

Web Developer’s Cookbook
MORE THAN 300 READY-MADE PHP, JAVASCRIPT, AND

CSS RECIPES

Robin Nixon

Cataloging-in-Publication Data is on file with the Library of Congress

Web Developer’s Cookbook: More Than 300 Ready-Made PHP, JavaScript, and CSS Recipes

Copyright © 2012 by The McGraw-Hill Companies. All rights reserved. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-179432-9
MHID: 0-07-179432-8

The material in this eBook also appears in the print version of this title: ISBN 978-0-07-179431-2,
MHID 0-07-179431-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative please e-mail us at
bulksales@mcgraw-hill.com.

Sponsoring Editor
Roger Stewart

Editorial Supervisor
Jody McKenzie

Project Manager
Anupriya Tyagi,
Cenveo Publisher Services

Acquisitions Coordinator
Ryan Willard

Copy Editor
Mike McGee

Proofreader

mailto:bulksales@mcgraw-hill.com

Lisa McCoy

Indexer
Claire Splan

Production Supervisor
George Anderson

Composition
Cenveo Publisher Services

Illustration
Cenveo Publisher Services

Art Director, Cover
Jeff Weeks

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its
licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

For Julie

About the Author
Robin Nixon has worked with and written about computers since the early 1980s (his first computer
was a Tandy TRS 80 Model 1 with a massive 4KB of RAM!). During this time, he has written in
excess of 500 articles for many of the UK’s top computer magazines. Web Developer’s Cookbook is
his eleventh book.

Robin lives on the southeast coast of England (where he writes full time), along with his five
children and wife Julie (a trained nurse and university lecturer)—between them they also foster three
disabled children.

Other Web Development Books by Robin Nixon
Learning PHP, MySQL, and JavaScript, O’Reilly 2009, ISBN 978-0596157135
HTML5 for iOS and Android, McGraw-Hill 2010, 978-0071756334
HTML & HTML5 Crash Course, Nixon 2011, 978-0956895615
CSS & CSS3 Crash Course, Nixon 2011, 978-0956895622

Contents

 Acknowledgments
 Introduction

Part I Introduction

1 Getting Started
 Downloading and Installing Web Browsers
 Choosing a Program Editor
 Installing a PHP Server
 Older Versions of Microsoft Internet Explorer
 The Companion Web Site

2 Using the Recipes
 Inserting the PHP Recipes
 Inserting the JavaScript Recipes
 Inserting the CSS Recipes
 A Quick Refresher on the DOM
 Summary

Part II PHP Recipes

3 Text Processing
 Recipe 1: WrapText()
 Recipe 2: CapsControl()
 Recipe 3: FriendlyText()
 Recipe 4: StripWhitespace()
 Recipe 5: WordSelector()
 Recipe 6: CountTail()
 Recipe 7: TextTruncate()
 Recipe 8: SpellCheck()
 Recipe 9: RemoveAccents()
 Recipe 10: ShortenText()

4 Image Handling
 Recipe 11: UploadFile()
 Recipe 12: ImageResize()
 Recipe 13: MakeThumbnail()
 Recipe 14: ImageAlter()
 Recipe 15: ImageCrop()
 Recipe 16: ImageEnlarge()
 Recipe 17: ImageDisplay()
 Recipe 18: ImageConvert()
 Recipe 19: GifText()

 Recipe 20: ImageWatermark()

5 Content Management
 Recipe 21: RelToAbsURL()
 Recipe 22: GetLinksFromURL()
 Recipe 23: CheckLinks()
 Recipe 24: DirectoryList()
 Recipe 25: QueryHighlight()
 Recipe 26: RollingCopyright()
 Recipe 27: EmbedYouTubeVideo()
 Recipe 28: CreateList()
 Recipe 29: HitCounter()
 Recipe 30: RefererLog()

6 Forms and User Input
 Recipe 31: EvaluateExpression()
 Recipe 32: ValidateCC()
 Recipe 33: CreateCaptcha()
 Recipe 34: CheckCaptcha()
 Recipe 35: ValidateText()
 Recipe 36: ValidateEmail()
 Recipe 37: SpamCatch()
 Recipe 38: SendEmail()
 Recipe 39: BBCode()
 Recipe 40: PoundCode()

7 The Internet
 Recipe 41: LookupLinks()
 Recipe 42: GetTitleFromURL()
 Recipe 43: AutoBackLinks()
 Recipe 44: CreateShortURL()
 Recipe 45: UseShortURL()
 Recipe 46: SimpleWebProxy()
 Recipe 47: PageUpdated()
 Recipe 48: HTMLToRSS()
 Recipe 49: RSSToHTML()
 Recipe 50: HTMLToMobile()

8 Chat and Messaging
 Recipe 51: UsersOnline()
 Recipe 52: PostToGuestBook()
 Recipe 53: GetGuestBook()
 Recipe 54: PostToChat()
 Recipe 55: ViewChat()
 Recipe 56: SendTweet()

 Recipe 57: SendDirectTweet()
 Recipe 58: GetTweets()
 Recipe 59: ReplaceSmileys()
 Recipe 60: ReplaceSMSTalk()

9 MySQL, Sessions, and Cookies
 Recipe 61: AddUserToDB()
 Recipe 62: GetUserFromDB()
 Recipe 63: VerifyUserInDB()
 Recipe 64: SanitizeString() and MySQLSanitizeString()
 Recipe 65: CreateSession()
 Recipe 66: OpenSession()
 Recipe 67: CloseSession()
 Recipe 68: SecureSession()
 Recipe 69: ManageCookie()
 Recipe 70: BlockUserByCookie()

10 APIs, RSS, and XML
 Recipe 71: CreateGoogleChart()
 Recipe 72: CurlGetContents()
 Recipe 73: FetchWikiPage()
 Recipe 74: FetchFlickrStream()
 Recipe 75: GetYahooAnswers()
 Recipe 76: SearchYahoo()
 Recipe 77: GetYahooStockNews()
 Recipe 78: GetYahooNews()
 Recipe 79: SearchGoogleBooks()
 Recipe 80: ConvertCurrency()

11 Incorporating JavaScript
 Recipe 81: CreateAjaxObject()
 Recipe 82: GetAjaxRequest()
 Recipe 83: PostAjaxRequest()
 Recipe 84: ProtectEmail()
 Recipe 85: ToggleText()
 Recipe 86: StatusMessage()
 Recipe 87: SlideShow()
 Recipe 88: InputPrompt()
 Recipe 89: WordsFromRoot()
 Recipe 90: PredictWord()

12 Diverse Solutions
 Recipe 91: GetCountryFromIP()
 Recipe 92: BypassCaptcha()
 Recipe 93: GetBookFromISBN()

 Recipe 94: GetAmazonSalesRank()
 Recipe 95: PatternMatchWord()
 Recipe 96: SuggestSpelling()
 Recipe 97: AnagramFinder()
 Recipe 98: CornerGif()
 Recipe 99: RoundedTable()
 Recipe 100: DisplayBingMap()

Part III JavaScript Recipes

13 The Core Recipes
 Loading the Recipes
 Recipe 1: O()
 Recipe 2: S()
 Recipe 3: Initialize()
 Recipe 4: CaptureMouse()
 Recipe 5: CaptureKeyboard()
 Recipe 6: FromKeyCode()
 Recipe 7: GetLastKey()
 Recipe 8: PreventAction()
 Recipe 9: NoPx() and Px()
 Recipe 10: X() and Y()
 Recipe 11: W() and H()
 Recipe 12: Html()
 Recipe 13: SaveState()
 Recipe 14: RestoreState()
 Recipe 15: InsVars()
 Recipe 16: StrRepeat()
 Recipe 17: HexDec()
 Recipe 18: DecHex()

14 Location and Dimensions
 Recipe 19: ResizeWidth()
 Recipe 20: ResizeHeight()
 Recipe 21: Resize()
 Recipe 22: Position()
 Recipe 23: GoTo()
 Recipe 24: Locate()
 Recipe 25: GetWindowWidth()
 Recipe 26: GetWindowHeight()
 Recipe 27: GoToEdge()
 Recipe 28: CenterX()
 Recipe 29: CenterY()
 Recipe 30: Center()

15 Visibility
 Recipe 31: Invisible()
 Recipe 32: Visible()
 Recipe 33: VisibilityToggle()
 Recipe 34: Opacity()
 Recipe 35: Fade()
 Recipe 36: FadeOut()
 Recipe 37: FadeIn()
 Recipe 38: FadeToggle()
 Recipe 39: FadeBetween()
 Recipe 40: Hide()
 Recipe 41: Show()
 Recipe 42: HideToggle()

16 Movement and Animation
 Recipe 43: Slide()
 Recipe 44: SlideBetween()
 Recipe 45: Deflate()
 Recipe 46: Reflate()
 Recipe 47: DeflateToggle()
 Recipe 48: DeflateBetween()
 Recipe 49: Zoom()
 Recipe 50: ZoomDown()
 Recipe 51: ZoomRestore()
 Recipe 52: ZoomToggle()

17 Chaining and Interaction
 Recipe 53: Chain(), NextInChain(), and CallBack()
 Recipe 54: Repeat()
 Recipe 55: While()
 Recipe 56: Pause()
 Recipe 57: WaitKey()
 Recipe 58: Flip()
 Recipe 59: HoverSlide()

18 Menus and Navigation
 Recipe 60: HoverSlideMenu()
 Recipe 61: PopDown()
 Recipe 62: PopUp()
 Recipe 63: PopToggle()
 Recipe 64: FoldingMenu()
 Recipe 65: ContextMenu()
 Recipe 66: DockBar()
 Recipe 67: RollOver()
 Recipe 68: Breadcrumbs()

 Recipe 69: BrowserWindow()

19 Text Effects
 Recipe 70: TextScroll()
 Recipe 71: TextType()
 Recipe 72: MatrixToText()
 Recipe 73: TextToMatrix()
 Recipe 74: ColorFade()
 Recipe 75: FlyIn()
 Recipe 76: TextRipple()

20 Audio and Visual Effects
 Recipe 77: Lightbox()
 Recipe 78: Slideshow()
 Recipe 79: Billboard()
 Recipe 80: GoogleChart()
 Recipe 81: PlaySound()
 Recipe 82: EmbedYouTube()
 Recipe 83: PulsateOnMouseover()

21 Cookies, Ajax, and Security
 Recipe 84: ProcessCookie()
 Recipe 85: CreateAjaxObject()
 Recipe 86: GetAjaxRequest()
 Recipe 87: PostAjaxRequest()
 Recipe 88: FrameBust()
 Recipe 89: ProtectEmail()

22 Forms and Validation
 Recipe 90: FieldPrompt()
 Recipe 91: ResizeTextarea()
 Recipe 92: ValidateEmail()
 Recipe 93: ValidatePassword()
 Recipe 94: CleanupString()
 Recipe 95: ValidateCreditCard()

23 Solutions to Common Problems
 Recipe 96: RollingCopyright()
 Recipe 97: Alert()
 Recipe 98: ReplaceAlert()
 Recipe 99: ToolTip()
 Recipe 100: CursorTrail()
 Recipe 101: TouchEnable()

Part IV CSS Classes

24 Manipulating Objects
 Recipe 1: Positioning
 Recipe 2: Floating
 Recipe 3: Background Colors
 Recipe 4: Gradients
 Recipe 5: Inverse Gradients
 Recipe 6: Box Shadows
 Recipe 7: Padding
 Recipe 8: Rounded Borders
 Recipe 9: Transparency
 Recipe 10: Visibility and Display
 Recipe 11: Scroll Bars
 Recipe 12: Maximum Sizes
 Recipe 13: Location
 Recipe 14: Selective Margins
 Recipe 15: Selective Padding
 Recipe 16: Border Style
 Recipe 17: Border Width
 Recipe 18: Border Color
 Recipe 19: No Outline

25 Text and Typography
 Recipe 20: Fonts
 Recipe 21: Font Styles
 Recipe 22: Text Alignment
 Recipe 23: Text Point Size
 Recipe 24: Text Colors
 Recipe 25: Text Shadows
 Recipe 26: Text Transformations
 Recipe 27: Encapsulation
 Recipe 28: Google Fonts
 Recipe 29: Drop Cap
 Recipe 30: Columns
 Recipe 31: Text Indent
 Recipe 32: Symbols

26 Menus and Navigation
 Recipe 33: Buttons
 Recipe 34: Vertical Menu
 Recipe 35: Horizontal Menu
 Recipe 36: Top Dock Bar
 Recipe 37: Bottom Dock Bar
 Recipe 38: Tooltip and Tooltip Fade

27 Page Layout

 Recipe 39: Reset CSS
 Recipe 40: Default CSS
 Recipe 41: Boxout
 Recipe 42: Quote
 Recipe 43: Left Sidebar
 Recipe 44: Right Sidebar
 Recipe 45: Page Break

28 Visual Effects
 Recipe 46: Star Rating
 Recipe 47: Star Rating Using Images
 Recipe 48: Progress Bar
 Recipe 49: Scale Up
 Recipe 50: Scale Down
 Recipe 51: Transition All
 Recipe 52: Thumb View
 Recipe 53: Caption Image
 Recipe 54: Pointer
 Recipe 55: Rotation
 Recipe 56: Odd and Even Text Colors
 Recipe 57: Odd and Even Background Colors

29 Dynamic Objects
 Recipe 58: NoJS (nojs) and OnlyJS (onlyjs)
 Recipe 59: Middle (middle)
 Recipe 60: Center (center)
 Recipe 61: Top (top)
 Recipe 62: Bottom (bottom)
 Recipe 63: Left (left)
 Recipe 64: Right (right)
 Recipe 65: On Demand (ondemand)
 Recipe 66: Fadein (fadein[n])
 Recipe 67: Fadeout (fadeout[n])
 Recipe 68: Resize Textarea (resizeta[n|n])
 Recipe 69: Rotate (rotate[n])
 Recipe 70: Width (w[n])
 Recipe 71: Height (h[n])
 Recipe 72: X (x[n])
 Recipe 73: Y (y[n])
 Recipe 74: Text Color (color[colorname/#nnnnnn/#nnn])
 Recipe 75: Background Color (bcolor[#nnnnnn])

30 Dynamic Text and Typography
 Recipe 76: Typetext (typetext[n])
 Recipe 77: Digits Only (digitsonly)

 Recipe 78: Text Only (textonly)
 Recipe 79: No Spaces (nospaces)
 Recipe 80: No Punctuation (nopunct)
 Recipe 81: Minimum Whitespace (minwhitespace)
 Recipe 82: Google Font (gfont[n])
 Recipe 83: Text Middle (textmiddle)
 Recipe 84: Text Glow (textglow[#nnnnnn|#nnnnnn|n])
 Recipe 85: Background Glow (backglow[#nnnnnn|#nnnnnn|n])

31 Dynamic Interaction
 Recipe 86: Placeholder (placeholder[prompt])
 Recipe 87: Autofocus (autofocus)
 Recipe 88: Cite (cite[citation])
 Recipe 89: Reference (ref[type | name])
 Recipe 90: No Copy (nocopy)

32 Incorporating JavaScript
 Recipe 91: Embed JavaScript (embedjs)
 Recipe 92: If (if[expr])
 Recipe 93: If Not (ifnot[expr])

33 Superclasses
 What Is a Superclass?
 Recipe 94: Clickable (clickable)
 Recipe 95: RSS Button (rssbutton)
 Recipe 96: Border (border)
 Recipe 97: Absolute Top Left (abstopleft)
 Recipe 98: Rollover (rollover)
 Recipe 99: Vertical Tab (vtab)
 Recipe 100: Horizontal Tab (htab)
 Summary

 Index

Acknowledgments

I would like to thank Wendy Rinaldi for giving me the opportunity to put this large collection of
personal recipes I use in my everyday web development together into a form I can share with other
developers. I also want to thank my commissioning editor Roger Stewart, as well as Jody, Anupriya,
Ryan, Mike, Lisa, Claire, George, and Jeff, and everyone else who helped create this book, without
whom it would not have been the same. McGraw-Hill is always an exceptionally professional and
friendly company to work with.

Introduction

When the World Wide Web was first invented by Sir Tim Berners-Lee, simply having a means to
create hypertext links to other documents (including ones on remote computers), and to combine text
and images using basic formatting, was a revolutionary concept that we take for granted today.

But slowly, web developers started getting used to the initial 20 elements provided by HTML
(Hypertext Markup Language) 1, and began adding more and more features in each new specification
of the language. Luckily, though, the people driving this development realized early on that if these
extensions to the language were not handled sensibly, they could end up as an unwieldy tangled web
of tags. Thus, HTML was created using the Document Object Model (DOM), meaning that all
elements of a web page would be uniquely addressable from both JavaScript and CSS.

More than that, it made it easy to insert PHP script commands into web pages, and even integrate
them with a database such as MySQL to provide powerful back-end functionality, and form the
backbone of the Ajax process of behind-the-scenes communications between a web server and web
browser.

In these days of widely varying browser capabilities and screen dimensions, developing code
for a growing range of platforms such as iPhones, iPads, Android devices, PCs, Macs, tablets, and so
on is more complicated than ever. Thankfully, this book is here to help take some of that development
off your shoulders and to save you from “reinventing the wheel” by rewriting commonly used
processes yourself.

What this Book Provides
This book provides over 300 ready-to-use PHP, JavaScript, and CSS functions, as well as classes
and groups of classes that you can simply drop into your web pages. They are fully documented and
their functionalities clearly explained, often with tips on how you can further tailor them to your
requirements. In addition, each one you use in your project will save you much development and
debugging time, because all this has been done for you already.

There’s also no lack of documentation either, because each variable, property, class, and
pseudo-class, as well as every other element of each recipe, is explained as it is encountered, and is
included in easy-to-follow tables. Afterward, each recipe is broken down section by section so you
know exactly what it will do for you, how to use it, and how to tailor it to your own requirements.

Includes CSS3 and HTML5 Features
Since many CSS3 features are now adopted in all modern browsers, this book also provides plug-ins
to take advantage of this latest version of CSS, including examples of native text and box shadowing,
rounded borders, and even web fonts, so you can break away from the same old fonts the Web has put
up with for so many years.

Also, all the plug-ins come with HTML examples and screen shots showing you exactly how to
use them in real-world situations. What’s more, where possible the recipes also offer support for the
emerging HTML5 standard to make your web pages even more interactive and dynamic, helping you
create more cutting-edge web sites.

About the Recipes

All the recipes in this book are revised and updated from ones published separately in my books
Plug-in PHP, Plug-in JavaScript, and Plug-in CSS. They have been brought fully up to date to
ensure that where they are supposed to integrate with other web sites, they continue to do so
correctly. They have also been improved as a result of additional testing since the previous books
were published, incorporating feedback and suggestions from readers.

In the process, the recipes have been optimized down to just three main files that are each easily
includable with a single command, and all have been modified so they will work synergistically with
each other. They represent an enormous wealth of ready-made code and features on which you can
draw.

Although the first aim of this book is to provide a comprehensive resource of recipes to draw
on, it has a secondary goal: to help you move up to the next level and create your own web
development toolkit.

And while this book isn’t a design manual or teaching guide, I do hope that by reading through
the explanations, rather than just including the plug-ins in your projects, you’ll pick up a number of
tips and tricks that many developers take years to discover.

You are free to use any of the recipes in this book in your own projects, and may modify them as
necessary, without attributing this book—although if you do attribute them, it will always be
appreciated.

A companion web site (webdeveloperscookbook.com) accompanies this book, where all 300+
recipes are available for download, along with example PHP, JavaScript, and HTML (and several
accompanying) files for you to experiment with.

http://www.webdeveloperscookbook.com

Part I
Introduction

CHAPTER 1
Getting Started
CHAPTER 2
Using the Recipes

CHAPTER 1
Getting Started

There are over 300 handcrafted recipes spread across three sections in this book. They are divided
into three collections, each in their own file (WDC.php, WDC.js, and WDC.css). Using the recipes is
a matter of including the relevant files in your programs or web pages and simply calling the functions
or applying the classes you need.

But before unleashing your new code on the world at large, it makes sense to first thoroughly test
it on a local web development server so you can iron out all the bugs.

This chapter points you in the right direction to get started with downloading the web browsers
you need so you can test your code on all the different browsers currently in use, select a program
editor so you have a lot more power than simply using a plain notepad, install a local PHP server if
you need one, and deal with older versions of the Internet Explorer web browser, which vary
substantially in how they process web pages.

Downloading and Installing Web Browsers
If you are going to test all your programs and web development projects thoroughly, you will need to
see how they run on all the different browsers currently in use. Table 1-1 lists the five major web
browsers and their Internet download locations. While all of them can be installed on a Windows PC,
some are not available for OS X or Linux. The web pages at these URLs are smart and offer up the
correct version to download according to your operating system, if available.

Web Browser Download URL
Apple Safari apple.com/safari
Google Chrome google.com/chrome
Microsoft Internet Explorer microsoft.com/ie
Mozilla Firefox mozilla.com/firefox
Opera opera.com/download

TABLE 1-1 Web Browsers and Their Download URLs

Before proceeding with this book, I recommend that you ensure you have installed as many of
these browsers on your computer as you can.

If you’re running any version of Windows from XP onwards, you will be able to install all of
them, but on other operating systems it’s not quite so easy. For example, on Mac OS X, because the
development of IE for the Mac was halted many years ago when it reached version 5, you can install
all the browsers except for Microsoft Internet Explorer.

Plus, although it’s possible to install the Wine windows application interface on a Mac and run
Internet Explorer using it, I have found it to be a laborious process with inconsistent results, and
therefore wouldn’t recommend that method. Neither would I suggest you rely on those web sites that

http://www.apple.com/safari
http://www.google.com/chrome
http://www.microsoft.com/ie
http://www.mozilla.com/firefox
http://www.opera.com/download

take screen shots of a web page in different browsers, because they can’t tell you whether the mouse,
keyboard, and other features are working well, or even at all.

Instead, your best option is to either perform a dual install of Windows alongside Mac OS X, or
ensure you have access to a Windows PC. After all, unless you intend to only develop for Mac
computers, people using a Windows operating system will represent most of your users.

As for Linux, not only does it not have access to Internet Explorer, there is no version of Safari
either, although all the other browsers do come in Linux flavors. Also, as with OS X, while various
solutions exist that incorporate Wine for running Internet Explorer, they only seem to work with some
distributions and not others, so it can be a bit of a minefield trying to find a bulletproof way for you to
run Windows browsers on Linux.

So what it all comes down to is that, if you will be developing on a non-Windows computer, I
recommend you arrange to have access to a Windows PC, or have Windows installed as a dual boot
(or a virtual machine) alongside your main operating system, so you can fully test your programs
before publishing them to the Web at large.

Don’t forget that nowadays you also need to check your projects on iOS and/or Android phones,
and even on tablets if you are targeting that market. For this, you will need access to at least an
iPhone 3GS and an iPad 1, as well as a decent Android phone and tablet. And with Microsoft now
pushing the Metro front-end to both Windows Phone 7 and Windows 8, it seems likely that you will
also want to arrange access to a Windows Phone 7 phone, and also a tablet that runs Windows 8.
Yes, unfortunately web development is getting more expensive for small developers. Still, you can
probably write off the purchase cost against tax.

Choosing a Program Editor
Long gone are the days of relying on a simple notepad program for coding. Software for writing
program code has progressed by leaps and bounds in recent years, with text editors having been
replaced by powerful program editors that highlight your syntax using different colors, and which can
quickly locate things for you like matching (and missing) brackets and braces, and so on.

Table 1-2 lists a number of free program editors that will all do a great job of helping you write
code quickly and efficiently. Which one you choose is largely a matter of personal preference—in my
case, I have settled on Notepad++ (see Figure 1-1).

TABLE 1-2 A Selection of Free Program Editors

FIGURE 1-1 The Notepad++ program editor

When using a program editor, you will usually find that by moving the cursor to different parts of
a program you can highlight sections of the code. For example, placing the cursor next to any bracket
in Notepad++ automatically highlights the matching one.

They also commonly support multiple tabs, folding away sections of code that aren’t being
worked on, multiple views of the same document, doing search and replace across multiple
documents, and so on. These are all features you would miss once you have grown used to using them.

Installing a PHP Server
If you wish to test the PHP recipes on a local development computer before uploading them to a web
server elsewhere, you’ll need to install a web server and PHP processor. This means you can
instantly try out any code changes you make without having to upload them to the Internet first, thus
speeding up the development process.

Installing a PHP web server is relatively simple because the developers of PHP have released
an all-in-one application called Zend Server Community Edition (or CE for short) that includes all of
PHP, an Apache web server, and a MySQL database, and which you can download from the
following URL:

zend.com/products/server-ce

Versions are available for all three main operating systems (Windows, Mac OS X, and Linux),

http://www.zend.com/products/server-ce

and the installation process is reasonably straightforward, although you’ll need to carefully read the
prompts you are given and make intelligent responses to them. Figure 1-2 shows how you can easily
control Zend Server CE directly from within your web browser.

FIGURE 1-2 The Zend Server CE dashboard

The place where you will store all your PHP files and from where they will run is known as the
server’s document root, and you will need to know where this is. Table 1-3 details the default
locations of the document root that Zend Server CE creates on different operating systems. If you keep
your various HTML, JavaScript, and PHP files in that folder (and subfolders), they can all be served
up by the Apache web server.

Operating System Document Root
Windows C:/Program Files/Zend/Apache2/htdocs
Mac OS X /usr/local/zend/apache2/htdocs
Debian/Ubuntu Linux /var/www
Fedora Linux /var/www/html
Generic Linux /usr/local/zend/apache2/htdocs

TABLE 1-3 The Zend Server CE Document Root on Various Platforms

Unfortunately, there’s no room to go into further details about Zend Server CE in this book, but
there is a very good online user guide, which you can access at the following URL:

files.zend.com/help/Zend-Server-Community-Edition/welcome.htm

Older Versions of Microsoft Internet Explorer
The latest version of Internet Explorer (IE9 at the time of writing) has made tremendous strides
toward compatibility with the other major browsers, but there are still large numbers of users running
IE8, IE7, and even IE6. According to statcounter.com, as of late 2011 the breakdown of browsers by
use was as shown in Figure 1-3.

FIGURE 1-3 Browser market share as of August 2011

Because each version of Internet Explorer works differently, and because IE6 through IE8 have
over 40 percent of all users between them (IE9 has under 3 percent), you need to test your web pages
in these older versions, too, not just in the latest versions of the main browsers. I know, it’s a pain,
but it has to be done. Luckily, though, there’s a trick to make this easier than it might otherwise be.

Emulating Earlier Internet Explorer Versions
To aid developers who have designed websites to work specifically with older versions, the
developers of Internet Explorer created a meta tab that you can add to the head of a web page to make
IE think it is an earlier version of itself. Here is the meta tag to use, in which you must replace the v

http://files.zend.com/help/Zend-Server-Community-Edition/welcome.htm
http://statcounter.com

with a 5, or either 7 or 8:

Here’s how you would incorporate the tag to emulate Internet Explorer 7:

There is no IE=6 option (presumably because the rendering engines for IE5 and IE6 are so

similar), so using the IE=5M option makes Internet Explorer enter what is known as “quirks” mode, in
which it behaves like both IE5 and IE6.

Incidentally, if you wish to force Internet Explorer into full standards mode (to be as compatible
as possible with other browsers), you can use the option IE=8. Or, without the meta tag, Internet
Explorer will use its own proprietary and optimal settings, known as “edge” mode—which you can
also select with the option IE=edge.

Of course, once you have finished testing you should remove or comment out these meta tags.
Fortunately, with Internet Explorer 9, Microsoft has mostly caught up on its compatibility issues,

and the browser is about as good as any out there. But its takeup right now is still quite low.
Hopefully this will change fairly soon, especially when Windows 8 is released, which will come
with IE10—an improved version that’s fully compatible with IE9.

Generally, you will not need to test older versions of other browsers because they have mostly
been compatible with each other for some years now.

TIP If you are interested in the subject of browser compatibility and its various nuances, I
recommend visiting the Quirks Mode web site at quirksmode.org.

The Companion Web Site
To save you the effort of typing them all in, you can download the plug-ins from this book’s
companion web site at webdeveloperscookbook.com.

Click the Download link to download the file examples.zip, which is an archive file (easily
extractable on all operating systems) containing all the recipes and associated example files. Once
extracted, you’ll find all the recipe files in the main folder of the archive, saved as WDC.php,
WDC.js, and WDC.css. Additionally, there are three subfolders called PHP, JS, and CSS that each
contain example.php, example.js, or example.htm files illustrating the use of every recipe, along with
various images and other accompanying files.

CAUTION By default, Windows computers may not show the file extensions unless you have
enabled this facility, in which case the files will simply show as index (instead of index.html)
or WDC (instead of WDC.css) and so on—you will therefore need to identify them by their

http://www.quirksmode.org
http://webdeveloperscookbook.com

icons: WDC.PHP will probably display as a blank page if no PHP web server is installed,
WDC.js will appear as a scroll icon, and WDC.css will show a cog wheel over a ruled page.

CHAPTER 2
Using the Recipes

Including the recipes from this book is as easy as downloading the three main files (WDC.php,
WDV.js, and WDC.css) and extracting them from the examples.zip file you can get by clicking the
Downloads link at webdeveloperscookbook.com. You can then use a single, simple instruction in
either a PHP program or web page to include a complete set of recipes as if you had written them into
the program or page yourself.

This means that, apart from the single line, you can forget that they are there and concentrate on
writing your own code or developing your own web pages. Whenever you need to implement a
common routine that might distract you from the main creativity of your development process, chances
are there is a recipe you can call on that will save you from being distracted and having to reinvent
the wheel.

So this short chapter is divided into three sections, showing how to incorporate the different sets
of recipes, and ending with a quick refresher on the Document Object Model (DOM) and how it
relates to both JavaScript and CSS.

Inserting the PHP Recipes
To insert the PHP functions into a PHP program, use the require _ once() function. This is a built-
in PHP function that prevents a PHP program from continuing execution unless the specified file is
first loaded in. It also performs checks to ensure that the file is not inadvertently loaded more than
once by ignoring multiple calls.

Loading in the recipes is as simple as using the function right at the start of a PHP program, like
this:

You can safely include this call in all your PHP program files because even if one of your
program files includes another call and both attempt to load in the WDC.php recipes, only the first
call will succeed—subsequent calls will be ignored.

If you keep the WDC.php file anywhere other than the local directory (such as in the folder
/includes), you must provide a path to the call, like this:

You may also load the file in from another server, like this:

http://www.webdeveloperscookbook.com

Inserting the JavaScript Recipes
Inserting the JavaScript recipes is just as straightforward as PHP—you simply provide an src
attribute and a value to a pair of <script> tags to load in the WDC.js file, like this:

You should generally include this line of HTML within a document’s <head> section, like this
(shown in bold):

You may also load the file in from another sever elsewhere on the Web, as follows:

The WDC.js file contains all the recipes from Part II of this book, as well as the JavaScript

functions that power the dynamic CSS classes from Part III.
There is also another version of the WDC.js file called WDCsmall.js. It’s identical in use but is

much smaller and therefore will load in more quickly and save bandwidth on busy sites. Because of
its compression, however, the file cannot be modified.

To load it instead of WDC.js, use code such as either of the following lines, depending on
whether the file is in the current folder or elsewhere:

Inserting the CSS Recipes
To add all the CSS recipes to a web page, you should use the <link rel=… /> tag to link to the
WDC.css file from within the <head> of your document, like this (shown in bold):

If you will be using any of the dynamic CSS recipes from Part III of this book (CSS Recipes 59–
100), or if you will be using the JavaScript recipes, you must also ensure that you have loaded in the
WDC.js file, too (shown in the previous example).

You may also include the style sheet from another server elsewhere on the Web, like this:

A Quick Refresher on the DOM
Before moving on to the recipes, I think it’s important to quickly offer a recap of the DOM (Document
Object Model), since so many of these recipes interact with it.

When HTML was invented, one of the fundamental design decisions was to base it around a
DOM as a means of separating out all the different elements within a web page into discrete objects,
each with their own properties and values. It was a very smart decision because it led to the
introduction of style sheets, enabling a web page’s content to be completely separated from its
styling, and it also made HTML documents easily modifiable by languages such as JavaScript,
providing dynamic user interaction.

When a web page is placed into a DOM, it is a simple matter for you to access individual
elements with JavaScript or style them with CSS. For example, each heading will be within pairs of
tags such as <h1> … </h1> and a single CSS instruction can set the styling of all such occurrences
within a document, changing the font used, its size, any font decoration, and so on. This lets you
completely change the design of a page without altering the HTML and, as you’ll see in some of the
later plug-ins, some style settings can even apply dynamic effects to page elements such as changing
their color and other properties when the mouse passes over them, or even create transition effects by
using proprietary browser extensions.

How the DOM Works
The Document Object Model separates the different parts of an HTML document into a hierarchy of
objects, each one having its own properties. The term property is used to refer to an attribute of an
object such as the HTML it contains, its width and height, and so on.

The outermost object possible is the window object, which is the current browser window, tab,
iframe, or popped-up window. Underneath this is the document object, of which there can be more
than one (such as several documents loaded into different iframes within a page). And inside a
document there are other objects such as the head and body of a page.

Within the head, there can be other objects such as the title and meta objects, while the body
object can contain numerous other objects, including HTML tags containing headings, anchors, forms,
and so forth.

Figure 2-1 shows a representation of the DOM of an example document, with the title “Hello”
and a meta tag in the head section, and three HTML elements (a link, a form, and an image) in the
body section. Of course, even the simplest of web pages has more structure than is shown here, but it
serves to illustrate how the DOM works—starting from the very outside is the window, inside which
there’s a single document, and within the document are the various elements or objects, which
connect to each other.

FIGURE 2-1 Example of a DOM showing head and body sections

In the figure, properties are shown with a darker background and in italics. For example, the
value “robots” is a property of name, which is a property of meta, and so on. Although it isn’t
shown in the figure, the meta tag should have another matching property called content, which would
contain a string specifying which robots (such as search engine crawlers) may access the web page.

Other properties are “http://google.com,” which is a property of the href tag (itself a property of
a, and so on), and “Hello,” which is a property of title. All the other items are objects or object
argument names. If the figure were to extend further down and sideways, other objects and properties
attached to the ones shown would come into view. A couple of the places where these would appear
are shown by unconnected dotted lines.

Representing this as HTML code, the structure of the head section looks like this:

And the body section of HTML might look like this:

Remembering that these two sections of HTML are part of the same document, we would bring
them both together inside an <html> tag, like this:

http://google.com

Of course, a web page can look quite different from this, but it will usually follow the same

form, although that’s not always the case because most browsers are very forgiving and allow you to
omit many things, such as the closing tags at the end and the opening ones too if you choose. I don’t
recommend you do this, though, because one day you might want to convert your page to XHTML,
which is a lot stricter. So it’s always a good idea to close every tag and make sure you do so in the
right order. For example, you shouldn’t close a document by issuing </html> followed by </body>
because the proper nesting of tags would be broken by this reversal.

For the same reason, you should also get into the habit of self-closing any tags that do not have a
closing version, such as , which does not have a matching tag, and
therefore requires a / character right before the final > in order to properly close it. In the same way,

 becomes
, and so on.

You should also remember that arguments within tags must have either single or double
quotation marks to be XHTML-compatible, even though nearly all browsers allow you to omit them.

NOTE In the early days of the Web, when most users had very slow dial-up modems, it was
common to see all manner of things such as quotation marks and various tags omitted from
web pages. But nowadays, most of your users will have fairly decent bandwidth speeds, and
there’s no longer any reason to do this.

Accessing the DOM from JavaScript
JavaScript handles all of this DOM nesting quite easily with the use of the period character. For
example, some standard properties, such as the document title, can be read like this:

But in order to access most other object properties, you need to assign an ID to the object. For

example, once the value “name” is assigned to the input field, you can find its current value (if any),
in the following manner, which assigns the value to the variable username:

To retrieve a value, for example, the following code will pop up an alert box displaying the
current value of the same element (as shown in Figure 2-2):

FIGURE 2-2 A popup window showing the input value

About Cascading Style Sheets
Using CSS, you can apply styles to your web pages to make them look exactly how you want. This
works because CSS is connected to the DOM so that you can quickly and easily restyle any element.
For example, if you don’t like the default look of the <h1>, <h2>, and other heading tags, you can
assign new styles to override the default settings for the font family and size used, or whether bold or
italics should be set, and many more properties, too.

One way you can add styling to a web page is by inserting the required statements into the head
of a web page between the <head> and </head> tags. So, to change the style of the <h1> tag, you
might use the following code:

Within an HTML page, this might look like the following (see Figure 2-3):

FIGURE 2-3 Styling the <h1> tag, with the original style shown in the small window

Importing a Style Sheet from Within HTML
You can include a style sheet with the HTML <link> tag like this:

Remember that <link> is an HTML-only tag and is not a valid style directive, so it cannot be

used from within one style sheet to pull in another, and also cannot be placed within a pair of
<style> … </style> tags.

You can also use as many <link> statements as you like in your HTML.

Importing a Style Sheet from Another Style Sheet
You can also import a style sheet from within another style sheet using the CSS @import directive
like this:

This statement tells the browser to fetch a style sheet with the name styles.css from the /css

folder. The @import command is quite flexible in that you can create style sheets that themselves pull
in other style sheets, and so on. Just make sure that there are no <style> or </style> tags in any of
your external style sheets or they will not work.

Local Style Settings
There’s also nothing stopping you from individually setting or overriding certain styles for the current
page on a case-by-case basis by inserting style statements directly within HTML, like this (which
results in italic blue text within the tags):

But this should be reserved only for the most exceptional circumstances, because it breaks the

separation of content and layout.

About IDs and Classes
A better solution for setting the style of an element is to assign an ID to it in the HTML, like this:

What this does is state that the contents of the div with the ID “iblue” should have the style

defined in the “iblue” style setting applied to it. The matching CSS statement for this might look like
the following:

Note the use of the # symbol, which specifies that only the ID with the name “iblue” should be

styled with this statement.
If you would like to apply the same style to many elements, you do not have to give each one a

different ID because you can specify a class to manage them all, like this:

What this does is state that the contents of this element (and any others that use the class) should

have the style defined in the “iblue” class applied to it. Once a class is applied, you can use the
following style setting, either in the page header or within an external style sheet for setting the styles
for the class:

Instead of using a # symbol, which is reserved for IDs, class statements are prefaced with a .

(period) symbol.

Summary
How to insert the recipes and the best ways to use them either on a web server or in a web client
accessing the DOM is also explained in each of the following parts of the book, and is illustrated
with numerous working examples.

PART II
PHP Recipes

CHAPTER 3
Text Processing
CHAPTER 4
Image Handling
CHAPTER 5
Content Management
CHAPTER 6
Forms and User Input
CHAPTER 7
The Internet
CHAPTER 8
Chat and Messaging
CHAPTER 9
MySQL, Sessions, and Cookies
CHAPTER 10
APIs, RSS, and XML
CHAPTER 11
Incorporating JavaScript
CHAPTER 12
Diverse Solutions

CHAPTER 3
Text Processing

Although many web sites have video and other multimedia capabilities, the most fundamental part of
almost all web sites remains the information contained within their text. This first batch of recipes
concentrates on providing a range of functions to facilitate manipulating and presenting text in the
most suitable way.

Whether you wish to control word wrapping, use of upper- and lowercase, spelling and
grammar, text length, unwanted words and characters, or other textual features, there’s a recipe here
that will do the job. Some of these recipes are so useful they are themselves used by other recipes in
this book.

 WrapText()
You can make text wrap in a browser in various ways, including using tables, iframes, and textareas,
but sometimes you need absolute control over the wrapping in terms of the number of characters at
which the wrap should occur, regardless of whether the user resizes their browser window.

Using this recipe, it’s easy to pass a string of text and have it wrapped using
 tags.
What’s more, it can also indent the start of each new paragraph by an amount of your choosing. Figure
3-1 shows the opening paragraphs of Charles Dickens’ Oliver Twist, with a wrap width of 71
characters and a paragraph indent setting of 5 characters.

FIGURE 3-1 Setting text to wrap at a fixed width is a breeze with this recipe.

About the Recipe
This recipe takes a string variable containing any text and then adds
 and tags in the
right places to make the text wrap and indent paragraphs. It takes these arguments:

• $text A string variable containing the text to be wrapped.
• $width An integer representing the character at which to force word wrapping.
• $indent An integer representing the number of characters by which to indent each paragraph start.

Variables, Arrays, and Functions
$wrapped String variable containing the wrapped text to be returned
$paragraphs Array containing the separate paragraphs as determined by \n characters
$paragraph String containing an individual paragraph being processed
$words Array of all words in a paragraph
$word String containing the current word being processed
$len Numeric variable containing the length of the current line
$wlen Numeric variable containing the length of the next word to be processed

How It Works
The code works by first splitting the text it is passed into separate paragraphs using the PHP
explode() function with an argument of \n, which is the newline character. What this function does
is return an array of substrings based on splitting the original string each time a \n is encountered.
The function returns these paragraphs in the array $paragraphs, like this:

A foreach loop is then entered passing $paragraphs as the input, and then each iteration of the

loop places one paragraph at a time into the string variable $paragraph, like this:

NOTE Notice the singular form of the variable name $paragraph, with no s on the end. This is a
convention I use throughout this book—the plural form of a name being for an array, and the
singular form of the same name used for an element extracted from that array.

Next, a check is made to see whether paragraphs must be indented. If so, $indent will have a
value greater than zero and so the str_repeat() function is used to add $indent number of
nonblank spaces to the string $wrapped, which contains the wrapped text to be returned, like this:

Now it’s time to extract all the words in the current paragraph by using the explode() function

again, but this time splitting the text up at each space. The resulting list of words is placed in the array

$words. Then, before proceeding into processing the words, the variable $len, which monitors the
length of the current line, is set to whatever value $indent has, so that the length of the first line is
correctly initialized, like this:

Another foreach loop is now used to iterate through the words, assigning each element in the

array $words in turn to the string variable $word. Then, the first action taken in the loop is to make a
note of the length of the word in the variable $wlen, as follows:

Next, an if … else pair of tests check whether, if added together, the current line length, $len,

plus the current word length, $wlen, would be less than the required width, $width. If so, then the
word is appended to $wrapped, followed by a space, and then $len is updated accordingly, like this:

If adding the word to the current line would have made it too long, then the else part of the test

is executed. Here, any space character previously added to $wrapped is now unnecessary and is
removed by a quick call to rtrim(), which removes whitespace from a string’s tail. Then, a

tag followed by a newline character (to help make viewing the page source clearer) and a space are
appended to $wrapped, followed by $word (which is now on a new line). The
 is used
because a \n does not add a line break to HTML output. The value of $len is then updated to reflect
this, as follows:

Once the inner loop has completed executing, rtrim() is again called to remove any extra space

that was added (but isn’t now needed), and a
 tag and newline are appended to $wrapped to
signify reaching the end of a paragraph, like this:

Once the outer loop has also completed, the text has been fully processed and so the value in

$wrapped is returned to the calling code like this:

How to Use It
To transform unwrapped text into wrapped, call the function like this:

Here $news_item is the text to be wrapped, 80 is the character at which to force the wrapping,

and 5 is the number of characters by which to indent the start of each paragraph. If you don’t want
indenting, just set the third parameter to zero.

The Recipe

 CapsControl()
When dealing with user input, you will often come across people who keep their CAPSLOCK key
permanently enabled, which can make reading what they write difficult on the eye. It also looks like
they are shouting. To diminish or entirely remove this problem, use this recipe, which also supports
three other upper- and lowercase text transformations. Figure 3-2 shows these four transformations
applied to a poem by Lewis Carroll.

FIGURE 3-2 Converting all caps or other nonstandard text to a more readable form using this recipe

About the Recipe
This code takes a string variable containing any text and then transforms its case according to the
second parameter. It takes these arguments:

• $text A string variable containing the text to be transformed.
• $type A string containing the type of transformation to make:
 u - capitalize all letters
 l - set all letters to lowercase
 w - capitalize the first letter of every word
 s - capitalize the first letter of every sentence

Variables, Arrays, and Functions
$newtext String variable containing transformed text
$words Array of all words in the text

$word String containing the current word being processed
$sentences Array of all sentences in the text
$sentence String containing the current sentence being processed

How It Works
This recipe is based around a four-way switch statement, the first two of which are extremely simple
in that if the style of transform requested (passed in the $type variable) is either u or l, then the text
to transform is simply passed through either the strtoupper() or strtolower() functions and then
returned, as follows:

If the transformation type is w, then the string variable $newtext is initialized to the empty

string; it will be used to build the transformed string to be returned. Then all the words in the text are
extracted into the array $words using the function explode(), which is set to split $text into
smaller strings at each space character and return the result in an array.

Next, a foreach loop iterates through all the elements in $words, placing them one at a time in
the string variable $word, from where they are first converted to lowercase using strtolower(),
and then the first letter of the word is converted to uppercase using the ucfirst() function. After
this, a space is added back to the end of each word. Once $newtext has been constructed, any extra
space that was appended is removed using the rtrim() function and the string is returned. Here is the
code for this case:

If the transformation type is s, then $newtext is initialized to the empty string and all the
sentences are extracted into the array $sentences using the explode() function. From here, they are
processed one at a time using a foreach loop into the string variable $sentence, which is then
converted to lowercase using strtolower(), any preceding whitespace is removed using ltrim(),
and then the first character of the sentence is set to uppercase using the ucfirst() function. After
building $newtext, any trailing space is removed and the string is returned, as follows:

In the case of an unknown type being passed to this function, the final line will return the original

string unchanged:

How to Use It
You use the recipe by calling it up in one of the four following ways:

The $text argument should contain the string to transform, while the second argument should be

one of the four letters shown (in lowercase).

The Recipe

 FriendlyText()
Sometimes when you have text to post on a web site, it can be quite dry and unexciting. Although
there’s not much you can do about that (apart from completely rewriting it), at least you can make it
read better by converting it into as friendly a form as possible by making it flow better by using
contractions. For example, replacing you have with you’ve or it is with it’s is easier to read and
more like the way we speak in everyday life, and this code takes that concept to the extreme.

Figure 3-3 shows an excerpt from one of Winston Churchill’s speeches, which now flows a lot
better, although I admit, the original has a certain punchiness and power that’s lost in the conversion.
Still, it shows you can leave this recipe running on your server and it will almost always produce
proper, readable English.

FIGURE 3-3 This recipe is used to convert a famous speech with the underline option enabled for
testing.

This is also a good example of why these recipes are so useful, because you probably could
write this code quite easily yourself, but actually sitting down and working out all the various parts of
the rules of the English language (and all its exceptions) is quite time-consuming. Thankfully, though,
I’ve done all that work for you.

About the Recipe
This recipe takes a string variable containing English text, processes it into a “friendly” form of
speech, and returns the modified text. It takes these arguments:

• $text A string variable containing the text to be modified.
• $emphasis A Boolean value that, if TRUE, underlines all modifications.

Variables, Arrays, and Functions
$misc Array containing pairs of strings to find and substitute
$nots Array of words that can preface the word not
$haves Array of words that can preface the word have
$who Array of pronouns and question words
$what Array of common verbs that can be contracted

$contractions Array of the contracted forms of $what
$j, $k Integer loop counters
$from, $to Strings to convert from and to
$u1, $u2 Strings containing start and end underline tags if $emphasis is true
$f, $t, $s, $e Various arguments passed to the function FT_FN1()
$uf, $ut String variable copies of $f and $t, with their initial letters capitalized
$1, $2 String variables containing the matches found by preg_replace()
FT_FN1() Function to perform the string replacements

How It Works
This recipe takes as an argument a string of text, which it then modifies and returns. The original text
is not changed by the process. It performs five passes through the text to change different types of
English.

The first pass iterates through the $misc array, stepping two elements at a time. It then searches
for the first element and, if found, replaces it with the second. The $misc array contains a set of
unusual contractions that don’t follow the normal English rules, which is one reason why the program
gets them out of the way first, like this:

The second pass works through the $nots array and checks whether any of the words in it are

followed by the word not. If so, it contracts them so that, for example, did not becomes didn’t, as
follows:

In the third pass, the $haves array is processed in an identical manner to the $nots array, except

that pairs of words such as should have become should’ve, like this:

Pass four uses a pair of nested loops to iterate through the $who array of pronouns and similar

words and then iterate through the $what array of words that follow them and can be contracted. If
matches are made, then the contraction to use is looked up in $contractions and applied. So, for
example, he has will become he’s, like this:

The final pass, at the end of the main function, looks for all instances of the word is with another

word and a space in front of it, and when it finds any, it contracts the two together so that, for
example, Paul is would become Paul’s, like this:

The second function in this code, FT_FN1(), is only used by the recipe. It takes the four

arguments $f, $t, $s, and $e, which (in order) contain a string to change from, what to change it
to if found, the string to search within, and whether to emphasize any changes by making them
underlined. It does all this by using regular expressions within the PHP preg_replace() function. It
repeats each match and replace twice; the second time to catch strings beginning with capital letters.

NOTE The function FT_FN1() uses an obscure name since it has no real use anywhere other than
as a partner function to FriendlyText(). Where partner functions can be useful in their own
right, they are given a more memorable name, such as the ones for SpellCheck(),
SpellCheckLoadDictionary(), and SpellCheckWord(), a little further on in this chapter,
in PHP Recipe 8.

How to Use It
To transform any text (including text with HTML) using this code, call the main function in the
following way:

The first parameter holds the string to be modified. This will not be changed. Instead, a new

string containing the transformed text will be returned by the function. The second parameter can be
either FALSE or TRUE, which will cause all changes to be underlined. This can be useful for
debugging purposes.

In this example, the value of $newtext becomes “Let’s go for a picnic. I hope it won’t rain.”

The Recipe

 StripWhitespace()
A few of the recipes in this book are really short and sweet and, at just a single line of code, this is
one of them. But although it’s tiny, it packs a punch because it can clean up the messiest text by
removing all the whitespace in a string, such as extra spaces, tabs, newlines, and so on.

Figure 3-4 shows part of the U.S. Declaration of Independence as it might appear if read from a
poor-quality reprint by some optical character recognition software, followed by it being run through
this recipe.

FIGURE 3-4 Unsightly whitespace can seriously mess up some text, but this recipe will remove it for
you.

Although browsers generally ignore whitespace, if the text is displayed using the <pre> tag or is
placed in a form element such as a <textarea> (as used in Figure 3-4), then all the whitespace will
be apparent.

About the Recipe
This recipe takes a string variable containing any text and removes all whitespace. It requires a single
argument:

• $text A string variable containing the text to be modified.

How It Works
This code makes use of the regular expression feature built into PHP. What it does is search for the
text within the two forward slash characters (/) and then replaces any it finds with a single space.
Between the slashes is the simple string \s+, which means find any section of whitespace that is one
or more characters in length. The \s stands for a whitespace character, and the + indicates that the
preceding character should appear one or more times in the search. The actual string passed to the
preg_replace() function is modified and then returned to the calling code.

How to Use It
To use this recipe, call the function in the following manner, where $text is the string to be cleaned
up:

The Recipe

 WordSelector()
Quite often, you will find you need to somehow highlight chosen words within a web page—for
example, when a user arrives from a search engine, you may wish to highlight the search terms they
used to help them find what they are looking for. Other times, you might not want certain words to
appear, such as profanities or other terms you wish to prevent your users from posting.

This recipe is powerful enough to handle both of these cases because you simply decide on the
relevant words and what should happen to them. Figure 3-5 shows a few words highlighted within a
section of the U.S. Declaration of Independence.

FIGURE 3-5 Using this recipe, you can highlight selected words or censor unwanted ones.

About the Recipe
This recipe takes a string variable containing the text to process and an array containing words to be
highlighted, as well as a parameter defining the type of highlighting. These are the arguments:

• $text A string variable containing the text to be modified.
• $matches An array containing words to highlight.
• $replace A string representing the action to perform on matching words. If it is any of u, b, or i,

then the matching words will be highlighted using one of underline, italic, or bold face—otherwise,
matching words are replaced with its value.

Variables, Arrays, and Functions
$match String containing the current word being matched

How It Works
The code starts iterating through the $matches array of supplied words one at a time, using a switch
statement to decide whether any matches found should be highlighted in underline, bold, or italic font
(if $replace contains one of u, b, or i).

In the case of highlighting a word, the preg_replace() function is called, passing three
elements to it:

1. ([^\w]+) Looks for any sequence of one or more non-word characters, followed by…
2. ($match) … the current word being matched, followed by…
3. ([^\w]+) … another sequence of one or more non-word characters

Using this pattern, it’s possible to extract individual words by checking for one or more non-
word characters on either side of the second parameter ($match).

The brackets enclosing each of these parts tell PHP to save the matches found for use in the
replace part of the function, where they can be inserted using the values $1, $2, and $3, each
representing the values in the order they appear in the brackets.

When a match is found, the replace string inserts the non-word characters before the match ($1),
followed by <$replace>, which will be one of <u>, , or <i>, followed by the word found ($2),
followed by </$replace> to close the tag that was opened, finally followed by the non-word
characters after the match ($3).

In the case of a string of text having been passed in $replace, rather than one of u, b, or i,
the same initial match is made, except that $match doesn’t have brackets around it because we won’t
be needing to save a copy of the match, as it will be replaced. Therefore, the replace section is
simpler in that it just replaces the entire match with the value in $replace.

How to Use It
To use this function, you should provide the text to be checked, an array of words to match, and a
string to either replace or highlight matched words. For example, to underline a given set of words,
you could use the following line of code:

If the list of words is long, you probably would not want to create an array on the fly, and

instead would pre-populate an array first, using code such as these two lines:

To blank out or censor a set of words, you specify a replace string that is none of “b”, “u”, or

“i”. For example, the following line replaces all the words in the array $words that are found in
$text with four asterisks:

The Recipe

 CountTail()
Displaying a date in the format “23 November” or “March 12” isn’t really that friendly and you may
wish to use the better flowing “23rd November” and “March 12th.” In fact, there are many places
where you use numbers and they would look better displayed with one of “st,” “nd,” “rd,” or “th”
following, such as in the sentence “You’re our 124,362nd” visitor, rather than “You are visitor
124,362,” and so on. Figure 3-6 shows how to use this recipe to add the correct suffix to all the
numbers between 0 and 100.

FIGURE 3-6 Using this recipe makes it easy to add “st,” “nd,” “rd,” and “th” automatically to
numbers.

About the Recipe
This recipe takes a number as input and then returns that number with a possible suffix of “st,” “nd,”
“rd,” or “th.” It takes a single argument:

• $number The number on which to append a suffix.

Variables, Arrays, and Functions
$nstring String variable created from $number
$pointer Numeric variable that points into $nstring
$digit Single character string extracted from $nstring
$suffix String representing the suffix to append

How It Works
In order to operate on individual digits of the given number, it is first turned into a string using the
cast keyword (string) and is then stored in $nstring. This is because, although PHP is a loosely
typed language and does its best to automatically change the type of a variable according to how it is
accessed, it cannot be relied upon to make the change correctly in this instance, where numbers would
have to be treated as strings, which are then treated as arrays. Thus, the forced change of type using
the cast statement.

Next, the numeric variable $pointer is defined with a value derived from the length of
$nstring - 1. This means it will also point at (or index into) the final character in $nstring. Using
$pointer, the variable $digit is then set to the value of the final digit in the number. The string
variable $suffix is then set to the default value “th”, the most common suffix. The first four of lines
that do these things are as follows:

With all the variables initialized, a test is made to see whether $pointer has a value of 0. In

other words, is $number a single-digit number less than 10? A second part of the test then takes the
case of $pointer being greater than zero (therefore $number is 10 or higher), and if it is, it tests
whether the second-to-last digit is not the number 1, like this:

The reason for this test is that any number ending in 1, 2, or 3 usually requires the suffix “st,”

“nd,” or “rd,” unless the previous digit is a 1, in which case the suffix must be “th,” as in 11th, 12th,
and 13th. If it isn’t an exception case, the switch statement sets $suffix to one of the three lesser
common suffixes if the last digit is a 1, 2, or 3. Otherwise, you will recall, $suffix was already set
to “th” by default, using this code:

Finally, the number is returned with the correct suffix appended.

How to Use It
To add a suffix to a number, just call the code passing the number, like this:

So, for example, to create the output shown in Figure 3-6, you could use the following:

The Recipe

 TextTruncate()
Have you noticed how the results provided by the Google search engine always neatly display
snippets of information from each web site without truncating the text midword? Now you can cut
long strings short in a similar manner using this recipe, as shown by the screen shot in Figure 3-7,
which illustrates three snippets from the first paragraph of Charles Dickens’ A Tale of Two Cities.

FIGURE 3-7 Using this recipe, it’s easy to truncate text automatically at a word break.

About the Recipe
This recipe takes a string variable containing text to truncate, the maximum number of characters to
allow in the new string, and a symbol or string to follow the truncated text—to show what has been
done. It takes these arguments:
• $text A string variable containing the text to be modified.
• $max A numeric variable representing the maximum number of characters allowed.
• $symbol A string variable to follow the new text.

Variables, Arrays, and Functions
$temp Temporary copy of the string variable $text after initial truncating
$last Numeric variable pointing to the final space character in $temp

How It Works
The truncation process has several parts. The first is a hard truncation down to the maximum size
allowed by $max. This is done using the substr() function. Next, the strrpos() function is used to
find the final space in the newly truncated string. Once determined, the new string is again truncated at
this new position.

In the case of the Google search engine, this would be most of the process, but I decided it’s
unsightly to leave punctuation or another non-word character as the final character in the new string,
so preg_replace() is called up to remove any non-word character that may be there. Only then is
the new string returned, with the value of $symbol attached to its end.

How to Use It
To use this recipe, pass it some text to truncate, the maximum number of allowed characters, and a
symbol or string to attach to the end of the truncated string, like this:

You can choose any character or string for $symbol (or even the empty string), such as the useful

HTML entity …, which displays an ellipsis made up of three periods—the standard notation
to indicate that some text is missing.

The Recipe

 SpellCheck()
There’s a spell-checking module available for PHP called pspell, but if it’s not already installed on
your server, it needs to be downloaded, installed, and configured before you can use it. But if you
want to ensure your code will work on any server, this recipe provides a reasonably fast spell
checker based on a dictionary of over 80,000 words, which is supplied on the companion web site
(http://webdeveloperscookbook.com), along with the recipes.

Figure 3-8 again shows a paragraph from Dickens’ A Tale of Two Cities, but this time some
deliberate spelling errors have been introduced, which have been caught by the recipe.

FIGURE 3-8 Checking user input for spell checking is easily accomplished with this recipe.

About the Recipe
This recipe takes a string variable containing text to spell check, along with a variable to determine
how the resulting text should be displayed. It requires these arguments:

• $text A string variable containing the text to be modified.

http://webdeveloperscookbook.com

• $action A string variable that should contain a single-letter text formatting tag.

Variables, Arrays, and Functions
$filename

String variable containing the path and name of the dictionary file
to load

$dictionary Array containing all the dictionary words
$newtext String variable containing the transformed text
$matches Array containing the results from the preg_match() calls
$offset Numeric variable pointer to the next word to check
$word String variable containing the current word
SpellCheckLoadDictionary() Function to load in the dictionary
SpellCheckWord() Function to check a single word

$top, $bot, $p
Temporary variables used by SpellCheckWord() to perform a
binary search of the dictionary

How It Works
With this recipe, you get two for the price of one, because the main function, SpellCheck(), relies
on another function, SpellCheckWord(), to check individual words, and you can call it on its own,
too.

The very first thing the main function does is load the dictionary file into the array
$dictionary, like this:

This file is on the web site and will be downloaded along with the recipe. It comprises over

80,000 words separated by \r\n (carriage return and linefeed) pairs. If you have your own collection
of words, you can also use it, as long as you make sure there’s a \r\n pair between each. This is also
why you are provided with the function SpellCheckLoadDictionary(), so you can specify the path
and filename to such a file.

With the dictionary loaded into an array, $text has a space character appended to it. This is so
the following code has a guaranteed non-word character at the end so a match can be made on the
final word. Then, the two variables $newtext and $offset are initialized. Respectively, they
contain the transformed text and a pointer to the next word to be checked in the string $text, as
follows:

The heart of the system comprises a while loop, which continues iterating through each word

in $text until it reaches the end of the string. It knows this by checking $offset and seeing whether
it is still less than the length of $text, and looks like this:

Within the loop, each word is extracted in turn using the preg_match() function with a three-

part regular expression:

1. [^\w]* This looks for zero or more non-word characters, followed by…
2. ([\w]+) … one or more word characters (a–z, A–Z, or 0–9), followed by…
3. [^\w]+ … one or more non-word characters.

In part 2 earlier, the regular expression segment is surrounded by brackets, which means that
particular value will be saved in the array element $matches[1][0], and its length in $matches[1]
[1]. The whole matched string, comprising all three parts, is saved in the array element
$matches[0][1], and the length of this value is saved in $matches[0][1].

Provided with these values, the string variable $word is assigned just the part 2 match, which is
the word to be spell checked, then $offset, the pointer to the next word to be checked, is
incremented by the length of the full matched string, so as to jump over any non-word characters. The
code is then ready to process the following word the next time around the loop.

In the meantime, the newly extracted word is passed to the function SpellCheckWord(), along
with the dictionary array to use, in $dictionary. The return value from this function is either TRUE,
if the word is found, or FALSE if it isn’t. Depending on the value returned, the word is added to
$newtext, either with or without highlighting tags. Once execution exits from the loop, the text has
been fully checked and so $newtext is returned, after passing it through the rtrim() function to
remove the final space that was added at the function start, like this:

The function SpellCheckLoadDictionary() is next. It simply loads in the specified text file,

explodes it into an array by splitting it at all the \r\n pairs, and then returns the new array, like this:

Finally, there’s the function SpellCheckWord(). This takes the arguments $word and

$dictionary and then returns either TRUE or FALSE, depending on whether or not the word is in the
dictionary.

This is done by means of a binary search in which the $dictionary array is continually
bisected until a word is found, or is found to be missing. In a dictionary of 80,000 words or so, it will
take no more than about 17 iterations maximum to drill down to where a word is (or should be),
which is an order of magnitude faster than checking every word in the dictionary. By the way, this

search relies on having a fully sorted list of words, so if you use your own word list, make sure you
sort it alphabetically first.

The way the code performs the binary search is to say, “Is the word I am looking for in the top or
the bottom half of this section of words?” Then, the loop goes around again splitting whichever half it
determines the word to be in, asking the same question. This continues until the word is either found
or determined not to be in the dictionary.

The variables that control this divide-and-conquer method are $bot and $top, which represent
the start and end positions to search between within the $dictionary array. Initially, they are set to
the first and last elements, like this:

Then, $bot is moved up or $top is moved down by taking the midway point between the two

values and assigning that to a pivotal numeric variable called $p, right in the middle. If the word is
greater than the one at position $p, then $bot is moved up past that word. If the word is lower than
the one at position $p, then $top is dropped below that position, using this code:

If at any point the word at position $p in the $dictionary array is the same as $word, then a

match has been found and the value TRUE is returned. Otherwise, the process continues and eventually
$top and $bot will pass each other and $bot will have a value higher than $top, because all the
words in the dictionary have been checked, at which point the loop exits and the value FALSE is
returned because no match was made.

How to Use It
To use the main function and have any misspelled words highlighted with underlines, you call it like
this:

This will check the words in $text against all the dictionary words and highlight any that are

not recognized. You can replace the u with i or b for italic or bold if you prefer.
If you wish to spell check a single word, perhaps to support interactive spell checking, you must

make sure you have loaded the dictionary in before calling the SpellCheckWord() function. Ideally,
place the call to the function to do this somewhere at the start of your PHP file so you know for sure it
has been loaded when you make a call. To load a dictionary file, use a command such as this:

Make sure you provide the correct file and pathname. If you are using the supplied code from the

web site, then dictionary.txt will be in the same directory. Then, to spell check an individual word,
call the function like this:

It will return TRUE if the word is recognized or FALSE if it isn’t.

The Recipe

 RemoveAccents()
When you have data that’s accented with diacritics (such as é), you sometimes need to convert this
data to plain ASCII but still be able to read it. The solution is to replace all the diacritic characters
with standard ones using this recipe. Figure 3-9 shows some French text before and after running the
recipe.

FIGURE 3-9 Part of the French Wikipedia entry for PHP before and after running it through this
recipe.

About the Recipe
This recipe takes a string variable containing accented text and returns a nonaccented version. It
requires this argument:

• $text A string variable containing the text to be modified.

Variables, Arrays, and Functions
$from Array containing a list of accented characters
$to Array containing nonaccented versions of $from

How It Works
This recipe uses the str_replace() function to replace the characters in the string $text that match
those in the array $from with their nonaccented counterparts in the array $to.

In PHP, you can use str_replace() either to substitute single items or, as here, with arrays.
There are 55 characters in each array. If, for example, character 23 is matched in the array $from,
then character 23 from array $to is substituted. The substituted text is then returned.

How to Use It
To transform accented text to nonaccented text, call up the code as follows:

The Recipe

 ShortenText()
Sometimes, when you want to display the URL on a web page, it can be so long it looks untidy and
messes up your layout. Of course, you can come up with suitable text for a hyperlink instead of

showing the URL, but what about when a user posts a web address to your web site?
This recipe has a simple solution because it shortens any long URLS (or other strings) by

removing the middle and only keeping the two ends. Figure 3-10 shows a long URL text string,
followed by a version shortened by this recipe.

FIGURE 3-10 Shortening URLs or other strings is easily done with this recipe.

You should note that when used on URLs, the shortened text is only for the displayed part of an
HTML link and not the actual link itself, which must remain unchanged. The code’s main use is for
reducing the space that the text of a link takes up on a web page.

About the Recipe
This recipe takes a string variable containing a long URL (or other string) and returns a shortened
version. It takes these arguments:
• $text A string variable containing the text to be modified.
• $size A numeric variable containing the new string size.
• $mark A string variable containing a character sequence to mark the part that was removed.

Variables, Arrays, and Functions
$len Numeric variable containing the length of the original string
$a String variable containing the left-hand part of the new string
$b String variable containing the right-hand part of the new string

How It Works
This recipe first notes the length of the original string and, if the new required length is not smaller,
simply returns the original string since there’s no shortening to do, like this:

Otherwise, the left portion of the new string is created by copying half the number of characters

that are to be in the new string from the left of the original string using the substr() function. The
result is then stored in $a. The right-hand portion is similarly derived by taking half the number of
characters required for the new string from the right of the original string, as follows:

This is not quite true. Actually, the left and right halves are each one character less than half the

required size of the new string to allow for inserting the $mark string to signify the part of the string
that has been removed.

The three parts—$a, $mark, and $b—are then assembled and returned:

How to Use It
To shorten a URL (or other string), call the code like this, where $text is the string to shorten, 60 is
the new maximum size, and /-/-/ is the marker to signify the portion of the string that was removed:

The new shorter string will be displayed. You can replace the marker shown with any string of

your choosing.

The Recipe

CHAPTER 4
Image Handling

HTML and CSS have developed to such an extent that the depth and variety of features available to a
web developer have never been greater. But when it comes to images and manipulating them, there’s
not a lot you can do other than resize them in-browser (not a true resize, more of a squash or a stretch)
and add borders. True, using JavaScript you can overlay one image on another and blend them by
making one image semitransparent, but that’s about the extent of it.

That’s where PHP comes to the rescue, thanks to the GD library of image functions, which most
implementations of PHP now include by default. For example, the recommended Zend Server CE
from Chapter 1 already has GD enabled.

For further details on the GD library, including installation and usage, please visit
http://php.net/manual/en/book.image.php. Otherwise, let’s get started on the next batch of 10
recipes.

 UploadFile()
A major service offered by many web sites is the facility for users to upload files and images. For
example, you may wish to let your users create avatars or upload photos they have taken. Or perhaps
you need to support the uploading of Word, Excel, or other types of files. Using this recipe, you can
enable this feature while retaining the security of your web site. Figure 4-1 shows the result of
uploading an image file called test.jpg using it.

FIGURE 4-1 This recipe is easy to use and provides lots of information and error checking.

About the Recipe
This recipe takes the name of a form field used to upload a file to a web server and returns the
uploaded file in a string. Upon success, it returns a two-element array, the first value of which is zero
and the second is the uploaded file. On failure, a single-element array is returned with one of these
values:

http://php.net/manual/en/book.image.php

• -1 = upload failed
• -2 = wrong file type
• -3 = file too large
• 1 = file exceeds upload_max_filesize as defined in php.ini
• 2 = file exceeds the MAX_FILE_SIZE directive in the HTML form
• 3 = file was only partially uploaded
• 4 = no file was uploaded
• 6 = PHP is missing a temporary folder
• 7 = failed to write file to disk
• 8 = file upload stopped by extension

There is no returned value of either 0 or 5, and the code takes these arguments:

• $name String containing the form field name given to the uploaded file.
• $filetypes Array containing the supported file (mime) types.
• $maxlen Integer representing the maximum allowable file size.

Variables, Arrays, and Functions
$_FILES System array containing the uploaded file information
$temp String containing a temporary copy of the uploaded file

How It Works
Once a file has been received by the web server, it’s stored in a temporary location and a system
array called $_FILES is populated with various details about the file, as follows:

• $_FILES[’file’][’name’] The original name of the file on the client machine.
• $_FILES[’file’][’type’] The mime type of the file (such as “image/jpeg”).
• $_FILES[’file’][’size’] The size, in bytes, of the uploaded file.
• $_FILES[’file’][’tmp_name’] The temporary filename of the file in which the uploaded file

was stored on the server.
• $_FILES[’file’][’error’] Any error code associated with this file upload.

In this code, the form field name used to upload the file is passed to the function in $name, which
is used in place of ’file’ as shown earlier. To check whether a file was successfully uploaded, the
first thing the recipe does is see whether $_FILES[$name][’name’] has a value. If so, a file has
been uploaded. Otherwise, an error value of -1 is returned.

Next, the $filetypes array of allowable file (or mime) types is compared with the type in
$_FILES[$name][’type’], using the in_array() function. If it isn’t one of the allowed types, then
the recipe returns a value of –2.

Then, the maximum allowed file length in $maxlen is compared with $_FILES[$name]
[’size’] and, if the file is too large, an error value of -3 is returned. After this, $_FILES[$name]
[’error’] is tested and if it has a value greater than 0, there was an error and that error value is
returned.

In all these cases, the function actually returns an array of three elements, only the first of which

contains the error value. The second two elements are set to NULL since they will only return data
upon successful file upload.

After passing all the tests, the uploaded file is loaded into the variable $temp from its temporary
location, pointed to by $_FILES[$name][’tmp_name’], and a value of 0 is returned in the first
element of the array (meaning the function was successful). Then, the file type and the file itself are
returned in the other two elements.

How to Use It
To use this recipe, you need to offer an HTML upload form similar to this:

Here, the form has been set to post its input to the PHP program upload.php using the encoding

type of multipart/form-data. The program uploaded to can be any of your choosing, even the
current PHP program, but the encoding type must be as shown; otherwise, the upload will fail.

The second line tells the browser that a file needs to be uploaded and that its name, as sent to the
server, should be test. In fact, the web browser will normally also send the name of the file as it is
stored on the local computer too, but, as explained a little later, it’s a security risk to rely on that
information since a malicious person could create a web form of their own, with altered details
planned to send spoof filenames to your web server in the hope of saving a file on it with which they
can compromise it. This recipe therefore totally ignores the original filename and uses only the form
field name as an identifier.

The final line creates a submit button with the label “Upload” and closes the form. When they
click the Browse button created by the form, users can then navigate their local file system to locate
and upload a file to the server.

When you call up the code, all you need to do is pass it the field name used in the form, an array
of acceptable file (or mime) types, and the maximum allowable file length. Everything else is taken
care of for you. When the function returns to the calling code, it will either pass an error code, or it
will return the uploaded file, from where you can save it (if you wish) to the server’s hard disk.

The following code creates an array of two mime types in $allowed—for the regular and
progressive kinds of JPEG images. Then, the recipe is called and the returned array is stored in
$result. If the first element of $result, $result[0], is non-zero, there was an error and a
message will be displayed; otherwise, the returned file, stored in $result[2], is saved to the disk
as test.jpg. If you need to know it, the type of the uploaded file is also available in $result[1].

If the recipe had accepted the supplied filename instead (in $_FILES[’file’][’name’]), then

users could upload a name such us c:\windows\system32\calc.exe, which, if you simply saved it as
is, could overwrite your calculator program. The same goes for Linux systems where, for example, a
filename of /bin/sh could overwrite your Bourne shell. A secure system will try and step in to prevent

this happening, but not always. And what if the uploaded filename was a PHP file? Your system
could then easily be compromised and taken control of.

Following is a full example of the type of code you might write to make use of this recipe:

The first section is a multiline echo that displays an HTML web form for uploading images.

After that, the POST variable $_POST[’flag’] is checked. This is a hidden form field that will have
the value 1 only if the form is submitted. If this happens, something was uploaded and the rest of the
code is executed.

First, $result is assigned the file returned from the call to UploadFile(). Then, if
$result[0] has a value of 0, the upload succeeded and the contents of the file are saved as test.jpg.
A message is then displayed, along with a link to the file.

If $result[0] is non-zero, then there was an error and its value is the error number, as detailed
in the About the Recipe section.

The Recipe

 ImageResize()
Although you can easily resize an image using HTML by specifying the width and height at which to
display it, the way the image will appear depends entirely on the browser being used, and whether the
original is resampled rather than simply pixel resized. Also, if you wish an image to be reduced in
size, changing its dimensions from within HTML won’t reduce the amount of data transferred from the
server to the browser.

Instead, try using this recipe to resize images first. With it, you can choose whether to resize an
image on the fly before sending it to a browser, or you can save the resized image to the hard disk.
Figure 4-2 shows a 313 × 317–pixel image that has been resized to 500 × 100 pixels. Although it is
now squashed, the resampling used has ensured that the new image remains smooth, without the
jagged edges a pixel resize would create.

FIGURE 4-2 Using this function, you can reduce, enlarge, and change the ratio of image dimensions.

About the Recipe
This recipe accepts an image to be resized and the new dimensions required. It takes these arguments:
• $image An image to be transformed, as a GD library object.
• $w The new required width.
• $h The new height.

Variables, Arrays, and Functions
$oldw Integer representing the image’s current width
$oldh Integer representing the image’s current height
$temp Temporary copy of the new GD image

How It Works
This recipe first looks up the image’s current width and height and places these values in the
variables $oldw and $oldh. It then creates a new GD image object of the new width and height, as
supplied in $w and $h, like this:

The imagecopyresampled() function is then called, passing these values to it. It takes the old

image, resamples it to the new width and height, and the new image is then placed in the $temp GD
image object, which is returned by the function, as follows:

How to Use It
The way you use this recipe is to have an image already created or loaded into a GD image object,
which you then pass to the function, along with two arguments stating the new width and height
needed. Once the new image has been created, it’s returned by the function.

So, for example, the following code loads in the image $image from the file test.jpg, resizes it
into the new image object $newim using ImageResize(), and saves it as the new image squashed.jpg
using the imagejpeg() function:

If you prefer, you can have your PHP program act as if it were the new image itself by outputting

it directly to the browser, like this:

Here, after loading the image into $image, a special header is sent to the browser, "Content-

type: image/jpeg", which tells it that the next data to arrive will be a JPEG image. Then, the
imagejpeg() function is called using the value returned from the recipe, but without a filename
argument, so the resulting JPEG is sent straight to the browser, rather than saved to disk.

The Recipe

 MakeThumbnail()
Many thumbnail programs exist that will take a large image and reduce it to a thumbnail for you, often
supporting working in batches. But what about turning user-uploaded images into thumbnails?
Obviously, you don’t want to simply send a large image to the browser and have HTML resize it,
because the quality wouldn’t be great, and your bandwidth would go through the roof. So you need
something to handle this process on the fly, which is where this recipe comes in handy.

With it, you specify a source image and the maximum dimensions allowed for the new thumbnail.
The function will then resize the image, retaining the aspect ratio, so that whichever is larger—the
height or width dimension—is then set to the new maximum size, and the other is reduced in
proportion. Figure 4-3 shows the smiley face image from the previous recipe, here used as a
thumbnail source for two smaller thumbnail images.

FIGURE 4-3 This recipe has been used to make two different thumbnails of a smiley face.

About the Recipe
This recipe accepts an image to be converted into a thumbnail and the new maximum width or height.
It takes these arguments:

• $image A GD image to be transformed.
• $max The new maximum width or height (whichever is the greater dimension).

Variables, Arrays, and Functions
$w Integer representing the image’s current width
$h Integer representing the image’s current height
$thumbw Integer representing the thumbnail’s new width
$thumbh Integer representing the thumbnail’s new height

How It Works
To create the new thumbnail image, this recipe accepts a GD image object and then sets $w and
$thumbw to its width, and $h and $thumbh to its height, like this:

Next, it looks at these values to find out which dimension is the larger. If $w is greater than $h,

then the image is wider than it is high, so the new width will take the value in $max. $thumbh, the
smaller thumbnail height, is then set to the maximum dimension value of $max divided by the original

image’s width, in $w, and multiplied by its height, in $h, as follows:

So, for example, if the original image’s width is 1200 pixels, the height is 1000 and the new

maximum dimension size is 100 pixels, the following formula is applied:

This becomes:

which results in:

Therefore, if the new width is to be 100 pixels, the new height must be 83.33 pixels (which will

be rounded down to 83).
Similarly, if the height is greater than the width, then the height will be set to the value in $max,

and the width will be set to a percentage of that height, like this:

In both cases, a test is made to see whether $max isn’t already smaller than the new height or

width, because if it’s not, then the image is already of thumbnail size.
Finally, a last test checks whether the previous two tests failed but $max is less than $h. If so,

then both the width and the height must have the same value and so the tests would have failed, as no
dimension was larger. In this case, the thumbnail will be square and so both $thumbw and $thumbh
are assigned the value in $max, like this:

With all the calculations over, the previous recipe, ImageResize(), is called to perform the

resizing, the returned image from which is itself returned to the calling code:

How to Use It
To create a thumbnail, you pass the function MakeThumbnail() a GD image object and the maximum
value of the greater dimension for the thumbnail. For example, the following code loads in the image
in test.jpg using the imagecreatefromjpeg() function, and then passes it to the recipe, along with a
maximum dimension of 100. The function then returns the new thumbnail to the string variable
$thumb, which is then saved to the file thumb.jpg using the imagejpeg() function.

You can also output the thumbnail straight to the browser by first sending the correct header, like

this:

The Recipe

 ImageAlter()
The PHP GD library is so powerful that it can perform a variety of image manipulations you would
normally only find in a graphics program. In fact, you could probably build quite an advanced image
editor using them. This recipe goes some way toward that by providing 14 different image

transformations you can apply to your graphics, and Figure 4-4 shows just one of these, Edge Detect,
in use.

FIGURE 4-4 The photograph has been modified by passing it through this recipe.

About the Recipe
This recipe accepts an image to be converted into a thumbnail, along with the transformation
required. It takes these arguments:

• $image A GD image to be transformed.
• $effect The transformation to apply, between 1 and 14:

$effect Action
 1 Sharpen
 2 Blur
 3 Brighten
 4 Darken
 5 Increase contrast
 6 Decrease contrast
 7 Grayscale
 8 Invert
 9 Increase red
10 Increase green
11 Increase blue
12 Edge detect
13 Emboss

14 Sketchify

How It Works
To select between the available transformation effects, the recipe uses a large switch statement that
supports 14 different cases to apply to the supplied GD image object. It then calls the relevant
function with the required parameters and returns the new image.

How to Use It
To perform an Edge Detect transformation on a file called photo.jpg, as shown in Figure 4-4, you
could use the following code, which will load a GD image object using the
imagecreatefromjpeg() function, and save the transformed image with the function imagejpeg(),
using the filename photo2.jpg:

Or to output the transformed image directly to a browser, you could use the following code to

output the correct header first:

The Recipe

 ImageCrop()
This recipe lets you crop a portion from an image by passing it as a GD image object, along with the
top-left x and y coordinates and the width and height to crop. Figure 4-5 shows a 285 × 214–pixel
image, which has been cropped starting 100 pixels in from the left and 0 pixels from the top, with
dimensions of 110 × 140 pixels.

FIGURE 4-5 Images are easily cut down to size using this recipe.

About the Recipe
This recipe accepts a GD image from which a portion is to be cropped, along with details about the
crop offset and dimensions. If any arguments are out of the image bounds, then FALSE is returned. It
takes these arguments:

• $image A GD image to be transformed.
• $x Offset from the left of the image.
• $y Offset from the top of the image.
• $w The width to crop.
• $h The height to crop.

Variables, Arrays, and Functions
$temp GD image copy of the cropped image
$tw Integer containing the width of the passed image
$th Integer containing the height of the passed image

How It Works
This recipe works by creating a new GD image object of the dimensions supplied in $w and $h using
the imagecreatetruecolor() function. This blank image is stored in $temp, like this:

Then, the $imagecopyresampled() function is called, passing the required arguments to copy a

portion of the image supplied in $image, starting at the offset $x pixels in and $y pixels down (and
with a width and height of $w by $h), into the image held in $temp, which is then returned:

How to Use It
To crop a section out of an image, you need to first place the image in a GD image object and then
call the ImageCrop() function with the required parameters, like this:

This code creates a GD image object in $image by loading it in from the file photo.jpg using the

imagecreatefromjpeg() function. Then, the recipe is called with the top-left corner of the crop and
the dimensions to use, the returned result of which is assigned to $copy. The cropped image is then
saved as the file photo1.jpg using the imagejpeg() function. Note that arguments passed with values
outside the image bounds will result in FALSE being returned, so you can check for this and issue an
appropriate message.

To output the resulting cropped image to a browser, you can use the following code instead,
which, as long as there wasn’t an error, first sends the correct header:

The Recipe

 ImageEnlarge()
I’ve already covered a couple of image resizing recipes in this chapter, including ImageResize()

and MakeThumbnail(). So, you may wonder, why the need for yet another? The reason is that a
standard enlargement, even if it resamples the original image (rather than merely resizing the pixels),
will still result in a pixelated blow-up. And the more you enlarge an image, the more it will pixelate.
For example, imagine increasing the size of an image by a factor of 10 in each dimension, which
results in the contents of every original pixel now occupying 100 pixels.

Even with resampling the pixels nearby, this will still result in an exceedingly blocky
enlargement with only the edges of each block of 100 pixels showing any differences. However, now
imagine resizing by just doubling each dimension, which results in the data from each original pixel
now only occupying four pixels. With resampling of the surrounding pixels, this new group of four
will contain averaged values from similar pixels, and therefore pixelation will be minimized as the
color and brightness information is spread out smoothly.

And that’s how this recipe works. To achieve a smoother enlargement, it resamples an original
image upwards just a little at a time, spreading the color and brightness smoothly at each enlargement,
until the desired final dimensions are reached.

If you look closely at Figure 4-6, you’ll see that an original thumbnail of 100 × 75 pixels has
been resampled in a single pass to 285 × 214 pixels, and that this eightfold increase in size has
introduced substantial pixelation into the left-hand enlargement. The increase in size is calculated by
multiplying each pair of dimensions together and then dividing the larger result by the smaller.
Therefore, 100 × 75 is 7,500, and 285 × 214 is 60,990, and so 60,990/7,500 gives an
enlargement amount of 8.132 times.

FIGURE 4-6 Even with resampling, enlarging a picture causes pixelation—but this recipe helps
reduce it, as shown by the zoomed-in insets.

However, because the image on the right was passed through the ImageEnlarge() recipe (as
you can see from the insets), there is almost no pixelation. Instead, the blockiness has been replaced
with even transitions of color and brightness. Of course, the image appears a little blurry, but what do
you expect from creating picture data out of thin air? The new picture is eight times the size and

therefore comprises over 85 percent made-up (or interpolated) data. But this recipe even gives you
control over that because you can specify the amount of smoothing to apply to get just the right
balance between pixelation and blurring.

About the Recipe
This recipe accepts a GD image to enlarge, along with details about the new dimensions and amount
of smoothing. It takes these arguments:

• $image A GD image to be enlarged.
• $w The new width.
• $h The new height.
• $smoothing The amount of smoothing (0 = minimum, 90 = maximum).

Variables, Arrays, and Functions
$oldw Integer representing the image’s current width
$oldh Integer representing the image’s current height
$step Float representing the amount of each enlargement
$max Integer representing the number of steps to take
$ratio Float representing the new width relative to the height
$j Temporary counter to track iterations

How It Works
This recipe first makes a note of the image’s current dimensions, placing them in $oldw and $oldh,
and then calculates the step size between each of the enlargements. This is derived by multiplying the
value of π (3.1415927) by the amount of smoothing required, as follows:

You may ask “Why this formula?” Well, I have to be honest here. I tried dozens of different step

sizes until it occurred to me to enter π, and then the amount of smoothing increased substantially.
Without being able to explain why, I suspect it has something to do with sines and cosines and the
resampling routines used by the GD library.

Anyway, armed with these values, a for loop then iterates through all the steps, enlarging the
original image a little at a time by passing it to recipe number 12, Image Resize, like this:

Because each step is a floating point number, the final image will be close to but rarely exactly

the new dimensions required. Therefore, before returning the final enlargement, ImageResize() is
called one last time to ensure the exact size needed is returned:

How to Use It
To enlarge an image with this recipe, you must already have it stored as a GD image object, which
you then pass to ImageEnlarge(), along with the new width and height, and a smoothing level, like
this:

Here, the image icon.jpg is loaded into memory using imagecreatefromjpeg() and then

passed to the recipe, with requested new dimensions of 285 × 214 pixels and a smoothing level of 15.
The returned enlargement is then saved using the filename enlarged .jpg with the imagejpeg()
function. The enlargement could equally be output directly to the browser like this:

Because the recipe ImageResize() is called by this recipe, you will need to ensure you have it

already copied to, or included by, your program.

CAUTION Because this recipe requires multiple iterations of a time-intensive resampling function
it’s not recommended for on-the fly conversion of images on a production server, and is much
better suited for running as part of a background or housekeeping image management
process, or for use on a personal PHP installation.

The Recipe

 ImageDisplay()
I’ve already shown you how to output a JPEG image directly to a browser by sending the correct
header. But here’s a recipe that will output any GIF, JPEG, or PNG image and, if it’s a JPEG or
PNG, at whatever quality you choose to achieve the optimum balance between bandwidth use and
image quality. For example, Figure 4-7 shows a JPEG image displayed by a PHP program at the
default quality setting of 75.

FIGURE 4-7 Using this recipe, you can display images in a variety of formats and quality settings.

About the Recipe
This recipe accepts a filename to display, the image type, and the quality required. It takes these
arguments:

• $filename A string containing the path/filename of an image.
• $type The file type of the image (one of gif, jpeg or png).
• $quality The display quality if a jpeg or png (0 = lowest, up to 99 = best quality).

Variables, Arrays, and Functions
$contents Temporary copy of the image loaded from file
$filetype Array containing details about the file
$mime String containing the image’s type (such as “image/png”)
$image GD image object created from $contents

How It Works
The first thing this recipe does is load the contents of the file pointed to by $filename into the string
variable $contents. Next, if the $type parameter hasn’t been given a value, the calling code wants
the output type to remain unchanged, so it’s looked up by calling the imagegetsize() function and
saving the result in the array $filetype. The third element of this array is a string containing the
mime file type, so that is extracted and placed in the variable $mime. The correct header is then
output, followed by the image, stored in $contents. The die() function is used to send the image,
because it combines an echo and exit statement in one, so it’s more efficient. Here’s the code that
does these things:

The rest of the code is only executed if $type has a value, and so the output type has been fixed.

In this case, a GD image is created from the file stored in $contents using
imagecreatefromstring(), and the chosen mime type header is sent to the browser, like this:

Next, a switch statement tests $type to see whether it refers to a GIF, JPEG, or PNG image and

calls the correct function to display it out of imagegif(), imagejpeg(), and imagepng(), as
follows:

If the file is a JPEG or a PNG file, then the quality setting is applied. For a JPEG, the value

passed needs to be between 0 and 99, with 0 being the worst and 99 the best. This is exactly how the
imagejpeg function expects to receive this value, so the value of $quality is passed as is. But the
imagepng() function requires a quality value between 0 and 9, where 0 is the best and 9 the worst,
which is the inverse of the former and also one-tenth of the value. Therefore, a quick formula is
applied to $quality to conform.

Using a lower-quality setting results in the sent image being smaller and a corresponding saving
in bandwidth, whereas a higher setting uses more bandwidth but results in better quality.

How to Use It
To display a file directly to a browser, just call the recipe passing the filename, file type, and quality
setting like the following, which outputs a JPEG image in PNG format, at a compression level of 50:

To display an image in its native format, you can omit the file type argument, as you can with the

quality, by replacing the parameter with NULL:

The Recipe

 ImageConvert()
This recipe is similar to the previous one, ImageDisplay(), but it saves the new image to disk.
Wrapped in suitable code, it’s very handy for automatically changing image type (and quality) either
singly or in batches. Figure 4-8 shows a 42KB JPEG image that has been converted to another JPEG
of only 8KB by using a quality setting of 25.

FIGURE 4-8 This recipe converts images between JPEG, GIF, and PNG, and can change the quality
setting, too.

The second image is discernibly degraded, but the conversion achieves an 80 percent savings on
bandwidth. You can specify the quality setting yourself so, at the expense of saving so much
bandwidth, you can increase the quality of the converted images, although you can’t increase the
original quality.

About the Recipe
This recipe accepts the name of a file to convert, the name of the file to be saved as, the image type,
and the quality required. It takes these arguments:

• $fromfile String containing the path/filename of an image.
• $tofile String containing the path/filename to save the new image.
• $type The file type of the image (one of gif, jpeg, or png).
• $quality The image quality if JPEG or PNG (0 = lowest, up to 99 = best quality).

Variables, Arrays, and Functions
$contents Temporary copy of the image loaded from file
$image GD image object created from $contents

How It Works
This recipe loads in the contents of the image referred to by $fromfile into the string variable
$contents, from where it creates a GD image object using the imagecreatefromstring()
function, as follows:

Then, a switch statement is used to check whether the new image type required is GIF, JPEG, or

PNG and accordingly calls the imagegif(), imagejpeg(), or imagepng() function, passing the
value of $tofile, which holds the path and name of the file to save, and $quality, which describes
the quality setting if the image is a JPEG or PNG, like this:

As with the previous recipe, ImageDisplay(), the quality setting has to be specially calculated

for PNG files since the imagepng() function expects the compression setting in a different format
from imagejpeg().

How to Use It
To convert an image type, call ImageConvert() with the source and destination path and/or
filenames, along with the type to convert to and the quality setting to use, like in the following line of
code, which converts the image in photo.jpg to a PNG file, and saves it as photo.png, using a
compression value of 50:

The Recipe

Note that GIF images do not have a quality setting, so this value will make no difference to the
resulting image. Also, to see the differences between before and after, make sure you reload any
converted images into your browser so that previous unconverted images are not served up from the
cache in place of the converted ones.

 GifText()
Although web browsers come with a reasonable range of default fonts, they don’t always provide the
look you need for a particular web site. In such cases, you usually must resort to calling up a graphic

editor and creating logos or headlines there.
However, with this recipe all you have to do is upload the TrueType fonts you wish to use to

your web site and you can then display text in these fonts by having the GD library convert it on the
fly to GIF images. Figure 4-9 shows the text “Old English Font” displayed at four different sizes using
an Old English TrueType font.

FIGURE 4-9 Now you can use any fonts you like on your web pages thanks to this recipe.

About the Recipe
This recipe takes the name of a file to save as a finished GIF, the text and font to use in it, and various
details such as color, size, and shadowing. It takes these arguments:

• $file The path/filename to save the image.
• $text The text to create.
• $font The path/filename of the TrueType font to use.
• $size The font size.
• $fore The foreground color in hexadecimal (such as “000000”).
• $back The background color (such as “FFFFFF”).
• $shadow The number of pixels to offset a shadow underneath the text (0 = no shadow).
• $shadowcolor The shadow color (such as “444444”).

Variables, Arrays, and Functions
$bound Array containing the boundaries required to make room for the text
$width Integer containing the text width in pixels calculated from $bound
$height Integer containing the text height in pixels calculated from $bound
$image Temporary copy of the final image
$bgcol The background color identifier created from $back
$fgcol The foreground color identifier created from $fore

$shcol The shadow color identifier created from $shadowcolor
GD_FN1() Function to create color identifiers

How It Works
To create a GIF image of the correct dimensions to hold the text, the function imagettfbbox() is
called with the font, its size, and the text to display as arguments. The result, which contains the x and
y coordinates of all four corners, is then stored in the array $bound. Using these, the variables
$width and $height are assigned values sufficiently large to accommodate the text and any shadow,
as well as a few pixels of space all around. Then, a new GD image is created in $image using this
width and height, as follows:

Next, three color identifiers are created in $bgcol, $fgcol, and $shcol using the string values

supplied in $fore, $back, and $shadowcolor by calling the function GD_FN1(), which takes a six-
character hexadecimal string and converts it to a color identifier. These identifiers are unique to the
$image object and are used to set colors in it. This function is just a helper function to the main
recipe and is not documented because it’s not intended to be called directly by any other code. And
with the colors prepared, the image is then filled with the background color using the
imagefilledrectangle() function, like this:

Next, if $shadow is greater than 0, then a shadow needs to be displayed so the imagettftext()

function is called to display the text at an offset (down and to the right) of $shadow + 2 pixels, and in
the correct shadow color, like this:

After that, the code for adding the main text itself is called. This is the same as for the shadow

text except that no offset is used and the text is created in the foreground color, like this:

Finally, the imagegif() function is called to save the finished image using the path/ filename

stored in $file:

How to Use It
To use this recipe, upload the TrueType file(s) you want to the same folder as the PHP program. In
this case, it’s assumed you have uploaded a font called oldenglish.ttf. You can then create a GIF
containing the text of your choice, like this:

To display the image, you then only need to output some HTML code, like this:

However, to ensure the image is only created the first time it is needed, you will probably want

to wrap the call to GifText() within an if statement, like this:

The Recipe

 ImageWatermark()
In a similar way to creating GIF images of text, you can also overlay text on an existing image to
create watermarks. With the amount of copying and pasting of images across the Web, when you have
one you would like to protect, sometimes watermarking is the best way, and this recipe provides a
variety of options. For example, Figure 4-10 shows a photograph with the word Watermark overlaid
in white at a transparency setting of 10 percent.

FIGURE 4-10 Now you don’t have to load your images into a graphic editor to add watermarks.

About the Recipe
This recipe takes the name of a file in which to save a finished GIF, the text and font to use, and
various details such as color, size, and shadowing. It takes these arguments:

• $fromfile The path/filename of the original image.
• $tofile The path/filename to save the image.
• $type One of gif, jpeg, or png.
• $quality Quality setting of final image (0 = worst, up to 99 = best).
• $text The text to create.
• $font The path/filename of the TrueType font to use.
• $size The font size.
• $fore The foreground color in hexadecimal (such as “000000”).
• $opacity The opacity of the watermark (0 = transparent, up to 100 = opaque).

Variables, Arrays, and Functions

$contents The image contents loaded in from $fromfile
$image1 GD image object created from $contents
$bound Array containing the boundaries required to make room for the text
$width Integer containing the text width in pixels calculated from $bound
$height Integer containing the text height in pixels calculated from $bound
$image2 GD image object created to hold watermarking text

$bgcol
The background color identifier, from the string “fedcba” (see the How It
Works section)

$fgcol The foreground color identifier created from $fore
GD_FN1() Function to create color identifiers

How It Works
This recipe starts by loading the image referred to by $fromfile into $contents, from where it’s
changed to a GD image object and stored in $image1. Then, the array $bound is populated with the
result of calling imagettfbbox() to get the coordinates of all the corners needed to create a space
big enough to store the watermark text, like this:

The width and height of this box are then extracted from $bound into $width and $height, with

a few pixels leeway being left in all dimensions. Using this width and height, a new GD image object
is created in $image2. Then, two color identifiers are created for the background and foreground
colors in $bgcol and $fgcol. This is done using the function GD_FN1(), which is designed for use
only by these recipes and is not intended to be called directly from your programs, like this:

Because the text for watermarking will be transparent, I selected a background color of

“fedcba”, which is unlikely to be used as the foreground color. If you do need that as a foreground
color, I’m sure you could get away with using “fedcb9” or “fedcbb”, and so on instead.

As I said, the background color must be transparent, so it’s passed to the function
imagecolortransparent(), and then the entire $image2 rectangle is filled in that color using
imagefilledrectangle(). With the background canvas prepared, the text is then written to it in the
foreground color, using the font and size specified, as follows:

At this point, the function now has two separate images—the original, and the watermark to add

—so it calls the imagecopymerge() function to merge the watermark onto the original image, exactly
in the middle, and with an opacity of $opacity, like this:

Finally, a switch statement is used to check the image type for being one of GIF, JPEG, or PNG,

and then calls one of imagegif(), imagejpeg(), or imagepng() accordingly to save the image,
using the path/filename in $tofile. If the type you wish to save it as is a PNG or JPEG, then the
quality setting in $quality is also applied, although a little math is required to manipulate it into the
correct form required for the imagepng() function:

How to Use It
To watermark an image, you supply the function ImageWatermark() with the names of a source and
destination file, the image type, and the parameters required for font, size, color, and transparency,
like this:

Here, the file pic.jpg is overlaid with a watermark containing the text “Watermark”, using the

oldenglish.ttf font with a size of 90, a color of “ffffff”, and an opacity value of 10. The file is saved
as a PNG image, at a quality setting of 75, using the filename wmark.png.

The Recipe

CHAPTER 5
Content Management

When developing web projects, there are certain content management processes that are so common
it can save you a great deal of programming to have readymade recipes available. Some examples
include converting relative to absolute URLs, checking for broken links, tracking web visitors, and
more.

This chapter explores 10 of these types of functions that you can add to your toolbox, and
explains how they work so you can further tailor them to your own requirements. Along the way, it
covers parsing URLs, extracting information from web pages (even on other servers), reading the
contents of local files and directories, accessing query strings that result from search engine referrals,
embedding YouTube videos, counting raw and unique web visits, and tracking where users are
coming from.

 RelToAbsURL()
Any project that needs to crawl web pages, whether their own or a third party’s, needs a way to
convert relative URLs into absolute URLs that can be called up on their own, without reference to the
page in which they are located. For example, the URL /sport/index.html means nothing at all when
looked at on its own, and there is no way of knowing the URL was extracted from the web page
http://server.com/news/.

Using this recipe, relative URLs can be combined with the referring page to create stand-alone,
absolute URLs, such as http://server.com/sport/index.html. Figure 5-1 shows a variety of links being
converted to absolute.

http://server.com/news/
http://server.com/sport/index.html

FIGURE 5-1 This recipe provides the solution to a common problem encountered in web
development—converting a relative URL to absolute.

About the Recipe
This recipe takes the URL of a web page, along with a link from within that page, and then returns the
link in a form that can be accessed without reference to the calling page—in other words, an absolute
URL. It takes these arguments:

• $page A web page URL, including the http:// preface and domain name.
• $url A link extracted from $page.

Variables, Arrays, and Functions
$parse Associative array derived from parsing $page
$root String comprising the first part of $page, up to and including the host domain name
$p Integer pointer to final “/” in $page
$base The current directory where $page is located

How It Works
In order to convert a URL from relative to absolute, it’s necessary to know where the relative URL is
relative to. This is why the main page URL is passed along with the relative URL. In fact, not all the
URLs passed may be relative, and they could even all be absolute, depending on how $page has been
written. But what this recipe does is process a URL anyway, and if it’s determined to be relative, then
it’s turned into an absolute URL.

It does this by first parsing the original URL, passed in $page, and extracting the scheme (for
example, http:// or ftp://, and so on) and host (such as myserver.com) and combining just these two
parts together into the string variable $root to create, for example, the string http://myserver.com,
like this:

Then $page is examined to see if there are any / characters after the initial http://. If so, the

final one is located and its position is placed in $p, as follows:

If there isn’t one, then $p is set to 0. Using this value, $base is assigned either the substring of

$page all the way up to, and including, the final /, or if there wasn’t one, $base is assigned the value
of $page itself, but with a final / appended to it. Either way, $base now represents the location of the
directory containing $page, like this:

Next, $url is examined, and if it starts with a “/”, then it must be a relative URL—referring to

an offset from the domain’s document root. In which case, $url is replaced with a value comprising
the concatenation of $root and $url. So, for example, http://myserver.com and /news/index.html
would combine to become http://myserver.com/news/index.html, as follows:

If $url doesn’t start with a /, then a test is made to see whether it begins with http://. If not,

the URL must also be relative, but this time it is relative to the directory location of $page, so $url is
replaced with a value comprising the concatenation of $base and $url. So, for example,
http://myserver.com/sport and results.html would combine to become
http://myserver.com/sport/results.html, like this:

If both these tests fail, then $url commences with http:// and therefore is an absolute URL and

cannot be converted; it is returned unchanged.

NOTE For the sake of speed and simplicity, a complete relative-to-absolute URL conversion is
not made. For example, the URL ../news/index.html in the page http://myserver.com/sport/ is
not converted to http://myserver.com/news/index.html. Instead it becomes
http://myserver.com/sport/../news/index.html. This saves the code having to further parse a
URL, locating examples of ../ and then removing the directory immediately previous to it.
There’s no need, because this longer form of absolute URL is perfectly valid and works just
fine.

How to Use It
To use this recipe, pass it the full URL of a page that contains a relative link, along with the relative
link itself, like this:

The value returned will be an absolute URL that can be used to access the destination page

without recourse to the original web page. In the preceding case, the following URL will be returned:

The Recipe

http://myserver.com/news/index.html
http://myserver.com/news/index.html

 GetLinksFromURL()
When you first need to extract HTML links from a web page (even your own), it looks almost
impossible and seems quite a daunting task. And it’s true, parsing HTML is quite complex. But with
this recipe, all you need to do is pass it the URL of a web page, and all the links found within it will
be returned. Figure 5-2 shows links being extracted from a web page.

FIGURE 5-2 Using this recipe, you can extract and return all the links in a web page.

About the Recipe
This recipe takes the URL of a web page and parses it, looking only for <a href links, and returns
all that it finds in an array. It takes a single argument:

• $page A web page URL, including the http:// preface and domain name.

Variables, Arrays, and Functions

$contents String containing the HTML contents of $page
$urls Array holding the discovered URLs
$dom Document object of $contents
$xpath Xpath object for traversing $dom
$hrefs Object containing all href link elements in $dom
$j Integer loop counter for iterating through $hrefs
RelToAbsURL() Function to convert relative URLs to absolute

How It Works
This recipe first reads the contents of $page into the string $contents (returning NULL if there’s an
error). Then, it creates a new Document Object Model (DOM) of $contents in $dom using the
loadhtml() method. The statement is prefaced with an @ character to suppress any warning or error
messages. Even poorly formatted HTML is generally useable with this method, because it finds the
URLs easy to extract and parse, like this:

Then, a new XPath object is created in $xpath with which to search $dom for all instances of

href elements, and all those discovered are then placed in the $hrefs object, like this:

Next, a for loop is used to iterate through the $hrefs object and extract all the attributes, which

in this case are the links we want. Prior to storing the URLs in $urls, each one is passed through the
RelToAbsURL() function to ensure they are converted to absolute URLs (if not already), as follows:

Once extracted, the links are then returned as an array:

How to Use It
To extract all the URLs from a page and receive them in absolute form, just call GetLinksFromURL()
like this:

You can then display (or otherwise make use of) the returned array like this:

The Recipe

 CheckLinks()
The two previous recipes provide the foundation for being able to crawl the Internet by:

1. Reading in a third-party web page
2. Extracting all URLs from the page
3. Converting all the URLs to absolute

Armed with these abilities, it’s now a simple matter for this recipe to offer the facility to check
all links on a web page and test whether the pages they refer to actually load or not (this is a great
way to alleviate the frustration of your users upon encountering dead links or mistyped URLs). Figure
5-3 shows this plug-in being used to check the links on the alexa.com home page.

http://alexa.com

FIGURE 5-3 The recipe has been run on the alexa.com home page, with all URLs reported present
and correct.

About the Recipe
This recipe takes the URL of a web page (yours or a third party’s) and then tests all the links found
within it to see whether they resolve to valid pages. It takes these three arguments:

• $page A web page URL, including the http:// preface and domain name.
• $timeout The number of seconds to wait for a web page before considering it unavailable.
• $runtime The maximum number of seconds your script should run before timing out.

Variables, Arrays, and Functions
$contents String containing the HTML contents of $page
$checked Array of URLs that have been checked
$failed Array of URLs that could not be retrieved
$fail Integer containing the number of failed URLs
$urls Array of URLs extracted from $page
$context Stream context to set the URL load timeout
GetLinksFromURL() Function to retrieve all links from a page
RelToAbsURL() Function to convert relative URLs to absolute

How It Works
The first thing this recipe does is set the maximum execution time of the script using the ini_set()
function, like this:

This is necessary because crawling a set of web pages can take a considerable amount of time. I

recommend you experiment with maximums of up to 180 seconds or more. If the script ends without
returning anything, try increasing the value

The contents of $page are then loaded into $contents. After that, two arrays are initialized.
The first, $checked, will contain all the URLs that have been checked so that, where a page links to
another more than once, a second check is not made for that URL. The second array, $failed, will
contain all the URLs that couldn’t be loaded, while the counter $fail is also set to 0 (when any URL
fails to load, it will be incremented), as follows:

http://alexa.com

Next, the array $urls is populated with all the URLs from $page using the GetLinksFromURL()
recipe, and $context is assigned the correct values to set the timeout for each checked page to the
value that was supplied to the function in the variable $timeout. This will be used shortly by the
file_get_contents() function, like this:

With all the variables, objects, and arrays initialized, a for loop is entered in which each URL

is tested in turn, but only if it hasn’t been already. This is determined by testing whether the current
URL already exists in $checked, the array of checked URLs. If it doesn’t, the URL is added to the
$checked array and the file_get_contents() function is called (with the $context object) to
attempt to fetch the first 256 bytes of the web page. If that fails, the URL is added to the $failed
array and $fail is incremented, as follows:

Once the loop has completed, an array is returned with the first element containing 0 if there

were no failed URLs, otherwise it contains the number of failures, while the second element contains
an array listing all the failed URLs.

How to Use It
To check all the links on a web page, you can call the function using code such as this:

To then view or otherwise use the returned values, use code such as the following, which either

displays a success message or lists the failed URLs:

HINT Because crawling like this can take time, you may wonder whether your program is actually
working when nothing is displayed to the screen. So if you wish to view the plug-in’s
progress, you can uncomment the line shown to have each URL displayed as it’s processed.

The Recipe

 DirectoryList()
When you need to know the contents of a directory on your server—for example, because you support
file uploads and need to keep tabs on them—this recipe returns all the filenames using a single
function call. Figure 5-4 shows the plug-in in action.

FIGURE 5-4 Using this recipe under Windows to return the contents of Zend Server CE’s document
root

About the Recipe
This recipe takes the location of a directory on your server and returns all the files within it in an
array. Upon success, it returns a four-element array, the first of which is the number of directories
found. The second is the number of files found, the third is an array of directory names, and the fourth
is an array of filenames. On failure, it returns a single-element array with the value FALSE. It requires
this argument:

• $path The path of a directory on the server.

Variables, Arrays, and Functions
$files Array containing the files encountered
$dirs Array containing the directories encountered
$fnum Integer containing the number of files
$dnum Integer containing the number of directories
$dh Handle to identify the directory
$item String containing each encountered item in turn

How It Works
This program initializes the two arrays, $files and $dirs, which will contain the files and
directories encountered in $path, and sets the two counters for the numbers of files and directories,
$fnum and $dnum, to 0, like this:

Then, $path is checked to ensure it’s a valid directory. If it is, the directory is opened using

opendir() and a handle to it is placed in $dh, as follows:

Then, a do loop is entered in which each item in the directory is read in turn into the string

$item. If the value of $item is FALSE at any time, the end of the directory listing has been
encountered. However, there’s a slight problem because a file or subdirectory could have the name
“0”, which would be interpreted as having the value FALSE by PHP. To avoid this, instead of
comparing using the != operator, !== is used. This tells PHP not to try to evaluate anything before
making the comparison, and only to compare exact values. The filenames . and .. are also ignored, as
follows:

Next, the current item is tested to see whether it’s a file or a directory. If it’s a directory, it is

placed in the $dirs array and $dnum is incremented. If it’s a file, it is placed in the $files array and
$fnum is incremented, like this:

The do loop then continues until $item has a value of FALSE, at which point the $dh handle is

closed, as follows:

At the end of the code the results are returned in an array of four elements as follows:

• Element 0: The number of directories found
• Element 1: The number of files found
• Element 2: Array containing the directory names
• Element 3: Array containing the filenames

The return code looks like this:

If $path was not a valid directory, the return statement will simply return zeros and empty

array values.

How to Use It
You call up the recipe using code such as this, setting $directory to the folder whose contents you
are interested in:

You can then use the returned values like this to display the directories found:

Or like this to list the files:

Or you might prefer to use foreach instead of for loops, like this:

The Recipe

 QueryHighlight()
When a visitor comes to your web site from a search engine result, you can use this recipe to be
helpful and highlight all the items from their search in your text, deciding whether to highlight these
terms with either boldface, italics, or an underline. Figure 5-5 shows some words from a
Shakespeare play being highlighted using this plug-in.

FIGURE 5-5 If a page has been arrived at from a search engine, you can highlight all the words
matching the query with this recipe.

About the Recipe
This recipe takes the text to display and the type of highlighting required for any search terms
encountered. It requires these arguments:

• $text The text to highlight.
• $highlight The type of highlight to use, from a choice of b, i, or u for bold, italic, or underline.

Variables, Arrays, and Functions
$refer The referring web page, if any
$parse Array containing the parts of $refer
$queries String containing queries extracted from $refer
$key String containing the first half of a key/value pair
$value String containing the second half of a key/value pair
$matches Array containing search words
WordSelector() Function used to highlight selected words in text

How It Works
The URL of the referring page is placed in $refer, and the array $parse is set to the component
parts of $refer. If there was no referring page, the text supplied in $text is returned unmodified.
This is also the case if there was a referring page but no search string query.
Otherwise, the array $queries is filled with the various queries that can follow a URL, and which
are separated by & characters, as follows:

A foreach loop is then entered, which iterates through each of the strings in the $queries

array, setting $key and $value to the left and right halves of each. If any of the $key values is either
q or p, chances are the code is looking at the result of a search query made with one of the major
search engines (Yahoo!, Bing, Google, or Ask Jeeves), and so the contents of $value will be passed
to urldecode() to turn any unusual characters into regular ones, and then all words found in this
string will be split out into the array $matches.

Provided with this array of search words, WordSelector() is then called to highlight any of
these words that appear within the string $text. The result of this is then returned. The following is
the loop’s code:

How to Use It
To highlight search terms within some text, you call the recipe like this:

In this example, any words in the string $text, which were used as a search term at a major

search engine to discover the current page, will be highlighted in bold face. So, for example, if the
user searched for “question of sleep,” then the previous text would be highlighted like this:

To be or not to be, that is the question; whether ’tis nobler in the mind to suffer the slings
and arrows of outrageous fortune, or to take arms against a sea of troubles, and by opposing,
end them. To die - to sleep, no more; and by a sleep to say we end the heart-ache and the
thousand natural shocks that flesh is heir to - ’tis a consummation devoutly to be wish’d.

You can include any text or HTML you like and the recipe will still work correctly. Punctuation

is also fully supported, so you don’t have to ensure spaces exist on either side of keywords for them
to be recognized.

On its own, if you just type in the preceding example and call it up in a browser, you will not see
any highlighting because there is no referring page; you will have entered the page directly. So, to
simulate a referred visit from a search engine, you can add the following code to the example:

This displays an HTML link that will cause the PHP program to call itself up when the link is

clicked on, acting as its own referring page. You need to do this twice, though, in order to properly
simulate a visit referred from a search engine. The first click adds the referrer information to the tail
of the URL (as displayed in the browser address field), and the second passes that tail to the program
where it can be processed. After the second click, you’ll see that the text has been highlighted.

The Recipe

 RollingCopyright()
If you’ve developed for the Web for more than a couple of years, you’re bound to have encountered
the problem whereby every January you have to wade in and locate all the copyright statements to
bring them up to date with the new year. Well, with this short and sweet recipe, that never need be a
problem again, since it will ensure your web sites always show the current year, as shown in Figure
5-6.

FIGURE 5-6 Ensuring your copyright message is always up to date is easy with this recipe.

About the Recipe
This recipe takes a copyright message and the first year the copyright began. It requires these
arguments:

• $message The copyright message.
• $year The year the copyright began.

How It Works
Although this is a very short recipe, it’s well worth using because it can save you no end of time.
What it does is return the message supplied in $message, along with a copyright sign, the start year
in $year, and the current year, as returned by the date() function.

Note the use of the date_default_timezone_set() function. This is required by more recent
versions of PHP to ensure that a time zone has been chosen.

How to Use It
To add an always up-to-date copyright message to your web site, use code such as this:

The Recipe

 EmbedYouTubeVideo()
How often have you grabbed the embed code for a YouTube video only to find you have to tweak it to
get the right dimensions for your web site or select high-quality video or make it auto start? With this
recipe, you can replace all that with a single function call whenever you need to embed a video, and
it handles browsers that only support HTML5 video (and disallow the Flash plug-in). Figure 5-7
shows such a video displayed with a single call to this code.

FIGURE 5-7 This recipe facilitates embedding a YouTube video with various options such as video
quality and auto start.

About the Recipe
This recipe takes the YouTube ID of a video and the parameters required to display it to your
requirements. It accepts these arguments:

• $id A YouTube video ID, such as “VjnygQ02aW4”.
• $width The display width.
• $height The display height.
• $high If set to 1, enable high-quality display, if available.
• $full If set to 1, enable the video to play in full-screen mode.
• $auto If set to 1, start the video playing automatically on page load.

Variables, Arrays, and Functions
$fs Variable set to the string allowfullscreen if $full is 1, otherwise set to the empty string
$hd Variable set to the string ?hd=1 if $high is 1, otherwise set to the empty string
$as Variable set to the string ? if $full is not 1, otherwise set to the string &

$ap Variable set to the value in $as followed by the string autoplay=1 if $auto is 1, otherwise
set to the empty string

How It Works
This code first ensures that the video has valid width and height dimensions, like this:

If only one dimension is entered, the other is scaled accordingly to keep the average ratio of 4:3,

while if no dimensions are passed, defaults of 480 by 385 pixels are chosen. If you know the
dimensions of a video, it’s always best to use them to ensure the best playback quality.

After this, the code checks whether $full has a value of 1, and if so, it sets $fs to the value
allowfullscreen, which will be appended to the end of the <iframe> tag to enable full-screen
playback, like this:

Then, if the parameter $high has a value of 1, the string $hd is set to the value ?hd=1, which is

later tacked onto the URL of the video to enable it to be played in high-quality video (if available), as
follows:

After this, the string variable $as is set either to ? if $high is not 1, or to & if it is. This

prepares the correct symbol to place before the part of the query string used to make a video auto
play. If it is the first argument in the query string, it must be prefaced by a ? symbol, otherwise a &
symbol should be used. It will be the first argument if there is no argument to set high definition,
otherwise it will be the second argument, like this:

The $ap variable is then set to either the null string or the relevant value to cause the video to

auto play, like this:

The result is that the recipe returns the HTML required to display a YouTube video exactly to

your requirements, and even if a web browser doesn’t have the Flash plug-in, as long as it supports
HTML5, the video will still play, as follows:

How to Use It
To embed a YouTube video in a web page, you call the recipe like this:

Here a video showing President Obama’s inauguration has been selected to be displayed at a

width of 370 and height of 300 pixels, with both the high-quality and full-screen options enabled, but
with auto start disabled.

HINT If you wish to display videos using YouTube’s recommended default dimensions, select a
width and height of 480 × 385 for a 4:3 video, or 640 × 385 for a 16:9 video.

The Recipe

 CreateList()
Displaying lists is one of the most common elements of a web page. Whether for lists of related blog
entry URLs, headlines, navigation, or others, lists provide an instant visual cue and are easy to use.
With this recipe, you can easily create the HTML for eight different types of lists using a single
function call. Figure 5-8 shows the types of list this recipe supports.

FIGURE 5-8 Using this recipe, you can automatically create the HTML for eight different types of

lists.

About the Recipe
This recipe takes an array containing all the items in a list, along with parameters to control the
display formatting. It accepts these arguments:

• $items An array containing all the items in the list.
• $start The start number for ordered lists.
• $type The type of list: ul for unordered, and ol for ordered.
• $bullet The type of bullet. For unordered lists: square, circle, or disc. For ordered lists:

1,A,a,I,or i.

Variables, Arrays, and Functions
$list String variable containing HTML to be returned

How It Works
This recipe starts by opening a new HTML list tag, which can be one of <ol or <ul, depending on
the value in $type. It also sets the start value to $start and the bullet type to $bullet.

A foreach loop is then entered to iterate through every element in the $items array, temporarily
placing each in the string variable $item, which is then enclosed by and tags. The result
is then appended to the string $list, which, once the loop completes, is returned to the calling code,
along with a closing or tag.

How to Use It
To create the HTML for a list, pass it an array containing the list of elements, along with the
formatting arguments required, like the following, which creates the HTML for an unordered list
using the circle character as a bullet:

If you wish, with ordered lists you can change the start value to any numerical value you like,

instead of the default of 1. But note how the start argument in the preceding code is set to NULL
because it’s not required. In this case, you could actually set it to any value since it will be ignored,
but using NULL will remind you when browsing your code that no value is being passed.

The types of bullet you can use depend on the type of list being created. For an ordered list, five
different bullet types are available:

• 1 Numerical: From 1 onwards in decimal.
• A Alphabetic: A–Z, then AA–AZ, then BA–BZ, and so on.
• a Alphabetic: a–z, then aa–az, then ba–bz, and so on.
• I Roman: I, II, III, IV, V, and so on.
• i Roman: i, ii, iii, iv, v, and so on.

For unordered lists, there are three types of bullets you can use:

• square A filled-in square.
• circle An open circle.
• disc A filled-in circle.

The Recipe

 HitCounter()
For long-term statistical information, you can always use a service such as Google Analytics to keep
track of your web visitors. However, when you have a brand new page and need to know instantly
whether and how much traffic it is attracting, your normal recourse is to look at the server log files.
But now you can use this recipe to add a simple invisible counter to your web pages in order to get a
quick snapshot of raw and unique hits, as shown in Figure 5-9.

FIGURE 5-9 When you need instant stats from your web site, this recipe will provide them.

About the Recipe
This recipe takes the name of a file to hold the counts for the current page, as well as details on what
to do with it. It accepts these arguments:

• $filename A path/filename to use for storing hit count data.
• $action What to do with the data: reset = reset all counts, add = add the current visit to the

data, get = retrieve hit stats, delete = delete the counter file.

Variables, Arrays, and Functions
$data String containing user’s IP address and browser details
$fp File pointer to the counter file

$file String containing contents of $filename
$lines Array containing all lines extracted from $file
$raw Numeric variable containing the total number of hits saved in the file
$unique Numeric variable containing the number of hits with unique IP/browser details

How It Works
The first thing this code does is make a note of the current visitor’s IP address, which is a four-part
number that directly identifies that user, and looks something like 209.85.169.103. Then, because
IP addresses can be shared—for example, across a business or home network—the browser’s User
Agent string is also noted. This is a string that identifies the type and version of a browser and varies
widely in use but may look something like “Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1;
Media Center PC 6.0)”. These two strings are then combined and placed in the string variable
$data, followed by a \n newline character, like this:

Next, a switch statement with four sections is entered. The first section is processed if $action

is set to reset. It opens the file $filename for writing, using an argument of “w”, and then calls the
function flock(). This is PHP’s file locking mechanism, and what this call does is request an
exclusive lock on the file by passing the argument LOCK_EX. The function waits until any and all other
processes have finished using the file, and then releases the lock using flock() with an argument of
LOCK_UN, and closes the file. This has the effect of truncating the file to zero bytes. Had a lock not
been set and the program not waited its turn, then if two requests came through at the same time, one
to append to the file and one to truncate it, there would be no way of knowing which process might
“win.” This way, all accesses to the file are queued up and all processes take their turn. This code
looks like the following:

The second section is executed if $action is set to add. Here the file is opened in a similar way

to the previous example, except that the argument “a+” is used, which stands for “append to.” Again,
the flock() function is called and, when control over the file is gained, the data in $data is
appended to the file, the lock is released, and the file closed, as follows:

The third section is executed if $action is set to get, in which case the file is opened just for

reading using an argument of “r”. Then, flock() is called and, after control is gained, the fread()
function is called to read the entire contents of $filename into $file, except for the final character,
which will be a \n newline, and is not needed. The file lock is then released and the file closed. With
the file contents in $file, it is extracted into the array $lines by using the explode() function to
split it at every \n linefeed character. Then, the number of elements is counted using count() and
assigned to the variable $raw. To obtain the unique counts (the number of hits made by different
IP/browser combinations, ignoring multiple hits by the same user), the array_unique() function is
called before using count() and passing the result to $unique. Afterward, a two-element array
containing these raw and unique values is returned, as follows:

The final section is executed when $action is set to delete and simply uses the unlink()
function to delete the file pointed to by $filename:

How to Use It
Most times, you will use this recipe as follows:

This code passes the filename counter.txt and the parameter add to the function HitCounter(),

which then appends the IP address and User Agent of the current user to the file. It’s not necessary to
first create the file, because if it doesn’t already exist, it will be created.

Should you wish to reset the file data and start over, you can issue the following command,
which truncates the data file back to zero bytes in length:

To delete the counter, use this command:

To get an instant hit count report, use code such as this:

You can give the counter any name you like, but if you use the .txt extension, as in these

examples, you’ll be able to load it into a text editor and browse through it.

The Recipe

 RefererLog()
In a similar way to being able to instantly track visitor hits, this recipe keeps constant track of the
URLs from which your users are being sent. Again, this is something you can track with a service
such as Google Analytics or by processing your log files, but neither of these methods is as quick and
easy to use as this recipe for providing instant data, as shown in Figure 5-10.

FIGURE 5-10 Keeping track of pages referring to your site is easy using this recipe.

About the Recipe
This recipe takes the name of a file to hold the referring data for the current page, as well as details
on what to do with it. Upon success, it either updates or returns details from the data file. It accepts
these arguments:

• $filename A path/filename to use for storing referring page data.
• $action What to do with the data: reset = reset all data, add = add the current visit to the data,

get = retrieve referrer stats, delete = delete the file.

Variables, Arrays, and Functions
$data String containing the referring page URL
$fp File pointer to the referrer file
$file String containing contents of $filename
$temp Temporary array containing unique referring URLs

How It Works
The first thing this recipe does is make a note of the referring page’s URL, if there is one, placing it in
$date, followed by a \n newline character. If no referring page was passed to the current program,
perhaps because the URL was typed in directly, then $data is assigned the string “No Referrer”,
followed by a \n newline, like this:

Next, a switch statement with four sections is entered. The first section is processed if $action

is set to reset. It opens the file $filename for writing, using an argument of “w”, and then calls the
function flock(). The function waits until all other processes have finished using the file and then
releases the lock and closes the file, truncating it to zero bytes, as follows:

The second section is executed if $action is set to add. Here, the argument “a+” is used to open

the file for appending. Again, the flock() function is called and, when control over the file is gained,
the data in $data is appended to the file, the lock is released, and the file closed, like this:

The third section is executed if $action is set to get, in which case the file is opened for reading

using an argument of “r”. Then, flock() is called and, after control is gained, the fread() function
is called to read the entire contents of $filename into $file, all except the final character, which
will be a \n newline, and is therefore not needed. The file lock is then released and the file closed.
With the file contents in $file, the explode() function is used to extract it into the array $temp,
splitting it at every \n linefeed character. Then, all nonunique entries are removed from the array,
which is then sorted to remove the gaps, and the resulting array is returned, as follows:

The final section is executed when $action is set to delete and simply uses the unlink()

function to delete the file pointed to by $filename:

How to Use It
You will normally call the recipe with code such as the following, which creates the file refer .log if

it doesn’t already exist and writes the contents of $data to it. If the file does exist, the data is
appended to it:

To delete this log file, use this command:

Or to reset the log file by truncating it back to zero length, use:

To display all the entries in the log file, you could use code such as the following, which uses a

for loop to iterate through all the entries in the returned array and display them:

The Recipe

CHAPTER 6
Forms and User Input

Even with the growth in Web 2.0 Ajax techniques, most people still interact with web sites using
forms. They are a tried and tested means of obtaining user input and are likely to retain an important
position for a long time to come.

Receiving user input is all well and good—that’s the easy part. But turning that input into usable
and secure data is another matter. In this chapter, you’ll find a collection of solutions for helping you
with expression evaluation, validation of credit card details, e-mail addresses and text strings,
identifying spam, preventing automated input from “bots,” and ways of supporting user-supplied text
formatting.

 EvaluateExpression()
You might think that offering support for evaluating expressions would be a simple matter of calling
the PHP eval() function with a user-supplied input. Unfortunately, though, eval() is an extremely
powerful function that will interpret any string supplied to it as if it were a PHP program; using it
could completely open up your web site to any intruder with a minimum of PHP knowledge.

However, with this recipe the user input is completely sanitized by stripping out any characters
and functions that are not safe, leaving only a selection of 22 mathematical functions and the basic
math operators (plus, minus, multiply, and divide), and only then is the input passed to eval().
Figure 6-1 shows a variety of expressions being calculated.

FIGURE 6-1 This recipe enables powerful calculator functionality on your web site.

About the Recipe
This recipe accepts a string containing a mathematical expression and returns the result of evaluating
it. It takes this argument:

• $expr A string containing an expression.

Variables, Arrays, and Functions
$f1 Array containing the 22 mathematical function names supported
$f2 Array containing tokens the function names are temporarily converted to

How It Works
To allow the use of PHP’s built-in eval() function, it is necessary to remove any harmful
expressions before passing them to it. To achieve this, the array $f1 contains 22 function names (out
of the hundreds supported by PHP) that are considered safe. Using the $f2 array, which contains a
matching set of tokens, any of the 22 functions found in the argument $expr are converted to a
corresponding token. This means that any remaining alphabetical characters may form other function
names, and therefore are stripped out. Here are the two arrays:

The preceding is achieved by first converting the string $expr to lowercase using the function

strtolower(), and then employing str_replace() to replace all occurrences of the allowed
function names with their tokens, like this:

Next, preg_replace() is called to strip out anything remaining that is not required, using the

regular expression/[^\d\+*\/\-\.()!]/. Okay, I know it looks like I just dropped the keyboard on the
floor, but this is actually a powerful expression that I’ll now break up for you, like this:

The outer / characters denote the start and end of a regular expression.
The square brackets, [], state that a match should be made against any single character enclosed

within them.
The ̂symbol, when immediately following a [symbol, forces negation so that the expression

will match anything that is not one of the characters following.
Next comes a sequence of characters, which are all escaped by prefacing them with a \ symbol,

because otherwise they would be interpreted as special regular expression operators:

• \d Any digit (0–9).
• \+ An addition symbol.
• * A multiplication symbol.
• \/ A division symbol.
• \- A subtraction symbol.
• \. A decimal point symbol.

So, if any symbol is not one of these escaped symbols, it will be considered a match and the
second argument to preg_replace(), ’’, will replace it with nothing—in other words, the symbol
will be removed. Finally, a few other symbols are also allowed through. These are the left and right
brackets, the comma, the exclamation mark, and a space.

You might wonder why the exclamation mark is allowed within a mathematical expression.
Well, the answer is that it isn’t allowed in order to support certain expression types. Instead, it’s
there because it forms part of each of the 22 tokens in the array $f2. I chose the exclamation mark at
random and could equally have used any one of many other symbols. Once the mathematical functions
have been converted to tokens, the ! symbols remain there so that the tokens can be converted back
again after stripping the remaining unwanted characters out, which is done using another call to the
str_replace() function, as follows:

After all this processing, the resulting sanitized string is passed to the eval() function, the result

of which is returned to the calling statement, like this:

If you wish to see what the sanitized expression looks like, you can uncomment the line shown in

the source code.

How to Use It
To evaluate a user-supplied expression, just call the function EvaluateExpression(), passing the
expression to be calculated in the following manner, which calculates the area of a circle with a
radius of 4:

The Recipe

 ValidateCC()
Sometimes people make mistakes when entering credit card numbers in web forms, or even just make
numbers up to see what will happen. Using this recipe, you can at least ensure that a credit card
number and expiration date you have been provided with has an acceptable number sequence, a
correct checksum, and a valid expiry date.

This enables you to only pass on sensible-looking details to your card processing organization,
and possibly limit any additional fees that may be charged. In Figure 6-2, you can see a made-up card
number that has not validated.

FIGURE 6-2 Credit card numbers have a built-in checksum that this recipe will validate.

About the Recipe

This recipe accepts a credit card number and expiry date and returns TRUE if they validate, and FALSE
otherwise. It takes these arguments:

• $number A string containing a credit card number.
• $expiry A credit card expiry date in the form 07/12 or 0712.

Variables, Arrays, and Functions
$left String containing the left four digits of $number
$cclen Integer containing the number of characters in $number
$chksum Integer containing the credit card checksum
$j Loop counter
$d Character containing individual digits extracted from $number

How It Works
In the 1950s, Hans Peter Luhn, a scientist working at IBM, created the Luhn checksum algorithm, also
known as the modulus 10 or mod 10 algorithm. It will detect any single-digit error, as well as almost
all transpositions of adjacent digits in a string of digits. This makes it very useful for verifying
whether a credit card number has been successfully entered by using the simple method of adding a
checksum digit at the number’s end. All major credit companies use this system and so can we.

The first thing the recipe does is remove any non-digit characters from $number; the same is
done for the expiry date in $expiry. Then, the contents of the first four digits of $number are placed
in the variable $left, the length of $number is placed in $cclen, and $checksum is initialized to 0,
like this:

Each card issuer has their own initial sequences of numbers, and card number length can vary

between 13 and 16 digits depending on the issuer. So, using the contents of $left, the next main
section of code looks up the type of card using a sequence of if and elseif statements and, based on the
result, returns FALSE if $number does not contain the correct number of digits for that card.

Once all the known sequences of initial digits have been processed, if no card has yet been
matched, then FALSE is returned because $number represents the number for a card type the program
is unaware of—most likely it’s a made-up number.

Otherwise, the card type has been identified and $number has been found to have the right
number of digits, so the next portion of code runs the Luhn algorithm to see whether the sequence of
numbers appears valid. It does this by checking alternate digits and adding them together in a pre-set
manner. If the result is exactly divisible by 10, then the sequence is valid. If not, FALSE is returned, as
follows:

Lastly, the expiry date is checked against the date of the last day of the current month and, if the

card has expired, FALSE is returned. Otherwise, if all these tests pass, a value of TRUE is returned,
like this:

TIP If you are interested in exactly how the Luhn algorithm works, there’s an explanation at
en.wikipedia.org/wiki/Luhn_algorithm.

How to Use It
To verify a credit card’s details prior to submitting it to a credit card processing organization, you
could use code such as this:

In the preceding example, if the card doesn’t validate, the details are re-requested. Or, if it does,

the card is processed.

CAUTION All this recipe does is check whether the credit card details entered meet the issuer
identity, checksum, and date requirements for a valid card. It should only be used as a quick
test to ensure that a user has not made a typographical error when entering their details.
Also, you should keep yourself informed about all the latest card numbers allocated so that
you can update this validator and not incorrectly reject any cards. You can keep track of the

http://en.wikipedia.org/wiki/Luhn_algorithm

major credit card issuers at wikipedia.org/wiki/Credit_card_numbers.

The Recipe

http://www.wikipedia.org/wiki/Credit_card_numbers

 CreateCaptcha()
Spam is everywhere these days, and not just in our e-mail inboxes. The Internet is saturated with
“bots” (automated programs) trawling web pages in search of web forms that will let them drop their
payload into a comment or other field. Usually they try to drop in a link leading to a knock-off product
they are trying to sell. But worse than that, many of these bots inject pornographic links, or attempt to
get users to visit phishing sites where their bank, credit card, or other personal details may be stolen.

One of the most successful ways to prevent this is the Captcha, a type of challenge-response test
used in computing to ensure that the response is not generated by a computer. The word is a highly
contrived acronym that stands for “Completely Automatic Public Turing Test to Tell Computers and
Humans Apart.”

With a Captcha, you are asked to reenter some text displayed in a graphic image. If the image is
complex enough, a bot will not be able to decipher it and so only human input is able to get through.
This still doesn’t guarantee you will be spam-free, but with this recipe you’ll prevent the majority of
it from getting through. Figure 6-3 shows the plug-in generating a Captcha.

FIGURE 6-3 Ensuring that users are humans and not “bots” is easy with this recipe.

About the Recipe
This recipe creates a temporary image containing a word that must be typed in to verify a user is
human. It returns a three-element array in which the first element is the Captcha text to be entered, the
second is a unique 32-character token, and the third is the location of the Captcha image. It takes these
arguments:

• $size The font size of a TrueType font.
• $length The number of characters in the Captcha word.
• $font The location of a TrueType font to use.
• $folder The location of a folder to store the Captcha images. This must be web-accessible and

end with a trailing / character; or to use the current folder, use a value of NULL...
• $salt1 A string to make the Captcha hard to crack.
• $salt2 A string to make cracking even harder.

Variables, Arrays, and Functions
$file String containing the contents of the file dictionary.txt
$temps Array of all words extracted from $file
$temp String containing each value in turn from $temps
$dict Array of all correct-length words extracted from $temps
$captcha String containing the Captcha word
$token String containing an md5() hash based on $captcha, $salt1, and $salt2
$fname String containing the Captcha image location
$image GD library image of the Captcha image
$j Loop counter
GifText() PHP Recipe 19 function: converts text to a GIF image
GD_FN1() Function used by Recipe 19
ImageAlter() PHP Recipe 14 function: modifies an image

How It Works
Rather than simply supplying a selection of random letters for the Captcha, I decided it’s much more
natural to enter an English word, and so this recipe requires a file called dictionary .txt to be in the
same directory. This file should be a list of words with one per line and each line separated by a
\r\n carriage return\linefeed pair. On the companion web site to this book at
webdeveloperscookbook.com, there’s an 80,000-word dictionary.txt file already saved in the same
Zip file as this recipe. Or you can choose to use your own sorted list of words.

Either way, the first thing the function does is load the contents of dictionary.txt into the variable
$temps, from where all the words with a length of the value in $length are extracted into the array
$dict using a foreach loop, and the Captcha word is then selected from this subset of words, as
follows:

Next, a token is created with which the Captcha can be uniquely connected, like this:

The PHP md5() function is a one-way function that converts the input into a 32-character string

in such a way that the algorithm cannot be reversed. This is why it’s called a one-way function.
However, instead of simply taking the dictionary word and creating an md5() hash of it, it’s
necessary to obfuscate things a little. This is because some people have spent a lot of time assembling
dictionaries containing the hashes of every single word. Therefore, for example, the md5() hash of the
word “hello” is easily looked up and is known to be the following:

Wherever this particular hash is encountered, the chances are very high indeed that it was

created from the string “hello”, and so it would be a cinch to crack this Captcha system. So, like I
said, it’s necessary to be a little sneaky by making it impossible for a dictionary crack to work.

We do this by adding additional characters to the Captcha word that only we know. Such strings
of characters are called salts, and this recipe uses two of them for good measure. When you call the
recipe, you will have to provide values for $salt1 and $salt2, which will be inserted on either side
of the Captcha word chosen. For example, if you choose the strings 3$a7* and dk%%d, and the
Captcha word is hello, then the string that will be passed to md5() is 3$a7*hellodk%%d, which
results in the following hash:

As you can see, this is a totally different string and, without knowing the two salt values, it is

http://www.webdeveloperscookbook.com

utterly impossible to crack without attempting brute force (multiple attempts), which would take an
inconceivably long time, even using a modern supercomputer.

So, the result of creating the hash token is placed in $token, and $fname is set to point to the
location where the resulting Captcha GIF file will be stored. This is based on concatenating the value
supplied in $folder, the md5() token in $token, and the file extension .gif, as follows:

The function then creates the graphic image by calling GifText() (PHP Recipe 19 from Chapter

4), with the correct values to form a shadowed word. This function also saves the image to disk when
done, like this:

To complete the Captcha creation, the image is reloaded into memory and ImageAlter() (PHP

Recipe 14 from Chapter 4) is called in four different ways (and in a couple of instances multiple
times) to blur, emboss, brighten, and increase its contrast. The result is then resaved back into the GIF
image and an array containing three elements is returned. These are:

1. The captcha text
2. The md5() token
3. The location of the Captcha image

The code to do this is as follows, starting with loading the image and altering it in the first three
lines, followed by multiple alterations, saving the image, and then returning the Captcha data:

How to Use It
To create a Captcha, you call up CreateCaptcha(), passing it the required values, like this:

In this example, the passed values are 26 for the font size, 8 for the length of the Captcha word

required, captcha.ttf for the name of a TrueType file to use, ’ ’ for the image folder to use, and
!*a&K and .fs£!+ for the two salt values. You should have already uploaded a suitable TrueType

font file, named captcha.ttf, to your server—preferably a nonstandard or script type font.
The recipe will return an array of three values with which you can display the Captcha image

and create a form to request the Captcha word as text input. The first of the returned values is the
Captcha word itself, and you don’t actually need it other than for testing purposes. So at this point,
let’s forget it and concentrate on the other two returned values. The first of these is the image you
need to display, like this:

You also need to embed the value of the token in a hidden field, like this:

Taking all this into account, the following example code creates a Captcha and then displays the

Captcha image along with a form for requesting the Captcha word to be entered:

You may wish to save this example (giving it a filename such as testcaptcha.php), as you’ll able

to test it with an example from the following recipe. Or you can download the file using the
Download link at webdeveloperscookbook.com.

If you would like to have random-length words in your Captchas, you can achieve this by
modifying the function call to use the rand() function, as in the following, which will generate a
Captcha of between 4 and 10 letters in length:

TIP If you ever find your Captchas are not preventing all bots anymore, perhaps because their
image recognition has improved, I suggest you upload a different TrueType font and start
using that. You could also modify CreateCaptcha() itself and introduce a few more (or use
different) image manipulations.

The Recipe

http://www.webdeveloperscookbook.com

 CheckCaptcha()
Once you have created a Captcha image and asked a user to type it in, you can use this recipe to
verify their input, and determine whether they entered the correct word. Figure 6-4 shows the plug-in
being used.

FIGURE 6-4 This recipe verifies a Captcha word entered by a user.

About the Recipe
This recipe verifies the Captcha word input by a user, in response to a request made using a Captcha
created with PHP Recipe 33, CreateCaptcha(). It takes these arguments:

• $captcha The Captcha as typed in by a user.
• $token The token representing the current Captcha.
• $image The image location of the GIF file.
• $salt1 The first salt string.
• $salt2 The second salt string.

How It Works
This function returns the result of re-creating the md5() hash from PHP Recipe 33, based on the user
string provided in $captcha, and the two salts in $salt1 and $salt2, like this:

As long as the salts are the same as when the Captcha was created, if the user has typed in the

correct hash word, then the result of concatenating all three and passing them to the md5() function
will be the same as the value stored in $token—in which case, a value of TRUE is returned.
Otherwise, the correct word was not entered and FALSE is returned.

How to Use It
After a Captcha has been created using the previous recipe, you will have been provided with the
location of a GIF image and a token representing the Captcha. Using these, you will then have
displayed the image and provided a web form requesting that the user type in the word in the Captcha
image. This form will now have been posted to your server, and the three items of data received will
be:

• $_POST[’captcha’] The Captcha text entered by the user.
• $_POST[’token’] The token embedded in the hidden form field.

Using these values, the following example code will verify the Captcha word as entered by the
user:

Note that the two salts are not passed as arguments because they are a secret and only your code

should know them. Just ensure that you use the same salts for both CreateCaptcha() and
CheckCaptcha(); otherwise, the recipes won’t work.

If you wish to test the example code (testcaptcha.php) in the previous recipe, type in the
preceding example and save it as checkcaptcha.php, and it will verify the result of using the Captcha.

Both of these programs can be found in the accompanying files available from the Download link at
webdeveloperscookbook.com.

After using this facility for a while, you will find that your folder of Captcha images gets quite
full. You may therefore wish to use code, such as the following, to clear these files out every now and
then:

What the code does is use the glob() function to search for all files with a .gif extension, and if

they are more than five minutes (300 seconds) old, they are removed using the unlink() function. If
the files are in a different folder, you should ensure that you have first assigned that name to a
variable called $folder, and that it has a trailing / (for example, using a value such as images/ if
your folder is called images). Then, you can use the following code instead:

The Recipe

 ValidateText()
Processing user input takes a lot of work, especially when you need data to be in a certain format or
to fit within various constraints. Using this recipe, you can check user input to ensure it is the right
length and contains the right types of data, whether alphabetical, numeric, or another form.

It’s also highly versatile, allowing you to specify the allowed characters (and therefore those
that are disallowed), and also types of characters that must be used. Figure 6-5 shows two different
strings being validated.

http://webdeveloperscookbook.com

FIGURE 6-5 Processing form input is now easier than ever using this recipe.

About the Recipe
This recipe accepts a string to be validated, along with parameters describing what is and isn’t
allowed in the string. The function returns a two-element array on failure, the first of which is the
value FALSE, and the second is an array of error messages. On success, it returns a single element
with the value TRUE. It takes these arguments:

• $text The text to be validated.
• $minlength The minimum acceptable length.
• $maxlength The maximum acceptable length.
• $allowed The characters that are allowed in the text. Any characters can be entered here,

including ranges indicated by using a - character, such as a-zA-Z.
• $required Types of characters of which at least one of each must be in the text, out of a, l, u,

d, w, and p, which (in order) stand for any letter, lowercase, uppercase, digit, word (any letter or
number), or punctuation.

Variables, Arrays, and Functions
$len Integer containing the length of $text
$error Array of all error message strings
$result Integer result of matching the $allowed characters
$caught String containing matched characters from $allowed
$plural String with the value “is”, or “s are” if there is more than one match
$j Loop counter

How It Works
This recipe sets the value of $len to the length of $text and, after initializing the array $error so it
is ready to hold any error messages, checks whether $len is smaller or larger than the required
minimum and maximum lengths. If either is the case, a suitable error message is added to the $error
array, as follows:

Next, the preg_match_all() function is called to check for the existence of any characters not

in the string $allowed, which contains a list of all allowed characters, including supporting ranges
created using the - character so that, instead of having to use the string abcde, the equivalent of a-e is
allowed. So, for example, to accept all upper- and lowercase letters, the string a-zA-Z could be
used. Those characters that do not match are placed in the array $matches by the function and, from
there, are then placed in the string $caught, separated by a comma/space pair so that they can be
added to an error message, like this:

The string variable $plural is then assigned the value “is” if there is a single match, or “s are”

if there is more than one. This is then used when constructing the error message so that it reads
grammatically, using one or other of the forms (the value of $plural is shown in bold): “The
following character is not allowed”, “The following characters are not allowed”, as follows:

Then, a for loop is entered for iterating through all the characters in the variable $required,

which can contain any or all of the letters a, l, u, d, w, or p, which stand for any letter,
lowercase, uppercase, digit, word (any letter or number), or punctuation. This is all handled within a
switch statement, as follows:

Depending on which letter is being processed, the variable $regex is assigned the correct value

to enable the following preg_match() call to ensure that at least one of that character type is
included in the string:

This feature is very useful in cases where a certain type of input is required, such as a number,

or maybe a password that must have at least one each of a letter, number, and punctuation character.
As the variable’s name indicates, all characters in $required must exist in the string being

validated. Therefore, if any one of the types of characters described by $required is not
encountered, another error message is added to the $error array.

Finally, if $error has no messages in it, then no errors were encountered, so a single-element
array containing the value TRUE is returned. Otherwise, a two-element array is returned, the first of
which is the value FALSE and the second is the array of error messages:

How to Use It
To validate a user-supplied string, call the ValidateText() function, giving it the string to validate
and various parameters indicating which characters are both allowed and required.

For example, to ensure that a string to be used for a password has one each of a lowercase,
uppercase, digit, and punctuation character, and is at least 6 and no more than 16 characters long, you
could use code such as the following, where $text is extracted from the form input password:

You may wish to save this file with a filename such as validate.php, then you can call it up in

your browser and view the result of entering different values. A copy of this file is also in the
download archive, available at webdeveloperscookbook.com.

In this code, the string variable $allowed sets the recipe to accept any of the letters of any case,
digits, the space character, and any characters out of !&*+=:;@~ and #. The $required string
simultaneously tells the code that there must be at least one lowercase letter, one uppercase letter, one
digit, and one punctuation character.

Upon the function’s return, if the first element of the array $result is FALSE, then validation
failed and so the strings in the array stored in the second element are displayed—they are the error
messages returned by the recipe. But if the first element is TRUE, validation succeeded.

Here’s another example. Because $allowed may include regular expression operators such as
\w (which means any letter or digit, or the _ character), you could use the recipe to ensure that a
username (determined by you) may only include letters, digits, underlines, periods, and hyphens (and
cannot be comprised only of punctuation), and has been correctly entered, like this:

In this case, the $allowed argument of \w means “allow letters, digits, and the underline,” while

\. and \- also allow the period and hyphen. The $required parameter of a ensures there is at least one
letter, which can be of either case.

The Recipe

http://www.webdeveloperscookbook.com

 ValidateEmail()
Quite often people will make mistakes when entering their e-mail address into a web form. This is
also another common area where some users just enter rubbish to see what happens. To catch these
things, you can use this recipe to at least check whether the format of an e-mail address supplied to
you is valid, as shown in Figure 6-6.

FIGURE 6-6 Using this recipe, you can ensure that the format of an e-mail address is valid.

About the Recipe
This recipe accepts an e-mail address whose format requires validating. On success, it returns TRUE;
otherwise, it returns FALSE. It takes this argument:

• $email The e-mail address to be validated.

Variables, Arrays, and Functions
$at Integer pointing to the position of the @ sign
$left String containing the left half of the e-mail address
$right String containing the right half of the e-mail address
$res1 Array result from validating $left
$res2 Array result from validating $right
ValidateText() PHP Recipe 35: function to validate a string

How It Works
The most obvious required part of an e-mail address is the @ symbol, so the first thing this recipe
does is locate its position and store it in the variable $at. If $at is given the value FALSE, or if the
length of $email is less than the minimum of six characters that an e-mail address can have (a@b.cc),
then the value FALSE is returned because the address is already found to be invalid, as follows:

Next, the e-mail address is split into the two halves either side of the position pointed to by $at

using the substr() function. The left portion is assigned to the variable $left and the right to the
variable $right, like this:

Then, Recipe 35, ValidateText(), is called to evaluate each half. The left half must be

between 1 and 64 characters in length and may comprise any letters, digits, underlines, periods, and +

or - symbols. This is enforced using the argument of \w\.\+\-. Also, at least one letter must be
included, so the second argument of a checks for that.

The right half of an e-mail address must be between 1 and 255 characters in length and may be
comprised of any mix of letters, digits, hyphens, or periods. This validation is accomplished using the
argument \a-zA-Z0-9\.\-. And to ensure at least one letter appears in the domain, a second
argument of a is supplied. The results of these two validations are placed in the arrays $res1 and
$res2, like this:

Final validation is achieved by ensuring there is at least one period in the right half of the e-mail

address and that both the previous two validations were also successful. If so, then TRUE is returned;
otherwise, FALSE is returned:

How to Use It
To validate an e-mail address, just pass it to ValidateEmail(), which will return TRUE if
successful; otherwise, it will return FALSE, like this:

The Recipe

 SpamCatch()
Even with a strong Captcha system in place, you will still find users trying to manually spam your
web site. They tend to be people who discover your site through a very specific search engine query,
for which they would like their own site to also rank well, and they hope that by adding a link back to
their site from yours this will happen.

Using this recipe, you can specify a set of keywords that will trigger spam detection, and then
use the level of spam certainty returned by the function to decide whether to ignore a user post. Figure
6-7 illustrates the plug-in in action.

FIGURE 6-7 This recipe will go a long way toward further reducing spam on your web site.

About the Recipe
This recipe accepts a user-supplied string and matches it against a list of keywords to determine the
likelihood that the string contains spam. It takes these arguments:

• $text The e-mail address to be validated.
• $words An array of keywords against which to check.

How It Works
This is another of those extremely short and sweet, yet exceedingly powerful, recipes. What it does is
take the text you supply it, along with the array of keywords, and calls PHP Recipe 5,
WordSelector(), with a blank replace string. This has the effect of removing every matching word
from the string. It’s then a simple matter to subtract the length of the new string from the original one
and return the difference, like this:

The larger the difference, the more words are removed from the string, and so the more the

keywords that have matched, the more likely it is that the string contained spam. If there is no
difference, then no words matched and the string is considered spam-free.

How to Use It
To use this recipe well, you need to first create your array of trigger keywords. You should base this
on words unique to user spam that you have already received, with code such as the following to
filter user posts:

Of course, this is a very small set of keywords and you will very likely need to come up with

your own much larger list, which you will probably compile over time, and which may include large
numbers of keywords unsuitable for publication in this book.

You may also wish to experiment with the spam score of 15 used earlier to distinguish between
spam and non-spam. Set it lower if too much is getting through, or higher if too many non-spams are
being rejected.

The Recipe

 SendEmail()
Often after receiving user input, you need to send an e-mail, perhaps to yourself, to a colleague, or
maybe to the e-mail submitter, thanking them for their input.

Sending an e-mail from your server isn’t too hard using PHP’s built-in mail() function. But if
you want to send CCs or BCCs, you have to start assembling a header, which starts getting
complicated. Using this recipe, all of that is handled for you. You just supply the message, subject
lines, and e-mail addresses of all recipients and it gets on with sending the e-mail for you. You can
even specify a different reply-to address if needed. Figure 6-8 shows the code in use.

FIGURE 6-8 Sending an e-mail with this recipe is a single-line function call.

About the Recipe
This recipe accepts a string containing the text of an e-mail to send, along with another for a subject
line, and various other arguments specifying the e-mail addresses of people to whom it should also be

sent. It takes these arguments:

• $message The text of the e-mail.
• $subject The e-mail’s subject.
• $priority The message’s priority: 1 (high) – 5 (low), or leave it blank for none.
• $from The e-mail address of the sender.
• $replyto The e-mail address to which replies should be addressed.
• $to The e-mail address of the recipient.
• $cc An array of e-mail addresses for CC copies.
• $bcc An array of e-mail addresses for Blind CC copies (no recipient will see any BCC e-mail

addresses in the message they receive).
• $type If set to “HTML,” the e-mail will be sent in HTML format; otherwise, it will be sent as

text.

Variables, Arrays, and Functions
$headers String containing additional headers to be sent

How It Works
A lot of the work is handled by the mail() function built into PHP, but it needs help constructing
additional headers because it only supports arguments of recipient, subject, message, and headers.

Therefore, this recipe starts by assigning the string variable $headers the value From:,
followed by the value in $from and a \r\n carriage return\linefeed pair, like this:

If this is not done, the e-mail could be sent as if the sender were the web server itself. Next, if

the value of $type is set to “HTML”, the correct headers to send the e-mail using HTML are
appended to $headers:

After that, if $priority has a value greater than 0, then an X-Priority: header is appended to

$headers. Also, if the $replyto variable has a value, then the correct Reply-To: header is appended
to $headers, as follows:

Then, the CC and BCC headers are created by iterating through the arrays of e-mail addresses in

$cc and $bcc (if any), appending each to the relevant header line, like this:

Finally the mail() function is called with the values in $to, $subject, and $message, but now

with a properly formatted sequence of headers in $headers to handle the other parameters:

How to Use It
Sending an e-mail with this code is as easy as the following example, in which me@myserver.com is
the sender’s e-mail address, and rick@otherserver.net is the recipient’s:

Or, to add a CC line, this might change to the following, noting that the CC and BCC arguments

must be passed as arrays of e-mail addresses:

TIP If, when you use this recipe, you get an error such as Warning: mail() [function.mail]: Failed
to connect to mailserver at “localhost” port 25, then you don’t have your server properly
configured for e-mail. In fact, if you are using Zend Server CE and/or a web development
server, you may not actually want to run a mail server on that machine anyway, and should
probably test this code on a server already configured for mail.

The Recipe

mailto:me@myserver.com
mailto:rick@otherserver.net

 BBCode()
Because of the risks involved with allowing users to enter HTML via a web form, alternatives had to
be invented that would offer freedom of textual formatting without the risk of server hacking. One of
the first and most popular of these systems was BB Code, which stands for Bulletin Board Code.

Because it is used on web forums all over the Internet, your users will be very familiar with BB
Code, and using this recipe, you can now fully support it on your web site—including making URLs
clickable, as you can see in Figure 6-9.

FIGURE 6-9 BB Code is a great way to allow users the ability to control their HTML layout without
worrying about getting hacked.

About the Recipe
This recipe accepts a string containing BB Code and returns it translated into safe HTML. It takes this
argument:

• $string The string to translate.

Variables, Arrays, and Functions
$from Array containing the supported BB Codes
$to Array containing the HTML equivalents to BB Code

How It Works
This recipe starts by replacing all occurrences found in the string $string from the array $from with
those in the array $to using the str_replace() function. Here are the two arrays and the
str_replace() call:

It then uses the preg_replace() function four times to perform slightly more complex

translations, like this:

These lines of code perform the following actions:

• Convert any [size=??] codes to CSS font-size:??px tags
• Convert any [color=??] codes to HTML tags
• Convertany [url]??[/url] codes to ?? HTML tags
• Convertany [url=??] codes to HTML tags

With all translations completed, the modified string is returned. If no modifications were made,
then the original string is returned:

How to Use It
To use this recipe, just pass the function BBCode() some text to be translated and it will be returned
to the calling code. If there is BB Code in the text, it will be replaced with matching HTML and/or
CSS tags otherwise, it will be returned unchanged. The following example populates $text with
some text, including BB Code, and then calls the recipe to display it:

The list of BB Codes supported by this recipe and the actions they perform are shown in Table

6-1.

TABLE 6-1 List of BB Codes Supported by this Recipe

I should mention that I believe BB Code’s support for images and URLs represents a potential
security risk and I would recommend using Pound Code (the next recipe) instead. Or, on a site that
makes use of GET requests, if you must support BB Code, you should consider removing or
commenting out the sections supporting images and URLs. I have more to say on this matter in the
“How to Use It” section of the Pound Code recipe, following.

You must also remember that this recipe provides support for BB Code but does not reject
HTML code. For that, you need to first run inputted text through functions to strip out HTML and
JavaScript, which would probably look like this:

The strip_tags() function removes all HTML tags from a string, and htmlentities() turns

all quotation marks and other punctuation into harmless entities that will be displayed and not acted

upon.

The Recipe

 PoundCode()
BB Code is all well and good, but in my opinion it makes for a lot of typing of square brackets. So I
invented a sleeker and simpler code called Pound Code (or Hash Code outside of the USA). With it,
you don’t need to surround a code with brackets, instead you just type a # symbol, followed by the
action you want to achieve, and the recipe works out the rest for you. Figure 6-10 shows the result.

FIGURE 6-10 Pound Code is easier than BB Code and offers more flexibility.

About the Recipe
This recipe accepts a string containing Pound Code and returns it translated into safe HTML. It takes
this argument:

• $text The string to translate.

Variables, Arrays, and Functions
$names Array containing the supported short font names
$fonts Array containing the HTML long names of $names
$to Array containing the strings required to translate the short font codes to HTML

How It Works
This recipe performs in a similar way to the BB Code recipe, but starts off by offering nine different
font styles. It takes the short codes in $names and, using the long names of each stored in $fonts,
creates strings for all of them using a for loop to iterate through them,
placing the results in the array $to, as follows:

Then, the function str_ireplace() is called to replace all occurrences found, regardless of

whether they are in upper- or lowercase, and the preg_replace() function is called four times to
perform the more complex translations, like this:

The actions of the preg_replace() calls are as follows:

• Convert any #b-, #i-, #u-, or #s- codes into , </i>, </u>, or </s>
• Convert any #b, #i, #u, or #s codes into , <i>, <u>, or <s>
• Convert any of #1 to #7 into through
• Convert any other #code into

Finally, any instances of #- are translated into . Then, with all translations completed,
the modified string is returned. If no modifications were made, the original string is returned:

How to Use It
To use this recipe, just pass it the code that needs to be translated. If it includes any Pound Code, the
returned result will be modified accordingly; otherwise, it will be the same as the original. In the
following example, $string is populated with some text and Pound Code, and then passed to the
recipe:

The list of Pound Codes supported by this recipe and the actions they perform are shown in

Table 6-2. If your users are new to it, you might wish to copy this table to your web site.

TABLE 6-2 List of Pound Codes Supported by this Recipe

Note that I have deliberately not offered the facility for users to include either image or
hyperlink URLs, and that’s for very good security reasons. Based on many years of experience in
writing chat room software, you’d be amazed how often programmers put things in GET requests (tails
of posted data appended to URLs, also known as a query string), thinking only the user can see them.
This can sometimes even include password or other login details!

The problem with this is that if you allow an image to be displayed on that web site from a third-
party server, then the current page’s URL will be sent to the other server where it can be saved in the
log files. The same goes for any users clicking links to third-party sites. The full details of the page
they are on will be sent to the other server by their browser, and if either of these includes login
details or a session ID embedded in a GET query string, the other server will gain access to it.

So, if your site uses GET requests, the proper way to do this is to write a routine to retrieve the
image from the other server and then display it from a local cache on your own server without any
GET query string appended to the URL. While for URLs, you should create a redirection link on your
web site and send your users off via that, also ensuring there is no GET query string. This is one
reason why (apart from the fact that I wrote it and think it’s easier to use) I would generally
recommend Pound Code over BB Code.

In a similar way to the previous one, this recipe does not reject HTML code, and so you will
probably first want to run inputted text through functions to strip out HTML and JavaScript such as
these:

The strip_tags() function removes all HTML tags from a string, and htmlentities() turns

all quotation marks and other punctuation into harmless entities that will be displayed and not acted
upon.

The Recipe

CHAPTER 7
The Internet

When you create a web site, rather than existing on its own, it becomes part of the wider Internet as a
whole. This means people will interact with it in many ways, from bookmarking pages they like to
subscribing to RSS feeds. While other web sites may wish to exchange links with you to help pool
and build traffic, Twitter users may want to tweet about something on your site and so on.

This chapter provides a range of recipes to help integrate your new property into the Internet
community at large, including link management, creating short URLs, converting between HTML and
RSS, adapting a site to mobile browsers, and more.

 LookupLinks()
When building up a web site, and especially if the marketing budget is tight, you often have to embark
on a campaign of link exchanges with other sites. But tracking all those link exchanges to ensure the
other sites keep their end of the deal is time-consuming. However, with this recipe you simply pass
an array of one or more links that should be present on a particular web page and you will be
informed whether those links are all in place. Figure 7-1 shows the recipe in action; two of the links
have passed, but a link to http://doesnotexist.com/index.html is not found on a web page.

FIGURE 7-1 This recipe tests whether certain links are present on a particular web page.

About the Recipe
This recipe accepts the URL of a web page to check, along with a set of links that ought to be present

http://doesnotexist.com/index.html

on it. If all the links are present, it returns an array with the single value TRUE; otherwise, it returns a
two-element array of which the first element is FALSE. The second is an array containing all the links
that were not present. It takes these arguments:

• $url A string containing the URL of a page to check.
• $links An array of links to look for on the page at $url.

Variables, Arrays, and Functions
$results Array containing all the links found at $url

$missing Array containing any links passed in $links that are not present in
$results

$failed
Integer counter that indexes into $missing, incrementing on each
failed match

$link String containing the current link being processed, as extracted from
$links

GetLinksFromURL() PHP Recipe 22: This function returns all the links at a given URL

RelToAbsURL()
PHP Recipe 21: This function converts a relative to an absolute URL
and is used by Recipe 22

How It Works
The first thing this recipe does is call PHP Recipe 22, GetLinksFromURL(), to fetch all the links
within the page supplied in the variable $url. All links found are then placed in the array $results.
Next, a couple of variables are initialized ready for checking, whether these links include the ones
being looked for. These are the array $missing, which will hold any links that are not found, and the
integer $failed, which is set to zero and will be incremented when any link is determined to not be
present, as follows:

Then, a foreach loop iterates through all the returned links, temporarily placing each in the

string variable $link, where it is then checked against the array of all links in $results, using the
function in_array(). Any that are not found are placed in $missing and the array pointer $failed
is incremented, like this:

After this checking, if any links are not found, then a two-element array is returned, the first

element of which is FALSE, and the second is an array containing all the links that failed the check.
Otherwise, a single-element array is returned, containing the value TRUE, as follows:

How to Use It
To use this recipe, you should supply a URL to be checked and a list of links that should be included
within the page at that URL, like this:

If the value in $result[0] is TRUE, then all the links are present and correct. But if $result[0]

is FALSE, then $result[1] will contain an array of all failed links. You can check for these
conditions using code such as the following, which employs a for loop to iterate through the failed
links:

The Recipe

 GetTitleFromURL()
Sometimes you want to know what the title of a web page is. The following recipe, PHP Recipe 43
(following), can be used to automatically link back to referring web sites. Using this code in
combination with it, it’s possible to link back using the page’s title. Figure 7-2 shows the title being
fetched from the Yahoo! News home page.

FIGURE 7-2 When you need to know the title of a web page, you can call this recipe.

About the Recipe
This recipe accepts the URL of a web page whose title is to be extracted and returns the title. It takes
this argument:

• $page A string containing the URL of a page to check.

Variables, Arrays, and Functions
$contents String containing the contents of $page

How It Works
This simple recipe calls get_file_contents() to load the contents of $page into the string

variable $contents. If for any reason the page could not be read in, then FALSE is returned, like this:

Otherwise, preg_match() is called to extract the contents between the page’s <title> and

</title> tags. This is denoted by the (.*) in the expression passed to the function, like this:

Of course, some pages may not include a title, meaning this recipe may fail, so before returning,

it checks whether a title has been successfully extracted, and if so, the information needed as a result
of calling the function is placed in the second element of the array $matches, which is then returned.
Otherwise, FALSE is returned, as follows:

How to Use It
To extract the title from a page, you can call this recipe in the following way:

Then, to act on the value returned, use code such as this:

The Recipe

 AutoBackLinks()
A traffic-building technique that is known to work is to offer automatic back-links to sites that link to
yours. Using this program, providing that facility is extremely easy and will help you build more
traffic with a minimum of extra work. Figure 7-3 shows example output from this recipe.

FIGURE 7-3 With this recipe, you can automatically link back to sites that link to yours.

About the Recipe
This recipe accepts the name of a file used as a data file for storing details about sites linking to the
current web page. This will be a file created by PHP Recipe 30, RefererLog(). It takes this
argument:

• $filename The file and/or path name to read.

Variables, Arrays, and Functions
$inbound Array containing all the inbound links in the log file
$logfile String containing the contents of $filename
$links Array of data extracted from $logfile
$key String containing a link extracted from $links
$val String containing the number of visitors who came from $key

How It Works
This recipe assumes you are already using PHP Recipe 30, RefererLog(), to track inbound links to
a web page and that you’ve already specified a data file where the data is being stored, which you
have also passed to this function in $filename.

What it does is then read the data file into the string variable $logfile. If the file is unreadable
(perhaps because it doesn’t yet exist), a single-element array is returned with the value FALSE by this
line:

Otherwise, $logfile is split into lines at the linefeed characters, \n, using the explode()

function, and then the lines are placed in the array $links. At this point, many of the links in $links
will be repeated due to multiple visitors coming from a referring page, so the
array_count_values() function is called, which returns an array using the values of $links as
keys, and each unique key’s frequency as values. The following three lines perform these actions:

So far, this code has the effect of determining the popularity of each referring page by counting

the number of occurrences of each. Afterward, the result is placed back in the array $links, and then
arsort() is called to sort the array numerically in reverse order, so that those referring URLs with
the most counts come first, like this:

Next, a foreach loop is initiated to iterate through all the elements of $links, which are placed

in $key and $val ($key for the link and $val for its count, although the latter is no longer needed and
is ignored), removing all the entries listed as “No Referer”, since they must also be ignored. All other
links are added to the array $inbound, like this:

At this point, the $inbound array now contains a list of all the referring URLs in order of

numbers of visitors sent by each, so a two-element array is returned by the final line of code. The first

element of this is TRUE, while the second is the array $inbound.

How to Use It
To extract all referring pages from the log file, use code such as this:

$results will now be an array with either one element, FALSE, in which case no referring links

were found, or it will be a two-element array, the first value of which will be TRUE, while the second
element will be an array of referring URLs in the order of visitors referred. You can act on this data
like this:

This provides you with useful data, but you can also provide automatic back-links for your users

to follow by using this code instead:

However, we can do better than that, because PHP Recipe 42, GetTitleFromURL(), can also

be brought into the equation to link back to the referring site by name, so that if a referring page has a
title, it will be used in the link back (otherwise, the page URL will be used), like this:

The Recipe

 CreateShortURL()
With the rapid growth of Twitter and its short message lengths, many services have sprung up offering
short URL services. These are all well and good except that they tend to also be used by spammers to
disguise links that might reveal their destination. Consequently, some of these services are slow,
while others disappear overnight. What’s more, users can be wary of entering a short URL, even from
an established service, because they are never sure where the URL may lead.

To help diminish all these negatives, this recipe lets you offer your own short URLs using your
own domain name, not a third party’s, which should mean it is more trusted. For example, which of
the two following URLs would you rather click?

microsoft.com/go.php?u=12345
asite.net/go.php?u=12345

Personally, I would be far less worried about visiting the former. Figure 7-4 shows a long URL
being shortened with this recipe.

FIGURE 7-4 Use this recipe to create short aliases for long URLs on your web site.

About the Recipe
This recipe accepts a URL to be shortened, along with some other data, and returns a short URL. It
takes these arguments:
• $url The URL to be shortened.

http://microsoft.com/go.php?u=12345
http://asite.net/go.php?u=12345

• $redirect The name of a PHP file on your server that will make the redirects from short URLs to
their original destinations.

• $len The number of characters to use in the token part of a short URL. The more you use them, the
more URLs are supported. For example, three characters will support 4,096 URLs since this recipe
uses the hexadecimal digits 0–9 and a–f.

• $file The name of a file in which to store the short URL data.

Variables, Arrays, and Functions
$contents String variable containing the contents of $file
$lines Array containing all the separate lines from $contents
$shorts Array of short token versions of $longs
$longs Array of full URL versions of $shorts
$line String containing a single line extracted from $lines
$j Integer counter for iterating through $longs
$str String containing a newly created short token

How It Works
This recipe reads the contents of $file into the variable $contents, from where all the individual
lines are extracted into the array $lines. Then, two arrays ($shorts and $longs) are initialized to
hold the short tokens and their long URL equivalents, as extracted from $lines, using these four lines
of code:

Then, if $contents actually contains anything—in other words, there was data in $file and it

was successfully loaded—an if statement is entered. In this case, a foreach loop iterates through all
the lines in $lines and assigns the left and right items of data on either side of the | symbol, which
divides them into the $shorts and $longs arrays. The function list() is used to neatly extract both
halves at once. When complete, for example, $shorts[1] will contain a token that represents the
URL in $longs[1], like this:

Next, the in_array() function is called to see whether $url already exists in the data file. If so,

the $longs array, which contains the list of URLs, is stepped through, incrementing the pointer $j
until the matching URL is found, at which point $j is used to index into $shorts and extract the
equivalent token from there. This token is then returned, along with some other details, as follows:

The variable $redirect is passed to the function and represents the name of a PHP program you

will use to handle the short URL redirects. Suppose this is called go.php. Therefore, when the
function returns, it will pass back the string go.php?u=nnnn where nnnn is the short token equivalent
to the URL in $url. The code to do this is as follows:

If $url is not already in the data file, a do loop is entered to randomly construct a new token

$len characters in length, which is stored in $str. The loop repeats until the value of $str is unique
to the data file, so that no two URLs can have the same short token, using these lines of code:

With a short token now created in $str, the file_put_contents() function is called to save

the new details into the data file. It does this by saving $contents (the data previously read from the
file), followed by $str, a | symbol, and $url. It is terminated with a \n, (newline character), like
this:

So, an example line from this file would look like this:

Finally, in the last line of code, a redirect URL is returned, comprising the values of

$redirect, ?u= and $str, such as go.php?u=xxxx.

How to Use It
To create a short URL, use this recipe. The following one (PHP Recipe 45) is for using the short
URLs you create. To create a short URL, you need to pass four arguments to the function, like this:

Now you can display the link to this shortened URL using code such as this:

In the preceding case, this will display a link looking like the following:

This is much shorter than the original of:

You will use the following recipe to create go.php. You’ll also see how you can use the mod

rewrite facility in an .htaccess file to make the shortened URL even smaller, like the following,
which is half the length of the original:

Or, even more simply, all that users will have to type into their browser’s address bar is the

following 16-character string (39 fewer characters than the original 55-character URL):

The Recipe

 UseShortURL()
Once you’ve created a short URL, you need a means to access it. You do this via this recipe, which
accepts a short token in a GET tail, known as a query string, and then redirects the user to the
equivalent longer URL. Figure 7-5 shows the function being used just to decode a short token, without
redirecting.

FIGURE 7-5 Creating short URLs using your own domain is easy with this recipe.

About the Recipe
This recipe accepts a short token and returns its longer URL equivalent. It takes these arguments:

• $token A short token with which to look up the equivalent URL.
• $file The data file for this recipe.

Variables, Arrays, and Functions
$contents String variable containing the contents of $file
$lines Array containing all the separate lines from $contents
$shorts Array of short token versions of $longs
$longs Array of full URL versions of $shorts
$line String containing a single line extracted from $lines
$j Integer counter for iterating through $longs

How It Works
This recipe must be passed a short token as created by the previous recipe, CreateShortURL(). It
then returns the associated URL. It does this by reading the contents of $file into the variable
$contents, from where all the individual lines are extracted into the array $lines. Then, two arrays
($shorts and $longs) are initialized to hold the short tokens and their long URL equivalents, as
extracted from $lines, like this:

Then, an if statement is entered if the data in $file was successfully loaded into $contents. In

which case, a foreach loop iterates through all the lines in $lines and assigns the left and right
items of data on either side of the | symbol, which divides them into the $shorts and $longs arrays.

The function list() is called to extract both halves at once, as follows:

Next, the in_array() function is called to see whether $token already exists in the data file. If

so, the $shorts array, which contains the list of tokens, is stepped through, incrementing the pointer
$j until the matching URL is found, at which point $j is used to index into $longs and extract the
equivalent URL from there. This URL is then returned, like this:

If the token is not found in the data file, FALSE is returned in the final line.

How to Use It
In the previous section I discussed a program called go.php. This is what we will write here. It’s
very short and simple:

What this code does is fetch the argument passed to it in the GET variable ’u’ and run it through

UseShortURL(), which then looks up the associated URL and returns it to the string variable
$result. The header() function is then called to issue a Location: header, informing the browser
where the contents it is requesting can be found.

All you need to do is save the preceding four lines of code (along with the UseShortURL()
recipe) to your server’s document root as go.php (remembering to add the surrounding <?php and ?>
tags), and it can be called up as follows (assuming your server has the domain name myserver.com):

As long as nnnn is a valid short token, as created by PHP Recipe 44, then this program will look

up the associated URL and redirect the browser to it.
But there’s a very neat trick you can employ to make this recipe even more effective, and that’s

to use mod rewrite to further modify the short URL, making it even shorter. You do this by creating
(or editing) a file called .htaccess in the same directory as go.php.

If you are using Windows, you will not be able to create the .htaccess file by right-clicking and
selecting New because Windows will tell you that you need a filename before the period. Instead,
you must use a program editor to save the file, as most of these understand what an .htaccess file is
and can correctly create it. If you are using Windows Notepad or a program that doesn’t allow you to
save an .htaccess file, just place double quotes around it (like this: ".htaccess") when saving to tell

http://myserver.com

Windows to save it as is.
Once you have the .htaccess file, add the following two lines of code to it:

What this does is tell the Apache web server that when it can’t find a file or folder on your

server, it should translate the filename requested (which can be any combination of letters and
numbers) into the following form, where request is the original location requested:

So, for example, assume your web domain is myserver.com and you already have the short token

12345, which redirects to a valid URL, and you have entered the following short URL into your
browser:

The mod rewrite module in the Apache web server will notice there is no file or folder named

12345 and therefore will translate the request into the following:

And, hey presto, this is a valid URL pointing to the go.php program, which has been arrived at

using the smallest possible short URL for your domain.
If you find using mod rewrite and .htaccess don’t work for you, it may be because your

httpd.conf configuration file doesn’t have AllowOverride enabled. If this is the case, you’ll need to
modify the relevant line and restart Apache. Under Windows, using Zend Server CE, you will find
httpd.conf at c:\program files\zend\apache2\conf\httpd.conf. On Linux/Mac, you should find the file
at /usr/local/zend/apache2/conf/httpd.conf. On other Apache installations, the file may be elsewhere
and you should consult the relevant documentation.

You can open httpd.conf with any text editor and at (or somewhere near) line 211 you should
see AllowOverride None, which should be changed to AllowOverride All. Then, resave the file.
If you are not allowed to save the file, you may need to adjust the file and/or folder permissions first.

You should now restart Apache by clicking the Apache icon in your system tray and selecting
Restart. Or, on Linux/Mac, using Zend Server CE, you would type
/usr/local/zend/bin/zendctl.sh restart into a Terminal window.

For more about the mod rewrite program and .htaccess files on the Apache web server, please
visit tinyurl.com/modrewriteguide.

The Recipe

http://myserver.com
http://www.tinyurl.com/modrewriteguide

 SimpleWebProxy()
There are times when you are unable to browse to a site from one location but you can ping it from a
server at another location, so you know the site should be up and running, but your connection to it is
probably temporarily blocked. When this happens, you can use this recipe to act as a simple web
proxy to browse right through to that site from your web server. Or, if you wish, you can use this code
as a basis for your own web proxy service, which could be free, or you could even drop in a small
advertisement to cover bandwidth costs—although you’d have to add that code yourself.

Figure 7-6 shows the news.com web site as browsed through to using this recipe. You can see
from the status bar that all URLs in the page have been updated to call up linked pages through the
proxy, too. And, yes, even the images have been served via the proxy.

http://news.com

FIGURE 7-6 This small recipe provides powerful web proxy functionality, including web images.

About the Recipe
This recipe accepts a URL to fetch and returns it with all URLs and links to images altered to run
through the proxy. It takes these arguments:

• $url The URL to fetch.
• $redirect The filename of a PHP program to act as the web proxy.

Variables, Arrays, and Functions
$contents String containing the contents of $url
$dom Document object of $contents
$xpath XPath object for traversing $dom
$hrefs Object containing all a href= link elements in $dom
$sources Object containing all img src= link elements in $dom
$iframes Object containing all iframe src= link elements in $dom
$scripts Object containing all script src= link elements in $dom
$css Object containing all link href= link elements in $dom
$links Array of all the links discovered in $contents

$to Array containing the version of what each $link should be changed to
in order to ensure it is absolute

$count Integer containing the number of elements in $to
$link Each link in turn extracted from $links
$j Integer counter for iterating through $to
RelToAbsURL() PHP Recipe 21: This function converts a relative URL to absolute

How It Works
This recipe fetches the contents of $url and places it in $contents. If it cannot load the page at
$url, FALSE is returned, like this:

Next, if $url refers to any image file such as .jpg, .gif, .png, or .ico, or any .css, .js, or .xml file,

then a switch statement is implemented to return the contents of the file unaltered (since there is no
need to attempt to convert relative links to absolute in these types of files because they are not
HTML), using this code:

However, any file that is not one of those mentioned is assumed to be HTML. If you wish to

improve on this recipe, here’s one area for a start where you could add support for many other file
types. HTML will be assumed from here on, however.

So the next thing that happens is all instances of & (the XML and XHTML required form of
the & symbol) are converted to just the & symbol and then all & symbols are changed to a special token
with the value !!**1**!!. You may wonder what on earth is going on here. Well, I can report that
after a huge amount of time testing the str_replace() function built into PHP, I believe it has an
obscure, and hard-to-catch, bug when it comes to processing the & symbol. In the end, I gave up trying
to find out why and simply chose to convert all occurrences of & to a sequence of characters I could
be pretty sure would not appear in any HTML document, hence the string !!**1**!!. This is the code
I used:

So, having got the & problem out of the way, a new Document object is created in $dom, and the

document in $contents is loaded into it. This makes the whole HTML page easily searchable using
the $xpath object, which is created from $dom, like this:

Next, five types of tags are searched for using the $xpath object; a href=, img src=,

iframe src=, script src=, and link src=. All the associated strings for each tag are then
placed in the objects $hrefs, $sources, $iframes, $scripts, and $css, like this:

The reason for this is that it is necessary to ensure that all links within a page are of the absolute

type, so that the page this recipe returns can be served up from any server and, by grabbing all the
links, it will be possible to perform a relative URL to absolute URL conversion on each.

To facilitate this, all the separate objects are then traversed, and the links found in each are
extracted into the array $links, as follows:

Then, to ensure there is no duplication of conversions, the array_unique() function is called to
remove all duplicates, and the resulting set of unique URLs is then saved back into the $links array,
like this:

After the links are sorted alphabetically and resaved in the $links array, a foreach loop is

used to iterate through each. The first part of the loop ensures there was actually a URL supplied in a
link before continuing, and if so, the string variable $temp is assigned the contents of each link, but
with the & symbols replaced. Here is the code that achieves this:

This is so that the array $to can be assigned an untokenized URL in the next step, in which the

value /$redirect?u= is assigned to the current element of $to, as indexed by $count, which will
later be incremented for each iteration of the loop. But before that, after the /$redirect?u=, the URL
itself is attached to the end of the element, after first running it through the RelToAbsURL() function to
ensure it is absolute. So, if the value in $redirect is webproxy.php, and the link to add is
http://google.com, then $to[$count] will be assigned the string /webproxy.php?
u=http://google.com. Here’s the code to do this:

Now it’s time to make the link replacements within the document itself, which as you’ll recall, is

stored in $contents. This is done by two sets of str_replace() calls to cover the three types of
links allowed in an HTML document:

• Single quoted
• Double quoted
• Without quotes

To do this, all href="link", href=’link’, and href=link statements are replaced with a
unique token comprising the value of $count surrounded by two pairs of exclamation marks. The first
link is replaced with !!0!!, the second with !!1!!, and so on. Again, I chose this as being unlikely
to appear within an HTML document. This process is then repeated with all occurrences of
src="link", src=’link’, and src=link, as follows:

At the end of the loop, there will be no URLs remaining in the document, only the exclamation

mark tokens representing them. And there’s a very good reason for all these shenanigans, which is that
the final part of this recipe needs to convert all the links to absolute, but if it tried to do this with all
the links still in place it would seriously mess up.

http://google.com

To explain why, imagine that the server being proxied is http://server.com, and therefore all
occurrences of /news/index.html must be replaced with http://server.com/news/index.html.
This is all fine and dandy, but what if all occurrences of /news/ need changing, too? When this
happens, it will also impact the previous change because the newly converted
http://server.com/news/index.html strings will get changed to
http://server.com/http://server.com/news/index.html. Do you see the problem? The
changes will get changed.

This is why all the links that need converting are first pre-processed into tokens. Then, all the
tokens can be safely processed into the absolute URLs, without new changes modifying previous
ones.

And that’s what the next bit of code does. It’s a for loop that iterates through all the entries in
$to (the absolute URLs) and changes each of the tokens in turn to each of the values in $to, as
follows:

Once all that has been achieved, then all the links in the document will now be in absolute

format, so it’s safe to make a final conversion, changing any remaining !!**1**!! tokens back into &
symbols, the result of which is then returned by the recipe, like this:

How to Use It
At its simplest, all you need to do to use this recipe is to create a program, perhaps called
webproxy.php, looking like this:

This program should be saved in the document root of your server.
The first line simply extracts the contents following the ?u= part of a GET request (the query

string) into the variable $url, and the second makes the call to the recipe.
You can call up the web proxy by typing a command such as the following into your browser’s

address bar (making sure you always enter the http:// part of the URL; otherwise, the program
won’t work):

Or, more likely, if your server domain is myserver.com:

Your new web proxy will now work, including sending images, because each link in a document

has been converted to run through the web proxy, and therefore all images do so, too.
However, to make the program work as well as possible, you will probably want to support all

http://server.com
http://server.com/news/index.html
http://server.com/news/index.html
http://server.com/http://server.com/news/index.html
http://myserver.com

the content types checked for near the start of the code, and send the correct headers for each prior to
sending the data. Therefore, your program should probably look more like this:

In the preceding code, a switch statement is used to determine the current file type, and then the

appropriate header for each is sent to the browser, followed by the contents, as returned in $result.
This is sent using the die() function since it combines both an echo and an exit statement in one. In
the case of HTML files, they are allowed for the extensions .htm and .php, as well as .html.

Under the default section .js, JavaScript files are caught. They are handled separately since
their extensions are only two characters long, instead of three. Finally, if nothing else matches,
$contents is simply sent without a header, and it is hoped this will be good enough (generally it is).

Not including whitespace and comments, you will now have a web proxy program in under 100
lines of code that will work quite well, but you should realize that it only likes properly formed pages
and is not forgiving of badly formatted HTML. Therefore, some pages will display strangely, if at all.
But now that you know how it all works, you can easily tweak the code to your preferences.

The Recipe

 PageUpdated()
If you want to allow your users to be notified whenever one of your pages is updated, or perhaps you
would like to be informed when a web page that interests you has been changed, all you need is this
recipe. For example, Figure 7-7 shows a web page being monitored for changes.

FIGURE 7-7 Monitoring changes to web pages is automatic with this recipe.

About the Recipe
This recipe accepts the URL of a web page to monitor and lets you know whether it has been
changed. It returns 1 if the page has changed, 0 if it is unchanged, –1 if the page is a new one not yet in
the data file, or –2 if the page was inaccessible. It takes these arguments:

• $url The URL to check.
• $datafile The filename of a file containing the data file.

Variables, Arrays, and Functions
$contents String containing the contents of $url
$checksum String containing the result of passing $contents through the md5() function
$rawfile String containing the contents of $datafile
$data Array containing the lines extracted from $rawfile
$left Array of all the left halves of $data
$right Array of all the right halves of $data
$exists Integer pointer to the location in $left of $page if it is already in the data file
$j Integer counter for iterating through $left
PU_F1() Function to extract the left half of a supplied string
PU_F2() Function to extract the right half of a supplied string

How It Works
This recipe loads the contents of $page into $contents, returning the value FALSE if it could not be
fetched. Otherwise, an md5() checksum is made of the page’s contents. This is a one-way function
that creates a 32-character unique string. Should even one letter change on a web page, the resulting
md5() string will be substantially different, so it’s the perfect way to detect changes in a web page.
Here are those opening three lines:

Next, a check is made to see whether $datafile already exists. If it does, then its contents are

loaded into $rawfile, which is then split line by line into the array $data by using the explode()
function based around the \n linefeeds in the file. Then, instead of using a loop to iterate through each
element of $data, the much faster and more efficient array_map() function is called. This does the
same thing, only requiring the name of a function to call for each element, like this:

In the case of populating the $left array, which will be assigned all the left halves of each line,

the function PU_F1() is called, for the $right array, PU_F2() is called. These functions separate the
strings passed to them into two substrings at the !1! tokens, then one returns the left half of the passed
string, and the other the right, as follows.

The reason for the split is that the checksum and URL are stored side by side on a line, separated

only by the token !1!, which is unlikely to appear in any URL.
A for loop is then started to iterate through the $left array and check whether $page already

exists in the data file. If so, $exists is set to point to the element number within the array where it is
located. Using this pointer, the matching element in $right is compared with the value of $checksum
and, if it is the same, zero is returned to indicate that the page is still the same as last time the program
checked. Here is the code for the loop:

If, on the other hand, $page exists in the data file but $checksum does not match the saved value,

then the page contents must have changed. In which case, the old checksum value in the data file is
overwritten with the new value in $checksum using the str_replace() function, the data file is
saved back to disk, and a value of 1 is returned to indicate that the web page has changed, like this:

At the end of the if (file_exists($datafile)) set of statements, if the file does not already

exist, then the string $rawfile is assigned the empty string.
Finally, whether or not the file exists, the contents of $rawfile are saved to disk, along with the

values of $page and $checksum, separated by the token !1!. This has the effect of either creating the
data file if it doesn’t exist, or if it does, it appends a new line of data to it, followed by a \n newline
character. Either way, a value of –1 is returned to indicate that the URL in $page was new to the data
file and has now been saved, as follows:

Note that the two functions PU_F1() and PU_F2() are for the exclusive use of the main code and

are not intended to be called elsewhere.

How to Use It
To use this recipe, call it like this:

Then, to act on the value in $result, you might use code such as this:

This will tell you (or your users) whether the index page at pluginphp.com has changed since the

last time it was checked, or whether it is new to the data file, or even inaccessible. The first time you
make the call regarding a new page, it will always report that the page is new. If you try an additional
call (such as via the following code) immediately after on a site that is not dynamically generated,
you will then be informed that the page is unchanged; otherwise, you’ll be told it has changed:

http://pluginphp.com

You might prefer to send an e-mail instead of displaying this information to a browser, in which

case just replace the echo statements with a call to PHP Recipe 38, SendEmail(), sending the
contents of the echo statements in the $message argument.

The Recipe

 HTMLToRSS()
The popularity of RSS (Really Simple Syndication) feeds is still growing due to the ease with which
you can subscribe to a feed, which then have updates automatically sent to the feed reader. In fact,
most decent browsers also offer RSS reading facilities. But what if you’re too busy developing the
HTML portion of your site to start building RSS feeds? Or what if you’d like to be able to view other
web sites in RSS?

The solution comes with this recipe, which will fetch a web page, analyze it (stripping out non-
essential and formatting items), and reformat it into RSS (see Figure 7-8 for an example).

FIGURE 7-8 The recipe is used to output the McGraw-Hill web site as an RSS feed.

About the Recipe
This recipe accepts a string containing the HTML to be converted, along with other required
arguments, and returns a properly formatted RSS document. It takes these arguments:

• $html The HTML to convert.
• $title The RSS feed title to use.
• $description The RSS description to use.
• $url The URL to which the feed should link.
• $webmaster The e-mail address of the responsible webmaster.

• $copyright The copyright details.

Variables, Arrays, and Functions
$date String containing the date in RSS-compatible form
$dom Document object of $contents
$xpath XPath object for traversing $dom
$hrefs Object containing all a href= link elements in $dom
$links Array of all the links discovered in $url

$to
Array containing the version of what each $link should be changed to in
order to ensure it is absolute

$count Integer containing the number of elements in $to
$j Integer counter for iterating through $hrefs and $to
$link Each link in turn extracted from $links
$temp Nontokenized copy of $link
RelToAbsURL() PHP Recipe 21: Converts a relative URL to absolute

How It Works
This recipe starts by setting the string variable $date to the current date and time (after first
specifying the time zone) in a format that is acceptable to RSS readers. Then, all instances of &
(the XML and XHTML required form of the & symbol) are converted to just the & symbol, and then all
& symbols are changed to a special token with the value !!**1**!!. As described in Recipe 46, this
is done because the str_replace() function seems to have a bug relating to the use of the & symbol,
so the token is substituted to avoid it. The & symbols will be swapped back later, as follows:

After that, the code has much in common with many of the other recipes in this chapter in that it

must traverse an HTML DOM (Document Object Model), ensuring all a href= links are in absolute
format. It does this by creating a new DOM object in $dom and then loading it up with the HTML tags
from $html. Then, a new XPath object is created in $xpath. This is used by $xpath->evaluate to
extract all the a href= tags into the $hrefs array, like this:

Next, the arrays $links and $to are initialized. These will respectively contain all the

encountered links and the absolute forms to which they should be changed. A counter that will index
into these arrays, $count, is also initialized, like this:

A for loop is then used to extract the links from each a href= tag into the array $links, which

then has all duplicates removed using the array_unique() function. This simply removes any
duplicates so the array is then sorted with all elements stored contiguously, as follows:

A foreach loop is then used to iterate through each link, first checking that a link actually has

been assigned a value. If it has, the string variable $temp is assigned a version of $link without any
!!**1**!! tokens that may have replaced any & symbols. This ensures a properly formed URL is
ready for converting to absolute format using the RelToAbsURL() function, for assigning to an
element in the $to array.

Again, as in PHP Recipe 46, tokens are then substituted for all links within the main document to
prevent potential clashes during multiple replace operations. Every form of link allowable is
substituted, whether single, double, or unquoted: href="link", href=’link’, and href=link. The
tokens take the form !!$count!!, and therefore start at !!0!! and proceed on through !!1!! and so
on each time a new link is substituted. Here is the relevant code:

Once all the tokens are in place in the document and there is no chance of clashes during string

substitutions, a for loop is used to convert them into the absolute URLs held in the $to array, like
this:

Next, any encoded URLs in which http:// has been turned into http%3A%2F%2F are restored back

to http://, any & symbols are restored back from the token!!**1**!!, and all whitespace is
removed from the document using the preg_replace() function with a parameter of /[\s]+/. This
forces all consecutive strings of one or more whitespace characters to be replaced with a single
space, like this:

The next lines strip out any <script> and <style> tags and their contents, ensuring that all <h>

tags have their contents removed. This is done so a conversion can easily be made later into RSS
headers. With those tags removed, all remaining tags are also stripped out, with the exception of those
listed in the string $ok. This process is handled by the function strip_tags(). In case you’re
wondering, I tried to also remove the <script> and <style> tags using strip_tags(), but the
function seems buggy and would not always remove them, so that’s why these are handled separately,
like this:

After that, all remaining HTML characters are replaced with their RSS equivalents—for

example, the < symbol becomes <, the > becomes >, and so on—and the final two
preg_replace() calls substitute the two opening and closing forms of the <h> tag (which previously
had any contents stripped out) into the XML required for properly formatted RSS headers. In other
words, this recipe assumes that anything between <h> and </h> tags should be treated as RSS
headers, as follows:

Finally, the RSS itself is returned within a return <<<_END … _END construct, where you can

see $title, $url, $description, and all the other variables in their correct places, all the way
down to $html, the main contents of the feed on which this recipe has performed all the processing.
The code to do this is as follows:

How to Use It
When you want to convert HTML to RSS, use code such as the following, in which your web site
domain is assumed to be myserver.com:

Or, you can convert almost any HTML page on the Web by using code such as this:

The Recipe

http://myserver.com

 RSSToHTML()
This recipe provides the inverse functionality of PHP Recipe 48—it converts an RSS feed into
standard HTML format. It’s perfect for when you don’t have a feed reader on hand or wish to grab
some syndicated content and put it in one of your own web pages (make sure you have any required

permissions if you do, though).
Figure 7-9 shows the NASA Image of the Day RSS feed after converting it to HTML. You can

access this feed at www.nasa.gov/rss/image_of_the_day.rss.

FIGURE 7-9 This recipe will convert RSS feeds into regular HTML web pages.

About the Recipe
This recipe accepts a string containing the contents of an RSS feed to be converted and returns that
string transformed into HTML. It takes this argument:

• $rss The contents of an RSS feed to convert.

Variables, Arrays, and Functions
$xml XML object created from $rss
$title String extracted from the RSS title tag
$link String extracted from the RSS link tag
$desc String extracted from the RSS description tag
$copyr String extracted from the RSS copyright tag

http://www.nasa.gov/rss/image_of_the_day.rss

$ilink String extracted from the RSS image link tag
$ititle String extracted from the RSS image title tag
$iurl String extracted from the RSS image url tag
$out String containing converted HTML
$tlink String containing link of current item
$tdate String containing publication date of current item
$ttitle String containing title of current item
$tdesc String containing description of current item

How It Works
This recipe uses the simplexml_load_string() function to create an XML object in $xml from the
RSS feed in $rss. From there, the string variables $title, $link, $desc, $copyr, $ilink,
$ititle, and $iurl are easily assigned by extracting the various items from $xml->channel. In
case any items do not exist in the RSS feed, each of these extractions is prefaced by an @ symbol,
which will suppress any error messages. This is the code used:

Next, the string variable $out is initialized with the opening tags for a standard HTML

document, and then if an image was specified in the feed, the image and its associated title and
description are also added. I have decided to align the image to the left and allow the description to
butt up to the right of it because the main image in an RSS feed is generally a logo. This seems to
work well with most other main images, too. This is achieved as follows:

After that, <h1> and <h2> headings containing the main RSS feed title and description are added

to $out, like this:

Then, a foreach loop is used to iterate through every item within the feed. As each is extracted,

its details are placed in the variables $tlink, $tdate, $ttitle, and $tdesc, from where they are

appended to $out, within suitable HTML heading and paragraph tags, as follows:

And that’s it. All that remains is to return $out, along with the copyright string in $copyr and the

closing HTML tags, like this:

How to Use It
To convert an RSS feed to HTML, just pass it to the recipe, like this:

As you can see, the feed can be pulled in from anywhere on the Web, or it can be a feed from

your own site. All you need to do is pass the feed itself (not the URL it came from) to the recipe and
display the result returned.

Alternatively, to insert the HTML version of the feed into your own web pages, just use the
string returned by the recipe, like this:

The Recipe

 HTMLToMobile()
The final recipe in this chapter will take an HTML page and format it in such a way that it will load
faster on a mobile browser that may have limited download speeds, and also display better due to
removing a lot of style and formatting information.

Figure 7-10 shows the yahoo.com web page after being processed by this recipe. As you can
see, the recipe has substantially reduced the original web page, shown in Figure 7-11.

http://yahoo.com

FIGURE 7-10 With this recipe, you can make the busiest of web pages load quickly on a mobile
browser.

FIGURE 7-11 This is the original Yahoo! home page before the recipe is applied.

About the Recipe
This recipe accepts a string containing the HTML to be converted, along with other required

arguments, and returns a properly formatted HTML document with various formatting elements
removed. It takes these arguments:

• $html The HTML to convert.
• $url The URL of the page being converted.
• $style If “yes”, style and JavaScript elements are retained; otherwise, they are stripped out.
• $images If “yes”, images are kept; otherwise, they are removed.

Variables, Arrays, and Functions
$dom Document object of $contents
$xpath XPath object for traversing $dom
$hrefs Object containing all a href= link elements in $dom
$links Array of all the links discovered in $url

$to
Array containing the version of what each $link should be changed to in
order to ensure it is absolute

$count Integer containing the number of elements in $to
$link Each link in turn extracted from $links
$j Integer counter for iterating through $to
RelToAbsURL() PHP Recipe 21: Converts a relative URL to absolute

How It Works
This function starts off by creating a DOM object that is loaded with the HTML from $html. Then, an
XPath object is created from this, with which all a href= tags are extracted and placed in the object
$hrefs. After initializing the arrays $links and $to, which will contain the links before and after
converting to absolute format, all occurrences of & are converted to & symbols, and then all &
symbols to the token !!**1**!!, to avoid the suspected str_replace() bug that doesn’t handle &
symbols well, as follows:

Next, the link parts of the tags are pulled out from $hrefs and placed into the array $links

using a for loop, and all duplicate links are removed from the array, which is then sorted, like this:

After this, the technique used in PHP Recipes 46 and 48 is implemented to swap all links in

$html with numbered tokens. This ensures that multiple replaces don’t interfere with each other.
Although, first, the $to array is loaded with a proper URL that has had any !!**1**!! tokens
changed back to & symbols, after running them through RelToAbsURL() to ensure they are absolute.
This makes sure that legal URLs will be substituted when the tokens are later changed back.

To be flexible, the recipe supports three types of links—double quoted, single quoted, and
unquoted—each case being handled by one of the following str_replace() calls, in which links
within $html are substituted for the token !!$count!!. This means that the first link becomes !!0!!,
the second !!1!!, and so on, as $count is incremented at each pass. Here’s the code to do it:

With all the tokens having been substituted, they can now be swapped with their associated links

from the $to array. This is achieved using the following for loop:

Then, any remaining occurrences of the URL-encoded format http%3A%2F%2F are rectified to

http://, and any !!**1**!! tokens are returned to being & symbols, like this:

Next, if $style does not have the value “yes”, then whitespace, styling, and JavaScript are

removed from $html, like this:

After this, $images is also tested, and if it’s equal to “yes”, then images are allowed to remain

in place. This is achieved, along with removing all remaining tags, by appending the tag to the
list of allowed tags in $allowed, which is then passed to the strip_tags() function, along with
$html. If $images is not equal to “yes”, then the tag will not be appended to $allowed and
consequently all image tags will also be removed by this function. Upon completing all the
processing, the result (in $html) is returned. Here is the code that achieves these remaining actions:

How to Use It
To convert HTML to a format more suitable for mobile browsers, use the recipe like this:

This loads in the HTML from the index page at yahoo.com and passes it to the recipe with both

$style and $images set to “no”. This means that neither styling nor JavaScript will be allowed in
the converted HTML, and neither will images.

If $style is set to “yes”, then style tags and JavaScript are retained in the HTML. If $images is
also equal to “yes”, then some images will be retained—but not all, due to a lot of the page’s content
being removed.

If you play with this recipe, you’ll find you can often set both $style and $images to “yes” and
many web pages will still return a lot less information because the strip_tags() function removes
plenty of HTML not strictly needed to use a web page.

The Recipe

http://yahoo.com

CHAPTER 8
Chat and Messaging

Offering chat, messaging, and user interaction features are fundamental ways to create addictive
content and build up traffic to a site. The phenomenal growth of sites such as MySpace, Facebook,
and Twitter (as well as the huge increase in use of instant messaging software) all serve to show that
what Internet users love to do more than anything else is communicate with other users.

Whether leaving messages, commenting on blogs or web sites, e-mailing, or Twittering, if you
provide the right services, your users will not only take to them, they’ll invite their friends along, too.
And presto, you’ll now have free compelling content, as long as you treat your users well and make
your web site easy to use.

And that’s the aim of this batch of recipes: to provide a collection of ready-made functions you
can draw on to add the user-interaction features your web site needs.

 UsersOnline()
One of the things that drives webmasters crazy is the fact that getting the ball rolling and building up a
user base is very hard, but the more users you have, the easier it is to get more. Why? One answer has
to be that people don’t want to feel alone on a web site. So what better way to reassure them than to
display the number of users currently using your web site? And that’s what this recipe will do for
you. It lists the total number of people who have used your web site within a recent period decided by
you.

Of course, at times when you don’t have many active users you may want to disable this code, or
maybe increase the time span during which a visitor is considered recent. But if you do have a few
visitors online, discretely displaying the number in a sensible place will reassure them that your web
site has something going on. Figure 8-1 shows a web page with five active users.

FIGURE 8-1 This recipe provides a quick snapshot of your site’s usage and popularity.

About the Recipe
This recipe reports the number of users who have recently been active. It takes the following

arguments.

• $datafile A string containing the location of a file for storing the data.
• $seconds The period of time, in seconds, during which a recent user is considered active.

Variables, Arrays, and Functions
$ip String containing the IP address and the User Agent of the current user
$out String containing the contents of the datafile to be written back to the server
$online Integer counter containing the number of users online
$users Array containing unique user details
$usertime String containing time the user being processed last accessed the web site
$userip String containing the IP and User Agent string of the user being processed

How It Works
This code starts by determining the current user’s IP address and User Agent string, as provided by
their browser, and then assigning the result to the string $ip. Afterward, a couple of variables are
initialized: $out, the contents of the datafile that will be written back, is set to the empty string; and
$online, the number of users online, is set to 1 (since the program knows that at least the current user
is active), as follows:

If the file $datafile already exists, then there may be previous users who have been active

within the last number of seconds specified by $seconds. In which case, the contents of $datafile
are loaded in, with the last character (a \n linefeed) being removed by the rtrim() function since it
is not needed. The result is then split at each remaining \n linefeed into the array $users, so that
$users will now have one entry for each user, like this:

A foreach loop is then used to iterate through $users, with the details of each one being

processed stored in $user, like this:

Inside the loop, the list() function is used to assign $usertime and $userip the time and

IP/User Agent details for the user being processed. These are split out of $user using the explode()
function with an argument of | (the | symbol being the separator I chose for this code’s data).

Then, the current time is looked up using the time() function, and if that value minus the value
stored in $usertime is less than the number of seconds stored in $seconds, then that user is
considered to still be active and so their details are appended to the string $out, causing the count of
active users in $online to be incremented.

However, if more seconds than the value in $seconds have elapsed since their last access, then
they are assumed to no longer be active and their details are forgotten by not appending them to $out.

Note how a test is made to ensure the current user’s details are always ignored using the code
&& $userip != $ip, so that the IP/User Agent details of the user being processed are not the same as
the current user’s. This is to ensure those details are removed so they will not be duplicated when the
datafile is written back to disk.

After completing the loop, $out has the current time and IP/User Agent details appended to it,
from the function time() and the variable $ip, separated by a | character, and terminated with a \n
newline. The contents of $out are then saved to the file $datafile and the number of active users in
$online is returned, like this:

How to Use It
When you want to keep a count of the active users on your web site, you should include a call to this
code on all your pages where the count is wanted. Doing so is as simple as using the following code:

Here, the 300 represents 300 seconds (or five minutes), which is probably a reasonable time

window to start with. Whenever you want to know the number of active users, you assign the result
returned by the function to a variable, or simply echo it, like this:

You can replace the datafile name users.txt with whatever name you prefer.

The Recipe

 PostToGuestBook()
No self-respecting web site is complete without some means of providing feedback, so here’s a
simple recipe to enable you to offer a Guestbook feature in just a few lines of PHP code. Figure 8-2
shows the same information posted twice, but because flooding control is enabled, the second post is
not added to the Guestbook.

FIGURE 8-2 This recipe provides easy posting to a Guestbook with flood control.

About the Recipe
This recipe posts a message to a Guestbook. It takes these arguments:

• $datafile A string containing the location of a file for storing the data.
• $name The name of the poster.
• $email The poster’s e-mail address.
• $website The poster’s web site.
• $message The message to be posted.

Variables, Arrays, and Functions
$data

String containing a concatenation of $name, $email, $website, and $message,
separated by the token !1!

$lines Array containing the messages extracted from $datafile
$fh File handle into the file $datafile

How It Works
This code takes all the data supplied to it and, if it’s not a duplicate of an existing entry, adds it to the
datafile. It begins by first creating the line of data to add to $datafile by concatenating the values of
$name, $email, $website, and $message, separating them all by the token !1!, which I chose
since it’s unlikely to ever be used in a message, name, and so on. It places the result in the string
$data, like this:

Then if the file $datafile already exists, it is opened and its contents extracted into the array

$lines, after removing the final character, which is a \n newline character and is not required. The

extraction is performed using the explode() function with an argument of \n, newline, containing the
points at which to perform the splitting. Then, using the function in_array(), each element of
$lines is checked to see whether it already contains the contents of $data. If so, then this would be a
duplicate entry and so a value of 0 would be returned to indicate the fact, and the post would not be
added, as shown next:

Otherwise, the entry is not a duplicate, so the file handle $fh is assigned the value returned upon

opening $datafile for appending, with the fopen() function and an argument of ’a’. If $fh is set to
FALSE, then the file can’t be opened and –1 is returned to indicate that fact, like this:

Then, the flock() function is called with a parameter of LOCK_EX (for EXclusive lock), which

forces the function to wait until all other processes have finished accessing the file, like this:

This is done because other users could be posting to the file at the same time and could end up

corrupting it. So, once flock() gains control over the file, all other functions that access $datafile
using the flock() method will now have to wait their turn.

Once the flock() function allows execution to proceed, the fwrite() function is called to
write the data in $data to $datafile, followed by a \n newline. This is to separate each line from
the next. Because the parameter of ’a’ was used with fopen(), this data is appended to the end of the
file’s existing contents.

Finally, the lock is released using flock() with a parameter of LOCK_UN (for UNlock) and the
file is closed, like this:

At this point, the write has been made successfully and so a value of 1 is returned.

CAUTION The flock() function will not work on NFS and many other networked file systems, or
on FAT and its derivatives. Also, when using a multithreaded server API like ISAPI, you may
not be able to rely on flock() to protect files against other PHP scripts running in parallel
threads of the same server instance.

How to Use It
To add a post to your Guestbook, you just have to decide on the name of a file in which to store the
data and pass that and the post details to the function PostToGuestBook(), like this:

Of course, when handling user-submitted data you will probably also want to sanitize the input

using other recipes from this book, such as Caps Control or Spell Check from Chapter 3, or some of
the form and user input recipes from Chapter 6, before saving data to the Guestbook.

The Recipe

 GetGuestBook()
Once you have a Guestbook and the facility to post messages to it, you’ll also want to be able to
display the messages. This function goes most of the way toward that by fetching all the messages
from the datafile and returning them in an array.

It does this rather than display them directly so as to leave you in complete control over how you
want the output to appear. Figure 8-3 shows posts from a Guestbook simply being displayed as
regular text with no special formatting.

FIGURE 8-3 Using this recipe, it’s easy to list all your Guestbook posts.

About the Recipe
This recipe accepts the name of a datafile containing Guestbook data and returns all the messages
from that file. Upon success, it returns a two-element array, the first of which contains the number of
posts. The second element is a further array containing all the posts. Or, upon failure it returns a
single-element array with the value FALSE. It takes the following arguments.
• $datafile A string containing the location of a Guestbook datafile.
• $order The order in which to return the messages. If its value is “r”, then posts are returned in

reverse order, with the newest posts first; otherwise, posts are returned in order from oldest to
newest.

Variables, Arrays, and Functions
$data Array containing sub-arrays, each with all the items extracted from a post
$posts Array containing the messages extracted from $datafile
$post The current post being processed

How It Works
This code reads in a previously created-and-posted-to-Guestbook datafile and returns all the
messages it contains. If the file cannot be read, it returns a single-element array with the value FALSE.
Once read in, the array $posts is populated with the contents of $datafile, which is split into
separate entries using the explode() function with an argument of \n, making the newline character
the split boundary. The rtrim() function is also used to remove the final character, which is a \n
newline, and is not required, as shown next:

Next, the argument $order is tested. If it contains the value “r”, then the order of messages

returned needs to be reversed so the function array_reverse() is applied to $posts, like this:

With $posts now in the order required, a foreach loop steps through the array, placing each

element in turn into the variable $post. From here, the array $data (which was previously initialized
as an empty array) has another element added to it, comprising an array extracted from the data in
$post. This is done using the explode() function with an argument of !1!, which is the token I chose
to split fields in a record. This separates out all the parts (name, e-mail, web site, and message) and
returns an array, which is assigned to the current element of the $data array, as follows:

Finally, a two-element array is returned, of which the first element contains the number of

messages returned, while the second contains an array of arrays, each sub-array containing the parts
of a single message:

How to Use It
To use this recipe, you only need to pass it the name of a datafile containing Guestbook data and an
argument telling it which order to use when returning the messages, like this:

Then, you test $result[0] to see whether it contains the value FALSE. If it does, the function

call failed and there are no messages to display. You can check for it like this:

Otherwise, it contains a value representing the number of messages returned by the function. You

can display this number like this:

If posts exits, the second element will then contain an array of arrays, each main array element

containing a sub-array of four elements that represent, in order, the name, e-mail, web site, and
message of a post. You can therefore act on this data like this:

This code loops through all main elements in the array $result[1] with $result[1][0] being

the first element of this array, and itself being an array with the following elements:

These four values represent the name, e-mail, web site, and message of the first post. The second

post (if there is one) is returned in these four array elements (and so on):

Using these values, it’s now up to you to create the styling and layout needed to make your

Guestbook look just how you want it. Displaying them is as easy as placing them after echo
statements, like this:

The Recipe

 PostToChat()
Some of the more popular features of a web site are messaging and chat facilities, particularly if they
are fast and easy to use, which this recipe is—even though it’s only about 30 lines of actual code,
without a sign of Java or Flash in sight.

I first wrote the predecessor of this chat in 1996 using PERL scripts, and then later transported it
to compiled C code. With the advent of PHP—due to its tremendous speed (even though it’s not

compiled)—I rewrote it again. But the code’s format has remained pretty much the same: a simple
text file that is continuously read from and written to, using file locking to prevent file corruption.

It also uses a feature that predates Ajax (the sending of background requests to a server to
exchange data) but provides a similar functionality, in that messages appear in the browser when
posted, without having to refresh the page. Figure 8-4 shows this post part of the chat engine being
used to post a message, with and without flood control.

FIGURE 8-4 You can operate your own chatroom using this recipe.

About the Recipe
This recipe posts a message to a live chatroom and supports a number of parameters. Upon success,
the code returns a value of 1. If the file cannot be written to, then -1 is returned, or if flooding control
is on and a duplicate post has been prevented, 0 is returned. If $message is empty or there are illegal
| symbols in either $to or $from, then –2 is returned. The recipe takes these arguments:

• $datafile A string containing the location of a chatroom datafile.
• $maxposts The maximum number of messages to retain at a time.
• $maxlength The maximum message length in characters.
• $from The username of the message poster.
• $to The message recipient’s username—leave blank if the message is public.
• $message The contents of the message.
• $floodctrl If this has the value “on”, the same message cannot be reposted by the same user

within $maxposts messages.

Variables, Arrays, and Functions
$data Array used to populate $datafile with blank messages
$fh File handle used to reference $datafile
$text String containing all but the first message in $datafile

$lines Array containing posts extracted from $text
$temp String containing the post number of the final post in the file

How It Works
The object of this recipe is to remove the oldest message from the datafile and add the new message
—if, that is, the new message is not a repeat, and flood control has not been enabled. So the first thing
it does if the datafile doesn’t exist is create it by putting together a collection of dummy blank posts in
$data, like this:

Each post is of the form: number|recipient|sender|message. The | symbols serve to

separate the parts. Therefore, if the value in $maxposts is 20, for example, then $data will be
populated with 20 |||\n strings. This ensures that, for an initial chat file, all fields in each post are
blank and that each is terminated with a \n newline to separate records from each other. This whole
string is then saved to $datafile using the file_put_contents() function.

At this point, there is definitely a datafile of posts, either one just created or one that was
preexisting. So now the arguments passed to the code are checked. If $message is blank, or either
$from or $to contains a banned | symbol, then there was a problem. In the former case, there is
nothing to post, and in the latter the | symbols would corrupt the datafile and therefore would not be
allowed. Ideally, when users enter your chatroom you will already have weeded out any such
occurrences, but if not, this check will catch them. A value of –2 is returned in either case:

The | symbol can actually be useful in messages, so if any are encountered in $message, they are

converted to their HTML entity equivalent of |. Also, if $message has more characters than the
value specified in $maxlength, then $message is passed through the substr() function to truncate it
to the maximum length allowed, like this:

With all the fields now prepared, the datafile is opened using the fopen() function and the file

handle for manipulating it is assigned to $fh. If $fh is FALSE, the file couldn’t be opened and so –1 is
returned:

Otherwise, the flock() function is called (see PHP Recipe 52, Post to Guestbook, for further

details) to ensure the program has exclusive access to the file, so there will be no clashes of
concurrent writes. With the file lock obtained, the very first line of the file is returned using fgets().
This is the oldest post and therefore will be discarded—so the value returned is not used and is
simply ignored, like this:

Next, the string variable $text is assigned the remaining contents of the file using the fread()

function, with an argument of 100000. This tells the function to read in at most, 100,000 characters
from the file, up to the file’s end. This should be more than you are likely to need because, for
example, 20 messages of 1,000 characters each would only occupy 20,000 bytes. But you can easily
change this value if you need to:

Next, the argument $floodctrl is checked, and if it has the value “on”, no repeated posts are

allowed. To check for this, the function strpos() is called, which returns a value of 0 or greater if a
match is found, or FALSE if not. The string being checked for is |$to|$from|$message\n, which
will ensure that only repeated posts from the same poster to the same recipient, with the same
message, will be ignored.

If the post is a duplicate and flood control is on, then the file lock is released, the file is closed,
and a value of 0 is returned, as follows:

Otherwise, the posts in the string variable $text are extracted into the array $lines using the

explode() function to split them all out at \n newlines:

Next, the counter at the start of the last line of chat is extracted into the array $temp. This is done

by referencing the correct element of $lines and then using explode() to pull out all the parts into
$temp. The code is only interested in the first element of $temp, so that value is looked up and the
number 1 is added to increment it. This gives the value to use for the message number of the new post
being appended—the next in sequence. Therefore, $text (which contains the remaining chat posts,
after ignoring the first one) has that number appended to it, followed by the contents of $to, $from,
and $message, separated by | symbols, and terminated with a \n newline character. Here’s the code
that does this:

To update the file’s contents, the fseek() command is now called to move the read and write
pointer into $datafile to the very start. You remember that the first post was discarded? Well, now
all the following posts must be moved back accordingly, so after seeking, the contents of $text are
written to the file starting at position 0, as follows:

Lastly, because the file is readable and writeable and we have been treating it like random

access memory, if the size of the new set of posts is smaller than the previous set, the file will have
some spurious text remaining at its end, which has to be discarded by issuing a call to the
truncate() function, passing it the exact size of $text. The file lock is then released, the file
closed, and a value of 1, representing success, is returned:

How to Use It
Generally, you will use this recipe as part of an HTML form submission and processing program. To
allow the chat to be viewed without interruption, you will also probably place the program within an
<iframe> tag so it takes up just a portion of the screen and works independently from the rest of the
chat.

A good way to do this is to create a simple web form like the following, but embedded within
your PHP code:

Instead of using a program name for the action of the form, this script uses the PHP system

variable $_SERVER[PHP_SELF], which simply refers to the program currently running, whatever
name it may have. This means you can call the program anything you like.

For simplicity of layout, I have used a <pre> tag here to force a monospaced font. You will
probably want a much more interesting layout for your own program. Also, you will most likely have
already asked for the user’s name, and if so, could use the following From: input line instead:

This means that the only two items you will ask your users for are the recipient’s name and the

message to post. To simplify things even further for your users, you might even replace the To: input
line with a <select> tag and a dropdown list of all current users—but with the default name being

blank, for public posts.
In other words, you should think about how your users will initially enter their usernames, which

you will then store if you are going to offer pull-down lists of names for private messaging. So when
about to call this recipe, your program should be armed with three pieces of information:

• The poster’s username
• The recipient’s name (or blank if a post is public)
• The message to post

If these have been posted to your program, they will appear in the $_POST array and can be
referenced like this (not forgetting that you may wish to also use some other recipes in this book to
sanitize user input):

You can then add the post to the chat by calling the code like this:

Here, the chatroom datafile is chatroom.txt, the maximum number of posts to keep stored is 20,

the maximum length allowed for each post is 1000 characters, and flood control is set to “off”.
If $result contains the value 1, then the message has been successfully posted. Otherwise, see

the preceding section, About the Recipe, for the list of error codes and their meanings.
Bringing this all together, a program to display a single line input, residing in an iframe, that

continually allows posting of public messages to the chat might look like this:

This code will keep displaying a prompt similar to the following, and whenever a message is

entered, it will post it to the chat datafile and redisplay the prompt:

Message: _________________________ [Post Message]

As discussed previously, posting private messages to other users is a little more complicated,
but only a little, in that you simply have to set $to to the recipient’s username. To do this, you would
probably change the input form display to look something like the following, in which the first entry
of a dropdown list is *ALL*, and then, if the variable $to ever has the value *ALL*, you would
simply set it to the empty string before calling the code.

Message: _________________ To: [*All*] [Post Message]

Or you may wish to offer other ways of sending private messages, such as listing all current
users in a side panel and making them clickable to pull up a private messaging input prompt. That’s
why I have left the code fully flexible, so you can choose exactly how your chat should look and
work.

The following recipe, View Chat, will be used to display the messages in real time with auto
scrolling.

The Recipe

 ViewChat()
This recipe is surprisingly small considering the power it packs, providing a continuously open
connection to a chat server using just HTML, so that new messages appear as posted, without having
to refresh the page. With some nifty JavaScript, it also auto scrolls the page when new messages
display at the page bottom, and it can distinguish between a private and a public message, displaying
each to the correct people.

Figure 8-5 shows half a dozen users chatting as viewed from the user fredsmith’s perspective.
You can see all the public messages in regular typeface, while the private ones from and to fredsmith,
are shown in italic font, and prefaced by the string (PM to username).

FIGURE 8-5 This recipe handles viewing of public and private messages and includes auto scrolling.

About the Recipe
This recipe takes a chatroom datafile and displays all the messages the current user is allowed to see
—either public or private ones to or from that user. It takes the following arguments:

• $datafile A string containing the location of a chatroom datafile.
• $username The username of the current user viewing the chat.
• $maxtime The maximum time in seconds a connection will stay open to the server. This needs to

be a large value to prevent the chat reloading too often. About 300 seconds (5 minutes) is a good
start point.

Variables, Arrays, and Functions
$tn String containing the current time as a timestamp
$tstart String containing the HTML table start tags
$tmiddle String containing the HTML table middle tags
$tend String containing the HTML table end tags
$oldpnum Integer containing the value of the highest read post number
$lines Array containing the posts extracted from $datafile
$line String containing a single line of data from $lines
$thisline Array containing all the elements extracted from $line
$postnum Integer containing the number of the current post being read
$to String containing the recipient name of the current post being read
$from String containing the sender name of the current post being read
$message String containing the message of the current post being read

How It Works
This recipe is really one big loop that goes round and round checking the contents of $datafile and
displaying any new posts it finds that the user is authorized to view. It starts by trying to load in the
chatroom datafile $datafile, and returns FALSE if it can’t be read. Otherwise, the time the program
is allowed to run (in seconds) is set using the set_time_limit() function and the argument
$maxtime + 5. The extra five seconds are added to ensure the code will return gracefully, without
displaying any warning message about the program having timed out, as shown next:

Tables are used to isolate the messages from each other so the next three string variables are

initialized, $tstart, $tmiddle, and $tend. These contain HTML tags suitable for building a table
in which to place each displayed message. This is a particularly useful trick, for example, when you
offer the use of BB Code or Pound Code (PHP Recipes 39 and 40) and the user doesn’t properly
close tags. By placing the strings in a table, all tags will be fully closed regardless of which ones are
left open, and the formatting from any one message won’t affect any other. The final variable to
initialize is $oldpnum. This is set to 0 to start with, but will be increased to the value of the highest
numbered post so far read. This way, the program can tell when a new post comes in by noting
whether it has a higher post number, like this:

Now the main while loop begins. It is set to loop forever by being passed an argument of 1. Each

time around the loop the contents of $datafile are read in, the final character, an unwanted \n
newline, is removed using rtrim(), and the posts are extracted into the array $lines using the
explode() function, with an argument of \n to split all lines at the newline characters:

Next, a foreach loop is entered in which each post in the $lines array is placed into $line

and then the parts of that post’s details are extracted into the array $thisline using the explode()
function, with the argument |, the separator I chose to signify field boundaries. These four items of
information are then saved in $postnum, $to, $from, and $message, as follows:

Next, a test is made to see whether the number of the current post being processed is greater than

the value stored in $oldpnum. If it is, then a post that has not been read yet has been encountered and
so it must be examined to see if it should be displayed. Within this if statement, decisions on what to
display are made, like this:

So, if the contents of $to is the empty string, then the post is public, in which case it is displayed

using the echo command, by being placed into the correct position between the table-building strings
$tstart, $tmiddle, and $tend. The $from string is also inserted to show who posted the message.
The output will look something like the following (taken from the movie Home Alone):

Kevin: You guys give up, or are you thirsty for more?

If $to is not empty, then the message is private, so tests are made to determine whether the post
is either to or from the current user. If either is the case, then the message is displayed in the correct
place within the array strings, along with the $from string. In addition, the string (PM to username)
is inserted to make it clear that the message is private, and the message itself is displayed in italics as
a further indication. It will look something like this:

Marv: (PM to Harry) He’s only a kid, Harry. We can take him.

Once the post has been processed, $oldpnum is set to the value of the post’s number so it won’t
be looked at again. Then, two functions are called, ob_flush() and flush(), to ensure that all the
text is sent to the browser, like this:

If they were not called, PHP would try to be helpful and hold back on sending all the posts until

the script ended. Generally, this is the behavior you want from a web page—all the data in one block.
But for chat, where you want to see messages in real time, and particularly in this case where a
program could run for some minutes, the output needs to be flushed out after each post is displayed.

After processing all the posts in $datafile, the sleep() function is called with a parameter of
2:

This makes the PHP program sit and do nothing for two seconds. It’s necessary to do this

because a delay of up to two seconds (and therefore an average of only one second) before seeing a
new post is not very noticeable, but it does wonders for ensuring that the server runs smoothly.
Otherwise, $datafile would be constantly called by all the chat view processes, when most of the
time there would be no new posts to display, while the server’s processor and hard disk would be
getting thrashed.

Finally, a check is made to see whether the current time, as returned by the function time(), less
the time stored in $tn when the program was started, is greater than the value of $maxtime. If it is,
then the program has exceeded the maximum number of seconds it is allowed to run for, and the
function returns with the value TRUE:

Now, you may ask why I don’t simply allow the program to run for as long as the user is

chatting. Well, the answer is that many chatters leave the chat running when they go off to make cups
of coffee, or do the shopping, or even when they go to bed. Unfortunately, leaving a program running
in such cases can very soon tie up even a powerful server.

One solution to this is to use an Ajax call to fetch all new posts instead of retaining an open
connection to the server. This way, the server would only be polled every now and then. But the
solution I have used here, as you’ll see in the following section, is to exit from displaying the chat
after a given length of time and then ask the user to click a link to reload the chat—it’s a really simple
way of ensuring the user is still active.

How to Use It
Using this recipe can be as simple as the following code, which restarts the script when the user
clicks a link:

It requires just three arguments: the name of the chatroom datafile, the username of the person

viewing the chat, and the timeout in seconds of the program. By using the PHP variable
$_SERVER[’PHP_SELF’], it doesn’t matter what your program is called, because this variable will
refer to it correctly.

If you know that the current user is still active—for example, because they have recently posted
a message—you could restart the script automatically for them. In this case, you needn’t impose a
Click here message on them. One way to do this would be to load in the $datafile file and
process it looking for any From fields with the user’s username. If you find one, then the user posted
recently and you can auto renew the chat using a bit of JavaScript, like this:

The die() function acts as a combined echo and exit statement, and the JavaScript in it will

cause the current page to be reloaded.
Of course, when you run your own chat server, you’ll soon see the kinds of loads it is under, and

the amount of time you can afford to leave the code running for in order to get the best uninterrupted

user experience. For example, you may find that 15 minutes is more appropriate, particularly when
fewer users are active.

The main thing, though, is that you can quickly and easily offer a fast and flexible chat service in
a few lines of PHP code, without having to install large programs, or rely on Java or Flash programs,
and you don’t need to be stuck with a look and feel someone else has designed. The fact that this chat
is only a few lines of code means you can tailor it exactly to your requirements, without delving
through hundreds or thousands of lines of code.

TIP Of course, going the Ajax route (where background calls are made behind the scenes to send
and retrieve data to and from the server) is an even better solution to providing a smooth and
flexible chat service, and you wouldn’t need to change a lot to implement it. However, it can
be tricky to get just right and would be too large a project for this book. That said, in Chapter
11 I do show you the principles of making Ajax calls and provide you with the code you will
need.

The Recipe

 SendTweet()
I have to admit that Twitter baffled me when it first came out. I asked myself, “What good was a
micro blogging service supporting only 140 characters? And what kind of people would use it?”

The message length restriction was obviously based around the constraints of the mobile text
messaging system, which is also limited to 140 characters, so if there was going to be a huge
crossover between the two, that would make sense.

On the other hand, it soon became obvious to me when one day Google Mail went down for a
few hours that Twitter was valuable because I could perform a search at search.twitter.com to
instantly see whether it was just me, or if others were affected. Pretty soon, I got into the habit of
checking Twitter for updates on major news stories—and that, as they say, was the start of that.

So now I believe Twitter to be an amazingly powerful tool for performing almost real-time
research, interacting with colleagues and customers, and generally keeping up to date on the world in
general (as well as keeping others up to date with your world). Therefore, it was a given that I would
write a recipe for it. In fact, this is the first of three recipes for Twitter in this book.

Using this one, you can send a Tweet to your own account, the result of which is shown in Figure
8-6.

FIGURE 8-6 Posting a Tweet to Twitter is easy with this recipe.

http://search.twitter.com

About the Recipe
This recipe accepts the name and password for a Twitter account, along with a message to be
Tweeted, and then sends the message to that user’s account. Upon success, it returns TRUE. On failure,
FALSE is returned. It takes these arguments:

• $user A Twitter username.
• $pass The matching password for $user.
• $text Up to 140 characters of text to Tweet.

Variables, Arrays, and Functions
$url String containing the URL of Twitter’s status update API
$curl_handle Handle returned by curl_init()
$result XML result of calling curl_exec()
$xml XML object created from $result

How It Works
Sometimes you can fetch web pages from other servers quite easily using the file_get_contents()
function, but it only works for pages that can be fetched with a GET request. When a POST request is
required, you either have to use a web form and submit it to the page in question or, more simply, you
can use mod curl, as in this code.

This code starts off by using the substr() function to truncate the string $text to 140 characters
(the maximum number of characters supported by Twitter), if it’s longer than that. It does this to
ensure that the string won’t be truncated by Twitter, because later the code will check to see whether
the status string of the user’s most recent message is the same as $text. If so, then a status update has
occurred. If $text were ever greater than 140 characters in length, then Twitter would truncate it
before posting the Tweet, and so the returned status message would not be the same as the original
$text. Therefore, the code ensures that Twitter never has to truncate $text:

Next, the variable $url is set to the Twitter status update API page, and then all the parameters

required for the call to curl_exec() are assigned their correct values, starting with setting the
CURLOPT_URL option to $url and the CURLOP_CONNECTTIMEOUT option to 2, like this:

The CURLOPT_RETURNTRANSFER option is set to 1 to prevent curl_exec() from directly

outputting the result of making the POST request. Instead, the result is returned by the function in place

of the normal success value of TRUE. The CURLOP_POST option is set to 1, indicating that a POST
request is to be made, and the CURLOPT_POSTFIELDS option is given the string "status=$text",
while CURLOPT_USERPWD is given the value "$user:$pass" to set up the login details.

Finally, curl_exec() is called, passing the handle $curl_handle, which was created at the
start, and then curl_close() is called to close the connection. The result of the call is now in
$result and will be FALSE for failure, or on success it will be a string of XML data containing the
result returned by the called URL. If the Tweet was successful, there will be various elements in the
XML, but notably the <text> field will contain the contents of the most recent status update (or
Tweet):

To examine this field, a new XML object is created from $result in $xml using the

simplexml_load_string() function. If it cannot be created, then the value FALSE is returned;
otherwise, the object property $xml->text is compared with the value of $text, and if they are the
same, the Tweet was successful and a value of TRUE is returned. Otherwise, FALSE is returned to
indicate failure:

How to Use It
To send a Tweet to your Twitter account, just call the code like this:

The variables $user and $pass must be a valid Twitter username and password pair, and

$text the text to Tweet. If the Tweet was successfully sent, $result will be TRUE; otherwise, it will
have a value of FALSE, and you can use this variable to display a message, like this:

The Recipe

 SendDirectTweet()
You can also send direct messages to other Twitter users as long as you are both following each
other. It’s an invaluable way to chat with other Twitter users without clogging up your public Twitter
feed. Figure 8-7 shows the result of sending a direct message to the Twitter user otheruser.

FIGURE 8-7 You can also send direct Tweets to other Twitter users.

About the Recipe
This recipe accepts the name and password for a Twitter account, along with the name of the Twitter
user being sent the direct message and the message to Tweet. It then sends the message to that user’s
account. Upon success, it returns TRUE; otherwise, FALSE. It takes the following arguments:

• $user A Twitter username.
• $pass The matching password for $user.
• $to The direct Tweet’s recipient.
• $text Up to 140 characters of text to Tweet.

Variables, Arrays, and Functions
$url String containing the URL of Twitter’s status update API

$curl_handle Handle returned by curl_init()
$result XML result of calling curl_exec()
$xml XML object created from $result

How It Works
This recipe is substantially similar to the previous one, with just a few minor differences. So rather
than explain its workings in full, I’ll just cover the differences, which are that an additional argument,
$to, is required by the code, which then gets appended to the CURLOPT_POSTFIELDS option as
&user=$to, and the message now takes the different format of text=$text instead of
status=$text. So the full string passed to CURLOPT_ POSTFIELDS now becomes
user=$to&text=$text.

Also, the API URL is different for sending a direct message and is now
/direct_messages/new.xml instead of /statuses/update.xml. But apart from that, it’s
essentially the same code.

It’s true, you can send a direct Tweet to another Twitter user by starting it with the letter d,
followed by a space and then the person’s username, but the data returned by curl_exec() would
then only be that of the most recent Tweet because of using the /statuses/update.xml API URL.

However, by using the API URL of /direct_messages/new.xml, and passing the recipient to it
as well as the message, Twitter will return the most recent direct message data when the Tweet is
sent. You can then check this to see if the value in $test was actually posted, and therefore whether
the direct message was successfully sent.

How to Use It
To send a direct Tweet, ensure that both the sending and recipient Twitter accounts follow each other
and then call the code, like this:

If all is well, $result will be set to a value of TRUE; otherwise, it will be FALSE upon failure.

You can use this value as follows to display a success or failure message:

The Recipe

 GetTweets()
Here’s the last of the triumvirate of Twitter treats. It’s a recipe to fetch up to the last 20 posts of any
Twitter user whose profile isn’t private. Figure 8-8 shows the result of pointing the code at Eminem’s
Twitter feed.

FIGURE 8-8 With this recipe, you can fetch the 20 most recent posts of a Twitter user.

About the Recipe
This recipe accepts the username of a Twitter account and, as long as it’s not private, it returns the
most recent Tweets. Upon success, it returns a two-element array, the first of which is the number of

Tweets found, and the second is an array containing the Tweets. On failure, it returns a single-element
array with the value FALSE. It takes this argument:

• $user A Twitter username.

Variables, Arrays, and Functions
$url String containing the URL of Twitter’s user timeline API
$file String containing the data returned by $url
$xml XML object created from $file
$tweets Array of up to the 20 most recent Tweets from $user
$tweet String containing each property of $xml->status as it is processed
$timestamp Unix timestamp extracted from the date and time of a Tweet

How It Works
This recipe fetches a Twitter user’s timeline feed from the following URL, where username is the
name of the user:

http://twitter.com/statuses/user_timeline/username.xml

If the account is not set to private, the feed is returned in XML format. First of all, the time zone
is set for reliable date information, then $url is assigned the URL to be retrieved and passes it to the
file_get_contents() function, from where the XML is loaded into the string $file. If $file is
zero characters in length, a single-element array with the value FALSE is returned because the feed
could not be retrieved, or the username was invalid, as shown next:

Otherwise, a new XML object called $xml is created from the contents of $file using the

simplexml_load_string() function. If the object’s value is FALSE, then the XML was invalid or
otherwise unusable, so again an array with the value FALSE is returned, like this:

Now the code is ready to extract the Tweets from a feed, so the array $tweets is initialized and

a foreach loop steps through each $xml->status property in the object, passing it into the object
$tweet, as follows:

http://twitter.com/statuses/user_timeline/username.xml

The strtotime() function is used to convert the time stored in the property $tweet-

>created_at into a standard Unix timestamp value, which is then stored in $timestamp. This allows
the code to replace the very awkward and overly precise dates and times used by Twitter, such as
Thu Jun 5 21:28:18 +0000 2014, with much more friendly and readable strings, like Jun 5th,
9:28pm. This is done using the date() function with a formatting argument of "M js, g:ia".

This new version of the date and time is then surrounded by brackets and followed b) the Tweet
itself, as retrieved from the property $tweet->text, and the resulting string is assigned to the next
available element of the array $tweets.

Once all the Tweets have been processed, a two-element array is returned, the first element of
which contains the number of Tweets returned, and the second an array containing all the Tweets:

Incidentally, the @ symbols are in the code to suppress any warning error messages that might

otherwise be displayed.

How to Use It
To use the recipe, just call it, passing the name of a Twitter user with a public account, like this:

You can then test the value(s) returned by checking $result[0], like this:

If $result[0] doesn’t contain the value FALSE, then $result[1] will contain an array of all

the Tweets, which can be displayed like this:

As with most of the recipes in this book, this one handles the task of manipulating the data and

returning it to you in a sensible format. It’s then up to you how you choose to display the result, but the
preceding code will, at the very least, provide the information you want.

The Recipe

 ReplaceSmileys()
In the early days of bulletin boards, emoticons were invented as a means of expressing emotions not
quickly conveyable in brief messages. These included the familiar :) and : (happy and unhappy faces,
as well as dozens more. Nowadays, you still see them, but they are more often replaced with icons
such as smileys.

In fact, many e-mail programs and other applications such as Microsoft Word will substitute
emoticons for smileys automatically for you. And that’s exactly the functionality that this recipe
offers. Figure 8-9 shows the set of 20 smileys provided by it, a few of which (such as the kiss smiley)
are animated to better convey their meaning.

FIGURE 8-9 Use this recipe to replace text emoticons with smiley GIF images.

About the Recipe
This recipe accepts a string of text to search for emoticons to replace with smiley GIF images. It takes
the following arguments:

• $text The text to process for emoticons.
• $folder The folder in which you have saved the smiley GIFs.

Variables, Arrays, and Functions
$chars Array of emoticons to search for
$gifs Array of GIF filenames without the .gif extensions
$j Integer index for iterating through the arrays

How It Works
This recipe supports 20 different types of emoticons and their associated GIF smileys. The emoticons
are stored in the array $chars, and the GIF filenames (minus the .gif extensions) are housed in the
array $gifs. They are all in groups to make the code easy to modify. For example, the first four
elements of each array are the angry emoticons and smileys. Here are the supported emoticons and
image filenames (minus their file extensions):

The emoticons need to be replaced with the correct HTML with which to display an associated

GIF image, so the argument $folder is used to provide the correct path to the images. To ensure that
paths (either with or without trailing slashes) are accepted, the code first removes any such slashes,
before then adding one later where required, like this:

Then, a for loop is entered to iterate through all of the names in $gifs, replacing each element

with the HTML that will reference each GIF, and providing its width, height, alt, and title attributes,
as follows:

With the $gifs array now suitably processed, both arrays are passed to the str_ireplace()

function, which then replaces all occurrences of any emoticons in the $chars array, with the
replacement code in the $gifs array. It does this while ignoring the case of each character so that, for

example, both : S and : s will be replaced with the HTML for displaying the puzzled.gif smiley:

How to Use It
Before you call this recipe, you must download the folder of GIFs from the companion web site at
webdevelopmentcookbook.com. Once downloaded and extracted, you’ll find the GIFs in the folder
smileys. To use them, copy the smileys to your web server and into a folder within your document
root so they are accessible by a web browser.

If you wish, you can replace some or all of the icons as long as you keep the same filenames for
the same smiley type. But remember, you may need to alter the width and height attributes in the code
if your new smileys have different dimensions (or just leave those attributes out if the dimensions
vary). The provided set of GIFs are all 15 × 15 pixels in size. Also make sure you don’t rename or
delete any of the files; otherwise, the code will not work correctly because it will assume all the files
have the names specified in the array $gifs.

You use the code by passing it the text to process, as well as the path to the folder of the GIFs,
like this (where smileys is the name of the folder):

To test it, make sure $text contains a few emoticons, like ‘:) :] :D XD’, and so on. If you

prefer, you can also assign the result of calling the recipe to a string variable, where it can then be
used elsewhere in your program, like this:

The Recipe

http://www.webdevelopmentcookbook.com

 ReplaceSMSTalk()
Sometimes your users will use text speak in their posts, so called because it evolved through the use
of texting messages on mobile phones. It’s a more compact and less time-consuming way of
communicating that’s also often used on Twitter, due to its similar restriction on message length.

But one thing it isn’t is pretty. So if you would like to clean up posts a little before adding them
to your site, this recipe will do the trick. Figure 8-10 shows the result of passing a string containing
several text speak acronyms to the code, which it suitably corrects.

FIGURE 8-10 Want to translate your users’ text speak? Do it with this recipe.

About the Recipe
This recipe accepts a string which, if it contains recognized text speak acronyms, is converted to

standard English and returned. It takes this argument:

• $text The text to be processed.

Variables, Arrays, and Functions
$sms Array of text speak acronyms to be replaced and their equivalents in standard English

$from1
Array based on the $sms array with regular expression operators for processing
uppercase

$to1 Array containing the standard English replacements for $from1

$from2
Array based on the $sms array with regular expression operators for processing
lowercase

$to2 Array containing the standard English replacements for $from2
$j Integer index for iterating through the arrays

How It Works
This function is based around the array $sms, which contains pairs of data: a text speak SMS acronym
and its equivalent in standard English. I built the code this way to make it very easy for you to change
any pairs or add more of your own. Just remember to precede any apostrophes with a \ escape
character (like this: \’) to avoid getting an error message.

Because of the way these pairs are stored, they do need a little massaging to get them into a state
with which $text can be processed. This is done by first initializing two pairs of from and to arrays:

$from1 / $to1 and $from2 / $to2, like this:

Then, a for loop iterates through the $sms array, extracting the from and to halves of each pair,

as follows:

This is done twice so all the uppercase text speak acronyms can have a different effect than

lowercase ones. For example, the acronym BTW should be replaced with By the way (note the initial
capital letter), but the acronym btw should be replaced with by the way (with no initial capital
letter).

To achieve this, the $from1 array is populated with the correct regular expression to match only
the uppercase acronyms. It does this using the \b operator, which marks the boundary between a word
and a non-word character, so that only acronyms are matched and not groups of the same letters that
may occur within words.

Next, $to1 has each replacement string passed through the ucfirst() function, which forces the
initial letter of a string to uppercase, before being assigned the resulting value.

On the other hand, $from2 uses the same regular expression as $from1, except that a letter i is
added after the closing / of the expression. This tells the preg_replace() function that matching
should take place regardless of whether the acronyms are upper- or lowercase (or even a
combination). The $to2 array doesn’t have the replacements run through the ucfirst() function, so
they will remain unchanged.

When the loop has completed, the arrays will all be correctly populated and so the
preg_replace() function will be called twice to perform the replacements. The first time, $from1
acronyms are replaced with $to1 standard English and their first letters are capitalized. The second
time, $from2 acronyms are replaced with $to2 standard English equivalents. The result of all these
translations is then returned:

How to Use It
To use this recipe, pass a string of text that you think may contain text speak to it, like this:

The code will then make any required substitutions and return the result, which in the preceding
case would be “For your information, as far as I know in my humble opinion this is a cool recipe.
Laughing out loud.”

The Recipe

CHAPTER 9
MySQL, Sessions, and Cookies

This chapter covers a lot of different topics, ranging from using MySQL to working with PHP
sessions, and from applying basic security measures to handling cookies. Although at first sight these
topics may not seem too closely related, they actually are because they’re mostly to do with the
processing, storage, and recall of data.

The three MySQL recipes provide a means of creating a database to hold various details about a
user, the facility to add new users, and a recipe to verify a user against their username and password,
while the PHP session recipes provide the ability to hold a user’s details across multiple instances of
the same or different web pages or PHP programs. Finally, the cookie recipes provide similar
functionality to the session variables, except that you can set cookies to live for a shorter or longer
time than the current session.

Along the way, you’ll also learn how to build your own variations of these recipes, or how to
extract the basic functionality from them to create totally new functions.

 AddUserToDB()
This recipe saves a user’s details in a MySQL database. If the data table used doesn’t already exist, it
even creates it for you, so that there’s minimum setup required.

So why MySQL? Well, so far in this book I’ve concentrated on using “flat” text files for storing
data on the server. This is a quite adequate solution for small applications and utilities and it saves on
having to configure and maintain a database such as MySQL. Indeed, had I gone the database route
(and if you’ve been experimenting with the recipes), you’d probably have dozens of databases
residing within MySQL. Instead, you should only have a collection of text files that you can simply
delete when you don’t want them any more.

However, the time will eventually come when the benefits of using a database begin to outweigh
those of not doing so, and this recipe, which allows thousands of users and several fields per user,
will help you deal with this issue. Yes, I could have used a text file and split all records at line
breaks, separating out the fields with a special token, but the code required to support such a system
would never run as fast as, or be as flexible as, using a database.

Figure 9-1 shows this recipe in action with a user being added twice to the database, the
duplicate checking ensuring that the second insertion is ignored.

FIGURE 9-1 This recipe creates a user database and adds users to it.

About the Recipe
This recipe inserts a record into a MySQL database. If the database table does not already exist, it
creates it first. Upon success, a value of –1 is returned. Otherwise, –1 is returned if the insert failed,
or –2 if the handle already exists. It requires these arguments:

• $table The name of the data table.
• $nmax The maximum length allowed for $name.
• $hmax The maximum length allowed for $handle.
• $salt1 Semi-random string to help secure the password.
• $salt2 A second string to go with $salt1.
• $name The user’s full name to add to the database.
• $handle The user’s username.
• $pass The user’s password.
• $email The user’s e-mail address.

Variables, Arrays, and Functions
$query String containing the query to pass to the MySQL database

How It Works
At the start of this recipe, the query required to create the table named by $table is put together. For
example, assuming that names are allowed 32 characters and handles 16, then the command-line
MySQL statements in the query would be as follows:

As you may know, when entered at its command-line interface, MySQL allows you to input a

line at a time, and only sends the completed instructions when a final semicolon is encountered. So
the preceding is valid MySQL syntax that you could type in. If you were to then enter:

MySQL would show you the format of the table by displaying the following, which shows that

the table Users has four fields (also known as columns), with name, handle, and email being
variable-length character fields of up to 32, 16, or 256 characters, respectively, and pass being a
fixed-length field of exactly 32 characters:

This output also shows another thing worth pointing out, which is that all of name, handle, and

email have been given indexes by the MySQL INDEX() statement, as shown by the word MUL under
the Key heading. This means that, just like using a card index in a library, they will be quick to
search.

Back to the PHP, though. No semicolon is required (or even allowed) when using the
mysql_query() function, so all the preceding commands are run together into a single string stored in
$query, which is then passed onto the mysql_query() function. If the call fails, then something has
gone very wrong and so the code exits, returning an error message. This will enable you to properly
debug your program, but on a production server you may wish to replace the die() function call with
error handling of your own.

By the way, did you notice the IF NOT EXISTS clause at the start of the query? Using this means
that the CREATE TABLE instruction will only ever be called once. Thereafter, the table will already
exist and the command will be ignored. It’s a neat way of avoiding having to issue an additional
MySQL call to see whether a table exists before creating it. Note that this code assumes you have
already created a suitable database and a user to access it (there’s more on this in the following
section).

So, having ensured that the table named by $table exists, a new query is placed in $query with
which to check whether the user already exists in the table. We need to do this to avoid filling it up
with duplicates. The query takes the following form (although tablename and handle will be
different):

Again, the preceding is a MySQL command as you would type it into the command line—just

leaving off the final semicolon makes it work with mysql_query(), to which the query is passed.
Upon success, the mysql_query() function always returns a resource after a SELECT command,
which can be used to examine the result of the query. In this case, the resource is returned directly to

the mysql_num_rows() function, which returns a count representing the number of times the search is
found in the database.

In this case, only a single entry of any handle is allowed so this value will be either 0 or 1. If the
returned value is 1, then an entry already exists and so the function returns with a value of –2 to
indicate the fact. Otherwise, it is all right to proceed with inserting the data into the database.

First, however, the password needs to be obfuscated to protect all the users should the database
get into the wrong hands. This is done by converting the password into a special string called a hash
using the md5() function. This is a type of function that only goes one way, and so the input cannot be
derived from the output. In addition, to prevent attempts at dictionary hash cracking, a semi-random
sequence of characters called a salt is added to both ends of the password before passing it to md5().
There’s more on passwords and salting in the Create Captcha recipe section of Chapter 6, but suffice
it to say that you must decide on the values of $salt1 and $salt2 and stick to them for as long as you
use your database. These two values will be used for all stored password hashes.

The hash created by concatenating the password and two salts, and passing them to md5() is then
assigned back to the variable $pass, which means that from this point onward even the program
doesn’t know the value of the user’s password.

A final query string is then assembled in $query along the lines of this MySQL command-line
statement:

Of course, these values are replaced with the actual contents of the variables $table, $name,

$handle, $pass, and $email, and the semicolon is omitted. The string is then passed to
mysql_query() and, if the result of the call is TRUE, a value of 1 is returned; otherwise, –1 is
returned to indicate failure.

More experienced MySQL users may wonder why I didn’t make the handle field UNIQUE and
simply try to apply the INSERT INTO regardless, which would automatically fail if a handle of the
same name already exists. The answer is that mysql_query() only returns either TRUE or FALSE for
an INSERT command. Therefore, it would not be possible to distinguish between a call that failed due
to a record already existing, or one that failed from a syntax or other error. As well as being perfect
for preventing duplicate entries, the former case is important to check for so that a user can be told
whether or not the handle they have chosen has already been taken.

TIP MySQL doesn’t mind whether you enter commands in upper- or lowercase. Neither does it
worry about the case of database, table, or field names; it is case-insensitive. However, the
convention for SQL queries is to use uppercase for commands and lowercase (or mixed
upper- and lowercase) for everything else, but it’s up to you whether or not to follow this
suggested style. Note that this does not affect the contents of fields, which are usually stored
exactly as provided.

How to Use It
Before using this recipe, you will need to have created a MySQL database and a MySQL user that has
access to that database. If you are using Zend Server CE, you should log in to the Command Line
Client, which you can do as follows, according to the operating system upon which you installed it:

• Windows
Select Start | All Programs | Zend Server Community Edition | MySQL Server 5.1 | MySQL
Command Line Client. When the terminal window appears, as long as you haven’t yet set up a
password, just press RETURN.

• Linux
Open up a terminal window and enter the following, followed by your MySQL root password
(which should be the same as your Linux root password):
mysql -uroot -p

• Mac OS X
Open up a terminal window and enter the following (assuming you have not yet created a root
password for MySQL):
/usr/local/zend/mysql/bin/mysql -uroot

If you aren’t using Zend Server CE or have a different installation of MySQL, you will need to
refer to the documentation that came with your version to see how to enter the MySQL command-line
prompt as user root.

Whatever setup you have, you should now be able to create a new database so, for example,
let’s create one called mydb by entering the following MySQL command:

Now you need to create a user that has access to this new database so, for example, to create the

user testing with the password testing, you would enter the following:

The GRANT command is the standard way to create a MySQL user, and the qualifier ALL tells

MySQL to allow the user to do anything with the database piphp and any of its objects, such as tables,
denoted by the .* part. The user is given the @’localhost’ suffix because that is where the PHP
program that will access MySQL will reside. The IDENTIFIED BY ’passwd’ portion sets the
password for the user.

Note that you must use the full form of ’testing’@’localhost’, in which quotes are placed
around the user and host names because, although it may sometimes work when you omit these quotes,
that is not always the case.

Some of the examples on the webdeveloperscookbook.com web site use a user/password pair of
testing/testing by default, so you may want to issue the preceding command exactly as you see it, as
well as creating any other users you think you will need. When you’ve finished with the testing user
account, you can always delete it by entering:

With the database and a user now created, let’s get onto using the recipe. The first thing you must

http://webdeveloperscookbook.com

do before using it is establish a connection to the MySQL database. To do this, you need to provide
the details given in the following code:

Because the web server will generally be running on the same computer as the MySQL database,

$dbhost will usually require the value localhost. If you were using a different server for your
database, you would replace this with its domain name or IP address.

The name of the database to use is placed in $dbname—if you followed the earlier instructions,
you will have created a database called mydb that you can use. You will also have created a MySQL
user called testing with a password of passwd, so $dbuser and $dbpass can be set to those values.
Otherwise, assign values for another user you have created with access to the database referred to by
$dbname.

You are now ready to establish a connection to MySQL by issuing a mysql_connect() call,
like this:

Because success of this call is fundamental to the recipe, if it fails, an error is instantly output

and the program quits. This will enable you to fully debug your code before using it on a production
server. However, you will probably want to replace the call to die() with your own error
management when you do so.

Once the connection has been made, you can then select the database to be used by the program
employing the mysql_select_db() function, like this:

Again, failure will generate an error and cause the program to exit. But, all being well, execution

will then move onto the remainder of your program which, for illustration of the use of this recipe,
needs to prepare a selection of variables, as follows:

The string value of Users in $table is the name of the MySQL table to create and use within the

database mydb (or whatever you called it). Although I have shown it with an initial capital letter to
differentiate it from a field name, it could have the value users or USERS and so on, because table
names are case-insensitive.

The numeric variables $nmax and $hmax, respectively, represent the maximum number of

characters allowed in the strings $name and $handle. You will very likely decide to use different
values in your own programs.

The $name, $handle, $pass, and $email string variables contain the name, username,
password, and e-mail details for the current user, while $salt1 and $salt2 are semi-random strings
you should create to help make it next to impossible to deduce a password from the md5() hash,
which will be created from the concatenation of the password with these strings.

We are now ready to insert a new record into the database using code such as this:

If this is the first record to add, then a table with the name in $table will be created before the

record is inserted. If the insert was successful, $result will now contain a value of 1; otherwise, it
will be –1 if the insert failed, or –2 if a record containing the string in $handle already exists in the
database. You can therefore test this value as follows to decide what to do next:

The Recipe

 GetUserFromDB()
Using this recipe, you can look up a user’s details as entered using the previous recipe,
AddUserToDB(), by passing just their handle (username) and the name of the table in which the

database details are stored. Figure 9-2 shows the items returned, including the obfuscated password,
which cannot be used to determine the original password.

FIGURE 9-2 Four items of information are stored for each user.

About the Recipe
Provided with a table name and handle, this recipe retrieves a user’s details and returns them. Upon
success, it returns a two-element array with the first element having the value TRUE and the second
being an array containing the user’s details (in turn: name, handle, pass, and email). On failure, it
returns a single-element array with the value FALSE. It requires these arguments:

• $table The name of the data table.
• $handle The user’s username.

Variables, Arrays, and Functions
$query String containing the query to pass to the MySQL database
$result Integer result of performing the query in $query

How It Works
This recipe expects a database and associated table to have already been created and to contain the
user’s details being looked up. Because a connection to MySQL should already be open and the
database selected, it takes just the arguments $table and $handle, from which it constructs a query
to make to MySQL, which it assigns to $query. In standard command-line MySQL syntax, the query
looks like this:

This tells MySQL to search through the table tablename and make a note of every record in

which the field (also known as the column) called handle contains the string username. When sent to
the mysql_query() function, the semicolon is omitted and the variables $table and $handle are
substituted with their contents. The result of making the function call is then assigned to $result.

TIP The * symbol tells MySQL to fetch all the fields in a record and is shorthand for providing
all the field names individually, separated with commas. However, when you only want some
of the fields to be returned, using a * would be wasteful of both memory and CPU cycles, and
therefore in such a case naming each one would be more efficient.

Then, the mysql_num_rows() function is called using $result as its argument. Because no
handle is allowed to be duplicated, this function can only ever return 0 if the handle doesn’t already
exist, or 1 if it does. So, if a value of 0 is returned, then the recipe returns FALSE to indicate no
matching record exists in the database.

Otherwise, a matching record has been found and the recipe returns a two-element array, the first
of which contains the value TRUE to indicate success, and the second holds a four-element array
containing all the fields in the record.

How to Use It
To use this recipe, it is assumed you have already created a MySQL database and a MySQL user that
has been allowed access to it (as in the previous recipe, Add User to DB). You will therefore have to
provide these details to your program so it can connect to MySQL and select the database. You can
do this with the following code:

These six lines define the database host and name (as well as a MySQL username and

password), connect to MySQL, and select the database. If any errors occur in this process program,
execution is terminated and an error message is displayed. On a production server, you may wish to
replace the calls to the die() function with your own, more user-friendly error handling.

Next, you need to define the table name and the handle of the user whose details you wish to
look up, and then call the recipe, like this:

After the call, if $result[0] is FALSE, then the lookup failed and no matching user was found.

Otherwise, $result[0] will have a value of TRUE and $result[1] will contain a sub-array with the
user’s details, which you can access using code such as this:

The Recipe

 VerifyUserInDB()
Using this recipe, you can pass a username (also known as a handle) and password, as entered by a
user and, without needing to look up any details, just pass on these to the recipe, which will then
report whether they verify or not. In Figure 9-3, the handle firstprez is checked against two similar
but different passwords. Only the correct one of GW022232 verifies.

FIGURE 9-3 A username (handle) and password must match exactly to be verified.

Incidentally, GW022232 is not a very secure password, and the user would be well advised not
to use his birthday of February 22nd ‘32 in future passwords.

About the Recipe
This recipe compares a supplied handle (username) and password to those stored in the database. If
they match, it returns TRUE; otherwise, it returns FALSE. It requires these arguments:

• $table The name of the data table.
• $salt1 The first salt as supplied to AddUserToDB().
• $salt2 The second salt value.
• $handle The user’s username as entered by them.
• $pass The user’s password.

Variables, Arrays, and Functions
$result Array result of calling GetUserFromDB()

How It Works
This function takes the handle supplied to it, which will in turn have been provided by a user, and
passes it to the GetUserFromDB() recipe to retrieve the accompanying user details from the database.

If the call fails, signified by the return value $result[0] having a value of FALSE, then the
handle in $handle was not found in the database, and so a value of FALSE is returned. Otherwise, the
value in $result[1][2], which is the stored salted and md5() processed password, is compared
with the result of performing the identical salting and md5() transformation on the supplied password.

If the results are the same, then the password supplied is the same as the one originally used to
create the account, and so a value of TRUE is returned. Otherwise, FALSE is returned.

How to Use It
To use this recipe, you need to have opened a connection to MySQL and selected the database to use,
with code such as this:

In the preceding, $dbhost is likely to remain with a value of localhost, since the web server and

PHP processor will be running on the same computer as the MySQL database. The variable $dbname
is the database you should have created, as advised in the earlier recipe in this chapter,
AddUserToDB(). The variables $dbuser and $dbpass should be the username and password of a
MySQL user that has been granted access to the database.

The remaining two lines connect to MySQL and select the database. If either action fails, an
error message is displayed and program execution stops. Therefore, on a production server, you may
wish to replace the die() call with an error handling function of your own.

Next, you need to assign values for the table and two salts used, as well as the handle and
password to be verified, like this:

The two salts, $salt1 and $salt2, must be the same semi-random strings you assigned when

using AddUSerToDB().
You are now ready to verify the user’s details in the following way:

Upon success, $result will have the value TRUE; otherwise, it will be FALSE. You can use this

return value in the following manner:

Other than for testing the recipe, this code isn’t actually useful. Instead, your code will likely re-

present a form to the user if verification failed; otherwise, it will probably log a user in, possibly
using PHP sessions (described a little later on in this chapter, starting at the CreateSession()
recipe).

Incidentally, if you entered the details for this sample user earlier on in this chapter, this
example will not verify unless you change the password from GW022231 to GW022232.

The Recipe

 SanitizeString() and MySQLSanitizeString()
When accepting user input for redisplay, and particularly if it will be inserted into a database, it’s
important that you sanitize the input to remove any malicious attempts at hijacking your server, or
otherwise injecting unwanted MySQL commands, HTML, or JavaScript. Figure 9-4 shows each of
the recipes in this section being used to sanitize a string. The function SanitizeString() has
removed the HTML and tags from it and converted the & symbol to the & HTML entity,
while MySQLSanitizeString() has also added escape characters before the single quotation marks
so that they will be inserted into a field by MySQL, rather than possibly being interpreted.

FIGURE 9-4 This pair of recipes will protect your web site from hacking attempts.

About the Recipes
These recipes take a string and sanitize it for reuse on your web site and/or in a MySQL database.
They require this argument:

• $string A string to be sanitized.

Variables, Arrays, and Functions
SanitizeString()

The function MySQLSanitizeString calls the function
SanitizeString() to prevent code duplication

How They Work
Let’s start with the SanitizeString() function, which calls two PHP functions: strip_tags() and
htmlentities(). The former removes all HTML tags from a string, while the latter converts all
instances of characters such as < and > to < and >, & to &, and so on, like this:

Between them, they will remove any attempts at inserting any HTML tags into your web site,

whether they are simple tags such as for bold or more dangerous <script> tags. They also see to
it that no special characters are allowed by replacing any with HTML entities that will not perform an
action, only displaying in a browser as the characters they represent.

The MySQLSanitizeString() function does the same by calling the SanitizeString()
function, but in addition it deals with potential problems relating to MySQL.

First, it checks whether the Magic Quotes setting of PHP is enabled, which is a method of
dealing with quotation marks supplied by the user. When Magic Quotes is on, all single- and double-
quote characters, as well as backslashes and NULL characters are escaped automatically by preceding
them with a backslash. However, the feature is now deprecated and should not be used since there are
better ways of sanitizing data (such as using the two recipes presented in this section), as follows:

Therefore, if Magic Quotes is enabled, then the first thing this recipe does is call the

stripslashes() function to remove any that may have been added. Next, it calls the
SanitizeString() function, and finally it calls the mysql_real_escape_string() function, which
renders a string totally harmless to MySQL injection attacks, which are where a user enters a
quotation mark in the hope that it will close a MySQL statement, enabling MySQL commands they
add after the quote to be executed.

For example, the following MySQL command, resulting from a user having entered the handle
jjones, looks quite safe:

But what if, when asked for their handle, a user were to input a value of Admin’# and it wasn’t
sanitized? Well, if this string was allowed through to MySQL, the complete command would become:

What has happened here is that the user closed the quotation mark and then supplied a # symbol,

which is treated by MySQL as the start of a comment. Therefore, everything from the # onwards
(highlighted in the preceding code in italics) gets ignored and so users find themselves logged in as
the user Admin. Obviously, this is not good, to say the least.

However, a simple call to mysql_real_escape_string() replaces all such possible hacks
with escaped versions of the characters, so that the string can only ever be used as data and never
treated as a command to be executed. Combining all these security measures into these new functions
ensures you never forget any when coding your web sites.

How to Use Them
To use either of these functions, simply call them up by passing a string to be sanitized, like this:

The <xmp> tag sets the typeface to a form that indicates example text. The SanitizeString()

function is quite straightforward, but there are two important things to note about the
MySQLSanitizeString() function, which are that it will generate an error if it is called when a
connection to a database is not already open (which is why the preceding example creates a database
connection before calling it), and you must make sure that SanitizeString() is also pasted into
your program, or otherwise included by it, because it is referenced.

The Recipes

 CreateSession()
If you have a web site that a user can join, then you need a way to keep track of that person as they
navigate through the site. Not for reasons of spying on them or anything like that, but purely in order to
keep them logged in and to offer them all the benefits that membership provides. Figure 9-5 shows
this recipe being used to create a session and read back one of the session variables.

FIGURE 9-5 Creating a PHP session allows you to maintain a user’s details across multiple pages.

About the Recipe
This recipe takes all the same details about a user we have previously been storing in a MySQL
database and saves them in PHP session variables. It requires these arguments:

• $handle A username.
• $pass A matching password.
• $name The user’s real name.
• $email The user’s e-mail address.

Variables, Arrays, and Functions
$_SESSION[’handle’] The user’s handle stored in a session variable

$_SESSION[’pass’] The user’s password stored in a session variable
$_SESSION[’name’] The user’s name stored in a session variable
$_SESSION[’email’] The user’s e-mail address stored in a session variable
$_SESSION[’ipnum’] The user’s IP number stored in a session variable

$_SESSION[’agent’]
The user’s web browser User Agent string stored in a session
variable

How It Works
This is a recipe that provides convenience more than anything else, because it simply starts a new
PHP session using the session_start() function and then assigns the values passed to the recipe to
the various session variables. If the session can’t be started, then FALSE is returned; otherwise, TRUE
is returned, as follows:

One reason the call may fail is if any text has already been output by your program. This is

because session details are often stored in cookies (unless the user has cookies disabled, in which
case they are stored in the query string), and therefore they must be exchanged between the server and
browser before any other data.

Note how the user’s IP address and the User Agent string supplied by their browser are also
saved as session variables. They will be used later in this chapter in the Secure Session recipe.

Don’t worry about this system possibly storing private details (for example, a username and
password) anywhere unsafe, because it doesn’t. PHP stores these details internally and they are never
sent to the browser. Instead, an identifying token is all that is ever passed back and forth between the
server and browser.

How to Use It
In order to use this recipe, you already need to have available the four items of data about a user to
store in the session variables. These may have been input by the user or retrieved from a MySQL
database, but in the following example they are simply assigned to some variables and then the
CreateSession() function is called:

Upon success, $result will have the value TRUE; otherwise, it will be FALSE. You can act on

this value in the following manner, which displays the contents of one of the session variables to
demonstrate that the call succeeded:

For correct results, make sure you only call this recipe before you output any text; otherwise,

session creation and variable assignment may fail.

The Recipe

 OpenSession()
Once you have used CreateSession() to store a user’s details, any other pages (or even the same
one if called up separately) can easily retrieve these values using this recipe. Figure 9-6 shows data
that has been saved in a session before being recalled.

FIGURE 9-6 With this recipe, a single function call will retrieve a range of user details, even across
different web pages.

About the Recipe
This recipe opens a previously created PHP session and returns the session variables stored in it. It
does not require any arguments.

Variables, Arrays, and Functions
$vars Array containing the various session variables’ values

How It Works
This recipe first attempts to start a session using the session_start() function. If that fails for any
reason, a single-element array with the value FALSE is returned. One reason it could fail is if a
session is already open, which is why the @ symbol prefaces the function call; it is there to suppress
any error messages, like this:

If a session is successfully opened, a check is then made for one of the session variables that

ought to be set, namely $_SESSION[’handle’]. If it’s not set, an error has occurred and a single-
element array with the value FALSE is returned, like this:

Otherwise, everything seems to be in order, so the array $vars is initialized and then the four

main user-session variables are inserted in it and a two-element array is returned, the first of which
has the value TRUE, while the second contains the $vars array:

How to Use It
Using this recipe is as easy as making a short function call, like this:

If $result[0] has the value FALSE, an error occurred; otherwise, $result[1] contains a sub-

array that will itself contain the four main items of user details. You can use code such as the
following to act on the value of $result[0] and retrieve the details:

Here, use has been made of the list() function, which takes an array and assigns its elements to

the variables passed to it, providing an excellent means of quickly retrieving the four values. It could
be considered shorthand code for the following:

Whichever method you use, you will now have retrieved four items of data about the user

without them having to enter those details again, and by placing a call to this recipe on each page
where these details may be needed, you will always have access to them.

The Recipe

 CloseSession()
When a user has finished with your web site, it’s a good idea to provide them with a logout button or
link, with which they can close the current session in order to prevent another user on their PC from
coming back to it. With this recipe, not only can you close the session, but all associated data is also
destroyed, leaving no potential security risk behind. Figure 9-7 shows the result of first opening a
session with OpenSession() and then closing it again.

FIGURE 9-7 Closing a session will completely log a user out of your web site.

After closing it, you will not be able to open the session again since all its data was destroyed.
Your only option is to create a new one.

About the Recipe
This recipe closes a previously created and/or opened PHP session and destroys any associated data.
It does not require any arguments.

Variables, Arrays, and Functions
$_SESSION

The PHP main session array, which is reinitialized to an empty array to delete
its data

How It Works
This recipe ensures that any data stored in the PHP $_SESSION array is destroyed by reinitializing the
array, which it does by assigning it the value array():

Next, a couple of tests are made. These check whether the value returned by session_id() is
not FALSE, in which case a session does exist (and that value will be the session ID), and whether a
cookie exists with the name returned by session_name(), like this:

If either of these cases is TRUE, then it’s necessary to destroy any session cookie that may exist

on the user’s computer. This is done by issuing a setcookie() call with the same details that will
have been used to create it, but with an expiry date of 30 days in the past. Being a month ago, the
browser will automatically delete the cookie as having expired already. Any time in the past will do.
I chose a month just to be sure.

Finally, the session_destroy() function is called and the value returned by it is returned by
the recipe. The @ symbol prefacing the call is there to suppress any error messages that might occur,
particularly if the call fails due to the session already having been destroyed, or the recipe having
been called with no session in existence:

How to Use It
To terminate a session, place a call to this recipe before any text is output, like this:

The variable $result will have the value TRUE if the call succeeded; otherwise, it will be

FALSE. You generally don’t need to worry if the call fails, since it usually only happens if there is no
session to close, which is the situation you wanted anyway.

The Recipe

 SecureSession()
If there’s a way a hacker can break into your web site, you can bet they’ll try. One trick they use is to
hijack PHP sessions. This might be achieved in different ways, but the main security hole is when a
hacker locates a site that passes the session ID in a GET URL tail.

Given this information, a hacker could start a session and then pass on the URL (including the
session ID) in spam or other links. They could then go back and look for evidence of any of these
links being followed, and if the user hasn’t logged out, they may be able to hijack the session and
assume the user’s identity.

But by using this simple recipe, tricks of that nature are rendered completely useless. Figure 9-8
shows a session that is opened with OpenSession() and then tested with this recipe for being secure.

FIGURE 9-8 This recipe helps secure against hackers hijacking a user’s session.

About the Recipe
This recipe checks whether a session appears to not be secure, and if not, it closes the session. It does
not require any arguments.

Variables, Arrays, and Functions
$ipnum String variable containing the IP number of the current user
$agent String variable containing the browser User Agent string of the current user

How It Works
In Recipe 65, CreateSession(), I mentioned the session variables containing the IP number and
browser User Agent string, which are set up when a session is created using the CreateSession()
recipe. Well, this recipe is where they come into use.

What it does is check the current browser’s User Agent and IP number against those saved in the
session variables, as follows:

If either is different, the session is closed using CloseSession(), and a value of FALSE is

returned. This is done to ensure that only the user who was online and present when the session was
created can continue to use it, neatly avoiding any attempts by hackers to either poison a new session
or take over an existing one, like this:

If the strings do match, it is assumed the user is the same person, and so TRUE is returned. Oh,

and if there appears to be no session active (tested by seeing whether $_SESSION[’ipnum’] has a
value), then FALSE is returned.

How to Use It
To use the function, you would probably call it immediately after a call to OpenSession(), like this:

It may be extra work but it’s worth implementing this feature for your users’ protection.

The Recipe

 ManageCookie()

Cookies are a great way to provide additional functionality to your users, and contrary to the
impression that some news reports might give, they have other more beneficial functions besides
tracking users for advertising purposes. For example, you can save a token representing a person’s
username and password in a cookie to keep them logged in to a site, something PHP sessions do
unless cookies are disabled, in which case the query string is used for this.

Cookies are also great for associating variables directly with a user via the browser they use, so
you could use them, for example, to note that a user has already completed a questionnaire on your
site and should not be asked again.

Figure 9-9 shows the cookie Test being given the value 3.1415927 by this recipe. The cookie is
sent to the browser but has not been returned by it because cookies are only transferred in the header
exchange that takes place before the contents of a web page are transferred. After reloading the page,
the cookie is passed back to the web server by the browser, and so the cookie returns the assigned
value, as the figure inset shows.

FIGURE 9-9 This recipe lets you set, read, and delete cookies in a user’s browser.

About the Recipe
This recipe sets, reads, and deletes cookies. It requires the following arguments:

• $action The action to take: set, read, or delete.
• $cookie The name to use for the cookie.
• $value The value to give the cookie.
• $expire The number of seconds after which the cookie will expire.
• $path The path to the cookie on the server.

Variables, Arrays, and Functions
• None

How It Works
This recipe comprises three parts, separated by the case qualifiers of a switch statement, based on
the value of $action after converting it to lowercase, like this:

If the value is set, then the number of seconds passed in $expire is added to the value returned

by time() to create a timestamp $expire seconds into the future. Or, if $expire is NULL, it is left
alone. When this value is passed to the setcookie() function, the expiry date of that cookie will
either be $expire seconds in the future, or if $expire is NULL, the cookie will expire when the
browser is closed. Next, the setcookie() call is made, passing the name of the cookie in $cookie,
the value to assign to it in $value, the value in $expire, and the path to the server in $path. The
latter defines the scope over which a cookie is valid. For example, if $path has the value /news/,
then only that folder (and its subfolders) can access the cookie. But if it is /, then the cookie can be
accessed by all folders on that web domain. Here is the code that performs this:

If $action has the value read then, using the function isset(), a test is made to see whether a

cookie of the name stored in $cookie exists. If so, that value is returned; otherwise, FALSE is
returned, as follows:

If $action contains the word delete, then if the cookie with the name in $cookie is found to

exist, using isset(), the cookie is resent to the browser using its current name and an expiry date of
a month in the past, as calculated by subtracting 30 days’ worth of seconds from the value returned by
a call to time(). This has the effect of making the cookie instantly expire, like this:

If $action is none of the preceding words, then FALSE is returned:

How to Use It
To set a browser cookie, you could use code such as this:

If $result has a value of TRUE, then the cookie was successfully set. To then read back the

value of a cookie (which would have to occur the subsequent time the page loads), you would then
use code like this:

Upon success, $result will contain the contents of the cookie; otherwise, it will have the value

FALSE.
To delete the cookie, issue the following command:

Successful deletion will give $result a value of TRUE; otherwise, it will be FALSE. Possible

reasons for the call failing are if the cookie is already deleted or it doesn’t exist.

The Recipe

 BlockUserByCookie()
If you’ve ever done any chat-related programming, you’ll have come across trolls: downright nasty
individuals who you don’t want on your site. You may even have banned them via their IP address. If
you have, you may also have encountered the problem of these individuals restarting their web
connections to obtain new IP addresses with which to harass you and your users. You will also
possibly have noticed that some “bad” users share their IP address with “good” ones, generally
because they work in the same building and share a DSL or similar Internet connection. So blocking a
“bad” user by IP would also block “good” ones.

But there is a way you can ban unwanted users more permanently and precisely, and that’s to

leave a cookie on their computer, as this recipe does. For example, Figure 9-10 shows a session
being opened with the OpenSession() recipe, and then this recipe, BlockUserByCookie(), being
called to send a blocking cookie to the user’s browser.

FIGURE 9-10 Some users can be a pest, but this recipe can help you block them.

About the Recipe
This recipe sets a cookie in a user’s browser with which you can tell whether or not they have been
blocked from using your site. It requires the following arguments:

• $action The action to take.
• $handle The handle of the user to block.
• $expire The number of seconds after which the cookie will expire.

Variables, Arrays, and Functions
ManageCookie() The recipe for setting, reading, and deleting cookies

How It Works
This function checks the value of the argument $action after converting it to lowercase. If it is
block, then a special cookie is saved on the user’s web browser. Because we don’t want to alert the
user to the fact that they have a blocking cookie, I chose to call it simply user. To make it even more
innocuous, I give it the value of their handle (or username) so that, at a brief rummage through their
cookies, most users will assume this is a simple username cookie for your web site. The cookie is set
to expire after $expire seconds, so you can choose how long to lock a user out for, as follows:

If $action doesn’t have the value block, then the value of the cookie named user is looked up.

If it has a value, then that is returned; otherwise, FALSE is returned:

Figure 9-11 shows the cookie user with the value troll23 as sent to a Firefox browser.

FIGURE 9-11 The cookie “user” with the value “troll23” as sent to a Firefox browser.

Note how the cookie’s details such as the Host, Path, and Expires fields are all available for the
user to look up, hence the deviousness. You can call up this window on Firefox versions prior to 3.5
using the Tools menu followed by Options | Privacy | Show Cookies. On Firefox 3.5 and later, you
need to select Tools | Page Info | Security | View Cookies. Other major browsers also allow you to
view their cookies.

How to Use It

The beauty of this recipe (as long as the user has cookies enabled, which most do) is that it doesn’t
matter what handle (or username) you ban someone under, because the cookie will still work. So
even if they manage to sign up for another account, a quick call of this recipe will still tell you
whether the person has already been blocked. What’s more, it will reveal to you the handle of the
original account that got them blocked in the first place. The only downside is that all users on the
same computer account using the same web browser will be denied access.

To use the recipe, you will likely already have a PHP session running and will pass a few
arguments to the recipe taken from the session variables. So here are some lines of example code to
set up a session with which the recipe can be tested:

If you run this code and there are no errors, you should now have a session created with the

various values assigned to session variables, so you can now simulate being a user to be blocked like
this:

This line of code will set the block cookie on the computer belonging to the owner of $handle,

which, in this case, will only expire after one year. If you now use the following line of code in a new
program (or after reloading the same one) to ensure the cookie has been passed back from the user’s
web browser, you will see that the user has been blocked:

By passing a value of NULL instead of block as the first parameter, this tells the recipe to return

either the value of the block cookie (which will be the user’s original handle), or the value FALSE if
the user has not been blocked. Thus, if $result is not FALSE, then the user has been blocked. You can
therefore use the value of $result like this:

Rather than letting a user know they are blocked, I have found it a good idea not to tell them, as

they will then try everything in their power to circumvent the block. Instead, I tend to resort to tactics
such as blocking a user for an hour or a day and then unblocking and reblocking them randomly. And
in place of telling them about this I will do things such as continuing to display their own posts to the

screen but not to any other user, so they will assume they are simply being ignored.
They will never be able to work out exactly what is going on. Sometimes their trolling will

work; other times it won’t. In most cases the user will eventually drift away from your site and find
another one to bother. Sneaky? Yes. Effective? Also yes. But now you have the means to deal with
unwanted users, I leave it up to you to devise your own methods of blocking or banning them.

By the way, when using this recipe, make sure you have also copied ManageCookie() into your
program, or otherwise included it, as it is called by the code.

The Recipe

CHAPTER 10
APIs, RSS, and XML

One of the most interesting recent developments on the Web is the trend of providing Application
Programming Interfaces (APIs) to web sites, with which you can integrate content from other sites
into your own. Generally such APIs accept standard POST or GET requests as might be sent from an
HTML form or hyperlink, and then return data in the form of XML (Extensible Markup Language),
JSON (JavaScript Object Notation), or other easy-to-process formats.

For example, both Google and Yahoo! provide a range of APIs for many of their web properties,
such as Google Book Search and Charts, or Yahoo! Search, Answers, and Stocks, for all of which
there are recipes in this chapter. There are also recipes for handling Wikipedia entries, Flickr photo
streams, and currency conversion from the European Central Bank.

However, although these recipes provide the functionality to process the information supplied by
those companies, it’s your responsibility to ensure you follow each service’s rules and guidelines and
have sufficient permission to reuse or republish data extracted from their sites.

 CreateGoogleChart()
Google Charts is a great API that not too many people seem to know about yet. With it, you can create
a huge variety of charts to display on your web site or incorporate in your documents, and so on.
However, it is quite complex and requires using a number of different command strings, which is
where this recipe comes in.

With this recipe, you only have to supply the data to be charted and (optionally) various widths,
heights, colors, and other details. The recipe then interfaces with Google Charts and returns a ready-
made image (as a GD object) containing the chart. You can then display the image straightaway or
save it to disk for future use. Figure 10-1 shows a 3D pie chart created from seven items of data,
representing types of cheese.

FIGURE 10-1 Leverage the power of the Google Charts API with this recipe.

About the Recipe
This recipe returns a GD image containing a chart created using the supplied data. Upon failure, it
returns FALSE. It requires the following arguments, all of which (except for $width, $height, and
$data) may be passed as NULL or the empty string to use default values:

• $title The chart’s title.
• $tcolor The title’s color.
• $tsize The title’s font size.
• $type The chart type to create out of:
 line A line chart.
 vbar A vertical bar chart.
 hbar A horizontal bar chart.
 gometer A Google-O-Meter chart.
 pie A pie chart (the default).
 pie3d A 3D pie chart.
 venn A Venn chart.
 radar A radar chart.
• $bwidth Bar width (only applies for bar charts).
• $labels The data labels, separated by | symbols.
• $legends The data legends, separated by | symbols.
• $colors The data colors, separated by commas.
• $bgfill The background fill color (six hex digits).
• $border The border width in pixels.
• $bcolor The border color (six hex digits).
• $width The chart width in pixels.

• $height The chart height in pixels.
• $data The chart data, separated by commas.

Variables, Arrays, and Functions
$types

Associative array containing the chart type names and Google Chart command
equivalents

$tail String containing the command tail to add to the Google Charts URL
$url String containing the Google Charts URL
$image GD image containing the returned Google Chart
$w The width of $image in pixels
$h The height of $image in pixels
$image2 GD image containing the final image to return after adding any border
$clr GD color object created from the $bcolor border color

How It Works
This recipe starts by populating the $types associative array so that the chart types passed in the
argument $type can be quickly converted to the types Google Charts requires. For example, a 3D pie
chart is represented by a $type of pie3d, which must be translated to p3 for Google. To facilitate
this, the array element $types[’pie3d’] has been given the value p3 so that simply looking up the
value of $types[$type] will return p3 when $type is pie3d. All the other types will also be
similarly translated, like this:

So, next the value of $types[$type] is tested with the isset() function to see whether it has a

value. If not, then an unknown value was passed in $type and so $type is set to pie, making it the
default:

Next, $tail is built up using the various parameters passed to the recipe such as the title, type,

width, height, and so on. The contents of $tail will be appended to the base API URL for Google
Charts to make a query string, which is sent as a GET request to the server, like this:

After the main values have been placed in $tail, if they were passed in the function call, the

next five if statements add further values. For example, in the fifth line of code below, if $colors is
NULL or the empty string, then no color information will be appended to $tail. Otherwise, the
Google Charts command &chco= will be appended to $tail, followed by the colors supplied, as
follows:

Next, the tail is appended to the Google Charts API URL and the result is placed in $url, which

is then passed to the imagecreatefrompng() function to call up the API, which (on success) returns
a chart as a PNG image. This image is then placed in the GD image object $image:

Now that an image has been created, the width and height of it are placed in the variables $w and

$h so that a new image can be created by passing these values to imagecreatetruecolor(), like
this:

Then, if $border has a value, it will define the width of a border to be added to the image, and

the new image is made slightly larger than the original to allow for the borders. The new image is
then stored in $image2, and a GD color object is created in $clr from the color in $bcolor, like
this:

This color is then passed to the imagefilledrectangle() function to fill in the new image

with the specified color:

Finally, the original image is copied to the exact center of the new image so that, if the new

image is larger, the image will now be a bordered version of the original. If no border width is
specified, then the copy will simply overwrite the fill color and the new image will be identical to
the original:

Now that it is no longer required, the original image object is removed from memory using the

imagedestroy() function, returning the memory back to the system. The new image is then returned
by the recipe:

NOTE The Google Charts API actually includes many more features than there is room to include
in this recipe. If you visit tinyurl.com/googlecharts, you will see more options you may wish to
add to the recipe for your own use. You should be able to slot them in without too much
difficulty.

How to Use It
To obtain a Google Chart using this recipe, you should prepare all the parameters you want in it and
then pass them to the recipe, like this:

The preceding lines of code will re-create the chart shown in Figure 10-1, which is returned in

$result as a GD image object, and which you can then output to a browser by first sending the
correct PNG image header, followed by the image data, like this:

According to the Google Charts Usage Policy at code.google.com/apis/chart/: “There’s no

http://www.tinyurl.com/googlecharts
http://code.google.com/apis/chart/

limit to the number of calls per day you can make to the Google Chart API. However, we reserve
the right to block any use that we regard as abusive. If you think your service will make more than
250,000 API calls per day, please let us know.” Therefore, you may prefer to employ caching
techniques by saving the chart to disk (if it hasn’t already been saved), and then serving it from there.
You can save the image using one of these commands where path/filename . ext is the filename,
including path and extension:

Just choose the type of file you wish to save the image as, and select one of these three

commands accordingly.
On the other hand, if your usage will not be high enough to get your program blocked, you may

wish to save on your own bandwidth and use Google’s by uncommenting the return $url; command
about two-thirds of the way into the recipe. You will now only need code such as the following to
display the chart directly from Google’s servers:

However, the border options will be ignored and you’ll therefore have to use CSS (Cascading

Style Sheets) if you need borders.

The Recipe

 CurlGetContents()
Some web sites don’t like to be accessed by anything other than a web browser, which can make it
difficult to fetch data from them with a PHP program using a function such as
file_get_contents(). Such sites generally block your program by checking for a User Agent
string, which is something all browsers send to web sites they visit, and which can vary widely. They
look something like this:

Therefore, to access these sites it is necessary to simulate being a browser, which, as shown in

Figure 10-2, this recipe will do for you.

FIGURE 10-2 This recipe is used to fetch and display the pluginphp.com home page.

About the Recipe
This recipe is intended to replace the PHP file_get_contents() function when used to fetch a web
page. It accepts the URL of a page and a browser User Agent to emulate, and on success it returns the
contents of the page at the given URL. On failure, it returns FALSE. It requires these arguments:

• $url The URL to fetch.
• $agent The User Agent string of a browser.

Variables, Arrays, and Functions
$ch Curl handle to an opened curl_init() session
$result The returned result from the curl_exec() call

How It Works
This recipe uses the Mod CURL (Client URL) library extension to PHP. If it fails, then you need to
read your server and/or PHP installation instructions or consult your server administrator about
enabling Mod CURL. What it does is open a session with curl_init(), passing a handle to the
session to $ch. But first it checks whether a browser User Agent string has been passed to the
function and, if not, creates one:

http://pluginphp.com

A CURL session can perform a wide range of URL-related tasks by specifying options with a

call to curl_setopt() to set up the various options required prior to making the curl_exec() call,
like this:

These include setting CURLOPT_URL to the value of $url and CURLOPT_USERAGENT to the value
of $agent. Additionally, a number of other options are set to sensible values.

The curl_exec() function is then called, with the result of the call being placed in $result.
The session is then closed with a call to curl_close(), and the value in $result is returned:

How to Use It
Using this recipe is as easy as replacing calls to file_get_contents() with CurlGetContents().
As long as you have passed the code a sensible-looking User Agent string, the recipe will be able to
return some pages that could not be retrieved using the former function call. If you fail to provide one,
it will make one up for you. For example, you can load in and display the contents of a web page like
this (using a standard Windows 7 / Internet Explorer 9 / 64-bit architecture User Agent string):

Or you can simply use:

This will display the main page of the webdevelopmentcookbook.com web site.

CAUTION Sometimes the reason a web site only allows a browser access to a web page is because
other programs are not permitted from accessing it. So please check how you are allowed to

http://www.webdevelopmentcookbook.com

access information, and what you are allowed to do with it, at such a web site before using
this recipe. There’s a comprehensive explanation (and collection) of User Agent strings at
useragentstring.com.

The Recipe

 FetchWikiPage()
Wikipedia is an excellent resource, with several million articles. Even if you take into account that
some of the information may not always be correct due to any user being able to edit a page, on the
whole most of the web site is factual and it contains a summary of almost the whole depth and breadth
of human knowledge.

What’s even better is that Wikipedia is published under the GNU Free Documentation License—
see www.gnu.org/copyleft/fdl.html. Essentially this means that you can use any text from it as long
you give full attribution of the source, and also offer the text (with any amendments) under the same
license. As a consequence, I now have the entire Wikipedia database stored in my iPhone so that I
can instantly look up any entry, even when mobile connectivity is limited. By using data compression
techniques and keeping only the main article text, it takes up just 2GB of space.

The GFDL license used also means you can use programs such as this recipe to reformat and
reuse articles from Wikipedia, as shown in Figure 10-3, in which just the text has been extracted from
its article on PHP.

http://useragentstring.com
http://www.gnu.org/copyleft/fdl.html

FIGURE 10-3 Using this recipe, you can extract just the text from a Wikipedia entry.

If you also take a look at Figure 10-4, you’ll see the original article at Wikipedia and, comparing
the two, you’ll notice that the recipe has completely ignored all the formatting, graphics, tables, and
other extras, leaving behind just the text of the article.

FIGURE 10-4 The original article about PHP on the Wikipedia web site

Using it, you could create your own reduced-size local copy of Wikipedia, or perhaps use it to
add hyperlinks to words or terms you may wish to explain to your readers. I have used this code to

add short encyclopedia entries to searches returned by a customized Google search engine I wrote.
Combined with other recipes from this book, you could reformat articles into RSS feeds,

translate them into “friendly” text, or, well, once you have access to the Wikipedia text, it’s really
only up to your imagination what you choose to do with it.

About the Recipe
This recipe takes the title of a Wikipedia entry and returns just the text of the article, or on failure it
returns FALSE. It requires this argument:

• $entry A Wikipedia article title.

Variables, Arrays, and Functions
$agent String containing a browser User Agent string
$url String containing the URL of Wikipedia’s XML export API
$page String containing the result of fetching the Wikipedia entry
$xml SimpleXML object created from $page
$title String containing the article title as returned by Wikipedia
$text String containing the article text
$sections Array of four section headings at which to truncate the text
$section String containing each element of $sections in turn
$ptr Integer offset into $text indicating start of $section
$data Array of search and replace strings for converting raw Wikipedia data
$j Integer loop counter for processing search-and-replaces
$url String containing the URL of the original Wikipedia article

How It Works
Wikipedia has kindly created an API with which you can export selected articles from their database.
You can access it at:

Unfortunately, they have set this API to deny access to programs that do not present it with a

browser User Agent string. Luckily, the previous recipe provides just that functionality, so using it,
along with this recipe, it’s possible to export any Wikipedia page as XML, which can then be
transformed into just the raw text.

This is done by setting up a browser User Agent string and then calling the Export API using
CurlGetContents(), passing the Export API URL, along with the article title and the browser agent.
Before making the call, though, $entry is passed though the rawurlencode() function to convert
non-URL-compatible characters into acceptable equivalents, such as spaces into %20 codes, as
follows:

The XML page returned from this call is then parsed into an XML object using the

simplexml_load_string() function, the result being placed in $xml, and then the only two items of
information that are required (the article title and its text) are extracted from $xml->page->title
and $xml->page->text into $title and $text:

Notice that all of this occurs inside a while loop. This is because by far the majority of

Wikipedia articles are redirects from misspellings or different capitalizations. What the loop does is
look for the string #REDIRECT in a response and, if one is discovered, the loop goes around again
using the redirected article title, which is placed in $entry by using preg_match() to extract it from
between a pair of double square parentheses. The loop can handle multiple redirects (which are not
as infrequent as you might think given the age of Wikipedia and the amount of times many articles
have been moved by now) as follows:

So, with the raw Wikipedia text now loaded into $text, the next section truncates the string at

whichever of five headings out of References, See Also, External Links, Notes, or Further reading
(if any) appears first, because those entries are not part of the main article and are to be ignored, like
this:

This is done by using a foreach loop to iterate through the headings, which are enclosed by

pairs of = symbols, Wikipedia’s markup to indicate an <h2> heading. Because some Wikipedia

authors use spaces inside the ==, both cases (with and without spaces) are tested. Each heading in
turn is searched for using the stripos() function and, if a heading is found in $text, $ptr will point
to its start and so $text is then truncated to end at that position.

Now that $text has the raw article we want, it’s time to convert Wikipedia’s special markup
into the text and basic HTML this recipe supports. Before writing this recipe, I searched for hours
trying to find other code already doing the job. And while there were a few examples, they were all
quite long-winded and seemed overly complicated, which is why I chose to write my own routine.

In the end, it turned out that less than a couple of dozen rules were enough to make sense of most
of Wikipedia’s markup. For example, you’ve already seen how ==Heading== stands for
<h2>Heading</h2>. Similarly, ===Subheading=== stands for <h3>Subheading</h3>, and so on,
while ’’’word’’’ (three single quotes on either side of some text) stands for <i>word</i>, and
’’word’’ (two single quotes on either side of some text) stands for word. Ordered and
unordered lists are also indicated by starting a new line with a # or a * symbol for each item, so for
simplicity, I choose to convert both into the HTML bullet entity, ●, and treat nested lists as if
they are on the same level.

Tables begin by starting a newline with a { symbol, so the code ignores everything from \n { up
to a closing } symbol, and double newlines, \n\n, are converted into <p> tags. And there’s also some
more complicated markup such as [[Article]], meaning “Place a hyperlink here to Wikipedia’s
article entitled Article,” or [[Article|Look at this]], which means “Add a hyperlink to
Wikipedia’s article entitled Article here, but display the hyperlink text Look at this.” A few more
variations on a theme exist here, plus there are several types of markup I chose to ignore such as
[[Image…]], [[File…]] and [[Category…]], which contain additional material to the main text,
and [http…], which contains hyperlinks I didn’t want to use.

What’s more, there are also sections such as <gallery> and <ref>, which I decided should
also be ignored, and some major sections appearing within the {{ and }} pairs of symbols that are
often nested with sub- and sub-sub-sections. Again, all of these provide more rich content to a
standard Wikipedia article, but are not necessary when we simply want the main text.

Therefore, the following $data array contains a sequence of regular expressions to be searched
for, accompanied by strings with which to replace the matches:

Now, using a for loop, the array is iterated through a pair at a time, passing each pair of strings

to the preg_replace() function:

TIP If you want to learn more about the regular expressions used, there’s a lot of information at
wikipedia.org/wiki/Regular_expression.

Having massaged the text into almost plain text (with the exception of <h1> through <h7>
headings, and the <p>,
, , and <i> tags), the strip_tags() function is called to remove any
other tags (except those just mentioned) that remain:

Finally, before returning the article text, a notice and hyperlink are appended to it showing the

original Wikipedia article from which the text was derived:

In all, I think you’ll find that these rules handle the vast majority of Wikipedia pages very well,

although you will encounter the odd page that doesn’t come out quite right. In such cases, you should

http://www.wikipedia.org/wiki/Regular_expression

be able to spot the markup responsible and add a translation for it into the $data array.
If you use this recipe on a production server, you’ll also need to comply with Wikipedia’s

licensing requirements by adding a link to the GNU Free Documentation License, and indicating that
your version of the article is also released under this license. For details, please see
en.wikipedia.org/wiki/Wikipedia_Copyright.

How to Use It
To use this recipe, just pass it a Wikipedia article title and you can display the result returned, like
this:

Incidentally, I chose this article because it is one of those that returns the previously mentioned

#REDIRECT string. In this case, Climate Change is redirected to Climate change (with a lowercase
c in the second word), and serves to show that the code correctly handles redirects.

Because Wikipedia makes use of the UTF-8 character set to enable all the different languages it
supports, you may also need to ensure you include the following HTML <meta> tag in the <head>
section of your HTML output to ensure that all characters display correctly:

To save on thrashing Wikipedia’s servers and to also cut down on the programming power

required on your own, you should definitely consider saving the result from each call to this recipe,
either as a text file or, preferably, in a MySQL database, and then serve up the cached copy whenever
future requests are made for the same article.

If you wish to compile your own database of Wikipedia articles using this recipe, you can find
all the various indexes at en.wikipedia.org/wiki/Portal:Contents.

The Recipe

http://en.wikipedia.org/wiki/Wikipedia_Copyright
http://en.wikipedia.org/wiki/Portal:Contents

 FetchFlickrStream()

If you enjoy looking at photographs, chances are you have used the Flickr photo sharing service and
may also have discovered a few photographers whose Flickr streams you like to follow. Well, now
you can offer the same facility to your users with this recipe.

Using it, you can look up any public Flickr stream and return the (up to) 20 most recent
photographs from it. Figure 10-5 shows the result of pointing the recipe at a new account I created at
Flickr. In this instance, I chose to display links to the photos, but you can also embed them in your
web pages if you wish.

FIGURE 10-5 With this recipe, you can view the stream of a public Flickr user.

About the Recipe
This recipe takes the name of a public Flickr account and returns the most recent photos. Upon
success, it returns a two-element array, the first of which is the number of photos returned, and the
second is an array containing URLs for each photo. On failure, it returns a single-element array with
the value FALSE. It requires this argument:

• $account A Flickr account name such as xxxxxxxx@Nxx (where the x symbols represent digits),
or the more friendly Flickr usernames such as mine, which is robinfnixon.

Variables, Arrays, and Functions
$url String containing the Flickr photo stream base URL
$page String containing the Flickr stream HTML page contents
$rss String containing the location of the RSS feed for $page
$xml String containing the contents of $rss
$sxml SimpleXML object created from $xml
$pics Array containing the image URLs
$item SimpleXML object extracted from item in $sxml
$j Integer loop variable for iterating through image URLs
$t String used for transforming URLs into the form required

How It Works
This recipe takes the base Flickr stream URL and appends the account name in $account to it. This
HTML page is then returned using the file_get_contents() function, and its contents are stored in
$page. The @ symbol prefacing the function suppresses any error messages should the call fail. And,
if it does fail, a value of FALSE is returned in a single-element array, as follows:

Next, the array that will hold the image URLs, $pics, is initialized and the program screen

scrapes the HTML page to locate the position of the RSS link within it. Screen scraping is the term
given to the process of extracting information from HTML pages that hasn’t been explicitly provided
to you in an API or via another method. Actually, there are Flickr APIs to do this, but these three lines
of code are simpler and represent all the coding required to find the RSS feed on the page and return
its URL to the variable $rss, like this:

Using this URL, the RSS feed is fetched and placed in the string $xml, from where it is

transformed into a SimpleXML object in $sxml. This is a DOM (Document Object Model) object that
can be easily traversed. To do this, a foreach loop iterates through the items in $sxml->entry,
placing each in a new object called $item:

Then, a for loop is used to iterate though all the items in $item->link, which contains the

URLs we are interested in. If $item->link[$j][’type’] has the value image, then $item-
>link[$j][’href’] will contain a URL, so this is extracted into the variable $t, first removing any
_t or _m sequences from the URL since they represent different sizes of the photo that we are not
interested in. Once $t contains the URL wanted, its value is assigned to the next available element of
the $pics array, and the foreach loop continues, as follows:

The recipe returns a two-element array with the first element containing the number of photos
found, calculated using the count() function, and the second contains an array of the photo URLs:

Figure 10-6 shows a photo taken at random from the list returned and entered into a browser. In

this case, it has the following Flickr URL:

FIGURE 10-6 The recipe determines the exact URL required for each photo.

How to Use It
To return the most recent photos in a public Flickr stream, just pass the Flickr account name to the
recipe, like this:

You can then choose how to proceed depending on the value of $result, like this:

Or to display the images, you could use code such as this:

Users of Flickr’s API are requested to make polling requests such as this no more than once per

hour, so you are recommended to save the stream to file or a database and serve it from the cache in
the future, only looking for new photos if 60 minutes have expired.

The Recipe

 GetYahooAnswers()
The Yahoo! Answers web site contains questions and answers on just about any subject you can
imagine, all supplied by users of the service. Sometimes this can mean that both the questions and the
answers can be foolish or humorous, but equally they can also provide just the answer you are
looking for to a problem or question you have.

That makes them ideal to drop in alongside informational web pages, in much the same way as
you might link to or display dictionary definitions or encyclopedia entries. Figure 10-7 shows one of
the Q&As returned by this recipe in response to a search for the term gardening.

FIGURE 10-7 With this recipe, you can add the wealth of knowledge from Yahoo! Answers to your
web site.

About the Recipe
This recipe takes a search term and returns any matches for it found at Yahoo! Answers. Upon
success, it returns a two-element array with the first value being the number of question/answer pairs
returned, and the second an array of the Q&As, containing a sub-array in each element, with the
following five values:

• The subject
• A Unix timestamp representing the date the question was posted
• The question
• The answer
• A URL pointing to the original Q&A

On failure, it returns a single-element array with the value FALSE. It requires this argument:

• $search A search string.

Variables, Arrays, and Functions
$id String containing a Yahoo! Answers API key
$url String containing the API URL with the $id and $search appended
$xml String containing the contents of $url
$sxml SimpleXML object created from $xml

$qandas Array containing the questions and answers returned
$question SimpleXML object extracted from $sxml->Question
$s String containing the current subject
$t String containing the current timestamp
$q String containing the current question
$a String containing the current answer
$l String containing the current link

How It Works
This recipe calls the Yahoo! Answers API URL in $url, which has been preconfigured with the
search query in $search (after ensuring it is suitably encoded for use in a URL by passing it through
the rawurlencode() function), and a valid Yahoo! Answers API key, taken from $id, like this:

In the code provided, the API key shown must be replaced with your own API key that you will

obtain from developer.yahoo.com/wsregapp. Check the box that says Generic, No user
authentication required, enter your details, and click the Continue button to be provided with your
new API key. Or, if you already have any Yahoo! API keys, you can view them at
developer.yahoo.com/wsregapp/?view. If you see generic IDs, then any of those will work.

Once the API has been successfully called with the required arguments using the
file_get_contents() function (prefaced by an @ symbol to suppress any error messages if it fails),
the result is returned to the string $xml. If $xml is empty or has the value FALSE, then FALSE is
returned. Otherwise, the contents of $xml are converted into a SimpleXML object and placed in
$sxml. An array to hold the questions and answers returned, $qandas, is also initialized, like this:

Now all the Q&As are extracted from $sxml using a foreach loop, with each element of

$sxml->Question being assigned to the object $question. From there, the actual parts of each Q&A
—the subject, timestamp, question, answer, and link—are retrieved and placed in the variables $s,
$t, $q, $a, and $l, as follows:

http://developer.yahoo.com/wsregapp
http://developer.yahoo.com/wsregapp

The link in $l is a URL pointing to the original question and answer at Yahoo! Answers, as

shown in Figure 10-8.

FIGURE 10-8 The question about savvy gardening as displayed on the Yahoo! Answers web site.

The variables $s, $q, and $a then have any HTML tag symbols such as <, >, or & replaced
with their entity equivalents of <, >, &, and so on:

At the same time, any \n newline characters are replaced with
 tags. If those strings

weren’t converted to use HTML entities, then any tags posted in those fields would be treated as
HTML markup, rather than displayed. We want to keep the tags viewable, as sometimes they are
needed to help provide HTML or other programming and web development–related answers.

The five short variables are then grouped into an array and assigned to the next available
element of $qandas. Once all have been processed, a two-element array is returned, the first of

which is the number of Q&As returned, and the second is an array of sub-arrays, containing all the
details:

How to Use It
Using this recipe is as easy as ensuring you have created and set up an API key for it (as described in
the previous section) and then simply calling the recipe, passing it a search query, like this:

An error message is displayed if $result[0] has the value FALSE. Otherwise, the returned

results are all contained in sub-arrays, each within an element of $result[1], and which you could
access like this for the first Q&A:

The second Q&A is then accessible like this (and so on):

However, it’s much better to use a foreach loop to iterate through all the elements of

$result[1], placing each one in another variable such as $qa. From there, the various values are
easily retrieved, like this (in which the time zone is first set to ensure valid dates and times):

The only unusual thing of note here is the use of the date() function on $qa[1]. Because this

value is a Unix timestamp, you can reformat it any way you like using date(). So, by passing date()
the argument ’M \’y’, the three-letter month abbreviation, and the shorthand for the year appear next
to each message.

The Recipe

 SearchYahoo()
Yahoo! has opened up its search engine to third-party developers using an API. This means you can
have your applications search for relevant information in the Yahoo! database and then act on it
accordingly.

However, before using this API you should be aware that you will need a valid Yahoo! API key,
and that Yahoo! now charges for the results it returns. The pricing schedule (in U.S. dollars) is at
developer.yahoo.com/search/boss/#pricing, and currently starts at 0.04 cents per search made (or 25
searches per cent/1,000 searches for 40 cents). For details on signing up for the service, please refer
to developer.yahoo.com/search/boss. Figure 10-9 shows this recipe being used to find web sites
relating to the query yahoo search api.

http://www.developer.yahoo.com/search/boss/#pricing
http://www.developer.yahoo.com/search/boss

FIGURE 10-9 Use this recipe to add Yahoo! search results to your web site.

About the Recipe
This recipe takes a search term and returns results from the Yahoo! search engine. Upon success, it
returns a two-element array with the first value being the number of results returned, and the second
an array of result details, containing a sub-array in each element, with the following values:

• The title
• The abstract
• The URL to be displayed
• The URL for clicking through to

On failure, it returns a single-element array with the value FALSE. It requires these arguments:

• $search A search string.
• $start The first result to return.
• $count The maximum number of results to return.

Variables, Arrays, and Functions
$id String containing a Yahoo! search API key
$url String containing the API URL with $id and $search appended
$xml String containing the contents of $url
$sxml SimpleXML object created from $xml
$data Array containing the results returned
$result SimpleXML object extracted from $sxml->resultset_web->result

$t String containing the current title
$a String containing the current abstract
$d String containing the current display URL
$c String containing the current click-through URL

How It Works
Because the search query in $search will be passed to the API as part of a URL, it is first encoded
using the rawurlencode() function. Then $search, along with a valid Yahoo! search API key, in
$id, is incorporated with the API URL to create the string $url, which is then passed to the
file_get_contents() function to retrieve the results into the variable $xml, as follows:

It’s important to remember that the string $id must contain your own unique Yahoo! search API

key, as explained in the previous recipe.
Once these details have been sent to the API, it will return its result in $xml. If it contains the

empty string or the value FALSE, then FALSE is returned. An @ symbol is also placed in front of the
file_get_contents() call to suppress any error messages:

A bit of work then needs to be done to transform the contents of $xml because the function that

will be used to process the XML data, simplexml_load_string(), doesn’t seem to like the
CDATA that Yahoo! sometimes returns. In XML, a CDATA section is a piece of content that is
marked for the parser to interpret as only character data, not markup. So the next few lines of code
remove the <![CDATA[and]]> tags, leaving behind just the contents:

Then these contents are made XML-safe by saving all examples of & by converting them to

the string [ampersand] and then changing any & symbols that remain into & entities. The
[ampersand] strings are then changed back to & entities. After that, all , , and <wbr>
tags (the only ones Yahoo! search seems to employ) are changed into their HTML entity equivalents:

At this point, the XML data should be in a format acceptable to SimpleXML, so the contents of

$xml are then processed into a SimpleXML object and placed in the object $sxml, and the array that
will be used to store all the result details, $data, is also initialized, like this:

Now, to retrieve all the results, a foreach loop is used to iterate through $sxml-

>resultset_web->result, placing each element into the object $result. From here, the title,
abstract, display URL, and click-through URL are retrieved into the variables $t, $a, $d, and $c. If
$a, the abstract, has a value, then these four variables are grouped into an array and inserted into the
next available element of $data. This check is made because sometimes Yahoo! search results don’t
have an abstract, and I choose to ignore such results. Here are the contents of the loop:

Once $data has been populated, a two-element array is returned, with the first element being the

number of results returned and the second an array, each element of which is a sub-array containing
the parts of each result:

How to Use It
As long as you have assigned a valid Yahoo! search API key to $id in the recipe, you can call it by
passing a query string, the number of the first result to return, and the maximum number of results to
return, like this:

In this case, the first result requested is 1, and up to 10 results are wanted. If $results[0] is

FALSE or has the value 0, then no results were retrieved. Otherwise, the first result is accessible in
the following way:

And the second result, like this (and so on):

The best way to process these results, though, is with a foreach loop, placing each array of

results temporarily in a new array such as $result, and then accessing them from there, like this:

Yahoo! requires that you observe their terms and only ever offer the click-through URL to your

users so that their click tracking will be applied. So make sure you don’t use the Display URL in an
 tag.

If you wish to allow your users to page through the results, you can change the value of the start
argument and re-call the recipe.

The Recipe

 GetYahooStockNews()
If you offer any finance-related services, you can add some great content to your site by using this
recipe to retrieve stock information from the Yahoo! Finance web site. With it, you can fetch the latest
chart for a ticker symbol, along with all the latest news about that stock. Figure 10-10 shows it being
used to display information for Apple Computer, Ticker Symbol: AAPL.

FIGURE 10-10 Add the latest stock news and charts to your web site with this recipe.

About the Recipe
This recipe takes a stock ticker such as AAPL or MSFT and returns news and information about the
stock. Upon success, it returns a three-element array (the first of which is the number of news items
returned) and a sub-array of two URLs (the first of which is a small—and the second a large—
intraday chart for the stock), while the third element is a sub-array containing the following report
details:

• Title
• Publishing site
• Date
• Story summary/description
• URL to the original story

On failure, it returns a single-element array with the value FALSE. It requires this argument:

• $stock A valid stock ticker symbol such as YHOO or JPM.

Variables, Arrays, and Functions
$url String containing the Yahoo! Stocks URL
$check String containing the result of checking whether a ticker symbol exists
$reports Array containing returned news reports
$xml String containing news reports in RSS format

$sxml SimpleXML object created from $xml
$flag Boolean value set if a story title is too similar to another
$title String containing the current title
$temp Array used to extract the publishing site from the title
$site String containing the current publisher of the story
$desc String containing the current description/summary
$date String containing the current story date
$percent Integer representing how similar one title is to another
$url1 String containing the URL of a small stock chart
$url2 String containing the URL of a large stock chart

How It Works
This recipe starts by ensuring the value entered for the stock ticker symbol in $stock is in uppercase
using the strtoupper() function. Then file_get_contents() is called, passing the values in $url
(the main Yahoo! Finance URL) and $stock to see whether any information is returned. If the string
Invalid Ticker Symbol appears anywhere in the returned text saved in $check, then there is no such
stock and so a single-element array with the value FALSE is returned as follows (in which the time
zone is first set to ensure valid dates and times):

Otherwise, the array $reports, which will hold the news reports returned later, is initialized

and $xml is loaded with the XML string returned from calling the RSS feed for the ticker in $stock.
Next, because the SimpleXML routines that will be used to process the XML don’t seem to like
CDATA (character data; see the previous recipe, SearchYahoo() for more details), the next few
lines of code massage the data into a format it will accept by removing or translating certain tags,
replacing them with entities it understands. Here’s the code that performs these actions:

After this, $xml is passed to simplexml_load_string() and the resulting object created from

it is placed in $sxml:

From here, a foreach loop iterates through all the elements in $sxml->channel->item, each

time storing them in the object $item to make them easier to access, as follows:

Inside the loop, the Boolean variable $flag is set to FALSE at the start of each iteration. Later

on, if a story title appears too similar to a previously returned title, this flag will be changed to the
value TRUE, then the URL of the original story is extracted into $url, and the title is also retrieved in
$title. However, because the title also contains the name of the publishing web site in brackets, the
explode() function is used to split the title into two elements of an array in $temp. The first now
contains just the title, so that is saved back to the variable $title. The second then has the brackets
and the word at removed, and the resulting publishing site name is placed in $site. These are the
lines of code responsible:

The description (or summary) is then placed in $desc and the date, which is returned as a

timestamp, is converted to a friendly string using the strtotime() and date() functions, and saved
in $date:

Next, a for loop checks through all the news reports so far saved in the $reports array. Using

the similar_text() function, each title is compared to the current one (first converting both to
lowercase using the strtolower() function), with a score of between 0 and 100 percent being
allocated to the variable $percent, depending on how similar the strings are to each other. A score
of 0 means totally different, and 100 means identical:

After some testing, I chose a value of 70 percent or greater to mean that the same or a similar

story has already been saved in the array and, if so, the variable $flag is set to TRUE and a break
command is issued to exit the loop.

Finally, within the main loop, the value of $flag is checked. If it’s not TRUE and if the story
summary doesn’t relate to an item on a paid-for subscription site (indicated by the string [$$] in the
title), and if the value in $desc isn’t the empty string, then the story details are grouped together into
an array that is inserted into the next available element in the $reports array:

Lastly, the two variables $url1 and $url2 are assigned the URLs of a small (192 × 96 pixels)

and a large (512 × 288 pixels) chart of the most recent (or current) day’s trading of $stock:

A three-element array is then returned by the recipe, the first of which is the number of news

items returned, the second is a sub-array of two elements containing the small and large chart URLs,
and the third element is the $reports array containing all the news stories:

How to Use It
To retrieve stock data using this recipe, all you have to do is pass the name of a valid stock ticker
symbol to it, like this:

If $results[0] is FALSE, then an error message is displayed. Otherwise, it contains the number

of news stories returned, and the value of $results[1] will be an array containing a pair of URLs
for a small and a large chart of the stock, which you can display using one or the other of the
following lines of code:

Each of the news stories will be supplied with separate details, which can be accessed like this

for the first story:

And the second story’s details can be accessed like this (and so on):

But the best way to iterate through the array of stories is to use a foreach loop, assigning the

value of each element of $results[2] to another array such as $result (singular as opposed to
plural), like this:

Because all the individual parts of the story are returned separately, you can rearrange and

display each story exactly the way you want. In the preceding code, each title in $result[0] is
displayed as part of a link to the original story in $result[4], then the originating site in
$result[1] and the date in $result[2] are placed inside brackets, and a
 tag is displayed.
Finally, the story in $result[3] is displayed, followed by a couple more
 tags.

As with some of the other similar recipes to this, please be aware that you are using servers and
data belonging to other organizations, so make sure you have the relevant permissions required to
republish any data. Please also respect the bandwidth and CPU cycles of these companies by caching
the results returned, and only requesting updates when necessary.

The Recipe

 GetYahooNews()
In the last of this chapter’s Yahoo! related recipes, you can request the latest news results for a given
search query. What this recipe does is load in the Yahoo! News RSS feed for a query and extract the
various elements into arrays, which are then returned to your program. Figure 10-11 shows it being
used to retrieve all the latest news for the query climate change.

FIGURE 10-11 With this recipe, you can fetch the news headlines for any search query.

About the Recipe
This recipe takes a search query and returns news items from news.yahoo.com based on it. Upon
success, it returns a two-element array, the first of which is the number of news items returned, and
the second is a sub-array containing the following details:

• Title
• Publishing site
• Date
• Story summary/ description
• URL to the original story

On failure, it returns a single-element array with the value FALSE. It requires this argument:

• $search A standard search query.

Variables, Arrays, and Functions
$reports Array containing returned news reports
$url String containing the Yahoo! News URL
$xml String containing news reports in RSS format
$sxml SimpleXML object created from $xml
$flag Boolean value set if a story title is too similar to another
$date String containing the current date

http://news.yahoo.com

$title String containing the current title
$temp Array used to extract the publishing site from the title
$site String containing the current publisher of the story
$desc String containing the current description/summary
$percent Integer representing how similar one title is to another

How It Works
This program starts by initializing $reports, the array that will hold all the news reports. Then, $url
is assigned the location of the Yahoo! News RSS feed for the search term in $search—after
$search has been converted to a form that can be passed in a URL using the rawurlencode()
function. The feed is then called up using the file_get_contents() function, preceded by an @
symbol to suppress any error messages. The result is then placed in $xml. If it is FALSE or the empty
string, then a single-element array containing the value FALSE is returned, as follows (with the time
zone first set to ensure valid dates and times):

Then, because the SimpleXML routines to be used later don’t appear to work with CDATA

(XML character data; see the earlier recipe, SearchYahoo(), for details), the next few lines remove
the CDATA tags and convert characters that might clash with SimpleXML into entities it understands.
Finally, $xml is converted into a SimpleXML object using the simplexml_load_string() function,
and the result is stored in $sxml, as follows:

Next, a foreach loop is used to iterate through all the elements of $sxml->channel->item,

assigning each in turn to the object $item. Inside the loop, the first thing that happens is the variable
$flag is set to FALSE. If it is later set to TRUE, then a title was found that was too similar to a
previous one. The variable $url is then extracted and the string $date is created from a timestamp by
using the strtotime() and date() functions. After that, the title and publishing site name are
extracted into $title and $site, after exploding the title into the array $temp to split $site out of
the title, where it was stored inside a pair of brackets. The news story is then saved into the variable
$desc, like this:

To prevent similar stories being returned, a for loop is then used to iterate through all the saved

stories in the $reports array. Using the similar_text() function, each previous title is compared
to the current one, and if it is more than 70 percent similar, the variable $flag is set to TRUE and a
break command is issued to break out of the loop, as no further duplication checking is necessary, like
this:

At the tail end of the loop, as long as $flag doesn’t have a value of TRUE and $desc actually

contains some text, then the story parts are grouped into an array that is then assigned to the next
available element of $reports:

The recipe returns a two-element array in which the first element is the number of news stories

returned and the second is the $reports array:

How to Use It
To use this recipe, you pass it a search term, like this:

If $results[0] has the value FALSE or zero, then no stories were returned. Otherwise, you can

access the stories in the following manner, which retrieves all the parts of the first story:

And the second result, like this (and so on):

The best way to display the results, though, is to use a foreach loop to iterate through each

element of $results[1], placing each in another array such as $result (using the singular version
of the variable name for single items extracted from the array), like this:

In this example, each title in $result[0] is made the text of a hyperlink to the story’s original

URL in $result[4], and the site and date in the variables $result[1] and $result[2] are
displayed next to it in brackets. After a
 tag, the story in $result[3] is then displayed,
followed by a couple more
 tags.

To display Yahoo! News results to their best effect, you will probably also want to first echo or
print a UTF-8 <meta> tag in the <head> section of your web page so that any unusual characters
display correctly. The correct meta tag looks like this:

The Recipe

 SearchGoogleBooks()
As well as having already scanned in hundreds of thousands of out-of-copyright books, as I write this,
Google is in the process of making agreements with several book publishers over digitizing their in-
copyright publications. This means that Google Books is likely to become an ever more useful
research source that we can add to our toolkit. Figure 10-12 shows this recipe being used to query the
database for the term Mark Twain.

FIGURE 10-12 Add the vast resource of Google Book Search to your web site with this recipe.

About the Recipe
This recipe takes a search query and returns matching books found in the Google Books database.
Upon success, it returns a two-element array, the first of which is the number of books returned and
the second being an array containing details about those books. On failure, it returns a single-element
array with the value FALSE. It requires these arguments:

• $search A standard search query.
• $start The first result to return.
• $count The maximum number of results to return.
• $type The type of result to return. If this is ’none’, then all books are returned; if ’partial’, then

books with partial previews are returned; or if ’full’, then only books with full previews are
returned.

Variables, Arrays, and Functions
$results Array containing returned book details
$url String containing the Google Books API URL
$xml String containing the result of loading in $url
$sxml SimpleXML object created from $xml
$title String containing the current book’s title
$author String containing the current book’s author
$pub String containing the current book’s publisher
$date String containing the current book’s publication date

$desc String containing the current book’s description/summary
$thumb String containing the URL of the current book’s cover thumbnail
$info String containing the URL of the current book’s information
$preview String containing the URL for previewing the current book

How It Works
This recipe starts off by initializing the array $results, which will be used to store the details of any
books returned. Then, $url is built up from the URL of the Google Books API, $search, converted
into a form that can be passed in a URL using rawurlencode(), and the values of $start, $count,
and $type, like this:

The result of calling this URL using file_get_contents(), prefaced by an @ symbol to

suppress error messages, is placed in the string variable $xml, which is then passed to
simplexml_load_string() to be converted into the object $sxml. But, just before this, all
occurrences of the string dc: in $xml have the colon removed for the benefit of the SimpleXML
routines, which don’t seem to like colons in XML field names:

The $sxml object is then iterated through using a foreach loop, with each element in $sxml-

>entry being assigned to the object $item for ease of access, as follows:

The title, author, publisher, date, and description are all retrieved and placed in the variables

$title, $author, $pub, $date, and $desc. Then there are three URLs to fetch, which are the
thumbnail image, a link to the information page at Google Books, and the link to the preview page at
Google Books. These are placed in $thumb, $info, and $preview.

Next, a few bits of sorting out need to occur. First, if $pub doesn’t have a value, then the value

in $author is given to it. Similarly, if $preview is found to not link to an actual preview of the book,
then it is set to FALSE. If the description in $desc is missing, it is assigned the value (No
description), and if it is determined that there is no thumbnail image specific to this book, a link to a
generic cover image at Google Books is assigned to $thumb. Here are the lines of code that perform
these actions:

At the tail end of the loop, all these items of information are grouped together into an array,

which is then assigned to the next available element in $results:

The recipe returns a two-element array in which the first element is the number of books

returned and the second is the $results array:

How to Use It
To use this recipe, pass it a search query and arguments telling it which number result to start
returning details from, the maximum number of results, and the type of results. For example, to return
up to 20 books relating to the search Mark Twain, starting at the first result, and where any or no
summary is available, you would use code such as this:

If $result[0] is FALSE or zero, then no results were returned. Otherwise, the details returned

for the first book will be in the array $result[1] and can be accessed like this:

The second book’s details can therefore be accessed like this (and so on):

However, you will probably want to use a foreach loop to iterate through the $result[1]

array, passing each element to another array with a name such as $book, like this:

Because all eight items are provided separately, you can choose exactly how you wish to lay out

a book’s details. In the preceding code, the thumbnail image in $book[5] is displayed aligned to the
left and with a one-pixel border. Then, the book title in $book[0] is used as a text hyperlink for the
book’s information page in $book[6]. Alongside this, the book’s publisher and publication date in
$book[2] and $book[3] are added within brackets, followed by a
 tag and the book’s
description in $book[4].

After this, if the book has a preview, identified by $book[7] having a value, then a link is
provided to it, enclosed in brackets. Finally, the book thumbnail’s left alignment is cleared using the
tag <br clear=’left’ />, and then another
 tag is used to separate book details from each
other.

If you want to only return results for books where the whole text is available in the summary,
generally because they are out of copyright control or because their authors have allowed the entire
contents to be released, just replace the preceding call to the recipe with this one:

Or, to allow results with either partial or full previews, you could use:

You can also support paging through the search results by changing the start argument for the

book number at which returned results should begin, and re-calling the recipe.

The Recipe

 ConvertCurrency()
The final recipe in this chapter allows you to produce up-to-date currency conversions between 34
major currencies. The data used is supplied by the European Central Bank and is based on the prices
of each currency relative to the euro at the previous trading session’s close of business. Figure 10-13
shows the recipe being used to convert 100 U.S. dollars into UK pounds.

FIGURE 10-13 Using this recipe, you can instantly convert between 34 currencies.

About the Recipe
This recipe takes a value and currencies to convert it from and to. Upon success, it returns a floating
point number, accurate to two decimal places, representing the value of the amount given when
converted to the new currency. On failure, it returns the value FALSE. It requires these arguments:

• $amount The amount of money to convert.
• $from The abbreviation for the source currency.
• $to The abbreviation for the destination currency.

The available currencies and their abbreviations are:

AUD = Australian Dollar
BGN = Bulgarian Lev
BRL = Brazilian Real
CAD = Canadian Dollar
CHF = Swiss Frank
CNY = Chinese Yuan
CZK = Czech Koruna
DKK = Danish Krone
EEK = Estonian Kroon
EUR = European Euro
GBP = British Pound
HKD = Hong Kong Dollar
HRK = Croatian Kuna
HUF = Hungarian Forint
IDR = Indonesian Rupiah
INR = Indian Rupee
JPY = Japanese Yen
KRW = South Korean Won
LTL = Lithuanian Litas
LVL = Latvian Lats
MXN = Mexican Peso
MYR = Malaysian Ringgit
NOK = Norwegian Krone

NZD = New Zealand Dollar
PHP = Philippine Peso
PLN = Polish Zloty
RON = Romanian Lei
RUB = Russian Ruble
SEK = Swedish Krona
SGD = Singapore Dollar
THB = Thai Baht
TRY = Turkish Lira
USD = U.S. Dollar
ZAR = South African Rand

Variables, Arrays, and Functions
$url String containing the URL for the European Central Bank exchange rates page
$data String containing the result of loading in $url
$ptr1 Integer pointer to the start of the currency data
$ptr2 Integer pointer to the end of the currency data
$main Array in which the currencies and prices are stored
$lines Array of data lines extracted from $data
$line String containing a line of data from $lines
$l String containing the left half of a currency/value pair
$r String containing the right half of a currency/value pair

How It Works
This recipe loads into the variable $data the XML page that the European Central Bank maintains of
currency rates compared to the euro. If no data is returned, then there was an error and FALSE is
returned, like this:

Otherwise, instead of converting the XML data into an object as some of the other recipes do,

the information needed is easily extracted with just a few PHP commands. First, the start and end of
the section of XML of interest are put in the variables $ptr1 and $ptr2. This is done using the
strpos() function to search for certain strings in the file. The contents of $data are then cropped
down to just that section using the substr() function, then a few keywords, tags, and other pieces of
XML are replaced with values of more use to the recipe, and whitespace is also removed, like this:

This leaves $data containing just 33 lines, each of which is a currency/value pair in relation to

the euro at the time of closing of the previous day’s trading session. Each line is separated from the
others with an @ symbol, and the currency abbreviations are separated from their values by | symbols.
Using these as separators, the contents of $data are split into the array $lines at each of the @
symbols using the explode() function, while prior to this the array $main is created, ready for
storing the results of the data extraction:

Then, using a foreach loop, each individual line is processed into the associative array $main

by using explode() to separate the currencies from their values at the | symbols. The parts are placed
in $l and $r using the list() function, and from there the values are assigned to the $main array:

At this point, the $main array has 33 currencies, each one accessible by its abbreviation. For

example, $main[’DKK’] will return the value of the Danish krone against the euro. But there is one
currency missing because all the other values are set against it, and that’s the euro, with an
abbreviation of EUR. Therefore, that gets added to the $main array with a value of 1, because that is
its value in relation to itself:

Next, both the values in $from and $to are set to uppercase (if they aren’t already) using the

strtoupper() function, and then they are also checked to ensure they both have an associated value
in the $main array. If either of them doesn’t, then an unknown abbreviation was used and so the value
FALSE is returned, as follows:

Otherwise, a quick calculation converts one currency to another using the formula New value =

Original value / From value * To value. The result is then passed through the sprintf() function to
ensure it has exactly two decimal places and the final result is then returned:

If you need more decimal places in your returned values, you can change the %.02f to another

string such as %.04f for four decimal places, and so on.

How to Use It
To use the recipe, you pass it a value to convert, along with abbreviations representing currencies
from and to which the value should be converted, like this:

If you plan to call this function a lot, you would be well advised to save the contents of $data

once per day and return conversions based on the saved values. This will stop your program from
excessively calling the ECB server, which is not necessary anyway because the data there is only
updated daily.

The Recipe

CHAPTER 11
Incorporating JavaScript

JavaScript is a powerful programming language in its own right. Most of the things you can do with
other languages like Java, C, and PHP can also be done with it (although obviously you can’t create
compiled programs such as device drivers and the like). Its great utility lies in the fact that it runs
inside a web browser, and so if you interact with it, you can substantially increase the dynamic
features of your web site by adding Web 2.0 functionality such as Ajax calls, the manipulating of
elements within a web page, assisting user input, and a whole lot more.

Although Part III of this book is dedicated solely to JavaScript, the recipes in this chapter are
closely related to PHP, which is why they appear here. Even if you have never used JavaScript
before, you should at least understand what is going on, and see how to modify the recipes for your
own purposes.

In particular, including a few JavaScript recipes in this PHP section of the book illustrates how
to embed JavaScript within or alongside PHP code, something you will frequently find yourself
having to do on more complex web projects.

 CreateAjaxObject()
Ajax is the power behind the vastly improved user interaction of Web 2.0. It stands for Asynchronous
JavaScript and XML, which is really a contrived acronym for a background call made to a web
server. Using this recipe, you can easily create a new Ajax object that can be used to send and request
information to and from a web server in the background, without the user being aware of it.

Unlike in the past, when a POST or GET stopped action in the browser until it completed, with
Ajax the browser handles the request without disrupting the web application.

Figure 11-1 shows a simple HTML file that has been fetched from the web server and inserted
into a div element, using this recipe in conjunction with the next one, GetAjaxRequest(). This
recipe is repeated as JavaScript Recipe 85 because JavaScript is the other half of the Ajax equation
to PHP.

FIGURE 11-1 Using Ajax techniques, you can load new elements into a page in the background.

About the Recipe
This recipe doesn’t take any arguments but returns an XMLHttpRequest object upon success;
otherwise, it returns false.

Variables, Arrays, and Functions
request XMLHttpRequest object or the value false on failure

This recipe creates an Ajax object ready for making background calls to the web server. It
requires the following argument:

• callback The function to pass the returned data to once it has been retrieved.

Variables, Arrays, and Functions
Ajax Local Ajax object
readyState Property of ajax containing its state
Status Property of ajax containing its status
responseText Property of ajax containing the text returned by the Ajax call
XMLHttpRequest() Function used by non-Microsoft browsers to create an Ajax object
ActiveXObject() Function used by Microsoft browsers to create an Ajax object

How It Works
Since the Ajax request object has to be created in different ways for different browsers, this recipe
uses pairs of try … catch() statements to try each method in turn until one works or until all have
been tried and false is returned, like this:

The first try works with any browser but Internet Explorer version 6 or earlier, the second is
for Internet Explorer 6, and the third is for Internet Explorer 5. Therefore, the tests are made roughly
in order of popular browser usage.

Assuming one of the try statements succeeds, ajax is a new Ajax object; otherwise, it contains
the value false. If it isn’t an object, then the recipe will return false; otherwise, the following code
attaches an inline anonymous function to the onreadystatechange event of ajax, as follows:

This subfunction is called every time the readyState property of ajax changes, and checks

whether it has a value of 4, the status property has a value of 200, and the responseText property
is not null. If all these tests are satisfied, it means an Ajax request was successful, so the function
passed in the callback argument is called, passing it the data returned in this.responseText.

The actual Ajax call is not made by this recipe. It merely catches the event ready to populate id
with the value that is returned by an Ajax call. The Ajax call itself is made in the next two recipes:
GetAjaxRequest() and PostAjaxRequest().

How to Use It
Generally, you will not use this function directly if you call either GetAjaxRequest() or
PostAjaxRequest() to handle your Ajax calls, because they will call it for you—as in the following
code, which loads some data into a div element:

The function todiv() is passed to the recipe (note that parentheses have been omitted from the
function; otherwise, only the value returned by it would be passed) and is later called back by it when
the returned data is ready. At that point, it retrieves the data using the this keyword and assigns it to
the innerHTML property of the div using the Html() recipe.

You need to know that Ajax is a tightly controlled process to prevent hackers using it to inject
malevolent code from other servers. Therefore, only files or programs on the same server as the one
containing the Ajax can be accessed. For example, if you wanted to pull a copy of the Google home
page into a div element on your web site, it would not be possible and the Ajax call would fail.

This code is the same as JavaScript Recipe 84, and you will need to load in the file WDC. js to
the <head> section of your web page (including adding any server and/or path prefix) as follows in
order to use this function:

The Recipe

 GetAjaxRequest()
The previous recipe provides a means of creating an XMLHttpRequest object, with which this recipe
makes a POST request to the server to request some data to be transferred back to the browser. Both of
these requests happen seamlessly in the background with the user generally unaware that such things
are taking place. A POST request is where data is sent to the server within header messages, rather
than as part of a URL tail (or query string), as is the case with GET requests.

Figure 11-2 shows this recipe being used to load Facebook’s mobile web site main page at
m.facebook.com, replacing the contents of a <div>…</div> pair of tags.

http://m.facebook.com

FIGURE 11-2 A one-line PHP program interfaces with a browser via Ajax to insert a web page into
an HTML element.

About the Recipe
This recipe fetches data from a web site in the background. It requires the following arguments:

• callback The function to pass the returned data to once it has been retrieved.
• url The URL with which to communicate.
• args Any arguments to pass to the URL.

Variables, Arrays, and Functions
nocache Local variable assigned a random string to prevent caching
ajax Local variable assigned an Ajax object
CreateAjaxObject() Function to return a new Ajax object
open() Method of ajax for opening a request
send() Method of ajax for sending a request
Math.random() Function to return a random number

How It Works
This recipe uses the GET method to communicate with a server, which passes data in the tail of the
URL called a query string. However, browser caching will often interfere with repeated requests of
this type, serving up only the cached data from previous requests. Therefore, the variable nocache is
created and assigned a random string to ensure that no two GET calls will be the same and therefore
will not be cached:

Next, the variable ajax is assigned the new Ajax object returned by calling
CreateAjaxObject(), and if the result is not true (meaning the call was unsuccessful), a value of
false is returned:

If execution reaches this point, the Ajax object was successfully created, so the open method of
ajax is called, passing it the string ’GET’ for the type of request. This is followed by a string
comprising the URL to be called that was passed in url, the arguments supplied in args, the nocache
string just created, and the value true to tell the browser to make an asynchronous call (a value of
false would tell it to make a synchronous call):

Finally, the call is made and the value true is returned to indicate success:

How to Use It
To use this recipe, decide what data you wish to load and from where, then call the recipe, passing it
a function to call back when the data has been retrieved, along with any arguments that require
passing.

The following example is somewhat interesting in that it gets around the problem of being unable
to access web sites other than the one the Ajax web page came from by calling a PHP script on the
server, which then fetches the requested data without a hitch:

The ajaxget.php program is a very simple one-liner that looks like this:

If your server supports PHP (and most do), you can use the same script on it to check whether

the server has been sent a query string that looks something like url=http://website.com?args=vals.
(In the case of the preceding example, the args=vals section is specified in the line that assigns the
string url=http://m.facebook.com/ to the args variable.)

The ajaxget.php script then uses the file_get_contents() PHP function to fetch the requested
data (in this case, the Wikipedia home page), which is then returned using the PHP echo command,
which outputs the data it just fetched.

The todiv() callback function, which was passed to GetAjaxRequest(), is then called back
and passed the retrieved data, which it then promptly inserts into the innerHTML property of the div.

As with the previous Ajax example, the restrictions put in place by browsers require that the
example and PHP files reside on the same server, so here’s a link you can try it out with:
webdeveloperscookbook.com/PHP/ajaxget.html.

This code is the same as JavaScript Recipe 85, and you will need to load in the file WDC. js to
the <head> section of your web page as follows in order to use this function:

The Recipe

 PostAjaxRequest()
This recipe is very similar to GetAjaxRequest() except that it uses a POST request to interact with
the web server. In Figure 11-3, the Facebook mobile web page has been pulled in via Ajax.

This is the same code as JavaScript Recipe 87 and is loaded in from the WDC.js file, like this:

http://website.com?args=vals
http://m.facebook.com/
http://www.webdeveloperscookbook.com/PHP/ajaxget.html

FIGURE 11-3 Ajax works equally well with either GET or POST requests, as shown here.

About the Recipe
This recipe fetches data from a web site in the background. It requires the following arguments:

• callback The function to pass the returned data to once it has been retrieved.
• url The URL with which to communicate.
• args Any arguments to pass to the URL.

Variables, Arrays, and Functions
contenttype

Local variable containing the content type used for URL-encoded
forms

ajax Local variable assigned an Ajax object
CreateAjaxObject() Function to return a new Ajax object
open() Method of ajax for opening a request
setRequestHeader() Method of ajax for setting various headers
send() Method of ajax for sending a request
Math.random() Function to return a random number

How It Works
This is the last of the JavaScript-only recipes in this part of the book. It’s fairly similar to the
previous one, Get Ajax Request, except that it handles the passing of arguments back to the server in a
slightly different manner, using a POST request.

It starts by setting the content type of the data in the request being sent to that of a URL-encoded
form. It then creates the Ajax object with a call to CreateAjaxObject(), and if the result is not
true, returns the value false since it cannot proceed any further:

If the object creation was successful, it goes on to open up the request, passing a type of

’POST’, the URL, and the value true, for an asynchronous request:

Next, the content type, content length, and connection headers are sent:

Finally, the request is sent and the value true is returned to indicate success:

How to Use It
To use this recipe, you must first include the WDC.js file into the <head> section of your web page,
like this:

You call this recipe in exactly the same way as GetAjaxRequest()—it’s just that the process

used by the recipe to perform the Ajax is a POST, not a GET request. Therefore, the target of the
request also needs to respond to the POST request, as is the case with the following example, which
fetches the Amazon mobile web site:

The URL supplied to the recipe is the PHP script ajaxpost.php, which is in the same folder as

the example file. It’s another simple one-line PHP script, which looks like this:

This is almost the same as the ajaxget.php script, except that it processes POST requests. You

can copy it to your own server, where it should work fine if it supports PHP.
As with the previous Ajax example, the restrictions put in place by browsers require that the

example and PHP files reside on the same server, so here’s a link you can try it out with:
webdeveloperscookbook.com/PHP/ajaxpost.html.

The Recipe

 ProtectEmail()
You know the dilemma; you need to get your e-mail address out there so that people can contact you,
but doing so leaves you open to being added to spam lists by automatic e-mail address harvesting
programs. Well, this recipe has the solution by obfuscating your e-mail address using JavaScript
code.

Figure 11-4 shows an e-mail address that has been displayed, making it both copyable and
clickable, but as the inset source view shows, the e-mail address itself doesn’t appear as a whole
within the page, because it has been split into three JavaScript variables and then reassembled,
meaning that only a sophisticated harvesting “bot,” capable of parsing and running JavaScript, could
make sense of it.

http://webdeveloperscookbook.com/PHP/ajaxpost.html

FIGURE 11-4 Using this recipe, you can display your e-mail address while preventing access to most
“bots.”

About the Recipe
This recipe takes an e-mail address and returns JavaScript code that will display it as a hyperlink
without leaving the full e-mail address in the HTML. Upon success, it returns the JavaScript or, on
failure (for example, if the e-mail address doesn’t validate), it returns FALSE. It requires the
following argument:

• $email The e-mail address to obfuscate.

Variables, Arrays, and Functions
$t1 PHP integer pointer to the @ in $email
$t2 PHP integer pointer to the first period after the @ in $email
$e1 PHP string containing the pre @ part of $email
$e2 PHP string containing part of $email between @ and the first period
$e3 PHP string containing the remainder of $email after the first period
e1 JavaScript string copy of PHP variable $e1
e2 JavaScript string copy of PHP variable $e2
e3 JavaScript string copy of PHP variable $e3

How It Works
This recipe only requires that e-mail addresses have at least one character before an @ sign, and at
least one period somewhere after the @. The remaining characters can be anything, including more
periods, and even disallowed characters, since no serious validation is made on the e-mail address.

The code uses the PHP strpos() function to locate the positions of the @ character in $email,

followed by the first period after the @. The values returned are assigned to $t1 and $t2,
respectively. If either of these values is zero, then that character is missing and so FALSE is returned
because the e-mail address is invalid. This is the only validation performed:

Then, three variables representing the start, middle, and end portions of $email are assigned to

$e1, $e2, and $e3 using the substr() function to extract the parts, like this:

Finally, some JavaScript within <script> and </script> tags is returned, which makes use of

$e1, $e2, and $e3 by first assigning their values to the JavaScript variables e1, e2, and e3. Then, a
document.write() command is added to the string (this is similar to a PHP echo command) in
which an HTML mailto: link is displayed by recombining the parts:

How to Use It
To use this function, pass it a valid e-mail address and the returned value can then be output to a
browser, like this:

Or more concisely:

So, assuming the e-mail address used is me@myserver.com, the recipe will create the

JavaScript required to turn the e-mail address into the following format when viewed in a browser
with JavaScript enabled:

But all an e-mail harvesting program will see is the following:

mailto:me@myserver.com

Of course, there is a downside, and that is that people without JavaScript or who have it
disabled will not see anything, although that’s likely to be very few people—nevertheless it’s
something you should bear in mind when using this recipe.

The Recipe

 ToggleText()
A great use for JavaScript is to manipulate the contents of a web page without having to reload it. An
effect I always feel is quite professional is the use of toggling to switch elements in and out. For
example, Figure 11-5 shows this recipe being used to display a short explanation of photosynthesis,
along with a link to a longer definition.

FIGURE 11-5 Using this recipe, you can toggle between two sets of text or HTML.

When the link is clicked, instead of a new request being made to the server, JavaScript steps in

and hides the current text and link, replacing it with an alternative pair, as you can see in Figure 11-6,
where the new text has pushed down the heading on Pollination. If the new link is clicked, the
previous text and link will be restored.

FIGURE 11-6 After clicking the toggle link, an alternative text and link are displayed.

About the Recipe
This recipe toggles between two sets of text (or HTML) with accompanying links to cause the
toggling when they are clicked. It requires the following arguments:

• $text1 The main text to display.
• $link1 The main link text to display.
• $text2 The alternate text.
• $link2 The alternate link text.

Variables, Arrays, and Functions
$token Random integer between 0 and 1,000,000
$out String containing the JavaScript to be returned

How It Works
This program creates two <div> elements and then displays the contents of $text1 and $link1 in
one of them, and $text2 and $link2 in the other. The first <div> is made visible and the second
invisible.

Using JavaScript and the display property, the links in each <div> are then set to make the
other <div> visible and their own one invisible, having the effect of toggling between the two.

The links are created by setting the <a href= targets to javascript:// and their onclick
methods to change the display properties of the <div> contents. In order to allow you to use this
recipe multiple times within a document, the values assigned to the id property of each <div> also
incorporate a random number between 0 and a million, created in $tok using the rand() function,
which is appended to the id strings TT1_ and TT2_, as follows:

All of this JavaScript is assembled into the string $out, which is then returned by the recipe:

How to Use It
To use this recipe, pass the two sets of texts and links to it, and the string returned will be JavaScript
that you can output to your document at the current location. For example, if you are writing about
photosynthesis, you might like to create the following strings:

You can then allow for the toggling between each of them by calling up the recipe like this:

I have deliberately kept this all very simple so that you can replace the link text with any other

text you like, or even a button or other image if you prefer, as you are also not restricted to only text in
the $text1 and $text2 variables, and can include any HTML you like, including graphics and other
tags.

If you would like to have your toggle link appear after (rather than before) the text, you’ll have to
modify the recipe, moving the variables $text1 and $text2 to before the <a href= sections. In fact,
now that you see how this works, you should be able to come up with a range of recipes for your own
purposes to handle multiple <div> sections, not just two.

The Recipe

 StatusMessage()
Sometimes it’s useful to be able to change one element in an HTML page when the mouse passes over
another one. A typical use for such a facility is offering a status message, or some additional
information text. This technique can also be used to good effect by replacing an image or some HTML
as the mouse passes over different items. Figure 11-7 shows this recipe used to provide a simple
status message feature.

FIGURE 11-7 The opening words of Dickens’ A Tale of Two Cities, with the mouse over the hotspot
word “wisdom”

About the Recipe
This recipe takes some text to display, for which an onMouseOver event will be created, the ID of an
HTML element into which a status is to be inserted, and the status message itself. Both the $text and
$status can include text and HTML. It requires the following arguments:

• $text The main text and/or HTML to display.
• $id The ID of an element such as a or <div>.
• $status The message text and/or HTML.

Variables, Arrays, and Functions
• None

How It Works
Although short and sweet, this is a powerful piece of code. What it does is create the JavaScript
necessary to provide onMouseOver and onMouseOut events to any HTML element provided in $text
by getting the contents of the element ID of $id (its innerHTML property) and then saving it in the
JavaScript variable temp, before replacing it with the contents of $status, as follows:

When the mouse then leaves the area, the contents of temp are replaced back into the innerHTML

property of $id.

How to Use It
To use this recipe, decide on a part of your web page that will contain the status message. In the
following example, a with the ID of status is used. Then call the recipe, passing it some text
or HTML to display, and which, when the mouse passes over it, will trigger the status change (in
other words, it will be a hotspot), the ID of the target element (in this case, status), and the status
message, like this:

This will then display the following:

But when the mouse passes over the word JavaScript (the hotspot), this changes to the

following:

However, because you can pass HTML as well as text to it, you can do much more with this

recipe than simply displaying a status message. For example, you could create a photo gallery in
which each of the image names is passed to the recipe, along with the associated HTML to display
the photo, like the following example, which will work if you have the files camping.jpg, fishing.jpg,
hiking.jpg, and swimming.jpg in the current directory:

You can also use HTML in the $text argument, too, so you could place images or other

elements there instead of text. You can even take this effect to the extreme and display different
subsections of HTML, including images and other content, when the mouse passes over the various
hotspots.

There’s only one slight drawback to this recipe, which is that, due to combining the two
languages of PHP and JavaScript, it doesn’t like any quotation marks, because each language has used
up one of the two types. Therefore, you should replace any you need to display with HTML entities
such as " for a double quotation mark, or ‘ and ’ for left and right single
quotation marks, and “ and ” for left and right double quotation marks, and so forth.
This means that where you would normally enclose HTML elements within quotes, such as , you should ignore them like this: . But don’t
worry. Your HTML will still work without them.

The Recipe

 SlideShow()
If you have a collection of photos that you’d like to display in a smooth fading slide show, then this
recipe is just what you need. With it, you simply pass an array of image URLs to it, and the JavaScript
code you need to create a slide show is returned by it. Figure 11-8 shows it being used to display a
series of photographs from a Flickr image stream.

FIGURE 11-8 This recipe can display slide shows of images such as those in a Flickr stream.

About the Recipe
This recipe takes an array of image URLs and returns the JavaScript required to display them in a
slide show. It requires the following argument:
• $images An array of image URLs.

Variables, Arrays, and Functions
$count PHP integer containing the number of URLs in $images
$out PHP string containing the JavaScript to return
$j PHP integer counter for iterating through $images
images JavaScript array containing the image URLs from $images
counter JavaScript integer for stepping through the images in $images
step JavaScript integer containing the amount to step through opacity values
fade JavaScript integer containing the opacity amount
delay JavaScript integer counter that counts up to a pause
pause JavaScript integer containing the delay between changing images
startup JavaScript integer containing the initial startup delay
opacity() JavaScript function to set the degree of opacity of an image
load() JavaScript function to load an image from a URL
$() JavaScript function shorthand for document.getElementById()

How It Works

This recipe starts by counting the number of images passed in the array $images and assigning the
value to $count. Then, $out is assigned the string <script> to indicate the start of JavaScript code,
followed by a JavaScript statement to create a new array called images, like this:

Then, more JavaScript code is appended to $out by means of a for loop, which is used to

assign each image URL from the PHP $images array into the src property of each element of the
JavaScript images array:

Afterward, the remaining JavaScript code is added to $out, beginning at this line:

Although this is a book on PHP, I’ll very briefly explain what the JavaScript code does so you

can modify it if you choose. At the start, a few variables are initialized that control the code’s
behavior. They mainly affect timing of the slide show and therefore you can increase the initial value
of fade to have fewer steps during a fade and so speed it up, or you can decrease the value assigned
to pause, which represents the number of loops through which the code should cycle before moving
onto the next image, like this (remember that this is JavaScript, not PHP):

The next three lines of code prepare the slide show by loading the first image in the images

array into the HTML elements with the IDs of SS1 and SS2, which must exist in your web page for
this recipe to work. Then, an event is set to trigger every 20 milliseconds (thousandths of a second),
which will call the function below it, called process():

The process() function is the core of the program and it controls the fading of images by

incrementing the variable fade by the amount in step until it reaches 100, during which time it sets
the transparencies of the two images so that one starts to become more transparent, while the other
becomes more opaque than the other, and so replaces it.

Then, the delay counter begins to increment in a loop, which first sets the invisible image to the
same as the currently visible one and then makes the previously invisible one visible (and the
currently visible one invisible). This happens without the user seeing any change, but means that a
new image can now be loaded into the previously visible (but now invisible) image, ready to be
faded in the next time around. Here is the process() function:

Now we come to the other functions. The function opacity() has the commands necessary to

change an object’s opacity in Internet Explorer and most other browsers:

The function load() loads an image into an HTML element, and the function $() is simply a
shorthand that many JavaScript programmers use to save on typing document.getElementById()
since that is one of the most common statements you are likely to use in dynamic HTML processing,
as follows:

How to Use It
To use this recipe, you need to prepare some HTML such that two elements with the IDs of SS1 and
SS2 exactly overlap each other. The recipe will then place a different image in each of these elements
and change the opacities of each to fade between them.

For example, I uploaded a few sample images to my robinfnixon Flickr account, which the
following code will use:

By calling FetchFlickrStream() (Recipe 74), it saves you having to rummage about and

assemble a few photos to try the recipe with, but you will need to copy the Fetch Flickr Stream
recipe into your program, or otherwise include it, to use this example.

If you want to use your own images, then copy some into the same folder as the program and
ignore the preceding example. Instead, use code such as the following, replacing photo1.jpg with
the name of your first image, and so on:

To make this work, the style= attribute of the tag is used to tell the web browser to

place each image exactly 10 pixels in from the left and 10 pixels down from the top of the browser,
which makes them overlap each other. The id= attributes then uniquely identify each image so it can
be manipulated by the JavaScript code. Just replace the style details with coordinates of your

choosing for the part of the web page in which you want the slide show to appear. You can even add
borders to the images or any other elements you think would present them effectively.

The important thing about this recipe is that all the images displayed should preferably have the
same width and height so that they will all fade into each other neatly. At the very least you can get
away with having them all with the same relative dimensions and then force a run-time resize in the
image tags, like this:

The images will then fade neatly between each other, but any that are enlarged or reduced by

these forced widths and heights will not look as good as if they had been properly resized in a
graphics program.

The Recipe

 InputPrompt()
Sometimes you can make the life of your users easier when filling web forms by placing a prompt for
what is required in the form field itself. Obviously, you only want to do that when the field is blank;
otherwise, if a field has a value, then that’s likely to be what the user wanted to enter.

Using this recipe, whenever you create a form <input> element you can specify such a prompt,
and it will only appear when the field contains no input. Figure 11-9 shows the recipe being used to
display the string Required Field: Please enter your Username here in a field where a username is
being requested.

FIGURE 11-9 No text has been entered into the field, so the prompt text is displayed.

The recipe is smart enough to note when a field has either been pre-supplied with a value or if a
user has started entering input, in which case it will not replace it with the prompt text. Figure 11-10
shows how it leaves the input well alone in such cases.

FIGURE 11-10 If a field already has some text, the recipe knows to not interfere.

About the Recipe
This recipe creates the HTML and JavaScript required to enable the automatic displaying of a prompt
within an input field whenever the field is left blank. It requires the following arguments:

• $params Any additional parameters needed by the tag, including name, type, rows, cols,
name, size, value, and so on.

• $prompt The prompt to display.

Variables, Arrays, and Functions
$id PHP string comprising IP_ and a random number

id JavaScript string containing an input element ID
IP1() JavaScript function called when an element is given focus
IP2() JavaScript function called when an element loses focus
$() JavaScript function shorthand for document.getElementById()

How It Works
So that this recipe can be used multiple times in a page, it first creates a unique ID in $id, comprising
the string IP_ and a random number between 0 and a million. This ID is then used for all the form
input elements wherever they are referenced by the HTML and JavaScript that the recipe assembles:

Next, a string of HTML and JavaScript is returned, starting with an HTML <input> tag. The ID

in $id is then assigned to the tag, as well as the parameters in $params. Additionally, two events are
added to trigger calls to a pair of functions whenever the user selects or deselects the input field.
When the user gives the field focus by clicking in it, the onFocus event handler calls IP1(), and when
the field loses focus because the user has removed focus (generally by clicking elsewhere), then the
onBlur event handler calls IP2(). In either case, the ID of the input field is passed as the only
parameter:

Next, the JavaScript is created by opening a <script> tag, and the first statement there calls up

IP2() to ensure that the prompt text is displayed if the input field has nothing in it:

Next come the two functions just mentioned. The first one, IP1(), checks the value of the

element referred to by the variable id, and if it is the same as the contents of the variable prompt,
then the prompt is currently being displayed and so it is removed, ready for the user to enter their own
data:

The second function, IP2(), does the inverse of that just mentioned. If the input field identified

by id is empty, it inserts the value in the variable prompt into the field:

Finally, the script is closed with a </script> tag, and the _END; indicates the end of the

multiline string, which is then returned:

How to Use It
Use this recipe as a replacement for creating an <input> tag, like this:

In this example, an HTML form is created, within which the word Username: is displayed,

followed by a call to InputPrompt(). Afterward, a submit button is added and the form is closed.
Two arguments are passed to the recipe. First, there are the parameters an <input> tag would

generally need—in this case, they are a name, the type, and the size, in the string name=’uname’
type=’text’ size=’50’. If required, an initial value could have been defined here by adding
value=’a value’ to the string. This would be useful, for example, where a form has already been
submitted but is being returned to the user for amending, and where you do have a submitted value for
this field. If the user then removes such a predefined value, this recipe will kick in again and start
placing the prompt in the field if it is left empty.

The second argument is the prompt to display, which might be something like enter your e-mail
address, or type your name here, and so on. Just make sure it’s not longer than the size of the input
window or some of it won’t display.

One thing to remember when you use this plug-in is that if a user submits the form with the
prompt text still visible, that value that will be passed to your program. But this should be easy to
catch because you already know the value of your prompt text, likely having it stored in a string such
as $prompt, so you can easily check the input received against that value and act accordingly.

Once you start using this recipe, you should find that the number of successfully submitted forms
you receive rises, because you will have added extra assistance for your users that is informational
but doesn’t distract them from completing your form. But remember that this recipe only provides an
additional prompt to your users and doesn’t ensure they actually follow it—for that, you need to
validate the data received when it arrives at the server.

The recipe has also been designed to be smart enough to know when it has been called more than

once, and will only return the necessary JavaScript functions a single time. This means you can safely
use it multiple times within the same document, or even the same form. It manages this by using the
static PHP variable $IP_NUM as a usage counter; a static variable being one that resumes its value
when a function is reentered.

The Recipe

 WordsFromRoot()
Whenever you can save your users a little typing, you give them yet another reason to use your web
site in preference to others. One neat trick is to provide a clickable list of words the user is likely to
be entering. For example, Figure 11-11 shows the word part appl entered as part of the GET variable
word, and underneath it the first 20 words found in a local dictionary beginning with those letters can
be seen.

FIGURE 11-11 The recipe has returned 20 words beginning with the letters appl.

Of course, just displaying a list of words isn’t too helpful, and the following recipe, Predict
Word, will use some JavaScript to finish off the feature. However, I have still listed this recipe in its
own right because it can often be handy to look up lists of words or phrases based on their first few
letters, such as in crossword helper programs, contact directories, and so on, and this routine is
flexible enough to deal with both words and phrases.

About the Recipe
This recipe takes the first few letters of a word and returns all the words or phrases in the dictionary
that begin with those letters, up to a maximum number. It requires the following arguments:

• $word A word root.
• $filename The path to a dictionary file.
• $max The maximum number of words/phrases to return.

Variables, Arrays, and Functions
$dict

String containing a collection of words or phrases separated by \n characters or
\r\n pairs

$matches Array containing all matching words found in $dict
$c Integer containing either $max or the number of words found, if less
$out Array of words to return

How It Works
This recipe loads a file of words or phrases into the string variable $dict, like this:

The words or phrases must be separated by a character that isn’t a letter or number, or the

hyphen or underline character. Typically, the \n character or \r\n pair of characters will do the job,
and also make the file easy to load into and edit in a text editor.

The preg_match_all() function is then called with a search regular expression of \b$word[\w
]+, which means “starting at any word boundary, look for occurrences of the string in $word,
followed by any word characters or spaces,”—in other words, all letters, digits, hyphens, underlines,
and spaces are allowed; anything else indicates a non-word/ phrase. This will match any words or

phrases in the dictionary file that begin with $word. All the matches found are then placed into the
array $matches[0]:

The variable $c is then set to either $max or to the number of matches made, whichever is the

lower number, using the min() function. Then, the array $out is populated with exactly $c words
from the $matches[0] array, and that array is returned, like this:

How to Use It
To use this recipe, pass it the three arguments it requires—a root word, the filename of a dictionary
file, and the maximum number of words to return, like this:

The array $list will then contain up to $max words. Or, for the purposes of the next recipe,

Predict Word, you would use the following code to read up to two GET arguments from the command
line and then return a string, with the words separated by | characters, like this:

On a server with the domain myserver.com, running the program program.php, the preceding

example code could be called up using a URL such as this:

By default, five words will be returned, but if a GET argument is passed in the variable max, as

in &max=20, then $max will be changed to the supplied value. When output, each word has a | sign
after it as a separator, so when the final word has been sent, a call is made to the substr() function
to strip the last unwanted | from $out before echoing its contents.

If you download recipes.zip from the companion web site at pluginphp.com and extract it, you
will find this program in the folder 11, saved under the filename wordsfromroot.php. In that folder,
there’s also a dictionary file of over 80,000 words called dictionary.txt.

The Recipe

http://myserver.com
http://pluginphp.com

 PredictWord()
Many more recent applications, such as web browsers, let the user select input from a dropdown list
of words or phrases similar to what the user is typing. This predictive technology is also often used
for texting in mobile phones. Using this recipe, you can add the same facility to your web forms, as
shown by Figure 11-12.

FIGURE 11-12 The recipe displays a selection of possible words the user may be intending to type.

About the Recipe
This recipe creates the HTML and JavaScript required to provide a selection of words or phrases
beginning with the letters input so far, from which the user can choose to make a selection. It requires
the following arguments:

• $params Any additional parameters needed by the tag, including name, type, rows, cols,
name, size, value, and so on.

• $view The maximum number of items to display in the selection box (if there are any more than
this, the list becomes scrollable).

• $max The maximum number of items to suggest.

Variables, Arrays, and Functions
$id PHP random number between 0 and a million
$out PHP string to be returned by the recipe
$j PHP integer loop counter for creating the <option> list
CopyWord() JavaScript function to copy a word to the input
PredictWord() JavaScript function to display suggested words
GetAjaxRequest2() JavaScript function to prepare an Ajax request
AjaxRequest() JavaScript function to perform an Ajax request
$() JavaScript function shorthand for document.getElementById()

How It Works
Some of the JavaScript functions in this recipe are modified versions of those used in Recipe 83, Get
Ajax Request. As a whole, though, this JavaScript code is too complex to fully explain in a book on
PHP, and I don’t recommend you try to modify it unless you are very experienced with JavaScript.
However, here’s a general outline of what it does.

Whenever the user types a letter into the input field, an Ajax request is issued to the program
wordsfromroot.php, which then returns a list of words that begin with the letters so far entered. Each
of these words is then placed in the <option> fields of a <select> statement in order to display
them in a dropdown list.

If the user then clicks any of these offered words, a function is called to copy the word into the
input field, and the list of suggested words is then cleared. In the process, a lot of use is made of
hiding and revealing elements using their style.display properties, and the size of the displayed
list is also manipulated according to the number of words to show.

Due to appending a random number in $id to all ID names, this function can be successfully
reused within a web page, or even the same form, since the code is smart enough to realize it has been
called one or more additional times and only creates the form elements required, without re-creating
the JavaScript functions. It manages this by implementing the static variable counter $PW_NUM,
which retains its value between calls to the function.

How to Use It
Use this recipe as a replacement for a standard <input> tag inside an HTML form. As well as
including the WDC.php file, you must also include WDC.js, like this:

You can then use code such as the following:

Here, some standard parameters used in an <input> tag have been passed, along with two

additional arguments: the maximum number of suggested words to show at a time in the dropdown

box (the number of lines on view), and the maximum number of words to suggest in total. If the
second parameter is larger, then the dropdown list will become scrollable. In the preceding case, the
list will often be scrollable, since up to 20 words can be offered, with only 5 displayed at any time.

The supplied dictionary.txt file on the companion web site at pluginphp.com only includes
single words, but you can also replace the contents of the file (or use a different one) with a list of
useful phrases (perhaps gleaned from extracting common search terms from your log files). Just
ensure you don’t add any punctuation or you may get unpredicted results.

If you use a different PHP program to supply the suggested words or phrases, remember to
change the reference in the code to wordsfromroot.php to that of the new program.

The Recipe

http://pluginphp.com

CHAPTER 12
Diverse Solutions

A number of recipes didn’t quite fit into any of the categories of the other chapters. So here are the
final 10 PHP recipes, which, as the chapter title suggests, offer diverse solutions to a variety of
programming problems, including geo-location, “bot” detection, data about books, word and spelling
functions, language translation, rounded table borders, and Bing Maps.

 GetCountryFromIP()
Knowing which country a web visitor is from can be extremely useful to a webmaster. For example, a
personal ads site could use this information to match people up from the same country, as could an
auction or classifieds web site. Or perhaps you have servers in different countries and want to refer
visitors to the one nearest to them, or maybe you simply want to show different advertising or other
content to different territories.

Whatever the reason, this recipe, which comes with its own data file, will tell you where a
surfer is located, as can be seen from Figure 12-1, in which Google’s IP number has been correctly
identified as being located in the U.S.

FIGURE 12-1 Provided with an IP number, this recipe correctly identifies its country.

About the Recipe
This recipe takes an IP address and then returns the name of the country to which the IP has been
allocated. Upon failure, it returns FALSE. It requires the following argument:

• $ip An IP address.

Variables, Arrays, and Functions
$iptemp Array containing the four parts of $ip
$ipdec Integer containing the IP address after conversion to decimal

$file String containing contents of the file ips.txt
$lines Array of all data lines extracted from $file
$line String containing a single line from $lines
$parts Array containing all the parts of $line

How it Works
This recipe takes the four parts of an IP address and converts them into a decimal number. This can
be done because all IP addresses actually refer to decimal numbers but are separated out into four
parts for reasons of convenience and readability. Therefore, the google.com IP address of
173.194.41.101 can be turned into its decimal equivalent using the following process:

This results in the values 2902458368, 12713984, 10496, and 101, which add up to

2915182949. And you can prove to yourself that this works by using that number in a URL, like this
(go ahead, try it!):

Anyhow, what this means is that decimal numbers are a good way to store ranges of IP numbers,

which is exactly what has been done in the file ips.txt, supplied on the accompanying
webdeveloperscookbook.com web site. The file has over 80,000 lines in it, each one representing the
allocation of a range of IP addresses. Each line has three items separated by commas: the start IP
address, the end IP address, and the name of the country to which that range is allocated.

So, what the recipe does is convert $ip to its decimal equivalent in $ipdec by first extracting
the four parts into the array $iptemp using the explode() function. Then, it loads ips.txt into the
string $file, from where all the data lines are extracted into the array $lines, as follows:

A foreach loop is then used to iterate through the array, placing each line of data into the

variable $line. Then, as long as $line contains a string value, it separates out the three items of data
in $line into the $parts array. If $ipdec is then found to be equal to or within the two IP addresses
in -parts[1] and -parts[2], a match has been made and so the associated country name in -
parts[2] is returned:

http://google.com
http://webdeveloperscookbook.com

If no match is found in the database, then FALSE is returned. This will most likely happen if you

look up the country for a non-geographic IP address such as 127.0.0.1, for instance, which always
refers to the local computer:

How to Use It
To use this recipe, just pass it an IP address, like this:

Or, to look up the country of the current user, you could use this code to call the recipe:

Make sure the ips.txt file is in the same folder as your program, or modify the recipe to point to

its location.
When using this recipe, remember that your users may be accessing your web site through a

proxy server in a different locality, so you cannot guarantee that a user is actually from the country
indicated. The best you can identify is the country in which the final IP at the end of any proxy chain
resides. Therefore, you may wish to allow users to manually select their own country if the one you
offer is incorrect.

The Recipe

 BypassCaptcha()
The reason you might use a Captcha system, such as PHP Recipe 33, is to prevent your web site from
being overwhelmed with posts made by automated “bots.” The trouble is, many people find it
annoying to fill in a Captcha, so this recipe is there to help. Using it, your program can make a quick
guess at whether the current user is human or not, and if it thinks they are human, bypass the use of a
Captcha. Figure 12-2 shows a web page that has been typed in directly and which therefore has no
referring page, so it has returned a value of FALSE.

FIGURE 12-2 It appears that the page may have been called up by a “bot,” so adding a Captcha is a
good idea.

However, the web page shown includes a link which, if it is clicked, will result in creating a
referring page that will be sent to the browser. Most “bots” don’t send one of these. Also, the page is
being viewed in a web browser, so its User Agent string is also being sent to the recipe. In light of
receiving these two items of data, the recipe returns a value of TRUE and, as Figure 12-3 suggests, it’s
probably safe to not use a Captcha.

FIGURE 12-3 It looks like a person is using the web site, so there’s probably no need for a Captcha.

About the Recipe
This recipe doesn’t take any arguments, but if it thinks the current user is human, it returns TRUE;
otherwise, it returns FALSE.

Variables, Arrays, and Functions
$_SERVER[‘HTTP_REFERER’] Array element containing any referring page
$_SERVER[‘HTTP_USER_AGENT’] Array element containing any User Agent string

How It Works
This is another of those short and sweet, yet highly useful recipes. All it does is check the values of
both $_SERVER[’HTTP_REFERER’] and $_SERVER[’HTTP_USER_AGENT’]. If they both have a value,
then it returns FALSE; otherwise, it returns TRUE.

How to Use It
To use this recipe, just call it and decide what to do based on the result returned, like this:

Just place this code surrounding your call to your Captcha routine, and again around the code

where you verify the Captcha once it has been submitted. The code will then only run if the returned

value is FALSE, indicating the possibility that the user may be a “bot.”

The Recipe

 GetBookFromISBN()
If you have a web site that has anything to do with books, you should find this recipe very useful. With
it you can take an ISBN-10 number and it will return both the associated book’s title and a thumbnail
of its cover. Figure 12-4 shows details being returned for the ISBN-10 of 007149216X, another
excellent McGraw-Hill publication.

FIGURE 12-4 This recipe quickly looks up a book’s title and also returns its cover.

All books also have an alternate ISBN-13 number, which starts with the digits 978. However,
the Amazon web site uses ISBN-10 numbers in its web page URLs, and so only ISBN-10 numbers are
supported by this recipe, although Amazon web services are also available to handle these and ISBN-
13 lookups, but they require more code and that you have an Amazon Web Services account—hence,
my settling on using this technique to keep the code short and simple.

About the Recipe
This recipe searches the amazon.com web site for details on a supplied ISBN-10 number. If it finds
them, it returns a two-element array, the first of which is the book’s title, while the second is the URL
to a thumbnail image of the book’s cover. It requires the following argument:

• $isbn An ISBN-10 number.

http://amazon.com

Variables, Arrays, and Functions
$find String containing HTML text to find
$url String containing the URL to load
$page String containing the contents of $url
$ptr1 Integer pointer to the first occurrence of $find
$ptr2 Integer pointer to subsequent occurrence of " />
$title String containing the book’s title
$image String containing the URL of a thumbnail image of the book’s cover

How It Works
This recipe creates a number of string variables before getting into the main code:

These include setting $find to a string for which to search, $url to the relevant URL, and $img to the
location of Amazon’s book images. In the case of a book not being found, $nf and $none are also
pre-set.

The next line loads the contents of $url into the variable $page, using the CurlGetContents()
function because Amazon doesn’t return pages without also being passed a User Agent string (which
this function creates for you automatically if you pass an empty string as the second argument). The
URL comprises the main Amazon web address plus the details required to access details on the book
referred to by $isbn:

If no matching book is found, then error values are returned:

Otherwise, the string in $find is searched for using the strpos() function. If it is located, then

a book associated with $isbn has been found and the HTML following will be its title. Therefore, the
end of the title is searched for, which is the string " />. Once both strings have been found, their start
locations will be in $ptr1 and $ptr2, so using these values, the title is extracted with a call to
substr(), like this:

The image thumbnail URL is extracted in a similar manner:

The two strings are then returned in a two-element array:

How to Use It
To use this recipe, pass it a 10-digit ISBN number, like this:

The array element $result[0] will be FALSE if no book was found; otherwise, it contains the

book’s title, and $result[1] contains the URL of a thumbnail image of the book’s cover.
If you have an Amazon Associates account, this is the perfect place to add a link to it in order to

be paid a commission if the book is subsequently purchased.

The Recipe

 GetAmazonSalesRank()
Sometimes it can be interesting to know how well a book is doing at Amazon. With this utility, you
can find that information from all the major worldwide Amazon web sites (except for China). Figure
12-5 shows the recipe being used to look up the sales rank information for the book used in the
previous recipe.

FIGURE 12-5 Using this recipe, sales rank information has also been returned from Amazon.

About the Recipe
This recipe takes an ISBN number and the domain of an Amazon web site and then returns the sales

rank for that title on that site. Upon success, it returns a number representing the book’s popularity,
with 1 being the most popular. Upon failure (for example, if the book is not found, or if it doesn’t
have a rank) it returns FALSE. It requires the following arguments:

• $isbn An ISBN-10 number.
• $site An Amazon web domain, out of: amazon.com, amazon.ca, amazon.co.uk,

amazon.fr, amazon.it, amazon.es, amazon.de, and amazon.co.jp.

Variables, Arrays, and Functions
$url String containing the URL of the Amazon mobile web site (for speed)
$find String containing the text to find immediately preceding a Sales Rank
$end String containing the text to find immediately following a Sales Rank
$page String containing the contents of $url
$ptr1 Integer pointer to start of $find
$ptr2 Integer pointer to start of $end
$temp String containing Sales Rank before removing non-digit characters

How It Works
This recipe extracts sales rank information from five of the six Amazon mobile web sites. The final
site used, however—amazon.co.jp—is the main web URL, since its mobile site appears not to
provide sales rank information. This is achieved by loading the default URL, comprising the value in
$site into $url, and the HTML immediately following the sales rank details into $end:

Then, a switch statement is used for the different values of $site. In the case of the three

English-speaking countries (the sites amazon.com, amazon.ca, and amazon.co.uk) the variable $find
is set to the string Sales Rank:, which is what will be searched for in the web page.

The European web sites (amazon.fr, amazon.it, amazon.es, and amazon.de) replace the string
with French, Italian, Spanish, and German translations of the phrase Sales Rank, while the Japanese
web site at amazon.co.jp has a different pre– and post–sales rank data string to search for. It also
uses a different value for $url because the mobile version of their site appears to not provide sales
rank information:

http://amazon.com
http://amazon.ca
http://amazon.co.uk

With these details prepared, the contents of $url are loaded into $page. If this is unsuccessful,

then FALSE is returned. Otherwise, the strpos() function is used to find the first occurrence of
$find, the location of which is placed in $ptr1. Again, if it is not found, FALSE is returned, like this:

Next, $ptr2 is given the location of the subsequent occurrence of $end, and the string in

between the two is extracted into $temp, from where any non-digit characters are removed before
returning its value:

How to Use It
To obtain a book’s sales rank at a particular Amazon site, just pass the ISBN and domain to the
recipe like this (which should achieve a similar result to that shown in Figure 12-5):

Or you could combine this recipe with the previous one, as follows:

The Recipe

 PatternMatchWord()
Having a dictionary of 80,000 words at hand, it’s a shame not to do more with it, so this and the next
recipe provide more word-related features.

This recipe will be of use in crossword- or Scrabble game–like scenarios, where you know the
number of letters in a word and even have a few letters in place. Given such details, as Figure 12-6
shows, this recipe will return all possible words in the dictionary that could fit.

FIGURE 12-6 The recipe has found six matches for the pattern ’s.e.t.ng’.

About the Recipe
This recipe takes a word pattern and then returns a two-element array in which the first is the number
of matching words found and the second is an array of the words themselves. On failure, it returns a
single-element array with the value FALSE. It requires the following arguments:

• $word A word pattern comprising letters and periods (for unknowns).
• $dictionary The path to a file of words.

Variables, Arrays, and Functions
$dict String containing the contents of $dictionary
$matches[0] Array containing all the matching words

How It Works
This recipe takes advantage of PHP’s built-in regular expression handling by loading the dictionary
file in $dictionary into $dict and then matching its contents against the pattern supplied in $word.

If $dict has no value, the dictionary wasn’t found and so a single-element array with the value
FALSE is returned:

Otherwise, the dictionary contents are loaded into $dict. The dictionary file should contain

words separated by non-word characters or sequences of characters. If you use \n or \r\n pairs as
separators (as in the supplied dictionary.txt file on the companion web site), then the file can be
loaded into and edited by most program and text editors.

Before performing the matching, the contents of $word are processed with the preg_replace()
function to remove any non-alphabetic or period characters and to convert the entire string to
lowercase using the strtolower() function:

A call to the preg_match_all() function is then made, passing the value in $match, surrounded

by \b metacharacters to indicate word boundaries. Any and all matches made are then placed into the
array in $matches[0]. A two-element array is then returned containing the number of matches found
and the matches themselves:

How to Use It
To use this recipe, pass it a pattern to match and the path to a file of words, like this:

In this example, as long as -result[0] isn’t FALSE, then some matches were made, so a

foreach loop iterates through them all in -result[1], displaying them as list elements within an
unsorted list, but you could use these words in dropdown lists, with checkboxes, or in a variety of
other ways.

You will find a copy of the dictionary.txt file in the download available at
webdeveloperscookbook.com.

The Recipe

http://webdeveloperscookbook.com

 SuggestSpelling()
In Chapter 3, Recipe 8, I introduced a simple spelling checker. Well, here’s a companion recipe you
could use with it to actually offer suggested replacements for misspelled words. As Figure 12-7
shows, using the same dictionary of words, this recipe attempts to find the closest matches to a word
it is passed, and returns them in the order of likelihood.

FIGURE 12-7 The recipe has chosen three possible spelling corrections for the word spenr.

About the Recipe
This recipe takes a word that has been unrecognized and finds the closest matches to it from a
dictionary of words. Upon success, it returns a two-element array, the first of which contains the
number of words returned, while the second contains an array of words. On failure, it returns a
single-element array with the value FALSE. It requires the following arguments:

• $word A word.
• $dictionary The path to a file of words.

Variables, Arrays, and Functions
$count Static integer containing number of calls to the recipe
$words Static array containing words extracted from $dict

$dict String containing the contents of $dictionary
$possibles Array containing possible similar words
$known Array containing all words both on $possibles and $words
$suggested Array containing all the suggested words
$wordlen Integer containing the length of $word
$chars Array containing all the letters of the alphabet
$temp String containing key extracted from element of $known
$val String containing value extracted from element of $known

How It Works
The first thing this recipe does is check whether $word has a value, and if not, it returns a single-
element array with the value FALSE:

After that, two variables are declared as static. The reason is that this recipe is built in such a

way that it can be called more than once, something that’s likely if a section of text has more than one
unknown word. Therefore, for optimum speed it uses static variables, which retain their value
between calls to the function (but outside the function, they have no value or a different value). This
avoids re-creating large arrays each time the function is called:

The two static variables used are $count, which counts the number of times the function has

been called, and $words, which contains an array of words. If $count has a value of zero, then this is
the first time the function has been called and so the contents of $dictionary are loaded into $dict.
As long as the load was successful, the words are split out into the array $words using the
explode() function, like this:

On future calls to the function, $count will have a value greater than zero. Therefore, populating

the $words array is unnecessary since $words is a static variable that will remember its contents
from the last call. Note that this static value is accessible each time the function is recalled, but only
persists during the response to a single web request. Subsequent web requests always start with PHP
variables not existing until they are defined.

Next, three arrays are prepared. These are $possibles, which will contain a large number of
words the program will make up that are similar to $word. Then there is $known, which will contain
all the words in $possibles that also exist in the dictionary of words in $words (so they are proper
words, even though they were created by an algorithm). Lastly, there’s $suggested, which will be

populated with all the words the recipe chooses to return as suggested replacements for $word:

The variable $wordlen is then set to the length of $word, and the array $chars is created out of

the 26 letters of the alphabet by using str_split() to split up the provided string:

Next, a whole collection of made-up words similar to $word have to be placed in $possibles.

Four types of new words are created:

• The set of words similar to $word, but with each letter missing in turn
• The set of words similar to $word, but with each letter in turn substituted with another
• The set of words similar to $word, but with consecutive letter pairs swapped
• The set of words similar to $word, but with new letters inserted between each existing pair of

letters

This is all achieved within separate for and foreach loops, as follows:

For a word length of five characters, 295 variations will be created; for six, it’s 349, and so on.

Most of these will be meaningless gibberish, but because (we assume) the user meant to type
something meaningful but probably just made a typo, some of them stand a chance of being real
words, and could be what the user intended to type.

To extract the good words, the array_intersect() function is called to return all words that
exist in both the arrays $possibles and $words, the result of which is placed in $known, which
becomes our set of known real words that could be what the user intended:

Next, all the duplicate occurrences of words in $known are counted up using the

array_count_values() function, which returns an array of keys and values in which the key is the
word and the value is the number of times it appears in the array. This array is then sorted into
reverse order using the arsort() function so that those words that appeared the most frequently come
first. That means the most likely candidates will always be at the start of the array, with less and less
likely ones further down the array:

A foreach statement then steps through each of the elements to extract just the key into the

variable $temp (discarding the value in $val), which is then used to populate the next available
element of the array $suggested, like this:

When the loop completes, $suggested contains the list of words the recipe thinks the user may

have meant, in order of likelihood. So a two-element array is returned, the first of which is the
number of words returned, while the second is an array containing the words:

How to Use It
When you want to offer alternate spelling suggestions to a user, just call this recipe with the
misspelled word and the path to a file of words, like this:

You can call the recipe multiple times and could therefore use dropdown lists inserted within

the text at the occurrence of each unrecognized word, or one of many other methods to offer
suggestions for all misspelled words found in a section of text.

Of course, to be truly interactive, you ought to rewrite the function in JavaScript and offer
interactive spelling management directly within a web page—perhaps an interesting project for you to
consider undertaking based on this recipe.

The Recipe

 AnagramFinder()
This handy recipe is useful when you are working with word puzzles, for example, because it will
find all full-word anagrams of any word you give it from a dictionary of words you supply (see
Figure 12-8).

FIGURE 12-8 Looking up anagrams for the word “angriest” using this recipe.

About the Recipe
This recipe takes a string of text and then looks up all possible anagrams of it in a dictionary of
words. It returns only single-word anagrams, rather than multiword phrases.

• $word Word to be anagramized.
• $dict Location of a file containing a list of words.

Variables, Arrays, and Functions
$dict String variable containing all the words loaded in from the dictionary file

$check
A string created using the source word with which a regular expression is crafted
for searching $dict

$w The length of the supplied word
$j and $k Loop counters
$out The array of found anagrams
$maybe On finding a candidate anagram, it is stored in this variable
$found Set to TRUE if an anagram is found; otherwise, FALSE

$matches
Array containing all the matches found in the dictionary before checking whether
they are anagrams

How It Works
This recipe loads in a dictionary of words separated by \r\n (return and linefeed) pairs of characters
into the string variable $dict. Then, the variable $check (which will be used later) is initialized to
the empty string, the variable $w is set to the length of the supplied word, and the array $out is
prepared for later use:

Next, a string is crafted for using in a regular expression that will quickly search the dictionary
of words. For example, if the input word is cat, then this word will be turned into the string [cat]
[cat][cat]. When used as part of a regular expression, this tells the program to find any word that
begins with any of the letters c, a, or t, has any of c, a, or t in the middle, and ends with c, a, or
t. This will result in the anagram act being found. However, it means that the word tat will also be
returned by this expression (which is not an anagram of cat). This is all right since the expression
gets close enough to weed out 99 percent of the wrong words from the dictionary. Afterward, a
simple check on the remaining ones will weed out the few non-anagrams.

The code to create the string of repeated start words is as follows:

Now this string expression (in $check) is inserted into a larger regular expression that searches

only for complete words by ensuring that there is a line feed or carriage return both before and after
each word, like this:

This code returns all words that match the expression in the $matches array. So the code next

needs to go through all the matches and weed out those that are not anagrams, allowing the words that
are anagrams to be inserted into the $out array for returning:

What this code does is loop through all the matches as counted by count($matches[0]), then

any newlines or returns are removed from each match using the trim() function, after which the word
is stored in $maybe. Then, a copy of $maybe is placed into $t, which is a temporary variable that
will be used inside a second loop, and which has a space character added at the front so that when
searching it for characters, it won’t return 0 as an offset, which could be misinterpreted as not finding
a match. At the same time, the flag $found is set to TRUE. If the word is indeed an anagram, it will
remain set to that value; otherwise, it will be set to FALSE.

Next, a for() loop steps through each letter of the source word and checks that there is a
matching same letter in the variable $t for each one in $word, like this:

Here $p is set to the offset of any match. Then, as long as $p is not zero, a match was found and

the letter in the word held in $t has the matched letter replaced with a space character, preventing it

from being matched again. But if the test returns a value of 0, there was no match, and so $found is
set to FALSE to indicate this.

Finally, in this loop, if $found is still TRUE, then $maybe contains an anagram. As long as the
anagram is not the same word as the source word in $word, it is added to the $out array using the
array_jpush() function:

The contents of $out are then returned:

How to Use It
To search for anagrams of a word in a dictionary of words, use code such as this:

The first line calls the recipe, passing it (in this case) the word angriest, and also the name

dictionary.txt as the file in which to do the lookup.
Upon return, the recipe returns an array. If the array has a length of 0, no anagrams were found.

Otherwise, the simple for() loop steps through and displays all the anagrams that were found.

The Recipe

 CornerGif()
Displaying content in a table with rounded borders can make it look more professional, but usually
you need to create a different set of images to achieve this for each color palette used. This recipe
solves the problem by generating the GIF images needed on the fly as you can see in Figure 12-9,
which shows the top-left corner of a table (enlarged) as returned by the recipe.

FIGURE 12-9 A top-left corner GIF for a table (shown enlarged) as created by this recipe.

About the Recipe
This recipe creates corner and edge GIFs for building a table with rounded borders. Upon success, it
returns a GD image containing the constructed GIF. On failure, it returns an unknown value or an
unknown image. It requires the following arguments:

• $corner An identifier for the image to create, out of: tl, t, tr, l, r, bl, b, and br,
representing top-left, top, top-right, left, right, bottom-left, bottom, and bottom-right.

• $border The color of the border as a six-digit hexadecimal number.
• $bground The color of the background as a six-digit hexadecimal number.

Variables, Arrays, and Functions
$data Array containing a pixel map for the image
$image GD image to be returned
$bcol GD background color
$fcol GD foreground color
$tcol GD transparent color
GD_FN1() PHP function to convert a six-digit hex number to a GD color

How It Works
When a corner GIF is required, this recipe uses the pre-populated array in $data to create the top
left-hand GIF, and then rotates it if necessary. It does this by creating a new GD image in - image
using the imagecreatetruecolor() function and then creating three colors to use—$bcol, $fcol,
and $tcol for the background, foreground, and transparent colors, as passed in the arguments
$border and $bground. The image is then filled with the transparent color, and is ready for the main
colors, like this:

In the following code, the if (strlen($corner) == 2) statement simply checks whether a

corner piece has been requested by seeing whether $corner has one or two letters. If it’s two, then a

corner is wanted because $corner must contain one of the strings tl, tr, bl, or br, and so each of
the pixels in the image that match those in the $data array is populated with either $bcol or $fcol,
depending on whether the array has a value of 1 or 2, with a 0 indicating that a pixel should be left
alone since it will be transparent:

If $corner has only one letter, it must contain one of the strings t, l, r, or b, so an edge piece

was requested and therefore two rectangles are created in the background and foreground colors.
Actually, the first rectangle is a line and represents the border, while the other fills in the rest of the
area with the background color.

Next, a switch statement looks at the type of image requested in $corner, and if necessary,
rotates the image before it is returned, with returned images being typically no more than about 50
bytes:

How to Use It
This recipe is best used to create a self-contained program to return a GIF image, which is what the
following code does:

This code accepts three GET arguments: c, b, and f for corner, border, and fill. It then passes

these to the recipe, and if an image is successfully returned, the correct header to preface sending a
GIF image is output, followed by sending the image in GIF format by calling the imagegif()
function.

The preceding example code will be used by the following recipe, RoundedTable(), so type it
into a new program file, and then also add the following recipe code to it, and save the result as
corner.php, ensuring you also include the opening <?php and closing ?> tags. Alternatively, you can
download examples.zip from the companion web site and will find corner.php in the PHP folder.

A typical call to the program will then look like the following, which will result in the image
displayed in Figure 12-9 (if you enlarge it):

Here, a top-left corner has been requested by the parameter c=tl, the background color has been

set to 444444 by the parameter b=444444, and the foreground color has been set to dedede by the
parameter f=dedede.

The Recipe

 RoundedTable()
With this recipe, not only do you get the GIFs needed to create rounded table corners in any colors,
you also get the HTML code. Figure 12-10 shows it being used to display some monologue from a
Shakespeare play to good effect.

FIGURE 12-10 All the corners of this table have been neatly rounded.

About the Recipe
This recipe returns the HTML to use, as well as the corner and edge GIFs, for building a table with
rounded borders. It requires the following arguments:

• $width The width of the table—use a pair of quotes for the default.
• $height The height of the table—use a pair of quotes for the default.
• $bground The table’s background color.
• $border The table’s border color.
• $contents The table’s text and/or HTML contents.
• $program The path to the program to create the GIF images.

Variables, Arrays, and Functions
$t1 – $t5 Temporary string variables to avoid string duplication

How It Works
This recipe returns the HTML required to display the supplied contents of $contents within a table
that has rounded borders. If a width and/or height are specified, then the table dimensions are set to
those values; otherwise, the browser is left to determine how to size it:

The table is created in nine segments, with the eight outer ones containing either a corner or edge

GIF, each of which is created and displayed by the program contained in $program. The inner
segment is populated with the string value in $contents. To do this, the various variables $t1
through $t5 are used as shortcuts for repeated sequences to reduce the recipe in size:

The resulting HTML is then assembled and returned:

How to Use It
You can use the recipe in the following manner, which passes the text to display, colors to use, and
the path to the program for displaying the GIFs, like this:

In this code segment, the width and height of the table to create are set to the empty string using

pairs of single quotes to let the browser choose suitable dimensions. Then, a background color of
dedede and a foreground color of 444444 are passed, followed by the string value in $contents,
and the program for displaying the GIFs: corner.php.

As you can see, HTML can also be passed to the recipe, so you can place an unlimited variety of
contents within these rounded border tables.

The Recipe

 DisplayBingMap()
Maps are as popular as ever, and in a bid to compete with Google, Microsoft’s Virtual Earth project

is now used for Bing Maps, which has an API that this recipe makes very easy for you to use. Figure
12-11 shows a scrollable Bing Map, which has been dropped into a web page, with the Bird’s Eye
view selected.

FIGURE 12-11 With this recipe, you can incorporate Bing Maps in your web pages.

About the Recipe
This recipe creates the JavaScript and HTML required to embed a scrollable Bing Map into a web
page. It requires the following arguments:

• $lat The latitude of a location.
• $long The longitude of a location.
• $zoom The amount to zoom in by (0 for none, 19 for maximum).
• $style The type of map out of Road or Aerial (exact spelling required).
• $width The width of the map.
• $height The height of the map.

Variables, Arrays, and Functions
$root The base part of the API URL

How It Works
Normally, when you wish to include a Bing Map into a web page, you have to call it up from the
<body> tag and separately include the JavaScript and a <div> in which to display the map.

But this recipe removes the need for all that by using PHP to create the JavaScript code to load a
map of the correct dimensions exactly where you want it. It does this by attaching automatically to the
events required so that only a single call is needed.

The JavaScript is based on the Virtual Earth API and is beyond the scope of this book to explain,
other than to say that all the code required is ready made for you, along with a <div> tag in which to
display the map.

How to Use It
To insert a Bing Map into a page, just pass this recipe the location details, zoom level, type of map,
and dimensions, like this:

The preceding code places the map into a table, which is aligned to the left with text flowing

around it. You can equally use a <div> or to include it, or just drop a map in without placing
it within an element.

The map style should be one of Aerial or Road and the zoom level should be between 0 (for
none) and 19 (for maximum). When you need to know the latitude and longitude of a location, you can
look it up in a search engine, or there are useful web sites such as the one for UK maps at
tinyurl.com/longandlat.

The Recipe

http://tinyurl.com/longandlat

PART III
JavaScript Recipes

CHAPTER 13
The Core Recipes
CHAPTER 14
Location and Dimensions
CHAPTER 15
Visibility
CHAPTER 16
Movement and Animation
CHAPTER 17
Chaining and Interaction
CHAPTER 18
Menus and Navigation
CHAPTER 19
Text Effects
CHAPTER 20
Audio and Visual Effects
CHAPTER 21
Cookies, Ajax, and Security
CHAPTER 22
Forms and Validation
CHAPTER 23
Solutions to Common Problems

CHAPTER 13
The Core Recipes

In Part II of this book I was able to draw upon the wealth of ready-made functions supplied with the
PHP language. However, this hasn’t turned out to be the case with JavaScript, so this chapter
concentrates on providing a selection of basic functions needed to develop JavaScript programs as
quickly and efficiently as possible.

This chapter contains 18 recipes and a collection of handy global variables to make your life
much simpler. It will also make the remaining recipes in this section easier to understand and modify.

Since these core recipes and global variables are used throughout this part of the book, I
recommend you take the time to digest the contents of this chapter as fully as possible before starting
to use the remaining functions. I apologize in advance for the amount of documentation on these first
few recipes, but they are important ones, and it’s essential you be completely familiar with their use.

Loading the Recipes
In order to use the recipes from this part of the book, you should include them at the start of your web
page, preferably within the <head> section, but if not, right at the start of the <body>. To do this, load
them in using the following command:

If you have the WDC.js file in a location other than the current folder, make sure you precede the

filename with the correct path. If you prefer, you may choose to use the compressed version of this
file instead (called WDCsmall.js), to save on bandwidth. The file is identical in action, except that
being highly compressed you cannot edit it. You load it in like this:

Once you have the recipes loaded, you can access them from within other sets of <script> and

</script> tags, or even directly within HTML using the javascript: prefix, attaching them to
events and so forth.

 O()
The O() function is the most fundamental of the recipes provided in this part of the book and is used
by almost all the others. In its simplest form, it replaces the long-winded JavaScript function name
document.getElementById(), which takes the string argument supplied to it and then returns the
HTML DOM (Document Object Model) object that has been assigned that ID. The letter O is short
for the word Object since the main purpose of this function is to retrieve an object or modify its
properties.

About the Recipe
This recipe takes one required and two optional arguments as follows:

• id This can be a string containing the ID of an object, an object, or even an array containing
several objects and/or object IDs. If none of the optional arguments are also provided, then the
function returns the object or objects represented by id. If there are optional arguments, then the
purpose of the function changes to assign the value in value to the property in property of the
object (or objects) in id.

• property This optional string argument can contain the name of a property belonging to the object
(or objects) in id that requires modifying.

• value If this optional argument is set, it represents the value to be assigned to the property in
property of the object (or objects) in id. Both the property and value arguments must have
values; otherwise, O() will simply return the object (or objects) in id.

Variables, Arrays, and Functions
tmp[] Array holding the result of processing the id array
j Integer loop variable for indexing into id
UNDEF Global string variable with the value ‘undefined’
InsVars() Function to insert values into a string
push() Function to push a value onto an array
substr() Function to return a substring from a string
eval() Function to evaluate a string as JavaScript code
try() Function to run a function passing any error to a matching catch() statement
catch() Function called when a try() statement fails
getElementById Function to return an object by its name

How It Works
This recipe does a lot more than simply provide a shortened name for an existing function, because
you can pass it either the string ID name of an object or the object itself. For example, consider the
following HTML div:

Using the O() recipe, you can access the div object directly with the following command:

This command is equivalent to the following, which sets the variable mydiv to represent the div

object that has the ID ‘outerdiv’:

This means you can, for example, use the value returned by this recipe to change the HTML

contents of the div (the text between its opening and closing tags) as follows, by modifying its
innerHTML property:

Or, you can bypass assigning the object to a variable and access the object directly from the O()

recipe, like this:

Passing Either Strings or Objects
The O() function is also very versatile in that sometimes you may have a variable containing a string
name, like this:

On the other hand, it can represent the actual object itself, like this:

The former contains simply the string of characters comprising ’outerdiv’, while the latter is an

object. Because the job of O() is to return the object referred to by the argument it is passed, if you
happen to pass it an object instead of a string, it will simply return that object to you. Therefore,
whether myvariable contains a string that refers to an object or the object itself, you can use just the
one statement to access it, like this:

Or like this:

Note that there are no quotation marks around myvariable in this instance because a variable

(or, more precisely, an object), not a string, is being passed.

NOTE I have used single quotation marks in these examples, but JavaScript allows you to use
either single or double quotation marks. However, for the sake of standardization, I usually
use single quotes for strings, unless a string includes single quotes within it. In which case I
use double quotation marks to enclose the string.

Additional Arguments
As well as accepting both strings and objects, the O() recipe allows you to pass it an optional pair of
arguments that are then used to modify object properties. For example, the previous examples can
also be rewritten like this:

Both of the preceding are acceptable alternative syntax for assigning a value to an object’s

property.

Passing Arrays
You may be wondering about the point of this alternative syntax. Well, it comes into its own when
you want to access many different objects at a time. This is something you can’t do with standard
JavaScript, but you can achieve it with the O() recipe, which allows you to pass an array of objects,
object ID names, or a combination of both.

For example, let’s say you would like to clear the HTML contents of three objects that have the
names ‘Fred’, ‘Mary’, and ‘Bill’. Regular JavaScript would require three separate commands, but
you can easily achieve the same result with the following code:

You can even mix objects and object ID names within an array, as follows:

Or, you can combine everything into one line of code, as in the following example, which will

clear out the innerHTML contents of all the objects:

Figure 13-1 shows a group of three divs that have all had their innerHTML properties set to the

same value, using the code in the following example web page:

FIGURE 13-1 Changing the HTML contents of objects using O()

This web page begins with the <!DOCTYPE html> setting, then adds both the page’s <title>
and the two <script> lines required to include and set up the recipes. After that, the <head> is
closed and the <body> of the page is opened. Then, three lines of HTML create simple
sections that don’t contain any content.

Finally, there is another <script> section in which the contents of these spans is changed so that
each displays the string ‘New contents...’. This is the format that most standard web pages will
follow when using the recipes. The result of loading this page into a browser is shown in Figure 13-
1.

Now that you’ve seen how easy it is to use the recipes and where the different parts fit within a
web page, throughout the rest of these examples I will omit everything before (and including) the
<body> tag (except where a recipe affects that particular section) and concentrate only on the relevant
HTML and JavaScript required to explain the use of a recipe.

When an Array Is Passed
The O() recipe comprises three parts. The first one tests the argument id to see if it is an array, which
it does by using the instanceof operator, like this:

If it is an array, then more than one object has been passed to the function, so the array tmp is

declared as a local array (that can only be accessed by this instance of the function) using the var
keyword, like this:

Then, a for() loop iterates through the array, using the integer variable j as an index pointer to

each individual array element.

Making Recursive Calls
Interestingly, the O() function is called again within each iteration, but just with the single element
located at the current array index pointed to by j. This is known as a recursive function call, meaning
that the function calls itself. It’s a very neat way to reuse code to get a job done once you have broken
it down into a more manageable chunk. The loop code looks like this:

To explain how it works in this instance, one element has been extracted from an array of

elements and then that element is passed back to the same function, which will then process that
element and return a value back to itself. So, for example, if an array of items is passed to O(), it will
be iterated through in stages, each time passing one element from the array in turn to the same
function, until all elements have been processed.

Looked at from the function’s receiving end, when it sees that it has received a single item (and
not an array), control flow drops through to the remaining code, where that item is processed and
whatever value or object is calculated is returned. Upon return from the function (back to the same
function), the result of the function call is placed in the next free location in the tmp array by using the
JavaScript push() function and is promptly forgotten about (since it has been dealt with), and the
next element of the array is then processed.

Once all elements are done with (in other words, the value of j equals the number of items in the
array, as indicated by id.length), the array tmp is returned to the calling code.

You will notice that the variables property and value are not treated as arrays, because they
aren’t. If the variable property has a value it should be the name of an object’s property, and value
will contain the value to assign to that property. These arguments are optional but can be used to give
the same value to the same properties of all objects in an array. Because the function calls itself
recursively, it also has to pass property and value (whether or not they have values) along with the
object to be processed; otherwise, if they have values, they will be lost.

TIP If you’re new to recursion and it seems somewhat complicated to you, try reading through
this section a couple more times and you should soon get the hang of it. Wikipedia also has
quite a good explanation of the concept at wikipedia.org/wiki/Recursion, and no, it doesn’t
just say “see Recursion”!

Processing the Additional Arguments
In the previous section I talked about property and value, the optional arguments for modifying an
object’s properties. The second main section of this function is where that modification happens. The
code starts by testing whether or not both property and value have a value by using the typeof
operator, like this:

The variable UNDEF is a global variable that has been assigned the value ‘undefined’ by the

Initialize() function, which is detailed a little later.
Both arguments must have a value for this if() statement to execute. If they do, it’s time to make

another recursive call, passing the value of id back to the same function. This illustrates the power of
the O() recipe in that you never have to worry whether the main argument you pass it is an object or
the ID name of an object; either is acceptable, and so this part of the function simply passes on the
value of id, whatever type of variable it is.

Inside this if() statement, the eval() function is used to assign the value to the property, first
surrounding the value with single quotation marks if it is a string (otherwise, eval() would try to

http://www.wikipedia.org/wiki/Recursion

evaluate it, rather than treat it as a string):

The value returned by eval() is then returned by the function in one of two different ways,

according to whether or not id is an object. This code gets around odd anomalies in the JavaScript
language and is obscure enough that explaining it might be confusing. Suffice it to say that the code, as
written, can evaluate value, whatever type it is.

At the Deepest Level
The remaining lines of the recipe execute only when id is not an array and when no optional
parameters have been passed. Since they come after both of the sections that can make recursive
calls, they are the place where the function ultimately returns from these recursive calls.

These lines also represent the heart of the O() function in that they will return an object by
providing its ID name. The code looks like this:

The first line ends function execution if id is an object by simply returning it. Otherwise, an

attempt is made to return the object whose ID is id. Sometimes, though, you will accidentally pass an
ID to the O() function that hasn’t yet been assigned. If this happens, rather than having JavaScript
come to a halt (which it would do if the object doesn’t exist), an error message alert is displayed to
let you know this has happened.

This is achieved by using a pair of try ... catch() statements. The first tries the code and passes
execution to the second if there is an error.

You may wish to remove the alert() call in a production web site so that your users won’t see
any errors you might leave in your code. However, remember that trying to access a nonexistent
object is a critical error that stops all program flow, and you really don’t want to leave any such
errors in your production code.

How to Use It
This recipe has two distinct modes. In the first, it returns an object referred to by an ID string, while
in the second it updates an object’s property with a new value. In either case, if the object itself is
passed to the recipe (instead of its ID name) then the object is accessed directly, since there’s no
need to look it up.

Furthermore, in both the lookup and property setting modes, you can pass an array of objects
and/or ID names. If you are looking up objects, the recipe returns an array. If you are setting
properties, all the objects have the specified property set to the given value, and those values are
returned.

However, the value returned by the recipe is really only of use when looking up an object, such
as in the following, which are just four of the countless ways of using the recipe:

When you are assigning a value to one or more properties, as in the following examples, the

returned value will simply be that of the assigned value, which is not particularly useful to you,
except perhaps when you are debugging code:

As you will see throughout this part of the book, the O() recipe is used in a variety of different

ways, and you will soon get used to thinking of it as the main way to access individual elements in a
web page.

NOTE Well-known JavaScript frameworks, such as jQuery, Script.aculo.us Prototype, and many
others, make use of a similar function to O(), but they usually call it $(). Some add even more
functionality to it than there is in the O() recipe, which makes it even more powerful, but also
more complicated. The $ is a sensible choice of character for naming such functions because
it’s short and instantly recognizable. However, I have deliberately not used the same
convention precisely because other frameworks do use it. That way, the recipes in this book
should be less likely to conflict with third-party frameworks if you use them both on the same
web pages.

The Recipe

 S()
Probably the most common use to which JavaScript is put is modifying CSS properties in HTML
documents. These include colors, dimensions, location, opacity, and much more. Generally, this is
done using code such as the following, which changes the foreground text color of a div:

Or, using the previous recipe, this can be shortened to:

This is such a common action that I have created a companion recipe to O() called S() (for

Style), which deals with handling an object’s style property (or, more precisely, subobject). Using it,
the preceding commands can be reduced to the following:

Figure 13-2 shows the recipe being used to change the background colors of the three divs.

FIGURE 13-2 Using S() to change the background colors of some divs

About the Recipe
The S() recipe is similar to O(), with the exception that instead of referencing an object, that object’s
style subobject is accessed. Also, since events are not used by it, there is no need to check for them in
this function. It accepts the following arguments:

• id This can be a string containing the ID of an object, an object, or even an array containing
several objects and/or object IDs. If none of the optional arguments are also provided, then the
function returns the style subobject of the object (or objects) represented by id. If there are
optional arguments, then the purpose of the function changes to assign the value in value to the
property in property of the style subobject of the object (or objects) in id.

• property This optional string argument can contain the name of a property belonging to the style
subobject of the object (or objects) in id that requires modifying.

• value If this optional argument is set, it represents the value to be assigned to the property in
property of the style subobject of the object (or objects) in id. Both the property and value
arguments must have values; otherwise, S() will simply return the style subobject of the object (or
objects) in id.

Variables, Arrays, and Functions
tmp[] Array holding the result of processing the id array.
j Integer loop variable for indexing into id.
style Style subobject.
push() Function to push a value onto an array.
try Construct used to run code, passing any error to a matching catch() statement.
catch() Function called when a try keyword fails.

o()
The main “object” function. Since o() and s() are both used by almost all recipes,
this is the last time either will be listed in a “Variables, Arrays, and Functions”
section.

How It Works

Now that you understand how the o() recipe works, you will also have an idea how this one
functions. Because it is so similar, I’ll just outline the basics.

As with o(), this function has three main parts. The first processes id if it happens to be an
array. It does this by recursively calling itself with each element within the array so as to deal with
each one separately. The code that does this is as follows, with the final line returning an array of all
the values returned during the process:

The second section handles the case when you are using the recipe in its property assigning

mode. It determines this by checking whether both the arguments property and value have values. If
they do, then the property in property of the style subobject of the object represented by id is
assigned the value in value.

Otherwise, the object fetching mode is entered, and so the style subobject of id is returned.
However, for the reasons given in the previous section, accessing the object is embedded within

try and catch() statements so that any errors can be caught and displayed via a call to alert(),
using the matching catch() function:

During development, you will find this error catching very useful, as mistyping ID names or

accessing them before they have been declared are common errors.

NOTE I refer to the style subobject, but I could also call it the style property, because it is both:
It’s a property called style, which is itself an object that has properties. Therefore, I tend to
refer to properties that are also objects as subobjects.

How to Use It
You use this recipe in much the same way you use the o() function. With it, you can either fetch the
style subobject of an object, or you can modify one of the style properties of that object. Here’s one
way you could use the recipe to first fetch and then use an object’s style subobject:

Or, you can access the style subobject directly, like this:

If you wish, you can also set the value of a property from within the recipe like this:

This latter form also allows you to set style properties for several objects at once, like this:

In this case, all the objects in the ids array will have their backgroundColor style property

set to ‘cyan’. Omitting the head section and any other parts of the web page, the code used to create
the output in Figure 13-2 is as follows:

First, the divs are created within HTML, then a section of JavaScript follows in which the ids

array is populated with the three ID names of the divs. After that, the o() recipe is used to assign
vales to the innerHTML properties of these divs as a group, and then each div’s backgroundColor
property is individually set using three separate calls to S().

Over the coming chapters, you will see the S() recipe used in many different contexts, and I
think you’ll find that in the future you’ll never want to access style properties in any other way.

The Recipe

 Initialize()
In order to set up the recipes so they are ready to use, it is necessary to call up a small initialization
recipe. As previously mentioned, I recommend you always include the following line of code at the
start of each web page that uses these recipes:

Or if you are using the compressed version of the recipes, WDCsmall.js, then you would use that

file in place of WDC.js.
This recipe is the Initialize() function that is called up as soon as WDC.js is loaded in, and

it prepares a wide range of functionality you can draw on, as shown in Figure 13-3, for example, in
which the browser type is detected.

FIGURE 13-3 Displaying the variable BROWSER after calling this recipe

About the Recipe
This recipe requires no arguments and doesn’t return any. However, please refer to the table of
variables, arrays, and functions in the next section, as some very important global variables are set up
by it.

Variables, Arrays, and Functions
MOUSE_DOWN

Global integer set to true if a mouse button is currently held down;
otherwise, false

MOUSE_IN
Global integer set to true if the mouse pointer is currently within the browser
window; otherwise, false

MOUSE_X
Global integer containing the current horizontal coordinate of the mouse
pointer

MOUSE_Y Global integer containing the current vertical coordinate of the mouse pointer

SCROLL_X
Global integer containing the amount the browser has been scrolled vertically,
in pixels

SCROLL_Y
Global integer containing the amount the browser has been scrolled
horizontally, in pixels

KEY_PRESS Global integer containing the value of the last key pressed

ZINDEX
Global integer containing the maximum Z Index of any object accessed via the
recipes

CHAIN_CALLS
Global array containing recipes that have been chained together and that are
yet to be executed

INTERVAL
Global integer containing the time in milliseconds between calls to a repeated
event

UNDEF Global string containing the value ‘undefined’
HID Global string containing the value ‘hidden’

VIS Global string containing the value ‘visible’
ABS Global string containing the value ‘absolute’
FIX Global string containing the value ‘fixed’
REL Global string containing the value ‘relative’
TP Global string containing the value ‘top’
BM Global string containing the value ‘bottom’
LT Global string containing the value ‘left’
RT Global string containing the value ‘right’
BROWSER Global string containing the name of the current browser

NavCheck()
Subfunction to check for the existence of a string in the browser User Agent
string

How It Works
Let’s look first at each of this recipe’s global variable definitions:

• MOUSE_DOWN This integer variable is updated by the two inline, anonymous functions (later in the
recipe) that are attached to the document.onmouseup and document.onmousedown events. With
it, you can quickly make a check to see whether or not a mouse button is being pressed anywhere in
the browser window by simply looking at this variable, which has a value of true if down;
otherwise, it is set to false.

• MOUSE_IN In a similar fashion, the document.onmouseout and document.onmouseover events
are captured, and this global variable is set to true when the mouse pointer is within the bounds of
the browser window; otherwise, it is set to false.

• MOUSE_X and MOUSE_Y This pair of global variables is constantly updated by the
CaptureMouse() recipe (the recipe following this one), which is attached to the
document.onmousemove event. Therefore, you can reference these variables at any time to
determine the position of the mouse pointer.

• SCROLL_X and SCROLL_Y These global variables are also kept updated by the CaptureMouse()
recipe. They are continuously updated with values representing the amount by which the browser
has scrolled in both vertical and horizontal directions.

• KEY_PRESS This global variable is updated by the CaptureKeyboard() recipe, which captures
the document.onkeydown and document.onkeypress events and sets the variable depending on
the key that was pressed.

• ZINDEX This global variable starts off with a default value of 1,000. It is used by the recipes to
determine the zIndex property of objects it uses. This is the depth at which it will be displayed on
the screen, with lower or negative numbers being behind higher and positive numbers. For
example, the ContextMenu() recipe in Chapter 8, which opens a drop-down element when you
right-click, uses this value to ensure that the element it displays appears in front of all other
windows. Also, the Browserwindow() recipe (also in Chapter 8), which creates in-browser,
moveable pop-up windows, sets windows that are clicked to the value of ZINDEX + 1 to ensure
that they come to the front.

• CHAIN_CALLS Some of the recipes have the ability to be chained together so that they run
consecutively, each one starting after the previous recipe has finished. Normally, JavaScript

doesn’t allow such behavior and, if you call up a function that, for example, sets up an interrupt to
perform an animation, that function will return immediately to the calling code without waiting for
the sequence of interrupts to complete. This is exactly the behavior normally required, because it
allows other things to happen at the same time. But some of these recipes work better when they
are chained, which is achieved by placing a sequence of functions in the CHAIN_CALLS array so
that as each function completes, the next in the chain can be called. The only reasons you might
want to access this array are either to determine if (and how many) functions are queued up, or
possibly to empty the array to cancel all queued up functions.

• INTERVAL After many hours of experimentation on all the major browsers across a range of
computers and operating systems, I have derived a value of 30 milliseconds as being the optimal
time to allow between interrupt calls, because some shorter functions complete in under 10
milliseconds, while others may take 20 or more, but none should take any longer than 30
milliseconds. Therefore, I have set the global variable INTERVAL to 30. This fixed value is
required for timing purposes, so that all the interrupt functions in these recipes can therefore ensure
that they take exactly the number of milliseconds passed to them. As JavaScript speeds creep up
over the next few years, this allows you to optimize the recipe and drop the value of this variable
to 25, 20, 15, or even fewer milliseconds. This will not speed up the recipes, but it will allow
animations to have extra steps between the first and last frame, making the transitions smoother.

Global String Variables
After these first 10 global variables, a further 10 global string variables are defined. These are
UNDEF, HID, VIS, ABS, FIX, REL, TP, BM, LT, and RT. In order, they stand for the strings
‘undefined’, ‘hidden’, ‘visible’, ‘absolute’, ‘fixed’, ‘relative’, ‘static’, ‘inherit’, ‘top’, ‘bottom’,
‘left’, and ‘right’.

Although they are not essential, I have created these variables because the strings to which they
refer are used frequently by the recipes, and this helps to keep the code more compact. It also serves
to make the listings in this book narrower, so that lines that might previously have wrapped around
now display on a single line. Additionally, they help make the code more readable, as long as you
refer back to this section if you forget the values of any of them.

Determining the Current Browser
Because JavaScript varies in its implementation between different developers, you sometimes need to
know which browser you are dealing with. So, in conjunction with the subfunction NavCheck(), the
next six lines of code will set the global variable BROWSER to one of the following strings, depending
on the browser used: ‘IE’, ‘Opera’, ‘Chrome’, ’iPod’, ‘iPhone’, ‘iPad’, ‘Android’, ‘Safari’,
‘Firefox’, and ‘UNKNOWN’. You can then refer to this variable in the same way that some of the
recipes do in order to offer different code to different browsers. When ‘Firefox’ is returned, it means
that a browser running on the Gecko rendering engine is in use, which includes browsers other than
Firefox.

Attaching Functions to Events
Much of the functionality of these recipes rests on the capturing of various built-in browser events, as
is done by the remaining seven lines of code. The first three attach the CaptureMouse() function to
the document.ommousemove event, and the CaptureKeyboard() function to the

document.onkeydown and document.onkeypress events. What these recipes do is documented in
their own sections, but suffice it to say that they are called each time one of those events occurs and
they keep the global variable KEY_PRESS updated.

The final four lines attach functions that are so small I have created them as anonymous inline
functions. All they do is capture the document.onmouseout, document.onmouseover,
document.onmouseup, and document.onmousedown events, keeping the global variables MOUSE_IN
and MOUSE_DOWN updated.

How to Use It
This recipe is called automatically as soon as you include the WDC.js (or WDCsmall.js) JavaScript
file. If you wish to check that it has been successfully called, you can try issuing the following
statement from within <script> tags, which will display the name of the browser being used, as
shown in Figure 13-3:

However, you will normally wish to use this and the other recipes only once a page has fully

loaded and all its elements’ locations and dimensions are known and can be manipulated. Therefore,
the command (and the rest of your code) is best placed within the body of an OnDOMReady() function,
like this:

The OnDOMReady() function is supplied in the WDC.js (and WDCsmall.js) file and is based on a

function by Ryan Morr at tinyurl.com/ryanmorr.
It is a replacement for the more typical window. onload = function() you may have used (or

seen). It will start your code much more quickly than waiting for window.onload, which only triggers
after all contents such as images are also loaded—whereas the contents of the OnDOMReady()
function are called as soon as the DOM is complete and in a useable state, and so your JavaScript
will begin running that much sooner.

When you use this function, remember to place a final bracket after the code you place within it,
so that you close off the function properly. Otherwise, you will get a syntax error. Basically, just
remember to place this before your code:

TIP I recommend enclosing all your JavaScript inside an OnDOMReady() function so you can be
sure that all the elements of a web page are available when you try to access them.

http://www.tinyurl.com/ryanmorr

The Recipe

 CaptureMouse()
This recipe is called only by the Initialize() function, and you should not need to call it yourself.
What it does is attach to the mouse movement event, updating various global variables with details
about the mouse position, as shown in Figure 13-4.

FIGURE 13-4 This recipe lets you know where the mouse pointer is.

About the Recipe
This recipe attaches to the document.onmousemove event, updating the global variables MOUSE_X,
MOUSE_Y, SCROLL_X, and SCROLL_Y. The event passes the value e to it, which is only used by
browsers other than Internet Explorer. It does not require you to pass it any arguments, nor does it
return any values.

Variables, Arrays, and Functions

E
The event as passed to the function by browsers other than Internet
Explorer. e.pageX and e.pageY contain the X and Y locations of
the mouse pointer.

Window.event
Internet Explorer uses the window.event property instead of an
event passed as an argument. The clientX and clientY
subproperties contain the X and Y locations of the mouse pointer.

document.documentElement
If the browser is Internet Explorer, then the scrollLeft and
scrollTop properties of this property are accessed to determine
the amount of horizontal and vertical scroll.

Window
On browsers other than Internet Explorer, the pageXOffsett and
pageYOffset properties of window are accessed to determine the
amount of horizontal and vertical scroll.

MOUSE_X
Global integer containing the current horizontal coordinate of the
mouse pointer.

MOUSE_Y
Global integer containing the current vertical coordinate of the
mouse pointer.

SCROLL_X
Global integer containing the amount the browser has been
scrolled vertically, in pixels.

SCROLL_X
Global integer containing the amount the browser has been
scrolled vertically, in pixels.

How It Works

This function traps the document.onmousemove event and accesses either the e value passed to it in
browsers other than Internet Explorer or, in Internet Explorer, it accesses the global window. event
property. Using these values, it sets the values of the global variables MOUSE_X and MOUSE_Y to the
current X and Y coordinates of the mouse pointer.

The scrollLeft and scrollTop properties of document.documentElement are also
accessed in Internet Explorer to determine the amount of any horizontal and vertical scrolling. These
values are placed in the global variables SCROLL_X and SCROLL_Y. In browsers other than Internet
Explorer, SCROLL_X and SCROLL_Y are given their values based on the pageXOffset and
pageYOffset properties of window.

The value true is then returned to allow the event to be acted on by the browser.

How to Use It
You will not access this function directly. Instead, by calling the Initialize() recipe as
recommended, the values needed to determine the X and Y locations of the mouse pointer and any
horizontal or scrolling values are placed in the global variables MOUSE_X, MOUSE_Y, SCROLL_X,
and SCROLL_Y and are kept constantly updated.

To illustrate how you can use these, the following code will display these values in real time:

The first section is within the HTML body of a web page and is used to create a div into which

the output will be inserted. Underneath the div, there’s a line of text made up from repeating the word
Padding. This is used to make the text overflow (since there are no spaces in it), causing the bottom
scroll bar to appear so you can move the scroll bar and see the offset value change in real time. If
your browser is set very wide, you should resize it until the scroll bar appears.

In the <script> section, there’s a single main line of code that sets up a regular interrupt using
the setInterval() function, passing it the name of the function to call (which is simpleInterrupt)
and the frequency at which it should be called in INTERVAL (which is 30 by default). This means the
function simpleInterrupt() will be called up every 30 milliseconds.

TIP In JavaScript, whenever you wish to reference a function by its name without actually calling
the function, you omit the final brackets. In this instance, the setInterval() function knows
that you are passing only the name of the function. If you used brackets, the function would
first be called and the value it returned would be passed to the setInterval() function,

which is probably not what you want.

The simpleInterrupt() function uses the O() recipe you have already seen to select the div
‘output’ object by name. It then assigns the following string to that object’s innerHTML property. This
has the effect of inserting the string as if it were entered between the opening and closing div tags.
The value assigned is some text and the values in the four global variables.

To try this for yourself, enter the example code (as well as the required <script> commands to
load in the WDC.js file), or select example4.htm from the JS folder in the download available from
the companion web site at webdeveloperscookbook.com.

Then, resize your browser so it is fairly small and the bottom scroll bar is visible. Move the
mouse about within the browser and move the scroll bar to see the values displayed change in real
time. Because of the way the scrolling event works, you will only see its values change when you
release the mouse button after moving one of the scroll bars.

As you can see, with very little work you can look up important values associated with the
mouse whenever you need them. You also just saw the O() recipe being used in a real situation.

The Recipe

 CaptureKeyboard()
This recipe makes a note of any keypresses made and stores the result in the global variable
KEY_PRESS, as demonstrated by the example in Figure 13-5, which has detected the ALT key being
pressed.

http://www.webdeveloperscookbook.com

FIGURE 13-5 Determining which keys have been pressed is easy with this recipe.

About the Recipe
You will not need to call this recipe yourself because it should already have been called the
Initialize() recipe. It doesn’t require any arguments and doesn’t return any that you can use.

Variables, Arrays, and Functions
e

The event as passed to the function by browsers other than Internet Explorer.
Either e.charCode or e.keyCode contains the value of the key pressed.

window.event
Internet Explorer uses the window.event property instead of an event
passed as an argument. The keyCode contains the value of the key pressed.

BROWSER Global variable used to determine the browser.
KEY_PRESS Global variable to be assigned the value of the keypress.
fromCharCode() JavaScript function to convert Unicode values to characters.

FromKeyCode()
Function to return the value of a keypress or its name if it is one of many
special characters such as ‘Esc’, ‘Home’, and so on.

How It Works
This function works differently depending on whether you are using Internet Explorer or not. If you
are, it looks up the keypress in window. event. keyCode and passes it through the FromKeyCode()
recipe, which will assign a string if the keypress was a special one such as ‘PgUp’, ‘Backspace’, and
so on. Then, if the value is still a number (that is, it hasn’t been substituted for a special key name),
the JavaScript fromCharCode() function converts it from its Unicode value to an actual key value, so
that if, for example, the key e is pressed, then the value ‘e’ is returned.

On non–Internet Explorer browsers, both e.charCode and e.keyCode are checked for a value
because both the events document.onkeydown and document.onkeypress are captured by this
function. One function captures regular keys, while the other handles the special keys already referred
to, so combining both into the same function makes sense. So, if e.charCode has a value, it is passed
through the JavaScript fromCharCode() function to convert it from its Unicode value. Or, if
e.keycode has a value, a special key was pressed, so its value is passed through the FromKeyCode()
recipe to look up the key name.

In either case, the result is that KEY_PRESS will contain a letter, number, punctuation symbol, the

name of a special key, or simply a key number if it is none of the others. There is no keyboard
buffering to, for example, create strings of input, since only the last key pressed is saved. However, it
is quite possible to create an input function using this if you need one.

Finally, a value of true is returned to allow further processing of the event by the browser.

How to Use It
Using this recipe is as simple as referencing the global variable, KEY_PRESS, that it maintains. The
following is a simple example that continuously updates the contents of a div with the value of the last
key pressed:

Again (and I won’t mention this anymore), this assumes you have already included the WDC.js

(or WDCsmall.js) file.
The interrupt is set up so that the value of the last keypress can be continuously displayed. If you

prefer, you can always use a command such as the following in the loop instead:

However, it is intrusive, and you have to click the OK button to close the alert each time it is

called. What’s more, it locks up the browser because the alert() function prevents you from doing
anything else (even closing the browser) until you have clicked OK, and even then the alert will pop
up again, and again, forever.

TIP Because of the problem of alert() potentially taking over a browser if placed within a loop,
this section includes an alternate function called Alert() (with an uppercase A), which you
may prefer to use. It does not lock the browser and has other benefits, too. For further
details, please refer to Chapter 23.

The Recipe

 FromKeyCode()
This recipe returns the name of the key pressed if it is a special one such as CTRL or ALT; otherwise,
the value passed to it is returned, as shown in Figure 13-6, in which the translations for key codes 1
through 144 are displayed.

FIGURE 13-6 This recipe returns meaningful names for key codes.

About the Recipe
This plug-in takes a key code as an argument and returns either a string representing the special key
that was pressed, or the code if no such key was pressed.

Variables, Arrays, and Functions

c Key code passed to the function and returned by it if it does not represent a special key

How It Works
This function uses a switch() statement to test the value of c and return various strings if it matches
set values. If none of the values match, then c is returned.

How to Use It
Generally, this recipe will be called for you by the CaptureKeyboard() recipe. However, you may
have an application for which you’d rather not return the strings given, or you’d rather return different
names. In these cases, feel free to modify the recipe to your requirements.

For example, if you don’t want the keypresses created by pressing the SHIFT key, you might
prefer to return a value of the empty string for that value instead of the string ‘Shift’. That way, when
the user presses the SHIFT key followed by the M key, for example, you will only see the value ‘M’
and not ‘Shift’ followed by ‘M’.

The reason I’ve gone to the bother of trapping these special keys is that, although there are
already useful input features built into JavaScript, these recipes allow you to, for example, set up
various special keys to move objects around the screen or perform particular functions the moment a
key is pressed.

Here’s a combined HTML and JavaScript example to return the translations for codes 1 through
144:

An interesting point to note here is the use of the += operator to keep appending to the contents

of the innerHTML property of the ‘output’ div.

The Recipe

 GetLastKey()
This recipe returns the value of whatever the last keypress was and then resets the stored value to the
empty string to show that the key value has been retrieved. Figure 13-7 shows a simple input function
created using this recipe.

FIGURE 13-7 This recipe can build an input function.

About the Recipe
This recipe doesn’t take any arguments and returns the value of the most recently pressed key (if any).

Variables, Arrays, and Functions
k Local string variable that holds the value of KEY_PRESS before resetting it and returning k

How It Works
This recipe assigns the value in KEY_PRESS, the global variable that contains the last key pressed, to
the local variable k. Then, it resets KEY_PRESS to the empty string to show that the value has been
read. Finally, the contents of k are returned. If there was no keypress, the empty string is returned.

How to Use It
To use this recipe, call it with no arguments and it will return either a letter, number, punctuation
symbol, or a special key name. If the key was none of these, then its code is returned.

You can use this recipe to create a very simple input function, like this:

To make this work, a span is created in which the input will be placed. Then, the JavaScript

code makes a call to a new function called input(), passing the ID of the span. The input()
function then sets up a repeating interrupt using setInterval() to the subfunction

simpleInterrupt().
The simpleInterrupt() function then calls GetLastKey() each time it is called. If the value

is ever ‘Enter’, it means the user has pressed the ENTER key and k is assigned the value ‘.’ (a period),
and the interrupt is disabled using clearInterval(), with the interrupt ID previously assigned to
interrupt.

Finally, the innerHTML property of the object indicated by id has the latest key value returned
appended to it. If the value is the empty string, then nothing is appended.

All your code has to do then is look at the end of the string to see if it is the period character to
indicate that the user has pressed enter. Your code then removes that character and uses the remainder
of the string. Alternatively, you can use a different end of input marker. Whatever you do, if you want
to create your own input routine rather than use a ready-made one such as an <input type=’text’>
tag, you have to go through all these swings and roundabouts of interrupt driven calls, because that’s
the way JavaScript works. However, at least you now have a way of doing so when you need it.

For a bit of fun, if you store the input somewhere hidden rather than in a span, you can check for
a sequence of characters to be entered—much like entering cheat codes into a game—and if a
recognizable sequence is entered, you can trigger a bonus feature.

The Recipe

 PreventAction()
This recipe is for preventing an object’s drag or select event (or both) from occurring. For example,
sometimes you may wish to prevent a section of text from being copied, or at least from being
highlighted, and you can easily do that with this recipe. Figure 13-8 shows one section of text that is
being selected, while the second sentence is not selectable. The GIF image is also undraggable.

FIGURE 13-8 The image and the second sentence cannot be dragged or selected.

About the Recipe
This recipe takes three arguments and, depending on their values, either prevents or enables certain
events to occur. The arguments are as follows:

• id The ID of an object, such as a div or span section of HTML, a GIF image, or any other object.
• type This argument can have one of three string values: ‘drag’, ‘select’, or ‘both’. If the value is

‘drag’, then the object referred to by id will either be prevented from being dragged or allowed to
be dragged, depending on the value of onoff. If it is ‘select’, then the selection of text will be either
prevented or allowed, depending on the value of onoff. If it is ‘both’, then both these events will be
either prevented or allowed.

• onoff This argument should be either true or false; alternatively, the values 1 or 0 are
acceptable. The values true or 1 mean the event (or events) in the variable type are prevented. If
onoff is false or 0, then the event (or events) are allowed.

Variables, Arrays, and Functions
ondragstart Event of the object passed in id
onselectstart Event of the object passed in id
onmousedown Event of the object passed in id

MozUserSelect
Property of the object passed in id (only used by Mozilla-based browsers
such as Firefox)

How It Works
The recipe code is divided into two main sections. In the first, the drag event of the object referenced
by id is managed, while the second half is for handling the id object’s select event. Each of these
halves is again split into two parts. In the first half of each, the events it handles are prevented, while
the second half is for re-enabling an event after it has been disabled.

To provide these features, if the browser supports it, either the ondragstart or onselectstart
event of the object in id (or both events if the value in type is ‘both’) is assigned an inline anonymous
function that returns the value false, which has the effect of canceling any further action.

If the event is not recognized, then the onmousedown event for the object in id is caught and set to
return false. This is not that great a solution because it prevents other onmousedown events from
being attached, but it does have the effect of preventing the event from occurring.

In the case of Mozilla-based browsers such as Firefox, the special property MozUserSelect is
set to either ‘none’ to prevent text from being selected, or ‘text’ to re-enable it. This is necessary
because these browsers will not use the onselectstart event, and using this property is less
intrusive than capturing the onmousedown event.

How to Use It
To prevent the copying and pasting of the contents of a div, for example, you can attach this function
to its onselectstart event, like this:

If a user tries to select any text, this recipe stops the event before it can get going. This is not

merely a relatively easy way to prevent people from copying text from your web pages; it also helps
prevent text from being inadvertently highlighted when you are using the mouse to drag items about.

You can also use it to prevent an object from being dragged in the browser or dragged and
dropped elsewhere, like this:

Here’s some code that illustrates both of these uses:

In the HTML section of the example, a GIF image with the name i1.gif is displayed and given the

ID of ‘gif’. This is followed by some regular text and a span with the ID of ‘text’.
Below that, in the <script> section, the GIF image has its drag property disabled, and the span

text is made unselectable. If you try either of these actions, they will fail. However, Internet Explorer
will allow you to continue the selection within the span if you commence a select action from outside
the span. You can work around this bug by setting the whole document as unselectable, like this:

However, this means that nothing at all on your web page can be selected. Other browsers do

not have this bug.

The Recipe

 NoPxQ and Px()
These recipes are short but powerful functions that provide inverse functionality to each other.
NoPx() removes the ‘px’ suffix attached to some CSS properties, while Px() attaches the ‘px’ suffix
to a property. Figure 13-9 shows the recipes in use.

FIGURE 13-9 These recipes make it easier to work in values of pixels.

About the Recipes
These recipes require an object’s property to be passed to them. If NoPx() is passed a value, then the
value returned will be that of the value less any ‘px’ suffix. If Px() is called, then the value returned
is that of the value passed to the recipe, combined with the suffix ‘px’. In no case is any property
actually changed by these recipes, as values are merely derived based on the properties, and it is up
to you to use them as required. The recipes require the following argument:

• value The property to be modified.

Variables, Arrays, and Functions
replace() JavaScript function for replacing a subsection of a string

How They Work
The NoPx() function uses the JavaScript replace() function to replace any occurrences of ‘px’ in
the string it is passed, and then returns the result, multiplied by 1 to ensure it is turned from a string
into a number.

The Px() function adds the suffix ‘px’ to any value it is passed and then returns the result.

How to Use Them
The NoPx() function is very simple in that all it does is replace the substring ‘px’ (if found) with the
empty string in any string it is passed. Thus, it can strip away the trailing ‘px’ suffix that many object
properties have. For example, the style.marginLeft property is just one of many that may end in
‘px’, so the following call will strip it out:

In this example, the object referred to by id is passed to the S() function, which returns the style

subobject. The marginLeft property is then appended to this and the resulting string value. This could
be ‘10px’, for example, which is then passed to the NoPx() function. In this case, it would return the

number 10, which is then assigned to the variable value.
The Px() function performs the inverse, adding the ‘px’ suffix to a value. This is useful when

you need to assign ‘px’ to an object’s property that needs to know you are working in pixels. For
example, the style.width property can be used to set the width of an object, but it needs to have ‘px’
added to it if working in pixels. To save you having to do this, you can make the following call
instead:

This command uses the S() function to set the width of the object referred to by id to 135

pixels, since Px (135) evaluates to the string ‘135px’.
Here’s an example of how you might use these recipes:

The HTML section contains a single div element with some text. In the <script> section, the

div is resized to become 100 pixels wide by 100 high, using the Px() function to create the values.
The background is also set to yellow so you can see the square.

After this, there’s a call to the JavaScript alert() function in which the value of the object’s
width style property is displayed (‘100px’), and that value is passed through the NoPx() function and
redisplayed. This time it’s the number 100.

The Recipes

 X()andY()
This pair of similar functions returns an object’s exact horizontal or vertical offset from the left or top

of the browser. The recipe names are so short because they are used very frequently and it saves on
typing. This also makes your source code easier to follow. In Figure 13-10, you can see that the left
and top edges of the div are inset from the browser edge by 8 pixels.

FIGURE 13-10 Looking up the absolute horizontal and vertical offsets of an object

About the Recipes
These recipes return the absolute horizontal or vertical offsets of an object from the left or top of the
browser window. They take this argument:

• id The object whose offset is to be returned.

Variables, Arrays, and Functions
obj Local object copy of the id object
offset Local integer used to hold the horizontal or vertical offset
offsetParent The parent offset object
offsetLeft The object’s left offset
offsetTop The object’s top offset

How They Work
These recipes first make a copy of the object represented by id in obj and set the local variable offset
to either the offsetLeft or offsetTop property of the object. This is the amount by which the object
is offset from its parent.

Then, in case the parent object is also a subobject, the if() and while() statements recurse
back through all parent objects, adding their offsets in turn to offset, until there are no more parent
objects. At this point, offset contains the absolute distance in pixels from the left side or top edge of
the browser window to the left or top of the object. This value is then returned.

How to Use Them

To use these recipes, pass the ID of an object to them and they will return either the absolute
horizontal or absolute vertical position of its left side or top edge in pixels. Here’s some code to
illustrate their use:

This example is similar to the previous one in that it creates a square div with the ID of square,

but in this example the object’s absolute left and top offsets are returned by the alert() statement,
with calls to X() and Y().

The Recipes

 W() and H()

In addition to needing to know the location of an object, as in the previous pair of recipes, you often
need to know their width and height, which you can determine with these functions. Figure 13-11
shows the recipes being used to discover an object’s width and height.

FIGURE 13-11 Determining the width and height of an object

About the Recipes
These recipes return an object’s exact width or height, including any margins and borders. They
require the following argument:

• id The object whose dimensions are to be returned.

Variables, Arrays, and Functions
offsetWidth The object’s width
offsetHeight The object’s height
marginLeft The object’s left margin width
marginRight The objects’ right margin width
marginTop The object’s top margin width
marginBottom The object’s bottom margin width
borderLeft The object’s left border width
borderRight The object’s right border width
borderTopWidth The object’s top border width
borderBottomWidth The object’s bottom border width
border The image object’s border property
NoPx() Function to remove ‘px’ suffixes

How They Work

Each function adds together all the properties that affect either an object’s width or its height. To
return the width of an object, its offsetwidth is added to its marginLeft and marginRight
properties, like this:

Next, a check is made of its borderLeftwidth and borderRightWidth properties by adding

the two values together to obtain their sum. If the result is greater than 0, then that amount is placed in
the variable bord. Here is that code section:

Next, because an object’s border style property overrides an image’s border property (even

though the border image property retains its value), if bord has a value it is subtracted from the value
to be returned. If it doesn’t have a value, then the object’s image border property value, multiplied by
two (once for the left and once for the right border), is subtracted from the value to be returned. This
is because the offsetwidth property already includes the widths of any borders, so they are taken
off so as to return only the object and its margin’s width. Here is the code for this section:

An object’s padding width is not returned because none of the recipes need to know this value.
To return the height of an object, the same process is used in the H() recipe, with the properties

offsetHeight, marginTop, marginBottom, borderTopWidth, borderBottomWidth, and
border.

In either case, the calculated value is returned.

CAUTION If you add together the H() heights of two vertically adjacent boxes (perhaps in order to
specify the height of a containing div), and if there are margins, the calculated height will be
greater than the height the browser actually uses to render both boxes on top of each other,
due to vertical margin collapsing where only the largest of the two margins is used.

How to Use Them
To use these recipes, pass them the ID of an object whose dimensions you need. Here’s some code
showing how you might use them:

This example is quite similar to previous ones in that the div called ‘square’ is created in the

HTML section. The difference here is that the alert() function displays the width and height of the
object using the W() and H() recipes.

NOTE You may find it interesting to note the use of all the S(), W(), H(), and NoPx() recipes
here. Already you can see how these recipes are coming together to make your programming
much easier. Without the earlier functions to build on, these recipes might be two or three
times the size, but this way they only use a handful of characters, such as W(’obj’). Once
you get a little further into this section, even more powerful functions will become available
to you that would take dozens, if not hundreds, of lines of code to write from scratch.

The Recipes

 Html()
Because you will frequently find yourself needing to write to the innerHTML property of objects, I
wrote this simple recipe to keep the code short and improve its readability, as shown in Figure 13-
12.

FIGURE 13-12 This recipe makes it easy to read and write the HTML contents of an object.

About the Recipe
This recipe returns the innerHTML property of the object it is passed. You can use it to either read or
write this property. Only the first argument is required to read a value, but both are required to write
one:

• id The ID of the object with the innerHTML property to access.
• value The value to assign to the innerHTML property.

Variables, Arrays, and Functions
innerHTML The property containing the HTML text of an object

How It Works
To read a value, the recipe uses the O() recipe to reference the object in id and return its innerHTML
property. To write a value, you pass a second argument, value, to the recipe. If the code notices that
this argument has been passed, the innerHTML property of id is changed to value. In either case, the
value of the innerHTML property is returned.

How to Use It
You can either read or write to the innerHTML property of an object that supports it using this
function. To write to it, use a statement such as this:

To read from the property, use a statement like this:

Here’s some code that uses a couple of alert() calls so you can see the before and after effects

of using the recipe:

The first section of HTML creates a div with an <hl> heading. Then, the <script> section

immediately pops up an alert showing this value by using a call to Html(). After that, the value of the
object’s innerHTML property is changed to a subheading, again using Html(), and then a second call
to the JavaScript alert() function redisplays the property, using the Html() function—at which time
you will see that the contents have changed.

The Recipe

 SaveState()
After you change the properties for an object, there are times when you might want to restore it to its
original state. This recipe allows you to back up all the most important style properties of an object.
Figure 13-13 shows a div being prepared with a few values prior to testing the SaveState() recipe.

FIGURE 13-13 Creating a div with which to test saving and restoring states

About the Recipe
This recipe backs up several of the most important style properties of an object, where they can be
later retrieved should you need them. It takes the following argument:

• id The object whose properties are to be backed up.

Variables, Arrays, and Functions
left The object’s style.left property
top The object’s style.top property
visibility The object’s style.visibility property
color The object’s style.color property
background The object’s style.background property
display The object’s style.display property
opacity The object’s style.opacity property
MozOpacity The object’s style.MozOpacity property
KhtmlOpacity The object’s style.KhtmlOpacity property
filter The object’s style.filter property
zIndex The object’s style.zIndex property

How It Works
This is a very simple recipe that creates backup properties for each of the properties. Each new
backup property name begins with the string “Save_” and ends with the original property name. The
ones you may not know are MozOpacity, which is the opacity property used by Mozilla-based
browsers such as Firefox, and KhtmlOpacity, which is used by older versions of the Apple Safari
browser.

How to Use It
To create a set of backup properties for an object, pass its ID to the SaveState() recipe, like this:

The following code shows a few style settings being made to an object and then its state being

saved:

This creates a green, 200 × 100–pixel rectangle with white text whose position is absolute (and

the object is therefore movable). In the next recipe, you’ll see what happens if these values are
changed and the saved state is restored.

The Recipe

 RestoreState()
This is the partner recipe for SaveState(). It will restore an object’s major style settings to the way
they were when they were saved. Figure 13-14 shows that the div created in the previous recipe has
been modified; its colors are different and it has been moved to the right. An alert box has popped up
to let you see this before the Restorestate() recipe is called to restore the div to its original state.

FIGURE 13-14 The SaveState() and RestoreState() recipes in action

About the Recipe
This recipe restores the style properties that have been saved using the SaveState() recipe. It takes
this argument:

• id The object whose style properties are to be restored.

Variables, Arrays, and Functions
left The object’s style.left property
top The object’s style.top property
visibility The object’s style.visibility property
color The object’s style.color property
backgroundColor The object’s style.backgroundColor property
display The object’s style.display property
opacity The object’s style.opacity property
MozOpacity The object’s style.MozOpacity property
KhtmlOpacity The object’s style.KhtmlOpacity property
filter The object’s style.filter property
zIndex The object’s style.zIndex property

How It Works
This recipe reverses the action of the SaveState() recipe by retrieving the values saved in the
properties, beginning with the string ‘Save_’, and restoring them. If there are any additional
properties you need to save and restore, they are very easy to add to these functions.

How to Use It
To use it, just pass this recipe the ID of an object whose state has already been saved, like this:

The following example extends the previous recipe to both create a div and then change it twice,

the first time by modifying a few of its style properties, and the second by changing it back by calling
RestoreState(). In between, the JavaScript alert() function is called to give you a chance to
view the screen before moving on:

If you enter this example into your browser, the div will start off as white text on green, then it

will change to yellow on blue and move to the right, and finally it will return to its original colors and
position, all with a single call to Restorestate().

The Recipe

 InsVars()
In JavaScript, when you want to create a string of text that also includes the values of different
variables, you have to keep closing the string, then use a + sign followed by the variable name,
follow it with another +, and then re-open the string—and you have to do this for every single
variable. However, this recipe lets you easily drop the values of variables into any string. Figure 13-
15 shows three values being inserted in this manner.

FIGURE 13-15 This recipe makes it easy to insert values into strings.

About the Recipe
This recipe requires at least two arguments. The first is the string in which to insert various values,
and the second, third, and so on are the values to be inserted, as follows:

• string The string in which to insert values.
• value1 A value to insert in string.
• value2 As valuel (etc...).

Variables, Arrays, and Functions
tmp Local variable containing the string to process
arguments Array of arguments passed to the recipe
replace() JavaScript function to replace substrings in a string
regExp() JavaScript function to create a regular expression

How It Works
This recipe makes use of the handy fact that JavaScript passes an array to every function that is
called. This array is called arguments, and each element of it is one of the values that has been
passed to the function.

Therefore, the first element is extracted and placed in tmp, a local variable. This is the string in
which to make the variable substitutions, like this:

Then, a for() loop is used to iterate through each remaining element. If there is a substring with

the value ‘#1’ within the string tmp, the first value is inserted in its place. The same happens for ‘#2’,
‘#3’, and any number of similar substrings, with each being replaced by the next in line of the values
passed to the recipe, like this:

To allow one value to be inserted in many places in a string, a global replace is enabled by

using the RegExp() object to create a new regular expression, with the value ‘g’ supplied to indicate
a global search and/or replace.

Finally, the modified tmp string is returned.

How to Use It
To insert values into a string using InsVars(), call it up in the following manner:

This statement will assign the value “The product of 6 and 7 is 42” to string. All you have to

remember is to use the same number of ‘#?’ tokens as there are values to be inserted.

The Recipe

 StrRepeat()
Unlike many other languages, JavaScript doesn’t come with a function to create a new string from a
repeated substring. So here’s a recipe to do the job, as shown in Figure 13-16, in which a cheer is
repeated three times.

FIGURE 13-16 Using this recipe to create a cheer

About the Recipe
This recipe creates a repeated string based on a string and a number. It takes these arguments:

• str A string to repeat.
• num The number of times to repeat the string.

Variables, Arrays, and Functions
tmp Local string variable used to store the string as it is assembled
j Local integer variable used for looping

How It Works
The recipe uses a for() loop to assemble a final string created from num copies of str. It then returns
the new string.

How to Use It
To use this function, pass it a string and a number, like this:

This code places the repeated cheer into string and then displays it using a call to the JavaScript

alert() function.

The Recipe

 HexDec()
The final two recipes in this chapter concern handling hexadecimal numbers, something you have to
do quite often in JavaScript, particularly when managing colors. This one converts a hexadecimal
number into decimal, as shown in Figure 13-17.

FIGURE 13-17 Converting a number from hexadecimal to decimal

About the Recipe
This recipe requires a hexadecimal string to be passed to it. It then returns that number in decimal. It
requires this argument:

• n A string containing a hexadecimal number.

Variables, Arrays, and Functions
parseInt() JavaScript function to convert a string to a number

How It Works
This recipe uses the JavaScript function parseInt() to convert a hexadecimal string to a decimal
number. It does this because the second parameter passed to it is 16. If the second number was 8, for

example, it would try to convert it from an octal number, and so on.

How to Use It
Pass the HexDec() function any string containing a hexadecimal number and it will return a decimal
number, like this:

In this instance the hexadecimal number FFFF is converted to 65,535 in decimal, and the result

is displayed using a call to the JavaScript alert() function.

The Recipe

 DecHex()
This recipe takes a decimal number and turns it into a hexadecimal string, as shown in Figure 13-18.

FIGURE 13-18 Converting a number from decimal to hexadecimal

About the Recipe
This recipe requires a decimal number to be passed to it, and then returns that number in the form of a
hexadecimal string. It requires this argument:

• n A decimal number to be converted into hexadecimal.

Variables, Arrays, and Functions
to.String() JavaScript function for converting a number to a string

How It Works
This recipe uses two code segments combined into a single statement. The first segment looks like
this:

This is known as a ternary expression, in which n < 16 is an initial test. The ? symbol indicates

that if the result of the test is true, the value immediately following the ? should be returned.
Otherwise, the value following the : should be returned. In this example, that means that values of n
that are lower than 16 will result in the string ’0’ being returned, while values of n that are 16 and
above result in ’ ’ being returned.

The reason for this is that this recipe will mostly be used by code that wants to create color
triplets for setting a color. These triplets are made up of three groups of two hexadecimal characters,
like these: FF0088, 112233, CCCCCC, and so on.

Each of these stands for hexadecimal FF (256 decimal) shades of the colors red, green, and blue.
For example, FF0088 means the intensity values for the given color should be FF red, 00 green, and
88 blue in hexadecimal. Therefore, going back to the code segment, if n is less than 16, it becomes a
single digit in hexadecimal (a number between 0 and F), and in such cases a leading 0 is added to pad
the number up to the required two digits.

Having padded the number with a 0 (if necessary), the number n is then passed to the JavaScript
toString() function with an argument of 16, like this code segment:

This tells it to convert the number to base 16, which is hexadecimal. The results of the two

segments are then concatenated and returned. When you put both pieces of code together, they look
like this:

How to Use It
To convert a decimal number to hexadecimal, pass it to the DecHex() recipe, like this:

The value displayed by this statement is ‘ad’, which is an acceptable hexadecimal number for

JavaScript when used as part of a color, so there’s usually no need to convert it to uppercase or add
any prefix to it.

This now completes the fundamentals of your basic JavaScript toolkit and, by necessity, it’s one
of the longest chapters in the book. In the next chapter, we’ll start adding recipes to provide location
and positioning features, and then the fun will really start.

The Recipe

CHAPTER 14
Location and Dimensions

The previous chapter concentrated on providing a basic subset of core JavaScript functionality. This
one does the same, but there are enough recipes in the collection now that we can also start to create
some interesting effects, including resizing and repositioning objects.

 ResizeWidth()
When creating dynamic web pages, you will often need to change the dimensions of objects. You
might do this to emphasize a section by enlarging it, you may allow the contents of a page to be
rearranged by the user, or you might wish to open up elements such as forms or light boxes, and so
forth.

With this recipe, you can resize the width of any object that has a width property, such as the
example div shown in Figure 14-1, which has had its width resized to 300 pixels.

FIGURE 14-1 Resizing the width of an object

About the Recipe
This recipe changes the width of an object. It requires the following arguments:
• id The ID of an object or the object itself. You can also pass an array of objects and/or object

IDs.
• width The new width for the object. If id is an array, all the objects referred to are set to this

width.

Variables, Arrays, and Functions
j Local integer loop variable
overflow The object’s style.overflow property
width The object’s style.width property

HID Global string variable with the value ‘hidden’
Px() Function to add the suffix ‘px’

How It Works
This recipe also offers the multifunctionality of the O() and S() recipes, in which you can pass either
the ID of an object or the object itself, and you can even pass an array of IDs and/or objects to change
them all at the same time.

It achieves this by taking advantage of the fact that the S() recipe is already set up to deal with
an object ID, an object, or an array of objects and/or object IDs. Therefore, all that is necessary is to
call S() twice; once to set the object’s or array of objects’ style.overflow properties to ‘hidden’,
and then to set the style.width properties to the value in width.

The variable Hid is a global variable created by the Initialize() recipe, and it has the value
‘hidden’. The style.overflow property of the object is set to this value to allow objects to be reduced
as well as enlarged, and when reduced, text that would have overflowed is simply ignored.

How to Use It
To use this recipe, pass it an object and a width, like this:

Or you can pass an array of objects, like this:

Here’s an example you can try that resets the width of the div to 300 pixels. It also changes the

text and background colors so you can see the change:

The Recipe

 ResizeHeight()
In the same way that you may need to resize the width of an object, there’s a recipe to resize its
height. Figure 14-2 shows the div created in the previous recipe, now increased in height to 100
pixels.

FIGURE 14-2 Resizing the height of an object

About the Recipe
This recipe changes the height of an object. It requires the following arguments:
• id The ID of an object or the object itself. You can also pass an array of objects and/or object

IDs.
• height The new height for the object. If id is an array, all the objects referred to are set to this

height.

Variables, Arrays, and Functions
j Local integer loop variable
overflow The object’s style.overflow property
height The object’s style.height property
HID Global string variable with the value ‘hidden’
Px() Function to add the suffix ‘px’

How It Works
This is the companion recipe to ResizeWidth(), and it works in exactly the same manner as the
previous one, with the only difference being that the object’s style.height property is modified
instead of style.width.

As with ResizeWidth(), you can pass either object IDs or objects, and you can also pass an
array of IDs and/or objects. For further details on how this recipe works, please refer to the

ResizeWidth() recipe.

How to Use It
To use this recipe, pass it an object and a height, like this:

Or you can pass an array of objects, like this:

Here’s an example you can try that modifies the example in the previous recipe by resizing the

div to 100 pixels in height:

The Recipe

 Resize()
This simple recipe combines the previous two into a single function to save on typing and to make
your code more compact. With it, you can change both the width and height of an object or array of
objects, as shown in Figure 14-3.

FIGURE 14-3 Resizing both the width and the height of an object

About the Recipe
This recipe changes the width and height of an object. It requires the following arguments:

• id The ID of an object or the object itself. You can also pass an array of objects and/or object IDs.
• width The new width for the object. If id is an array, all the objects referred to are set to this

width.
• height The new height for the object. If id is an array all the objects referred to are set to this

height.

Variables, Arrays, and Functions
ResizeWidth() Function to change an object’s width
ResizeHeight() Function to change an object’s height

How It Works
This recipe simply makes a call to ResizeWidth() followed by one to ResizeHeight().

How to Use It
To use this recipe, pass it an object along with a width and height, like this:

Or you can pass an array of objects, like this:

Here’s an example you can try that further improves the example in the previous recipe to resize

both the width and height of an object with only a single call:

The Recipe

 Position()
This recipe sets the CSS style.position property of an object. This is useful when you wish to
control an object’s offset from its parent’s location, or even completely move it to any absolute
position. Figure 14-4 shows a div that has been offset horizontally from its previous position by 100
pixels.

FIGURE 14-4 This recipe enables objects to be moved.

About the Recipe
This plug-in sets the CSS style.position property of an object. It requires the following
arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• type The type of style.position property to assign, out of ‘absolute’, ‘fixed’, ‘relative’,

‘static’, or ‘inherit’. You can also use the shorter, global variables (created by the Initialize()

recipe) of ABS, FIX, REL, STA, and INH.

Variables, Arrays, and Functions
position The object’s style.position property

How It Works
This function uses the capability of the S() function that accepts an object, an object ID, or even an
array of objects and/or object IDs. Therefore, it simply passes the values in id and type directly to the
S() recipe.

How to Use It
To set an object’s style.position property using this recipe, make a call such as:

For example, to change an object to have an ‘absolute’ position (using the shorter, global

variable ABS created by the Initialize() recipe) and then move it, you could use code such as the
following:

This example creates a div called ‘moveme’, which is then set to white text on a red

background, and then the Position() recipe is called to give it a ‘relative’ position. Finally, its
style.left property is set to 100 using the Px() recipe, which offsets it horizontally from its parent
object by 100 pixels.

CAUTION As well as the difference in location change between divs that use ‘absolute’ and
‘relative’ style positions, you also need to take into account the fact that a div with an
‘absolute’ style position is automatically shrunk to fit its contents, whereas one with a
‘relative’ style position will retain its previous width, which, by default, extends to the right-
hand edge of its containing object. If you use a span instead, it will always shrink to fit its
contents, regardless of where or how it is positioned.

The Recipe

 GoTo()
If an object has been set free from the page, for example, by using the previous recipe, Position(),
you can move it to another location by changing its style.left and style.top properties. This
recipe makes it quicker and easier by providing a single function to do so. In Figure 14-5, a div has
been moved 200 pixels to the right and 25 pixels down.

FIGURE 14-5 The GoTo() recipe moves an object.

About the Recipe
This recipe moves an object (if it is movable) to a new location. It takes the following arguments:
• id An object, an object ID, or an array of objects and/or object IDs.
• x The horizontal offset, from the left edge of the parent object, to which the object should be

moved (or from the browser edge if the object has a style.position property of ‘fixed’ or
‘absolute’).

• y The vertical offset, from the top edge of the parent object, to which the object should be moved
(or from the browser top if the object has a style.position property of ‘fixed’ or ‘absolute’).

Variables, Arrays, and Functions
left The object’s style.left property
top The object’s style.top property
Px() Function to add the suffix ‘px’

How It Works
This recipe also takes advantage of the S() recipe’s capability to manage arrays of objects and/or
object IDs, single objects, or object IDs. It makes just two calls: one to set the object’s style.left
property to the value in x with the suffix ‘px’ appended, as is required by the rules of CSS, and the

other to do the same but with the style.top property using the value in y.

How to Use It
To use this recipe, make sure that an object is movable by first issuing a command such as this (using
the global variable REL, which contains the string ‘relative’):

The following example gives the div an ‘absolute’ position (using the global variable ABS) and

then moves it:

The Recipe

 Locate()
This recipe combines the Position() and GoTo() recipes into a very handy single recipe that is
especially useful when first setting up objects on a web page. With it, you can set an object’s
style.position property at the same time as its horizontal and vertical offsets. Figure 14-6 shows
this recipe moving an object with an ‘absolute’ position to the location 100,40.

FIGURE 14-6 Setting an object’s position and location at the same time

About the Recipe
This recipe sets an object’s style.position property as well as its horizontal and vertical offsets.
It requires the following arguments:
• id An object, an object ID, or an array of objects and/or object IDs.
• type The type of style.position property to assign, out of ‘absolute’, ‘fixed’, ‘relative’,

‘static’, or ‘inherit’ (or the global variables ABS, FIX, REL, STA, and INH).
• x The horizontal offset, from the left edge of the parent object (or browser for ‘fixed’ objects), to

which the object should be moved (or from the browser edge if the object has a style.position
property of ‘fixed’ or ‘absolute’).

• y The vertical offset, from the top edge of the parent object (or browser for ‘fixed’ objects), to
which the object should be moved (or from the browser top if the object has a style.position
property of ‘fixed’ or ‘absolute’).

Variables, Arrays, and Functions
Position() Function to set an object’s style.position property
GoTo() Function to move an object to a new location

How It Works
This recipe draws on the functionality of the recipes Position() and GoTo(), which both allow an
object, an object ID, or an array of objects and/or object IDs to be accessed. Therefore, it simply
calls each in turn, passing the arguments id, style, x, and y, as necessary.

How to Use It
To set an object’s style.position property and move it to its correct location using this recipe, you
might use code such as the following:

In the preceding, you can see the Locate() recipe provides a wide range of functionality with a

single call.

NOTE The absolute position property is always made relative to the first parent element that has
a position other than static. A relative position is relative to its containing object, and a fixed
property is relative to the browser borders.

The Recipe

 GetWindowWidth()
There are many reasons to need to know the width of the browser window, the most obvious of which
is so you can determine which objects you can display (and where) in a dynamically generated web
site. This recipe gives you that exact information, as shown by the alert box in Figure 14-7. It also
takes into account any scroll bars that might reduce the available width.

FIGURE 14-7 Determining the available width of the browser window

About the Recipe
This function will tell you the width of the browser window to the nearest pixel. It doesn’t require
any arguments and returns the width as an integer.

Variables, Arrays, and Functions
de Local object copy of document.documentElement
BROWSER Global variable containing the browser name
barwidth Local integer variable set if a vertical scroll bar exists
scrollHeight The de.scrollHeight property
clientHeight The de.clientHeight property
innerWidth The window.innerWidth property
clientWidth The de.clientWidth and document.body.clientWidth properties

How It Works
This recipe first copies the document.documentElement object into de to provide a much shorter
name, reducing the amount of code to enter. Next, if the browser is not Internet Explorer (as
determined by the value in the global variable BROWSER), then the local integer variable barwidth is
set to a value of 17 if the value in de.scrollHeight is greater than that in de.clientHeight.

The de.scrollHeight value is bigger when there is more web page below the bottom that can
be scrolled to. In that case, there will be a scroll bar, so barwidth is given the value of 17, which is
the default width of scroll bars in all browsers. This value is then subtracted from the full window
width and the result is returned.

Otherwise, as is often the case if the browser is Internet Explorer, the code simply returns the
value of whichever has a value, either de.clientwidth or document.body.clientwidth
(allowing for either strict or quirks mode). This value already takes into account any scroll bar, so no
further code is required.

How to Use It
To use this recipe, simply call it and use the value returned, as in the following example, which
passes the returned value to an alert() statement, where it is displayed:

The Recipe

 GetWindowHeight()
This is the companion recipe to GetWindowWidth(). It returns the height of the browser window,
bearing in mind any scroll bars. In Figure 14-8, the height of the usable area of this browser has been
determined by this recipe to be 124 pixels.

FIGURE 14-8 Determining the usable height of the current browser window

About the Recipe
This recipe takes no arguments and returns the available height of the current window, taking any
scroll bars into account.

Variables, Arrays, and Functions
de Local object copy of document.documentElement
BROWSER Global variable containing the browser name
barwidth Local integer variable set if a vertical scroll bar exists
scrollWidth The de.scrollWidth property
clientWidth The de.clientwidth property

innerHeight The window.innerHeight property
clientHeight The de.clientHeight and document.body.clientHeight properties

How It Works
This recipe works in almost the same way as GetWindowWidth() except that it returns the available
height in the current browser window, taking any scroll bars into account. Please refer to
GetWindowWidth() for further details.

How to Use It
To use this recipe, simply call it and use the value returned, as in the following example, which
passes the returned value to an alert() statement, where it is displayed:

Recipe 27 (following) is a good example of how this and the previous recipe,

GetWindowWidth(), come in very handy.

The Recipe

 GoToEdge()
These recipes are starting to come together in such a way that it’s now easy to build a recipe that will
move one or more objects to one of the edges of the browser, which is what this one does: It allows
you to move objects to the top, left, right, or bottom edges of the browser, as shown in Figure 14-9.

FIGURE 14-9 Attaching GIF images to different edges of the browser

About the Recipe
This recipe locates one or more objects at one of the four edges of the browser window. It requires
the following arguments:
• id An object, an object ID, or an array of objects or object IDs.
• where The edge to which the object or objects should be moved, out of ‘top’, ‘bottom’, ‘left’, or

‘right’.
• percent The distance from the left or top of the browser, depending on the value in where.

Variables, Arrays, and Functions
j Local integer for indexing into id if it’s an array
width Local variable containing the width of the browser, less that of id
height Local variable containing the height of the browser, less that of id
amount Local variable containing percent as a percent
TP, BM, LT and RT Global variables with the values ‘top’, ‘bottom’, ‘left’, and ‘right’
GetWindowWidth() Function to return the browser width
GetWindowHeight() Function to return the browser height
W() Function to return the width of an object
H() Function to return the height of an object
GoTo() Function to move an object to a new location

How It Works
Like many others, this recipe supports the passing of an object, an object ID, or an array of objects

and/or object IDs. This is managed by the initial if() section, which determines whether id is an
array using the instanceof operator. If it is, then each element of the array is recursively passed to
the same function, along with the values of where and percent. Once all have been processed, the
function then returns.

After this, the three local variables width, height, and amount are assigned values
representing the amount of width and height remaining in the browser window (after the width and
height of the object are taken into account). This is done by fetching the width and height of the
browser window using the GetWindowWidth() and GetWindowHeight() recipes, and then
subtracting the object’s width from one and its height from the other, as determined by calls to W()
and H().

The variable amount is set to percent /100 so that it can be used as a multiplier. For example,
if percent has a value of 40, then dividing it by 100 assigns it the value of 0.40, which can then be
multiplied by any number to reduce it to 40 percent of its original value. In this case, the multiplier
determines how far along an edge the object should appear.

Next, a switch() statement tests for the four allowed argument values for where, which are
‘top’, ‘bottom’, ‘left’, or ‘right’. The shorthand global variable equivalents of TP, BM, LT, and RT
are used in place of these values to make the code shorter and clearer. A break command ends each
subsection of the switch() statement except for the final one, where it is not required because
program flow will continue on the next line down anyway.

Depending on which of the four values has been passed in where, the local variables x and y are
set to align the object in id right up against the edge specified. The object is also displayed at a
position between 0 and 100 percent along (or down), according to the value in percent. Finally, a
call to GoTo() is made to move the object to the new location.

There are many uses for this recipe; one in particular is a dock bar, similar to the one used at the
bottom of the screen on the Apple OS X operating system, with a row or column of expanding and
collapsing icons. JavaScript Recipe 66, DockBar(), provides exactly this functionality, for any web
page.

How to Use It
To use this recipe, pass an object to it along with details on where to display it, as in the following
example, which displays four different icons, one per edge:

In the first section of HTML, four GIF images are loaded in, with each given a different ID.

Then, in the <script> section, the array ids is populated with these IDs so that the following
Position() command can set all of them to have a style.position of ‘fixed’. This means they will
stay where they are put, even if the browser page scrolls.

Finally, each image is attached to a different edge using four different calls to GoToEdge(). The
top one is 50 percent in, the bottom 10 percent in, the left 33 percent down, and the right 66 percent
down.

NOTE As with all of this book’s examples, you can download this example and all associated
content (such as the images used) from the companion web site at
webdeveloperscookbook.com.

The Recipe

http://www.webdeveloperscookbook.com

 CenterX()
Another very useful function is to center an object, which is what this recipe does. By using the
browser width and object width, it moves an object horizontally to exactly the center of the browser.
Figure 14-10 shows a div that has been centered horizontally using this recipe.

FIGURE 14-10 Centering a div horizontally

About the Recipe
This recipe centers an object (or objects) on a horizontal axis. It requires the following argument:
• id An object, an object ID, or an array of objects or object IDs.

Variables, Arrays, and Functions
j Local integer variable for indexing into id if it is an array
Left The style.left property of an object

SCROLL_X
Global variable containing the number of pixels by which the browser has
scrolled horizontally

GetWindowWidth()
The available width of the browser window, taking into account any scroll
bars

W() Function to fetch an object’s width
Px() Function to append the suffix ‘px’

How It Works
This recipe allows arrays of objects and/or object IDs, as well as single objects or object IDs. It
does this by using the instanceof operator to tell whether id is an array, and if it is, it iterates
through the array using the local variable j as an index, recursively calling itself with the single-
element values. Upon completion, the if() section of code returns.

In the second part of the recipe, the S() recipe sets the object’s style.left property to the
correct value (using a call to Px() to add the ‘px’ suffix) to center the object horizontally.

The correct value is determined by looking up the width of the window (less 17 if there’s a
scroll bar), minus the width of id. This value is then divided by 2. For example, if the window is 600
pixels wide and the object is 100 (and there is no scroll bar), the value is determined by subtracting

100 from 600, which equals 500. This number is divided by 2 to get a final result of 250. Therefore,
an offset of 250 pixels from the left will exactly center an object of 100 pixels width in a 600-pixel-
wide browser. If there is a scroll bar, the values become 583 – 100 / 2, which equals 241.5. The
Math.round() call deals with a fractional result, which in this case is rounded up to 242.

If the browser has not scrolled, this is all the calculation that is needed. However, because the
horizontal offset is from the left edge of the document (not the window), if there has been a horizontal
scroll, the object will be displayed left of center by the amount of the scrolling. Therefore, the global
variable SCROLL_X is added to the calculated value in order to place the object exactly between the
left- and right-hand edges of the window.

How to Use It
To center an object, as long as it is capable of being moved, just call CenterX() in the following
manner, which creates a simple div and then centers it:

The entity is there to separate the text from the border, which it otherwise runs into. The

Locate() call sets the ‘test’ div to an ‘absolute’ position using the global variable ABS for
shorthand. It also locates the div at the position 20,20. The Resize() call then turns the div into a
100 by 100–pixel square. Then, in this example, rather than using colors to make the div easy to see,
the div has been given a solid border with a call to S().

Finally, a call is made to CenterX() and the div is centered horizontally.

The Recipe

 CenterY()

This is the partner recipe to CenterX(), which enables you to center an object vertically. Figure 14-
11 shows a div that has been centered using this recipe.

FIGURE 14-11 Centering a div vertically

About the Recipe
This recipe centers an object (or objects) on a vertical axis. It requires the following argument:

• id An object, an object ID, or an array of objects or object IDs.

Variables, Arrays, and Functions
j Local integer variable for indexing into id if it is an array
top The style.top property of an object

SCROLL_Y
Global variable containing the number of pixels by which the browser has
scrolled vertically

GetWindowHeight()
The available height of the browser window, taking into account any scroll
bars

H() Function to fetch an object’s height
Px() Function to append the suffix ‘px’

How It Works
This recipe is almost identical to CenterX(), except that an object is centered along its vertical axis.
See the section on CenterX() for more details.

How to Use It

To center an object vertically using this recipe, you might use code such as the following:

This example creates a div in the HTML section and then, in the <script> section, it sets the

object’s style.position property to ‘absolute’ using the Locate() command and the global
variable ABS. It also moves the object to location 20,20.

The div is then resized using Resize() to a width and height of 100. After that, it is given a
single-pixel border to make it stand out and then, on the final line, the CenterY() recipe is called to
center it vertically.

The Recipe

 Center()
More often than not, when you center an object you usually want to do so in both horizontal and
vertical directions, so this recipe brings both the previous ones together into a single function, as
shown in Figure 14-12.

FIGURE 14-12 Centering a div both horizontally and vertically

About the Recipe
This recipe centers an object (or objects) on both its vertical and horizontal axes. It requires the
following argument:

• id An object, an object ID, or an array of objects or object IDs.

Variables, Arrays, and Functions
CenterX() Function to center an object horizontally
CenterY() Function to center an object vertically

How It Works
Since both the CenterX() and CenterY() recipes have been written to take arguments that can be an
array of objects and/or object IDs, an object, or an object ID, there is little work for this recipe to do,
so it simply calls each one in turn, passing id (whether or not it’s an array) to each.

How to Use It
To fully center an object in both the horizontal and vertical directions, you could use code such as the
following:

This example is very similar to the previous two, except that it calls the Center() recipe at the

end to fully center the div.
That covers this chapter’s recipes. Now we’re about to start really cooking, because in the

following chapter we’ll begin making objects invisible, make them reappear, smoothly fade them in
and out, and even more. Along the way, I’ll show you how to put these effects to good use.

The Recipe

CHAPTER 15
Visibility

Many of the most impressive effects you’ll see on web sites are also the simplest. For example, a
smooth fade from one image to another is often far more beautiful than other wipe or dissolve
transformations. Likewise, instantly revealing or hiding an object, when done well, is clean and easy
on the eye.

This chapter focuses on these types of effects, ranging from setting the visibility (or invisibility)
of an object to fading objects in and out, fading between objects, and so on. The recipes in this
chapter also provide the basic functionality required by many later recipes—most particularly, the
menu and navigation recipes in Chapter 18.

 Invisible()
To ease into this chapter, we’ll begin with a few short and sweet recipes that every JavaScript
programmer needs in their toolkit. The first one is Invisible(), which makes an object disappear
from a web page while the space it occupies remains, as opposed to hiding an object that collapses
and causes elements around it to assume its space (see JavaScript Recipe 40, Hide(), for that effect).

Figure 15-1 shows a span with the text “Now you see me…” followed by some plain text not in
a div that reads “and soon you won’t”. An alert window has been raised to let you see these elements
before the call to Invisible() is made. Figure 15-2 shows what happens after clicking the alert:
The shaded text in the span is invisible, but the other text snippet remains in place, demonstrating that
the span is still there, just not visible.

FIGURE 15-1 The shaded area is a span set to disappear when the alert is clicked.

FIGURE 15-2 After clicking the alert, the shaded span becomes invisible.

About the Recipe
This recipe makes an object invisible while retaining the object’s position and dimensions. It
requires the following argument:

• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
visibility The style.visibility property of the object(s)
HID Global variable with the value ‘hidden’

How It Works
This recipe makes a call to the S() recipe in such a way that you can pass it an array of objects
and/or object IDs, a single object, or an object ID. The style.visibility property of the object (or
objects) is then set to the value in the global variable HID, which is ‘hidden’.

How to Use It
To use this recipe, pass it the object or objects to make invisible. The following example shows one
way you might incorporate it:

This example first creates a span in the HTML section and gives it some text. Following this is
more text that isn’t included within the span. Then, in the <script> section, the span’s background
color is set to light blue and resized to make it stand out.

Next, an alert is raised to give you the chance to see the initial display before the call to the
Invisible() recipe is made. After clicking the alert OK button, the call is made, and the contents of
the span become invisible.

TIP When you want to keep your layout unchanged when hiding an object, use this recipe in
preference to JavaScript Recipe 40, Hide(). This recipe preserves an object’s dimensions,
while Recipe 40 fully collapses an object, causing elements surrounding it to move in and
occupy the newly vacant space.

The Recipe

 Visible()
This is the partner recipe to Invisible(). It makes a previously invisible object visible. Figure 15-3
expands the example in the previous recipe. Now, when the alert message’s OK button is clicked, the
invisible text will reappear and the browser will look like Figure 15-1 again (but without the alert
window).

FIGURE 15-3 After clicking OK, the hidden text reappears.

About the Recipe
This recipe makes an object visible after it has been made invisible. It requires the following
argument:

• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
visibility The style.visibility property of the object(s)
VIS Global variable with the value ‘visible’

How It Works
This recipe makes a call to the S() function in such a way that you can pass it an array of objects
and/or object IDs, a single object, or an object ID. Then, the style.visibility property of the
object (or objects) is set to the value in the global variable VIS, which is ‘visible’.

How to Use It
To make invisible objects reappear, just pass them to this recipe. The following example extends the
previous recipe example to make the hidden span reappear:

Just the final two lines of code in this example are new: an alert, so that you can verify that the

span was made invisible; and a call to Visible() that is executed after clicking OK, which makes
the object reappear.

The Recipe

 VisibilityToggle()
This recipe inverses the visibility of an object. If it is visible, it becomes invisible, or if it is
invisible, it becomes visible. In Figure 15-4, each time the button is clicked, the text to the right
toggles between being visible and invisible.

FIGURE 15-4 Attaching a recipe to a button’s click event

About the Recipe
Each time this recipe is called, the object or objects passed to it change their visibility to the opposite
state. It requires the following argument:
• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
j Local integer for indexing into id if it is an array
visibility The object’s style.visibility property
HID Global variable with the value ‘hidden’
VIS Global variable with the value ‘visible’

How It Works
This recipe uses the recursive trick that many others employ to handle arrays of objects and/or object
IDs, as well as single objects and object IDs. It does this using the instanceof operator to test
whether id is an array. If it is, the array is iterated through using the local variable j in a for() loop,
individually calling the function itself recursively for each element of the array. Once it’s done, the
function returns.

If id is not an array, the S() function is called, along with the inverse value of the object’s
style.visibility property. This is achieved using the following ternary expression, along with the
two variables HID and VIS, which stand for the strings ‘hidden’ and ‘visible’:

In plain English, this statement equates to “If the current value of the object’s

style.visibility property is ‘hidden’, then return the value ‘visible’; otherwise, return the value
‘hidden’.” Everything after the first equal sign and before the question mark is the test. The value
immediately following it is the one to return if the test result is true, and the final value is to be
returned if the test result is false.

All this has the effect of applying the opposite state of the visibility property to the object.

How to Use It

You can call this recipe directly from within JavaScript, like this:

Or you can pass an array of objects, like this:

Alternatively, you can incorporate the call within an HTML statement, as in the following two

lines of HTML that cause the text in the span called ‘toggle’ to switch between being invisible or
invisible each time the button is clicked (you could equally attach it to an onmouseover or other
event, too):

You will see this recipe used in a number of the other recipes in various ways.

NOTE Calling this recipe from HTML illustrates the main reason why nearly all these recipes
allow you to pass either an object or an object ID. In the preceding example, the object ID of
‘toggle’ is passed to the recipe, but the object this (which is an object, not the ID of an
object) can also be passed, thus telling the recipe that the HTML object in which the call is
embedded is the one to manipulate. This is how rollover and other similar effects are
achieved—you’ll see more on this in the next recipe and in Chapter 18.

The Recipe

 Opacity()
Being able to switch an object from visible to invisible is great, but sometimes you need finer control
over an object’s visibility. This is referred to in JavaScript by the inverse term: its opacity. With this
recipe, you can set the opacity of any object to a value between 0 percent (totally transparent, or
invisible) and 100 percent (fully opaque, nothing behind shows through).

Figure 15-5 shows three buttons displayed using the default opacity of 100 percent. In Figure 15-

6, each button has been clicked to change its value to 25 percent, 50 percent, or 75 percent,
respectively.

FIGURE 15-5 Three button objects at the default opacity of 100 percent

FIGURE 15-6 After being clicked, the buttons are at 25 percent, 50 percent, and 75 percent opacity.

About the Recipe
This recipe applies the opacity setting supplied to the object or objects it is passed. It requires the
following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• percent The amount of opacity to apply to the object or objects, from 0 percent, which is fully

transparent, to 100 percent, which is fully opaque.

Variables, Arrays, and Functions
opacity The style.opacity property as used by most browsers

MozOpacity
The version of the opacity property used by Mozilla-based browsers such as
Firefox
The version of the opacity property used on older versions of the Apple Safari

KhtmlOpacity browser

filter
Used to implement Microsoft’s version of the opacity property (and many other
properties, too)

How It Works
This recipe makes four different calls in turn because various browsers approach the subject of
opacity in different ways. Fortunately, none of the methods clash with each other, so a lot of if…
then…else code is not necessary.

The first line for most browsers (such as Opera, Google Chrome, and recent versions of Apple
Safari) looks like this:

This simply takes the value in percent, divides it by 100, and applies it to the style.opacity

property of id. Of course, if id is an array, all its elements will have that property updated.
However, Mozilla-based browsers such as Firefox have their own property for this function, so

the following line of code performs the equivalent for them by changing the style.MozOpacity
property. Likewise, the third line is for Safari browsers that use the old rendering engine (before
Webkit was introduced) and therefore require the style.KhtmlOpacity property be changed.

Finally, Microsoft chose a more complicated approach and includes opacity as part of their
nonstandard filters and transitions group of features. The object’s filter property is set in the
following manner (for a setting of 25 percent, for example):

However, because you need to take into account the fact that id could be an array, the following

version of the call is made, with both the property and setting values also passed to the S() recipe:

Also, rather than a numeric value, a string has to be assigned to the filter property, which

requires construction. So, in order to place the value in percent into the string, the following code is
used (employing the InsVars() recipe from Chapter 13):

How to Use It
To change an object’s opacity, just pass it along with the object or its ID (or an array of objects
and/or object IDs). You can use a JavaScript command like this:

Or, you can embed the call within HTML, as in the following example, which creates three

clickable buttons:

When clicked, the different buttons will change their opacity by the assigned amount (25 percent,

50 percent, or 75 percent, respectively). Notice that none of these HTML elements have been
assigned IDs because the keyword this has been passed to the Opacity() recipe, thus taking
advantage of the fact that this recipe (like most of them) will accept either an object ID or an object.
The this keyword directly passes the calling object to the function, which is why no ID name is
required.

The Recipe

 Fade()
This recipe makes great use of the previous one, Opacity(), by making it possible to smoothly
change an object’s opacity over time. In Figure 15-7, two images have had their IDs attached to
mouse events so they will fade in and out.

FIGURE 15-7 The left image is slowly fading into the background.

About the Recipe
This recipe fades an object from one opacity value to another (either increasing or decreasing it) over
a set number of milliseconds. It requires the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• start The beginning level of opacity.
• end The final level of opacity.
• msecs The number of milliseconds the fade should take.
• interruptible If this option is set, an object’s fade can be interrupted and replaced with a new

fade on the same object; otherwise, the fade will continue until it has finished.
• CC Generally, this argument should not be passed, as it is a special variable for notifying a recipe

that it is being called as part of a chain (the CC stands for “Chained Call”). Because of this, I will
no longer mention CC in the list of arguments, unless it is being used in a different manner.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array

Stepval
Local variable used in the calculation of the amount of opacity to change in
each frame of animation

INTERVAL
Global variable with a default value of 30—the number of milliseconds
between each call to the interrupt

FA_Flag Property of id that is set to true if a fade is in progress; otherwise, it is
false

FA_Start Property of id assigned the value of start
FA_End Property of id assigned the value of end
FA_Level Property of id containing the current opacity level

FA_Step
Property of id containing the amount by which to change the opacity in each
step

FA_Int Property of id containing the value passed in the interruptible argument

Fadeout
Property of id used by the FadeToggle() recipe: true if it has been faded
out, or false if it has been faded in

FA_Iid
Property of id containing the value returned by setInterval() —this value
is used by clearInterval() to turn off the DoFade() interrupt attached to id

DoFade()
Subfunction called every INTERVAL milliseconds until the fade is completed
or interrupted—this function updates the opacity of id each time it is called

Opacity() Function to change the opacity of an object or array of objects

Math.abs()
Function to return an absolute positive value from a number that may be
positive or negative

Math.max() Function to return the largest of two values
Math.min() Function to return the smallest of two values
setInterval() Function to start periodic interrupt calls to another function
clearInterval() Function to stop the interrupts started by SetInterval()

How It Works
This is the first of the really substantial recipes. At almost 50 lines of code it isn’t short, but don’t be

put off by it; the coding is straightforward, and you’ve seen many of its parts before. If you can work
through this recipe, you’ll be able to follow them all.

This function works by using interrupts to call a function at regular intervals to change the
opacity of an object by a small amount each time (which is how all the transition and animation
recipes in this book work). To do this, the recipe comes in two parts. The first part prepares all the
variables and initiates the interrupts, and the second part receives the interrupt calls and performs the
incremental opacity changes.

Let’s start with the first if() section of code. There’s nothing unusual here; it simply passes id
back to the same function recursively to be dealt with an element at a time if it’s an array:

After that, the local variable stepval is created, like this:

Its value is calculated by finding the difference between the start and end opacity values; that

is, it subtracts one from the other and then passes the result through the Math.abs() function. This
gives a positive integer representing the difference, like this:

Then, the length of time the fade should take, which has been passed as a value in milliseconds

in the variable msecs, is divided by INTERVAL, which is the number of milliseconds between each
frame of the transition (30 by default). The code for that is simple division:

The first value (the start and end difference) is then divided by the second (the timing), and

then assigned to the variable stepval.

A Specific Case
Let’s see what value this calculation comes out as by assuming that start has a value of 0, end has a
value of 100, and msecs has a value of 1000. This gives us the following formula:

The calculation comes to 100 / (1000 / 30), and the answer is the value 3. In terms of this code,

this means that if the following three things are true:

• The interrupt is going to take place once every 30 milliseconds.
• You want the animation to take 1000 milliseconds.
• There are 100 steps of opacity.

Then the distance between each level of opacity should be 3. In other words, to smoothly fade
from a value of 0 to 100 over the course of 1 second, there will be 33.33 steps, separated by 3 levels
of opacity.

A Standard Formula
The preceding formula is how almost all the animations and transitions in this book work. They take
the value in milliseconds that you supply for their duration, they then divide that by the interval
(usually 30 milliseconds), and finally they divide the distance between the start and end points of the
animation by the timing value in order to find out the amount the animation needs to move in each
step, as shown in the following statement:

If a Fade Is Already in Progress
This recipe has been designed so you can force it to proceed until it has finished, or you can allow it
to be interrupted (but only by another Fade() call on the same object). This is so that you can offer
onmouseover and onmouseout routines that will interrupt if you move your mouse again before the
transition completes. That way, a partially faded object can be made to fade back to its start point
again if you take the mouse away.

Alternatively, sometimes you may need to display an uninterrupted animation on the screen and
maybe even chain a few together. You have the option to choose either by setting the interruptible
argument to true if a fade can be interrupted, or false if it cannot. You can also use 1 and 0 for
these values if you prefer.

The next section of code deals with this by looking at the FA_Flag property of id. This is a new
property given to id, which has the value true only when a fade is in progress.

NOTE Assigning new properties directly to objects is a technique used throughout this book. It’s
a very convenient way of using some object-oriented aspects of JavaScript.

The next section of code checks whether a fade is already in progress. If it is, the code checks
whether the FA_Int property of id is set (to see whether an interrupt is allowed). If it isn’t, the
function immediately exits because it cannot be interrupted. Otherwise, the clearInterval()
function is called to end the currently repeating interrupts, and the object’s new FA_Start property is
set to the current value in FA_Fade.

This primes the new fade to start only where the previous one (that was just canceled) left off,
which means that the new fade will ignore the start value that was passed. This override ensures a
very smooth and natural flow between the two transitions. The following code performs this process:

If a Fade Is Not in Progress
If a fade isn’t already in progress, the new id property FA_Start is assigned the value in start so
that the remaining code can use this value to know where the fade started from. The id property
FA_Level is also set to start because that is the property that will be manipulated to track the
opacity level on each interrupt. These statements are placed within an else segment, like this:

The Remaining Assignments
In the final few lines of the setup portion of this recipe, a few other new properties of id have to be
assigned, as follows:

The first line sets the object’s FA_Flag to true, and this is used in other parts of the code to

decide whether or not the recipe can be entered (or reentered). The second line makes a copy of the
end value in the new property FA_End, and the last assigns the value in interruptible to the
property FA_Int.

Next, the amount by which to change the opacity has to be stored in FA_Step. This is either
stepval if the opacity is going to increase, or -stepval if it will be decreasing, as determined by
this line:

Assisting the FadeToggle() Recipe
The FadeToggle() recipe, which is covered a little later in this chapter, needs a way to know
whether an object has been faded in or out. To give it this information, the next new property of id,
Fadeout, is set to either true if the object is being faded out, or false if it is being faded in, like
this:

Initiating the Interrupts
The last line of the setup section of the recipe sets up the repeating interrupts in the following way:

This statement starts off a repeating interrupt that will call the DoFade() subfunction every

INTERVAL milliseconds. The value returned by calling setInterval() is saved in the new id
property FA_Iid since it is needed later when it’s time to cancel the interrupts.

The DoFade() Subfunction
This function is a subfunction of Fade() and is known as a private method or private function. Such
functions share all the local variables of the parent function, so there’s no need to pass them as
arguments, and because they can only be used by the parent function, they don’t clutter up the
namespace.

This makes them ideal to use as interrupt or event-driven functions, which is exactly what I have
done in this recipe. Every INTERVAL milliseconds (30 by default), DoFade() is called up by
JavaScript. It has one main job, which is to change the opacity of id by just a little. The following
line is the one that changes the value for this:

This simply adds the value of the FA_Step property of id to its FA_Level property. If FA_Step

is positive, the value is therefore added, but if it is negative, it is subtracted (for example, 100 + –3 is
97, because the first + gets ignored).

If the Final Opacity Has Been Reached
Having derived this new value, it’s time to check whether it is the final value wanted, and if so,
whether the animation has completed. The code to do that is slightly verbose:

Essentially, it checks whether the current opacity value (in FA_Level) has reached the final

required value (in FA_End). If it is the same as or greater than (or less than, in the case of decreasing)
the final value, then the following code segment is executed:

In this section, the value of FA_Level is set to the exact value in FA_End. This must be done

because FA_Level will often have a fractional value, and one final frame of animation is almost
always required to ensure that the correct final opacity level is reached.

After this, the FA_Flag property of id is set to false to indicate that the fade has finished. This
is immediately followed by a call to clearInterval() with the value that was saved in the FA_Iid
property. This cancels any further interrupts.

The CB Argument
The final statement in this if() section is as follows:

It checks the argument passed in CB (if any) and uses the eval() function to evaluate it. This type

of procedure is called a callback and is used by the chaining recipes. In a nutshell, now that this
recipe has completed running, this call allows any recipes that may be chained to follow this one to
begin their execution. However, this happens only if the argument CB has a value.

This argument is generally passed when you wish to have a second function run when the recipe
has finished executing. You simply pass the function to call in a string as the final parameter to
recipes that support callbacks natively.

NOTE Chapter 17 covers callbacks and chaining in much more detail, but I have placed this brief
description here due to this being the first recipe that supports callbacks.

Changing the Opacity
The last thing this subfunction does is call the Opacity() recipe to set the current opacity value, with
this line of code:

If clearInterval() has been called, that’s the end of it; otherwise, INTERVAL milliseconds

later DoFade() will get called again, and a slightly different value for FA_Level will be computed
and passed to the Opacity() recipe, until the transition has finished.

NOTE We spent a lot of time going over this particular recipe because most of the other
animation and transition recipes work in a similar fashion. So, once you understand this one,
you will more easily see how the others work.

How to Use It
To make an object fade, you would use a command such as this:

This will fade the object out, starting with full opacity down to being totally transparent, over

the course of one second. The final argument of 0 prevents the fade from being interrupted.
You can also embed calls to this recipe within HTML, like this:

If the link was previously given an opacity of 75, then each time the mouse passes over it the link

will gradually increase opacity over half a second, darkening it. When the mouse leaves, it will fade
back to a 75 percent opacity level.

Here’s some example code you can try for yourself (or download from the companion web site
at webdeveloperscookbook.com to ensure you have the images):

The HTML section sets up two images with the IDs of ‘i1’ and ‘i2’. In the <script> section, the

onmouseover and onmouseout events of each are attached so the objects will fade out when the
mouse passes over them and fade back in again when the mouse leaves. For the sake of brevity, I used
inline anonymous functions here instead of named functions.

The calls made to Fade() for the first image, ‘i1’, have the interruptible argument set to 0,
which means they cannot be interrupted and will always continue to completion. The second image
has the interruptible argument set to 1, which allows interruptions.

The Difference Between Interruptible and Noninterruptible Calls
Try passing your mouse over the pair of images and note what happens. You will see that the second
image smoothly fades in and out as soon as the mouse enters or leaves it, always picking up from the
opacity level of the fade that was interrupted.

On the other hand, the first image is harder to control because you can only make it fade out or in
from either a fully opaque or a fully transparent state; you cannot interrupt it part way. This also
means that if you move the mouse away from the first image before the transition has completed, the
mouse will already be out, so there will be no onmouseout event to trigger until you move it back in
again and wait for the transition to complete, and then move the mouse out.

You’ll see what I mean as you experiment with the example, and it will become clear how the
noninterruptible method is ideal for animations and transitions that you want to always complete,
while interruptible ones are best used where user interaction with the mouse is required.

The Recipe

http://webdeveloperscookbook.com

 FadeOut()

This recipe will fade out any object or objects passed to it. In Figure 15-8, each of the images has
some text above it that will fade out the image below when the mouse passes over it.

FIGURE 15-8 The right-hand image has been faded out.

About the Recipe
This recipe will fade out an object over a period of time specified. It takes the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• msecs The number of milliseconds the transition should take.
• interruptible If set, the fade out can be interrupted; otherwise, it cannot.

Variables, Arrays, and Functions
Fade() Function to fade an object between two levels of opacity

How It Works
This recipe calls the Fade() recipe, but it requires fewer arguments. Because of the way Fade()
works, this recipe also accepts an object, an object ID, or an array of objects and/ or object IDs.

How to Use It
Place a call to FadeOut() wherever you would like an object to be faded out. This can be from
within HTML in the form of an onmouseover or onclick event, for example, or you can place the
calls within a section of JavaScript code, as in the following example:

The HTML portion of this example creates two spans to accompany two images. The <script>

section then attaches to the onmouseover events of each span so that the image below each one will
fade out if the mouse is passed over the span text.

Once an image has been faded out, you can still pass the mouse over each span and the image
will then fade out again. This doesn’t look very good, as the images suddenly appear before fading,
but it can be corrected with the following recipe.

The Recipe

 FadeIn()
This recipe is a simple front-end to the Fade() recipe. It fades in an object that has been previously
faded out, as can be seen in Figure 15-9.

FIGURE 15-9 The right-hand image has been faded in and the left one has been faded back out.

About the Recipe
This recipe will fade in an object over a period of time specified. It takes the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• msecs The number of milliseconds the transition should take.
• interruptible If set, the fade in can be interrupted; otherwise, it cannot.

Variables, Arrays, and Functions
Fade() Function to fade an object between two levels of opacity

How It Works
This recipe calls the Fade() recipe, but it requires fewer arguments. Because of the way Fade()
works, this recipe also accepts an object, an object ID, or an array of objects and/ or object IDs.

How to Use It
You can use this recipe in much the same way as the previous one: from within HTML or from a
JavaScript section of code. The following example is a modified version of the previous example.
This example will fade the images in and out as you pass the mouse over the Mouseover 1 and
Mouseover 2 spans:

The main benefit from using this recipe with FadeOut() is that together they require fewer
arguments than the Fade() recipe, are easier to remember, and are shorter. They are also used by the
next two recipes, which toggle an object between being faded out and in, and which create a smooth
fade between two objects, respectively.

The Recipe

 FadeToggle()
If you use this recipe, you don’t need to know the current faded out or in state of an object. It tracks
the state for you and inverts whatever that state is. Figure 15-10 shows an icon of a house that is being
refaded into view with this recipe.

FIGURE 15-10 The house is starting to fade into view.

About the Recipe
This recipe either fades an object in or out, depending on its previous state. It requires the following
arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• msecs The number of milliseconds the transition should take.
• interruptible If set, the fade can be interrupted; otherwise, it cannot.

Variables, Arrays, and Functions
j Local variable that iterates through the elements in id if it is an array
Fadeout New property given to id and set to true if it has been faded out
FadeIn() Function to fade an object in
FadeOut() Function to fade an object out

How It Works

This recipe must make use of its own code to iterate through id if it is an array because of the need to
individually check the Fadeout property of id for each object. It uses the standard form of many
prior recipes to call the same function recursively with single-array elements.

The second half of the recipe is where the Fadeout property is checked. If it is set to true, then
that value will have been assigned from within the Fade() recipe, discussed earlier in this chapter.
When set to true, it means that the object has been faded out. If the Fadeout property doesn’t exist or
is set to false, then the object has not been faded out.

Therefore, based on the value of Fadeout, a decision is made by the FadeToggle() recipe to
call either the FadeIn() recipe to fade the object in or the FadeOut() recipe to fade it out.

How to Use It
You can attach this recipe to an event from within HTML, or you can call it up from a section of
JavaScript code. In the following example, the same call to FadeToggle() is attached to both the
onmouseover and the onmouseout events of the span:

Make sure to look at the first call in the OnDOMReady(...) section. Notice how it sets a

transition time of just 1 millisecond for the fade. This is the recommended way to set up toggleable
elements to start up in their inverse state because it causes the transition to occur, but over only a
single frame of animation.

This technique is useful if you want the house image to start faded out: the call to FadeToggle()
accomplishes the first fade out as quickly as possible—faster than the eye can see. When you run the
example, you should hardly even see the image until you pass the mouse over the text.

With the image faded out, the remaining two lines of code attach to the two mouse events. The
house will smoothly fade in and out as you pass your mouse over the text because the interruptible
argument is set to 1 and allows smooth interrupts to the transitions.

The Recipe

 FadeBetween()
This recipe fades smoothly between two images in a similar manner to a fade transition in a slide
show program. Figure 15-11 shows two overlaid images in the process of fading between each other.

FIGURE 15-11 The house and people icons are fading between each other.

About the Recipe
This recipe fades smoothly between two images. It requires the following arguments:
• id1 An object, an object ID, or an array of objects and/or object IDs.
• id2 An object, an object ID, or an array of objects and/or object IDs.
• msecs The number of milliseconds the transition should take.
• interruptible If set, the fade can be interrupted; otherwise, it cannot.

Variables, Arrays, and Functions
FadeOut() Function to fade an object out
FadeIn() Function to fade an object in

How It Works

This recipe calls the FadeOut() recipe for id1 and the FadeIn() recipe for id2. It is also possible
to supply an object, an object ID, or an array of objects and/or object IDs to both recipes.

How to Use It
To use this recipe, pass it two IDs, objects, or arrays of objects and/or object IDs, and they will fade
from the first object to the second. For the best results, you will probably want to overlay the objects
on top of each other so you can get smooth transitions. However, the recipe still works fine if you
wish to fade between objects in different locations.

The following example illustrates the setting up of your objects and then fading between them:

In the HTML section, a span is created to which mouse events will be attached and then two GIF

images are loaded.
In the <script> section, the two images are lifted out of the layout by making their position

setting ‘absolute’. Then, the second image is speedily faded out (over a period of 1 millisecond) so
that only the first image is visible.

The mouse events are attached to the FadeBetween() recipe so that passing your mouse over the
span text smoothly fades between the images over a period of half a second. The first
FadeBetween() call fades from the first image to the second, while the second call fades back again.

The Recipe

 Hide()
This recipe is different from JavaScript Recipe 31, Invisible(), in that when called it completely
collapses the object down to a 0 by 0–pixel space. The object is still there so that it can be unhidden,
but it is not visible. Because it occupies no space, other elements will often move in to occupy the
freed-up space. This makes it perfect for menuing and similar features.

In Figure 15-12, a row of three buttons has been created, each of which is attached by its onclick
event to a call to the Hide() recipe. In Figure 15-13, the middle button is hidden after being clicked,

and the other buttons have moved in to take up the vacant space.

FIGURE 15-12 Three buttons created with click events to hide them

FIGURE 15-13 The middle button has been clicked and is now hidden.

About the Recipe
This recipe will hide an object, effectively removing it from a web page. It requires the following
argument:

• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
HI_Flag New property assigned to id and set to true when id is hidden
display The style.display property of id
NextInChain() Function to start up the next function in a chain (if any)

How It Works
This recipe makes a call to the S() recipe using the assignment version of the call so that id can be
an object, an object ID, or an array of objects and/or object IDs. Each object has its style.display
property set to ‘none’, which hides it. Additionally, a call to O() is made with the arguments HI_Flag

and true, which sets the new object property Hi_Flag to true so that other recipes can tell that the
object has been hidden. This call also supports arrays.

Finally, any callback function contained in CB is evaluated with the eval() function but only if
the argument CB (explained in Chapter 17) has a value.

How to Use It
To hide an object, pass it to the Hide() recipe, either from inside a section of JavaScript code or
from within HTML. The following example creates three buttons, each of which can be clicked to
make it hide:

Alternatively, the input tags could be written as follows, and then no <script> section is

necessary:

Or, one button can hide another, like this:

The previous two lines each hide the other button, so whichever is clicked first will stay

displayed, since the other button will now be hidden and therefore can’t be clicked.
In the following recipe you’ll see how Hide() can be combined with Show() for creating

dynamic web page interaction.

The Recipe

 Show()
This is the partner recipe for Hide(). With it you can reveal an object that has previously been
hidden. In Figure 15-14, the two recipes have been combined to create a mouseover menu of
limericks.

FIGURE 15-14 Different limericks appear as the mouse passes each heading.

About the Recipe
This recipe will show an object, restoring its dimensions and location and moving back any elements
that have moved in to take its space. It requires the following argument:

• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
HI_Flag

New property assigned to id and set to true when id is hidden or false when it
is not

Display The style.display property of id
NextInChain() Function to start up the next function in a chain (if any)

How It Works
This recipe makes a call to the S() recipe using the assignment version of the call so that id can be
an object, an object ID, or an array of objects and/or object IDs. Each object has its style.display
property set to ‘block’, which restores its full width and height. Additionally, a call to O() is made

with the arguments HI_Flag and false, which sets the new object property Hi_Flag to false, so
that other recipes can tell that the object is not hidden. This call also supports arrays.

Finally, any callback function contained in CB is evaluated with the eval() function, but only if
the argument CB (explained in Chapter 17) has a value.

How to Use It
Now that you have both Hide() and Show() in your toolkit, you can start to create some professional
results, as in the following example, which features a simple mouseover menu of headings that call up
different sections of HTML when the mouse passes over them:

This is all pretty straightforward. The HTML section is in two parts. The first displays a header

along with the three spans containing subheadings, and the second displays three divs, each containing
a different limerick.

The <script> section then hides all three of the divs with a single call to Hide() in which an
array of object IDs is passed. Then follow six statements that attach either the Hide() or Show()
recipe to the onmouseover or onmouseout events of the subheadings via the use of anonymous inline
functions.

Whenever the mouse is passed over any subheading, the matching div will be displayed using a

call to Show(). As soon as the mouse passes out of the subheading, a matching call to Hide() is made
to remove it again.

Placing the JavaScript Within HTML
As you will have noticed, my preference when creating such interactive sections of a web page is to
proceed using a strong separation between HTML and JavaScript. I find that it makes the HTML
much more readable and far easier to update. However, if you prefer to embed JavaScript calls
within HTML, you could replace the three span lines with the following:

If you do choose this method of attaching to the mouse events, you can remove the final six

statements from the <script> section, but you will still need to keep the initial Hide() statement in
order to hide all the divs away on page load.

The Recipe

 HideToggle()
This chapter’s final recipe combines the Hide() and Show() recipes into a single recipe that will
toggle the value of an object from one state to the other, without you having to know which state it
was in to begin with. Figure 15-15 shows an informational paragraph that, when clicked, will replace
itself with another, simply by issuing a single call to this recipe.

FIGURE 15-15 Toggling between sets of info

About the Recipe
This recipe will make an object hidden if it is shown, or show it if it is hidden. It requires the
following argument:

• id An object, an object ID, or an array of objects and/or object IDs.

Variables, Arrays, and Functions
j Local variable to iterate through id if it is an array.

HI_Flag
Flag set by the Hide() and Show() recipes. If true, an object is hidden; if false
or unset, it is shown.

display The style.display property of id.
Show() Function to show an object that has been hidden.
Hide() Function to hide an object.

How It Works
This recipe uses the usual code you have seen a few times to iterate through id if it happens to be an
array. It determines this with the instanceof operator, and if it is an array, the local variable j
iterates through id using a for() loop, passing each individual element of the array back to the same
function recursively. Once the array has been processed, the function returns.

If id is not an array, the display property of id is inspected. If its value is not ‘none’, the
object is visible, so the Hide() recipe is called. Otherwise, the object is visible, so the Show()
recipe is called.

How to Use It
To use this recipe, pass it an object to be hidden or shown. As in most cases, you can also pass an

object ID or an array of objects and/or object IDs. The following example illustrates creating a
couple of different elements and toggling between them:

In the HTML section, two divs are created, one for info on the U.S. Democratic Party, and the
other for the U.S. Republican Party. After the informational text (taken from Wikipedia), each div
also includes a link with which the alternate information can be displayed.

In the <script> section, the second div (with the ID of ‘republican’) is hidden so that only one
div is shown. The other div could be hidden instead, but one of them must be hidden to start with in
order for the toggling to work.

Then, two attachments are made, one to each onclick event of the divs. They simply attach the
function toggle() to the events, remembering that by leaving out the brackets the function is attached
to the event, rather than the value returned by the function being attached.

Finally, the toggle() function calls the HideToggle() recipe, passing it both of the div IDs.
Since one is shown and one is hidden, toggling them both replaces one with the other.

The Recipe

CHAPTER 16
Movement and animation

From this point on, the JavaScript recipes really start to get interesting, as most of the core recipes
have now been covered. Using the tools already outlined, the recipes in this chapter enable you to
slide objects around the screen, deflate and inflate objects over time, and zoom objects in a variety of
ways. With all of this, you can create some very impressive effects with only a few lines of code.

 Slide()
This recipe allows you to slide an object from one place to another over time, making it useful for
sliding elements in on demand, hiding and revealing objects, or creating animation effects. Figure 16-
1 shows an image in the process of sliding from the bottom left to the top right of the browser.

FIGURE 16-1 This recipe smoothly slides objects over time.

About the Recipe
This recipe moves an object from one location to another over a period of time. It supports single
objects only (not arrays), because if there were more than one object, only the topmost one would be
seen. Therefore, you can pass only an object or an object ID to this recipe. It requires the following
arguments:
• id Either an object or an object ID—it cannot be an array of objects.
• frx, fry The top-left corner of the initial position for id.
• tox, toy The top-left corner of the final position for id.

• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object; if

false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
stepx

Local variable containing the amount by which to move horizontally in
each step

stepy
Local variable containing the amount by which to move vertically in
each step

count Local variable to count the steps
len1 Local variable containing the start-to-end distance

len2
Local variable containing the new start-to-end distance after an
animation is interrupted and given new coordinates

SL_Flag
New property assigned to id: true when a slide is in progress;
otherwise, false or unset

SL_Int
New property assigned to id: true if the previous call to this recipe
set the slide to uninterruptible

SL_Iid
New property assigned to id with which the repeating interrupts can
be stopped

INTERVAL Global variable with the value 30
Distance() Subfunction to calculate the distance between two locations
DoSlide() Subfunction to perform the sliding animation
GoTo() Function to move an object to a new location
NextInChain() Function to execute the next function in a chain (if there is one)
setInterval() Function to set another function to be called repeatedly
clearInterval() Function to stop the interrupts created by setInterval()

How It Works
The first section of code tests for the existence of the SL_Flag property of id. If it has a value of true
(or 1), then a slide on id is already in progress. This is the statement used:

Next, the property of id, SL_Int is tested. If it is false, then the previous call to Slide() for

this id set this variable to indicate that the function could not be interrupted, so the function returns.
Otherwise, interrupting the recipe is allowed, so the current slide is stopped by calling

clearInterval(), passing it the SL_IID property of id, as returned by SetInterval(). The code
to do this is as follows:

Next, because the recipe has been interrupted, it’s necessary to allow the interrupting slide to

commence from wherever the previous one was halted. What’s more, because the coordinates of the
halted object will not be the start coordinates passed to the interrupting call, it’s necessary to ensure
that the interrupting call moves at the same speed as the one specified in the call.

For example, if the call to Slide() specifies an animation time of 1000 milliseconds, but it
interrupts another slide and discovers that the object is now only one-third of the distance from the
destination (instead of the 100 percent it would have been if this was the first Slide() call on the
object), then the new slide should only take one-third of 1000 milliseconds to move, or 333
milliseconds.

Using the Pythagorean Theorem
To calculate the new distance to travel, and therefore determine the speed of the new slide, the recipe
uses the Pythagorean theorem, which states that on a right-angled triangle, the volume of the square on
the hypotenuse is equal to the sum of the volumes of the squares on the other two sides.

This works because if you draw a line between any two points on a two-dimensional surface
such as a browser, you can draw a horizontal line from one point and a vertical line from the other so
they meet each other at a single coordinate to create a right-angled triangle, with the longest edge
being the line connecting the two locations.

Therefore, using the Pythagorean theorem, the distance between the requested start and end
locations is determined by passing the results of tox - frx and toy - fry to the subfunction
Distance(), like this:

The Distance() subfunction looks like this:

The variable x is the length of one short side of the triangle, while y is the length of the other

short side. If either value is 0, then it is changed to 1; otherwise, division-by-zero errors may occur.
Each value is then multiplied by itself to determine the volumes of the squares, and they are then

converted to absolute values since they could be negative numbers. These figures are then added
together to give their combined volume, which is also the volume of the square on the long side of the
triangle.

Finally, to discover the length of the triangle’s longest side, the square root of this new volume
is returned—the distance in pixels between the locations frx,fry and tox,toy.

With the distance now stored in len1, the values of frx and fry are overridden with those of
the actual coordinates of the object by looking them up with the X() and Y() recipes using the
following code. The recipe will use this new start location, overriding the one passed to it by the
calling code:

The preceding process is then repeated to discover the distance between the new start location

of frx,fry and the final location of tox,toy, and this distance is then placed in the variable len2,
like this:

It is now possible to adjust the value of msecs (the length of time the animation should take in

milliseconds) by multiplying it by the result of dividing len2 by len1, like this:

For example, if the original length is 240 pixels and the new length is 200 pixels, then the

preceding statement is the equivalent of:

Or:

Therefore, the length of time the animation should take will become 833 milliseconds. This

formula also works when the interrupting call discovers that the actual location of the object is further
away than the start position it has specified. If that is the case, msecs will end up being multiplied by
a value larger than 1, which will extend the time that should be taken.

Determining the Movement Distance for Each Step
Next, the recipe computes the distance between the start and end positions (whether as originally
requested by the calling code, or modified due to interrupting a previous slide) and divides the
horizontal and vertical differences into the number of steps required to make the animation last for the
number of milliseconds specified in msecs (which again could be the original value, or a new value
computed from interrupting a previous slide). The following code calculates these step values:

To explain how these two lines of code work, I have determined that the value in INTERVAL

(which is 30 by default) is the optimal time in milliseconds between animation frames. Therefore, the
following calculation calculates the number of steps required to make an animation last msecs
milliseconds (if each step happens every INTERVAL milliseconds):

TIP Always ensure you pass the msecs argument a value greater than zero, because this recipe
(as with all of the animation and transition recipes) does not check for it having a value of
zero, which will cause errors and halt the animation.

The distance between the start and end locations is determined by subtracting the end from the
start, as in these two calculations:

If the start is before the end, then the result of a calculation is a negative number; otherwise, it is

positive. The results are then divided by the result of the previous calculation to divide the distance
by the steps required to determine the amount of movement for each axis, for each step of animation.

Setting Up the Repeating Interrupts
The last four lines of the setup portion of the recipe set the local variable count to zero; it will count
each step and inform the recipe when it’s time to stop. Then, the new SL_Int property of id is set to
the value in interruptible. This causes any call that attempts to interrupt the slide to be prevented
unless it has the value true or 1. Next, the new SL_Flag property of id is given the value true to
tell this and any other recipes that a slide is currently in progress on the object id.

Finally, setInterval() is called, passing it the DoSlide function name and the value in
INTERVAL. Because the brackets are left off the end of the function name, the function itself is passed
to setInterval(). If brackets were placed after the name, then the result of calling the DoSlide()
function would be passed to setInterval(), which is another value altogether.

This statement has the effect of initiating an interrupt call to the DoSlide() function every
INTERVAL (30 by default) milliseconds. The value returned by the function is stored in SL_IID (IID
stands for Interrupt ID), so it can be used as an argument to clearInterval() when the slide has
completed (or if it is interrupted). The code to do all this is as follows:

Performing the Slide
The portion of code that performs the animation is the DoSlide() subfunction. Subfunctions retain
access to the main function’s local variables and are therefore a neat way to create a repeating
interrupt without having to keep passing the arguments required.

The first thing the subfunction does is call the GoTo() recipe to move the object to its next
location, as follows:

The two values stepx and stepy were calculated earlier in the recipe, so this simply takes the

value in frx and adds to it the result of multiplying stepx by count (the current step number). The
same is also calculated for the vertical location.

Next, an if() section of code is entered, in which the value of count is tested against the result
of the calculation msecs / INTERVAL. The current value of count is tested, but the suffix of ++ then
increments count after making the test so that it has its new value ready for the next time the
subfunction is called. The statement looks like this:

If count is greater than or equal to msecs / INTERVAL, the object has reached its final

destination and the animation is complete, so the following four lines of code (shown as … in the
previous if() segment) are executed:

The first line sets the SL_Flag property of id to false to indicate no slide is running on id.

Then, a GoTo() call ensures that the object has ended in exactly the correct position, by passing it the
values of tox and toy. This is necessary because the values of stepx and stepy will usually be
floating point numbers and therefore the final location as calculated using them could be a tiny bit off.
The tox and toy arguments for this call ensure that any imprecision is not an issue.

After this, the clearInterval() function is called with an argument of SL_Iid, the property of
id that was created from the result of calling setInterval(). This turns off the repeated interrupts.

Finally, any callback function contained in CB is evaluated with the eval() function, but only if
the argument CB (explained in Chapter 17) has a value.

How to Use It
To slide an object from one place to another, it must first be released from its default location by
giving its style.position property a value such as ‘absolute’. The following example moves an
object from the coordinates 0,100 to 450,0 over the course of 1500 milliseconds (1.5 seconds):

The HTML section displays an image and gives it the ID ‘globe’. Then, in the <script> section,
the image is given an ‘absolute’ position using the Position() recipe and is then animated with a
single call to Slide(). The final argument passed is for whether the animation is interruptible. In this
case, it is not.

Let’s look at another example that responds to mouse events and allows interruption by adding a
couple of commands to the <script> section of the previous example:

Now when you pass the mouse over the globe, it will move from the position 450,0 to 450,50.

When you move the mouse away, it will slide back to 450,0. As you’ll see, it doesn’t matter where
you interrupt the slide, it always maintains the correct speed. Notice that the keyword this tells
Slide() which object to slide.

However, if you interrupt one slide with another that has a different distance to go or a different
length of time specified, then the interrupted and interrupting speeds will not match. I recommend you
generally disallow interrupting a slide with a dissimilar one, just as in the first Slide() call in the
example, which you cannot interrupt.

The Recipe

 SlideBetween()
This recipe swaps the positions of two objects by sliding them past each other. This is a great effect
for swapping requested objects into a chosen location. For example, Figure 16-2 shows a collection
of photos that can be individually displayed by passing the mouse over the associated title. When you
do this, the previous photograph is swapped with the new one and they slide past each other. The old
one returns to the stack of pictures, and the new one moves to the main viewing area.

FIGURE 16-2 This recipe creates smooth and impressive swap effects.

About the Recipe

This recipe takes the positions of two objects and then swaps the two by sliding the objects past each
other. It takes the following arguments:

• id Either an object or an object ID. It cannot be an array of objects.
• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same objects;

otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
SL_Flag Property of both id1 and id2—true if a slide is in progress
SL_Int Property of both id1 and id2—true if a slide can be interrupted
t1 Local temporary variable to store a copy of id1’s SB_X property
t2 Local temporary variable to store a copy of id1’s SB_Y property
x1 Local temporary variable to store a copy of id1’s SB_X property
y1 Local temporary variable to store a copy of id1’s SB_Y property
x2 Local temporary variable to store a copy of id2’s SB_X property
y2 Local temporary variable to store a copy of id2’s SB_Y property
SB_X Property of both id1 and id2 containing their horizontal locations
SB_Y Property of both id1 and id2 containing their vertical locations

How It Works
This recipe first checks whether either of the objects passed to it is currently being used in a slide
animation by testing their SL_Flag properties. If so, both objects then have their SL_Int properties
tested. If neither has a value of true or 1, then the slide may not be interrupted and the function
returns. The code to do this is as follows:

If the function is interruptible, then the locations of each object require swapping so they can

return to their start locations. This behavior has been chosen because the only details passed to the
recipe are the object IDs. Therefore, if an interrupting call to SlideBetween() is requested on an
object, the only different action it can take is to reverse the current slide.

To do this, the temporary variables t1 and t2 are given the current horizontal and vertical
locations of id1. Then, id1 is given the position of id2. Finally, id2 is given the position stored in
t1 and t2, using the following statements:

If a slide is not currently in progress on either object, copies are made of the current horizontal

and vertical locations of each object. These are created as new properties of each object (rather than
local variables) so that interrupting calls (if allowed) can have access to them, as follows:

Next, although not necessary, temporary copies are made of the locations of each object in the

short named variables x1, x2, y1, and y2. This is so that the final two statements are easier to read
and can fit on single lines. The four lines that do it look like this:

The final statements that start the animations going with calls to the Slide() recipe are as

follows:

The first statement sets up id1 to move from its location to that of id2, and the second sets id2

up to move from its location to that of id1.

How to Use It
There are many ways you can use this recipe. All you need is a single line of code to smoothly swap
two objects, like the following, which swaps object1 and object2 by sliding them past each other
over the course of 1000 milliseconds (1 second):

The final argument of 0 specifies that the animation may not be interrupted and must proceed

until it completes.
Here’s an example of how you could use this recipe to create a simple but effective way to

display photographs:

The HTML section of this example displays some text and five headings that describe five
photographs. Each heading is given an ID and placed in its own span tag. Underneath this, five empty
divs are created with unique IDs. These will be used as objects with which to swap the photographs.
Finally, the photographs are displayed, with each one having a unique ID assigned to it.

In the <script> section, the first statement sets all the blank divs to have a position property of
‘absolute’ and places them all at the location 2,50. Then the photos are also made ‘absolute’ and
placed in their locations. I chose to give them slightly different coordinates to show them as a stack of
images.

After this, five calls to a new function called swap() are made to attach to the image’s mouse
events. The swap() function takes three arguments, o1, o2, and o3, for the three objects passed to it.
The o1 object is one of the heading divs, which then has its onmouseover and onmouseout events
attached to by inline anonymous functions that call the SlideBetween() recipe, passing o2 and o3

(the two objects to swap) to it, and a time period of 200 milliseconds that the swap should take.
All this has the effect of swapping a photo with its blank companion div when the mouse passes

over its heading. It swaps them back when the mouse passes out of the heading. Because the final
argument passed to SlideBetween() is a 1, the animations are interruptible, so if you move the
mouse away before a picture has finished sliding, it will simply slide back to its position in the stack
of images.

I have deliberately only given you the guts of how this works so you can see how to easily create
your own functions. With suitable CSS and graphics, you can use these techniques to create very
impressive dynamic effects.

The Recipe

 Deflate()
With this recipe, you can make an object shrink down over time until it is no longer visible. You can
also specify whether to deflate (or shrink) the width, height, or both. Figure 16-3 shows three images,
each of which is in the process of being deflated with this recipe. The first is shrinking horizontally,
the last vertically, and the middle one is deflating in both dimensions.

FIGURE 16-3 Three different types of deflation are supported by this recipe.

About the Recipe
This recipe takes an object and, over a specified time period, shrinks it down until it is no longer
visible. The following are the required arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will shrink.
• h If true or 1, the object’s height will shrink.
• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;

otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable to index into id if it is an array
stepw Local variable containing the amount of horizontal change per frame
steph Local variable containing the amount of vertical change per frame

width
Local variable containing the width to which id should be changed at each
step

height
Local variable containing the height to which id should be changed at each
step

overflow
The object’s style.overflow object, which is set to Hid (‘hidden’) to
prevent an object’s contents overflowing as it shrinks

DF_Flag Property of id that is true if a Deflate() call is in progress
DF_Int Property of id containing true if the deflation is interruptible
DF_Iid Property of id used to clear an interrupt with clearInterval()

DF_OldW Property of id containing the unshrunk width of id
DF_OldH Property of id containing the unshrunk height of id
DF_Count Property of id that counts the number of frames in the animation

Deflated
Property of id set to true if it has been deflated—used by the
DeflateToggle() recipe

INTERVAL Global variable with the value 30
HID Global variable with the value ‘hidden’
setInterval() Function to set up repeating interrupts
clearInterval() Function to stop repeating interrupts
DoDeflate() Subfunction to perform the animation
W() Function to fetch an object’s width
H() Function to fetch an object’s height
Resize() Function to resize an object
NextInChain() Function to call the next function in a chain of functions (if there is one)

How It Works
This recipe has a few different parts. The first part tests whether id is an array; if it is, it calls itself
recursively with each element of id using the following code:

This allows many objects to be deflated at once, as long as they are passed to Deflate() in an

array.
Next, the code has to take into account the fact that when only one dimension of an image is

changed, most browsers will automatically modify the other one to keep the image at the same aspect
ratio. However, in this case, that feature is not wanted, so if either the horizontal or vertical width is
not to be changed (as decided by the values in the w and h arguments), that dimension is given a fixed
value representing its current length to replace its default value of ‘auto’. This allows one dimension
to be altered, while the other will not change:

Next, if a deflate animation is already in progress on id (as determined by its DF_Flag property

having a value of true or 1, its DF_Int property is checked. This contains true or 1 if the animation
may be interrupted; if it is not true or 1, the function returns. Otherwise, if any deflate interrupt is
currently running, it is stopped with a call to clearInterval(). The code for these two actions is as
follows:

Otherwise, if this is the first time the id object has been used by the Deflate() recipe, there are

some properties that need assigning, as follows:

In this section, the properties DF_OldW and DF_OldH are assigned the current width and height of

the object so they can be restored later—but only those dimensions that are to be resized have this
value saved.

Also, the DF_Count property is assigned the result of msecs / INTERVAL, which is the number
of steps in the animation. This variable will later count down one step at a time to zero (in the
DoDeflate() subfunction), and each time its value will be multiplied by the values in stepw and/or
steph to calculate the correct width and/or height of id for each step of the animation.

Next, some properties have to be assigned a certain value (whether or not this is the first time id
has been used with this recipe) using the following statements:

First, the horizontal and vertical distances for each step of the animation are assigned to stepw

and steph. This determines the amount of horizontal and vertical shrinkage required in each step to
ensure the animation lasts msecs milliseconds.

The next statement ensures that the contents of the id object will not overflow its boundaries
during resizing by setting the style.overflow property of id to HID (which stands for ‘hidden’).
This is not an issue when resizing images, but it certainly is when the object is a div or span that
contains multiple items such as text and images.

The Deflated property is then set to true to indicate the object’s current deflated/ inflated state
to this and other recipes, such as DeflateToggle().The DF_Flag is also set to true to tell this and
any other recipes that a Deflate() call is now in progress on id.

Next, DF_Int is given the value in interruptible so that if the recipe is called again on id while
the animation is still running, this value can be tested and, if not true or 1, the recipe will not be
interrupted.

The final statement in this part of the code uses setInterval() to set up an interrupt call to

DoDeflate() every INTERVAL milliseconds. The result of making this call is a value that can later be
passed to clearInterval() to cancel the interrupts. It is saved in the DF_IID property of id.

The DoDeflate() Subfunction
Once initialized by the main part of the recipe, the DoDeflate() subfunction is called every
INTERVAL milliseconds, and each time it shrinks the object a little more, like this:

These two lines calculate the new width and/or height of id and then resize either or both.
Next, a check is made to see if this was the final resize and whether the animation can now stop.

This is done by checking the value of DF_Count, which is decremented after each frame of
animation.

When the Animation Is Finished
If the DF_Count property is less than 1, the animation has completed and the DF_Flag property of id
is set to false to indicate there is now no deflate operation running on id.

Finally, the width and/or height of the dimension(s) being resized are set to zero to complete the
transition.

In the final two lines of the recipe, the clearInterval() function is called to prevent any
further interrupts. Any callback function contained in CB is evaluated with the eval() function, but
only if the argument CB (explained in Chapter 17) has a value. The code for these actions is as
follows:

TIP The double-hyphen (--) operator following DF_Count is a handy way of telling JavaScript to
decrement the variable, but only after its current value has been used in the if() statement,
thus saving an extra line of code.

How to Use It
Using deflate() is a great way to make an object disappear smoothly and is much more fun than just
fading it out or hiding it. Here’s some example code illustrating the three different types of effects
supported by this recipe:

The HTML section of this example places three images on the screen and assigns them unique

IDs. The <script> section then uses the Locate() recipe to give them all a position of ‘absolute’
and places them along the top of the browser, overlapping each other.

The final three lines call up a different Deflate() effect on each, which is achieved by passing
different values of the second and third parameters. The first image shrinks only in a horizontal
direction because the two width and height parameters are 1 and 0. The middle image has width and
height parameters of 1 and 1, so it shrinks in both directions. The last image has width and height
parameters of 0 and 1 and shrinks only in a vertical direction.

The final two parameters of 2000 and 0 cause the animations to take 2000 milliseconds each
(although they run concurrently), and the 0 specifies that they are not interruptible.

The Recipe

 Reflate()

This is the companion recipe to Deflate(). With it, you can expand a deflated object back to its
original dimensions over a specified period of time, with a choice of three different animation types.
In Figure 16-4, a div has been added to the example in the Deflate() recipe with which you can
deflate or reflate the objects.

FIGURE 16-4 Both the recipes Deflate() and Reflate() are attached to mouse events.

About the Recipe
This recipe takes an object (or an array of objects) and reinflates it to its original dimensions after it
was deflated using the Deflate() recipe. You can call this recipe only on objects that have been
previously deflated; otherwise, the call will be ignored. It takes the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will expand to its original value.
• h If true or 1, the object’s height will expand to its original value.
• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;

otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable to index into id if it is an array
stepw Local variable containing the amount of horizontal change per frame
steph Local variable containing the amount of vertical change per frame

width
Local variable containing the width to which id should be changed at each
step

height Local variable containing the height to which id should be changed at each
step

DF_Flag Property of id that is true if a Deflate() call is in progress
DF_Int Property of id containing true if the deflation is interruptible
DF_IID Property of id that clears an interrupt with clearInterval()
DF_OldW Property of id containing the unshrunk width of id
DF_OldH Property of id containing the unshrunk height of id
DF_Count Property of id that counts the number of frames in the animation

Deflated
Property of id set to true if it has been deflated—used by the
DeflateToggle() recipe

INTERVAL Global variable with the value 30
setInterval() Function to set up repeating interrupts
clearInterval() Function to stop repeating interrupts
DoReflate() Subfunction to perform the animation
Resize() Function to resize an object
NextInChain() Function to call the next function in a chain of functions (if there is one)

How It Works
This recipe works in a very similar way to the Deflate() recipe, but with two main differences.
First, if the Deflated property of id is not true, the recipe returns because the object cannot be
reinflated. Here is the piece of code that does this:

Second, instead of DF_Count counting down from the maximum step count to zero, it counts

upward from 0 and so is initialized to a value of zero in this recipe (as opposed to the value it is
assigned with msecs / INTERVAL in the Deflate() recipe). The DoReflate() subfunction uses the
following statement to increment the DF_Count property in each frame of the animation (instead of
decrementing, as in the DoDeflate() subfunction of Deflate()):

The Deflated property of id that indicates whether an object is deflated or inflated is set to

false by this recipe (rather than true, as with Deflate()), but the rest of the code is virtually the
same, so please read the details on Deflate() for further details.

How to Use It
You should call this recipe on an object only after the object has been deflated using the Deflate()
recipe. If you try to use it on an object that hasn’t yet been deflated, the recipe will simply return.

The following example is expanded from the one in the Deflate() recipe section. It has a div
inserted before the images that you can pass the mouse over to either deflate or reflate the images:

This example replaces the direct calls to the Deflate() recipe with a pair of new functions,

down() and up(). These are attached to the onmouseover and onmouseout events of the span
displaying the text “Mouseover Me,” so that when you move the mouse over the text, the objects
deflate, and when you move it away, they inflate.

The calls to the two recipes have their final parameter set to 1. This is the interruptible
argument, and therefore interrupting of the recipes has been enabled. This means that the example is
very responsive and the animations occur immediately upon moving the mouse in or out of the span,
taking into account the current amount of deflation or reflation to smoothly inverse the previous
animation.

The Recipe

 DeflateToggle()
If you use this recipe, you don’t need to keep track of which objects have or haven’t been deflated,
and it saves on extra code, too. In Figure 16-5, the example in the Reflate() recipe section has been
updated to use this recipe.

About the Recipe
This recipe toggles an object between being deflated or inflated. It takes the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will deflate or reflate.
• h If true or 1, the object’s height will deflate or reflate.
• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;

otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array
Deflated Property of id that is true if id is deflated
Deflate() Function to deflate an object to 0 width by 0 height
Reflate() Function to reflate an object to its original dimensions

FIGURE 16-5 The images automatically toggle between being inflated and deflated.

How It Works
This recipe uses the standard recursive techniques of many of the others to determine whether id is an
array, and if it is, to pass each element of the array recursively back to the same function to be dealt
with individually, as follows:

After that, there are just two statements, the first of which tests the Deflated property of id. If it

is true, the object has been (or is in the process of being) deflated, so the Reflate() recipe is
called. Otherwise, the object is inflated (or is in the process of being reinflated), so the Deflate()
recipe is called, like this:

How to Use It
You can use this recipe to replace having to call both of the Deflate() and Reflate() recipes and
to save having to track their deflated/inflated states. The following code is similar to the previous
example in the Reflate() section, except that it is shorter because it uses DeflateToggle() instead
of both the Deflate() and Reflate() recipes:

For variety, I added a call to Deflate() just after those to the Locate() recipe so that the

second picture will start off deflated. Notice that I passed a value of 1 millisecond for the call (the
fastest allowed) so that, for all intents and purposes, it is instant.

Try passing your mouse in and out of the Mouseover Me text and watch how the pictures toggle
their deflated/inflated states as you do so, smoothly changing between each animation type as soon as
you move the cursor in and out.

To become fully acquainted with what this recipe can do for you, you might want to change the
animation length from 2000 milliseconds to other values, change the interruptible argument to 0,
change the animation types by varying the w and h parameters, or use different images in varying
locations.

TIP Remember that the second and third arguments (w and h, which specify whether the width
and/ or height is to be modified) must be the same for all deflates, inflates, and toggles on an
object for it to correctly deflate and inflate. For example, if you deflate just the width of an

object and then try to inflate just its height, nothing will happen since the height has not been
deflated. In this case, only the object’s width can be inflated.

The Recipe

 DeflateBetween()
This recipe provides similar functionality to the FadeBetween() recipe, except that it resizes a pair
of objects in a choice of three different ways (height, width, or width and height), rather than simply
fading from one to the other. This recipe is good for creating professional slideshow effects, or for
swapping content. In Figure 16-6, two images have been overlaid on each other, and while the larger
one deflates, the smaller picture inflates and will soon be as large as the original image, which will
have disappeared by the time the original smaller picture reaches that size.

FIGURE 16-6 Swapping two objects by deflating one and inflating the other

About the Recipe
This recipe swaps two objects by deflating one and inflating the other at the same time. It requires
these arguments:

• id1 An object, an object ID, or an array of objects and/or object IDs.
• id2 An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will deflate or reflate.
• h If true or 1, the object’s height will deflate or reflate.
• msecs The number of milliseconds the animation should take.
• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;

otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
Deflate() Function to deflate an object to zero width and height
Reflate() Function to reinflate an object to its previous dimensions

How It Works
This recipe simply makes one call to Deflate() for the first object, and another to Reflate() for
the second.

How to Use It
To use this recipe, you need to ensure that the second object has already been deflated. Ideally, you
will have also released each object from its position in the HTML by giving it a position style of
‘absolute’ or ‘relative’. You will probably also have overlaid the objects on each other.

The following example does all of this and features a span you can pass your mouse over to
initiate the swaps:

The HTML section creates a span with the text “Mouseover Me” and also displays two images.
All three items are given unique IDs.

In the <script> section, both of the images are given a position style setting of ‘absolute’, and
are located at 0 pixels across and 30 down using calls to the Locate() recipe. The second image is
then deflated using the Deflate() recipe over the shortest time possible (1 millisecond), which is
virtually instantaneous.

Finally, the onmouseover and onmouseout events of the div are attached, in order, to the
swap1() and swap2() functions, which call the DeflateBetween() recipe to either swap from
image 1 to image 2 or from image 2 to image 1.

The transitions are given 1000 milliseconds (or 1 second) to complete. Because the
interruptible parameter is set to 1, you can pass your mouse in and out of the Mouseover Me text
to instantly change between displaying one image or the other.

You may want to try changing the w and h arguments to see the various different effects you can
achieve.

The Recipe

 Zoom()
This recipe is similar in some ways to the Deflate() and Reflate() recipes, but it can do much
more, including zooming in and out using the center of an object as the focus, padding margins during
zooms to retain the same width and height (ensuring other objects don’t get disturbed by the resizing),

and specifying end widths and heights.
In Figure 16-7, four icons are displayed, each of which is attached by its mouse events to the

Zoom() recipe so that when the mouse passes over them they enlarge, and when it moves away they
shrink back down. In the figure, the second icon is currently zoomed up.

FIGURE 16-7 Zooming icons when the mouse passes over them

About the Recipe
This recipe will zoom an object over a period of time between two supplied sets of width and height.
It can also pad the object to retain its overall dimensions and supports three different styles of zoom.
It requires the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will be zoomed.
• h If true or 1, the object’s height will be zoomed.
• fromw The width from which the object should be zoomed.
• fromh The height from which the object should be zoomed.
• tow The width to which the object should be zoomed.
• toh The height to which the object should be zoomed.
• msecs The number of milliseconds the animation should take.
• pad If greater than 0, the object will be padded with CSS padding (so that it always keeps the

same dimensions); otherwise, if it is –1, no padding is required and id may not be moved during a
zoom. If pad is 0 or null, then in addition to not applying padding, the object will be moved during
resizing so it remains centered.

• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;
otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array
tox Local variable containing the final horizontal offset
toy Local variable containing the final vertical offset

midx Local variable containing the horizontal center offset
midy Local variable containing the vertical center offset
width1 Local variable containing the amount of padding for the left of the object
width2 Copy of width1 containing the amount of padding for the right of the object
height1 Local variable containing the amount of padding for the top of the object

height2
Copy of height1 containing the amount of padding for the bottom of the
object

stepw Local variable containing the amount of change in width for each step
steph Local variable containing the amount of change in height for each step
INTERVAL Global variable containing the value 30
HID Global variable containing the value ‘hidden’
ZO_W Property of id containing its current width
ZO_H Property of id containing its current height
ZO_Flag Property of id set to true if a zoom is in progress
ZO_Int Property of id set to true if a zoom may be interrupted
ZO_Count Property of id containing the current frame number of the animation

ZO_IID Property of id containing the value required to cancel the interrupts with
clearInterval()

paddingLeft The style.paddingLeft property of id
paddingTop The style.paddingTop property of id
paddingRight The style.paddingRight property of id
paddingBottom The style.paddingBottom property of id
overflow The style.overflow property of id
setInterval() Function to start repeated interrupts to another function
clearInterval() Function to stop repeated interrupts
Math.max() Function to return the maximum out of two values

Math.floor()
Function to remove any numbers after the decimal point in a floating point
number and return an integer

Math.round()
Function to round a floating point number either up or down to the nearest
integer

DoZoom() Subfunction to perform the zoom animation

ZoomPad()
Subfunction to pad an object while zooming so that it retains the same
dimensions

NoPx() Function to remove the ‘px’ suffix of a property
Px() Function to add the ‘px’ suffix to a value
W() Function to return an object’s width
H() Function to return an object’s height

X() Function to return an object’s horizontal offset
Y() Function to return an object’s vertical offset
GoTo() Function to move an object to a new location
Resize() Function to resize the dimensions of an object
NextInChain() Function to initiate the next function in a chain (if there is one)

How It Works
This recipe is quite long because it has to achieve a number of different objectives, but if you follow
this explanation you’ll see how it breaks down into easily digestible chunks. However, you don’t
need to understand how this function works if you just want to use it, so please don’t be put off by this
extended commentary.

You should be fully familiar with the first section of code by now, because it checks whether id
is an array, and if it is, it passes each element recursively to the same function to be dealt with
individually, as follows:

After this, copies of the object’s current x and y coordinates need saving (if they haven’t already

been saved), like this:

The typeof operator checks whether the property ZO_X is already defined. If it isn’t, it assigns

values to both it and the property ZO_Y, taken from the recipes X() and Y().

If a Zoom Is Not Currently in Progress
Next, the recipe checks whether a zoom is currently in progress on id by looking at its ZO_Flag
property. If a zoom is not in progress, then three variables require initializing prior to starting the
zoom, as follows:

The first two statements assign whichever value is larger out of the start and destination widths

and heights in fromw, tow, fromh, and toh to the ZO_W and ZO_H properties of id. This sets default
values for the width and height of a zoom should only one of the dimensions be set to change
(therefore, the nonchanging dimension will retain this value). The ZO_Count property is also
initialized to zero.

If a Zoom Is in Progress
If a zoom is in progress, the ZO_Int property is inspected. If it is not true, the recipe may not be
interrupted, so it returns. Next, the repeating interrupts are stopped by calling the clearInterval()
function. Also, because the only useful action an interrupt can do to a zoom in progress is to reverse
the direction of zooming, the ZO_Count property of id is set to its inverse. Here is the section of code
that does this:

If the zoom can’t be interrupted, then the recipe returns. Otherwise, the current repeating

interrupts are canceled.
The final statement is based on the result of msecs / INTERVAL being the number of steps

required to make the zoom last for msecs milliseconds. Therefore, if the ZO_Count property has a
value of 10 out of 34 (for example), then for the zoom to reverse, there will be only 10 steps
remaining to return to the starting zoom level.

Setting Up the Variables
After this, a few local variables require setting up (whether or not a zoom is currently running), using
this code:

The first two statements use the Math.max() function to determine the maximum width and

height an object will be at either the start or end of the zoom, and places these values in maxw and
maxh. Then, the horizontal and vertical distance between each frame of the zoom is calculated and
placed in stepw and steph.

The last four statements of the initial setup process are these:

The first one ensures that the object will not overflow outside its boundaries if it is made

smaller than the contents. This isn’t applicable to images but must be done for objects such as divs
and spans that can contain many different elements. The overflowing is prevented by setting id’s
style.overflow property to the value in HID, which is ‘hidden’.

Next, the ZO_Flag property is set to true to indicate to this and other recipes that a zoom is in
progress on id. The ZO_Int property is also assigned the value in interruptible, which will be true if
this zoom can be interrupted.

Finally, the setInterval() function is called in such a way that the DoZoom() subfunction will
be called every INTERVAL milliseconds. The result returned by the function is placed in ZO_IID so it
can later be used to cancel the interrupts using a call to clearInterval().

The DoZoom() Subfunction
The job of the DoZoom() subfunction is to perform the resizing required by changing the object’s
dimensions just a little each time it is called. The first three lines calculate the new width and height
and perform the resizing as follows:

In the first line, if the argument w is true, then horizontal resizing is allowed so the ZO_W

property of id is assigned the new value required for the object’s width. This value is calculated by
multiplying stepw (the amount of change for each step of the animation) by ZO_Count (the number of
this animation step) and adding it to the value of the fromw argument (the original width of the
object). If the zoom is reducing id, then a negative value is added to fromw; otherwise, a positive
value is added.

The second line does exactly the same but for the object’s height, and then places the result in
id’s ZO_H property. If either w or h is not true, that dimension is not to be resized during the zoom,
and the value previously assigned to either the ZO_W or ZO_H property earlier in the recipe will be the
default used. The third line performs the resizing by calling the Resize() recipe.

After this, the values required to center the object are placed in midx and midy, like this:

These are calculated by taking the maximum width and height of the object and then subtracting

its current width and height from them. These values are then divided by 2 to obtain the offset from
the top left of the object, which has been stored in the ZO_X and ZO_T properties of id.

When the Pad Argument Is True
If the pad argument is greater than zero, the calling code of this recipe will pad out id as it changes

dimensions so it will retain the same overall size, and therefore elements resting against it will also
stay aligned where they are. Without this setting, as the width and height of id changes, any objects
surrounding it might move about to take the new dimensions into account. The following line of code
calls the ZoomPad() subfunction to create the padding required:

This finds the maximum width and height that the object will be out of its start and end values of

fromw, tow, fromh, and toh, by using the Math.max() function. The object will then have its
padding adjusted so that if it is going to zoom larger, padding is placed around it in advance, into
which the resizing can grow. Or, if it will be reducing, then no padding is added, but as the object
reduces, more and more padding is added to make up for the reduction in size. The overall result is
that when pad is greater than zero, id will always have the same overall dimensions (when you add
its width and height to its padding).

Otherwise, if pad doesn’t have a value of –1, id is moved to keep it centered (if pad is –1, no
padding is required and no moving of id is wanted).

If This Recipe Has Been Called by the DockBar() Recipe
Next, there’s an interesting piece of code used only by the DockBar() recipe, covered in Chapter 18.
It looks like this:

This code examines the DB_Parent property of id. If it is true, the recipe has been called from

DockBar(), in which case the GoToEdge() recipe from Chapter 14 is called to keep id up against
the edge to which it has been assigned by the value in the DB_Where property.

If this recipe isn’t being used as part of the DockBar() recipe, then it’s necessary to keep id
centered (unless the pad argument is –1, in which case centering is disabled). Of course, if id has not
been lifted up from the page by making it have an ‘absolute’, ‘relative’, or other position style
property, then any attempt to change its location will be ignored (in which case the best way to keep
the object centered is to set pad to true).

However, if the object does have a set x and y coordinate, then each time it reduces or enlarges,
its top-left corner will require moving slightly to keep its center in the middle, although an object that
is using padding will not change position as it will always have the same overall dimensions.

When the Animation Has Completed
To check whether the zoom has completed, the following if() statement is used:

This statement increments the ZO_Count property of id and then checks whether it is greater than

or equal to the result of msecs / INTERVAL (which gives the number of steps in the animation). If it
isn’t, then the contents of the if() statement are ignored and the subfunction returns and will be
called up again in INTERVAL milliseconds time.

Otherwise, the zoom has finished and the following statements are executed:

The first two lines calculate the final top x and y locations for the object and place them in endx

and endy. The next line sets the ZO_Flag property of id to false to indicate that no zoom is running
on id. Next, the object is resized to its final width and height in tow and toh, and the repeating
interrupts are stopped by calling clearInterval(), passing it the property ZO_IID that was stored
when setInterval() was called.

After this, if padding is being used, ZoomPad() is called to update the padding; otherwise, if pad
is not –1, the GoTo() recipe is called to ensure that id is located exactly at its final position in endx
and endy:

Then, if this recipe is being called by the DockBar() recipe, id is moved to its final place at the

required edge:

The final statement checks whether the CB argument has been passed, and if so it calls eval() to

execute it, as explained in Chapter 17:

The ZoomPad() Subfunction
The ZoomPad() subfunction applies sufficient CSS padding to id in order to ensure that the object
always has the same overall dimensions. It takes four arguments, frw, frh, padw, and padh. The
variables frw and frh contain the initial width and height of id, and padw and padh contain the
overall required width and height for id.

Therefore, if frw is less than padw or frh is less than padh, some padding must be applied. This
is calculated by subtracting padw from frw and padh from frh. Along the way, padw and padh are
passed through the Math.round() function to return integer values.

Then, left and top are given the new padding width and height to be given to the left and top of
id. The variables right and bottom are also assigned these values, which will apply the padding
width and height to the right and bottom of id. This is the code used, which simply divides each
padding value by 2:

If the amount of padding to add to either the width or height of id is an odd number, then left
and/or top (being half that number) will have a fractional part of .5.

For example, if 5 pixels width padding is required, then left will have a value of 2.5, as will
right. This is because left contains the padding to add to one side of id, right contains the amount
to add to the other, top contains the amount of padding to add to the top, and bottom contains the
amount to add to the bottom of id.

However, because most browsers don’t allow floating point values for these properties
(although, strangely, some do), left is compared with the value of Math.floor(left), which
returns the value passed to it, less any fractional part. So if left has a value of 2.5,
Math.floor(left) returns 2.

Therefore, if the following code finds that left does have a fractional part, it removes it and
gives that value plus 1 to right so that, in the current example, if left was 2.5, it will now have a
value of 2, and right will be 3:

The next five lines of code are the same, except they set up top and bottom padding amounts, like

this:

The final four statements actually set all the object’s padding values, like this:

How to Use It
Thankfully, using this recipe is a great deal simpler than describing it. To zoom an object either up or
down, all you need to do is pass the object to Zoom(), along with start and end dimensions, like this:

This statement will zoom myobject from a width and height of 100 pixels each to just 20 each.

You can also get fancy and turn a horizontal rectangle into a vertical one, like this:

This will change myobject from being 100 by 10 pixels to 10 by 100 pixels over the course of

1000 milliseconds.
The following example displays four 86 by 86–pixel icons at a width and height of 70 by 70

pixels. You can then pass your mouse over them to zoom them up to their original size and back down
again:

The first four lines of HTML display the icons and give them unique IDs. The <script> section
then creates the array ids out of these IDs, which is used in the following line to zoom down all the
icons from 86 by 86 pixels to 70 by 70. It passes a value of 1 millisecond so that the change is
virtually instantaneous.

Then, the O() recipe attaches the up() and down() functions to all these icons’ onmouseover
and onmouseout events en masse. In these functions, the calls to Zoom() set the pad argument to true
so that all the icons are padded as they zoom and therefore retain the same overall dimensions (thus
keeping the surrounding icons from moving about during the zooms).

The interruptible argument is set to true so that each zoom can be smoothly interrupted and
reversed as you pass your mouse over and away from each icon.

If you wish to experiment, try changing the values of the pad and interruptible arguments to
false or zero and see what happens when you toggle the values of the w and h arguments (as long as
at least one remains true or 1) to change the types of zooms.

The Recipe

 ZoomDown()
This recipe zooms an object down over time from its current size to zero dimensions. It does this in
such a way that the object can also be zoomed back up again with the following recipe,
ZoomRestore(). Figure 16-8 shows four icons that have had their onmouseover events attached to
this recipe and that are in varying states of zooming after the mouse has swept across them.

FIGURE 16-8 These icons are in varying states of zooming down.

About the Recipe
This recipe takes an object and zooms it down until it has zero dimensions. It requires the following
arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will be zoomed down.
• h If true or 1, the object’s height will be zoomed down.
• msecs The number of milliseconds the animation should take.
• pad If 0, the object will be moved during resizing so as to remain centered. If greater than 0, the

object will be padded with CSS padding to retain its original dimensions as it zooms down. If –1,
no padding will be applied and the object will not be moved during resizing.

• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;
otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array
ZO_Flag Property of id that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
ZO_OldW Property of id containing its previous width
ZO_OldH Property of id containing its previous height
Zoomdown Property of id that contains true if it has been zoomed down
Zoom() Function to zoom an object from one size to another

How It Works
This recipe starts off with the familiar code to iterate through id if it is an array and recursively call
itself with each element to process them individually, as follows:

Next, the recipe checks whether a zoom is already in process on id, and if so, it checks whether

that zoom is interruptible, like this:

If there is a zoom in action (as determined by the ZO_Flag property of id) and it cannot be

interrupted (as determined by id’s ZO_Int property), then the recipe returns. Otherwise, the following
code is executed:

This checks whether the ZO_OldW property exists. If it doesn’t, id has not been zoomed down

before, so its current width and height are stored in its ZO_OldW and ZO_OldH properties. These
values are obtained using the W() and H() recipes. Also, the coordinates of the object are read from
X(id) and Y(id) and stored in the ZO_X and ZO_Y properties.

The first of the final three statements sets the Zoomdown property of id to true to indicate that
the object is (or is in the process of being) zoomed down. Then, the object’s location is reset to the
stored values in ZO_X and ZO_Y (to handle the case where an object has an odd dimension length and
sometimes gets disturbed by a pixel), and the Zoom() recipe is called, passing it the original width
and height of id, the new zero width and height values, and the value of pad and interruptible, as
follows:

How to Use It
To use this function, you pass it an object (or array of objects) and specify the type of zoom down you
want (whether to zoom down the horizontal or vertical axis, or both), along with the number of
milliseconds it should take, whether to use padding, and whether the zoom should be interruptible,
like this:

This zooms down myobject from whatever its current dimensions are in both the horizontal and

vertical directions, over a period of 1000 milliseconds. The final two values specify that no padding
should be used and that the zoom should not be interruptible.

Here’s an example in which four icons are displayed, which have their onmouseover events
attached to this recipe:

The first section of HTML displays the images and assigns them unique IDs. The <script>
section creates the array ids out of the ID names and then passes them to the O() recipe, which
attaches the down() function to their onmouseover events.

The function down() simply calls ZoomDown() to zoom each icon down when the mouse passes
over it. Notice that once an icon has been zoomed down, you can still pass the mouse over the empty
space it leaves to activate another zoom. This is because the previous width and height values of each
object are stored by the ZoomDown() recipe.

Rather than allowing this messy behavior, you can attach the following recipe, ZoomRestore(),
to the icons so they will first zoom back up when the mouse moves away.

The Recipe

 ZoomRestore()
This is the partner recipe for ZoomDown(). With it you can restore a previously zoomed down object
over time to its original dimensions. In Figure 16-9, four icons have been displayed with their
onmouseover events attached to the ZoomDown() recipe and their onmouseout events attached to this

recipe.

FIGURE 16-9 The icons can now be zoomed down and back up with the mouse.

About the Recipe
This recipe takes an object that has been zoomed down and over time zooms it back to its original
dimensions. It takes the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will be zoomed up.
• h If true or 1, the object’s height will be zoomed up.
• msecs The number of milliseconds the animation should take.
• pad If 0, the object will be moved during resizing so it remains centered. If greater than 0, the

object will be padded with CSS padding to retain its original dimensions as it zooms down. If –1,
no padding will be applied and the object will not be moved during resizing.

• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;
otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array
ZO_Flag Property of id that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
ZO_OldW Property of id containing its previous width
ZO_OldH Property of id containing its previous height
Zoomdown Property of id that contains true if it has been zoomed down
Zoom() Function to zoom an object from one size to another

How It Works
This recipe begins with the familiar code to iterate through id if it is an array and recursively call

itself with each element to process it individually, as follows:

Next, the recipe checks whether a zoom is already in process on id, and if so, it checks whether

that zoom is interruptible, like this:

If there is a zoom in action (as determined by the ZO_Flag property of id) and it cannot be

interrupted (as determined by id’s ZO_Int property), then the recipe returns. The Zoomdown
property of id is also checked, because if it is not true then the object is not zoomed down, so the
recipe also returns.

The final two statements set the Zoomdown property of id to false to indicate that the object is
(or is in the process of being) zoomed up, and then the Zoom() recipe is called, passing it the current
zero width and height of id, the object’s previously saved original width and height values in the
ZO_OldW and ZO_OldH properties, and the value of pad and interruptible, as follows:

How to Use It
To use this function, you pass it an object (or array of objects) that has already been zoomed down
and specify the type of zoom up you want (whether to zoom the horizontal or vertical axis, or both),
along with the number of milliseconds it should take, whether to use padding, and whether the zoom
should be interruptible, like this:

This restores the dimensions of myobject over a period of 1000 milliseconds from zero width

and height back to its original values. The final two values specify that no padding should be used,
and that the zoom should not be interruptible.

The following examples extend the previous recipe, ZoomDown(), to restore the icons back to
their original sizes when the mouse moves away from them:

For this example, I set the horizontal w argument of the calls to 0 so that only the height of the

objects is allowed to be resized. This has the effect of making the icons appear to spin around their
horizontal axes if you let them zoom all the way down and back up again. You could alternatively set
the vertical h argument to zero instead (but not both), and then the icons would appear to spin around
their vertical axes.

The Recipe

 ZoomToggle()
The final recipe in this chapter brings the last few zooming recipes together into a single one that can
zoom both down and up in three different ways. In Figure 16-10, four icons have been displayed, each
of which is attached to this recipe and set to zoom around its vertical axis when the mouse passes in
and out.

FIGURE 16-10 The ZoomToggle() recipe being used on various icons

About the Recipe
This recipe toggles the zoomed-down state of an object. If it is zoomed down, then the object is
restored to its original dimensions; otherwise, the object is zoomed down to zero width and height. It
requires the following arguments:

• id An object, an object ID, or an array of objects and/or object IDs.
• w If true or 1, the object’s width will be zoomed.
• h If true or 1, the object’s height will be zoomed.
• msecs The number of milliseconds the animation should take.
• pad If 0, the object will be moved during resizing so it remains centered. If greater than 0, the

object will be padded with CSS padding to retain its original dimensions as it zooms down. If –1,
no padding will be applied and the object will not be moved during resizing.

• interruptible If true (or 1), this recipe can be interrupted by a new call on the same object;
otherwise, if false (or 0), the call is uninterruptible.

Variables, Arrays, and Functions
j Local variable for indexing into id if it is an array
ZO_Flag Property of id that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
Zoomdown Property of id that contains true if it has been zoomed down
ZoomDown() Function to zoom an object down to zero width and height
ZoomRestore() Function to zoom an object back to its original dimensions

How It Works
This recipe begins with the familiar code to iterate through id if it is an array and recursively call
itself with each element to process it individually, as follows:

Next, the ZO_Flag property of id is tested. If it is true, a zoom is currently in progress on id so

the ZO_Int property is then tested. If it is not true, the current zoom may not be interrupted, so the
recipe returns, using the following code:

The final two statements check the Zoomdown property of id. If it is not true, the object is not

zoomed down, so the ZoomDown() recipe is called; otherwise, the object is zoomed down so the
ZoomRestore() recipe is called, as follows:

How to Use It
To use this recipe, you don’t need to keep track of an object’s zoom-down state because you can just
call it and the recipe will decide whether an object requires zooming down or up. All you need to do
is specify whether the zoom can occur in the horizontal or vertical direction (or both), the speed of
the zoom, whether to pad the object, and if the zoom should be interruptible, like this:

This statement will toggle the zoom-down state of the object myobject and allows the zoom to

progress only on its width (so the object will appear to rotate about its vertical axis). The zoom will
take 750 milliseconds, will not pad myobject, and is not interruptible.

The following example is similar to those in the last couple of recipes in that four icons are
displayed and their zoom states can be controlled by passing the mouse in and out of them:

There is an extra call to ZoomToggle() just after the ids array is assigned, which toggles the

zoom-down state of the first and third icons. This means that the ZoomToggle() effect can be easily
seen as you pass your mouse over the icons, and some zoom into view while others zoom down. I
have chosen to allow the zoom to occur only on an object’s width so that the icons appear to be
spinning around their vertical axes.

In Chapter 17, I’ll show how you can connect or chain a set of recipes together, among other
goodies, so that each one is called only when the previous one has finished. This allows for some
very creative and professional-looking animation effects, and also further extends user interaction.

NOTE Don’t forget that while I have concentrated on images in this chapter, all the recipes will
work on any type of object, so you can slide, deflate, and zoom chunks of HTML or anything
that can be placed in them or that is a visible object.

The Recipe

CHAPTER 17
Chaining and Interaction

In this chapter, I’ll show you how you can chain together many of the JavaScript recipes in this book
to form sequences of actions or animations. These can be animations you write to create stunning
opening effects, or they can be small chains to perform simple actions such as moving menu elements.

Chaining is also useful for ensuring that one action will follow another. This can be very hard to
do in JavaScript because it is event-driven, and therefore recipes called at the same time will
normally run in parallel with each other. However, by adding what is known as a callback function at
the end of many of the recipes, one recipe can be set to call another when it completes—hence, the
term chaining.

You’ll also learn how you can use callbacks (like a mini two-part chain) on those functions that
support chaining.

 Chain(), NextInChain(), and CallBack()
These recipes are a suite of functions that enable you to line up a sequence of recipe calls to run in
sequence, with each one calling the next when it has finished. This is a great way to create amazing
animation effects in JavaScript that you might think can only be done in programs such as Java or
Flash. Figure 17-1 shows a ball that has been set to bounce around the screen by chaining together
four calls to the Slide() recipe.

FIGURE 17-1 A ball is made to bounce around the screen.

About the Recipes
The Chain() recipe accepts an array of recipe calls and then pushes them onto a stack so that each
call can be popped off one at a time and executed when the previous one finishes. It requires the
following argument:

• calls An array of strings containing a sequence of recipes to call.

Table 17-1 lists the recipes that have the ability to call other recipes via a callback.

TABLE 17-1 The Recipes that Support the Chaining of Other Recipes

Table 17-2 lists the recipes that can be called by a recipe with a callback. You should not
include any other recipe calls within a chain sequence (unless you use the ChainThis() recipe,
discussed later), as they will not call up any remaining recipes in a chain, so a sequence may be
interrupted. However, you can always include your own recipes in a chain if you place a call to
NextInChain() after the final instruction has executed.

TABLE 17-2 The Recipes that Support Being Chained or Using Callbacks

CAUTION Never attempt to insert any of the Chain(), Repeat(), or While() recipes into a chain
or you’ll get an “out of memory” message, recursion, and possibly other errors. These
functions can only be used for creating chains that don’t contain calls to themselves.

The NextInChain() and CallBack() recipes are generally not expected to be called directly,
although you can do so using the information that follows.

Variables, Arrays, and Functions
j Local variable to iterate through the calls array
CHAIN_CALLS Global array in which chained recipes are stored prior to their execution.
push() Function to push a value onto an array

pop() Function to pop a value off an array
eval() Function to evaluate a string as JavaScript code

How They Work
The Chain() recipe takes the recipes stored in the calls array and pushes them all onto the global
CHAIN_CALLS array. Because the last item pushed onto an array is always the first one out when using
the JavaScript push() and pop() functions, they would all come out in the reverse order if the
elements were pushed onto the array in the order they were encountered. Therefore, the calls array
is traversed from end to start, pushing each element in turn onto CHAIN_CALLS, like this:

The first line is the one that iterates backward through the calls array. The second checks that

there is something stored in that element, and if there is, the third pushes it onto the CHAIN_CALLS
global array.

Finally, the NextInChain() recipe (discussed next) is called to start executing the chain.

NOTE The push() and pop() JavaScript functions create what is known as a LIFO stack, which
stands for Last In First Out. With such a system, the most recently pushed element is popped
off first, and the first element pushed onto the stack is the last one popped off it. But in the
case of the Chain() recipe, a FIFO (First In First Out) stack is required, which is achieved by
pushing the contents of the calls array onto the stack in reverse order, so that the sequence in
which the stack of calls is executed is the same as in the array originally passed to the
Chain() recipe.

The NextInChain() Recipe
The NextInChain() recipe simply examines the global CHAIN_CALLS array, and if it has any chained
calls left to run, pops the next one off and passes it to the CallBack() recipe to execute it, like this:

The CallBack() Recipe
This recipe allows you to attach a recipe to be called after the current one finishes execution, like
this:

This code works by passing the name of a recipe to be called in the CB argument for a function

call that supports it. It does this by taking the expression passed to it and inserting the next call in the
chain into this expression as its final argument.

To do this, the string variables left, right, and middle are first created, with left
containing all of the expression up to the insertion point, middle being a string containing a reference
to the ’NextInChain()’ recipe, and right containing the remainder of the expression after the
insertion point. The reference to ’NextInChain()’ uses single quotes within double quotes to ensure
that when the string is evaluated, the single quoted string will be processed as a string, and will not
be the result of calling the function named in the string.

Then, if the character immediately preceding the final ‘)’ is not a ‘(’, this means that the
expression passed to CallBack() includes arguments, so the variable middle has a comma and space
prepended to it, to act as a variable separator. Otherwise, it keeps its assigned value of
’NextInChain()’. Finally, the three values of left, middle, and right are concatenated and passed
to the eval() function.

When a recipe is called up this way, it will notice that the CB argument is not empty and will
therefore evaluate it. In this instance, the NextInChain() recipe will be called.

NOTE The reason for passing the name of a function (or an expression) in CB this way, rather than
simply having the recipe just call NextInChain(), is to let you pass expressions of your own
to be executed as a callback. To do this, you place an expression (or function call) in a string
and pass it in the CB argument to any recipe that accepts it (listed in Table 17-1). Your
expression will then be evaluated when the called recipe completes.

The ChainThis() Recipe
This recipe allows you to take a recipe or function that is not chainable (which you can determine by
checking Table 17-2) and then use it within a chain. The code is quite simple and looks like this:

For example, suppose that for one of the instructions in a chain you want to move an object using

the following statement:

You can make this call chainable by turning it into a string using the InsVars() recipe and

ChainThis(), as follows:

The InsVars() recipe makes it easy to insert variables into a string by using tokens such as #1

and #2 as place holders for them and passing the variables or expressions after the main string.
If you then pass the string string to Chain() (or Repeat() or While()) as one of the elements

in a chain, the GoTo() call will be executed when its turn comes up, and the program flow will pass
onto the next item in the chain (if any).

This technique only works well with functions that work procedurally from start to end in a
single process. If you use ChainThis() on a function that does its job using events or interrupts, you
will usually get very unexpected results.

NOTE You may find with the InsVars() recipe that you use up the main two levels of quotation
marks, both double and single, and need a third level of quotation. This is easily
accomplished by using the \ escape character before a quotation mark, like this: \" or this: \’.
In fact, you will see that the previous example statement uses this technique when passing the
“myobject” ID to GoTo(), because the double quote has already been used for the outside of
the string and the single quote is used for the substring being passed to CallBack().

How to Use Them
To use the Chain() recipe, you need to create an array of recipe calls to be chained together, and
each call must be assembled into a string before it is placed into the array. For example, assume you
wish to add the following call to a chain:

To do so, you must first convert it to a string, like this:

Or, if you have a more complicated call, like this:

then it would need to be turned into a string, like this:

Obviously, this quickly gets very messy, so it’s almost always much easier to make use of

JavaScript Recipe 15, InsVars(), as in these two simpler versions of the preceding statements:

In these two lines, the argument list has simply been placed at the end of the main string, with

each value position replaced with a #1, #2, and so on, for each value to be inserted.

The two strings can then be placed in a chain, and the first item in the chain started, using the
following statement:

The first statement places the strings in an array, which it then passes to the Chain() recipe.

Here’s an example that uses these techniques to make a ball bounce around the browser:

The HTML section displays a 100 by 100–pixel image of a ball; then the first line of the

<script> section sets the ball’s property style to ‘absolute’ so it can be moved about.
After this, the width and height of the browser are calculated and stored in width and height,

then the right and bottom positions required to place the ball against these edges are placed in r and
b. These values are simply the width and height of the browser less the ball’s width and height of 100
pixels each.

The variables x and y are also calculated to set them to coordinates that place the ball exactly in
the center of the browser (bearing in mind its width and height of 100 pixels).

Next, four Slide() recipe calls are assembled into strings using the InsVars() recipe. In turn,
the calls slide the ball from the center left of the browser to the top middle, then to the center right,
then to the bottom middle, and finally back to the center left of the browser.

These call strings are then placed in an array and passed to the Chain() recipe to get the ball
rolling (so to speak).

NOTE Because of the way chaining has been implemented with a single global array, you can have
only one chain of recipes running at a time. You can sometimes carefully create a chain that
interleaves two or more separate sets of recipes so that a number of different animations
appear to be running concurrently. However, you will need to use trial and error to get the
best results with this technique.

Using the CallBack() Function Directly
The CallBack() recipe achieves its functionality by adding the name of a function to call back after
the current one has finished execution. You can also do this if the recipe you call supports chaining,
as detailed in Table 17-2.

For example, if you would like to have the Hide() recipe called immediately after a
Deflate(), you can use code such as this:

This calls up the Deflate() recipe, passing it myobject, with the required parameters to

deflate it over 500 milliseconds and without the possibility of the recipe being interrupted. However,
there is a final argument—a call to Hide()—which is placed within a string so that the string, not the
result of executing the function, is passed.

You will need to tweak the syntax slightly if you are passing object IDs rather than objects
within a callback, like this:

This way, after the double quotes are stripped off by the eval() function that will eventually

execute this callback string, the single quotes will remain to indicate that myobject is a string that is
an object ID, and not the name of an object.

This procedure is a quick and easy way to create a two-part chain without having to assemble a
chain. Remember, however, that it works only on recipes that can be inserted into a chain.

The Recipes

 Repeat()
As well as chaining recipes together, you can make one or more recipes repeat a specified number of
times using the Repeat() recipe. In a medium such as a book, it’s not possible to capture the motion
in these examples, so Figure 17-2 shows the ball (slightly grayed out) as it was captured on different
repetitions of an animation created using this recipe.

FIGURE 17-2 You can repeat a chain multiple times.

About the Recipe
This recipe lets you repeat a chain of actions as many times as you like. It requires the following
arguments:

• number The number of times the chain should be repeated.
• calls An array of strings containing a sequence of recipes to call.

Variables, Arrays, and Functions
j Local variable used for counting the repeats
temp Local copy of the calls array
concat() Function to merge two or more arrays
Chain() Function used to chain a group of recipes together

How It Works
This recipe takes the calls array and duplicates it enough times so that there are number copies of
the calls, like this:

First, the local array temp is assigned a copy of calls, then the concat() function merges the

contents of temp with calls until there are number copies altogether. Finally, the Chain() recipe is
called to start the first call running.

How to Use It
Using this recipe is the same as calling Chain() except that you also pass an additional parameter to
specify the number of times the chain should repeat.

The following example slightly modifies the one in the Chain() and NextInChain() recipes
section to make the ball bounce around the browser 10 times:

The Recipe

 While()
Sometimes you may find it convenient for a chain of recipes to keep repeating while a certain
condition is true—for example, if no key has been pressed or the mouse hasn’t been clicked. With
this recipe, you can supply a test condition along with a chain, and as long as the condition returns
true, the chain will keep repeating.

Figure 17-3 shows an animation of a sailing ship that slowly fades into view and sails across the

browser, then fades out again. Before each trip, the global variable KEY_PRESS is checked and the
animation repeats until the SPACE BAR is pressed.

FIGURE 17-3 The ship keeps on sailing until the SPACE BAR is pressed.

About the Recipe
This plug-in takes an expression and an array of statements to chain if the expression evaluates to
true. It requires the following parameters:

• expr A string containing an expression that can be evaluated to either true or false.
• calls An array of strings containing a sequence of recipes to place in a chain.

Variables, Arrays, and Functions
Temp Local string variable used for reconstructing a string from the array in calls
j Local variable for iterating through the calls array
eval() Function to evaluate a JavaScript expression
replace() Function to replace parts of a string
substr() Function to return part of a string
push() Function to push a value onto an array
InsVars() Function for inserting values into a string
Chain() Function for chaining sequences of recipes together

How It Works
This recipe resides within an if() statement and completes only if the string value passed in expr
evaluates to true, like this:

If it does, the local string temp is created and the calls array is iterated through using the local

variable j as an index into it. This is done because the way the chain keeps repeating is to continually
pass an entire chain as a single statement of a new chain. To understand this, consider the following
pseudo-code:

What is happening here is the same as what the code in the While() recipe does. It first

evaluates the expression, and if it is true it sends all the statements it has been passed to the Chain()
recipe. Then, it also sends all of the preceding statements, so that when the first sequence has finished
executing, the if() statement and associated calls will come up once again and will be passed once
more to the While() recipe to deal with.

The next time around, if expr evaluates to false, the While() recipe will finish. But if it still
evaluates to true, then all the statements are again sent to Chain(), followed by all the code
required to make it start over again. And so the process continues, going round and round until expr
evaluates to false, if it ever does.

How the Additional Call to While() Is Added to a Chain
In essence, what the preceding does is add a call to While() as one of the items in a chain. To do
this, each element in calls is extracted from the array and appended to the string temp.

This is because the Chain() recipe, which will be called later, does not accept array elements
that are themselves arrays. Instead, such elements must be a string value that will later be converted
into an array by a call to eval() (by the NextInChain() recipe, which occurs when it is the
statement’s turn to be executed). The code that creates temp is as follows:

Each time around the loop, the value in calls[j] is extracted, the replace() function is used

to escape any double quotes, changing them from " to \". Because a double quote is also added to the
start and end of each string section (followed by a comma), any double quotes that appear inside the
strings and are not escaped will clash with the outside quotes and create a syntax error. This happens
in the following statement, which would fail:

The correct version of this statement with escaped double quotes is:

The Assembled String

Let’s assume that calls contains the following two strings:

After processing through the previous code, it will be turned into the following string:

Now we have a string that can be merged with another string containing the word Array() to

look like the following (once the final comma is removed):

The eval() function can then evaluate this string back into an array. As I mentioned, the final

comma needs removing, and this is done by the following line of code, which uses the substr()
function to trim it off:

The new string in temp is now ready to convert into the final string to be added to the calls

array as part of the chain, which is done with the following statement:

This uses the InsVars() recipe to insert the value in expr and the string just assembled in temp

into the string that is passed to the push() call.
In the case of the previous calls.push() statement, if the contents of expr are simply the

number 1 (an expression that will always be true), the entire new string would look like this:

As you can see, this is a perfectly formatted call to the While() recipe itself. In fact, it will

always be identical to the call that your code made to the recipe in the first case.

How to Use It
Using this recipe is much simpler than explaining its workings. All you have to do is make a call to
While(), passing it an expression as a string and an array of calls to be chained if the expression
evaluates to true, like this:

Here, the variable c is assigned the value 0, then While() is called, passing it the expression

c++ < 3. Each time the chain repeats, the value of c will be incremented until it is 3, at which point
the expression will evaluate as false, so the While() will finish. In this instance, the object ‘obj’
will pulsate three times and then be invisible.

Here’s a much more interesting example that animates a ship sailing on the sea, including effects
such as fading in and out:

The two lines of HTML set up a div to represent the sea and display an image of a sailing ship.

Next, the <script> section starts off by obtaining the width and height of the browser and setting x
and y to values for the sailing ship to use in a call to the Slide() recipe.

After this, the sea is given the property style of ‘absolute’ so that it can be placed in an exact
location, and is then resized so that it takes up the bottom 50 pixels of the browser. To represent the
sky and sea colors, the document.body object has its background color changed, while the ‘sea’
object also has its background color changed. Finally, the ship is located at its start position of 0,y.

The final part of this example is the While() statement, which passes the following expression:

KEY_PRESS is a global variable that is automatically set to whatever the value of the last key

pressed happens to be, so this expression will return true until the SPACE BAR is pressed.
The first three statements in the chain of calls are pretty obvious; they fade the ship in, move it

across the browser, and then fade it out. However, the final call is a little more interesting because
it’s an example of using the CallBack() recipe to turn a nonchainable recipe (in this case, GoTo())
into a chainable one, for just this single call.

It uses the InsVars() recipe to insert the variables and values into the string containing the
GoTo() call. This string is then placed within a call to CallBack() and becomes chainable.

Therefore, the fourth statement moves the ship back to the start position ready for its next voyage
—if the SPACE BAR still hasn’t been pressed.

NOTE Because the expression passed to the while() statement is tested only at the start of each
chain of calls, an entire chain will always execute before it can be stopped. If you need more

precise control than this, you can always empty the global array CHAIN_CALLS (which
contains all the items in a chain). This will stop a chain after the current statement has
finished and can be done by issuing the statement CHAIN_CALLS.length = 0. If you need an
even speedier reaction to user input, a While() statement is not your best choice of recipe,
and you should be looking at creating some event-driven code.

The Recipe

 Pause()
There are often times during an animation when you need it to stop for a while, and you can do this
with the Pause() recipe. With it, you can specify a period of time in milliseconds until the next
recipe in a chain is called. In Figure 17-4, the example from the previous recipe, While(), has a few
extra commands inserted into the chain, which zoom the ship down when it reaches the center of the
browser and then pause for 1 second before zooming it back again to resume its journey.

FIGURE 17-4 Inserting time delays into chains

About the Recipe
This recipe pauses between commands in a chain for the length of time specified. It takes the
following argument:

• wait Length of time to pause in milliseconds.

Variables, Arrays, and Functions
setTimeout() Function to create a single interrupt at some point in the future
NextInChain() Function to run the next command in a chain (if there is one)

How It Works
This recipe is quite straightforward. It simply makes a call to the SetTimeout() function to make it
call the NextInChain() recipe after wait milliseconds have expired.

Because commands within a chain are linked together via the NextInChain() recipe, this is the
only means by which the next command in a chain can be run. By setting the timeout to occur at a
future time, the chain will not continue execution until that timeout occurs and NextInChain() is
called.

Unlike the setInterval() function, setTimeout() sets up a single interrupt and then forgets
all about it once it has occurred, so there is no need to clear it.

How to Use It
To use this recipe, insert a string such as the following, which will create an event 1.5 seconds in the
future to resume execution of the chain, into an array of chain commands:

The following is a fun example that illustrates the use of Pause() by zooming down the ship in

the previous recipe, While(). Here, it reaches the center of the browser, and then pauses for a second
before zooming it back in again, letting the ship continue on its course:

The changes from the previous example are highlighted in bold. As you can see, the main

difference is the insertion of a call to Pause() between calls to ZoomDown() and ZoomRestore().
The Slide() command for moving the ship has also been split into two halves, and the variable mid
is used for the midpoint of the ship’s journey.

NOTE Where you already know values and they do not require calculating with an expression (or
taking them from a variable), there is no need to use the InsVars() recipe to insert them into
a string because you can simply put the values in the string yourself, as I did with the
FadeIn(), ZoomDown(), Pause(), ZoomRestore(), and FadeOut() calls.

The Recipe

 WaitKey()

This recipe is useful for inserting a pause in a chain that waits until a key is pressed. In Figure 17-5,
the chain has been paused and is using this recipe to wait for a keypress.

FIGURE 17-5 A chain waits for a keypress.

About the Recipe
This recipe halts execution of a chain until a key is pressed. It requires no arguments.

Variables, Arrays, and Functions
KEY_PRESS Global variable containing the value of the last key pressed
INTERVAL Global variable containing the value 30
GetLastKey() Function to return the value of the last key pressed
NextInChain() Function to run the next command in a chain

DoWaitKey()
Subfunction to wait for a keypress before allowing a chain to continue
execution

SetTimeout() Function to create a single call to another function at a future time

How It Works
This recipe first calls the GetLastKey() function, which removes any key that has been pressed and
leaves the global variable KEY_PRESS containing the empty string. Next, the setTimeout() function
is called to create an interrupt call to the DoWaitKey() subfunction in INTERVAL milliseconds. Here
is the code for these two statements:

When the DoWaitKey() subfunction is called, it checks the value of KEY_PRESS and, if it is no

longer the empty string, the NextInChain() recipe is called to allow the next command in a chain to
run (if there is one).

Otherwise, if no key has been pressed, another call to setTimeout() is made, which calls
DoWaitKey() after another INTERVAL milliseconds to see if a key has been pressed, using this
code:

Therefore, if there is a keypress, after calling NextInChain() the subfunction returns and will

not be called again unless a new call is made to WaitKey(). Otherwise, DoWaitKey() will be
repeatedly called every INTERVAL milliseconds until a key is pressed.

How to Use It
To use this recipe, you will need to insert it as a string within an array of chain commands, as
follows:

You can then choose to ignore the key that was pressed or have a later command in the chain use

the GetLastKey() recipe to return the key and use it.
The following example replaces the somewhat zany zooming down and back up of the previous

example in the Pause() recipe section, with a “Press any key” message that fades in, waits for a
keypress, and then fades out again—allowing the ship to sail on its way:

The differences between this and the last example are highlighted in bold. In the HTML section,

a new span has been added with the message text. In the <script> section, the span is moved to the
location where it will later be displayed, and its opacity is set to zero to make it invisible.

Finally, within the chain of commands the previous zoom instructions have been replaced with
calls to FadeIn(), WaitKey(), and FadeOut().

If you press any key except the SPACE BAR when the message is displayed, the ship will then
proceed on its way and continue repeating in a loop. However, if the key you press is the SPACE BAR,
then the expression at the start of the While() command will evaluate to true, and the chain will stop
repeating.

The Recipe

 Flip()
This recipe provides a professional flip effect that will appear to spin an object around to reveal its
reverse side. Three different spin effects are provided, making this a great way to provide interesting
visual effects and offer more information on your web pages.

In Figure 17-6, the photograph of Albert Einstein is attached to a mouse event so that when the
mouse passes over the image, it flips to reveal more information. It’s not possible to show you the
effect in the medium of a book, but think of the image as a trading or similar type of card with a
picture on the front and further information on the back. Figure 17-7 shows the “reverse” of the image
as the mouse is held over it.

FIGURE 17-6 The image in this web page is reversible when moused over.

FIGURE 17-7 When the mouse is passed over the image, it smoothly flips over.

About the Recipe
This recipe takes two objects and then animates them so they appear to flip over as if they are
attached back to back. It requires these arguments:

• id1 An object or object ID—it may not be an array.
• id2 An object or object ID—it may not be an array.
• w If true or 1, the width will be flipped.
• h If true or 1, the height will be flipped.
• msecs The number of milliseconds the flip should take.
• pad If set, the objects will be padded to retain their overall dimensions during the flip.

Variables, Arrays, and Functions
swap

Local string variable containing a command string suitable for InsVars()
to add a call to VisibilityToggle() to a chain

fast
Local string variable containing a command string suitable for InsVars()
to add a 1-millisecond call to ZoomToggle() to a chain

slow
Local string variable containing a command string suitable for InsVars()
to add a call of length msecs / 2 to ZoomToggle() to a chain

ZO_Flag
Property of either or both id1 and id2, which is set if a zoom is already in
operation on an object

CallBack() Function to enable any command to be added to a chain

VisibilityToggle() Function to toggle the visibility of an object
ZoomToggle() Function to toggle the zoom state of an object
Chain() Function to start a chain of calls executing

How It Works
This function first checks the state of both id1 and id2’s ZO_Flag property. If either is true, a
zoom is already in operation on an object, so the function returns, like this:

Next, three local string variables are created as a way to keep the code tidy and stop any lines

from wrapping around. They are also efficient because each string is used twice. These are the
assignments:

The variable swap is assigned a string suitable for enabling the VisibilityToggle() recipe to

be used in a chain (by implementing it via the ChainThis() recipe). The strings fast and slow contain
strings to place calls to the ZoomToggle() recipe, one of them taking 1 millisecond (and therefore
being virtually instantaneous) and the other taking a specified time.

The #1, #2, and so on within the strings are variable or value placeholders. When these strings
are passed to the InsVars() recipe, these placeholders will be replaced by the values or variables
also passed to it.

The final call in the recipe is to the Chain() recipe, passing it a sequence of six commands,
which are all passed through the InsVars() recipe to combine the strings with the variables, like
this:

I have spaced out the code into columns so you can more clearly see the values being passed.

The sequence of commands performs the following six steps:

1. Zoom id1 down over half the time specified in msecs This performs the first half of the flip
animation.

2. Zoom id2 down over the course of 1 millisecond This ensures that id2 is quickly zoomed
down so that can be zoomed up shortly at normal speed.

3. Toggle id2’s visibility (from hidden to visible) After id2 has been zoomed down, this makes it
safe to make it visible, ready for zooming up.

4. Zoom id2 up over half the time specified in msecs This performs the second half of the flip
animation.

5. Toggle id1’s visibility (from visible to hidden) This tidies up after the flip by making id1
invisible.

6. Zoom id1 up over the course of 1 millisecond Once invisible, id1 is zoomed back up again,
and the objects are then in a state where the flip can be reversed.

How to Use It
To create a flip animation, you need to first have two objects of equal dimensions. They must then be
overlaid on each other, with the second object’s visibility property turned off, using code such as
this:

This code takes two objects that have been given the IDs of ‘a’ and ‘b’, places their names in the

array ids, and then locates them at the absolute position 10,10 with a call to the Locate() recipe.
Object ‘b’ then has its visibility turned off by the VisibilityToggle() recipe. Finally, the Flip()
recipe is called with the two objects and set to flip only the width (so that the flip will twist around
the vertical axis). A time of 1000 milliseconds is specified and padding is not used.

Here’s an example that creates a mini web page on the subject of general relativity with a photo
of Albert Einstein that flips when you pass the mouse over it, revealing more information on the
reverse side:

The HTML section displays the two images along with a div containing the article text. The

<script> section then hides the text with a call to Hide() because it is going to be resized. If it
didn’t do this, the Internet Explorer browser would return the wrong browser width in the next
command because it would prepare for possibly requiring a scroll bar. After resizing the article text,
the Show() recipe is called to display it again, and now that it has its dimensions reduced to fit within
the current window, Internet Explorer will not try to leave a gap for a scroll bar in case it should
need it.

Next, the ids array is populated with the image IDs and is passed to the Locate() recipe to
place them at the top-right corner of the browser. The Resize() recipe is also called because,
unfortunately, odd widths and heights sometimes cause a slight 1-pixel disturbance to animations
depending on the browser used (something to do with the way they handle rounding), so ensuring that
both dimensions of objects passed to Flip() are even is the easiest way to get the best results. It also
ensures that both images have the same dimensions and will flip neatly.

Next, the second object is set to invisible before setting up the mouse events to call Flip().
This must be done because the two images are overlaid on each other and could have varying zIndex
values, so you must ensure the correct one is at the front by making the other one invisible.

In the final two lines, the onmouseover event of object ‘a’ is attached to a flip from object ‘a’ to
‘b’, while the onmouseout event of object ‘b’ is attached to a flip from object ‘b’ to ‘a’.

Before any flips, object ‘a’ will be visible, so passing the mouse over it will start the flip. After
the flip has finished, object ‘b’ will be visible and the mouse will still be over it (unless the user
quickly moved it away), which is why the onmouseout event of object ‘b’ is attached: so the
animation will flip back again when the mouse moves away.

Objects as Well as Images
Although images give the best flip results, you can pass any kind of object, such as a div or table and
so on, to the Flip() recipe. This means you could, for example, have an e-mail button that flips over
when the mouse passes over it to reveal a small form for entering your e-mail address to subscribe to
newsletters. If you do this, text and objects will flow in and out of the object rather than rotate the
way an image does, so you get a slightly different—but still interesting—effect.

You can also use Flip() to swap sections of HTML according to the selection of radio buttons
or the clicking of links. And don’t forget that you can flip objects horizontally and vertically, or you
can even do both at the same time to create a zoom-away-and-back-again effect. Try changing the
values in the Flip() calls of the last two lines of the example and see what different results you get.

NOTE As already mentioned, when using objects that have an odd value for one or more
dimensions, you may see a slight 1-pixel jitter occur either horizontally or vertically during a
flip. This happens because there are differences between the way different browsers round
fractional numbers and is fixed by the recipe remembering the object’s positions before a flip
and restoring them afterwards. Even though it’s almost imperceptible, if you wish to avoid
this tiny disturbance, you should work only with dimensions that have even values. It’s quite
easy to ensure this with a call to the Resize() recipe prior to using Flip().

The Recipe

 HoverSlide()
This recipe places an object on one of the edges of the browser, with a small portion of it revealed
and the remainder hidden. When you pass your mouse over it, the object slides out into the window to
reveal itself and then slides back in again when you move the mouse away.

Figure 17-8 shows an object that has been attached to the top of a browser, showing only the
keys of a piano. In Figure 17-9, the mouse has passed over the keyboard and slid the object into the

browser to reveal itself.

FIGURE 17-8 An object is attached to the browser top showing only its bottom.

FIGURE 17-9 After moving the mouse over the object, it slides into view.

About the Recipe
This recipe places an object across one edge of a browser boundary with most of it unseen, outside
the browser, and a small area showing that you can pass the mouse over to make the object slide in
and out. It requires the following arguments:

• id Either an object or an object ID—this cannot be an array of objects.
• where The edge to which the object should be attached out of ‘top’, ‘left’, ‘right’, and ‘bottom’.
• offset The amount by which the object should be offset from the left or top of the edge—if offset

is a number, the amount is an exact offset in pixels, but if it is a string prefaced with a % symbol
(such as “%50”), then the object is to be placed that percent along the edge.

• showing The number of pixels by which the object must poke into the browser.
• msecs The number of milliseconds it should take for the object to slide either in or out.

Variables, Arrays, and Functions
w and h Local variables containing the furthest positions along and down an edge

that id can be placed

o
Local variable containing the position in pixels along or down the edge at
which to display id

t
Local variable containing the portion of the object in pixels that isn’t
displayed when id is slid out

u Local variable containing the number of steps in the animation
x, y Local variable containing the coordinates of the top-left corner of id

s
Local variable containing the amount by which to move id for each step
when it is sliding

ox, oy Local variables used while updating the HS_X and HS_Y properties of id
HS_X, HS_Y Properties of id containing its top-left coordinates

HS_IID Property of id used for clearing repeating interrupts set up by
setInterval()

INTERVAL Global variable containing the value 30
TP, BM, LT, RT Global variables standing for ‘top’, ‘bottom’, ‘left’, and ‘right’
onmouseover Event attached to id when the mouse passes over it
onmouseout Event attached to id when the mouse passes out of it
Math.max()d Function to return the maximum of two values
Math.min() Function to return the minimum of two values
setInterval() Function to start repeating interrupts
clearInterval() Function to end repeating interrupts
substr() Function to return part of a string
GetWindowWidth() Function to return the width of the browser
GetWindowHeight() Function to return the height of the browser
W() Function to return the width of an object
H() Function to return the height of an object
GoTo() Function to move an object to a new location
SlideIn() Subfunction to start id sliding into the browser

SlideOut() Subfunction to start id sliding out of the browser
DoSlideIn() Sub-subfunction to perform the slide in animation
DoSlideOut() Sub-subfunction to perform the slide out animation

How It Works
This recipe begins by finding the farthest possible position along or down an edge that id can be
placed by taking the browser width, subtracting the width of id from it, and placing the result into w.
The variable h is also calculated for the vertical edges, as follows:

Next, the variable o is set to zero if offset is a number, or if offset is a string beginning with

the % character, o is given the value resulting from dividing the numeric part of the argument by 100.
In the first instance, the value of zero will indicate later that an exact offset in pixels has been
passed in offset, but in the second case, a percentage distance along the edge has been specified for
where id should be located, and that value is now in o. Here is the code that does this:

If the Left or Right Edge Has Been Chosen
Next, the recipe needs to determine which edge is going to be used, so it first tests the value where
against the global variables LT and RT (which contain the strings ‘left’ and ‘right’). If it is one of
these, then the following code is executed:

This assigns the amount of id that isn’t shown by default to t, then u is assigned the number of

steps the animation requires to complete in msecs milliseconds. After this, the x and y coordinates
are determined by checking the where argument again to see if it contains ‘left’ (the value of LT). If it
does, it means the left edge is being used, so x is set to -t, which places id sufficiently offscreen so
that only showing pixels of the object are visible. Otherwise, x is set to move the object off the right-
hand edge of the screen in a similar fashion.

The y variable is similarly calculated, being set either to the value in offset if o is zero (in
other words, an absolute offset along the edge was requested), or set to h * o because o is a
fractional value representing the percent along the edge that the object should be located, and h is the
maximum distance down the edge that the object may appear.

Finally, s, the step distance by which id should be moved for each frame of a slide, is
calculated by dividing t (the amount of id that isn’t shown by default) by u (the number of steps
required to make the animation last msecs milliseconds). These variables will all be used during the
animation stages of the recipe.

If the Top or Bottom Edge Has Been Chosen
If either the top or bottom edge has been chosen for the object’s placement, a very similar set of
calculations is made to obtain the values required for t, u, x, y, and s, as follows:

Setting Up the Events
The final few lines of code in the setup section move id to the location x,y; store a copy of each in
the HS_X and HS_Y properties; and set up the onmouseover and onmouseout events to call up the
SlideIn() and SlideOut() subfunctions, respectively:

The SlideIn() Subfunction
The job of this function is to slide the object into view when the mouse passes over any part of it. The
first thing it does is cancel any previously running regular interrupts (for instance, if the object was in
the process of sliding out) with a call to clearInterval(), and then it sets up a new regular
interrupt to the DoSlideIn() sub-subfunction, like this:

This sub-subfunction is where all the animation takes place. First, though, to make use of

smaller, more manageable variable names, ox and oy are given the values in the HS_X and HS_Y
properties of id. These are the location of the top-left corner of id:

Next, a group of if… else if… statements test for whether the edge being used is the top,

bottom, left, or right by checking the argument where against the global variables TP, BM, LT, and
RT. Then, as long as id still has further to move, the value of either ox or oy is incremented or
decremented by the step value in s. Otherwise, if there is no further movement to make, the
clearInterval() function is called to stop the repeating interrupts, like this:

Finally, the object is moved to the new location in ox and oy, and the HS_X and HS_Y properties

are assigned these values, as follows:

The SlideOut() Subfunction
The job of this function is to slide the object away again when the mouse passes out of it. The first
thing it does is cancel any previously running regular interrupts (for instance, if the object was in the
process of sliding in) with a call to clearInterval(). Then, it sets up a new regular interrupt to the
DoSlideOut() sub-subfunction, like this:

As with the similar function DoSlideIn(), copies of the properties used are first placed into

shorter variable names, like this:

Then, if the movement hasn’t completed, the values of ox and oy are modified as necessary

depending upon which edge is being used; otherwise, the repeating interrupt is canceled, as follows:

Finally, the object is moved to the new location in ox and oy, and the HS_X and HS_Y properties

are assigned these values, as follows:

NOTE HoverSlide() is one of the more complicated recipes, but it does create great effects, so it’s
worth reading the preceding explanation a few times if any parts aren’t clear at first.

How to Use It
To use the HoverSlide() recipe, you pass it an object and then tell it where the object should be
placed (out of the ‘top’, ‘bottom’, ‘left’, or ‘right’ edges), whereabouts on the edge to place it, how
much of the object to show, and the speed of the sliding animation in milliseconds, as in these two
examples:

The first statement places an object at the top edge of the browser, exactly 50 percent along,

with 60 pixels showing, and with a sliding time of 1 second. The second one does the same for
another object, but it is attached to the right edge, starting 15 pixels down and with only 20 pixels
showing.

Before you call the recipe, it’s important to give the object a style position of either ‘absolute’
or ‘fixed’, as in these statements:

The first of these has a fixed position (FIX) and places the object in the browser so that even if

you scroll right through the web page, the object will remain on screen exactly where it was placed.
The second has an absolute position (ABS) and places the object absolutely within a web page so it
will start off looking exactly the same as a fixed object but will move with the page when you scroll
it.

Here’s a fun example using a fixed object to create a dynamic menu for a music store:

The vast majority of this example is plain HTML, which is intentional, because I wanted to

illustrate how easy it is to set up such a feature on your web site with only a couple of lines of
JavaScript; the first one of which sets the style position of the object, and the second displays the

object with just the piano keyboard graphic image showing. By the way, the links shown in the slide
menu are, of course, only for illustrative purposes and cannot be clicked.

For an even more interesting effect, you could try changing the opacity of the div, like this:

Now that you have available the full power of chaining and other interactive techniques, in the

next chapter I’ll show you some amazing menu and navigation effects that will really help your web
pages stand out from the crowd.

The Recipe

CHAPTER 18
Menus and Navigation

As web sites try to offer a better look and feel than their competitors, new ways of navigating through
large numbers of pages are being devised all the time. Menus and navigation are probably the areas
that make the most use of JavaScript for this purpose.

In the early days of JavaScript, the interaction was mainly limited to instant changes of location
and color as the mouse passed over a menu. But nowadays, savvy web users expect much more fluid
and appealing designs with fades, transitions, and more.

The recipes in this chapter give you a variety of solutions that you can use as is, or that you can
employ as a foundation to create more sophisticated systems. They range from sliding menus to popup
and dropdown menus, folding and context menus, and even a dock bar similar to the one used in Mac
OS X.

 HoverSlideMenu()
This recipe expands on the final one in Chapter 17, HoverSlide(), to build a complete menu system,
rather than just a single slideable menu. With it you can select a group of objects that will be attached
to one of the edges of the browser and which will slide into view when the mouse passes over the
part showing. In Figure 18-1, two almost identical sets of objects containing links have been attached
to the top and bottom of the browser.

FIGURE 18-1 This recipe creates slide-in menus on any edge of the browser.

About the Recipe

This recipe takes an array of objects and then lines them all up along one of the browser edges where
they become a collection of slide-in menus. The following arguments are required:

• ids An array of objects and/or object IDs.
• where The edge the objects should be attached to, either ‘top’, ‘left’, ‘right’, or ‘bottom’.
• offset How far along the edge to locate the objects—if offset begins with a % symbol, the

position will be that percent from the start; otherwise, it will be offset pixels from the start.
• showing The number of pixels to leave showing of each object so the mouse can pass over them

to cause the menu to slide in.
• gap The number of pixels to leave between each object.
• msecs The number of milliseconds each object should take to slide in or out.

Variables, Arrays, and Functions
len Local variable containing the number of objects in ids

total
Local variable containing the total width or height that all the objects
take up when brought together, including gaps

start
Local variable containing the position along or down an edge where the
first object should be placed

a Local array containing the width or height of each object

jump
Local variable containing the progressive width of each object and the
gaps while positioning the objects

j
Local variable for indexing into the a array to save the width or height of
each object

TP and BM Global variables containing the values ‘top’ and ‘bottom’
W() Function to return the width of an object
H() Function to return the height of an object
GetWindowWidth() Function to return the width of the browser
GetWindowHeight() Function to return the height of the browser
HoverSlide() Function to slide an object in and out from a browser edge

How It Works
The first thing this recipe does is assign values to some local variables, like this:

The variable len is assigned the number of items in the ids array, and total is assigned the

width in pixels of all the gaps. Next, start is set to either 0 or the value of offset / 100 if it begins
with the character %. Later, if start is 0, the value in offset will be used to align the objects in their

required positions at exact positions. Otherwise, start contains a percentage value for the start point.
After this, the array a is created to hold the widths of the objects and jump is initialized to 0. It

will store the current widths and gaps so far encountered as each object is given its location.
Next, there are two sections of code, the first of which is executed if either the top or bottom of

the browser is to be used for the menu:

The first line compares the where argument with TP and BM (global variables containing the

values ‘top’ and ‘bottom’). If where is one of these values, the menu will be laid out horizontally, so
the for() loop places all the widths of the objects in the a array by fetching them with the W() recipe.
The variable total is also incremented by this value so that when the loop has finished it will
contain the sum of all the object widths and all the gap widths (the latter having been assigned
earlier).

Then, if start is not zero, it contains the percentage value that was previously assigned, so the
width of the browser, as returned by GetWindowWidth() less the value in total, is multiplied by
start (which is a fractional value less than 1), and the result is placed in start. This value
represents the percent offset from the start of the edge. However, if start is 0, then offset contains
the exact number of pixels the menus should be located from the edge. Because this value may be a
string, it is multiplied by 1 to turn it into an integer. The result is then placed in start.

The second part of the if() statement repeats the procedure, substituting values applicable for
the left- or right-hand edge of the screen, like this:

Finally, another for() loop iterates through the ids array and calls the HoverSlide() plug-in

for each object, placing them all in their correct positions based on the value of start, plus that in
jump. Initially, jump is zero so there is no additional offset, but as each object is added to the menu,
jump is incremented by the previous object width and the size of the gap so that each additional
object is located at the correct distance from the previous one.

How to Use It
To use this recipe, you need to create an object for each of the sliding menu parts. A div is perfect for
the job. Fill each with the images, links, and any other contents you need, and make sure the edge of
the div is a suitable tab that will make people want to pass their mouse over it. Now all you need to
do is call the recipe, like this:

In this example, the objects in the array ids are passed to the recipe, telling it to place the menus

at the browser top, 50 percent along the edge (therefore in the middle), with 20 pixels poking into the
browser, 10 pixels space between each object, and a slide in and out time of 200 milliseconds.

Here’s an example that places such a set of menus at the top of the screen:

This example creates three divs and places simulated links in them using <u> tags—in the real

world, you might use <a href…> tags here. Each object is also given a unique ID. Also, the »
HTML entity creates pairs of right-pointing brackets.

Then, in the <script> section, the ids array is populated with the object names and the Hide()
recipe makes them invisible so they will display neatly when the menus have been created—and you

shouldn’t see them jump around. It also helps to hide any content that might make some browsers
return a value that makes room for a potential horizontal scroll bar, thus ensuring that everything
centers correctly.

After resizing the objects, setting style positions, and assigning their colors, it’s then safe to
show the objects again with Show(). In fact, you must do so in order for the recipe to be able to look
up their dimensions. Finally, the HoverSlideMenu() recipe is called and the menus are displayed.

NOTE It isn’t necessary to give all objects the same dimensions—they will still line up neatly,
spaced from each other by the value passed in the gap argument. You can also specify a value
of 0 for the gap if you want all the menus to align directly next to each other. Also, don’t
forget that if you use a style position of ‘absolute’, your menus will scroll with the page, but
if you use ‘fixed’, they will stay where you put them, even if the page is scrolled.

The Recipe

 PopDown()

With this function, you can remove an object from the browser using a variety of different transitions.
This recipe is especially good for menu effects, as you’ll see in other recipes in this chapter. Figure
18-2 shows four avatars from the resource web site art.eonworks.com. Each avatar has a different
PopDown() style attached to its onmouseover event and will disappear in different ways as you pass
your mouse over them.

FIGURE 18-2 Attaching four different PopDown() effects to avatars

About the Recipe
This recipe takes an object and then removes it from the browser in one of a variety of styles. It
requires the following arguments:

• id An object or object ID or an array of objects and/or object IDs.
• type The type of pop-down—out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’.
• w If true or 1, the width of the object (where applicable) will reduce.
• h If true or 1, the height of the object (where applicable) will reduce.
• msecs The number of milliseconds the transition should take, except for the type ‘instant’, which

uses no timing.
• interruptible If true or 1, the recipe can be interrupted with another call on the same object.

Variables, Arrays, and Functions
j Local variable for iterating though id if it is an array
PO_IsUp Property of id that is false if it is popped down; otherwise, it is popped up
FadeOut() Function to fade out an object over time
Deflate() Function to reduce an object’s dimensions over time
ZoomDown() Function to zoom down an object around its center point
Hide() Function to hide an object so it does not appear in the browser

http://art.eonworks.com

InsVars() Function to insert values into a string

How It Works
This recipe starts with the standard code that iterates through id if it is an array and recursively
passes each element back to itself to be dealt with individually, as follows:

Next, a group of four if() … else if() statements check for the different types of pop-down

requested in the argument type, like this:

This first section calls the FadeOut() recipe and passes the callback function name of Hide(),

with id as its argument, so that the object will be hidden after it has faded. The other sections call up
Deflate() and ZoomDown() in the same way and with the same callback string, with the final section
simply calling the Hide() recipe when the type of pop-down requested is ‘instant’.

Finally, the PO_IsUp property of id is set to false to indicate to other recipes that the object is
(or is in the process of being) popped down.

How to Use It
Using this recipe is as simple as passing an object (or an array of objects), along with the pop-down
type you want, out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’. If typetype is either ‘inflate’ or ‘zoom’,
you also need to specify whether the width or height (or both) dimensions should be modified. If type
is either ‘fade’ or ‘instant’, you can pass any values for these arguments, such as 0 or null, as they
will be ignored. Finally, you specify the length of time in milliseconds the pop-down should take (if
it’s not ‘instant’) and whether the recipe can be interrupted.

Here’s an example that displays four images and attaches a different style of pop-down to each:

The HTML section centers a group of four images and gives them unique IDs. A link is also

made to reload the page. Next, in the <script> section, four different calls to PopDown() are
attached to the different onmouseover events of the images.

When you pass your mouse over any image, it will pop down and then hide, and the other images
will all move in to take up the space it previously occupied. This is why there is the “Reload” link
above them, so you can reload the example and watch it again.

Take some time to play with each type of pop-down and note what’s different about them. For
example, the Deflate() recipe reduces the object’s dimensions in real time, causing the other
objects to reposition as the object is deflating, whereas the ZoomDown() recipe first zooms the object
down and then collapses its width and height. You may also wish to experiment with the w and h
arguments to see how they change the type of popdown effect.

The Recipe

 PopUp()
This is the partner recipe for PopDown(). With it, you can pop an object up that has previously been
popped down. Figure 18-3 extends the one in the PopDown() recipe by providing four spans, which
you can pass the mouse over and out of to pop an object down and back up again.

FIGURE 18-3 With this recipe, you can pop objects back up again.

About the Recipe
This recipe takes an object and then restores its state using one of a variety of styles. It requires the
following arguments:
• id An object or object ID, or an array of objects and/or object IDs.
• type The type of pop-up, out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’.
• w If true or 1, the width of the object (where applicable) will expand.
• h If true or 1, the height of the object (where applicable) will expand.
• msecs The number of milliseconds the transition should take, except for the type ‘instant’, which

uses no timing.
• interruptible If true or 1, the recipe can be interrupted with another call on the same object.

Variables, Arrays, and Functions
j Local variable for iterating though id if it is an array
PO_IsUp Property of id that is false if it is popped down; otherwise, it is popped up
FadeIn() Function to fade in an object over time
Reflate() Function to expand an object’s dimensions over time
ZoomRestore() Function to zoom up an object around its center point
Hide() Function to show an object that has been hidden
InsVars() Function to insert values into a string

How It Works
This recipe has the usual code at the start that iterates through id if it is an array and recursively
passes each element back to itself to be dealt with individually, as follows:

Next, since the object will previously have been hidden using the Hide() recipe, it is shown by

calling Show():

This is all that needs to be done at this point if type is ‘instant’. If it isn’t, a group of if() …

else if() statements call one of the FadeIn(), Reflate(), or ZoomRestore() recipes, depending
on the value in type, as follows:

Finally, the PO_IsUp property of id is set to true to indicate to other recipes that the object is

(or is in the process of being) popped up.

How to Use It
You use this recipe in the same manner as PopDown() to restore an object to its original state.
Following is an example that expands on the PopDown() recipe to make the images pop both down
and up again:

As well as displaying the four images, the HTML section now includes four spans that you can

pass the mouse over and out of to make the associated images pop down and back up again. The
images have their alignment set to make them line up beside each other, and they are placed in a div
that is centered by a statement in the <script> section.

Also, in the <script> section, there are four more statements that attach PopUp() recipes to the
onmouseout events of the spans.

The Recipe

 PopToggle()
With this recipe, you can cut down on a lot of code by calling it whenever you want to reverse the
pop-down or pop-up state of an object. Figure 18-4 shows the result of optimizing the code from the
PopUp() recipe section to use only this recipe.

FIGURE 18-4 With PopToggle(), you can substantially optimize your code.

About the Recipe
This recipe takes an object and then toggles its state between popped up and down using one of a

variety of styles. It requires the following arguments:

• id An object or object ID, or an array of objects and/or object IDs.
• type The type of pop-up or pop-down, out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’.
• w If true or 1, the width of the object (where applicable) will be modified.
• h If true or 1, the height of the object (where applicable) will be modified.
• msecs The number of milliseconds the transition should take, except for the type ‘instant’, which

uses no timing.
• interruptible If true or 1, the recipe can be interrupted with another call on the same object.

Variables, Arrays, and Functions
j Local variable for iterating though id if it is an array
PO_IsUp Property of id that is false if it is popped down; otherwise, it is popped up
PopDown() Function to pop down an object
PopUp() Function to pop up an object

How It Works
This recipe starts with the code used by many recipes to iterate though id if it is an array and
recursively pass each element back to itself to be processed individually, like this:

Next, the PO_IsUp property of id is tested to see whether it has a value. If its type is UNDEF (or

‘undefined’), then it doesn’t, and the object has to be popped down (since it hasn’t been popped down
yet), so PO_IsUp is set to true, like this:

Then, a check is again made on PO_IsUp now that it must have a value of either true or false.

If it is true, the PopDown() recipe is called; otherwise, the object is already popped down so the
PopUp() recipe is called, as follows:

How to Use It
To use this recipe, pass it an object and the type of pop-up and pop-down effect to use, out of ‘fade’,
‘inflate’, ‘zoom’, or ‘instant’. Then decide whether the width, height, or both dimensions will resize

(if applicable), how long the transition should take, and whether it can be interrupted, like this:

Here’s an example that rewrites the code used in the previous pop-in example to significantly

shorten it:

The HTML section is unchanged, but the <script> uses a technique I haven’t shown you yet,

which is to assign both the onmouseover and onmouseout events to the same function, using a single
statement, like this:

This works because these events are readable as well as writable, so the onmouseout event is

first assigned to the fade() function, and the onmouseover event is then assigned to the value in the
onmouseout event.

This means only four statements are used in place of eight. Likewise, because PopToggle() can
replace both the PopDown() and PopUp() recipes, only four functions are required to manage eight
actions.

In fact, the functions can be attached to the events using inline anonymous functions, but the line
lengths would become rather long and less easy to edit.

The Recipe

 FoldingMenu()
Using the pop-up and down features of the preceding recipes, it’s possible to create professional-
looking folding menus, which is what this recipe offers. With it, you can create a wide variety of
different folding menus with different transition styles. For example, Figure 18-5 shows a folding
menu with four headings, each with different sets of contents.

FIGURE 18-5 Creating a folding menu side bar

About the Recipe
The recipe requires a pair of arrays of heading and contents objects and then displays a folding menu
based on the styles and actions you supply. It takes the following arguments:

• headings An array of objects and/or object IDs.
• contents An array of objects and/or object IDs.
• action The menu action type, either ‘hover’ or ‘click’.
• type The type of transitions to use, out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’.
• multi If true or 1, more than one contents section can be open at a time.
• w and h If type is ‘inflate’ or ‘zoom’, these arguments specify whether the width, height, or both

dimensions will be modified during transitions.
• msecs1 The transition time in milliseconds of popping down.
• msecs2 The transition time in milliseconds of popping up.
• interruptible If true or 1, the PopUp() and PopDown() recipe can be interrupted by another

call on the same id.

Variables, Arrays, and Functions
j Local variable for iterating through the headings array

FO_C
Property of each heading containing the object in the contents array to which it
refers

PO_IsUp
Property of each object in the contents array, which is false when an object
is popped down; otherwise, the object is popped up

cursor
Property of each heading’s style object used for changing the mouse pointer
when over the heading

onmouseover Event of each heading
onmouseout Event of each heading
slice() Function to return a subsection of an array
PopUp() Function to pop up an object
PopDown() Function to pop down an object
PopToggle() Function to toggle the popped state of an object
DoFoldingMenu() Subfunction to perform the transition

How It Works
The first thing this recipe does is pop down all the objects in the contents array except for the first
one, which must remain popped up—and which has its PO_IsUp property set to true to indicate this,
as follows:

The slice() function is used with a value of 1 to pass to PopDown() all elements from the

second element onward (because the first element of an array is 0). The msecs argument to
PopDown() is 1 so that the transition is set to take only 1 millisecond and is therefore virtually
instantaneous.

Next, the headings and contents arrays are iterated through in a for() loop, using j as an index
into them, like this:

Each heading has its FO_C property assigned the object in the associated contents array. This

will pop up and down the contents associated with a heading. Then, each heading has its cursor
property set to ‘pointer’ so that the mouse pointer will change when it passes over the heading.

After that, the action argument is tested. If it is ‘hover’, the DoFoldingMenu() subfunction is
attached to the current heading’s onmouseover event so it will be called up by passing the mouse
over it.

Otherwise, the subfunction is attached to the current heading’s onclick event so that it will only
be called up when the heading is clicked.

The DoFoldingMenu() Subfunction
Once all the various properties and events are set up for the recipe, the DoFoldingMenu()
subfunction will be called up whenever a change to the menus is required.

When this happens, the first statement in the function checks the multi argument. If it is true or
1, it means that more than one set of contents can be popped up at a time; in fact, all of them can be up
(or down) at the same time.

By setting the multi argument, each onmouseover or onclick event of a heading will toggle the
pop-up or pop-down state of the associated contents object with the PopToggle() recipe, like this:

If multi is not set, then only one contents object can be popped up at a time, so when a new one

is selected to be popped up, the previously popped-up one must be popped down. This is worked out
by iterating through the headings array in a for() loop, like this:

The variable j iterates through each element in the headings array and checks each one’s

associated contents object PO_IsUp property. If it is true or 1, the contents object is currently
popped up, so the heading object is compared with this, which refers to the current heading that was
either clicked or had the mouse passed over it. If they match, they are one and the same and nothing
happens since the currently selected contents object will be set to a popped-up state a couple of lines
later in the code.

However, if the contents object that has been found to be popped up is different from the
current heading’s contents object, then it is the one that was previously popped up, so it is popped
down with a call to PopDown(). The time setting used here is from the argument msecs1.

Finally, the currently selected contents object is set to a popped-up state (if it isn’t already
popped up), like this:

This pop-up action is given its own time setting in msecs2 so that different folding effects can be

achieved by using differing values for msecs1 and msecs2.

How to Use It
There are two main ways to use this recipe. The first is within an accordion or folding menu, and the
other is to separate out the headings from the contents to have the control objects in a different place
from the displayed contents. The first is most suited to being operated by mouse clicks because, as the
transitions occur, new elements could pass under the mouse cursor, and if onmouseover were used,
unwanted selections could be made.

Here’s an example of an accordion-style menu driven by mouse clicks:

I designed this and most other recipes in such a way that they do not rely on you using CSS other

than to style the menus in the way you want them. Of course, CSS can be used to apply different
styles when the mouse passes over an object, but the goal of this book is to enable you to set up
objects in standard HTML that you control with a small section of JavaScript.

Therefore, the HTML in this example creates four heading spans, each of which has a span
section of links underneath, although the contents could be any type of HTML or object, such as
images and so on. In addition to the four headings, there are four contents sections.

I have specifically chosen spans here because browsers automatically know their dimensions
based on their contents. Divs are different in that their width is effectively infinite (at least to the
browser edge), so you cannot deflate a div’s width dimension unless you set it, for example, using the
ResizeWidth() recipe.

The <script> section is very simple. Two arrays are created, one for the headings and one for
the contents. Next, the FoldingMenu() recipe is called, with an action argument of ‘click’, a style
argument of ‘inflate’, and a multi argument of 0. The w and h arguments are set to 0 and 1 so that
only the height of an object will be adjusted during transitions.

After this, msecs1 and msecs2 are set to 200 and 300 so that popping down will take 200
milliseconds and popping up will take 300. This provides a more interesting effect than if they are
given the same values. I recommend you try altering them yourself, giving first msecs1 the larger
value and then msecs2. You’ll find you can create a wide range of interesting effects.

You can also have a lot of fun by changing the type to another value, such as ‘fade’, ‘zoom’, or
‘instant’. You may also want to experiment with modifying the w and h arguments to change the width
and height (or both). Don’t forget that you can also change multi to true or 1 and have a quite
different type of menu in which the headings toggle their contents between being popped up and
down.

Using the ‘hover’ Action
If you plan to offer a hover effect, you’ll need to lay out your HTML slightly differently so that when
objects pop up they don’t do so under the mouse and then cause an automatic (and unwanted)
mouseover event to occur—which could result in popping up the wrong section.

Here’s one way you can modify the HTML to use the ‘hover’ action of the FoldingMenu()
recipe:

The script section is identical to the previous example. Only the HTML has been changed to

place all the headings at the top, with the contents sections underneath them as shown in Figure 18-6.

FIGURE 18-6 The recipe is now used to create ‘hover’ action menus.

The Recipe

 ContextMenu()
With this recipe, you can replace the standard mouse right-click menu with your own. Much more than
a way to block casual users from viewing the source of a page, the ContextMenu() recipe lets you
create entire sections of HTML and pop them up at the mouse cursor position when the user clicks the
right mouse button. In Figure 18-7, a simple menu for a hardware store has been popped up with a
right-click.

FIGURE 18-7 Now you can create your own right-click menus.

About the Recipe
This recipe requires an object that, when right-clicked, should pop up a menu, which you also pass to
it. It takes the following arguments:

• id An object to which the right-click should be attached—generally, you will attach to the
document object, but you can be more specific and attach different context menus to different
objects (arrays of objects are not supported).

• contents An object containing the menu to be displayed.
• type The type of transition effect for popping the menu up and down, out of ‘fade’, ‘inflate’,

‘zoom’, or ‘instant’.
• w If applicable and this argument is true or 1, the object’s width will be modified during the

transition.
• h If applicable and this argument is true or 1, the object’s height will be modified during the

transition.
• msecs The number of milliseconds the pop-up transition should take.

Variables, Arrays, and Functions
x and y Local variables containing the left and top edges of the location of content
MOUSE_X and
MOUSE_Y

Global variables containing the current mouse x and y coordinates

PO_IsUp Property of id that is false if it is popped down; otherwise, it is popped up
FA_Flag Property of id set by the Fade() recipe when a fade is in progress on id

DF_Flag Property of id set by the Deflate or Inflate() recipe when a deflate or reflate
is in progress on id

zIndex
Style property of contents containing its depth location from front (highest) to
back (lowest)

Context_IID Property of id returned by calling setInterval() to later be used by
clearInterval()

SetInterval() Function to start repeating interrupts
clearInterval() Function to stop repeating interrupts
Locate() Function to set an object’s style position and coordinates
PopUp() Function to pop up a previously popped-down object
PopDown() Function to pop down an object
W() and H() Functions to return the width and height of an object
ContextUp() Subfunction to pop up contents when the mouse is right-clicked

ContextDown()
Subfunction of ContextUp() to check whether the mouse has moved out of the
space occupied by contents, and if so, to remove it

How It Works
This recipe first releases the contents object from its position in the HTML document by using the
Locate() recipe to give it a style position of ABS (a global variable with the value ‘absolute’).
Next, it moves it offscreen to a location thousands of pixels away, removing it from the browser as
quickly as possible so as not to appear within your page.

Next, contents is popped down, ready to be popped up when required, and the oncontextmenu
event of id is attached to the ContextUp() subfunction, which will pop up contents when id is right-
clicked. Here are the three lines of code that do this:

The ContextUp() Subfunction
The purpose of this subfunction is to react to a right-click event on id. The first thing it does, though,
is check whether it can go ahead by examining the state of flags created by the PopUp(), PopDown(),
Fade(), Deflate(), and Reflate() recipes, like this:

If any of these flags is true, then either contents is already popped up or one of the transition

types is already in action on contents, so the recipe returns.
If the recipe can proceed, it next sets the local variables x and y to the current coordinates of the

mouse cursor and then moves the popped-down contents to that location with a call to GoTo(). It calls

PopUp() to pop it up, like this:

Next, it’s necessary to ensure that any objects that have been created or had their zIndex property

changed since the contents div was created will not appear in front of it so the object’s zIndex
property is set to the value in ZINDEX plus 1. ZINDEX is the global variable that tracks the highest
zIndex property so far used by an object, so adding 1 to this value ensures that contents will
appear on top of every other object in the browser. Here’s the statement that does this:

The recipe needs a way to determine whether the mouse has moved out of the area occupied by

contents, and therefore whether it needs to be popped down. You might think that attaching to the
onmouseout event of contents would do the trick, but sadly it won’t do so reliably and in all cases.
The reason for this is if you include a form input or other elements within contents, when the mouse
passes over them the browser will think it has passed out of being over the contents object and will
prematurely trigger the onmouseout event.

Therefore, it is necessary to track the position of the mouse and pop the object down only if it
moves out of the object’s bounds. To do this, a repeating interrupt is created to call up the subfunction
ContextDown() every INTERVAL milliseconds to see whether the mouse is still inside the object, as
follows:

Finally, the return statement returns a value of false to tell the browser to cancel pulling up the

standard right-click menu:

The ContextDown() Sub-subfunction
This function monitors the position of the mouse by checking the MOUSE_X and MOUSE_Y global
variables:

If the mouse pointer is not within the bounds of contents, the object is popped down and the

repeating interrupts are stopped with a call to clearInterval(), passing it the value in the property
Context_IID that was saved when setInterval() was called. Also, the property PO_IsUp is set to
false because contents has now been popped down:

If the mouse is still within the bounds of contents, the function returns to be called again in

another INTERVAL milliseconds.

NOTE With a little tweaking, this recipe could easily be adapted to create a slight buffer around
the context menu so the menu won’t disappear if the mouse goes slightly outside the
boundary.

How to Use It
To use this recipe, use HTML (and CSS if you wish) to create an attractive menu (or whatever object
you want the right-click to call up) and pass it to the recipe, along with the object to which it should
be attached, the type of pop-up transition to use, and the time the transition should take.

Here’s an example that creates a simple menu for a hardware store:

The HTML section displays a simple heading and instructional sentence, followed by a span

with the ID ‘menu’, which contains a few links. Of course, the links go nowhere because they only
contain a # symbol, but they display as if they do contain a link.

The <script> section sets the background color of the menu, gives it a solid border, and then
calls up ContextMenu() to prepare the browser for handling right-clicks.

You might want to play with this example by trying different style arguments, such as ‘inflate’,
‘zoom’, and ‘instant’. You can also play with the w and h arguments, as well as the timing in msecs.

Something else you can try is to create an object and attach the menu to that rather than the entire
document. Or, try making a couple of different menus for different objects—once you have this
recipe in your web toolkit, you are on your way to creating some highly dynamic and interactive web

sites.

The Recipe

 DockBar()
This recipe adds a dock bar to the browser similar to the one used by Mac OS X. It’s easily
configurable and can be attached to any of the browser’s four edges. Figure 18-8 shows six dock bar
icons attached to the bottom edge of a browser using this recipe, with one in the process of zooming
up.

FIGURE 18-8 Use this recipe to create impressive dock bars.

About the Recipe
This recipe takes a containing object and list of elements within the object and turns them into a dock
bar that you can affix to any edge of the browser. It requires the following arguments:

• id A containing object such as a div or span that holds the individual dock bar elements—this
cannot be an array.

• items An array of objects located within id, usually comprising images.
• where The edge to which the bar should be attached, out of ‘top’, ‘bottom’, ‘left’, or ‘right’.
• increase The percentage by which an item should enlarge when the mouse passes over it.
• msecs The number of milliseconds the transition should take.

Variables, Arrays, and Functions
j Local variable used for iterating through the items array
oldw and oldh Local variables containing the original width and height of an items
TP and BM Global variables containing the strings ‘top’ and ‘bottom’
verticalAlign Style property of the elements of the items array
align Property of the elements of the items array
cursor Style property of the elements of the items array to set the mouse cursor icon
DB_Parent Property of each element of the items array containing a copy of id
DB_Where Property of each element of the items array containing a copy of where
DB_Name Property of each element of the items array containing a copy of the element
DB_OldW and
DB_OldH

Properties of each element of the items array containing the original width
and height of the element

DB_NewW and
DB_NewH

Properties of each element of the items array containing the enlarged width
and height of the element

onmouseover Event of each element of the items array used for attaching to DockUp()onmouseout Event of each element of the items array used for attaching to DockDown()
Math.round() Function to turn a floating point number into an integer
Position() Function to change the style position of an object
GoToEdge() Function to move an object to a browser edge
Zoom() Function to zoom an object down or up
DockUp() Subfunction to zoom up an object
DockDown() Subfunction to zoom down an object

How It Works
This recipe starts by releasing the containing object in id from the browser and giving it a style
position of ‘fixed’ to ensure that the dock bar will stay in place even if the browser is scrolled, as
follows (FIX being a global variable with the value ‘fixed’):

Then, all the elements in the items array are iterated through in a for() loop with the local

variable j as the index pointer, and the first statements within the loop set the alignment of each
element, like this:

If the argument where has either of the values ‘top’ or ‘bottom’ (tested by the global variables

TP and BM), then the verticalAlign style property of the element is set to the value in where.
Otherwise, where must have a value of either ‘left’ or ‘right’ so the align property of the element is
given that value.

Next, each element’s original width and height is extracted from the W() and H() recipes and
placed in the local variables oldw and oldh, like this:

After that, the cursor to display whenever the mouse is over an element is set to ‘pointer’ and

several properties are created, as follows:

This causes information about the element and the containing object it is located within to be

stored as new properties of the elements. These properties can then be referenced by the following
DockUp() and DockDown() subfunctions, and also be referenced from within the Zoom() recipe,
which this one relies on.

First, the id object is copied to the DB_Parent property. Next, the value in where is copied so
that Zoom() will know where to place the element as it zooms it, and oldw and oldh are added as
properties to tell Zoom() where to zoom up from. The width and height that an element should be
zoomed up to are also calculated by increasing the original width and height by the percentage value
in increase, which is placed in the DB_NewW and DB_ NewH properties.

The final two statements in this loop attach the DockUp() and DockDown() subfunctions to the
element’s onmouseover and onmouseout events, respectively, as follows:

Finally, in the setup section of code, the containing object id is moved to the edge indicated by

the value in where, like this:

The DockUp() and DockDown() Subfunctions
These two functions trigger either the popping up or the popping down of an element by passing the
various properties of the pseudo-object this to the Zoom() recipe (this being a keyword that
represents the object that triggered the event that called the function).

The two functions are very similar and simply swap the positions of the original and larger
dimensions of the element. Here’s the statement that zooms an object up:

And this one zooms it back down again:

How to Use It
To use this recipe to create a dock bar, you first need to create an HTML object to contain the various
elements. Usually a simple span or div is all you need. Next, place the elements that comprise the
dock bar in that container. Generally, you will want to use images, but you can use objects if you
wish.

Here’s an example that creates a six-icon dock bar:

As you can see, it’s all very simple and easy to assemble. I placed only the images in the span,

but you will probably want to enclose each image within an <a href… > … pair of tags to give
them a click action.

In this instance, I placed the dock bar at the bottom, but a quick change to the where argument
from ‘bottom’ to ‘top’ will move it to the top of the browser.

If you wish to place a dock bar on the left or right edge of the browser, you’ll need to slightly
alter the HTML, like this:

Notice that all I added are some <br clear=’all’ /> statements to ensure that the elements

line up one below the other. Now you can change the where argument in the <script> section to
either ‘left’ or ‘right’ to attach the dock bar to the left or right edge.

TIP You can apply a background or gradient to the enclosing span to provide a greater effect.

The Recipe

 RollOver()
You’ve almost certainly seen and used rollover images that change as the mouse passes over them,
but what about making rollover objects do the same? That’s what this recipe does. With it, rollovers
can contain HTML, images, and anything else you like, making them much more powerful than simple
image rollovers.

Figure 18-9 shows an advertisement from a classified ads site.

FIGURE 18-9 A rollover has been attached to this “for sale” classified ad.

When you mouse over the ad, it rolls over to show the new details in Figure 18-10.

FIGURE 18-10 When the mouse passes over, the second object is displayed.

About the Recipe
This recipe takes two objects that can be images, divs, or spans containing HTML and/or images. It
creates a rollover so that the second object is displayed when the mouse passes across the first. It
requires the following arguments:

• ro1 An object or object ID, or an array of objects and/or object IDs—if it is an array, then ro2
must also be an array with the same number of elements.

• ro2 An object or object ID, or an array of objects and/or object IDs—this should only be an array
if ro1 is an array.

Variables, Arrays, and Functions
a Local array containing the objects in ro1 and ro2
w and h Local variable containing the width and height of the objects

X and y Local variable containing the top-left corner coordinates of the objects

iid
Local variable containing the result of calling setInterval(), used later for
calling clearInterval()

MOUSE_X and
MOUSE_Y

Global variables containing the current horizontal and vertical positions of the
mouse pointer

Hide() Function to hide an object
HideToggle() Function to toggle the hidden/shown state of an object

Locate()
Function to move an object to another location and assign it a style position property
such as ‘relative’ or ‘absolute’, and so on

onmouseover Event of ro1 that calls up the DoRoll() subfunction

DoRoll()
Subfunction to perform a rollover from ro1 to ro2 and then set up a repeating
interrupt to the RollCheck() sub-subfunction to see if the mouse has moved away
yet

RollCheck()
Sub-subfunction that returns every INTERVAL milliseconds when it is called—unless
the mouse has moved away from ro2, in which case the objects are rolled back
again

How It Works
This recipe supports arrays as well as single objects and is almost unique among all the recipes in
that if the first argument is an array, then the second one must also be an array. Usually, if the first
argument is an array, the second argument (a single object) is assigned to all elements of the array, but
this recipe requires either two single objects or two arrays.

In the former case, the first object is rolled over with the second. In the latter case, each element
of the first array will roll over with each matching element in the second array.

The first few lines of code facilitate recursively passing on the elements of both arrays as
individual items back to the same function to be processed as individual items (there is no error
checking, so make sure you pass two matching arrays or two objects):

Next, the local array a is assigned elements ro1 and ro2 to make them easier for later functions

to access them. Then, the width and height and horizontal and vertical locations of the objects are
saved in the local variables w, h, x, and y, like this:

The width and height each have a pixel added to resolve issues in some browsers where there
might otherwise be an anomaly at the edge boundary, which could cause the rollover to cycle rapidly.

The final three lines of the main setup section hide ro2 so that only ro1 is visible, then both ro1
and ro2 are located relative to their enclosing object at an offset of 0,0, so that they are on top of each
other. Finally, an onmouseover event attaches the DoRoll() subfunction to the onmouseover event of
ro1, as follows:

The DoRoll() Subfunction
This function swaps the two objects’ visibility properties so that ro2 becomes visible and ro1
becomes hidden. Then it sets up a repeating interrupt to call the RollCheck() sub-subfunction every
INTERVAL milliseconds, like this:

The local variable iid is given the value returned by setInterval(), which will later be used

by clearInterval() to cancel the repeating interrupts.

The RollCheck() Sub-subfunction
This function simply checks whether the mouse has moved out of the space occupied by the objects. If
it has, it swaps the two objects back so that ro1 is visible and ro2 is again hidden. Then it cancels
the repeating interrupts with a call to clearInterval(), like this:

Why Not Use onmouseout Instead of RollCheck()?
Much as I would like to use onmouseout instead of RollCheck(), it’s not possible to do so on an
object that contains many different items because passing the mouse cursor between these items
will often trigger an unwanted onmouseout event. Therefore, the simplest—and also a 100 percent
reliable solution—is to check whether the mouse has moved out of the area and then call the code that
you would otherwise have attached to an onmouseout event.

How to Use It
To use this recipe, you need to prepare two objects that have the same width and height. You can then
pass them as arguments. Or, if you prefer, you can create several sets of matching pairs to use as

rollovers and pass two arrays to the recipe. This saves repeated calls to the recipe if you have many
sets to create.

Here’s an example that uses two single objects to create a rollover effect for a classified ad:

The HTML section creates two divs and places some text and an image in each. Then the

<script> section creates the array rolls, which adds a border to each object and resizes them both
to 320 by 100 pixels.

A couple of calls to the S() recipe sets up some padding around the images so that the text
doesn’t align right up against them, and then the RollOver() recipe is called to combine the two
objects into a single rollover.

The Recipe

 Breadcrumbs()
This recipe provides an automatic trail of “breadcrumbs” leading from a web site’s home page to the
current page. With it, users can backtrack to any location between the current page and the home page
with a single click. Figure 18-11 shows the recipe being used on a page in a local file system on a
Windows PC.

FIGURE 18-11 Breadcrumbs provide a quick and easy web site navigation aid.

About the Recipe
This recipe returns the HTML to create a breadcrumb trail from the current web page back to the
home page. It requires the following argument:

• spacer A string of characters to place between each breadcrumb.

Variables, Arrays, and Functions
parts Local array containing the URL of the current page split into parts
crumbs Local array that builds the breadcrumbs
title Local variable containing the title of the current web page, if any
url Local variable containing the URL of the web site
display Local variable containing the main HTML to return to
j Local variable for iterating through different arrays
push() Function to push a value onto an array
InsVars() Function to insert values into a string

How It Works
This recipe fetches the path to the current page from self.location.href and splits it at the ?
character (if there is one) to extract the main URL from any query string. Then, the half before the ? is
split again at every / character, with the result being placed in the array parts.

After that, the crumbs array is created, which will be built up to contain the path. It is assigned
an initial value of parts[0] (which will be http: or ftp: and so on), followed by the string ‘//’,
like this:

Next a for() loop iterates through all but the first two elements of the parts array to

reassemble the URL into the crumbs array using the push() function, as follows:

The next three lines of code extract the title of the page (if any), the main URL of the web site,

and the first breadcrumb, named ‘Home’, like this:

The InsVars() recipe inserts the value in url into the string display, replacing the #1. If no

title is found, the filename of the current page is used instead. Then, if no argument was supplied for
the spacer to place between each breadcrumb, spacer is given the default value of a single space:

After this, another for() loop extracts each element from the crumbs array and attaches it

(prefaced with a / character) to the display string with suitable HTML anchor tags, like this:

Finally, the contents of display are returned and prepended to another spacer string, followed

by the page title:

How to Use It
To use this recipe, pass it a string to use as a spacer between the breadcrumbs, and the breadcrumb
string will be returned. Here’s a simple example to do just that:

The HTML section creates a div in which the result will be placed, while the <script> section

makes a single call and places the result into the innerHTML property of the div. Because simple
plain HTML is returned, you can use CSS to style the returned string to make it fit with your web page
design.

The Recipe

 BrowserWindow()
Didn’t you just hate pop-ups before browsers came with blockers? In my view, there is nothing
wrong with the concept of pop-ups; it’s just that it was too easy for web sites to inundate you with
them, and once everyone started using them it turned into a nightmare.

However, when I set up an Internet radio station in the 1990s, I used pop-ups to good effect by
implementing them as an audio player console so that people could listen to the radio while they
continued to surf in the main browser window. Perhaps partly due to the novelty, most of the web
site’s visitors kept these pop-ups open for long periods as they listened to our shows.

Even though they have a bad name nowadays, pop-ups do have plenty of sensible uses, such as
providing alerts and instant message notifications, for example. This recipe provides a versatile in-
browser pop-up that’s more user-friendly than opening a new browser window pop-up—which will
generally only get blocked anyway. It also gives the user full control, as it can be moved around the
screen and is easily dismissible.

With this recipe, you can ask a user for their login details, display private messages from
another user in a forum, provide a selection of options, and so on. Or, as in Figure 18-12, you can pop
up a window to provide further details when a user clicks a link. The great thing about it is that the
user has full control. They can keep the window raised and move it around to reveal any content it
was covering, or they can simply close it.

FIGURE 18-12 Creating an in-browser pop-up window

About the Recipe
This recipe creates an in-browser pop-up window that can be moved about by the user and also
popped back down again. It requires the following arguments:
• id An object or object ID identifying the main container—this may not be an array.
• headerid An object or object ID identifying the draggable header.
• closeid An object or object ID identifying the close button.
• x and y The top-left coordinates of the pop-up.
• bounds If true, the pop-up is forced to stay within the browser window; otherwise, it may be

moved off the edges.
• type The type of transition to use when popping the pop-up up or down, either ‘fade’, ‘inflate’,

‘zoom’, or ‘instant’.
• w and h If type is either ‘inflate’ or ‘zoom’, w and h specify which dimension(s) will be modified;

otherwise, these values will be ignored.
• msecs The number of milliseconds a pop-up or pop-down should take (unless type is ‘instant’).
• interruptible If true, the pop-up can be interrupted by a pop-down call during its pop-up

transition.

Variables, Arrays, and Functions
browserw and
browserh

Local variables containing the width and height of the browser

borderw and Local variables containing the total widths of the left and right and top and

borderh bottom borders of the pop-up
popupw and
popuph

Local variables containing the width and height of the pop-up

xoffset and
yoffset

Local variables of the BWMove() subfunction containing the differences between
the pop-up location and the current mouse positions

x and y Local variables of the DoBWMove() sub-subfunction containing the differences
between the current and saved mouse positions

r and b Local variables of the DoBWMove() sub-subfunction containing the right and
bottom maximum allowable coordinates for the pop-up if bounds is true

cursor Style property of closeid set to ‘pointer’ when the mouse passes over it

onclick
Event of id attached to the BWToFront() subfunction, and event of closeid
attached to the BWCloseWindow() subfunction

onmousedown Event of headerid attached to the BWMove() subfunction
MOUSE_X,
MOUSE_Y Global variables containing the coordinates of the mouse cursor

MOUSE_DOWN Global variable set to true when the mouse button is down

MOUSE_IN
Global variable set to true when the mouse cursor is within the bounds of the
browser

SCROLL_X and
SCROLL_Y

Global variables containing the number of pixels the document has been
scrolled in the horizontal and vertical directions

setInterval() Function to start repeated interrupts
clearInterval() Function to stop repeated interrupts
Math.max() Function to return the maximum of two values
Math.min() Function to return the minimum of two values
PreventAction() Function to stop an event from occurring
GoTo() Function to move an object to a new location
PopUp() Function to pop up a previously popped-down object
PopDown() Function to pop down an object
BWToFront() Subfunction to bring a pop-up window to the front
BWCloseWindow() Subfunction to close a pop-up window
BWMove() Subfunction to prepare to move a pop-up when it is dragged
DoBWMove() Sub-subfunction to move a pop-up when it is dragged

How It Works
The first thing this recipe does is move the pop-up to its correct location and initiate the pop-up
process, like this:

Next, some local variables are assigned values to keep track of the browser’s dimensions, the
borders (if any) of the pop-up, and its width and height, as follows:

The mouse cursor is then set to become a pointer when it passes over the closeid object, which

is used as the close button. After that, the BWToFront() subfunction is assigned to the onclick event
of the pop-up so that whenever you click anywhere on the pop-up, if it is partially obscured by
another, it is brought to the front.

In addition, the closeid object is assigned to the BWCloseWindow() subfunction so that clicking
the close button will pop the window down, and the BWMove() subfunction is attached to the
headerid object so that you can click and drag the header to move the pop-up about, like this:

The last couple of lines in the main setup section of code use the PreventAction() recipe to

disable the ‘select’ event on the headerid and closeid objects. If this is not done, dragging the pop-
up quickly may highlight parts of the header text because the pop-up will drag behind the pointer. This
unsightly behavior is prevented like this:

The BWToFront() and BWCloseWindow() Subfunctions
The BWToFront() function simply changes the style zIndex property of the pop-up so that it is
brought to the front, like this:

Every time an in-browser window such as id is clicked, this function is called, moving it to the

front, and updating the value in ZINDEX.
The BWCloseWindow() function pops the pop-up down, like this:

The BWMove Subfunction

The job of this function is to prepare the pop-up for being dragged around. First, the pop-up is
brought to the front with a call to BWToFront() and the mouse cursor is changed to the operating
system’s icon for moving a window, like this:

Next, it makes copies of the current difference between the top-left corner of the pop-up and the

current mouse position, placing them in xoffset and yoffset, and setInterval() is called to
create repeating interrupts to the DoBWMove() sub-subfunction every 10 milliseconds to allow the
object to be dragged about, as follows:

The DoBWMove() Sub-subfunction
This is the function that actually moves the pop-up about. It starts by giving the local variables x
and y the difference between the current mouse location and the location that was stored in xoffset
and yoffset when BWMove() was initially called, like this:

Then, the bounds argument is tested. If it is true or 1, then the pop-up must stay within the main

browser window, and the farthest horizontal and vertical locations the pop-up may go to are placed in
the local variables r and b (for right and bottom). These values are then used to calculate the new
values of x and y, using the Math.min() and Math.max() functions to ensure the pop-up stays in
bounds, like this:

Next, the current mouse position is tested to see whether it is outside the bounds of the browser

window or if the mouse button is no longer down. In any of these cases, dragging of the pop-up must
be terminated so the clearInterval() function is called to stop the repeating interrupts and the
mouse cursor icon for the headerid object is restored to the default, like this:

Finally, whether or not the interrupts have been stopped, a call is made to GoTo() to update the
location of the pop-up, like this:

If the interrupts have not been turned off, DoBWMove() will be called again in another 10

milliseconds, and so on, until dragging the object has stopped.
The use of SCROLL_X and SCROLL_Y means that as long as they have the style position property

of ‘absolute’, these windows can be made to pop up anywhere within a document, not just within the
viewable area.

How to Use It
To use this recipe, you must first create an object that will be the main container for the recipe. This
can be a div, a span, or even a table. Then, you need to place a couple of different elements within
this container, namely a header that will drag the pop-up about and also a close button for dismissing
the pop-up. Once this is done, you can place anything else you want in your pop-up and it will be
ready to be called up.

The following is an example that uses a table to create the various elements. Many people will
say this is not the correct use for tables and that I should use CSS. However, my aim in this example
is to avoid styling as much as possible and provide the bare bones to keep it easy to follow. A simple
table is easy to understand and uses less code than CSS styling would take:

The HTML section starts by creating a div that you can click to raise the pop-up. Underneath this

is a table with three sections: a header, a close button, and a content section.
The <script> section of code starts by calculating the correct coordinates to place the pop-up

in the center of the browser. It also gives the pop-up a solid border with a width of 2 pixels, and uses
the Position() recipe to give the pop-up a style position of ‘absolute’, which releases it from its
place within the HTML so that it can be moved anywhere within the document. You can use a style
position of ‘fixed’ if you prefer to limit the pop-up to staying only within the browser’s viewport
into the document.

The PopDown() recipe is then called with a value of 1 millisecond to quickly hide the pop-up
away. It’s important to use the transition type of ‘fade’ to later pop the window up because the
transition types must match or you will get strange errors.

The window is then resized to ensure that it is of set dimensions. Also, to prevent content
overflowing from the pop-up, its overflow style property is set to ‘hidden’.

Next, four style properties are set to give the first div a mouse pointer cursor, to give a little
padding to the image, to provide a 1-pixel border between the header and the content, and to set the
text to full justification. None of these things are necessary, but they are included to show how you
can add a little styling from JavaScript as easily as you can from a <style> section of HTML.

Finally, the onclick event of the div is set to call the BrowserWindow() recipe.

NOTE Because I used a table as the container object for this pop-up, it does not handle the
‘deflate’ or ‘zoom’ transitions well at all since table dimensions are fixed and will not
collapse on demand. If you wish to create a pop-up window that uses either of these
transition types, you will need to build your container object using divs, spans, and CSS.

The Recipe

CHAPTER 19
Text Effects

This chapter provides you with a wide range of recipes offering text manipulation features. For
example, you can enable text scrolling, either to the left or right, and you can choose both its speed
and how many times the scroll should repeat. There are also typewriter and “matrix” effects to make
text appear and disappear, as well as color fading text, flying text into position, and even fancy ripple
effects for drawing attention to important text.

 TextScroll()
With this recipe, you can scroll selected text either left or right at a speed of your choosing and for a
set number of times. Figure 19-1 shows two phrases. The top one is scrolling left over the course of
three seconds, and the bottom one is scrolling right over a period of one second.

FIGURE 19-1 Scrolling text is easy with this recipe.

About the Recipe
This recipe takes an object that contains text and then scrolls it. It requires the following arguments:

• id An object, object ID, or array of objects and/or object IDs.
• dir The direction of scrolling, either ‘left’ or ‘right’.
• number The number of times to repeat the scroll, with 0 indicating infinite repeats.
• msecs The number of milliseconds a full scroll should take.

Variables, Arrays, and Functions
j Local variable for iterating through id if it is an array
copy Local copy of the HTML contents of id

len Local variable containing the length of copy

freq Local variable containing the period in milliseconds between each call to
DoTextScroll()

ctr1 and ctr2 Local counters for counting the characters in a string and the number of scroll
iterations

iid
Local variable returned from the call to setInterval(), to be used when
calling clearInterval()

innerText Property of id in non-Firefox browsers containing the object’s text
textContent Property of id in Firefox browsers containing the object’s text
TS_Flag Property of id that is true when a scroll is in progress on it
LT Global variable with the value ‘left’
Math.round() Function to turn a floating point number into an integer
substr() Function to return a substring
SetInterval() Function to start repeating interrupts
clearInterval() Function to stop repeating interrupts
DoTextScroll() Subfunction to perform the text scrolling
Html() Function to return the HTML content of an object

How It Works
This recipe begins by iterating through id if it is an array, recursively calling itself to individually
deal with each element, like this:

The TS_Flag property of id is then tested. If it’s true, a scroll is already operating on the

object so the function returns. Otherwise, the property is set to true to indicate that a scroll is in
action on the id, as follows:

Next, some local variables are set up to hold the following: the text content of id; the length of

the text; the frequency at which the DoTextScroll() subfunction must be called in order for the
scroll to take msecs milliseconds; and a couple of counters. Finally, the repeating interrupts are set up
with a call to setInterval() using these statements:

The DoTextScroll Subfunction
This function is called repeatedly at a frequency that will ensure that a full scroll of the text will take
msecs milliseconds. It first determines whether to scroll left or right by checking the dir argument
and then modifying the string copy accordingly. If scrolling left, characters are removed from the
beginning of the string and added to the end. If scrolling right, characters are removed from the end of
the string and added to the beginning, like this:

Another test must then be made due to differences between browsers. If the browser supports the

innerText property of an object, then that is assigned the value in copy; otherwise, the
textContent property is assigned the value, as follows:

Next, an if() statement increments ctr1. If the incremented value equals the value in len, then

the contents of the statement are executed because a full scroll has completed; otherwise, the function
returns to be called again in freq milliseconds. The code looks like this:

Inside the statement, ctr1 is reset to 0, ready for the next scroll (if there is one). Then ctr2 is

incremented in another if() statement. If that value equals the one in the argument number, all
scrolling is complete, and the TS_Flag property of id is set to false and the repeated interrupts are
stopped with a call to clearInterval(), like this:

How to Use It
To use this recipe, pass it an object such as a div or span that has some text in it, tell it whether to
scroll left or right, and decide how many times the scroll should repeat and how long it should take.

Here’s an example that creates two divs with different sentences in the HTML section, and then
in the <script> section scrolls them in different directions, a different number of times, and at
differing speeds:

The divs have IDs of t1 and t2, respectively, and the LT and RT arguments are global variables

with the values ‘left’ and ‘right’.

The Recipe

 TextType()
This recipe emulates an old-fashioned typewriter or a teletype machine by outputting the text contents
of an object one character at a time, over a period of time specified by you. Figure 19-2 shows a
phrase being displayed with this recipe.

FIGURE 19-2 You can emulate a teletype machine or typewriter with this recipe.

About the Recipe
This recipe takes an object that contains text and then displays it one character at a time. It requires
the following arguments:

• id An object, object ID, or array of objects and/or object IDs.
• number The number of times to repeat the process, with 0 indicating infinite repeats.
• msecs The number of milliseconds it should take to type out the text.

Variables, Arrays, and Functions
j Local variable that iterates through id if it is an array
html Local variable containing the HTML content of id
len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call to
DoTextScroll()

ctr1 and ctr2 Local counters for counting the characters in a string and the number of scroll
iterations

iid
Local variable returned from the call to setInterval(), to be used when
calling clearInterval()

str Substring of html used for displaying the characters so far “typed”
innerText Property of id in non-Firefox browsers containing the object’s text
textContent Property of id in Firefox browsers containing the object’s text

TT_Flag Property of id that is true when a call to TextType() is already in progress
on it

Math.round() Function to turn a floating point number into an integer
substr() Function to return a substring
SetInterval() Function to start repeating interrupts
clearInterval() Function to stop repeating interrupts
Html() Function to return the HTML content of an object
DoTextType() Subfunction to perform the “typing”

How It Works
This recipe begins by iterating through id if it is an array, recursively calling itself to individually
process each element, like this:

The TT_Flag property of id is then tested. If it’s true, a call to this recipe is already operating

on the object, so it returns. Otherwise, the property is set to true to indicate that a call is in progress
on the id, as follows:

Next, some local variables are set up to hold the following: the text content of id; the length of

the text; the frequency at which the DoTextType() subfunction must be called in order for the typing
to take msecs milliseconds; and a couple of counters. Finally, the repeating interrupts are set up with
a call to setInterval() using these statements:

The DoTextType() Subfunction
This function starts by assigning the characters so far typed to the local variable str. Next, an
underline character is placed at the end to simulate a cursor, like this:

After that, the ctr1 counter is tested against the value in len. If they match, the text has

completed being typed; otherwise, there is more yet to be typed, so ctr1 is incremented, like this:

Inside the if() statement, ctr1 is reset to 0, making it ready for the next repeat (if there is one),

and ctr2 is incremented within another if() statement and compared with the value in the number
argument. If they match, then all repeats have finished and the TT_Flag property of id is set to false,
the repeating interrupts are canceled with a call to clearInterval(), and the final underline
character (which was previously appended to str) is stripped from it using a call to substr(), as
follows:

Next, because different browsers use different properties for the value, if the browser supports

the innerText property, it is assigned the value in str; otherwise, the textContent property of id is
assigned the value, like this:

Then, the function returns, and if the repeating interrupts have not been cleared, it will be called

up again in another freq milliseconds.

How to Use It
To use this recipe, put some text in a container, such as a div or span, and pass that container to the
recipe along with the number of repeats required and the length of time it should take to complete the
typing.

Here’s a simple example that types out a simple phrase once, over a period of five seconds:

The Recipe

 MatrixToText()
This recipe provides an effect similar to the one used in the Matrix movies to make text slowly
appear from a random collection of characters. Figure 19-3 shows some text halfway through being
revealed using this recipe.

FIGURE 19-3 This recipe creates an interesting text reveal effect.

About the Recipe
This recipe takes an object containing some text and replaces it with random characters, then slowly
changes them to reveal the original text. It requires the following arguments:
• id An object, object ID, or array of objects and/or object IDs.
• msecs The number of milliseconds it should take to reveal the text.

Variables, Arrays, and Functions
j Local variable that iterates through id if it is an array
html Local variable containing the HTML content of id
len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call to
DoMatrixTotext()

matrix Local string variable originally containing scrambled text
count Local variable for counting the steps of the transformation

chars
Local string variable containing all the upper- and lowercase letters and the
digits 0 to 9

iid
Local variable returned from the call to setInterval(); to be used when
calling clearInterval()

innerText Property of id in non-Firefox browsers containing the object’s text
textContent Property of id in Firefox browsers containing the object’s text
innerHTML Property of id containing its HTML
INTERVAL Global variable with the value 30

MT_Flag
Property of id that is true when a call to MatrixToText() is already in
progress on it

substr() Function to return a substring
Function to turn a floating point number into an integer, rounding the number

Math.round() up or down, whichever is closest

Math.floor()
Function to turn a floating point number into an integer, always rounding the
number down

Math.random() Function to return a random number between 0 and 1
SetInterval() Function to start repeating interrupts
clearInterval() Function to stop repeating interrupts
Html() Function to return the HTML of an object
DoMatrixToText() Function to reveal the original text

How It Works
This recipe begins by iterating through id if it is an array, recursively calling itself to individually
process each element, like this:

The MT_Flag property of id is then tested. If it’s true, a call to this recipe is already operating

on the object, so it returns. Otherwise, the property is set to true to indicate that a call is in progress
on the id, as follows:

Next, html is given the HTML contents of id, len (its length), and freq (the frequency with

which the DoMatrixToText() subfunction needs to be called in order for the transition to take msecs
milliseconds). In addition, the following are created: string variable matrix, which will hold the
random text as it is slowly revealed; count, the counter for each step, which is initialized to 0; and
chars, the string containing all possible characters for scrambling the text, which is populated with
the characters a–z, A–Z, and 0–9, as follows:

Next, a for() loop iterates through each character in html, replacing it with a random character

from chars (if it is not a newline or space), like this:

The value in matrix is then assigned to either the innerText or textContent property of id,

according to which one is supported by the current browser. The regular interrupts to the subfunction
that will perform the reveal are then set up, like this:

The DoMatrixToText() Subfunction
This function does the revealing by using a for() loop each time it is called up to replace len / 20
characters in the string matrix with the correct values. This is sufficient to change only enough for
each step so that the transition will take msecs milliseconds, as follows:

The value of 20 was determined by performing several tests with strings of different sizes and

timing them. It’s not an exact value, so you might find you want to tweak it. The new value in matrix
is then assigned to the correct property of id in order to display it:

Finally, the count variable is incremented within an if() statement. If the new value is the same

as INTERVAL, the transition has completed, so the MT_Flag property of id is set to false to indicate
that the transition is over. Its innerHTML property is then restored to its original value, and the
repeating interrupts are canceled, like this:

The function then returns and, if there are still characters to be revealed, it is called up again in

freq milliseconds time, and so forth, until the transition has finished.

How to Use It
To use this recipe, pass it an object, such as a div or span that contains some text, and tell it how long
the reveal transition should take, as with this example:

The Recipe

 TextToMatrix()
This recipe provides the inverse functionality to the MatrixToText() recipe. It takes some text and
slowly scrambles it over a period of time specified by you. Figure 19-4 shows some text that has
been fully scrambled with this recipe.

FIGURE 19-4 This recipe slowly scrambles text over a specified length of time.

About the Recipe
This recipe takes an object containing some text and replaces it with random characters over a time
period you specify. It requires the following arguments:

• id An object, object ID, or array of objects and/or object IDs.
• msecs The number of milliseconds it should take to scramble the text.

Variables, Arrays, and Functions
j Local variable that iterates through id if it is an array
text Local variable containing the HTML content of id
len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call to
DoMatrixTotext()

count Local variable for counting the steps of the transformation

chars
Local string variable containing all the upper- and lowercase letters and the
digits 0 to 9

iid
Local variable returned from the call to setInterval(); to be used when
calling clearInterval()

innerText Property of id in non-Firefox browsers containing the object’s text
textContent Property of id in Firefox browsers containing the object’s text

INTERVAL Global variable with the value 30

TM_Flag
Property of id that is true when a call to TextToMatrix() is already in
progress on it

substr() Function to return a substring

Math.floor()
Function to turn a floating point number into an integer, always rounding the
number down

Math.random() Function to return a random number between 0 and 1
SetInterval() Function to start repeating interrupts
clearInterval() Function to stop repeating interrupts
Html() Function to return the HTML of an object
DoTextToMatrix() Function to scramble the original text

How It Works
This recipe works in almost the same fashion as the MatrixToText() recipe except that the string
text is slowly scrambled over time and assigned to the id object to display it—a full explanation can
be found in the notes in the MatrixToText() function, JavaScript Recipe 72.

How to Use It
To use this recipe, pass it an object, such as a div or span that contains some text, and tell it how long
the scramble transition should take, as with this example:

Note that I snuck in a call to the FadeOut() recipe in this example, as it makes for an interesting

combined effect of the scrambling text slowly fading away—this is just one example of how you can
combine these recipes to produce even more complex and interesting results.

You may also notice that I omitted the interruptible argument to FadeOut(). This therefore
passes a value of ‘undefined’ for that argument to the function, which will be treated as if it was the
value false, thus saving you some typing.

The Recipe

 ColorFade()
This recipe provides a very smooth transition effect between two different colors, and you can use it
with either an object’s text or its background colors. Figure 19-5 shows two elements that have been
set to fade colors. The first continuously alternates between yellow and blue text and background
colors, while the second fades from black to light blue when the mouse is passed over it.

FIGURE 19-5 This recipe is great for banners and mouseover highlights.

About the Recipe
This recipe changes the text or background color of the contents of an object over a specified period
of time. It requires the following arguments:

• id An object or object ID, or an array of objects and/or object IDs.
• color1 The start color expressed as a six-digit hexadecimal number.
• color2 The end color expressed as a six-digit hexadecimal number.
• what The property to change, either ‘text’ for the text color, or ‘back’ (or anything other than

‘text’) for the background color.
• msecs The number of milliseconds the transition should take.
• number The number of times the transition should repeat, with 0 meaning infinite repeats.

Variables, Arrays, and Functions
j

Local variable that indexes into id if it is an array, and for splitting the colors
into triplets

step Local variable containing the amount of change between each transition frame
index Local variable used as a multiplier for generating color values
count Local variable containing a counter for counting the repeats
direc Local variable containing the direction of color change, either 1 or –1
cols[] Local array containing the ‘from’ color triplets
steps[] Local array containing the step between each color triplet

prop Local variable containing the property to change, either color or
background

iid
Local variable containing the value returned by setInterval(); to be used
later by clearInterval()

temp Local variable used for building up each transition color
CF_Flagtext Property of id that is true if a color change transition is in effect on it

CF_Flagback
Property of id that is true if a background color change transition is in effect
on it

INTERVAL Global variable with the value 30
DoColorFade() Subfunction to perform the color changes

ZeroToFF()
Sub-subfunction to ensure values are integers between 0 and 255 (equal to 00
to FF hexadecimal)

DecHex() Function to convert a decimal value to hexadecimal
setInterval() Function to set up repeating interrupts
clearInterval() Function to stop repeating interrupts
Math.round() Function to turn a floating point number into a integer

Math.max() Function to return the maximum of two values
Math.min() Function to return the minimum of two values

How It Works
This function starts by iterating through id if it is an array, recursively calling itself to process each
element individually, like this:

Next, a pair of flags is checked to see whether a fade is already in process on id. If the argument

what has the value ‘text’, then the CF_Flagtext property of id is tested or set. Otherwise, if it is
‘back’, its CF_Flagback property is tested or set, like this:

If a fade is running and the recipe is not set to interruptible, the recipe returns; otherwise, any

current repeating interrupts are halted, ready for new ones to be set up. If the flag is not set, it is
assigned the value true to indicate that a fade is in progress.

After this, if either of the colors was passed without the preceding required # character, it is
added:

Next, various local variables are assigned values that will be used later:

The last five are simple initializations, while the first one gives step a value that will calculate

the difference between transition frames so that the whole effect will take msecs milliseconds.
After this, the cols[] array is populated with the triplet color values, and the steps[] array

with the step values for each triplet between each frame, like this:

The local variable prop is then assigned a property name, either color or background,

depending on the value in the argument what:

This is what makes the recipe dual functional: either the foreground or background color will be

changed.
Finally, in the setup section of code, the value in interruptible is saved, and the

setInterval() function is called to set up repeating interrupts to the DoColorFade() subfunction
every INTERVAL milliseconds. The value returned by the function is then stored in IID to be used
later when clearInterval() is called:

The DoColorFade Subfunction
This function starts off by preparing the variable temp with an initial # character to start a color
string. A for() loop then iterates through the cols[] array, calculating the current frame’s color
values, converting them to hexadecimal, and then appending them to temp. After that, the value in
temp is assigned to the property of id stored in prop:

After this, the index variable is incremented by the value in direc. If direc is 1, index

increases by 1; if it is –1, it decreases by 1, like this:

If the new value of index is either greater than step or less than 0, the transition is complete, so

the following code is executed to reverse the direction of fade by negating direc. Then, if all repeats
are finished, it cancels the repeating interrupts:

The ZeroToFF() Sub-subfunction
This function takes the value passed to it in num and uses the Math.max() function to ensure it is not
less than 0, uses the Math.min() function to ensure it isn’t greater than 255, and uses the
Math.round() function to turn it into an integer, like this:

How to Use It
To use this recipe, pass it an object, such as a div or span that contains some text; provide starting
and ending values in strings such as ‘#123456’; decide whether to change the text or background
color by setting an argument for what of ‘text’ or ‘back’; choose a length of time in milliseconds for
the transition; and, finally, decide how many times you want the transition to repeat.

Here’s an example that uses the recipe in two different ways. One highlights some text by
constantly transitioning it between the two colors supplied, and the other reacts to onmouseover and
onmouseout events to fade between the two colors:

The text section creates two spans with the IDs ‘t’ and ‘m’. In the <script> section, the first
two commands set both the background and text colors of ‘t’ to transition between yellow (#ffff00)
and blue (#0000ff). Because a number argument of 0 is passed, the transitions continue infinitely.

Below this, the ‘m’ span has its onmouseover and onmouseout events attached to a small
function called fade() that calls ColorFade() with a number argument of 1 so that each transition
happens only once. This means that when the mouse passes over, the color fades to light blue
(#0000ff), and when the mouse moves away, it fades back to black (#000000).

Pass your mouse over the second span to see the smooth fading mouseover effect you can
achieve for links and other elements.

NOTE Odd transitions change the color of an object from the first to the second color, while even
ones change it back again. This means that number argument values of 1, 3, 5, and so on will
leave the second color on display, while 2, 4, 6, and so on will restore the first color after all
transitions are over.

The Recipe

 FlyIn()
With this recipe, you can make text (or any object) fly into its position in a document from any
location you choose and at whatever speed you wish. Figure 19-6 shows a list of five items set to fly
in from the bottom of the browser, one per second over the course of five seconds.

FIGURE 19-6 Instead of having static objects, why not fly them in at the start?

About the Recipe
This recipe flies an object into its final location over a time you specify. It requires these arguments:

• id An object or object ID, or an array of objects and/or object IDs.
• x If specified, the relative horizontal offset at which the animation should start—it may be a

positive or negative value.
• y If specified, the relative vertical offset at which the animation should start—it may be a positive

or negative value.
• msecs The number of milliseconds the animation should take.

Variables, Arrays, and Functions
j Local variable to iterate through id if it is an array
tox and toy Local variables containing the original (and final) location of id
fromx and fromy Local variables containing the start location of id for the animation
xstep and ystep Local variables containing the amount by which to move id in each frame
count Local variable to count the animation frames
ABS Global variable with the value ‘absolute’
FI_Flag Property of id that is true if a fly-in is already in progress on it

setInterval() Function to start repeating interrupts
clearInterval() Function to end repeating interrupts
DoFlyIn() Subfunction to perform the animation
Position() Function to set the style position property of an object
GoTo Function to move an object to a new location

How It Works
This recipe starts by using j to iterate through id if it is an array, recursively calling itself to
individually process each element:

Next, the FI_Flag property of id is checked. If it is true, a fly-in is already in progress on the

object, so it returns. Otherwise, the property is given the value true to indicate that a fly-in is running
on id, like this:

After that, the various local variables that will be used by the DoFlyIn() subfunction are set up,

as follows:

The variables tox and toy save the current location of the object as a record of where to fly it

into. The start location for the animation is then placed in fromx and fromy, the step value for each
dimension of each frame is stored in xstep and ystep, and the counter count is initialized.

Finally, in the setup section, the id object is released from the HTML and given a style position
property of ‘absolute’, using the global variable ABS. This allows it to be moved anywhere within
the document.Next, the setInterval() function is called to start repeating interrupts to the
DoFlyIn() subfunction every INTERVAL milliseconds. The result of calling the function is saved in
iid to be used later when clearInterval() is called:

The DoFlyIn() Subfunction
This function simply uses the GoTo() recipe to move id to each location in the animation, like this:

An if() statement then checks count to see whether it has a value greater than or equal to

msecs / INTERVAL. If it does, the fly-in has completed and the following code is executed, but
whether it does or doesn’t equal that value, count is incremented after the test is made, like this:

If the fly-in has finished, the FI_Flag property of id is set to false to indicate this, GoTo() is

called to ensure that id is placed at exactly the correct location (because xstep and ystep will
usually be floating point values and the final values calculated using them could be off by a pixel or
two). Then, the repeating interrupts are stopped with a call to clearInterval(), like this:

The function then returns, and if the fly-in hasn’t yet finished, it will be called again in INTERVAL

milliseconds, and so on until the animation has completed.

How to Use It
To use this recipe, pass it an object and specify where you wish the object to fly in from by providing
relative horizontal and vertical coordinates in the next two arguments. You also have to tell the recipe
how long the animation should take in milliseconds.

Here’s an example that flies some list elements up from the browser bottom, with each arriving
at its destination one second after the one above it:

This HTML section creates a simple list and places its element within spans. The <script>

section then places the height of the browser into the variable h and issues five calls to FlyIn() with
the different object IDs, a start location just under the bottom of the screen, and animation periods
from 1 to 5 seconds.

You can just as easily fly the elements in from the browser top by specifying a y value of –20 or
so, or from the left or right edges by using values of -W(’object’) -50 for the x argument when
flying in from the left, or GetWindowWidth() for the x argument if flying in from the right. In fact, you
can specify any relative x and y coordinates you like so objects can fly in at any angle.

TIP Because objects have to be given a style position property of ‘absolute’ in order to move
them about, if you have not enclosed the object (or a set of objects) in a suitable container
with set dimensions such as a div or span, other elements of the HTML could move themselves
to fill in the space previously occupied by the object (or objects). Tables are also good
placeholders for objects that you will be flying in.

The Recipe

 TextRipple()
This recipe gives an interesting ripple effect to text, changing the size of characters next to each other
to provide a wave that runs from the start to the end of the string. Figure 19-7 shows the list elements
from the previous recipe, FlyIn(), but here they have their onmouseover events attached to this
recipe.

FIGURE 19-7 This recipe provides a great effect for drawing people’s attention.

About the Recipe
This recipe performs a wave or ripple effect from start to end of a portion of text contained within an
object. It requires the following arguments:

• id An object, object ID, or an array of objects and/or object IDs.
• number The number of times to repeat the ripple—infinite, if number is 0.
• msecs The number of milliseconds the ripple should take.

Variables, Arrays, and Functions
j Local variable used for iterating through id if it is an array
html Local variable containing the HTML content of id
len Local variable containing the length of html

freq
Local variable containing the time between each call to DoTextRipple() in
milliseconds, such that the ripple will take msecs milliseconds to complete

ctr1 and ctr2 Local variables for counting each character in a ripple, and each repeat of the
animation, respectively

iid
Local variable containing the result of calling setInterval(); to be used
later when calling clearInterval()

temp Local variable that holds the HTML for each step of the animation
innerHTML Property of id containing its HTML
innerText Property of id in non-Firefox browsers containing its text content
textContent Property of id in Firefox browsers containing its text content
TR_Flag Property of id that is true when a ripple is in process on it
Html() Function to return the HTML content of an object
InsVars() Function to insert values into a string
DoTextRipple() Subfunction to perform the animation
setInterval() Function to set up repeating interrupts
clearInterval() Function to stop repeating interrupts
substr() Function to return a substring

How It Works
This recipe starts by using j to iterate through id if it is an array, recursively calling itself to
individually process each element:

Next, the TR_Flag property of id is checked. If it is true, a ripple is already in progress on the

object and it returns. Otherwise, the property is given the value true to indicate that a ripple is
running on id, like this:

After that, the local variable html is given a copy of the HTML content of id; len is set to its

length; freq is assigned the time in milliseconds between each call to DoTextRipple() such that the
ripple will take msecs milliseconds; two counters, ctr1 and ctr2, are initialized; and
setInterval() is called to set up repeating interrupts to the DoTextRipple() subfunction every
freq milliseconds, like this:

The variable iid is given the value returned by setInterval(), which will be used later when

clearInterval() is called.

The DoTextRipple() Subfunction
This function starts off by assigning temp the left-hand part of html, prior to any font size changes,
with ctr1 indexing the point at which the fonts will be manipulated:

Next, each character in html that will have its font size changed is processed within a for()

loop such that the outside characters of the group are the smallest, the characters just in from them are
larger, and the largest character is in the center, as follows:

The part that determines this is 4 - Math.abs(j - 3), which, for the values 0 through 6 of j,

gives the following font size values (because the Math.abs() function makes all negative numbers
positive): 1, 2, 3, 4, 3, 2, 1.

Once all the font sizes have been calculated and stored in temp using the InsVars() recipe to
insert the values into a string containing statements, the innerHTML property of id
is assigned this string to display it, along with the remaining, unchanged portion of html:

An if() statement then increments ctr1 and checks whether it equals the value in len. If so, the

animation has finished and the following code is executed:

If the ripple is finished, then ctr1 is reset and another if() statement checks whether there are

any more repeats of the interrupt remaining, like this:

If the repeats have finished, the value in html is saved back into id as text, not HTML

(otherwise, unwanted extra HTML tags would be added by the browser—the time for saving HTML
to the property is only when the font sizes are being changed).

Next, the TR_Flag property of id is set to false to indicate that all ripples have completed, and
the clearInterval() function is called to stop any future calls to the subfunction, passing it the
value previously stored in iid.

The function then returns but will be called up again in freq milliseconds if there are still

outstanding animation frames to display.

How to Use It
To use this animation, pass it an object such as a div or span containing only text with no HTML
markup or other tags; tell it the number of times to repeat the ripple; and give it the length of time in
milliseconds that the animation should take.

Here’s an example that takes the list from the FlyIn() recipe and attaches each entry to an
onmouseover event to trigger the ripple:

To prevent the text from moving down on the page as the larger characters in a ripple increase

its height, each line on which a ripple can be triggered has the html
 immediately preceding it. This ensures that the height of the line is always set to the
maximum +4 size of font used by the recipe. You can also use CSS styling, tables, and other methods
to enclose lines that will be rippled and prevent them moving themselves or other elements about.

The <script> section passes an array of the objects to the O() recipe, along with the
‘onmouseover’ event name as a string, and the name of the function ripple below it. The ripple
function then uses the this keyword, which acts as a pseudo-object representing the object that
triggered the event. This saves having to pass arguments to the function, keeping the code short and
simple.

The Recipe

CHAPTER 20
Audio and Visual Effects

This chapter contains a number of handy recipes, which you can use for creating light boxes and slide
shows (or combining the two), making rotating billboards for placing advertising or news updates, or
making objects pulsate as you pass the mouse over them. There are also recipes to help you create
professional-looking charts with the help of Google Charts, present YouTube videos in a variety of
ways with a single function call, and play sounds in response to events or for any other reason.

 Lightbox()
With this recipe, you can display an image or any object in the center of the browser with the outside
darkened and made transparent by amounts you can specify. Your users can then view these objects
with minimum distraction and simply click them to dismiss the light box. Figure 20-1 shows a
photograph being displayed using this recipe.

FIGURE 20-1 Show off your favorite photographs with this light box recipe.

About the Recipe
This recipe displays a photo (or other object) centered in the browser, with a darkened frame over

the web page behind it. It requires the following arguments:

• id An object or object ID—this may not be an array.
• col1 A starting color for the frame.
• col2 An ending color for the frame.
• opacity The final opacity of the frame.
• msecs The time in milliseconds the transition should take.

Variables, Arrays, and Functions
newdiv New div object created to use for the frame
LB_DIV Object ID of the new div

cursor
Style property of id that sets the mouse cursor to a pointer when it is over
id, indicating that it is clickable

overflow
Style property of document.body set to ‘hidden’ during the display of id to
prevent scrolling

zIndex
Style properties of both the frame and id, set to bring them to the forefront
of the browser

onclick Event of id set to dismiss the light box if clicked
HID Global variable with the value ‘hidden’
ABS Global variable with the value ‘absolute’
ZINDEX Global variable containing the highest zIndex property used so far
DismissLB() Subfunction to dismiss the light box
Hide() Function to hide an object
Show() Function to show a previously hidden object
Position() Function to set an object’s style position property

Locate()
Function to set an object’s style position property and move it to a new
location

Resize() Function to resize an object
Opacity() Function to set an object’s opacity
Center() Function to center an object in the browser
GetWindowWidth() Function to return the width of the browser
GetWindowHeight() Function to return the height of the browser
Fade() Function to fade the opacity of an object to a new level
FadeIn() Function to fade the opacity of an object to 100
FadeOut() Function to fade the opacity of an object to 0
ColorFade() Function to fade the color of an object between two colors
Chain Function to chain two or more recipes in a sequence
InsVars() Function to insert values into a string

createElement() Function to create a new HTML element
setAttribute() Function to set an attribute of an HTML element
appendChild() Function to append a child HTML element

How It Works
This recipe starts off by setting the mouse cursor when over id into a pointer to indicate that it is
clickable (doing so dismisses the light box), like this:

Then, if this is the first time the recipe has been called, a new div object with the ID of
‘LB_DIV’ is created and appended to the HTML for use as the darkened frame around id—
otherwise, the div has previously been created so this code is skipped:

Next, the overflow property of the document.body is set to ‘hidden’ to disable scrolling the

web page, then both the frame and id are hidden with a call to Hide(). This is so that they can both
be moved about and otherwise modified without these actions being seen by the user.

After that, the frame is moved to the top left of the browser and resized to fill the entire window,
and its zIndex property is set to the highest value used so far (held in ZINDEX), like this:

Having set up the frame, id is processed next by setting its opacity to 0, which releases it from

the HTML by calling Position() to set its style position attribute to ‘absolute’. Next, its zIndex is
set to a value that is 1 higher than the frame’s, and the ZINDEX global variable is also incremented to
contain this higher value:

With both objects now prepared, the Show() recipe is called to re-enable the objects in the

browser, and id is centered. Next, the new div (with the ID ‘LB_DIV’) is faded to the value in
opacity over msecs milliseconds, id is faded in to an opacity of 100, and the background color of
the frame is faded between col1 and col2 over the same time period, like this (remembering that
FadeIn() fades an object from 0 percent to 100 percent opacity):

Finally, in the display section of code, the onclick event of id is set to call up the

DismissLB() subfunction when clicked, as follows:

The DismissLB() Subfunction
This function is called whenever id is clicked. The first thing it does is fade the frame’s opacity back
down to 0 and its background color from col2 back to col1, like this:

At the same time, a chain is created to perform three actions in sequence: first, fade out id;

second, hide id; and third, restore any scroll bars to document.body, as follows:

How to Use It
To use this recipe, you need to have an image (or any other object) already prepared. Most likely you
will also have set its style.display attribute to ‘none’ so that it is not visible in the web page, like
this:

Next, you can attach the recipe to an event such as an onclick or onmouseover to pop the

object up in a light box. Here’s an example that uses an onclick event:

The HTML section of this example creates a button with a link to the anonymous inline function,

along with an image object with the ID ‘photo’. The <script> section simply contains the function
that calls up the Lightbox() recipe.

When a light box is in use, none of the elements underneath it that are usually clickable (or have
onmouseover events attached) will work until the light box is removed. This is because the div object
it creates covers the entire browser window and has a higher zIndex value than everything except the
light box contents, which makes it especially useful when you wish to force the user to focus only on
one thing, such as entering login details or accepting notification of an error, and so on.

TIP The reason for requiring the two color arguments of col1 and col2 is to allow for web
pages of any color background, which can then be faded to any other color of your choice for
the light box frame. If your web site has standard black text on a white background, I
recommend you try fading the light box between the color values #888888 (midgray) and
#000000 (black). Or, you can be creative and fade between contrasting colors for an even
more eye-catching effect. The value you choose for the opacity argument will also greatly
change the transition effect.

The Recipe

 Slideshow()
With this recipe, you can display a sequence of images in a slide show. Figure 20-2 shows this recipe
being used in conjunction with the previous recipe, Lightbox(), to create a slide show on a
darkened background.

FIGURE 20-2 With this recipe, one image fades into another.

About the Recipe
This recipe takes an empty container such as a div or span and displays a continuously rotating
sequence of images that fade into each other. It requires the following arguments:

• id An object or object ID—this may not be an array.

• images An array of images (preferably of the same dimensions).
• msecs The time each fade transition should take in milliseconds.
• wait The time in milliseconds to wait between each transition—if this value is set to the string

‘stop’, it tells the recipe to stop any current slide show and exit.

Variables, Arrays, and Functions
index Local variable used for indexing the array of images
newimg Local variable containing a new image object
SS_Stop Property of id, which, if true, stops the slide show
SS_IMG1 and
SS_IMG2

Object IDs of the two new image objects

src Property of each image object containing its source file
ABS Global variable with the value ‘absolute’
setTimeout() Function to set up an interrupt to a function after a specified period
DoSlideshow() Subfunction to perform the fade transitions

Locate()
Function to set an object’s style position property and move it to a new
location

Opacity() Function to set an object’s opacity
FadeIn() Function to center an object in the browser
FadeBetween() Function to fade between two objects
createElement() Function to create a new HTML element
setAttribute() Function to set an attribute of an HTML element
appendChild() Function to append a child HTML element

How It Works
This recipe begins by setting len to the number of items in images and setting the SS_Stop attribute of
id to either true or false, depending on whether the wait argument contains the string ‘stop’. If it
does, the value true is assigned so the subfunction will know to stop the fade transitions. The line of
code looks like this:

As well as checking the wait arguments to see if it has the value ‘stop’, the SS_Flag property of

id is tested; if it is true, a slide show is already in operation on this id, so the following code is not
executed:

Otherwise, as long as the wait argument contains a number, the following code is then entered.
Here, if there is no object with the ID ‘SS_IMG1’, this is the first time the recipe has been

called, so it populates the id container object with two new image objects having the IDs ‘SS_IMG1’

and ‘SS_IMG2’. It then overlays these objects over each other by locating the second one in the same
position as the first, like this:

These lines illustrate how you can add new elements to a DOM tree at any point. First, use

document.createElement() to create a new element object, then set any attributes using
setAttribute(), and finally, use appendChild() to append the new element to the DOM.

Next, the variable index is initialized to 0; this will be used later to index the next image in a
slide show. The first image object is then assigned the contents of the first element in the images
array, which will be the location of a photo or other image:

The SS_Flag property is also set to true to indicate that a slide show is in progress. After that,

the second image has its opacity set to 0 to make it invisible, and the first image is faded in over a
period of msecs milliseconds:

Finally, in the setup section of code, the setTimeout() function is called to set up an interrupt

to call the DoSlideshow() subfunction after a period of msecs + wait milliseconds. This accounts
for the time it will take the first image to fade in, plus the time required for the wait:

The DoSlideshow() Subfunction
The job of this function is to transition a fade between two images and then initiate an interrupt to call
itself again when the next transition is due (unless it is canceled).

The first thing this function does is load the first image with the current value in the images
array, as indexed by index. The first time it calls this, nothing happens since the same image has
already been loaded. However, on all future transitions it has the effect of taking the picture that is
being displayed in the second image and duplicating it in the first, so that they both are showing the
same picture:

Since both images are showing the same picture, it is safe to set the first one to be fully visible

and the second one to be invisible, like this:

Having made this swap, the index variable is incremented to point to the next picture in the

slide show, and if it becomes larger than the number of images in the images array, it is reset to 0
(using the % operator) to start again at the beginning, as follows:

Next, it’s time to load in the next picture listed in the images array into the second image

(because the first image is the one currently being displayed, and the second has been made invisible,
ready to load the next picture in):

I will explain the following statement shortly, but here it is for reference:

Now that each image holds a different picture, it’s a simple matter to call the FadeBetween()

recipe to fade between the two, like this:

This makes the second image the visible one and the first one invisible. At this point, the image

states are the same as at the start of the subfunction.
The value of the next argument in the FadeBetween() call is a string containing a callback

function, which is mostly used by chains to link them together. However, in this case it is just passing
a statement to be executed once the recipe completes its work.

The contents of next, which I previously glossed over, creates a statement that will load the next
picture in the slide show into the first image once the fade between the two images is finished and the
first image is now invisible (and available for use in this way).

This is done to preload the picture so it is cached in the browser, and next time around the loop,
when the picture is loaded into image 2, it will be fetched from the cache without any delays while it
is downloaded from the server.

This means program execution is ready to go around the loop again. However, the next interrupt
call to the subfunction is only set up if the SS_Stop property of id is false, because if it is true,
then a call has been made requesting the slide show to stop:

Otherwise, if the slide show is stopped, the SS_Flag property of id is set to false to indicate

this:

How to Use It
To use this recipe, prepare an empty div or span and pass it to the recipe along with an array
containing the URLs of the images for the show and two timers: the first for how long each fade
transition should take and the second for the length of pause between changing images, both in
milliseconds.

Here’s an example that combines this recipe with the previous one, Lightbox(), to create a
slide show in a light box:

In the HTML section, a button is created that will call the anonymous, inline function when

clicked, while underneath it there’s an empty div. In the <script> section, the div is resized (with a
call to Resize()) to the dimensions required so that the Slideshow() function can center it
correctly. Without these dimensions, if the contents of the div are not ready when the Center() call is
made, the object might appear off-center.

The div is also hidden with a call to Hide() because now that it has dimensions it will push any
content below it out of the way. Then, the array photos is populated with the URLs of five photos,
and the function calls both Slideshow() and Lightbox() to merge the two recipes together.

Because the Lightbox() recipe dismisses its contents when you click it, the slide show will not
stop, even though it isn’t visible. If you click the button again, the Slideshow() recipe will realize
that it is still running and simply continue the slide show.

If you want to turn the slide show off, you need to set the SS_Stop property of ‘show’ to 1 or
true, and the next time a slide change is due, it will stop:

TIP This recipe is designed so you can place the containing object anywhere you like and the

slide show will occur at that position; you don’t have to use it in a light box if you don’t want
to.

The Recipe

 Billboard()
This recipe is similar to the Slideshow() recipe in that it fades between objects in a sequence. The
difference is that the Billboard() recipe allows you to put any objects in a show, and they must
already exist in the document (whereas the Slideshow() recipe pulls images in by their URLs only
when needed).

A great use for this recipe is to rotate banners or other advertisements, which can be images,
divs, spans, or other objects. Figure 20-3 shows one image in a sequence being displayed using this
recipe.

FIGURE 20-3 This recipe creates a billboard of rotating objects and/or images.

About the Recipe
This recipe takes a containing object such as a div or span and an array of objects held within it,
which it then rotates like an automated billboard. It requires the following arguments:

• id An object or object ID—this cannot be an array.
• objects An array of objects or object IDs.
• random If true, the objects will be displayed in random order.
• msecs The time in milliseconds that each fade between objects should take.
• wait The time in milliseconds to wait before fading to the next object.

Variables, Arrays, and Functions
j Local variable used as an index to iterate through the objects array
len Local variable containing the number of items in the objects array
index Local variable used to reference each object to be displayed

h
Local variable containing the cumulative height of each object for locating
them in their required locations

rand Local variable containing a random number between 0 and len – 1

BB_Ready
Property of id that is true if the objects have already been positioned in their
places

BB_Stop Property of id that is true if the billboard rotation is disabled
REL Global variable with the value ‘relative’
FadeOut() Function to fade out an object
FadeIn() Function to fade in an object
Locate() Function to apply a style position and location to an object
H() Function to return an object’s height
DoBillboard() Subfunction to rotate the contents of the billboard

setTimeout() Function to set up an interrupt to a function in the future
clearTimeout() Function to stop any timeout that has been set
slice() Function to return a portion of an array
Math.floor() Function to turn a floating point number into a rounded down integer
Math.random() Function to return a random number

How It Works
This recipe begins by setting the local variable len to the number of items in the objects array:

Next, it checks whether it has already been called by examining the BB_Ready property of id. If

it is not true, then the objects have not yet been moved to their required locations, so the following
code is executed, which begins with setting up some variables.

First, len is assigned the number of items in objects, and then the O(id).BB_Index property of
id and the local variable h are initialized to 0, like this:

After setting up the local variables, the BB_Ready property of id is set to true so that future

calls to the recipe will know that the objects have been properly located. Then all items in objects
other than the first are faded out by passing them through the slice() function to split them off, and a
value of 1 millisecond is used for the transition to make it virtually instantaneous. This has the effect
of leaving only the first item visible:

After that, a for() loop iterates through all but the first item in objects, subtracting the height

of each previous object from the local variable h. Each object is then released from its position in the
web page and given a style position attribute of ‘relative’ (using the global variable REL).

Each object’s x coordinate is set to 0 to line it up with the left-hand side of the first one, and its y
coordinate is set to h, which is a negative number containing the sum of all the heights of the objects
above the current one, thus moving the object up the browser and placing it directly on top of the first
one:

Next, if the wait argument has the value ‘stop’, the BB_Stop property of id is set to true,

indicating that the billboard transitions should stop; otherwise, it is assigned the value false:

After that, as long as BB_Stop is not true and as long as the billboard is not already running (the

BB_Flag property of id will be true if it is), an interrupt is set to call the DoBillboard()
subfunction in msecs + wait milliseconds:

The result retuned by the call is placed in the BB_IID property of id for use when calling

clearTimeout().

The DoBillboard() Subfunction
This function starts by setting the BB_Flag property of id to true to indicate that the billboard is
running:

It then checks the BB_Stop property of id to see whether it can continue or should stop:

If BB_Stop is true, then a request has been made to stop the transition, so the function will reset

BB_Flag to false, stop any timeout that is due, and return. No more interrupts will occur on it, unless
the recipe is called again—at which time the transitions pick up from where they left off. This allows
you to, for example, pause the transitions if the mouse passes over an object and resume them again
when it leaves.

Otherwise, the function continues running and the next thing to happen is the currently displayed
object gets faded out:

Then, if the argument random is true (or 1), the subsequent object to display should be selected

at random, which is done by this code:

Here rand is assigned the value of the O(id).BB_Index property, which points to the currently

displayed object. Then, a while() statement repeatedly selects random numbers, placing them in the
variable rand, until it is not the same as O(id).BB_Index. This ensures that the next object displayed
in the billboard won’t be the same as the current one.

Once a value is found, it is placed in O(id).BB_Index. Otherwise, if random is not true, the
objects are displayed in sequential order and O(id).BB_Index is incremented. If it becomes greater
than the number of items in the objects array, it is reset to 0 (using the % operator):

At this point, O(id).BB_Index represents the next object to be displayed, so a call is made to

the FadeIn() recipe to fade it in:

Finally, any currently pending interrupt is canceled and another interrupt is set up to call the

subfunction again in msecs + wait milliseconds, giving enough time for both the fade transition and
the wait period to pass:

How to Use It
To use this recipe, you need to first prepare a containing object to hold all the items that will be
rotated in the billboard. Then, place the subobjects within it, and you’re ready to call the recipe from
JavaScript.

Here’s an example that combines the divs used in Recipe 67, RollOver(), with a new image of
the same dimensions:

I laid out the HTML so you can clearly see the three subobjects within the main containing

object (with the ID ‘billb’), which has its style display attribute set to ‘hidden’ so as not to show the
subobjects.

In the <script> section, the containing object is given a solid 1-pixel border (which is not
necessary but improves the look) and resized it to 320 by 100 pixels. The subobjects are then also
resized to those dimensions so that all elements are the same, then Show() is called to re-enable the
displaying of the container div, and then the Billboard() recipe is called to start things.

Next, the onmouseover and onmouseout events of ‘billb’ are attached to the functions pause()
and resume(). The pause() function needs only to pass the argument names of ‘billb’ to reference
the container object and the value ‘stop’ in the wait argument. In this instance, all other arguments
will be ignored, so they have been set to the empty string. The resume() function, however, should
be identical to the initial call made to start the billboard in the first place.

As you pass your mouse over the billboard, it will stop rotating, but it will resume once you
move it away. Of course, the objects in this example are not linked to anything, but you will probably
use this recipe for advertising and make them clickable; you can even include forms within the
objects.

NOTE To place all the subobjects in the same location, they must start off lined up underneath
each other in the browser. In the case of divs, this will already be the case, but spans and

images may require a
 tag placed after them to ensure the correct positioning. The
Billboard() recipe then subtracts the height of all previous objects to place each
consecutive one over the first. Should you forget to line them all up this way, some of the
objects will not display correctly, if at all.

The Recipe

 GoogleChart()
Among many other products, Google offers a great program for creating and displaying charts.
However, to make the best use of it there are many options you need to set up and a lot of

documentation to be read. This recipe distills the main features of the service into a set of basic
arguments you can pass to it, making the service extra easy to use. Figure 20-4 shows the recipe being
used to display a 3D pie chart.

FIGURE 20-4 This recipe makes it easy to create charts from collections of data.

About the Recipe
This recipe takes a container such as a div or span and inserts an image into it, which it fetches from
the Google Charts service. It requires the following arguments:

• id An object or object ID—this cannot be an array.
• title The chart title.
• tcolor The title color.
• tsize The title font size.
• type The type of chart, any of ‘line’, ‘vbar’, ‘hbar’, ‘gometer’, ‘pie’, ‘pie3d’, ‘venn’, or

‘radar’—see Table 20-1 for more details (and see Figure 20-5 for some example chart types).

Type Value Chart Type
‘line’ Standard line chart
‘vbar’ Vertical bar chart
‘hbar’ Horizontal bar chart
‘gometer’ Google Go Meter
‘pie’ Standard pie chart
‘pie3d’ 3D pie chart

‘venn’ Venn diagram
‘radar’ Radar chart

TABLE 20-1 The Supported Values for the type Argument and the Charts They Create

FIGURE 20-5 Some of the chart types supported by Google Charts

• bwidth The bar width if the chart is a bar chart.
• labels A string of data labels, separated by | characters.
• legends A string of data legends, separated by | characters.
• colors A string of colors, one for each item of data, in six-digit hex values, separated by

commas.
• bgfill The background fill color as a six-digit hex string.
• data The data, as a string of numeric values, separated by commas.

Variables, Arrays, and Functions
types

Local associative array used to turn values in the type argument into the keywords
required by Google Charts

t1 Local variable containing the escaped title
t2 Local variable containing the type of chart as a Google Charts keyword
tail Local variable containing the query string for sending to Google
innerHTML Property of id containing its HTML
UNDEF Global variable containing the string ‘undefined’
escape() Function to escape a string, making it suitable for use in a query string

How It Works
This recipe begins by populating the associative array types with the eight types of chart names as
used by the recipe and their corresponding keywords, as passed on to Google Charts, like this:

Next, the type argument is tested to see if it has a value. If not, it is given the value ‘pie’, which

therefore becomes the default when no type is given:

Then, title is passed through the escape() function to make it suitable for passing in a query

string URL tail, and title is then placed in the variable t1. Meanwhile, the keyword for the chart
type to send to Google is looked up by referencing the type argument in the types array, as follows
(such that if, for example, type has the value ‘hbar’, t2 will be assigned the value ‘bhg’, and so on):

After this, a selection of arguments that are required for most charts (such as the chart’s title,

width, height, and so on) are assembled into the variable tail, each separated by an & entity,
like this:

Then, if values for them have been passed to the recipe, a set of five if() statements adds other

arguments to tail:

With tail now containing the completed query string, it is appended to the Google Charts URL

and then placed in an tag, which is then assigned to the HTML of id:

This results in the chart displaying within the id container object.

How to Use It
To use this recipe, start with an empty div, span, or other container that has an innerHTML property,
and then pass this object along with all the required parameters to the recipe, as in this example:

To simplify this example, all the arguments have been separately assigned to variables, which

are then passed to the recipe. Also, the containing div is resized to the width and height of the chart
and is given a one-pixel solid border. This results in a fully self-contained div, displaying the chart as
returned by Google. You can get more information about Google Charts at
code.google.com/apis/chart/.

TIP The Google Charts API has a limit of 50,000 calls per day from each web site, so if your site
is making that many calls or more, you should run the recipe once in your browser, right-
click, save the image, and upload it to your web server. That way, you can display it as often
as you like using tags.

The Recipe

http://code.google.com/apis/chart/

 PlaySound()
This recipe lets you play a sound as a result of a mouse move or button event, a keyboard event, or
any other reason. Figure 20-6 reintroduces the avatars used in previous chapters, but this time their
onmouseover events are attached to this recipe.

FIGURE 20-6 When you pass the mouse over these images, a sound will play.

About the Recipe
This recipe takes an empty container such as a div or span and embeds an audio player in it to play a
sound. It requires the following arguments:
• id An object or object ID—this cannot be an array.
• file The URL of an audio file, generally a WAV or similar file.
• loop If ‘true’, the sound will loop continuously; if ‘stop’, it will stop a previously playing sound;

any other value will play the sound once.

Variables, Arrays, and Functions
innerHTML Property of id containing its HTML
Resize() Function to resize an object
Locate() Function to set an object’s style position and location
InsVars() Function to insert values into a string

How It Works
This recipe first resizes id so it has no width or height and then gives it an ‘absolute’ style position
so it cannot affect any other objects in the web page, like this:

Next, if the argument loop contains the string value ‘stop’, then any currently playing sound is

stopped by setting the innerHTML property of id to the empty string, thus removing any previously
embedded sound player:

Otherwise, the innerHTML property of id is assigned the correct HTML to embed a sound

player and auto start the sound playing, looping it if loop contains the string value ‘true’, like this:

How to Use It
Playing a sound is as easy as passing an empty container such as a div or span to the recipe, along
with the URL of the sound to play and, if required, the value ‘true’ in the argument loop. Here’s an
example that attaches the recipe to the onmouseover events of four images:

NOTE This recipe relies on the browser having a plug-in already installed to play sounds, which
is true in the majority of cases. Browsers without a sound plug-in will simply ignore this
code. Also, there may be a slight delay before some sounds begin playing, so this recipe
works best when immediate playback is not essential. If you do need instant sounds, the most
robust way to accomplish this is probably to write a Flash script, or obtain a Flash sound
player and embed it. Also, small files will play quicker than large ones.

The Recipe

 EmbedYouTube()
With this recipe, you can forget about all the HTML and other code needed to display a YouTube
video because it’s all handled for you with a single function call. Figure 20-7 shows the Emmy
Award–winning movie Dr. Horrible’s Sing-Along Blog being played using this recipe.

FIGURE 20-7 Displaying YouTube videos is easy with this recipe.

About the Recipe
This recipe returns the HTML code required to embed a YouTube video. It requires the following
arguments:

• video A YouTube video identifier such as ‘apEZpYnN_1g’.
• width and height The width and height at which to display the video.
• high If ‘true’ or 1 (and it is available), the video is played in high quality.
• full If ‘true’ or 1, the video is allowed to be viewed in full screen mode.
• auto If ‘true’ or 1, the video starts playing automatically.

Variables, Arrays, and Functions

iframe.src Property of iframe containing the URL
S(iframe).class Property of iframe containing the class name
createElement() Function to create a new element
appendChild() Function to append an element to a document
Resize() Function to resize an object
InsVars() Function to insert values into a string

How It Works
This code first ensures that the video has valid width and height dimensions, like this:

If only one dimension is entered, the other is scaled accordingly to keep the average ratio of 4:3,

while if no dimensions are passed, defaults of 480 by 385 pixels are chosen. If you know the
dimensions of a video, it’s always best to use them to ensure the best playback quality.

After this, the code checks whether full has a value of 1 and, if so, sets fs to the value
allowfullscreen, which will be appended to the end of the <iframe> tag to enable full screen
playback, like this:

Then, if the parameter high has a value of 1, the string hd is set to the value ?hd=1, which is later

tacked onto the URL of the video to enable it to be played in high-quality video (if available), as
follows:

After this, the string variable as is set either to ? if high is not 1, or to & if it is. This prepares

the correct symbol to place before the part of the query string used to make a video auto play. If it is
the first argument in the query string, it must be prefaced by a ? symbol; otherwise, a & symbol
should be used. It will be the first argument if there is no argument to set high definition; otherwise, it
will be the second argument, like this:

The ap variable is then set to either the null string or the relevant value to cause the video to auto

play, like this:

The result is that the recipe creates the <iframe> element required for displaying the YouTube

player and installs the video into it, as follows:

This code uses the createElement()function to create the <iframe>, then gives it the class

name that YouTube requires (youtube-player) , and provides the URL to the player via the object’s
src property using the InsVars() function to insert all the required parameters in their correct
places, signified by the tokens #1 through #4.

The Resize() function then resizes the <iframe> to the correct dimensions. It is then appended
to the web document using the appendChild() function:

For this to work, there must be a <body> tag in the document.

How to Use It
To use this recipe, simply call the function with the required attributes for the video to be played, like
this:

All you have to decide is the width and height for the video and whether to allow high quality,

full screen, and auto starting. At the most basic, you can issue a simple call such as the following to
place the video in a web page, ready for the user to click its Play button:

You must insert the call to this function in the part of your web page in which you want the video

to be displayed, since the new <iframe> object is appended to the document at that position.

HINT If you wish to display videos using YouTube’s recommended default dimensions, then
select a width and height of 480 × 385 for a 4:3 video, or 640 × 385 for a 16:9 video.

The Recipe

 PulsateOnMouseover()
With this recipe, you can create an onmouseover hover effect for an object, which slowly fades the
object in and out again, over a specified time and by an amount that you choose. Figure 20-8 shows
the same image attached to this recipe using three different levels of fading and transition times.

FIGURE 20-8 Attach this recipe to an object and it will pulsate when the mouse passes over it.

About the Recipe
This recipe takes an object and attaches to its onmouseover and onmouseout events to create a
pulsating effect. It requires the following arguments:

• id An object or object ID, or an array of objects and/or object IDs.
• op1 The default opacity for the object, between 0 and 100.
• op1 The opacity to which the object should be faded, between 0 and 100.

• msecs The number of milliseconds each full cycle should take.

Variables, Arrays, and Functions
j Local variable used to index into id if it is an array
finish Local variable set to true if the pulsating stops

faded Local variable set to true when the object is faded (or fading); otherwise,
false

iid
Local variable assigned the result of calling setInterval() to be used later
when clearInterval() is called

FA_Level Property of id used by the Fade() recipe to set its opacity

FA_Flag
Property of id used by the Fade() recipe and set to true to indicate that a
fade transition is in progress; otherwise, it is false or ‘undefined’

onmouseover Event attached to id that is triggered when the mouse passes over
onmouseout Event attached to id that is triggered when the mouse passes out
PulseateOn() Subfunction that sets up the main variables
DoPulsate() Sub-subfunction that performs the transitions
Fade() Function to fade an object from one opacity level to another
setInterval() Function to set up repeating interrupts to another function
clearInterval() Function to stop the repeating interrupts

How It Works
This recipe begins by checking whether id is an array. If it is, it iterates through it and recursively
calls itself, separately passing each element of the array to be processed individually, like this:

Next, the variable finish is set to false—it will later be set to true whenever the mouse

passes out of an object and the pulsating has to stop. The iid variable is also declared, which will be
used to store the value returned by the setInterval() function:

After this, the opacity of id is set to the level in the argument op1, to which the FA_Level

property of id is also set. This property is used by the Fade() recipe, but this recipe needs to access
it in order to know when an object has faded in or out by the correct amount:

Finally, in the setup section, the mouse events of id are attached to the PulsateOn() subfunction

for starting the pulsations and to an inline anonymous function that sets the variable finish to true
when the mouse moves away from an object, like this:

The PulsateOn() Subfunction
This function’s job is to set up the variables required prior to calling the DoPulsate() sub-
subfunction. It first declares the variable faded and assigns it the value of false, indicating that the
object is faded in—it will be true when it is faded out. The finish variable is also set to false in
case the recipe has been restarted after having been previously stopped:

If the variable iid has a value, a previous call has been made to the recipe, so it is passed to the

clearInterval() function to stop any repeating interrupts that may currently be in place. After that,
setInterval() is called to set up repeating interrupts to the DoPulsate() recipe every INTERVAL
milliseconds, like this:

The DoPulsate() Sub-subfunction
This function is where the pulsating is made to occur. It is in two parts: one for fading out and the
other for fading in. The first part checks the faded variable, and if it is not true, the object is not
faded out. Next, it checks the FA_Level property of id and, if it is the same as the value in op1, then
id is at its default opacity and is ready to be faded out. Here is the line of code that performs these
two tests:

Inside the if() statement, a further check is made to see whether the finish variable has been

set to true. If it has, rather than fade the object out, it’s necessary to stop the repeating interrupts, like
this:

When the function next returns, it will not be called up again unless a new set of repeating

interrupts is triggered by another onmouseover event.
However, if finish is not true, then it’s business as usual for the function, which instigates a

fade out by calling the Fade() recipe with a final opacity value of op2. The variable faded is also
set to true to indicate that the object is faded or is in the process of doing so, like this:

The transition duration of msecs / 2 is used because there are two transitions in each full

cycle, so each transition must take only half the value in msecs to complete.
In the second part of this function, if the variable faded is true, the FA_Flag property of id is

tested. This property is set to true by the Fade() recipe whenever a fade transition is in progress,
and it is set to false once a transition has completed. If FA_Flag is true, the function will return
because a fade is in progress, and it must not be interrupted:

Otherwise, the code within the if() statement will be executed, as follows:

Here, a call to Fade() is made with a final opacity value of op1 to fade the object back to its

default opacity level, and the variable faded is set to false to indicate that the object is faded in or
is in the process of doing so.

How to Use It
The recipe is written so that it will always fade back to the default opacity for an object when the
mouse is moved away. To use it, attach it to any objects that you would like to pulsate when the
mouse passes over them. These can be images, divs, spans, or anything that has an opacity property
that can be changed.

Here’s an example that uses the same image three times, with each attached to the recipe using
different arguments:

The first image is set to pulsate between opacity levels of 100 and 66, so it will lighten by a

third and back again on each pulsation, over a duration of 500 milliseconds. The second one starts
with a default opacity level of 66 and a fade value of 100, so rather than fade out, it will in fact
darken by about a third and lighten back again during each pulsation, which will take three quarters of
a second to complete. The final image simply fades between full and zero opacity and back again
over the course of a second.

The Recipe

CHAPTER 21
Cookies, Ajax, and Security

When developing with JavaScript, you often need ways to store and retrieve data from both the
user’s web browser and the web server. This chapter provides you with the recipes you need to
manage the transfer of cookies between the web document and browser and to handle Ajax calls
between the browser and web server.

There are also a couple of recipes you can use to bust a web page out of frames if it has been
loaded inside one and to allow you to put your e-mail address in a web document in such a way that it
is easily clickable or copyable by a surfer, but not by web bots that harvest e-mail addresses for
spamming.

 ProcessCookie()
With this recipe, you can save cookies to a user’s computer and read them back again later. This lets
you keep track of usernames, shopping carts, or any data you need to keep current as a user browses
your site and changes pages. Figure 21-1 shows the cookie ‘username’ being read back and its value
displayed using an alert() message.

FIGURE 21-1 Setting and reading cookie values with this recipe

About the Recipe
This recipe can save a cookie, read it in from the computer, or delete it. It requires the following
arguments:

• action The action to take with the cookie, out of ‘save’, ‘read’, or ‘erase’.
• name The cookie’s name.
• value The value to be stored in the cookie.
• seconds The number of seconds after which the cookie should expire.
• path The domain and path to which the cookie applies.
• domain The domain name of the web site, such as mydomain.com.
• secure If this has the value 1, the browser should use SSL when sending the cookie.

Variables, Arrays, and Functions
date Local variable containing a new date object
expires Local variable containing the expiry time and date
start Local variable set to point to the start of cookie data
end Local variable set to point to the end of cookie data
document.cookie The cookie property of the document use for accessing the cookie
toGMTString() Function to convert a date to Greenwich Mean Time
Date() Function to return a new date object
setTime() Function to set a time
getTime() Function to return a time
indexOf() Function to return the location of one string within another
substring() Function to return a portion of a string

escape()
Function to encode a string to a form suitable for transferring over the
Internet

unescape() Function to decode an escaped string

How It Works
This program is in three parts. The first is executed when the action argument contains the value
‘save’. It creates a new date object and sets it to the current time and date, like this:

Saving a Cookie
Next, the expires variable is given the correct value to make the cookie expire in seconds seconds,
the path variable is assigned the path on the server to which the cookie applies, the domain and
secure arguments are added (if they have values), and the cookie is set by assigning these values to
document.cookie, as follows:

http://mydomain.com

Reading a Cookie
In the next section, a cookie is read back from the computer, starting by checking whether there are
any cookies on the computer to search; if there are not, the value false is returned:

Otherwise, the cookie is looked up by setting the variable start to point to the string containing

the value in name followed by the = sign, by using a call to indexOf(). If it is not found, a value of –
1 is returned, so the value false is returned by the recipe:

If both these tests pass, then the cookie has been found, so start is set to point to the portion of

the cookie string directly after the name and = sign:

The variable end is then set to the end of the string by finding the character ; that terminates all

cookie strings bar the last one:

If it is not found, it means this was the last cookie and it is the end of the string. Therefore, the

following line of code returns either the location of the following ; or the end of the string and places
it back in end:

Finally, the cookie value is returned:

Erasing a Cookie
The code to erase a cookie makes use of a recursive call by passing the cookie name and a value of
the empty string, along with a time one minute in the past, back to itself with an action argument of
‘save’:

How to Use It
To use this recipe, put the action in the action argument, which should be a value of ‘save’, ‘read’,
or ‘erase’, and then pass the cookie’s name and any other values needed.

For example, to set the cookie ‘password’ to the value ‘mypass’ with an expiry date of one hour
from now, you would use the following:

Once a cookie has been set, you can read it back like this:

Or, you can delete a cookie like this:

The final path argument specifies which part of the server the cookie applies to. The value of

‘/’ means that every spot, from the document root upward, can access the cookie. However, you can
restrict the scope by, for example, changing the path to a subfolder such as ‘/chat’. Or you can simply
omit the argument to give the same scope as if it had the value ‘/’. If you do so, you can also shorten
the calls used to read and erase the cookie, like this:

Remember that the path (or no path) you use must be the same for all accesses to the same

cookie; otherwise, you will not be able to reliably read and write it. Also, you will probably not need
to use the domain and secure arguments, which is why I omitted them from the preceding examples,
but if you do, they are available.

Here’s an example that lets you test that cookies are being reliably transferred:

This JavaScript first fetches the cookie ‘username’, and if it has a value, it is displayed. The first

time you load this page, that cookie won’t exist, so an alert will pop up and tell you so.
Next, the cookie is created and assigned the value ‘fred’, with alert messages before and after so

you can see the result of each action.
Finally, a confirm dialog is called up in which you can click either the OK button to erase the

cookie or the Cancel button to leave it alone. I suggest you click OK and then reload the page to see
that the cookie has been erased. Then, follow through the alerts again, but this time click the Cancel
button and reload the page, and you’ll see that the cookie’s value has been retained.

The Recipe

 CreateAjaxObject()
Ajax is the power behind the vastly improved user interaction of Web 2.0. It stands for Asynchronous
JavaScript and XML, which is really a contrived acronym for a background call made to a web
server. Using this recipe, you can easily create a new Ajax object that can be used to send and request
information to and from a web server in the background, without the user being aware of it.

Unlike in the past, when a POST or GET stopped action in the browser until it completed, with
Ajax the browser handles the request without disrupting the web application.

Figure 21-2 shows a simple HTML file that has been fetched from the web server and inserted
into a div, using this recipe in conjunction with the next one, GetAjaxRequest().

FIGURE 21-2 The contents of a web page have been inserted into a div.

About the Recipe
This recipe creates an Ajax object ready for making background calls to the web server. It requires
the following argument:

• callback The function to pass the returned data to once it has been retrieved.

Variables, Arrays, and Functions
ajax Local Ajax object
readyState Property of ajax containing its state
status Property of ajax containing its status
responseText Property of ajax containing the text returned by the Ajax call
XMLHttpRequest() Function used by non-Microsoft browsers to create an Ajax object
ActiveXObject() Function used by Microsoft browsers to create an Ajax object

How It Works
Since the Ajax request object has to be created in different ways for different browsers, this recipe
uses pairs of try … catch() statements to try each method in turn until one works or until all have
been tried and false is returned, like this:

The first try works with any browser but Internet Explorer version 6 or earlier, the second is

for Internet Explorer 6, and the third is for Internet Explorer 5. Therefore, the tests are made roughly
in order of popular browser usage.

Assuming one of the try statements succeeds, ajax is a new Ajax object; otherwise, it contains
the value false. If it isn’t an object, then the recipe will return false; otherwise, the following code
attaches an inline anonymous function to the onreadystatechange event of ajax, as follows:

This subfunction is called every time the readyState property of ajax changes and checks

whether it has a value of 4, the status property has a value of 200, and the responseText property
is not null. If all these tests are satisfied, it means an Ajax request was successful, so the function
passed in the callback argument is called, passing it the data returned in this.responseText.

The actual Ajax call is not made by this recipe. It merely catches the event ready to populate id
with the value that is returned by an Ajax call. The Ajax call itself is made in the next two recipes,
GetAjaxRequest() and PostAjaxRequest().

How to Use It
Generally, you will not use this function directly if you call either GetAjaxRequest() or

PostAjaxRequest() to handle your Ajax calls, because they will call it for you, as in the following
code, which loads some data into a div:

The function todiv() is passed to the recipe (note that parentheses have been omitted from the

function; otherwise, only the value returned by it would be passed) and is later called back by it when
the returned data is ready. At that point, it retrieves the data using the this keyword and assigns it to
the innerHTML property of the div using the Html() recipe.

You need to know that Ajax is a tightly controlled process to prevent hackers from using it to
inject malevolent code from other servers. Therefore, only files or programs on the same server as
the one containing the Ajax can be accessed. For example, if you wanted to pull a copy of the Google
home page into a div on your web site, it would not be possible and the Ajax call would fail.

Therefore, the preceding example will not work if you test it on another server unless you also
copy the ajaxtest.htm file to it. However, you can verify that it works by calling the script up from the
companion web site, using this URL:

webdeveloperscookbook.com/JS/example85.htm

The Recipe

http://webdeveloperscookbook.com/JS/example85.htm

 GetAjaxRequest()
This recipe uses the previous one, CreateAjaxObject(), to load the Wikipedia home page into a
div. Of course, Ajax can be used for much more than grabbing web pages, such as checking whether a
username is taken when signing up to a web site or updating news feeds, reader comments, or chat
and so on. However, I decided to pull in a web page for the sake of simplicity so that you can quickly
verify that these recipes are working for you, as shown in Figure 21-3.

FIGURE 21-3 The Wikipedia home page has been inserted into a div.

About the Recipe
This recipe fetches data from a web site in the background. It requires the following arguments:

• callback The function to pass the returned data to once it has been retrieved.
• url The URL with which to communicate.
• args Any arguments to pass to the URL.

Variables, Arrays, and Functions
nocache Local variable assigned a random string to prevent caching
ajax Local variable assigned an Ajax object
CreateAjaxObject() Function to return a new Ajax object
open() Method of ajax for opening a request
send() Method of ajax for sending a request
Math.random() Function to return a random number

How It Works
This recipe uses the GET method to communicate with a server, which passes data in the tail of the
URL (called a query string). However, browser caching will often interfere with repeated requests of
this type, serving up only the cached data from previous requests. Therefore, the variable nocache is
created and assigned a random string to ensure that no two GET calls will be the same and therefore
will not be cached:

Next, the variable ajax is assigned the new Ajax object returned by calling

CreateAjaxObject(), and if the result is not true (meaning the call was unsuccessful), a value of
false is returned:

If execution reaches this point, the Ajax object was successfully created, so the open method of

ajax is called, passing it the string ‘GET’ for the type of request. This is followed by a string
comprising the URL to be called that was passed in url, the arguments supplied in args, the nocache
string just created, and the value true to tell the browser to make an asynchronous call (a value of
false would tell it to make a synchronous call):

Finally, the call is made and the value true is returned to indicate success:

How to Use It
To use this recipe, decide what data you wish to load and from where, then call the recipe, passing it
a function to call back when the data has been retrieved and any arguments that require passing.

The following example is somewhat interesting in that it gets around the problem of being unable
to access web sites other than the one the Ajax web page came from by calling a PHP script on the
server, which then fetches the requested data without a hitch:

The ajaxget.php program is a very simple one-liner that looks like this:

If your server supports PHP (and most do), you can use the same script on it to check whether

the server has been sent a query string looking something like url=http://website.com?args=vals. (In
the case of the preceding example, the args=vals section is specified in the line that assigns the string
url=http://wikipedia.org to the args variable).

The ajaxget.php script then uses the file_get_contents() PHP function to fetch the requested
data (in this case, the Wikipedia home page), This is returned using the PHP echo command, which
outputs the data it just fetched.

The todiv() callback function, which was passed to GetAjaxRequest(), is then called back
and passed the retrieved data, which it then promptly inserts into the innerHTML property of the div.

As with the previous Ajax example, the restrictions put in place by browsers require that the
example and PHP files reside on the same server, so here’s a link you can try it out with:

webdeveloperscookbook.com/JS/example86.htm

The Recipe

 PostAjaxRequest()
This recipe is very similar to GetAjaxRequest() except that it uses a POST request to interact with
the web server. In Figure 21-4, the weather at the airport in Anchorage, Alaska, has been extracted
from the weather.gov RSS feed. Here it is displayed in raw form, but you can easily write some
JavaScript to use only the items of data you want and format them to your requirements.

http://website.com?args=vals
http://wikipedia.org
http://webdeveloperscookbook.com/JS/example86.htm

FIGURE 21-4 Using this recipe to extract data from an RSS feed into a div element.

About the Recipe
This recipe fetches data from a web site in the background. It requires the following arguments:

• callback The function to pass the returned data to once it has been retrieved.
• url The URL with which to communicate.
• args Any arguments to pass to the URL.

Variables, Arrays, and Functions
contenttype

Local variable containing the content type used for URL-encoded
forms

ajax Local variable assigned an Ajax object
CreateAjaxObject() Function to return a new Ajax object
open() Method of ajax for opening a request
setRequestHeader() Method of ajax for setting various headers
send() Method of ajax for sending a request
Math.random() Function to return a random number

How It Works
This recipe is as simple as GetAjaxRequest(). It starts by setting the content type of the date in the
request being sent to that of a URL-encoded form. It then creates the Ajax object with a call to
CreateAjaxObject(), and if the result is not true, it returns the value false since it cannot proceed
any further:

If the object creation was successful, it goes on to open up the request, passing a type of ‘POST’,

the URL, and the value true, for an asynchronous request:

Next, the content type, content length, and connection headers are sent:

Finally, the request is sent and the value true is returned to indicate success:

How to Use It
You call this recipe in exactly the same way as GetAjaxRequest()—it’s just that the process used
by the recipe to perform the Ajax is a POST, not a GET request. Therefore, the target of the request also
needs to respond to the POST request, as is the case with the following example, which fetches the
weather details at the airport in Anchorage, Alaska:

The URL supplied to the recipe is the PHP script ajaxpost.php, which is in the same folder as

the example file. It’s another simple one-line PHP script, which looks like this:

This is almost the same as the ajaxget.php script except that it processes POST requests. You can

copy it to your own server, where it should work fine if it supports PHP.

This example is a little more interesting than the previous two in that an RSS feed is fetched. It’s
no different than a web page as far as Ajax is concerned, but displaying it after it has been retrieved
poses a problem, in that it contains several XML tags that won’t show up under HTML.

To correct this, the callback function todiv() has been modified to change all occurrences of
the < and > symbols with their HTML entity equivalents < and > and all linefeed characters
are changed to
 tags.

For reasons previously stated, the PHP example should be in the same folder of the same server,
so here’s a URL you can use to test the code:

webdeveloperscookbook.com/JS/example87.htm

NOTE With XML, you would probably want to parse the tree to extract just the elements you want,
but if you are fetching only text or HTML, you have all the tools you need to easily make all
types of Ajax calls and act appropriately on the data they return.

The Recipe

 FrameBust()
This is a simple but always useful recipe that checks whether it is running inside a frame, and if it is,
busts out of it, placing the current page in its own parent page. This can be useful when you find that
other sites link to your pages but bury them inside iframes so that they do not display at their best.
Figure 21-5 shows one web page embedded within another and displaying an optional confirm
dialog, offering to bust out of the frame.

http://webdeveloperscookbook.com/JS/example87.htm

FIGURE 21-5 With this recipe, you can bust your web pages out of embedding frames.

About the Recipe
This recipe can close any embedding frame, making a web page the parent web page for the current
tab or window. It supports the following optional argument:

• message If this has a value, it will be displayed in a confirm dialog window offering the user the
option to click OK to close the surrounding frame. If it doesn’t have a value, the recipe will
automatically and silently close the embedding frame.

Variables, Arrays, and Functions
top Object representing the outermost of any frame set
self Object representing the current document
top.location Property of top containing the URL of its document
self.location.href Property of self.location containing its URL
confirm() Function to offer a yes/no confirm dialog

How It Works
This recipe either makes the current document the top one by setting its URL to that of the top
object’s, or it displays a message (if the message argument has a value) that offers the user the choice
of breaking out of frames or leaving them as they are.

How to Use It
To use this recipe, either call it without an argument if you never want your pages to be embedded in
frames, or pass a message for a confirm dialog, to which the response is to click OK to bust out of

frames or choose Cancel to keep the pages as they are. Here’s an example of passing a message:

You can use \n or other escaped characters in the message to control the way it displays.
If you don’t wish to provide a message and want all pages to bust out of frames, just leave the

message string out of the call to FrameBust().

The Recipe

 ProtectEmail()
Spamming these days is worse than ever now that the spammers have access to huge botnets of
hacked computers and use automated programs to continuously trawl the web looking for e-mail
addresses to harvest. However, e-mail is still extremely important, and you usually need to display
your e-mail address prominently on your site.

Thankfully, with this recipe you can display your e-mail address in such a way that your users
can click or copy it, yet it will be obfuscated from automatic e-mail harvesters, as shown in Figure
21-6, where the e-mail address is both copyable and clickable but doesn’t actually appear as a whole
in the web page.

FIGURE 21-6 Use this recipe to keep your e-mail address visible but unharvestable.

About the Recipe
This recipe obfuscates an e-mail address in such a way that spam harvesting programs should not be
able to find it. It requires as many arguments as you like because you break your e-mail address into
multiple strings and then pass them all as parameters.

Variables, Arrays, and Functions
j Local variable used to iterate through the arguments array
a Local variable containing the e-mail address to display
arguments Array containing all the arguments passed to a function

How It Works
This is a simple function that relies on the fact that all arguments sent to a function can be accessed
via the arguments array. What it does is piece together all the arguments it is sent back together to
reconstruct an e-mail address using a for() loop, like this:

The variable a is then used to create a hyperlink to the e-mail address, with the code itself using

segmented strings to further obfuscate matters. The result is then returned, like this:

How to Use It
To use this recipe, break your e-mail address up into multiple strings and then pass them all to it.
Here’s an example showing how to do this for the e-mail address simon.jones@myserver.com.

Where you wish the e-mail address to be shown, just place an empty span and give it an ID. You

can then insert the e-mail address into the innerHTML property of the span from within a section of
JavaScript. If you ensure that the e-mail address is completely broken into parts, it is doubtful that any
known automatic harvester will be able to extract it for spamming purposes.

mailto:simon.jones@myserver.com

The Recipe

CHAPTER 22
Forms and Validation

Form validation is something you must do on your web server to ensure that you receive the data that
is required and to remove, as much as possible, any vulnerabilities to hacking or the possibility of
your server being compromised, as well as the data on it. However, it is very helpful to your users if
you also provide validation directly in the browser.

For example, it can be particularly helpful to provide extra assistance when a user is filling in a
form to save it from having to be re-presented to them if it fails validation at the server. It also cuts
down on your bandwidth usage and keeps the optimum number of concurrent users on the server.

This chapter includes recipes to provide extra hints for blank form fields that must be filled out,
to provide the ability to resize text area inputs if a user types more than the expected amount of text, to
check that e-mail addresses and passwords are valid, to clean up user input strings, and to check that
credit card number checksums validate.

 FieldPrompt()
When a form field hasn’t been entered, there’s a large blank area of white space that isn’t being used.
With this recipe, you can display a prompt in the field that disappears as soon as the user starts typing
into it. Figure 22-1 shows two empty input fields containing prompts that were created using this
recipe.

FIGURE 22-1 This recipe provides additional information to your users.

About the Recipe
This recipe takes a form input object and, if it is blank, displays a prompt of your choosing. It

requires the following arguments:

• id An object or object ID—this cannot be an array.
• prompt The prompt string to display.
• inputcolor The color to use for displaying user input.
• promptcolor The color in which to display the font.
• promptstyle The font style to use for the prompt, such as ‘italic’.

Variables, Arrays, and Functions
FP_Empty

Property of id that is true when the input field doesn’t contain any input;
otherwise, false

value Property of id containing its contents
fontStyle Style property of id containing the font style of the field
color Style property of id containing the color of the field text
FP_Off() Subfunction called when the user moves the cursor into the field
FP_On() Subfunction called when the user moves out of a field

How It Works
This recipe starts by giving the input and prompt colors and styles default values if none have been
passed to it, like this:

Next, the FP_On() subfunction is called to display the supplied prompt if the field is empty, and

the onfocus and onblur events of id are attached to the FP_Off() and FP_On() subfunctions so that
the prompt can be switched in and out according to whether the user has clicked within the field or
outside of it:

The first line of the preceding code is for the Opera and Chrome browsers. It forces the width of

the input to the current width to prevent these browsers changing the width as they switch between
normal and italic text.

The FP_Off() Subfunction
This function is called when the field gains focus. It first checks the value property of id to see
whether it contains the prompt string. If it does, then the prompt needs to be removed so the user can

type in some input, like this:

Here, the FP_Empty property of id is set to true to indicate that the field is empty, the field’s

value is set to the empty string, any font style is turned off, and the field text color is set to the value
in the inputcolor argument.

If the field doesn’t contain the value in prompt, then the FP_Empty property is set to false.

The FP_On() Subfunction
This function displays the value in prompt as long as the field doesn’t already have a value entered
by the user, which it checks by examining the value property of id. It also allows the code within to
be executed if the field contains the prompt string. The reason for this is that if the user reloads the
page while a prompt is displayed, the value property will already be set to the prompt before this
function runs. This is the code that inserts the prompt:

Here, the FP_Empty property is first set to true to indicate that there isn’t any user-entered text

in the field, value is assigned the string in prompt, and the fontstyle and color properties of the
prompt are set.

However, if the value property does contain text entered by the user, the FP_Empty property of
id is set to false to indicate this.

How to Use It
To use this recipe, pass it a form field object, a prompt string, and optional color and style arguments.
Here’s an example that creates two fields, both displaying different prompts:

The two calls to FieldPrompt() can also use the recipe’s default values, like this:

The Recipe

 ResizeTextarea()
When you offer a textarea field in a form in which users can enter more than a single line of input, it
can be difficult to decide how large to make it. If it is too small, users will have to scroll back and
forth through it when making revisions. On the other hand, if it is too large, it wastes space and can
look intimidating, implying that a large amount of text is expected to be input.

This recipe provides the solution by allowing you to specify minimum and maximum vertical
heights within which the textarea is allowed to expand or contract, according to the amount of text
entered. In Figure 22-2, a 64-by-3 column textarea is displayed, in which some text is being entered.

FIGURE 22-2 Some text is being entered into a textarea form field.

Then, in Figure 22-3, a total of eight lines of text have been input, and the textarea has expanded
accordingly.

FIGURE 22-3 After several more lines are entered, the textarea expands accordingly.

About the Recipe
This recipe adjusts the height of a textarea field according to the amount of text it contains, within
bounds that you specify. It requires the following arguments:

• id An object or object ID or an array of objects and/or object IDs.
• min Optional argument specifying the minimum height that id can be reduced to.
• max Optional argument specifying the maximum height that id can be enlarged to.

Variables, Arrays, and Functions
j Local variable for iterating through id if it is an array
onmouseup Event of id that calls the subfunction after a mouse click
onkeyup Event of id that calls the subfunction after a key press
scrollHeight Property of id containing its total height in pixels
clientHeight Property of id containing its visible height in pixels
rows Property of id containing its number of rows
DoResizeTextarea() Subfunction to resize the height of id

How It Works
This recipe starts by calling itself recursively if id is an array, passing each element to be processed
individually, like this:

Next, if min and max have not been passed values, they are assigned defaults of 0 and 100 lines,

respectively:

Finally, in the setup section, the onmouseup and onkeyup events of id are assigned to the

DoResizeTextarea() subfunction:

The DoResizeTextarea() Subfunction
This function contains just two while() loops. The first one continuously increases the number of

rows that id has until either the text in the textarea is fully visible, or the maximum number of rows in
the argument max is reached:

The second while() loop performs the inverse, reducing the height of the textarea so that it is

only as large as the text it contains or until it reaches the minimum height supplied in the argument
min:

NOTE While automatically expanding and reducing the textarea seems to work fine on most major
browsers, once the clientHeight property in Firefox has been increased it doesn’t seem to
reduce it back down again if text is deleted, so the textarea will not shrink.

How to Use It
To use this recipe, prepare the textarea by setting it to the width and height you need, then pass it to
the recipe, along with an optional minimum and maximum height. This example shows how:

In this example, a minimum height of 3 and a maximum height of 8 rows have been passed.

However, you can omit one or both of these arguments, in which case minimum and maximum values
of 0 and 10 will be used.

The Recipe

 ValidateEmail()
With this recipe, you can make a quick test on a supplied e-mail address to determine whether it is
legally structured. This lets you filter out typos, as well as keep people from simply entering nonsense
to see what will happen. Figure 22-4 shows the result of testing the fictitious e-mail address
bill@gates.com, which validates since it is correctly formed.

FIGURE 22-4 This recipe tests whether an e-mail address validates.

About the Recipe
This recipe checks whether an e-mail address is correctly structured and in a valid format. It requires
the following argument:

• email A string containing the e-mail address to validate.

mailto:bill@gates.com

Variables, Arrays, and Functions
at Local variable containing the position of the @ sign in email
left Local variable containing the part of email before the @
right Local variable containing the part of email after the @
llen Local variable containing the length of left
rlen Local variable containing the length of right
test() Function to test for a match in a string
indexOf() Function to locate the first occurrence of one string in another

How It Works
This function tests various aspects of a supplied string to check whether it conforms to the correct
standards for an e-mail address. It starts off by seeing if there is an @ symbol in the string, using a call
to indexOf():

Then, if there is no @ or the argument contains characters that are not word characters (a–z, A–Z,

or 0–9), hyphens, periods, or the @, underline or plus symbols, the recipe returns false, because it
has already been determined that the e-mail address is invalid, as follows:

Next, the variables left and right are assigned the string on either side of the @ symbol, and

the variables llen and rlen are then set to the lengths of each, like this:

Using these values, if left is less than 1 or greater than 64 characters, or right is less than 4 or

greater than 254 characters, or if there is no period after the @ symbol, then the e-mail address is
invalid, and so the recipe returns false:

After all these tests, the format of the e-mail address appears to be valid, so the value true is

returned:

NOTE A valid e-mail address should be of the form 1–64 characters@4–254 characters. It can
contain the letters a–z or A–Z, the digits 0–9, and the hyphen, period, underline, and plus
characters. No other characters are recommended, even though some may seem to be

supported, as they could conflict with shell scripts or other programs used to process e-mails.
If you need to support other characters, place them into the regular expression passed to the
test() function in the second line of the recipe. Also, there should always be a period after
the @ symbol to divide the domain name from the top-level domain extension.

How to Use It
To use this recipe, pass it a string containing an e-mail address, and it will return either true or
false, depending on whether the e-mail address is valid. Here’s an example that will let you test the
recipe by entering different e-mail addresses:

The HTML section creates an input field and then places a button after it. The <script> section

then attaches an anonymous inline function to the button via its onclick event, which validates the e-
mail address each time it is clicked.

The Recipe

 ValidatePassword()
To help your users pick more secure passwords, you may wish to require them to be of a certain
format, such as including both upper- and lowercase characters, as well as digits and punctuation.
With this recipe, you can choose any or all of these and the recipe will return true or false,
depending on whether the user has satisfied your requirements. In Figure 22-5, the password that has
been entered has not verified.

FIGURE 22-5 Ensure your users enter strong passwords with this recipe.

About the Recipe
This recipe takes a password string and then returns either true or false, depending on whether it
satisfies the conditions also passed as arguments. It requires the following arguments:

• pass The password to validate.
• min The minimum password length.
• max The maximum password length.
• upper If true or 1, at least one uppercase character must be in pass.
• lower If true or 1, at least one lowercase character must be in pass.
• dig If true or 1, at least one digit must be in pass.
• punct If true or 1, at least one nonalphanumeric character must be in pass.

Variables, Arrays, and Functions
len Local variable containing the length of pass
valid Local variable that is true if pass validates; otherwise, false
test() Function to test for a match in a string

How It Works
This recipe first assigns the length of the password to len and initializes valid with the value true,
which it will retain if it passes the tests to determine its validity:

Next, pass is checked to ensure it is within the lengths required by the min and max arguments,

and valid is assigned the value false if not:

The following four tests are made only if the argument they work from is true or has the value

1. For example, the following statement returns false if the argument upper is true or 1 and there is
not at least one uppercase letter in pass:

The following three statements do the same for lowercase letters, digits, and punctuation

(nonalphanumeric) characters:

If pass meets all these tests, then valid will retain its initial value of true, which is then

returned; otherwise, one of the tests will set valid to false, and that value will be returned:

How to Use It
To use this recipe, pass it a password string and the arguments you want for the password to meet
your security requirements. The following example uses the strictest policy the recipe supports, in
which the password must include at least one each of upper- and lowercase letters, digits, and
punctuation. It also requires passwords to be at least 8 characters long (but no more than 16):

The Recipe

 CleanupString()
This recipe provides a number of string manipulation functions that often come in handy. For
example, don’t you hate it when you enter a credit card or phone number into a web form, only to be
told you aren’t allowed to use spaces and must enter it again? If your content management system
doesn’t like spaces either, this recipe can remove them before they arrive at your server. It can also
remove all digits, text, or punctuation, convert from lower- to uppercase text (and vice versa), and
even change all groups of multiple spaces into just a single space. Figure 22-6 shows a credit card
number being entered into a web form, including spaces.

FIGURE 22-6 A user has entered a sequence of credit card numbers with spaces.

Figure 22-7 shows the input after the user has clicked the Submit button—all the spaces are now
removed, leaving only the card number behind.

FIGURE 22-7 This recipe has automatically stripped out the spaces.

About the Recipe
This recipe takes a string and can perform one or more of several actions on it. It requires the
following arguments:

• string The string to clean up.
• allspaces If true or 1, all spaces in string are removed.
• alldigs If true or 1, all digits in string are removed.
• alltext If true or 1, all text in string is removed.
• allpunct If true or 1, all punctuation in string is removed.
• uptolow If true or 1, all uppercase characters in string are converted to lowercase.
• lowtoup If true or 1, all lowercase characters in string are converted to uppercase.
• spacestosingle If true or 1, all groups of multiple spaces in string are reduced to a single

space.

Variables, Arrays, and Functions
replace() Function to replace one value with another in a string

How It Works
This recipe goes through each of the arguments it is supplied in turn. If the argument has the value
true or 1, then the matching replace() function is performed on the string. For example, the
following statement removes all spaces from string when the allspaces argument is 1 or true:

All the remaining statements are very similar, differing only by the regular expressions used for

testing.

How to Use It
To use this recipe, pass it a string along with the arguments needed to perform the changes required
on the string. The modified string will then be returned. Here’s an example that cleans up a credit
card number by removing all spaces, text, and punctuation from it:

To use this in a web form, you could change the onclick event used in this example to the
onsubmit event of your form. If you do, make sure that when the recipe has finished execution, the
function you point the event to returns true, because any other value will likely cancel the form
submission, and a return value of false certainly will cancel it.

The Recipe

 ValidateCreditCard()
With this recipe, you can check that a credit card number you are given by a user at least has the
correct format, and the right checksum, before submitting it to a card processing company. Figure 22-
8 shows a set of made-up credit card details that did not pass the validation.

FIGURE 22-8 Checking whether credit card details match basic requirements

About the Recipe
This recipe takes details about a credit card and returns true or false depending on whether the
card passes checksum and date verification. It requires the following arguments:

• number A credit card number.
• month The card’s expiry month.
• year The card’s expiry year.

Variables, Arrays, and Functions
left Local variable containing the first four digits of number
cclen Local variable containing the number of digits in number
chksum Local variable containing the card’s checksum
date Local date object
substr() Function to return a portion of a string
getTime() Function to get the current time and date
getFullYear() Function to get the year as a four-digit number
getMonth() Function to get the month

How It Works
This function first ensures that all three parameters passed to it are strings by adding the null string to
them, like this:

Next, each argument is processed through the CleanupString() recipe to ensure that they are in

the formats required:

After this, the variable left is assigned the first four digits of number, cclen is set to the card

number’s length, and chksum is initialized to 0:

Next, several if() … else if() statements check that left contains a valid sequence that

matches a known brand of credit card, and if it does, that the card number length in cclen is correct
for the card type. If left doesn’t match a known card—or it matches one, but cclen is the wrong
length—then the recipe returns false to indicate that the card didn’t verify.

If these initial tests are passed, the card’s checksum is then calculated using an algorithm
invented by IBM scientist Hans Peter Luhn (for further details, see
en.wikipedia.org/wiki/Luhn_algorithm), like this:

Finally, the date is looked up and compared to the values supplied to the recipe, so that even if

the card has validated this far, the recipe will still return false if the card has expired:

How to Use It
To use this recipe, pass it a card number, expiry date, and month, and it will return true or false. Of
course, this algorithm tests only whether the card meets certain requirements and not whether the user

http://en.wikipedia.org/wiki/Luhn_algorithm

has entered a genuine card or whether the card has been revoked or is over the user’s credit limit, and
so on. The purpose of the recipe is mainly to catch typing errors and people entering random data to
see what happens.

When incorporating the recipe with your own code, you will probably want to replace the
onclick event attachment used in the example with a function attached to the onsubmit event of your
form. Also, make sure that when you do this your function returns true if the card verifies so as to
allow the form submission to complete, and false (along with probably displaying an error message)
if the card doesn’t validate, in order to stop the form submission going through.

NOTE Only years up to 2050 are currently supported in order to base card dates around the years
1950 to 2050. If you are reading a well-thumbed copy of this book and it’s coming up to mid-
century, and JavaScript is still being used, well, you may wish to increase the value 50 in the
fourth to last line to a higher value a few years ahead of the current year.

The Recipe

CHAPTER 23
Solutions to Common Problems

A number of JavaScript recipes didn’t fit clearly within any of the previous chapters in this section,
so I’ve included them here. They offer features such as keeping your copyright notices current each
new year; creating a less intrusive in-browser alert window that doesn’t prevent you from accessing
the rest of the current document; a function to provide tooltips for any object; the ability to add cursor
trails to the mouse pointer; and a way to make a web page touch-enabled for use with tablet
computers and other touch devices.

 RollingCopyright()
This simple recipe is worth using on any pages where a copyright notice is included, because no
matter how many years ago you last updated the page, it will always display the current year, as
shown by the screen grab in Figure 23-1.

FIGURE 23-1 Keep your copyright notices up to date with this recipe.

About the Recipe
This recipe takes a start year for when the copyright began and returns a copyright string using that
and the current year. It requires the following argument:

• start The start year as a four-digit number.

Variables, Arrays, and Functions
date Local date object
Date() Function to return a new date object
getFullYear() Function to return a four-digit year

How It Works
This recipe creates a new date object and assigns it the current year as a four-digit number, like this:

Then, the two dates are returned, preceded by a copyright symbol:

How to Use It
To use this recipe, pass it the starting year for the copyright and then assign the string it returns to an
element in your document, as in the following example:

The HTML section creates a span that will be used to display the copyright message, and then

the <script> section uses the InsVars() recipe to insert the result of calling RollingCopyright()
into a sentence, which is then assigned to the innerHTML property of the span.

The Recipe

 Alert()
The built-in JavaScript alert() function is great for help with debugging or for alerting users about
something important. However, the function is a modal dialog, which means that it takes over the
browser, preventing access to anything within it other than the alert window. What’s worse, if a web
page calls alert() in a loop, it will effectively lock you out of the browser, even preventing you
from closing it.

This recipe provides a handy replacement for the function that is much more user-friendly in that
it is not modal, and all other parts of the browser remain accessible while it is displayed. It also
features smart scrolling. Unlike the regular alert() window that just gets bigger and bigger

depending on the size of the message, this recipe will provide scroll bars instead, so that it always
remains the same size. Figure 23-2 shows a standard alert() dialog.

FIGURE 23-2 A standard Internet Explorer alert message

Figure 23-3 shows this recipe used to display the same message as Figure 23-2. It is fairly
similar to the Internet Explorer alert window, but it also uses some styling similar to that used by
Firefox and other web browsers, so it should look good on all major browsers.

FIGURE 23-3 A message displayed by the Alert() recipe

About the Recipe
This recipe takes a message and displays it in an in-browser alert dialog. It requires the following
argument:

• value A string, value, or expression to display.

Variables, Arrays, and Functions
divs

Local array containing the IDs of the two
main divs

newdiv Local object used for creating new divs

warn
Local variable containing the HTML for the
warning triangle

ok
Local variable containing the HTML for the
OK button

mess
Local variable containing the HTML of the
message

html
Local variable containing the HTML for the
alert contents

ALERT_DIV, SHADOW_DIV, ALERT_TITLE,
ALERT_MESSAGE, and ALERT_OK

IDs of the various elements created by this
recipe

innerHTML
Property of various objects containing their
HTML

backgroundColor
Property of various objects containing their
background colors

fontFamily
Property of various objects containing their
fonts

fontSize
Property of various objects containing their
font sizes

padding
Property of the message area containing its
padding

paddingTop
Property of the title area containing its top
padding

textAlign
Property of the title containing its text
alignment

overflow
Property of the message area containing its
overflow setting

border
Property of the main div containing its
border setting

onclick Event of the OK button attached to
AlertHide()

AlertHide() Subfunction to hide the alert

Position()
Function to set an object’s style position
property

Resize() Function to resize an object

Center()
Function to center an object both vertically
and horizontally

GoTo()
Function to move an object to a new
position

Opacity() Function to set the opacity of an object
visible() Function to make an object visible
Invisible() Function to make an object invisible
createElement() Function to create a new HTML element

setAttribute()
Function to set an attribute of an HTML
element

appendChild()
Function to append a child object to an
element

How It Works
This recipe starts by creating an array of the main two divs it uses, then four strings are created to
hold the warning triangle HTML, the OK button, the alert message itself, and two new subdivs that
will contain the alert’s title and message HTML:

Next, if the object with the ID ‘ALERT_DIV doesn’t exist, it means this is the first time the

recipe has been called, so the two main divs are created, like this:

These statements create new divs with the IDs ‘ALERT_DIV’ and ‘SHADOW_DIV’, attaching

them to the document body. The divs are then released from their location in the HTML, resized, and
centered, and the shadow div has its opacity set to 50 percent, as follows:

Next, the divs are hidden with a call to the subfunction AlertHide(), and the main div’s

innerHTML property is assigned the value of html, which contains the HTML with which to create the
two subdivs, both of which are then resized:

After this, a number of style elements are set up, and the innerHTML of the title and message divs

are assigned, like this:

These statements set the correct colors, fonts, alignments, padding, and borders for the elements,

and the message alert has its overflow property set to ‘auto’ so that larger messages will have scroll
bars added if necessary to scroll through the content.

Finally, the onclick event of the OK button is attached to the AlertHide() subfunction, and the
divs are made visible, like this:

The recipe ends with the AlertHide() subfunction, which is called when the OK button is

clicked:

How to Use It
You use this recipe in the same manner as the built-in alert() function: by simply passing a value or
expression to display, like this:

Or, here’s an example that combines a string and an expression:

One of the best things about this recipe is that you can use it to watch values changing in real

time without having to click OK after each alert message, as you would with the standard alert()
function. Here’s an example you can try that creates repeating interrupts to call the recipe and display
the current mouse coordinates, which change as you move the mouse about:

In this particular example, because the calls to Alert() repeat continuously, nothing will

happen if you click the OK button to dismiss the message, because another Alert() call is made
INTERVAL milliseconds later. If you want to test the recipe with a single call, just try a command such
as this:

NOTE Don’t confuse the two functions because they use the same letters. The original JavaScript
function starts with a lowercase letter ‘a’, and is called alert(), while the new recipe begins
with an uppercase letter ‘A’ and is called Alert().

The Recipe

 ReplaceAlert()
If you like the Alert() recipe, you can use this one to replace the default JavaScript alert() with it
and use it all the time. Figure 23-4 shows the alert() function being called to display the mouse’s

current coordinates, but in fact the Alert() recipe is handling the message display since it has now
replaced the default function.

FIGURE 23-4 With this recipe, all calls to alert() will use the new Alert() recipe.

About the Recipe
This is probably the shortest recipe in the book, and it requires no arguments to change the default
action of alert() to use the new Alert() recipe.

Variables, Arrays, and Functions
alert Property of the window object specifying which code to use for handling alerts

How It Works
This recipe simply attaches the Alert() recipe to the alert event of the window object, like this:

How to Use It
To replace the default JavaScript alert() function with the new Alert() recipe, just call
ReplaceAlert(). The following example is modified from the one used in the previous recipe,
Alert(), to call the default alert() function, which has been diverted to use the new Alert()
recipe:

The Recipe

 ToolTip()
With this recipe, you can add tooltips that fade in and out over a period to any object, with a range of
fully configurable display options. Figure 23-5 shows a tooltip that has been attached to the Home
link of a web page.

FIGURE 23-5 Use this recipe to attach smoothly fading tooltips to objects.

About the Recipe
This recipe displays a tooltip when the mouse passes over an attached object. It requires the
following arguments:

• id An object or object ID—this cannot be an array.
• tip The tip message to display, which may contain HTML.
• font The font to use.

• size The font size to use.
• textc The text color to use.
• backc The background color to use.
• bordc The border color to use.
• bstyle The border style to use.
• bwidth The border width to use, in pixels.
• msecs The time each fade out or in should take in milliseconds.
• timeout The time after which the tooltip will automatically fade out in milliseconds; if 0 or not

passed, the tooltip will not automatically fade out.

Variables, Arrays, and Functions
tt Local variable containing the string ‘TT_’ concatenated with the ID name of

id

newdiv Local variable containing the new div object
MOUSE_X Global variable containing the current horizontal location of the mouse cursor
MOUSE_Y Global variable containing the current vertical location of the mouse cursor
ZINDEX Global variable containing the highest zIndex value so far used
Hidden Property of the new div: true when the tooltip is hidden; otherwise, false

IID
Property of the new div used to cancel any pending interrupt that may have
been set using setTimeout()

zIndex Property of the new div set to bring it to the front of all objects
fontFamily Property of the new div containing its font family
fontSize Property of the new div containing its font size
padding Property of the new div containing its padding
color Property of the new div containing its text color
backgroundColor Property of the new div containing its background color
bordercolor Property of the new div containing its border color
borderStyle Property of the new div containing its border style
borderWidth Property of the new div containing its border width
innerHTML Property of the new div containing its HTML
onmouseover Event of id attached to DoToolTip()
onmouseout Event of id attached to ToolTipHide()
DoToolTip() Subfunction to display a tooltip
ToolTipHide() Subfunction to hide a tooltip
FadeIn() Function to fade an object in
FadeOut() Function to fade out an object
Px() Function to add the suffix ‘px’ to a number
setTimeout() Function to set up an interrupt to a function at a future time

clearTimeout() Function to cancel an interrupt set by setTimeout()

How It Works
This recipe first creates a new div for each different tooltip, with an ID comprising the string ‘TT_’
and an ID name of id, and then creates a local variable to hold this ID, like this:

Next, if the div for the tooltip for id hasn’t yet been created, this is done using the following

code:

The opacity of the new div is then set to 0 to hide it, and it is released from the HTML by giving

it a style position attribute of ‘absolute’, using the global variable ABS:

Next, all the arguments that have not been given a value are given default values:

After that, various style settings based on these values are applied to the new div, and the

contents of the tip argument are placed in its innerHTML property, as follows:

Finally, in the setup section, the DoToolTip() and ToolTipHide() subfunctions are attached to

the onmouseover and onmouseout events of id, and the Hidden property of id is set to false to
indicate that the tooltip is not currently visible:

The DoToolTip() Subfunction
This function moves the tooltip div referred to by tt to a location 15 pixels to the right and 15 down
from the mouse position, sets its zIndex property to the highest value used so far plus 1 (to ensure it
displays above all other elements), fades the tooltip in, and sets the tooltip’s Hidden attribute to
false to indicate that it is now visible:

With the tooltip now displayed, if a timeout has been specified, then setTimeout() is called to

create an interrupt call to the ToolTipHide() subfunction in timeout milliseconds, to fade it away
again (after first canceling any timeout that may currently be in place), like this:

The ToolTipHide() Subfunction
This function simply checks whether the tooltip is currently hidden. If it is, it has nothing to do and
returns; otherwise, it fades out the tooltip and sets its Hidden attribute to true to indicate the new
setting:

How to Use It
To use this recipe, all you need to do is pass it an object and the tip message to display, like this:

You can also pass any or all of the other supported arguments to tailor the output. The following

example illustrates attaching a tooltip to a link using all the available options:

The HTML section sets up four links and gives them IDs. Then, the <script< section attaches a

tooltip to the first link. As you can see by the
 included in the string assigned to tip, HTML is
supported, enabling you to configure the tooltip any way you like.

There is also a standard title tag attached to the final link so you can compare the way it displays
with this recipe by passing the mouse over that link, too.

The Recipe

 CursorTrail()

This recipe can provide a great visual aid for your users, or you can use it as a special effect. It
leaves a trail of 10 images behind the mouse cursor, with each image a little more faded out than the
one in front of it, so that it gives a smoother flowing appearance than, for example, the built-in
Windows cursor trail utility. It also allows you to select your own images for the trail. Figure 23-6
shows a cursor trail created using the mouse pointer image supplied with this recipe.

FIGURE 23-6 Add cursor trails to the mouse pointer by calling this recipe.

About the Recipe
This recipe creates a trail of images that follow the mouse pointer. It requires the following
arguments:

• image The URL of an image to use for the trail.
• length The length of the trail, with smaller numbers being shorter.
• state If 1 or true, the trails are turned on; a value of 0 or false turns them off.

Variables, Arrays, and Functions
j Local variable for iterating through the 10 images
w Local variable containing the width of the browser
h Local variable containing the height of the browser
c Local variable containing the string ‘CT_’
newimg Local variable containing each new image as it is created
zIndex Property of each image set to bring them in front of all other elements
ABS Global variable with the value ‘absolute’
MOUSE_X and MOUSE_Y Global variables containing the horizontal and vertical mouse coordinates
ZINDEX Global variable containing the highest zIndex property so far used
GoTo() Function to move an object to a new location

Hide() Function to hide an object
Show() Function to show an object that has been hidden
Position() Function to set the style position property of an object
Opacity() Function to set the opacity of an object
GetWindowWidth() Function to return the width of the browser
GetWindowHeight() Function to return the height of the browser
createElement() Function to create a new HTML element
setAttribute() Function to set an attribute of an object
appendChiId() Function to attach a child object to an object
setInterval() Function to start repeating interrupts to another function
clearInterval() Function to stop repeating interrupts

How It Works
To start with, this recipe saves the width and height of the browser in w and h, and sets c to the string
‘CT_’, a prefix that will be used when assigning IDs to the image objects that will be created:

Next, if state is not 1 or true, any repeating interrupts are canceled and the recipe returns,

which turns off the mouse trails:

At the next line of code, if no object has the ID ‘TT_0’, it means this is the first time the recipe

has been called, so all the image objects are created and set to style positions of ‘absolute’ (so that
they can be moved about). In addition, their opacity is set to different levels so that the ones furthest
away from the mouse cursor are the most faded, the images are loaded from the URL supplied in
image, and the X and Y properties of each image are assigned starting values of –9999 to place them
well offscreen, as follows:

With everything prepared, the final command in the setup section starts the repeating interrupts to

the DoCurTrail() subfunction:

The DoCurTrail() Subfunction
This function performs the moving of all the trail images, which it manages with a for() loop, within
which the first command moves the image for the current iteration to its new position:

For example, when j has the value 5, the image with the ID calculated with the expression c +

j is manipulated, which is ‘CT_5’. The number 2 in the code places the images down and to the right
by two pixels.

Next, the zIndex property of the image is set to the maximum zIndex so far used plus 1, to
ensure that it will display on top of all other elements:

Then, if the image is set to display directly under the mouse pointer, the image is hidden. If it

wasn’t hidden, the user could never click a link because a trail image would be between the mouse
pointer and the clickable object underneath it:

Otherwise, if the image is away from the mouse pointer, it is shown:

Next, as long as j has a value greater than 0 (and therefore is indexing the nine trail images

above the first), the image location of the image one behind the current one is set to that of the current
image:

Finally, the highest numbered image (with the ID ‘CT_9’) is set either to the current mouse

location or, if the mouse is offscreen, to a position well off the start of the screen (with the values 12
and 20 representing the width and height of the mouse pointer):

Only this highest numbered image needs to be given the mouse coordinates, because each time
around the loop the coordinates of each item are copied down to the one behind it. For example, the
next time around, the image with the ID ‘CT_8’ will be passed the values in the image with the ID
‘CT_9’, and so on.

How to Use It
To use this recipe, pass it the URL of an image to display as the trail, a value for how long the trail
should be (with 1 being the smallest), and a value of true or 1 for the state argument, like this:

To turn the effect off, just change the state argument to 0 or false, like this:

For example, Figure 23-7 shows the file snowflake.gif being used in place of mousepointer .gif,

with the following code:

FIGURE 23-7 You can use this recipe to provide seasonal or festive cursor trails.

TIP For an even more interesting effect, try displaying animated GIFs in the cursor trail instead
of static ones.

The Recipe

 Touch Enable()
Here’s the final JavaScript recipe, which allows you to touch-enable a web page. Figure 23-8 shows
a copy of the web page in which a small frame has been attached to the top of the browser window
with links to turn touch-enabling on and off.

FIGURE 23-8 With this recipe, you can touch-enable your web pages.

About the Recipe
This recipe changes the mouse click action so that a click and drag operation becomes a scroll
operation, allowing users of touch-enabled screens to scroll a document up, down, left, and right
simply by touching the screen and moving their finger (or a stylus) about, in the same manner they
would use an iPhone, iPad, Android phone, or other touch device. It requires the following argument:

• state If 1 or true, touch-enabling is turned on; otherwise, it is turned off.

Variables, Arrays, and Functions
db Local variable used as shorthand for document.body

iid
Local variable containing the result of calling setinterval() to be used
later when calling clearinterval()

flag Local variable set to true when touch-enabling is on

oldmousex and
oldmousey

Temporary copies of MOUSE_X and MOUSE_Y to save the mouse position when
startTE() is called

tempmousex and
tempmousey

Temporary copies of MOUSE_X and MOUSE_Y used in DoTE() to see if the
mouse has moved

MOUSE_X and
MOUSE_Y

Global variables containing the location of the mouse cursor

MOUSE_IN
Global variable set to true if the mouse is within the bounds of the browser;
otherwise, false

onmousedown and
onmouseup

Events of the document body that trigger when the mouse is clicked and
released

StartTE() Subfunction to begin touch-enabling
DoTE() Sub-subfunction to scroll the document as required
StopTE() Subfunction to turn off touch-enabling
PreventAction() Function to prevent the default action of an event
set Interval() Function to set up repeated interrupts to another function
clearInterval() Function to stop repeated interrupts
scrollBy() Function to scroll the document body by a specified amount

How It Works
This recipe starts by making a copy of document.body in the local variable db, thus creating a
shorthand reference to shorten the code:

The state argument is then tested, and if it is 1 or true, touch-enabling is being turned on, so

the variables iid and flag are initialized, PreventAction() is called to disable the default actions
for drag and select operations on the document body, and the onmousedown and onmouseup events of
the document body are attached to the StartTE() and StopTE() subfunctions, as follows:

If state is 0 or false, then touch-enabling is to be turned off, so PreventAction() is called to

restore the default actions for drag and select operations on the document body, its onmousedown and
onmouseup event hooks are removed, and the recipe returns:

The StartTE() Subfunction
This function first checks the flag variable to see whether touch control has already been enabled. If
it has, false is returned; otherwise, copies of the mouse cursor position are placed in temporary
variables to compare later to see if the document body should be scrolled, like this:

Next, flag is set to true to indicate that touch control has been enabled, and setInterval() is

called to set up repeating interrupts to DoTE():

The DoTE() Sub-subfunction
This function first checks whether the mouse button is currently held down and is within the bounds of
the browser, like this:

If the mouse button is either not down or not within the browser’s bounds, the StopTE()

subfunction is called to release the current scroll. Otherwise, a test is made to see whether the mouse
has moved from the position that was stored in the variables tempmousex and tempmousey when
StartTE() was first called:

If the mouse has moved, tempmousex and tempmousey are updated to the new mouse location,

like this:

Next, the window is scrolled by the difference between the current mouse location and the one

that was stored in oldmousex and oldmousey when StartTE() was first called, like this:

This causes oldmousex and oldmousey to retain the location of the mouse at the point when the

mouse button was clicked, and this location is compared to the current mouse location to determine
the amount by which the document body should be scrolled.

However, the variables tempmousex and tempmousey are used only to see whether the mouse
has moved since the last interrupt to the DoTE() sub-subfunction and to decide whether a scroll is
required. The scrolling is always relative to the values stored in oldmousex and oldmousey, not
those in tempmousex and tempmousey.

The StopTE() Subfunction
This function simply sets the flag variable to false to indicate that a scroll is not currently in
operation and clears the repeating intervals. The document will not scroll again until the mouse button
is held down once more—the same action as touching a touchscreen.

How to Use It
To use this recipe, call it up with a value of 1 or true, like this:

To turn it off again, call it with a value of 0 or false, like this:

The following example shows how you can embed on and off controls for this feature in a web

page in a similar way to the one shown in Figure 23-8:

Just add this code to any existing web page that is long enough to require scrolling.

The Recipe

PART IV
CSS Classes

CHAPTER 24
Manipulating Objects
CHAPTER 25
Text and Typography
CHAPTER 26
Menus and Navigation
CHAPTER 27
Page Layout
CHAPTER 28
Visual Effects
CHAPTER 29
Dynamic Objects
CHAPTER 30
Dynamic Text and Typography
CHAPTER 31
Dynamic Interaction
CHAPTER 32
Incorporating JavaScript
CHAPTER 33
Superclasses

CHAPTER 24
Manipulating Objects

This chapter introduces 19 groups of CSS classes you can use in your web pages to manage the
positioning of elements, change text and background colors, add gradient fills and box shadows, alter
transparency, and do a whole lot more. Using the supplied WDC.css file (available at
webdeveloperscookbook.com), you can simply add class names to your HTML class declarations to
apply any of a wide range of styling to an element, without having to write any CSS yourself.

And because modern browsers support the use of multiple class names in a declaration, you can
supply as many classes as you like to style elements exactly how you want them. This means that with
over 880 classes to draw on in this chapter alone, you can concentrate on creating great web pages
without the hassle of writing and tweaking CSS rules.

 Positioning
The positioning classes let you decide the type of positioning to use for an object between the four
types available (absolute, fixed, relative, and static), each of which changes the way CSS properties
will affect objects using them. For example, Figure 24-1 shows two sections of text that have been
given vertical offsets of 25 pixels, but because one has absolute positioning and the other is fixed,
when the document is scrolled, one of them scrolls and the other remains where it is.

FIGURE 24-1 Different positioning types behave in different ways.

Classes and Properties
absolute
abs

Class to assign absolute positioning to an object, plus a shorthand version to
save on typing

fixed fix
Class to assign fixed positioning to an object, plus a shorthand version to save
on typing

http://webdeveloperscookbook.com

relative rel Class to assign relative positioning to an object, plus a shorthand version to
save on typing

static sta
Class to assign static positioning to an object, plus a shorthand version to save
on typing

position
Property containing the type of object positioning to use out of absolute, fixed,
relative, or static

About the Classes
The four classes in this group are absolute, relative, fixed, and static, and they have the
following effects:

• absolute When this position property is assigned to an object, it can be removed from the normal
flow of the document to any other part. When it is moved, any other objects that are able to will
move in to occupy the space released. Absolute objects can be placed behind or in front of other
objects, and their coordinates are relative to the first parent object that has a position other than
static.

• fixed This type of positioning is similar to absolute, except that the object’s coordinates are
based on the browser window, such that if the document is scrolled, any fixed objects remain
where they are and do not scroll with it.

• relative An object that is given relative positioning has its coordinates based on the location it
occupied when the document was fully loaded.

• static Static positioning is the default for all elements and indicates that an object is to remain at
the position within a document that it first occupied when the document was fully loaded.

How to Use Them
To use these classes, you reference them from HTML, like this:

Here’s an example HTML page illustrating use of the absolute and fixed classes:

Here, two files are included in the <head> section of the web page:

• WDC.css The CSS rules for the recipes in this part of the book.
• WDC.js The JavaScript recipes from Part II of this book, and JavaScript-enhanced CSS from Part

III.

To ensure all the CSS examples in this part of the book work correctly, you should include both
files, in the manner shown in the preceding example (shown in bold). I will not show you this code
again because I will assume you will include it if you enter the examples to try them for yourself, or
you can download them from the companion web site at webdeveloperscookbook.com.

In the example, one span has been made absolute and moved to a position 100 pixels across by
25 down from the document start, while the other is fixed at an offset of 300 pixels across and 25
down from the top-left corner of the browser window.

The
 tags that follow create 22 blank lines so that if you open this code in a small
browser window, it will create a scroll bar at the right side which, if you scroll it, will move the text
with absolute positioning, but the fixed text will remain in place.

You probably have noticed the use of inline styles in this example, such as
style=’left:100px; top:25px;’. These are required to assign the coordinates to each element.
Later on, you will see how you can use much simpler classes instead of direct CSS rules.

Also, to save on typing, instead of using the longhand class names of absolute, relative,
fixed, and static, you can use the alternate shorthand names of abs, fix, rel, and sta instead
(there are handy shorthand versions for many of the more commonly used classes in this book).

NOTE Because this is the first example, I have shown you a complete HTML web page including
all the lines you need at the start, such as the document type and the “saved from” comment
used to stop Internet Explorer from displaying errors when a page is viewed on a local file
system. I have also shown the page title and the HTML required to load in the style sheet and
JavaScript files. However, in future examples I will show only the main HTML.

The Classes

http://webdeveloperscookbook.com

 Floating
The float property makes it possible for you to choose to place an object at either the right or left of a
section of HTML and have accompanying text flow around it. To enable you to do this without
writing any CSS rules, you can use the ready-made ones supplied with this recipe.

In Figure 24-2, both the leftfloat and rightfloat classes have been used to display boats on
either side of the screen with text flowing around them.

FIGURE 24-2 Using the leftfloat and rightfloat classes

Classes and Properties
leftfloat
lf

Class to float an object to the left and make text and other elements flow
around it (plus shorthand version)

leftfloat_h lf_h
The same as leftfloat, but this style is only applied when the mouse is
over the element to which it applies (plus shorthand version)

rightfloat rf
Class to float an object to the left and make text and other elements flow
around it (plus shorthand version)

rightfloat_h rf_h
The same as rightfloat, but this style is only applied when the mouse is
over the element to which it applies (plus shorthand version)

nofloat nf Class to unfloat a previously floated object (plus shorthand version)

nofloat_h nf_h The same as unfloat, but this style is applied only when the mouse is over

the element to which it applies (plus shorthand version)

float Property to float an object, which accepts the values left, right, or
none

About the Classes
This group has three main classes:
• leftfloat This class floats an object to the left, with other elements flowing around it. The

flowing can be exited by issuing a <br clear=’left’> tag, which causes all following HTML to
appear under the floated object.

• rightfloat This class floats an object to the right, with other elements flowing around it. The
flowing can be exited by issuing a <br clear=’right’> tag, which causes all following HTML to
appear under the floated object.

• nofloat Using this class will unfloat an object that has previously been floated.

As well as the shorthand versions of these class names, there is another group of classes that
have the suffix _h appended to their names. This is one of the more powerful features of the recipes in
this book in that (where it makes logical sense) each class also has an accompanying hover class
denoted by the _h suffix. When these hover classes are used, their styles will be applied only when
the mouse is over the object to which they refer. This makes it easy for you to apply rollover and
other dynamic effects without writing a single line of either CSS or JavaScript.

How to Use Them
To use these classes, you refer to them from any section of HTML to which you wish them applied.
For example, the following HTML creates two floats—one on the left and one on the right—with text
flowing around them (as shown in Figure 24-2):

Note the use of the <br clear=’…’> tags to end the floating at specific places in the HTML. As

well as these specific tags, if you want to ensure that no floats are applied to a section of text, you can
also issue the tag <br clear=’all’> to clear any and all left or right floats. You will also see that I
have used the lf and rf shorthand versions of the class names, instead of having to type in the longer
class names of leftfloat and rightfloat.

NOTE As mentioned in the previous recipe group, the start and end portions of the HTML file are
not shown here since they will usually all be exactly the same as each other. Therefore, only
the main HTML is shown in this and all future examples.

Using the Hover Classes
To change the float property of an object when the mouse passes over it, you can use one of the class
names with the _h suffix, like this:

In the following and in many other recipe groups, you will see how this feature particularly

comes into its own.

NOTE Although it’s not likely that you would often want to change the float property of an
element when it is hovered over, it is certainly possible that this feature could be required for
certain applications and, as it takes only a few extra characters of CSS to support, there’s no
reason to omit the feature.

The Classes

 Background Colors
This group of classes illustrates the power of the recipes because they provide six different ways of
changing the background color of an object to any of 21 different colors. Figure 24-3 shows six
objects, with each using one of the different methods of changing the background color. In the first
three, the entire element is modified, while in the second three only links that are contained within the
element are affected.

FIGURE 24-3 This recipe group offers many different ways of changing background colors.

As you hover over and/or click the different links, you will see the color change for the whole

element in lines 2 and 3, but only for the link part in lines 5 and 6. As with all the examples, the one
used to create this screen grab is downloadable from the companion web site.

Classes and Properties
aqua_b
aqua_ba
aqua_bh
aqua_lb
aqua_lba
aqua_lbh

Class to change the background color of an object to aqua (aqua_b), plus classes to do
so only if the object is actively being clicked (aqua_ba) or hovered over (aqua_bh),
and another three classes to change the background of any links within the object
(aqua_lb), any links within the object that are actively being clicked (aqua_lba), and
any links within the object that are being hovered over (aqua_lbh)

black_b
(etc…) Classes – as aqua_b (etc…) but for black

blue_b
(etc…) Classes – as aqua_b (etc…) but for blue

brown_b
(etc…) Classes – as aqua_b (etc…) but for brown

fuchsia_b
(etc…) Classes – as aqua_b (etc…) but for fuchsia

gold_b
(etc…) Classes – as aqua_b (etc…) but for gold

gray_b
(etc…) Classes – as aqua_b (etc…) but for gray

green_b
(etc…) Classes – as aqua_b (etc…) but for green

khaki_b
(etc…) Classes – as aqua_b (etc…) but for khaki

lime_b
(etc…) Classes – as aqua_b (etc…) but for lime

maroon_b
(etc…) Classes – as aqua_b (etc…) but for maroon

navy_b
(etc…) Classes – as aqua_b (etc…) but for navy

olive_b
(etc…) Classes – as aqua_b (etc…) but for olive

orange_b
(etc…) Classes – as aqua_b (etc…) but for orange

pink_b
(etc…) Classes – as aqua_b (etc…) but for pink

purple_b
(etc…) Classes – as aqua_b (etc…) but for purple

red_b
(etc…) Classes – as aqua_b (etc…) but for red

silver_b
(etc…) Classes – as aqua_b (etc…) but for silver

teal_b
(etc…) Classes – as aqua_b (etc…) but for teal

white_b
(etc…) Classes – as aqua_b (etc…) but for white

yellow_b

(etc…) Classes – as aqua_b (etc…) but for yellow
background Property containing background settings

About the Classes
This recipe group has 21 main classes, with six different types of each that can be selected by
choosing the required suffix. The preceding Classes and Properties table lists the available colors.
Here is what the suffixes do:

• _b Used to refer to a background property.
• _ba Used to refer only to the background property of an object that is active (in other words, that

is in the process of being clicked).
• _bh Used to refer only to the background property of an object that the mouse is hovering over.
• _lb Used to refer only to the background property of a link within the object.
• _lba Used to refer only to the background property of a link within the object that is actively

being clicked.
• _lbh Used to refer only to the background property of a link within the object over which the

mouse is hovering.

How to Use Them
When you wish to change the background color of an object, first choose the color out of the 21 in the
Classes and Properties table, and then decide when the color should be applied. So, let’s assume
you want to change the background color of an object to gold. To do this, you only need to use some
simple HTML such as this:

Or, if you wish the background color to change to orange, but only when the mouse is over it,

you might use the following code:

Then again, perhaps you would like the background to change color only when it is clicked. In

which case, you might use code such as this:

Or you can be really creative and combine all three effects into one, like this:

Changing Links Within the Object
Sometimes you won’t want to change the background color of an entire object, but may wish to do so
for any links it contains, and you can do this using HTML such as the following:

Or all three types of color change can be applied to just the links within an object, like this:

Here’s the HTML used to create the screen grab in Figure 24-3:

As you can see, these classes provide a great deal of interactive functionality, with no need for

writing JavaScript programs or creating your own CSS rules.

TIP Try downloading the example file from the companion web site and clicking (and hovering
over) different parts of each element to get a feel for how the different suffixes work.

The Classes

 Gradients
Most modern browsers already support graduated background fills (with the surprising exception of
Opera, which is usually very good at supporting web standards). Therefore, the classes in this group
can be used to easily create gradient effects. And even Opera doesn’t look too bad because it defaults
to a single color average of the gradient.

Figure 24-4 shows a selection of gradients being applied to objects with the same suffixes as
used by the solid color background classes (such as aqua_b).

FIGURE 24-4 Applying gradient backgrounds is easy with these classes.

Classes and Properties
carrot1
carrot1_a
carrot1_h
carrot1_l
carrot1_la
carrot1_lh

Class to change the background gradient of an object to the range of colors you would
see in a carrot (carrot1), plus classes to do so only if the object is actively being
clicked (carrot1_a) or hovered over (carrot1_h), and another three classes to
change the background of any links within the object (carrot1_l), any links within the
object that are actively being clicked (carrot1_la), and any links within the object
that are being hovered over (carrot1_lh)

chrome1
(etc…) Classes – as carrot1 but for a range of chrome steel colors

coffee1
(etc…) Classes – as carrot1 but for a range of coffee brown colors

dusk1
(etc…) Classes – as carrot1 but for a range of dusky blue colors

earth1
(etc…) Classes – as carrot1 but for a range of brown earth colors

fire1
(etc…) Classes – as carrot1 but for a range of yellowy orange fire colors

grass1
(etc…) Classes – as carrot1 but for a range of fresh green grass colors

iron1
(etc…) Classes – as carrot1 but for a range of metallic iron colors

plum1
(etc…) Classes – as carrot1 but for a range of purple plum colors

rose1
(etc…) Classes – as carrot1 but for a range of red rose colors

sky1
(etc…) Classes – as carrot1 but for a range of blue sky colors

sunset1
(etc…) Classes – as carrot1 but for a range of orangy sunset colors

tin1
(etc…) Classes – as carrot1 but for a range of metallic tin colors

water1
(etc…) Classes – as carrot1 but for a range of clear blue water colors

wine1
(etc…) Classes – as carrot1 but for a range of deep red wine colors

background Property to which the gradient (or solid color) is applied
Filter Property used by Internet Explorer for creating gradients and other effects

About the Classes
This recipe group has 15 main classes, with six different types of each that can be selected by
choosing the required suffix. The preceding Classes and Properties table lists the available
gradients. Here is what the suffixes do:

• (no suffix) Without a suffix, the object’s background gradient will be set to the color supplied.
• _a This suffix is used to refer only to the background gradient of an object that is active (in other

words, that is in the process of being clicked).
• _h This suffix is used to refer only to the background gradient of an object that the mouse is

hovering over.
• _l This suffix is used to refer only to the background gradient of a link within the object.
• _la This suffix is used to refer only to the background gradient of a link within the object that is

actively being clicked.
• _lh This suffix is used to refer only to the background gradient of a link within the object over

which the mouse is hovering.

There is no _b suffix since gradients are background-only properties anyway. Therefore, all the
other suffixes are a little shorter than those used for the solid colors in the previous recipe group.

The property used to achieve the gradient (or solid fallback color) background is the
background property. In the case of the Apple Safari and Google Chrome browsers, it is passed a
string that looks like this:

This tells those browsers to create a linear gradient fill, starting at the top left of the object and

continuing to the bottom left, starting with the color #f44, slowly graduating to the color #922.
Firefox and other Mozilla-based browsers require the following string format to be applied to

the property:

While all other browsers (and all future browsers once it is made the international standard)

should send a string such as this:

Microsoft, often the odd one out, takes quite a different approach, so it is necessary to pass a

string such as the following to its filter property:

Also, for those browsers that do not support gradients, a simple solid color string such as #d33

is provided before any of the preceding lines, so that if all the gradient rules fail, at least the simple
color setting will remain active.

The downside of all this, as you will often see as you progress through this book, is that all the
browsers have to be catered to and therefore all the different strings must be applied for each
gradient. This means that the CSS rules end up quite large. But then again, because all the work has
already been done for you, all you need to do is include the CSS file and use simple class names in
your HTML—you can forget about how cumbersome some of the rules are.

How to Use Them
You apply a gradient in much the same way as a solid background color. For example, to set the
background gradient of an object to the water1 gradient, you might use HTML such as this:

As with the solid-colored backgrounds, you can also choose when a gradient is to be applied

according to whether an object is moused over or clicked, and also whether the object contains any
links that should have their gradients changed.

Here’s the HTML code used to create the screen grab in Figure 24-1:

It is very similar to the example in the previous recipe group, in that the first three objects have

their entire background gradient set, while the second three have only the links contained within them
changed.

Incidentally, if you are wondering why all these class names end with the number 1, it’s because
there’s a complementary set of gradients that fade in the other vertical direction, in the following
recipe group.

NOTE These classes degrade gracefully, so older browsers that do not support gradient
backgrounds will simply show a solid background representative of the average gradient
color when you use them.

The Classes

 Inverse Gradients

The classes in this recipe group are the inverse of the ones in the previous section in that they create
background gradient fills that look as if the previous fills were flipped from top to bottom. They are
particularly useful as mouseover or button click effects, as can be seen in Figure 24-5, which is an
updated version of the example in the previous recipe group that now alternates gradients when
clicked and/or hovered over.

FIGURE 24-5 Using complementary gradient pairs for link and hover effects

Notice how the second set of links does not show any gradients. This is due to an unfortunate bug
in Internet Explorer (the browser used for the screen grab), and serves to illustrate how these classes
will degrade gracefully when they cannot be applied to their fullest effect. In any case, with a little
extra HTML, it is easy to work around this IE bug by using only the first three types of classes that
assign gradients to an entire object—then Opera will be the only browser unable to show them (but it
will at least still display a solid color representative of the gradient).

Classes and Properties
carrot2
(etc…) Classes – as carrot1 but reversed from top to bottom

chrome2 (etc…) Classes – as chrome1 but reversed from top to bottom
coffee2 (etc…) Classes – as coffee1 but reversed from top to bottom
dusk2 (etc…) Classes – as dusk1 but reversed from top to bottom
earth2 (etc…) Classes – as earth1 but reversed from top to bottom
fire2 (etc…) Classes – as fire1 but reversed from top to bottom
grass2 (etc…) Classes – as grass1 but reversed from top to bottom

iron2 (etc…) Classes – as iron1 but reversed from top to bottom
plum2 (etc…) Classes – as plum1 but reversed from top to bottom
rose2 (etc…) Classes – as rose1 but reversed from top to bottom
sky2 (etc…) Classes – as sky1 but reversed from top to bottom
sunset2 (etc…) Classes – as sunset1 but reversed from top to bottom
tin2 (etc…) Classes – as tin1 but reversed from top to bottom
water2 (etc…) Classes – as water1 but reversed from top to bottom
wine2 (etc…) Classes – as wine1 but reversed from top to bottom
background Property to which the gradient (or solid color) is applied

filter
Property used by Internet Explorer for creating gradients and other
effects

About the Classes
These classes are almost identical to those in the previous recipe group except that they have a
number 2 in them instead of a 1, and they display gradients that are the inverse from top to bottom.

How to Use Them
You can use these classes in the same way as the first set of gradients, or use them to make cool
mouseover effects like in the following example, which is an extension of the one in the previous
recipe group that swaps the gradients when moused over and/or clicked:

Already, these are some quite impressive effects, but now take a look at what you can do with

the HTML <button> tag:

When you click buttons that use gradient classes in this way, they appear to depress even more

than normal and produce a highly professional-looking effect.

CAUTION Unfortunately, Microsoft Internet Explorer has a bug—one of many, in fact—such that

the second set of three objects (in which links within an object are addressed) will not show
as gradients. For some reason, Internet Explorer balks at CSS rules like . classname a {
filter:…; }, and refuses to apply the filter (although it will apply other styles), so only the
background solid color will be applied for these objects. Curiously, IE works fine with rules
such as .classname { filter:…; }. Anyway, until it is corrected, this is one example of how
the classes sometimes have to gracefully degrade in certain situations.

The Classes

 Box Shadows
Adding a shadow effect underneath images and other objects helps them stand out. Using the classes
in this recipe group, you can add box shadows of five different lightnesses in six different ways.

Figure 24-6 shows a photograph repeated six times. The first copy has no box shadow, while the
other five range from the lightest to the darkest box shadow. This screen grab was taken using Internet
Explorer, which doesn’t support blurring. All other browsers blur and round the edges of box
shadows, providing a smoother effect.

FIGURE 24-6 Adding box shadows makes objects stand out from the page.

Classes and Properties
boxshadow
boxshadow_a
boxshadow_h
boxshadow_l
boxshadow_la
boxshadow_lh

Class to add a box shadow to an object (boxshadow), plus classes to do so
only if the object is actively being clicked (boxshadow_a) or hovered over
(boxshadow_h), and another three classes to add a box shadow only to any
links within the object (boxshadow_l), any links within the object that are
actively being clicked (boxshadow_la), and any links within the object that
are being hovered over (boxshadow_lh)

lightestboxshadow
(etc…) Class – as boxshadow but with the lightest shadow

lightboxshadow
(etc…) Class – as boxshadow but with a lighter shadow

darkboxshadow

(etc…) Class – as boxshadow but with a darker shadow
darkestboxshadow
(etc…) Class – as boxshadow but with the darkest shadow

-moz-box-shadow Property to create a box shadow on Firefox and other Mozilla browsers
-webkit-box-
shadow Property to create a box shadow on Safari and Chrome

filter Property to create box shadows and other effects on Internet Explorer
box-shadow Property to create a box shadow on all other browsers

About the Classes
This group has five classes, each of which is supplied with the standard suffixes used to change the
way they act: _a for active, _h for hover, _l for a link, _la for an active link, and _lh for a hovered
link.

The box shadow is applied using the box-shadow CSS property, or –moz-box-shadow for
Mozilla-based browsers such as Firefox, or –webkit-box-shadow for Safari and Chrome. In all
cases, the values passed are the shadow color, its vertical and horizontal offset from the object, and
the amount of blurring to use. So a typical box shadow rule looks like this:

On Internet Explorer, box shadowing is handled by the filter property and the equivalent CSS

rule is as follows:

TIP If you are interested in tweaking the WDC.css file, there is also a DropShadow filter argument
available in Internet Explorer that provides a different effect and which is identical in use to
the Shadow argument, except for the extra four letters preceding the word Shadow. You could
therefore use it in the following way:

How to Use Them
To add a box shadow to an object, enter its class name into some HTML, like this:

You can also choose any of the four lighter or darker variants, or add one of the action suffixes

to change the way the box shadow is implemented. For example, to add a darker box shadow to an
object when it is being hovered over, you might do this:

Or you could combine the two to give an object a lighter box shadow that changes to a darker
one when hovered over, like this:

Here is the HTML that was used to create the screen grab in Figure 24-6.

In this example, there are six instances of a photo: one with no box shadow, and five more with

shadows of varying lightness. A few and
 tags are used to neatly space them out.
Enclosing these photos is a <div> tag that has been set to change its background color to black

when hovered over (using the black_bh class), so you can pass the mouse over it and see the effect of
the lighter shadows when used on a dark background.

The Classes

 Padding
When you need to quickly add some padding around an object, as long as you’re happy to use values
of 2, 5, 8, 11, or 15 pixels, you can simply drop one of the class names in this group into your HTML.

For example, Figure 24-7 shows the example from the previous recipe group modified so that
each picture has a different amount of padding. A border has been added to each to make it clear how
much padding has been applied.

FIGURE 24-7 Applying different padding classes to a photograph

Classes and Properties
padding
padding_a
padding_h
padding_l
padding_la
padding_lh

Class to add 8 pixels of padding around an object (padding), plus classes to do
so only if the object is actively being clicked (padding_a) or hovered over
(padding_h), and another three classes to add padding only to any links within
the object (padding_l), any links within the object that are actively being
clicked (padding_la), and any links within the object that are being hovered
over (padding_lh)

smallestpadding
(etc…) Class – as padding but with 2 pixels of padding

smallpadding
(etc…) Class – as padding but with 5 pixels of padding

largepadding
(etc…) Class – as padding but with 11 pixels of padding

largestpadding
(etc…) Class – as padding but with 15 pixels of padding

padding Property to set an object’s padding

About the Classes
This group has five classes, and each is supplied with the standard suffixes used to change the way
they act: _a for active, _h for hover, _l for a link, _la for an active link, and _lh for a hovered link.
Padding is applied using the padding CSS property, with values of 2px, 5px, 8px, 11px, or 15px,
like this:

How to Use Them
Using the padding classes is as easy as choosing the size you need and using that classname in a
class=’…’ argument, like this:

You can add padding to most objects, not just images. You can also choose to use any of the

dynamic versions of these classes. For example, to give an object a small padding and then enlarge it
when the mouse hovers over it, you could use code such as this:

Or to change the padding only when the object is clicked, you could use:

And, of course, there are also the classes for modifying only links within an object, like the

following, which applies a small padding to any such links, and which changes to a larger padding
when the link is hovered over:

Here is the HTML used to create the page shown in Figure 24-7:

The Classes

 Rounded Borders
You can create rounded borders in many ways, from using images and image parts, to table cells,
nested elements, and so on. Generally, they are quite complicated to use, but thankfully the new CSS 3
border-radius command is supported on all browsers except Internet Explorer, and even that
browser can handle them from version 9 on, as can be seen in Figure 24-8, which shows a screen
grab from the IE 9 Platform Preview.

FIGURE 24-8 These rounded borders work on all modern browsers, including IE 9.

Classes and Properties
round
round_a
round_h
round_l
round_la
round_lh

Class to add a 10-pixel rounded border radius to an object (round), plus classes to
do so only if the object is actively being clicked (round_a) or hovered over
(round_h), and another three classes to add the border only to any links within the
object (round_l), any links within the object that are actively being clicked
(round_la), and any links within the object that are being hovered over
(round_lh)

smallestround
(etc…) Class – as round but creates a 2-pixel radius rounded border

smallround
(etc...) Class – as round but creates a 5-pixel radius rounded border

largeround
(etc...) Class – as round but creates a 15-pixel radius rounded border

largestround
(etc…) Class – as round but creates a 20-pixel radius rounded border

-moz-border-
radius Property to create a rounded border on Firefox and other Mozilla browsers

-webkit-
border-radius Property to create a rounded border on Safari and Chrome

border-radius Property to create a rounded border on all other browsers

About the Classes
This group has five classes, each of which is supplied with the standard suffixes used to change the
way they act: _a for active, _h for hover, _l for a link, _la for an active link, and _lh for a hovered
link.

The rounded border is applied using the box-shadow CSS property, or –moz-border-radius
for Mozilla-based browsers such as Firefox, or –webkit-border-radius for Safari and Chrome. In
all cases, a pixel value is passed, like this CSS rule:

Interestingly, Internet Explorer was late to the game in supporting rounded borders, but today it

actually does a better job than the other browsers because if the object is an image it also gets slightly
rounded at the corners, whereas other browsers leave the images untouched. I suppose it could be
argued that this is a case of Microsoft doing things in a nonstandard way again, but I like their
approach to this feature.

How to Use Them
To add a rounded border to an object, you must first ensure that a border has been enabled. This can
be done the old-fashioned way in images with an argument such as border=’1’, or via CSS such as
border:1px solid; (or using the border classes later in this chapter).

Once a border is visible, you can round it off by including one of the classes, like this:

This will add a rounded border with a radius of 10 pixels. You can choose smaller or larger

radii and also use the various standard suffixes to change the border only when clicked or hovered
over, or only when it is part of a link within the current object.

Here is the HTML used to create Figure 24-8:

The Classes

 Transparency
The ability to change the transparency of an object opens up a wide range of professional effects, and
the classes in this recipe group make doing so very easy. For example, Figure 24-9 shows a
photograph displayed at 11 different levels of transparency.

FIGURE 24-9 You can vary the transparency of objects with these classes.

Classes and Properties
trans00
trans00_a
trans00_h
trans00_l
trans00_la
trans00_lh

Class to set the transparency of an object to 0%, or no transparency (trans00), plus
classes to do so only if the object is actively being clicked (trans00_a) or hovered
over (trans00_h), and another three classes to set the transparency only for any links
within the object (trans00_l), any links within the object that are actively being
clicked (trans00_la), and any links within the object that are being hovered over
(trans00_lh)

trans01 -
trans10
(etc…)

Classes to change the transparency of an object in steps of 10 percent, including _a,
_h, _l, _la, and _lh suffixes for each

opacity
Property used by all modern browsers for changing the opacity (and therefore the
transparency) of an object

filter Property used by Internet Explorer for opacity and other features

About the Classes
Transparency, or more precisely the inverse of it, opacity, is one area that most of the browser
developers caught up with a while ago, so there is no need to use property names such as –moz-
opacity or –webkit-opacity. Instead, the single property opacity is all that is required, as in the
following CSS rule, which sets the opacity of an object to 50 percent:

Of course, Microsoft always likes to be different, so Internet Explorer uses the filter property

instead, like this (with a value between 0 and 100, rather than 0 and 1):

How to Use Them
You can change the opacity of an object by selecting the class name you want out of the 11 levels
between 0 and 100 percent. Then, you can optionally choose a suffix to determine how the change
should be made, as with the following code, which sets the transparency of a photograph to 70
percent:

A neat trick you can utilize for highlighting photos is to also provide a different level of

transparency when a picture is hovered over, as with the following example, which changes the
transparency of the photo to zero percent (or solid) when the mouse passes over it:

You can also use the other standard suffixes to change the transparency when an object is

clicked, or only for links within an object.
Here is the HTML used to create Figure 24-9:

With the exception of the first, when you pass the mouse over the pictures, they darken by 10

percent.

The Classes

 Visibility and Display
The classes in this recipe group provide different ways of presenting objects, including making them
visible or invisible, hidden (a different type of invisible), or positioning them either inline or as a
block.

Figure 24-10 shows three images in which the first is presented normally using the visible
class (which is the default for all objects). The second uses the invisible class, which retains its
dimensions, as can be seen by the caption still in the correct place. The third image uses the hidden
class, so it has been completely removed from display, as can be seen by the caption, which has
collapsed inward to occupy the space released.

FIGURE 24-10 Using the visible, invisible, and hidden classes to present images

Classes and Properties
visible Class to make an object visible
invisible Class to make an object invisible but retain its dimensions
hidden Class to hide an object, reducing its dimensions to zero

block
Class to make an object visible and to give it the properties of a <div> element—
it will display underneath the preceding object and force following objects to
display under it

inline
Class to make an object visible and to give it the properties of a element
—it will display to the right of the preceding object (if there’s room) and
following objects will display to the right of it (if there’s room)

table-cell Class to give an object the attributes of a table cell

valigntop
Class to vertically align an object to the top of the containing object (used mainly
for tablecell classes)

valignmid
Class to vertically align an object to the middle of the containing object (used
mainly for tablecell classes)

valignbot
Class to vertically align an object to the bottom of the containing object (used
mainly for tablecell classes)

visibility Property to set the visibility and invisibility of an object
display Property to set the hidden, block, and inline display of an object

About the Classes
Unlike the transparency class of trans10 (which makes an object totally transparent but keeps its
position and dimensions), when an object uses either the invisible or hidden classes, it also has no
associated actions and therefore cannot be hovered over or clicked. If you try to do these things on an
invisible object, the browser will ignore them. As for hidden objects, they are removed from the web
page so other elements that can will move in to occupy the space released.

Therefore, none of the usual suffix versions of these classes are available. If they were, they
would be completely useless. For example, if a hover class was created for hiding an object, as soon
as the object disappeared a mouse-out event would trigger and the object would reappear again and
the process would start all over, resulting in the object appearing to flicker.

How to Use Them
The visible, invisible, and hidden classes are mostly of use for assigning initial settings to
objects that you may change later using JavaScript. For example, you may wish to hide an element that
should display only at the correct time, when a certain action is performed.

Here’s some HTML that shows the effects of using the different classes:

Each image is embedded within a <div> that has 20 pixels of padding, a solid border, and is

floated to the left. These act as placeholders. Then, within each <div> there is one instance each of a
visible, invisible, and hidden class, each followed by a picture caption. The result is the
screen grab in Figure 24-10.

Using the block and inline Classes

The other two classes in this group have the effect of giving an object either the positioning properties
of a <div> for the block class, or those of a for the inline class.

Objects with a block display property start on a new line, and objects that follow them also
start on a new line. Objects with an inline display property follow on from the right of the previous
object, only dropping to the next line if they would extend past the right margin. Also, if there’s room,
objects following after an inline object will also display to the right of it.

The tablecell and valign Classes
Sometimes it can be helpful to give an object the properties of a table cell. For example, when used
in a table cell, the vertical-align property mimics the deprecated HTML valign property, so it can
be used to vertically center objects inside other objects, like this:

You can also use the valigntop and valignbot classes in table cells.

The Classes

 Scroll Bars
Using the recipes in this group, you can decide whether and how to display scroll bars on an object
that supports them. In Figure 24-11, an excerpt from a poem by William Blake is displayed in three
different ways. The first instance uses forced vertical and horizontal scroll bars, the second uses no
scroll bars, and the third uses automatic scroll bars—therefore, only the vertical scroll bar is visible.

FIGURE 24-11 Use these classes to choose the types of scroll bars you want.

Classes and Properties
scroll
scroll_a
scroll_h
scroll_l
scroll_la
scroll_lh
scroll_f

Class to set the overflow property (and hence the scrolling) of an object (scroll),
plus classes to do so only if the object is actively being clicked (scroll_a) or
hovered over (scroll_h), and another three classes to set the scroll bars only for any
links within the object (scroll_l), any links within the object that are actively being
clicked (scroll_la), and any links within the object that are being hovered over
(scroll_lh), or when the object has focus (scroll_f)

noscroll
(etc…)

Class to set the overflow property of an object to hidden, and therefore remove any
scroll bars

nooverflow
(etc…) Class that is an alias of noscroll, and does exactly the same

autoscroll
(etc…)

Class to set the overflow property of an object to auto, and therefore show only those
scroll bars needed to view the object’s contents

overflow
(etc…) Class that is an alias of autoscroll, and does exactly the same

overflow
Property of an object to specify whether contents are allowed to overflow, and if so,
how

About the Classes
These classes let you specify what to do with any content that would otherwise overflow the bounds
of its containing object. You can choose to force the display of both vertical and horizontal scroll
bars with the scroll class, to hide any overflow with the noscroll (or nooverflow) class, or to let
the browser choose whether and which scroll bars to use with the autoscroll (or overflow) class.

The standard suffixes of _a, _h, _l, _la, and _lh are also supported to apply the change only
when the mouse is hovering over an object or it is being clicked, or to apply the setting only to links
within the object. There is also a new suffix available that hasn’t been seen before, _f, which is
available on classes such as this that may apply to input elements. With it, you can apply the setting
only to an element that has focus, such as an <input> or <textarea> that has been clicked.

How to Use Them
There are three different types of scroll bar classes: scroll, noscroll (also called nooverflow),
and autoscroll (also called overflow). Once you have decided which to apply to an object and
(optionally) whether to use any suffix to control the way the setting is applied, simply embed the class
name as an argument in the class=’…’ section of the object declaration, like this:

Alternatively, scroll bars are actually only required on an object when you want to scroll it, so

you could choose to only display them when the mouse passes over scrollable text, like this:

Or maybe you have created a <textarea> field and only want scroll bars to appear when the

user clicks into it to begin typing, which you can do using the _f suffix, like this:

In this case, it’s important that the noscroll class is used in conjunction with autoscroll_f so

that the scroll bars will disappear when the object no longer has focus.
Here’s the HTML used to produce the screen grab in Figure 24-11:

The first instance of the poem has forced scroll bars, the second has none (but if the mouse is

passed over it, an automatic vertical scroll bar will appear), and the third has an automatic vertical
scroll bar.

The Classes

 Maximum Sizes
Using these classes, you can resize an object to better fill the amount of space allocated to it by its

containing object. For example, in Figure 24-12 a 250 by 167–pixel photograph is displayed in four
different ways within a 500 by 100–pixel boundary, using the nooverflow class to prevent any part
of the image from leaking outside of the boundary.

FIGURE 24-12 Setting an image’s dimensions to various maximum values

The first image is displayed using its default dimensions, but as it is taller than 100 pixels, the
bottom half is cut off.

The second image has had its width increased to that of the containing object and, because no
new size was specified for its height, the image has also been resized vertically by the browser to
retain the same relative dimensions. This time most of the image is now missing.

The third image has had its height set to that of the containing object and its width has been
accordingly reduced by the browser. Since the photo’s width is less than the width of the containing
object, the entire image is visible.

Lastly, the final image has been resized to the width and height of the containing object and,
while the whole image is in view, it has been horizontally stretched.

Classes and Properties
maxwidth
maxwidth_a
maxwidth_h
maxwidth_l
maxwidth_la
maxwidth_lh

Class to set an object’s width to that of its containing object (maxwidth), plus classes
to do so only if the object is actively being clicked (maxwidth_a) or hovered over
(maxwidth_h), and another three classes to set the width only for any links within the
object (maxwidth_l), any links within the object that are actively being clicked
(maxwidth_la), and any links within the object that are being hovered over
(maxwidth_lh)

maxheight
(etc…) Class to set an object’s height to that of its containing object

maxsize
(etc…) Class to set both an object’s width and height to those of its containing object

width Property for changing the width of an object
height Property for changing the height of an object

About the Classes
These classes apply a value of 100 percent to whichever property they refer, allowing you to set the
width, height, or both dimensions to those of the containing object. Where the object being resized is
an image, if only one dimension is resized, the other will be automatically resized by the browser to
retain the same aspect ratio.

The CSS rules used are either or both of the following:

You can also use the standard suffixes to apply the change only when an object is hovered over

or clicked, or only to links within an object.

How to Use Them
To change any dimensions of an object to those of its containing object, use one of the maxwidth,
maxheight, or maxsize classes, like this:

Or, for example, if you want the object to change only its height when hovered over, you would

use code such as this:

To change both dimensions at once, you would use the maxsize class, like this:

Here’s the HTML used to create Figure 24-12:

As always, this example file and its images are available for download from the companion web

site at webdeveloperscookbook.com.

The Classes

 Location
The classes in recipe group 13 offer a variety of absolute and relative positioning functions. For
example, in Figure 24-13 the totop, tobottom, toleft, and toright classes have been used to
place four images in the corners of their containing object.

http://webdeveloperscookbook.com

FIGURE 24-13 Moving images to the four corners of their containing object

Classes and Properties
totop Class to move an object to the top edge of its container
tobottom Class to move an object to the bottom edge of its container
toleft Class to move an object to the left edge of its container
toright Class to move an object to the right edge of its container

leftby0
leftby0_h

Class to move an object left by 0 pixels (or move it to the left edge of the
containing object); the _h suffix is used for applying the property only when it is
hovered over

leftby5 –
leftby100
(etc…)

Classes to move an object left by a value of 5 or from 10 through 100 pixels in
steps of 10; the _h suffix is used for applying the property only when it is hovered
over

rightby0 –
rightby100
(etc…)

Classes – as the leftby… classes but moves the object right

upby0 –
upby100
(etc…)

Classes – as the leftby… classes but moves the object up

downby0 –

downby100
(etc…)

Classes – as the leftby… classes but moves the object down

top
Property for changing the vertical distance of an object from the top of its
container, or for moving an object by relative vertical amounts

bottom
Property for changing the vertical distance of an object from the bottom of its
container, or for moving an object by relative vertical amounts

left
Property for changing the vertical distance of an object from the left of its
container, or for moving an object by relative horizontal amounts

right
Property for changing the vertical distance of an object from the right of its
container, or for moving an object by relative horizontal amounts

About the Classes
These classes access the top, bottom, left, and right properties of an object to either place it in
an absolute position or move it by a relative amount. The _h suffix of the class names is supported to
apply the change only when an object is hovered over, while the other suffixes are not supported,
since it is unlikely they would ever be used.

Some of the CSS rules used are similar to the following examples:

How to Use Them
To position an object against one or more edges of its containing object, you can use code such as the
following, which was used to create Figure 24-13:

This example creates a container out of a <div>, which is given a position property of relative

so it is no longer static (the default). Therefore, all the absolute objects within it will place
themselves relative to it.

Inside the <div>, the classes are used in pairs to place each of the photographs in the four
corners of the parent object.

Moving Objects by Relative Amounts
You can also move objects relative to their current position by 5 pixels, or any amount between 10
and 100 pixels in steps of 10, like this:

This example moves the object down and to the right by 50 pixels. If the object doesn’t already

have a position, it will be placed 50 pixels down from the top and in from the left edge of its
containing object.

The Classes

 Selective Margins
Using the classes in this group of recipes, you can specify or change any of the four margins of an
object by 5 pixels, or by any amount between 10 and 100 pixels, in steps of 10. In Figure 24-14, 11
<div> tags have been created, each one resting on the left edge of the browser, but using classes of
leftmargin5_h through leftmargin100_h to indent them by the specified amount when the mouse
passes over. In the screen grab, the mouse is currently over the <div> using the leftmargin70_h
class.

FIGURE 24-14 A collection of objects set to indent by differing amounts when hovered over

Classes and Properties
leftmargin0
leftmargin0_h

Class to set the left margin of an object to zero pixels, the _h suffix is used
for applying the property only when it is hovered over

leftmargin5 –
lefmargin100 (etc…)

Classes to set the left margin of an object to 5 pixels, or from 10 through
100 pixels in steps of 10

rightmargin0 (etc…) Class – as leftmargin0 but for the right margin
topmargin0 (etc…) Class – as leftmargin0 but for the top margin
bottommargin0
(etc…) Class – as leftmargin0 but for the bottom margin

margin-left Property to change an object’s left margin
margin-right Property to change an object’s right margin

margin-top Property to change an object’s top margin
margin-bottom Property to change an object’s bottom margin

About the Classes
With these classes, you can change the margins of an object by amounts between 0 and 100 pixels, in
steps of 10, and also by 5 pixels. The _h suffix for the classes is supported to change a property only
when it is being hovered over. The other standard suffixes are not available since they are highly
unlikely to be used.

Some of the CSS rules used are similar to the following examples:

How to Use Them
To use these classes, refer to the one you need by placing its name in the class=’…’ argument of an
HTML tag, like this:

You can also apply the hover versions of these classes, for example, enabling you to create

professional-looking animations for menus, like this:

Following is the code used to create the screen shown in Figure 24-14:

Each item has a background fill color of lime green, is aligned with the left side of the browser,

and indents by the number of pixels specified in the class name it uses when the mouse passes over it.
Margins are external to objects and are therefore invisible, as can be seen in Figure 24-14,

where the lime green background color has not been apportioned to the margin area of the hovered
element.

The Classes

 Selective Padding
You’ve already seen the basic padding classes provided in Recipe 7. You can also use this collection
of classes to give you even greater control over which edges to pad and by how much.

In Figure 24-15, a collection of objects have been given varying leftpadding.._h
properties. The mouse is currently over the one assigned a value of 90 pixels, which has therefore
been indented by that amount.

FIGURE 24-15 The left padding of these objects is set to differing amounts when hovered over.

Classes and Properties
leftpadding0
leftpadding0_h

Class to set the left padding of an object to zero pixels; the _h suffix is
used for applying the property only when it is hovered over

leftpadding5 –
lefpadding100
(etc…)

Classes to set the left padding of an object to 5 pixels, or from 10 through
100 pixels in steps of 10

rightpadding0
(etc…) Class – as leftpadding0 but for the right padding

toppadding0 (etc…) Class – as leftpadding0 but for the top padding
bottompadding0
(etc…) Class – as leftpadding0 but for the bottom padding

padding-left Property to change an object’s left padding
padding-right Property to change an object’s right padding
padding-top Property to change an object’s top padding

padding-bottom Property to change an object’s bottom padding

About the Classes
With these classes, you can change the padding of an object by amounts between 0 and 100 pixels in
steps of 10, and also by 5 pixels. The _h suffix for the classes is supported to change a property only
when it is being hovered over. The other standard suffixes are not available since they are highly
unlikely to be used.

Here are some examples of the CSS rules used by these classes:

How to Use Them
These classes provide similar results to the margin classes in the previous recipe group, except that
the padding of an object is internal to it and so the padded area assumes the properties of the rest of
the object. This can be seen in Figure 24-15, in which the 90 pixels–wide padding that has been
applied to the left side of the indented span has assumed the lime green background color of the
object. Here is the code used to create the screen grab:

Because of the padding property’s ability to seem to stretch an object, you will see this feature

used to good effect in Chapter 33, in conjunction with animated transitions to smoothly move menu
items in and out again as the mouse hovers over them.

The Classes

 Border Style
Using the classes in this recipe, you can choose exactly the kind of border you want for an object. For

example, Figure 24-16 shows two rows of objects, the first of which has one of each different border
style, while the second is the same but the border styles are activated only when the mouse passes
over them. In the screen grab, the mouse is currently hovering over the object with grooved borders in
the second row.

FIGURE 24-16 The eight different border style classes and their hover equivalents

Classes and Properties
bdotted
bdotted_h

Classes to set an object’s border style to dotted either immediately, or when
hovered over

bdashed
bdashed_h

Classes to set an object’s border style to dashed either immediately, or when
hovered over

bsolid bsolid_h
Classes to set an object’s border style to solid either immediately, or when
hovered over

bdouble
bdouble_h

Classes to set an object’s border style to double either immediately, or when
hovered over

bgroove
bgroove_h

Classes to set an object’s border style to groove either immediately, or when
hovered over—this effect depends on the border color

bridge bridge_h
Classes to set an object’s border style to ridge either immediately, or when
hovered over—this effect depends on the border color

binset binset_h
Classes to set an object’s border style to inset either immediately, or when
hovered over—this effect depends on the border color

boutset
boutset_h

Classes to set an object’s border style to outset either immediately, or when
hovered over—this effect depends on the border color

border-style Property for changing an object’s border style

About the Classes
These classes enable the selection of all eight different types of border styles, which can be applied
immediately, or only when hovered over. They achieve this effect using the border-style property,
like this:

How to Use Them
As soon as you choose a border style for an object, the border will be displayed, but some of the
classes only show these styles at their best when a mid-range color is also supplied (see the border
color recipe group).

To add a border to an object, refer to the border style in a class, like this:

Following is the HTML used to create the screen grab in Figure 24-16:

To create space around the text, the padding class has been used, as has the class blime

(explained a little further on), which sets the border color to lime green in order to clearly display the
different border types that rely on color.

The first set of objects displays the borders immediately, while the second does so only when
hovered over.

The Classes

 Border Width
With these recipe classes, you can specify 10 different border widths either immediately or when the
mouse hovers over an object. Figure 24-17 shows the same code from the previous example except
that all the borders have been given widths of 10 pixels.

FIGURE 24-17 You can specify up to 10 different border widths with these classes.

Classes and Properties
bwidth1
bwidth1_h

Classes to set an object’s border width to 1 pixel either immediately or
when hovered over

bwidth2 bwidth2_h
Classes to set an object’s border width to 2 pixels either immediately or
when hovered over

bwidth3 bwidth3_h
Classes to set an object’s border width to 3 pixels either immediately or
when hovered over

bwidth4 bwidth4_h
Classes to set an object’s border width to 4 pixels either immediately or
when hovered over

bwidth5 bwidth5_h
Classes to set an object’s border width to 5 pixels either immediately or
when hovered over

bwidth10 bwidth10_h
Classes to set an object’s border width to 10 pixels either immediately or
when hovered over

bwidth15 bwidth15_h
Classes to set an object’s border width to 15 pixels either immediately or
when hovered over

bwidth20 bwidth20_h
Classes to set an object’s border width to 20 pixels either immediately or
when hovered over

bwidth25 bwidth25_h
Classes to set an object’s border width to 25 pixels either immediately or
when hovered over

bwidth50 bwidth50_h
Classes to set an object’s border width to 50 pixels either immediately or
when hovered over

border-width Property for changing the width of a border

About the Classes
These classes let you change the width of a border to a value from 1 through 5 pixels, 10 through 25
pixels in steps of 5, or 50 pixels. You can also use the hover versions of the classes to apply the
change only when an object is being hovered over by the mouse.

To achieve this effect, the classes use the border-width property, like this:

How to Use Them
Simply use the name of the class you need for the width you want in your HTML, like this:

You can also use the hover versions of these classes, as with the following HTML, which was

used to create Figure 24-17:

In each of these objects, a different border style is specified, with a width of 10 pixels and

standard padding. Once again, the blime class (see the next section) has been used to set a border
color that will show all the styles to their best effect.

The Classes

 Border Color
With this final group of border classes, you can choose any of 21 different colors to apply to a border
either immediately, or when it is moused over. Figure 24-18 expands on the example in the previous
section to present two rows of objects using a variety of different border styles, widths, and colors.
The second row of classes applies only when the mouse passes over an object. In the figure, it is
currently over the Inset object.

FIGURE 24-18 A selection of the different border types, widths, and colors available

Classes and Properties

baqua baqua_h bblack bblack_h bblue bblue_h bbrown bbrown_h
bfuchsia bfuchsia_h bgold bgold_h bgray bgray_h bgreen bgreen_h
bkhaki bkhaki_h blime blime_h bmaroon bmaroon_h bnavy bnavy_h
bolive bolive_h borange borange_h bpink bpink_h bpurple
bpurple_h bred bred_h bsilver bsilver_h bteal bteal_h bwhite
bwhite_h byellow byellow_h

Classes to
change the
border color of
an object either
immediately or
when it is
moused over
Property to

Border-color change the
border color of
an object

About the Classes
These classes provide a wide range of colors that you can apply to borders either immediately or
when they are moused over. The property that is manipulated is border-color, like this:

How to Use Them
Using these color classes is as easy as putting their names within an object’s class=’…’ argument,
like this:

In the following example HTML (which was used to create Figure 24-18), a variety of different

colors has been used, along with different border styles and widths:

The Classes

 No Outline
To enable people to tab through a document more easily, some browsers display a dotted outline
around the object being focused on, as well as highlight it. This certainly helps make it clear which
object has the focus, but as you can see in Figure 24-19 where Button 2 has the focus, the dotted
border inset into the button destroys much of the button’s 3D gradient effect.

FIGURE 24-19 Button 2 shows a highlight and a dotted outline.

On the other hand, in Figure 24-20, Button 3 is now focused on, and because it is using the
nooutline class, there is no dotted outline. As you can see, there is still a highlight around the
button, which is sufficient to inform you that the button has the focus, and the button itself looks much
cleaner as a result. And on a color monitor (rather than a grayscale printed page like this), it looks
even better.

FIGURE 24-20 The dotted outline has been removed from Button 3, leaving only the highlight.

Classes and Properties
nooutline Class to remove the dotted border from an object that has focus
outline Property used by most browsers to enable or disable the outline

border
Property used by Firefox and other Mozilla-based browsers (in conjunction
with the ::-moz-focus-inner pseudo-class) to enable or disable the outline

About the Class
When applied to an object, this class prevents it from displaying a dotted outline when it has focus.
This is achieved on most browsers with the : focus pseudo-class and the outline property, like
this:

However, Firefox and other Mozilla-based browsers need to be handled differently, so the

following alternative is used:

When the outline is removed in a Firefox browser, it reduces the size of a button by the amount

of the removed outline, so the padding property is updated to increase the button’s size back again.

How to Use It
To prevent an object that has focus from displaying a dotted outline, just insert the nooutline class into
the object’s class=’…’ argument, like this:

Here is the HTML used to create Figures 3-19 and 3-20. If you press the TAB key several times

or click the buttons, you’ll see that Button 3 does not show the dotted outline that the others display:

The Class

CHAPTER 25
Text and Typography

This chapter features a wide range of powerful recipes for managing most aspects of using and
presenting fonts. These include quick access to font families, embedding any of an additional 19 fonts
courtesy of Google, changing text size alignment and styles, and adding colors and drop shadows.

There are also handy classes to transform your text, automatically add icons and other characters
such as quotation marks, create professional drop-cap effects, and more. Between them, there are
over 720 classes for doing almost everything you could want to do with text, without having to write
your own CSS rules.

 Fonts
Choosing a font for displaying text is very easy using the classes in this recipe group, as you only
need to enter a short name into the class argument of an object. Plus, each font offers fallback fonts so
that systems without the exact font you choose will display the closest match that they have. You can
also decide when to enable the fonts since there are six versions of each class.

In Figure 25-1, all the available font classes have been used twice: once to display the
associated fonts immediately, and again for mouse hover versions. In the second group of fonts,
“Lucida Grande” is currently being hovered over.

FIGURE 25-1 A typical collection of fonts on a Windows computer

Classes and Properties

arial
arial_a
arial_h
arial_l
arial_la
arial_lh

Classes to assign a font to an object (arial), to do so only when it is actively being
clicked (arial_a), or when it is being hovered over (arial_h); also three classes to
enable a font only for a link within the object (arial_l), a link within the object that is
being clicked (arial_la), or a link within the object that is being hovered over
(arial_lh)

arialb
(etc…) Class – the same as Arial, but for Arial Bold

ariaIn
(etc…) Class – the same as Arial, but for Arial Narrow

avant
(etc…) Class – the same as Arial, but for Avant Garde

bookman
(etc…) Class – the same as Arial, but for Bookman

century
(etc…) Class – the same as Arial, but for Century Gothic

copper
(etc…) Class – the same as Arial, but for Copperplate

comic
(etc…) Class – the same as Arial, but for Comic Sans MS

courier
(etc…) Class – the same as Arial, but for Courier

couriern
(etc…) Class – the same as Arial, but for Courier New

garamond
(etc…) Class – the same as Arial, but for Garamond

gill
(etc…) Class – the same as Arial, but for Gill Sans MT

georgia
(etc…) Class – the same as Arial, but for Georgia

helvetica
(etc…) Class – the same as Arial, but for Helvetica

impact
(etc…) Class – the same as Arial, but for Impact

lucida
(etc…) Class – the same as Arial, but for Lucida

lucidac
(etc…) Class – the same as Arial, but for Lucida Console

palatino
(etc…) Class – the same as Arial, but for Palatino

tahoma
(etc…) Class – the same as Arial, but for Tahoma

times
(etc…) Class – the same as Arial, but for Times

timesnr
(etc…) Class – the same as Arial, but for Times New Roman

trebuchet
(etc…) Class – the same as Arial, but for Trebuchet MS

verdana
(etc…) Class – the same as Arial, but for Verdana

font-
family Property used for changing font

About the Classes
These classes use the CSS font-family property to assign the font you choose. Fallback fonts are
provided for each to ensure that if a computer doesn’t have a particular font, it can at least display the
closest one it does have.

For example, the copper class uses the following rule:

How to Use Them
To use a font class, enter its name in the class argument of an object. For example, to change to the
Impact font, you could use HTML such as this:

Or, to change a font only when the mouse hovers over the object, you might use this:

Or you can combine classes so that, for example, to change the font of an object to Verdana, and

then to Georgia when it is hovered over, you might use this:

You can also use the other class suffixes to enable a font only when it is actively clicked

(classname_a), or when it is a link that is part of the object (classname_l), or when it is a clicked
link that is part of the object (classname_la), or when it is a hovered link that is part of the object
(classname_lh).

Here is the code used to create Figure 25-1:

The Classes

 Font Styles
Choosing font styles with CSS can involve up to three different properties. But when you want to
choose font styles such as bold, italic, or underline, these classes are much simpler. Figure 25-2
shows the various styles being applied one at a time until all are employed.

FIGURE 25-2 The various font styles supported by these classes

(Internet Explorer doesn’t support the blink property, so on that browser, any blinking text is shown
in bold).

In the second row, the text is set to change its font only when hovered over, as is the case with
the word Underline.

Classes and Properties
b
b_a
b_h
b_l
b_la
b_lh

Classes to assign a font to bold (b), to do so only when it is actively being clicked
(b_a), or when it is being hovered over (b_h); also three classes to enable bold for a
link within the object (b_l), a link within the object that is being clicked (b_la), or a
link within the object that is being hovered over (b_lh)

i (etc…) Class – as b but to enable italic text
l (etc…) Class – as b but to enable overline text
n (etc…) Class – as b but to restore normal styles
o (etc…) Class – as b but to enable oblique text
u (etc…) Class – as b but to enable underlined text
t (etc…) Class – as b but to enable linethrough text
w (etc…) Class – as b but to enable winking (or blinking) text, or bold in Internet Explorer
font-
weight Property for changing the weight of a font

font-style Property for changing the style of a font
text-
decoration Property for adding a decoration to a font

About the Classes
These classes use three different CSS rules to create different font styles. They also support the
suffixes such as _h to apply the new style only when an object is hovered over, and so on. For
example, here are the CSS rules used to restore a font’s styling to normal:

Out of all modern browsers, only Internet Explorer will not display blinking text, so the bold

attribute is selected instead. This is achieved using a CSS “hack” that only Internet Explorer can see,
like this:

By adding the \0 to the end of the rule, all browsers except Internet Explorer will ignore the

rule, while IE will accept the rule and ignore the \0. This is also the case with the current preview
version of IE 9.

How to Use Them

These font class names have been kept to single letters because they are frequently used, so it saves
on typing and keeps class arguments short. To use them, just add the class letter (or letter plus suffix)
to a class argument, like the following, which sets both an Arial font and italic styling:

This is the HTML used to create the screen grab in Figure 25-2:

The Classes

 Text Alignment
With these classes, you can choose between applying left, center, right, or full justification, as shown
in Figure 25-3, which includes one example of each type of justification (taken from Charles Dickens’
novel, A Tale of Two Cities):

FIGURE 25-3 The four different types of text justification: left, center, right, and full.

Classes and Properties
leftjustify
leftjustify_a
leftjustify_h
leftjustify_l
leftjustify_la
leftjustify_lh
lj lj_a lj_h
lj_l lj_la
lj_lh

Classes to left-align text—the default—(leftjustify), to do so only when it is
actively being clicked (leftjustify_a), or when it is being hovered over
(leftjustify_h); also three classes to enable bold for a link within the object
(leftjustify_l), a link within the object that is being clicked
(leftjustify_la), or a link within the object that is being hovered over
(leftjustify_lh), plus six shorthand versions (lj…)

center (etc…)
c (etc…) Class – as leftjustify but for centered text

rightjustify
(etc…) rj
(etc…)

Class – as leftjustify but for right-justified text

justify (etc…)
j (etc…) Class – as leftjustify but for fully justified text

text-align Property used for aligning text

About the Classes
These classes use the text-align property to set the alignment of some text, like this:

How to Use Them
You can use these classes to change the justification of text by entering their names into the class
argument of an object, like this:

Or you may prefer the shorthand class names, like this:

You can also use the standard suffixes to change the justification only when the text is hovered

over, like this:

Here is the HTML used for the screen grab in Figure 25-3:

Each <div> is set to a width of 125 pixels, except for the second one, which has to be a little

wider since centered text takes up more space. Also each one is given a different background color
for clarity, and they are floated to the left so they line up in a row.

The Classes

 Text Point Size
The classes in this group let you specify the point size for text from 1 to 100 points with varying
intervals: 1–20 in steps of 1 point, 25–50 in steps of 5 points, and 60–100 in steps of 10 points.

In Figure 25-4, there are two rows of text. The first contains three immediately set font sizes, and
the second uses the classes to set the font size only when an object is hovered over, as is the case
with the text 25pt.

FIGURE 25-4 A variety of font sizes applied using these classes

Classes and Properties
pt1
pt1_a
pt1_h
pt1_l
pt1_la
pt1_lh

Class to change the text size to 1 point (pt1), plus classes to do so only if the object is
actively being clicked (pt1_a) or hovered over (pt1_h), and another three classes to
change the point size of any links within the object (pt1_l), any links within the object that
are actively being clicked (pt1_la), and any links within the object that are being hovered
over (pt1_lh)

pt2 –
pt20
(etc…)

Classes – in steps of 1 point, as pt1

pt25 –
pt50
(etc…)

Classes – in steps of 5 points, as pt1

pt60 –
pt100
(etc…)

Classes – in steps of 10 points, as pt1

font-
size

Property containing the text font size

About the Classes
You can change the size of a font in many ways, such as by using ems or pixels and so on, but one of
the most common is to use point size, and so the most useful sizes have been given class names of pt1
through pt20, pt25 through pt50 in steps of 5 points, and pt60 through pt100 in steps of 10 points.
These are applied using the font-size class, like this:

How to Use Them
To set the point size of some text, place the matching class name in the class argument of the object
containing the text, like this:

You can also use the standard class suffixes to specify when the font size is applied, such as the

font size hover class, like this:

And you can combine the class, too. For example, the following code sets the enclosed text to

10pt, or 14pt when hovered, and to 12pt when clicked:

Here is the code used to create the screen grab in Figure 25-4:

The Classes

 Text Colors
In Chapter 24, a number of classes were provided that let you change the background color of an
object. These classes partner them by letting you change the text color. The same set of 21 colors is
supported, along with all the usual suffixes to control how they are applied.

In Figure 25-5, all the colors are shown twice: the first set uses the main text color class names
to immediately apply the color, while the second set uses the _h suffix so the color is only applied
when the mouse passes over an object, as it has over the word lime in the screen grab.

FIGURE 25-5 The 21 different colors supported by these classes, followed by the same colors as
hover-over classes

Classes and Properties
aqua
aqua_a
aqua_h
aqua_l
aqua_la
aqua_lh

Class to change the background color of an object to aqua (aqua), plus classes to do so
only if the object is actively being clicked (aqua_a) or hovered over (aqua_h), and
another three classes to change the background of any links within the object (aqua_l), any
links within the object that are actively being clicked (aqua_la), and any links within the
object that are being hovered over (aqua_lh)

black
(etc…) Classes – as aqua but for black

blue
(etc…) Classes – as aqua but for blue

brown
(etc…) Classes – as aqua but for brown

fuchsia

(etc…) Classes – as aqua but for fuchsia
gold
(etc…) Classes – as aqua but for gold

gray
(etc…) Classes – as aqua but for gray

green
(etc…) Classes – as aqua but for green

khaki
(etc…) Classes – as aqua but for khaki

lime
(etc…) Classes – as aqua but for lime

maroon
(etc…) Classes – as aqua but for maroon

navy
(etc…) Classes – as aqua but for navy

olive
(etc…) Classes – as aqua but for olive

orange
(etc…) Classes – as aqua but for orange

pink
(etc…) Classes – as aqua but for pink

purple
(etc…) Classes – as aqua but for purple

red
(etc…) Classes – as aqua but for red

silver
(etc…) Classes – as aqua but for silver

teal
(etc…) Classes – as aqua but for teal

white
(etc…) Classes – as aqua but for white

yellow
(etc…) Classes – as aqua but for yellow

color Property containing text color settings

About the Classes
The reason for using the _b suffix for the background colors in Chapter 24 is now clear: It’s because
the text colors in this recipe group have the non-_b names. As with the background classes, there are
21 color choices, and six different ways of applying them using the standard class suffixes such as _h
to apply a color to an object only when it is being hovered over by the mouse.

The property being manipulated is color, like this:

How to Use Them
To change the color of a section of text, enter the matching class name (and any optional suffix) in the
class argument of the object’s HTML tag, like this:

You can also use the standard dynamic suffixes so that, for example, a section of text can be

changed to navy when it is hovered over like this:

Here is the code used to create the image in Figure 25-5:

For clarity, the pair of color sets is enclosed in a <div> that sets the text to bold 20 point.

The Classes

 Text Shadows
Using these classes, you can apply shadows of varying strengths underneath sections of text. Figure
25-6 shows two sets of shadowed text. The first has used the main class names to immediately apply
the shadows, while the second has used the hover versions of the classes to apply the shadows only
when the objects are hovered over, as is currently the case with the second instance of the phrase
“Medium Shadow.”

FIGURE 25-6 Applying shadows to text using the standard and hover versions of the classes

This grab was taken using Internet Explorer, and the filter property used for creating these
shadows is much harsher than those created in most other modern browsers, which also blur and

round the shadows for a softer effect.

Classes and Properties
shadow
shadow_a
shadow_h
shadow_l
shadow_la
shadow_lh

Class to place a shadow underneath some text (shadow), plus classes to do so
only if the object is actively being clicked (shadow_a) or hovered over
(shadow_h), and another three classes to place the shadow under any links within
the object (shadow_l), any links within the object that are actively being clicked
(shadow_la), and any links within the object that are being hovered over
(shadow_lh)

lightestshadow
(etc…) Class – as shadow but creates the lightest shadow

lightshadow
(etc…) Class – as shadow but creates a light shadow

darkshadow
(etc…) Class – as shadow but creates a dark shadow

darkestshadow
(etc…) Class – as shadow but creates the darkest shadow

text-shadow Property to apply a shadow to text

filter
Property used by Internet Explorer to apply shadows and many other features to
objects

About the Classes
These classes apply shadows to text using the CSS text-shadow property or the Microsoft
proprietary filter property in Internet Explorer, like this:

How to Use Them
To use these classes, enter their names into the class argument of the containing object for some text.
I recommend you use only the <div> tag when you want shadowed text (since Internet Explorer—
even the version 9 preview—refuses to add shadows to text within a or any other inline
object), like this:

Alternatively, Internet Explorer will add shadows if a is floated, as in the following,

which uses the lf class (short for leftfloat):

You can also use the hover and other forms of classes, as in the following, which adds the

shadow only when hovered over:

Following is the HML used to create Figure 25-6. In it, the tags all use the lf class to

float them so that Internet Explorer will be able to create shadows.

When you hover over the first five elements, the background changes to gray (using the gray_bh

class) so you can see the effect of the different lightnesses of shadow on different backgrounds. If you
hover over the second set of five elements, the shadow will be applied only as the mouse passes over
them.

The Classes

 Text Transformations
When you need to quickly change the case of a section of text, you can simply apply one of the classes
in this recipe group. Figure 25-7 shows the four different transformations being used on a famous
Albert Einstein quotation.

FIGURE 25-7 These classes provide a quick means of transforming sections of text.

Classes and Properties
caps
caps_a
caps_h
caps_l
caps_la
caps_lh

Class to change the first letter of each word in a section of text to a capital letter (caps),
plus classes to do so only if the object is actively being clicked (caps_a) or hovered
over (caps_h), and another three classes to change the case of any links within the
object (caps_l), any links within the object that are actively being clicked (caps_la),
and any links within the object that are being hovered over (caps_lh)

scaps
(etc…) Class – as caps but changes the entire text to small capital letters

lower
(etc…) Class – as caps but changes the entire text to all lowercase

upper
(etc…) Class – as caps but changes the text to all uppercase

text-
transform Property to capitalize text or change it to lower- or uppercase

font-
variant

Property to implement a font variant such as small capital letters

About the Classes
These classes make use of the text-transform and font-variant properties to change a selection
of text, like this:

How to Use Them
You can transform a section of text by using one of these classes in the class argument of the
containing object, like this:

The standard suffixes are also available for transforming the text only under certain conditions,

such as when the mouse hovers over it, like this:

Here is the HTML used for the screen grab in Figure 25-7:

The Classes

 Encapsulation
Encapsulation is a neat trick that you can use to enclose a section of text within other text or objects.

In this case, it is used to automatically add quotation marks and other symbols before and after a
section of text, as shown in Figure 25-8, in which a phrase is repeated five times, each using a
different encapsulation class.

FIGURE 25-8 Enclosing a section of text with symbols using the encapsulation classes

Classes and Properties
quotes
quotes_h

Classes to place curly quotation marks before and after a section of text (quotes), or
only when the text is hovered over (quotes_h)

parens
(etc…) Class – as quotes but for parentheses

brackets
(etc…) Class – as quotes but for brackets

braces
(etc…) Class – as quotes but for braces

chevrons
(etc…) Class – as quotes but for chevrons

content Property used to insert content before and after some text

About the Classes
These classes use the pseudo-classes :before and :after to insert characters before and after a
section of text using the content property, as in the following, which places curly quotation marks
before and after the text:

How to Use Them
When you want to encapsulate some text, enter the class needed into the class argument of the text’s

container, like this:

Or, you could add the quotes only when the mouse hovers over the text, for example, like this:

The other dynamic suffixes (such as _a, and so on) are not supported by these classes since they

would almost certainly never be used.

The Classes

 Google Fonts
Google has kindly placed a number of fonts on their servers that can be easily included in your web
pages by referencing them in the class arguments of this recipe group.

Figure 25-9 shows all the Google fonts being used at the same time. This is something you may
not want to do normally, since each font takes a second or two to download and install. Generally,
you will only want two or three fonts on a page anyway, or it will begin to look too cluttered.

FIGURE 25-9 The 19 Google fonts supported by these classes

Classes and Properties

cantarell
cantarell_a
cantarell_h
cantarell_l
cantarell_la
cantarell_lh

Class to select a Google font (cantarell), plus classes to do so
only if the object is actively being clicked (cantarell_a) or
hovered over (cantarell_h), and another three classes to change
the font of any links within the object (cantarell_l), any links
within the object that are actively being clicked (cantarell_la),
and any links within the object that are being hovered over
(cantarell_lh)

cardo crimson droidsans
droidsansm droidserif
imfell inconsolata
josefin lobster molengo
neuton nobile oflsorts
oldstandard reenie
tangerine vollkorn yanone

Classes – as cantarell but for different font faces

font-family Property for specifying a font to apply

About the Classes
These classes provide a shorthand way of using the Google fonts. They access the font-family CSS
property to do so, like this:

How to Use Them

To use the Google fonts, you will need to include a line such as the following for every Google font
you plan to use:

The class names and their respective font family names to use in place of fontfamily are listed in

Table 25-1. Note that the + symbol is used instead of spaces.

Class Name Font Name for Use in the Link
cardo Cardo
cantarell Cantarell
crimson Crimson+Text
droidsans Droid+Sans
droidsansm Droid+San+Mono
droidserif Droid+Serif
imfell IM+Fell+English
inconsolata Inconsolata
josefin Josefin+Sans+Std+Light
lobster Lobster
molengo Molengo
neuton Neuton
nobile Nobile
oflsorts OFL+Sorts+Mill+Goudy+TT
oldstandard Old+Standard+TT
reenie Reenie+Beanie
tangerine Tangerine
vollkorn Vollkorn
yanone Yanone+Kaffeesatz

TABLE 25-1 The Google Font Families and Recipe Class Names

To load in the Crimson Text font, for example, you would use the following code in the <head>
section of a web page:

Then, in the page’s body you can use the font like this:

The following is the <head> code used to create Figure 25-9. It’s a little long-winded because it

loads in every single font (you will probably only want a few of them):

And here is the code from the body of the example:

NOTE In Chapter 30, I’ll introduce a method you can use to automate all this, as long as your
users have JavaScript, but the method in this recipe will allow you to display Google fonts to
all users of recent browsers, regardless of having JavaScript or not.

The Classes

 Drop Cap
Placing a drop-cap at the start of an article is a mainstay of print design, but it’s also easy to achieve
on the Web with this recipe, as shown in Figure 25-10, which features a famous quotation from
Shakespeare’s play, Macbeth.

FIGURE 25-10 This recipe makes it easy to add drop-caps to your text.

Classes and Properties
dropcap
dropcap_h

Classes to turn the contents of an object into a drop capital (dropcap), or do so
only when the object is hovered over (dropcap_h)

font-size Property to change the font size of text
line-height Property to change the line height of text
margin-right Property to change an object’s right margin width
margin-bottom Property to change an object’s bottom margin width
float-left Property to float an object to the left

About the Class
This class enlarges the text within it by five times and lines it up with the following text to create a
drop-cap. This is achieved by setting the font-size property to 500 percent. Also, to neatly align the
drop-cap, the line-height, margin-right, and margin-bottom of the object are tweaked.
Finally, the object is floated to the left using the float property to let the following text flow around
it.

How to Use It
To use this class, you should place the initial letter of some text within a and use the dropcap
class in the class argument, like this:

A hover version of the class (dropcap_h) is also available, although the other dynamic versions

such as _a are not, as they are most unlikely to be used.

The Class

 Columns
If you would like to present your text in columns to many of your users, these classes will
automatically lay them out for you using between two and five columns inclusive. I say many of your
users because, unfortunately, no version of IE (including the preview of version 9) supports the web
standard for columns, and neither does the Opera browser.

Nevertheless, on all other modern browsers columns work well, as shown by Figure 25-11,
which shows these classes being used and displayed in the Google Chrome browser.

FIGURE 25-11 Create multiple columns on browsers that support the feature.

Classes and Properties
columns2
columns2_h

Classes to reformat text into two columns (columns2), or to do so only when the
text is hovered over (columns2_h)

columns3
(etc…) Class – as columns2 but for three columns

columns4
(etc…) Class – as columns2 but for four columns

Columns5
(etc…) Class – as columns2 but for five columns

-moz-column- Property to specify the type of ruled line between columns on Firefox and other

rule Mozilla browsers
-webkit-
column-rule

Property to specify the type of ruled line between columns on Safari and Google
Chrome

-o-column-rule
Property to specify the type of ruled line between columns on Opera (when/if it is
supported)

column-rule
Property to specify the type of ruled line between columns on all other browsers
(but not IE)

-moz-column-
gap

Property to specify the gap between columns on Firefox and other Mozilla
browsers

-webkit-
column-gap Property to specify the gap between columns on Safari and Google Chrome

-o-column-gap Property to specify the gap between columns on Opera (when/if it is supported)
column-gap Property to specify the gap between columns on all other browsers (but not IE)
-moz-column-
count Property to specify the number of columns on Firefox and other Mozilla browsers

-webkit-
column-count Property to specify the number of columns on Safari and Google Chrome

-o-column-
count Property to specify the number of columns on Opera (when/if it is supported)

column-count Property to specify the number of columns on all other browsers (but not IE)

About the Classes
These classes display text in the number of columns you choose, between two and five inclusive,
using the CSS column rules, as in the following example, which creates a two-column display:

Firefox and other Mozilla-based browsers require –moz placed before these properties, and

Apple Safari and Google Chrome require –webkit. Although Opera doesn’t yet support columns, it
seems likely that the browser will do so soon, so to future-proof the classes, versions of the
properties prefaced with –o are also included.

How to Use Them
To use these classes, decide the number of columns you want and place the relevant class in the class
argument of the text’s container, like the following, which was used to create the screen grab in
Figure 25-11:

Neither Opera nor Microsoft Internet Explorer has caught up with the rest of the Web on this

feature, so the text will simply display in a single column on those browsers. If you wish to have them
also display columns, you will need to create an alternative section of HTML, which might look
something like this:

The Classes

 Text Indent
Indenting the first line of a paragraph is an alternative to separating paragraphs with extra line breaks.
It is commonly used in print typography. You can easily implement this feature too using these
classes, as shown in Figure 25-12, in which three different indent classes have been applied to the
same piece of text.

FIGURE 25-12 These classes enable indenting the first line of paragraphs by different amounts.

Classes and Properties
indent1
indent1_h

Classes to indent the first line of a section of text by 1 percent of the containing
object’s width (indent1), or to do so only when the text is hovered over
(indent1_h)

indent2 –
indent10
(etc…)

Class – as indent1 for 2 to 10 percent indent

text-indent Property for indenting the first line of a section of text

About the Classes
These classes use the CSS text-indent property to indent the first line of a section of text by
between 1 and 10 percent of the width of the containing object, like this:

Percentage values are used to make the classes scalable for all font sizes.

How to Use Them
When you want the first line of a section of text to be indented, use one of these classes in the class
argument of the text’s container, like the following, which indents the first line by 5 percent:

Or more likely you will use the class within a <p> tag, like this:

The hover version suffix of these classes (_h) is also supported, but the other dynamic variants

are not, as they are very unlikely to ever be used.

TIP If you do use <p> tags with these classes, you may wish to modify the top and/or bottom
margins for this tag since paragraphs will be separated and identified by indentation, rather
than by spacing.

The Classes

 Symbols
The final recipes in this chapter provide easy access to four commonly used icons: checkmark, cross,
e-mail, and star. Figure 25-13 shows the icons automatically attached to a set of four buttons. A
second set uses the hover versions of the classes in which the icons are initially lighter, but darken
when hovered over (although, unfortunately, not in Internet Explorer when used on a button).

FIGURE 25-13 Use these classes to automatically add icons to text.

Classes and Properties
check
check_h

Classes to preface text (or any object) with a checkmark icon (check), or to do so only
when the text is hovered over (check_h)

cross Class – as check but for a cross icon
email Class – as check but for an e-mail icon
star Class – as check but for a star icon
font-
family Property to change the font

font-
weight Property to change the weight of a font

color Property to change the color of text
content Property to add content to an object
opacity Property used by non-IE browsers for opacity setting
filter Property used by Internet Explorer for opacity and other features

About the Classes
These classes use the content property to place an icon before the text (or any object) that uses them.
The text is also set to Courier with the font-family property, bold using the font-weight property,
with colors set to green for check, red for cross, blue for email, and yellow for star, using the
color property.

To create the hover effect, the opacity property is set to 50 percent, or 100 percent when
hovered over. Microsoft browsers use the alternate filter property for this.

How to Use Them
To use these classes, simply refer to them in the class argument of an object, as with the following
HTML, which was used to create Figure 25-13, and also utilizes the hover versions of the classes:

The Classes

CHAPTER 26
Menus and Navigation

This chapter explores a range of classes used for creating buttons and vertical and horizontal menus,
and for implementing top and bottom dock bars similar to those used by Mac OS X.

There’s also a handy class for creating tooltips that you can format in a variety of different ways.
Between them, you can provide a professional range of menuing and navigation aids for your web
visitors.

 Buttons
These classes make it a simple matter to quickly create buttons when you need them. In Figure 26-1,
an Internet Explorer and Safari web browser have been placed next to each other, showing the same
web page. IE displays the different button sizes but cannot manage the rounded borders, whereas
Safari displays the buttons well. As you can see, even though IE is missing the rounded corners, it
degrades gracefully.

FIGURE 26-1 These classes make it easy to create great-looking buttons.

Classes and Properties
button Class to create a medium-sized button
smallbutton Class to create a small button

largebutton Class to create a large button
Padding Property to change an object’s padding
border Property containing border details such as width and color
font-size Property to change the size of a font
text-align Property to align text to the left, right, or center, or make it fully justified
width Property containing the width of an object
overflow Property for setting whether and how objects overflow their boundaries

About the Classes
Three classes are available in this recipe for creating medium, small, or large buttons. They also use
the :hover pseudo-class to provide professional effects when clicked or hovered over. To do this,
they change the object’s border, font-size, text-align, width, and overflow properties.

Hovered versions of the buttons change the border, while clicking them moves the button text
down and to the right to emulate a 3D press.

How to Use Them
You can use these classes with any objects, but they work best with <input type=’submit’> and
<button> tags. In conjunction with other classes, you can give the buttons rounded borders, different
background colors, gradients that change when clicked or hovered over, add shadow effects, and
more.

Here is the HTML used to create the screen grabs in Figure 26-1:

The first row of buttons offers plain features, while the second row adds rounded borders and

background colors. In the third row, the background colors have been replaced with gradient fills that
reverse when the buttons are clicked, while the fourth row adds a hover color of white to each button.

As I have already noted a few times, different browsers have different features, so they will fall
back gracefully when one isn’t supported. For example, Internet Explorer will not display rounded
borders, but Firefox, Opera, Safari, and Chrome will. There again, Opera won’t display gradient
background fills, and so on.

Even so, these button classes go a long way toward producing more engaging web sites, and as
browsers implement the missing features, these classes will display better, without you having to
change anything.

The Classes

 Vertical Menu
This recipe creates a dynamic vertical menu using only unordered lists. In Figure 26-2, three levels of
menus have been created, with each overlaying and offset from the previous, and with each submenu
set to overlay the chevron submenu indicator of its parent.

FIGURE 26-2 With this recipe, you can create professional-looking vertical menus.

Classes and Properties
vmenu Class to create a set of vertical menus
width Property containing the width of an object
height Property containing the height of an object

display Property used to set the display type of an object, such as block, inline, or
none

text-
decoration Property containing the decoration for a section of text, such as underlines

border Property containing all the border parameters of an object
margin Property containing all the margin parameters of an object
padding Property containing all the padding parameters of an object
line-height Property containing the height of a section of text
list-style Property containing the type of list
left Property containing the offset of an object from the left of its containing object
top Property containing the offset of an object from the top of its containing object
z-index Property controlling how far behind or in front the object is compared to others
float Property used to float an object to the right or left
position Property used to manage the position of an object, such as relative or absolute
content Property used to add content to an object from a CSS rule

About the Class
This class manipulates a large number of CSS properties in order to create menus and submenus that
dynamically appear and disappear as required. The way it works is to make all second- and third-
level menus (if any) invisible, and then it unhides them when they are due to appear.

The submenus are also given absolute positioning so they can be placed alongside the parent
menu, starting at the item that calls them up, and covering over the chevron symbol that indicates a
submenu is available.

How to Use It
To use this class, create a menu structure using unordered lists. The simplest of which might look like
this:

The entire menu is enclosed in a <div> with the class name of vmenu. This div has its

background color set to aqua, text within links set to black (or blue when hovered over), and
underlines in links are enabled when hovered over. Inside this there are five list elements within an
unordered list, and each of these elements contains a link.

For clarity, I have left a line break before and after the section labeled with <!—Beg Level 1 -
-> and <!—End Level 1 --> comments. These breaks indicate a complete section. When you open
this HTML in a web browser, it looks like Figure 26-3, in which the third menu entry is currently
being hovered over.

FIGURE 26-3 A single-level menu created with this class

Creating a Two-Level Menu
Using almost the same structure, it’s easy to add a second level of menus, as with the following
example, which has taken the previous HTML and expanded it to add three second-level menus:

When viewed in a browser, this example looks like Figure 26-4, in which the first of the three
menus has been opened by hovering over Item 1 in the main menu.

FIGURE 26-4 A two-level menu created with this class

To add each second-level menu, the and tags surrounding the entry to which the
menus are attached have been altered. The tag has become <li class=’vmenu1’> and the
 has been moved to after the position where the new menu was added. In other words, the
line…

…has become the following section of code (the new code being marked by the comments):

Creating a Three-Level Menu
You can take the process a step further by adding another level of menus, like the following code,
which was used to create Figure 26-2:

Here, one of the second-level items has been split into a menu in the same way the first-level
item was split into a second-level menu.

This example is now quite long, so to make its working clearer, the following is the underlying
set of nested unordered list items as they would appear without the CSS styling, as you can determine
for yourself by not importing the WDC.css style sheet file:

If you study the following CSS rules, you’ll see references to an hmenu class. This is because the

following horizontal menu recipe shares many of the same styles, so bringing them into the same rules
is more efficient than including them twice.

By the way, a fourth (or any deeper) level of menus is not supported by this recipe.

The Class

 Horizontal Menu
Using this class, it is equally easy to create a horizontal menu. In fact, by swapping the class names
vmenu and vmenu1 in the previous recipe for hmenu and hmenu1 in this one, the menu completely
reorientates itself, as shown by Figure 26-5, which uses exactly the same unordered list structure.

FIGURE 26-5 You can get a horizontal menu by using the hmenu classes instead of vmenu.

Classes and Properties
vmenu Class to create a set of horizontal menus
width Property containing the width of an object
height Property containing the height of an object
display Property used to set the display type of an object, such as block, inline, or none
text-decoration Property containing the decoration for a section of text, such as underlines
border Property containing all the border parameters of an object
margin Property containing all the margin parameters of an object
padding Property containing all the padding parameters of an object
line-height Property containing the height of a section of text
list-style Property containing the type of list
left Property containing the offset of an object from the left of its containing object
top Property containing the offset of an object from the top of its containing object
z- index Property controlling how far behind or in front an object is compared to others
float Property used to float an object to the right or left
position Property used to manage the position of an object, such as relative or absolute
content Property used to add content to an object from a CSS rule

About the Class
This class is almost the same as for the vertical menu, except that a few CSS rules have been

modified to display the menus inline so they line up horizontally. It also moves the submenus to
slightly different relative locations.

How to Use It
You use this class in exactly the same way as the vertical menu class, just change the class names
used from vmenu and vmenu1 to hmenu and hmenu1. Please refer to the earlier Vertical Menu recipe
section for full details.

Following are the additional tweaks made to the class in the previous section to provide
horizontal menus.

The Class

 Top Dock Bar
Recipe 36 provides a static dock bar that can be placed at the top of a web page for use as a menu or
navigation aid. Figure 26-6 shows such a dock bar created from six icons, the fourth of which is
currently being hovered over and has expanded under the mouse pointer.

FIGURE 26-6 Using this class, you can create a top dock bar.

Classes and Properties

topdockbar Class for creating a dock bar container
topdockitem Class for assigning an icon to a top dock bar
position Class for assigning an icon to a top dock bar
left Class for assigning an icon to a top dock bar
margin-left Class for assigning an icon to a top dock bar
vertical-align Class for assigning an icon to a top dock bar
width Class for assigning an icon to a top dock bar
height Class for assigning an icon to a top dock bar

-moz-transition
Property used by Mozilla and other Mozilla browsers to transition between
two sets of property values

-webkit-
transition

Property used by Safari and Chrome to transition between two sets of
property values

-o-transition Property used by Opera to transition between two sets of property values
transition Property used by all other browsers except for Internet Explorer

About the Classes
This recipe has two classes: the first (topdockbar) is used to create a container for the dock bar
items, and the second is for attaching to icons used in the dock bar (topdockitem).

The topdockbar class moves the object that uses it to the top of the browser and centers it. The
object’s position is also fixed so it will not move when the browser scrolls.

The topdockitem class attaches a transition to the object so that any changes made to it will
transition over the time period specified (on browsers that support transitions). It also aligns each
item to the top of the dock bar so that passing the mouse over it will enlarge the image but keep it top-
aligned.

A :hover pseudo-class is then used to enlarge the icons when moused over and restore them
when the mouse passes away.

How to Use Them
To use these classes, you need to have six icons that are 86 by 86 pixels in size. If they are different
sizes or a different number, you may need to modify the code in the PC.css file.

These images are then resized to 50 by 50 pixels for the initial display (so that they can be
enlarged to their full dimensions when moused over).

Then, write some HTML to contain all the images, such as this:

When you use this HTML in a web page, you get the result seen in Figure 26-6. Of course, you

will also attach links to the images to give each a function. When you do, a border may be displayed
around the images, which you can remove by adding the argument border=’0’ to the <img…> tag.
You may also wish to use CSS Recipe 19 (No Outline) to remove the dotted focus outline added to
clicked elements.

NOTE In Internet Explorer, when the icons are hovered over, they will instantly enlarge, and
reduce down again in size when the mouse passes away. But on all of Opera 10, Firefox 4,
Safari 5, and the Chrome 5 web browsers (or better), the enlarging and reduction are
animated using CSS transitions, which automatically generate and display a sequence of
frames between a start and end set of style settings.

Changing the Number of Icons and/or Icon Sizes
In the following CSS rules, note the value assigned to the margin-left property in order to center
the dock bar. If you change the icon sizes or number of icons, you should calculate a new value for
this property, using this formula:

So, for example, if you intend to use five 100 by 100–pixel images with a reduced size of 80 by

80 pixels, this is the calculation:

This would give you a new value of 5 multiplied by 100 (which is 500), divided by 2 (which is

250), plus 100 – 80 (which is 20), divided by 4 (which is 5), which equals 250 plus 5, or a value of
255 pixels.

You will also see mention of a bottomdockbar class in these rules. This is because the
following recipe shares much of the CSS, so it also shares some of the CSS rule assignments in order
to keep from repeating the code.

The Classes

 Bottom Dock Bar
Recipe 37 lets you create a bottom dock bar in the same way you created the top dock bar in the
previous recipe. Figure 26-7 shows the classes being used in the Apple Safari browser.

FIGURE 26-7 Creating a bottom dock bar in the Apple Safari browser

Classes and Properties
bottomdockbar Class for creating a bottom dock bar container
bottomdockitem Class for assigning an icon to a bottom dock bar

position
Property specifying whether an object has absolute or relative positioning,
and so on

left Property containing an object’s left offset
margin-left Property containing an object’s left margin
vertical-align Property containing an object’s vertical alignment

width Property containing an object’s width
height Property containing an object’s height

-moz-transition
Property used by Mozilla and other Mozilla browsers to transition
between two sets of property values

-webkit-transition
Property used by Safari and Chrome to transition between two sets of
property values

-o-transition Property used by Opera to transition between two sets of property values
transition Property used by all other browsers except for Internet Explorer

About the Classes
These classes work in exactly the same manner as the topdockbar and topdockitem classes, only
replacing those class names with bottomdockbar and bottomdockitem.

How to Use Them
Using these items is identical to creating a top dock bar, except for swapping the class names to
bottomdockbar and bottomdockitem. Therefore, please refer to the previous recipe for details.

Following are the additional CSS rules required to create bottom dock bars. If you change the
height of any images, you will also need to change the margin-top property to the new height plus 7
pixels, and padding-top to the difference in pixels between the actual height of the images and their
reduced heights.

The Classes

 Tooltip and Tooltip Fade
These classes let you add tooltips (most of whose dimensions and HTML you can decide) to any
object. In Figure 26-8, the word gravity has been assigned a short tooltip, briefly providing an
explanation for the term. Tooltips can also be applied to links and any other objects.

FIGURE 26-8 With this class, you can add tooltips to any object.

Classes and Properties
tooltip Class to display a tooltip when the mouse passes over an object

tooltipfade
Class to fade in a tooltip when the mouse passes over an object (for browsers
that support transitions)

text-
decoration Property for changing text decorations such as underlines

position Property containing an objects’ position, such as absolute or relative
display Property containing the way an object displays, such as block or inline
top Property containing the vertical offset of an object from the top of its container
left Property containing the horizontal offset of an object from the left of its container
white-space Property used to disallow word wrapping at spaces
background Property containing an object’s background settings
border Property containing an object’s border settings
color Property containing an object’s text color
font-family Property specifying the font to use
font-size Property specifying the font size to use
line-height Property specifying the line height of a font
padding Property containing an object’s padding settings
opacity Property used to control an object’s opacity (or transparency)
-moz-
transition Property for creating transitions on Firefox and other Mozilla browsers

-webkit-
transition Property for creating transitions on Safari and Chrome

-o-transition Property for creating transitions on Opera

transition Property for creating transitions on all other browsers (except IE)
filter Property used by IE for opacity and other features

About the Classes
The tooltip class takes a that must be provided alongside the object being given a tooltip
and then hides it away to be displayed only when the mouse passes over the object.

The tooltipfade class is identical except that (where supported) it uses CSS transitions to
slide and fade a tooltip into place.

How to Use Them
To use either of these classes, you must place a directly following the object to be given the
tooltip, in which you should place the tip to be displayed, like this:

The is then lifted from the flow of the web page and made invisible, to appear only

when the object is moused over.
Here is the code used to create Figure 26-8, showing the two different variants of the class in

action:

The first use of these classes is of the tooltip class in the third link from the top, and the

second is of the tooltipfade class in the text below it. The class argument of ’tooltipfade i’
tells the browsers to display the text within the tooltip in italics. When displayed in the Opera 10,
Firefox 4, Safari 5, or Chrome 5 browsers (or better), the tooltip attached to the word gravity will
slide down into place, smoothly fading in at the same time. On Internet Explorer, the tooltip will
simply appear and disappear as the mouse hovers over the object and moves away again.

These classes disallow automatic wrapping at white space so that the width of each tooltip can
be specified according to where the
 tags are placed, and therefore the final width is that of
the widest line.

NOTE The text and background colors of the tooltips are fixed, so if you want different ones,
you’ll need to alter the WDC.css file accordingly.

The Classes

CHAPTER 27
Page Layout

The recipes in this chapter provide classes for making your web pages appear as similar as possible
when displayed on different web browsers; to emphasize sections of text and HTML using boxouts,
sidebars, and quotes; and to format a web page so it looks its best when printed.

 Reset CSS
When you plan a lot of style changes, sometimes it is easier to reset all the settings so that whichever
browser is used the styles will be the same (or as close as possible). By resetting all the styles, when
you view a web page during development it should become clear when you haven’t created a style for
an element, since it gives you a visual reminder.

Also, when you rely on the browser for default styles, you have no guarantee that all other
browsers will use the same default setting. So by resetting all the properties, you are forced to create
your own styling—which will be the same across all browsers.

For example, in Figure 27-1, I have displayed the same small segment of HTML in each of the
Firefox, Internet Explorer, Chrome, Opera, and Safari web browsers.

FIGURE 27-1 A simple section of HTML displayed in five different browsers

The HTML each displays is the following, which simply creates a <div> with a solid one-pixel
border, placing three headings within it:

You might think that such a tiny piece of HTML would display exactly the same way in all web

browsers, but take a look at the figure and note the light line I have drawn across the top border of the
<div> in each browser. As you can see, all the browsers have been aligned so that the top border of
each <div> is against the line.

Now look at the bottom border of each <div>. Using a graphics program, I counted the
difference in pixels and can report that the Internet Explorer <div> is three pixels shorter than the
Firefox one. If you look at the two other light lines I drew—under the lowest and over the highest of
the bottom borders—you can easily see this discrepancy. Also, the headings are one, one, and two
pixels higher up, respectively in IE.

Turning to Google Chrome, it has exactly the same appearance as IE and therefore is also
different from Firefox in the same ways. The Opera <div>, on the other hand, is one pixel shorter than
these two, and therefore four pixels shorter than the one in Firefox one. Also, its headings are zero,
one, and one pixel higher than IE and Chrome, or one, two, and three pixels higher than Firefox.

Finally, Apple Safari has the same height <div> as IE and Chrome. Therefore, it is three pixels
shorter than Firefox—and its headings are also slightly higher than Firefox.

Perhaps you never realized how different all the browsers are—and this example uses only a
couple of elements. But by using the reset class, you can remove all these different attributes and
start again with your own settings.

Classes and Properties
reset

Class to reset all the major properties of an object—can be applied to a
document to reset all of the document’s properties

(numerous properties) Properties of an object that are too numerous to mention here

About the Class
This class resets every property of an object that sensibly can be reset, leaving them ready for you to
assign your own values. These will then be the same on all browsers.

How to Use It
You can use this class in a couple of ways. First, to reset only the properties of an object and its
subobjects, you might use code such as this:

You would then need to write CSS rules for the ID obj to create the property values you want,

such as:

Alternatively (and probably the most useful method), you can attach the class to the <html> tag,

like this:

Once you do this, your whole web page will lose almost all its styling, making it ready for you

to provide the styles you need.

The Class

 Default CSS
As an alternative to resetting all the CSS values, you can use this class, which creates a set of default
property values, as recommended by the World Wide Web Consortium
(w3.org/TR/CSS2/sample.html).

Figure 27-2 shows the same code as in the previous recipe, displayed in the same browsers,
with a single difference—the default class has been attached to the <html> tag. Now that all the
browsers are using the same settings, their display is much more similar.

http://www.w3.org/TR/CSS2/sample.html

FIGURE 27-2 Using the default class, the differences in display between browsers are reduced.

However, some slight differences still remain. This is because it is necessary to allow fonts and
margins to scale up or down, so relative em measurements have been used for their values and, due to
the different ways each browser calculates them, there is still a slight difference between them.
Overall, however, you have a lot more control over a web page’s display using this class, instead of
relying on each browser’s default settings.

Classes and Properties
default

Class to reset all the major properties of an object—can be applied to
a document to reset all of the document’s properties

(numerous properties) Properties of an object that are too numerous to mention here

About the Class
This class resets every property of an object to sensible defaults, as recommended by w3.org, the
web standards body, so your pages look much more alike on different browsers.

How to Use It
You can use this class in a couple of ways. First, to set default styles only for the properties of an
object and its subobjects, you might use code such as this:

Alternatively, you might be more likely to attach the class to the <html> tag, like this:

TIP In the case of both the reset and default classes, you may prefer to extract the CSS rules
for these classes from the WDC.css file into separate CSS style sheets that you can import
before any others. In which case, use a search and replace facility to remove all instances of
.reset for the reset class or .default for the default class, and then the styles will apply

http://w3.org

to the entire document, not just to classes using those names. For example, the rule .default
h1 applies only to <h1> tags with an element ID of default. But by removing the .default
prior to the h1, the rule will apply to all instances of the <h1> tag anywhere in a web page.

The Class

 Boxout
With the boxout class, you can easily place a section of HTML within a special boxout to make it
stand out from the rest of the page. Figure 27-3 shows the class being used to emphasize some
information in an article on global warming (taken from wikipedia.org).

http://www.wikipedia.org

FIGURE 27-3 The boxout class helps add emphasis to important sections of a page.

Classes and Properties
boxout
boxout_h

Class to create a boxout around a section of HTML (boxout), or to do so only
when the text is hovered over (boxout_h)

margin Property containing the various margin settings of an object
padding Property containing the various padding settings of an object
border Property containing the various border settings of an object
background Property containing the various background settings of an object

About the Classes
These classes create a professional-looking boxout around any section of HTML. They do so either
immediately or only when hovered over, and completely restyle the HTML by altering the margin,
padding, border, and background properties of an object.

How to Use Them
To place a section of HTML into a boxout, you would use HTML such as this:

Or you can choose to make the boxout appear only when the HTML is hovered over, like this:

TIP If you use the hover version of the class, it’s a good idea to ensure the section is already
separated from the text above and below; otherwise, the change when hovered over may be
too much on the eye.

Following is the HTML used to create Figure 27-3. As you can see, when writing, it’s easy to
drop the class into a section of text without distracting you from your creative flow:

The Classes

 Quote
Another great way to emphasize a section of text is to change the font style to something like italic and
add a faded-out icon behind it, as with the quote class. In Figure 27-4, an article about the poet
William Wordsworth (from wikipedia.org) has been displayed, with a few lines from one of his
poems shown using this class.

http://wikipedia.org

FIGURE 27-4 Using the quote class automatically sets up an appealing style.

Classes and Properties
quote
quote_h

Class to enclose a section of HTML in a quote (quote), or to do so only when the
text is hovered over (quote_h)

margin Property containing the various margin settings of an object
padding Property containing the various padding settings of an object
font-style Property containing the style of a font
font-size Property containing the size of a font
content Property for adding content via CSS
position Property specifying an object’s position, such as absolute or relative
left Property containing the offset from the left of an object
top Property containing the offset from the top of an object
line-height Property specifying the line height of a font
margin-bottom Property specifying the bottom margin height
color Property containing the text color
opacity Property specifying the opacity (or transparency) of an object (except IE)
float Property used to float an object to the left or right

About the Classes
These classes present a section of text in such a way that it is clearly obvious the text is a quotation.
They do so by changing the text font to italic and resizing the margins and padding. Then, a large pale
opening quotation mark symbol is placed at the top left of, and behind, the text.

Internet Explorer refuses to use the filter property to change the large quotation mark’s
opacity. For some reason, filter seems to not like operating within a :before or : after
pseudo-class. Therefore, an IE-specific hack is used to set the color of the symbol to very light gray
instead.

How to Use Them
To use these classes, simply mention one or the other in the class argument of an object, like this:

Or you can choose to make the quote appear only when the HTML is hovered over, like this:

Here is the HTML used for the screen grab in Figure 27-4:

You can change the quotation mark to one of many different styles by changing the font-family

assignment in the following class in the WDC.css file (available at webdeveloperscookbook.com).
You may find you also need to play with the padding and left properties if you do so, since
different fonts display at different sizes and in different ways.

The Classes

http://webdeveloperscookbook.com

 Left Sidebar
Another way of emphasizing a section of HTML is to move it to one side as a boxout and let the main
article flow around it. Figure 27-5 shows this class being used to do exactly that on the example from
the previous recipe.

FIGURE 27-5 Sidebars are another great way to make your text more interesting.

Classes and Properties
leftsidebar Class to float a section of HTML to the left of the main text
padding Property containing all the padding settings of an object
margin-right Property specifying the width of an object’s right margin
border Property containing all the border settings of an object
background Property containing all the background settings of an object
width Property specifying an object’s width
float Property for floating an object to the left or right

About the Class
This class floats a section of HTML to the left using the float property, and then adds padding
around it, as well as a suitable margin to the right. The background is set to very light gray, and the
object’s width is set to 25 percent of its containing object.

How to Use It
To use this class, decide exactly where in the flow of your HTML you would like it to appear, and
then enclose the section for placement in the sidebar in a <div> using the class name leftsidebar,
like this:

For example, here is the HTML used to create Figure 27-5, with the sidebar starting at the same

vertical position as the main text:

The Class

 Right Sidebar
This is the partner class to Left Sidebar. It works in exactly the same way but moves the sidebar to the
right-hand side of the main text. Figure 27-6 shows the same example used in the previous recipe,
with only the class used being changed to rightsidebar:

FIGURE 27-6 You can also create a sidebar on the right if you prefer.

Classes and Properties
rightsidebar Class to float a section of HTML to the right of the main text
padding Property containing all the padding settings of an object
margin-right Property specifying the width of an object’s right margin

border Property containing all the border settings of an object
background Property containing all the background settings of an object
width Property specifying an object’s width
float Property for floating an object to the left or right

About the Class
This class floats a section of HTML to the left using the float property, and then adds padding
around it and a suitable margin to the left. The background is very light gray, and the object’s width is
set to 25 percent of its containing object.

How to Use It
To use this class, decide exactly where in the flow of your HTML you would like it to appear and
then enclose the section for placement in the sidebar in a <div>, with the class name rightsidebar,
like this:

For example, here is the HTML used to create Figure 27-6, with the sidebar starting at the same

vertical position as the main text (since the article text is identical to that in the previous recipe, only
the first five lines are shown):

The Class

 Page Break
This is a short and sweet class that you will find useful when visitors print out a web page, because
with it you can specify where the page breaks should be located, so the printout will look much
cleaner than web pages printed without using such a feature. For example, although the text is too
small to read clearly, Figure 27-7 shows a copy of the Wikipedia Computer Printers page being
viewed using Internet Explorer’s Print Preview mode.

FIGURE 27-7 A copy of Wikipedia’s Computer Printers page in Print Preview mode

Immediately, you may notice that a couple of things could be improved here, such as the heading
near the bottom left of the first page, which would be better moved over to the top of the following
page. At the same time, there’s a heading at the bottom of the second page that currently isn’t too
short, but if the first heading is moved to that page, it will become so. Therefore, it could also be
moved to the following page.

However, in Figure 27-8, by placing a
 tag containing this class just before each of the
headings, you can see that the page layout is clearer—without headings commencing too near the
bottom of any page.

FIGURE 27-8 Using this class, printouts can be made much easier to read.

After adding these two page breaks, it looks like a page break should also be forced at the start

of the short paragraph at the bottom of the third page in Figure 27-8.

Classes and Properties
break Class to force a page break at the current location when it is printed
page-break-before Property to set up page breaks for printing purposes

About the Class
This class is acted on only when a web page is being printed (or print previewed). With it, you
specify where you want printing to continue on a new page of paper. To do this, the recipe makes use
of the page-break-before property.

How to Use It
The best way to use this class is to drop it in at the start of a heading you would like to ensure
appears on a new sheet of paper when printed, like this:

Or you may wish to attach it to a <p> or
 tag, like this:

CAUTION Usually, it’s best to add this class to an existing tag because if you add it to a new <p>
or other tag, you may see unwanted extra line breaks or other styling when the web page is
viewed normally.

The Class

CHAPTER 28
Visual Effects

This chapter provides a wide range of visual effects such as star ratings (similar to those used on the
Amazon web site), progress bars or bar ratings, the scaling of images up or down, animating
transitions at different speeds (and using different types of motion), viewing enlarged versions of
thumbnail images, captioning and the rotation of images, changing the mouse pointer, and alternating
the text and background colors of table rows.

Between them, you’ll find you can build an amazing variety of different effects just by applying
the right classes to the right elements, all without JavaScript or having to write your own CSS (unless
you want to).

 Star Rating
Many sites use rating systems composed of stars, the most notable probably being Amazon with its
five-star ratings. Using this class, you can easily achieve a similar effect, as shown in Figure 28-1, in
which a 65 percent popularity rating is displayed.

FIGURE 28-1 Using this class makes it easy to display star ratings.

Classes and Properties
starrating
starrating_h

Classes to display a star rating of between 0 and 100 percent
(starrating), or to do so only when hovered over (starrating_h)

position Property specifying an object’s position, such as absolute or relative
color Property containing the text color of an object
width Property containing the width of an object
font-size Property containing the font size
display Property specifying how to display an object, such as block, inline, or none

Property specifying what to do with any text that overflows the object’s

overflow boundaries
top Property containing an object’s vertical offset from the top of its container

left
Property containing an object’s horizontal offset from the left of its
container

About the Classes
These classes display a star rating using a star symbol already available as a character; therefore,
they need no external image. This is achieved by overlaying two sets of stars. The first is a set of five
very light stars, and the second is a set of darker stars truncated to the right at whatever percent value
is to be displayed.

How to Use Them
To use these classes, embed a <div> (whose width is set using a style argument to the percent value
to display) within another container such as a , like this:

The ★ HTML entity represents the solid star symbol, and the width parameter of the style

argument restricts the width of the inner <div> to only 65 percent of the outer .
You can also choose to display the rating only when hovered over by using the starrating_h

class instead of starrating. Also, because of the simplicity of this recipe’s design, you can easily
use other characters instead of stars.

The Classes

 Star Rating Using Images

In much the same way that you can use different characters instead of the star in the previous recipe,
with this recipe you can use images of your choice. In Figure 28-2, this class has been used with a
pair of star images for a more interesting effect, due to the range of colors an image can use.

FIGURE 28-2 Using images for the stars provides greater color depth.

Classes and Properties
starratingi
starratingi_h

Classes to display a star rating of between 0 and 100 percent using gif
images (starratingi), or to do so only when hovered over
(starratingi_h)

position Property specifying an object’s position, such as absolute or relative
width Property containing the width of an object
height Property containing the height of an object
background Property containing an object’s various background settings
top Property containing an object’s vertical offset from the top of its container

left
Property containing an object’s horizontal offset from the left of its
container

About the Classes
These classes display a star rating using an image. This is achieved by using images for the
backgrounds of two objects that are overlaid on each other. The first is a set of five very light stars,
and the second is a set of darker stars with the right cut off at whatever percent value is to be
displayed.

How to Use Them
To use these classes, embed a <div> (whose width is set to the percent value to display) within
another <div> (not a), like this:

In this example, the width parameter of the style argument restricts the width of the inner <div>

to only 52 percent of the outer <div>. You can also choose to display the rating only when hovered

over by using the starratingi_h class instead of starratingi.
You can change the images for any others of your choosing by altering the PC.css file (by either

editing the starratingi class, or copying it and creating a new one), but if they will have
dimensions other than 13 × 12 pixels, you will need to also alter the width and height properties in
the class definition to the new image width (multiplied by the number of images used) and height. You
will also need to change the filenames if you aren’t using star1.gif and star2.gif. Don’t forget that all
the examples, classes, and images are available for download at webdeveloperscookbook.com.

The Classes

 Progress Bar
By relying on changing only an object’s background color, the class in this recipe lets you create a
progress or rating bar you can use to indicate how far a particular action has progressed, or the rating
given to something, as shown in Figure 28-3, which shows 65 percent progress of a loading action.

FIGURE 28-3 Show how far an action has progressed with this recipe.

Classes and Properties

progress
progress_h

Classes to display a progress bar of between 0 and 100 percent using
background colors (progress), or to do so only when hovered over

http://webdeveloperscookbook.com

(progress_h)
position Property specifying an object’s position, such as absolute or relative
width Property containing the width of an object
height Property containing the height of an object
top Property containing an object’s vertical offset from the top of its container
left Property containing an object’s horizontal offset from the left of its container

About the Classes
These classes display a progress bar using only the background colors of two objects that are
overlaid on each other.

How to Use Them
To display a progress bar <div> inside another and give each a background color or perhaps a
gradient fill using a suitable class (and use the style argument to set the width of the inner <div>), you
would use code such as this:

In this example, a yellow progress bar is created with a red bar on top of it showing 65 percent

progress. Or here’s an example that uses gradient fills:

You can also use the progress_h class to show the progress only when the object is hovered

over by the mouse.
As you can see, you can specify both colors and the percentage to indicate directly from HTML.

But, if you would like to have a progress bar with dimensions other than 120 × 15 pixels, you’ll need
to modify the class rules in the WDC.css file.

The Classes

 Scale Up
These classes let you scale an object up by between 110 and 200 percent. Rather than simply
changing the width and height of an object, these classes scale it in place, without pushing other
objects around to make room. Therefore, they are great for special effects such as rollovers.

Figure 28-4 shows 10 instances of a 100 × 100–pixel image displayed at dimensions between
110 × 110 and 200 × 200 pixels. As you can see, none of them has affected the location of any of the
other images.

FIGURE 28-4 These classes let you resize an image in situ without affecting other objects.

Classes and Properties
scaleup1
scaleup1_h

Classes to scale up an image by 110 percent (scaleup1), or to do so only
when hovered over (scaleup1_h)

scaleup2 –
scaleup10 (etc…) Class—as scaleup1 but for scaling between 120 and 200 percent

-moz-transform Property for transforming an object in Firefox and other Mozilla browsers
-webkit-transform Property for transforming an object in Safari and Chrome
-o-transform Property for transforming an object in Opera
transform Property for transforming an object in all other browsers (except IE)

filter Property for transforming an image in Internet Explorer

About the Classes
These classes are particularly useful in that they create effects you don’t often see so easily
implanted. What they do is use the CSS transform property (or browser-specific versions of it)
along with the scale() argument, like this:

CAUTION On Internet Explorer, the filter property is used instead of transform to achieve a
similar effect. However, this means that, on IE, only images can be scaled (whereas you can
scale <div>, , and other objects with other browsers). And there’s another couple of
provisos: While all other browsers scale using the object’s center, IE scales from the top left.
It also scales objects up behind other objects. Therefore, elements that may be scaled up
should be separated from others that could obscure it, or vice versa. There is more on this
topic in CSS Recipe 51.

How to Use Them
To use these classes, place them in the class argument of an object to be scaled, as in the following
example, which was used to create Figure 28-4:

You can also use the _h hover versions of the classes to resize an object only when it is hovered

over, like this:

NOTE When scaling up an object in the Opera or Firefox browsers, if the new size of the object
will place its boundaries outside the browser’s borders, scroll bars will be added to the
browser. This behavior does not occur on other browsers.

The Classes

 Scale Down
These classes offer the inverse functionality to the previous recipe group, in that they reduce an object
down by between 10 and 100 percent, as shown in Figure 28-5, in which 10 instances of an image
have been reduced by these amounts.

FIGURE 28-5 These classes let you scale objects down to as little as 0 percent in size.

As with the previous group of Scale Up classes, these classes do not alter the position of
surrounding objects.

Classes and Properties
scaledown1
scaledown1_h

Classes to scale down an image by 10 percent (scaledown1), or to do so
only when hovered over (scaledown1_h)

scaledown2 –
scaledown10(etc…) Classes — as scaleup1 but for scaling down between 20 and 100 percent

-moz-transform Property for transforming an object in Firefox and other Mozilla browsers
-webkit-transform Property for transforming an object in Safari and Chrome
-o-transform Property for transforming an object in Opera
transform Property for transforming an object in all other browsers (except IE)
filter Property for transforming an image in Internet Explorer

About the Classes
These classes use the CSS transform property (or browser-specific versions of it) along with the
scale() argument, like this:

On Internet Explorer, the filter property achieves a similar effect. However, this means that on

IE only images can be scaled. Also, while all other browsers scale using the object’s center, IE
scales from the top left.

How to Use Them
To use these classes, place them in the class argument of an object to be scaled, as in the following
example, which was used to create Figure 28-5:

You can also use the _h hover versions of the classes to resize an object only when it is hovered

over, like this:

The Classes

 Transition All
For browsers that support the new transition property, including Opera 10, Firefox 4, Apple
Safari 5, and Google Chrome 5 (but, sadly, not Internet Explorer), you can use this recipe to make any
changes made to an object transition smoothly, over a time between 0.1 and 2.0 seconds. Browsers
that do not support transitions ignore these classes and will change properties immediately rather than
transitioning.

In Figure 28-6 (a screen grab taken using the Apple Safari browser), the mouse is currently
hovering over the middle smiley in the bottom row, which has smoothly enlarged—and it will gently
shrink back down in size when the mouse moves away.

FIGURE 28-6 Combining the transitionall and scale8_h classes to create a rollover effect

However, a word of caution when using scaling… In Figure 28-7 (a screen grab taken using
Internet Explorer), the object has correctly enlarged (but not transitioned, as IE doesn’t support it),
and you can see the reason for the warning I gave in Recipe 49 about ensuring objects that may be
scaled up in an IE window are separated from each other (since scaled-up objects appear behind
others in IE). Other browsers do, however, correctly bring an object to the front when scaled and
move it back to its previous position when not scaled.

FIGURE 28-7 If you do not separate objects that are scalable, they can obscure each other when
viewed in Internet Explorer.

NOTE Unfortunately, Internet Explorer is currently out of the picture as far as CSS 3 transitions
go, with even IE9 not supporting them. So users of this browser will simply see instant
changes rather than animated transitions. Let’s hope that this powerful feature is added to IE
soon.

Classes and Properties
transitionall
transitionall_l

Classes for applying transitions of 0.7 seconds duration to all changed
properties of an object (transitionall), or to do so but with linear
rather than easing movement (transitionall_l)

transitionallslowest
transitionallslow
transitionallfast
transitionallfastest

Classes—as transitionall and transitionall_l, but for durations
of 2.0, 1.5, 0.3, and 0.1 seconds duration, including _l versions for
linear movement

-moz-transition
Property for transitioning properties of an object over a set duration in
Firefox and other Mozilla browsers

-webkit-transition
Property for transitioning properties of an object over a set duration in
Safari and Chrome

-o-transition
Property for transitioning properties of an object over a set duration in
Opera

transition
Property for transitioning properties of an object over a set duration in
all other browsers (except IE)

About the Classes
These classes apply transitions to all of an object’s properties that change. This change is usually a
result of the :hover pseudo-class, as used by the _h versions of the classes in this book, or it can be
a change instigated through the use of JavaScript, as implemented in the remaining chapters.

The transition is applied to an object using a CSS rule such as the following (or browser-
specific variants of the property name like those that begin -moz, -webkit-, or -o-):

Browsers that do not support transitions will ignore this and just change properties immediately,

without transitioning.

How to Use Them
To use these classes, add them to the class argument of an object and forget about them. Then, when
any properties of the object are changed that can transition, they will be animated over the period of
time specified, rather than changing immediately.

For example, here’s the example HTML from CSS Recipe 49, but modified to change all the

hover effects to transitions of differing durations:

The first set of five images uses the default easing transition, in which the animation starts
slowly, increases in speed, and then slows again at the end. The second set uses the _l versions of the
recipes to specify linear motion for the animation, where there is no speeding up and slowing down.

TIP You will find you can add transitions to a wide range of the classes in this book that provide
_h hover versions. This includes changing colors, position, dimensions, shadows, opacity,
borders, and many more properties. Users of Internet Explorer won’t get to see these nice
transitions (yet), but for the sake of adding a simple extra class to your HTML, all other
browser users will enjoy a much more sophisticated environment on their web pages.
Incidentally, if transitions are added to IE it is likely they will use the –ms- prefix, so it will
be a simple matter for you to add the lines required (such as -ms-transition:all .7s; in
the first class) to the WDC.css file yourself.

The Classes

 Thumb View
This class provides a simple and effective way for users to browse large versions of photo
thumbnails. In Figure 28-8, six thumbnails are displayed and the mouse is currently hovering over the
second, which has caused the large version of the image to be displayed.

FIGURE 28-8 Use these classes to create a simple viewer for thumbnail images.

Classes and Properties
thumbview Class to display a larger image of a thumbnail
position Property containing the position of an object, such as relative or absolute
top Property containing the vertical offset of an object from the top of its container

left
Property containing the horizontal offset of an object from the left of its
container

display Property specifying how an object is displayed, such as inline or block

About the Class
This class displays the contents of a that accompanies a thumbnail image by hiding it using
the opacity property and by scaling it to zero dimensions—until the mouse passes over the image,
when the is scaled back up again and the opacity is restored to reveal it. The is set to
appear inset from the left of the container and down from the top by 30 pixels.

For some reason, the Opera browser doesn’t vertically offset the same way that the other
browsers do, so a browser-specific hack is used to change the top property of the to a
different value.

How to Use It
Although this recipe is intended mainly for displaying a large version of a thumbnail image, because
it simply hides and displays a on demand, you can place anything you like in it, meaning you

can use it to display information on an image or other details.
Here is the HTML used for Figure 28-8:

The outer container of each thumbnail and image is a , but it could equally be a <div> or
other container. Within each container is an image followed by a , in which a large version of
each thumbnail image is placed. When the mouse passes over the outer container, the inner one is set
to display, and when the mouse passes out, the inner one is hidden again.

NOTE In Internet Explorer, what has been described here is pretty much what you will see. But on
Opera 10, Firefox 4, Apple Safari 5, and Google Chrome 5 (or higher), the images (or
whatever is contained in the inner) will fade and zoom in at the same time (and out
again when the mouse passes away) due to the combined use of transitions, scaling, and
opacity. If you can, try to view it in one of these browsers to see the impressive effect that
results.

The Class

 Caption Image
Using this recipe, you can present your images with neat white borders and a shadowed caption on a
thicker border at the picture’s bottom. In Figure 28-9, the HTML from the previous example has been
reused, with this class added to provide captions, and without the previous borders, since this class
provides its own.

FIGURE 28-9 Use this class to add captions and interesting effects to images.

The screen grab was taken using Google Chrome, which is representative of the results you’ll
get with most browsers in that there is a smooth transition, the border of the photo is white and
shadowed, and the caption is shadowed text on a translucent background.

However, in Internet Explorer it’s not possible to achieve quite the same effect, mainly because
IE dislikes using many of its features within a content property that is part of a pseudo-class such as
: before, or : after. Nevertheless, as you can see in Figure 28-10, it degrades reasonably well
thanks to a few (unfortunately necessary) CSS hacks.

FIGURE 28-10 Displaying an image using a caption class in Internet Explorer

Classes and Properties
caption
caption_h

Classes to add a caption and other embellishments to an image (caption), or to do so
only when the object is hovered over (caption_h)

position Property containing the position of an object, such as absolute or relative
background Property containing an object’s background settings
padding Property containing an object’s padding settings
border Property containing an object’s border settings
color Property containing the text color of an object
top Property containing the vertical offset of an object from the top of its container
bottom Property containing the vertical offset of an object from the bottom of its container
left Property containing the horizontal offset of an object from the left of its container
height Property containing the height of an object
line-
height Property containing the line height of an object

text-align Property containing the alignment of the text in an object, such as left or right
font-size Property containing the font size of an object
font-
weight Property containing the font weight of an object

font-

family Property containing the font family of an object
content Property for adding content to an object from CSS
opacity Property containing the opacity (or invisibility) of an object

About the Classes
These classes frame and caption an image in a professional manner by changing various properties,
such as its borders, and by adding content taken from the alt argument.

The caption_h class applies the caption only when the mouse passes over the associated
image, while the caption class applies it as soon as the larger image is displayed.

A few hacks must be used in the CSS to get Internet Explorer to display anything at all! These
consist of affixing the \0 suffix to any rules that only IE should see. Also, to create the light ribbon
behind the captions, the Unicode character 2588 (a solid block) is repeated 50 times in a :before set
of rules. This block character string should be enough for reasonably wide pictures, but you can
easily increase it if it isn’t. Non-IE browsers do not see these :before rules.

How to Use Them
To use these classes, you need to provide a caption for the image in the alt argument of its container
(such as a <div> or), and then use either the caption or caption_h class in the class
argument, like this:

For example, following is the HTML used for Figures 28-9 and 28-10, which combines the

thumbview class with both the caption and caption_h classes:

The captions are immediately displayed when the larger version is shown of any of the top row
of thumbnails, but the bottom row of icons only open up the large image. You need to move the mouse
into this image to be shown the caption, too.

The Classes

 Pointer
This pointer class is useful for making the mouse cursor change from an arrow to a pointing finger
when it passes over an object, and is especially useful for attaching to buttons (which generally don’t
have this cursor behavior).

In Figure 28-11, two screen grabs have been taken with the mouse pointer enabled, and then
merged to show the effect of passing the cursor over one object not using this class and another that
is. In the figure, the mouse cursor has changed to a pointing finger as it passes over the second button.

FIGURE 28-11 This class lets you alert users that an object is clickable.

Classes and Properties
pointer

Class to change the mouse cursor to a pointing finger when it passes over an
object

cursor Property for changing the mouse cursor

About the Class
This short and sweet class simply sets the cursor property of an object to the value pointer so that
the mouse cursor will change to a pointing finger when it passes over the object.

How to Use It
Following is the HTML used for Figure 28-11, in which the class has been assigned to one of two
buttons:

The Class

 Rotation
With these classes, you can rotate an image by 90, 180, or 270 degrees, as shown in Figure 28-12 in
which a smiley face appears 12 times. The first four instances are the four possible clockwise
rotations (the first being unrotated); the second group is the same, except that the rotation occurs only
when the mouse passes over an image; and the third is the same as the second group, except that the
rotations are counterclockwise. In the figure, the second smiley on the third row is currently being
hovered over and has rotated counterclockwise by 90 degrees.

FIGURE 28-12 These classes let you display images in any of four different rotations.

TIP If you need to rotate by different amounts than intervals of 90 degrees, see Chapter 29 for a
JavaScript-aided solution.

Classes and Properties
rotatec90
rotatec90_h

Classes to rotate an image clockwise by 90 degrees (rotatec90), or to do so only
when the object is hovered over (rotatec90_h)

rotatec180
rotatec270
(etc…)

Classes—as rotatec90 but for rotating an object by 180 or 270 degrees, including
_h classes for doing so only when hovered over

rotatea90
rotatea270
(etc…)

Classes—as rotatec90 but for rotating an object counterclockwise by 180 or 270
degrees, including _h classes for doing so only when hovered over

-moz-
transform Property used by Firefox and other Mozilla browsers to transform an object

-webkit-
transform Property used by Safari and Chrome to transform an object

-o-
transform Property used by Opera to transform an object

transform Property used by all other browsers to transform an object (but not IE)
filter Property used by IE to rotate an image, among many other features

About the Classes
These classes take an object and apply a rotation of 90, 180, or 270 degrees to it. The transforms
used rotate in either a clockwise or counterclockwise direction so, for example, the rotatec90 class
uses this CSS rule:

The reason for providing both clockwise and counterclockwise methods is to allow the use of

the transitionall classes (CSS Recipe 51) with these classes. When combined on browsers that
support transitions, the image will rotate smoothly in the direction supplied, rather than immediately
change.

The Internet Explorer browser doesn’t support transitions but does change the object to the
required rotation.

How to Use Them
To use these classes, enter them into the class argument of an object, like this:

Browsers other than Internet Explorer support the rotating of any object such as a or

<div>, which means complete sections of text and HTML can be rotated. But IE is limited to only
images.

Here is the HTML used to create Figure 28-12:

The first group instantly rotates the images, and the second one rotates them only when the mouse

hovers over an image. This group also implements the transitionall class so that browsers that
support it will animate the rotation.

The final group is the same as the second except that the images rotate counterclockwise, and the
transitionall_l class is used for a linear, rather than easing, movement to the animation.

The Classes

 Odd and Even Text Colors
When you wish to present a table in a more easy-to-read format, you can use the classes in this recipe
to alternate the color of each row by adding a class to the <table> tag, as shown in Figure 28-13 (a
screen grab from Google Chrome), where the text color in the odd rows has been changed to green.

FIGURE 28-13 Using these classes to create alternately colored rows of text in tables

These classes work in all the latest browsers except for Internet Explorer (even IE9), which will
simply display tables the normal way.

Classes and Properties
aqua_o
aqua_e

Classes to change the text color of either
all odd rows in a table to aqua (aqua_o)
or all even rows (aqua_e)

black blue brown fuchsia gold gray green khaki
lime maroon navy olive orange pink purple red
silver teal white yellow (etc…)

Classes—as aqua_o and aqua_e, but
for the colors shown

nth-child()
Pseudo-class used with the values odd
or even for accessing odd- or even-
numbered rows

color
Property containing the text color of an
object

About the Classes
These classes change the text color of either the odd- or even-numbered rows in a table by using the
nth-child pseudo-class, like this:

For example, this rule sets the class aqua_o to change the text color of all odd table rows to

aqua, using the tr: part of the rule, in conjunction with the :nth-child(odd) pseudo-class. For
even rows, the odd parameter is changed to even.

How to Use Them
To use these classes, simply mention them in the class argument of a table, as in the following, which

will change the text color of all even rows to green:

Here’s the HTML used to create Figure 28-13:

This example displays the state of the market share of the main web browsers as of July 2010
according to Wikipedia. It starts by creating a solid black border around the table with a width of one
pixel, and then uses the green_e class to set the color of all even rows in the table to green. The
table’s cellspacing and cellpadding arguments are also set to 0 and 3, respectively, for improved
styling.

A color class with the suffix _o could also be used if the odd row color needed changing from
the default of black.

The Classes

 Odd and Even Background Colors
These classes complement those in the previous recipe by enabling the changing of a table row’s odd
or even background colors as shown in Figure 28-14, in which the background colors have been
styled to alternate between lime green and aqua.

FIGURE 28-14 The table from the previous recipe, now styled with alternating background colors

As with the odd and even text color classes, these classes will not work with Internet Explorer,
which will simply display as normal; therefore, you may wish to apply a standard background color
to your tables as a fallback.

Classes and Properties
aqua_bo
aqua_be

Classes to change the background color of
either all odd rows in a table to aqua
(aqua_bo) or all even rows (aqua_be)

black blue brown fuchsia gold gray green
khaki lime maroon navy olive orange pink
purple red silver teal white yellow (etc…)

Classes—as aqua_bo and aqua_be, but
for the colors shown

nth-child()
Pseudo-class used with the values odd or
even for accessing odd- or even-numbered
rows

background
Property containing the background color
of an object

About the Classes
These classes work in the same way as those in the previous recipe group, except that they change the
background instead of the color property.

How to Use Them
To use these classes, simply mention them in the class argument of a table as in the following, which
will change the background color of all even rows to aqua:

Here’s the HTML used to create Figure 28-14:

This example adds the classes aqua_be and lime_bo to the previous example to change the

background colors of the table rows. Although the colors in this example may look garish when you
run them on your computer, I chose them because they convert well to the monochrome print used in
this book—and it’s easy enough for you to change them anyway.

NOTE This concludes the standard CSS recipes. In the next chapter, I’ll introduce Dynamic
classes and show what you can do when you add a little JavaScript to your CSS.

The Classes

CHAPTER 29
Dynamic Objects

Powerful as CSS is, it isn’t really a language, as shown by the recipes in this book having to repeat
large chunks of code where only a minor change is required between each, such as a color or width.
A language, on the other hand, is very good at repeating things based on only a few lines of code. And
that’s where JavaScript fits in, because with it you can bring the dynamic interaction of a web page
up an order of magnitude.

What’s more, many of the classes in this chapter allow you to enter values as parameters to
create exactly the result you want, including moving objects about in the browser, loading images in
only when (or if) they are scrolled into view, fading images in and out over user-definable periods,
resizing and rotating objects by any amount, and changing an object’s text and background colors to
all possible values.

 NoJS (nojs) and OnlyJS (onlyjs)
There is a downside to employing JavaScript-aided classes because some people have JavaScript
turned off, generally due to a habit they got into when pop-up windows became so prevalent. But with
the advent of pop-up blocking in all modern browsers, the percent of users with JavaScript disabled
has dropped from a height of around 12–15 percent a decade ago to an estimated 2 percent or so
nowadays. It may not be a large number of users, but it’s still enough that, where possible, care
should be taken to offer fallback features for these users. And that’s what this first dynamic recipe
helps with, providing you with an easy way to offer fallback HTML for browsers on which the
dynamic classes fail.

You can use the <noscript> tag for this, but it requires you to place all the fallback sections of
code within pairs of these tags, and there’s no simple solution for hiding standard HTML from non-
JavaScript browsers. However, by using the nojs class for any block of code that should be viewable
only to non-JavaScript browsers, no extra tags are required. You simply use the name in the class
argument of an object, and the onlyjs class is used to make any section of HTML visible only to
JavaScript-enabled browsers.

For example, the screen grab in Figure 29-1 shows a sentence enclosed within a <div> using the
nojs class, making the sentence visible only to users without JavaScript, or those who have
JavaScript disabled.

FIGURE 29-1 The sentence in this window will be seen only on browsers without JavaScript.

TIP JavaScript can be disabled and reenabled in Internet Explorer by pressing ALT+T, selecting
Internet Options, choosing the Security tab, clicking the Custom level button, and then
scrolling down and checking Active Scripting: Disable or Enable. Different commands are
required to do this on other browsers.

Alternatively, in Figure 29-2, JavaScript is running in the browser and so a section of text for
JavaScript-enabled browsers only is displayed.

FIGURE 29-2 With JavaScript enabled, a different sentence becomes visible.

Variables, Functions, and Properties
classname

String variable containing the name of the class—used by all these recipes so
not mentioned again

thistag
Object referring to the current object—used by all these recipes so not
mentioned again

search()
JavaScript function to search one string for another—used by all these recipes
so not mentioned again

Hide() Function to hide an object
Show() Function to show an object

About the Classes
These classes provide complementary functionality to each other. The nojs class is ignored on non-
JavaScript browsers; therefore, any object using the class is viewable. But on JavaScript-enabled
browsers, the nojs class is acted upon by JavaScript and any object using it is hidden, so users who
have JavaScript will not see any objects using the nojs class.

On the other hand, the onlyjs class should be used in conjunction with a style argument to hide
an object from non-JavaScript browsers, but browsers with JavaScript enabled detect the class and
unhide such objects so they become visible.

How to Use Them
You will generally use these classes in pairs, so you can offer one set of HTML to users with
JavaScript and another to those without, like this:

In the first <div>, both the arguments style=’display:none’ and class=’onlyjs’ must be

applied in order to make its contents visible only to browsers with JavaScript enabled.
For non-JavaScript browsers, you simply attach the argument class=’nojs’ to an object to

ensure that only users without JavaScript enabled can see it.

About the JavaScript
Don’t worry if you don’t program, because you can ignore these JavaScript code segments and skip to
the next recipe—they are included simply for programmers who may be interested in how they work.

The following partial JavaScript listing shows the main setup JavaScript code for all of the
classes in the remainder of this book. It starts with initializing the WDC.js JavaScript library, which
is available as part of the download at webdeveloperscookbook.com.

http://webdeveloperscookbook.com

First the OnDOMReady() function is called, which sets up the code after it in such a way that the
classes become active only once the entire web page is loaded (but before any images or other
embedded objects), so that all objects in it can then be referenced at the earliest possible opportunity.

After that, a number of variables used by JavaScript are declared. If you load the code into an
editor, you can issue a quick search to see which variables are used by which routines.

Next, the superclasses referred to in Chapter 33 are loaded using the loadsclasses() function,
and then the main loop controlling the dynamic classes begins, in which every single class=
argument in the web page is examined one at a time, and if it matches one of the new dynamic classes,
the code to handle it is activated.

In the case of the two classes in this recipe group, the code used follows. It simply employs a
regular expression to find the class names (highlighted in bold), and if found, acts on them by calling
either the Hide() function to hide the object using the class, or the Show() function to reveal it. The
variable thistag refers to the current object whose class argument is being examined.

TIP Remember that to function correctly, all the files used by the recipes must be loaded in at the
start of each web page within <head> tags, like the following example, which pulls in the
WDC.css style sheet and the WDC.js JavaScript library:

The JavaScript

 Middle (middle)
This class is particularly suitable in cases when standard CSS doesn’t have the effect you want
because instead of using values of auto, it calculates the correct margins by querying the dimension
of the parent object and uses those values to force the desired behavior (as do the middle, center,
top, bottom, left, and right recipe classes).

What this class does is vertically align an object by finding out the height of the object
immediately enclosing it (its parent) and then placing it directly between the upper and lower
boundaries. In Figure 29-3, a 300 × 100–pixel <div> contains another object that has been vertically
centered using this class.

FIGURE 29-3 Vertically centering one object inside another

Variables, Functions, and Properties
parentNode Object containing the parent of the current object
H() Function to return the height of an object

o()
Function to return an object—used by most of these dynamic classes and
therefore will not be mentioned again

Px() Function to add the suffix px to a value—used by many of these dynamic

classes and therefore will not be mentioned again
marginTop Property containing the object’s top margin
marginBottom Property containing the object’s bottom margin

About the Class
After looking up the height of the parent object, this class then sets the marginTop and marginBottom
JavaScript equivalents of the CSS margin-top and margin-bottom properties to equal values
sufficient to display the object exactly in the middle.

NOTE Wherever you see a JavaScript property that starts with a lowercase letter and has an
uppercase one in the middle, you can convert it to a CSS property by changing the uppercase
letter to lowercase and placing a hyphen before it. Therefore, marginBottom becomes
margin-bottom, and so on.

How to Use It
In order to use this class, the parent object needs to already have a position other than static, such as
relative or absolute, and the object to be moved should be given an absolute position, like this:

This example sets the outer <div> to a width of 400 and a height of 100 pixels, gives it relative

positioning, and sets the background to lime. The inner <div> is given absolute positioning, a
background color of aqua, and is assigned the middle class.

The JavaScript

 Center (center)
This class is similar to the middle class, but it centers an object horizontally. In Figure 29-4, the
previous example has been extended to also center the inner object using this class.

FIGURE 29-4 The example from the previous recipe is now also centered horizontally.

Variables, Functions, and Properties
parentNode Object containing the parent of the current object
W() Function to return the width of an object
marginLeft Property containing the object’s left margin
marginRight Property containing the object’s right margin

About the Class
By looking up the width of the parent object, this class then sets the marginLeft and marginRight
properties of the object to equal values sufficient to display the object exactly in the center.

How to Use It
In order to use this class, the parent object needs to already have a position other than static, such
as relative or absolute, and the object to be moved should be given an absolute position, like this:

This example sets the outer <div> to a width of 400 and a height of 100 pixels, gives it relative

positioning, and sets the background to lime. The inner object is given absolute positioning, a
background color of aqua, and is assigned both the center and middle classes.

The JavaScript

 Top (top)
This class attaches an object to the top of its parent, as shown in Figure 29-5, in which the previous
example is top- instead of middle-aligned.

FIGURE 29-5 The inner object is top-aligned using this class.

Variables, Functions, and Properties
parentNode Object containing the parent of the current object
H() Function to return the height of an object
marginTop Property containing the object’s top margin
marginBottom Property containing the object’s bottom margin

About the Class
By looking up the height of the parent object, this class then sets the marginTop property to 0 pixels
and the marginBottom property of the object to the value required to ensure it stays at the top of its
containing object.

How to Use It
In order to use this class, the parent object needs to already have a position other than static, such as
relative or absolute, and the object to be moved should be given an absolute position, like this:

Here, the inner object is given absolute positioning, a background color of aqua, and is assigned

both the top and center classes.

The JavaScript

 Bottom (bottom)
This class attaches an object to the bottom of its parent, as shown in Figure 29-6, in which the
previous example is bottom- instead of top-aligned.

FIGURE 29-6 The inner object is bottom-aligned using this class.

Variables, Functions, and Properties
parentNode Object containing the parent of the current object
H() Function to return the height of an object
marginTop Property containing the object’s top margin
marginBottom Property containing the object’s bottom margin

About the Class
By looking up the height of the parent object, this class then sets the marginBottom property to 0
pixels and the marginTop property of the object to the value required to ensure it stays at the bottom
of its containing object.

How to Use It
The following example is the same as the previous one, with just one class change:

Here, the inner object is assigned both the bottom and center classes.

The JavaScript

 Left (left)
This class is similar to the center class, but it aligns an object to the left. In Figure 29-7, the
previous example has been modified to left-align the inner object using this class, rather than
centering it. The object is also middle-aligned vertically.

FIGURE 29-7 The example from the previous recipe is now left-aligned and centered vertically.

Variables, Functions, and Properties
parentNode Object containing the parent of the current object
W() Function to return the width of an object
marginLeft Property containing the object’s left margin
marginRight Property containing the object’s right margin

About the Class

By looking up the width of the parent object, this class then sets the marginLeft property to 0 pixels
and the marginRight property of the object to the value required to ensure it stays at the left of its
containing object.

How to Use It
The following example is the same as the previous one, with just one class change:

Here, the inner object is assigned both the left and middle classes.

The JavaScript

 Right (right)
This class is similar to the left class, but it aligns an object to the right. In Figure 29-8, the previous
example has been modified to right-align the inner object using this class, rather than left-aligning it.

FIGURE 29-8 The example from the previous recipe is now right-aligned.

Variables, Functions, and Properties
parentNode Object containing the parent of the current object

W() Function to return the width of an object
marginLeft Property containing the object’s left margin
marginRight Property containing the object’s right margin

About the Class
By looking up the width of the parent object, this class then sets the marginRight property to 0 pixels
and the marginLeft property of the object to the value required to ensure it stays at the right of its
containing object.

How to Use It
The following example is the same as the previous one, with just one class change:

Here, the inner object is assigned both the right and middle classes.

The JavaScript

 On Demand (ondemand)
Have you noticed how Flash programs and movies generally don’t load until you scroll them into
view? The idea behind this is to save on downloading data unnecessarily, thus decreasing the
provider’s bandwidth fees and speeding up your browsing.

Well, with this class you can provide the same feature for your images. When you use it, only
those images already in view when a page loads are downloaded. Then, as you scroll, when each
new image comes into view it is quickly downloaded and displayed. And, because only one image is
fetched at a time, rather than as part of the initial flurry of downloads accompanying a page load, it’s
actually very fast and looks good too since they fade into view.

With it, you’ll save on your bandwidth bills and speed up your web pages at the same time, as
shown in Figure 29-9, in which the photo is being faded in after being scrolled into view.

FIGURE 29-9 Using this recipe, pictures are downloaded only when required.

Variables, Functions, and Properties
tagname String variable containing the name of the tag, such as img

SCROLL_Y
Global integer variable containing the amount by which the browser has scrolled
(global variables are always all uppercase in this program)

wheight Integer variable containing the height of the browser viewport
index Integer variable used for iterating through all the classes found in a web page
elems[] String array containing the sources of all images yet to be loaded

thistag.alt
String variable (and a property of thistag) containing the alternate text for the
current image

thistag.src
String variable (and a property of thistag) containing the source of the current
image

demand
Integer variable used as a flag and set to true if the ondemand class is being used
on a web page

setTimeout() JavaScript function to call a function after a set period
DoOnDemand() Function to keep an eye on images and decide whether to load them
Opacity() Function to set the opacity of an object
Y() Function to return the height of an object
FadeIn() Function to fade an object in over a set time

About the Class
This class checks all images in a web page to see whether they are using the ondemand class. Any
that do have their position in the web page are examined to see if they are within view. If they are,
then the image locations are loaded in from the alt arguments and placed in the src arguments to
download them. But any that are not yet in view have their opacity set to zero so that the broken image
icon will not display.

Later in the program, a function will be set up to keep an eye on these images and download and
fade them in gently as they come into view.

How to Use It
To use this class, all you need to do is attach the ondemand class to any images you have

decided should use this feature, and use the alt argument for the image URL not the src argument
(this is important), like this:

The image will then only be downloaded and faded in when it is scrolled into view.
For programmers interested in the JavaScript code that later monitors the images (toward the

end of the WDC.js file), here it is (nonprogrammers can skip ahead to the next recipe):

This line checks whether the variable demand has a value of true. If so, then the ondemand

class has been used at least once in the web page and so the function DoOnDemand() is set to be
called in 10 milliseconds. That function looks like this:

What it does is iterate through the array elems[], which has previously been assigned the

locations of all ondemand images, and checks whether the image is in view. If so, then the FadeIn()
function is set to be called as soon as the image is loaded, and then the image’s src= argument is
given the location of the image, so it can be fetched. Once an image is loaded, its entry in the elems[]
array is removed so it won’t be looked up again.

After this, if the variable demand is true, then the interrupt is set up to call the function in a
further 10 milliseconds (and so on until all images are downloaded). If it is not true, then no more
images require loading in, and so no more calls are made to the interrupt function.

Following is the initial code that locates instances of the ondemand class and acts on them.

CAUTION Remember that you must use the ALT attribute of an image not its src attribute when
using the ondemand class. This is to prevent fast browsers that may have already parsed the
full HTML from trying to load images in until the program lets it. With no URLs in the src
arguments, the browser will skip them.

The JavaScript

 Fadein (fadein[n])
Using this recipe, you can fade in an object over a length of time of your choosing. This is the first
dynamic recipe in which you’ll see how to pass values to those classes that use them. For example,
the image in Figure 29-10 has been set to fade in over 2,000 milliseconds (or 2 seconds) and is now
in the process of fading.

FIGURE 29-10 Using this class to fade in images over a period of time

Variables, Functions, and Properties
arguments[1] JavaScript array element containing the duration value
cnamecopy String variable containing a copy of the class name
replace() JavaScript function to replace values found in a string with other values
Opacity() Function to set the opacity of an object
FadeIn() Function to fade an object in over a set time

About the Class
This class uses the JavaScript replace() function on a copy of the class name and specifies an
anonymous inline function for handling the replacement. But, rather than replacing it, the function only
wants access to the matched string, which it receives in the array element arguments[1]. It then sets
the opacity of the object to 0 and calls the FadeIn() function (from WDC.js), passing it the object to
fade and the value in arguments[1], which is the number of milliseconds the fade should take.

How to Use It
To make an object fade in, use this dynamic class in its class argument, as in the following (ensuring
that the duration of the fade in milliseconds is placed within a pair of square brackets):

Any value from 0 upward is acceptable for the duration length, and the argument and square

brackets may not be omitted.

The JavaScript

 Fadeout (fadeout[n])
This class offers the inverse functionality to the fadein[] class by fading out an object over a set
period of time, as shown in Figure 29-11, in which a photo is in the process of fading out using this
class.

FIGURE 29-11 You can also fade out objects with the fadeout class.

Variables, Functions, and Properties
arguments[1] JavaScript array element containing the fade duration length
cnamecopy String variable containing a copy of the class name
replace() JavaScript function to replace values found in a string with other values
Opacity() Function to set the opacity of an object

FadeOut() Function to fade out object over a set time

About the Class
This class uses the JavaScript replace() function in the same way as the fadein[] recipe to pass a
duration interval to the FadeOut() function.

How to Use It
To make an object fade out, use this dynamic class in its class argument, like this (ensuring that the
duration of the fade in milliseconds is placed within a pair of square brackets):

Any value from 0 upward is acceptable for the duration length, and the argument and square

brackets may not be omitted.

TIP You can fade out any object, not just images. Beware, however, because Internet Explorer
removes the ClearType setting on any text that has its opacity changed, making it appear
more jagged. One solution is to fade a white object in and out that you place over such text,
which will then appear to fade out and in, and no fonts will be affected.

The JavaScript

 Resize Textarea (resizeta[n|n])
Choosing the right dimensions for a <textarea> input tag can be difficult. Make it too small and
there is not much room for the user. But if it’s too large, it may appear daunting to the user, who will
feel they need to fill the space.

Thankfully, the resizeta[] class provides an answer, allowing you to set up a <textarea>
with an initial number of rows. This class will then monitor it for the minimum and maximum values
you give it, contracting and expanding the area according to how many lines of text have been input,
as shown in Figure 29-12.

FIGURE 29-12 A textarea that was originally three rows high has expanded to five.

Variables, Functions, and Properties
tagname String variable containing the name of the tag, such as img
cnamecopy String variable containing a copy of the class name
arguments[1] JavaScript array element containing the minimum number of rows
arguments[2] JavaScript array element containing the maximum number of rows
replace() JavaScript function to replace values found in a string with other values
ResizeTextarea() Function to automatically resize a textarea as necessary

About the Class
This class uses the JavaScript replace() function on a copy of the class name, and specifies an
anonymous inline function for handling the replacement. But, rather than replacing it, the function only
wants access to the matched string, which it receives in the array elements arguments[1] and
arguments[2]. It then passes these values to the ResizeTextarea() function, which continuously
monitors the textarea, contracting and expanding it as necessary.

How to Use It
To use this class, set up a <textarea> tag with the required number of rows and columns, then place
the resizeta[] class in the class argument and provide the minimum and maximum number of rows
within the square brackets. These two values must be separated with a | symbol, which is the standard
way to separate values passed in classes. The result looks like this:

This example creates a three-row by 50-column <textarea>, which can expand up to eight and

retract back to three rows.

The JavaScript

 Rotate (rotate[n])
This class starts to use a little meatier code. It’s a more powerful version of the rotatec... and
rotatea... classes from CSS Recipe 55 in Chapter 28, because it supports rotating an object
between 1 and 359 degrees or –1 and –359 degrees.

For example, the image of the hand in Figure 29-13 has been rotated by –45, –22.5, 0, 22.5, and
45 degrees, respectively.

FIGURE 29-13 Using this class, you can rotate any object clockwise or counterclockwise, by any
amount.

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the amount of rotation

r
Array copy of the JavaScript arguments[] array, the amount by which to
rotate the object

rad cosrad
sinrad

Floating point variables used for calculating rotation values for Internet
Explorer

w h Integer variables containing the width and height of the object
REL Global string variable containing the value “relative”

replace() JavaScript function to replace values found in a string with other values
W() Function to get the width of an object
H() Function to get the height of an object
S() Function to set the style properties of an object
Locate() Function to move an object to a new location

MozTransform
Property for setting up a transformation on Firefox and other Mozillabased
browsers

WebkitTransform Property for setting up a transformation on the Safari and Chrome browsers
OTransform Property for setting up a transformation on the Opera browser
transform Property for setting up a transformation on all other browsers (except IE)

filter
Property used by Internet Explorer for image transformations, among other
features

About the Class
This class uses the JavaScript replace() function on a copy of the class name, and specifies an
anonymous inline function for handling the replacement. However, rather than replacing it, the
function only wants access to the matched string, which it receives in the array element
arguments[1]. If the browser is not Internet Explorer, it then passes this value to the S() function to
modify the correct transform property for the browser.

If the browser is IE (determined by checking for the existence of the filter property), a series
of calculations are made to determine the correct values for the matrix function IE uses to rotate an
object. The matrix is then applied by assigning it to the filter property using the S() function, and
then the object is moved to a relative location that will make the rotation appear to have occurred
around its center (to match the way all other browsers rotate).

How to Use It
To use this class, enter its name in the class argument of the object to be rotated, ensuring you pass
the amount of rotation required within a pair of square brackets, like the following, which rotates the
image clockwise by 17 degrees:

Here, for example, is the HTML used to create Figure 29-13:

CAUTION On all recent browsers other than Internet Explorer, you can rotate any object. But
because IE has to use the filter property for this effect, it will only work on images.

The JavaScript

 Width (w[n])
Throughout this book, there have been examples where the width of an object has required changing,
and this has been achieved using a style attribute. However, with this class you can specify the
width of an object as a dynamic class parameter, as shown in Figure 29-14, in which the width of the
<div> has been set to 450 pixels.

FIGURE 29-14 Using this class to change the width of an object

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new width
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
width Property containing the width of an object

About the Class
This class uses the rename() function to pass the width from the class argument to the S() function in
order to modify the object’s width by changing the width property.

How to Use It
To use this class, enter the width amount in pixels within square brackets after the class name like
this, which sets the width of the <div> to 450 pixels:

No measurements other than pixels are supported, and you must enter a number greater than 0 in

the square brackets.

The JavaScript

 Height (h[n])
With this class, you can specify the height of an object as a dynamic class parameter, as in the case of
Figure 29-15, in which the example in the previous recipe has also had its height set to 70 pixels.

FIGURE 29-15 Using this class to change the height of an object

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new height
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
height Property containing the height of an object

About the Class
This class uses the replace() function to pass the width from the class argument to the S() function
in order to modify the object’s height by changing the height property.

How to Use It
To use this class, enter the height amount in pixels within square brackets after the class name like
this, which sets the height of the <div> to 70 pixels:

No measurements other than pixels are supported, and you must enter a number greater than 0 in

the square brackets.

The JavaScript

 X (x[n])
Once you free an object from the flow of a web page by giving it a position other than static (such as
relative or absolute), you can move it where you like on a page (or within its containing object).
Using this class, you can change an object’s horizontal position on the page, as shown in Figure 29-
16, in which a 115 × 115–pixel object has been inset from the left of the browser by 475 pixels.

FIGURE 29-16 The box has been inset from the left by 475 pixels using this class.

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new offset
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
left Property containing the left offset of the object

About the Class
This class uses the rename() function to pass the horizontal location from the class argument to the
S() function in order to modify the object’s left offset by changing its left property.

How to Use It
To use this class, enter the left offset amount in pixels within square brackets after the class name like
this, which sets the left offset of the <div> to 475 pixels (and also sets the width and height to 115
pixels each):

No measurements other than pixels are supported, and you must enter a number greater than 0 in

the square brackets.

The JavaScript

 Y(y[n])
This is the partner class for x[]; it moves an object down by the amount specified in the parameter in
square brackets. Figure 29-17 shows the example from the previous recipe, but with its vertical offset
set to 53 pixels.

FIGURE 29-17 The object has now been moved down by 53 pixels.

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new offset
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
top Property containing the top offset of the object

About the Class
This class uses the replace() function to pass the vertical location from the class argument to the
S() function in order to modify the object’s top offset by changing its top property.

How to Use It
To use this class, enter the top offset amount in pixels within square brackets after the class name like
this, which sets the top offset of the <div> to 53 pixels (and also sets the width and height to 115
pixels each and the left offset to 475 pixels):

No measurements other than pixels are supported, and you must enter a number greater than 0 in

the square brackets.

TIP You can also use negative values on objects with relative position to move them both to the
left and up in the browser.

The JavaScript

 Text Color (color[colorname/#nnnnnn/#nnn])
Although previous chapters have introduced a basic set of 21 color names that you can use within
classes, sometimes you need much finer color control, which is what this class provides. With it, you
can choose any color value from #000000 through to #ffffff (or the #000 to #fff short forms), as
well as any predefined color names that browsers understand, such as blue, green, or violet. In Figure
29-18, six different color values have been selected using this class.

FIGURE 29-18 The result of using this class on six different values

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new color
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
color Property containing the text color of an object

About the Class
This class uses the replace() function to pass the color value from the class argument to the S()
function in order to modify the object’s color by changing its color property.

How to Use It
To use this class to change the color of some text, place it in the class argument of the containing
object and enter the color value you want within a pair of square brackets following the class name,
as in the following HTML, which was used for the screen grab in Figure 29-18:

The JavaScript

 Background Color (bcolor[#nnnnnn])
This class provides the same functionality as the color[] class, except for changing the background
color of an object, as shown in Figure 29-19, in which the same six color values from the previous
example have now been applied to the background properties of the objects.

FIGURE 29-19 This class lets you change the background of any object to any color

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the new color
replace() JavaScript function to replace one section of a string with another
S() Function to modify a style property of an object
backgroundcolor Property containing the background color Of an object

About the Class
This class uses the replace() function to pass the color[]value from the class argument to the S()
function in order to modify the object’s background color by changing its backgroundcolor
property.

How to Use It
To use this class to change the background color of some text, place it in the class argument of the
containing object and enter the color value you want within a pair of square brackets following the
class name, as in the following HTML, which was used for the screen grab in Figure 29-19:

The JavaScript

CHAPTER 30
Dynamic Text and Typography

This chapter explores a range of dynamic classes for enhancing the way you use text in a web page,
including a typewriter or teletype effect, a way of cleaning up strings by removing unwanted
characters and whitespace, a class for automatically loading Google fonts in from the Google servers
when you reference them, one for vertically aligning text within an object, and another for creating
glow effects by cycling the foreground and background colors of objects.

 Typetext (typetext[n])
This class displays the contents of an object as if it is being typed out on a typewriter or teletype

machine. The class also takes a parameter specifying the duration of the animation so you can specify
the exact time you require.

For example, in Figure 30-1 the poem “The Tyger” by William Blake is being typed to the
screen over the course of 60 seconds.

FIGURE 30-1 Display a poem as if typed in a typewriter with this recipe.

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the animation duration

replace() JavaScript function to replace one section of a string with another
TextType() Function to modify a style property of an object

About the Class
This class removes the contents of the object it applies to and then replaces those contents over a time
duration passed to it.

How to Use It
To use this class, enter its name into the class argument of the containing object, along with the
animation duration within square brackets, as with the following example, which was used for the
screen grab in Figure 30-1:

The JavaScript

 Digits Only (digitsonly)
This class removes any characters from an input field that are not digits or whitespace. For

example, in Figure 30-2 the user has been asked for their credit card number and has also entered
some irrelevant text.

FIGURE 30-2 The user has input more than just a card number.

But in Figure 30-3, as soon as the user moves the mouse away, all the erroneous characters are
automatically removed, leaving behind only the numbers and whitespace.

FIGURE 30-3 The unwanted characters have now been removed.

Variables, Functions, and Properties
onchange JavaScript event that triggers when the contents of a field change

onmouseout
JavaScript event that triggers when the mouse moves away from an
object

onsubmit JavaScript event that triggers when a form is submitted
CleanupString() Function to clean up a string in a variety of different ways
this.value Property containing the contents of the input field

About the Class
This class is triggered whenever the mouse moves out of the object employing it, at which point it
calls the CleanupString() function (from the WDC.js library) to strip out all characters that are not
digits or whitespace.

How to Use It
When you want to ensure that an input field contains only digits or whitespace, place this class name
in the class argument of the element, like this:

The field will be automatically cleaned up for you with no further effort on your part.

The JavaScript

 Text Only (textonly)
This class is similar to the previous one in that it removes all characters that are not text or
whitespace from an input field. For example, in Figure 30-4 the user has entered some numbers into
the field, which are not allowed.

FIGURE 30-4 The user has entered numbers, which are not allowed.

However, in Figure 30-5 only the text and whitespace remain once the mouse is moved out of the
field.

FIGURE 30-5 The field has been cleaned up by removing the numbers.

Variables, Functions, and Properties
onchange JavaScript event that triggers when the contents of a field change

onmouseout
JavaScript event that triggers when the mouse moves away from an
object

onsubmit JavaScript event that triggers when a form is submitted
CleanupString() Function to clean up a string in a variety of different ways
this.value Property containing the contents of the input field

About the Class
This class is triggered whenever the mouse moves out of the object employing it, at which point it
calls the CleanupString() function to strip out all characters that are not text or whitespace.

How to Use It
When you want to ensure that an input field contains only text or whitespace, place this class name in
the class argument of the element, like this:

The field will be automatically cleaned up for you with no further effort on your part.

The JavaScript

 No Spaces (nospaces)
With this class, you can remove all the spaces from an input field. It is probably most useful for
stripping spaces out of credit card numbers. For example, how often have you entered your credit
card online only to have a form re-presented to you advising that the input was invalid because
spaces are not allowed? It’s certainly happened a few times to me, and it’s so unnecessary because
it’s an easy problem to fix on behalf of the user. For example, in Figure 30-6 a credit card number has
been entered with spaces.

FIGURE 30-6 A credit card number containing spaces has been entered.

However, once the user moves the mouse away, clicks into another field, or submits the form,
the whitespace is removed (see Figure 30-7).

FIGURE 30-7 Now the spaces have been automatically removed.

Variables, Functions, and Properties
onchange JavaScript event that triggers when the contents of a field change

onmouseout
JavaScript event that triggers when the mouse moves away from an
object

onsubmit JavaScript event that triggers when a form is submitted
CleanupString() Function to clean up a string in a variety of different ways
this.value Property containing the contents of the input field

About the Class
This class is triggered whenever the mouse moves out of the object employing it, at which point it
calls the CleanupString() function to strip out all whitespace from it.

How to Use It
To remove the whitespace from a field, place this class name in the class argument of the element,
as in the following example, in which both the digitsonly and nospaces classes have been used
(they generally go well together when used for inputting credit card details):

The field will be automatically cleaned up for you by removing all non-digits and all

whitespace.

The JavaScript

 No Punctuation (nopunct)
Sometimes you want just the bare text to be posted to a web form, and not any punctuation like
exclamation points and question marks. You can do this easily with Recipe 80, which strips them all
out for you.

For example, in Figure 30-8 the user is being prompted for a reminder phrase that will be used
to prompt them if they forget their password.

FIGURE 30-8 This input contains several punctuation characters.

But in Figure 30-9, the user has moved the mouse away and so the punctuation has been
automatically filtered out.

FIGURE 30-9 The punctuation has now been removed.

Variables, Functions, and Properties
onchange JavaScript event that triggers when the contents of a field change

onmouseout
JavaScript event that triggers when the mouse moves away from an
object

onsubmit JavaScript event that triggers when a form is submitted
CleanupString() Function to clean up a string in a variety of different ways
this.value Property containing the contents of the input field

About the Class
This class is triggered whenever the mouse moves out of the object employing it, at which point it
calls the CleanupString() function to strip out all punctuation characters from it.

How to Use It
To remove the punctuation characters from a field, place this class name in the class argument of the
element, as in the following example:

The field will be automatically cleaned up for you by removing all the punctuation.

The JavaScript

 Minimum Whitespace (minwhitespace)
Using this class, you can remove all the additional whitespace characters users sometimes enter,
replacing any groups of more than one whitespace character with a single space.

For example, in Figure 30-10 a <textarea> has been created in which a user is entering their
bio, with a somewhat messy use of whitespace.

However, after passing the mouse away, the extra whitespace is removed, leaving much better
formatted text (see Figure 30-11).

FIGURE 30-10 This <textarea> contains a lot of unnecessary whitespace.

FIGURE 30-11 Now the text has been stripped of unnecessary extra whitespace.

Variables, Functions, and Properties
onchange JavaScript event that triggers when the contents of a field change

onmouseout JavaScript event that triggers when the mouse moves away from an

object
onsubmit JavaScript event that triggers when a form is submitted
CleanupString() Function to clean up a string in a variety of different ways
this.value Property containing the contents of the input field

About the Class
This class is triggered whenever the mouse moves out of the object employing it, at which point it
calls the CleanupString() function to strip out all extra whitespace characters from it.

How to Use It
To remove the extra whitespace from a field, place this class name in the class argument of the
element, as in the following example:

The field will be automatically cleaned up for you by removing all the extra whitespace.

The JavaScript

 Google Font (gfont[n])
In CSS Recipe 28 of Chapter 25, you saw how to incorporate Google fonts into your web pages.
Unfortunately, you have to fiddle around with it a bit since you must add a <link rel…> tag for every
font you include. But using this class, you simply mention a Google font by name, and if it hasn’t been
loaded in yet, it is fetched automatically for you.

Figure 30-12 is similar to Figure 25-9 but was achieved using this recipe and without having to
manually load in all the fonts.

FIGURE 30-12 This class makes using Google fonts even easier.

Variables, Functions, and Properties
arguments[1] JavaScript array element containing the font name to use
font String variable containing the full font name

window[font]
Array attached to the window object instead of using a global array,
containing the value true if a Google font is already due to be
loaded

gfonts Local array containing the Google fonts to be loaded
gfindex Integer variable containing the number of Google fonts to load
index Integer variable used for iterating through an array
newcss Object containing a new style sheet to append to the DOM
replace() JavaScript function to replace a section of one string with another
createElement() JavaScript function to create a new element object
appendChild() JavaScript function to add a new element to the DOM
fontFamily Property containing the font family of an object

window.opera
Property only set in the Opera browser; used for determining
whether the browser requires a redraw

document.body.style Property that, if changed, forces a browser redraw in Opera

About the Class
This is a very easy class to use but a little complicated to explain. If you are interested only in how
you can use it, then skip to the next section.

This class works by making a note of every class argument you use that mentions the gfont[]
class name. Then, if the font required has not been marked to be fetched from Google’s servers, the

full font name is added to the gfonts[] array, and the fontFamily property is set to the font to use.
Later on, the fonts are all loaded in from Google’s servers, but only after all the dynamic

functions have been processed. This is because the act of loading in the new style sheets changes the
DOM by adding new elements to it, which, if done before the HTML processing is complete, would
corrupt the array of elements to be processed each time a new font is fetched.

How to Use It
To use this class to access Google’s fonts, just mention it in a class argument, supplying the shorthand
name of the font from Table 30-1 in the following square brackets, like this:

Shorthand Font Name
cardo Cardo
cantarell Cantarell
crimson Crimson Text
droidsans Droid Sans
droidsansm Droid Sans Mono
droidserif Droid Serif
imfell IM Fell English
inconsolata Inconsolata
josefin Josefin Sans Std Light
lobster Lobster
molengo Molengo
neuton Neuton
nobile Nobile
oflsorts OFL Sorts Mill Goudy TT
oldstandard Old Standard TT
reenie Reenie Beanie
tangerine Tangerine
vollkorn Vollkorn
yanone Yanone Kaffeesatz

TABLE 30-1 The Google Font Families and Shorthand Class Argument Names

About the JavaScript
Once all the dynamic classes used in a web page have been processed, the following JavaScript code
is run to load in all the Google fonts from Google’s servers that were accessed in the page:

With the fonts loaded, all browsers that support these fonts will be displaying them, with the
exception of Opera, which requires a nudge to redraw the browser contents, like this:

Following is the code used in the main section of JavaScript to process just the gfont[] class.

The JavaScript

 Text Middle (textmiddle)
This class centers text using the trick of setting the CSS line-height property to that of the
containing object. This is easy enough to do in your CSS on a single-element basis, but because exact
heights must be entered, this class is superior since it does the calculation for you.

For example, the <div> in Figure 30-13 has been set to 100 pixels in height, and the text within
it has been vertically centered using this recipe.

FIGURE 30-13 The text within the object has been vertically centered.

Variables, Functions, and Properties
Px() Function to add the suffix px to a string
lineHeight Property containing the line height of the object

About the Class
This class looks up the height of the object and then sets the line height of its contents to the same as
the object height, which has the effect of vertically centering the text.

How to Use It
To vertically center text within an object, mention this class in its class argument like in this
example, which first sets the object height to 100 pixels and the background to aqua, so you can
clearly see the effect:

The JavaScript

 Text Glow (textglow[#nnnnnn|#nnnnnn|n])
This class cycles between two colors over a time period you specify, providing a glowing effect. For
example, in Figure 30-14 the text has been set to cycle from yellow to red over the course of a
second, and then back again, and so on.

FIGURE 30-14 You can create a text glow effect with this class.

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the first color
arguments[2] JavaScript array element containing the second color
arguments[3] JavaScript array element containing the animation duration
replace() JavaScript function to replace one section of a string with another
ColorFade() Function to constantly fade between two colors

About the Class
This class calls the ColorFade() function (JavaScript Recipe 74) to constantly fade between two
text colors. It uses the JavaScript replace() function to capture the values passed with the class, and
then supplies them to ColorFade() via the arguments[] array.

How to Use It
To use this class, you must specify two six-digit hex color numbers, prefaced by # symbols, as well
as a duration for the animation in milliseconds. These parameters should be separated by | symbols
and placed within square brackets following the class name that is passed in a class argument, like
this:

This example cycles between the colors yellow and red over the course of a second (1000

milliseconds), and then back over the same duration, at which point the animation begins again.

The JavaScript

 Background Glow (backglow[#nnnnnn|#nnnnnn|n])
This class is similar to the previous one, but it provides a glow effect to the background color
property of an object, as shown in Figure 30-15. This is the same as the previous example, except that
a background glow from lime green to blue over 1.5 seconds has been added.

FIGURE 30-15 Combining background and foreground color glows

Variables, Functions, and Properties
cnamecopy String variable copy of the class name
arguments[1] JavaScript array element containing the first color
arguments[2] JavaScript array element containing the second color
arguments[3] JavaScript array element containing the animation duration
replace() JavaScript function to replace one section of a string with another
ColorFade() Function to constantly fade between two colors

About the Class
This class calls the ColorFade() function with slightly different arguments to constantly fade
between two background colors. It uses the JavaScript replace() function to capture the values
passed with the class, and then supplies them to ColorFade() via the arguments[] array.

How to Use It
To use this class, you must specify two six-digit hex color numbers, prefaced by # symbols, as well
as a duration for the animation in milliseconds. These parameters should be separated by | symbols
and placed within square brackets following the class name passed in a class argument, like this:

This example cycles between the text colors yellow and red over the course of a second (1000

milliseconds), and then back over the same duration, at which point the animation begins again. At the
same time, the background color cycles from lime green to blue over 1.5 seconds, and back again, and
so on.

CAUTION Due to the way the two color glow functions operate, they require six-digit hex color
values, and will not accept three-digit or named color values.

The JavaScript

CHAPTER 31
Dynamic Interaction

The classes in this chapter are designed to offer features that could only otherwise be created using
JavaScript. For example, both the HTML5 placeholder and autofocus attributes have been
emulated as dynamic classes, so you can now offer these features on most JavaScript-enabled
browsers.

Also, there is a powerful system for adding citations to a web page, and automatically creating a
list of them all at the article end, giving you the ability to use names to refer to objects, which are then
automatically converted into numbers you can use to create labels or captions such as Figure 1, Table
3, and so on. During this, the numbering is kept consistent even if you move the referenced objects
about on the page.

Finally, there’s a simple class for preventing casual users from trying to copy and paste the
contents of your web page.

 Placeholder (placeholder[prompt])
This class provides similar functionality to the HTML5 placeholder attribute for input fields. With it,
you can specify default text you would like to appear in a field that has no input—for use as a prompt
for the user—as shown in Figure 31-1.

FIGURE 31-1 A placeholder prompt is displayed in an empty field.

In Figure 31-2, once the user starts entering data into the field, the placeholder is forgotten and
will not reappear unless the data entered is deleted by the user.

FIGURE 31-2 The placeholder prompt is removed when data is entered into the field.

Variables, Arrays, and Functions
tagname String variable containing the name of the current tag, such as input

origcname
String variable containing an exact copy of the class name before the class
name is converted to lowercase

arguments[1] JavaScript array element containing the placeholder text
replace() JavaScript function to replace a section of text in a string with another
FieldPrompt() Function to activate a placeholder in a field
placeholder HTML5 Property containing any placeholder text

About the Class
This class uses the replace() function to pass the argument containing the placeholder text to the
FieldPrompt() function (JavaScript Recipe 90), via the arguments[] array. The origcname string
variable is used for the replace() function, rather than the usual cnamecopy string, since it retains
any uppercase characters that should be used in the placeholder. But before applying the placeholder
text to a field, it checks whether the browser already has an HTML5 placeholder value set, and if so,
it does nothing, allowing that to override this class.

How to Use It
To insert a placeholder prompt in a field, place the prompt text within square brackets following the
class name, in the class argument of an object, like this:

The JavaScript

 Autofocus (autofocus)
With this class, you can specify which object should have focus when a page loads, in the same way
that google.com, for example, automatically places the input cursor into the search field so it’s ready
for you to enter your search term.

In Figure 31-3, normally no field would have focus on page load, but by using this class the input
field has been focused, and the text cursor is now displaying within it.

FIGURE 31-3 Use this class to give focus to any object you choose

Variables, Arrays, and Functions
tagname Variable containing the tag name, such as input
tagtype Variable containing the type of a tag, such as hidden
focus() JavaScript function to provide focus to an object

About the Class
This class checks whether the tag name is one of input, select, textarea, or button, and
proceeds only if it is. Next, it checks whether the tag type has the value hidden, and if so, it then uses
the focus() function to give the tag focus.

How to Use It

http://google.com

To use this class, enter its name into the class argument of any <input>, <select>, <textarea>,
or <button> object, like this:

The JavaScript

 Cite (cite[citation])
Using this class, you can easily add citations as you create an article, which will then be
automatically numbered, hyperlinked in superscript text, and referenced at the end of the article. For
example, Figure 31-4 features a short biography of Sir Timothy Berners-Lee (inventor of the World
Wide Web) that incorporates two references to articles on other sites, which have been marked as
they occur in the text and detailed at the article end.

FIGURE 31-4 This class makes handling citations extremely easy.

Variables, Arrays, and Functions
String variable containing an exact copy of the class name before the class

origcname name is converted to lowercase
arguments[1] JavaScript array element containing the citation details
cites[] Array containing the list of citation details
cindex Integer variable containing the number of citations
replace() JavaScript function to replace a section of text in a string with another
Html() Function to read or write the HTML contents of an object
InsVars() Function for inserting one or more values into a string
verticalAlign Property containing the vertical alignment of an object
textDecoration Property containing the text decoration of an object, such as underline
fontSize Property containing the font size of an object

About the Class
This class makes a note of all cite[] class references as they occur and places the citation details
from each into the array cites[]. A superscript link is then made to the list of citations, which will
appear once all have been processed. Using these links, you can jump directly to the matching citation
later in the web page.

How to Use It
To use this class, you need to include some citation details within the square brackets of a cite[]
class argument, like this:

Or you can include a link within the citation details if you prefer, like this:

In this case, the class argument is enclosed in double quotation marks so that the URL within it

can be placed in single quotation marks.
Once you have placed all your citations in the article text, you must then place an object with the

ID name of citations somewhere on your web page, which will then have the citation details
placed in it once they have all been processed, like this:

To see this work in practice, here is the HTML used for Figure 31-4:

The JavaScript that Creates the Citation List
If you are interested in how this works, the following code runs after all the dynamic classes in a web
page have been processed, but only if cindex has a value greater than 0 (indicating there is at least
one citation):

It then creates an unordered list and iterates through the cites[] array extracting all the citations

into the object that has been given the ID of citations (if it exists).
The code that first processes the cite[] class is shown next.

The JavaScript

 Reference (ref[type | name])
With this class, you can refer to sections of an article by using special names, and when the article is

viewed by a user, all the references are changed to numbers, in the same way that figures in this
chapter have numbers that run in order so as to easily identify them. This means you can relocate the
references and sections to which they refer within an article without worrying about having to
renumber them all.

For example, in Figure 31-5 there are two figures and one section that are referenced by the
main text. Even though these objects do not appear in the same order in which they are referred, they
have been given identifying numbers in the correct sequence.

FIGURE 31-5 This class keeps track of referenced objects, renumbering them for you.

Variables, Arrays, and Functions
cnamecopy String variable containing a copy of the class name
arguments [1] JavaScript array element containing the reference object type
arguments [2] JavaScript array element containing the reference object name

a1 a2
Variable copies of arguments [1] and arguments [2] used as shorthand to
simplify the code

refers[] Array containing all the references
replace() JavaScript function to replace a section of text in a string with another
Html() Function to read or write the HTML contents of an object

About the Class
This class takes an object type and an object name and then keeps track of where these are used
throughout a web page. They are then given numerical values according to the order in which they are
encountered, such that (for example) the first figure object is given the value 1, the second is given the
value 2, and so on.

How to Use It
To use this class, you must give every object you reference a unique name, so that whenever it is
mentioned, the correct number can be placed with it. You also need to specify the type of each object
so you can, for instance, have figures and tables, and as many other object types as you need.

So, for example, to announce that an object is a figure, you might use code such as this:

In this case, the unique name is uniquename, and the object type is fig. To now reference this

figure from anywhere in the web page, you would use code such as this:

Leave the contents of the (or other object you use) empty because the class will place

the number to display inside it, overwriting anything already there.
Once you have done this, you can move the figure and any references to it to any other places in

the article and they will still correctly reference each other—and, if necessary, they will be
renumbered should the figure be moved before or after another figure.

Here’s another example that uses this class, and which creates the result seen in Figure 31-5:

I have highlighted the references in bold so you can quickly see them. Three objects in total are

referenced:

• fig|rect
• fig|square
• sec|shape

Two of the objects are of type fig and the other is of type sec. What the class does is allocate
the fig object numbers in the order in which they first appear in the document (and would do the
same for the sec objects, except there is only one).

Therefore, if fig|square is encountered first, it will become Figure 1, but if fig|rect is the
first one found, then it will be Figure 1. This means that all the objects will always be ordered
correctly according to where they appear in an article (no matter where you move them to), making it

easy for your readers to locate them.
You can use any names you want for the object types such as figure rather than fig, section

rather than sec, or any other names, such as fred or wilma.

The JavaScript

 No Copy (nocopy)
Sometimes you want to prevent idle copying and pasting of your work, or simply wish to prevent the
ugly effect that a highlighted section of text might have on your design. You can do so using this class,
as shown in Figure 31-6, in which the first section of text can be copied, but the second cannot.

FIGURE 31-6 Prevent sections of text from being copied with this recipe

Variables, Arrays, and Functions
PreventAction() Function to prevent drag-and-copy actions

About the Class
This class prevents the use of drag and drop on an object. It works well on most browsers, but there
is a bug in Internet Explorer in which you can commence a drag operation outside of an object that
uses this class and the browser will allow you to continue the drag into it. However, IE does
correctly prevent starting a drag operation from within objects using this class.

How to Use It
To prevent an object from allowing drag-and-copy operations, mention this class name in the object’s
class argument, like this:

However, due to the Internet Explorer bug, you will have the best results if you attach this class

to the <body> section of a web page, like this (so that nothing on a web page can be copied):

Here is the HTML used for Figure 31-6:

The JavaScript

CHAPTER 32
Incorporating JavaScript

Even if you are not a programmer, or not familiar with JavaScript, you can still make use of this
powerful language using the classes in this chapter. With them, you can embed simple calculations or
complex expressions within an object, just by placing them within a pair of special tokens.

You can also use these recipes to leverage the power of JavaScript for creating sections of
conditional HTML, whether based on expressions of your choice, or using a special global keyword
to identify the browser in use (such as Firefox, Internet Explorer, and so on).

Once you use these classes, you may find them so handy you’ll wonder how you ever managed
without them.

 Embed JavaScript (embedjs)
Using this class, you can embed snippets of JavaScript within an object, without having to use
<script> tags. This makes it easy for you to display the result of a calculation, or anything else that
can be displayed by JavaScript.

For example, in Figure 32-1 a number of code snippets have been embedded within a paragraph
of text, which have been evaluated, and the results then inserted in their place.

FIGURE 32-1 A paragraph with several JavaScript snippets embedded in it

Variables, Arrays, and Functions
replace() JavaScript function to replace one section of text with another
Html() Function to get or set the HTML contents of an object

try ... catch()
JavaScript to try an expression and, if there is an error, catch it quietly without
throwing an error

Eval() JavaScript function to evaluate an expression

About the Class
When this class is encountered, the object using it is parsed to see whether it has any sections
embedded within [[and]] tags. If so, these sections are evaluated as JavaScript code, and the result
returned by the evaluation is then substituted for the entire section from the opening [[to the closing
]].

How to Use It
With this class, you have the ability to easily embed any JavaScript inline with text. For example, you
might want to display the result of a simple calculation and can do so like this:

As you can see, you don’t need to know anything about JavaScript to use this class to display the

result of arithmetic calculations. You can also access the global variable BROWSER, which is used
by the WDC.js file to keep track of the current browser type. It will have a value such as “IE”,
“Opera”, “Firefox”, and so on, and can be displayed like this:

You can also embed much larger sections of code by separating the expressions from each other

with a semicolon, like this:

Or, if you prefer, you can format the contents like program code as follows (still ensuring that

there are semicolons at the end of each statement except the final one, which is optional):

The output from this example is:

CAUTION In the for() loop of this example, the < entity is used instead of the < symbol
because placing the < within HTML confuses browsers, which expect an HTML tag to follow
it. Likewise, you must use the > entity where you need a > symbol. The only way you can
use the < and > symbols is if the entire JavaScript snippet is encased in quotation marks, like

this: “[[76 < 83.3]]”, which will return the value true.

Here’s the HTML used for Figure 32-1, in which I have highlighted the embedded JavaScript
snippets in bold:

As you can see, you can also create a new variable (such as count, in the preceding example),

and then refer to it later in a web page (as long as you don’t make it local by prefacing it with the var
keyword, in which case it will work only in the current code snippet).

If you make a mistake, such as introducing a syntax error, an error message will be displayed in
red, instead of the result you were expecting. For example, the following is invalid:

The problem is that the x symbol is not a valid operator in JavaScript, and it should be replaced

with a * symbol. Therefore, because the parser was expecting a semicolon following the 66, the
preceding snippet will generate an output similar to the following:

The JavaScript

 If (if[expr])
If you’ve ever wished you could write conditional HTML, then you should find this class very handy,

because with it you can display an object only if an expression evaluates to true. For example, in
Figure 32-2, the screen grab was taken after midday; therefore, it displays the phrase “Good
Afternoon”.

FIGURE 32-2 Using this class, you can display objects only when conditions are satisfied.

Variables, Arrays, and Functions
replace() JavaScript function to replace one section of text with another
Html() Function to get or set the HTML contents of an object
Eval() JavaScript function to evaluate an expression

About the Class
This class evaluates the expression following the class name and then displays the object only if the
expression evaluates to true. If it is false, to prevent the object’s display it is simply encased
within <!-- and --> HTML comment tags.

How to Use It
Use this class when you want to display objects only when certain conditions are met. For example,
the following object is displayed only after midday:

What is going on here is that a new object called now is created from the current date and time

using the Date() function. Then, the getHours() method of the now object is used to return the
current hour between 0 and 23. This value is compared with the number 11 and, if it is greater, the
contents of the is displayed, which in this case is the word “Afternoon”.

NOTE Unlike its use in objects implementing the embedjs class, the direct use of the > symbol is
acceptable in this case because the entire contents of the class argument are enclosed within
quotation marks, and therefore the > cannot be mistaken for part of an HTML tag.

Using the BROWSER Global Variable with this Class

Because they all work differently, the WDC.js library of JavaScript functions needs to know which
browser is running, and therefore tweaks can be made to ensure all the functions have the same (or
nearly the same) effect. You can use the global variable BROWSER that it creates for your own
purposes, too.

For example, if you have written an application for the iPad tablet that you want to advertise,
you could use the following code to display details about it only to people browsing your web page
using that device:

Table 32-1 lists all the values that BROWSER may have, in order of determination. For example, if

an iPod Touch device is detected, then the string “iPod” is assigned to BROWSER, even though the
browser running is a version of Safari.

Value Browser/Device Type
IE Internet Explorer
Opera Opera
Chrome Google Chrome
iPod Apple iPod Touch
iPhone Apple iPhone
iPad Apple iPad
Android Google Android
Safari Apple Safari
Firefox Mozilla Firefox
UNKNOWN No known browser type identified

TABLE 32-1 The Possible Values of the BROWSER Variable

Here is the code used for Figure 32-2:

The JavaScript

 If Not (ifnot[expr])
This class provides the inverse of the if[] class and is useful for implementing the equivalent of an
if… else… block of code. For example, in Figure 32-3 this class is used in conjunction with the
if[] class, and you can see the different results displayed in the Apple Safari browser and in Internet
Explorer (the inset).

FIGURE 32-3 Using both the if[] and ifnot[] classes to target different browsers

Variables, Arrays, and Functions
replace() JavaScript function to replace one section of text with another
Html() Function to get or set the HTML contents of an object
eval() JavaScript function to evaluate an expression

About the Class
This class evaluates the expression following the class name and then displays the object only if the

expression evaluates to false. If it is true, to prevent the object’s display it is simply encased
within <!-- and --> HTML comment tags.

How to Use It
You use this class in the same manner as the if[] class, except that the object will be displayed only
if the result of the expression in the square brackets evaluates to false. For example, here is the code
used for the screen grabs in Figure 32-3:

Of course, you could replace the second line with the following, in which the if[] class is used

in place of ifnot[], but with a modified expression:

But the point of the ifnot[] class is that you don’t have to rewrite an expression that was used

in an if[] class; you can simply copy the entire expression and place it within an ifnot[] class to
achieve the inverse effect of the original, which is very handy if the expression is quite complex.

NOTE This completes all the dynamic classes in this book. In the next and final chapter, I’ll show
you how you can combine any of these classes together to create superclasses, which have the
combined functionality of many classes at once.

The JavaScript

CHAPTER 33
Superclasses

Now that you have access to the almost 1800 classes from the previous chapters, this one focuses on
combining them to make superclasses—single classes with the functionality of several classes at
once. These superclasses include creating an RSS button, applying simple borders, handling
rollovers, generating horizontal and vertical animated tabs, and more.

You’ll also discover how easy it is to create your own superclasses using simple <meta …>
statements to help make building dynamic web pages the easiest it has ever been.

What Is a Superclass?
Superclasses are classes that contain groups of other classes. For example, the first superclass in this
chapter, clickable, contains the nooutline and pointer classes (CSS Recipes 19 and 54).

Seven superclasses have been predefined for you in the WDC.js file (right at the end), and you
can easily create your own using the <meta …> tag, like this:

In this example, the superclass clickable is created by placing the argument http-

equiv=‘sclass’ within a <meta …> tag, followed by the argument specifying the name of the
superclass, name=‘clickable’, and finally the classes to put in the superclass,
content=‘nooutline pointer’.

Here’s another example:

This creates the new superclass yellowonblue, which will set the foreground color of the

object to which it applies to yellow and the background to blue.

NOTE You can include as many classes in a superclass as you like, as well as any combination of
normal and dynamic classes from this book, or even throw in your own classes created either
within <style> tags or from a style sheet.

 Clickable (clickable)
The purpose of this class is to clearly indicate that objects, and buttons in particular, are clickable. It
does this by removing any outline that may be placed around the object when it has the focus, and by
turning the mouse cursor into a pointer when it hovers over the object.

In Figure 33-1, two rows of buttons have been created. The first row doesn’t use this superclass,
but the second does.

FIGURE 33-1 This superclass removes outlines and changes the mouse cursor to a pointer.

In the screen grab, you can clearly see the dotted outline that has been applied to the first Cancel
button, but which will not appear over the second one. Also, the mouse cursor will change to a
pointer when over the second row, but not the first.

Classes
nooutline CSS Recipe 19: Prevents a dotted outline being placed over an object in focus

pointer
CSS Recipe 54: Turns the mouse cursor into a pointer when it hovers over the
object

About the Superclass
By combining the effects of two other classes, this superclass helps to clearly indicate when an object
is clickable.

How to Use It
To use this superclass, enter its name into the class argument of an object. For example, the
following code was used to create the screen grab in Figure 33-1:

Try passing your mouse over the different rows and clicking various buttons to see the

differences between them.

 RSS Button (rssbutton)

This class creates a great-looking RSS button without the need for including an image. For example,
Figure 33-2 shows it being applied to both a <button> and a object in both the Chrome and
Internet Explorer browsers. Although there are minute differences between them, all the buttons look
quite respectable.

FIGURE 33-2 The RSS button superclass used on different objects in different browsers

Classes
carrot1 CSS Recipe 4: Changes the background to the gradient carrot1

carrot2_a
CSS Recipe 5: Changes the background to the gradient carrot2 when the object
is clicked

smallestround CSS Recipe 8: Applies a two-pixel rounded border
b CSS Recipe 21: Changes the font weight to bold
white CSS Recipe 24: Changes the foreground color to white
yellow_h CSS Recipe 24: Changes the hover color to yellow

smallbutton
CSS Recipe 33: Creates a button with a 75 percent font size and two pixels of
padding

clickable CSS Recipe 94: Indicates that the object is clickable

About the Superclass
This superclass brings together a large number of CSS rules from several different classes, even
including the previous superclass, clickable, to create a dynamic, 3D-effect RSS button.

How to Use It
To use this superclass, you will need to surround it with an tag pointing to your RSS
feed, like this:

The first line references the RSS feed and uses the n class to suppress the underline that would

otherwise appear under the button. The middle line applies the rssbutton superclass to a
tag, and supplies the string “RSS FEED” to it.

You can also use the <button> tag by placing it in a form like this:

CAUTION When using the <button> tag, Internet Explorer will submit the text between the
<button> and </button> tags, while other browsers will submit the contents of its value
attribute (if any).

 Border (border)
Often, you want to quickly add a border to an object, and this class will do the job for you without
having to supply a set of CSS rules. For example, in Figure 33-3 a photograph is displayed twice, the
second time using this superclass.

FIGURE 33-3 Displaying an image without, and with, the border superclass

Classes

bsolid CSS Recipe 16: Sets the object’s border to solid
bwidth1 CSS Recipe 17: Sets the object’s border width to 1 pixel
bblack CSS Recipe 18: Sets the object’s border color to black

About the Superclass
This superclass uses all three border classes to create a simple, one-pixel black border around the
object.

How to Use It
When you want to quickly add a border to an object, just enter this superclass name in its class
argument, like this:

 Absolute Top Left (abstopleft)
Whenever you create a rollover or need to align objects on top of each other, the process is the same.
All objects after the first one should be moved to the top-left corner of the containing object, and this
class makes doing so quick and easy.

You can see this superclass in use in Figure 33-4, where the boat image has been superimposed
over the photograph.

FIGURE 33-4 Use this superclass to lay objects over each other.

Classes
absolute Recipe 1: Gives an object absolute positioning
totop Recipe 13: Moves an object to the top of its container
toleft Recipe 13: Moves an object to the left of its container

About the Superclass
This superclass applies three classes to give an object absolute positioning, and to move it to its
containing object’s top-left corner.

How to Use It
To use this superclass, you will need a container object with a position other than static in which to
place your objects. Then, the second object onward must apply the superclass, as in the following
example, which was used for Figure 33-4:

In this example, the larger image is given a transparency level of 7 and the boat a transparency of

6 and they have been superimposed over each other. Reasons you would want to do this include
creating slide shows and rollovers, as in the following recipe.

 Rollover (rollover)
This class makes it very easy for you to create rollover effects, as shown in Figure 33-5, in which
two face images are displayed that, when moused over, turn from happy to sad, and vice versa.

FIGURE 33-5 Creating rollover effects with this pair of superclasses

Classes
trans00 CSS Recipe 9: Sets the transparency of an object to fully visible

trans00_h
CSS Recipe 9: Sets the transparency of an object to fully visible when the mouse
cursor passes over it

trans10 CSS Recipe 9: Sets the transparency of an object to completely invisible

trans10_h
CSS Recipe 9: Sets the transparency of an object to completely invisible when
the mouse cursor passes over it

abstopleft
CSS Recipe 97: Gives an object absolute positioning and moves it to the top-left
corner of its container

About the Superclasses
These two superclasses are intended to be used together. The rollover superclass should be applied
to the first of a rollover pair of objects, and rollover_h to the second. Once implemented, whenever
the mouse passes over the objects, the first one is set to transparent and the second to fully visible so
the one you can see swaps. When the mouse is moved away, the first object becomes visible again
and the second invisible.

In another illustration of superclasses being used as members of other superclasses, the
abstopleft superclass is used as one of the members of this superclass pair.

How to Use Them
To use these superclasses, first create an object that has a positioning other than static, and then place
two other objects within it, giving the first one the rollover superclass, and the second rollover_h,
like this:

The application of the relative class to the <div> ensures that it doesn’t have a position of static,

and therefore it will act as the containing object for the images within it. The rollover_h superclass
makes use of the abstopleft superclass (among others), so there is no need to specify the
positioning of the second image.

TIP You are not restricted to only images by these superclasses, and can use any types of objects
for the rollover pairs.

 Vertical Tab (vtab)
This clAss Creates A Tab That Slides In From the left of the screen on browsers that support CSS
transitions such as Opera 10, Firefox 4, Apple Safari 5, and Google Chrome 5 (or higher). Sadly, the
smooth transition doesn’t work on Internet Explorer, but it does degrade to a simple in or out

animation.
In Figure 33-6, a number of tabs have been created using this superclass, and the mouse is

currently hovering over the Politics tab, which has popped out.

FIGURE 33-6 A number of pop-out tabs created using this superclass

Classes
leftpadding10 CSS Recipe 15: Applies 10 pixels of padding to the object’s left side

leftpadding40_h
CSS Recipe 15: Applies 40 pixels of padding to the object’s left side
when it is hovered over by the mouse

rightpadding5 CSS Recipe 15: Applies 5 pixels of padding to the object’s right side
b CSS Recipe 21: Sets the object’s font weight to bold

transitionallfast_l
CSS Recipe 51: Applies a linear transition of 0.3 seconds to any property
changes that occur on the object (where supported by the browser)

About the Superclass
This is a great little superclass for creating a variety of animation and menuing effects. It works by
changing the left padding of an object when the mouse passes over it. In conjunction with CSS3
transitions (on browsers that support them), the object will slide out and in smoothly over the course
of 0.3 seconds. In Internet Explorer and other browsers that don’t support transitions, the object will
simply pop in and out.

How to Use It
To use this superclass, first create a container object by giving it a position other than static. For
example, here is the HTML used for Figure 33-6:

In the first line of this example, the <div> is given relative positioning, a red background color,

is moved to the left by 20 pixels (to send it past the screen edge), has its font family set to Arial, and
is given a width of 100 pixels.

Inside it are six tabs, each of which uses the vtab superclass, and it is set to white text on a red
background, which changes to yellow text when hovered over with the mouse. The text is also aligned
to the right, and the width of each tab is set to 80 pixels.

When you pass your mouse over the tabs on a browser that supports CSS3 transitions, you’ll see
them sliding in and out in a pleasing and professional manner. Even on IE and other browsers that do
not support transitions, the effect still happens, although instantly rather than over time.

All the example now needs is for tags to be placed around each tab (possibly
including the use of the n class to suppress any underlines) and the menu will be complete. When you
do this, ensure that the and are placed around the <div> (or other container), not
within it.

 Horizontal Tab (htab)
This class is similar to the previous recipe, except that it creates dropdown tabs, as shown in Figure
33-7, where the Science tab is currently being hovered over and has therefore slid down.

FIGURE 33-7 These pop-out tabs drop down vertically when hovered over.

Classes
absolute CSS Recipe 1: Gives an object absolute positioning

toppadding20_h
CSS Recipe 15: Applies 20 pixels of padding to the object’s top when it
is hovered over by the mouse

b CSS Recipe 21: Sets the object’s font weight to bold
center CSS Recipe 22: Centers the object’s contents

transitionallfast_l
CSS Recipe 51: Applies a linear transition of 0.3 seconds to any
property changes that occur on the object (where supported by the
browser)

About the Superclass
This superclass works by changing the top padding of an object when the mouse passes over it. In
conjunction with CSS3 transitions (on browsers that support them), the object will slide down and up
smoothly over the course of 0.3 seconds. In Internet Explorer and other browsers that don’t support
transitions, the object will simply pop down and back up again.

How to Use It
To use this superclass, you need to first create a container object by giving it a position other than
static. For example, here is the HTML used for Figure 33-7:

In the first line of this example, the <div> is given a red background color, and its font family is

set to Arial.
Inside it are six tabs, each of which uses the htab superclass. It is also set to white text on a red

background, which changes to yellow text when hovered over with the mouse. The width of each tab
is set to 80 pixels, and the horizontal location of each tab is moved in by 80 pixels from the previous
one.

When you pass your mouse over the tabs on a browser that supports CSS3 transitions, you’ll see
them smoothly sliding down and up. In IE and other browsers, the tabs instantly pop down and up.

Summary
And there you have it, more than 300 different handcrafted recipes for PHP, MySQL, JavaScript,
CSS, and Ajax, all contained in just three easy-to-access files (WDC.php, WDC.js and WDC.css). So
now you can spend more time developing the new and exciting features you want on your web sites,
and less time having to reinvent the wheel simply to provide standard features—because the chances
are that there are recipes in this book for almost any project, whether server- or browser-based.

I hope you have found these recipes useful as well as time-saving, and have maybe even learned
a few coding tricks from the examples. If you have any comments, ideas, or suggestions, please
contact me via the webdeveloperscookbook.com web site, where I will be pleased to hear from you.

http://webdeveloperscookbook.com

Index

$()
 See also O()

A
absolute positioning
 See also positioning
absolute URLs, converting relative URLs to
abstopleft
acronyms, replacing with standard English
AddUserToDB()
Ajax
 creating Ajax objects ready for making background calls to web server
 creating new Ajax objects
 extracting data from an RSS feed
 fetching data from a web site in the background
 fetching data from a web site using a POST request
Alert()
alerts
 replacing alert() function with Alert()
all caps, converting
Amazon.com
 getting sales rank
 searching for books from ISBN numbers
AnagramFinder()
Android
animation
 chaining recipes
 flipping
 hovering objects on edge until mouseover
 pausing
 pausing until a key is pressed
 repeating recipes
 repeating recipes while a condition is true
arrays, passing
AutoBackLinks()
autofocus

B
backglow
background colors
 glowing effect
 odd and even

http://www.Amazon.com

BB Code, translating to HTML
BBCode()
Billboard()
Bing Maps, embedding
BlockUserByCookie()
books
 getting Amazon.com sales rank
 getting title from ISBN number
border
border color
border style
border width
bottom
bottom dock bar
box shadows
boxout
Breadcrumbs()
BROWSER global variable
browsers. See mobile browsers;web browsers
BrowserWindow()
Bulletin Board Code. See BB Code buttons
BypassCaptcha()

C
CallBack()
callbacks
CapsControl()
Captcha
 bypassing
 generating
 verifying input
caption image
CaptureKeyboard()
CaptureMouse()
center
Center()
CenterX()
CenterY()
Chain()
charts
 creating
 See also Google Charts API
chatrooms
 displaying messages from
 posting messages to

http://www.Amazon.com

CheckCaptcha()
CheckLinks()
citations
cite
classes
 autofocus
 backglow
 background color
 border color
 border style
 border width
 bottom
 bottom dock bar
 box shadows
 boxout
 buttons
 caption image
 center
 cite
 columns
 default CSS
 digitsonly
 drop cap
 embedjs
 encapsulation
 fadein
 fadeout
 floating
 font styles
 fonts
 gfont
 Google fonts
 gradients
 height
 horizontal menu
 if
 ifnot
 inverse gradients
 left
 left sidebar
 location
 maximum sizes
 middle
 minwhitespace
 no outline

 nocopy
 nojs and onlyjs
 nopunctuation
 nospaces
 odd and even background colors
 odd and even text colors
 ondemand
 padding
 page break
 placeholder
 pointer
 positioning
 progress bar
 quote
 ref
 reset CSS
 resize textarea
 right
 right sidebar
 rotate
 rotation
 rounded borders
 scale down
 scale up
 scroll bars
 selective margins
 selective padding
 specifying
 star rating
 star rating using images
 symbols
 text alignment
 text color
 text colors
 text indent
 text point size
 text shadows
 text transformations
 textglow
 textmiddle
 textonly
 thumb view
 tooltip and tooltip fade
 top
 top dock bar

 transition all
 transparency
 typetext
 vertical menu
 visibility
 width
 x
 y
 See also superclasses
CleanupString()
clickable
CloseSession()
color
 background colors
 changing text color or background color over time
 odd and even background colors
 odd and even text colors
 text colors
ColorFade()
columns
companion web site
ContextMenu()
contractions, converting text to
ConvertCurrency()
cookies
 blocking unwanted users by
 managing
 saving, reading, or deleting
copyright statements, updating
CornerGif ()
counters, adding to web pages
CountTail()
CreateAjaxObject()
CreateCaptcha()
CreateGoogleChart()
CreateList()
CreateSession()
CreateShortURL()
credit card numbers, validating
CSS
 importing style sheets from another style sheet
 importing style sheets from within HTML
 overview
CSS recipes (functions)
 absolute top left

 autofocus
 background color
 background colors
 background glow
 border
 border color
 border style
 border width
 bottom
 bottom dock bar
 box shadows
 boxout
 buttons
 caption image
 center
 cite
 clickable
 columns
 default CSS
 on demand
 digits only
 drop cap
 embed JavaScript
 encapsulation
 fadein
 fadeout
 floating
 font styles
 fonts
 Google font
 Google fonts
 gradients
 height
 horizontal menu
 horizontal tab
 if
 if not
 inserting
 inverse gradients
 left
 left sidebar
 location
 maximum sizes
 middle
 minimum whitespace

 no copy
 no outline
 no punctuation
 no spaces
 NoJS and OnlyJS
 odd and even background colors
 odd and even text colors
 padding
 page break
 placeholder
 pointer
 positioning
 progress bar
 quote
 reference
 reset CSS
 resize textarea
 right
 right sidebar
 rollover
 rotate
 rotation
 rounded borders
 RSS button
 scale down
 scale up
 scroll bars
 selective margins
 selective padding
 star rating
 star rating using images
 symbols
 text alignment
 text color
 text colors
 text glow
 text indent
 text middle
 text only
 text point size
 text shadows
 text transformations
 thumb view
 tooltip and tooltip fade
 top

 top dock bar
 transition all
 transparency
 typetext
 vertical menu
 vertical tab
 visibility and display
 width
 X,911–912
 Y
CurlGetContents()
currency conversion
cursor trail, displaying
CursorTrail()

D
DecHex()
decimal numbers
 converting hexadecimal numbers to
 converting to hexadecimal numbers
default CSS
Deflate()
DeflateBetween()
DeflateToggle()
detecting spam
digitsonly
DirectoryList()
DisplayBingMap()
dock bars
 adding
 bottom dock bar
 top dock bar
DockBar()
Document Object Model. See DOM document objects
DOM
 accessing from JavaScript
 assigning IDs and classes
 and CSS
 how the DOM works
 importing style sheets
 importing style sheets from within HTML
 local style settings
 overview
dragging objects, preventing
drop cap

E
e-mail
 displaying e-mail addresses as hyperlinks
 sending
 validating addresses
EmbedYouTube()
EmbedYouTubeVideo()
emoticons, replacing with GIF images
encapsulation
EvaluateExpression()
expressions, evaluating

F
Fade()
FadeBetween()
fadein
FadeIn()
fadeout
FadeOut()
FadeToggle()
fading
 in
 out
 toggling
 between two images
FetchFlickrStream()
FetchWikiPage()
FieldPrompt()
files, listing all files in a directory
fixed positioning
 See also positioning
Flickr
 displaying images as a slide show
 fetching recent photos of a public Flickr account
Flip()
floating
FlyIn()
FoldingMenu()
font styles
fonts
 Google fonts
FrameBust()
frames, busting web pages out of embedding frames
FriendlyText()

FromKeyCode()

G
GD objects, creating GD objects with Google Charts
GetAjaxRequest()
GetAmazonSalesRank()
GetBookFromISBN()
GetCountryFromIP()
GetGuestBook()
GetLastKey()
GetLinksFromURL()
GetTitleFromURL()
GetTweets()
GetUserFromDB()
GetWindowHeight()
GetWindowWidth()
GetYahooAnswers()
GetYahooNews()
GetYahooStockNews()
gfont
GIFs
 attaching to edges of the browser window
 creating corner and edge GIFs for rounded borders
 replacing emoticons with smiley GIF images
GifText()
Google Books, searching
Google Charts API
 creating charts
Google fonts
GoogleChart()
GoTo()
GoToEdge()
gradients
 See also inverse gradients
Guestbook feature
 displaying Guestbook posts
 posting messages to

H
H()
Hash Code. See Pound Code height
hexadecimal numbers
 converting decimal numbers to
 converting to decimal numbers

HexDec()
Hide()
HideToggle()
highlighting text
 from a query
HitCounter()
home page, creating breadcrumb trail from
home page to current page
horizontal menu
horizontal offsets
 looking up
 setting position property and horizontal and vertical offsets
hotspots, displaying status messages on
HoverSlide()
HoverSlideMenu()
htab
HTML
 converting to RSS
 formatting to load faster on a mobile browser
 toggling between two sets of HTML
 translating BB Code to
 translating Pound Code to
 translating RSS to
Html()
HTMLToMobile()
HTMLToRSS()

I
IDs, assigning
if
ifnot
ImageAlter()
ImageConvert()
ImageCrop()
ImageDisplay()
ImageEnlarge()
ImageResize()
images
 adding watermarks
 altering
 caption image
 converting file formats and quality settings
 converting fonts to GIF images
 converting images to thumbnails
 cropping

 displaying
 displaying as a slide show
 displaying centered in browser with darkened frame
 displaying like an automated billboard
 enlarging
 fetching recent photos of a public Flickr account
 flipping
 replacing emoticons with smiley GIF images
 resizing
 rotation
 shadow effects
 star rating using images
 thumb view
 uploading files
ImageWatermark()
indenting paragraphs
Initialize()
innerHTML property
InputPrompt()
InsVars()
Internet Explorer, older versions
interruptible calls
inverse gradients
 See also gradients
Invisible()
iOS,4
IP addresses, determining country from
ISBN numbers, finding book titles from

J
JavaScript, embedding
JavaScript recipes (functions)
 Alert()
 Billboard()
 Breadcrumbs()
 BrowserWindow()
 CallBack()
 CaptureKeyboard()
 CaptureMouse()
 Center()
 CenterX()
 CenterY()
 Chain()
 CleanupString()
 ColorFade()

 ContextMenu()
 CreateAjaxObject()
 CursorTrail()
 DecHex()
 Deflate()
 DeflateBetween()
 DeflateToggle()
 DockBar()
 EmbedYouTube()
 Fade()
 FadeBetween()
 FadeIn()
 FadeOut()
 FadeToggle()
 FieldPrompt()
 Flip()
 FlyIn()
 FoldingMenu()
 FrameBust()
 FromKeyCode()
 GetAjaxRequest()
 GetLastKey()
 GetWindowHeight()
 GetWindowWidth()
 GoogleChart()
 GoTo()
 GoToEdge()
 H()
 HexDec()
 Hide()
 HideToggle()
 HoverSlide()
 HoverSlideMenu()
 Html()
 Initialize()
 inserting
 InsVars()
 Invisible()
 Lightbox()
 loading the recipes
 Locate()
 MatrixToText()
 NextInChain()
 NoPx()
 O()

 Opacity()
 Pause()
 PlaySound()
 PopDown()
 PopToggle()
 PopUp()
 Position()
 PostAjaxRequest()
 PreventAction()
 ProcessCookie()
 ProtectEmail()
 PulsateOnMouseover()
 Px()
 Reflate()
 Repeat()
 ReplaceAlert()
 Resize()
 ResizeHeight()
 ResizeTextarea()
 ResizeWidth()
 RestoreState()
 RollingCopyright()
 RollOver()
 S()
 SaveState()
 Show()
 Slide()
 SlideBetween()
 Slideshow()
 StrRepeat()
 TextRipple()
 TextScroll()
 TextToMatrix()
 TextType()
 ToolTip()
 TouchEnable()
 ValidateCreditCard()
 ValidateEmail()
 ValidatePassword()
 VisibilityToggle()
 Visible()
 W()
 WaitKey()
 While()
 X()

 Y()
 Zoom()
 ZoomDown()
 ZoomRestore()
 ZoomToggle()

K
keypresses
 pausing an animation until a key is pressed
 returning meaningful names for key codes
 returning the value of the last keypress
 updating global variables based on
 See also user input

L
left
left sidebar
leftfloat
 See also floating
Lightbox()
links
 automatic back-links
 checking
 displaying e-mail addresses as hyperlinks
 extracting from web pages
 looking up
Linux
lists, creating
Locate()
location
LookupLinks()
Luhn, Hans Peter
Luhn checksum

M
Mac OS X
MakeThumbnail()
ManageCookie()
margins, selective
MatrixToText()
maximum sizes
menus
 context menus
 creating a slide-in menu

 folding
 horizontal menu
 popping down
 popping up
 toggling between popping up and popping down
 vertical menu
Metro
middle
minwhitespace
mobile browsers, formatting HTML to load faster on
Mod CURL
modal dialogs
modulus
algorithm
mouse movements, updating global variables based on mouse position
MySQLSanitizeString()

N
news, searching
NextInChain()
no outline
nocopy
nofloat
 See also floating
nojs
noninterruptible calls
nopunctuation
NoPx()
nospaces
Notepad

O
O()
objects
 backing up style properties of
 centering horizontally and vertically
 centering on a horizontal axis
 centering on a vertical axis
 changing the height of
 changing the width of
 changing width and height of
 determining width and height of
 expanding a deflated object
 fading

 fading between two images
 fading in
 fading out
 flipping
 height
 hiding
 hovering on edge until mouseover
 looking up horizontal and vertical offsets of
 making invisible objects visible
 making objects disappear
 managing the style property
 moving
 moving to edges of the browser window
 passing
 popping down
 popping up
 preventing dragging or selecting of
 pulsating effect
 resizing to maximum size
 restoring a zoomed down object
 restoring style settings of
 retrieving or modifying an object’s
 properties
 revealing hidden objects
 rollover
 rotating
 scaling down
 scaling up
 setting position property
 setting position property and horizontal and vertical offsets
 setting the opacity of
 shrinking
 sliding
 sliding two objects past each other
 swapping objects by deflating one and inflating another
 toggling between deflated and inflated
 toggling between hidden and shown
 toggling between popping up and popping down
 toggling between zooming down and up
 toggling fading
 toggling the visibility of an object
 width
 zooming down
 zooming in and out
odd and even text colors

ondemand
onlyjs
Opacity()
OpenSession()

P
padding
 selective
page break
PageUpdated()
passing arrays
passing objects
passwords, validating
PatternMatchWord()
Pause()
PHP recipes (functions)
 AddUserToDB()
 AnagramFinder()
 AutoBackLinks()
 BBCode()
 BlockUserByCookie()
 BypassCaptcha()
 CapsControl()
 CheckCaptcha()
 CheckLinks()
 CloseSession()
 ConvertCurrency()
 CornerGif()
 CountTail()
 CreateAjaxObject()
 CreateCaptcha()
 CreateGoogleChart()
 CreateList()
 CreateSession()
 CreateShortURL()
 CurlGetContents()
 DirectoryList()
 DisplayBingMap()
 EmbedYouTubeVideo()
 EvaluateExpression()
 FetchFlickrStream()
 FetchWikiPage()
 FriendlyText()
 GetAjaxRequest()
 GetAmazonSalesRank()

 GetBookFromISBN()
 GetCountryFromIP()
 GetGuestBook()
 GetLinksFromURL()
 GetTitleFromURL()
 GetTweets()
 GetUserFromDB()
 GetYahooAnswers()
 GetYahooNews()
 GetYahooStockNews()
 GifText()
 HitCounter()
 HTMLToMobile()
 HTMLToRSS()
 ImageAlter()
 ImageConvert()
 ImageCrop()
 ImageDisplay()
 ImageEnlarge()
 ImageResize()
 ImageWatermark()
 InputPrompt()
 inserting
 LookupLinks()
 MakeThumbnail()
 ManageCookie()
 MySQLSanitizeString()
 OpenSession()
 PageUpdated()
 PatternMatchWord()
 PostAjaxRequest()
 PostToChat()
 PostToGuestBook()
 PoundCode()
 PredictWord()
 ProtectEmail()
 QueryHighlight()
 RefererLog()
 RelToAbsURL()
 RemoveAccents()
 ReplaceSmileys()
 ReplaceSMSTalk()
 RollingCopyright()
 RoundedTable()
 RSSToHTML()

 SanitizeString()
 SearchGoogleBooks()
 SearchYahoo()
 SecureSession()
 SendDirectTweet()
 SendEmail()
 SendTweet()
 ShortenText()
 SimpleWebProxy()
 SlideShow()
 SpamCatch()
 SpellCheck()
 StatusMessage()
 StripWhitespace()
 SuggestSpelling()
 TextTruncate()
 ToggleText()
 UploadFile()
 UsersOnline()
 UseShortURL()
 ValidateCC()
 ValidateEmail()
 ValidateText()
 VerifyUserInDB()
 ViewChat()
 WordSelector()
 WordsFromRoot()
 WrapText()
PHP servers, installing
pixelation
placeholder
PlaySound()
plug-ins, downloading from the companion web site
pointer
PopDown()
PopToggle()
PopUp()
pop-up windows
Position()
position property
 setting position property and horizontal and vertical offsets
positioning
PostAjaxRequest()
PostToChat()
PostToGuestBook()

Pound Code, translating to HTML
PoundCode()
PredictWord()
PreventAction()
ProcessCookie()
program editors, choosing
progress bar
prompts
 displaying
 placeholder
 for user input
properties, defined
ProtectEmail()
pspell
PulsateOnMouseover()
puzzle helpers
 AnagramFinder()
 PatternMatchWord()
Px()
px suffix, attaching or removing from CSS properties
Pythagorean theorem

Q
QueryHighlight()
quote

R
recursive function calls
ref
RefererLog()
Reflate()
relative positioning
 See also positioning
relative URLs, converting to absolute URLs
RelToAbsURL()
RemoveAccents()
Repeat()
repeated strings, creating
ReplaceAlert()
ReplaceSmileys()
ReplaceSMSTalk()
require_once() function
reset CSS
Resize()

resize textarea
ResizeHeight()
ResizeTextarea()
ResizeWidth()
resizing images
RestoreState()
right
right sidebar
rightfloat
 See also floating
RollingCopyright()
rollover
RollOver()
rotate
rotation
rounded borders
 creating HTML for building a table with
RoundedTable()
RSS
 converting HTML to
 translating to HTML
RSSToHTML()

S
S()
SanitizeString()
SaveState()
scale down
scale up
screen scraping
screens, touch-enabling
scroll bars
scrolling text
SearchGoogleBooks()
searching
 Google Books
 Yahoo!
 Yahoo! Answers
 Yahoo! Finance
 Yahoo! News
SearchYahoo()
SecureSession()
selecting objects, preventing
selective margins
SendDirectTweet()

SendEmail()
SendTweet()
sessions. See user sessions shadow effects
 text shadows
ShortenText()
Show()
SimpleWebProxy()
Slide()
SlideBetween()
slide-in menus
SlideShow()
Slideshow()
Smileys, replacing emoticons with smiley GIF images
smoothing
sounds, playing as a result of mouseover or button event
spam, protecting e-mail addresses from spam harvesting programs
SpamCatch()
spell checking
 suggesting replacement words
SpellCheck()
spin effects
star rating
 using images
static positioning
 See also positioning
StatusMessage()
stock news, searching
strings
 cleaning up
 passing
StripWhitespace()
StrRepeat()
style property
 backing up style properties of objects
 restoring style settings of objects
SuggestSpelling()
superclasses
 abstopleft
 border
 clickable
 htab
 overview
 rollover
 rssbutton
 vtab

 See also classes
swapping objects
symbols

T
text
 adding suffixes to numbers
 alignment
 centering
 changing text color or background
 color over time
 color
 colors
 columns
 converting all caps
 converting fonts to GIF images
 displaying one character at a time
 drop cap
 encapsulation
 fetching the text of a Wikipedia article
 flying into position
 glowing effect
 highlighting
 indent
 making text friendly
 making text slowly appear from a random collection of characters
 point size
 removing diacritical marks
 removing whitespace
 ripple effect
 scrambling text slowly
 scrolling
 shadows
 shortening
 spell checking
 toggling between two sets of text
 transformations
 truncating
 validating
 wrapping
text speak, replacing acronyms with standard English
textarea field, resizing
textglow
textmiddle
textonly

TextRipple()
TextScroll()
TextToMatrix()
TextTruncate()
TextType()
thumb view
thumbnails, converting images to
ToggleText()
ToolTip()
tooltips
top
top dock bar
TouchEnable()
transition all
transparency
trolls, blocking
Twitter
 displaying last 20 posts of any public Twitter feed
 posting Tweets
 sending direct messages
typetext

U
updates, monitoring web pages for
UploadFile()
URLs
 checking links
 converting relative URLs to absolute URLs
 extracting links from web pages
 getting the title from
 redirecting shortened URLs to longer URLs
 shortening
 tracking referer URLs
user input
 checking Captcha input
 displaying prompts for
 prompting for user input
 providing a clickable list of words for
 sanitizing
 validating credit card numbers
 validating text
 See also keypresses
user sessions
 closing
 creating

 opening a previously created session
 verifying security of
users
 blocking unwanted users
 reporting number of recent active users
 retrieving user details from a MySQL database
 saving user’s details to a MySQL database
 validating a username and password
UsersOnline()
UseShortURL()

V
ValidateCC()
ValidateCreditCard()
ValidateEmail()
ValidatePassword()
ValidateText()
values, inserting into strings
VerifyUserInDB()
vertical menu
vertical offsets
 looking up
 setting position property and horizontal and vertical offsets
video, embedding
ViewChat()
visibility
VisibilityToggle()
Visible()
vtab

W
W()
WaitKey()
watermarks
WDC.css
 See also CSS recipes (functions)
WDC.js
 See also JavaScript recipes (functions)
WDC.php
 See also PHP recipes (functions)
WDCsmall.js
web browsers
 creating an in-browser pop-up window
 determing available height of browser window

 determining available width of browser window
 downloading and installing
 simulating a browser to fetch web site contents with a PHP program
 touch-enabling
web pages
 busting out of embedding frames
 creating breadcrumb trail from home page to current page
 monitoring for updates
web proxies, creating
While()
whitespace, removing
width
Wikipedia, fetching the text of an article
window objects
Windows
Wine
word patterns, matching to words
WordSelector()
WordsFromRoot()
wrapping text
WrapText()

X
x
X()

Y
y
Y()
Yahoo!, searching
Yahoo! Answers, searching
Yahoo! Finance, searching
Yahoo! News, searching
YouTube video, embedding

Z
Zend Server Community Edition
Zoom()
ZoomDownf)
ZoomRestore()
ZoomToggle()

	Cover
	Title Page
	Copyright
	About the Author
	Contents
	Acknowledgments
	Introduction
	Part I Introduction
	1 Getting Started

	Downloading and Installing Web Browsers
	Choosing a Program Editor
	Installing a PHP Server
	Older Versions of Microsoft Internet Explorer
	The Companion Web Site
	2 Using the Recipes

	Inserting the PHP Recipes
	Inserting the JavaScript Recipes
	Inserting the CSS Recipes
	A Quick Refresher on the DOM
	Summary
	Part II PHP Recipes
	3 Text Processing

	Recipe 1: WrapText�⠀)
	Recipe 2: CapsControl�⠀)
	Recipe 3: FriendlyText�⠀)
	Recipe 4: StripWhitespace�⠀)
	Recipe 5: WordSelector�⠀)
	Recipe 6: CountTail�⠀)
	Recipe 7: TextTruncate�⠀)
	Recipe 8: SpellCheck�⠀)
	Recipe 9: RemoveAccents�⠀)
	Recipe 10: ShortenText�⠀)
	4 Image Handling

	Recipe 11: UploadFile�⠀)
	Recipe 12: ImageResize�⠀)
	Recipe 13: MakeThumbnail�⠀)
	Recipe 14: ImageAlter�⠀)
	Recipe 15: ImageCrop�⠀)
	Recipe 16: ImageEnlarge�⠀)
	Recipe 17: ImageDisplay�⠀)
	Recipe 18: ImageConvert�⠀)
	Recipe 19: GifText�⠀)
	Recipe 20: ImageWatermark�⠀)
	5 Content Management

	Recipe 21: RelToAbsURL�⠀)
	Recipe 22: GetLinksFromURL�⠀)
	Recipe 23: CheckLinks�⠀)
	Recipe 24: DirectoryList�⠀)
	Recipe 25: QueryHighlight�⠀)
	Recipe 26: RollingCopyright�⠀)
	Recipe 27: EmbedYouTubeVideo�⠀)
	Recipe 28: CreateList�⠀)
	Recipe 29: HitCounter�⠀)
	Recipe 30: RefererLog�⠀)
	6 Forms and User Input

	Recipe 31: EvaluateExpression�⠀)
	Recipe 32: ValidateCC�⠀)
	Recipe 33: CreateCaptcha�⠀)
	Recipe 34: CheckCaptcha�⠀)
	Recipe 35: ValidateText�⠀)
	Recipe 36: ValidateEmail�⠀)
	Recipe 37: SpamCatch�⠀)
	Recipe 38: SendEmail�⠀)
	Recipe 39: BBCode�⠀)
	Recipe 40: PoundCode�⠀)
	7 The Internet

	Recipe 41: LookupLinks�⠀)
	Recipe 42: GetTitleFromURL�⠀)
	Recipe 43: AutoBackLinks�⠀)
	Recipe 44: CreateShortURL�⠀)
	Recipe 45: UseShortURL�⠀)
	Recipe 46: SimpleWebProxy�⠀)
	Recipe 47: PageUpdated�⠀)
	Recipe 48: HTMLToRSS�⠀)
	Recipe 49: RSSToHTML�⠀)
	Recipe 50: HTMLToMobile�⠀)
	8 Chat and Messaging

	Recipe 51: UsersOnline�⠀)
	Recipe 52: PostToGuestBook�⠀)
	Recipe 53: GetGuestBook�⠀)
	Recipe 54: PostToChat�⠀)
	Recipe 55: ViewChat�⠀)
	Recipe 56: SendTweet�⠀)
	Recipe 57: SendDirectTweet�⠀)
	Recipe 58: GetTweets�⠀)
	Recipe 59: ReplaceSmileys�⠀)
	Recipe 60: ReplaceSMSTalk�⠀)
	9 MySQL, Sessions, and Cookies

	Recipe 61: AddUserToDB�⠀)
	Recipe 62: GetUserFromDB�⠀)
	Recipe 63: VerifyUserInDB�⠀)
	Recipe 64: SanitizeString�⠀) and MySQLSanitizeString�⠀)
	Recipe 65: CreateSession�⠀)
	Recipe 66: OpenSession�⠀)
	Recipe 67: CloseSession�⠀)
	Recipe 68: SecureSession�⠀)
	Recipe 69: ManageCookie�⠀)
	Recipe 70: BlockUserByCookie�⠀)
	10 APIs, RSS, and XML

	Recipe 71: CreateGoogleChart�⠀)
	Recipe 72: CurlGetContents�⠀)
	Recipe 73: FetchWikiPage�⠀)
	Recipe 74: FetchFlickrStream�⠀)
	Recipe 75: GetYahooAnswers�⠀)
	Recipe 76: SearchYahoo�⠀)
	Recipe 77: GetYahooStockNews�⠀)
	Recipe 78: GetYahooNews�⠀)
	Recipe 79: SearchGoogleBooks�⠀)
	Recipe 80: ConvertCurrency�⠀)
	11 Incorporating JavaScript

	Recipe 81: CreateAjaxObject�⠀)
	Recipe 82: GetAjaxRequest�⠀)
	Recipe 83: PostAjaxRequest�⠀)
	Recipe 84: ProtectEmail�⠀)
	Recipe 85: ToggleText�⠀)
	Recipe 86: StatusMessage�⠀)
	Recipe 87: SlideShow�⠀)
	Recipe 88: InputPrompt�⠀)
	Recipe 89: WordsFromRoot�⠀)
	Recipe 90: PredictWord�⠀)
	12 Diverse Solutions

	Recipe 91: GetCountryFromIP�⠀)
	Recipe 92: BypassCaptcha�⠀)
	Recipe 93: GetBookFromISBN�⠀)
	Recipe 94: GetAmazonSalesRank�⠀)
	Recipe 95: PatternMatchWord�⠀)
	Recipe 96: SuggestSpelling�⠀)
	Recipe 97: AnagramFinder�⠀)
	Recipe 98: CornerGif�⠀)
	Recipe 99: RoundedTable�⠀)
	Recipe 100: DisplayBingMap�⠀)
	Part III JavaScript Recipes
	13 The Core Recipes

	Loading the Recipes
	Recipe 1: O�⠀)
	Recipe 2: S�⠀)
	Recipe 3: Initialize�⠀)
	Recipe 4: CaptureMouse�⠀)
	Recipe 5: CaptureKeyboard�⠀)
	Recipe 6: FromKeyCode�⠀)
	Recipe 7: GetLastKey�⠀)
	Recipe 8: PreventAction�⠀)
	Recipe 9: NoPx�⠀) and Px�⠀)
	Recipe 10: X�⠀) and Y�⠀)
	Recipe 11: W�⠀) and H�⠀)
	Recipe 12: Html�⠀)
	Recipe 13: SaveState�⠀)
	Recipe 14: RestoreState�⠀)
	Recipe 15: InsVars�⠀)
	Recipe 16: StrRepeat�⠀)
	Recipe 17: HexDec�⠀)
	Recipe 18: DecHex�⠀)
	14 Location and Dimensions

	Recipe 19: ResizeWidth�⠀)
	Recipe 20: ResizeHeight�⠀)
	Recipe 21: Resize�⠀)
	Recipe 22: Position�⠀)
	Recipe 23: GoTo�⠀)
	Recipe 24: Locate�⠀)
	Recipe 25: GetWindowWidth�⠀)
	Recipe 26: GetWindowHeight�⠀)
	Recipe 27: GoToEdge�⠀)
	Recipe 28: CenterX�⠀)
	Recipe 29: CenterY�⠀)
	Recipe 30: Center�⠀)
	15 Visibility

	Recipe 31: Invisible�⠀)
	Recipe 32: Visible�⠀)
	Recipe 33: VisibilityToggle�⠀)
	Recipe 34: Opacity�⠀)
	Recipe 35: Fade�⠀)
	Recipe 36: FadeOut�⠀)
	Recipe 37: FadeIn�⠀)
	Recipe 38: FadeToggle�⠀)
	Recipe 39: FadeBetween�⠀)
	Recipe 40: Hide�⠀)
	Recipe 41: Show�⠀)
	Recipe 42: HideToggle�⠀)
	16 Movement and Animation

	Recipe 43: Slide�⠀)
	Recipe 44: SlideBetween�⠀)
	Recipe 45: Deflate�⠀)
	Recipe 46: Reflate�⠀)
	Recipe 47: DeflateToggle�⠀)
	Recipe 48: DeflateBetween�⠀)
	Recipe 49: Zoom�⠀)
	Recipe 50: ZoomDown�⠀)
	Recipe 51: ZoomRestore�⠀)
	Recipe 52: ZoomToggle�⠀)
	17 Chaining and Interaction

	Recipe 53: Chain�⠀), NextInChain�⠀), and CallBack�⠀)
	Recipe 54: Repeat�⠀)
	Recipe 55: While�⠀)
	Recipe 56: Pause�⠀)
	Recipe 57: WaitKey�⠀)
	Recipe 58: Flip�⠀)
	Recipe 59: HoverSlide�⠀)
	18 Menus and Navigation

	Recipe 60: HoverSlideMenu�⠀)
	Recipe 61: PopDown�⠀)
	Recipe 62: PopUp�⠀)
	Recipe 63: PopToggle�⠀)
	Recipe 64: FoldingMenu�⠀)
	Recipe 65: ContextMenu�⠀)
	Recipe 66: DockBar�⠀)
	Recipe 67: RollOver�⠀)
	Recipe 68: Breadcrumbs�⠀)
	Recipe 69: BrowserWindow�⠀)
	19 Text Effects

	Recipe 70: TextScroll�⠀)
	Recipe 71: TextType�⠀)
	Recipe 72: MatrixToText�⠀)
	Recipe 73: TextToMatrix�⠀)
	Recipe 74: ColorFade�⠀)
	Recipe 75: FlyIn�⠀)
	Recipe 76: TextRipple�⠀)
	20 Audio and Visual Effects

	Recipe 77: Lightbox�⠀)
	Recipe 78: Slideshow�⠀)
	Recipe 79: Billboard�⠀)
	Recipe 80: GoogleChart�⠀)
	Recipe 81: PlaySound�⠀)
	Recipe 82: EmbedYouTube�⠀)
	Recipe 83: PulsateOnMouseover�⠀)
	21 Cookies, Ajax, and Security

	Recipe 84: ProcessCookie�⠀)
	Recipe 85: CreateAjaxObject�⠀)
	Recipe 86: GetAjaxRequest�⠀)
	Recipe 87: PostAjaxRequest�⠀)
	Recipe 88: FrameBust�⠀)
	Recipe 89: ProtectEmail�⠀)
	22 Forms and Validation

	Recipe 90: FieldPrompt�⠀)
	Recipe 91: ResizeTextarea�⠀)
	Recipe 92: ValidateEmail�⠀)
	Recipe 93: ValidatePassword�⠀)
	Recipe 94: CleanupString�⠀)
	Recipe 95: ValidateCreditCard�⠀)
	23 Solutions to Common Problems

	Recipe 96: RollingCopyright�⠀)
	Recipe 97: Alert�⠀)
	Recipe 98: ReplaceAlert�⠀)
	Recipe 99: ToolTip�⠀)
	Recipe 100: CursorTrail�⠀)
	Recipe 101: TouchEnable�⠀)
	Part IV CSS Classes
	24 Manipulating Objects

	Recipe 1: Positioning
	Recipe 2: Floating
	Recipe 3: Background Colors
	Recipe 4: Gradients
	Recipe 5: Inverse Gradients
	Recipe 6: Box Shadows
	Recipe 7: Padding
	Recipe 8: Rounded Borders
	Recipe 9: Transparency
	Recipe 10: Visibility and Display
	Recipe 11: Scroll Bars
	Recipe 12: Maximum Sizes
	Recipe 13: Location
	Recipe 14: Selective Margins
	Recipe 15: Selective Padding
	Recipe 16: Border Style
	Recipe 17: Border Width
	Recipe 18: Border Color
	Recipe 19: No Outline
	25 Text and Typography

	Recipe 20: Fonts
	Recipe 21: Font Styles
	Recipe 22: Text Alignment
	Recipe 23: Text Point Size
	Recipe 24: Text Colors
	Recipe 25: Text Shadows
	Recipe 26: Text Transformations
	Recipe 27: Encapsulation
	Recipe 28: Google Fonts
	Recipe 29: Drop Cap
	Recipe 30: Columns
	Recipe 31: Text Indent
	Recipe 32: Symbols
	26 Menus and Navigation

	Recipe 33: Buttons
	Recipe 34: Vertical Menu
	Recipe 35: Horizontal Menu
	Recipe 36: Top Dock Bar
	Recipe 37: Bottom Dock Bar
	Recipe 38: Tooltip and Tooltip Fade
	27 Page Layout

	Recipe 39: Reset CSS
	Recipe 40: Default CSS
	Recipe 41: Boxout
	Recipe 42: Quote
	Recipe 43: Left Sidebar
	Recipe 44: Right Sidebar
	Recipe 45: Page Break
	28 Visual Effects

	Recipe 46: Star Rating
	Recipe 47: Star Rating Using Images
	Recipe 48: Progress Bar
	Recipe 49: Scale Up
	Recipe 50: Scale Down
	Recipe 51: Transition All
	Recipe 52: Thumb View
	Recipe 53: Caption Image
	Recipe 54: Pointer
	Recipe 55: Rotation
	Recipe 56: Odd and Even Text Colors
	Recipe 57: Odd and Even Background Colors
	29 Dynamic Objects

	Recipe 58: NoJS �⠀渀漀樀猀) and OnlyJS �⠀漀渀氀礀樀猀)
	Recipe 59: Middle �⠀洀椀搀搀氀攀)
	Recipe 60: Center �⠀挀攀渀琀攀爀)
	Recipe 61: Top �⠀琀漀瀀)
	Recipe 62: Bottom �⠀戀漀琀琀漀洀)
	Recipe 63: Left �⠀氀攀昀琀)
	Recipe 64: Right �⠀爀椀最栀琀)
	Recipe 65: On Demand �⠀漀渀搀攀洀愀渀搀)
	Recipe 66: Fadein �⠀昀愀搀攀椀渀嬀 渀 崀)
	Recipe 67: Fadeout �⠀昀愀搀攀漀甀琀嬀 渀 崀)
	Recipe 68: Resize Textarea �⠀爀攀猀椀稀攀琀愀嬀 渀簀渀 崀)
	Recipe 69: Rotate �⠀爀漀琀愀琀攀嬀 渀 崀)
	Recipe 70: Width �⠀眀嬀 渀 崀)
	Recipe 71: Height �⠀栀嬀 渀 崀)
	Recipe 72: X �⠀砀嬀 渀 崀)
	Recipe 73: Y �⠀礀嬀 渀 崀)
	Recipe 74: Text Color �⠀挀漀氀漀爀嬀 挀漀氀漀爀渀愀洀攀⼀⌀渀渀渀渀渀渀⼀⌀渀渀渀 崀)
	Recipe 75: Background Color �⠀戀挀漀氀漀爀嬀 ⌀渀渀渀渀渀渀 崀)
	30 Dynamic Text and Typography

	Recipe 76: Typetext �⠀琀礀瀀攀琀攀砀琀嬀 渀 崀)
	Recipe 77: Digits Only �⠀搀椀最椀琀猀漀渀氀礀)
	Recipe 78: Text Only �⠀琀攀砀琀漀渀氀礀)
	Recipe 79: No Spaces �⠀渀漀猀瀀愀挀攀猀)
	Recipe 80: No Punctuation �⠀渀漀瀀甀渀挀琀)
	Recipe 81: Minimum Whitespace �⠀洀椀渀眀栀椀琀攀猀瀀愀挀攀)
	Recipe 82: Google Font �⠀最昀漀渀琀嬀 渀 崀)
	Recipe 83: Text Middle �⠀琀攀砀琀洀椀搀搀氀攀)
	Recipe 84: Text Glow �⠀琀攀砀琀最氀漀眀嬀⌀ 渀渀渀渀渀渀 簀⌀ 渀渀渀渀渀渀 簀 渀 崀)
	Recipe 85: Background Glow �⠀戀愀挀欀最氀漀眀嬀⌀ 渀渀渀渀渀渀 簀⌀ 渀渀渀渀渀渀 簀 渀 崀)
	31 Dynamic Interaction

	Recipe 86: Placeholder �⠀瀀氀愀挀攀栀漀氀搀攀爀嬀 瀀爀漀洀瀀琀 崀)
	Recipe 87: Autofocus �⠀愀甀琀漀昀漀挀甀猀)
	Recipe 88: Cite �⠀挀椀琀攀嬀 挀椀琀愀琀椀漀渀 崀)
	Recipe 89: Reference �⠀爀攀昀嬀琀礀瀀攀 簀 渀愀洀攀崀)
	Recipe 90: No Copy �⠀渀漀挀漀瀀礀)
	32 Incorporating JavaScript

	Recipe 91: Embed JavaScript �⠀攀洀戀攀搀樀猀)
	Recipe 92: If �⠀椀昀嬀 攀砀瀀爀 崀)
	Recipe 93: If Not �⠀椀昀渀漀琀嬀 攀砀瀀爀 崀)
	33 Superclasses

	What Is a Superclass?
	Recipe 94: Clickable �⠀挀氀椀挀欀愀戀氀攀)
	Recipe 95: RSS Button �⠀爀猀猀戀甀琀琀漀渀)
	Recipe 96: Border �⠀戀漀爀搀攀爀)
	Recipe 97: Absolute Top Left �⠀愀戀猀琀漀瀀氀攀昀琀)
	Recipe 98: Rollover �⠀爀漀氀氀漀瘀攀爀)
	Recipe 99: Vertical Tab �⠀瘀琀愀戀)
	Recipe 100: Horizontal Tab �⠀栀琀愀戀)
	Summary
	Index

