259, and all three factors were highly significant. An almost
equally good result was obtained by the simpler single-variable regression model

ln pj = 0 201 + 1 035 ln Subs

for which SEY = 0.836.
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Both models above are unbiased, because they were based on regression
using objective data. That is, they produced accurate estimates. The original
study also included estimated durations produced by the six managers. On
average, the quality of those estimates proved to be lower than that of the
regression-based ones. The left side of Figure 18.7 is a Q–Q chart of the resi-
duals of the first model (with the two explaining variables), whereas the right
side is a similar chart showing the residuals of the subjective estimates (subject
to the same logarithmic transformation). In this case, SEY = 1.018. Clearly the
chart on the right shows a non-normal distribution with a higher average stand-
ard deviation. Indeed, the maximal errors are larger, as can be seen by compar-
ing the vertical scales. Incidentally, the slope on the left, 0.8246, matches the
corresponding SEY value very closely (at 0.8259), whereas on the right, the slope
0.9888 is a less precise match of the corresponding value (1.018). A close match
is an indication of normality, and it is clear that the distribution on the right,
where the match is not as good, is not normal. In terms of personal bias, three
of the managers had surprisingly small bias values, possibly indicating that they
have learned to calibrate their estimates, but the three other managers exhib-
ited logarithmic bias ranging from a pessimistic −0.90 (leading to largely con-
servative estimates) to optimistic biases of 0.15 and 0.77, tending to lead to
tardiness. Interestingly enough, Manager 5 was one of those whose estimates
were accurate. Therefore, his programmers took shorter than average time
to complete tasks, and he was able to predict that effect accurately.
(Regarding the right side of Figure 18.7, one might think that it is a mixture
of normal distributions, given that it reflects a mix of estimates from six differ-
ent individuals, but even when judged one by one, most of these managers did
not produce normally distributed residuals.)
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Figure 18.7 Normal Q–Q plot of the residuals of the Hill et al. (2000) estimates by regression
(left) and subjective estimates (right), with log-transformed data.

18.6 Addressing Subjective Estimation Bias 525



In the next section we consider another family of Armenian projects consist-
ing of nine diverse projects run by the same manager employing various sub-
contractors. These projects involved a highly optimistic estimation bias as
well as high variation and the Parkinson effect; that is, activities were never
reported early and often very late. Among other results, the analysis demon-
strates that the original PERT calibration recommendation was meritorious,
but not sufficient: We must also account for the variance of the bias.

18.7 Linear Association

18.7.1 Systemic Bias

Alongside the subjective causes of bias, several activities are often affected by
common factors and unpredictable events, including weather conditions, gen-
eral economic conditions, accidents, and employee turnover. Such factors are
random and, importantly, they may be different for different projects. In other
words, bias can occur for various reasons, and all such causes may be different
for different projects. For convenience, we treat the combination of all these
causes as estimation bias. In general, estimation bias is not known in advance
for any project, so it must be treated as random. Therefore, in addition to adjust-
ing for the average bias, we must also account for the variance of the bias. To
clarify this statement, assume that we have a set of K projects, with ratio data
drawn independently from a single lognormal distribution. For convenience,
assume also that the distribution is basic (that is, without bias), so μ = 1 and cv =
σ. Under these assumptions, the parameters of the lognormal distribution are
m = −s2/2 and s = [ln(1 + σ2)]1/2. We can now think about the K lists of log-
transformed ratios as independent samples of nk draws each (for k = 1, 2, …,
K), drawn independently from a normal distribution. Therefore, if we run an
ANOVA on those K lists, we should not be able to reject the hypothesis that
the assumptions are valid. Furthermore, the same applies even if the original
distribution is biased: ANOVA is not sensitive to adding or removing any con-
stant to all the data (or to scaling), and calibration is achieved by adding a con-
stant to all log-transformed ratios. Hence, calibration, or lack thereof, has no
effect on the ANOVA test result. However, in several data sets obtained from
organizations with more than one project, none passed the ANOVA test; that is,
biases differed from each other sufficiently to trigger rejection of the hypothesis
that the bias was constant for all projects. In other words, when predicting the
results of a new project considered sufficiently similar to a set of historical pro-
jects with such random bias values, we should create a sample in which different
runs are each subject to a random realization from the distribution of the bias
(in addition to the randomness of individual activities). Accounting for the var-
iance of the bias is important because when it is high, those individual runs will
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be more diverse than when it is low. In practical terms, we typically need more
safety time.
The variance of the bias is the cause of statistical dependence among the

deviations from predicted durations in a given project. If all estimates in all pro-
jects were equally biased, we could eventually learn to adjust for bias perfectly.
However, because the deviations are random and cannot be predicted precisely,
the estimation errors of single projects, measured relative to their original
estimates, are positively correlated with each other even if the underlying
distributions are independent. Specifically, optimistic estimates will lead to
longer-than-expected activity durations throughout the project, whereas
pessimistic estimates will lead to shorter-than-expected activity durations.
A similar technical observation applies to other differences, such as the
differences between managers in the Hill et al. (2000) case, where we did not
distinguish among projects but among managers. In either case, the deviations
from the estimates are positively correlated.
Bias applies not only to duration estimates but also to cost estimates. For

instance, data provided by Lipke et al. (2009) suggest that the ratio of duration
to estimate and the ratio of cost to budget both follow a lognormal distribution.
Figure 18.8 provides the Q–Q charts for 12 projects, duration on the left and
expenditure on the right. Both sides pass normality tests, suggesting that the
biases that apply to the projects are distributed lognormally. Incidentally, almost
all those projects were over budget and missed their due dates. Two of them
were either Parkinsonian or almost on time, and we depict them as on time
(on the axis) because that minimizes SEY. Although the charts may not appear
very linear, they pass the normality tests with p-values of slightly above 0.5 and
about 0.9. That is because, with only 12 points, large deviations are not unlikely.
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Figure 18.8 Normal Q–Q plot for durations (left) and expenditures (right) for 12 projects as
reported by Lipke et al. (2009).
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From Figure 18.8, we may hypothesize that the 12 projects were subject to
significantly different average budget and schedule means. Furthermore, the fig-
ure suggests that the bias distribution itself is lognormal (before log-transforma-
tion). This is an important observation because ANOVA cannot be used to find
the distribution of the bias: It only serves to indicate whether significant bias
differences exist or not. As discussed earlier, in predicting the performance
of a new project, we must take into account the variance of the random bias
effect as well as the variance exhibited by single projects – that is, wemust antic-
ipate the effects of both the between-projects and within-projects variation. The
linear association model can serve this purpose. It does that essentially by
assuming that we will experience lognormally distributed ratios of durations
to plan, multiplied by a single random bias. It is because that random bias is
different between projects that ANOVA rejects the hypothesis that all duration
distributions are independent. Furthermore, because field data suggests that
the random bias tends to be lognormal, too, we obtain positively correlated
lognormal ratios.
Consider again the case in which we have a history of K projects, each with its

own bias. In general, we use the single index k to denote any particular project in
that set. For instance, we denote the bias of project k by bk, for k = 1, 2,…, K. We
use a double index, jk, for activity j of project k. For instance, pjk is the duration
of this activity (where k = 1, 2,…, K and j = 1, 2,…, nk). Let yjk = pjk/ejk and xjk =
yjk/bk = pjk/(bkejk). That is, yjk is the ratio of the duration to the estimate, and xjk
is the same ratio adjusted for bias. Equivalently, bkxjk = yjk. If we now think about
xjk and yjk each as the jth realization of random variables Xk and Yk, respectively,
then Yk = BXk, and B – the random variable of which bk is a realization – is inde-
pendent of Xk. Therefore, by definition, the vector yjk = pjk/ejk consists of nk lin-
early associated realizations (see Appendix A).
In previous sections, we mainly considered solitary projects, and by focusing

on pjk/ejk ratios, we essentially analyzed realizations of Y. We found empirically
that Y can be modeled as lognormal. In other words, after log-transformation,
we established that Y is normal. Nowwe consider groups of related projects, and
we model Yk as a product of two independent random variables, B and Xk. After
log-transformation, however, this product becomes a convolution (that is, a
sum). It can be shown that no convolution of two independent random variables
can have a normal distribution unless both of them are normal. In other words,
the sum is normal if and only if the two components are normal. Therefore, by
claiming that Yk is lognormal, we imply that B and X are both lognormal too.
Furthermore, following the analysis in Appendix A, the elements of Y are
positively correlated.
To estimate the necessary parameters, recall that we have historical records

for K > 1 projects. For project k, our historical data consist of nk pairs (pjk, ejk),
where pjk is the realization and ejk is the original estimate. We can estimate the
logarithm of the bias for project k, ln(bk), by the following estimator:
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ln bk =
nk
j= 1 ln pjk ejk

nk

If we give each of these estimators a weight proportional to nk, we obtain the
following estimator of ln(μB), where μB is the mean of B,

ln μB =
K
k = 1nk ln bk

K
k = 1nk

and we obtain the following unbiased estimator of s2B, which is the variance
of ln(μB):

s2B =
K
k =1nk ln bk − ln μB

2

K
k = 1nk −K

To estimate sk, the standard deviation of ln(pjk/ejk) for project k, we can
use the standard deviation of the set {ln(pjk/bkejk)} for j = 1, …, nk, where
the bias element is neutralized by bk and where bk is estimated by the

exponent of ln bk . When there is no significant difference between the K
values of sk, we can estimate a single s value for all projects by pooling
their values of {ln(pjk/bkejk)} together. For the time being, we assume that is
the case. Therefore, we expect that any new project in the same family will
possess a logarithmic bias drawn from a normal distribution with mean
ln μB and variance s2B. Similarly, we expect that new project to have a basic
lognormal estimate distribution with s drawn from the same distribution
that generated the sk values for the K projects in the history. The reason
we assume basic distributions here is that average bias, if any, is now
incorporated in μB.
Given those estimated parameters and a new set of activity estimates, it is

straightforward to generate a sample for a future project with the same s
where, for each run in the sample, we generate one bias realization that multi-
plies all the basic normal sampled values. In more detail, suppose we wish to
generate a sample containing r replications (or runs). (Think of r rows for the
replications and n columns for the activities.) First, we generate one bias ele-
ment, b, per row and store it in an auxiliary column. Similarly, we generate n
basic lognormal realizations with cv = s and multiply them by the activity esti-
mates, ej, and by the single simulated bias value. Keep in mind that adding
logarithms corresponds to multiplying their exponents. Thus, all elements
in the row share the same bias element and the same variance, but no two rows
have the same bias. We can extend the methodology to cases where we expect
different projects to have different estimates of s by fitting a distribution to s as
well. Another approach that does not require a single s value for all projects is
by a nonparametric bootstrap resampling approach, which we discuss in
Subsection 18.7.3.
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18.7.2 Cross-Validation

Linear association has been validated for few families of projects by cross-valida-
tion. Cross-validation is an analytics technique whereby if we have full informa-
tion about a family of K projects, we use K − 1 of them to “predict” the
performance of the other project, and we repeat this process for all K projects.
Each such “prediction” involves generating a random sample with parameters
based on the analysis of theK − 1 remaining projects. Those provide us with esti-
mates of m and s both for the within-project variation and the bias element
(between-projects variation). We denote the latter by the subscript B, that is,
mB and sB. To simulate a run we start by simulating n normal values for ln(pj/
ej), all with mean m and standard deviation s, and one normal value with mean
mB and standard deviation sB (the simulated bias value). We may place these
values in the first n + 1 columns of a table with 2n + 1 columns. In the remaining
n columns, we can place either the sums of the first n columnswith the bias value
(thus recording logarithms) or the exponent of the same summultiplied by ej (if
wewish to record simulated durations). Next, we use the last n columns to obtain
a simulated project duration. Together, our r runs can then provide us with an
empirical distribution of the project duration. For this purpose, we may assume
that our projects are serial, so the project length is given by the sum of all activity
durations. Serial projects have no Jensen gaps. Therefore, we can study the inde-
pendence assumption without confounding it with the Jensen gap. (Real projects
are seldom serial, however, so we may choose to find the simulated duration by
simulating a project with network information incorporated. For cross-valida-
tion, however, that is not necessary.)Our true duration–whichweknowbecause
we are “predicting” for a project we already performed – corresponds to a prob-
ability, F(C), where F is the empirical (simulated) distribution andC is the project
completion time. After repeating this process for allK projects, we obtain a set of
K such probabilities. If linear association is valid for theK projects, theseK prob-
abilities should be a sample ofK standard uniform random variables.We can test
the hypothesis that they are indeed such a sample by P–P chart analysis. For our
purpose, a P–P chart is a special case of a Q–Qchart designed specifically for the
standard uniform distribution, and it assumes that the input is a sample from the
uniform distribution. Under the assumption the points depicted should be close
to thediagonal fromthebottom left to the top right of the chart.Whenwe say that
linear association has been validated for field data, we mean that such analysis
could not reject the hypothesis that such samples are indeed independent draws
from a standard uniform distribution. In the two P–P charts of Figure 18.9,
depicting the nine Armenian projects mentioned in Section 18.6, the one on
the left shows the results of using original estimates with correct within-project
variation but assuming independence, whereas the right side is based on linear
association and thus incorporates the random bias element. Recall that the bias
element induces dependence between project activity durations (because all of
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them tend to be lower or higher than planned, based on the bias). The left side of
the figure shows that most projects took much longer than expected under the
PERT assumptions. In general, poor performance is due to two PERT weak-
nesses. First, there is no calibration, and indeed, in the case of these nine projects,
apparently, the project manager generated highly optimistic estimates. Second,
the independence assumption tends to push realizations to either too high or too
low F(C) values (a point to which we return later). Here, the high bias pushes all
but one of the projects above the 90% line. That implies that if wewere to provide
enough safety time tomatch SL = 90%, it would fail badly in seven out of the nine
projects, fail slightly in one project, and suffice in only one project. In other
words, the PERT safe-scheduling model would fail badly. On the right, however,
exactly one project exceeds the 90% level, which is well within what we should
expect; the probability that exactly one project out of nine fails at the 90% level
is 39% (and the probability it will be one or less is 77%). Technically, in the case
depicted, cross-validation for the right-hand side was performed by the nonpa-
rametric bootstrap resampling approach, as we discuss next.

18.7.3 Using Nonparametric Bootstrap Sampling

When historical data is scarce, nonparametric bootstrap resampling is a simple
yet effective way to generate samples of a useful size. In brief, nonparametric
bootstrap sampling uses historical data as an empirical distribution and creates
samples of any desired size by sampling from that distribution. The sampling is
conducted with replacement, which implies that the same valuemay be sampled
more than once.
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Figure 18.9 P–P charts for a family of nine projects based on the PERT independence
assumption (left) and on cross-validation of linear association by nonparametric
bootstrap (right) (Trietsch et al. 2012).
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In more detail, we rely on the observation that the ratios pj/ej are lognor-
mal, so the historical data we need for each past project is a list of such ratios.
To generate a simulated scenario for an activity of a new project, we first
sample a ratio from some historical project (with replacement) and then
multiply this sampled ratio by the new estimate. In this procedure, it is
crucial to keep the historical information separated by project and to use
a single project for sampling each new ratio. (Sampling from a pooled list
would essentially be assuming independence and would be appropriate if
all bias elements were equal.) That is, for each run we should sample ratios
from a single historical project and permit different runs to reflect different
realizations of the historical common factor. Because the sampling is done
with replacement, we can keep the projects separate even if some historical
project has fewer activities than the new one, although large projects in the
historical data set should attract sampling more often than small ones.
Furthermore, we may also wish to discount old projects, by reducing the
frequency at which they are sampled. In what follows, however, we do not
use such discounting.
Given historical data sets of K projects, it is generally possible to “predict” the

performance of any one of them by using the other (K − 1) projects as our “his-
tory.” In the following example, we illustrate the technique (as it might be imple-
mented both under the PERT independence assumption and under the linear
association assumption) and themethodology by which it can be validated when
field data are available.

∎ Example 18.1 Suppose we have historical data for three projects, as given by
the three parts of Table 18.1, where the double index (j, k) indicates activity j of
project k.

If we were just starting Project 3, our combined history from Projects 1 and 2
would be a list of nine ratios ranging from 0.50 to 2.00. In that history, Project 1
has a higher weight because it has five activities compared with four for Project
2. To simulate one run of Project 3 under the PERT independence assumption,
we first sample three ratios from the combined history, say, 1.25, 0.57, and 2.0.
Bymultiplying these ratios by the estimates of Project 3, namely, e1,3 = 4, e2,3 = 2,
and e3,3 = 1, and summing the products, we simulate the project duration as 5 +
8/7 + 2 = 8.14. We repeat the same process multiple times to obtain our boot-
strapped sample. By sorting the results we obtain an empirical cdf, denoting the
empirical cdf of project k by Fk(t). In what follows, we assume for convenience
that Fk(t) is continuous. (It is actually a step function, but our assumption is mild
if we use a large number of repetitions.) In a similar vein, Fk(t) is based on sam-
pling from a small set, so repetitions are quite likely. We can avoid repetitions by
adding some white noise into the picture. Such white noise could represent
rounding effects, for instance. We ran 100 repetitions for Project 3 (sampling
from the data of Projects 1 and 2) and obtained a distribution ranging between
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3.5 and 13. The run demonstrated above has a p-value of F3(8.14) = 0.69
(because 68 of the 100 runs were strictly smaller than 8.14).
Next, let Ck denote the actual completion time of Project k, and suppose that

each project has a serial precedence structure. Then, from Table 18.1, we obtain
C1 = 5 + 1 + 4 + 2 + 5 = 17, C2 = 12, and C3 = 6. Given the empirical distribution
and the actual completion times, we calculate the value Fk(Ck) for each project.
In our example, F3(C3) = F3(6) = 0.29 because 29 of the 100 runs were strictly
smaller than 6. (By itself, this value is plausible. It might be considered suspi-
cious if it were very close to 0 or to 1.)
To use the same data set under the assumption that projects are subject to

linear association, we sample each scenario from either Project 1 or Project
2, with frequencies of 5/9 and 4/9, respectively. Suppose Project 2 is selected.
Then we sample three ratios, with replacement, out of the set {1.00, 0.50,
2.00, 0.67}, and use them to calculate the run’s duration as we did before. As
a result, if there is indeed a systemic difference in the mean of each historical
project, that difference will manifest as variation between runs. Thus, the vari-
ance we observe for the sum of all activity durations will be larger.
Figure 18.10 revisits the nine Armenian projects and demonstrates the differ-

ence between sampling from a pooled list (on the left) and sampling each run
from a single historical project such that the frequency at which a historical
project is resampled is proportional to its number of activities. The right side
of the figure is the same as in Figure 18.8, and we repeat it to facilitate comparing

Table 18.1

Project 1

Index 1, 1 2, 1 3, 1 4, 1 5, 1

Estimate 4 1 7 2 6

Actual 5 1 4 2 5

Ratio 1.25 1.00 0.57 1.00 0.83

Project 2

Index 1, 2 2, 2 3, 2 4, 2

Estimate 2 4 2 6

Actual 2 2 4 4

Ratio 1.00 0.50 2.00 0.67

Project 3

Index 1, 3 2, 3 3, 3

Estimate 4 2 1

Actual 1 4 1

Ratio 0.25 2.00 1.00
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the two approaches. We observe that the left side is significantly better than in
the previous figure, thus confirming that correcting for average bias – as histor-
ically recommended by the PERT team – is highly beneficial. But we also
observe that there is a tendency for projects to have either very high or very
low probabilities, which is an indication of underestimated variance. In this case,
four out of nine projects are either below 10 or above 90%, an event with a prob-
ability of less than 2% if we believe the sample represents nine independent
draws from a uniform distribution. In other words, we can reject the hypothesis
that accounting for only average bias is sufficient.

18.8 Summary

Our basic premise is that in order to bridge the gap between theory and practice,
we should consider stochastic models that take into account the need for safety
time, that is, safe scheduling. Nevertheless, even the most elegant stochastic
model is useless in practice if it is based on invalid assumptions. For instance,
models based on the independence assumption may be useful for providing
insights into the effects of stochastic activity durations but should not be used
in practice without validating the assumption. Similarly, models based on the
exponential distribution are almost invariably useful only for such insights,
andmodels based on the normal distribution are inherently restricted to low var-
iation environments. Our focus in this chapter was on validating the lognormal
distribution and showing how to use it to generate reliable samples for projects.
The key insight behind our empirical observations is that typical deviations

are not additive but multiplicative. For instance, if we planned on a duration
of 12 and the realization was 15, we should not think about it as 12 + 3 but rather
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Figure 18.10 Cross-validation of nine Armenian projects by nonparametric bootstrap, with
correction for average bias only (left) and accounting for the variance of the bias by linear
association (right).
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as 12 × 1.25. In other words, to obtain additive models, we should work with
logarithms. Once we do that, the normal distribution appears to be ubiquitous,
but it is still subject to various masking effects. Those include rounding errors,
the Parkinson effect (hidden earliness), and mixtures. In response, we must cor-
rect for rounding and for the Parkinson effect, and we must be able to partition
the data to reveal mixtures. In addition, we must be able to model stochastic
dependence. Research on all these issues is fairly recent, and we still do not have
fully adequate models for complex cases that combine several of the issues men-
tioned above. For instance, we presented linear association as a useful model for
dependence, but we assumed it applied to comparable projects or parts of pro-
jects. Suppose we have several similar projects, each of which is partitioned to
three subsets of activities. We should not expect the same common factor to
apply for the subsets of a single project and between projects. This situation calls
for a hierarchical model where one bias element applies to different projects and
a second bias element applies between subsets of each project. In summary, to
build a sample, we would start by generating a project bias, then generate subset
biases, and finally generate runs. Therefore, each run will reflect a global bias
element and subset bias elements relative to the global bias. At this stage, how-
ever, there are no published results on such hierarchical bias models. However,
one advantage of nonparametric bootstrap sampling is that it is not necessary to
be able to calculate all the necessary parameters. To predict a new project with
three subsets of activities that are similar to a set of historical projects, each with
similar subsets, each run of the simulation can use information from a single
project as applied to all subsets. Thus, if there is a bias element between subsets
of single projects, it will be reflected in each run.
Another important point is that to make predictions for future projects – that

is, to construct reliable samples for them – we rely on historical information
from similar projects. Ideally, that implies these historical projects are inher-
ently similar (for instance, construction projects), come from the same organ-
ization, and run under the samemanagement. Onemight think that if we do not
have such ideal history, the methodology will not be implementable. However,
some reflection reveals that without such history, we simply face more
randomness. For instance, if we don’t know anything about the performance
of the particular manager assigned to the new project, we should anticipate a
“between-managers” bias element. Likewise, if we don’t even have history from
our own organization, we are facing an additional “between-organizations” bias
element. When that is the case, we can use industry-wide history but expect
high variation. Again, this high variation is not because the model is inadequate
but because our historical knowledge is scant. Indeed, such projects are inher-
ently more risky.
The next chapter addresses safe scheduling for projects and builds on the

basic project scheduling concepts of Chapters 16 and 17. In addition, it assumes
we already have a reliable sample for all activities of a new project, generated as
described in this chapter.
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19

PERT 21

Analytics-Based Safe Project Scheduling

19.1 Introduction

Historically, CPM and PERT were not merely theoretical frameworks for proj-
ect scheduling and resource allocation, but they were alsomarketed successfully
as decision support systems (DSS). To this day they retain that function. Our
coverage in the previous three chapters provides the theoretical underpinnings
of project scheduling as reflected in most of those systems. In this chapter, we
progress beyond the standard functionality. We do so mainly by introducing
more advanced safe scheduling models. Furthermore, these models utilize reli-
able samples that reflect historical experience for simulation-based analysis as
discussed in Chapter 18. We refer to the framework we describe as PERT 21,
because it adapts PERT/CPM for use in the twenty-first century. The most
important difference between PERT 21 and PERT/CPM as implemented in
project management DSS today is that it is based on validated distributional
assumptions. Those assumptions are justified by empirical evidence validating
the use of lognormal processing times subject to linear association and possibly
the Parkinson effect (see Chapter 18). Serendipitously, instead of triplets as in
PERT, users need to input only estimates of mean durations. All other necessary
parameters can then be estimated from the historical performance of similar
single-point estimates. It is even possible to bypass the need to estimate para-
meters explicitly and still achieve reliable samples by using nonparametric boot-
strap resampling, which treats historical samples as empirical distributions.
Those distributions can then be used to generate new samples by drawing from
them randomly with replacement. Because the sampling is done with replace-
ment, it is possible to generate samples larger in size than the original data. As
the name implies, we do not need to estimate distributional parameters to gen-
erate a new sample. Therefore, for stochastic analysis, it is easier to use PERT
21 than conventional PERT.
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The main objective of safe scheduling is to set due dates and release dates in
anticipation of stochastic variation. In some cases, it is also possible to charac-
terize the optimal sequence as the basis for these decisions, but in complex
environments (such as flow shops, job shops, and projects), the state of the
art, at least in practice, relies on deterministic analysis for sequencing decisions
followed by stochastic analysis for timing decisions. In this chapter, we assume
that sequencing decisions have been made and enforced by soft precedence
constraints or by a policy comprising a priority list as well as soft constraints,
as discussed in Section 17.5. As a rule, activities that require complex and
lengthy preparations should be sequenced in advance, whereas activities that
can be started easily may be sequenced dynamically. We study how to set release
dates for a given due date by addressing a stochastic earliness and tardiness
(E/T) problem in which activity earliness is balanced against project tardiness.
We also discuss the implications of stochastic variation for crashing. Our anal-
ysis departs from traditional PERT assumptions in two major ways: (i) We do
not assume stochastic independence among activity durations, and (ii) we do
not assume beta distributions. In Chapters 16 and 18, we discussed how the
independence assumption may lead to implausible conclusions. We also dis-
cussed the difficulties associated with the triplet elicitation method and the beta
assumption. Those problems are avoided by the simulation-based analysis in
PERT 21.
In project scheduling, we often find that expenses are incurred during the pro-

ject’s execution but revenue is generated only when the project is complete. We
therefore have an incentive to postpone activities as much as possible without
violating the due date. When no due date is imposed, we want to postpone non-
critical activities as much as possible without increasing themakespan. As in the
single-machine case (see Section 7.6), we can enforce such a policy by imposing
release dates (rj) for activities. The imposition of release dates is important for a
project because the default is usually to begin each activity at its early start time,
thus incurring unnecessary earliness costs.
To create a framework for analysis, we begin with a deterministic environ-

ment in which a project consists of n activities and has a due date (d). Each
activity incurs an earliness cost per unit time denoted αj for activity j. This
earliness cost reflects the economic value of postponing the activity and
may also be viewed as a holding cost. The project incurs a tardiness cost
per unit time denoted β. In practice, tardiness cost reflects the delay in obtain-
ing revenue and often includes explicit compensation to customers when a due
date is missed. Ideally, we would like to balance activities’ earliness costs
against the project’s tardiness cost. The objective is thus to minimize total
E/T cost, or

Z = β C−d +
n

i= 1

αj C−rj
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where C ≥ d represents the project completion time. We assume that d is given,
as if it had been negotiated with a customer. The customer provides no external
incentive for early completion, so we proceed as if the output of the project is
provided to the customer at the due date or as soon as possible thereafter. In
other words, if the project completes prior to the due date, delivery to the cus-
tomer still occurs on the due date, fulfilling the negotiated agreement. If the
project completes later than the due date, then the tardiness cost applies. On
the other hand, earliness cost reflects the length of time an activity is held in
the system – that is, its flowtime. In the project setting, this length of time is
given by (C − rj) for activity j because the activity incurs holding cost until
the entire project is completed.
If no due date is imposed, we can set d = 0. This convention ensures that tar-

diness costs will be incurred, thus providing an incentive to achieve a short
makespan. In this case, the tardiness cost reflects the makespan incentive, which
must be traded off against the earliness costs in the project. Thus, whether we
have a given due date or not, we can use Z as an objective function.
For convenience, wemay sometimes write β as αn+1 and the project due date d

as rn+1. This substitution allows us to rewrite the objective as follows:

Z =
n+ 1

j= 1

αj C−rj

We define α = α1 + α2 + + αn, obtaining

Z = α+ β C−
n+ 1

j= 1

αjrj

In the deterministic context, weminimize this objective by starting each activ-
ity as late as possible (at its late start time) and by finishing the project exactly at
its due date.

19.2 Stochastic Balance Principles
for Activity Networks

In our E/T model for a project, earliness cost reflects the difference between an
activity’s release date and the project due date, so we can reduce earliness cost by
increasing the release date. However, in the stochastic case, postponing release
dates may increase project completion time, exposing the project to greater risk
of tardiness. Therefore, the interval between an activity’s release date and the
project due date should accommodate safety time as well as expected processing
time. Our model calls for balancing E/T costs, including the effect of safety
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times. However, we need not calculate these safety times explicitly because they
are determined implicitly by setting optimal release dates.
Mathematically, a release date has the same effect as a predecessor activity.

We can think of a release date rj as the time required by a preceding “activity”
that starts at time zero and has a duration of rj. Although we do not actually
count release dates as activities, we may associate a criticality measure with each
one. In Chapter 16, we defined the criticality of an activity as the probability that
it lies on the critical path. Accordingly, the criticality, qj, of a release date is the
probability that the longest path includes the corresponding “activity.” When
the due date is sufficiently large, the optimal criticality of each release date,
q∗j , should satisfy a critical ratio that resembles the critical ratio that appeared

in earlier chapters for similar problems. In particular, the optimal project service
level, Pr{C ≤ d}, should be set equal to β/(α + β), which we recognize as the crit-
ical ratio we saw in Chapter 7. By setting the release dates so that their critical-
ities are optimal, we essentially optimize the safety times for the project.We first
derive this result for a case with special structure. Thereafter, we generalize the
result and later discuss hierarchical implementation of the model (which also
allows modeling progress payments).

19.2.1 The Assembly Coordination Model

In the assembly coordination model (ACM), n stochastically independent inputs
must be coordinated to arrive on or before a given due date, in time for a
planned assembly operation. Initially, we assume that procurement lead times
for the inputs have continuous distributions. We also assume that the assembly
operation is instantaneous (or at least that it takes a fixed amount of time) and
that it starts on the due date or when the last input arrives, whichever is later.
Figure 19.1 depicts the ACM as an AOA network. For convenience, we use the
index 0 for the start node, so we can index the completion nodes of the release

rn+ 1 = Due date

rn

r2

r1

2

n

N0

1

Figure 19.1 The ACM network structure.
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date arcs from 1 to n. The due date is represented by the activity connecting
node 0 to node N (the project completion node), and we represent its length
as rn+1.
The objective is to minimize

Z= E
n+ 1

j= 1

αj C−rj

=E
n

j= 1

αj C−rj + β C−d

=E
n

j= 1

αj C−d + d−rj + β C−d

=
n

j=1

αj d−rj + α+ β E C−d

=
n

j=1

αj d−rj + α+ β
∞

d
1−

n

j=1

Fj y−rj dy

19 1

where C ≥ d ≥ rj for j = 1, …, n. In this expression, Fj( ) denotes the cdf of the
duration of activity j, so Fj(y − rj) represents the probability that input j will have
arrived by time y. The product is the probability that all inputs will have arrived
by time y. Therefore, this product is the cdf of the completion time. The integral
(from d) of the complement of this probability yields the expected tardiness.
The integral is multiplied by (α + β) because, during tardiness, all holding costs
and the tardiness cost apply. Holding costs that occur with certainty while the
project is in progress but before the due date are given by αj(d − rj). Taking
partial derivatives with respect to rj, we obtain

∂Z
∂rj

= −αj + α+ β
∞

d
fj y−rj

k j

Fk y−rk dy

The criticality of rj is given by the integral in this expression. First, fj( ) denotes
the probability density function (pdf ) of a random variable representing the
completion time of job j, provided it is critical. That will happen if input j arrives
at time y (after the due date) and the other inputs have already arrived. In the
expression, the product of the remaining cdf’s represents the probability that the
other inputs have already arrived. Integrating over all possible tardy completion
times yields the criticality. The optimal criticality, q∗j , is obtained when the

release dates are selected so that the partial derivative is zero. This condition
implies q∗j = αj α+ β , which we call stochastic balance. Although this analysis
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applies only to the release dates of the n activities, the same formula applies
to the criticality of the due date as well, because the (n + 1) criticalities must
sum to 1. (With continuous distributions, the probability that more than one
input is critical at the same time is zero.) Thus, the due date has a criticality
of β/(α + β). The due date criticality is also the optimal service level of the
project because the due date is critical when the project completes on time.
Assuming that d is sufficiently large, we can adjust all n physical release dates
to the required values.
If the distribution is discrete (or, equivalently, when using sample-based anal-

ysis), we modify the condition: An optimal release date is the smallest feasible
value for which qj > αj/(α + β). (See Appendix B.) If qj ≤ αj/(α + β), then it cannot
harm us (and may help us) to increase the release date to the next level. In addi-
tion, we may obtain multiple critical paths, in which case the sum of criticalities
exceeds unity.
We next remove the assumption that the due date is sufficiently large. With-

out this assumption, it may happen that even if we set release dates of zero,
the criticality of some activities will already exceed αj/(α + β). For those
activities, rj = 0 is optimal. Other activities may be free to attain their optimal
criticality. As a result, the project service level cannot reach its optimum. In
effect, criticality is shifted from the due date to constrained resources, thus
reducing the project service level. Therefore, the criticality of a constrained
resource must be higher than αj/(α + β). To prove this, suppose that q∗j < αj/

(α + β) occurred at r∗j = 0. Then we could increase the release date and by doing

so increase the criticality and thus increase the partial derivative ∂Z/∂rj toward
zero – a contradiction. Thus, if rj is set to zero due to a constraint, then we must
have qj > αj/(α + β). For constrained release dates, the true economic impact of
postponing activity j is not αj per time unit but some higher rate, v∗j ,
such that q∗j = v∗j α+ β .

Although the optimality conditions are analytical, it is seldom possible to
compute optimal release dates from formulas, so we must resort to a numerical
search. To facilitate this search, it is possible to calculate a bound on the optimal
release dates. For example, we might set the release dates such that the prob-
ability an input arrives after the due date is at most αj/(α + β). Because an input
that arrives on or before the due date cannot cause tardiness, these release dates
(denoted rLj ) constitute lower bounds on the optimal rj.

Suppose that the due date is a decision variable and that our secondary objec-
tive is to minimize it. To minimize the objective function – our primary objec-
tive – we must drive n partial derivatives to zero, but we have n + 1 decision
variables. Because there are too many variables, we can set one of them arbitrar-
ily. However, our secondary objective dictates setting the earliest release date to
zero. We can do so by starting with a large due date and then subtracting the
minimal rj from all n + 1 release dates.
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Although the ACM can be solved numerically by minimizing Eq. (19.1)
directly or by driving the partial derivatives to zero, that approach requires eval-
uating integrals and is computationally demanding. Sample-based analysis is
more effective and can also be applied in more complex models.

∎ Example 19.1 Consider an ACM with 10 input activities and a due date of
d = 94. The duration of each activity follows a lognormal distribution with mean
(μ) and coefficient of variation (cv) given in the table. Also shown in the table are
the earliness costs (αj), which sum to α = 75. The tardiness cost is β = 225.

Input 1 2 3 4 5 6 7 8 9 10

μ 63 49 53 77 69 43 57 87 40 45

cv 0.20 0.35 0.30 0.10 0.15 0.45 0.25 0.05 0.50 0.40

αj 3 4 5 6 7 8 9 10 11 12

We tackle this problemwith a sample-based approach using a sample of 10 sce-
narios to demonstrate the calculations. (Such a small sample is not adequate to
analyze this problem, andwe comment later on the results of using amore appro-
priate sample size.) The 10 scenarios, alongwith some additional calculations, are
shown in Table 19.1. All outcomes have been rounded to the first decimal place.
Below the table of scenarios, the first calculation is the maximum duration in

the ten scenarios for each activity. The next row displays the given values of αj.
The next row shows the calculated values of the critical ratio, αj/(α + β). Ideally,
we would like each activity to be critical with this probability, but because we
have only 10 scenarios, the probability that an activity is critical must be either
zero or somemultiple of 0.1. Generalizing the insights of Chapter 7, the optimal
criticality of each release date is obtained by sαj/(α + β) /s, where s is the num-
ber of scenarios in the stored sample; that is, we use the smallest possible mul-
tiple of 1/s that is not smaller than the critical ratio. Note that 1 ≤ sαj/(α + β) ≤
s, so there must be a duration in the sample that provides this optimal criticality
precisely. In our example, all αj/(α + β) values are below 0.1, so our target crit-
icality is 0.1 for each of them.
The row of lower bounds shows the values of rLj . This value is the difference

between the due date (94) and the maximum shown three rows above, or zero if
that difference is negative. This value represents the latest time the activity
could be released without violating the due date in any of the scenarios, or zero
if necessary.
The formula is

rLj = max 0, d−maxs psj

where psj denotes the duration of activity j in scenario s.
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Table 19.1

Input

Scenario 1 2 3 4 5 6 7 8 9 10

1 62.9 51.5 44.2 66.2 54.5 35.7 88.6 85.3 23.2 46.9 Due date

2 41.6 46.8 61.5 80.5 75.3 35.1 81.1 80.2 21.8 31.7 94

3 44.9 59.0 39.1 81.8 72.0 32.1 81.1 86.0 71.6 68.7 Alpha

4 48.6 43.5 45.0 69.8 62.8 68.0 50.8 81.8 39.3 26.5 75

5 73.6 36.1 31.4 82.7 62.4 128.9 39.8 81.2 31.5 49.1 Beta

6 50.4 41.9 33.5 80.6 86.4 35.4 69.8 86.5 32.0 56.9 225

7 50.9 68.8 57.6 84.1 80.4 31.3 63.3 93.2 67.3 70.1 Total

8 56.6 28.1 74.5 76.5 82.7 107.2 63.6 87.6 44.9 17.3 300

9 51.0 88.8 77.4 81.0 84.4 32.2 58.2 86.3 23.5 25.2

10 53.7 36.0 80.2 80.3 63.9 46.2 71.3 84.1 34.8 56.7

Max 73.6 88.8 80.2 84.1 86.4 128.9 88.6 93.2 71.6 70.1

Alpha(j) 3 4 5 6 7 8 9 10 11 12

Critical ratio 0.010 0.013 0.017 0.020 0.023 0.027 0.030 0.033 0.037 0.040

Lower bound 20.4 5.2 13.8 9.9 7.6 0 5.4 0.8 22.4 23.9



The first step is to set the release dates equal to these lower bounds and deter-
mine the criticality of each activity. The calculations are summarized in
Table 19.2. In the body of the table, we calculate the completion time of each
activity in each scenario, given the release dates shown in the row labeled
Release. For each scenario, the project length is calculated in the column labeled
Length, and the time for the assembly is shown on the right. Activity j is critical
if its completion time matches the time at which assembly takes place. The fre-
quency with which this event occurs for each activity is shown in the row labeled
“Criticality.” For example, if we scan the column for activity 10, we find only one
scenario (the seventh) out of ten in which activity 10 completes at the assembly
time. Thus, its criticality is 0.1. Activity 6, which postpones the assembly beyond
the due date in two scenarios, has a criticality of 0.2. Similarly, activity 1 has a
criticality of 0. Finally, the project has criticality of 0.8 because the due date is
achieved in 8 of the 10 scenarios.
Comparing Table 19.2 with the critical ratios in Table 19.1, we find that the

criticality is at least 0.1 for all activities except the first, so in those cases, the
lower bound release date is optimal. When we explore larger release dates
for activity 1, we find that at r1 = 31.1, its criticality jumps to 0.1. At this stage,
all inputs except input 6 have criticalities of 0.1, and input 6 has a criticality of
0.2. The optimality conditions are thus satisfied, so this solution is optimal for
the sample. Based on the data in this sample, the estimated value of the optimal
objective function is 7608. The due date has a criticality of 0.8, indicating that
the optimal solution achieves a service level of 0.8. This value differs from the
critical ratio target of 225/(75 + 225) = 0.75 largely because the small sample size
provides a discrete approximation to a problem involving continuous
distributions.
Using a sample of 10 discrete scenarios to determine 10 release dates will

obviously not yield precise results in a problem involving continuous distribu-
tions. As in other stochastic problems where we have used a sample-based
approach, we need much larger sample sizes. To illustrate, we started with a
sample containing 10 000 scenarios to provide us with precise estimates of
“true” values. For this large sample, the optimal value of the objective function
was 7453, and the optimal service level, 0.7312. The service level is less than the
desired 0.75 due to constrained release dates. We then calculated that the opti-
mal release dates obtained from the sample of size 10 actually yield an objective
of 8798, or 18% higher than the more precise estimate. When we tested the per-
formance of samples of 100 and 1000, we obtained much better results: The
objective function values were 7519 (0.9% above the optimum) and 7471
(0.2%). As these results demonstrate, a reasonable sample size tends to yield
a small optimality gap.
Our numerical search above exploited the structure of the problem, adjusting

the release dates one by one until the correct criticality was achieved for each of
them. One advantage of rounding the sample realizations (as we did to one
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Table 19.2

Input

1 2 3 4 5 6 7 8 9 10

Release 20.4 5.2 13.8 9.9 7.6 0.0 5.4 0.8 22.4 23.9 Length Assembly

1 83.3 56.7 58.0 76.1 62.1 35.7 94.0 86.1 45.6 70.8 94.0 94.0

2 62.0 52.0 75.3 90.4 82.9 35.1 86.5 81.0 44.2 55.6 90.4 94.0

3 65.3 64.2 52.9 91.7 79.6 32.1 86.5 86.8 94.0 92.6 94.0 94.0

4 69.0 48.7 58.8 79.7 70.4 68.0 56.2 82.6 61.7 50.4 82.6 94.0

5 94.0 41.3 45.2 92.6 70.0 128.9 45.2 82.0 53.9 73.0 128.9 128.9

6 70.8 47.1 47.3 90.5 94.0 35.4 75.2 87.3 54.4 80.8 94.0 94.0

7 71.3 74.0 71.4 94.0 88.0 31.3 68.7 94.0 89.7 94.0 94.0 94.0

8 77.0 33.3 88.3 86.4 90.3 107.2 69.0 88.4 67.3 41.2 107.2 107.2

9 71.4 94.0 91.2 90.9 92.0 32.2 63.6 87.1 45.9 49.1 94.0 94.0

10 74.1 41.2 94.0 90.2 71.5 46.2 76.7 84.9 57.2 80.6 94.0 94.0

Criticality 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1



decimal place) is that the numerical search is greatly facilitated by the coarse
grid. For instance, consider the search for r1. In this case rL1 = 20.4 yields a crit-
icality that is too low, and so does rL1 + 0.1 = 20.5. Therefore, we can repeat our
trials for the values 20.7, 21.1, 21.9, 23.5, 26.7, 33.1, doubling the step size every
time. At r1 = 33.1, the criticality exceeds the target value of 0.1. We now know
that 26.7 is too low and 33.1 is probably too high (although it could be precisely
right). We now try 29.9 (in the middle) and continue the search by halving the
remaining search interval each time. If rj−rLj =K , then it will take at most O(log

K) trials to identify the optimal value (given the other release dates). If we search
this way, starting with the lower bound solutions and increasing them one by
one, then each iteration takes us closer to the optimal solution, and therefore
the optimal solution can be found in polynomial time. In this particular exam-
ple, when we used a sample of 10 000, we had to adjust two inputs twice: The
rest required at most one adjustment, and three constrained inputs required no
adjustment at all. This search approach can be generalized for any PERT
network.

19.2.2 Balancing a General Project Network

In a general project network, we can show that the same stochastic balance
result remains intact. Furthermore, we do not have to assume stochastic inde-
pendence. Although Eq. (19.1) is no longer valid, our objective is still to mini-
mize the expected total weighted flowtime, including delay. As in Chapter 17,
we denote the set of direct physical predecessor activities of j by P(j). If any of the
incoming activities of j is a dummy, then for the purpose of defining P(j), we
replace it by its physical predecessors. Release dates are excluded. With this
notation in place, we obtain the following project stochastic balance
(PSB) model:

MinimizeZ =E
n+1

j= 1

αj C−rj = α+ β E C −
n+ 1

j= 1

αjrj 19 2

subject to

Cj ≥ rj + pj; j= 1,…,n 19 3

Cj ≥Ck + pj; k P j , j= 1,…,n 19 4

C ≥ d = rn+1 19 5

C ≥Ck ; k P N 19 6

The decision variables are the release dates, excluding the due date. (The due
date can be set to the minimal value as a secondary objective later, as in the
ACM.) Equation (19.3) states that the completion time of an activity cannot
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be lower than the release date plus the processing time. Equation (19.4) states
that completion times are also constrained by the latest completion time of any
predecessor activity. The condition in Eq. (19.5) implies that the project is not
considered finished before d, even if the physical activities are completed earlier.
Equation (19.6) is analogous to Eq. (19.4) but applies to the project completion
and not to a physical activity: The project is not complete until all predecessor
activities of the terminal node, N, are complete.
We use the notation rj = ESj to denote the early start time for activity j. By

setting rj = ESj, we ensure that the activity will never be delayed by the
release date. For processing times with a lower bound, define pmin

j as the

minimal possible processing time. Specifically, if we use a sample-based
approach, then pmin

j corresponds to the lowest realization of activity j in the

sample. If activity j has no predecessors, then ESj = 0; otherwise, ESj =max{rk +
pmin
k |k P(j)}. In the latter case, ESj is the largest possible release date that

cannot delay activity j. We say that such a release date is inactive, whereas a
release date that has a positive probability of delaying the activity is active.
Any earlier release would not delay activity j either, but our objective function
is improved if we postpone release dates as much as possible without increasing
tardiness. If P(j) is not empty, then setting rj = ESj typically leads to qj = 0. If qj > 0
in this situation, another critical path exists, so reducing rj cannot reduce the
makespan. If P(j) is empty, then even if we set rj = ESj, it may dictate the
makespan (and qj > 0). Thus, although the PSB problem does not include
explicit constraints of the form rj ≥ ESj, the optimal solution will still comply
with these constraints.
Unlike the ACM case, we cannot compute partial derivatives in the PSB prob-

lem, so we cannot compute criticalities. Partial derivatives still exist and must
vanish when the release dates are optimal, except when they are constrained by
the release date. For continuous processing time distributions, the optimal solu-
tion is characterized by the following theorem, which generalizes the results we
obtained for the ACM.

∎ Theorem 19.1 The following are necessary and sufficient optimality
conditions for the PSB problem with probability 1:

1) q∗j =
v∗j

α+ β ≥
αj

α+ β ; j= 1,…,n;

2) if v∗j > αj, then r
∗
j =ESj;

3) q∗n+ 1 = 1−
n
j=1

v∗j
α+ β ≤

αn+ 1
α+ β ;

where v∗j reflects the true marginal economic implication of postponing rj per

time unit.
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The PSB problem is a convex model, so the global minimum is achieved if
local optimality conditions are satisfied. The theorem lists such local optimality
conditions.1

To illustrate, we refer to Figure 19.2, which is essentially an interdictive graph
with release dates depicted as activities starting at node 1 and ending at nodes 2,
3, 5, 7, 8, and 9, where (1, 9) is the due date. (The figure uses rA, rB instead of r1,
r2, etc.) If we set rE = ESE =max{rB + pmin

B , max{rC, rA + pmin
A } + pmin

C }, then rE
cannot delay the project because activity E cannot be started earlier due to
the precedence constraints. Similarly, there is no incentive to set rC < rA
+ pmin

A . In contrast, if we set rA or rB to their early start times (zero), then the
longest path can still start at one of them. When all release dates (including
the due date) are equal to the corresponding early start times, then one of these
twomust be critical (qA + qB = 1). Consequently, it is possible to postpone rC, rD,
and rE just enough to achieve any desired criticality for each of them, but release
dates rA and rB may yield higher than desired criticalities, in which case their
optimal value is their early start time.

1 A formal proof can be found in our Research Notes for Chapter 19.
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Figure 19.2 The interdictive graph with release dates.
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Finally, the due date can be effectively removed by setting rn+1 = ESn+1 or
even rn+1 = 0. If we set rn+1 < ESn+1, then we incur a tardiness penalty of
β(ESn+1 − rn+1) before we even start. This initial penalty is a constant, how-
ever, and does not change the structure of the optimal solution except in one
way: It implies that the release date of at least one activity that has no pre-
decessors must be zero, and the project service level is zero, as well. In effect,
criticality must be transferred from the due date to a set of activities with
rj = ESj.

19.2.3 Additional Examples

In this section, we discuss some additional examples to demonstrate the gener-
ality of our approach.

∎ Example 19.2 Consider a project valued at $10 000 000, and suppose the
annual holding cost is 18.25%. Assume we manage a hundred activities with
the same holding cost and that the policy is to meet the due date with a service
level of 90%. Assume further that the resulting project buffer is about six
months.

The interest rate is about $5000 per day, and since there are 100 activities, it
follows that αj = $50 per day for 1 ≤ j ≤ 100. To achieve a service level of 90%, we
require β = $45 000 per day, so (α + β) = $50 000. Stochastic balance will be
achieved with criticalities of 0.1% for each release date and 90% for the due date.
As this requires a project buffer of half a year, the approximate cost of the policy
is $91 250. (Calculating the exact cost of such policies is best done by simulation,
comparing the option of β = 0, in which no tardiness penalty exists and we focus
only on holding cost.) The customer pays for this service level both as part of the
price and by waiting, unless early deliveries are allowed.
To actually calculate the optimal release dates in such examples, we con-

tinue to rely on sample-based analysis. Formally, when a sample is available,
the optimal release dates can be found by linear programming (LP) (which
can also solve the ACM with a given sample). The model is essentially an
elaboration of the generic PSB problem, but instead of using the expected
value in the objective function, we use the average cost computed for the
scenarios in the sample. For each scenario, we use its own processing time
realizations, but the same release date decisions apply to all s scenarios. The
project completion time of scenario i is denoted Ci. For other variables, we
use a double index (i, j) to denote the jth activity of the ith scenario. We
obtain

MinimizeZ =
α+ β

s

s

i= 1

Ci−
n+ 1

j=1

αjrj 19 7
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subject to

Cij ≥ rj + pij; i= 1,…,s, j= 1,…,n

Cij ≥Cik + pij; k P j , i= 1,…,s, j= 1,…,n

Ci ≥d = rn+ 1 i= 1,…,s

Ci ≥Cik ; k P N , i= 1,…,s

We can solve this model as a generic linear program. In practice, however, it is
more efficient to find the optimal solution by a numerical search, as in Exam-
ple 19.1. For a sample with an appropriate number of scenarios, the LP formu-
lation is unwieldy even when the project is small. It is important mainly because
it implies that the problem is convex, so once a local optimum is found by such a
search, we know that it is globally optimal. The next example demonstrates that
analysis of this type can also help schedule repetitive operations. Again, for the
purpose of illustration, we utilize a sample that is not sufficiently large to be
reliable.

∎ Example 19.3 Consider a bus route consisting of five segments. The travel
time for each segment is random, and 10 recent observations have been com-
piled, as shown below:

Segment j 1 2 3 4 5

E(pj) 13.51 24.27 8.15 21.53 10.27

σj 3.89 7.08 1.96 7.50 2.54

Scenario Segment j 1 2 3 4 5

1 pj 16.60 20.10 10.66 21.52 7.45

2 pj 11.92 19.49 9.05 15.99 10.96

3 pj 14.82 33.39 7.59 19.51 14.81

4 pj 11.32 23.12 12.18 17.36 9.41

5 pj 21.15 20.77 6.62 37.72 12.60

6 pj 10.58 24.15 7.98 23.23 7.49

7 pj 17.57 19.09 7.96 30.79 9.14

8 pj 9.72 40.49 6.61 12.90 13.21

9 pj 12.17 22.37 6.35 19.80 9.57

10 pj 9.28 19.77 6.47 16.48 8.05

Travel time to a particular station does not depend on the departure times at
the previous station. The number of passengers boarding the bus at each station
is also random, and observations have produced the following expected values:
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Segment j 1 2 3 4 5

Passengers 12.2 9.4 5.5 8.2 4.1

All passengers go to the same final destination at the end of segment 5. The
due date at the final destination is 8:45 a.m.
Having decided that they wish to take this bus, the passengers consult the

bus schedule, which publishes departure times from each station, and they
arrange to arrive at their station before the corresponding departure time.
The objective function includes the time value of these passengers from the
scheduled departure time until the scheduled arrival at the final station, and
any tardiness of the bus at the destination is also penalized for disrupting
its next assignment. The bus costs $3 per minute, and each passenger-minute
is evaluated at $0.20. The tardiness cost at the destination is $1 per minute,
and the penalty per passenger is $0.30. Thus, the total cost of the bus during
such tardiness is $4 per minute, and the cost of each passenger is assessed at
$0.50 per minute.

Reasonable time units for such a schedule are minutes, but unlike the
approach of Example 19.1, we postpone rounding until the last step. Mathe-
matically, this example is equivalent to a serial project with release dates, as
depicted in Figure 19.3. For convenience, we do not index the release date
nodes, but instead we index the bus arrival events by station numbers. We
adopt the convention that station j precedes segment j, and the destination
is denoted station 6. The release date also controls the start time of segment
j. That is, we model each segment (between stations) as an activity and the
scheduled departure time as a release date. Conceptually, the release date deci-
sions require a balance of two types of waiting costs. One waiting cost applies
to the bus and the passengers on it. If the bus arrives at a station too early, then
the bus and those passengers are delayed while the bus waits at the station. We

2

3 4

5

61

r1

r2

r3
r4

r5

r6

Figure 19.3 The bus scheduling problem as a project.
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also assume that if the bus arrives at the final destination too early, a similar
earliness cost applies. The other waiting cost applies to the boarding passen-
gers: If the bus arrives at a station too late to meet its release date, then those
passengers are delayed while they wait for the bus to arrive. In effect, if we
knew in advance that the bus would be delayed, we could set a later release
date and reduce the cost contribution of these passengers. We can capture
all these costs by measuring the time value of the nominal trip durations of
the bus and of the passengers from all stations plus the expected tardiness pen-
alty. That is, once we compute the correct waiting costs, we can model this as a
PSB problem. Our first task is to calculate the correct parameters. Then,
because we are using a sample-based approach, we have the option of solving
the problem as a linear program (which we do not recommend in practice) or
using a generic search instead.
Let α0 denote the unit time cost for the bus and αp denote the unit time cost

for each passenger, both during scheduled operation. When the bus is tardy, we
add to these two costs the tardiness penalties of β0 and βp, respectively. Denote
the expected number of passengers who board the bus at station j by wj. To cast
the problem as a PSB model, let αj denote the unit time cost of those passengers
who board the bus at station j. At the first station, α1 also accounts for the value
of the bus (because the bus “joins” at that station). Thus, α1 = α0 + αpw1 = 3 +
0.2 × 12.2 = 5.44, α2 = αpw2 = 0.2 × 9.4 = 1.88, and so on. Similarly, αn+1 = β = β0 +
β

p

n
k = 1wk = 1 + 0.3 × 39.4 = 12.82. These rates are given in the second row of

Table 19.3. We can also calculate (α + β) = 23.7. The next row in the table is the
ratio between the respective rate and 23.7 – this calculation yields the critical
ratios. Given the cost rates and the sample, we can construct and solve the
PSB problem. The optimal release dates are given in the next row. However,
we still have to round the schedule to integer minutes, and it is not straightfor-
ward to characterize the optimal rounding: Theoretically, it transforms the lin-
ear program into an integer program, which is NP-hard. In this case, rounding
up seems to work well. Such a rounded solution is given in the next to last row.
After adjusting the release dates for a scheduled arrival at 8:45 a.m., we obtain

Table 19.3

Segment 1 2 3 4 5 d

αj 5.44 1.88 1.1 1.64 0.82 12.82

q∗j (%) 23 8 5 7 3 54 Objective

r∗j 0.00 9.72 36.70 44.66 65.37 76.33 766.278

Rounded 0 10 37 45 66 77 766.754

Adjusted 7:28 7:38 8:05 8:13 8:34 8:45
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the schedule in the last row. For instance, the calculation shows that the depar-
ture should precede the due date by 76.33 minutes, which we round up to 77,
yielding the listed departure of 7:28 a.m.
Figure 19.4 shows the associated stochastic Gantt chart (without rounding).

The vertical segments in the figure correspond to the delay of the bus in a sta-
tion due to a release date. A positive probability exists that the bus won’t even
reach the fifth station by the due date. (In general, specifying a very high delay
penalty would reduce the incidence of such events, but the nominal trip lengths
will be longer.)
Table 19.4 shows the solution in more detail (without rounding or adjusting

the due date to 8:45), based on the sample. It lists the departure times in the
example. The last row gives the release dates. The shaded elements in the table
denote critical release dates. If we were to increase any release date, the project
would take longer in every scenario for which the release date is shaded. By
using a sample-based approach to optimize release dates, we essentially repre-
sent the processing time distribution by a discrete sample. As was the case in
Example 19.1, this approach leads to more than one critical release date in some

403020100
0

1

50 60 70 80 90 100 110

Figure 19.4 A stochastic Gantt chart for Example 19.3.

Table 19.4

Scenario 1 2 3 4 5 d

1 0.00 16.60 36.70 47.36 68.88 76.33

2 0.00 11.92 36.70 45.75 65.37 76.33

3 0.00 14.82 48.21 55.80 75.31 90.12

4 0.00 11.32 36.70 48.88 66.24 75.65

5 0.00 21.15 41.92 48.54 86.26 98.86

6 0.00 10.58 36.70 44.68 67.91 75.40

7 0.00 17.57 36.70 44.66 75.45 84.59

8 0.00 9.72 50.21 56.82 69.72 82.93

9 0.00 12.17 36.70 44.66 65.37 74.94

10 0.00 9.72 36.70 44.66 65.37 73.42

Release 0.00 9.72 36.70 44.66 65.37 76.33
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scenarios. For instance, the first scenario contains three shaded release dates: r1,
r3, and r6 (= d). If we trace that scenario, we see that the bus arrives at station 2
almost seven minutes after r2 (so r2 cannot be critical), but it arrives at station 3
precisely at r3 (hence, no waiting occurs). The bus then reaches stations 4 and 5
after their release dates but arrives at the destination precisely on time. Thus,
both r1 and r3 satisfy the criterion of criticality (increasing either of them would
make the trip longer), and the due date is critical, too. The table contains s + n =
10 + 5 = 15 shaded elements. In general, there may be up to s + n such elements
in the optimal solution. Therefore, if n is not negligible relative to s, the observed
criticalities may seem out of order, as we also saw in Example 19.1. Denote the
frequency at which rj is critical (shaded) by qj, and the question is how to verify
that qj is optimal. If we assume temporarily that rj > ESj, then the criticality is
optimal under two conditions: (i) qj > αj/(α + β), and (ii) decreasing rj infinites-
imally reduces qj sufficiently to obtain qj ≤ αj/(α + β). If rj = ESj, the first condi-
tion is sufficient. In our instance, the first condition is satisfied because q1 =
0.4 > α1/(α + β) = 0.23. If we slightly decrease r1 (which, in this case, is allowed
to be negative), it remains critical in two scenarios. (Specifically, these are sce-
narios 3 and 5, under which only r1 is critical.) Thus, we obtain q1 = 2/10 ≤ 0.23,
so the second condition is also satisfied. (This test verifies local optimality,
which is sufficient because our model is convex. We caution, however, that
the test becomes invalid once we round to integer release dates. The integer
model is not convex and therefore local optimality is not sufficient. One prac-
tical way to avoid this problem is to round the data in the sample to the desired
units, in which case the final result will not require rounding and the optimality
conditions are sufficient. That is the approach taken in Example 19.1.)
When travel times are stochastically dependent, a large sample is the best

practical approach. One way to model dependence is by assuming linear asso-
ciation. Although we have been assuming the use of field data, it is often more
convenient to use such data to estimate the parameters required to generate a
simulated sample, as we now discuss inmore detail. As reported in this example,
travel times are approximately lognormal with s = 0.25, but also subject to linear
association. Using rounded figures that match the given data, let sB = 0.15 and
sX = 0.2, which leads to s = 0.25 as stated above (because 0.152 + 0.22 = 0.252).
Also, assume mean travel times are given by 13, 25, 8, 22, and 10. Accordingly,
for segment j, we obtain mj = ln(μj) − 0.252/2. Segment 1, for instance, yields
ln(13) − 0.031 25 = 2.5337, and the full list is {2.5337, 3.1876, 2.0482, 3.0598,
2.2713}. Each simulated scenario requires sampling six independent standard
normal variables. Five of them are multiplied by 0.2 and one by 0.15 (to repre-
sent the common element). Next, we add the common element result to each of
the five values. Finally, simulated travel times for the scenario are obtained by
taking the exponents of the five results plus their respectivemj values, as calcu-
lated above. This way, each scenario has the same bias, but different scenarios
have different biases.
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∎ Example 19.4 Consider a project with the network of Figure 19.2, and let the
earliness and tardiness costs be given byαA = 10,αB = 20, αC = 30,αD = 15, αE = 5,
andβ = 120.The due date is 60.Activity times are based on a sample of 1000 repe-
titions with expected durations of μA = 15, μB = 36, μC = 18, μD = 25, μE = 12. The
samplewas generated by using lognormal and positively correlated distributions.

We solved this example with a spreadsheet model. Figure 19.5 depicts the
optimal solution as a stochastic Gantt chart, with criticalities qA = 6%, qB =
14.9%, qC = 15%, qD = 7.5%, qE = 2.5%. The release dates of activities C, D,
and E yield the required optimal criticalities dictated by αj/(α + β). For instance,
qC = αC/(α + β) = 30/200 = 15%. However, both A and B have release dates of
zero, and their criticalities exceed their respective αj/(α + β) values. For instance,
qB = 14.9% > αB/(α + β) = 10%. When combined, the criticalities of these two
activities exceed their optimal unconstrained targets by (6 − 5)% + (14.9 −
10)% = 5.9%. Accordingly, the project service level, 54.1%, is 5.9% lower than
its unconstrained target of 60%. Thus, some criticality is shifted from the due
date to the constrained release dates. Because we use a larger sample and con-
tinuous processing times, our criticalities match Theorem 19.1 precisely.

10 20 30 40 50 60 70 80 90 100 110 120 130 1400

10 20 30 40 50 60 70 80 90 100 110 120 130 1400

10 20 30 40 50 60 70 80 90 100 110 120 130 1400
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Figure 19.5 The optimal solution of Example 19.4 as a stochastic Gantt chart.
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19.3 Hierarchical Balancing and Progress Payments

One interesting historical difference between the development of CPM and
that of PERT is their fundamental approach to managing large projects. PERT
set out to provide the full detail in one chart and was recommended for mod-
eling thousands of activities. Although the need for hierarchical management
was addressed briefly, the major thrust involved managing the whole project
using one network. CPM, by contrast, explicitly assumed that each project
activity could be a subproject. In addition, implicit staging activities might
not be represented on the project network at all. For instance, in Example 19.3,
the bus should be prepared for its scheduled departure at 7:28. The prepara-
tion activity must start earlier than that and may be considered a subproject.
However, the project network does not include preparation, so it is an implicit
subproject. Our topic in this section is scheduling hierarchical projects, regard-
less of whether they involve implicit or explicit subprojects. We take a hierar-
chical approach, first treating subprojects as independent projects and then
showing how to coordinate them with all other subprojects and activities.
With this coordination, we effectively schedule the full project at a higher hier-
archical level. It turns out that both levels can be balanced by our single-
subproject basic model.
When subprojects are explicit, projects typically involve milestones, which

mark the completion of important subprojects. Furthermore, progress pay-
ments may be due when a milestone is reached and the subproject is deemed
satisfactory by the customer. To avoid the risk of having to make a payment ear-
lier than expected and to schedule their own milestone inspection activities,
customers may prefer explicit milestone due dates, and we will assume that
is the case. For that reason, milestones may also be regarded as release dates
for the remainder of the project. Our previous model, however, allows only
one payment at project completion. The solution is obtained by hierarchical
scheduling, essentially treating each subproject with amilestone as a full project.
Then those subprojects are treated as single activities in the full project. For
instance, if we interpret Figure 19.5 as a stochastic Gantt chart of such a sub-
project, we would use the project distribution (as depicted in the bottom of the
figure) to represent this subproject as a single activity at the next higher level.
The due date depicted in the figure then serves as the anchor for the adjust-
ments the high-level balancing requires. (For this purpose, we ignore the fact
that two activities in the depicted subproject are constrained. In principle, this
is an example where additional iterative adjustments may be required because
high-level balancing can change the constraints used at the local level.) Even if
customers are not entitled to a penalty payment when amilestone is missed, just
delaying the receipt of progress payments constitutes a tardiness penalty for
such milestones. Therefore, subprojects should have optimal service levels that
guide the balancing at the low level.
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From here on, we treat project completion as a special milestone, called the
completion milestone. All other milestones can be described as proper. We say
that an activity is a proper predecessor of a milestone if there is a directed path
from it to themilestonenotpassing through anothermilestone.Tobegin, assume
no activity is a proper predecessor ofmore than onemilestone. (That condition is
guaranteed if milestones signal the end of proper subprojects whose activity sets
are independent of each other.) With this assumption, the milestones effectively
partition all activities to mutually exclusive and exhaustive subsets, and each
milestone is associatedwith one subset. For a while, we also ignore the possibility
that milestones can be predecessors of other milestones. Let m ≥ 2 denote the
number of subsets, so at least one propermilestone exists in addition to the com-
pletionmilestone. At the lower level, eachmilestone is treated as the due date of a
single project (that is, each subproject is treated as a single project), balanced as
per our basic model. It is then straightforward to find the completion time dis-
tribution of the subproject relative to its due date. For the higher-level balancing,
define the holding cost of propermilestone i as the sumof all holding costs of the
activities associated with it. The top-level balancing model is obtained by repla-
cing all activities associated with them − 1 proper milestones by their milestone
due dates; that is, our task is reduced to finding release dates form − 1milestones
– each of which now has a known distribution – and for any activity that is a
proper predecessor of the completion milestone (and thus, by current assump-
tion, not the proper predecessor of any other milestone). In other words, for the
purpose of scheduling the upper level, we can ignore the partial payments asso-
ciated with milestones; the delay penalty associated with partial payments only
matters for the adjustment of local criticalities at the lower level. Finally, although
we have illustrated how to handle exactly two hierarchical levels, the samemech-
anism allows as many levels as we may wish.
Now consider that a milestone can be a proper predecessor of another mile-

stone. In such a case, it can be treated as a single activity among those that feed
the subsequent milestone. As a result, the two milestones are coordinated and
act as a single milestone for the purpose of high-level balancing; that is, the sub-
sequent milestone represents both the set of its proper preceding activities and
the proper preceding milestone (which represents its own set of proper preced-
ing activities and, possibly, earlier milestones). The weight of the downstream
milestone represents all the milestones incorporated in it (directly or indirectly)
and all the proper predecessor activities associated with it directly. It is even
conceivable that the network structure creates no need for a separate high-level
balancing: Instead, in such a case, the high-level balancing is achieved by assem-
bling milestones into subsequent milestones, locking their respective release
dates as per the milestone balancing step, and moving on to the next milestone.
Amore complex issue arises when we remove the assumption that each activ-

ity can be the proper predecessor of only one milestone. It is then not clear in
advance how to allocate such activities tomilestones in a mutually exclusive and
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exhaustive manner. One possible resolution is allocating each such activity to
the earliest likely milestone that it precedes. A better but more elaborate reso-
lution is seeking a fractional weight allocation that matches both the low-level
criticalities and the high-level ones.
The key to understanding why this hierarchical approach works is that shifting

the milestone as a whole (such that the release dates of all the feeding activities
shift by the sameamount) is sufficient to adjust themilestone’s top-level criticality
to any desired feasible level, whereas shifting the feeding activities relative to each
other is sufficient to adjust local criticalities. The approachworks because the two
adjustments are independent of each other. This may be confusing because the
criticalities in question are not independent. For instance, an activity that is early
for a milestone cannot be critical at the project level because there is a delay
between its completion and the milestone due date. But that dependence does
not change the fact that the two adjustments are independent of each other.
We now turn our attention to implicit subprojects, which may not terminate

in a milestone with an explicit due date. In such cases, it is often necessary to
book unique resources that may be necessary for performing an activity but are
released once the activity is complete. The next example illustrates why the
booking of such resources requires special attention.

∎ Example 19.5 Consider the construction of a floor in a new low-rise build-
ing. This subproject requires, among other things, staging reinforced concrete
slabs and using a mobile crane and a truck. Furthermore, it cannot start before
the retaining walls of the lower floor are complete. Let the desired criticality of
the retaining wall activity be 10%, and assume that the booking lead time is too
long to allowwaiting for the completion of the wall before booking the truck and
the crane. Because there is no space for storing the slabs, they are lifted directly
from the truck by the crane. For simplicity, assume the truck and the slabs are
inducted together, as one combination unit (called “the truck”). Suppose the
rental cost for the truck is $300 per hour and for the crane, $500 per hour. Once
complete, the floor is assessed a holding cost of α = $10 per hour. Suppose fur-
ther that the holding cost of the full project is $1900 per hour. Our task is to
determine the optimal criticalities of the truck and the crane and how to use
the release date of the slab-laying operation to schedule their booking.

In this example, expensive equipment performs an activity whose holding cost
is a fraction of the value of the equipment. However, the equipment is released
at the end of the activity, whereas the holding cost is charged until the project is
complete. If the equipment is staged before it can start, its rental cost is wasted.
For this reason, the activity does not require a release date. We assume, how-
ever, that the retaining wall activity does have a release date, and we will use that
to anchor the booking time of the resources. It would make no sense to idle the
expensive equipment just to satisfy an arbitrary constraint. Furthermore, the
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low holding cost of the floor says nothing about how sensitive the project is to
delays in this activity. The activity itself can have a much higher criticality than
that of its release date because it may be on the critical path even if the critical
path starts at an earlier release date. The most important information about the
project comes from the criticality of the wall, fromwhich we can deduce that the
expected time value of the activity is $1900 × 10% = $190 per hour. Adding the
floor holding cost, we obtain $200 per hour. We now schedule the truck and the
crane such that the probability the truck will be last is 300/(200 + 300 + 500) =
30%, the crane’s criticality should be 50%, and that of the retaining wall, 20%.
These are, in effect, optimal local criticalities.
Now consider how to actually achieve the desired balance. That is done in a

hierarchical manner as described earlier, starting with the lower level. Without
loss of generality, let 0 denote the start time of the retaining wall activity (so all
other start times will be measured from that point). Now adjust the booking
times of the truck (including slabs) and the crane such that their respective fre-
quencies of being last among the three will be 0.3 and 0.5 (and thus the wall will
complete last with a probability of 0.2). Suppose that the starting times that
achieve these probabilities are b and c. This completes the lower-level balancing.
At the higher level, because there is no real due date, the floor construction will
start upon the arrival of the last input, but our task now is to set the release date
of the retaining wall, rw, without changing the relative start times of the other
lower-level activities, so that the criticality of the retaining wall will match the
required 0.1. Therefore, the truck and crane booking times will be at rw + b and
rw + c, respectively; that is, we use rw as an anchor to make sure the lower-level
local criticalities remain constant as we adjust the higher-level criticality of the
retaining wall. Technically, this anchoring implies that we can use a single dis-
tribution for that purpose: the distribution of the maximum of the three inputs
for the initial rw = 0 setting with starting times of b and c for the truck and the
crane. (That distribution is analogous to the project distribution in Figure 19.5
that we interpreted as a subproject distribution earlier.) If we had a release date
for the floor construction, we could have used it as our anchor for the high-level
balancing instead, as described above. But that makes no fundamental differ-
ence to the basic idea that we first schedule the lower level and then treat it
as a single activity at the higher level. Incidentally, this solution is quite likely
to delay the floor construction by delaying the truck or the crane, but in effect,
we are balancing 10% of the project against quite expensive rental charges.

19.4 Crashing Stochastic Activities

Setting active release dates is a form of continuous crashing. We can treat the
release dates as project activities and control the length of these activities at a
cost, exactly as in the CPM crashing model of Chapter 16. If we assume that
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crashing reduces only the mean and does not change the variance or the shape
of the distribution, we can solve for the optimal crashing policy and the optimal
safety time by adapting Theorem 19.1. The activity with the lowest cj/qj (where cj
is the marginal cost of crashing the activity by one time unit) is the first candi-
date to be crashed. If cj/qj is higher than the time value of the project, cf (where cf
= α + β), then crashing should stop. As in the deterministic case, it may become
necessary to reduce the planned crashing of an activity that was originally a good
candidate for crashing if its criticality is sufficiently reduced due to other crash-
ing decisions.
The following example demonstrates the risk of a sizable error from assuming

that only the mean is subject to crashing. (In this and the following example, we
use independent exponential processing times to achieve mathematical tracta-
bility, but the principle applies in general.)

∎ Example 19.6 Consider a project consisting of one activity with an expo-
nential activity time distribution. Assume that the mean time is μ = 5, the
due date is d = 5, the cost of crashing is c1 = 10, α1 = 1, and the tardiness penalty
is β = 19, so (α + β) = 20. Assume the distribution remains exponential after
crashing.

In this case, the due date is fixed, and because the holding cost is small, we
have no incentive to set an active release date. Assume temporarily that crashing
does not change the distribution but just shifts it to the left. That assumption
would imply starting at a negative time. Crashing would cost c1 = 10 per time
unit and save (α + β) = 20 per time unit if tardiness occurs. But the probability of
tardiness is exp(−1) = 0.368 (yielding a service level of 63.2%), so the savings is
20 × 0.368 = 7.36 < 10 = c1 per time unit. Thus, such crashing cannot be justified
economically. Viewed from a different perspective, the optimal service level
would be c1/(α + β) = 0.5, whereas we already achieve 0.632 without crashing,
so crashing cannot be justified. Furthermore, if we could savemoney by negative
crashing (i.e. increasing μ), then we might be tempted to examine this option
instead. However, the true optimal μ in this case is 2.98, leading to a total cost
of 31.33 and a service level of 0.813. This high service level is justified because
the gain from crashing is higher than with simple shifting. To follow the nec-
essary calculations formally, the objective function is given by

Z = c1 d−μ + α+ β q1μ

= c1 d−μ + α+ β μexp
−d
μ

where q1 is the criticality of the activity, and therefore, for the exponential dis-
tribution, q1 = exp(−d/μ). From the memoryless property, the conditional tar-
diness is μ, given that tardiness occurs. Taking the derivative with respect to
μ and setting it to zero, we obtain
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c1 = α+ β 1 +
d
μ

exp −
d
μ

= α+ β 1 +
d
μ

q1

q1 =
c1

α+ β 1 +
d
μ

That is, we must set μ to the value that adjusts the criticality of activity 1 to
the right-hand side. If we compare this equilibrium condition to the result
when crashing is limited to reducing the mean, q1 = c1/(α + β), we may say
that the division by (1 + d/μ) modifies c1. We refer to (1 + d/μ) as the cost
modifier, and because the modification involves division, a high modifier
effectively reduces the crashing cost and encourages more crashing than
would otherwise be justified, leading to lower criticalities and higher service
levels. In general, the cost modifier depends on (i) the rate at which σj is
reduced by crashing; (ii) the effect of this reduction on the final project
standard deviation, σ; and (iii) the effect of σ on the expected project tardi-
ness. Let E[T] denote the expected project tardiness. The cost modifier then
has the form

1+
dσj
dμj

∂σ

∂σj

∂E T
∂σ

19 8

To actually calculate the necessary derivatives for a general project structure
requires simulation, but if we assume a serial project structure with many activ-
ities and independent processing time distributions, then we may invoke the
normal approximation. We illustrate this analysis with another example invol-
ving exponential processing times, but this time there are many activities in
series, so the effect on the project variance is lower.

∎ Example 19.7 Consider a project involving 30 exponential activities in
series, such that for the first 10 activities (j = 1, …, 10), μj = 10, and for the next
20 activities (j = 11, …, 30), μj = 5. Activities remain exponential after crashing
and may be crashed by up to 50%. Let cj = 9.8 + (31 − j)/100; for example, c1 =
10.1, c11 = 10, and c30 = 9.81. Let (α + β) = 20 and d = 150. Our task is to find the
optimal crashing plan. Assume α is sufficiently small to preclude active
release dates.

The project distribution is approximately normal by the central limit the-
orem. If we choose to crash the cheapest activities, namely, activities 30, 29,
…, 11 (in that order), and crash them maximally, we obtain a service level of
50% because after crashing 20 activities by 2.5 each, the project mean
matches the due date and the normal distribution is symmetric. Consider
the crashing costs that are available at this stage. Activities 30, 29,…, 12 have
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an infinite crashing cost, having reached their crashing limit. The same
applies for activity 11, but in this case, we might notice that at the moment
we stopped crashing it, it still had a crashing cost of 10. If we ignore the need
to modify the crashing costs, it would be optimal to stop crashing that activ-
ity at precisely the same value because the service level now matches c11/
(α + β) = 50%. The next available activity to crash costs 10.01, so it is justified
only if we desire a service level higher than 50%. The total cost associated
with the current solution is 762.9. This crashing plan reduces the variance
from 1500 to 1125. If instead we crash the first 10 activities maximally, pay-
ing more for crashing but reducing the variance to 750, we obtain the same
service level, and the objective function drops to 721.26. Therefore, selecting
activities to crash based on cj alone is not optimal. Furthermore, the optimal
value is 717.11 and entails a higher service level. It involves crashing all
activities to progressively smaller μi values, following an arithmetic series
with μ1 = 5.326 and μ30 = 4.345. (The maximal crashing constraints are
not tight.) The optimal service level is 57.37%, instead of 50%. Thus, it is
very important to consider the variance reduction effect, which in this case
accounts for a savings of 5.5%, and it is also useful to optimize the service
level, which accounts for an additional 0.5%.
If the influence of crashing on activity time distributions is linear, we can

incorporate crashing decisions in the LP model we presented for optimizing
release dates. When using LP, it is convenient to assume that the sample
records values for maximally crashed activity times such that the mean of
activity j is μj (which we may also write as μj(0)) and its standard deviation
is σj (or σj(0)). Denote the amount of crashing the mean by −Δj. Because
we assume that activities are maximally crashed, this implies increasing the
mean by Δj. We may also denote the mean after negative crashing by μj(Δj)
and the standard deviation by σj(Δj) – that is, μj(Δj) = μj +Δj. Let λj be a given
constant (which is likely to be between 0 and 1). One proposed model trans-
forms the cdf of the processing time in such a manner that for any given prob-
ability of completion, the argument is multiplied by (1 +Δj/μj)λj, and then the
cdf is shifted to the right by Δj(1 − λj). Two important special cases are λj = 0
and 1. In the former, the transformation consists of shifting the cdf to the right
by Δj, and this is the simplest case. In the latter, the coefficient of variation is
held constant (as in Examples 19.5 and 19.6). Selecting λj between 0 and 1
leads to a coefficient of variation that decreases with the mean (i.e. decreases
with negative crashing), yet the standard deviation increases with the mean.
After negative crashing, this transformation yields stochastically larger proces-
sing times. Denote the processing time after negative crashing by pij(Δj) – that
is, the sample consists of pij(0) data. The desired transformation is obtained by
setting

pij Δj = pij 0 1 +Δjλj μj 0 +Δj 1−λj 19 9
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In this equation, pij(Δj) is a linear function of the decision variable Δj, so we
can use it within a linear program. The model we obtain is then a simple gen-
eralization of themodel we presented for setting release dates and can be used to
make release date decisions alongside crashing decisions:

MinimizeZ =
α+ β

S

s

i= 1

Ci−
n+ 1

j= 1

αjrj−
n+1

j= 1

cjΔj 19 10

subject to

Cij ≥ rj + pij Δj ; i= 1,…,s, j= 1,…,n

Cij ≥Cik + pij Δj ; k P j , i= 1,…,s, j= 1,…,n

Ci ≥ d = rn+ 1 i= 1,…,s

Ci ≥Cik k P N , i= 1,…,s
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Figure 19.6 A stochastic Gantt chart for Example 19.8.
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As in the special case, this LP formulation is not an efficient solution
approach. It is significant mainly as a demonstration of convexity.
A numerical search for the optimal solution is recommended. As an illustration,
we add a crashing option to Example 19.4.

∎ Example 19.8 Consider a project with the network of Figure 19.2 with
earliness and tardiness costs given by αA = 10, αB = 20, αC = 30, αD = 15, αE =
5, and β = 120 with expected durations of μA = 15, μB = 36, μC = 18, μD = 25,
μE = 12. Crashing is possible by up to ΔA = 3, ΔB = 6, ΔC = 4, ΔD = 5, ΔE = 2
at cost rates of cA = 20, cB = 40, cC = 60, cD = 30, and cE = 10. Crashing maintains
the coefficient of variation of the processing time distributions; that is, we use
λj = 1 for all activities in Eq. (19.9).

Figure 19.6 depicts the optimal solution as a stochastic Gantt chart. Activities
A,D, and E are crashed maximally, whereas activities B andC are crashed partly.
The release dates are adjusted to yield criticalities qA = 5%, qB = 10.5%, qC = 15%,
qD = 7.5%, and qE = 2.5%. Comparing the results to Figure 19.5, we see that activ-
ity A has been crashed sufficiently to reduce its criticality to the target value of
αA/(α + β) = 10/200 = 5%, but activity B still has a release date of zero, and its
criticality exceeds the target of 10% by 0.5%. The total costs of crashing are
7.8% of the total cost, followed by a savings of 12.4% to yield a net savings
of 4.6%.

19.5 Summary

In this chapter, we introduced the stochastic balance approach to scheduling
projects with optimal safety times, and we outlined how the approach can be
extended to hierarchical scheduling problems. The underlying principle behind
these applications is economic balance, but our system is stochastic, so we
require stochastic economic balance, or stochastic balance, for short. Stochastic
balance, in turn, is associated with achieving optimal criticalities. Specifically,
balance is achieved when the marginal cost of providing protection is equal
to the marginal benefit. In our particular case, the benefit is associated with con-
trolling tardiness in the project completion time. This benefit is gained by redu-
cing the sum of the marginal earliness costs of all activities plus the cost of
tardiness (α + β). The criticality of an activity is the probability it will cause a
tardy completion time. Stochastic balance is achieved when the criticality of
each activity is given by its marginal cost (αj) divided by (α + β). We saw, how-
ever, that if the completion time is constrained, an activity may acquire exces-
sive criticality. In such cases, we should not delay that activity. We discussed
examples showing how to apply stochastic balance in passenger transportation
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and in hierarchical systems. Next, we considered the issue of crashing stochastic
activities, thus incorporating the historical CPM approach into PERT. We
showed that stochastic balance principles can guide such decisions, and we for-
mulated the problem as a linear program. In this case, however, our decision
variables influence not only the criticality but also the distribution of a delay,
given that a delay occurs. In response, we have to modify the marginal costs
to reflect such effects.
At this stage, results have been reported only for single projects. We can view

a job shop as a multiproject environment, but the projects (jobs) in a job shop all
have a very simple structure. Although we showed how to balance projects with
a hierarchical structure, including subprojects with individual milestones, mod-
els of stochastic balance in more general multiproject environments remain to
be developed.
In our examples we implicitly assumed static sequencing and scheduling.

That is, we did not consider the option to use data collected during the project
for scheduling the remainder of the project. As part of our static approach, we
also assumed that soft constraints force activities to be scheduled in a predeter-
mined way. Furthermore, our convexity proofs (using LP formulations) implic-
itly relied on this static assumption. Our discussion of hierarchical scheduling
supports the notion that dynamic scheduling is not as easy in practice as theory
might suggest, so our static assumption is perhaps defensible. In Section 17.5,
however, we discussed the dynamic use of policies for sequencing decisions.
When the assumptions behind that usage are satisfied, it is possible to find bal-
anced release dates by a process similar to the one we described, except that for
any given set of release dates the simulated progress of the project should
involve dynamic sequencing. That is, we can think of release dates as part of
an enhanced policy and thus combine the setting of optimal release dates with
stochastic sequencing heuristics. Such an application may involve iterations
between searching for good sequencing policies based on given release dates
and setting release dates given a sequencing policy. A similar iterative approach
can also accommodate crashing decisions. However, the models are no longer
necessarily convex, and the balanced release dates that we may achieve are not
guaranteed to be globally optimal. It may make sense to develop scheduling sys-
tems that are static for the near future but dynamic beyond that. All that
requires further research, however.
Perhaps the single most important advance made by PERT 21 is the use of

validated distributional assumptions to generate practicable simulated samples
that can be used reliably and provide safe scheduling. Whereas safe scheduling
has roots in PERT, scheduling without validated distributional assumptions is
not really safe at all. Our history-based approach ensures that the service levels
we set will actually be achieved. Essentially, this methodology accounts for his-
torical variation among projects, whereas PERT is almost universally associated
with the independence assumption. The independence assumption leads to

566 19 PERT 21



variance estimates that are much too small, and that is tantamount to indefen-
sible optimism. But PERT 21 also provides calibration. The need for calibration
has been recognized right from the start, but too often – practically always as far
as the literature is concerned – it has been observed in the breach.

Exercises

19.1 The search procedure used in the chapter to optimize release dates starts
with rLj + step size (where step size is one unit of the desired time

unit), tests the criticality, and, if the criticality is not yet excessive,
increases the release date by increments of 2step size, 4step size,
and so on. Once a release date with an excessive criticality is found,
the procedure implements a bisection search within the last
section identified:
a) Show that if rj − rLj = K, then it will take at most O(log K) trials (each

requiring O(s) steps) to identify the optimal value in the given
step_size units (while holding the other release dates constant).

b) By the text, the optimal release date for Activity 1 in Example 19.1 is
31.1. Now consider Table 19.2. Add a column for the difference
between the assembly time and the completion of Activity 1. Show
that the optimal release date can be found by adding the minimal
value in the new column to the current release date (20.4).

19.2 Consider the ACM with a large enough due date to avoid constrained
release dates. Suppose we use an algorithm that searches the optimal
release dates by starting at the lower bounds rLj and adjusting inputs

one by one to their optimal criticalities (possibly requiring several
iterations).
a) Show that release dates gradually increase toward their optimal

values.
b) Describe a similar approach for projects with a general PERT network

structure. Show how to obtain lower bound values for this case and
provide an argument showing that release dates are monotone
increasing in this case, too. (Hint: The release dates of jobs that suc-
ceed activity j are not equivalent to due dates for activity j, but one of
them can serve for the purpose of calculating reasonable lower
bounds.)

19.3 Consider the ACM and the PERT model as in the previous problem, but
now assume that the due date is not large enough to avoid constrained
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release dates. Update the previous algorithm. Will the search be easier or
more difficult?

19.4 Consider Example 19.1 as analyzed by the small sample of Table 19.1.
Suppose now that the due date can be adjusted and a secondary objective
is to minimize it. Find the optimal release dates and due date. What is the
total criticality of the solution?

19.5 Explain why it is impossible to obtain a high project service level without
a sufficiently high due date. Alternatively, explain why, if we wish to have
the project delivered as early as possible, we may have to accept a low
service level. Which release dates tend to be critical in such a case? What
is the correct criticality of other release dates relative to the case where
the due date is delayed sufficiently to obtain the desired service level?

19.6 One way to model a multiproject environment is by generalizing the job
shop model. Each job is a project, and those projects are considered
together because they compete for resources. Beyond that, multiple pro-
jects often share activities or feed each other. One way to model such
cases is by combining them to a single project. However, the essence
of a multiproject environment is that each project has its own comple-
tion time. Therefore, each project should also have its own due date and
tardiness penalty. For a given sequence of projects with known due dates
and a given sequence of project activities, consider how the LP formula-
tion can be used to set release dates for all activities.
a) Consider Example 19.5. Can a hierarchical model be presented as a

multiproject case?
b) Consider Example 19.3, but assume that there are only two destina-

tion stations (so the last three columns in the segment times table are
irrelevant) and that of the 12.2 expected number of passengers who
board the bus for the first segment, 7.1 leave the bus at the first sta-
tion, and 5.1 continue to the final station. Let d1 denote the due date
of the passengers who leave the bus at station 2, after one segment.
Construct an LP model for optimizing the release dates and d1.
Can you optimize d1 as a separate subproblem?

c) In principle, can such LP models include crashing considerations?
d) What is the theoretical significance of such LP formulations? (Hint:

Would you actually use LP to solve such models?)

19.7 Consider Example 19.3 again. In that example, all passengers go to the
final destination. But, in general, bus schedules should also accommo-
date passengers who board the bus at station i and depart at station k
(k > i). Traditionally, such schedules (e.g. for trains or for connecting
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flights) involve just one timing decision per station: that is, the scheduled
arrival time is also the scheduled departure time. A service gap sufficient
to allow passengers to disembark and embark (and to service the equip-
ment, if necessary) may also be specified.
a) Show that service gaps can be considered part of the next leg travel

time without affecting the optimal solution.
b) Explain why, if we wish to provide a high service level to disembark-

ing passengers, we must pay by often delaying the vehicle in the
station.

c) Suppose that we specify a departure time and an arrival time sepa-
rately. By way of notation, let rk denote the scheduled departure time
from station k, and let dk denote the due date at that station. Also, let
Tk = (Ck − dk)

+, where Ck is the arrival time at station k. For conven-
ience, assume that the bus departs from station 0 at time 0 (so r0 =
d0 = 0). Any departure delays from that station can be considered part
of the travel time of the first segment. Construct a model for this pur-
pose where release dates and due dates are decisions.

d) Show that your model is convex. (Hint: Demonstrate convexity by
recasting the model as an LP for any given sample.)
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Appendix A

Practical Processing Time Distributions

A.1 Important Processing Time Distributions

Three distributions are prevalent in stochastic scheduling research – the uni-
form, exponential, and normal distributions. In addition to these three, we dis-
cuss two less prevalent distributions that may even be more important in
practice: the lognormal distribution and the Parkinson distribution. Because
the various properties of these two distributions are seldom covered among
common probability distributions, we provide detailed coverage of each. In this
section, we introduce all of these distributions and discuss how to simulate
them. We also briefly discuss the Poisson distribution, which we need later.
In Chapter 16 we introduce the beta distribution, but we omit it here because
for our purposes it is not necessary to study its general properties or to simulate
it. Some other distributions that we mention later are common in the literature
but lack validation.

A.1.1 The Uniform Distribution

The uniform distribution describes a random outcome that is equally likely to
occur anywhere between a minimum value a and a maximum value b. We
denote the uniform distribution by U[a, b], where a is the minimum possible
realization and b the maximum possible realization. This distribution has mean
μ = (a + b)/2 and variance σ2 = (b − a)2/12. An important special case, U[0, 1],
can be simulated by computers very efficiently. For example, in Excel, this is
done by the RAND function. If we wish instead to simulate a uniform random
variable on the interval from a to b, we employ the transformation

u= a+ b−a rand

where rand is the result of the U[0, 1] simulation.
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For nonnegative random variables with strictly positive means, we have cv =
σ/μ, where cv is called the coefficient of variation. For the uniform distribution,
cv is meaningful when a ≥ 0 and is given by

cv=
b−a

a+ b 3

The result is maximized if a/b = 0, yielding cv = 1/ 3 = 0.577; but as a/b
approaches 1, cv approaches zero.

A.1.2 The Exponential Distribution

The exponential distribution describes a random outcome (typically a waiting
time) with the property that the event we are awaiting is no more likely to occur
when we have been waiting a long time than when we have been waiting a short
time. The exponential distribution with mean μ is defined by the cumulative
distribution function (cdf )

F t = 1−e− t μ

where t ≥ 0, and we use T to denote the random variable itself. (Some sources
use the rate parameter, often also denoted by μ but defined as the reciprocal of
the mean time – or 1/μ in our notation – for which F(t) = 1 − e−μt. There is no
consensus in this case. Our choice is consistent with our general treatment of μ
as a mean time.) The standard deviation of an exponential distribution is always
the same as its mean. Thus, σ = μ and cv = 1, which we call medium variation.
This distribution is often realistic for estimating the time between machine
breakdowns or other randomly occurring events, but it is usually not realistic
as a model for the duration of production operations. In this text, we use the
exponential distribution for mathematical convenience and for developing use-
ful insights, but doing so does not imply that we expect processing times to be
exponential in practice.
For symmetric distributions, such as the uniform, the mean (that is, the

expected value) and the median (the value for which the cdf is 0.5) coincide.
(We denote themedian byM; that is,M = F−1[0.5].) As a result, it is a well known
but all too common error to assume thatM and μ always coincide. For instance,
one might allow enough time for the median, thinking that it should be suffi-
cient on average. However, for right-skewed distributions, the probability of
falling below the mean exceeds 0.5, and thus M < μ. For the exponential, the
probability of an outcome no larger than the mean is Pr{T ≤ μ} = 1 − e−1 =
0.632 > 0.5, and M = −ln(0.5)μ = 0.693μ < μ.
The cdf of a continuous random variable transforms it into a U[0, 1] random

variable. For instance, if the realization of an exponential random variable with
mean μ is 2μ, then the cdf of this value is F(2μ) = 1 − e−2μ/μ = 1 − e−2 = 0.8647.
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We can interpret this event as equivalent to a realization of 0.8647 for a U[0, 1]
random variable. Therefore, it is always possible to simulate any continuous
random variable by simulating a U[0, 1] outcome first, thereby obtaining a result
(rand) between 0 and 1, and then finding the value of t for which F(t) = rand.
A basic exponential random variable has μ = 1, in which case F−1(rand) = −ln
(1 − rand). We can simulate a basic exponential random variable using the
transformation

t =− ln 1− rand

Because 1 − rand is also distributed U[0, 1], an equally valid simulated value is
obtained from the transformation

t =− ln rand

For the case of a general exponential random variable, we simply multiply by μ
and use

t = −μ ln rand

If we add up several basic exponential distribution realizations and count the
number of realizations that do not yet exceed a given deterministic limit, say, λ,
we obtain a simulated realization of the (discrete) Poisson distribution. As an
event counter, the Poisson random variable is a nonnegative integer: It is 0 if
the first realization exceeds λ.

A.1.3 The Normal Distribution

The normal distribution describes a random outcome that follows the so-called
bell curve. The normal distribution also represents the aggregate influence of a
large number of independent, additive factors. We denote the normal distribu-
tion by N(μ, σ2). The probability density function (pdf ) of the normal random
variable is given by

f x =
1

2πσ2
exp

− x−μ 2

2σ2

If we set μ = 0 and σ2 = 1, we obtain the standard normal distribution. We
denote the pdf of the standard normal random variable by ϕ(z) and its cdf by
Φ(z). That is,

ϕ z =
1

2π
exp

−z2

2

IfX is distributedN(μ, σ2), then the transformation z = (x − μ)/σ yields a stand-
ard normal. Using this transformation and its inverse, x = μ + zσ, it is straight-
forward to use standard normal tables or computerized equivalents to analyze
any normal random variable.
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Most stochastic models assume independent processing times. Subject to this
assumption, the sum of many independent small random variables can be
approximated by the normal distribution with mean equal to the sum of the
individual means and variance equal to the sum of the variances. This well-
known result is called the central limit theorem. The independence assumption
is required both for normality and for making the variance equal to the sum of
the variances. The normal distribution is considered practical because we
often encounter such sums in practice. For example, the normal distribution
has been validated in some low variation surgery instances (May et al. 2000).
Nonetheless, we use it with the same caveats that apply to the exponential
distribution.
It is not straightforward to simulate a normal random variable by the usual

method because Φ(z) does not have an analytic inverse. However, Excel and
similar platforms provide an approximate function (NORM.S.INV) for calculat-
ing the inverse. An alternative method, known as the Box–Muller transforma-
tion, draws two U[0, 1] samples (U1 and U2) and transforms them into an
independent pair (Z1 and Z2) of standard normal samples using the following
formulas:

Z1 = −2 ln U1 cos 2πU2

Z2 = −2 ln U1 sin 2πU2

When only one normal sample is needed, we can simply use Z1 and ignore Z2.
The first row of Table A.1 lists seven simulated values of a standard normal

random variable, in the order in which they were generated. That is, z1 = 1.140,
z2 = 0.329, and so on. The second row repeats the same values, but sorted from
small to large. When sorted, we enclose the indices by brackets; that is, z[1] =
−1.064, z[2] = −0.667, etc., and z[k] is known as the kth order statistic; hence the
sorted sample comprises the order statistics.
Consider the following analytics task: Given a sample of n independent and

identically distributed (iid) realizations that we suspect to be normal, we must
judge whether it is indeed normal and estimate the parameters, μ and σ2. For
example, take the first row of Table A.1 but interpret the values as xi. (We
reserve z for the standard normal. Here, even thoughwe know that we simulated
a standard normal with parameters 0 and 1, we do not use this information
directly.) Using hats to denote estimated parameters, the most straightforward
estimation approach, for any distribution, is to use the mean of the sample as μ

Table A.1 A simulated normal random sample.

1.140 0.329 −0.124 −0.482 −0.667 0.174 −1.064

−1.064 −0.667 −0.482 −0.124 0.174 0.329 1.140
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and then divide the sum of squares of deviations around μ by (n – 1) to yield an
unbiased variance estimate. (In Excel, the functions AVERAGE and VAR.S per-
form these tasks.) Formally, we write,

μ=
1
n

n

i= 1

Xi

and

σ2 =
1

n−1

n

i=1

Xi−μ
2

In our example, μ = −0.099 and σ2 = 0.532 (that is, σ = 0.730). These results
may appear sizably different from 0 and 1, but a sample of seven may simply
be too small when we want precise estimates. It is also common practice to
use a histogram of the sample to judge visually whether it is plausibly normal.
A chi-square test can then be used for more formal testing. In our case, however,
the sample is too small to create ameaningful histogram. An alternative that can
be used even with such a small sample is the Q–Q chart (see Figure A.1). Q–Q
charts can also be adapted for incomplete samples (see Chapter 18), which are
very common in practice.
To create a Q–Q chart (for any distribution), we match the order statistics to

their scaled expected values or a good approximation of those, also known as
scores. We then construct a regression line through the matched set. If the
points appear to hug the regression line closely, it is plausible that the distribu-
tional assumption we used to obtain the scores is valid. For the normal case, very
exact scores can be calculated, but that requires complex numerical integration.
Empirical evidence suggests, however, that a much simpler set of scores, called
Blom’s scores, works very well (Looney and Gulledge 1985). Blom’s score for x[k]
is given by zk =Φ−1[(k − 0.375)/(n + 0.25)], that is, the z-value for which the
standard normal distribution cdf, Φ(z), yields a probability of (k − 0.375)/
(n + 0.25). The values on the horizontal axis of the Q–Q chart in Figure A.1
are the scores, whereas the vertical axis measures the simulated order statistics.
The regression line parameters can be used directly to estimate the mean and
standard deviation of the sample: the intercept serves as μ and the slope as σ.
Here we obtain μ = −0.099 and σ = 0.780. (Compare to −0.099 and 0.730, as
derived directly before.)
Visual inspection of Figure A.1 suggests a good fit, but that involves a subjec-

tive judgment. A more formal test compares the square root of the R2 statistic
(in our example, 0 975 = 0.987) to tabulated cutoff values. If the square root is
above the cutoff for a given significance level, we cannot reject the hypothesis
that the distribution selected is valid. Looney and Gulledge provide such cutoff
values for the normal distribution and several probability levels. In this instance,
if we choose a significance level of 5%, the tabulated cutoff value for n = 7 is
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0.898 (<0.987), so we cannot reject normality. Furthermore, the full table sug-
gests that the fit is better than 90% of random sample fits. In such a case, we say
that this sample passes with a probability of 0.9, a value calculated relative to
other samples of seven normal variates. Intuitively, when this probability is high,
our confidence in the normality of the sample increases. Indeed, it is remarkable
that a sample too small to provide precise estimates or offer a meaningful histo-
gramcan still beused to test normality.However,wemust be aware thatwhen the
sample is small, the test lacks power. In other words, it may fail to reject when it
should; that is, only a large deviation from normality is likely to trigger rejection.
To avoid negative realizations when using the normal distribution for proces-

sing times, we usually require a low σ/μ value. For instance, if we set σ/μ = 0.324
(or 1/3.09), the probability of a negative realization is 0.001 and may be ignored
for some purposes. Another resolution is to consider a truncated normal, such
that any value below zero is removed from consideration and replaced by a
newly simulated positive realization. Usually, such truncation occurs for nega-
tive z values; that is, the mean of the original distribution is assumed nonneg-
ative. For normal distributions truncated at zero, the coefficient of variation is at
most 0.756, and the maximum occurs for truncation at the original mean. If we
allow truncation for positive z values, the coefficient of variation remains strictly
below 1. Thus, the normal, truncated or not, is inappropriate as a model for ran-
dom variables with high coefficients of variation.

A.1.4 The Lognormal Distribution

We know from experience that processing time distributions are typically
skewed to the right and processing times are never negative. The normal distri-
bution, however, is defined for negative realizations and is symmetric around

y = 0.7796x – 0.0989
R2 = 0.975
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Figure A.1 A normal Q–Q chart for Table A.1.
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the mean. Relative to these features, the exponential distribution may appear to
be a more realistic model than the normal, but practical experience suggests
that, for very low variation instances, the normal is a better approximation than
the exponential. The exponential distribution has a constant coefficient of var-
iation, which may be reasonable for medium variation – say, between 0.75 and
1.33 – but not for either low or high variation. By the same token, neither the
normal nor the exponential works well for cv values between about 0.33 and
0.75. Therefore, ideally, we prefer a distribution that is always positive, skewed
to the right, and accommodates any coefficient of variation. The lognormal dis-
tribution satisfies these conditions.
Consider a random variable that is obtained not as the sum ofmany independ-

ent positive small components but rather as their product. If we take the loga-
rithm of each individual random variable in the product, the sum of these
logarithms is approximately normal by the central limit theorem. The exponent
of this sum – that is, the product itself – is strictly positive and skewed to the
right, as desired. The random variable associated with this structure is known as
the lognormal distribution.
Suppose we wish to simulate a lognormal random variable, say, X, with mean

μ and standard deviation σ. Let Y be the natural logarithm of X, that is, Y = ln(X);
conversely, X = exp(Y). By definition, Y is distributed normally, so if we know its
mean and standard deviation (denoted here by m and s), we already know how
to simulate it. If the result of simulating Y is y, then we obtain x = exp(y) as a
simulated X value. Some software platforms (including Excel) also require
the user to directly specify the mean and standard deviation of Y. So our task
is to findm and s, and it is convenient to start by simulating X/μ and then mul-
tiply the result by μ. X/μ is a lognormal random variable with mean μ = 1 and
standard deviation σ = cv. We refer to any lognormal random variable with
mean 1 as basic. Because ln(1) = 0, it can be shown that, for the basic case,

s2 = ln 1 + cv2 m= −
s2

2
To multiply by μ, we can add ln(μ) to y before taking the exponent. Therefore,

we can evaluate m and s for X directly from the following relationships:

s2 = ln 1 + σ2 μ2 m= ln μ −s2 2 A 1

Using these values, the pdf of the lognormal distribution is given by

f x =

1

x 2πs2
exp

− ln x −m 2

2s2
, if x > 0

0, otherwise

and the mode is equal to exp(m − s2). When a lognormal distribution is given
directly by m and s2, we can use Eq. (A.1) to solve for μ and σ2. Specifically, we
obtain
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μ= exp m+ s2 2 σ2 = μ2 exp s2 −1 A 2

When s is high, the implication is that the ratio between realizations can be
high. As a numerical example, McKay et al. (1988) observed in a particular shop
that the difference between consecutive processing times of identical items can
easily have a ratio of 2 (i.e. the slower item takes twice as long as the faster one).
If we assume a lognormal processing time distribution and interpret this obser-
vation as implying that the two fractile values associated with probabilities of 0.1
and 0.9 demonstrate this ratio, then we have cv≈ 0.27. (For the standard normal
distribution, 0.1 and 0.9 are associated with z values of −1.282 and 1.282. We
require exp(1.282σ) = 2, because that implies exp(−1.282σ) = 1 2, and

2/ 1 2 = 2. Solving for σ we obtain 0.27.) By Eq. (A.1) we then obtain s =
0.2653 and m = ln(μ) − 0.0352. They also noted, however, that setup times
are even less predictable, and by assumption C3 we include setup times in
our processing times. Larger ranges have also been observed in machine shops.
For instance, Buzacott and Shantikumar (1993) report a ratio of 10 for a partic-
ular precision machining operation. This would lead to cv ≈ 0.90, with s =
0.7703 and m = −0.2967. (As we discuss later, some projects exhibit high cv
values, well above 1.33.)
Figure A.2 depicts the pdf of basic lognormal distributions with cv = 0.25, 0.5,

1, and 2. As the figure demonstrates, a higher cv yields a more skewed pdf. The
figure also includes the pdf of a basic exponential random variable, for compar-
ison. As the figure demonstrates, when cv is low, the lognormal distribution is
quite similar to the normal – and thus it can substitute for the normal when it is
a better approximation than the exponential. But when the coefficient of vari-
ation is 1, the lognormal is more similar to the exponential (which has cv = 1).

σ = 0.5σ = 1

σ = 2
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2
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Figure A.2 Comparing the basic lognormal distribution to the exponential.
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The probability that a lognormal random variable is below the mean, μ, is
given by Φ(s/2), which always exceeds 0.5 because s > 0. The third column in
Table A.2 lists some values for cv = 0.25, 0.5, 1, and 2. The median, M, is given
by exp(m) = exp(lnμ − s2/2) = μexp(−s2/2), which is always smaller than μ, as the
fourth column in Table A.2 illustrates. The mode is even smaller, μexp(−3s2/2),
as listed in the fifth column of the table, and the probability of falling at or below
the mode is Φ(−s), as listed in the last column. When cv = 1, the relationship
between the mean and the median (given in the third line of Table A.2) is com-
parable to the exponential case (where Pr{T < μ} = 0.632 and M = 0.693μ). The
approximation is within 5%. However, when cv = 0.25, the results are far from
those of the exponential (namely, 0.549 and 0.970) but provide a better fit for the
normal, for which we expect 0.5 and 1. The table demonstrates that it is espe-
cially risky to confuse the most likely time – the mode –with the average. As the
table shows, when cv grows large, it becomes progressively unlikely to meet or
beat the mode: For cv = 1, the probability of exceeding the mode is almost 80%,
and for cv = 2, almost 90%.
Two special features of the lognormal distribution are relevant. First, the sum

of many independent, strictly positive random variables, each with a finite coef-
ficient of variation, is lognormal in the limit.We refer to this result colloquially as
the lognormal central limit theorem (because, for nonnegative random variables,
we can use it instead of the regular central limit theorem). Formally, however, it is
not a proper central limit theorem so we also refer to it, more correctly, as the
lognormal sum approximation (Paul and Trietsch 2012). In particular, when
all the components are lognormal, the lognormal sum approximation is also
known as the Fenton–Wilkinson approximation (Fenton 1960). Other approxi-
mations of the sum of lognormal components by a lognormal, including the case
of correlated components, are also available (Mehta et al. 2007), but for tracta-
bility, we focus on the simpler version. In calculating the parameters of the log-
normal sumapproximation,we first add the independentmeans and variances to
obtain themean and the variance of the sum and then apply Eq. (A.1). (Compare
this property to the regular central limit theorem, which uses the samemean and
variance calculation but does not require positive random variables. In the limit,
however, the lognormal and the normal approximations of the sum approximate

Table A.2 Comparing the mean and the median for the lognormal distribution.

cv s Pr{X < μ} M/μ Mode/μ Φ(−s)

0.25 0.246 0.549 0.970 0.913 0.403

0.5 0.472 0.593 0.894 0.716 0.318

1 0.833 0.661 0.707 0.354 0.203

2 1.269 0.737 0.447 0.089 0.102
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each other.) Furthermore, if we apply the Fenton–Wilkinson approximation to
the sum of few lognormal distributions, the result is a better approximation than
the normal random variable with the samemean and standard deviation. To this
end, if the lognormals are given in terms ofm and s2, wemust first apply Eq. (A.2)
to obtain their means and variances, add them, and finally apply Eq. (A.1) to the
sums. Second, suppose that the processing time of an activity is the reciprocal of
the capacity dedicated to the processing, and suppose further that the capacity is
lognormal. The processing time that results is then also lognormal, with the same
coefficient of variation. (This would not be true for any other distribution men-
tioned in this appendix. It holds becausewe are taking the exponent of a symmet-
ric random variable.)

A.1.5 The Parkinson Distribution

Extensive research shows that the lognormal distribution is often valid, but even if
every processing time follows a lognormal distribution, the processing time that
we observe is not always lognormal. For instance, if there are really several pro-
cesses operating in parallel, each taking lognormal time, but we can only observe
the slowest one (the maximum), the distribution we observe will not be lognor-
mal. A special case of such a maximum is the pure Parkinson distribution, which
was originally introduced inour first edition. It combines a known threshold value
and some core distribution that is visible only if it exceeds the threshold. Since
then, the Parkinson distribution has been generalized by Trietsch et al. (2012)
to better fit field data sets. We start with the original pure version.
Parkinson’s law states that “work expands so as to fill the time available for its

completion.” There is no “law,” however, to suggest that work compresses. Sup-
pose then that work is allotted q units of time but it really requires Y, where q is
deterministic but Y is a random variable. Then the time, X, that we can observe
and measure is given by

X = max q,Y

and we say that X has a pure Parkinson distribution. The value of q is often
agreed upon by negotiation, while Y (called the core) reflects real randomness.
For example, when processing times are monitored, workers may be concerned
that if they report good performance today, it will be the basis of a more
demanding norm tomorrow. In that situation they may hide their performance
when it exceeds expectations. As a result, the Parkinson distribution arises:
Delays are observable but earliness is hidden. In other words, we can observe
X but not Y.
The pure Parkinson distribution can be described as “deterministic with a

random tail.” For example, if the probability of on-time completion is 0.9, then
with probability 0.9 the reported (and thus observable) processing time will
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match the plan; otherwise, it will follow a tail such as the tail of a lognormal
distribution. In such an environment, tight processing time estimates yield thick
tails and vice versa.
Conceptually, specifying a high value of q can be viewed as a large hidden

buffer against tardiness. Indeed, it can be shown that the mean of a Parkinson
random variable is always higher than the mean of Y but the variance is always
lower. In other words, we reduce variation by specifying a buffer of capacity.
However, because we do not admit it, the buffer is hidden and thus not likely
to be optimized. This phenomenon becomes pronounced when q is relatively
large, and thus the tail is relatively small. Again, this direction increases the pre-
dictability of the system, but at the price of wasted capacity. When the predict-
ability is high enough, one advantage is that deterministic sequencing models
become more relevant. Our assumption in this text, however, is that the price
of wasted capacity is too high. For that reason, we need stochastic scheduling
models that can handle the real underlying variation of Y without resorting
to excessive q estimates and allowing the system to waste earliness too reck-
lessly. Although the use of buffers is necessary and rational, they should not
be hidden, and they should not be determined by such a process.
In their study of field data from several project organizations, Trietsch et al.

(2012) found several cases that fit the pure Parkinson pattern. Furthermore, the
hypothesis that Y had a lognormal distribution could not be rejected (that is,
they validated that Y was lognormal at the same time). However, they found
even more instances where many realizations were at the q level but many
others were reported early, sometimes even very early. For those instances they
introduced a more general (and less pure) version of the Parkinson distribution.
Let pP denote the probability that an early activity is falsely recorded as precisely
on time. Assume that this probability applies to each early activity independ-
ently. That is, early activities are recorded correctly with a probability of (1 −
pP) and precisely on time otherwise; tardy activities are always recorded cor-
rectly. For pP = 1 we obtain the pure Parkinson distribution, whereas for pP
= 0 we obtain a conventional distribution; that is, the Parkinson distribution
generalizes all single variate distributions, with or without the Parkinson effect.
To simulate a Parkinson distribution with given q and pP values and a given

distribution for Y (estimated from historical data when applicable), we start by
simulating Y. If Y < q, we generate a rand value and we use the value q if rand ≤
pP; otherwise, we use Y directly.

A.2 Mixtures of Distributions

In the Parkinson case, the distribution we observe is not lognormal even if the
core is lognormal. Other instances occur for which the lognormal distribution
may apply, but the evidence may seem to contradict it. An example is the mix-
ture of two or more distributions.
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As a conceptual model, suppose a job can be processed on one of m different
machines, and the time distribution it takes depends on which machine is used.
If each machine has a given probability, vi, of being selected (with vi = 1), we
obtain a mixture distribution for the processing time. Let the processing time
associated with machine i be Xi, with density function fi(x). Then the density
function, f(x), of the processing time is given by

f x =
m

i=1

vifi x

That is, the mixture’s density function is a weighted average of the compo-
nents’ density functions. Similarly, if the cdf of machine i is Fi(x), then

F x =
m

i= 1

viFi x

and

μ=
m

i= 1

viμi

That is, the mixture’s cdf and mean are also weighted averages with the same
weights. The same applies to all the moments around the origin. However, this
feature is not inherited by the moments around the mean. The variance, which
is the second moment around the mean, can be calculated as follows:

σ2 =
m

i= 1

vi σ
2
i + μ

2
i −μ2 =

m

i= 1

vi σ
2
i + μ

2
i −μ

2

=
m

i= 1

vi σ
2
i + μ

2
i −2μ

2 + μ2 =
m

i=1

vi σ
2
i + μ2i −2μiμ+ μ

2

=
m

i= 1

vi σ
2
i + μi−μ

2

The last form demonstrates that the weighted average of the variances is a
lower bound on the variance, realized as an equality if and only if all component
means are equal. For the casem = 2, it can be shown that the variance expression
can be expressed as follows:

σ2 = v1σ
2
1 + v2σ

2
2 + v1v2 μ2−μ1

2

For convenience, we assume that the component distributions (of Xi) are
each unimodal. The normal, lognormal, and exponential distributions are all
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unimodal (but the uniform is not). A mixture of unimodal components can
have several modes, but that depends on the relative distance between
means and on the distribution. For instance, a mixture of exponentials is
always unimodal. Nonetheless, when a multimodal distribution is observed
in practice, it is often a mixture. A particularly important example that is
often bimodal or multimodal in the single-machine model arises when
machines break down sometimes, in which case the reported processing
time includes repair time; that is, it is the sum of the real processing time
and the repair time, but we might choose to use the lognormal sum approx-
imation to represent it as a single lognormal distribution. (In parallel
machine models we should distinguish between processing time and repair
time because we can switch the job to a different machine upon a break-
down.) If machines break down frequently and repairs are quick, the effect
may be masked by the natural processing time variation, and the result can
be unimodal. But if they break down infrequently and then take a long time
to repair, we may obtain a bimodal distribution. In general, if we consider
the possibility of more than one breakdown per job, there is no theoretical
limit on the number of modes that can result. In the case of infrequent
breakdowns, however, the third and higher modes are typically negligible
for practical purposes. For example, suppose job processing time is a basic
lognormal (with mean 1) and cv = 0.4. Suppose the probability the machine
breaks down during a job is 5% and the time to repair is lognormal with μ =
10 and cv = 0 192 (about 0.438). If we ignore the possibility of two or more
breakdowns, we obtain a mixture where, with probability 0.95, the distribution
is per the pure processing time (with μ1 = 1 and cv1 = 0.4), and otherwise, we face
the sum of repair time and pure processing time. Assuming processing time
repair time are statistically independent, we can use the lognormal sum approx-
imation to determine that if the machine breaks down then the total time dis-
tribution is approximately lognormal with μ2 = 11 and cv2 = 0.4, and now we
have a mixture of these two distributions (where the two components have
the same cv). Calculating the mean and variance, we obtain μ = 1.5 and σ2 =
5.87, leading to cv = 1.615. The contribution of the weighted average of the com-
ponent variances alone, namely, 1.12, would yield cv = 0.706, which is higher
than that of either component (and higher than the cv of repair time alone).
In general, it can be shown that when the components have the same cv, the
weighted average variance element is always sufficiently high by itself to ensure
that the cv of the mixture will be higher. On the other hand, suppose processing
time and repair times are deterministic, so we obtain a mixture of 1 or 11, with
probabilities 0.95 and 0.05. The variance will be 4.75, leading to cv = 1.453. So in
this example, considering both effects, we observe a very sizable increase in cv.
This is typical for mixtures where one component is rare but much larger than
the other (as in the case of infrequent machine breakdowns). It is perhaps the
most important feature of mixtures of this type.

Appendix A Practical Processing Time Distributions 583



To simulate such a mixture, we may first sample the pure processing time and
then take a side lottery by generating a random number, rand. If rand ≤ 0.05, we
generate a repair time and add them up. An alternative approach relies on the
lognormal sum approximation. First generate rand, and then, depending on the
result, generate either a pure processing time or a combined processing and
repair time. In terms of μ and cv, the two approaches are equivalent. This equiv-
alence is guaranteed because the lognormal sum approximation matches the
mean and the variance of the sum.
If we remove the assumption that only the first repair event during a proces-

sing time counts, we can devise a more realistic model for frequent repairs.
Whereas this model is difficult to analyze theoretically, it is straightforward
to simulate, and we present it in simulation terms. Recall that time between ran-
dom events such as breakdowns is the main practical case for which the expo-
nential is often valid. Accordingly, suppose that the time between breakdowns
follows an exponential distribution with a given rate, λ (equivalent to the recip-
rocal of the mean). Then, if the simulated pure job processing time is x, the
number of breakdowns during the job follows a Poisson distribution with
parameter λx. The next step is to simulate the number of repairs necessary
as a Poisson realization with parameter λx. (A straightforward way to do that
is by counting the number of basic exponential random variables required
for their sum to exceed λx for the first time and subtracting 1. It is also possible
to simulate a Poisson random variable based on a single rand realization. Both
approaches require iterative computation.) Whereas the coefficient of variation
increases in all cases, the effect is stronger with rare and large repairs, in which
case the resulting mixture distribution is clearly far from lognormal. When
repairs are very frequent but small, their effect on the mean can be comparable
with that of infrequent large repairs, but their effect on cv is smaller and the
mixture distribution can be approximately lognormal. Figure A.3 depicts the
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Figure A.3 Normal Q–Q plot of ln(pj/ej) for machine breakdown mixture models with large
infrequent repairs (left) and small frequent repairs (right).
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result of such a simulation for 100 jobs, in which the pure processing time
is basic lognormal with cv = 0.4 and the repair time has the same cv. In the
left-hand figure, a single repair occurs on average every four time units and takes
an average of two time units. In the right-hand figure, the frequency of repairs
is quadrupled, but their average duration is quartered. On both sides,
the mean increases by 50%, but whereas the left side fails the normality test
with a probability of about 1.5%, the right side passes with a probability of
about 40%. (These probabilities fluctuate wildly among different simulation
runs, but the qualitative difference between the two sides is consistent.) Note
specifically the S wave shape of the left-side graph and that its slope exceeds that
of the right-side graph. If we were to fit the regression line to only the negative
points, it would reflect mostly instances without breakdowns, its slope would
be lower than for the full set, and the most positive points would be strictly
above the regression line. That becomes more pronounced as we reduce
the breakdown probability further (while holding the mean total time constant).
However, when the frequency of repair is very low, we may need a larger
sample, with a sufficient likely number of repair events, to see this effect.

A.3 Increasing and Decreasing Completion Rates

Suppose that we start processing a job, and after x time units, it has not been
completed. Consider the distribution of the time remaining to complete the
job given that processing has lasted longer than x. To obtain the conditional
density function, f(t|t > x), we must divide f(t) by [1 − F(x)], the probability
that processing did not finish by x. As a result the area under the conditional
density function above x is 1. Therefore, if δ is an infinitesimal time interval,
the probability the job will complete during the next δ time units is δ × f(t)/
[1 − F(t)]. For this reason, the ratio f(t)/[1 − F(t)] is known as the completion
rate. In general, the completion rate is a function of t, and it may or may not
be monotone. If it is monotone increasing, we refer to the processing time
distribution as having an increasing completion rate (ICR), and if it is mon-
otone decreasing, we refer to the processing time distribution as having a
decreasing completion rate (DCR). If a processing time distribution is
ICR, then its conditional remaining expectation, that is, (E[t|t > x] − x), is
monotone decreasing, which is the case we intuitively expect. (In reliability
theory, completion rates are known as failure rates, so ICR is denoted IFR
and DCR is denoted DFR.)
The uniform and normal distributions exhibit ICR. The exponential distribu-

tion is a boundary case, with constant completion rate. Thus, it lies between the
cases of ICR and DCR. If an exponentially distributed processing time does not
complete during the first x time units, wemight want to know the distribution of
the remaining time. Surprisingly, the distribution of the remaining time follows
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exactly the same distribution as it did initially. In other words, as long as the job
is not yet complete, the probability it will complete in the next small time inter-
val is constant for an interval of given length, no matter how much processing
has taken place. This feature is sometimes referred to as the memoryless
property.
For nonnegative random variables, constant completion rate and unit coeffi-

cient of variation are related: ICR random variables are associated with coeffi-
cients of variation below 1, and DCR random variables are associated with
coefficients of variation above 1. More precisely, ICR implies low coefficient
of variation, but the converse is only true in an approximate sense because
the completion rate is not necessarily increasing everywhere. Similarly, DCR
implies high coefficient of variation, whereas the converse is only true in an
approximate sense.
Now consider the lognormal and the pure Parkinson distributions. The log-

normal can be shown to exhibit an ICR initially, but if processing does not com-
plete by some threshold (that depends on the parameters), it becomes DCR.
Similarly, the pure Parkinson is ICR for any processing time below q, but once
q is exceeded, there is an immediate increase in the expected remaining proces-
sing time. The behavior thereafter depends on the tail distribution of Y. Thus,
these two distributions show that the completion rate need not be a monotone
function. A similar observation holds for some mixtures, such as breakdown
models with infrequent and long repair time.

A.4 Stochastic Dominance

When E[p1] ≤ E[p2], we say that p1 is (weakly) smaller than p2 by expectation.
We also write p1 ≤ex p2. Example 6.5 demonstrates that p1 ≤ex p2 is not suf-
ficient to generalize deterministic dominance rules requiring p1 ≤ p2, because
the worst-case realization of p1 could be larger than that of p2. However, sto-
chastic ordering relationships exist that preclude a worst-case reversal. We say
that one random variable, X, is stochastically smaller than another, Y (denoted
X ≤st Y), if Pr{X ≤ t} ≥ Pr{Y ≤ t} for any t. This implies that the cdf of X, FX(t), is
at or above the cdf of Y, FY(t). In other words, FX ≥ FY everywhere. We also
refer to this relationship as stochastic dominance, and if it applies to several
random variables, we say that they are stochastically ordered (because the
dominance relationship is transitive). Stochastic dominance is a strong rela-
tionship in the sense that ≤st implies ≤ex. A useful way to see this relationship
is by noting that the expected value of a nonnegative random variable is given
by the area captured above its cdf below 1 and to the right of the origin (see
Figure A.4). But if FX ≥ FY, then the area above FX cannot exceed the area
above FY.

586 Appendix A Practical Processing Time Distributions



The definition of ≤st does not require statistical independence. For example,
let X and Y be two iid random variables, and let Z be any nonnegative random
variable (including the degenerate case, in which Z = 0 with certainty). Then
X ≤st Y + Z and X ≤st X + Z. The first relation is between independent random
variables. When Z = 0 with certainty, this relation implies that iid random vari-
ables are stochastically smaller than each other. However, in the second relation,
X and X + Z are statistically dependent because of a common element shared by
the two random variables.

A.5 Linearly Associated Processing Times

When random variables are subject to common causes of variation affecting
more than one of them in the same direction, they are said to be associated
(Esary et al. 1967). More formally, random variables are associated if the corre-
lation between any positive increasing functions of any two of them is nonneg-
ative. Independent random variables are associated (weakly), but negatively
correlated ones are not. We need to consider associated processing times
because, in practical settings, there are often many common causes of variation
that affect more than one job in the same direction. For example, if the quality of
a particular tool deteriorates, then those jobs that require it may all take longer
to process. Because this applies to several jobs, the processing times are posi-
tively correlated. In general, it is likely that various causes affect different subsets
of jobs in such a way that positive correlation is introduced among them to var-
ious degrees. Furthermore, when processing times are associated random vari-
ables, the completion time variance is higher than for independent random
variables, for all but the first job. For independent random variables, the vari-
ance of a sum equals the sum of the variances. However, two associated random
variables have a nonnegative covariance by definition, and the variance of a sum
of random variables with a positive covariance is higher than the sum of the var-
iances. Therefore, the independence assumption is optimistic for the variance of
a completion time. In a scheduling context, because our penalty functions are
nondecreasing, when two processing times are associated, their penalties are

E(X)
FX

Figure A.4 Depicting the expected value as an area over the cdf.
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associated. This, in turn, implies that the variance of performance measures that
are based on processing times that are associated random variables is also higher
than for independent processing times. Thus, it is optimistic to ignore positive
dependence.
One way in which association may arise is by adding the same random var-

iable to two or more independent random variables. Another way is if two or
more positive random variables are multiplied by the same common factor. For
example, if a regular worker may be sick tomorrow, and the replacement
worker is 10% slower, then it would constitute a common factor of 1/0.9 multi-
plying all processing times. Therefore, for today’s scheduling purposes, we
must consider tomorrow’s job processing times as positively dependent. Lim-
iting ourselves to linear causes of association, consider the case where two pos-
itive random variables, X1 and X2, are given by X1 = (R1 + α1S)B and X2 =
(R2 + α2S)B, where R1, R2, and S are independent nonnegative random vari-
ables; B is a positive independent random variable; and α1 and α2 are nonneg-
ative scalars. (Because X1, X2 > 0, it follows that if S or α1 = 0 then R1 > 0, and so
on.) If we set S = 0 and B = 1, then X1 = R1, X2 = R2, and they are independent
by assumption (and thus associated). At the other extreme, if R1 and R2 are 0,
then X1 and X2 are proportional (and thus associated). Here B is a common
factor shared by X1 and X2, whereas S represents any additive element they
may share. Alternatively, we could have modeled S without subjecting it to
the common factor. To construct general scheduling models with this type
of association, we might assume that several common factors exist (generaliz-
ing B), such as workers, tools, weather, and so on. Similarly, we can model mul-
tiple common elements (generalizing S), and let each job incorporate a
weighted subset of them. Then each job is subject to a subset of common fac-
tors and a subset of common elements. For each particular pair of jobs, the
product of the common factors in the intersection of common factors acts
as B, and the intersection of common elements acts as S. Common factors
and elements that are not shared by the two jobs can be incorporated into
Rj. Such models, however, would pose a very significant estimation challenge,
and for this reason we often simplify by using just one common factor and up
to one common element with αj = α = 1.
Suppose that a set of random variables is defined by Xj = RjB > 0 for a set of

independent nonnegative Rj and an independent positive common factor B.
Then we say that the members of the set {Xj} are linearly associated. In a
project management setting, Trietsch et al. (2012) show how to estimate
the necessary distributions for this case. They also identified linear associ-
ation in field data; that is, they validated the hypothesis that linear associ-
ation can explain the positive dependence observable in field data (see
our Research Notes for Chapter 18). An extended definition includes the
common element; that is, Xj = (Rj + S)B, in which case we can say that
the members of the set Xj are linearly associated with a common
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factor and a common element. The following theorem was also presented –
without proof – as Theorem 6.7.

∎ Theorem A.1 Given three positive independent random variables – R1, R2,
and B – and one nonnegative random variable S, let X1 = (R1 + S)B and X2 =
(R2 + S)B. Then X1 ≤ex X2 if and only if R1 ≤ex R2 and X1 ≤st X2 if and only if
R1≤st R2.

Proof. For ≤ex (i.e. to show that E[X1] ≤ E[X2] if and only if E[R1] ≤ E[R2]), by
independence, E[Xj] = E[B]E[Rj + S], so the theorem holds. For ≤st, let W1 =
R1 + S andW2 = R2 + S. By construction,W1 ≤st W2 if and only if R1 ≤st R2. Even
if S = 0, W1, W2 > 0, so log(Wj) is well defined. By the definition of stochastic
dominance and because the log function is monotone, log(W1) ≤st log(W2) if
and only if W1 ≤st W2. Therefore, log(W1) + log B ≤st log(W2) + log B (and thus
W1B ≤st W2B) if and only if R1 ≤st R2. □

In scheduling, we focus on completion times. Completion times are typically
composed of sums of processing times and often involve maximum operators
(when we must wait for more than one operation to complete before we can
start a new operation). Furthermore, it may happen that we set release dates
for some jobs, in which case the start time is given by the maximum of the pre-
vious completion time and the release date. For our basic results, however, we
assume that no due dates or release dates exist. Therefore, all processing times
are based on sums of random variables or on maxima of two or more random
variables. We now study the effect of linear association on completion times.
Some of our results could be extended to include a common element, but we
omit such details.
Tomake our results easier to visualize and to simplify the proofs, we imagine a

very large sample that represents reality precisely. In this sample space, we
assume that n columns represent initial independent nonnegative values.
One additional column gives realizations, b, of the positive common factor,
B. We can then add n additional columns, each representing the product of
b and one of the initial columns.We refer to these last n columns as the adjusted
values. By construction, the adjusted values are linearly associated. In general,
we should use the adjusted values for our scheduling decisions, but we might
wonder to what extent we can make the decisions first and then apply the
adjustment. Performing the analysis in this order is always more convenient
because the initial values are independent.

∎ Theorem A.2 Let Xj (j = 1, 2, …, n) and B be (n + 1) independent random
variables, where B is positive. Then jBXj = B jXj.

Proof. For every run with realizations xj and b, it does not make a difference if we
add the adjusted columns or adjust the sum of the initial columns. □
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Corollary A.1 Let Xj (j = 1, 2,…, n) and B be (n + 1) independent random vari-
ables, where B is positive. Then E[ jBXj] = E[B]E[ jXj].

It is difficult to work with convolutions of dependent random variables such
as BXj and BXk. Fortunately, this result tells us that it is permissible to perform
the convolution of Xj and Xk on the initial processing times and then adjust the
result (multiply by B). Because the initial values are independent and proces-
sing times are positive, we can often use the lognormal (or even the regular)
central limit theorem to obtain a reasonable convolution for the initial values.
If B is lognormal and we use the lognormal central limit theorem for the con-
volutions, the product has a lognormal distribution (because the logarithms of
the convolutions and of B are normal). In such a case we add up the para-
meters m and s2 of the convolution and of B to obtain the corresponding para-
meters of the product.

∎ Theorem A.3 LetXj (j= 1, 2,…, n) andB be (n+ 1) independent randomvari-
ables, where B is positive. Then min{BXj} = Bmin{Xj} and max{BXj} = Bmax{Xj}.

Proof. Because B is positive, for every run with realizations xj and b,
min{bxj}) = bmin{xj} and max{bxj}) = b max{xj}. Hence, it does not matter if
we adjust first or take the minimum (or the maximum) first. □

Corollary A.2 Let Xj (j = 1, 2,…, n) and B be (n + 1) independent random vari-
ables, where B is positive; then E[min{BXj}] = E[B]E[min{Xj}] and E[max{BXj}]
= E[B]E[max{Xj}].

Thus, for any completion time that is obtained by a series of max and convo-
lution operations, we can implement Theorems A.2 and A.3 serially. The cdf of
the completion time subject to linear association is then given by the initial cdf
of the same completion time adjusted afterward. Corollaries A.1 and A.2 yield
the adjusted expected completion time. Similar analysis proves the following.

∎TheoremA.4 Consider a job shop where all jobs are available for their initial
operation at time zero (i.e. without active release dates). Assume linearly asso-
ciated processing times with a common factor element B. Let Cj(s) be the
adjusted completion time of job j under sequence s, and let Cj s be the initial

completion time under the same sequence; then Cj s =BCj s .

For such a shop let s1 and s2 be two sequences in which Cj(sj) is the adjusted
completion time under sequence sj and Cj sj is the respective initial comple-

tion time. By Theorem A.1, if E Cj s1 ≥ exE Cj s2 , then Cj(s1) ≥ex Cj(s2), and

if Cj s1 ≥st Cj s2 , then Cj(s1) ≥st Cj(s2).
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The symmetrical result also holds. For safe scheduling, we are especially inter-
ested in identifying stochastic dominance, because it often suffices to ensure the
optimal sequence for safe scheduling as well as for the stochastic counterpart.
But obtaining stochastic dominance for stochastic counterpart solutions is the
exception and not the rule. More generally, typical results available for stochas-
tic counterpart models remain valid for the linearly associated case. For such
models, however, if we assume (without loss of generality) that E[B] = μb = 1,
then there is no real difference introduced by linear association. The conse-
quences of linear association are more important for safe scheduling, however,
where we may encounter some difficulties in generalizing all results based on
the independence assumption. The reason is that due dates and release dates
that are optimal for the initial processing times are not likely to remain optimal
after adjustment. In other words, service levels are subject to change. This dif-
ficulty would apply even if a stochastically dominant sequence exists because we
still need to adjust our due dates and release dates. Nevertheless, to study safe
schedulingmodels with linear association, wemust first consider the variance in
more detail.

∎TheoremA.5 Consider a job shop where all jobs are available for their initial
operation at time zero (i.e. without active release dates). Assume linearly asso-
ciated processing times with a common factor element B, such that E[B] = μq.
Let Cj s be the initial completion time of job j under sequence s, with mean μs
and variance σ2s , and let Cj(s) be the adjusted completion time of the job under
the same sequence. Then

V Cj s =E B2 σ2s +V B μ2s = E Cj s
2 V B + μ2bσ

2
s

Proof. By a fundamental identity, V(Cj(s)) = E[Cj(s)
2) – (E[Cj(s)])

2 (which is
nonnegative because by Jensen’s inequality E[Cj(s)

2] ≥ (E[Cj(s)])
2). Substituting

BCj s for Cj(s), we obtain V Cj s =E B2 Cj s
2− BCj s

2
. Because B and

Cj s are independent, we can also write V Cj s =E B2 E Cj s
2 −μ2bμ

2
s . By

the same identity we can substitute σ2s + μ
2
s for E Cj s

2 and V B + μ2b for

E[B2] to obtain V Cj s = μ2s σ
2
s +V B σ2s +V B μ2s . The two (symmetrical)

results follow by recombining either the first two elements to E B2 σ2s or the last

two elements to E Cj s
2 V B . □

By dividing the interim result obtained in this proof by μ2bμ
2
s , we obtain the

following theorem.
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∎ Theorem A.6 Consider a job shop where all jobs are available for their
initial operation at time zero (i.e. without active release dates). Assume lin-
early associated processing times with a common factor element B, such that
E[B] = μb. Let Cj s be the initial completion time of job j under sequence s, with

mean μs and variance σ2s , and let Cj(s) be the adjusted completion time of the job
under the same sequence. Then

V Cj s

E Cj s
2 =

V B
μ2b

+
V B σ2s
μ2b μ

2
s

+
σ2s
μ2s

Theorem A.6 indicates that the squared coefficient of variation (scv) of the
product exceeds the sum of the scvs of the components (by their product),
and therefore the coefficient of variation of the product exceeds that of either
component. In our context, the more important aspect of this observation is
that the coefficient of variation of the makespan cannot be less than that of
B. Henceforth, we assume that B is normalized so that μb = 1. We can do so
without loss of generality because, for any positive μb, BCj s = B μb

Cj s μb . With μb = 1, Theorem A.5 implies that the variance of the makespan

cannot decrease by incorporating the common factor in the model. If the
means and variances of two makespan distributions are agreeable, they
remain agreeable after multiplication by B; otherwise, the one with the larger
mean may also acquire a larger variance due to the element V(B)μ2s . In more
detail, E[B2] – 1 = V(B) (because μ2b = 1), so the variance of s increases by
V(B)μ2s + V(B)σ2s (where σ

2
s denotes the variance of s before the multiplication).

∎ Example A.1 Suppose the initial makespans of two sequences have lognor-
mal distributions with μ1 = 95, μ2 = 97, σ1 = 5, and σ2 = 3. Suppose further that
the common factor, B, is lognormal with mean 1 and cv = 0.5. Let the objective
beminimizing d + γE[T] with γ = 3. Compare the two sequences before and after
adjustment, and repeat for γ = 2.5.

For details on calculating the optimal due date for the objective of minimizing
d + γE[T] and for calculating the objective function value, see Appendix B. The
makespan, Cmax, is a completion time and thus subject to Theorems A.5 and
A.6. Table A.3 summarizes the results for the example. The first four rows
are for γ = 2.5, two before adjustment and two after. The last four rows are
for γ = 3. Each row lists the calculatedm and s parameters, the optimal due date,
d∗, and the total cost, TC.
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By comparing TC for the first two rows we see that for γ = 2.5 the first
sequence is best (99.86 < 99.91). Rows 5 and 6 indicate that sequence 2 is
optimal for γ = 3. It can be shown that for γ = 2.587 we get the same objec-
tive function value, 99.98 (but the due dates are different, namely, d1 =
96.32 and d2 = 97.82). Therefore, before adjustment, sequence 1 is optimal
for any γ < 2.587, whereas sequence 2 is optimal for γ > 2.587. The two ini-
tial distributions intersect each other at 100.0, which happens to be higher
than both initial due dates and corresponds to SL = 0.842. Sequence 2 has
the more attractive distribution beyond x0 = 100.0 and above SL0 = 0.842.
To evaluate the situation after the adjustment, we utilize the observation
that the product of two lognormal variables is lognormal, and the product’s
m and s parameters are the sums of the components. Rows 3 and 4 indicate
that for γ = 2.5, sequence 1 remains optimal, but the objective function is
increased substantially. For γ = 3, however, sequence 2 becomes inferior
after adjustment in favor of sequence 1. The two adjusted distributions
intersect at such a high value that sequence 1 has the more attractive
cdf anywhere below SL =Φ(6.0) > 0.999 999 999; that is, in a practical sense
sequence 1 is stochastically dominant. Thus, for γ > 2.587, the initial opti-
mal sequence should be rejected. After the adjustment, we prefer the
sequence with the higher variance, which may be counterintuitive, but
by comparing the s values before and after adjustment in Table A.3, we
see that the variance of the initial sequence in this example is negligible
relative to the variance induced by B. Therefore, the mean becomes the
crucial issue. Various aspects of this example prove the next three
propositions.

Table A.3 Calculated values for Example A.1.

μ σ m S d� TC

2.5, unadjusted 95 5 4.552 0.0526 96.14 99.86

2.5, unadjusted 97 3 4.574 0.0309 97.72 99.91

2.5, adjusted 95 5 4.522 0.2518 98.10 118.60

2.5, adjusted 97 3 4.544 0.2482 100.16 120.75

3, unadjusted 95 5 4.552 0.0526 97.04 100.51

3, unadjusted 97 3 4.574 0.0309 98.25 100.29

3, adjusted 95 5 4.522 0.2518 102.58 122.26

3, adjusted 97 3 4.544 0.2482 104.67 124.42
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Proposition A.1 The initial optimal sequence for minimizing d + γ E[T] is not
identical to the optimal adjusted sequence.

Proposition A.2 The initial optimal sequence for minimizing d subject to a
service-level constraint SL ≥ b is not identical to the optimal adjusted sequence.

Proposition A.3 Consider two intersecting cdfs of initial completion times
and the cdfs of the same completion times after adjustment. The adjusted cdfs
may intersect at a different service level than the initial cdfs.

For makespan minimization, safe scheduling models based on initial (inde-
pendent) processing times, it often happens in the limit as n ∞ that the coef-
ficient of variation of the makespan, cv, becomes negligible. If cv 0, however,
then the optimal safety time becomes negligible relative to the expected make-
span. This is a highly suspicious result that most practitioners would not and
should not accept. Indeed, it is implausible that the true coefficient of variation
tends to zero as n ∞, so including linear association in the model is one way
to improve the practicality of a model. Thus, on the one hand, linear association
makes themodel more realistic and yet tractable. On the other hand, setting due
dates and release dates must not be performed before the adjustment.
A reasonable heuristic is to solve the stochastic counterpart on the initial values,
apply the adjustment to the result, and only then set due dates and release dates.
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Appendix B

The Critical Ratio Rule

B.1 A Basic Trade-off Problem

A common planning problem involves trading off surplus and shortage out-
comes in an uncertain environment. Conceptually, wemake a decision and then
await the value of an uncertain outcome. However, due to uncontrollable fac-
tors, the outcome may turn out to be larger or smaller than what we decide. If
the outcome is larger than the value we decide, we incur costs due to underes-
timation; if the outcome is smaller, we incur costs due to overestimation. Faced
with these possibilities, we look for a decision that navigates optimally between
the two kinds of risks.
In a scheduling environment, the uncertain outcome is often the comple-

tion time of a particular job (or a set of jobs). The job’s due date, assuming that
we can choose it, plays the role of our decision. If the job completes before the
due date, then we incur earliness costs, and if the job completes after the due
date, we incur tardiness costs. Unless our decisions are perfect, we can antic-
ipate incurring one cost or the other, and our objective is to minimize the
expected cost.
The use of expected cost as an objective function derives from the theory of

decision making under risk and uncertainty. If we interpret the scheduling sce-
nario literally, as a repeating operational problem, then an appropriate objective
is the long-run cost, which is optimized by minimizing the expected cost cor-
responding to each decision.
To analyze the decision problem, we let d denote the due date (the decision

variable), and we let C denote the completion time. (We use capital letters to
represent random variables.) Then the difference between completion time
and due date is (C − d). If this quantity is negative, we incur an earliness cost
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equal to α(d −C); if this quantity is positive, we incur a tardiness cost equal to
β(C − d). We can write the total cost as follows:

G C,d = αmax 0, d−C + βmax 0,C−d B 1

The objective is to minimize expected cost. In light of Eq. (B.1), the criterion
becomes

E G C,d = αE max 0, d –C + βE max 0,C – d

= αE E + βE T
B 2

In reference to Chapter 7, we should clarify that for a given distribution, and
for γ > 1, minimizing the tightness/tardiness objective, d + γE[T] corresponds to
minimizing a special case of the expected cost objective, αE[E] + βE[T]. To
justify this comment, we substitute β for (γ − 1) and obtain

d + γE T = d +E T + γ – 1 E T

= d +E T + βE T
B 3

Also,

d =C+ max 0, d –C – max 0,C – d

Because d is not random, E[d] = d, and after taking the expectation of both
sides, we obtain

d =E d =E C +E max 0, d –C –E max 0,C – d

or,

d =E C +E E –E T B 4

Rearranging Eq. (B.4) yields

d –E C =E E –E T

That is, the safety time, d − E[C], is the difference between the expected
earliness and the expected tardiness. Therefore, a positive safety time implies
that the expected earliness exceeds the expected tardiness. Substituting
Eq. (B.4) into Eq. (B.3), we obtain

d + γE T = d +E T + βE T

=E C +E E + βE T

In this expression, E[C] is constant, so in the tightness/tardiness trade-off, the
optimal due date is the same value that minimizes E[E] + βE[T], which corre-
sponds to the expected E/T cost for the specific choice α = 1 and β = (γ − 1),
although the objective function value is higher by E[C].
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The most general tightness/tardiness objective for the single-machine model
contains job-dependent parameters:

n

j= 1

αj dj + γjE Tj =
n

j=1

αjE Cj + αjE Ej + βjE Tj

where βj = αj(γj − 1); equivalently, γj = (αj + βj)/αj. Here, the contribution of
job j to the objective function exceeds that of the weighted E/T model by
αjE[Cj]. Therefore, minimizing the sum involves a combination of the
weighted flowtime model with the weighted E/T model (Baker and
Trietsch 2009).
In what follows, we first examine the implications of the expected E/T cost

objective. Then, for convenience, and to provide a slightly different perspec-
tive, we obtain the main results again for the tightness/tardiness objective,
d + γE[T].

B.2 Optimal Policy for Discrete Probability Models

The mechanics of optimizing expected cost differ slightly according to whether
we use a discrete model or a continuous model to describe random outcomes.
There is no essential difference in the conclusions drawn from these two cases,
but treating them separately serves to illustrate how we might apply different
mathematical assumptions in the analysis.
In the discrete case, we use pt as the probability distribution function (pdf ) for

completion time. Specifically, we define pt as the probability that the job will
complete at time t. (For convenience, we assume that t is integer.)

pt = Pr C = t

Also, we define the cumulative distribution function (cdf ) for completion
time to be

F t = Pr C ≤ t

Stated in words, F(t) represents the probability that the job completes on or
before time t.
Suppose that we choose a due date of d and then we observe a completion

time of C. In retrospect, we can ask whether it would be desirable to have
increased d by one initially. An increase in d would have been desirable if the
job finished late, but not if it finished early or on time. Specifically, a unit
increase in d would have reduced tardiness if the job finished late – that is, if
C > d. The probability of this outcome can be written as [1 − F(d)]. On the other
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hand, a unit increase in d would have increased earliness if the job finished early
or on time, the probability of which is F(d).
Thus, there would be a unit increase in earliness with probability F(d) and a

unit reduction in tardiness with probability [1 − F(d)]. The expected incremen-
tal cost can be expressed as

αF d −β 1−F d

It follows that we should increase the due date as long as this expected incre-
mental cost drops, that is, while

αF d −β 1−F d < 0

With terms rearranged, this condition states that we should increase the due
date while

F d <
β

α+ β
B 5

Because F(d) is the probability that the job will finish by its due date, it is also
called the service level (SL). The ratio β/(α + β) is often called the critical ratio.
Our condition in Eq. (B.5) implies that we should continue to increase the due
date as long as the critical ratio exceeds the SL. Or, to state it another way, we
should increase d until we reach the first value for which SL = F(d) ≥ β/(α + β).
This value of d, denoted d∗, is known as the critical fractile. When viewed as a
function of d, the total weighted E/T cost is a piecewise linear convex function.
Usually, F(d∗) > β/(α + β), and that implies that d∗ is the unique optimum.
However, if F(d∗) = β/(α + β), then the objective function has a flat (horizontal)
segment and any d in that range is optimal.
Conceptually, we can determine the optimal due date from a graph of the cdf.

For a discrete probability model, the cdf is a step function that takes on values
between 0 and 1 (see Figure B.1). The critical ratio β/(α + β) is a number between
0 and 1, and we can plot it on the vertical axis of the graph. Then the optimal due
date, d∗, is simply the first d value for which the cdf equals or exceeds this height,
as sketched in Figure B.1.
As an example, suppose we have a unit earliness cost of α = 20 and a unit

tardiness cost of β = 80. Suppose also that the completion time follows the dis-
crete distribution shown below:

Time t 12 13 14 15 16 17 18

Probability pt 0.05 0.10 0.30 0.25 0.15 0.10 0.05

CDF F(t) 0.05 0.15 0.45 0.70 0.85 0.95 1.00
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In this case the ratio β/(α + β) equals 80/(20 + 80), or 0.8, and the optimal due
date is the first level at which the cdf equals or exceeds this value. Therefore, the
optimal due date is 16, because

F 15 < 0 8≤ F 16

We can also calculate the expected cost for the optimal decision from
Eq. (B.2). For the discrete case, this calculation typically involves multiplying
each cost outcome by its probability and taking the sum of those products:

E G C,d = αE max 0, d –C + βE max 0,C – d

= 20 4 × 0 05 + 3 × 0 1 + 2× 0 3+ 1× 0 25 + 80 1 × 0 1+ 2× 0 05

= 43

For an additional perspective, note that the area below the cdf to the left of
the due date (16) is given by 4 × 0.05 + 3 × 0.1 + 2 × 0.3 + 1 × 0.25 = 1.35,
whereas the area above the cdf and below 1 to the right of the due date is given
by 1 × 0.1 + 2 × 0.05 = 0.2. These values are also the expected earliness and the
expected tardiness. Indeed, it is always possible to depict E[E] and E[T] as such
areas. This observation can also be used to justify the critical fractile result
graphically as follows: Suppose we postpone the due date by a small amount,
Δ, measured from the optimal value we calculated. This will increase the
expected earliness area by at least Δβ/(α + β) and decrease the expected tar-
diness area by at most Δα/(α + β). The result is an expected loss (by increased
earliness) of at least Δαβ/(α + β) and an expected gain (by decreased tardiness)
of at most Δαβ/(α + β), so on balance, such a postponement should not be
entertained. By a symmetric argument, the due date should not be reduced,
either.

β
α+β

d*

Figure B.1 Finding d∗ for a discrete distribution.
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B.3 A Special Discrete Case: Equally Likely Outcomes

A special case arises when the probability distribution contains N equally likely
outcomes. In other words, each outcome has probability 1/N, so the kth smallest
outcome corresponds to

F k =
k
N

In this case, we can determine the optimal due date by choosing the kth
smallest outcome, where k is the first value for which k/N ≥ β/(α + β). We
can denote this value by k = Nβ/(α + β) , where x is the smallest integer that
is at least as large as x.
As an example, suppose we have a unit earliness cost of α = 20 and a unit

tardiness cost of β = 80. Suppose also that a simulation experiment produces
the following completion times in nine independent runs:

Experiment 1 2 3 4 5 6 7 8 9

Outcome 27 41 38 33 45 48 35 39 36

Here, we have β/(α + β) = 0.8. The first value of k for which k/9 ≥ 0.8 is k = 8, so
we choose the 8th smallest outcome, or 45, as the due date.

B.4 Optimal Policy for Continuous Probability Models

Sometimes it is convenient to treat the probability model as continuous rather
than discrete. In the continuous case, we describe the processing time with a
continuous probability model by specifying either its cdf, F(x), or its probability
density function, f(x). The argument used earlier involving incremental costs
and revenues still holds, but in this case, because the cdf is continuous, there
will always be a value of d for which Eq. (B.5) can be satisfied as an equation.
However, we can develop a more formal derivation.
We can think about the objective function in Eq. (B.2) as a function of the

decision d. Thus, we define H(d) = E[G(C, d)], so that

H d = αE max 0, d –C + βE max 0,C−d

To find the optimal due date, we take the derivative with respect to d and set it
equal to zero. This step is made easier if we swap the order of expectation and
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differentiation, as shown below, where we use the notation δ(x) = 1 if x > 0 and
δ(x) = 0 otherwise:

∂H d
∂d

= αE ∂ ∂d max 0, d−C + βE ∂ ∂d max 0,C−d

= αE δ d−C + βE δ C−d −1

= αPr C < d −βPr C > d

= αF d −β 1−F d

Setting this expression equal to zero yields the continuous form of Eq. (B.5):

F d∗ =
β

α+ β
B 6

In graphical terms, we solve Eq. (B.6) by plotting the cdf and locating the point
at which its height equals β/(α + β), as shown in Figure B.2. Again, E[E] and E[T]
are depicted by the areas below F to the left of the due date (earliness) and above
F (but below 1) to the right of the due date (tardiness).
The critical ratio, β/(α + β), has a general interpretation that arises in settings

other than scheduling, as long as there are costs for overestimation and under-
estimation. A statement of the optimality condition that covers both the discrete
and continuous cases is the following:

Set the due date equal to the smallest value x for whichF x ≥ β α+ β

As an example of the continuous case, suppose we have a unit earliness cost of
α = 20 and a unit tardiness cost of β = 80, and suppose that the completion time
follows a uniform distribution from 100 to 300. In other words, mean comple-
tion time is 200, but completion is equally likely to occur anywhere between 100
and 300. More formally, the cdf takes the form

F x = 0 005 x– 100 , 100 ≤ x ≤ 300

β
α+β

d*

Figure B.2 Finding d∗ for a continuous distribution.
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Here the critical ratio is equal to 80/(80 + 20) or 0.8. The procedure illustrated
in Figure B.2 calls for this ratio to be set equal to F(d∗). We have

0 005 d∗ – 100 = 0 8

which allows us to obtain d∗ = 260.
The uniform distribution characterizes completion as occurring in the range

200 ± 100, with equally likely outcomes in this range. However, the optimal due
date does not lie at the center of this interval. In this case, the relative values of
unit earliness cost and unit tardiness cost dictate a due date above the mean of
the distribution. If we think of the quantity 200 as a naïve forecast, and the tol-
erance of ±100 as representing possible forecast error, we can see that it is log-
ical to make a decision different from the naïve forecast because of the cost
structure that applies to forecast errors. Specifically, errors that create earliness
penalties cost 20 per unit. On the other hand, errors that create tardiness penal-
ties cost 80 per unit. Because the opportunity cost is greater for tardiness than
for earliness, it makes sense to bias the decision toward protecting against the
risk of tardiness. We achieve this result by choosing a due date that is greater
than the naïve forecast.
The next step is to develop an expression for the expected cost function:

H d = αE max 0, d –C + βE max 0,C−d

For E[E] we can write

E E =
d

0
d−x f x dx= dF d −

d

0
xf x dx

= dF d +
∞

d
xf x dx−μ

B 7

The definite integral in the last part of this expression, called the partial
expectation, takes on a form that depends on the probability distribution for
the completion time, C. For now, we simply use the general expression,
but we elaborate important special cases later. From Eq. (B.4), we also have
E[T] = E[E] + μ − d, so

E T = dF d +
∞

d
xf x dx−d B 8

Using these values, we can express the expected cost function as

H d = α dF d +
∞

d
xf x dx−μ + β dF d +

∞

d
xf x dx−d

= α+ β dF d +
∞

d
xf x dx −αμ−βd

B 9
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This formula forH(d) represents the expected cost for any choice of a due date
d. We could set the derivative of H(d) equal to zero to find the optimal due
date, but we already know that Eq. (B.6) applies in general. Thus, the optimal
due date d∗ satisfies

F d∗ =
β

α+ β

Rearranging this condition yields (α + β)d∗F(d∗) − βd∗ = 0. When we substi-
tute d∗ for d in Eq. (B.9), we can use this condition to simplify Eq. (B.9), leaving
us with

H d∗ = α+ β
∞

d∗
xf x dx−αμ B 10

Once the distribution is specified, we can substitute its partial expectation in
Eq. (B.10) and calculate the optimal cost.
For completeness, we now consider minimizing d + γE[T]. We can compute it

directly by adding d to the product of γ and Eq. (B.8), that is,

H d = d + γ dF d +
∞

d
xf x dx−d

H d = d 1−γ + γ dF d +
∞

d
xf x dx

This formula applies to any due date d. When d is optimized, we have F(d∗) =
(γ − 1)/γ, so the final result is

H d∗ = d∗ 1−γ + γ d∗ γ−1
γ

+
∞

d∗
xf x dx

H d∗ = γ
∞

d∗
xf x dx

B 11

If we set α = 1 and β = γ − 1 in Eq. (B.10), the difference between Eqs. (B.11)
and (B.10) is μ, in agreement with our observation in Section B.1. In Eq. (B.10),
H(d∗) is always positive, which implies that Eq. (B.11) exceeds μ.

B.5 A Special Continuous Case: The Normal Distribution

An important continuous case is that of the normal distribution, where we allow
only a negligible probability that the random variable will be negative. That is,
we assume both the mean completion time, μ, and the due date, d, are positive
and σ/μ is sufficiently small that we can ignore the probability of a negative real-
ization. It is also convenient to use the standard normal distribution (mean of

Appendix B The Critical Ratio Rule 605



zero and standard deviation of 1). For this purpose, we use the notationΦ( ) for
the cdf and ϕ( ) for the density function of the standard normal, as introduced in
Appendix A.
The expected E/T cost is obtained from Eq. (B.10). In the case of the normal

distribution, the partial expectation in Eq. (B.10) can be written as

∞

d
xf x dx=

1

σ 2π

∞

d
xexp

−1
2

x−μ
σ

2
dx

Next, we use the transformation x = μ + zσ, so that dx = σdz and the trans-
formed due date becomes d = (d − μ)/σ. In addition, the derivative of ϕ(z)
is −zϕ(z), allowing us to write the partial expectation follows:

∞

d
xf x dx=

∞

d

μ+ zσ ϕ z dz = μ 1−Φ
d−μ
σ

+ σϕ
d−μ
σ

Then Eq. (B.7) yields

E E = dΦ
d−μ
σ

+ μ 1−Φ
d−μ
σ

+ σϕ
d−μ
σ

−μ

= d−μ Φ
d−μ
σ

+ σϕ
d−μ
σ

Similarly, Eq. (B.8) yields

E T = dΦ
d−μ
σ

+ μ 1−Φ
d−μ
σ

+ σϕ
d−μ
σ

−d

= σϕ
d−μ
σ

− d−μ 1−Φ
d−μ
σ

From Eq. (B.9) the expected E/T cost becomes

H d = α+ β dΦ
d−μ
σ

+ μ 1−Φ
d−μ
σ

+ σϕ
d−μ
σ

−αμ−βd

= α+ β dΦ
d−μ
σ

−μΦ
d−μ
σ

+ σϕ
d−μ
σ

+ β μ−d

B 12
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Next, we substitute for the optimal due date, d∗, from Eq. (B.6), which, in the
normal case, is given by

Φ
d∗−μ
σ

=
β

α+ β
B 13

Thus, the optimal expected E/T cost is

H d∗ = α+ β d∗ β

α+ β
−μ

β

α+ β
+ σϕ

d∗−μ
σ

+ β μ−d∗

H d∗ = α+ β σϕ
d∗−μ
σ

B 14

Operationally, we compute the critical ratio and use normal tables or the
corresponding spreadsheet function to determine d∗ = μ + σΦ−1[β/(α + β)].
If we set d = μ in Eq. (B.12), we obtain

H μ = α+ β σϕ 0

This result is very similar to Eq. (B.14), but this form holds for H(d) only for
the special values d = μ or d = d∗. Furthermore, as ϕ(0) is the maximum possible
value of ϕ( ), we can say that the benefit of using the optimal safety time relative
to not using safety time is a relative reduction of [ϕ(0) − ϕ((d − μ)/σ)]/ϕ(0) in the
expected E/T penalty. This benefit is zero for α = β but exceeds 50% when max
{β/α, α/β} > 7.365.
In Chapter 11, we use a variation on this type of analysis in the formula for

E[min{X, Y}] = E[X −max{X − Y, 0}] = E[X] − E[W+], where W = X − Y. If X
and Y are normally distributed, thenW is normally distributed with mean equal
to μ = μx − μy and variance equal to σ2 = σ2x + σ2y . Then E[W+] is given by the fol-
lowing definite integral:

∞

0
wf w dw=

∞

0
w
1
σ
ϕ

w−μ

σ
dw

Let v = (w − μ)/σ, so that dv = dw/σ, and let z = μ/σ. Then the lower limit of
integration corresponds to v = −z. The integral becomes

σ
∞

−z
v+ z ϕ v dv= σ

∞

−z
vϕ v dv+ σz

∞

−z
ϕ v dv= σϕ z + σzΦ z

Thus, we have E[W+] = σϕ(z) + σzΦ(z), and we can write

E min X ,Y =E X –E W + = μx – σ ϕ z + σzΦ z B 15
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B.6 Calculating d + γE(T) for the Normal Distribution

We return to a consideration of the specific objective function H(d) = d + γE(T)
and derive the formula for its optimal value. As before, let μ represent the mean
of the normal distribution that describes completion time and σ its standard
deviation. The critical ratio in this case is given by Eq. (B.13):

Φ
d∗−μ
σ

=
γ−1
γ

which can also be written as 1 −Φ d∗−μ
σ = 1 γ, or as γ = 1 Φ μ−d∗

σ . Using
Eq. (B.8) for E[T] and substituting the formula for the partial expectation of
the normal, we obtain

H d∗ = d∗ + γ μ−d∗ 1−Φ
d∗−μ
σ

−μΦ
d∗−μ
σ

+ σϕ
d∗−μ
σ

= d∗ + γ μ−d∗ 1
γ

−μ
γ−1
γ

+ σϕ
d∗−μ
σ

= μ+ γσϕ
d∗−μ
σ

B 16

If we set α = 1 and β = γ − 1, Eq. (B.16) exceeds Eq. (B.14) by μ, a relationship
related to our observation in Section B.1.
From Eq. (B.16) it is clear that for the objective d + γE(T), a makespan with

both a lower mean and a lower variance is dominant. (This result holds for
any convex increasing objective.) Nonetheless, for two normal distributions,
if one has lower mean and lower variance than the other, it is still not stochas-
tically dominant in the ordinary sense. The only case in which one normal var-
iable is stochastically smaller than another, independent normal variable occurs
when their variances are equal. Otherwise, the cdfs of two normal distributions
with different means and standard deviations always intersect each other exactly
once. It may happen, however, that this intersection yields stochastic domi-
nance for all practical purposes. For example, when the intersection is for a neg-
ative argument, then by definition it occurs outside the range of our interest and
may be ignored.

B.7 Calculations for the Lognormal Distribution

We adopt the notation introduced in Appendix A for a random variable X that
follows a lognormal distribution with the corresponding random variable Y =
ln(X) following a normal distribution. Our notation takes μ and σ as the mean
and standard deviation of X, while m and s represent the mean and standard
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deviation of Y. Given the lognormal parameters (μ, σ), we evaluate m and s
directly from the following relationships:

s2 = ln 1 + σ2 μ2 m= ln μ −s2 2

Given (m, s), the reverse evaluation leads to

μ= exp m+ s2 2 σ2 = μ2 exp s2 – 1

These formulas are sufficient for the calculations required in the problem of
minimizing the sum of the due dates subject to SL requirements (Section 7.2).
For the more complicated safe scheduling problems, we make use of the kth

raw partial moment, denoted Mk(d), defined for any nonnegative random
variable and any nonnegative integer k by

Mk d =

∞

d

xkf x dx

In particular, M0(d) = 1 − F(d) (so M0(0) = 1) and M1(0) = μ. With this nota-
tion, we can alternatively express Eq. (B.8) as follows:

E T = dF d +
∞

d
xf x dx−d =M1 d −dM0 d

In addition, Eq. (B.10) can be expressed as follows:

H d∗ = α+ β
∞

d∗
xf x dx−αμ= α+ β M1 d∗ −αμ B 17

When we turn to minimizing d + γE[T], the objective in Eq. (B.11) becomes

H d∗ = γ
∞

d∗
xf x dx= γM1 d∗ B 18

To specialize these formulas to the lognormal distribution, we first develop
Mk(d) for the lognormal. By definition

Mk d =

∞

d

xkf x dx=
1

2πs

∞

d

xk−1 exp
− ln x −m 2

2s2
dx
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For justification, recall from Appendix A that the density function of the log-
normal includes division by x. Now let z = (ln(x) −m)/s and d = (ln(d) −m)/s. It
follows that dx = sxdz and x = exp(sz +m). Therefore,

Mk d =
1

2π

∞

d

xk exp
−z2

2
dz =

1

2π

∞

d

exp
−z2

2
+ k sz +m dz

=
exp km

2π

∞

d

exp
−z2 + 2ksz

2
dz

=
exp km

2π

∞

d

exp
−z2 + 2ksz− ks 2

2
+

ks 2

2
dz

=

exp km+
ks 2

2

2π

∞

d

exp
− z−ks 2

2
dz

Let w = z − ks, leading to dz = dw. We now have

Mk d = exp km+
ks 2

2

∞

d −ks

ϕ w dw

In the limit, as d 0+, d − ks −∞, so the kth moment, μk, is

μk =E Xk = exp km+
k2s2

2
= μk 1 + cv2

k k−1 2

Here, the right-hand side follows because k2/2 = k/2 + k(k − 1)/2, exp(km +
ks2/2) = exp(k(m + s2/2)) = μk, and exp(s2) = 1 + cv2. In particular, the first
moment is μ, as should be expected, and the second moment is μ2(1 + cv2).
Because 1 −Φ(z) =Φ(−z), for any positive d, we also have

Mk d = μk 1 + cv2
k k−1

2 Φ ks−
ln d −m

s
= μk 1 + cv2

k k−1
2 Φ ks−d

B 19

To minimize d + γE(T), by Eq. (B.18), H(d∗) = γμΦ(s − z∗), where z∗

=Φ−1[(γ − 1)/γ] and d∗ = exp(z∗s +m). The minimal early/tardy objective func-
tion is given by μ[αΦ(z∗ − s) + βΦ(s − z∗)], for the same value of z∗ (with α = 1
and β = γ − 1). This result can be obtained by subtracting αμ from the previous
result.
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When processing time is a nonnegative continuous random variable, such as
the lognormal, tardiness relative to d > 0 is a nonnegative mixed random var-
iable: With probability SL it is zero, and otherwise it is continuous. We have
already seen that E[T] =M1(d) − d[1 − F(d)]. By similar analysis, E[T2] =
M2(d) − 2dM1(d) + d2[1 − F(d)]. Using these values, we can calculate the vari-
ance of the tardiness, V(T) = E[T2] − E2[T]. This is particularly useful for the
purpose of using the lognormal sum approximation for jobs with release dates
when a job’s completion timemay be increased due to tardiness of an earlier job.
For instance, such an approximation could be useful for Example 19.3, where
travel times between stations are assumed lognormal but the bus departure
from interim stations may be delayed due to previous tardiness. The quality
of the approximation depends on the parameters.
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and positive Jensen gap 144, 472
of the PSB model 549, 551, 555

Correction for rounding 516–518
Correlation see Stochastic dependence
Cost modifier 562 see also Crashing

(time/cost trade-off ), stochastic
Cost to budget ratio 527
Crashing (time/cost trade-off )
deterministic 463–467
stochastic 560–565

Critical activity 460–462 see also
Criticality (criticality index)

Critical fractile 176, 185, 190, 329,
600–601 see also Critical ratio

Criticality (criticality index) 473–475,
540–550, 555–556,
559–562, 565

Critical job 218
Critical machine see Bottleneck (critical)

machine
Critical path 264, 278, 404–405,

417–418, 420, 477, 483, 487, 491,
497, 540, 548, 560

calculations 458–463, 483, 497
nominal 468, 471, 472–475

Critical path method (CPM) 453,
454–467, 476–478, 483,
489–490, 496, 504, 537, 557, 566
see also Program evaluation and
review technique (PERT)

Critical ratio 540, 543–545, 553,
597–611 see also Critical fractile

priority dispatching rule see
Dispatching, with priority rules

Critical sublot 345–347
Cross-validation 530–531

d
DCR see Completion rate, decreasing
Decision theory 155
Decomposition tree see Series-parallel

precedence structure

Delivery time 219–221, 413–414
Delta priority rule 499–500
Dense schedule 332–334, 337
Deterministic counterpart 130,

137–138, 141, 144–145, 149,
150, 161

of the parallel-machine makespan
problem 275–276

of the PERT model 468, 473–474
of the resource-constrained project

scheduling problem 504
of the stochastic E/T

problem 186–187
of the stochastic flow shop

problem 319, 320–322,
324–327, 331–333, 336–337

of the stochastic Lmax-problem 138
of the stochastic Tmax-problem 138
of the stochastic T-problem 161
of the stochastic traveling salesperson

problem 242–248
Deterministic model 4
DFR (decreasing failure rate) see

Completion rate, decreasing
Discrete processor 387, 394
Disjunctive arc 404, 413–418
Dispatching 72–77, 90, 98–99, 124

in the dynamic job shop 430–432
in the dynamic single-machine

model 218, 219, 223, 224, 240,
247–248

in the flow shop with blocking 312
in the job shop model 408
in the parallel-machine model 257,

260, 263, 270, 276–278
with priority rules 408, 430–432
in the resource-constrained project

scheduling problem 494, 499,
502, 504

Dominance property 48–52, 55, 66 see
also Dominant set

for the burn-in model 392–394
dynamic 212
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for early/tardy problems 107–108,
111, 118, 120

for family scheduling 394
for flow shop problems 286
for lot streaming

problems 344–345, 353, 617
for safe scheduling 179–180, 187,

193, 212
for stochastic sequencing 141,

145–149, 162, 262
Dominant set 14–15, 48–52

with batch processing 393
in the E/T problem 107, 108, 111,

113, 118, 120
in the flow shop problem 287, 297,

309, 310, 313
in the job shop problem 403, 406,

407, 421
with nonsimultaneous

arrivals 217–218
Due date 12, 22–30, 105–106, 130 see

also Family due date; Operation
due date

agreeable 149, 204, 210, 223,
224, 226

in the assembly co-ordination
model 540–541

common 106, 107–120, 124
as decision 30–32, 106, 112–113,

119, 121, 124, 277, 327–330
in the dynamic job shop 431, 436,

440, 444
in safe scheduling 169–194, 277

distinct 106, 120–123
modified see Modified due date 73
project 458, 538–539
tight 31–32, 107, 112, 114,

169–184, 197, 440, 442,
444, 448

of zero 74
Dummy activity 456–457
Duration to estimate ratio (pj/ej) 512,

516, 527–528, 532–533

Dynamic arrivals see Nonsimultaneous
arrivals

Dynamic job shop model 412,
427–451

conditional mean tardiness
(CMT) 439–440, 449

mean flowtime 432–433, 439,
449–450

mean tardiness (MT) 439–442,
445–447, 449–450

proportion of jobs tardy (PT) 436,
439, 443, 449 see also
Service level

Dynamic model 4, 216
Dynamic programming 42–48,

50–52, 60, 62, 144, 145,
394–395

computer implementation
46–48, 50–52

for the E/T problem 114, 120
and the expected maximum cost

problem 162
for the F-problem with batch

availability 385–386
for the F-problem with batch

processing and dynamic
arrivals 390–391

for the F-problem with general
precedence structure 232

for the Fw-problem 46
for the Fw-problem in family

scheduling 376
for the Lmax-problem in family

scheduling 377–379
and the parallel-machine

model 257, 270, 278
and stochastic scheduling 144,

161, 162
for the T-problem 44–45,

50–52
for the traveling salesperson

problem 234–235
for the U-problem 46
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e
Earliest due date (EDD) rule 23, 25, 42,

124, 374
in biased random sampling 80
dynamic adaptation 221–223
in family scheduling 378, 387
and the late finish time

priority 493
and the Lmax-problem 23, 141
and the Lmax-problem with batch

processing 387
nondelay implementation 221–223
as a priority dispatching rule 431,

437–439, 441, 445
and related jobs 226
in safe scheduling 171, 173
in Smith’s rule 24–25
and stochastic feasibility 197–204
in stochastic scheduling 130–132,

137–139, 141
and the stochastic T-problem 149
and the stochastic U-problem 198,

199, 204 see also Stochastic
feasibility

and the Tmax-problem 23, 34, 40,
41, 137

and the T-problem 28–30, 75,
77, 80

and the Umax-problem 60
and the U-problem 25

Earliest release date (ERD) rule 219,
224, 387–388

as a priority dispatching
rule 431–432

Earliness/Tardiness (E/T) problem
105–125 see also Due date,
common; Due date, distinct

with asymmetric costs
116–118

with job-dependent costs 120
in project scheduling,

deterministic 538–539

in project scheduling, stochastic
538–540, 599, 605–607 see also
Stochastic balance (economic)

with quadratic costs 118–119
restricted version 107, 113–116
stochastic counterpart 184–190
unrestricted version 107–113, 116,

118–120
Early event time (ET) 458–459, 461
Early finish time (EF) 441, 458, 459, 485
Early start schedule 490–492
Early start time (ES) 438, 459, 485,

487, 501, 538, 548, 549
Economic balance, stochastic see

Stochastic balance (economic)
EDD see Earliest due date rule
EF see Early finish time
Elimination 55, 183
Elite solutions 421
Enhanced neighborhood 420
ERD see Earliest release date rule
Error bound 258, 259, 261, 262, 267
ES see Early start time
Estimation error 524 see also

Subjective estimation bias
ET see Early event time
Evolutionary Solver 91–96, 99, 149,

154, 162, 206 see also Analytic
Solver Platform

Excel 60, 62, 65, 91–92, 149–154, 571,
574–575, 577

Excel Solver see Solver
Exponential distribution 274–276,

320–323, 326–328, 330–331,
336, 337, 442, 501, 534, 571–573,
577, 578, 582–585

completion rate (processing rate)
320–321

computer simulation of 573
in examples 275–276, 321, 328,

561, 562
memoryless property 561, 585
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f
Family due date 378
Family scheduling model 373–383
Feasibility

check (stochastic) 201–202, 204
constraint 4, 184, 466
stochastic 168–171, 198,

203–204
Fenton–Wilkinson approximation

(FWA) 191, 193, 199, 246,
579–580 see also Lognormal
Sum Approximation

First Come First Served (FCFS)
rule 411–412, 431, 434,
442, 448

First fit decreasing (FFD)
procedure 262

First Off First On (FOFO)
rule 224, 431

First-only-empty (FOE)
algorithm 387–388

Float 461–462
free 461
independent 461
safety 461
total 461

Flow allowance 31, 436–449
Flow shop 283–313, 319–337,

429, 483
with blocking 309–310, 312
2-machine 288–294
3-machine 288, 294–296
m-machine 297–312
no wait 310–312
ordered 308–309, 344, 366
pure 283
stochastic 319–336
with synchronous transfers 303

Flowtime 13, 15–22, 31, 34, 121 see
also Total flowtime; Total
weighted flowtime

and inventory 15–17, 20–22

Fmax-problem see also Maximum
flowtime

F-problem see Total flowtime
Full-batch schedule 387, 389–390
Fundamental partition see Lot

streaming problem
Fuzzy logic 155, 158, 159
Fw-problem see Total weighted flowtime

g
Gantt chart 3, 18, 201, 365, 494
in the job shop problem 401–403,

405, 407, 408
stochastic 201, 554, 556, 557,

564–565
Genetic algorithm 89–90, 421 see also

Evolutionary Solver
for the resource-constrained project

scheduling problem 496, 503
Gilmore and Gomory algorithm 310
Global left shift 406
Global optimum 83–85, 549, 551, 566
Greedy algorithm, heuristic or

procedure 75, 99
for the stochastic service level

problem 171, 173–174
for the stochastic tightness/tardiness

trade-off problem 177,
181, 184

for the traveling salesperson
problem 240

for theTw-problem 77–80, 84, 86, 89
Group technology 341, 374–379, 382,

386, 394

h
Head–body–tail (HBT)

problem 219–221
in the shifting bottleneck

procedure 412–417, 421
Heuristic procedure (heuristic) 6, 54,

71–100, 119, 123
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Heuristic procedure (heuristic) (cont’d)
for the dynamic F-problem 223
for the family scheduling

problem 382, 394
for the flow shop makespan

problem 306–308, 319,
322–323, 325–326, 331,
333–336

for the head–body–tail problem
219, 413

for the job shop problem 411–21,
421–422

for the lot streaming problem 367
for the parallel-machine Fw-

problem 271–274
for the parallel-machine makespan

problem 257–263
for the resource-constrained project

scheduling problem 485, 493,
502–503

for the restricted version of the E/T
problem 114–116, 118

for single-machine
problems 71–100

for the stochastic E/T problem
190

for the stochastic flow shop
problem 331–337

for stochastic scheduling 160, 162,
171, 174, 177, 184, 322–327, 331,
334–336, 493–501

for the tightness/tardiness trade-off
181, 197

for the traveling salesperson
problem 240–241

Hidden buffer see Buffer, hidden
Hidden earliness 511, 522, 535, 580

see also Parkinson effect
Hierarchical balance 557–560 see also

Stochastic balance (economic)
Histogram 153

i
ICR (increasing completion rate) see

Completion rate
IFR (increasing failure rate) see

Completion rate
Implicit enumeration 46, 53–54, 66,

260, 504
Implicit subproject 557–559
Inserted idle time 15, 107, 121–124,

219 see also Active schedule
in the dynamic single-machine

model 216–218, 247
in the flow shop problem

284–285
in the job shop problem 403
lower bound calculations 291
in setting release dates 197
in the stochastic E/T problem 185,

194–195
Insertion procedure 75, 81, 99

for the flow shop problem 308
for the T-problem 76
for the traveling salesperson

problem 241
for the Tw-problem 77

Integer programming (IP) 59–65, 247,
504, 553

for the flow shop problem
300–306

for the lot streaming model 355
for the resource-constrained

project scheduling
problem 504

Interdictive graph 473, 549
Intree see Assembly tree (intree)
Invalid theory see Valid theory
Inventory 16–17, 20–22, 86, 341, 432

see also Flowtime
safety stock (as analogue of safety

time) 167, 208
Item availability see Availability, item
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j
Jensen gap 144–145, 275, 319,

326–327, 331–337, 450, 472,
475, 530

Jensen’s inequality 144
Job module 228
Job selection model 32–34
Job shop 4, 8, 255, 330, 337, 427–451

closed 429
dynamic 427–451
extended (to project

scheduling) 454, 483–492,
497, 504

pure 429, 442
Johnson’s approximate method 295
Johnson’s extended rule 295
Johnson’s heuristic 322–323, 337
Johnson’s rule 288–295, 307–308,

313, 320–324, 326, 329, 331, 334,
336, 368

in family scheduling 379–380
with time lags 293

Jumptracking 57
Just-in-time (JIT) 105, 124, 309, 342

l
Largest tail (LT) procedure 219–221,

413–415
Last insertion (LI) mechanism 81, 84
Late event time (LT) 458–459
Late finish time (LF) 459
Late finish time (LFT)

priority 493–494, 496,
499–500

Lateness 13, 22–23, 63, 136, 436 see
also Maximum lateness

maximum minimal lateness 24, 499
variance 436

Late start schedule 491–492
Late start time (LS) 348, 359, 459
Late start time (LST) priority 499–500

Least work remaining (LWKR)
rule 411–412, 430–431

Lexicographic ordering 265
LF see Late finish time (LF)
LFT see Late finish time (LFT) priority
LI. see Last insertion (LI) mechanism
Linear association see Association,

stochastic
Linear programming (LP) 353–354,

367, 466–467, 550–551, 563,
565, 566

integer LP 59–65, 247, 300–306,
344, 348–350, 355, 504, 553

as proof of convexity see Convexity
List scheduling 257–265, 270–271,

273, 278 see also Construction
heuristic procedure

Local left shift 403
Local optimality 41, 83, 85–87, 99,

549, 555
Logical constraint

(relationship) 454–458, 460,
476 see also Precedence
constraint (relation)

Logical feasibility 496 see also Logical
constraint (relationship)

Lognormal central limit theorem see
Lognormal sum approximation

Lognormal distribution 190–194, 331,
476, 511–513, 521–523,
526–529, 532, 534, 576–580,
582, 586, 608–611

computer simulation of 150–154,
577, 621

in examples 150, 192, 514, 516, 521,
543, 555, 556, 592

and linear association 331, 537,
576–586, 590, 593

and stochastic capacity 580
Lognormal sum approximation 331,

579, 583, 584, 590, 611
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Longest expected processing time
(LEPT) 275–276, 278

Longest path 264–266, 404, 405, 414,
418, 460, 462, 473, 486, 540, 549
see also Critical path

Longest processing time (LPT) 35,
108, 110, 117, 261–262, 275–276

in the job shop problem 412
and Johnson’s rule 290, 295
list scheduling procedure

261–264, 278
LPT/SPT sequence see V-shaped

sequence
and the ordered flow shop 309
in the resource-constrained project

scheduling problem 494,
496, 500

Longest weighted processing time
(LWPT) 120, 271

Look-ahead procedure 218, 223, 224,
240, 241, 247, 263

Loose schedule 332–334
Lot streaming problem 341–369
with consistent sublots 344,

352–358, 361–368
continuous version 344, 345–348,

357–360
discrete version 344, 348–350,

359–355, 359–360, 365
with equal sublots 347, 350,

361–363, 368
fundamental partition 363–367
with intermittent idling 344, 345
linear programming

formulation 352–355
with no idling 344–346, 348,

350–351, 354, 357–358,
361–363

with no wait 357
partition set 357, 367 see also

Fundamental partition
with setup times 350–352

with three or more machines
352–363

with two machines 342–352
with variable sublots 344, 355–363

Lower bound 52–59, 66, 179, 208, 344,
349, 394 see also Branch
and bound

for the batch processing model 394
for the dynamic Lmax problem 222
in flow shop

scheduling 295–300, 313
for Fw in the parallel-machine

problem 270–271
in job shop scheduling 414, 417
for the lot streaming

problem 344, 349
in the makespan problem with

parallel machines 261–262
for release dates in stochastic balance

calculations 542–545
in resource-constrained project

scheduling 486–487, 490, 492
for the stochastic E/T problem 188
for the tightness/tardiness trade-

off 181, 183
for the traveling salesperson

problem 236, 240
LS see Late start time (LS)
LST see Late start time (LST) priority
LT see Late event time (LT); Largest tail

(LT) procedure
LWPT/SWPT sequence 120

m
Machine-based bound 298
Makespan 14, 112, 232, 247 see also

Maximum completion time
with a batch processor 387–388
in the dynamic, single-machine

model 219–221
in the flow shop model 287–288,

296–312
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in the flow shop with family
setups 379–390

in a GT solution 375, 379, 380,
387–390

in the head-body-tail (HBT)
problem 221

in the job shop model 404–405,
411–412, 414–420

with lot streaming 342–368
with parallel machines 255–268,

274–278
project 468, 486, 499–503,

538–539, 548
with sequence-dependent setup

times 232–242, 247
stochastic counterpart 242
in the stochastic flow shop

model 319–337
Maximum completion time 13, 114

see also Makespan
Cmax-problem 14, 219
dynamic version 219–221
with sequence-dependent setup

times 242–247
in the stochastic counterpart 132,

144, 320–328
Maximum cost problem 39–40

with precedence constraints 226
stochastic counterpart 130,

139–144, 160
Maximum flowtime (Fmax) 13,

16–17, 21
Fmax-problem 14

Maximum lateness 23
with a batch processor 387
dynamic version 221–223 see also

Head–body–tail (HBT)
problem

with job families 377–379, 394
in the job shop model 421
Lmax-problem 23
with precedence constraints 226

stochastic counterpart 132,
137–139, 141, 144, 161

Maximum tardiness 13, 23–24,
33–34, 297 see also Maximum
lateness

stochastic counterpart 132,
137–139, 141, 144, 161

Tmax-problem 40
dynamic version 217, 221–223
with precedence constraints 226
relation to resource-constrained
project scheduling 493, 500

MDD seeModified due date (MDD) rule
Mean tardiness (MT) in the dynamic job

shop 439–440
Membership function see Fuzzy logic
Memoryless property see Exponential

distribution
Milestone 558
Minimax cost criterion 155, 158
Minimax regret criterion 156–158
Minimum-mean tour 244–245
Minimum slack time (MST) rule 23,

42, 77, 80
as a dispatching rule 431, 437, 439,

441, 445–447, 500
Minimum-variance tour 244–245
Mixtures (of

distributions) 521–523, 582
MMR see Minimax regret criterion
MOD see Modified operation due date

(MOD) rule
Modified API see Adjacent pairwise

interchange (API), modified
Modified due date (MDD) rule 29–30,

56, 73–75, 100, 432
as a dispatching rule 73, 432,

439–440, 445, 447
nondelay implementation 224
weighted version (WMDD) 74

Modified operation due date (MOD)
rule 441, 444, 447–450
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Most work remaining (MWKR)
411–412

MST see Minimum slack time
(MST) rule

MT see Dynamic job shop model, mean
tardiness (MT)

Multifit algorithm 262–263
Mutation see Genetic algorithm

n
Nearly optimal solutions 6
Neighborhood search 81–89, 99 see

also Genetic algorithm;
Simulated annealing; Tabu
search

for the E/T problem 119, 123
for the flow shop makespan

problem 308
for the job shop problem 402, 407,

417–421
for minimizing D 173–174
for optimizing release dates 197
for the parallel-machine makespan

problem 258, 260
for the resource-constrained project

scheduling problem 493,
496–499, 503

for the stochastic E/T
problem 174, 190

in the stochastic flow shop
problem 319, 323 see also
Adjacent Pairwise Interchange
(API) heuristic

Network methods see Project
scheduling

Network model 229, 230–232, 264
activity 454–478, 513, 530, 539–558

activity-on-arc
(AOA) 454–457, 540

activity-on-node (AON) 454, 457
for the job shop

problem 403–404, 414

series-parallel precedence
structure 230–232, 472

Newsvendor model see Critical ratio;
Stochastic balance (economic)

Nominal makespan 332–333, 335
Nondelay dispatching procedure 219,

494–495 see also Inserted
idle time

Nondelay schedule 407, 410–412, 422,
494–496 see alsoActive schedule

Nonparametric bootstrap resampling
see Bootstrap sampling

Nonsimultaneous (dynamic)
arrivals 216–225, 247–248,
387–388 see also Dynamic
job shop

NOP see Number of operations due
date rule

Normal distribution 172–190, 246,
247, 323–327, 329, 334,
468–469, 511, 526, 529, 534,
573–577, 582, 585, 605–606

computer simulation of 574
in examples 172, 176, 187, 199, 206,

243, 324, 543
truncated 576

Normality test see Q-Q chart
NP-complete 6
NP-hard 6, 66, 161

E/T problem with distinct due
dates 121

E/T problem with job-dependent
costs 120

E/T problem with restrictive due
date 114

E/T problem with secondary
measure 112

F-problem for the burn-in
model 392–393

F-problem for the flow shop 309
Fw-problem with batch

availability 383
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Fw-problem with family
scheduling 383

Fw-problem with parallel
machines 270

head–body–tail problem 219, 413
integer programming 553
Lmax-problem with family

scheduling 379
Lmax-problem with nonsimultaneous

arrivals 221, 390
makespan problem with family

scheduling 380
makespan problem with parallel

machines 257
makespan problem with parallel

machines and related
jobs 263–264, 266

minimax regret problem for total
flowtime 158

in the ordinary sense 66, 112 see
also Pseudopolynomial
algorithm

resource-constrained project
scheduling problem 493

restricted version of the E/T
problem 114

stochastic T-problems and Tw-
problems 161

stochastic U-problem with service-
level constraints 204

in the strong sense 66, 257, 493
three-machinemakespan problem for

the flow shop 294
T-problems and Tw-problems 30,

54, 66–67, 161
traveling salesperson problem 234
unrestricted version of the E/T

problem with nonidentical
costs 120

U-problem with nonsimultaneous
arrivals 224

Uw-problem 26, 60, 98

Number of operations (NOP) due date
rule 440, 444, 449

Number of tardy jobs 13, 25
dynamic version 223, 224
stochastic version 132, 140, 144,

161, 197–204
U-problem 25–26, 46, 60
weighted version (Uw-problem) 26,

60–62, 98

o
OCR see Operation critical ratio rule
ODD see Operation due date rule
Operation critical ratio (OCR)

rule 439, 446
Operation due date (ODD) rule 431,

438, 441
as a dispatching rule 431, 439, 441,

444–448
Operation milestone 438, 441,

443–444, 447, 450
Operation slack time (OST) rule 439,

441, 444–446
Optimality principle 42 see also

Dynamic programming
Optimization methods 39–67
Order statistic 574
Ordered flow shop see Flow shop,

ordered
Origin node 455, 458
OST see Operation slack time rule

p
Pairwise interchange (PI)

neighborhood 81, 84, 119
Parkinson distribution 521, 527, 571,

580–581, 586
Parkinson effect 512, 515–522, 526,

535, 537
Parkinsonian observations 517–520,

527, 626
Partial schedule 408–411
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Partitioning 512–515, 522–523, 535
Partition set see Lot streaming
Passenger transportation see

Transportation, safe scheduling
examples

Perfect schedule 106
Performance guarantee 258, 261, 263

see also Asymptotic optimality
Performance measure (objective) 2–3,

13–14, 20, 39, 54, 65, 77, 82, 105,
118, 121, 154, 225, 255, 286, 394,
401, 427, 432, 436, 439 see also
Regular measure

additive 162
for batch processing 387
in the deterministic

counterpart 132, 137, 138
due date-oriented 22
expected value of 130, 132, 156
secondary 24, 111–112, 121, 542, 547
tardiness-based 26
time-based and economic 33
variance of 147, 588

Permutation schedule 12, 15, 218, 401
in the flow shop problem 287–288,

294, 297, 307, 313, 401
in the flow shop problem with

blocking 309–310
in the flow shop problem with no

wait 310
in the flow shop problem with time

lags 293
in the stochastic flow shop

problem 332
PERT see Program evaluation and

review technique (PERT)
PERT 21 453, 463, 537–567
PI see Pairwise interchange

neighborhood
Planning 2, 30, 341, 453, 471, 597
Poisson random variable 573, 584
Policy for stochastic resource-

constrained projects 422, 502,

538, 566 see also Dispatching,
with priority rules

Polynomial algorithm 5, 66, 123, 240,
270, 276, 296, 310, 349

P-P chart 530–531
PPW see Processing plus waiting time

due date rule
Precedence constraint (relation) 2, 71

flow shop 263–268, 283
job shop 399, 401, 403–405,

408, 422
projects 454, 483–484, 486–487,

489, 493, 496, 498, 501, 503–505
for related jobs 216, 225–232, 248
soft 501–504, 538, 566
start-start 502–504

Predecessor 216, 225, 226, 404,
408–409, 413–414, 484–485,
540, 547–548

direct 225, 229, 267, 283, 462,
484–485, 493–494, 498, 501, 503

proper 558
Preemption 15, 129, 217, 341

in the dynamic single-machine
model 217–168

in the parallel-machine
model 256–257, 267–268,
278, 279

preempt-repeat mode 217–218,
222–223, 247

preempt-resume mode 217–218,
222, 247

in the shifting bottleneck
algorithm 415

Priority rule 411
allowance-based 436, 445
critical ratio 438–440, 446–447
dynamic 431
global 430–433
local 430–431, 435
ratio-based 436
for resource constrained project

scheduling 493, 499–503
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slack-based 436, 445
static 431

Probabilistic see Stochastic
Process batch 342
Processing plus waiting time (PPW) due

date rule 440, 444
Processing time 12
Program evaluation and review

technique (PERT) 453–454,
457, 463, 467–478, 483, 501, 504,
511, 513, 524, 526, 531, 537–567
see also Critical path
method (CPM)

Project analytics 453, 511–535, 537,
574–576 see also Q-Q chart;
Regression analysis

Project buffers see Buffer
Project scheduling 337, 453–478,

483–503 see also PERT 21
hierarchical 501–503 see also

Stochastic balance (economic)
network models see Network models,

activity
resource-constrained see Resource-

constrained project scheduling
stochastic 467–478, 501–503

Project scheduling balance (PSB)
model 547–550, 553 see also
Stochastic balance (economic)

Proportion of jobs tardy (PT)
439–440

Pseudopolynomial algorithm 66, 114,
120, 257, 349

PT see Dynamic job shop model,
proportion of jobs tardy (PT)

Pyramid sequence (SPT/LPT) 309,
344, 353, 366

q
Q–Q chart 511–512, 515–523, 525,

527, 530, 575–576, 584
Quadratic earliness/tardiness

cost 118–119

r
Random sampling 77–81, 99
biased 79–81, 99, 499

Range model 158–159
Reduction method 236–237, 240
Regression analysis 515–516,

518–520, 524–525, 575, 585
standard error (SEY) 519,

523–525, 527
Regret criterion see Minimax regret

criterion
Regularity condition 260, 326,

329, 468
Regular measure 14–15, 30, 42, 105,

124–125, 129, 158, 167, 217,
286–288, 387, 402–403, 406,
421, 484

Related jobs 216, 225–232, 263–268,
454, 498

Release date 12, 31, 121–122, 168,
194–197, 209, 216–226, 312,
389, 391, 412–413

active 195, 197, 548, 560–561
criticality of 540
inactive 548
in projects 431, 436, 440, 500,

538–567
as safe scheduling

decisions 194–197, 540
Residual processing time 227
Resource-constrained project

scheduling 483–504
construction heuristics 493–501

parallel 493–496, 498,
500–503

serial 493, 495–498, 500, 502
lower bounds 486, 490, 492–493
neighborhood search 496–499
priority lists 499–501

Restricted neighborhood 420
Reversed problem 220–222, 343,

349, 352
Robust scheduling 155–161
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Rounding see Correction for rounding
Routing matrix 400, 429
Run-in time 381
Run-out time 381

s
Safe scheduling 5, 167–209, 538
for the flow shop problem

327–331
with linearly associated random

variables 330–331, 587–592
with parallel machines 276–277
for project scheduling 453, 467, 471

see also PERT 21
and the traveling salesperson

problem 242–247
Safety time 1, 2, 5, 7, 125, 319,

333–334, 336–337, 504, 527,
534, 539–540, 561, 598

in safe scheduling 167–168, 172,
174, 176, 184, 186, 192

Sample-based analysis 133, 134–142,
149, 162, 168–171, 196, 199, 206,
208, 320, 323, 329, 332, 473, 501,
504, 542, 543, 548, 550, 553–554
see also Simulation

Sample size
for the random sampling

heuristic 78–80
for sample-based analysis 133, 135,

138, 152, 518, 543, 545
Scenario 131–136, 159, 161, 276,

501–503, 532, 543, 545,
551, 555

Scenario model 155, 158
Schedulable activity 484–486,

494–496, 502–504
Schedulable operation 404, 408–409
Schedule generation

procedure 407–412, 486–489
Scheduling 1
SCR see Smallest critical ratio (SCR) rule
Search segment 244

Search techniques 77, 81–96 see also
Neighborhood search; Tabu
search

Secondary measure see Performance
measure (objective)

Semiactive schedule 403–406,
417–418

Sequence-dependent setup times 216,
232–247, 277, 374 see also
Traveling salesperson
problem (TSP)

Sequence-position variables 63, 300
Series-parallel precedence

structure 230–232, 248
decomposition tree 231–232, 248
network structure 472

Service level (SL) 139, 167, 191,
197–205, 208–209, 328–330,
550, 563, 600 see also Dynamic
job shop model, proportion of
jobs tardy

constraint 167–168, 193, 198, 202,
277, 327 see also Feasibility,
stochastic

maximizing for a given due date 247
maximizing the minimum 139
optimal 176–178, 185, 277, 542

see also Criticality (criticality
index); Stochastic balance
(economic)

target 167–174, 193, 204, 206, 208,
277, 328 see also Constraint

Setup time 11–12, 129, 215, 216, 228,
284, 294, 342, 383, 394 see also
Sequence-dependent
setup times

attached 294, 350, 380, 382
family 373–376, 380
separable 294, 350, 382

Shifting bottleneck
procedure 412–417, 421

Shortest expected processing time
(SEPT) rule 130
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with minimax criteria 159
and minimizing E(F) 136
and minimizing E(T ) 149
and minimizing U 202–203
and parallel machines 278
and safe scheduling 169, 171,

173–175, 180, 181, 184, 193–194
in simulation 135, 434, 450

Shortest processing time (SPT)
rule 18, 116, 117, 121, 124, 130,
292, 374

in the burn-in model 393
dynamic adaptation 218, 223–224
in the dynamic job shop 432–436,

438–440, 448–449
in the E/T problem 108–111,

116–117, 121
in the family scheduling model 374,

375, 386
in the F-problem with batch

availability 383–384, 394
in the job shop

problem 411–412, 431
and Johnson’s rule 290, 295
with list scheduling 270
and minimizing F 18–20, 72
and minimizing F in the job

shop 432–436
and minimizing F in the ordered flow

shop 309
and minimizing J (average

inventory) 20
and minimizing L 22
and minimizing maximum waiting

time 20
and minimizing T 28–31
and minimizing total completion

time 20
and minimizing total waiting

time 20
nondelay implementation 223
in the parallel-machine model 270
in relief (RSPT) 435–436

SPT/LPT sequence see Pyramid
sequence

in the stochastic counterpart 130
string-based version 227–228,

232, 248
in the tightness/tardiness trade-

off 175
truncated (TSPT) 431,

434–436, 440
Shortest remaining processing time

(SRPT) rule 218
Shortest weighted expected processing

time (SWEPT) rule 130,
137, 279

Shortest weighted processing time
(SWPT) rule 20–22, 34, 42, 74

in the dynamic Fw-problem 223
in the E/T problem see LWPT/SWPT

sequence
in the family scheduling

model 375–376
in the parallel-machine

problem 270–274, 278
Simulated annealing 87–89, 99
for the family scheduling

problem 395
for the flow shop problem 308
for the job shop

problem 418–419, 421
for the resource-constrained project

scheduling problem 496
Simulation 6, 8, 133–134, 149–153,

161, 171, 276, 278, 332–336, 473,
475–476, 478, 530–531, 535,
537, 538, 562 see also Sample-
based analysis

job shop 427–449
of random variables 571, 573, 574
reproducible 430

Single-machine
problem 11–35, 38–67

Single-pass procedure (single-pass
mechanism) 407
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Skyline bound 492
Slack (in project scheduling) see Float
Slack (SLK) due date rule 31–32, 224,

440–444. see also Minimum
Slack Time.

Slack per operation (S/OPN) rule 431,
438–439, 441, 445–448

Slack time 24, 431, 437, 439
SLK see Slack due date rule
Slope index 307
Smallest critical ratio (SCR) rule 439,

441, 446
Smallest operation critical ratio (OCR)

rule 439, 446
Smith’s rule 24–25
Soft precedence constraint see

Precedence constraint, soft
Solver 60–68, 303, 306 see also

Analytic Solver Platform;
Evolutionary Solver

S/OPN see Slack per operation rule
Sorting rule 72–74, 83, 99, 190,

291–292, 322, 325, 497
SPT see Shortest processing time
SRPT see Shortest remaining

processing time
Stable sequence 323, 325, 327–339 see

also Adjacent Pairwise
Interchange (API) stability

Start lag see Time lag
Start–start precedence constraint see

Precedence constraint,
start-start

Static dominance 179–180, 182, 188
Static model 4, 209, 216–218, 224,

256, 395, 412, 566
Static priority 72–73, 75, 422, 431,
Statistical independence see Stochastic

independence
Stochastic association see Association,

stochastic

Stochastic balance (economic) 542
ACM model (assembly

coordination) 540–547
in crashing see Crashing (time/cost

trade-off )
hierarchical 557–561
in project scheduling 539–556
PSB model (project stochastic

balance) 547–554
Stochastic counterpart 130–137, 153,

169–174
of the dynamic problem 223
of the E/T problem 184–190,

194–195, 539–556
of the flow shop problem 321–327,

329–336
of the Fw-problem 161
of the parallel-machine makespan

problem 258, 274–276
of the project scheduling model 501
of the Tmax-problem 161
of the traveling salesperson

model 242–247
Stochastic crashing see Crashing (time/

cost trade-off )
Stochastic dependence 133, 147,

513, 535, 555 see also
Association; Stochastic
independence

Stochastic dominance 145–149, 322,
330, 586–587, 591

Stochastic Gantt chart see Gantt chart
Stochastic independence 133, 136,

147, 172, 203, 209, 242, 248,
327–330, 467, 468, 538, 540,
547 see also Stochastic
dependence

Stochastic model 4
Stochastic ordering 146, 149, 194, 200,

202–204, 277 see also Stochastic
dominance
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Stochastic scheduling 7, 129–163,
167–209, 232–248, 320–336,
411, 422 see also PERT; PERT 21.

Stop lag see Time lag
Straddling job 108, 112–114
String 226–229, 248, 375, 380
Subjective estimation bias 524–534
Subproject, implicit 557 see also

Hierarchical balance
Successor 225, 226, 231, 264, 266, 267,

283, 409, 413–414, 418, 484,
486, 503

SWEPT see Shortest weighted expected
processing time (SWEPT)

SWPT see Shortest weighted processing
time (SWPT)

Synchronous manufacturing 341

t
Tabu search 85–87, 99

for the family scheduling
problem 395

for the flow shop problem 308
for the job shop problem 418–422
for the resource-constrained

project scheduling
problem 496

Talwar’s heuristic 323–327
Talwar’s rule 322, 323, 327, 331,

334, 336
Tardiness 13, 75, 92. 132, 436 see

Total tardiness
Temporal analysis 458–463, 468,

478, 490
Terminal job 264–266
Terminal node (event) 455,

458–460, 548
Test function 244
Throughput 3, 219, 342, 450
Tie-breaking rules

in the E/T model 116

in Johnson’s heuristic (for variance
reduction) 322

and Johnson’s rule 292–293
in priority lists for project

scheduling 500
in scheduling assembly trees 265
in scheduling flow shops

292, 307
Tightness 31–32, 174–184, 193, 197,

242, 246–247, 277, 440,
442–445, 598–599

Time/cost trade-off see Crashing (time/
cost trade-off )

Time lag 293–294, 381
Timeliness 3
Total completion time 20
Total cost 39, 43, 55
total cost with crashing 463–467,

560–565
total E/T cost

(deterministic) 107–110, 113,
115–117, 121–123, 598

Total flowtime 13, 16–22, 31, 33,
71, 105

F-problem 14, 20, 72, 135, 162
in batch processing 383–394
with batch processing and dynamic
arrivals 383, 390–392

for the burn-in model 392–394
with chains 229–232, 248
dynamic version 218, 223
for the flow shop 290, 309
with job families 375
for the job shop 412, 421
with minimax objective 158–159
with parallel
machines 268–270, 278

with precedence
constraints 226–232

with series-parallel precedence
structure 230–231
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Total flowtime (cont’d)
for the stochastic
counterpart 136, 138

with strings 226–229,
248, 375

as a secondary measure 24, 121
in simulation 134–135

Total lateness 22, 132, 136, 161
Total string flowtime 227
Total tardiness 13, 27, 151, 161
T-problem 14, 26–30, 41, 44–52,

54–56, 58–59, 63–65, 82, 91,
112, 394

dynamic version 216–217, 224
integer programming solution
63–65

in the job shop model 421
in lot streaming 342
with parallel machines 278
stochastic counterpart 131–132,
123, 145, 148, 161

trade-off with tightness 174–184,
187, 193, 197, 208, 242–247, 277,
598–599 see also Stochastic
balance (economic)

Total unit penalty see Number of
tardy jobs

Total weighted flowtime 20–22, 33
Fw-problem 21, 41, 46
with batch processing 387–394
stochastic counterpart
137, 161

with job families 375–377, 379
with parallel chains 229–232
with parallel machines 270–274
with series-parallel precedence

structure 248
with strings 227–228, 248,

375, 380
Total weighted tardiness 46
Tw-problem 48–49, 76, 77, 83,

99 test problems, 76

Total work (TWK) due date rule
31–32, 224, 440–441,
443–444, 449

T-problem see Total tardiness
Transfer batch 293, 342
Transfer lag 294
Transitivity 42, 146, 292–293,

322–325, 334, 336, 586
Transportation, safe scheduling

examples 1, 168, 242–247, 391,
551–555, 611

Traveling salesperson problem (TSP)
232–241

in the flow shop with
blocking 309–310

in the flow shop with no wait
310–312

and job families 374
safe scheduling of 242–247
stochastic 242–247

Trial solution 54, 56–57, 238–239
Trial value (makespan) 262, 348–349,

359–360
Truncated Shortest Processing Time

(TSPT) 431, 435
Turnaround 3, 13, 16, 432–436
TWK see Total work (TWK) due

date rule
Tw-problem see Total weighted

tardiness

u
Uniform distribution 296, 530,

571–572, 582, 585
computer simulation of 571
in examples 199, 327, 603

Uniform machines 263, 270
Unrelated machines 263, 270
U-problem see Number of tardy jobs
Uw-problem see Number of tardy

jobs, weighted version
(Uw-problem)
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v
Validation 511–512, 519, 526,

530–532, 534, 537, 566, 571,
574–575, 580–581, 588

Valid theory 511 see also Validation
Variance effect 336
VIP sequence 36
V-shaped sequence 109, 113–118,

124, 194

w
WMDD see Modified due date (MDD)

rule, weighted
Worst-case performance bound 259,

262, 267, 297
WSPT see Shortest weighted processing

time (SWPT)
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