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1  INTRODUCTION

Security and privacy are highly dynamic and fast-paced research areas due to rapid tech-
nological advancements. Mobile security and privacy are no exception. For example, 10 or 
15 years ago, research in mobile security was mainly concerned about securing the Global 
System for Mobile Communications (GSM) network and communications (Jøsang and 
Sanderud, 2003). Since mobile phones become user programmable (i.e., the device supports 
third-party software), the scope for security and privacy research extends to studying the 
security of such third-party software and associated privacy risks (La Polla et al., 2013) (e.g., 
whether third-party software will result in the leakage of user data).

It is also in the user's interest to ensure both confidentiality and integrity of the data that is 
stored on and made accessible via these devices. This is the focus of this book.

Specifically, in this book, we will be presenting the state-of-the-art advances in mobile de-
vice security and privacy. Such devices (e.g., Android, iOS, BlackBerry, and Windows devices) 
are, in fact, “minicomputers,” with processing, communication, and storage capabilities. In 
addition, these devices often include additional sensing capabilities from the built-in camera, 
GPS, barometer, accelerometer, and gyro sensors. It should be noted that the modern-day 
mobile devices are generally more powerful than the IBM Deep Blue supercomputer of 1997 
(Nick, 2014).

According to research detailed in the report entitled “State of Mobile Commerce,” 34% of 
electronic commerce transactions are conducted over mobile devices globally (Wolf, 2015). In 
some parts of the world, such as technologically advanced countries like Japan and South Korea, 
more than half of e-commerce transactions are conducted over mobile devices (Wolf, 2015).

A prominent example of the shift in conventional business processes to mobile is mobile 
payments. This is evidenced by the significant worldwide trend of using platforms such as 
Apple Pay, Google Wallet, Samsung Pay, and WeChat Pay. According to Statista (2016), the 
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annual transaction volume for mobile payments is reportedly $450 billion in 2015 and is fore-
casted to double in 3 years.

Another emerging mobile application is mobile health, which is the practice of integrat-
ing mobile technologies in supporting medical and health care services (Istepanian et  al., 
2006; Kay et al., 2011). With the anticipated benefits of increased access to point-of-care tools 
amongst others, mobile devices are becoming commonplace in medical and health care set-
tings. It has also been suggested that mobile health supports better clinical decision making 
and improved patient outcomes (Divall et al., 2013).

Finally, we would also like to highlight the risks associated with the use of mobile devices 
in the workplace, a practice known as bring your own device or BYOD.

2  THREATS TO MOBILE SECURITY

Mobile threats can be broadly categorized into application-, web-, network-, and 
physical-level threats, as discussed in the following section.

2.1  Application-Level Threats

Application-level threats appear to be the most widely discussed threats in the literature 
(Faruki et al., 2015). As mobile devices can execute downloadable applications (apps), it is 
clear that apps can be a target vector to breach the security of the device and the system it 
connects to (e.g., a corporate network). The threats can be due to malicious applications 
(malware), particularly those downloaded from a third-party app store, as well as vulnera-
ble apps.

Malware can, for instance, inject code into the mobile device in order to send unsolicited 
messages; allow an adversary the ability to remotely control the device; or exfiltrate user 
data, such as contact lists, email, and photos, without the user's knowledge or permission. 
For example, in a recent work, mobile security researchers demonstrated that it is possible 
to exfiltrate data from Android devices using inaudible sound waves (Do et al., 2015). As 
D'Orazio and Choo (2015, 2016) aptly explained, in the rush to reduce the time-to-market, 
applications are usually designed with functionality rather than security in mind. Hence 
it is not surprising that there are a large number of applications that contain security loop-
holes that can be exploited by an attacker. In another recent work, Chen et al. (2016) dis-
cussed how a botnet master issues commands, via multiple message push services, to 
remotely control mobile devices infected by malware. While vulnerable apps may not be 
developed with a malicious intent, they can result in significant security and privacy risks 
to the users. For example, D'Orazio and Choo (2015) revealed previous vulnerabilities in a 
widely used Australian government health care app that consequently exposed the users' 
sensitive personal data stored on the device. Other examples include the work of Zhao 
et al. (2016) and Farnden et al. (2015). Zhao et al. (2016) demonstrated how the geographic 
coordinates of a location-based social network app user can be obtained via probing at-
tack, which resulted in location privacy leakage. Farnden et al. (2015) demonstrated that 
using forensic techniques, a wide range of data can be recovered from the devices of nine 



	 REFERENCES	 3

popular proximity-based dating app users, including the details of users who had been 
discovered nearby.

2.2  Web-Level Threats

While these threats are not specific to mobile devices (see Prokhorenko et al., 2013, 2016a,b 
for a review of web applications vulnerability and protection techniques), the security and 
privacy risks to mobile devices due to web-level threats are real. One key web-level threat is 
phishing, which uses email or other social media apps to send an unwitting user links to a 
phishing website designed to trick users into providing sensitive information such as user 
credentials. When combined with social engineering, phishing is one of the top seven security 
threats identified by Kaspersky Lab for the 2015–16.

2.3  Network Level Threats

One of the distinct features of mobile devices is the ability to connect. Typical connection 
supported by currently mobile devices include cellular/mobile networks, local wireless net-
works, and near field-communication (NFC). Security of the connection at the network level 
is another active research area at the time of this writing.

2.4  Physical-Level Threats

Finally, physical security of mobile devices is equally important, if not more so. Since mo-
bile devices are typically small and portable, these devices can be easily stolen or misplaced. 
A lost or stolen device could be used to gain access to user data stored on the device or as an 
entry point into the user's corporate network (Imgraben et al., 2014; Choo et al., 2015).

3  ORGANIZATION OF THE BOOK

The rest of this book is organized as follows.
The use cases of mobile devices within an organization's context and their security 

implications from a practitioner's perspective are presented in Chapters 2 through 5.
Chapters 6 and 7 explain how malware and vulnerabilities can be identified using state-

of-the-art techniques.
Chapter 8 examines the effectiveness of existing antimalware Android apps.
Chapter 9 focuses on mobile forensics.
Chapter 10 presents a security framework on Internet of Things (IoT) security protocols.
Chapter 11 introduces the common security models for generic privacy requirements.
Finally, preliminary experimental results on the implementation of cryptographic 

algorithms on mobile devices are presented in Chapter 12.

References
Chen, W., Luo, X., Yin, C., Xiao, B., Au, M.H., Tang, Y., 2016. MUSE: towards robust and stealthy mobile botnets via 

multiple message push services. In: Information Security and Privacy. Lecture Notes in Computer Science. 
9722, pp. 20–39.

http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0010
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0010
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0010


4	 1.  Mobile Security and Privacy

Choo, K.K.R., Heravi, A., Mani, D., Mubarak, S., 2015. Employees' intended information security behaviour in real 
estate organisations: a protection motivation perspective. In: Proceedings of 21st Americas Conference on 
Information Systems, AMCIS 2015. Association for Information Systems. http://aisel.aisnet.org/amcis2015/
ISSecurity/GeneralPresentations/29/.

Divall, P., Camosso-Stefinovic, J., Baker, R., 2013. The use of personal digital assistants in clinical decision making by 
health care professionals: a systematic review. Health Informatics J. 19 (1), 16–28.

Do, Q., Martini, B., Choo, K.K.R., 2015. Exfiltrating data from Android devices. J. Comput. Secur. 48, 74–91.
D'Orazio, C., Choo, K.K.R., 2015. A generic process to identify vulnerabilities and design weaknesses in iOS health-

care apps. In: System Sciences (HICSS), 2015 48th Hawaii International Conference on. IEEE, pp. 5175–5184.
D'Orazio, C., Choo, K.K.R., 2016. An adversary model to evaluate DRM protection of video contents on iOS devices. 

J. Comput. Secur. 56, 94–110.
Farnden, J., Martini, B., Choo, K.K.R., 2015. Privacy risks in mobile dating apps. In: Proceedings of 21st Americas 

Conference on Information Systems, AMCIS. Association for Information Systems. http://aisel.aisnet.org/
amcis2015/ISSecurity/GeneralPresentations/13.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajarajan, M., 2015. Android security: a survey 
of issues, malware penetration, and defenses. IEEE Commun. Surv. Tutorials 17 (2), 998–1022.

Imgraben, J., Engelbrecht, A., Choo, K.K.R., 2014. Always connected, but are smart mobile users getting more secu-
rity savvy? A survey of smart mobile device users. Behav. Inform. Technol. 33 (12), 1347–1360.

Istepanian, R., Laxminarayan, S., Pattichis, C.S. (Eds.), 2006. M-Health: Emerging Mobile Health Systems. Springer-
Verlag, New York.

Jøsang, A., Sanderud, G., 2003. Security in mobile communications: challenges and opportunities. In: Proceedings 
of the Australasian Information Security Workshop Conference on ACSW Frontiers 2003. vol. 21. Australian 
Computer Society, Inc, pp. 43–48.

Kay, M., Santos, J., Takane, M., 2011. mHealth: New Horizons for Health Through Mobile Technologies. World Health 
Organization. pp. 66–71.

La Polla, M., Martinelli, F., Sgandurra, D., 2013. A survey on security for mobile devices. IEEE Commun. Surv. 
Tutorials 15 (1), 446–471.

Nick, T., 2014. A modern smartphone or a vintage supercomputer: which is more powerful? Phonearena News, 
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-
powerful_id57149&gt (accessed 08.06.16).

Prokhorenko, V., Choo, K.K.R., Ashman, H., 2013. Intent-based extensible real-time PHP supervision framework. 
IEEE Trans. Inf. Forensics Secur. http://dx.doi.org/10.1109/TIFS.2016.2569063.

Prokhorenko, V., Choo, K.K.R., Ashman, H., 2016a. Web application protection techniques: a taxonomy. J. Netw. 
Comput. Appl. 60, 95–112.

Prokhorenko, V., Choo, K.K.R., Ashman, H., 2016b. Context-oriented web application protection model. Appl. Math. 
Comput. 285, 59–78.

Statista, 2016. Total revenue of global mobile payment market from 2015 to 2019 (in billion U.S. dollars). http://
www.statista.com/statistics/226530/mobile-payment-transaction-volume-forecast/&gt (accessed 08.06.16).

Wolf, J., 2015. State of Mobile Commerce Report 2015. Criteo.
Zhao, S., Ma, M., Bai, B., Luo, X., Zou, W., Qiu, X., Au, M.H., 2016. I know where you are! Exploiting mobile social 

apps for large-scale location privacy probing. In: Information Security and Privacy. Springer International,  
New York.

http://aisel.aisnet.org/amcis2015/ISSecurity/GeneralPresentations/29/
http://aisel.aisnet.org/amcis2015/ISSecurity/GeneralPresentations/29/
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0020
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0020
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0025
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0030
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0030
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0035
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0035
http://aisel.aisnet.org/amcis2015/ISSecurity/GeneralPresentations/13
http://aisel.aisnet.org/amcis2015/ISSecurity/GeneralPresentations/13
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0045
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0045
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0050
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0050
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0055
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0055
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0060
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0060
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0060
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0065
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0065
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0070
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0070
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149&gt
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149&gt
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0080
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0080
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0085
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0085
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0090
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0090
http://www.statista.com/statistics/226530/mobile-payment-transaction-volume-forecast/&gt
http://www.statista.com/statistics/226530/mobile-payment-transaction-volume-forecast/&gt
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0100
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0105
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0105
http://refhub.elsevier.com/B978-0-12-804629-6.00001-8/rf0105


Mobile Security and Privacy	 5� © 2017 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-804629-6.00002-X

C H A P T E R

2
Mobile Security: A Practitioner’s 

Perspective
S. Tully*, Y. Mohanraj†

*Sydney, NSW, Australia †Chennai, TN, India

1  MOBILE SECURITY

In this chapter, we look at how users and organizations interact with mobile devices, as 
well as the security that is needed to keep abreast of the rapid changes in mobile computing.

After discussing various issues, such as privacy, location and jurisdictional issues, 
threats, risks and mitigations, and individual versus organizational impacts, this chapter 
outlines steps to take to ensure that your mobile devices—and everything that’s on them—
stays safe.

The world is transforming dramatically in a way that is having a significant impact on how 
people and enterprises operate (Soulodre, 2015). The telephone network has come a long way 
within the last century, from physical offices attended by technicians in telephone installation 
trucks to mobile devices and information available, anywhere, at any time.

Today, business is increasingly likely to be a mobile enterprise, conducted using devices 
that might not have even existed 5 years ago. This is affecting the technology, systems, and 
processes that are designed and built to support them. Work is no longer a place we “go,” 
instead it’s something we “do.”

Mobile devices and portable media1 add significant value to people and organizations 
through increased efficiency and productivity. However, their proliferation in the workplace 
is a serious and expanding threat to both security and privacy; that is, keeping corporate in-
formation secure and keeping certain data private.

1 Mobile devices referred to in this chapter includes smartphones, tablet computers, laptops, PDAs, storage 
devices (e.g. USB drives, SD cards), scanners, sensors (e.g., Internet of Things), remote-control drones, autonomous 
cars, and connectivity devices (e.g., Wi-Fi, Bluetooth). However, smartphones and tablets are the devices referred to 
in most detail; to cover all of these other devices in detail would require an entire book.
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Knowledge workers and the new generation of mobile-first and mobile-only masses are now 
the 21st century’s “digital native” workforce. Besides the corporate environment, the cell phone 
has become the adult's transitional object, replacing the toddler's teddy bear for comfort and 
a sense of belonging.2 Toffler (1970) predicted the relationships between people and machines, 
including emotional relationships, in his book Future Shock back in 1970. Prof. H.D. Block at 
Cornell University pointed out that people often develop emotional attachments to the ma-
chines they use. He suggests that we shall have to give attention to the “ethical” questions 
arising from our treatment of “these mechanical objects of our affection and passion.” A serious 
inquiry into these issues is to be found in an article by Puccetti (1967) in The British Journal for the 
Philosophy of Science, 1967, pp. 39–51.3 Other research in this area includes work by Choi, who 
is writing a piece on the Emotional Attachment to Mobile Devices4 and further work by Cheever, 
Rosen, Carrier, and Chavez called Out of Sight is Not Out of Mind: The Impact of Restricting Wireless 
Mobile Device Use on Anxiety Levels Among Low, Moderate and High Users in Computers in Human 
Behaviour.5 The strength of this attachment to mobile devices was reiterated by Holden, who 
said “I want to be buried with a mobile phone, just in case I'm not dead.”6

These agents of change with digital attitudes and real-time expectations influence where, 
when, and how things are done. Their demands come from an “always-on” lifestyle with 
instant, on-demand expectations. Executives and employees are expecting, even demanding, 
access to their work resources through a variety of mobile devices. And, perhaps crucially, 
this expectation and demand is without time restrictions. It's not just a 9–5 solution, which 
has both positive as well as negative implications. The potential for abuse of employees by 
employers who provide this access must be taken into account.

Being connected has made us more efficient, but there is now the risk of reacting so quickly 
that we don’t give the same attention to data protection that we might have given just 5 years 
ago.7 Most people have not noticed—or simply ignored—the shift in responsibility. When data/
information was managed by centralized IT departments, it was clearly someone else's role to 
protect it. Now that information is literally in the palm of your people’s hands, but people have 
not caught up with this shift in responsibility; they don't understand it and they don't manage 
it. Connected with this is the socio-psychological aspect of human nature and the inclination 
to trust. With people having access to data almost instantly, there is the temptation to keep 
personal emails, calendar items, notes, mobile banking credentials, and other useful data to get 
through day-to-day activities, often stored insecurely. Over time, this personal data can quickly 
build up, and if the mobile device were lost or stolen, it could leave an easy-to-compromise 
digital footprint of the user, particularly if it is left unmanaged and not cleaned up regularly. 
Additionally, by being so connected, users are increasingly vulnerable to cyber adversaries.8

2 Heffernan, M. Available from: http://www.brainyquote.com/quotes/keywords/cell_phone.
html#lTyuvbSK4phtzolc.99.

3 Puccetti, R., 1967. On thinking machines and feeling machines. Br. J. Philos. Sci. 18 (1), 39–51. Available from: 
http://bjps.oxfordjournals.org/content/18/1/39.

4 Choi, Y-J. Available from: http://www.oneonta.edu/academics/research/PDFs/LOTM12-Choi2.pdf.
5 Cheever, N.A., Rosen, L.D., Carrier, M., Chavez, A. Available from: http://www.csudh.edu/psych/Out_of_

sight_is_not_out_of_mind-Cheever,Rosen,Carrier,Chavez_2014.pdf
6 Holden, A. Available from: https://econsultancy.com/blog/65001-28-inspiring-mobile-marketing-quotes/.
7 For details, see the book by Davidow, W., 2012. Overconnected: The Promise and Threat of the Internet.
8 See the book by Zetter, K., 2014. Countdown to Zero Day: Stuxnet and the Launch of the World’s First Digital 

Weapon, Crown, New York, pp. 376–377, ISBN: 978-0-7704-3617-9.

http://www.brainyquote.com/quotes/keywords/cell_phone.html#lTyuvbSK4phtzolc.99
http://www.brainyquote.com/quotes/keywords/cell_phone.html#lTyuvbSK4phtzolc.99
http://bjps.oxfordjournals.org/content/18/1/39
http://www.oneonta.edu/academics/research/PDFs/LOTM12-Choi2.pdf
http://www.csudh.edu/psych/Out_of_sight_is_not_out_of_mind-Cheever,Rosen,Carrier,Chavez_2014.pdf
http://www.csudh.edu/psych/Out_of_sight_is_not_out_of_mind-Cheever,Rosen,Carrier,Chavez_2014.pdf
https://econsultancy.com/blog/65001-28-inspiring-mobile-marketing-quotes/
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1.1  Global Growth in Mobile Use

It is important to note just how long mobile security has been a real issue. This section pro-
vides a brief timeline that helps build a sense of how we got to where we are today.

Cabir, the first Trojan horse for smartphones, was detected in Aug. 2004.9 The Australian 
Communications and Media Authority demonstrated the growth and ubiquity of Australian 
mobile devices in their Communications Report 2011–12, which noted “the total number of 
mobile services in operation increased by three per cent to reach 30.2 million, approximately 
four mobile services to every three people in Australia.”10

Furthermore, online and mobile use in China shows 668 million people access the Internet 
as of Jun. 2015. Of that, 89% (594 million) access the Internet via smartphones. For context, 
this means the number of people using smart phones in China is equal to 25 times the popula-
tion of Australia. Similar trends can be seen in Vietnam, where there are 128.3 million mobile 
phone accounts for a population of 90.7 million. Vietnam is seeing explosive growth in mobile 
Internet adoption, as the Vietnamese bypass fixed Internet uptake and moved straight to mo-
bile, creating an environment of innovation.

The security and privacy challenges in this dynamic digital landscape is for enterprise agil-
ity to implement a mobile security strategy to keep up with the people connecting with the 
things that surround them. This is especially true for those mobile device users who struggle 
to get by from day to day securely, sustained by a kind of security passivity. This security 
passivity can be summed up by a Japanese phrase “Shikata ga-nai” which loosely translated 
means “It can’t be helped.”11

2  PRINCIPLES

To minimize the risk of mobile device usage and to maximize the value associated with it, 
some high-level principles should be applied in order to provide a structure for safer mobile 
device use. While the guiding principles may not be exhaustive, they provide a reasonable 
basis for managing the security of mobile devices.

These mobile security principles can be broken into two broad categories: principles 
for mobile device end-users and principles for organizational mobile device management 
(MDM), including mobile application software developers.

For mobile device end-users, principles include:

•	 Lock your device.
•	 Accept the updates (unless it is a fake security update on Android, which is a common 

malware vector, so be warned!). Keep the operating system fully updated to the latest 
version available from the vendor. If the vendor has ceased supporting operating system 
updates on your device, which is a particular Android problem, then upgrade the device.

•	 Ensure software updates, in general, for all applications.
•	 Keep a clean machine by removing old, unused apps.

9 See https://en.wikipedia.org/wiki/Cabir_(computer_worm).
10 See Australian Communications and Media Authority (ACMA), 2013. Communications report 2011–12.  

pp. 14. http://www.acma.gov.au/webwr/_assets/main/lib550049/comms_report_2011-12.pdf.
11 See Hershey, J., 1946. Hiroshima, Penguin Books, London, pp. 122, ISBN: 978-0-141-18437-1.

https://en.wikipedia.org/wiki/Cabir_(computer_worm
http://www.acma.gov.au/webwr/_assets/main/lib550049/comms_report_2011-12.pdf%2c%20pp.%2014
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•	 Avoid questionable apps. Be aware of applications that want to access your data (e.g., 
by accessing your contacts) and consider using applications such as 1Password or other 
encrypted content managers to ensure that sensitive data is protected.

•	 Practice personal data management.
•	 Protect your personal information by storing the least amount of personal information 

as possible on devices. Android doesn’t give you a lot of control currently, but that may 
change over time, whereas iOS does give you that control.

•	 Cleaning up or removing personal information from devices so that you don’t leave data 
on the device if it is lost. This will avoid future users of the device finding information 
about you left on the device.

•	 Wipe the data on your mobile device before disposing of it. Also enable a remote wipe 
feature in case the mobile device is lost or stolen. Understand that using a remote wipe 
may include features that will delete stored data on your mobile device if a password is 
entered incorrectly after a certain number of times.

•	 Back up your data. Mobile devices are easy to backup, and users should make the most 
of this option.

•	 Stay safely behind bars. Ensure you do NOT jailbreak/root the device and ONLY install 
applications from the primary distribution points for the operating system (Apple Store, 
Google Play, and similar app stores).

•	 Use malware detection software, which predicts and stops mobile attacks, such as 
Lookout.

•	 Install privacy apps that explain all of the access to private data that installed apps 
require.

For organizational mobile device security, principles include:

•	 Embed security for mobile devices in corporate governance, risk management, and 
compliance (GRC) strategies.

•	 Establish security governance over mobile devices.
N.B. This step may not be necessary, but it is part of the risk-based discussion and GRC 
strategy that an organization should undertake. Organizations may decide NOT to 
impose governance over devices, and that is their prerogative. Enforcement comes at a 
price, and not all organizations are willing to pay that price.

•	 Perform regular mobile device software testing, such as checking runtime interpretation 
of code for errors.

•	 Perform regular mobile device security audits focused on applications and software that 
run on them. Of course, you are then left with the frustrating problem of “what can I do 
about it?” when the operating system is not something that most organizations can really 
customize in any way.

•	 One of the key areas to search for are device defaults; that is, what services are open, 
authentication defaults, and so on. This is less focused on smartphones and more on 
things like portable Wi-Fi/mobile hotspots.

For mobile application software developers, principles include:

•	 Building security and privacy into every phase of development.
•	 Ensuring sensitive data is protected in transit.
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•	 Ensuring security by design and privacy by design by locking down the security and 
privacy settings of your mobile device app.

•	 Ensure source code review and application penetration testing.

Further useful information in this area can be found in ISACA’s Securing Mobile Devices 
Using COBIT® 5 for Information Security (See ISACA, n.d.).

3  APPLICATION STORES

Application stores, or app stores, refer to online stores for purchasing and downloading 
software applications and mobile apps for computers and mobile devices.

The term in most cases refers to Apple’s App Store, but it is also frequently used for sim-
ilar online stores that sell mobile apps, including Amazon's Appstore for its Kindle and 
other Android-powered devices, the Android Market for Android devices, Google Play, 
Blackberry’s App World for Blackberry devices, and Nokia’s Ovi Store.

Official app stores tend to have stricter guidelines as to what sort of apps can be uploaded, 
as well as how they interact with the device and collect information about users and the 
device itself. Applications that grab your phone number, call history, GPS location, Wi-Fi 
password, and other data can be a concern. The point here is to start thinking, “Wow—that's 
scary. I don’t want someone to access THAT!”

Applications can sometimes contain viruses or malware that can steal any important 
information from the phone. Most official app stores have screening processes that detect 
malicious software and behavior embedded within applications, but these processes are not 
perfect and there have been instances of suspicious or malicious apps getting through screen-
ing and into general availability. Winn Schwartau, Chairman of MobileActiveDefense.com 
said, “App stores and mobile apps are the greatest hostile code and malware delivery mech-
anism ever created.”12

Recently, various reports have shown multiple exploits of app stores via exploiting flaws13 
and zero-day exploits,14 as well as by installing malicious apps that bypass app store review 
processes,15 such as by sideloading, which means installing applications without using the 
official app store. The motivations for an end-user to sideload an application from a illegit-
imate source can be varied, such as empowering the user, allowing the use to fine-tune the 
app experience, allowing the ability to work offline, avoiding registration, or login to use the 
app, remove phoning-home code, or remove in-app advertising. The risk is that your phone 

12 Schwartau, W. Available from: http://www.itsecuritywatch.com/mobile-security/10-great-quotes-about- 
mobile-security/

13 Hacker exploits iOS flaw for free in-app purchases http://www.macworld.com/article/1167677/hacker_
exploits_ios_flaw_for_free_in_app_purchases.html.

14 Zero-day exploit lets App Store malware steal OS X and iOS passwords http://www.macworld.com/
article/2937239/zero-day-exploit-lets-app-store-malware-steal-os-x-and-ios-passwords.html.

15 Researchers sneak 'Jekyll app' malware into App Store, exploit their own code, http://www.imore.com/
researchers-sneak-malware-app-store-exploiting-their-own-app.

http://www.itsecuritywatch.com/mobile-security/10-great-quotes-about-mobile-security/
http://www.itsecuritywatch.com/mobile-security/10-great-quotes-about-mobile-security/
http://www.macworld.com/article/1167677/hacker_exploits_ios_flaw_for_free_in_app_purchases.html
http://www.macworld.com/article/1167677/hacker_exploits_ios_flaw_for_free_in_app_purchases.html
http://www.macworld.com/article/2937239/zero-day-exploit-lets-app-store-malware-steal-os-x-and-ios-passwords.html
http://www.macworld.com/article/2937239/zero-day-exploit-lets-app-store-malware-steal-os-x-and-ios-passwords.html
http://www.imore.com/researchers-sneak-malware-app-store-exploiting-their-own-app
http://www.imore.com/researchers-sneak-malware-app-store-exploiting-their-own-app
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is now more vulnerable to attacks from applications and that you accept all the responsibility 
that comes with downloading the app. It makes sense: you can’t hold the app store responsi-
ble for applications you downloaded elsewhere.

4  APPROVED APPLICATIONS

Poor implementation of a legitimate application’s usage of device information and au-
thentication credentials can thereby expose sensitive data to third parties. Some examples 
of this sensitive data include location, owner identification (e.g., name, number, and device 
ID), authentication credentials, and authorization tokens. Smartphone apps can give auto-
matic access to near-field communications (NFC) payments, SMS, roaming data, premium 
rate phone calls, etc. Apps with privileged access to such application programming interfaces 
(APIs) can allow attackers to take advantage of this to abuse the user’s financial resources, 
with subsequent monetary impact. For example, if an API was able to access the PayPal ac-
count details of a user and subsequently use these details to make a purchase from a different 
device, it shows that the security consequences of mobile security aren’t limited to just the 
mobile device.

Data segregation is an approach whereby personal and corporate data are separated, 
allowing different controls to be applied to each. Although this is less important on 
corporate-owned devices used only for corporate work, it can be extremely useful in other 
ownership scenarios, such as personally owned devices which are also used for work.

Increasingly, mobile operating system vendors and third-party software vendors are im-
plementing features to better support personally owned, mixed-use devices. The challenge 
with smartphones and tablets is different from that of laptops, as the owner of a smartphone 
or tablet is not likely to be running as an administrative user on their device. A current ap-
proach is “containerization,” where corporate data is contained within a single app that can 
enforce protections from other apps and from the user or attackers.

4.1  App Containerization

Containerization of mobile devices such as smartphones and tablets through the separa-
tion of personal applications and data from business applications and data is a control mech-
anism for either the individual or for the business.

App containerization involves segmenting mobile devices into personal and business re-
gions or domains. If this is done with, for example, a bring your own device (BYOD) phone, it 
lets employees do whatever they want on their side of the border, while corporate IT retains 
control of the other.

Applications exist that can containerize complete work environments in a secure sandbox 
or wrap individual apps within a centrally managed container, such as Teopad, Good, and 
AirWatch. There are different approaches to containers as well, namely on a per-app basis or 
on entire groups of applications. Application sandboxes create a secure working environment 
on the mobile device that holds not only locally installed enterprise apps, but also app data 
and preferences. The runtime environment is protected from the personal home screen and 
associated apps and the experience is separate: a user is in either an organizational or personal 
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workspace, as illustrated in Fig. 1. However, when app compartmentalization is implemented 
poorly, it’s actually a leading cause of people trying to work around it. People want the natural 
flow of information in native ways, which the mobile OS provides. Containers and compart-
mentalization create barriers that many try to work around, and containerized applications are 
often quite out of date in comparison to their public versions because of a lack in features and 
functionality. That gets to be really annoying! There is a security implication here as well; con-
tainerized apps may not be updated for security flaws/updates as quickly as public versions.

A business may want to remotely wipe business data in a business container or a contain-
erized app after someone leaves an organization, for example, but doesn’t want to remotely 
wipe and destroy the unique and personal images that the device owner may have stored.

4.2  Software Watermarking

Software watermarking, which is a form of steganography, involves embedding a unique 
identifier within a piece of software.16 Watermarking provides a means to identify the owner of 
the software and/or the origin of the software and is something that a developer could do for 
creating enterprise apps. Although originally conceived to discourage software theft, the con-
cept has the potential to be used for validating approved mobile applications. One advantage 
is that the hidden watermark can be extracted at a later date, by the use of a recognizer to val-
idate the origin of the software. This also has useful applicability for mobile device forensics.

Mobile app containerization

Organizational apps

Personal apps

Email

Content

Maps Weather

Browsing

App
catalogue

Organizational
container

Personal
container

FIG. 1  Mobile app containerization.

16 See the software watermarking description by Nagra, J., Thomborson, C., Collberg, C., 2002. A functional 
taxonomy for software watermarking. In. Oudshoorn, M.J. (Eds.), Proc. 25th Australasian Computer 
Science Conference 2002, ACS, pp. 177–186, January 2002. Available from: http://crpit.com/confpapers/
CRPITV4Nagra.pdf.

http://crpit.com/confpapers/CRPITV4Nagra.pdf
http://crpit.com/confpapers/CRPITV4Nagra.pdf
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4.2.1  Online-Based Services (Accessible Via Mobile)

If it is possible for data from a mobile device to be emailed to an external account or up-
loaded to an online-based service such as Dropbox, then, inevitably, some or all control may 
be lost.

Attacks against online-based services have become increasingly prevalent, with inap-
propriate access through poor authentication controls, a lack of monitoring/logging, and 
unknown persons accessing online stored data. Insecure API and poor transport layer secu-
rity (TLS) are a common man-in-the middle (MITM) target, as is token/credential hijacking. 
Mobile applications interact with APIs using well-known REST/Web Services or non-REST/
Web Services proprietary protocols. Insecure implementation of APIs or services and not 
keeping the platform hardened/patched could allow attackers to compromise data on the 
mobile device when transferred to the platform, or to attack the platform through the mobile 
application. The importance of TLS to provide communication security should be consid-
ered as well.

Popular cloud storage services such as Dropbox and Google Drive can be manipulated and 
subsequently abused by malicious enterprises using phishing against data in a cloud account 
with poor authentication controls to prevent social engineering attacks. One well-publicized 
targeted attack involving data leakage of nude celebrity photos occurred recently and fo-
cused on user names, passwords, and security questions of user accounts.17

5  IDENTITY MANAGEMENT ISSUES

One of the most challenging aspects of mobile information security is that of identity man-
agement. The ability to swiftly and accurately identify an individual and manage that iden-
tity is an absolute necessity in this space, yet without detailed planning and governance, 
various identity management issues arise as highlighted in the following section.

•	 Emergence of what you have (mobile device) being an identity rather than a factor of 
authentication. For example:
•	 your mobile phone is the identity in mobile payments
•	 your mobile phone is the identity to access the extended corporate website
•	 what you know PIN or password is still as used as an authentication factor

•	 Lack of federated identity at the operating system level due to tight integration with the 
application store is a common identity management issue. For example, can a user log in 
with an Apple ID on an Android device? If not, then the user has two identity credentials 
to manage.

•	 Collision of identities on a platform that was not designed for multiple identities. The 
following are different levels of identity at play in a mobile device:
•	 Mobile number-based identity (e.g., IMSI)
•	 OEM-supplied identity (e.g., Samsung Galaxy Apps)

17 See the article “Apple blames 'targeted attack' for leaked nude celebrity photos” at http://www.
computerworld.com/article/2600359/access-control/security-apple-blames-targeted-attack-for-leaked-nude-
celebrity-photos.html.

http://www.computerworld.com/article/2600359/access-control/security-apple-blames-targeted-attack-for-leaked-nude-celebrity-photos.html
http://www.computerworld.com/article/2600359/access-control/security-apple-blames-targeted-attack-for-leaked-nude-celebrity-photos.html
http://www.computerworld.com/article/2600359/access-control/security-apple-blames-targeted-attack-for-leaked-nude-celebrity-photos.html
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•	 Application store-based identity (e.g., Apple iTunes, Google play)
•	 Social network-provided ID (LinkedIn, Facebook)
•	 Messaging services-based ID (Snapchat, WhatsApp)
•	 Corporate ID
•	 Personal Banking ID
•	 Payments-specific ID (e.g., PayPal)
•	 App-specific ID (the more apps you use, the greater the number of identities  

you have)
•	 How much personal information is stored within these respective identities and whose 

responsibility is it to protect them? Is it the responsibility of the person who stores it 
or the person that created it? Taking a WhatsApp identity as an example, one of the 
questions that needs to be considered in some detail is whose responsibility is it to 
protect my WhatsApp ID? The responsible parties could be:
•	 WhatsApp as the application author
•	 Google as the maker of the Android operating system
•	 Samsung as the OEM, who may have modified Google's Android for their specific 

device
•	 the individual who decided to use WhatsApp in the first place
•	 all of the above

•	 Data stolen from mobile devices by apps with privileged access as outlined previously, 
such as identity data and credit card details, can be sold by an attacker on encrypted 
“dark net” sites or hidden forums. The inconvenience caused to the initial user involves 
recreating identity credentials or replacing credit cards and verifying any suspect online 
payments made.

The Jericho Forum produced an informative and enlightening paper on Identity18 that dis-
tinguishes core identity, different personas, attributes, privacy, and trust.

The limiting of attributes in each persona minimizes the risk of other people connecting 
our different personas, which is a privacy-enhancing technique used to retain control over 
our personas and their related attributes. For example, the attributes assigned to your per-
sona for a library or gym membership should be quite limited, whereas the attributes as-
signed to opening a bank account should be greater.

This is an especially effective technique to employ for users of mobile devices. In essence, 
it’s about identity compartmentalization that complements app compartmentalization men-
tioned previously.

One group addressing these challenges is the Global Identity Foundation,19 who is work-
ing on providing enhanced security and privacy for users and which is completely under 
their control. Human identities are fragmented, since we are different things in different 
communities, so to be able to control different personas is a step forward in an enabling an 
ecosystem of assured trust for digital transactions.

18 Jericho Forum Identity Commandments: Key Concepts. Available from: https://www2.opengroup.org/
ogsys/catalog/G128.

19 Global Identity Foundation. Available from: http://www.globalidentityfoundation.org/index.html.

https://www2.opengroup.org/ogsys/catalog/G128
https://www2.opengroup.org/ogsys/catalog/G128
http://www.globalidentityfoundation.org/index.html
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6  PRIVACY

6.1  The Need for Privacy

What are the issues relating to privacy, and why is there a need for privacy? Not everyone 
understands the privacy concept, but most understand the concept of secrets. Secrets are 
harder to keep in the information age. This is bad news for all who value their privacy! Long-
lasting secrets, like the formula for Coca-Cola, are few and far between.

With few exceptions, our secrets are stored on computers, networks, and mobile devices, 
which may be vulnerable to hacking. Publishing someone's private information and commu-
nications is bad, because in a free and diverse society, people should have private space to 
think and act in ways that are different to how they think and act in public.

Users of mobile devices, particularly if they are using social media, need to be aware 
that they will be attractive targets to adversaries through their online presence. Users post-
ing information about their travel plans, such as when someone is home and not home, is 
frequently used as a cue to perform breaking and entering. Involvement in high-profile or 
international events unknowingly provides people with information that can be used to 
elicit information from them or to tailor social engineering campaigns to compromise an 
organization’s network. Users should assume everything posted on social networking web-
sites is permanent and can be viewed by your enemies, the government, your competitors, 
and so on.

To prevent being the target of a privacy-exposing campaign, users should:

•	 Carefully consider the type and amount of information posted.
•	 Restrict the amount of personal information posted.
•	 Consider limiting access to posted personal data; for example, using the “Friends Only” 

option for posting on Facebook.
•	 Be aware of and be willing to learn about the conditions stipulated in the permissions of 

apps before allowing access.
•	 Be aware of location sharing of personal information such as tagging locations in posts on 

social networking sites. Location services are often used by apps to provide directions or 
“check in” to your local store, coffee shop, or other locations and share that information 
on various social networks. Not all apps need this data to function, and the ones that do 
should clearly explain how your location data will be used.

•	 Make an informed decision regarding geotagging on your mobile device for the camera 
and other apps that do not require your current location. For example, be aware of the 
risks and consequences, especially if you are sharing an image with this data still intact 
and don't want to reveal your true location.

Many apps collect information about the user for marketing purposes, diagnostics, or as 
part of the service they provide. This could include information such as your contact list, 
your SMS messages (or other instant messages), your physical location, and potentially even 
your photographs and Wi-Fi password. This information may be stored or distributed to 
third parties by the app developer, as well as stolen or intercepted by unauthorized users. 
Consequently, it is important to read the user agreement and consider the information an app 
can access.



	 6  Privacy	 15

One of the greater issues for privacy relates to continuing consumer trust in the digital 
economy. In the span of a few short years, social networking on the Internet has become 
the platform for communication among many mobile device users using apps like Twitter, 
Instagram, Facebook, or WhatsApp. Just because people are much more public in the nature 
and extent of information they share online does not mean privacy is dead. Crompton (2015), 
Australia’s former Privacy Commissioner from 1999 to 2004, covers this in his book, Privacy 
Incorporated: The Business of Trust in the Digital World.

New apps, computing technologies, and channels are facilitating business processes that 
involve instantaneous streaming and linking of data from many networked sources. If or-
ganizations are going to use personal information in innovative ways, there is the question 
of who bears the risk when things go wrong. Organizations using personal data in this way 
contribute to people’s sense of being out of control and the sense that things are going wrong 
and need to be fixed.

Individuals will be confident and trusting where they:

•	 Receive value and respect
•	 Feel in control and secure
•	 Find that use of personal information is based on expectations
•	 Are never surprised
•	 Receive quick, effective resolution of their issues

6.2  Privacy Implications

There are multiple implications, including legal ones, extending to the privacy of personal 
information held on mobile devices.

Some privacy implications include:

•	 Access to personal or corporate email.
•	 Access to SMS.
•	 Access to images.
•	 Access to network (personal, wireless, corporate, VPN).
•	 Access to corporate apps and data.
•	 Ability to send SMS to premium rated services (e.g., “Toll Fraud”).
•	 Privacy threats may be caused by applications that are not necessarily malicious, 

but gather or use more sensitive information than is necessary to perform their 
function.

•	 Organizations that let employees use personal mobile devices should consider the BYOD 
privacy issues and other legal concerns that may arise.

•	 Use of location-based services technology such as a global positioning system (GPS).
•	 Outsourcing of MDM; that is, where staff from the outsourcer may act in an unethical 

way regarding access to privacy-related information.
•	 Legal compliance with privacy laws. This is often jurisdictionally bound, but for a 

multinational corporation, it can present some cross-border jurisdiction issues.
•	 The Internet never forgets. It's not just what is seen at the time, but also what is archived 

and recorded by countless services. Just because you delete a tweet doesn't mean it can't 
be used against you!



16	 2.  Mobile Security: A Practitioner’s Perspective

With regard to jurisdiction based upon territoriality, even though individuals using IT sys-
tems have a specific physical location, the location of mobile devices can change during a 
usage session. For instance, a person with a mobile computing device (e.g., a tablet or smart-
phone) can initiate several database updates or queries for processing by a cloud-based ser-
vice. As those updates and queries take place, the user may move to a different location. Any 
state from which the individual has operated enjoys jurisdiction because the individual and 
the devices involved were located on its territory when so used.

Furthermore, even with technology such as mobile cloud computing, the devices from 
which the human user is initiating requests can be geolocated; software services and applica-
tions may track the geocoordinates of the computing devices (e.g., Wi-Fi connection location 
or device GPS location). It is possible under certain circumstances for someone who does 
not wish to be tracked to spoof the geocoordinates advertised by their computing device. It 
is also possible that user location will not be made available by the infrastructure or service 
provider, or by the application or device itself. Actual physical presence is required and is 
sufficient for jurisdiction based on territoriality; spoofed presence does not suffice.20

Location is an important piece of personal information that should be managed. This per-
sonal information could be revealed by tagging locations in posts on a social networking site 
that advertises your current location or revealed by posts or in images through geotagging.

Organizations should have policies in place to manage mobile devices, including those 
owned by their employees, that are used in the workplace. Organizations should have the 
ability to access, recover, wipe, or protect data on mobile devices (e.g., when an employee 
ceases employment or a device is lost).

Mobile applications should ensure compliance with relevant data privacy laws, such as the 
Australian Privacy Principles.21 In the European Union, it is mandatory to obtain user consent 
for the collection of personally identifiable information (PII).22

As mobile apps increase in popularity, many of them are seeking access to large amounts of 
personal information without adequately explaining how that information is being used. In 2014, 
the second annual Global Privacy Enforcement Network (GPEN) Privacy Sweep of more than 
1200 mobile apps found that almost 70% of apps looked at failed to provide the user with a pri-
vacy policy or terms and conditions that addressed privacy prior to the app being downloaded.23

20 Schmitt, M.N., et al., 2013. Tallinn Manual on the International Law Applicable to Cyber Warfare (see RULE 
2—Jurisdiction section 5). The NATO Cooperative Cyber Defence Centre of Excellence, Cambridge University 
Press, Cambridge. Available from: http://www.cambridge.org/au/academic/subjects/law/humanitarian-law/
tallinn-manual-international-law-applicable-cyber-warfare?format=HB).

21 See the Australian Privacy resources. Available from: http://www.oaic.gov.au/privacy/privacy-resources/all/.
22 See EU Data Protection Directive 95/46/EC of the European Parliament and of the Council. Available from: 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.
23 See the report “Mobile apps must put user privacy first” at http://www.oaic.gov.au/news-and-events/

media-releases/privacy-media-releases/mob-apps-must-put-privacy-first.

 Tip: Be aware of your social network privacy settings and know that if you are using 
social media and your post is public, anyone can see it!

http://www.cambridge.org/au/academic/subjects/law/humanitarian-law/tallinn-manual-international-law-applicable-cyber-warfare?format=HB
http://www.cambridge.org/au/academic/subjects/law/humanitarian-law/tallinn-manual-international-law-applicable-cyber-warfare?format=HB
http://www.oaic.gov.au/privacy/privacy-resources/all/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://www.oaic.gov.au/news-and-events/media-releases/privacy-media-releases/mob-apps-must-put-privacy-first
http://www.oaic.gov.au/news-and-events/media-releases/privacy-media-releases/mob-apps-must-put-privacy-first
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7  VULNERABILITIES

Despite all the security improvements and architectural changes that have occurred within 
mobile applications, some categories of “classic” vulnerabilities show no sign of diminishing. 
The lesson is that we haven't learned our lesson. Despite many security flaws having been 
known about for decades, we're continuing to repeat those flaws in new platforms with-
out having implemented the established fixes and improvements that have also been known 
about for some time. These include defects in business logic, failure to properly apply access 
controls, and other design issues. Another important point is that 20- to 30-year-old problems 
are not magically going away because users have gone mobile. If anything, they have become 
more prevalent due to accessibility to coding and lack of formalized security training and 
education. Even in a world of bolted-together application components and everything-as-a-
service, these timeless issues are likely to remain widespread.

Vulnerabilities are commonly associated with applications that are installed on mobile de-
vices. However, it is important to recognize that vulnerabilities can be exploited at all levels 
in the mobile device stack.

8  THREATS

Protecting mobile device data against today’s threats is crucial (Whitlock et al., 2014). The 
recent growth in the use of mobile devices (smart phone, tablets, etc.) has greatly outpaced 
the ability to control the location and protection of information. The figures below explain 
why:

•	 In Australia at the end of Jun. 2014, there were more than 12.4 million Internet subscribers 
and almost 20.6 million subscribers to mobile services with an Internet connection.24 
Cybercrime affected 5 million Australians in 2013 and cost $1.06 billion.25 The 2013 Norton 
Report from Symantec (2013) revealed that 57% of Australian mobile device users were not 
aware of security options for mobile devices, leaving their devices susceptible to attack.

•	 The average cost of a malware incident is $56,000 for a small-medium size business 
(SMB) and $649,000 for a large enterprise.26

•	 It is estimated 12,000 laptops will be stolen this week worldwide.
•	 Malware has increased year-over-year by 77%.

Given the sheer size of the figures above, it is clear that for both individuals and organiza-
tions, protecting mobile device data is important.

24 Australian Bureau of Statistics 2013, Internet activity Australia, June 2014, Cat. no. 8153.0, ABS, Canberra at 
http://www.abs.gov.au/ausstats/abs@.nsf/mf/8153.0/.

25 That figure is likely to be an underestimation because it is based on the cost to individuals only, not industry 
and government. Information from the Australian Crime Commission 2015 report on organized crime at https://
www.crimecommission.gov.au/sites/default/files/FINAL-ACC-OCA2015-180515.pdf, ISSN: 2202-3925, May 2015.

26 Figures published in Kaspersky Labs special 2015 report on Australia’s mitigation strategies for advanced 
threats brochure “Preparing Australia Against Future Risks.”

http://www.abs.gov.au/ausstats/abs@.nsf/mf/8153.0/
https://www.crimecommission.gov.au/sites/default/files/FINAL-ACC-OCA2015-180515.pdf
https://www.crimecommission.gov.au/sites/default/files/FINAL-ACC-OCA2015-180515.pdf
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Market analysts predicted that smartphones would outnumber PCs by 2013 and that 
they would be the most common device for accessing the Internet. Today, there are 2.6 billion 
smartphone subscriptions globally27 and are expected to reach 6.1 billion by 2020. Given that spe-
cific mobile threats exist, mobile threat testing should be conducted before a mobile app goes live.

As with most changes, these figures have included some new attacks and variations on 
existing attacks.

As Pete Singer and Allan Friedman point out in their book Cybersecurity and Cyberwar, What 
Everyone Needs To Know (Singer and Friedman, 2014), there are three basic factors needed to 
evaluate a threat: “The feasibility of adversaries being able to identify and exploit your vul-
nerabilities, the effect that would happen if they were able to take advantage of these vulner-
abilities, and, finally, the likelihood that they will, in fact, be willing to do so.”

Like viruses and spyware that can compromise your PC, there are a variety of security 
threats that can affect mobile devices. These mobile threats and risks can be divided into sev-
eral categories: application-based, web-based, network-based, physical, overseas travel, and 
unintentional disclosure of data.

8.1  Application-Based Threats

Downloadable or preinstalled applications can present many types of security issues for 
mobile devices. Preinstalled applications are especially a problem in Android, where bloat-
ware often includes insecure applications which present immediate "out-of-the-box" security 
and privacy risks. “Malicious apps” may look fine on a download site, but they are designed 
to do all sorts of things, such as capture passwords, retrieve information, collect personal in-
formation about the end-user without their knowledge, commit fraud, collect information for 
targeted advertising, or facilitate mischief (e.g., exploit a machine to become part of a botnet). 
Even some legitimate software can be exploited for fraudulent purposes. Application-based 
threats generally fit into one or more of the following categories:

8.1.1  Malware

•	 Malware is software that performs malicious actions while installed on your phone. 
Without your knowledge, malware can make charges to your phone bill, send unsolicited 
messages to your contact list, or give an attacker control over your device.

8.1.2  Electronic Tracking (Spyware or Adware)

•	 Spyware is designed to collect or use private data without your knowledge or approval. 
Data commonly targeted by spyware includes phone call history, text messages, user 
location, browser history, contact list, email, and private photos. This stolen information 
could be used for identity theft or financial fraud.

•	 Adware is typically installed unwittingly by the end-user and is a common component of 
free software such as file sharing applications. It collects information about the user that 

27 See “6.1B Smartphone Users Globally By 2020, Overtaking Basic Fixed Phone Subscriptions” at http://
techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-
subscriptions/.

http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/
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can be used for targeted advertisements in the form of banners, pop-ups, and privacy 
invasion through the tracking of cookies to correlate online behavior to identify a specific 
individual, which aids in targeted attacks.

8.1.3  Vulnerable Applications

•	 Vulnerable applications are apps that contain flaws that can be exploited for malicious 
purposes. Such vulnerabilities allow an attacker to access sensitive information, perform 
undesirable actions, stop a service from functioning correctly, or download apps to your 
device without your knowledge.

•	 Cybersecurity experts are expecting mobile payment security threats to grow over the 
next 12 months. Some 87% of the 900 experts interviewed for the industry body’s 2015 
Mobile Payment Security Study28 claimed data breaches would increase over the coming 
year. In fact, just 23% said they thought mobile payments keep personal information 
safe, while 47 claimed mobile payments are definitely not secure. Interestingly, it seems 
that despite these security concerns, adoption of mobile payment is unlikely to be 
affected significantly. Users should consider how much sensitive information they store 
on a mobile device when making mobile payments using contactless enabled payment 
mechanisms. Some malware recently encountered includes Bitcoin-mining malware that 
targets Android devices.

8.1.4  Ransomware

•	 Another development is file-hting ransomware targeting mobile devices. Examples 
include Simplocker, CryptoLocker, and since Feb. 2016, Locky. Users will not be able to 
uninstall the malicious app by traditional uninstall means as one would normally do 
because the system or even the antivirus (AV) user interface is always “covered” by the 
malware’s user interface.
To protect against these application-based threats, users should consider installing mal-

ware, spyware, and adware detection software on their mobile devices.

8.2  Internet-Based Threats

Since mobile devices are almost constantly connected to the Internet and frequently used 
to access Internet-based services, web-based threats pose persistent issues for mobile devices. 
Groups such as the Mobile Web Initiative’s29 mission includes ensuring that the web is avail-
able on as many kind of devices as possible. This includes ongoing work around mobile web 
best practices and mobile web application best practices. As Berners-Lee said “The Mobile 
Web Initiative is important. Information must be made seamlessly available on any device.”30

Internet-based threats generally fit into one or more of the following categories:

28 See the ISACA study at http://www.isaca.org/SiteCollectionDocuments/CSX-Mobile-Payment_whp_
eng_0915.pdf.

29 Mobile Web Initiative, Available from: http://www.w3.org/Mobile/.
30 Berners-Lee, T. Available from: https://econsultancy.com/

blog/65001-28-inspiring-mobile-marketing-quotes/.

http://www.isaca.org/SiteCollectionDocuments/CSX-Mobile-Payment_whp_eng_0915.pdf
http://www.isaca.org/SiteCollectionDocuments/CSX-Mobile-Payment_whp_eng_0915.pdf
http://www.w3.org/Mobile/
https://econsultancy.com/blog/65001-28-inspiring-mobile-marketing-quotes/
https://econsultancy.com/blog/65001-28-inspiring-mobile-marketing-quotes/
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8.2.1  Denial of Service (DoS)/Distributed Denial of Service (DDoS) Threats

•	 While actual DoS and DDoS attacks capture headlines, it is imperative that organizations 
also fully understand the impact of inadvertent, harmless outages for mobile devices. 
Up to now, most DoS attacks have been an infrequent and short-lived annoyance, one 
that most organizations are relatively well equipped to deal with. If the core of the 
Internet is impacted by a malicious attack or inadvertent outage, we all suffer because 
the Internet has become our lifeblood in terms of how we work, live, play, and learn. 
From a mobile device perspective, the focus may revolve around users' own networks 
and data, network, and data services that organizations provide to their customers, or a 
combination of both.

8.2.2  Bots

•	 Bots are one of the most sophisticated and popular types of cybercrime today. They allow 
hackers to take control of many mobile devices or computers at a time and turn them into 
"zombies,” which operate as part of a powerful "botnet" to spread viruses, generate spam, 
and commit other types of online crime and fraud. Bots sneak onto a person’s device in 
many ways. Bots often spread themselves across the Internet by searching for vulnerable, 
unprotected devices to infect. When they find an exposed device, they quickly infect it 
and then report back to their master. Their goal is to stay hidden until they are instructed 
to carry out a task.

The growth of mobile and other Internet-connected devices is allowing the bots to evolve. 
We are starting to see devices hijacked and turned into DDoS bots, creating a blended threat 
with the DoS/DDoS threat mentioned above, thereby increasing the barrier to detect and 
prevent DoS attempts.

8.2.3  Advanced Persistent Threats (APTs)

•	 Smartphones, tablets, and other mobile devices are getting hit by highly targeted attacks 
known as APTs intended to steal sensitive data. Mobile devices used in organizations are 
often the entry point for an APT-style attack aimed at specific individuals to gain access 
to corporate information. The types of technologies organizations need to invest in to 
protect against these threats include application control, data loss prevention, MDM, and 
device control.

8.2.4  Phishing Scams

•	 Phishing scams are about providing data of value to criminals. That can include 
usernames, passwords, other personally identifying information (PII), financial data, 
and more. In most cases, it's the lack of ability to validate the source of a message (no 
way to view full headers in email) and difficulty in viewing full links on the small form 
factor of a mobile device. Plus, the on-over hovering is tough to replicate on mobile 
devices.

8.2.5  Social Engineering

•	 Social engineering threats for mobile devices can occur through mobile malicious 
advertising (or malvertising), which is the promotion of malicious apps that look like 
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legitimate apps or apps that claim to be for “security.” As Lacey points out in his book, 
social engineering can be much safer and easier when the attacker is operating across 
a network.31

Unlike ads displayed inside PC web browsers, ads displayed within mobile apps are de-
livered by code that is part of the applications themselves. This could represent a backdoor 
into the device. There are examples of malware from the Google Play store, and Trojanised 
Android apps through third-party stores, some even installing and executing adware on the 
device.

8.2.6  Drive-By Downloads

•	 Drive-by downloads prompt for an application package to be installed, usually under 
the guise of a security certificate update, but sometimes something as straightforward 
as a MMS message. For example, the Stagefright Android hack opened the possibility 
of silent execution of malicious code. The exploit happened when a hacker sent an 
MMS message containing a video that included malware code. What’s most alarming 
about it is that the victim did not have to open the message or watch the video in 
order to activate it. As such, a hacker could gain control of the device before the victim 
even knew about the text message, and even if the phone owner found the message 
right away, there was nothing to be done to prevent the malware from taking over the 
device. The hacker would have access to all data and the ability to copy or delete it, as 
well as have access to the microphone, the camera and all pictures on the device, and 
Bluetooth.

8.2.7  Browser Exploits

•	 Browser exploits take advantage of vulnerabilities in your mobile web browser or 
software launched by the browser such as a Flash player, PDF reader, or image viewer. 
Simply by visiting an unsafe web page, you can trigger a browser exploit that can install 
malware or perform other actions on your device.

8.3  Network Threats

Avoid or limit the use of open, public 802.11 wireless networks. Additionally, ensure 
that you are using the later, stricter security protocols such as WPA2 and avoid the earlier 
flawed protocols such as WEP and WPA. Where possible, use a virtual private network 
(VPN) to connect to your organization’s secure network. However, a poor VPN technol-
ogy that doesn’t use “pinning” or a similar technology to validate an encrypted authen-
tication session may not do you any good if you’re using a fully insecure, crypto-less 
Wi-Fi network; as cyber adversaries may be able to access your username, password, or 
passphrase, as well as other private information by a MITM attack tracking your key-
strokes. Mobile devices typically support cellular networks, as well as local wireless net-
works (Wi-Fi) and Bluetooth. Each of these types of networks can host different classes 
of threats:

31 Lacey, D., 2009. Managing the Human Factor in Information Security, John Wiley & Sons, pp 144, ISBN: 
978-0-470-72199-5.
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8.3.1  Network Exploits

•	 Network exploits take advantage of flaws in the mobile operating system or other 
software that operates on local or cellular networks, such as an International Mobile 
Subscriber Identity (IMSI) catcher. Once connected, they can intercept your data 
connections and find a way to inject malicious software on your phone without your 
knowledge.

8.3.2  Electronic Eavesdropping Such as Wi-Fi Sniffing and Bluetooth/Bluejacking

•	 Wi-Fi sniffing intercepts data as it is traveling through the air between the device 
and the Wi-Fi access point. Many applications do not use proper security measures, 
sending unencrypted data across the network that can be easily read by someone who 
is grabbing data as it travels. Shared encryption is just as bad. Public sites such as coffee 
shops, restaurants, and bookstores may have WPA2, but it is likely that anyone with the 
password can decrypt your packets.

•	 Bluetooth threats are serious. People who leave BT on all the time leave themselves 
vulnerable to pairing from nefarious devices and the uploading of spyware.
Bluejacking is an older-style attack where someone will use another person’s Bluetooth-
enabled device. Bluejacking refers to sending of unsolicited data (vCards, etc.) to open 
Bluetooth listeners in the area. It has more recently been used for marketing, but many 
more modern smartphones are less vulnerable to Bluetooth stack exploits. This can lead 
to phishing attempts and the spread of malware or viruses.

8.3.3  Location Detection

•	 Location tracking, through user-controlled location push apps, where someone 
checks in and intentionally shares their location. Apps such as Facebook, 
Foursquare, Swarm, Tinder, Twitter, Uber, and similar hold and share information 
about where you are exactly at what moment, not to mention a history of where  
you were.

•	 Location detection, through bypassing enhanced LTE (4G) security measures 
with IMSI attacks, also known as IMSI catchers. The thought of a cyber adversary 
triangulating someone's mobile device to determine their location is a threat 
that could be used for many purposes such as criminals targeting high-profile 
individuals and professionals. Using an IMSI catcher to track someone, who has not 
intentionally used user-controlled location sharing apps, is quite a different threat 
than the threat above.

8.3.4  Hotel or Conference Facility Networks

•	 Savvy cyber intruders have been known to exploit hotel or conference facility 
networks to gain access to mobile devices. Avoid communicating any sensitive 
information on devices that are not connected to a secure network. Where possible, 
try to avoid using hotel Internet kiosks or Internet cafes to send or receive important 
data. Do not connect to open, public Wi-Fi networks for business purposes. 
Only wireless communications that are needed and can be secured should be  
enabled.
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8.4  Physical Threats

Mobile devices are small, valuable, and we carry them everywhere with us, so their phys-
ical security is also an important consideration.

8.4.1  Stolen Data Due to Loss, Theft, or Disposal of Devices

•	 Lost or stolen mobile devices are a significant risk to the security and privacy of data. 
The mobile device is valuable not only because the hardware itself can be resold to third 
parties on the black market, but more importantly because of the sensitive personal and 
corporate data it may contain. Mobile/smartphone/tablet data leakage is a possible 
consequence, which may have legal implications, data breach implications, and so on.

•	 Data can also be stolen via attacks on decommissioned mobiles, smartphones, or tablets. 
In these cases, the attacker has the potential to recover the information over a longer 
time frame, as the previous owner or user of the device is typically no longer expecting 
an attempt to exploit their information. Selling a used device on eBay or Gumtree, 
for example, without a proper device wipe that has been verified, can leave personal 
information on the device that may be recovered by the next owner and used for attacks 
against the previous owner. Indeed, it's been shown that many Android/MDM device 
wipes don't actually securely wipe data from devices. iOS does, but this means there's a 
continued risk of data access by third parties if the wipe has not been properly validated.

8.4.2  Unauthorized Access

•	 Many smartphone users do not have a password lock on their phones when they turn 
them on or wake them from sleep mode. That widespread lack of security makes any 
mobile device a tempting target for unauthorized access, which can subsequently lead 
to data leakage and system infection. Some of the consequences of this include, in iOS, 
the passphrase or PIN is used to encrypt the filesystem, and having a password permits 
advanced features such as automatic-wipe on bad password entries.

8.4.3  Gifting

•	 It is common to receive USB thumb drives as a gift when attending industry events. 
The area of concern is people with malicious intent may use these opportunities to gift 
electronic devices that are preloaded with malicious software. A gift of a mobile phone or 
tablet, rather than a mouse with a microphone powered by USB, is more an area of concern 
as they have very different threat profiles. When these devices are used or connected to an 
organization’s network or personal device, malicious software may install and run.

8.5  Travel Threats

•	 If traveling with an electronic device while at high-profile or international events, 
consider that the compromise of a company-issued mobile device could have an impact 
on your organization, its information, and its reputation. In most countries, you should 
have no expectation of privacy in hotels, Internet cafes, offices, or public places. The 
implications of any compromise are different depending on the use of the device; for 
example, corporate devices have different implications than personal devices.
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8.6  Unintentional Disclosure of Data Threats

•	 Poorly implemented applications usage of device information and authentication 
credentials by a developer can expose sensitive data to third parties, including location, 
owner identification (such as name, number, and device ID), authentication credentials, 
and authorization tokens. Smartphone apps can give automatic access to NFC payments, 
premium rate phone calls, roaming data, SMS, etc. Apps with privileged access to such 
APIs can allow cyber adversaries to take advantage of this, among other things, to abuse 
the user’s financial resources with subsequent financial impact.

What should be generally evident is that outside of malicious insiders, configuration man-
agement failure, or DoS attacks, the likelihood of accomplishing a compromise requires very 
few steps and little complexity.

9  RISKS

A lot of security terms are being used in an improperly interchangeable way. Three secu-
rity terms, in particular—risk, threat, and vulnerability—are explained here for clarity. The 
term "risk" refers to the likelihood of being targeted by a given attack, of an attack being 
successful, and general exposure to a given threat. The likelihood of the risk materializing 
also needs to be taken into consideration. Likelihood can be expressed in terms such as 
Rare, Unlikely, Possible, Likely, and Almost Certain, with each category increasing in mag-
nitude of likelihood. The term "threat" refers to the source and means of a particular type of 
attack. The term "vulnerability" refers to the security flaws in a system that allows an attack 
to be successful.

There is a common formula, R = TV (or Risk = Threat × Vulnerability). As an example, using 
this formula to address risk for illustrative purposes, if there is a vulnerability but no threat, 
then there is no risk; alternatively, if there is a threat but no vulnerability, there is also no risk. 

 Individual implications

◦	 Social engineering and phishing scams
◦	 Unpatched device implications
◦	 Awareness of mobile malware
◦	 Credential harvesting
◦	 Privacy threats such as location tracking
◦	 Security considerations when using apps that require financial details
◦	 Wi-Fi network settings

 Organizational implications

◦	 Data loss
◦	 Supply chain threats
◦	 Network-based threats such as network exploits and DoS threats
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If there is both threat and a vulnerability and the likelihood of the risk materializing is likely 
or almost certain, then the risk is high.

As information technology advances, more powerful and diverse functionality can be 
found in smartphones, tablets, and other types of mobile devices. While tailoring guidance 
may support allocating particular security controls to a specific technology or device whilst 
leaving out other controls, any residual risk associated with the absence of those missing con-
trols must be addressed in risk assessments to adequately protect organizational operations 
and assets, individuals, and other organizations.

Despite offering much of the functionality of full computers, smartphones, and tablets do 
not have the same control models or security controls as computers; therefore, attempting to 
apply a computer’s security policies and procedures to such devices will not work. Mobile 
devices have their own security models, and some may even be more secure than laptops. 
For example, iOS having full filesystem encryption for several years is way ahead of most 
corporate laptops and their endpoint encryption. MDM technology often provides far greater 
granularity of controls, as well as flexibility, than standard PC antimalware. Plus, mobile 
devices try to make more use of sandboxing technologies by default, something that is still 
rare at the desktop level (other than OS X and their app store sandboxes). Even within each 
class of device, there is immense variety; iPhones have a different risk profile than Android 
phones and, to further complicate the matter, different versions of the same device can have 
different risk profiles.

The threat and attack vectors for mobile devices are often composed of overlapping ver-
sions of attacks aimed at other endpoint devices, mixed with significantly different motiva-
tions and goals by the attackers. For example, one attack vector might be social engineering or 
phishing to gain the identity or credentials to a mobile phone, which can be used by someone 
else to access the phone as if they were the phone’s owner, with the intent to extract other in-
formation (e.g., banking credentials stored on the mobile phone) in order to obtain a financial 
reward at a later time.

A number of lists exist that cover the risks for mobile devices; each has a slightly differ-
ent focus and identifies different risks. Various organizations like ENISA,32 NIST,33 the Open 
Web Application Security Project (OWASP),34 and Veracode35 all publish mobile risk lists. 
However, it is wise to avoid checklist-based security models only. Mobile risk is a complex 
field and there are many ways of evaluating the risk; therefore determining what is best and 
most appropriate for individuals and organizations may take some shopping around of the 
various lists that have been highlighted above and that exist elsewhere.

Instead, the goal of understanding mobile risk should be to focus on how an organiza-
tion or an individual can identify the security gaps they have regarding threats, as well 
as the real-world problems faced in large numbers every day, which will translate to their 

32 ENISA, Top ten smartphone risks. Available from: http://www.enisa.europa.eu/act/application-security/
smartphone-security-1/top-ten-risks.

33 National Institute of Standards and Technology, 2013. Guidelines for Managing the Security of Mobile Devices 
in the Enterprise. Available from: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-124r1.pdf.

34 OWASP, Top 10 mobile risks. Available from: https://www.owasp.org/index.php/
OWASP_Mobile_Security_Project#tab=Top_Ten_Mobile_Risks.

35 Veracode, Mobile app top 10 list. Available from: http://www.veracode.com/directory/mobileapp-top-10.

http://www.enisa.europa.eu/act/application-security/smartphone-security-1/top-ten-risks
http://www.enisa.europa.eu/act/application-security/smartphone-security-1/top-ten-risks
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-124r1.pdf
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_Ten_Mobile_Risks
http://www.veracode.com/directory/mobileapp-top-10
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risk profile. Consequently, there should be more awareness of risk points, rather than spe-
cific steps to take. There are actually some very secure ways to store incredibly sensitive 
data on a mobile device, which is something that is improving all the time.

10  MOBILE SECURITY STRATEGY FOR ORGANIZATIONS 
THAT DEVELOP MOBILE APPLICATIONS

A typical company isn't going to do code review or developer training since they're 
not developing apps. However, for any organization that develops mobile applications, 
a mobile security strategy should be developed prior to any actual corporate mobile ac-
cess deployment. The items listed below provide a high-level framework of key areas for 
consideration:

10.1  Architecture

The architecture should be flexible and robust enough to support devices, apps, and any 
back-end infrastructure and associated networks. The mobility revolution puts incredible 
power in the hands of the end-user, but that power depends on-access to back-end informa-
tion systems. This means that for the existing systems, a new mobile application architecture 
needs to be built around them.

10.2  Basic Device Management

Where the organization issues mobile devices, the devices should be exclusively used for 
work, and no work at all should be allowed on personal devices.

10.3  Secure Software Development Life Cycles (SDLC)

Mobile apps should be subject to regular source code reviews throughout the secure soft-
ware development lifecycle to detect and remove any code vulnerabilities as early and as 
often as possible.

 Individual implications

◦	 Understanding the risks that are most relevant to individuals
◦	 Understanding and acting on best practices about mobile devices
◦	 Only using trusted sources for downloading apps
◦	 Understanding the risks when using open, public Wi-Fi networks

 Organizational implications

◦	 Understanding the risks that are most relevant to organizations
◦	 Managing malicious functionality and vulnerabilities in mobile devices
◦	 Working within business risk appetite for mobile devices
◦	 Data loss and organizational reputation management
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10.4  Data Validation

Develop and enforce sound app security processes to prevent unauthorized code 
manipulation.

10.4.1  Developer Training

If developing mobile apps, developers should undertake mobile security awareness 
training.

Code analysis through a combined approach of static and automated software analysis 
and expert review by trained professionals. The network-centric position of mobile applica-
tion development requires specialized understanding and expertise.

10.4.2  Session Management

Implement appropriate session management as the form factor for mobile often means 
applications use long-lasting tokens for authentication/authorization, as well as session 
management.

10.4.3  Cryptography

Minimum cryptography settings for mobile devices should be defined and enforced.
Make sure that device encryption is enabled on the device. While some device manufac-

turers enable encryption by default, others require that encryption is enabled in the device 
settings. If the device is owned by an individual, then individual device encryption should 
be used. If the device is owned and managed by an organization, then enterprise encryption 
is recommended.

10.4.4  Data Confidentiality

Consider what the default data confidentiality setting should be for mobile device apps.

10.4.5  Environmental and Biometric Sensors

Environmental and biometric sensors in the device (such as acceleration, ambient tempera-
ture, fingerprint or iris scan, geolocation, humidity, motion, orientation, proximity, sound, 
video/still image capture, etc.) should comply with the organization's data capture policies, 
and their use should be selectively controlled by MDM.

10.4.6  App Penetration Testing

Mobile apps should be subject to a multilevel approach. Test the application to ensure it 
complies with policies and best practices, but since it is a mobile app, also test the network 
functionality and any APIs or servers the application may connect to. Furthermore, the mo-
bile apps should be subject to application penetration testing before being loaded to an app 
store and before going live.

10.4.7  Handle Identity Management

USER AUTHENTICATION

Require confirmation of the user's identity as described in a corporate directory service 
before giving access to secured data or software.
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Two-factor authentication is recommended for confidential data, such as a user name/
password combination plus a successfully answered challenge question or positive finger-
print identification.

N.B. It’s worth calling out the three forms of authentication in general use:

•	 Single-factor authentication (e.g., password or PIN).
•	 Multifactor authentication (e.g., single-factor plus a software- or hardware-generated 

token code, or a smart card).
•	 Multistep authentication (e.g., single-factor plus a code sent to the user out-of-band).

Usually, the second step in multistep authentication involves the user receiving a code via 
SMS or an app such as Duo and entering it alongside (or after) their PIN/password. The phone 
could be considered as “something you have,” thus qualifying this as two-factor authentication. 
However, the code that is actually used, as well as the credentials used to access the account/
device which receives the code, in the second step is still a "something you know.”

Two-factor authentication refers specifically and exclusively to authentication mechanisms 
where the two authentication elements fall under different categories with respect to “some-
thing you know,” “something you have,” and “something you are.”

An example of “something you know” is a password. This is the most common kind 
of authentication used for humans. We use passwords every day to access our systems. 
Unfortunately, something that you know can become something you just forgot. And if you 
write it down, other people might find it. An example of “something you have” is a smart 
card. This form of authentication removes the problem of forgetting something you know, but 
some object now must be accessible by you any time you want to be authenticated. Such an 
object might be stolen and then become something the attacker has. An example of “some-
thing you are” is a fingerprint, which is something intrinsic to the user being authenticated. 
After all, it's much harder to lose a fingerprint than a wallet.

Multistep authentication that requires two physical keys, two passwords, or two forms of 
biometric identification is not two-factor, but the two steps are still valuable.

DEVICE AUTHENTICATION

Confirm the unique identity of the physical device; it must meet security and configura-
tion requirements, independent of any of its users.

DEVICE ACCESS CONTROL

Protect physical access to the device by requiring successful recognition of a policy-defined 
password, pattern swipe, biometric scan, voice, or facial recognition.

10.4.8  Bring Your Own Device (BYOD)

If BYOD is allowed, organizations should consider limiting users to certain types of devices 
and not others in order to support a limited fleet of devices, rather than a vast array of dif-
ferent devices that will consume a significant amount of time, effort, and support resources.

10.4.9  Mobile Device Management

A well-thought-out MDM strategy is a key ingredient for any successful mobility 
deployment.
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Ideally, the organization’s IT section should be at least aware of every smartphone and 
tablet used in an organization, from activation to retirement. Accomplishing this requires 
a cohesive plan for MDM. It is advised that assets are defined and how mobile apps use 
these assets.

Include capability for over-the-air device wipe (i.e., erase all applications and data on the 
device), device lock (i.e., block device access), and remote device configuration.

10.4.10  Mobile Application Management

Decide on relevant acceptable use policies to help set expectations. Make sure em-
ployees are clear on which applications are blacklisted and which they’re allowed to 
access.

Consider an enterprise app store, which provides a central online location for  
distributing, downloading, and tracking policy-compliant mobile apps for use by 
employees.

Use mobile application management (MAM) tools to transparently install and configure 
business or security apps, especially if you allow BYOD; you can’t always count on employ-
ees to do it correctly on their own.

Establish a way to track app downloads and ongoing usage, monitor to detect outdated or 
disabled apps, and enforce the removal of blacklisted apps.

10.4.11  Decommissioning

A process should be in place to decommission legacy or end-of-life mobile devices to avoid 
leaving vulnerable devices in use. This will help reduce the technical debt of the organization 
and reduce the attack surface.

10.4.12  Auditing

Regular auditing should be carried out to ensure the strategy is effective and that no gaps 
have been introduced into the organization.

 Individual implications

◦	 Managing enrollment in MDM solutions
◦	 Ensuring data stored on mobile devices is secure
◦	 Managing strong passwords or passphrases to secure the mobile device
◦	 BYOD privacy issues and other legal concerns

 Organizational implications

◦	 Maintaining digital trust with customers.
◦	 Managing malicious functionality and vulnerabilities in mobile devices.
◦	 Managing end-of-life or decommissioned mobile devices.
◦	 An end-to-end security strategy is the goal, which focuses on security capabilities that 

reach from the mobile device endpoint to its apps and data to the core of the data center 
and/or cloud.



30	 2.  Mobile Security: A Practitioner’s Perspective

11  MITIGATIONS

With the increased penetration of mobile devices into the enterprise, the need for mobile de-
vice security has also grown. This section aims to show users how to do it correctly and see some 
of the wins possible. Each individual and/or organization needs to independently assess the 
risks that are salient for their use cases and environment and consider mitigations as appropriate.

Some mitigations that will assist individuals in addressing mobile device security issues 
include:

•	 Maintain up-to-date software through normal lifecycle management
•	 Ensure strong passphrases are used, where possible. A passphrase should never be 

written down and stored with the device.
•	 Sync or back up your mobile device to avoid the risk of lost/stolen devices, as well as 

ensuring that it is part of an overall resilience strategy for the individual.
•	 Educate yourself on best practices regarding mobile devices. There are a lot of bad ideas 

and bad suggestions out there, so verifying the advice you read is a fundamental step. 
Use as many of the best practices as practically possible to ensure you are not relying on a 
single control to protect yourself.

•	 Limit personal attributes stored on the device.
•	 Review privacy settings.
•	 Restrict apps and resources, such as denying access to specific device features or data 

sources on iOS for camera, browser, Google play, YouTube, music, and photo-sharing 
apps such as Instagram and Snapchat, etc. N.B. On Android, there are fewer ways to 
restrict apps and resources and to limit what these applications can do.

•	 Disable your device’s ability to install apps from sources outside of the standard app 
stores, such as Google Play, and double check the developer of the app you want to 
download and be very meticulous of the app reviews to verify any apps’ legitimacy.

•	 Configure device security such as encryption of data at rest.
•	 Overall device and account hygiene is important, so delete any social media accounts 

that you no longer use as the terms and conditions may change.
•	 Disable Bluetooth and wireless capabilities and the ability to “auto-join” a network if 

possible. This will prevent your device from inadvertently connecting to untrusted networks.
•	 If wireless capabilities are required, ensure the use of the most secure wireless 

authentication that your device can support, rather than using older, less secure 
protocols. For example, use WPA2 for wireless authentication.

•	 Disable premium calls and in-app purchases.
•	 Use a search engine to research your digital shadow to see if unexpected content about 

you is available online that may have originated from a mobile device and manage what 
is sent digitally. N.B. This activity is not trivial to accomplish and may involve changing 
the settings for various apps to restrict content, as well as following up with web site 
owners to remove unexpected and unwanted content.

•	 Only attach your mobile device to a trusted computer. In some cases, by inserting your 
devices into an unknown computer, you are exposing your mobile devices to unknown 
risks, and great care should be taken before doing so. Attaching your mobile device to an 
untrusted computer is not just a malware concern, but also a rooting/jailbreaking one, 
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as physical access is often required for many of these exploits. You also have to consider 
data access such as backups and replication in order to protect your data.

•	 When charging mobile devices, you should only use a trusted computer to connect to 
the device charger, or go directly into the wall. You can also use a USB charger which 
removes the data pins and only provides charging pins.

In addition to the above mitigations for individuals, some further mitigations will assist 
organizations in addressing mobile device security issues.

Mobile device mitigations that are of specific focus for organizations include:

•	 Whitelist specific applications (or blacklist applications as a second preference) similar 
to the way firewalls work, where it is best by default to block all and allow only known 
good sites rather than by default to allow all and block only known bad sites.

•	 Educate your users on best practices regarding mobile devices.
•	 Creating a balanced approach for corporate and employee-owned phones, which respects 

the needs of both sides. If the devices are owned by the employees, there are many 
restrictions about what an employer can and cannot do. Location tracking, for example, 
may contravene the workplace surveillance act. It is also a privacy invasion.

•	 When connecting to enterprise resources, only connect through secure technologies, such 
as corporate-secured Wi-Fi and VPN services.

•	 Enforce security policies to protect corporate data.
•	 Enforce secure BYOD policies if you allow staff to use their devices inside the network.
•	 Keep highly sensitive organizational data off mobile devices, or as a secondary measure, 

identify and protect sensitive organizational data on the mobile device.
•	 Disallow removable media, such as SD cards, in corporate mobile devices by logging the 

devices in a mobile device inventory solution, then blocking unwanted memory cards. 
For example, a USB card may be allowed by the policy, while an SD card may be blocked.

•	 Block attachment execution or downloading to media by blocking unwanted memory 
cards as above.

•	 Detect and prevent use of jailbroken or rooted devices by maintaining baseline device 
information, through both MDM and MAM solutions, managed by the organization.

•	 Internal segregation controls on what access mobile devices have inside the network, for 
example, VLAN separation or network filtering.

•	 Expedite handling of secure lost, stolen, or retired smartphones through full and selective 
wipe.

•	 Provide rogue app protection, as well as inventories of installed apps.
•	 Ensure secure distribution/provisioning of mobile applications.
•	 Define and enforce allowed device types, operating systems, and patch levels.
•	 Keep back-end APIs (services) and platforms (servers) secure by implementing, for 

example, the latest TLS to provide communication security, the right ciphers, DDoS 
protection, and regular security assessments.

•	 Secure data interaction with third-party applications and services.
•	 Comply with the requirements of the Privacy Act in relation to the concept of consent. 

For example, pay specific attention to the collection and storage of consent that has been 
given by a user for the collection and use of that user’s data.
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In addressing the mitigations, it should be recognized that there are shared/overlapping 
concerns for individuals and organizations. With the increased use of BYOD policies, there 
is a trend to connect these two worlds anyway, which means there is overlap that blurs the 
distinction between the two.

11.1  Exploit Mitigation

Exploit mitigation technologies attempt to prevent the abuse of vulnerabilities. They typi-
cally achieve this by making the execution of unauthorized code difficult or impossible while 
not affecting legitimate programs such as address space layout randomization (ASLR) and 
similar techniques.

Recent versions of smartphone and tablet operating systems have seen significant im-
provements in exploit mitigation technologies. Vendors are strongly motivated to implement 
and develop such technologies, not only because they can help to protect users, but they can 
also make jailbreaking less likely, as jailbreaks rely on abuse of security vulnerabilities.

N.B. There is very little that an organization or an individual can do about vendor-provided 
exploit mitigation technologies—short of ensuring that your platform is updated to the most 
recent version of hardware and software available. You can’t enable these technologies your-
self (the vendor has to do it for you), and you need to procure the software/hardware that is 
compatible.

11.2  Travel Mitigation

For corporate-issued devices, prior to departure, consult your IT security team. They can 
confirm that your device’s configuration is correct and that all updates, patches, encryption, 
and AV software have been installed and baseline the device prior to departure and again on 
return to look for any signs of compromise.

 Individual implications

◦	 Acting on best practices regarding mobile devices
◦	 Managing credentials
◦	 Managing data securely
◦	 Privacy
◦	 Device and data loss
◦	 Wiping the mobile device before disposal

 Organizational implications

◦	 Enforcing security policies to protect corporate data
◦	 Managing BYOD assets, if used in the organization
◦	 Maintaining and managing MDM and MAM solutions
◦	 Mobile device education for staff and mobile app developers
◦	 Complying with legal and regulatory requirements
◦	 Keeping back-end services and platforms secure
◦	 Comply with relevant Privacy Act requirements
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Remove all nonessential data from the device. In particular, reconsider the need to take 
sensitive information overseas.

Maintain physical control over mobile devices (whether they are your own or company-
issued), not only to minimize the risk of theft or loss, but also to protect the confidentiality 
of information stored on the device. It is advisable to keep your device in your possession at 
all times and not trust hotels, room safes, or other services to provide physical protection of 
equipment. When traveling, never check your device in as luggage; devices should be taken 
on board as hand luggage.

Avoid connecting to unsecured Wi-Fi networks for business purposes when traveling 
overseas. Only wireless communications, such as a password-protected business Wi-Fi or 
a trusted Wi-Fi network, should be utilized. Where possible, connect back to your organiza-
tion’s VPN to use the Internet. N.B. You may not be able to do this without using Wi-Fi, and 
there is still an issue of trust with the VPN process because of what happens prior to the VPN 
being established. For example, a lot of devices still leak information after joining a network.

Finally, when you return, advise your IT security staff if the device was taken out of your 
possession for any reason, particularly if you have traveled to a high-risk country. Also advise 
them if you left your device in your hotel room for an extended period of time. IT security 
staff should be able to check the device for any malicious software or evidence of compromise.

12  MOBILE SECURITY TECHNICAL CONTROLS

This section contains suggestions for a number of technical controls covered under mobile 
device security. There are a multitude of technical controls that can be used to mitigate the risks 
that arise from the use of mobile devices; however, not all apply to all types of mobile device.

In order to help mitigate the risk of lost, stolen, or misplaced devices, below are some ac-
tions that can be taken to protect your own data and that of others.

12.1  Passwords, Passphrases, and Biometrics

Passwords are a key control, as a weak password can enable the bypass or deactivation 
of many other controls. As mentioned earlier, a key bypass risk is having a simple PIN as a 
protection and the lost/stolen device being attached to a computer to conduct a brute force 
attack and mount the filesystem.

Laptop passwords can be long and complex without adversely affecting users, as laptops 
typically have full keyboards, allowing easy entry of the password.

It can be particularly challenging to ensure that users select secure passwords for smart-
phones and tablets, as they are typically accessed frequently throughout the day, with users 
regularly checking information in brief spurts rather than engaging in extended work periods.

Password or passphrase protect your device and enable auto-lock. Handle password cre-
dentials securely on the device, such as choosing the strongest alphanumeric passcode or 
passphrase that your device can support.

Users often think making good passphrases is harder than it really is. It is worth the effort, 
as a strong passphrase is harder to detect than for a password that may be fairly easily sub-
jected to a dictionary attack.
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Examples of good passphrases that are also mobile friendly are “scratchybrownvinyl420”  
which uses random common words and some numbers that includes 21 characters, or 
“Back2dafewture!” which is a short, easily remembered 15-character phrase that includes 
a capital letter, a number, a substituted word, a misspelt word, and a special character—
although there is the hassle of typing them all in. Other example passphrases could be “x-Ray 
vision Is g00d,” or using a foreign word mixed with a different language—say an English 
phrase with a Malaysian word in the middle.

It should also be noted that some modern mobile devices have biometric locks, which 
typically provide more secure access control and are a supplementary or alternate control.

12.2  Encryption

Although encryption has been a staple of IT systems for decades, their implementation 
in mobile devices has its obvious limitations with the ever-growing number of devices to be 
managed, hence the use of automated enterprise systems. There is a reason that certain phone 
brand costs are prohibitively high for certain economies, paving the way for the proliferation 
of Android or Windows phones that do not include this special chip, making them three 
to four times cheaper. As stated by Auguste Kerckhoffs, even in mobile devices, everything 
about the encryption can be public knowledge other than the key. This stresses the impor-
tance of secure generation of key material either for link encryption or data protection.

12.2.1  Code Encryption

There are multiple reasons for a developer or an organization to encrypt the code used in 
their mobile application. From an operating system perspective, it helps in maintaining sys-
tem integrity by providing a facility to detect code integrity violation. From a user perspec-
tive, this protects them from information theft or privacy violation.

Code encryption is not implemented by default by all mobile operating system providers. 
iOS, for example, does binary encryption by default; however, this is not necessarily the case 
with Android-based devices. It has to be noted that code signing is not the same as code 
encryption, as both the major mobile application curators require the apps to be signed to 
varying degrees. We will discuss this further later on.

Code encryption may help in preventing reverse engineering or code modification; how-
ever, the effectiveness of this control has been contested by many practitioners. While poor 
key management practices and implementation of insecure algorithms heavily degrade the 
effectiveness of code encryption, the question being raised by these practitioners is what is 
the point in encrypting code when it must be decrypted on the device before loading it into 
the processor for execution. At this point in runtime, taking a snapshot of the decrypted code 
in memory is trivial at best.

Identity-based code execution utilizing code signing techniques may very well be address-
ing most of the security and privacy concerns and could overcome many of the limitations 
not fully addressed by code encryption alone. As with any technical control, it is imperative 
that the intent is not lost during implementation. Certificates and key management tech-
niques should cover appropriate process and technical controls to realize benefits of imple-
menting code signing. Self-signed certificates and poorly managed private keys offer no real 
benefit of code signing.
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12.2.2  Data Encryption

Data encryption deals with protecting user/consumer data and privacy. Although ap-
plication code is also data for all practical purposes, the delineation can be drawn at the 
prime control objectives for each data type. The delineation is more easily seen in defin-
ing "whose data is it"—is it from me and based on things I know and do, or is it from the 
application, based on the intellectual property of the developers, their infrastructure, and 
architecture? When it comes to code, the prime control objective, in our justifiable view, 
should be integrity. This doesn’t mean that code confidentiality is unimportant, but there 
is little point in protecting intellectual property when its integrity cannot be assured. For 
example, how can you be sure the information out there is what you actually released if 
you can’t assure integrity? One would expect that the user-generated content in a mobile 
device is stored locally in a device. However, there are cases where data is not local, and 
that has implications not just for security/privacy, but for resilience and business conti-
nuity. User data is stored both locally and in the cloud. Let’s look at the security controls 
offered in both environments below:

LOCAL

With the growing concern over privacy and the quest to make the mobile OS suitable for 
Enterprise IT, almost all mobile operating systems are providing some form of a full-disk 
encryption solution in their recent releases. In this context, full-disk encryption only refers 
to the process where data is encrypted before committing to the disk and decrypted before 
supplying data back to the calling process. This does not mean the entire disk is encrypted; 
as a matter of fact, some mobile device providers allow only encrypting certain volumes, but 
still call it full-disk encryption.

CLOUD

Cloud storage is offered by mobile application curators, and mobile developers themselves 
in some instances, as a means to back up your data and provide multiple-device support and 
synchronization, as is the fact that they want to mine your personal data to sell it to third 
parties and generate ads.

Below are some of the types of data that are frequently stored in the cloud, as well as exist-
ing security controls offered by some of these storage providers.

Types of data that are potentially stored in the cloud:

•	 Contacts list
•	 Browser bookmarks
•	 Chat logs
•	 System and application specific settings and logs
•	 Downloaded free and paid content including apps
•	 Passwords (such as saved passwords like those of your Wi-Fi network)
•	 Photos
•	 Game progress

Actually, nearly any function that is available on a mobile application that involves data 
could potentially be transmitted/stored on servers online. The downside of online servers is 
that they require a full-time data connection.
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It is safe to assume that the data at rest that is leaving your device can be read by others 
unless it is encrypted locally within the mobile device with a key generated in the mobile 
device by user-supplied input.

Quite often we see companies claim that their product is secure because they use protocols 
such as TLS. While it is true that they address transport level security issues, they have no 
effect on the security of data at rest in cloud storage. Protection of data at rest can be best as-
sured if the solution seeks user input for encryption and decryption of data.

The following implementation can offer some level of protection for your data that is 
stored in the cloud:

•	 The key generation process happens on your device.
•	 This key is encrypted using user-supplied input.
•	 The personal data is encrypted using this key.
•	 Only the encrypted data encryption key and the encrypted data are ever stored in the 

cloud.
•	 The data is only decrypted after bringing it back to the device.

Any other implementation of key management design is questionable. For example, 
Hardware Security Modules (HSMs) are not built to handle millions of keys. There is a the-
oretical limit on all of them, including those that are attached to cloud resources but behave 
pretty much the traditional way. You can have HSM-like features in the device, like Trusted 
Platform Module (TPM) and Apple's crypto processors, which bring it back to the device as the 
approach suggests here. It is never a good design to put millions of keys in a solution even if it 
supports it theoretically, as your solution will likely become a bottleneck due to the overhead.

KEY MANAGEMENT DESIGN

Key management design describes how cryptographic keys are protected, managed, 
and distributed. At the core, any key management design follows quite a similar approach. 
While device or platform specific implementation may vary, the following are the main 
components:

CHAIN OF TRUST  This is the starting point of the key hierarchy, the seed. This seed in 
most cases is the unique device identifier (UID) of your mobile device. There are multiple 
claims from different sources that this UID cannot be seen or extracted by anyone includ-
ing the device manufacturer, which is equally being challenged, too. For the purpose of 

 Callout: Maybe it is worthwhile to think about the number of applications or platforms 
that asked for your input to generate a key for backup encryption before storing it in the cloud. 
There aren’t too many, you say? We are not surprised!

There is also a difference between application PINs/passwords and specific encryption of 
application data. A lot of applications have an additional PIN option required prior to their 
launch, but that does not mean the data is encrypted; it will be up to the user to read the de-
veloper notes to determine this.
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this book and for a general understanding of the concept, unless this seed is generated 
by the user of the device within the device only, we cannot be certain about the ability, or 
lack thereof, of a device manufacturer to gain access to your data. Having said that, we 
would like to reiterate that cryptography is the science of delaying access to the data, not 
preventing it.

MASTER KEY  The master key can be created utilizing the UID, or in the devices where 
UID is not used, some cryptographic library functions are utilized to generate this master key. 
These functions may utilize environment variables to generate this key. Some manufacturers 
make claims that they only use a kernel-level key derivation function. The intent of such 
deep-rooted functions is to be able to encrypt the media at the block level, rather than any 
real security benefit. This master key is used to encrypt key stores or other keys including the 
data-encrypting key.

USER-SUPPLIED PIN/PASSPHRASE  In most cases, this user-supplied variable (referred 
only as PIN hereafter) is utilized to encrypt the master key only. Designwise, there is a good 
reason for not including it in the actual key generation process of the data encryption key. 
By design, the user-supplied PIN is expected to change frequently. When a user changes a 
PIN, unless the key that is encrypting the data is intact, the entire volume would need to 
be decrypted and then reencrypted with the new key. While we don't see any major design 
constraint in utilizing this user-supplied variable for generating the master key, such an im-
plementation is not common, for reasons not known to us. This should be one of the most 
important items, given that nobody else is talking about it. It is only covered here at a high 
level, but it is a topic that needs to be covered in depth elsewhere, as it does not align with the 
intention or the tone of the book to go into that detail here.

KEY STORES  Also called key bags in certain implementations, these are software con-
structs for storing the encryption keys. These key stores reside in your device and are also 
utilized to transport the keys over to other systems, like the device you authorize for backup/
sync, and management servers.

Even with such a complex implementation, the data is only protected until you boot up 
or unlock your device after boot up (depending upon implementation), by which point the 
media is decrypted and the data is available in the clear. This is not a terrible thing because 
that is where the control cycle of a solution like full-disk encryption ends. This is the case 
with any implementation of a full-disk encryption solution on any type of device, including 
laptops and workstations. The key observation to note here is that the data should not be 
decrypted after boot up until the user authenticates themselves during the unlock process. 
It pays to reiterate that when a system has been unlocked after a reboot, the only protection 
that is available to safeguard your data on the device is your PIN. Fig. 2 from NIST Special 
Publication 800-63 shows the difficulty in guessing a password (expressed as entropy) in 
relation to its length.

While the design described above is common, it is not universal. We encourage readers to 
learn more and ask questions of their vendors and solution providers. This is the only way to 
have detailed assurances as to the security of a solution.
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12.2.3  Key Management

Key management usually lies at the foundation of any other security activity, as most pro-
tection mechanisms rely on cryptographic keys one way or another. There are just too many 
keys with varying degrees of complexity (some perceived) with inadequate key management 
infrastructure. The figure below represents the global perception in terms of the relevant com-
plexity in managing each key type. It has been realized that there are opportunities for some 
quick wins in this area with clear definition of the requirements and some perception man-
agement, with relatively little investment in technology.

Having said that, we acknowledge the challenge in managing the ever-growing number 
of keys utilized in public key infrastructure and persistent data protection. The key manage-
ment systems, if any, have not scaled up to manage the proliferation of keys and the applica-
ble requirements in protecting those keys. Further, some of the technologies utilized as key 
management systems were not intended for that purpose. For example, in the figure below, 
we can observe a strong notion globally that a Certificate Authority (CA) is a key manage-
ment system, although it was not designed to be one (Fig. 3).

In our view, a key management system/solution is an integrated approach for generating, 
distributing, and managing cryptographic keys, not certificates, for devices and applications. 
The effectiveness of cryptographic techniques is highly dependent on the effectiveness of the 
systems and processes that are protecting the keys. If the integrity of the key cannot be as-
sured, the integrity of the encrypted data cannot be assured either. Encryption only, without 
proper key management defeats the purpose of the control. Key lifecycle management covers 
keys through their lifecycle starting from creation, initiation, distribution, activation, deacti-
vation, and termination.

12.3  VPN

VPNs are frequently used by mobile workers who are unable to guarantee a secure con-
nection, yet might need to access an organization’s resources. If properly configured, a VPN 
prevents attackers from intercepting and modifying traffic, while allowing approved access 
to internal resources. However, a VPN does not offer security if the attacker has a presence 
on the mobile device or the network to which it is connected, such as the network at a coffee 
shop operator, hotel, the ISP/Telco, or even the VPN endpoint operator. Poorly configured 
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and secured VPNs can pose a risk, as they could expose sensitive assets and potentially give 
an attacker access to the organization’s internal network, information systems, or credentials, 
enabling them to gain a foothold within the organization as the first step to a subsequent at-
tack. One method to enhance the VPN’s security utility is to deploy multistep authentication 
or multifactor authentication to strengthen the VPNs security posture.

Three main types of VPN are available:

•	 IPsec VPNs, which are useful for point-to-point connections when the network endpoints 
are known and remain fixed.

•	 SSL VPNs, which provide for access through a web browser and are commonly used by 
remote workers (telecommuting workers or business travelers).

•	 Mobile VPNs, which provide mobile devices with access to network resources and 
software applications on a network, when they connect via other wireless or wired 
networks. Mobile VPNs are used in environments where workers need to keep 
application sessions open at all times throughout the working day, as they connect via 
various wireless networks, encounter gaps in coverage, or suspend and resume their 
devices to preserve battery life. A conventional VPN cannot survive such events because 
the network tunnel is disrupted, causing applications to disconnect, time out, fail, or even 
the computing device itself to crash. Mobile VPNs are being adopted more and more by 
mobile professionals and white-collar workers. They are commonly used in public safety, 
home care, hospital settings, field service management, utilities, and other industries.
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FIG. 3  Technologies used as key management systems.  Global Encryption and Key Management Trends Study 
(Apr. 20, 2015).
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12.4  User Training

User training is even more important than technical controls. An educated user on a device 
with poor security is safer than an uneducated user on a device with "strong" security.

The importance of how to actually use all of the security controls that are in place, infor-
mation asset value awareness, and understanding the big picture are hugely important and 
should be a focus of any training program.

N.B. This is a hugely important topic that deserves additional consideration. All the techni-
cal controls in the world won’t matter if you don’t have the right knowledge and understand-
ing by the users, or for that matter, mobile application developers.

12.5  Jailbreaking and Rooting

Jailbreaking and rooting refers to the process of removing limitations put in place by a device’s 
manufacturer, modifying the operating system so that the native operating system restrictions 
are removed and modifications can be made to any part of the operating system and underlying 
filesystem. This allows the end-user to install third-party software from outside the app store. 
Essentially, jailbreaking allows you to use software of which the manufacturer does not approve.

Companies don’t want users jailbreaking their devices to get past the operating system 
limitations so you can change the default programs or run third-party applications. To per-
form a jailbreak, someone has to find a security vulnerability that allows the device to be 
“exploited” in order to get around the manufacturer’s safeguards.

Android allows users to install third-party applications from outside the Google Play Store 
right out of the box, so Android doesn’t need to be jailbroken. This is both a great feature and 
a threat to the security of the operating system. Users need to balance this and understand the 
trade-off if they install such third-party applications.

Rooting is the process of gaining “root access” to a device, which refers to gaining priv-
ileged control or administrative access to a device and getting around Android’s security 
architecture that is designed so that the user does not have full administrative access for good 
reasons; in the vast majority of cases, users won’t ever need it.

N.B. This is generally performed on Android devices, giving the user the ability to perform 
operations that are otherwise inaccessible to a normal user, but rooting can also occur on 
other devices.

On some devices, rooting may need to be accomplished via a security exploit. Just like 
jailbreaking, manufacturers generally don’t want you rooting, since it can affect device per-
formance and behavior and potentially lead to support issues. If you make changes to the un-
derlying operating system and applications, then things can behave erratically, which drives 
up customer complaints and could lead to a poor user experience.

It should be noted, that jailbroken, rooted, nonmanufacturer devices may not respond to the 
wipe command to pose risks to users’ sensitive information if a device is lost stolen or misplaced.

 Tip: Removing hardware restrictions (e.g., rooting on Android, and jailbreaking on Apple) 
on your mobile device in order to install unapproved third-party apps or features can weaken 
built-in security protections, leaving your phone susceptible to malware.
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12.6  Patching

Patching is the process by which software flaws are fixed and features improved. Smartphones 
and tablets require patching as vulnerabilities are discovered. However, since apps are restricted 
in terms of what they can do if properly coded in the right modern mobile operating system, 
the significant attack surface is the operating system itself. It should be noted, however, that 
jailbreaking/rooting destroys this protection. As such, many attackers, security professionals, 
and jailbreakers attempt to find security issues in mobile OS, or more frequently, in vendor-
distributed applications that serve as a gateway to OS exploits. As an example, Apple’s iOS 9 
upgrade improved/fixed about 100 security issues from the last release of iOS 8.

12.7  Asset Management

Asset management is an important control for organizations in deciding policy and mon-
itoring its implementation, as well as allowing an effective response to breaches or security 
issues.

MDM software is available from many vendors, each offering a range of features, in addi-
tion to simple asset lists. However, MDM software rarely adds controls to a smartphone or 
tablet operating system; instead, it simply provides convenient access to built-in controls on 
the device itself. The level of control that an MDM solution can offer is therefore dependent 
on the device and, occasionally, on the version and even the manufacturer of the device.

12.8  Mobile Device Management

MDM solutions provide features such as secure access to corporate email, automatic de-
vice configuration, certificate-based security, and selective wipe of enterprise data for both 
corporate and user-owned devices.

MDM software can often indicate whether a device has been jailbroken. Jailbreaking deac-
tivates or bypasses many crucial security controls and it is therefore recommended to track 
it and deprovision any jailbroken devices, which should be prevented from accessing the 
organization’s resources.

The following sections cover some specific MDM areas for organizations:

12.8.1  Inventory

An organization’s MDM should maintain a list of devices to be managed; that is, a mobile 
asset inventory.

The MDM inventory may include:

DEVICE INVENTORY

Beyond the basics (e.g., device ID, hardware model, firmware version), an MDM can help 
record and report on related assets like wireless adapters and removable memory.

INVENTORY CLASSIFICATION

An MDM might autoclassify devices by mobile OS/version or state (e.g., unknown, autho-
rized, provisioned, decommissioned).
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INVENTORY MAINTENANCE

An MDM might be used to periodically poll devices, check for changes at network connect, 
or carry out administration-initiated audits.

PHYSICAL TRACKING

With many smartphones now supporting GPS, location-based MDM features are possible.

DATABASE INTEGRATION

An MDM may be able to integrate managed mobile device records into a common data-
base using inventory exports or reports.

12.8.2  Device Eligibility

Device eligibility depends on many characteristics, including operating system and 
vendor/model/version that the organization is prepared to support. The organization 
needs to decide what platforms (e.g., Apple iOS, BlackBerry OS, Google Android, Microsoft 
Windows Phone) and minimum models/versions (e.g., Samsung SAFE devices running 
Android 4+) to support. Device-independent management choices should be made wherever 
possible and practical while establishing baseline acceptance criteria for specific business 
uses (e.g., hardware-encrypted devices with remote find/wipe capability).

12.8.3  Device Registration/User Enrolment

MDMs can help administrators register organization-issued mobile devices, or let users 
register their own devices (e.g., through enrollment portals), or some combination thereof.

With good MDM, users can quickly self-enroll their mobile devices.

12.8.4  Lockout screen

If a mobile device is found to be out of policy, lost, or stolen, or if an employee leaves the orga-
nization, an MDM server can take action to protect corporate information in a number of ways.

To permanently delete all media and data on the device and restore it to factory settings, 
MDM can remotely wipe the device. If a user is still looking for the device, the IT section can 
also choose to send a remote lock command to the device. This locks the screen and requires 
the user’s passcode to unlock it.

12.8.5  Policy

To gain user acceptance, organizational policies might need to balance a user’s desire for ac-
cess and the organization’s desire for security. Policy should be developed with an understand-
ing of business and user requirements, as experience indicates that users will attempt to bypass 
or otherwise render ineffective controls that they feel are overly restrictive. Users should there-
fore be educated as to the reason for the restrictions and the implications of bypassing them.

 Tip: Regardless of the phone you use, it is vital to keep your operating system and apps 
up-to-date by enabling automatic updates. Old versions of software can have security issues 
and fraudsters can exploit these to access your data.
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12.8.6  BYOD vs. Choose Your Own Device (CYOD)

If BYOD personal smartphones and tablets are used for business purposes, it is recom-
mended that they be managed using MDM software, as this can ensure that organizational 
policies are followed.

An alternative to BYOD is CYOD. Offering employees a choice of approved devices pro-
vides more control for IT, compared to allowing them to bring any smartphone or tablet 
they want.

However, CYOD strategies also mean less freedom for employees and may not provide as 
high a satisfaction as BYOD.

Businesses can let employees choose from devices that they are sure can be managed and 
secured to the required extent. This is useful for dealing with Android fragmentation, mean-
ing the multitude of different Android versions on different phones on the market. CYOD 
ensures that only the most up-to-date and secure versions of the OS are supported.

12.8.7  Remote Wiping BYOD Devices

Many configurations will allow a corporate administrator to wipe a personal device that has 
been enabled for BYOD usage. A capable MDM solution that actually can per-app-wipe and 
only touch organizational data i.e., a “selective wipe” that only removes corporate information, 
shouldn't need a full device wipe. However, in some cases, an administrator will need to wipe 
the entire device; for example, if there aren’t containers around corporate data it can increase 
this requirement, meaning that personal data will be lost in the process. An entirely possible 
use case involves the loss of an employee’s phone that contains family photos not saved on any 
other device. An administrator might wish to wipe the device to ensure the safety of the organi-
zation’s data, while an employee might prefer to wait in the hope that the device is recovered. 
Wiping the device could potentially present the organization with legal issues.

Policy and user education is therefore vitally important, so organizations supporting per-
sonal devices are strongly encouraged to design a policy that takes remote wipe into account 
and to ensure that users are aware of the implications. Likewise, users need to do their home-
work as to what their MDM solution provides and to take into account what their organiza-
tional policies may require.

12.9  Mobile Application Management

Successful enterprise mobility management requires a MAM solution that has an en-
terprise app storefront, as well as the ability to secure mobile applications on the device, 
authenticate end-users, separate business and personal apps, monitor application perfor-
mance and usage, remotely wipe data from managed applications, and retire apps when 
necessary.

MAM focuses on application management and differs from MDM. It provides a lower 
degree of control over the device, but a higher level of control over applications. MDM 
solutions manage the device by saying what major operating system is required, the con-
figuration settings and can include management of all applications and application data, 
and crucially, things like accounts (e.g., email accounts), network connections (VPNs, 
Wi-Fi), etc.
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12.10  Remote Track and Wipe

Remote track and wipe is slightly different from remote wiping, as described in the previ-
ous section. Remote track and wipe aims to mitigate the risk of device theft or loss. For many, 
this is about the end-user having a self-service and “native” capability under their control. 
iOS has this built-in, and recent Android devices may support it as well. It works by having 
the device maintain or regularly establish a connection over the Internet to check for updates 
or to phone “home.”

Most modern smartphone and tablet platforms have remote wiping and tracking built into 
the operating system. As tablets may not always have a mobile Internet connection, it may be 
more difficult to track or wipe a tablet until it is connected to a data network and is once again 
reachable for review and potential wiping.

12.11  Antivirus/Antimalware

AV solutions are helpful controls against common malware types. The flaw in older AV 
solutions is that a sample of malware has to be detected and analyzed before it can be identi-
fied by an AV product, but this style of AV is not that common anymore. Many newer mobile 
solutions use behavioral analytics and signaling back to a remote cloud server to analyze 
malware; signatures are still used, but other approaches are growing.

Regardless of ownership, where corporate systems are using Windows, having an AV solu-
tion in place is of higher value, given that is also where the threat is. Furthermore, since AV 
is dependent upon updates in order to work effectively, policies should ensure that the AV is 
able to update.

AV solutions for iOS and Windows devices, such as the iPhone, iPad, and Windows Phone 
devices, offer security “controls” built into the operating system, which contain the security 
risk. Consequently, AV on these devices is typically limited to scanning specific files rather 
than offering background, on-access scanning of files. If AV could operate freely on the plat-
form that would imply that malware could as well. However, this is a trade-off that is worth 
encouraging. You don't want any software to have full and unrestricted access to the operat-
ing system/device—only the operating system kernel and tightly restricted APIs.

Android is a different matter, though, as the operating system is more permissive, which is 
also the problem. Permissiveness comes at a cost, and if the user is willing to accept that cost, 
it may mean they also have to bring on board additional controls and protections. Malware 
has been found on Android devices, hence an AV product could potentially provide a useful 
function in the same way it does on a laptop.

12.12  Transmission Security

Since the majority of smartphones are capable of using multiple network mechanisms in-
cluding Wi-Fi, provider network (3G, 4G, CDMA, GSM, LTE, and others), Bluetooth, etc., 
sensitive data passing through insecure channels could be intercepted if the user explicitly 
runs applications to permit this. Therefore, it is advisable that where the device is the receiver 
of data to disable wireless access, such as Wi-Fi or Bluetooth, when not in use so as to prevent 
unauthorized wireless access to the device.



	 12  Mobile Security Technical Controls	 45

12.13  Mobile Usage Controls

Mobile phone telecommunication service providers have various options for controlling 
mobile devices including controls for privacy and usage, filtering content, and location and 
monitoring settings.

12.13.1  Usage Controls

Most companies will allow users to turn off features, such as downloading videos or im-
ages, texting, premium call numbers, overseas calls, and Internet access. These controls can 
also be used to limit the number of calls or texts and set time restrictions.

12.13.2  Content Filtering

These controls can block certain websites to allow for safer mobile browsing on the Internet. 
Some filters can also limit videos and other multimedia.

12.13.3  Location and Monitoring Settings

These controls allow users to track their mobile device’s whereabouts using GPS systems 
that are built into the phone.

12.14  Memory

Most modern mobile devices contain a combination of SIM cards and removable storage, such 
as an SD card, and most devices have some amount of internal storage. If you are intending to 
replace your mobile device with a new device, before disposing an old mobile device, it is import-
ant to consider deleting all of your personal information, photos, messages, and contacts from the 
SIM, removable storage, and internal storage. However, it is worth noting, some information may 
still be stored on the device in locations you missed or are restricted by the manufacturer.

12.15  Cross-Border Data Theft

Mobile devices as a vector for data to leave the organization is nothing new, as the 
inherent mobility beginning with laptops has always made it impossible to rely on 

 Tip: Location services on mobile devices are great to help you find your way or locate 
nearby services. It can also be used to share details of your location. But sharing this informa-
tion publicly could place the user at risk.

Tip: Cyber adversaries have ways of capturing information being sent over free public Wi-Fi 
networks.

Using public Wi-Fi when performing sensitive online transactions such as shopping or 
banking can be risky and should be avoided. You can be far more confident performing these 
activities when connected to a trusted Wi-Fi network, such as in your home.
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a strong perimeter for adequate protection. The cloud computing revolution and the 
myriad of hosted application services that are not geographically fixed has made it 
easier for data to cross national borders. With the increased use of mobile, the applica-
tions and data stored in mobile devices used locally and globally may put both users 
and organizations at risk. In addition, data traveling on the mobile devices is typically 
subject to laws and regulations that will vary from one jurisdiction to another. There are 
many legal/jurisdictional issues with this architecture, and organizations are just now 
starting to work through them.

The cross-border nature of cybercrime means that organizations should ensure good doc-
ument protection practices by improving digital document security techniques. A second 
aspect is for organizations that have international offices, where cross-border document ex-
change is known, should establish proactive relationships with colleagues in international 
locations to identify and minimize barriers to swift and effective international cooperation in 
response to cross-border data theft.

12.16  Regulatory Retention

The amount of data that can be stored and processed in mobile devices has grown 
dramatically.

The increased use of the inherent storage and computing capacity of mobile devices has 
created a new data retention risk. As an example, one trend is the popularity of iPads for use 
by company board members to access confidential corporate data and board reports. While the 
electronic copies of board papers made available on a device may be secure, annotations made 
to/for a document on the device itself, which constitute legal documents, are not captured or 
stored under corporate ownership. This is important for complying with statutory recordkeep-
ing requirements and for preventing legal risks, such as Income Tax Assessment Acts, which 
require entities to keep records that note and explain all transactions and other acts relevant to 
the Act for a number of years. The same goes for Corporations Acts, which require companies to 
retain documents that disclose the company’s transactions, financial position, and performance 
for a number of years after the transactions covered by the records are completed. The period of 
retention for these and similar Acts may vary, depending on the country involved.

 Individual implications

◦	 Managing credentials
◦	 Managing data securely
◦	 Keeping mobile devices up-to-date
◦	 Locking mobile devices when not in use
◦	 Privacy
◦	 Device and data loss

 Organizational implications

◦	 Managing the comprehensive set of technical controls covered above
◦	 Handling issues related to jailbreaking and rooting
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13  FORENSICS

Mobile device forensics relates to the recovery of digital evidence or data from a mobile 
device under sound conditions due to the necessity to preserve “evidence” when it comes to 
legal proceedings.

With the ubiquity of mobile devices, forensic evidence extracted from mobile as well as other 
electronic devices can be an invaluable source of evidence for investigators in both civil and crim-
inal prosecution cases. Smarter, more powerful mobile devices hide a potential treasure trove of 
evidence for investigators and prosecutors alike. Mobile device data can be extracted and then 
used to generate reports on a range of data including an individual’s communication, location, 
and travel habits. For example, in a criminal investigation, the data, which includes transaction 
information such as calendar events, call history, emails, messages (SMS/MMS/emails), and 
photos, are often able to be supplied to an investigating official in a report format. For the evi-
dence to be admissible in a court of law, relevant forensic procedures must be followed.

A number of frameworks exist to provide guidance for the conduct of digital forensics that 
form the basis of these procedures. Digital forensics frameworks have been published (Kent 
et al., 2006; McKemmish, 1999; Martini and Choo, 2012), as have mobile forensic procedures 
and tools (Me and Rossi, 2008; Owen and Thomas, 2011; Savoldi and Gubian, 2008). This has 
enabled practitioners to make sound decisions in the development of high-level forensic pro-
cedures, as well as in specific cases using specific tools (Guo et al., 2009).

One of the key strategic challenges presented to digital forensic practitioners, particularly 
those in law enforcement, is maintaining capability in an environment of rapid development 
of communication and information technologies and its ready adoption by the public and of-
fenders (Adams, 2008; Choo, 2011). Smart mobile devices, for example, are much more complex 
than traditional mobile phones and with a range of personal data management facilities, these 
mobile devices more resemble personal computers than they do phones. By holding a signif-
icant amount of data that could be of interest to a forensic investigator, it makes smart mobile 
devices particularly interesting for analysis. The 2016 lawsuit of FBI v. Apple wanting to unlock 
the San Bernardino shooter’s phone received widespread media coverage, but was far from an 
isolated case.36 As Nate Smith of URX.COM says, “The future of mobile means a more intri-
cately connected ecosystem of applications! The “walled gardens” will be torn down and roads 
and bridges between apps will be constructed. The relationships between the apps that a user 
has installed on their phone will become exponentially more important, to both the consumer 
and the businesses themselves.” However, the method of collecting evidence for mobile devices 
is quite different when compared with traditional forensic computer hard disks.

36 Ongoing phone-unlocking cases in the U.S. See http://techcrunch.com/2016/03/30/
aclu-map-shows-locations-of-63-ongoing-phone-unlocking-cases/.

 Individual implications

◦	 Storing unnecessary data on mobile devices can expose personal habits

 Organizational implications

◦	 Maintaining forensic capability in a rapidly developing mobile environment
◦	 Admissibility of evidence must follow legal requirements

http://techcrunch.com/2016/03/30/aclu-map-shows-locations-of-63-ongoing-phone-unlocking-cases/
http://techcrunch.com/2016/03/30/aclu-map-shows-locations-of-63-ongoing-phone-unlocking-cases/
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14  SUMMARY

This chapter provides information on awareness of mobile device risks for individuals, as 
well as items to consider for organizations.

It suggests 10 steps to secure mobile devices for the digital age, which were mentioned 
near the start of this chapter.

Application builders, mobile device manufacturers, and telecommunications providers all 
need to provide assurance for users that they are acting responsibly in protecting mobile de-
vice information and thereby building trust for the digital economy. This means applications 
responsibly accessing data, the secure storage of data on the mobile device, and the secure 
transmission of data by telecommunication providers. When all three of these act responsibly 
together, trust will be built-in line with the individual’s expectations.

Some of the key risks for individuals to be aware of are:

–	 Information exposure. Be aware of the risks of keeping highly sensitive or confidential 
personal data on mobile devices.

–	 Privacy implications that come along with the technological capabilities that mobile 
devices provide.

–	 If the device is lost or stolen, the information goes with it and can potentially be viewed 
by unauthorized individuals.

–	 Every person who has or will have a mobile device means that every mobile device is a 
target that can be exploited.

–	 Lack of protection of data through not implementing encryption can lead to 
straightforward data exposure. For example, inclination to trust default mobile device 
settings will result in continued exposure.

–	 The scope and risk of mobile device information exposure is extended by the remote-
control capability to spy.

Some of the key concerns for organizations are:

–	 It is essential that organizations have suitable strategies in place for securing mobile 
devices.37

–	 That there are implications in place for the confidentiality of information for business.
–	 Organizations must shift their focus to data-centric models rather than system or  

device-centric models, to ensure they have appropriate security coverage because the 
risks have already shifted.

–	 MDM controls can help with general security. However, it isn't a universal cure-all, and 
products vary significantly with respect to functionality and approach.

–	 Protection of data through encryption.
–	 Mobile testing before a mobile application, or app, goes live.
–	 Privacy concerns.
–	 Identity management.
–	 Security awareness training for mobile devices for staff.

37 See Mobile device security information for IT Managers from the Trusted Information Sharing Network at 
http://www.tisn.gov.au/documents/mobiledevicesecurityinformationforitmanagers.pdf.

http://www.tisn.gov.au/documents/%20mobiledevicesecurityinformationforitmanagers.pdf
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–	 Maintaining digital trust with customers.
–	 Consideration of BYOD programs and the implications for organizational policy and 

security relating to integration within the organization.

This can be summarized in the following diagram, showing the overlap between individ-
uals and organizations (Fig. 4):

Below are 10 steps to share in the quest of realizing a safe, private life in the digital age and 
to make sure that your mobile devices—and everything that’s on them—stays safe:

	 1.	 Lock your mobile device when you’re not using it.
Be sure to use a strong and unique passphrase, pattern sequence, or biometrics. It’s a 
lot harder for people to gain access to your valuable information if the device is secured 
with a strong password or “passphrase” (a series of three of four words and some 
numbers together).

	 2.	 Consider encrypting your data to prevent unauthorized access.
Make sure that device encryption is enabled on your device. While some device 
manufacturers enable encryption by default, others require that you enable this 
in the device settings. If your device is lost or stolen, contact your mobile device 
manufacturer/operating system maker as soon as possible. Your manufacturer/
operating system maker may have the native functionality capability to remotely wipe 
or disable the device to prevent unauthorized access or remove the data stored on 
the device. Additionally, contact your telecommunications service provider, who has 
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FIG. 4  Mobile device overlap.
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the ability to manage charges due to unsolicited messages sent from your device by 
malware, and can disable the device from being able to register on the mobile network.
In the case of theft, contact your local police agency as they may be able to work with 
your service provider to track and recover your device if reported promptly.

	 3.	 Update your device.
Install updates for both the operating system and the apps running on your device. 
These updates often provide functionality improvements and security enhancements to 
prevent malicious attacks.

	 4.	 Know your apps and only use trusted sources for downloading them.
Use official app stores, which are more likely to screen for malicious or counterfeit apps, 
and you are more likely to be notified if you have downloaded a suspect app than if you 
use alternative download sites.
Be sure to read the user agreements and research the information to which an app has 
access. If you are uncomfortable with the permissions the app is requesting, consider 
not installing it.

	 5.	 Turn off location services or disable location services for specific apps.
Location services can often be disabled entirely or allowed on an app-by-app basis. 
Consider disabling location services or limiting which apps can access location services. 
Doing so does not prevent your service provider or law enforcement from using your 
location information.

	 6.	 Limit your use of applications or browsers over open and unprotected Wi-Fi.
It’s often impossible to know if the Wi-Fi you’re accessing is secure. If you’re not sure, 
don’t use your mobile device, or limit your use of it.
Most free public Wi-Fi networks are unencrypted or open, so it is preferable to use your 
mobile data or a trusted, password-protected Wi-Fi network for activities like Internet 
banking or sending and receiving sensitive materials.
If you have a smartphone, use a VPN with it to provide another layer of security and 
protection, especially when you send sensitive information. A VPN encrypts data while 
in transit, both through regular and wireless networks.

	 7.	 Turn off Bluetooth when not using it.
Disable Bluetooth-enabled services when not required to help prevent phishing 
attempts and the spread of malware or viruses.

	 8.	 Don’t root or jailbreak your device.
Not only does rooting or jailbreaking violate the terms of service of most device 
manufacturers, it potentially exposes your device to greater harm from malicious apps.

	 9.	 Back up your device.
Sync or back up your mobile device. Many mobile devices have the ability to be synced 
and backed up to your personal computer or the cloud. Loss, damage, and even 
software updates can cause you to lose all of your data. If you don’t have a backup, your 
important phone numbers, favorite photos, and other data could be lost forever.

	10.	 Be sure to wipe your device prior to trading it in, selling, donating or otherwise 
disposing of it.
Delete all your personal information, photos, messages, and contacts from all SIM cards, 
removable memory, and internal memory.
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Consider taking your device to your service provider or dealer to be wiped and reset to 
factory defaults in order to remove information that may still be stored on the device in 
locations you missed or are restricted from accessing by the manufacturer.

15  MOBILE DEVICE SECURITY RESOURCES

A multitude of security resources exist for mobile device users, developers, and enter-
prises. Some useful security resources include:

ENISA Smartphone secure development guidelines at http://www.enisa.europa.eu/
activities/application-security/smartphone-security-1/smartphone-secure-development- 
guidelines

Google Identity Platform Mobile App Best Practices at https://developers.google.com/
identity/work/saas-mobile-apps

Mobile device security information for IT Managers from the Trusted Information Sharing 
Network at http://www.tisn.gov.au/documents/mobiledevicesecurityinformationforit-
managers.pdf

NIST Mobile Device Security Project with best practices for mobile security at https://
nccoe.nist.gov/projects/building_blocks/mobile_device_security

NIST Computer Security at http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_PART3_key-management_Dec2009.pdf

OWASP Mobile Security Project at https://www.owasp.org/index.php/Mobile
OWASP Top 10 Mobile Controls at https://www.owasp.org/index.php/

Mobile#Top_10_Mobile_Controls
OWASP Top 10 Mobile Risks at https://www.owasp.org/index.php/Projects/

OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
Security Tips and Tricks for the iPhone 6 s/6 s Plus at https://blog.malwarebytes.org/

mobile-2/2015/10/security-tips-tricks-for-the-iphone-6s6s-plus/
Stay Safe Online mobile safety information at https://www.staysafeonline.org/

stay-safe-online/mobile-and-on-the-go/mobile-devices
The Mobile Web Initiative at http://www.w3.org/Mobile/
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GLOSSARY

Definitions in this glossary are based on a variety of web-based sources such as Google, Webopedia, and Wikipedia, 
as well as from specific vendor sites like Cisco, Intel, Lookout, Norton, and Trend. They are included here for 
informational purposes.

Address space layout randomization (ASLR) This is a memory-protection process for operating systems (OSs) that 
guards against buffer overflow attacks by randomizing the location where system executables are loaded into 
memory.

Android Android is a mobile operating system (OS) currently developed by Google, based on the Linux kernel and 
designed primarily for touchscreen mobile devices such as smartphones and tablets.

Antivirus (AV) Antivirus solutions aim to detect, remove, and prevent malware from a system. As malware is de-
tected and analysed by vendors, signatures are created to identify it.

Application programming interface (API) This refers to a set of routines, protocols, and tools for building software 
applications.

Asset management The act of cataloging and controlling devices (assets) that access corporate resources.
Asymmetric cryptography The practice of securing data using a public key that is shared with everyone and a pri-

vate key that remains secret. Data encrypted with the public key can only be decrypted with the private key and 
vice versa. This allows secure communications without a shared secret.
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Biometrics Biometrics refers to authentication techniques that rely on measurable physical characteristics that can be 
automatically checked such as the analysis of an individual’s unique fingerprint, which is starting to be used on 
some mobile phones, or alternatively, the analysis of the tone, pitch, cadence, and frequency of a person’s voice. 
There are other types of biometric identification schemes as well, such as face, retina, iris, signature, and vein and 
hand geometry, but these are not in common use for mobile devices.

Bluejacking The sending of unsolicited messages over Bluetooth to another Bluetooth-enabled device, such as send-
ing a vCard that typically contains a message in the name field (i.e., for Bluedating or Bluechat).

Bring your own device (BYOD) An IT policy in which employees are allowed to use their personal mobile devices 
to access organizational data and systems.

Certificate authority (CA) A trusted organization that produces signed digital “certificates” that explicitly tie an entity 
to a public key. This allows asymmetric cryptography users to trust that they are communicating with the right party.

Choose your own device (CYOD) Offers employees a choice of approved devices and provides more control for IT, 
compared to allowing employees to bring any smartphone or tablet they want.

Code encryption Code encryption is the process of encrypting source code by a developer or vendor organization 
to protect its intellectual property or business logic. Code encryption is one of the approaches taken to prevent 
unauthorized access to source code written in certain programming languages, in addition to watermarking or 
code obfuscation.

Cryptography The art of protecting information by transforming (encrypting) it into an unreadable format, called 
cipher text. Only those who possess a secret key can decipher (decrypt) the message into plain text to read or 
process the information.

Data loss prevention (DLP) A control designed to identify and prevent critical and sensitive data from “leaving” or 
being “leaked” from private confines.

Drive-by downloads Drive-by downloads can automatically download an application when a user visits a web 
page. In some cases, users must take action to open the downloaded application, while in other cases the appli-
cation can start automatically.

Geotagging This is the process by which global positioning system (GPS) coordinates are embedded in infor-
mation shared online such as photos and comments. This occurs via the GPS functionality on smartphones 
and other mobile devices, which could end up revealing your home address and other sensitive location 
information.

Hardware Security Module (HSM) Hardware devices that are dedicated to creating cryptographic keys while stor-
ing and protecting them are referred to as HSMs. They’re utilized in an effort to lock away important cryp-
tographic information, thus increasing the security of data encryption.

Identity management This refers to a broad administrative area that deals with identifying individuals in a system 
(such as a computer, a network, or an enterprise) and controlling their access to resources within that system by 
associating user rights and restrictions with the established identity.

iOS Apple’s Unix-based operating system that runs on iPhones and iPads.
Key In cryptography, a string of data used to encrypt text or to decrypt text. Longer keys are harder to guess by trial 

and error, so key length is almost directly correlated with greater security within an algorithm (e.g., 128-bit AES 
vs. 192-bit AES). An exception is that elliptical curve cryptography (ECC) proves a smaller key length can have 
the same benefits of a non-ECC and longer key. This has a real impact on the computational power and actual 
power that is required. N.B. Key length has no comparative meaning across algorithms such as when trying to 
compare, for example, a 128-bit AES key to a 1024-bit RSA key.

Malware  Malevolent software with malicious intent and function, such as spyware, Trojan horses, viruses and 
worms, that is programmed to attack, disrupt, and/or compromise other computers and networks.

Mobile application management (MAM) Describes software and services responsible for provisioning and con-
trolling access to internally developed and commercially available mobile apps used in business settings on both 
company-provided and BYOD smartphones and tablet computers.

Mobile device management (MDM) Software that allows management of mobile assets.
Near-field communication (NFC) The set of protocols and hardware that enable electronic devices to establish com-

munication with each other via radio by touching the devices together or bringing them into close proximity 
(typically within a distance of 10 cm or less).

OS Operating system. Some common examples are Android, iOS, Windows, BlackBerry, Firefox OS, and Ubuntu 
Touch OS.
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Portable applications A program (e.g., script, macro, or other portable instruction) that can be shipped unchanged 
to a heterogeneous collection of platforms and executed with identical semantics.

Ransomware Ransomware is a type of malware that locks a device or encrypts the data on it and then demands a 
ransom payment to unlock the device or to decrypt the data.

Sideloading Refers to the process of transferring data between two local devices, in particular between a computer 
and a mobile device such as a mobile phone, smartphone, PDA, tablet, portable media player, or e-reader. Its pur-
pose is to install and run applications on mobile devices that haven’t been authorized and are available through 
an official app store.

Smartphone A mobile phone that can do more than simply phone and message/SMS. For example, it can be a phone, 
send/receive SMS messages, and run third-party apps, as well as act as a camera, GPS device, and music player.

Social engineering An attack method taking advantage of human nature by manipulating people into revealing 
information, providing access, or otherwise being conned into performing actions that are not authentic in nature.

Software watermarking Software watermarking involves embedding a unique identifier within a piece of software.
Trojan horse Any software program containing a covert malicious function.
TPM (Trusted Platform Module) An integrated security module that provides protection of sensitive data.
UID User identifier; used with other access control criteria to determine which system resources a user can access.
Virus A malicious piece of software that may attach to a legitimate program or file and cause harm.
Virtual private networks (VPN) A technology that allows computers to establish trusted connections over untrusted 

communication channels.
Wired equivalency privacy (WEP) This refers to a security algorithm for 802.11 wireless networks, introduced as 

part of the original 802.11 standard. Its intention was to provide data confidentiality comparable to that of a tra-
ditional wired network; it has been superseded by WPA2.

Wi-Fi protected access (WPA) This refers to an older, less secure security protocol and security certification program 
that secured wireless computer networks; it has been superseded by WPA2.

Wi-Fi protected access II (WPA2) This refers to a newer, more secure security protocol and security certification 
program to secure wireless computer networks.

Worm A stand-alone malicious program that is capable of automated self-replication that can spread automatically 
over a network. The network traffic from rapid replication and spread can cripple networks even when the mal-
ware does not have a malicious payload.
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1  DEFINITION: SECURITY “INTERNETWORK”

There are various definitions of computer system security. According to the Oxford dictio-
nary, “security” generally means any system that is consistently free from danger or threat. 
For example, if we strictly follow this definition, the “internetwork” system must be designed 
to provide maximum security against any “malicious” attack or “uninvited access” into the 
system; that is, it must be a practically air-tight system that nobody can penetrate or access. 
Other definitions for internetwork security include a more traditional definition made up 
of three criteria to protect the physical machine, even though the data inside the machine 
are worth more than the machine itself. These criteria are: (i) to prevent others stealing or 
damaging the computer hardware, (ii) to prevent others stealing or damaging the computer 
data, and (iii) to minimize or prevent disruption of computer service. Another definition is 
more specifically related to Internet security, of which, broadly speaking, there are two levels. 
These are: (i) security for the Internet browser, and (ii) security for the operating system as a 
whole (i.e., “network security”). Internet browser security is the first layer of Internet defense, 
protecting the network data and computer systems from uninvited attacks, as the browser 
is basically a software application for retrieving, presenting, and traversing information re-
sources on the World Wide Web (WWW). Whenever a browser communicates with a website, 
as part of that communication the website collects some information about the browser to be 
able to process the formatting of the page to be delivered and made readable for the human 
user. Therefore, the browser security methodology typically used is called “perimeter de-
fense.” This involves a firewall and a filtering proxy server, which block unsavory websites 
and perform antivirus scans of any file data downloaded, thereby blocking malicious net-
work data before they reach the browser.

However, network security is far more complex than browser security because it involves 
the core function of the Internet; that is, the “heart and mind of the Internet” in the operating 
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system, or the “engine” of the Internet. Typically, this involves a different layer or “suite” of 
security protocols. Mainly these are: a network layer security protocol, which largely con-
sists of two additional types of protocol, the Transmission Control Protocol (TCP) and the 
Internet Protocol (IP). Both provide end-to-end connectivity and format how data should be 
packetized, addressed, and transmitted until it is received at the destination. TCP and IP are 
secured through cryptographic methods and security protocols. Internet Protocol Security 
(IPSec) is specifically designed to protect TCP/IP communication in a secure manner using 
encryption and consists of two protocols, the Encapsulating Security Payload (ESP) and the 
Authentication Header (AH) protocols. These two protocols provide data integrity, data or-
igin authentication, and an antireplay service. They can be used alone or in combination to 
provide the desired set of security services for the IP layer.

As discussed, there is no single definition for computer system security, but instead a range 
of definitions that make up information technology (IT) security. For convenience, the defini-
tion of Internet security is adopted in this chapter. Technically speaking, today's smartphone 
largely functions as a PC that is smaller and more mobile than the traditional PC. This brings 
the smartphone within the ambit of computer security.

2  GROWTH OF SMARTPHONE BREACHES

With the commercialization of the Internet and the proliferation of its usage over the past 
three decades, it has been estimated that by Jun. 2014, 39% of the world population was surf-
ing the internet daily, which included both the developed economies (global North) and the 
less-developed economies (global South).

With such a vast number of individuals now using the Internet, particularly in recent 
years, there has been a growing adoption rate of mobile devices, even in the developing 
economies (global South). As a result, mobile security has increasingly become a concern, as 
more and more commercial activities migrate from the traditional PC-based platform to the 
mobile phone platform.

Smartphone ownership is no longer confined to the privileged few who can afford high-
priced technology, as increasingly cheaper devices are being introduced into the consumer 
market by manufacturers in Asia. For example, purchasing an Xiaomi1 smartmobile can be 
as cheap as $140 per device in mainland China. As a result, according to the Pew Research 
Center Technology Ownership Survey of Oct. 2015,2 68% of American adults owned a smart-
phone, compared with only 35% in 2011. In the 18–29 age group, almost 90% had a smart-
phone, while ownership among those aged 30–49 stood at 83%.

Similarly, smartphone ownership in Asia is also high; for example, as the BBC reported in 
Sept. 2015, there were 2.5 billion mobile smartphone users in Asia, a high number of whom 
were addicted to their smartphones. The BBC News explained:

1	See the Xiaomi Mobile official website. Available from: http://www.mi.com/hk/ (accessed 09.11.15).
2	See Pew Research Center Technology Device Ownership Survey, October 2015. Available from: http://www.
pewinternet.org/2015/10/29/technology-device-ownership-2015/ (accessed 09.11.15).

http://www.mi.com/hk/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
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Asia and its 2.5bn smartphone users provides a stream of phone-related ‘mishap news’, such as the Taiwanese 
tourist who had to be rescued after she walked off a pier while checking Facebook on her phone. Or the woman 
from China’s Sichuan province rescued by fire fighters after falling into a drain while looking at her [smart-] 
phone.3

Fig. 14 highlights the number of smartphone users and the penetration rate in the Asia 
Pacific region. As indicated in the table, the percentage of smartphone users is high and has 
led the way for the mobile phone revolution, especially in Mainland China.

As Mobile Marketing reported on Sept. 1, 2015, the smartphone adoption rate in Asia has 
risen year over year:

Demand for smartphones in Southeast Asia has hit new heights in the first half of 2015, with sales up nine 
per cent year-on-year and almost 40 million units shipped in the first six months of the year alone. Consumers 
across seven of the region’s key markets (Singapore, Malaysia, Thailand, Indonesia, Vietnam, Philippines and 
Cambodia) have generated more than $8bn (£5.2bn) in sales value so far this year, with 3.2m more smart-
phones sold between January and June 2015 compared to the same period last year.5

According to Statista,6 the two market leaders in smartphones are Samsung and Apple.
So far, this has all been positive news for both smartphone manufacturers and end users 

alike. End users are spoiled for choice and enjoy lower prices, too, as most smartphones are 
manufactured in Asia, such as Samsung, Huawei, and Xiaomi; even the Apple iPhone is pro-
duced in Asia.

However, along with the new benefits that every new technology delivers, there come new 
risks, too. The smartphone is no exception, especially regarding the security risk to smartmo-
bile data. For example, according to the Mobile Industry Review,7 there are a number of risks 
with smartphones. These include nation state-sponsored “license to kill” spyware, with the 
Communist party in Mainland China known to plant a hidden spyware app on smartphones 
in order to seek out individual user information, especially on Xiaomi's phones, as widely 
reported in the media. Likewise, both the US and British governments are known to be setting 
up mobile towers to eavesdrop on people and monitor their conversations.

Another example concerns smartphone security and privacy in regard to adware and 
Trojan horse malware. This involves sending a text message that contains Trojan horse mal-
ware that captures the unknowing smartphone user's financial details, such as credit card 
information.

3	BBC News report on 7 September 2015: “Asia's Smartphone Addiction.” Available from: http://www.bbc.com/
news/world-asia-33130567 (accessed 10.11.15).
4	eMarketer, September 16, 2015. Available from: http://www.emarketer.com/Article/Asia-Pacific-Boasts-More-
Than-1-Billion-Smartphone-Users/1012984 (accessed 11.11.15).
5	See Mobile Marketing. Available from: http://mobilemarketingmagazine.com/smartphone-market-in-southeast-
asia-h1-2015/ (accessed 10.11.15).
6	See Statista. Available from: http://www.statista.com/statistics/271490/quarterly-global-smartphone-shipments-
by-vendor/ (accessed 23.11.15).
7	See Mobile Industry Review: “Smartphone security—what’s the risk?” Available: http://www.
mobileindustryreview.com/2014/10/smartphone-security.html (accessed 23.11.15).
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http://www.emarketer.com/Article/Asia-Pacific-Boasts-More-Than-1-Billion-Smartphone-Users/1012984
http://www.emarketer.com/Article/Asia-Pacific-Boasts-More-Than-1-Billion-Smartphone-Users/1012984
http://mobilemarketingmagazine.com/smartphone-market-in-southeast-asia-h1-2015/
http://mobilemarketingmagazine.com/smartphone-market-in-southeast-asia-h1-2015/
http://www.statista.com/statistics/271490/quarterly-global-smartphone-shipments-by-vendor/
http://www.statista.com/statistics/271490/quarterly-global-smartphone-shipments-by-vendor/
http://www.mobileindustryreview.com/2014/10/smartphone-security.html
http://www.mobileindustryreview.com/2014/10/smartphone-security.html
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Smartphone Users and Penetration in Asia-Pacific, by Country, 2014–19 
(eMarketer, July 2005)
Millions and % of  mobile phone users

2014 2015 2016 2017 2018 2019
Smartphone users (millions)

Chinaa 482.7 525.8 563.3 599.3 640.5 687.7

India 123.3 167.9 204.1 243.8 279.2 317.1

Indonesia 44.7 55.4 65.2 74.9 83.5 92.0

Japan 46.2 51.8 55.8 58.9 60.9 62.6

South Korea 32.2 33.6 34.6 35.6 36.5 37.0

Philippines 21.8 26.2 29.9 33.3 36.5 39.2

Vietnam 16.6 20.7 24.6 28.6 32.0 35.2

Thailand 15.4 17.9 20.0 21.9 23.4 24.8

Australia 13.5 14.6 15.4 16.0 16.5 16.8

Malaysia 8.9 10.1 11.0 11.8 12.7 13.7

Hong Kong 4.4 4.8 5.0 5.2 5.3 5.4

Singapore 3.8 4.0 4.2 4.3 4.4 4.6

Other 74.5 91.1 106.7 121.3 134.7 147.2

Asia-Pacific 888.0 1023.9 1139.8 1254.7 1366.3 1483.4
Smartphone user penetration (% of mobile phone users)

Singapore 83.1% 85.2% 86.3% 87.2% 88.0% 88.9%

South Korea 79.5% 82.3% 84.3% 86.0% 87.6% 88.4%

Hong Kong 76.6% 80.7% 84.0% 85.9% 87.2% 88.3%

Australia 74.3% 78.4% 81.0% 82.6% 83.6% 84.3%

Chinaa 48.1% 50.9% 53.3% 56.0% 59.3% 63.3%

Japan 44.0% 48.9% 52.4% 55.1% 56.9% 58.4%

Malaysia 42.6% 46.6% 49.2% 51.3% 54.3% 57.3%

Thailand 34.9% 39.2% 42.8% 45.8% 48.1% 50.0%

Indonesia 32.6% 37.1% 40.4% 43.2% 45.4% 47.6%

Philippines 32.0% 36.6% 40.0% 43.1% 46.1% 48.4%

Vietnam 30.4% 36.2% 41.5% 46.8% 50.9% 54.6%

India 21.2% 26.3% 29.8% 33.4% 36.0% 39.0%

Other 25.1% 29.0% 32.1% 34.5% 36.4% 37.8%

Asia-Pacific 37.3% 40.8% 43.6% 46.2% 48.7% 51.5%
aExcludes Hong Kong.
Note: Individuals of  any age who own at least one smartphone and use the 
smartphone(s) at least once per month.
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FIG. 1  Smart-phone Users and Penetration Rates in Asia Pacific (2014–19).
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According to PC World, individual end users are still the weakest link to security:

You can implement rock solid network security; enforce strong, complex passwords; and install the best 
anti-malware tools available. Most security experts agree, however, that there is no security in the world that 
can guard against human error …8

A similar comment from Science Nordic (“You (individuals) are the weakest link in IT security”) 
went on to say that:

Hackers often gain access to IT systems by exploiting the weakest link in IT security—the users. New so-
cial IT security system aims to weed out the human factor. Why bother to hack into complex security systems 
when it’s so much easier to hack into people, by using social engineering technique …9

For example, spear phishing is the technique often used to exploit individual users' smart-
phone and information technology devices. Bloomberg Businessweek reported that “the U.S. 
Justice Department told the source that a common spear phishing attack was used by hackers 
to gain access to several companies after malicious individuals obtained usernames and pass-
words from users themselves. In 2013 alone, there were 450,000 reported phishing attacks, 
which resulted in $5.9 billion in losses.”10

In another instance, individual mobile apps with weak passwords were the problem. As 
widely reported in the news, phantom thieves withdrew money from individual Starbucks 
app accounts in the United States:

Maria Nistri, 48, was a victim this week. Criminals stole the Orlando wom[a]n’s $34.77 in value she had 
loaded onto her Starbucks app, then another $25 after it was auto-loaded into her card because her balance hit 
0. Then, the criminals upped the ante, changing her auto reload amount to $75, and stealing that amount, too. 
All within 7 minutes. … The trouble started at 7:11 a.m. on Wednesday when she received an automated email 
saying her username and password had been changed, and if she hadn’t authorized the change, she should 
call customer service. She tried, but the number she called notified her an operator couldn’t answer until 8 
a.m. Whoever did this knew the right time to do it, she said. When Nistri launched her phone’s Starbucks 
app, she could actually see the thieves stealing first the $25, then $75, in real-time as it happened—and other 
Starbucks app users report suffering similar thefts, too.11

The examples cited above provide only a snapshot of potential security issues, but they 
reinforce the truth that the individual end user is likely to be the weakest point in the cyber-
security chain. According to various reports, over 70% of cyber-related incidents, including 
smartphone attack incidents, pointed to human error, and, even though the corporation itself 

8	See PC World. Available from: http://www.pcworld.com/article/260453/users_are_still_the_weakest_link.html 
(accessed 02.12.15).
9	See Science Nordic. Available from: http://sciencenordic.com/you-are-weakest-link-it-security (accessed 
02.12.15).
10	Cited in Cloud Entr. Available from: http://www.cloudentr.com/latest-resources/industry-news/2014/6/10/
top-security-weakness-users-fall-for-password-phishing-scams (accessed 02.12.15).
11	See Consumer Affairs. Available from: http://www.consumeraffairs.com/news/hackers-steal-money-from-
starbucks-apps-accounts-presumably-those-with-weak-passwords-051815.html (accessed 02.12.15).

http://www.pcworld.com/article/260453/users_are_still_the_weakest_link.html
http://sciencenordic.com/you-are-weakest-link-it-security
http://www.cloudentr.com/latest-resources/industry-news/2014/6/10/top-security-weakness-users-fall-for-password-phishing-scams
http://www.cloudentr.com/latest-resources/industry-news/2014/6/10/top-security-weakness-users-fall-for-password-phishing-scams
http://www.consumeraffairs.com/news/hackers-steal-money-from-starbucks-apps-accounts-presumably-those-with-weak-passwords-051815.html
http://www.consumeraffairs.com/news/hackers-steal-money-from-starbucks-apps-accounts-presumably-those-with-weak-passwords-051815.html
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and its information technology system is relatively secure, it is the individual who brings the 
cyber system down. One reason for this vulnerability in individuals lies in how we define 
information technology (IT) security itself, and there are many ways we can define, promote, 
or project what computer security is.

3  ORGANIZATION INTERNETWORK SECURITY

The main objective of a commercial corporation is to pursue profit for its shareholders. 
Therefore, a commercial organization's internetwork system is designed to focus on business 
growth. In general, an internetwork system security is designed at an acceptable or standard 
level that meets regulatory requirements at home and abroad. As a result, it is fair to say that 
organizations' computer networks are not designed with security as their most important 
goal; in fact, only military-classified computer systems are designed with security as their 
most important objective.

Nevertheless, multinational corporations, for a number of reasons, have worked to im-
prove their internetwork security. First, there is compliance with national legislation, as most 
countries have been updating their existing legislation or have passed new laws on cyber-
related issues; in particular, legislation has addressed data protection and individual clients' 
personal details as related to privacy protocols or protection. Furthermore, panregional trad-
ing blocs and global institutions have been active in this area. For example, the European 
Union (EU) Parliament has passed cyber legislation and regional conventions that set the 
standard on cybersecurity for organizations that are based in the EU, such as the Council of 
Europe Convention on CyberCrime. Moreover, the United Nations has written a guideline 
treaty for itself and its member countries to follow the best practices set forth by the United 
Nations Convention or Protocol on Cybersecurity and Cybercrime. All of these new cyber-
related laws, conventions, and treaties, both at home and aboard, have forced multinational 
organizations to seriously beef up their provisions on data protection and security so they can 
satisfy and meet the required trading standards.

Second, political groups and parties have put pressure on multinational organizations to 
shore up their cyber security due to pressure from their respective voters and members. Third, 
nongovernmental organizations (NGOs), such as consumer rights groups, have also been very 
actively lobbying on behalf of consumers to pressure governments to legislate and regulate 
multinational organizations on cybersecurity. Finally, the public and the consumers themselves 
are actively putting pressure on multinational organizations by way of boycotting organiza-
tions whose e-commerce websites do not meet the standards required by law or the industrial 
conventions on cybersecurity. For all of these reasons, multinational organizations must patch 
up their cybersecurity. More importantly, multinational organizations have the financial means 
to do so, including the human resources required to maintain the requisite cybersecurity. This is 
especially so with global banks and financial investment organizations. As a result, the security 
measures on multinational organizations' network systems are largely mature.

In theory, small-medium enterprises (SMEs) and their internetwork security are subject to 
the same regulatory oversight as multinational organizations because SMEs play a major role 
in the economies of most countries, particularly in providing employment and alleviating 
poverty. In practice, however, there is likely to be a gap between SMEs and multinational 
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organizations in cybersecurity practice. This is because SMEs are inherently constrained by a 
number of characteristics. First, SMEs' financial and human resources are much more limited 
than those of multinational organizations. For instance, if the business environment changes, 
especially regarding the ever-present technology changes coming onto the market, SMEs may 
not have readily available resources to respond to change as efficiently as multinational or-
ganizations because their resources for acquiring information about the market are limited. 
Second, as single-business firms, SMEs largely operate locally, although some may operate at 
a regional level within their respective country or trading bloc. This means that if the business 
environment changes, the options for SMEs are limited by the firm's resources, location, and 
industry, whereas multinational organizations can respond by exiting from one of its business 
areas. Third, SMEs tend to be at different developmental stages; the developmental stage of 
one SME is not necessarily representative of other SMEs.

While SMEs are subject to the same regulatory controls on cybersecurity, they are not likely 
to receive the same degree of attention from politicians and the public as multinational orga-
nizations, and they are also likely to be treated more leniently. One probable reason for this is 
when an SME fails, the effect on society is not as far-reaching as when a multinational organi-
zation fails because the number of people affected (in terms of the number of customers and 
the geographical coverage of the operation) is much smaller. When a multinational organiza-
tion fails, the effect on society is far greater, with sometimes millions of customers being af-
fected; therefore the public's expectations are much higher and oversight from the regulatory 
authority is stricter. Nevertheless, in recent years, even SMEs are moving towards investing 
more of their limited resources in cybersecurity because having a recognized, secure web-
site improves sales figure and retains customers who can be confident of the internetwork 
system. Moreover, in recent years, internetwork safety awareness has increased within the 
business community, as a number of high-profile, global online breaches reported in the news 
media has increased interest in cybercrime prevention at management and even executive 
levels. In turn, SMEs have increased their budgets for cybersecurity. However, the survival of 
any business depends on how well it satisfies its customers' needs, which includes the expec-
tation that a business website is easy to access with minimal barriers, such as lengthy online 
authentication procedures. Given that it is human nature to turn away when confronted by a 
barrier, an enterprise is likely to have made strategic business decisions so that it can provide 
its customers with ease of access to its online store, which in some cases involves scaling 
down website safety measures by removing or limiting strict authentication processes.

4  INDIVIDUAL INTERNET SECURITY

As discussed, nobody likes barriers, and they will go to great lengths to avoid them. 
However, there is no law in place to coerce individuals to install antivirus software to protect 
them from falling victim to smartphone crime, or to be their first line of defense against spy-
ware or Trojan horse malware being installed on their devices, including their smartphone. 
It is completely at the discretion of individuals whether they purchase and install antivirus 
software for their smartphone, even if it means suffering psychological and or financial losses 
should an individual become the victim of a smartphone crime. Statistically speaking, the 
potential for falling victim to smartphone crime is not that remote; with active Facebook users 
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numbering 1.6 billion globally (as of Nov. 201512) and email users sending almost 300 million 
messages a day, there is a large pool of personal data that can be stolen. For example, perpe-
trators can obtain valid names and other personal data through phishing on social network 
sites, as Yachi Chiang explained:

[T]he privacy setting options of Facebook are difficult for users to understand. While users need to learn 
about user privacy options, under pressure from the privacy protection movement, Facebook has changed its 
privacy option models on a frequent basis, which has made the relationship between Facebook and privacy 
even more complicated … It seems, therefore, that there are many privacy traps on Facebook that users often 
ignore.13 Chiang, 2015, p. 230.

It is not clear why users ignore social networking sites' stronger privacy protection options, but 
there are a number of possible explanations. First, as discussed earlier, there is the rapid growth 
in modern technology owners and users, particularly of mobile devices and smartphones that 
we have witnessed in recent years, especially in Asia. Now, newer technology devices are no 
longer confined to being used by technology geeks in advanced science laboratories or universi-
ties; instead, it is members of the ordinary general public who purchase and use them. The late 
20th century has seen hyperconsumerism combined with a clever marketing drive for modern 
technological devices, such as the smartphone, making these devices not only a tool for verbal 
communications, but also a commodity and lifestyle product. Mobile devices have become fash-
ion trends with a very short product lifecycle with ever-extending add-on accessories, such as 
Bluetooth headsets. Second, as more and more new technology devices flood the marketplace, 
competition inevitably reduces the price of these products with each newer generation. This is 
especially so in Asia, not only are most of these technological devices manufactured in here, but 
also because this is where the majority of the world population lives. Further, as more and more 
consumers purchase these products, they do not necessarily understand fully what is required 
to protect their privacy from uninvited third parties. This problem will only grow and multiply 
as the number of consumers buying smart devices continues grows. The third reason is directly 
linked to the second one, as Nick Sulvited of Symentec outlined:

Individual [consumers of technological devices] lack of awareness of security … well over 70 percent of 
smart-phone breaches were largely due to lack of awareness of the individual end-users, this problem would 
only grow as more and more users migrate to smart-phones …14

Individual end users' lack of awareness of their smartphone security and privacy can result 
in a bitter aftertaste. Here is a real-life example: On Nov. 5, 2015 it was reported by Eurosport15 
that a woman from Perth, Australia, expressed her delight in scooping AU$900 after backing 

12	See Statista. Available from: http://www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/ (accessed 07.12.15).
13	Chiang, Y.-C., 2015. When privacy meets social networking sites-with special reference to Facebook. In: Smith, 
R.G., Cheung, R.C.-C., Lau, L.Y.-C. (Eds.), Cybercrime Risks and Responses: Eastern and Western Perspectives. 
Palgrave Macmillan, London, p. 230.
14	The researcher watched this live TV interview on December 1, 2015, on Singapore Tonight, Channel News Asia, 
Singapore.
15	See Eurosport. Available from: https://uk.sports.yahoo.com/news/esp-horse-racing-woman-fumes-selfie-
allows-facebook-friend-110425012--rah.html (accessed 06.11.15).

http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://uk.sports.yahoo.com/news/esp-horse-racing-woman-fumes-selfie-allows-facebook-friend-110425012--rah.html
https://uk.sports.yahoo.com/news/esp-horse-racing-woman-fumes-selfie-allows-facebook-friend-110425012--rah.html
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100-to-1 shot Prince of Penzance in the Melbourne Cup horse race by taking selfies of herself 
flashing the winning betting slip, which she then posted on Facebook. Her post was accom-
panied with the message: “Winner winner chicken dinner!!” However, her delight was short-
lived, as someone soon poached the barcode from her photo on the smartphone, then cashed 
out the winnings at an automated machine through another smartphone.

This smartphone user did not realize that the digital photo on her Facebook is basically 
a 0-and-1 binary code, and that the barcode on her betting slip is valid on any smartphone. 
This lack of knowledge may come down to several factors. First, individual end users are 
currently too dependent on others laying down internetwork security for them; particularly, 
as discussed, end users rely on the organizations they access to provide cybersecurity, and 
organizations must provide this if they want individual end users to use their online shop-
ping services. Additionally, organizations are coerced by law to do so, whereas individuals 
are not. However, even when individual end users want to equip their smartphones with 
security software, the standards of the many different products on the market are various 
and fragmented.

As a result, individual end users are probably not adequately armed with sufficient knowl-
edge to choose one security product over another. Moreover, reliable security products tend 
to involve personal expenditure, and with the reliance on organizations providing cybersecu-
rity, an inertia has developed, with end users tending not to purchase antivirus software for 
their smartphones. Second, most countries do not automatically provide public smartphone 
security protection awareness campaigns or education, especially in the developed econo-
mies in the West, because there is a strong belief that users should be the ones who pay, not 
the public. This is the sentiment, despite the fact that when smartphone breaches do occur, 
society as whole also pays for it in some way, whether by the cost of the police investigation 
or in taking measures to prevent the same breach happening again. However, in addition to 
the ethical and moral issues, the costs of cybercrime, including smartphone crime for indi-
viduals, organizations, and governments, are expected to increase year over year. As we have 
seen, there is a combination of causes for this. Not enough attention is given to cybercrime, 
with governments assigning it only limited resources and seeing it as a low political priority. 
It depends on the individual end users; the mindset they have acquired for their desktop PCs 
needs to change for their mobile devices, but such a skill set is slow to pick up because the 
knowledge isn't the same for desktop as it is for mobile. Additionally, individual smartphone 
users need to realize that they themselves have to take responsibility for personal security on 
their mobile devices, such as by purchasing reliable antivirus software.

5  CONCLUSION

As shown in this chapter, the multinational corporations have invested large financial and 
human resources to beef up their cyber and mobile security. Although a small number may 
not be up there yet, overall multinationals are relatively mature on cyber and mobile secu-
rity, especially regarding their internal network. However, SMEs are fragmented in terms of 
investment in their cyber and mobile security, due to inherent financial constraints. The evi-
dence of cyber and mobile security for individual smartphone end users is dire; as indicated 
by the example of the horse race winner in Perth, there is little awareness or knowledge of 
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issues regarding smartphone mobile security and privacy. However, with the proliferation of 
individual and personalized portable devices, these problems will only grow and multiply. 
Furthermore, there is evidence to suggest that individuals are reluctant to invest money in 
equipping their different devices with security software, or that they are unaware of their vul-
nerability to uninvited third parties accessing their devices. As a result, there is clear evidence 
that smartphone end users are the weakest link in the mobile security chain.

Finally, the ease of access to and the affordability of developing mobile devices will in-
evitably fuel an explosion of new products, including the Internet of Things (IoT). In the 
not-too-distant future, the installed bases of these systems will reach critical mass and will 
offer enough penetration levels that they will attract attackers. To ensure that security and 
privacy are not playing catch-up to technological innovation, the cybercrime theorist, practi-
tioner, technology vendors and manufacturers, and vertical solution providers should work 
to educate end users and establish best practices for using smart devices, such as ISO 27001 
Information Technology Management. Alternatively, security controls should be built into 
the mobile device architecture by default, where appropriate, thereby reducing smart device 
breaches and crime, thus reducing the costs borne by society as a whole and those sustained 
by individual end users.
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1  INTRODUCTION

Digital literacy can be defined as the “practices involved in reading, writing, and exchanging 
information in online environments” (Selfe and Hawisher, 2004, p. 2), such as smart mobile de-
vices (e.g., smartphones and tablets). Singapore has one of the highest smart mobile device pen-
etration rates in Asia, where the ratio of mobile devices to residents was 1.48 to 1 in the calendar 
year 2014 (Infocomm Development of Singapore, 2015). However, older users are likely to be less 
digitally literate compared to the younger groups for a variety of reasons. The older age group 
(defined as age 45 and above in this chapter) grew up in an era when mobile devices and later 
smart mobile device technology was still nonexistent or developing at a slow pace. These people 
are sometimes known as “digital immigrants.” It is even regarded as an “aging infrastructure” 
because digital immigrants refuse or are reluctant to incorporate technology in their everyday 
lives. By contrast, “digital natives” grew up in an era when computers and later smart mobile 
devices “are not technology, they are part of life” (Fieldhouse and Nicholas, 2008).

In the past, the digital divide between digital natives and digital immigrants may be more 
physical; that is, the ownership of digital gadgets by the former while there is little or no 
ownership of such gadgets by the latter. However, given the high smart mobile device own-
ership of digital immigrants, the current and possibly future digital divide may exist in terms 
of perception and awareness of digital literacy. Hence, there is a need to enhance the digital 
literacy of digital immigrants.

It is hoped that this study can provide some useful suggestions to digital immigrants in 
other societies that have a prominent aging population and are increasingly digitized.

Even though there are comparable similarities with increasingly digitized societies as 
mentioned earlier, it is important to know some characteristics in Singapore that may have 
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an impact on the digital literacy of digital immigrants. English is the official language in 
multiethnic Singapore. However, the wide usage of English does not mean that everyone is 
literate in the language. Considering the relatively large proportion of ethnic Chinese pop-
ulation in Singapore of 74.2%, there is still a considerable number of people who are liter-
ate only in a single non-English language. In 2010, 20.6% of the population was literate in 
Chinese only, with the highest proportion coming from those aged between 45 and 64 years. 
This has served one of the main reasons for setting the age criteria of our participants; that 
is, 45 years and above. The literacy in Chinese only among the population in Singapore is 
also most concentrated among those who have never received any qualification numbering 
a total of 199,063. This is followed by those who received primary education numbering a 
total of 94,279 (Singapore Department of Statistics, 2010). (Note: the Census of Population is 
conducted once every 10 years.)

Given that the official working language is in English, this may indicate that those who 
are literate in Chinese only may have difficulty accessing official documents that are mostly 
available in English only. With the lack of command in English among some Singaporeans, 
they may not be able to understand the cybersecurity issues covered on this website.

1.1  Contributions

In this chapter, we build on the work of Imgraben et al. (2014) and seek to contribute to a 
better understanding of the security and privacy risks faced by elderly Singaporean Chinese 
smart mobile device users, particularly those who are literate in Chinese only. More specifi-
cally, we provide a snapshot of the following:

1.	 Prevalence and types of smart mobile device usage by these elderly users
2.	 Prevalence, nature, costs, and impacts of smart mobile device-related security incidents.

This survey provides a good indication of the risks associated with smart mobile device 
usage and also serves as the basis for an extended study of this population.

This survey focuses on examining the level of literacy as a variable to find out if users have 
difficulty using their smart mobile devices due to their lack of ability to read English. This is, 
to the best of our knowledge, the first (academic) study to examine how the lack of English lit-
eracy among the elderly will affect the ease of smart mobile device usage and their awareness 
of cyberthreats. Previous studies such as those of Kurniawan (2008) and Elliot et al. (2013) 
focus on the digital literacy and technology uptake of the elderly.

We then explain how the Situational Crime Prevention Theory can be used to mitigate 
risks by reducing the opportunities for criminal activities targeting mobile device users to 
occur, making cybercrime more difficult to commit by increasing perceived effort, increasing 
perceived risks, reducing rewards, removing excuses, and reducing provocations.

1.2  Chapter Outline

The rest of this chapter is organized as follows: We document the survey design in Section 2. 
In Section 3, we discuss our findings and outline four recommendations. Educational pro-
grams are important components when dealing with the risks of cybercrime. Therefore, in 
Section 4, we explain the role of criminological theories, and more specifically, the Situational 
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Crime Prevention Theory that can help to inform and enhance cybercrime prevention strate-
gies. Section 5 concludes the chapter and looks at future work to take forward this chapter/
survey's analysis and conclusions.

2  SURVEY DESIGN

The survey comprises five main sections, each representing the main threats that users of 
mobile devices are generally exposed to: (1) general security, (2) malware, (3) unauthorized 
access, (4) Wi-Fi and Bluetooth security, and (5) phishing. The questions relate to the 2012–13 
financial year (i.e., Jul. 1, 2012 to Jun. 30, 2013), unless otherwise specified.

This study is based on convenient sampling because it allows us to obtain basic data and 
trends, particularly on how literacy in Chinese affects cybersecurity awareness, which has 
not been studied in the past. We will follow up with randomized sample comprising a wider 
group in the future.

Initial contacts with participants were made through email, Facebook, and WhatsApp. 
Some of the contacts were also made through friends who would relate the survey to their 
parents and/or seniors with whom they have contact. A typical limitation of this approach 
is self-selection bias, as the participants are unlikely to represent the entire target population.

Participants were selected based on their age and smart mobile device ownership. The 
selection process had to go through a number of factors, including willingness to partic-
ipate in the survey (both online versions and hard copies of the survey form were made 
available), whether participants use smart mobile devices as a feature phone (for calling and 
text-messaging only), and the request to participate in surveys was set in Chinese, as some 
participants were unable to do them in English.

The initial intention to include Singaporeans of all ethnic groups had to be dropped be-
cause of the request to provide surveys conducted in non-English mediums due to the in-
ability of the researchers to draft the survey in mediums (i.e., Tamil and Malay) other than 
Chinese and English. This inability to read English was also one of the motivating factors in 
this study to further examine how users who read little or no English respond to their use of 
smart mobile devices.

Analysis of data is based on 55 participants comprised of 28 males and 27 females. The age 
of participants are 45 years and above, with the highest number coming from the age group 
51 to 55; see Fig. 1.

23.6%

29.1%

16.4%
20.0%

10.9%

45–50 51–55 56–60 61–65 65 and
above

FIG. 1  Age group of participants (n = 55).
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The educational level of participants ranges from primary to university level, with the ex-
ception of one who had never received any education. The literacy level of participants ranges 
from being literate in English only, Chinese only, both Chinese and English, and English but 
prefer Chinese; see Fig. 2.

In addition to the survey, the study also includes feedback through phone interviews 
and emails from participants during the process of collecting survey responses. There were 
also those who explained why they could not do the survey. This feedback can serve as an 
additional source of reference in understanding the attitude of users towards smart mobile 
devices.

This study had gathered 23 participants who either know little or no English or prefer 
to access their smart mobile devices in Chinese. Findings from this study indicate that the 
lack of literacy in English is directly related to the ease of usage and the user's awareness of 
cyberthreats.

To test on the ease of usage, a few factors were considered during the design of the survey. 
This includes asking participants whether they experience difficulty using their smart mobile 
devices with or without the change of language settings and their awareness of phishing.

3  FINDINGS AND DISCUSSION

Although literacy is one of the variables focused in this study, we will also present find-
ings on the main threats to which elderly users of smart mobile devices are generally ex-
posed. These findings are analyzed from the 55 participants who had participated in the 
survey, which cover five sections as mentioned in the survey design. This will be presented 
in Tables 1 and 2.

18 of the 55 participants (~32.7%) reportedly experienced difficulty in understanding the 
information while accessing their smart mobile devices. Of these 18 participants, 15 partici-
pants are literate in Chinese only, and five of the participants are literate in both Chinese and 
English but prefer to access their smart mobile devices in Chinese (e.g., changed the language 
settings of their devices to Chinese); see Table 3.

14.5%

43.6%

25.5%

16.4%

English
only

Both
English and

Chinese

English but
prefer

Chinese

Chinese
only

FIG. 2  Literacy of participants (n = 55).
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The lack of English literacy, or that the level of comfort lies more with the Chinese lan-
guage, indicates that the users may not be able to either understand all or most of the features 
available on smart mobile devices, such as instant messaging, emails, and information on 
websites or social networking sites. Such information is usually not translated into Chinese 
even if the user sets language settings to Chinese.

65.5% (36) of the participants are literate in both English and Chinese, but nine of them 
preferred to do the survey in Chinese (a total of 15 participants completed the survey in 
Chinese). This reflects that their level of comfort in reading lies more with Chinese. Users 
also responded that they have had difficulty accessing their smart mobile devices even after 
changing language settings.

First, we look at the 23 users who are either literate in mainly Chinese or regard Chinese as 
their preferred medium. Of those, 69.6% (16) have changed their language settings to Chinese. 

TABLE 1  Participants' Responses on General Security (n = 55)

Questions on General Security Participants' Responses

Do you use the “Remember me” feature to save your 
passwords, login credentials, or credit card information? 
(Select all that are applicable)

Of the seven participants who reportedly saved the 
passwords, two also saved login credentials.

Do you use any encryption software to protect 
information on your mobile device?

Although four responded “yes,” it is doubtful if 
participants knew what encryption software is and more 
likely that they were referring to the password on their 
devices.

Have you “jail broken” or “rooted” your mobile  
device (s) before?

Only one responded “yes.”

TABLE 2  Participants' Responses on Loss/Theft (n = 55)

Questions on Loss/Theft Participants' Responses

In the past calendar year (01/01/2013 to 31/12/2013) 
has/have your mobile device(s) been lost or stolen?

Only two responded “yes.”

TABLE 3  Participants' Responses on Unauthorized Access (n = 55)

Questions on Unauthorized Access Participants' Responses

How likely are you to read up on information before  
you download an application?

See Fig. 3.

Have you installed any applications from nonreputable 
or unknown application providers?

Four responded “yes” and five responded “not sure”

In the past calendar year (01/01/2013 to 31/12/2013) 
has your mobile device(s) been accessed without your 
permission?

Three responded “do not know” (n = 54).
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Among these 16 users, 68.8% (11) still experience difficulty in understanding information on 
their devices, and 9 out of these 11 users still experience difficulty understanding information 
after changing language settings.

Among these difficulties that the 11 users experience, the highest response came from 
understanding instructions while downloading mobile applications (81%). One user also 
reported having difficulty understanding messages prompted while playing online games 
and accessing social networking sites and requests to play games and join social network by 
friends and unknown contacts, as well as having a fear of leaking sensitive and personal iden-
tifiable information (PII) data such as bank account, credit card details, or personal photos/
videos.

The two remaining users, who did not have problems understanding instructions while 
downloading apps, reported to have experienced difficulty in understanding advertisements 
and requests to play games and join social networks by friends and unknown contacts, as 
well as a fear of leaking sensitive data and PII.

The problem of understanding the information on their mobile devices is not unique to 
users who are mainly literate or feel more comfortable accessing in Chinese only.

However, the problem lies less with understanding and probably more with not being sure 
how to respond, as well as the possible consequences of responding. This is an indication that 
as features of smart mobile devices increase in function and variety in the form of new apps 
and device functions, digital immigrants who make use of these features may experience 
more difficulty in accessing their devices.

Understanding the information of the various features on their smart mobile devices may 
be difficult for those who are not accustomed to reading in English. It may also deter them 
from reading up before downloading an app. More importantly, participants may be un-
aware of the retrieval of sensitive data and PII upon downloading an app. 38.2% (21) of the 
participants responded that they are unlikely to read up on information before downloading 
an app. Of these 21 participants, 52.4% (11) responded “very unlikely” and nine participants 
responded “somewhat unlikely” (Fig.  3). Eight other participants responded “neutral” to 
reading up before an app is downloaded.

Other than the lack of awareness that downloading apps may retrieve sensitive data 
and PII from the user, four participants reportedly installed apps from nonreputable or un-
known application providers (e.g., third-party app stores). There are five other participants 
who were “not sure” whether their apps were installed from nonreputable or unknown 
providers.

A study conducted by Hewlett Packard Security Research (2013), for example, revealed 
that 90% of the 2107 mobile apps examined were vulnerable to attacks, 97% accessed sensitive 
data and PII, and 86% had privacy-related risks. Lack of binary code protection was identified 

Recommendation 1: There is a need for smart mobile device and app designers to consider the ease 
of usage in the design of the devices and apps, particularly among first-time users and elderly users 
who are not familiar with dynamically changing digital context.
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as a potential vulnerability affecting 86% of the apps examined. Another major vulnerabil-
ity was weak or inappropriate implementation of cryptographic schemes to secure sensitive 
data stored by the apps on mobile devices, which was revealed in 75% of the apps examined.  
A study by D'Orazio and Choo (2015) revealed that due to the inappropriate implementation 
of cryptographic algorithm and the storage of sensitive data and PII in an unencrypted 
database in a widely used Australian government health care app, users' sensitive data and 
PII stored on the device could be compromised by an attacker. In another related work, the 
authors also revealed vulnerabilities in four video on-demand apps, one live TV app, and a 
security DRM protection module (D'Orazio and Choo, 2016).

The lack of understanding app information, coupled with a low likelihood of reading up 
on information before downloading and installing apps from nonreputable or unknown app 
providers, may put these users at risk of revealing their personal information. This is an indi-
cation that awareness needs to be increased in these areas.

Linking the above concerns about the lack of understanding of app information and the 
low likelihood of reading up on information before downloading an app, we also draw our 
attention to the type of smart mobile device the participants own.

Thirty-five out of the 55 (63.6%) participants own an Android device. The permission-based 
method utilized by Android to determine an app's legitimacy has been shown to be insuffi-
cient at classifying malicious apps reliably. On the other hand, the review process used by 
Apple is more restrictive for developers, as each app is thoroughly analyzed for security 

20.0%
16.4%

14.5%

23.6% 23.6%

FIG. 3  Likelihood of reading app information before downloading an app (n = 55).

Recommendation 2: Considering that older mobile device users may not be accustomed to reading 
very wordy information, easy-to-read manuals (both in hard/soft copies and audio/video formats) 
available in different languages (other than English) can be attached to the smart mobile device 
package upon purchase or made easily available online to inform users of possible cybercrime risks 
and to heighten their awareness of possible risky activities related to the use of their device or app.
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issues before being released to the public (although there have been reports of potentially 
malicious apps getting past Apple's reviewers).

Some participants in our study have expressed concern with encountering advertisements 
while using the app they have downloaded. This may indicate in-app advertising, which 
is commonly seen in apps. The increase of permissions is predicted to be related to in-app 
advertising that requires use of additional resources for data mining (Shekhar et al., 2012). 
A 2012 study of 100,000 Android apps revealed that some mobile advertising libraries used 
by apps resulted in the direct exposure of personal information, and some advertisement li-
braries result in unsafe fetching and loading of dynamic code from the Internet. For example, 
five out of the 100 identified ad libraries had the unsafe practice of downloading suspicious 
payloads, which allowed the host app to be remotely controlled (Grace et al., 2012).

In addition, an Android device user must choose either to accept all permissions required 
by the app in order to download or cancel the installation. Some of these permissions may 
not be necessary, and granting all permissions may pose a privacy risk to Android users. 
For example, in a 2014 study, seven Android social networking apps were examined (Do 
et al., 2014). It was discovered that the Facebook app requires the “read contacts” permission, 
which means retrieving users' contact data including contact numbers, contact addresses, 
and email addresses, regarded as unnecessary. Both Facebook and Tango require permission 
to “read phone state” that includes allowing the app to access the device's phone number, 
the international mobile equipment identifier (IMEI) of the device. As the IMEI serves as a 
unique identifier that is often used to locate the device, providing such information may be 
disadvantageous to the user.

56.4% (31) of the participants in our study reported using the Facebook app and 20 out 
of the 31 participants (64.5%) have used the app on their Android devices. Nine out of the 
20 participants who used the Facebook app on their Android devices are mainly literate in 
Chinese. Given their lack of understanding the information when downloading an app, these 
participants may be put at risk of granting more than the necessary permissions.

If this need for permissions when downloading apps in Android devices is linked to a 
lack of understanding of information (in English) on apps and the low likelihood of reading 
up on information before downloading an app, as seen with our participants, people may 
be exposed to a higher risk of revealing their sensitive data and PII without being aware of 
doing so.

Leaving your belongings unattended in a public place or work environment that may be 
temporarily out of your sight may be a risky thing to do, especially when the smart mobile 
device contains a lot of sensitive data and PII about the user, such as photos, login details for 
the apps installed, corporate and personal emails, and other messages with people you know.

Even though most participants responded “very unlikely” and “somewhat unlikely,” there 
are still 10.9% of the participants who responded “very likely” (3) and “somewhat likely” (3). 
The likelihood of half of these participants leaving their smart mobile devices unattended 

Recommendation 3: While studies such as that of Do et al. (2014) suggested that permissions re-
moval in Android devices can be used to enhance user's privacy, we further suggest that incorpo-
rating the flexibility of language settings will help users who have little or no literacy in English to 
be able to remove permissions.
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in a public place or work environment may be related to the nature of their work, such as 
working in an outdoor environment that requires them to travel from place to place, and so 
the tendency of leaving their belongings unattended is high. Three of these participants, for 
example, are in the theatrical trade.

Users working in such environments have to be more wary of leaving their smart mobile 
devices unattended. If leaving a smart mobile device unattended is risky, not having pass-
word protection for your device or not knowing if your device has been accessed without 
your permission may further increase the risk. Among the six participants who are likely to 
leave their smart mobile devices unattended, half of them do not use a password or PIN to 
lock their devices. Although most of the other participants responded that their likelihood of 
leaving their devices unattended is low, 43.6% (24) of them do not lock their mobile devices. 
Three participants reported that they are “not sure” if their devices have been accessed with-
out their permission.

Unauthorized access of smart mobile devices is a serious threat for any organization whose 
employees store sensitive data and/or credentials on their smart mobile devices. It should by 
now be common knowledge that leaving a device unattended, especially if no locking mech-
anism is in place, exposes any personal and corporate data stored on the device. Even if data 
has been deleted from the device, it could still potentially be retrieved using open-source and 
commercial forensic software (e.g. Micro Systemation XRY and CelleBrite UFED Kit) (Tassone 
et al., 2013; Quick et al., 2013).

While Internet access via smart mobile devices is easily accessible today, connecting to 
public Wi-Fi networks may put the user at risk of revealing sensitive data and PII. Using 
Wi-Fi hotspots, a hacker in the local area network may steal such information by replicating 
the legitimate provider's login or registration webpage. Four of our participants responded 
“yes” and 10 responded “depends” when asked if they would connect to unknown Wi-Fi 
networks (see Table 4).

This study also aims to test participant's awareness of phishing. Our findings suggested 
that a high proportion of the participants are unaware of phishing; see Fig. 4.

This trend stretches across all age groups and educational levels. However, the sample 
may be biased in finding out if literacy mainly in Chinese may affect users' perception of 
phishing due to the difficulty in gathering such participants.

TABLE 4  Participants' Responses on Wifi and Bluetooth Security (n = 55)

Questions on Wifi and Bluetooth Security Participants' Responses

Do you keep your mobile device(s)'s Wi-Fi switched on  
at all times?

27 (49.1%) responded “yes”

Would you connect to unknown Wi-Fi networks? Four responded “yes” and 10 responded “depends”

Do you keep your mobile device(s)'s Bluetooth switched  
on at all times?

Five responded “yes”

Would you accept a Bluetooth pairing request from  
unknown sources?

Three responded “depends”
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87.3% (48) of the participants are either unaware or do not have a sufficient understanding 
of phishing. Eight of the fifteen participants who said that they know what phishing is fail to 
identify some of the phishing examples set out in the survey, and 23 participants will perform 
one or more of the following actions:

•	 Open SMS from unknown contact (20)
•	 Open email (7)
•	 Access instant messaging request (Facebook, MSN) (2)

Table 5 illustrates the questions on phishing, and Tables 6 and 7 illustrate the 10 phishing 
examples set out in the survey and the participants' responses. There are five examples set in 
Chinese for participants who are literate mainly in Chinese, while the remaining five exam-
ples are the same with the English survey. This is to test the responses of participants who are 
mainly literate in Chinese on whether they will access without asking for advice, ignore it, or 
ask for advice from family/friends. Figures marked in bold indicate the number of partici-
pants who are aware of what phishing is.

We tested the correlation of phishing with variables like age and educational level. Out of 
the seven participants who are able to recognize all the phishing examples, six have univer-
sity education and one graduated with college education. The age group is also more concen-
trated in the 45–50 age group (4), followed by 51–55 (2) and 56–60 (1). One participant prefers 
to read in Chinese. However, as the number of participants who are able to identify phishing 
is small, more tests will need to be conducted on a larger scale for more conclusive results.

21.8%

50.9%

14.5% 12.7%

FIG. 4  Understanding of phishing (n = 55).

TABLE 5  Participants' Responses on Phishing (n = 55)

Questions on Phishing Participants' Responses

Will you access the following from an unknown 
contact?

23 participants will access one or more of the following: Open 
SMS from unknown contact, open email, or access instant 
messaging request (Facebook, MSN)

Will you be able to detect phishing scams 
received on your mobile device?

See Fig. 4.



	 3  Findings and Discussion	 77

TABLE 6  Responses on Phishing for English Survey

Phishing Examples

Responses

P L N

Local bank phishing email (n = 39) 18 5 16

Bank update SMS phishing (n = 39) 21 3 15

Permission allowing app to messages, personal information,  
network (n = 38)a

17 8 13

eBay phishing email (n = 39)b 20 4 15

Facebook phishing email (n = 40) 16 4 20

Amazon phishing email (n = 40) 19 1 20

PayPal phishing email (n = 40) 21 5 14

Facebook request (n = 40) 34 0 6

Facebook phishing email (n = 40) 16 4 19

Bank phishing email (n = 40) 21 5 14

P, phishing; L, legitimate; N, not sure.
aThe example here pertains to app permission. Participants will reply “yes,” “no,” or “not sure” to whether they feel this permission is necessary. 
The “no” option is counted under the “phishing/yes” column to imply participants' awareness that this requirement is unnecessary.
bThe example question asks whether the email is legitimate, hence the “no” option will be categorized under the “phishing/yes” column to imply 
participants' awareness that this email is not legitimate.

TABLE 7  Responses on Phishing for Chinese Survey

Phishing Examples (n = 15)

Responses

P L N

QQ phishing email 9 1 5

Reply to WeChat SMS phishing 14 0 1

Phishing email requesting login 14 1 0

Permission allowing app to messages, personal information, network 12 1 2

Phishing alert on downloading free antivirus software 12 0 3

English phishing examples I W S

Local bank phishing email 8 0 7

PayPal phishing email 11 0 4

eBay phishing email 12 0 3

Facebook request 14 0 1

Facebook phishing email 11 1 3

P, phishing; L, legitimate; N, not sure; I, ignore; W, will access; S, seek advice.



78	 4.  How Cyber-Savvy are Older Mobile Device Users?

A recent research indicates that by 2017, over 1 billion users globally will use their smart 
mobile devices for banking purposes. Cybercrime is heading towards the “post-PC” era, 
which is the era of smart mobile devices. It is important to note that the term “phishing” may 
be unfamiliar to some but other users may have some understanding of the concept of phish-
ing; that is, emails or websites that pretend to be from a trustworthy entity.

Other than responses from the survey, this study has also compiled some feedback from 
participants and other elderly smart mobile device users whom we have approached but did 
not participate in the survey.

One user, who did not participate in the survey, responded that he has “technology pho-
bia” and he only knows a few features on the phone such as calling, messaging, and photos, 
which are mainly the functions of a feature phone. The user occasionally accesses Facebook 
using both his mobile device and computer.

Most of the users are unsure of how to use features, such as surfing the Internet, playing 
online games, and social networking. An important factor that obstructed their use of smart 
mobile devices is the use of the touch-screen feature, as they often face the difficulty of mo-
tor and sensory motions like the synthesis of timing to swipe or touch features of the smart 
mobile device.

As digital immigrants, these seniors may have a longer contact with feature phones than 
smartphones, so they need time to use the latter more effectively. It is worth noting that a 
Singapore company manufactures iNo Mobile, an elderly-friendly mobile phone with some 
models that support smart mobile device features (Dyeo et al., 2010). However, none of our 
participants own such a mobile device.

4  A SITUATIONAL CRIME PREVENTION APPROACH

A typical crime prevention intervention is to create conditions that are unfavorable for 
crime. For example, the routine activity theory is a popular theory used to explain criminal 
events. The theory proposes that crime occurs when a suitable target is in the presence of a 
motivated offender and is without a capable guardian (Cohen and Felson, 1979). Offender 
motivation is a crucial element in the theory, which draws on rational exploitation of “op-
portunity” in the context of the regularity of human conduct to design prevention strategies, 
especially where terrestrial interventions are possible. Criminals are assumed to be rational 
and appropriately resourced actors operating in the context of high-value, attractive targets 
protected by weak guardians (Felson, 1998; Yar, 2005), and that victimization risk is a function 
of how one victim patterns their behavior and lifestyle (Imgraben et al., 2014). For example, a 
password-protected device may be of little use to an opportunistic thief.

The interaction between smart mobile device users, cybercriminals who are financially 
motivated, and situational conditions e.g., opportunities and weak guardianship has great 
influence on the situation. For example, how easy is it to design malware and phishing  

Recommendation 4: Given the findings from this survey and the increasing risk of cybercrime 
targeted at mobile devices, there is an urgent need to increase (elderly) users' awareness about 
phishing; see Section 4.
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websites targeting older smart mobile device users who may not be as IT literate and 
cyber-savvy and what is the risk of getting caught and prosecuted in a court of law?

Therefore we should examine ways of creating conditions unfavorable for crime. For ex-
ample, according to the Situational Crime Prevention Theory (Clarke, 1997; Cornish and 
Clarke, 2003), the five broad categories (comprising 25 techniques) to reduce crime targeting 
mobile users are:

1.	 Increasing perceived effort: Target hardening, controlling access to facilities, screen exits, 
deflecting offenders, and controlling tools/weapons

2.	 Increasing perceived risks: Extending guardianship, assisting natural surveillance, reducing 
anonymity, utilizing place managers, and strengthening formal surveillance

3.	 Reducing rewards: Concealing targets, removing targets, identifying properties, disrupting 
markets, and denying benefits

4.	 Removing excuses: Reducing frustrations and stress, avoiding disputes, reducing 
emotional arousal, neutralizing peer pressure, and discouraging imitation

5.	 Reducing provocations: Setting rules, posting instructions, alerting conscience, assisting 
compliance, and controlling drugs and alcohol (which we will replace with “provocation 
factors”)

Measures that users, mobile device and app designers, app store operators, and govern-
ment agencies can undertake to ensure a secure mobile environment are outlined in Table 8.

The findings from this survey, as well as those in previous studies such as Imgraben et al. 
(2014), suggested that many elderly (and young university-educated, respectively) smart mobile 
device users are generally unaware of the risks that they may expose themselves to every day. 
More concerning, however, is that mobile device users do not appear to be sufficiently informed 
regarding their smart devices' usage and security. As pointed out in previous studies as well as 
our own study, the participants were generally unaware of the risks they subjected themselves 
to; for example, by leaving their Wi-Fi and Bluetooth turned on at all times, particularly those 
who were also likely to perform online banking (four of our participants do so) and other activi-
ties (two participants shop online) that could expose personal information to an attacker.

There is, arguably, a need for an integrated, coordinated, and concerted effort by govern-
ment agencies, mobile device and app providers, and community and educational organi-
zations (e.g., University of the Third Age; see http://www.u3aonline.org.au/) to combat 
the cybercriminal activities that victimize mobile device users, which can help to ensure 
that the most effective cybercrime prevention advice is provided to the users (Australian 
Government House of Representatives Standing Committee on Communications, 2010).

The success of cybercrime education programs can be mediated by a range of individual, 
contextual, and cultural factors. It should also be noted that education is not the only solution 
or the most reliable method. The broad aim of the ongoing cybercrime education should be to 
bring about behavioral change and increase user awareness.

Although there are various cybercrime educational initiatives in countries such as 
Singapore, there has been limited evaluation of these educational initiatives. The evaluation 
and study of such educational initiatives is important (e.g., to develop a good understanding 
of what works, what does not work, and why), as a badly implemented educational initiative 
may not result in any of the hoped-for benefits, regardless of how well-conceived the educa-
tional initiative may be.

http://www.u3aonline.org.au/


TABLE 8  Cybersafety Practices Based on Situational Crime Prevention Theory

Increase Perceived Effort Increase Perceived Risks Reduce Rewards Remove Excuses Reduce Provocations

Target hardening such as 
installing antivirus  
software and software 
updates on a regular basis

Extending guardianship by 
not collecting device-unique 
identifiers and/or personal 
information not related to the 
functions or activities of the 
device or app

Concealing targets by  
securing mobile devices  
when not in use, using a 
different email address for 
suspicious app signup, etc.

Reducing frustrations and 
stress by providing a 
transparent online  
reporting system where 
users can report malicious 
apps to app stores for 
remediation action, etc.

Setting rules such as best 
practices for design of mobile 
apps and devices that ensure 
the security and privacy of user 
data, and regulating third-
party app stores

Access control such as 
securing mobile devices 
when not in use

Assisting natural surveillance 
such as reporting lost or  
stolen devices and cyber 
victimization to appropriate  
authorities

Removing targets such as 
avoiding websites of dubious 
repute or downloading apps 
from third-party app stores

Avoiding disputes between 
app designers and users by 
allowing users to opt in or 
out from the collection or  
use of their personal 
information, and by 
identifying third parties 
and including links to 
information in the privacy 
policy about how users can 
modify or delete the data 
used by those parties, etc.

Posting instructions such as 
limiting dissemination of 
sensitive and personally 
identifiable information on 
public forums such as social 
networking sites

Screen exits such as  
deleting personal 
information from mobile 
device or app before 
disposing of  
the mobile device

Reducing anonymity by 
registering app providers or 
individuals who upload  
apps to app stores

Identifying properties such as 
physical marking of mobile 
devices or use of remote 
wiping and locating apps

Reducing emotional arousal  
by the banning or removal  
of apps that encourage 
violence or facilitate  
criminal behavior

Alert conscience by providing 
regular user education to train 
them on how to be vigilant and 
for device and app providers to 
conduct due diligence on third-
party libraries and code, etc.



Deflecting offenders by 
reducing their possibility  
or incentive to commit 
a crime, such as prompt 
installation of patches to  
software and hardware

Utilizing place managers that 
will be responsible for vetting 
devices and apps before they 
are approved for public  
release, securing the data 
collected from users, etc.

Disrupting markets by 
criminalizing the sale of 
lost or stolen devices and 
development of malicious 
apps

Neutralizing peer pressure to 
avoid creating situations  
that could lead to collusion 
between malicious  
perpetrators to target  
mobile device users

Assisting compliance by 
encouraging users to report 
cyber victimization, by 
revoking the ability of a 
malicious or noncompliant 
app or device provider, and 
by discouraging device or 
app providers to collect and 
store personal information 
unnecessarily

Controlling tools such as 
using privacy enhancing 
apps or opting out 
of sharing personal 
information with third 
parties

Strengthening formal surveillance 
such as monitoring of app 
activities (e.g., are a user's 
movements and activities  
collected through the use 
of integrated location and 
movement sensors without 
informed consent?)

Denying benefits such as 
using encryption and 
an alphanumeric and 
nonguessable password, 
as well as prosecution of 
offenders

Discouraging imitation such as 
fake or misleading apps

Controlling provocation factors 
using measures such as 
setting rules to discourage 
noncompliant behaviors 
without compromising 
usability
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In addition, we suggest that any educational materials developed for smart mobile device 
users be tailored specifically to the user group (e.g., Generation X, Generation Y, and baby 
boomers; as well as end users from diverse cultural and linguistic backgrounds) and end 
users with varying technical and literacy backgrounds.

5  CONCLUSION

In our study, we have discovered that some participants who know little or no English 
have difficulty understanding instructions of the applications installed on their smart mobile 
devices. Other than the language settings of the smart mobile device, which is already avail-
able in most devices, our findings have concluded that there is also a need to have flexibility 
in the language settings for their features. There is an urgent need to increase users' aware-
ness about cybersafety measures.

Possible future extensions of this survey include surveying other populations of elderly 
users in different countries, who are literate in English or only in a single non-English lan-
guage, and undertaking a targeted approach to help develop cybersafety educational materi-
als, where small groups of older mobile device users are selected to participate in face-to-face 
interviews and are presented with the survey multiple times with educational materials spe-
cific to their results given after each round. The overall results can be used to show the effect 
that the materials have, and feedback from the participating user groups can be used to fur-
ther refine the educational materials.
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1  INTRODUCTION

Information and communications technology (ICT) is an umbrella term that includes any 
communication device or application encompassing mobile phones, computer and network 
hardware, software, the Internet, satellite systems, and so on. ICT also refers to the various ser-
vices and applications associated with them, such as videoconferencing and distance learning.

Police organizations within Australia, like other police organizations throughout the 
world, are dependent on ICT to operate. This need grows as ICT develops.

Poor ICT systems prevent police officers from getting on with their jobs. A better ICT sys-
tem will raise police productivity so that the same amount of work could be done by fewer 
officers, or more work could be done by the current number of officers.

Over the years, technological innovations such as the telephone, mobile radio, and tape 
recorder have been introduced into policing to improve effectiveness. They have had a major 
influence on how police organizations function and how police do their work (Choo, 2011; 
Ready and Young, 2015; Tanner and Meyer, 2015; Koper et al., 2015).

When it was introduced into policing over three decades ago, mainframe computer tech-
nology also had a profound influence on how police agencies functioned, although it was not 
well recognized at the time. It allowed the collection, storage, and retrieval of large amounts 
of data and, as a consequence, police information systems became a reality. However, numer-
ous forms had to be designed to capture the data, and officers were required to report the 
data by completing the forms. Then people had to be hired to code and feed the data into the 
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computers, while others were made responsible for retrieving and distributing data in different 
combinations to still others who analyzed the results. In essence, mainframe computer tech-
nology created more employment, bureaucracy, and, for the police officer, more paperwork.

Now client/server computer technology has replaced or enhanced mainframe functions and 
has revolutionized some basic organizational functions and paper systems. Ordering of police 
supplies, payment of bills and salaries, and keeping of inventory can all be done electronically 
through much shorter and faster processes executed by fewer people. For example, operational 
police can take laptop computers into their patrol cars and into investigative interviews to  
collect data directly. Internal electronic mail systems and the Internet are also giving police access 
to unlimited information to help them perform their jobs more efficiently. Internal information 
systems are also more accessible to the police officer. Some police training can also be automated 
and pursued individually at times convenient to the officer and the organization, thus reducing 
training costs and eliminating the difficulty of taking a number of officers out of the field at the 
same time. The trend in information technology during that period has had an appreciable im-
pact on police work. Police agencies are even exploring the integration of all justice information 
systems to allow justice practitioners and agencies to electronically access and share information 
between systems and/or across jurisdictional lines. Some agencies have already partially imple-
mented this into their system. Police-related websites and list servs are also enabling officers to 
consult and share information with colleagues all over the world via the Internet.

However, the phablet, a new network computer technology linked to telecommunications 
systems, has even more potential to transform police work. The phablet has evolved, too, 
as smartphones stretched in size to compete for the convenience and capability of tablets. 
Phablets have screens that measure diagonally 135–178 mm (5.3–6.99 in.), a size that com-
plements screen-intensive activity such as mobile web browsing and multimedia viewing. 
Phablets may also include software optimized for an integral self-storing stylus to facilitate 
sketching and annotation. It was perhaps these character traits, the screen size and stylus that 
distinguished itself with policing?

While Samsung's Galaxy Note is largely credited with pioneering the worldwide phablet 
market when launched in 2011, examples of early devices with similar form factors date to 
1993. By the time the Galaxy Note 3 came to market, policing agencies such as the Australian 
Federal Police were already conceptualizing how a policing organization's capabilities could 
be delivered from the IT backend to the frontline officer, thanks in part to the benefits of pha-
blet usage. Will the phablet become the dominant computing device for police of the future?

ICT has an important role to play in the success of criminal investigations, but police com-
petence and management are also important. For ICT to play a significant role it must be 
adopted, not adapted, into police work as part of a solid base alongside management, compe-
tent police officers, and well-organized investigations.

2  INTERACTIVE CONSTABLE ON PATROL SYSTEM

The police officer's typical duties relate to the response to, the detection of, and the preven-
tion of crime. Officers are expected to respond to a variety of situations that may arise while 
they are on duty. The law and an organization's policies and procedures dictate how an officer 
should behave within the community.
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In response to the variety of situations that may arise while they are on duty, the officer 
is required to think critically in a situation and to make sound decisions. But what is critical 
thinking? There are many ways to initially define it. Unfortunately, internal debate in the 
field of critical thinking often centers on disagreements between theoreticians (Hale, 2008). 
Hale convincingly argues that while theoreticians often emphasize different aspects of critical 
thinking, virtually all agree that it entails the analysis and evaluation of thinking with a view 
towards improving it; that it includes the development of intellectual traits, which should 
be applied to one's own thinking; and the thinking of others and thinking within subject 
disciplines.

Therefore in keeping with this literature, we can divide critical thinking into the following 
broad dimensions:

•	 Skilled intellectual analysis: the ability to divide important intellectual constructs into 
constituent parts so as to internalize and evaluate them

•	 Skilled intellectual evaluation: the ability to determine the quality of intellectual constructs 
and their parts

•	 Intellectual improvement: the ability to creatively devise strategies aimed at correcting 
weaknesses and improving strengths that have been identified through analysis and 
evaluation

•	 Intellectual traits: characteristics of mind necessary for developing fair-minded critical 
thinkers, such as: perseverance, integrity, courage, empathy, and autonomy. It is argued 
that such traits guard against the development of sophistic or self-deceptive thinking.

•	 Knowledge of the problems of thinking: including intrinsic tendencies such as egocentrism 
and sociometrist, which trap the mind in oversimplified and prejudiced mental states.

Furthermore, these dimensions need be applied to various contexts:

•	 To thinking generally (one's own thinking, the thinking of a professor, colleague, friend, 
parent, spouse/partner …)

•	 To subject disciplines (each of which have specific and sometimes unique forms of 
analysis and evaluation)

•	 To personal life, both with regard to significant decisions (e.g., buying a car or house, 
making career decisions) as well as day-to-day activities (e.g., diet and exercise, 
parenting, voting and politics, managing finances)

However, when identifying areas of investigation within which to develop a means of 
making police officers more efficient and effective at the frontline, it is necessary to have some 
idea of the broad and noncontroversial framework of critical thinking into which these indi-
vidual understandings can be placed. There is an intimate interrelation between knowledge 
and thinking; therefore an important capability for policing is knowledge.

Interactive Constable on Patrol System (ICOPS), as seen in Fig. 1, is a mobile application 
downloaded on a phablet or, where convenient, a tablet. The application itself is a framework 
delivering a policing organization's capabilities sitting on a platform to the frontline officer. 
Two examples of those capabilities are: knowledge exchange and communications, which 
can augment a police officer's knowledge and experience whilst performing his duties. It 
provides critical information at the time of an incident, improving the police officers options 
and decision making ability.
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The purpose of the framework is to make police officers more efficient in carrying out their 
duties.

For example, at the end of a shift, a police officer is typically required to return to a station 
to enter data into systems, which includes completing and faxing hardcopy documentation to 
a centralized area for retyping into the database. Around 50 percent of a police officer's time 
on each shift is spent in the station, with a significant proportion attributed to administrative 
tasks associated with information capture and reporting. Increasingly, police find that their 
paperwork burden requires them to commence shifts early and finish them late in order to 
complete documentation. Delays in processing information and making it available for op-
erational members present difficulties for police in responding to service delivery calls and 
increase safety risks for both police and the public (Victoria Police, 2014).

Bobby

Telstra 2:27 pm

AFP 11859
ICOPS

Push-to-Talk

CustodySearch

Situational Awareness
Investigations and

Response

CAD Biometrics

Interactive Constable On Patrol System

FIG. 1  An example of eight capabilities being presented.
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3  CAPABILITIES

3.1  Information Management and Knowledge Exchange

In terms of technology, despite the availability of sophisticated recorders and computers, 
the police notebook remains one of the simplest, most economical, and most basic of investi-
gative tools used to record all facts observed and learned during an investigation.

Therefore, the ICOPS framework sitting on a phablet represents a new technological ad-
vancement for police to adopt in order to fulfill a well-overdue function in the area of criminal 
investigation.

For “knowledge workers” (a term coined by Peter Drucker in 1959), a role which police 
play, technology becomes a vital enabler of communication, collaboration, and access to ris-
ing volumes of information.

ICOPS takes a structured provision of knowledge approach, delivering a range of func-
tions. The most important is workflow technology that controls how the frontline police get 
information and job tasks. The system also links them to a platform supporting technolo-
gies that include information portals, business rules or algorithms to automate decisions, 
document or content management systems, business process management and monitoring 
systems, and collaboration tools. Such technologies are often called case management 
systems because they allow workers to complete an entire case or unit of work. Case manage-
ment can create value whenever some degree of structure or process can be imposed upon 
information-intensive work. Until recently, structured provision approaches have been ap-
plied mostly to lower-level information tasks that are repetitive, predictable, and thus easier 
to automate.

Productivity is the major benefit as measured by the completion of key tasks per unit of 
work time, productivity often rises by 50 percent when organizations implement these tech-
nologies. The reason for the improvement was that workers had few distractions and spent 
no time searching for information.

Adding to the efficiencies, in most cases organizations can route tasks to any worker with 
the time and expertise to undertake them. For example, if a police officer is away on leave, 
the system knows and sends cases to another for approval instead. Work processes become 
more transparent, and it becomes easier to manage them, to exercise approval authority, 
and to monitor improvements. The structured model also facilitates collaboration and the 
coordination of tasks. Many implementations help organizations to engage multiple work-
ers and groups to process incidents. These systems also often incorporate business rules or 
algorithms, determined by an organization's best experts, which help organizations decide 
the best course of action. For managers, these systems can therefore improve the quality 
and consistency of decision making, while also speeding it up through automation or semi 
automation.

By providing smart forms linked to automated workflows as in Figs. 2 and 3, police can 
complete an incident report at the scene. This will reduce delays in processing information 
and make it available for operational members, resulting in a reduction of time spent at the 
station completing paperwork.
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3.2  Intelligent Personal Assistant—Bobby

A new technological advancement on the horizon for the law enforcement community are 
web service applications known as intelligent personal assistants (IPA). Apple's Siri, Google's 
Google Now, and Microsoft's Cortana represent a class of emerging IPAs. An IPA is an appli-
cation that uses inputs such as the user's voice, vision (images), and contextual information 
to provide assistance by answering questions (using natural language), making recommen-
dations, and performing actions. These IPAs have emerged as one of the fastest-growing 
Internet services after having been deployed on well-known platforms such as iOS, Android, 
and Windows Phone, making them ubiquitous on mobile devices worldwide.

Three decades ago, a young officer graduating from the police academy would have been 
buddied up with a senior officer such as a senior constable or sergeant. This senior officer was 
an experienced officer with over 10 years of accumulated experience and knowledge. Today 
an emerging trend exists that a police officer is less likely to make policing a career and is 

FIG. 2  A search result.
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only expected to stay in policing for 5–9 years, decaying the traditional method of knowledge 
transfer from veteran officers to rookies.

Integrating ICOPS to an unlimited number of public and private databases, employing 
data mining technology, and communicating with existing law enforcement communications 
systems (e.g., computer-aided dispatch, GPS-guided locator systems, and mobile data com-
puters) could create a powerful and efficient information management system. A police of-
ficer using such a tool in the field could accomplish many tasks simultaneously by simply 
conversing with the device and issuing verbal commands.

3.3  Communications

One of the key aspects of effective workforce management is the clear, unambiguous com-
munication of instructions, responses, and information. A key benefit of ICOPS will be the 
reduced demand on traditional police radio communications as information traditionally 
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sought via radio through the communications centers can now be obtained via the mobile 
device using ICOPS.

When long-term evolution (LTE) technology was chosen by the public safety community, 
it was envisioned that the network would be used for data and video services and designed 
to provide access to and from frontline police in Australia. It was also envisioned that the 
network would be the foundation for interoperability on a nationwide basis, helping to fix 
the issues that have been hounding public safety officials for more than 30 years, but only 
became known to the public because of the communications failures experienced during a 
spate of catastrophic events in recent years such as terrorist attacks (e.g., Sep. 11, London, 
Madrid, Mumbai), factory explosions (e.g., Enschede fireworks disaster, Toulouse warehouse 
explosion), floods, and storms (e.g., Hurricane Katrina).

Push-to-talk communications offer instant connectivity with the press of a button. This 
feature becomes crucial in an emergency or hazardous environments where instructions and 
information must be relayed quickly, such as between the command center and frontline of-
ficers in the field (Figs. 4 and 5).

FIG. 4  Of push-to-talk.
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3.4  Custody Management

In Australia, all detained persons must be placed into custody when:

•	 detained as part of an investigative procedure, or
•	 detained as not a subject to an investigative procedure, or
•	 as a suspect not under arrest for the purposes of obtaining a forensic sample

When a detained person is placed into custody, the police officer will be required to man-
age all aspects of that custody and complete records. As the detaining of a person in most 
cases will occur in the field, ICOPS was designed to assist the police officer in that task. 
ICOPS would create a numbered custody record for each detained person, each of which 
would have a unique custody reference number (CRN). The custody would be created inde-
pendently of charge information and could be inquired about by all officers.

Australia

Groups Contacts

AFPOL(1)

Telstra 10:53 AM

Development

AFPOL

NSWPOL

NTPOL

SAPOL

TASPOL

VICPOL

QPOL

FIG. 5  Of interoperability between groups.
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Once a record is created, the officer entering the information will be deemed the custody 
manager and be able to add actions to that person's record. The results are improvements like 
reducing the time officers spend filling out forms and enabling investigative time to be mon-
itored accurately. Custody management in ICOPS will allow the custody managers:

•	 Automatic calculation of investigative time remaining, taking into account timeouts and 
alerting the officer to requesting an extension of time if required (Fig. 6).

•	 Alerts to the officer, prompting him or her to request an extension of time prior to the 
investigative time finishing.

•	 All actions displayed on the same screen.
•	 A custody Management record output by the system listing all actions that took place 

during the person's time in custody.
•	 A list of all people currently in custody.

FIG. 6  Example of managing the custody of an arrested person.
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3.5  Situational Awareness

Situational awareness typically refers to a person being aware of what is going on around 
him or her.

Law enforcement is an inherently dangerous occupation. At no time are officers more vul-
nerable than when they approach an unknown individual or a possibly mentally disturbed or 
impaired person, whether during a traffic stop, criminal investigation, or domestic violence 
call. Often, the best protection officers have is access to information about the person with 
whom they are dealing, the address to which they are dispatched, the vehicle and the driver 
they have stopped, and other information regarding activities in their jurisdictions. This in-
formation provides officers with situational awareness that could significantly increase offi-
cer and public safety.

When initiating a traffic stop, standard operating procedure is for an officer to run the 
vehicle license plate through a national database to acquire as much knowledge as possible 
about the vehicle owner (usually the driver) before approaching. A query to determine if 
there are any outstanding warrants on the registered owner of the vehicle, for example, could 
prompt the officer to request backup before approaching the vehicle. Once contact with the 
individual is initiated, the availability of additional information (i.e., identification of any 
other person in the vehicle) will further increase situational awareness.

Law enforcement officers need tools to provide accurate, timely, and complete informa-
tion in the field. In addition, law enforcement agencies need access to a broad variety of 
technologies, such as geographic information systems (GIS) in order to build comprehensive 
situational awareness. Building enterprise-wide information sharing capabilities will enable 
agencies to improve situational awareness (Fig. 7).

Officers can also increase situational awareness through the use of social media or avail-
able online services. First responders to a disturbance at a large public event, for example, 
may acquire critical location and tactical information from public tweets via the Twitter 
platform or posted photos or video from cell phones. Images from Google Earth and other 
sources could inform officers responding to a crime in progress of potential escape routes 
or exposure to possible threats from suspects in or around a building. Real-time access to 
surveillance systems or traffic cameras via a handheld device could help officers target their 
response. However, the accuracy and reliability of information must be considered when 
utilizing public sources, especially in quickly developing situations. Policies governing the 
use of unsecure public information must be developed, and officers must be trained in the 
effective use of such tools.

3.6  Biometrics

As biometric technology expands, so do the methods by which a person can be identified 
and the accuracy with which an identification can be made.

Fingerprints are the only biometric that leaves something behind. The biometric traces 
left behind on a piece of physical evidence are called latent prints. They may also be re-
ferred to as tracing or markings. Latents are extremely important. And that is why, for 
the foreseeable future, fingerprints are going to remain law enforcement's most important 
biometric.
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Research is currently being conducted examining complete and fully automated ap-
proaches for the identification of low-resolution finger surface/texture images. This research 
and the obtained results are significant as they point towards the utility of touchless images 
acquired from the webcam for personal identification and its extension for other utilities like 
mobile phones.

3.6.1  Facial Recognition

Effective person identification is becoming increasingly central to law enforcement. The 
police are interested in whether they have already met a suspect before and what they know 
about them, such as whether they have a criminal record, whether they are armed and vio-
lent, etc.

Facial recognition is a relatively new biometric that is getting attention. Facial recognition 
has many advantages, a major one being that it is the only biometric that can routinely be 

FIG. 7  Example of how situational awareness information might be pushed to the frontline officer.
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obtained stealthily. Therefore it has value for use in surveillances. Facial recognition is not as 
accurate as fingerprints—at least, not yet—but it is becoming increasingly more accurate as 
new advances in the technology are made.

There are a number of different algorithms that scientists use to measure facial character-
istics. New approaches continue to be developed by scientists at universities and in research 
labs of biometric companies. Each approach works differently, looking at different parts of the 
face or looking at the face in different ways. Ear shape, for example, is the focus of some facial 
recognition systems. Ear shape changes very little as we age. None of these facial recognition 
systems are 100 percent accurate, but some of them are approaching that level (Fig. 8).

As various facial recognition algorithms merge, the accuracy of facial recognition will 
increase. For instance, Imagus, a company based in Queensland, Australia, has a good fa-
cial recognition algorithm. They have developed a mobile app allowing police to run facial 

FIG. 8  Imagus facial recognition mobile app.
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recognition in the field in a practical way without hindering normal police operation. As 
different methodologies merge, the result will be increased accuracy. Reliable applications in 
this field are not far off.

3.6.2  Iris Recognition

Iris recognition is another biometric of recent interest. The iris is the colored ring around 
the eye. Like fingerprints, the irises are formed in the womb after conception so that no two 
people, even twins, have the same iris.

Everyone has probably seen a very elderly person, such as a 100-year-old woman, photo-
graphed or interviewed on television. Sometimes in a close-up of her face you see her eyes 
sparkling, and they still look very youthful. The reason is she has the same irises as she did 
when she was a 19-year-old woman. Her skin may have wrinkled with age, but the iris has 
not changed at all. The iris can be used for both verification and identification. It is not useful 
in surveillance because no method yet exists to get close enough to the subject's iris without 
the subject's consent or cooperation.

4  CONCLUSION

Organizations need to better manage the working life expectations of a police officer. 
Technology needs to become an enabler to augment the knowledge and experience of new of-
ficers graduating from the police academy and working in the field. However, nothing can re-
place experience, which took earlier generations of police officers a decade to acquire enough. 
What is needed is change through innovation, implementing clear and practical strategies to 
deliver technology into the organization that makes police officers more effective and effi-
cient, driving both time and costs down.

What policing organizations in Australia currently lack is a technology infrastructure that 
can collaborate with internal and external data sources, extracting, transforming, and load-
ing data into a resource that each function within the organization can interrogate and then 
surface into a knowledge hub that will easily cause the collaboration process to occur both 
internally and externally.

However, achieving that alone will still not successfully contribute to police officers ef-
fectiveness and efficiency, if the information contained cannot reach the police officers to 
provide them the situational awareness required for them at the frontline. An organization's 
information can only be beneficial when it is directed and used by the appropriate responder.

Over the next 5 years, a change in the way policing is done needs to occur if a police offi-
cer's effectiveness and efficiency are to keep pace in this rapidly changing environment.
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Android has become the most popular open-source operating system for smartphones 
and tablets with an estimated market share of 70–80% (Canalys, 2013). A shipment of one 
billion Android devices has been forecast in 2017; over 50 billion applications have been 
downloaded since the first Android phone was released in 2008 (Llamas et al., 2013). The 
system is based on a Linux kernel and designed for Advanced RISC Machine (ARM) ar-
chitectures. It includes various layers running on top of each other, with the lower ones 
providing services to the upper level layers. We give an overview of the architecture of 
Android presented in Fig.  1; existing studies (Brähler, 2015; Ehringer, 2010) give more 
details.
Linux Kernel:  Android has taken the Linux kernel code and modified it to run in an embedded environment. 

Thus it does not have all the features of a traditional Linux distribution.The Linux Kernel is responsi-
ble for hardware abstraction and drivers, security, file management, process management, and memory 
management.

Libraries:  A set of native C/C++ libraries is exposed to the application framework and to the Android runtime via 
the libraries component. It includes the Surface Manager, responsible for graphics on the device screen; 2D and 
3D graphics libraries; WebKit, the web rendering engine that powers the default browser; and SQLite, the basic 
data store technology for the Android platform.

Android Runtime:  Each application runs in its own instance of the Android runtime, and the core of each instance 
is a Dalvik virtual machine (DVM). The DVM is a mobile-optimized virtual machine, specifically designed to run 
fast on the devices that Android targets. Present in this layer and in each application runtime are also the Android 
core libraries, such as the Android class libraries (I/O).

Application Framework:  The Application Framework provides high-level building blocks for applications in the 
form of various Android* packages. Most components in this layer are implemented as applications and run as 
background processes on the device.

Applications:  This includes applications that developers write as well as applications from Google and other 
Android developers.
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* API packages such as android.bluetooth, which provides classes that manage Bluetooth functionality.
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1  PERMISSION BACKGROUND

The model of security in Android is mainly based on permissions. A permission is a restric-
tion limiting the access to a part of the code or data on a device. The limitation is imposed 
to protect critical data and code that could be misused to distort or damage the user’s expe-
rience. Permissions are used to allow or restrict an application access to restricted APIs and 
resources. The INTERNET permission, for example, is required by applications to perform 
network communication, so, opening a network connection is restricted by the INTERNET 
permission. An application must have the READ_CONTACTS permission in order to read 
entries in a user’s phonebook as well. The developer declares a <uses-permission> attribute 
to require a permission and specifies the name of the permission in the android:name field. 
They are both included in a file called the Android manifest or AndroidManifest.xml. This 
file describes the application capabilities of an application and includes the different compo-
nents of the application. Fig.  2 presents two permissions: WRITE_EXTERNAL_STORAGE 
and INTERNET. The first one allows an application to write to external storage and the sec-
ond one allows to open network sockets.

Android follows the Principle of Least Privilege (PLP) that stipulates entities having just 
enough privileges to do their job and no more as a prerequisite for security. For instance, if 
an application does not need Internet access, it should not request the Internet permission.

Table 1 describes some permissions.
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FIG. 1  Android architecture.
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A permission can be associated with one of the following Google Protection Levels (GPL) 
(Han et al., 2014): 

•	 GPL0—Normal: A low-risk permission, which allows applications to access API calls (eg, 
SET_WALLPAPER) causing no harm to users.

•	 GPL1—Dangerous: A high-risk permission, which allows applications to access potential 
harmful API calls (eg, READ_CONTACTS) such as leaking private user data or control 
over the smartphone device. Dangerous permissions are explicitly shown to the user 
before an application is installed. The user must choose whether to grant a permission 
and to authorize whether the installation should continue.

FIG. 2  Manifest file.

TABLE 1  Permission Examples

Permissions Descriptions

CALL_PHONE Allows an application to initiate a phone call without going through 
the dialer user interface to confirm the call being placed

MODIFY_PHONE_STATE Allows modifications of the telephony state such as power on

WRITE_SMS Allows an application to write SMS messages

READ_CONTACTS Allows an application to read the user’s contact data
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•	 GPL2—Signature: A permission, which is granted if the requesting application is signed 
with the same certificate as the application, which defines the permission.

•	 GPL3—Signature-Or-System: Permissions of this type are used for certain special 
situations where multiple vendors have applications built into a system image and need 
to share specific features explicitly because they are being built together.

An Android application requires several permissions to work. Each application has to ex-
plicitly request permission from the user during the installation to perform certain tasks on 
the device, such as sending a messages. Before an application is being installed, the system 
prompts a list of permissions requested by the application and asks the user to confirm the 
installation. The user can either grant them all to install the application or refuse to install the 
application (as shown in Fig. 3).

1.1  Limitations of Permission Model

Android disposes several limitations and flaws, which can expose users to malicious ac-
tions, although it is the most used mobile OS. This section presents only those related to the 

FIG. 3  Pre-installation.
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permission system, which is the principal concern of this chapter. According to Fang et al. 
(2014), there are four general issues in the permission model.

1.	 Coarse-granularity of permissions: Most of Android permissions are coarse-grained. 
For instance, INTERNET permission (Barrera et al., 2010), READ_PHONE_STATE 
permission, and WRITE_SETTINGS permission give arbitrary accesses to certain 
resources (Jeon et al., 2015): INTERNET permission allows an application to send 
HTTP(S) requests to all domains and connect to arbitrary destinations and ports (Felt 
et al., 2010). The INTERNET permission therefore provides insufficient expressiveness to 
enforce control over the Internet accesses of the application (Barrera et al., 2010).

2.	 Overclaim of permissions: Overclaim of permissions is probably the most severe threat 
to Android security. It directly breaks the Principle of Least Privilege (PLP) (Saltzer, 1974). 
This violation of PLP exposes users to potential privacy leakage and financial losses. For 
example, if a stand-alone game application requests the SEND_SMS permission, which 
is unnecessary, the permission can be exploited to send premium rate messages without 
user’s knowledge. Developers may make wrong decisions because of several reasons, 
concluded by Felt et al. (2010): At first, developers tend to request permissions with 
names that look relevant to the functionalities they design, even if the permissions are 
not actually required. Second, developers may request for permissions, which should be 
requested by deputy applications instead of their own application. Finally, developers 
may make mistakes due to using copy and paste, deprecated permissions, and testing 
artifacts. Other issues, including coarse-granularity of permissions, incompetent 
permission administrators, and insufficient permission documentation, are drivers of 
overclaim of permissions.

3.	 Incompetent permission administrators: Both developers and users lack professional 
knowledge in the process of permission. They have sometimes conflicting interests (Han 
et al., 2014). A developer may not precisely know user risks, once permissions declared 
in the Manifest are granted. Developers might choose to simply overclaim permissions to 
make sure that their applications work anyway (Barrera et al., 2010), while others might 
take time to learn individual permissions to request them appropriately. A survey done 
by Felt et al. (2012) shows that only 3% of respondents (users) answered correctly having 
understood permissions and 24% of the laboratory study participants demonstrated 
competence but imperfect comprehension.

4.	 Insufficient permission documentation: Google provides a great deal of documentation 
for Android application developers, but the content on how to use permissions on the 
Android platform is limited (Vidas et al., 2011). The insufficient and imprecise permission 
information confuses Android application developers, who may write applications with 
guesses, assumptions, and repeated trials. This leads to defective applications, which 
become threats with respect to security and privacy of users (Felt et al., 2011). The content 
of permissions is usually too technical for users to understand. Google describes the 
INTERNET permission as follows: “allows an application to create network sockets” 
(Android, 2015). This description seems to be too complex and abstruse for the user. The 
user might not know exactly risks related to this permission once granted.

Google made a change to the way application permissions work that has left a potential 
door opened to attackers in two points Google Play Help:
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Permission’s effect hidden to the user:  Google defines permission groups according to resources to access and to 
certain objectives. The MESSAGES group contains, for instance, permissions that allow an application to send 
messages on behalf of the user or to intercept messages being received by the user. The application manager dis-
plays the group of resources which will be accessed after the user’s approval. The user can scroll to see details on 
capabilities. The problem resides in the evaluation of risks to approve, because permissions requested are hidden 
behind a group of resources. Let’s take for instance two categories C1 and C2 including respectively (P1: GPL 
normal, P2: GPL dangerous) and (P3: GPL dangerous, P4: GPL dangerous). Let’s consider also an application, A, 
declaring P1, P2, P3, and P4. While installing A, C1 and C2 are displayed to the user because they contain per-
missions of GPL dangerous. Since P1 is of GPL normal, by definition, it is not displayed. The combination of P1 
with P2 can be malicious on related resources. Permissions in C1 associated with those in C2 could have negative 
actions on resources.

Coarse-grained approval:  A user will not need to review or accept permission groups already accepted for an 
application in the case that he has automatic updates turned on. Once a user approves an app’s permissions, 
he actually approves all of the permission groups. For example, if an app want to read your incoming SMS, 
then it requires the “Read SMS messages” permission. But now installing an app, you are actually giving it 
access to all SMS-related permissions. The application developer can then include additional permissions from 
“SMS-related permissions Group,” in a future update, which will not trigger any warning before installation. 
Then malicious developers can gain access to new dangerous permissions without user’s knowledge by abus-
ing this mechanism.

2  MALWARE LANDSCAPE

A malicious application or malware refers to an application that can be used to compro-
mise the operation of a device, steal data, bypass access controls, or otherwise cause damage 
on the host terminal. Normal or benign applications or good software are, in contrast, those 
that do not perform any dangerous action on the system. Android malware is malicious soft-
ware on the Android platform.

2.1  Malware Techniques

Zhou and Jiang (2012) categorize existing ways used by Android malware to install on user 
phones and generalize them into three main social engineering-based techniques: repackag-
ing, update attack, and drive-by download.

2.1.1  Repackaging

It is one of the most common techniques that malware authors use to piggyback 
malicious payloads into popular applications. In essence, malware authors may locate 
and download popular applications, disassemble them, enclose malicious payloads, 
and then reassemble and submit the new applications to Google Play and alternative 
markets. Users are vulnerable by being enticed to download and install these infected 
applications.

2.1.2  Update Attack

Malware developers insert a special upgrade component into a legitimate application al-
lowing it to be updated to a new malicious version, which is unlike the first technique that 
typically piggybacks the entire malicious payloads into applications.
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2.1.3  Drive-by Downloads

The ability to install and download applications outside the official marketplaces al-
lows malware developers to mislead users into downloading and installing malicious 
applications. It is a class of techniques where a web page automatically starts download-
ing an application when a user visits it. Drive-by downloads can be combined with so-
cial engineering tactics to appear as if they are legitimate. Because the browser does not 
automatically install downloaded applications on Android, a malicious Website needs 
to encourage users to open the downloaded file for actually infecting the device with 
malware.

2.1.4  Remote Control

Malware authors aim to access the device during the infection phase remotely. Zhou and 
Jiang noted that 1.172 samples (93.0%) turn the infected phones into bots for remote control 
during their analysis.

2.2  Tools for Malware Detection

There exist several tools to prohibit malware to infiltrate targeted devices. To help users 
in the task, free and paid tools are available to them. Three tools are commonly used for this 
purpose in discovery, assimilation, and destruction stages: firewalls, intrusion detection sys-
tems (IDS), and antivirus software. Their common mission is to track down and to eliminate 
potential malicious applications.

2.2.1  Firewall

A firewall is a barrier that protects information from a device or network when es-
tablishing communication with other networks such as the Internet. Its purpose is to 
protect the purity of the devices on which they are installed by blocking intrusions or-
chestrated from the Internet. Several benefits are associated with their use. First, they 
are well-known solutions. Then, they are also extensively used on other platforms (PC 
and server). Finally, they are very effective because they take advantage of the maturity 
gained by firewalls on PCs. A disadvantage is, that they are ineffective against attacks on 
the browser, Bluetooth, e-mail, SMS, and MMS; they are used as modules in antiviruses 
on Android.

2.2.2  Intrusion Detection Systems

An IDS represents a set of software and hardware components whose main function is to 
detect abnormal or suspicious activities on the analyzed target, a network or a host. This is a 
family of tools of many types: IDS, host intrusion detection system (H-IDS), network intrusion 
detection system (NIDS), IDS hybrid, intrusion prevention system (IPS), and kernel IDS/IPS 
kernel (K-IDS/IPS-K). IDS has two major advantages. First, it is able to detect new attacks, 
even those that seem isolated. Second, it can be easily adapted to any task. Unfortunately it 
generates a high consumption of resources and a high false alarm rate. Andromaly (Burguera 
et al., 2011) and Crowdroid (Burguera et al., 2011) are examples of an IDS dedicated to detect-
ing malware on the Android platform. Crowdroid is specifically designed to recognize Trojans.
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2.2.3  Antiviruses

Antiviruses are security software relying on application traits to recognize malicious be-
havior. Avast, AVG, and F-Secure are examples of renowned antiviruses. They are facing new 
constraints brought by the growing sophisticated techniques of malicious applications. Their 
efficiency is closely related to their detection methods, which are classified in three families 
by Filiol (Filiol, 2005).

1.	 Form analysis is detecting the presence of a threat in an application by static characters. It 
can be based on research of signatures, heuristics, or spectral analysis.
(a)	 Research of signatures: Searches for patterns or bits, which are characteristics of a 

known threat. Its main disadvantage is that it is not able to detect unknown threats 
and known threats that are modified. It requires a permanent update of the signature 
database. It is simple to implement and is most often used by antivirus companies 
(Zhou and Jiang, 2012).

(b)	 Spectral analysis: Scrutinizes statements commonly used by malware samples but 
rare in normal applications. It analyzes the frequency of such statements statistically 
to detect unknown threats. This approach is subject to false positive, ie, normal 
applications, which are incorrectly classified as malware.

(c)	 Heuristic analysis: Its approach is to establish and maintain rules, which are used as 
a pattern to recognize malicious applications. It is also subject to false alerts, as the 
previous approach.

2.	 Integrity checking is based on the evidence that abnormal modifications of a file can 
reveal contamination by dangerous code. Dynamic behavior analysis is used to scrutinize 
the actions of an application when it is running.

3.	 The third method detects suspicious actions such as attempting to modify data 
of another application or to modify libraries and memory space reserved for the 
system.

The system built in this chapter uses the form analysis method.

3  MACHINE LEARNING

The rapid growth of the Android platform involves a pressing need to develop ef-
fective solutions. However, our defense capability is largely constrained by the lim-
ited understanding of the emerging malware and the lack of timely access to related 
samples. Moreover, Zhou and Jiang (2012) showed that malware is rapidly evolving 
and existing antimalware solutions are seriously becoming ineffective. For instance, it 
is not uncommon for Android malware to have encrypted root exploits or obfuscated 
C&C servers. The adoption of various sophisticated techniques greatly raises the bar 
for their detection. Conventional security measures relying on the analysis of security 
incidents and attack development inherently fail to provide a timely protection. As a 
consequence, users often remain unprotected over longer periods of time. The field of 
machine learning has been considered an ideal match for these problems, as learning 
methods are able to automatically analyze data, provide timely decisions, and support 
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early detection of threats. Much work on mobile security based on this approach has 
produced interesting results.

3.1  Concepts

The concept of learning can be described in many ways including acquisition of new 
knowledge, enhancement of existing knowledge, representation of knowledge, organization 
of knowledge, and discovery of facts through experiments (Michalski et al., 1983). This ap-
proach can be used to acquire knowledge from malware and good software, in our case. A 
learning task may be considered the estimation of a function with sets of inputs and outputs. 
When such learning is performed with the help of computer programs, it is referred to as 
machine learning. A more fundamental way to distinguish machine learning is on the basis 
of the input type and the way in which the knowledge is used.

This division consists of learning for classification and regression, learning for acting and 
planning, and learning for interpretation and understanding. This work is based on the first; 
it is the most widely used method of learning. In this case, classification consists of assigning 
a new instance into one of the fixed classes from a finite set of classes. The learning scheme is 
presented with a set of classified examples from which it is expected to learn a way of classi-
fying unknown instances. Regression involves the prediction of the new value on the basis of 
some continuous variable or attribute.

3.1.1  Dataset

A set of data items, the dataset, is a very basic concept of machine learning. A dataset is 
roughly equivalent to a two-dimensional spreadsheet or database table. A dataset is a collec-
tion of examples, with each instance consisting of a number of attributes. 

•	 Training dataset: This is the sample of items or records (training items) used to determine 
rules to acquire knowledge for its items after the learning process.

•	 Testing dataset: This is a set of items or records (testing items) disjointed from the 
learning dataset. It is used to evaluate the capacity of the knowledge to classify unknown 
instances.

3.1.2  Attributes and Classes

Each instance that provides the input to machine learning is characterized by its values on 
a fixed, predefined set of features or attributes. The instances are the rows of the table and 
the attributes are the columns. They are generally in numeric (both discrete and real-value) 
or nominal form. Numeric attributes may have continuous numeric values, whereas nom-
inal values may have values from a pre-defined set. The input data for a classification task 
are formally a collection of records. Each record, also known as an instance or example, is 
characterized by a tuple (x, y), where x is the attribute set and y is a special attribute, desig-
nated as the class label (also known as category, target attribute, or output). Table 2 shows 
a sample dataset used for classifying vertebrates into one of the following categories: mam-
mal, bird, fish, reptile, or amphibian. The attribute set includes properties of a vertebrate 
such as its body temperature, skin cover, method of reproduction, ability to fly, and ability 
to live in water.



110	 6.  Supervised Learning Based Detection of Malware on Android

The class label, on the other hand, must be a discrete attribute. This is a key characteristic 
that distinguishes classification from regression, a predictive modeling task in which y is a 
continuous attribute.

3.1.3  The Classification Model

Classification is the task of learning a target function f that maps each attribute set x to 
one of the predefined class labels y (Fig. 4). The target function is also informally known as a 
classification model.

The way in which knowledge is obtained is another important issue for machine learning. 
The learning element may be trained in different ways (Dietterich and Langley, 2003). For 
classification and regression, knowledge may be learned in a supervised, unsupervised, or 
semisupervised manner. Concerning supervised learning, the learner is provided with train-
ing examples with associated classes or values for the attribute to be predicted. Decision-
tree and rule induction methods, neural network methods, the nearest neighbor approaches, 
and probabilistic methods are types of supervised learning. These methods differ in the way 
they represent the obtained knowledge and also in the algorithms that are used for learning. 
Unsupervised learning is concerned with the provision of training examples without any 
class association or any value for an attribute used for prediction. A third approach, which is 
essentially between the two described above, is that of semisupervised learning. In this type 
of learning, the set of training samples is mixed; that is, for some instances the associated 
classes are present, whereas they are absent for others. The goal in this case is to model a 
classifier or regression coefficient that accurately predicts and improves its behavior by using 
the unlabeled instances.

Fig.  5 illustrates the general lifecycle of the machine learning. It includes the learning 
phase to acquire the knowledge and the testing phase to test the capacity of the learning 
knowledge to predict the class of unknown samples. After the characterization of appli-
cation samples into feature vectors, several learning algorithms such as Bayes, KNN, IBk, 
DT can be applied to generate a form of knowledge that can be used to identify the class of 

TABLE 2  Data for Classifying Vertebrates Into One of the Categories

Name
Body  
Temperature

Skin 
Cover

Gives 
Birth

Aquatic 
Creature

Aerial 
Creature

Has 
Legs Hibernates Class Label

Human Cold-blooded None No Semi No Yes Yes Amphibian

Python Cold-blooded Scales No No No No Yes Reptile

Whale Warm-blooded Hair Yes Yes No No No Mammal

Salmon Cold-blooded Scales No Yes No No No Fish

Input

Attribute set
(x)

Classification model

Output

Class label
(y)

FIG. 4  Classification as the task of mapping.
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applications. Two major kinds of knowledge representation are used in learning: the deci-
sion tree and the classification rule. A classification rule is represented under the following 
form (Grzymala-Busse, 2010):

if (attribute1, value1) and (attribute2, value2) and ... and (attributen, valuen) then (decision, value).
or (attribute1, value1) δ (attribute2, value2) δ..δ(attributen, valuen)→ (decision, value).

Example.  if (INTERNET=‘yes’) and (WRITE_SMS=‘no’) then application=‘normal’
The knowledge obtained during the learning phase can be applied to the test dataset to 

predict the class labels of unknown applications. It is often useful measuring the performance 
of the knowledge on the test dataset because such a measure provides an unbiased estimate 
of its generalization error.

3.1.4  Performance of Classification Models

The evaluation of the performance of a classification model is based on the counts of test-
ing records correctly and incorrectly predicted by the model. These counts are represented in 
a table known as a confusion matrix (Witten et al., 2011). Table 3 depicts the confusion matrix 
for a binary classification problem.

Learning phase Testing phase

Learning datasets

Testing datasets

Learning algorithms
Bayes, KNN, IBk, DT,..

Feature
extraction

Feature
extraction

Normal and malicious samples

Normal and malicious samples

Generate
classifier

Classifier

Classifier

Normal Malicious

V1
V2
V3

Vn

V1
V2
V3

Vn

FIG. 5  Machine learning Lifecycle.

TABLE 3  Confusion Matrix

Predicted Class

Actual Class Yes No

Yes True positive False negative

No False positive True negative
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In our case, positive means malicious applications and negative means normal appli-
cations. Some metrics are based on Table 3 to determine the performance of classification 
models: 

•	 True positive rate (TPR) (M1). It is the proportion of positive instances (ie, feature vectors 
of malicious applications) classified correctly: 

(1)

where TP is the number of positive instances correctly classified and FN is the number of 
positive instances misclassified.

•	 False positive rate (FPR) (M2). It is the proportion of negative instances (ie, feature 
vectors of benign applications) classified incorrectly: 

(2)

where FP is the number of negative instances incorrectly classified and TN is the number 
of negative instances correctly classified.

•	 Precision (M3). It is the number of true positives divided by the total number of elements 
labeled as belonging to the positive class. 

(3)

•	 The accuracy (M4) provides general information about how many samples are 
misclassified: 

(4)

•	 Area under curve (AUC) (M5): This metric is the summary reflecting the classification 
ability. It represents the probability that a randomly chosen malicious sample will be 
correctly classified. The following guidelines are used to assess the classification quality 
(CQ) by the AUC value (Hanley and McNeil, 1982; Hosmer et al., 2013): 

(5)

3.1.5  Performance Evaluation of a Classifier

Cross validation is a method commonly used to evaluate the performance of a classifier 
on unknown samples (Tan et al., 2005). In this method, each record is used the same number 
of times for training and exactly once for testing in this approach. We partition the data into 
two equal-sized subsets as an example. We first choose one of the subsets for training and 
the other for testing. We then swap the roles of the subsets so that the previous training set 
becomes the testing set and vice versa. This approach is called a twofold cross validation. The 
total error is obtained by summing up the errors for both runs. Each record is used exactly 
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once for training and once for testing in this example. The k-fold cross validation method gen-
eralizes this approach by segmenting the data into k equal-sized partitions. One of the parti-
tions is chosen for testing, while the rest of them are used for training during each run. This 
procedure is repeated k times so that each partition is used for testing exactly once. Again, the 
total error is found by summing up the errors for all k runs. A special case of the k-fold cross 
validation method sets k = N, the size of the dataset.

3.2  Related Works: Machine Learning and Permissions

We investigate and discuss related works that focuses on requested permissions and those 
using classification learning for the detection of malware. The strategy starts by describing 
works that analyze the permissions requested to make decisions on behalf of the user. We 
then present works that use permissions individually and associatively to characterize appli-
cations. The last point proposes enhancements on these mechanisms.

3.2.1  Permission Analysis

This section presents works that analyze the requested permissions to make decisions on 
behalf of the user. Holavanalli et al. (2013) propose flow permissions, an extension to the per-
mission mechanism. It is used to examine and grant explicit information flows within an ap-
plication as well as implicit information flows across multiple applications. VetDroid (Zhang 
et al., 2013) is a dynamic analysis platform for reconstructing sensitive behavior in applica-
tions from the permission point of view. Felt et al. (2010) evaluate whether permissions of an 
application are effective in protecting users. Their results indicate a positive impact of per-
missions on the security. They also stipulate that this mechanism should be improved. This 
study reveals that users are frequently granting dangerous permissions during installation. 
Installation security warnings at installation therefore may not be an effective prevention tool 
for alerting users. Felt et al. (2012) provides guidelines to determine the most appropriate 
granting mechanism. Rosen et al. (2013) provide an approach to inform the user about the 
nature of applications by mapping API calls and privacy behaviors. Barrera et al. (2010) per-
form an empirical analysis on the expressiveness of some permission sets and propose some 
potential improvements. Their work is based on the verification of signature, the assignment 
of the UID, and their interrelation. Grace et al. (2012) describe mechanisms by which granted 
permissions to one application can be leaked to another. They built Woodpecker to examine 
capability leaks among pre-loaded apps in the phone firmware. Dini et al. (2012a) propose a 
multicriteria evaluation of applications to improve the understanding the trustworthiness de-
gree of an application, from security and functional aspects. They assign a permission threat 
score according to the operations controlled by this permission. They compute then a global 
threat score for each application, which is a function of the threat score of all the required 
permissions, combined to information regarding the developer, the rating, and the number of 
downloads of the application.

3.2.2  Individual Permissions

Zhou and Jiang (2012) characterize existing malware from various aspects, including the 
permissions requested. They identified the permissions that are widely requested in both ma-
licious and benign applications. Malicious applications clearly tend to request more frequently 
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on the SMS-related permissions, such as READ_SMS, WRITE_SMS, RECEIVE_ SMS, and 
SEND_SMS. The result is the same with RECEIVE_BOOT_COMPLETED and CHANGE _
WIFI_STATE. Barrera et al. (2010) found no strong correlation between application categories 
and requested permissions and introduce a self-organizing method to visualize permission 
usage in different categories. Sanz et al. (2012) propose a method for categorizing Android 
applications through machine learning techniques. Their method extracts different feature 
sets including permissions. This classifies applications into several categories such as enter-
tainment, society, tools, productivity, multimedia and video, communication, and puzzle and 
brain games. Orthacker et al. (2012) develop a method to circumvent the permission system 
by spreading permissions over two or more applications. Sato et al. (2013) is a method that 
analyzes the manifest by extracting four types of keyword lists: the permission, the intent fil-
ter, the process name, and the number of custom permissions. This approach determines the 
malignancy score by classifying individually permissions as malicious or benign.

3.2.3  Combinations of Permissions

DroidRanger (Zhou et al., 2012) is a system that characterizes and detects malware samples 
relying on two schemes: the first one provides footprinting based on the combination of per-
missions requested by known malware families; the second one is a heuristics-based filtering 
scheme. PermissionWatcher (Struse et al., 2012) is tool that analyzes permissions of other ap-
plications installed on the phone. They determined rules including association of permissions 
to classify application as suspicious. PermissionWatcher increases user awareness of poten-
tially harmful applications through a home screen widget. Sarma et al. (2012) investigate the 
feasibility of using the permissions by an application, its category (such as games, educa-
tion, social) and requested permissions in the same category to inform users about the risks. 
Rassameeroj and Tanahashi (2011) applies network virtualization and clustering algorithms 
to permissions. They determine irregular permission combinations requested by abnormal 
applications. Gomez and Neamtiu (2015) classify malicious applications into four classes of 
malware: DroidDream, DroidDreamLight, Zsone SMS, and Geinimi. This categorization is 
based on resources accessed by these four families, the infiltration technique and the payload 
used. Wei et al. (2012) present the nature, sources, and implications of sensitive data in an 
enterprise environment. They characterize malicious applications and the risks engendered. 
They finally propose several approaches for dealing with security risks for enterprises. Tang 
et al. (2011) introduce an extension of the security enforcement with a security distance model 
to mitigate malware. A security distance pair is the quantitative representation of the security 
threat that this pair of permissions may cause. A permission pair’s security distance consists 
of a threat point, which represents the danger level and related characteristics. Canfora et al. 
(2013) propose a method for detecting malware based on three metrics: the occurrences of 
a specific subset of system calls, a weighted sum of a subset of permissions, and a set of 
combinations of permissions. Kirin (Enck et al., 2009) is a system to detect malware at install 
time based on an undesirable combination of permissions. Su and Chang (2014) determine 
whether an application is malware depending on a set of permissions. They compute a score 
depending on the number of occurrences of each permission like in other works (Huang 
et al., 2013; Sanz et al., 2013a,b; Liu and Liu, 2014). Liu and Liu (2014) considers the occur-
rence of two permissions to reflect malicious activities. Ping et al. (2014) propose a malware 
detection method based on the contrasting permission patterns. They specify three subsets 
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used for the classification: the unique permission patterns in the malware dataset, the unique 
permission patterns in the normal dataset, and the commonly required permission patterns.

3.2.4  Machine Learning Techniques

Machine learning has been applied in some works for malware detection. Sanz et al. (2013b) 
introduced a method to detect malicious applications through machine learning techniques 
by analyzing the extracted permissions from the application itself. Classification features in-
clude the permissions required by the application (specified by the uses-permission tag) and 
the elements under the uses-features group. They employed supervised learning methods to 
classify Android applications into malware and benign software. MAMA is a method that 
extracts several features from the manifest to be trained with the ML classifiers to detect mal-
ware. These features are the requested permissions, and the uses-feature tag. They used four 
algorithms: K-nearest neighbors, decision trees, bayesian networks, and SVM for the clas-
sification. Huang et al. (2013) explore the performance for detecting malicious applications 
using the classification learning with four ML algorithms: adaBoost, naïve bayes, decision 
tree (C4.5), and Support Vector Machine. They extracted 20 features including required and 
requested permissions. The values of selected features are stored as a feature vector, which 
is represented as a sequence of comma-separated values. Aung and Zaw (2013) propose a 
framework to detect malware applications and to enhance security. This system monitors 
various permission-based features and events obtained from the applications; it analyses 
these features by using ML classifiers. The features are some requested permissions, such as 
INTERNET, CHANGE_CONFIGURATION, WRITE_SMS, SEND_SMS, CALL_PHONE and 
others not described in the paper. Shabtai et al. (2010) suppose that a successful differentiation 
between games and tools could provide a positive indication to differentiate malware. They 
extracted APK features, XML features, and DEX features to be trained with Machine Learning 
algorithms. Arp et al. (2014) combine required permissions and requested combined to six 
other features. Support Vector Machine algorithms are then applied to determine profiles for 
malicious and benign applications. Liu and Liu (2014) extract requested permissions, pairs of 
requested permissions and pairs of required permissions. The machine learning techniques 
and permissions are used to classify an application as benign or malicious. MADAM (Dini 
et al., 2012b) is a system to monitor the system at the Kernel level and at the user level. It com-
bines permission features with kernel features such as system calls, and then train the sam-
ples. Crowdroid (Burguera et al., 2011) is a framework, which collects the traces of behaviour 
of applications from users based on crowdsourcing. Authors applied then the partitional 
clustering algorithm on these traces in order to differentiate between benign applications 
and malicious trojan applications. Andromaly (Shabtai et al., 2012) is a type of IDS that relies 
on the processor, the memory and the battery states to detect suspicious activities. Su and 
Chang (2014) detect whether an application is malware according to the permission combi-
nations of the application. They used two different weighted methods to adjust the weights 
of the permissions. These methods are essentially based on permission occurrences in both 
samples and the frequency gap between samples. Protsenko and Müller (2014) use randomly 
metrics related to software code combined to features specific application structure, to de-
tect malware with ML algorithms. Rovelli and Vigfusson (2014) design the system PMDS 
(Permission-based Malware Detection System). It is a cloud-based architecture based on the 
requested permissions with the main feature of detecting abnormal behavior. They build a 
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Machine Learning classifier on those features to automatically identify malicious combina-
tion of permissions. Wang et al. (2014) analyze only risks associated to individual permis-
sions. They employ three feature ranking methods, namely, mutual information, correlation 
coefficient, and T-test to rank Android individual permissions with respect to their risk. They 
additionally use sequential forward selection as well as principal component analysis to iden-
tify risky permission subsets. Finally, they evaluate the usefulness of risky permissions for 
malware detection with support vector machine, decision trees, as well as random forest.

3.2.5  Limitations

The authors restrict their study to the most requested permissions or a set of permissions. 
The other permissions are ignored, although they could hide important information for the 
detection. The research works require ML techniques for the classification between benign 
and malicious applications. ML require a representative basis of data for training to provide a 
powerful tool for automatically inferring models. The quality of the detection model of such 
systems critically depends on the availability of representative malicious and benign applica-
tions (Arp et al., 2014). While the collection of benign applications is straightforward, gather-
ing recent malware samples requires some technical effort. The number of features to extract 
from the Manifest (such as in Canfora et  al. (2013) and Huang et  al. (2013)) increases the 
computing overhead and the inefficiency of the solution. The choice of the feature to associate 
is relevant because its modification can give false results. Zhu et al. give acceptable results if 
the description is really filled by the developer; otherwise, the output could be false. This is 
also the case for the technique proposed by Gomez and Neamtiu (2015). It is inadequate to 
detect unknown malware because applications are classified using characteristics of known 
families of malware. Most of these works extract a feature set to represent the applications. 
There is no evidence to show which features give the best detection result, even if studies 
considers permissions as feature. The problem of usability of solutions remains urgent for 
the security. Many security solutions such as Flowdroid (Fritz et al., 2014; Chin et al., 2011) 
are harder to install even for expert users. The deployment is often not applicable in real 
devices, requiring installing components by command line. This fact discourages users and 
entices them to install risky solutions (Tchakounté and Dayang, 2013). Most of the approaches 
using ML classifiers are just theoretical: there is no inline system built to validate the results 
found. This shows eventually the difficulty of practicability of such mechanisms. Some works 
build the classifier inside a remote server, which receives some information necessary for the 
classification from the smartphone (Rovelli and Vigfusson, 2014). The server replies with the 
classification results to the client. Different users have different types of privacy and security 
concerns (Zhou and Jiang, 2012); one may need to protect their SMS while another may need 
to protect their contacts. Researches on permissions try to identify implicit concerns related to 
the user while categorizing permissions either in privacy threat, system threat, money threat 
(Dini et al., 2012a) or in privacy threat, monetary threat, and damage threat (Sarma et al., 
2012). These views are too coarse and not resources oriented, and the user is not involved in 
the definition of the resources important in the smartphone.

3.2.6  Enhancements

Some efforts should be made to improve the effectiveness of permission-based solutions. 
For the sake of completeness, researchers should consider not only the 130 official permissions 
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in Android, but also additional ones published in the GitHub (Android source, 2015) and 
third parties. The reason is to consider that a permission becomes risky when combining with 
others. The research should study all these permissions rather than focus on some. For sake 
of flexibility and performance, a detection mechanism should learn from samples historically 
close to the testing dataset. Older training datasets indeed cannot account for all malware 
lineages, and newer datasets do not contain enough representatives of most malware from 
the past (Allix et al., 2014). Building a reliable training dataset is essential to obtain the best 
performance. Authors should avoid using independent several features to construct the vec-
tor that represents an application. This could increase significant overhead, and there should 
be a relationship between them. None of the previous works that determine occurrences of 
permissions examine duplicated permissions in the Manifest. The extraction of permissions 
from applications should consider this possibility for the sake of precision. The percentage 
of permission occurrence in malware and benign software is one of the features often used 
by works aiming to characterize a malware sample. If a permission is required 10 times in 
normal applications more than in malware, this permission is not important to discriminate. 
The best approach should be to find a correlation between the permission frequency in mal-
ware and good software in such a way that even one presence is significant. We recommend 
implementing a lightweight system related to experiments. This could help to perform the 
testing phase. A survey on the usage could be performed to evaluate the usability in order to 
improve the design. There is no research work related to the permission analysis, which in-
volve the user to give its view on what resources to be protected. This information represents 
the concern of the user on the security of the smartphone. A module could evaluate the risk 
according to this input and warn the user accordingly.

4  CHARACTERIZATION AND DETECTION WITH THE 
CONSIDERATION OF USER SECURITY SPECIFICATIONS

We propose a system to detect Android malware based on 222 permissions and struc-
tured in four layers, while considering limitations of related works elucidated in Section 3.2. 
The first layer is supported by a new model, based on the frequency of permissions and the 
proportion of requests by malicious applications within the whole sample. The second layer 
uses a model that relies on security risks related to granting permissions. The third layer uses 
a model that characterizes an application based on an association of vectors derived from 
the two first layers. The last layer involves the user to specify resources to be secured. Risk 
signals are generated to inform the user, depending on its specifications and the requested 
permissions.

We characterize applications in the first three layers using some models to translate them 
into vectors. For that, we collected a huge amount of normal and malicious samples.

4.1  Sampling

4.1.1  Applications for Learning Detection

We collected a dataset of 1993 normal applications from 2012 to 2015 in Google Play (2015) 
and VirusTotal (2015). In Google Play, we selected free ones from categories based on their 
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descriptions, the number of downloads and the ratings given by users: only the top ones 
are picked. Each application taken from Google Play has been scanned by 57 engines from 
renowned antiviruses on VirusTotal, and only the ones that succeed all virus tests are consid-
ered “benign” and kept inside the dataset of normal applications.

The malware sample includes the dataset released by Drebin authors (Arp et al., 2014) to 
help the scientific community that often lacks this kind of data to carry out research. It is com-
posed of 5560 malicious applications collected from 2010 to 2012, and includes 1260 malware 
samples grouped into 49 families (between August 2010 and October 2011) and released by 
Zhou and Jiang (2012). We additionally gather 1223 malicious applications from Contagio 
(2015) and VirusTotal from 2012 to 2014.

4.1.2  Applications for System Validation

Some applications constitute the dataset for evaluating and validating our security system. 
Normal applications have been collected from Google Play between 2013 and 2014, and the 
malicious ones from Contagio during the same period. According to Allix et al. (2014) learn-
ing and testing datasets must be historically coherent for good performance of the malware 
detection scheme; this justifies the period for the collection of the datasets.

4.1.3  Reengineering

Applications are dissembled to gather requested permissions from the manifest in a fea-
ture set. For this, it has used reengineering to investigate files included in the package of 
an application independently of its execution such as Android-apktool and JD-GUI. Some 
scripts have been developed to automate the tasks of extraction of information from applica-
tions. These scripts allow constituting the set of permissions to be scrutinize.

4.2  Layer 1

We will introduce some definitions required to define the model in this layer.

4.2.1  Definitions

Definition 1.  We denote by A a a aL L L
A
L= ¼{ }1 2, , , | | , the training dataset of malicious  

applications and B b b bL L L
A
L= ¼{ }1 2, , , | | , the training dataset of normal applications with |AL|  

and |BL| the sizes of AL and BL.
Definition 2.  We denote by Perm p p p Perm= ¼{ }1 2, , , | |  the set of permissions used in the  

model with |Perm| the size of Perm, which constitutes permissions declared in Android  
GitHub (Saltzer, 1974). There are 206 permissions with complete descriptions provided. We 
consider 16 permissions not listed in previous sources, but only found in third party appli-
cations. Therefore |Perm| = 222. We denote P(a) the set of all different permissions found in 
application a. P(a) does not contain repeated elements.

Definition 3.  The function presence(p, a) of the permission p in the application a is 
given by: 
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Definition 4.  The function occurrence(p, E) of the permission p in the set of applications E 
is defined by: 

(7)

Definition 5.  The function, gapi between the occurrences of permission i in AL and BL is 
given by: 

(8)

(9)

Definition 6.  The function proportion(i) of requests of permission i by malicious applica-
tions is defined by: 

(10)

Readjustment of the normal sample. We adopted a probabilistic approach to estimate 
probable occurrences of permissions in a sample with 6783 normal applications, since the size 
of the malicious sample around five times the size of the normal applications. This solution 
is motivated by two reasons: the 1993 normal applications are diverse (of different catego-
ries), the most downloaded and the most recommended by Google. These selection criteria 
guarantee that the way permissions are requested in the same proportion follows the same 
tendency of permission requests by other normal applications in Google Play (Vennon and 
Stroop, 2010).

(11)

pi represents the probability of the request of the permission i. Probable occurrences of 
permissions in a sample of 6783 malicious applications will be estimated as follows: 

(12)

Ni is the number of occurrences predicted for the permission pi in Eq. (12).

4.2.2  Determination of Discriminating Metrics

This section describes the model which takes the requested permissions for applications 
and calculates their DM. The DM model is a novel approach to evaluate the popularity of a 
permission, and its definition includes two objectives: the first one concerns a measure that 
indicates the capacity for the permission to characterize malicious applications compared 
to normal ones. The second one is to evaluate the danger level, which may appear once the 
user grants this permission. The higher is the DM; more the permission is considered to be 
preferred by malicious applications and so it represents a high risk for devices. A question 
arises consequently: “From which value ε, is considered to be significant?” Two elements si-
multaneously guide to answer this question: |AL| and the DM’s scale. We intuitively expect 
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a scale of 10 (from zero to nine), that is 10 measures for permissions looking for more fine 
grained evaluation to be effectively used to discriminate applications. We finally determine 
ε as follows: 

(13)

where n is the number of levels.
We dedicate the scale nine (09) to permissions in the set MalwarePermission, specifically for 

malware pieces, since the scale goes until nine. This is the reason why we end at eight which 
is the size of scale minus two. We then model the DM by combining two strategies: the first 
one considers the occurrences of permissions in normal and malicious and the second one 
considers the proportion of requests of permission in malware.

First strategy: Discriminating Metric, DM1.

(14)

Second strategy: Discriminating Metric, DM2.

(15)

Determination of DM.

(16)

MalwarePermission is the set of permissions that are requested only by malicious applica-
tions; that is those with no presence in normal applications.

4.2.3  Translation Into Vector Space

We associate with an application A a vector V of 10 elements. The element V (i) of applica-
tion A contains n(A, i), the number of permissions requested by the application A with DM 
equals to i. Table 4 illustrates the vector representation.

4.3  Layer 2

This model aims to identify risks induced by application actions from a point of view of 
accessing resources through requested permissions.
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4.3.1  Risk and Category Definitions

We consider 10 categories of resources, which could intuitively be targeted by malware 
and risky permissions. The categories of resources are:

Messages: Users manipulate SMS and MMS messaging to communicate with each other. 
They could be sensitive for users if contents inside should be kept secret or should not 
be modified. Permissions in this category allow an application to send these resources 
on behalf of the user (SEND_SMS) to intercept (RECEIVE_SMS), and to read or modify 
messages (READ_SMS, WRITE_SMS). The permission is related to MMS: RECEIVE_
MMS, which allows monitoring, recording, and processing on incoming MMS messages. 
If an application accesses SMS resources, there is no direct incidence on MMS resources. 
This is why RECEIVE_MMS is not combined with SMS permissions (Struse et al., 2012).
Contacts: Contacts could be launched without the user’s knowledge when someone 
has the capacity to access (private) user contacts, calls, or even messages. It is therefore 
fundamental to consider these resources. Permissions considered in this group are 
READ_CONTACTS, WRITE_CONTACTS, and MANAGE_ACCOUNTS, which 
respectively allow an application to read the user’s contact data, to write (but not read) 
them, and to manage the list of accounts in the AccountManager. We associate group 
accounts and contacts defined by Google separately. All combinations of the three 
permissions for this resource are considered.
Calls: Making calls represents one of the services mostly used on smartphones. They 
are associated with accessing contacts because calling requires having a phone number. 
Performing actions on calls without user consent could represent a privacy risk for 
him. Permissions investigated here are PROCESS_OUTGOING_CALLS (allowing an 
application to monitor, modify, or abort outgoing calls), READ_CALL_LOG (allowing 
an application to read the user’s call log), WRITE_CALL_LOG (allowing an application 
to write, but not read, the user’s contact data), CALL_PHONE (allowing an application 
to initiate a phone call without going through the dialer user interface, confirming 
the call being placed) and CALL_PRIVILEGED (allowing an application to call any 
phone number, including emergency numbers, without going through the dialer user 
interface, confirming the call being placed). Google defines a group called “telephony 
state,” which is not limited to call-related permissions but also to permissions associated 
with accessing and modifying the telephony state. Calls can be launched without 
manipulating telephony state. We therefore create two groups: calls and telephony state.
Telephony state: It includes MODIFY_PHONE_STATE and READ_PHONE_ STATE 
permissions, which respectively allow the modification of the phone state (such as 
power on, reboot) and allow read-only access to the phone state. All combinations are 
considered in this case such as MODIFY_PHONE_STATE and READ_PHONE _STA TE.
Calendar: Users save events on a calendar to be reminded later. It could be harmful for 
the user if one can modify user events without any consent. In this case, meetings could 
easily be missed or canceled. Associated permissions are READ_CALEN DAR and 
WRITE_CALENDAR, which respectively allow an application to read the user’s calendar 
data and allow an application to write, but not read it. The only association is {READ_
CALENDAR, WRITE_CALENDAR}. Location: This is a resource that is used to know 
the current location of the device owner. The access of this resource is often granted by 
default; in this case, the user can be tracked physically. ACCESS_FINE_LOCATION (that 
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allow an application to access the precise location from location sources such as GPS, cell 
towers, and Wi-Fi), ACCESS_COARSE_LOCATION (that allow an application to access 
an approximate location derived from a network location such as Wi-Fi), INSTALL_
LOCATION_PRO VIDER (that allows an application to install a location provider into 
the Location Manager), LOCATION_HARDWARE (that allows an application to use 
location features in hardware). This group includes sixteen combinations.
Wi-Fi: Google defines a group network used for permissions that provide access to 
networking services. We decide to create a group for Wi-Fi and Bluetooth network 
resources independently to detect effectively which network is frequently used by 
applications. This resource is mainly used for mobile data communication; if one can 
take the control of it, sensitive data can be transferred (from/to) the device without the 
user’s knowledge. Permissions are: ACCESS_WIFI_STATE (that allows applications to 
access information about Wi-Fi networks), and CHANGE_WIFI_STATE (that allows 
applications to change the Wi-Fi connectivity state). We add moreover CHANGE_WIFI_
MULTICAST_STATE permission taken from the group AFFECTS _BATTERY defined 
by Google to complete the present group because it allows changing a property of the 
Wi-Fi resource. It allows specifically applications to enter the Wi-Fi Multicast mode 
connectivity state; the battery consumption is big in this case.
Bluetooth: This is a technology that lets your phone communicate without wire over 
short distances; it is similar to Wi-Fi in many ways. While it is not a danger to your 
phone, it does enable an application to send and receive data from other devices. 
Permissions are BLUETOOTH (that allows applications to connect to paired Bluetooth 
devices), and BLUETOOTH_ADMIN (that allows applications to discover and pair of 
Bluetooth devices). The only combination is {BLUETOOTH, BLUETOOTH_ADMIN}.
Network: This information concerns network socket states (open or closed) and the 
connectivity state (on or off). It is crucial for accessing a remote server via Internet sending 
retrieved sensitive data from a smartphone. Permissions included are: CHANGE_
NETWORK_STATE (that allows applications to change the network connectivity state), 
ACCESS_NETWORK_STATE (that allows applications to access information about 
network connectivity), and INTERNET (that allows applications to open network sockets).
Web Traces: Users usually save sensitive information (password, login, and banking 
codes) consciously when browsing across the Internet. Malicious applications try to 
gather this resource. Permissions included are WRITE_ HISTORY_BOOKMARKS (that 
allows an application to write, but not read, the user’s sensitive data) and READ_
HISTORY_BOOKMARKS (that allow an application to read (but not write) the user’s 
browsing history and bookmarks).

A category of permissions includes several permissions and the possible distinct combina-
tions made from these permissions, as depicted in Appendix A. For instance, the category con-
tacts has permissions READ_CONTACTS, WRITE_CONTACTS, MANAGE_ACCOUNTS, 
READ_CONTACTS & WRITE_CONTACTS, READ_ CONTACTS & MANAGE_ACCOUNTS, 
MANAGE_ACCOUNTS & WRITE_CONTACTS, READ _CONTACTS & WRITE_ CONTACTS 
& MANAGE_ACCOUNTS.

We define permission risks as follows:

Risk1(R1): The capability given by a permission to an application to directly read confidential 
information in the device. It is equal to one for the positive case and zero otherwise.



	 4  Characterization and Detection With the Consideration of User Security Specifications	 123

Risk2(R2): The capability given by a permission to an application to directly modify user 
resources in the device. It is equal to one for the positive case and zero otherwise.
Risk3(R3): The capability given by a permission to an application to perform some 
actions without knowledge of the user. It is equal to one for the positive case and zero 
otherwise.
Risk4(R4): The capability given by a permission to an application to charge the user 
without any consent. It is equal to one for the positive case and zero otherwise.

The risk generated by a combination Cij of permissions j, in the category i is defined by: 

(17)

(18)

(19)

nc(i) represents the number of combinations for the resource i and OR is the logical function 
OR(x, y) = max(x, y).

In other words, the overall risk incurred in a category is the sum of individual risks gen-
erated by each combination of permission, in other words. Appendix A presents the whole 
different risks in categories of resources.

4.3.2  Translation Into Vector Space

The process to construct the vector profile is described by Algorithm 1:
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ALGORITHM 1  CONSTRUCTION OF THE VECTOR
Input:
• An application a
• Cij: set of combinations i belonging to resource j
Output: The Vector V associated to a
Variables: S = / Ø, the set of weight values
Begin
For resource j do
For Cij of resource j do
if presence(Cij, a) then
S S W Cij= È ( )
else S S= È{ }0
end if
End For
V (j) = Maximum(S)
S = / Ø
End For
End
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Let’s consider an application with the following permissions: 

•	 ACCESS_WIFI_STATE;
•	 READ_PHONE_STATE;
•	 RECEIVE_BOOT_COMPLETED;
•	 WRITE_EXTERNAL_STORAGE;
•	 ACCESS_NETWORK_STATE;
•	 INTERNET.

We obtain the following results after applying the process in Table 5:

Resource 1: Cij has no SMS/MMS permissions. S = 01…016, V (1) = MAX(S) = 0
Resource 2: S = 01...07, V (2) = MAX(S) = 0
Resource 3: S = 01...032, V (3) = MAX(S) = 0
Resource 4: S = 01...04, V (4) = MAX(S) = 0
Resource 5: S = 01...015, V (5) = MAX(S) = 0
Resource 6: Cij = C16, S = 11, 02...015, V (6) = MAX(S) = 1
Resource 7: S = 01...03, V (7) = MAX(S) = 0
Resource 8: Cij = C18, C28, C48, S = 21, 12, 03, 34, 05, 06, 07, 08, 09, 010V (8) = MAX(S) = 3
Resource 9: Cij = C29, S = 01, 12, 03V (9) = MAX(S) = 1
Resource 10: S = 01, 02, 03V (10) = MAX(S) = 0

The vector resultant is consigned in Table 5.

4.4  Layer 3

An application A is represented in this model as the association of the two vectors from the 
first two layers. That means that the vector is represented as in Table 6 where the first layer 
determines the first 10 features and the second layer the last 10. We then associate the two to 
obtain the vector characteristics for an application in this model.

4.5  Preliminary Learning

We perform a preliminary learning to identify algorithms that best fit for the samples. 
According to Fig. 5, the next step is the selection of learning algorithms, since we already 
have the samples and we already know the how to characterize applications. There are two 
reasons for that: 

•	 The only possibility to compare algorithms is to apply several ones to samples and to 
retrieve best classification results.

TABLE 6  Representation of the Application Vector in Layer 3

n(A, 0) n(A, 1) n(A, 2) n(A, 3) n(A, 4) n(A, 5) n(A, 6) n(A, 7) n(A, 8) n(A, 9)

Bluetooth Calendar Calls Contact Location Message Network Telephony Wi-Fi Webtrace

TABLE 5  The Vector for the Example

0 0 0 0 0 1 0 3 1 0
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•	 We would like to represent each of the learning approaches: divide and conquer (Suh, 
2011), separate and conquer (Suh, 2011), Bayesian networks (Pearl, 1982), support vector 
machines (Vapnik, 2000), ensemble methods (Freund and Schapire, 1996), and K-nearest 
neighbors (Fix and Hodges, 1952).

We select seven algorithms: NaiveBayes (Kohavi, 1996), LibSVM (Vapnik, 2000), IBk (Fix 
and Hodges, 1952), AdaBoost M1 (Freund and Schapire, 1996), PART (Frank and Witten, 
1998), J48 (Quinlan, 1993), and RandomForest (Breiman, 2001). They are available in Weka 
3, a collection of machine learning algorithms for data mining tasks, to classify benign and 
malicious applications due to its simplicity and user-friendly interface.

Table 7 summarizes statistics concerning the preliminary evaluation of the models during 
the learning phase. For that, every model learns the whole dataset with seven classifiers to 
gather the capability of recognizing the class of a known application.

TABLE 7  Results of Classification

Classifier TP Rate FP Rate Precision Recall F-Measure AUC

Layer 1 NaiveBayes 0.828 0.139 0.871 0.828 0.839 0.904

LibSVm 0.9 0.231 0.897 0.9 0.897 0.834

IBk 0.926 0.122 0.927 0.926 0.926 0.979

AdaBoostM 1 0.875 0.28 0.871 0.875 0.872 0.928

PART 0.911 0.164 0.911 0.911 0.911 0.963

J48 0.911 0.15 0.912 0.911 0.912 0.946

RandomForest 0.924 0.119 0.926 0.924 0.925 0.977

Layer 2 NaiveBayes 0.842 0.347 0.835 0.842 0.837 0.858

LibSVm 0.884 0.309 0.886 0.884 0.877 0.787

IBk 0.895 0.275 0.892 0.895 0.89 0.941

AdaBoostM1 0.86 0.366 0.853 0.86 0.851 0.885

PART 0.888 0.285 0.884 0.888 0.883 0.927

J48 0.885 0.296 0.882 0.885 0.88 0.899

RandomForest 0.894 0.275 0.891 0.894 0.889 0.94

Layer 3 NaiveBayes 0.806 0.14 0.864 0.806 0.819 0.892

LibSVm 0.912 0.209 0.91 0.912 0.911 0.852

IBk 0.95 0.116 0.949 0.95 0.949 0.991

AdaBoostM1 0.879 0.272 0.875 0.879 0.876 0.932

PART 0.935 0.153 0.934 0.935 0.934 0.979

J48 0.926 0.168 0.925 0.926 0.925 0.957

RandomForest 0.948 0.104 0.948 0.948 0.948 0.989
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It is clearly shown that the best classifiers are IBk, RandomForest, and PART for the three 
layers. The first layer assimilates with a precision of around 92% and with an AUC, which 
tends to 98% with these classifiers. Layer 2 is less precise with around 89%; the AUC de-
creased to 94%. Layer 3 is more accurate with around 95% and with an AUC nearer to 1. 
All models are excellently able to assimilate profiles for normal and malicious applications 
according to these results, because they have an AUC greater than 90% (Hosmer et al., 2013). 
The third layer is almost perfect while assimilating application patterns. A testing and val-
idation phase should, however, be done using cross validation; an implemented system is 
needed to confirm the performance in each layer. It is developed in the next chapter.

All models are complementary and can be combined to classify an application. The ques-
tion now is which classification algorithm should be applied when an unknown application 
is assigned as normal or malicious.

4.6  Extracted Rules

The detection of malware with different characteristics is a big challenge. We are moti-
vated to detect malware with varied characteristics with a set of detection rules extracted 
from the permission sets. The determination of characteristics is already effective (Sections 
4.2, 4.3, and 4.4). We apply learning algorithms to extract rules based on these character-
istics. RandomForest provides the best performance according to results shown in Table 7. 
However, this learning algorithm combines a set of independently learned decision trees and 
cannot construct explicit rules. It is the same for IBk. On the contrary, PART provides explicit 
rules that can be used for detection.

The first layer includes 71 decision rules constructed with the 222 permissions using all the 
learning dataset composed of the whole benign and malicious samples. Each rule has a con-
dition as a conjunction of attribute values and a consequence as a class label. The class label 
is either normal or malicious in our case. Note that in a rule the conjunction of attribute values 
forms a sufficient condition for detecting malware, but not a necessary condition. In this layer, 
attributes correspond to DM values. As an example, detection Rules 1 and 5 are depicted as

In the previous excerpt, Rule 1 indicates a normal application and Rule 5 describes a mali-
cious characteristic. The Rule 1 can be interpreted as follows. An application is considered as 
malware if it has the corresponding profile: It requests at least one permission belonging to a 
DM equals to 8 and with at most five permissions with a DM equals to zero and at least one 

Rule 1:
eight > 0 AND zero <= 5 AND six > 0 AND zero <= 3 AND four <= 1 AND one <= 4 AND nine 
<= 0 AND zero <= 2: malware
…
Rule 5:
eight <= 0 AND four <= 1 AND six <= 0 AND zero > 2 AND five <= 0 AND zero <= 4 AND 
one <= 2 AND three <= 0: normal
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permission with DM equals to six and with at most one permission with a DM equals to four 
and at most four permissions with DM equals to one.

The second layer consists of 53 decision rules. Note that in a rule the conjunction of attri-
bute values forms a sufficient condition for detecting malware, but not a necessary condition. 
In this layer, the attributes correspond to risk values associated to resource accessed. As an 
example, detection Rules 28 and 49 are depicted as

In the previous excerpt, Rule 49 indicates a normal application and Rule 28 profiles a ma-
licious application. The Rule 28 can be interpreted as follows. An application with the fol-
lowing profile is to be considered as a malware: application requests permissions inducing 
a risk concerning calls greater than one, a risk concerning telephony greater than zero, a risk 
concerning Wi-Fi resource at most equals to one, risk concerning message resources at most 
equals to three, a risk concerning location resources at least equals to zero, and no risk con-
cerning web trace resources.

The third layer consists of 128 decision rules. As an example, detection Rule 1 is 
depicted as:

Rule 1 combines attributes from Layers 1 and 2. This rule can be interpreted as follows. An 
application is considered as a malware sample in Layer 3 if it requests at least two permis-
sions with DM equals to three, at most three permissions with DM equals to zero, at least one 
permission with DM equals to four; and it requests permissions inducing risks concerning 
message and telephony at least equal to zero, and risk concerning network greater than one.

4.7  Classifier

An experiment has been conducted to study different possibilities to associate the models 
of the different layers. As presented in Fig. 6, the procedure includes two steps.

Rule 28:
calls > 1 AND telephony > 0 AND Wi-Fi <= 1 AND message <= 3 AND location > 0 AND 
webtrace <= 0 AND message <= 1: malware
…
Rule 49:
location > 0 AND telephony <= 1: normal

Rule 1:
eight > 1 AND zero <= 3 AND message > 0 AND telephony > 0 AND network > 1 AND four> 
0: malware
…
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Step 1. Selection of the association that minimizes FPR and FNR. In case the number of 
FP and FN remains the same, complete Step 2. The objective here is to investigate whether a 
misclassified application in a model can be truly classified in a different one. As we have three 
models, there are six associations possible to check: 

•	 Model 1–Model 2–Model 3: Taken misclassified applications in Model 1; transfer them to 
Model 2 to determine if they get well classified; if not then they are transferred to Model 
3 for the same purpose.

•	 Model 1–Model 3–Model 2: Taken misclassified applications in Model 1; transfer them to 
Model 3 to determine if they get well classified; if not then they are transferred to Model 
2 for the same purpose.

•	 Model 2–Model 1–Model 3: Taken misclassified applications in Model 2; transfer them to 
Model 1 to determine if they get well classified; if not then they are transferred to Model 
3 for the same purpose.

Begin An application a

Match a to rules
from Layer 3

Yes
Success?

Match a to rules
from Layer 1

Match a to rules
from Layer 2

No

Yes
Success?

No

Yes
Success?

Pattern

No

Yes

{Malicious, Normal}

Success? User participationNo

End

FIG. 6  Classifier.
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•	 Model 2–Model 3–Model 1: Taken misclassified applications in Model 2; transfer them to 
Model 3 to determine if they get well classified; if not then they are transferred to Model 
1 for the same purpose.

•	 Model 3–Model 1–Model 2: Taken misclassified applications in Model 3; transfer them to 
Model 1 to determine if they get well classified; if not then they are transferred to Model 
2 for the same purpose.

•	 Model 3–Model 2–Model 1: Taken misclassified applications in Model 3; transfer them to 
Model 2 to determine if they get well classified; if not then they are transferred to Model 
1 for the same purpose.

Six possible association sets are obtained, and they provide the same outputs 
GoodClassifiedPositive and GoodClassifiedNegative after applying Algorithm 1. The second step 
is therefore performed.

ALGORITHM 2  SELECTION OF THE ASSOCIATION
Input: M = model1, model2, model3
Output: 

•	 GoodClassifiedPositive: applications misclassified as malware at the beginning but finally 
classified as normal

•	 GoodClassifiedNegative: applications misclassified as normal at the beginning but finally 
classified as malware

Variables: 
•	 fp′ = fn′ = ∅
•	 fpi: Set of applications belonging to FP for the model i
•	 fni: Set of applications belonging to FN for the model i

Begin
For m in M do

M M m= { }
FalsePositive = fpm

FalseNegative = fnm

For n in M do
fp fp FalsePositiven¢ = Ç
GoodClassifiedPositive GoodClassifiedPositive FalsePositiv= È ee fp ¢{ }

FalsePositive = fp′
fn fn FalseNegativen¢ = Ç
GoodClassifiedNegative GoodClassifiedNegative FalseNegativ= È ee fn ¢{ }
FalseNegative = fn′

End For
GoodClassifiedPositive, GoodClassifiedNegative = ∅

End For
End
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Step 2. Selection of the model with the best precision. Model 3 has the best precision 
(around 0.94 of AUC), as shown in Table 8; Model 1 follows with around 0.92 of AUC.

The selected association is therefore Model 3—Model 1—Model 2. The whole classifier for 
the classification of an unknown application, app, requires sequentially three phases: 

•	 Phase 1: Apply Model 3 to app. Classify the application within this model. If app is found 
as malware, we believe it is malware. If app is classified as normal, we believe it is 
normal. In these cases, the classifier sends the results to the displaying module. If app has 
a profile that is not found within the rules defined in the model, then the classifier checks 
it in Model 1.

•	 Phase 2: Apply Model 1 to app. Classify the application within this model. If app is found 
as malware, we believe it is malware. If app is classified as normal, we believe it is 
normal. In these cases, the classifier sends the results to the displaying module. If app has 
a profile that is not found within rules defined in the model, then the classifier checks it 
in Model 2.

•	 Phase 3: Apply Model 2 to app. Classify the application within this model. If app is 
found as malware, we believe it is malware. If app is classified as normal in the first 
two steps, we believe it is normal. In these cases, then the classifier sends the results to 
the displaying module. If app has a profile that is not found within the rules defined 
in the model, the classifier checks if app matches the rule if the Manifest file declared 
only one system permission and if it is READ_LOGS, INSTALL_PACKAGES, or READ_
USER_DICTIONARY, then the application is malicious. The classifier will transfer it to the 
user participation module defined in the next section if app does not match with any 
permission pattern until this step.

4.8  User Participation

This module receives applications, which do not succeed in the classification process 
(Fig. 7). The only possibility is to require user to express their security points of view and 
define which resources have to be considered as sensitive and then to be protected. The mod-
ule retrieves the permission requested by the application according to this information and 
computes the features of Model 2. Depending on the result, the modules define the types of 
alerts to display to the user and sends them to the displaying module.

The type of alerts depends on the resources selected by the user and the answer to the 
question determined with the help of Model 2: Does the application fit the user’s security 
requirements?

TABLE 8  Detection Results Obtained With the Known Dataset

TP FN FP TN TPR (%) FPR (%) Precision (%) Accuracy (%) AUC (%)

IBk 6628 155 286 1707 97.7 14.4 95.86 94.97 99.1

PART 6589 194 378 1615 97.1 19,00 94.6 93.48 97.9

RandomForest 6580 203 251 1742 97.00 12.6 96.32 94.82 98.9
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The following resources are displayed to the user with descriptions: 

•	 SMS/MMS: User messages.
•	 Contact: User contacts.
•	 Agenda: User events and meetings.
•	 Call: Information related to user calls: caller contact, callee contact, etc.
•	 Location: The user’s geographic position at any time.
•	 Telephony state: It includes resources used to track the user with his current location, his 

unique device ID, and his phone number. They are accessed to modify the phone state in 
order to shut down the device or to intercept outgoing calls.

•	 Network: It includes resources accessed to use the Internet. They are also requested by 
an application to take user information to the Internet or to transfer sensitive information 
from the Internet to the user device. Therefore, user information can be leaked without 
his/her knowledge.

•	 Bluetooth: It includes resources manipulated in a user’s open Bluetooth network to take 
information to a nearby mobile device or to transfer sensitive information from a nearer 
mobile device to the device. Therefore, user information can be leaked without his/her 
knowledge.

•	 Wi-Fi: It includes resources, which open the communication to the Internet or to a remote 
device via Wi-Fi. Therefore, user information can be leaked without his/her knowledge.

•	 Information for browsing: It is information saved by the user like passwords, logins, 
banking codes, online payment codes, etc. when browsing in the Internet.

By default, all the resources are selected. Additionally, clear descriptions of possible ac-
tivities with requested permissions are presented; after that the user selects the resources to 
protect. For that, it is scaled results within the interval (Canalys, 2013; Ehringer, 2010) to em-
phasize security risks linked to the intention of the application compared to the requirement 

Begin

Messages
Contacts

Location

Application to
be installed

...

...

Layer 2

Induced risks

Messages

Contacts

Location
End

FIG. 7  User participation.
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specified by the user. There are actions that the user can apply on the application: To uninstall, 
remove the application, display application details, etc.

5  IMPLEMENTATION

We have proceeded to the implementation after designing the whole system. We used 
the Android Studio, the official Integrated Development Environment (IDE) for Android 
developers, to build the system Android studio. It is conventionally named “Look at your 
Resources and Detect Android Malware” (LaReDAMoid) and it includes five interrelated 
modules, as presented in Fig. 8.

The module of retrieving is used to extract and list user applications. The module of anal-
ysis is responsible for characterizing, scanning, and classifying applications coming from the 
module of retrieving. It includes selective analysis, in which the user scans some applications, 
and complete analysis, in which the user scans all the installed applications. The module of 
automatic analysis listens and intercepts installations and updates to renew the characteri-
zations of applications; then it calls the module of analysis and notifies the user about the 
results. The module of preferences is used to define settings such as specifying resources to 
protect and activate automatic analysis. The module of interpretation and presentation of 
results is responsible to interpret results from the modules of analysis and preferences and to 
present them in comprehensible manner to the user.

LaReDAMoid deals with update vulnerability. It reclassifies the application while consid-
ering new permissions included in the modified version to inform the user.

5.1  Interfaces

This section presents some interfaces LaReDAMoid. Fig. 9 represents a screenshot, which 
depicts a list of user applications. This interface appears after clicking on the List Apps button 
on the home screen in Fig. 10.

FIG. 8  Architecture of LaReDAMoid.
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Fig. 11 represents an interface to perform the complete analysis. This interface is obtained 
after clicking on the button Scan Apps from the home screen. The item Analyse all is then 
selected to launch the complete analysis. The button Scan All Now is used to launch the com-
plete scanning; the user can rather select the item Select Apps used to select specific applica-
tions for scanning as shown in Fig. 12.

Fig.  13A depicts views for the analysis results. The first one displays applications with 
their status and corresponding icons to highlight statuses. The user clicks on the application 
icon to obtain Fig. 13A, to go deeper into the results. This figure shows actions that the user 
can take according to results and settings made on resources. A risk value under scale of 4 is 
displayed to indicate to the user whether his security requirements have been considered for 
each selected resource. The user can then decide to run the application or to remove it.

The user is invited to specify how he will be informed of the results of the automatic 
analysis: with a notification or with an alert dialog. Additionally, the user selects resources 
to protect in order to evaluate security risks. These two previous functionalities are shown in 
Fig. 14A. He is then notified after a new installation or a new update, as shown in Fig. 14B.

FIG. 9  List of user applications.
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6  EVALUATION AND DISCUSSION

This section aims to evaluate LaReDAMoid in several objectives: 

•	 Performance detection and performance prediction: is LaReDAMoid able to detect 
known samples and unknown samples?

•	 Comparison of LaReDAMoid detection of malware families against related works.
•	 Comparison of LaReDAMoid with renowned antiviruses.
•	 Comparison of LaReDAMoid with related works.

6.1  Detection Performance

The first step in this section consists of evaluating the detection performance of 
LaReDAMoid on known samples provided during the training. We consider the three best 
classifiers, IBk, PART, and RandomForest. Table 8 presents the detailed results.

The system is able to detect 97% of the malware samples used in the training with 99% of 
AUC. This proves that the model is outstanding with a precision of 95% at least. But, what is 
the situation when it has to predict the class of unknown samples? We build the experiments to 

FIG. 10  Home screen.
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evaluate the prediction performance of LaReDAMoid. We determine first of all the performance 
with the 10-fold cross validation, a case of the k-fold cross validation method, described as ap-
plying the classifier to the data 10 times, and each time with a 90-10 configuration; that is, 90% 
of data for training and 10% for testing; Table 9 summarizes the average of these 10 iterations. 
We keep the same metrics and the same classifier used to determine detection performance.

The model remains outstanding; it is able to detect 95 % of the malware samples with 93% 
precision. We randomly split the partitions into known and unknown ones. We apply three 
cases: 

•	 known partition (60%) and unknown one (40%);
•	 known partition (66%) and unknown one (34%);
•	 known partition (70%) and unknown one (30%).

We repeat them 10 times and take the average results. The partitioning cases ensure that 
the reported results refer to the capacity of the system to predict unknown malware during 
the learning phase.

The results of these experiments are consigned in Table 10, where only the AUC metric 
with classifiers IBk, PART and RandomForest is considered.

FIG. 11  Complete analysis.



136	 6.  Supervised Learning Based Detection of Malware on Android

The system is able to efficiently detect unknown malware with 95–97% of AUC, corre-
sponding to 95–97 samples of unknown malware when installing 100 applications. It is an 
excellent model according to Hosmer et al. (2013).

6.1.1  Model Validation

We collected a testing dataset including 51 malicious applications published at the end 
of 2014 by antivirus companies and research groups and 34 normal applications from 
Google Play to achieve the validation of the model. Normal applications have been tested in 
VirusTotal to confirm their normality. After eliminating duplicates and removing corrupted 
packages, we are left with 30 malicious applications and 33 normal applications. The results 
obtained are the following: 

•	 LaReDAMoid detects correctly 30 pieces of malware out of 30.
•	 LaReDAMoid detects correctly 25 normal applications among 30; eight are misclassified, 

among which are the antivirus software AVAST, AVG, McAfee, F-SECURE Mobile 
Security, which require accessing the user’s whole sensitive information of the user: 
personal information (accounts, phone calls, messages, personal information, location, 

FIG. 12  Selective analysis.
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services that cost money), hardware information (network communication, storage, 
hardware controls, and system tools). They request respectively 42, 57, 70, and 59 
permissions, too much for an application. This result indicates that the false positives 
could be considerable due to the fact that an application that requires many permissions 
tends almost all resources considered in the model. Therefore it will be considered as 
risky according to the second layer.

6.2  Comparison Between Layer Models

The objective of this section is to determine, which layer models offers independently bet-
ter results. Fig. 15 (A–C) illustrates respectively AUC, precision, and true positive rate results 
on these models for the best classifier RandomForest.

The third model outperforms the two others, according to AUC, precision, and TPR re-
sults. We discover however an exception with classifier PART about the precision criteria. It 
indicates that Model 1 is more precise than the others (Fig. 16).

(A) (B)

FIG. 13  Scanning results. (A) Application results. (B) Result details for one application.
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6.3  Detection of Malware Families

A malware family is a group of applications with similar attack techniques. Zhou and 
Jiang (2012) released 49 malware families in 2012 that reflect always the behavior of nowa-
days malware (Wang et al., 2014). An important experiment consists therefore to evaluating 
specifically the performance detection of every sample for the forty-nine families. The fam-
ily names and the number of samples for each family are listed in Table 11. The detection 

TABLE 9  Prediction Results Simulating the Unknown Dataset

TP FN FP TN TPR (%) FPR (%) Precision (%) ACC (%) AUC (%)

IBK 6468 315 497 1496 95.4 24.9 92.9 90.74 95.7

PART 6427 356 418 1575 94.8 21,00 93.9 91.18 94.7

RandomForest 6475 308 432 1561 95.5 21.7 93.7 91.56 96.6

(A) (B)

FIG. 14  Settings and preferences for LaReDAMoid. (A) Settings concerning resources. (B) A notification for new 
application
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TABLE 10  Values of AUC for Every Partition

Partitions Classifier AUC

Splitting 60-40 IBk 0.952

PART 0.952

RandomForest 0.964

Splitting 66-34 IBk 0.957

PART 0.95

RandomForest 0.965

Splitting 70-30 IBk 0.955

PART 0.95

RandomForest 0.966
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FIG. 15  Model 3 outperforms Models 1 and 2 with RandomForest. (A) AUC criteria. (B) Precision criteria. (C) TPR 
criteria.



140	 6.  Supervised Learning Based Detection of Malware on Android
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FIG. 16  Model 1 is more precise than Models 2 and 3 in PART.

TABLE 11  Malware Families

Families(# of Samples)
Detection Our Model/Model 
Wang et al. (2014) (%)

Privilege  
Escalation Remote Control

F1 ADRD(22) 100/100 x

F2 AnserverBot(187) 100/100 x

F3 Asroot(8) 75/50 x

F4 BaseBridge(122) 95.72/83.60 x x

F5 BeanBot(8) 100/87.5 x

F6 BgServ(9) 100/100 x

F7 CoinPirate(1) 100/0 x

F8 Crusewin(1) 100/100 x

F9 DogWars(1) 100/0 x x

F10 DroidCoupon(1) 0/100 x

F11 DroidDeluxe(1) 100/0 x x

F12 DroidDream(16) 100/87.5 x

F13 DroidDreamLight(46) 100/93.47 x x

F14 DroidKungFu1(34) 100/100 x x

F15 DroidKungFu2(30) 100/100 x x

F16 DroidKungFu3(309) 100/97.41 x

F17 DroidKungFu4(96) 100/97.91 x x
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TABLE 11  Malware Families—cont’d

Families(# of Samples)
Detection Our Model/Model 
Wang et al. (2014) (%)

Privilege  
Escalation Remote Control

F18 DroidKungFuSapp(3) 100/100

F19 DroidKungFuUpdate(1) 100/100 x

F20 Endofday(1) 100/100

F21 FakeNetflix(1) 100/100

F22 FakePlayer(6) 100/100

F23 GamblerSMS(1) 100/100 x

F24 Geinimi(69) 100/100

F25 GGTracker(1) 100/100 x x

F26 GingerMaster(4) 100/100 x

F27 GoldDream(47) 100/100

F28 Gone60(9) 100/100

F29 GPSSMSSpy(6) 100/100

F30 HippoSMS(4) 100/100

F31 Jifake(1) 100/0 x

F32 jSMSHider(16) 100/37.5 x

F33 KMin(52) 100/100

F34 LoveTrap(1) 100/100

F35 NickyBot(1) 100/100 x

F36 NickySpy(2) 100/100 x

F37 Pjapps(58) 100/100 x

F38 Plankton(11) 100/63.63 x

F39 RogueLemon(2) 100/100

F40 RogueSPPush(2) 100/100

F41 SMSReplicator(1) 100/0

F42 SndApps(10) 100/80 x

F43 Spitmo(1) 100/100

F44 TapSnake(2) 100/50

F45 Walkinwat(1) 100/0 x

F46 YZHC(22) 100/100 x

F47 Zhash(11) 100/100 x

F48 Zitmo(1) 100/100

F49 Zsone(12) 100/91.66
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performance of the whole system for each family is illustrated in Fig. 17. Our classifier is 
able to reliably detect all families with an average accuracy of 99.20% (1250/1260) at a false 
positive of 0.79% (10/1260). All families can be perfectly identified at 100%, except three of 
them: Asroot, Basebridge, and Droiddeluxe. Basebridge shows a detection rate of more than 
95.72% (112 correctly detected out of 119), Asroot shows a detection rate of 75% (6 correctly 
detected out of 8) and Droiddeluxe (with just one sample) cannot be detected. These families 
commonly rely on the root privilege to function well. They leverage known root exploits 
(rageagainstthecage, Asroot) without asking the user to grant the root privilege to these 
samples to escape from the built-in security sandbox. Our system is based on static analy-
sis of requested permissions. Therefore we cannot identify applications exploiting root ex-
ploits with no permission requested. Dynamic analysis for mitigation should be associated, 
to scrutinize the runtime behavior of the installed application. The system rather detects 
perfectly other families with samples performing privilege escalation and remote control 
presented in Table 11.

Fig. 17 summarizes the detection performance of malware families.
Drebin authors (Arp et al., 2014; Wang et al., 2014) investigated similarly the detection of 

malware families. The first work focuses only on 20 families whereas the second focuses on 
all the families. The following point has been drawn in a conjoint comparison: 

•	 Our system perfectly detects the Kmin family like Drebin.
•	 Our system outperforms Drebin in the detection of other families with 100% of the 

detection rate. Drebin stands with average 90% detection of those families.
•	 Wang et al. (2014) detect 94.92% (119) of malware family samples whereas ours detects 

about 99.20%. The second column of Table 12 presents details of both detection by our 
model and Wang et al. (2014). Most of the case, we outperforms their detection. The 
exception appears only with the family Droidcoupon with one sample.
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FIG. 17  Detection per malware family.
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TABLE 12  Detection Results on Unknown Malware

No AVG Avast F-Secure LaReDAMoid

MP SP FPr NP

1 ING Bank N.V. × ✓ ● ✓

2 AlfSafe × ✓ ● ✓

3 Android System × ✓ ● ✓

4 Awesome Jokes ✓ ✓ ● ✓

5 BaDoink × ✓ ● ✓

6 BaseApp × ✓ ● ✓

7 Battery Doctor × ✓ ● ✓

8 Battery Improve × ✓ ● ✓

9 Black Market Alpha × ✓ ● ✓

10 Business Calendar Pro ✓ ✓ ● ✓

11 Chibi Fighter × × ● ✓

12 com.android.tools.system × ✓ ● ✓

13 Dendroid × ✓ ● ✓

14 Détecteur de Carrier IQ × ✓ ● ✓

15 FlvPlayer × ✓ ● ✓

16 Install × ✓ ● ✓

17 Jelly Matching × ✓ ● ✓

18 Mobile Security × ✓ ● ✓

19 o5android × ✓ ● ✓

20 PronEnabler ✓ ✓ ● ✓

21 Radardroid Pro × ✓ ● ✓

22 SberSafe × ✓ ● ✓

23 Se-Cure Mobile AV × ✓ ● ✓

24 SoundHound × ✓ ● ✓

25 SPL Meter FREE × ✓ ● ✓

26 System Service × ✓ ● ✓

27 VkSafe × ✓ ● ✓

28 41CA3EFD × ✓ ● ✓

29 sb.apk × ✓ ● ✓

30 ThreatJapan_D09 × ✓ ● ✓

×, misclassified; ✓, correctly classified.
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6.4  Antivirus Scanners

We have compared our model to three renown antiviruses: AVG, Avast, and F-Secure. The 
reason is that thay scan applications based on permissions. This experiment uses the testing 
dataset (Section 6.1.1) with 30 unknown samples of malware and 30 unknown normal appli-
cations collected for validation. Table 12 presents the detection results for LaReDAMoid and 
antiviruses.

Table 13 reveals that the system correctly detects 30 samples of malware whereas AVG only 
alerts to three samples: Awesome Jokes, Business Calendar Pro, and PronEnabler. AVG pro-
vides therefore a TP of three, a TN of 33, a FN of 27 and a FP of null. Avast detects 29 malware 
samples and fails to detect the Chibi Fighter malware. Avast gets therefore a TP of 29, a TN of 
33, a FN of one and FP of null. The applications are classified in four categories: many privacy 
issues (MP), some privacy issues (SP), few privacy issues (FPr), and no privacy issues (NP) con-
cerning F-Secure. Only four malware samples are correctly classified. Five samples are detected 
as applications with some privacy issues and 12 are classified as applications with few issues. 
F-Secure incorrectly classifies nine samples as applications with NP. F-Secure Mobile Security 
has TP of nine (we consider MP and SP as malicious classes), a TN of 24 (NP), FP of nine (normal 
applications belonging to MP, SP, and FPr), and a FN of nine (malware belonging to NP).

Our scheme is the best in determining malware with 100% of TPR, followed by Avast, 
which fails to determine just one malware sample. The accuracy indicates that LaReDAMoid 
records the best performance after Avast. LaReDAMoid is therefore considered as reliable 
compared to existing antiviruses.

Zhou and Jiang experienced that the best antivirus (Lookout) detects 79.6% of 1260 sam-
ples from the 49 malware families. We have also taken from this work on other antiviruses 
(Norton, Trend Micro and Avg). Table 14 shows that LaReDAMoid outperforms Lookout and 
the others on this dataset.

6.5  Related Works

We compare the performance of the detection system with three well-known approaches 
in the literature, based on requested permissions as features Kirin (Enck et  al., 2009), 

TABLE 13  Detection Results

TP FN FP TN TPR FPR Accuracy

AVG 3 27 0 33   10.00%   0.00% 57.14 %

Avast 29   1 0 33   96.66%   0.00% 98.41%

F-Secure 9 21 9 24   30.00% 27.00% 52.38 %

LaReDAMoid 30   0 8 25 100.00% 24.24 % 88.00%

TABLE 14  Detection AV on Malware Families

LaReDAMoid Avg Lookout Norton Trend Micro

99.20% 54.7% 79.6% 20.2% 76.7%
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RCP+RPCP (Rare Critical Permissions and Rare Pair Critical Permission) (Sarma et al., 2012) 
and PermissionWatcher (Struse et  al., 2012). Kirin identifies nine permission rules for ap-
plications to be considered potential malicious. RCP+RPCP measures the permission risks 
by evaluating the popularity of permissions within applications of the same category. The 
performance of RCP+RPCP is generated with the rule #RCP(2)+#RPCP(1) ≥ θ, the best per-
forming one. PermissionWatcher classifies an application based on 16 rules of combination 
of permissions.

Table 15 presents the performance results in terms of TPR, FPR, Precision, Accuracy, and 
AUC, after applying these methods to the learning dataset defined in Section 5.1.

We can observe from Table  16 that our method has better performance than the other 
methods. Kirin only has nine manually defined security rules, not enough to distinguish ma-
licious applications from benign applications. #RCP(2)+#RPCP(1) uses arbitrary 26 critical 
permissions to generate the risk signal for an application. This approach does not consider 
other permissions, which could generate maliciousness. The consequence is the low posi-
tive rate. PermissionWatcher includes permission combinations of Kirin and those not suf-
ficient to profile applications. Our method uses ML and captures the permissions patterns 
of both benign and malicious applications. We consider security risks related to sensitive 
resources besides the requested permissions. We have better performance with this combi-
nation. #RCP(2)+#RPCP(1) however detects 74 normal applications more than the detection 
system. These two methods are similarly precise, although LaReDAMoid outperforms the 
three other methods concerning the accuracy and the AUC, given the capacity to predict un-
known samples. We notice that the important prerequisite for a good detection is the precise 
determination of features. The semantics of features must reflect the sample profiles, and 
features contribute significantly to classification.

6.6  Limitations

The previous evaluation demonstrates the efficiency of the system in the detection of re-
cent malware. The system uses machine learning techniques to learn malware profiles.

The system, however, lacks the capabilities of a run-time analysis. Some strains of malware 
make use of obfuscation or load code dynamically, which hinders any static inspection.

The system is less accurate in the detection of normal applications. This is justified by the 
fact that we focus only on permissions. Applications such as Avg, which require more than 
30 permissions, will be considered as malware by our system because they access several 
resources; therefore the calculated risk in the second layer is higher.

TABLE 15  Detection Performance

TP FN FP TN TPR FPR Precision Accuracy AUC

Kirin 4076 2707 271 1722 60.09 % 13.5 % 93.76 % 57.52 % 66.9 %

#RCP(2)+#RPCP(1) ≥ θ 5657 1126 177 1816 83.39 %   8.88 % 96.96 % 85.15 % 58.5 %

PermissionWatcher 5342 1141 502 1491 76.39 25.18 91.40 77.86 85.4%

Our scheme 6580   203 251 1742 97.00% 12.6 % 96.32 % 94.82 % 99.00%
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TABLE 16  Risk Determination

Risks Weight

No Resources Cij Permissions and Combinations R1 R2 R3 R4 Wij

1 Messages C1, 1 SEND_SMS 1 0 1 1 3

C2, 1 RECEIVE_SMS 1 0 0 0 1

C3, 1 RECEIVE_MMS 1 0 0 0 1

C4, 1 READ_SMS 1 0 0 0 1

C5, 1 WRITE_SMS 0 1 0 0 1

C6, 1 SEND_SMS, RECEIVE_SMS 1 0 1 1 3

C7, 1 SEND_SMS, READ_SMS 1 0 1 1 3

C8, 1 SEND_SMS, WRITE_SMS 0 1 1 1 3

C9, 1 RECEIVE_SMS, READ_SMS 1 0 0 0 1

C10, 1 RECEIVE_SMS, WRITE_SMS 1 1 0 0 2

C11, 1 READ_SMS, WRITE_SMS 1 1 0 1 3

C12, 1 SEND_SMS, RECEIVE_SMS, READ_SMS 1 0 1 1 3

C13, 1 SEND_SMS, RECEIVE_SMS, WRITE_SMS 1 1 1 1 4

C14, 1 SEND_SMS, READ_SMS, WRITE_SMS 1 1 1 1 4

C15, 1 WRITE_SMS, READ_SMS, RECEIVE_SMS 1 1 0 0 2

C16, 1 READ_SMS, SEND_SMS, RECEIVE_SMS, WRITE_SMS 1 1 1 1 4

2 Contacts C1, 2 READ_CONTACTS 1 0 0 0 1

C2, 2 WRITE_CONTACTS 0 1 0 0 1

C3, 2 MANAGE_ACCOUNTS 1 1 0 0 2

C4, 2 READ_CONTACTS, WRITE_CONTACTS 1 1 0 0 2

C5, 2 READ_CONTACTS, MANAGE_ACCOUNTS 1 1 0 0 2

C6, 2 MANAGE_ACCOUNTS, WRITE_CONTACTS 1 1 0 0 2

C7, 2 READ_CONTACTS, WRITE_CONTACTS, 
MANAGE_ACCOUNTS

1 1 1 0 3

C2, 3 READ_CALL_LOG 1 0 0 0 1

C3, 3 WRITE_CALL_LOG 0 1 1 0 2

C4, 3 CALL_PHONE 1 0 1 1 3

C5, 3 CALL_PRIVILEGED 1 0 1 1 3

C6, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG 1 0 1 1 3

C7, 3 PROCESS_OUTGOING_CALLS, WRITE_CALL_LOG 1 1 1 1 4

C8, 3 PROCESS_OUTGOING_CALLS, CALL_PHONE 1 0 1 1 3
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Continued

TABLE 16  Risk Determination—cont’d

Risks Weight

No Resources Cij Permissions and Combinations R1 R2 R3 R4 Wij

C9, 3 PROCESS_OUTGOING_CALLS, CALL_PRIVILEGED 1 0 1 1 3

C10, 3 READ_CALL_LOG, WRITE_CALL_LOG 1 1 0 0 2

C11, 3 READ_CALL_LOG, CALL_PHONE 1 0 1 1 3

C12, 3 READ_CALL_LOG, CALL_PRIVILEGED 1 0 1 1 3

C13, 3 WRITE_CALL_LOG, CALL_PHONE 1 1 1 1 4

C14, 3 WRITE_CALL_LOG, CALL_PRIVILEGED 1 1 1 1 4

C15, 3 CALL_PHONE, CALL_PRIVILEGED 1 0 1 1 3

C16, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
WRITE_CALL_LOG

1 1 1 1 4

C17, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
CALL_PHONE

1 0 1 1 3

C18, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
CALL_PRIVILEGED

1 0 1 1 3

C19, 3 PROCESS_OUTGOING_CALLS, WRITE_CALL_LOG, 
CALL_PHONE

1 1 1 1 4

C20, 3 PROCESS_OUTGOING_CALLS, WRITE_CALL_LOG, 
CALL_PRIVILEGED

1 1 1 1 4

C21, 3 PROCESS_OUTGOING_CALLS, CALL_PHONE, 
CALL_PRIVILEGED

1 1 1 1 4

C22, 3 READ_CALL_LOG, WRITE_CALL_LOG, 
CALL_PRIVILEGED

1 1 1 1 4

C23, 3 READ_CALL_LOG, CALL_PHONE, CALL_PRIVILEGED 1 0 1 1 3

C24, 3 WRITE_CALL_LOG, CALL_PHONE, 
CALL_PRIVILEGED

1 1 1 1 4

C27, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
WRITE_CALL_LOG, CALL_PHONE

1 1 1 1 4

C28, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
WRITE_CALL_LOG, CALL_PRIVILEGED

1 1 1 1 4

C29, 3 PROCESS_OUTGOING_CALLS, READ_CALL_LOG, 
CALL_PHONE, CALL_PRIVILEGED

1 0 1 1 3

C30, 3 PROCESS_OUTGOING_CALLS, WRITE_CALL_LOG, 
CALL_PHONE, CALL_PRIVILEGED

0 1 1 1 3

C31, 3 READ_CALL_LOG, WRITE_CALL_LOG, CALL_
PHONE, CALL_PRIVILEGED

1 1 1 1 4
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TABLE 16  Risk Determination—cont’d

Risks Weight

No Resources Cij Permissions and Combinations R1 R2 R3 R4 Wij

C32, 3 PROCESS_OUTGOING_CALLS, READ_CALL_
LOG, WRITE_CALL_LOG, CALL_PHONE, 
CALL_PRIVILEGED

1 1 1 1 4

4 Calendar C1, 4 READ_CALENDAR 1 0 0 0 1

C2, 4 WRITE_CALENDAR 0 1 1 0 2

C3, 4 READ_CALENDAR, WRITE_CALENDAR 1 1 1 0 3

C2, 5 ACCESS_COARSE_LOCATION 1 0 1 0 2

C3, 5 INSTALL_LOCATION_PROVIDER 1 0 1 0 2

C4, 5 LOCATION_HARDWARE 1 0 1 0 2

C5, 5 ACCESS_FINE_LOCATION, 
ACCESS_COARSE_LOCATION

1 0 0 0 1

C6, 5 ACCESS_FINE_LOCATION, 
INSTALL_LOCATION_PROVIDER

1 0 0 0 1

C7, 5 ACCESS_FINE_LOCATION, LOCATION_HARDWARE 1 0 0 0 1

C8, 5 ACCESS_COARSE_LOCATION, 
INSTALL_LOCATION_PROVIDER

1 0 0 0 1

C9, 5 ACCESS_COARSE_LOCATION, 
LOCATION_HARDWARE

1 0 0 0 1

C10, 5 INSTALL_LOCATION_PROVIDER, 
LOCATION_HARDWARE

1 0 0 0 1

C11, 5 ACCESS_FINE_LOCATION, ACCESS_COARSE_
LOCATION, INSTALL_LOCATION_PROVIDER

1 0 0 0 1

C12, 5 ACCESS_FINE_LOCATION, ACCESS_COARSE_
LOCATION, LOCATION_HARDWARE

1 0 0 0 1

C13, 5 ACCESS_FINE_LOCATION, INSTALL_LOCATION_
PROVIDER, LOCATION_HARDWARE

1 0 0 0 1

C14, 5 ACCESS_COARSE_LOCATION, INSTALL_LOCATION_
PROVIDER, LOCATION_HARDWARE

1 0 0 0 1

C15, 5 ACCESS_FINE_LOCATION, ACCESS_COARSE_
LOCATION, INSTALL_LOCATION_PROVIDER, 
LOCATION_HARDWARE

1 0 0 0 1

6 Wifi C1, 6 ACCESS_WIFI_STATE 1 0 0 0 1

C2, 6 CHANGE_WIFI_STATE 0 1 0 0 1

C3, 6 CHANGE_WIFI_MULTICAST_STATE 0 1 0 0 1

C4, 6 ACCESS_WIFI_STATE, CHANGE_WIFI_STATE 1 1 0 0 2
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A number of malware samples exactly the same permissions that are requested by normal 
applications. This gives negative impact on the detection accuracy by the first layer (Wang 
et al., 2014).

Some malware does not need to request any permissions (Lineberry et al., 2015). In this case, 
relying on only permissions is not feasible for the detection of malware pieces. The developers 
may request overprivileged permission requests that are never actually used in the applica-
tion. This leads to false positives if only the permission information is used for the detection.

Another limitation is that detection performance critically depends on the availability of 
representative malicious and benign applications.

TABLE 16  Risk Determination—cont’d

Risks Weight

No Resources Cij Permissions and Combinations R1 R2 R3 R4 Wij

C5, 6 ACCESS_WIFI_STATE, 
CHANGE_WIFI_MULTICAST_STATE

1 1 0 0 2

C6, 6 CHANGE_WIFI_STATE, 
CHANGE_WIFI_MULTICAST_STATE

0 1 0 0 1

C7, 6 ACCESS_WIFI_STATE, CHANGE_WIFI_STATE, 
CHANGE_WIFI_MULTICAST_STATE

1 1 0 0 2

7 Bluetooth C1, 7 BLUETOOTH 1 1 1 0 3

C2, 7 BLUETOOTH_ADMIN 1 1 1 0 3

C3, 7 BLUETOOTH, BLUETOOTH_ADMIN 1 1 1 0 3

8 Network C1, 8 INTERNET 1 0 1 0 2

C2, 8 ACCESS_NETWORK_STATE 1 0 0 0 1

C3, 8 CHANGE_NETWORK_STATE 0 1 0 0 1

C4, 8 INTERNET, ACCESS_NETWORK_STATE 1 1 1 0 3

C5, 8 INTERNET, CHANGE_NETWORK_STATE 1 1 1 0 3

C6, 8 ACCESS_NETWORK_STATE, 
CHANGE_NETWORK_STATE

1 1 0 0 2

C7, 8 INTERNET, ACCESS_NETWORK_STATE, 
CHANGE_NETWORK_STATE

1 1 1 0 3

9 Telephony C1, 9 MODIFY_PHONE_STATE 0 1 0 0 1

C2, 9 READ_PHONE_STATE 1 0 0 0 1

C3, 9 READ_PHONE_STATE, MODIFY_PHONE_STATE 1 1 0 0 2

10 Web traces C1, 10 WRITE_HISTORY_BOOKMARKS 0 1 0 0 1

C2, 10 READ_HISTORY_BOOKMARKS 1 0 0 0 1

C3, 10 READ_HISTORY_BOOKMARKS, 
WRITE_HISTORY_BOOKMARKS

1 1 0 0 2
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7  CONCLUSION AND PERSPECTIVES

In this work, we provide a flexible machine learning-based mechanism to effectively de-
tect Android malware based only on requested permissions. For that, we first described the 
Android ecosystem for a better understanding of the Android security limitations. Then we 
presented important aspects of the malware landscape. Next, we explored machine learning 
techniques used to learn and train application profiles, to detect and to predict application 
status: malicious or normal. Then we explored how to determine detection performance. 
Next we presented our model and its implementation. Finally, we evaluated and discussed 
the system with renowned antiviruses and related works.

Our system is built of three layers. The first layer is supported by a model, which aims 
to characterize applications based on proportion of permission requests. The second layer 
uses a model, which relies on security risks related to granting permissions. For that, we de-
fined 10 resource categories including related permissions and distinct combination of these 
permissions. The last layer uses a model, which characterizes an application based on an 
association of vectors derived from the two first layers. We apply supervised learning with 
several learning algorithms, namely, NaiveBayes, LibSVM, IBk, AdaBoostM1, PART, J48, and 
RandomForest, on a collection of 6783 cases of malware and 1993 normal applications, which 
have been tested and validated. Then we determined detection rules to profile applications. 
Additionally, our system requires the user to specify sensitive resources to protect and takes 
it in account during the process of characterization of applications.

Our framework is good in detecting around 98% accuracy and in predicting with around 
96% of the true positive rate. This means that it is capable to discriminate almost all cases of 
malware in detection and prediction. The AUC is between 97% and 99%, which confers the 
property of the outstanding model according to Hosmer and Lemeshow (2000).

Some limitations exist because the system only considers the permissions as features. The first 
one is that normal applications with several permissions are likely considered as malware since 
they seem to be accessing several resources. The second one is that they are normal applications, 
which requests the same permission as a normal application. In this case, the detection will fail. 
The last case is that the system is not able to scrutinize an application with no permission.

For future work, we plan to associate runtime analysis and other static features to 
strengthen the system.

APPENDIX A  DIFFERENT COMBINATIONS OF PERMISSIONS 
AND DETERMINATION OF RISKS

Table 16 shows data for different combinations of permissions and determination of risks.

APPENDIX B  NORMAL APPLICATIONS FOR TESTING

AVG, McAfee Security, Safety Care, Who’s Calling, Fsecure Mobile Security, Avast Mobile 
Security, CSipSimple, German, Talking Ben, 100% Anglais, Alphabets & Numbers Writing, 
Apk Extractor, AppPermissionWatcher, AppPermissions, Baby Ninja Dance, Candy Crush 
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Saga, LaReDAMoid, File Manager, Important Dates, Kids Songs, Learn Numbers in French 
Lang, Malware Tracker, My Permissions, Noms Abc, Permission Friendly Apps, Permission 
Monitor Free, Polaris Viewer 4, Pregnancy Tracker, Screenshot Easy, Smartworld, Test, 
Malware Tracker.
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1  INTRODUCTION

The prosperity of the app economy boosts the number of mobile apps. More than two 
million Android apps1 have been published in Google Play and around 2.5 million iOS apps2 
are listed in the Apple store. It is expected that the app economy could reach $101 billion in 
2020.3 At the same time, smartphones have become an indispensable part of our daily lives, 
and many apps have been downloaded and installed. A recent report shows that Android 
users will install on average 95 apps from June 2014 to January 2015 (Sawers, 2015).

Not all apps are well designed and developed. Recent studies illustrate that many apps are 
prone to various attacks because of their internal vulnerabilities. For example, HP research 
found that 90% apps are vulnerable after analyzing 2107 apps from companies on the Forbes 
Global 2000 (Seltzer, 2013). The latest application security report from Arxan shows that 90% 
of 126 mobile health and finance apps under investigation contain at least two critical security 
vulnerabilities (Arxan, Inc., 2016). Our study of 557 randomly collected apps with at least 
one million installations reveals that 375 apps (67.3%) had at least one vulnerability (Qian 
et al., 2015). There are many potential reasons for this embarrassing situation, such as short 
development cycles, lack of security awareness, insufficient security development guidelines.

In this chapter, we survey the vulnerabilities found in Android apps by collecting vulner-
ability reports from many sources, such as common vulnerabilities and exposures (CVE), 
because Android has occupied more than 80% of global market. Besides introducing major 
vulnerabilities in Android apps, we model how to discover them as graph traversals so that 

1 http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
2 http://www.pocketgamer.biz/metrics/app-store/
3 http://venturebeat.com/2016/02/10/the-app-economy-could-double-to-101b-by-2020-research-firm-says/

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.pocketgamer.biz/metrics/app-store/
http://venturebeat.com/2016/02/10/the-app-economy-could-double-to-101b-by-2020-research-firm-says/
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VulHunter (described in Section 2.3) can use them to check whether an app has such vulner-
abilities. Note that VulHunter uses Android property graphs (APGs) to represent apps and 
store them in the graph database. We also review the approaches for discovering various 
vulnerabilities in apps, which could leverage static analysis or dynamic analysis or the hybrid 
approach. Moreover, we discuss the limitations of existing approaches and suggest future 
directions of research (Heelan, 2011).

The chapter is organized as follows: Section 2 gives an introduction to the taxonomy of vul-
nerabilities in Android apps and the architecture of VulHunter. We introduce and model vari-
ous common vulnerabilities in Section 3. Section 4 reviews existing approaches for discovering 
vulnerable apps and Section 5 discusses their limitations. We conclude the paper in Section 6.

2  BACKGROUND

2.1  Security Mechanisms of Android

We introduce three security mechanisms that are closely related to major vulnerabilities in 
apps: process sandbox, permission mechanism, and signature mechanism. There are other im-
portant security mechanisms in Android, such as interprocess secure communication mecha-
nism, memory management mechanism, system partitions, and loading mechanism. Interested 
readers can refer to the relevant papers (Enck et al., 2009; Drake et al., 2014) for details.

Process sandbox. Android’s process sandbox mechanism achieves a separation between 
apps. It creates a Dalvik virtual machine (DVM) instance for each app and grants a UID as the 
identification in the app installing process. In the Linux kernel, UID acts as the identification 
for different users. By default, different apps are separated. If they need to visit each other 
directly, they can set their SharedUserID to the same value.

Permission mechanism. Android’s permission mechanism defines whether the app has 
the ability to access protected APIs and resources. The main functionalities of the permission 
mechanism include: permission confirmation during installation, permission check, permis-
sion use, and permission management during execution. A permission statement includes the 
permission name, the group it belongs to, and the protection level, which includes normal, 
dangerous, signature, signature or system. Developers can declare permissions required by 
the app through <uses-permission> tag in AndroidManifest.xml.

Signature mechanism. All apps must be signed with a private key before being released. 
The signature can be used to confirm the identity of developers, to test whether an app has any 
changes, and to establish a trusted relationship between two apps. Signature methods are divided 
into debug mode and release mode. The signature in debug mode is used for program testing 
during development, and the signature in release mode is used for publishing apps to markets.

2.2  Taxonomy of Android App Vulnerability

We have made a collection of 242 Android vulnerabilities, which have detailed information 
from many sources such as, vulnerability databases, security communities, and so on. After 
analyzing these vulnerabilities according to CERT Secure Coding Standards (CERT, 2015) 
and the OWASP’s Mobile Security Project (OWASP, 2015), we classify the 242 vulnerabilities 
into 20 categories, as shown in Fig.  1, and number them M1-M20 (M20 can be negligible, 
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because its number is very small). It is worth noting that M1-M8 are based on OWASP Mobile 
Risk Top10. Fig. 2 depicts the distribution of these vulnerabilities. It shows that most of the 
reported vulnerabilities result from poor authorization and authentication as well as unin-
tended data leakage.

2.3  VulHunter

We proposed and developed Vulhunter to discover common vulnerabilities in Android 
apps (Qian et al., 2015). Given an app, Vulhunter will turn its dex file into an APG which 
integrates the abstract syntax tree (AST), interprocedure control-flow graph (ICFG), method 
call graph (MCG), and system dependency graph (SDG) of the app, and is stored in a graph 

Name NameVulnerability Name Vulnerability Name

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

Weak server side controls

Insecure data storage

Insufficient transport layer protection

Unintended data leakage

Poor authorization and authentication

Broken cryptography

Client side injection

Security decisions via untrusted inputs

Webview vulnerability

Linux kernel driver vulnerability

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

Linux kernel universal vulnerability

Program logic design flaw

Signatures vulnerability

Code execution vulnerability

Malicious application behavior vulnerability

Mobile terminal web vulnerability

Applications communications vulnerability

Configuration error vulnerability

Denial of  service vulnerability

others

FIG. 1  Taxonomy of Android vulnerability.
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database. Moreover, we model five common vulnerabilities as graph traversals and perform 
them over APGs to determine whether an app is vulnerable. We have demonstrated in Qian 
et al. (2015) how to discover syntax level, control flow level, and data flow level vulnerabil-
ities. In this chapter, we will cover more vulnerabilities and model how to identify them as 
graph traversals following (Qian et al., 2015). For ease of explanation, we will use the follow-
ing symbols in this chapter: 

(1)

(2)

(3)

where, 

•	 MATCHlabel
p  represents matching nodes with label label and properties p.

•	 ARG(N)i indicates traversing from Invoke-Stmt node N to get its ith argument.
•	 N R Ntype

p len1 2- ®[ ]  denotes a path from node N1 to node N2. The path is connected by 
relationship type with length of len, which can be omitted if it equals 1.

3  MODELING COMMON VULNERABILITIES

3.1  Insecure Data Storage

Sensitive information disclosure on external storage. If an app calls openFileOutput() but 
the second parameter is not set to Context.MODE_PRIVATE, this vulnerability may happen 
depending on whether the file is encrypted. To locate the suspicious code, we can conduct the 
following graph traversals: 

(4)

where p2 refers to openFileOutput and p3 indicates the constant parameter node 
MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE. This graph traversal first locates 
the statement which invokes openFileOutput and then checks its second parameter. If the 
parameter in the AST tree is p3, the app may have such vulnerability.

3.2  Insufficient Transport Layer Protection

SSL/TLS trusts all certificates. When using SSL, if the app invokes setHostnameVerifier() 
with the parameter ALLOW_ALL_HOSTNAME_VERIFIER, this vulnerability exists, which 
could make the app vulnerable to the MITM (man-in-the-middle) attack. To detect the prob-
lematic code, we can use the following graph traversals: 

(5)

where p1 represents setHostnameVerifier and p2 denotes ALLOW_ALL_HOSTNAME_
VERIFIER. This graph traversal first matches the statements which invoke method p1, and 
then checks whether its first parameter in the AST tree matches p2. If so, the vulnerability exists.

MATCHlabel
p ;

ARG N i( ) ;

N R Ntype
p len1 2- ®[ ] ,

MATCH ARG N MATCHast
p

stmt
p3

2
2� �( ) ,

MATCH ARG N MATCHast
p

stmt
p2

1
1� �( )
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3.3  Unintended Data Leakage

Log sensitive information disclosure. If an app uses one of the following methods to save 
sensitive information: Log.d(), Log.e(), Log.i(), Log.v(), Log.w(), such a vulnerability may ex-
ist, because when the terminal is connected to the PC, Log information can be accessed. To 
detect such a vulnerability, we can use the following graph traversal: 

(6)

where p1 denotes sink functions, such as Log.i(), Log.d(), and p2 refers to source functions 
that collect sensitive information, such as getDeviceID(). If there exists a path from source 
functions to sink functions, the vulnerability may exist. The edges on this path have a data 
dependency relationship.

3.4  Poor Authorization and Authentication

Exposed components (e.g., contentProvider, service). In the <provider> or <ac-
tivity> tag of AndroidManifest.xml, if there is not the android:exported="false" statement 
for apps that set either android:minSdkVersion or android:targetSdkVersion to a 
value less than 17 or if the value of the statement is true, such a vulnerability may exist.

Intent leakage or tampering caused by permission granting. If there is an implicit in-
tent broadcasting method call and there is a permission statement with a property value of 
FLAG_GRANT_WRITE_URI_PERMISSION or FLAG_GRANT_READ_URI_PERMISSION, 
then such a vulnerability may exist. To locate the suspicious code, we can use the following 
graph traversal: 

(7)

(8)

where p1 refers to Context.sendBroadcast(), p2 denotes intent.addFlags(), and p3 indicates 
FLAG_GRANT_WRITE_URI_PERMISSION. After finding the statements that call Context.
sendBroadcast(), we check the intent initialization function intent.addFlags(). If any of them 
uses FLAG_GRANT_WRITE_URI_PERMISSION as a parameter, this vulnerability may exist.

3.5  Broken Cryptography

Weak AES encryption mode. AES encryption is initialized using javax.crypto.Cipher. If 
an app uses the ECB mode, the same plaintext will lead to the same ciphertext, which is 
vulnerable to dictionary attacks. We could use the following graph traversal to identify the 
corresponding problematic code: 

(9)

(10)

where p1 refers to Ciper.getInstance and p2 denotes AES/ECB/PKCS5Padding. We first iden-
tify the statements that call Ciper.getInstance, and then check whether their first parameter is 
AES/ECB/PKCS5Padding. If so, the vulnerability may exist.

MATCH R MATCHstmt
p

SDG stmt
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Data
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MATCH R MATCHstmt
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Data
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3.6  Webview Vulnerability

WebView malicious code execution. Such vulnerability exists in the system with API level 
less than 17. If the method webView.addJavascriptInterface() is called, and the applicable 
versions of the app in AndroidManifest.xml are not limited to API level 17 or above, the vul-
nerability may exist. We can use the following graph traversal to identify the vulnerable code: 

(11)

where p1 denotes webView.addJavascriptInterface. After finding a statement that invokes this 
method, we check whether the minSdkVersion in manifest file is less than 17. If so, the vul-
nerability may exist.

3.7  App Communication Vulnerability

Content disclosure of implicit Intent broadcast. Intent is used for exchanging information 
between components in the same app or between apps. Note that using implicit Intent broad-
cast may lead to the disclosure of Intent contents. More precisely, if there is an invocation of 
the implicit Intent broadcasting method Context.sendBroadcast(), it will cause this problem. 
Therefore we can easily identify this issue using the following graph traversal: 

(12)

where p1 denotes Context.sendBroadcast().

3.8  Configuration Error Vulnerability

Information disclosure due to the incorrect setting. Before releasing an app, the devel-
oper should ensure that the app is not debuggable in AndroidManifest.xml (android:debug-
gable="false"). Otherwise, such a vulnerability may exist.

4  DISCOVERING VULNERABILITIES

In this section, we review mechanisms for discovering vulnerabilities. They can be classi-
fied into three categories: static analysis-based methods, dynamic analysis-based methods, 
and hybrid methods. The static analysis-based methods usually investigate the Dalvik byte-
code in the dex file or the Java class files converted from the dex file without running the app. 
The dynamic analysis-based methods commonly execute the app and monitor its behaviors, 
based on which vulnerabilities could be identified. Since both static analysis and dynamic 
analysis have their pros and cons, researchers propose hybrid methods that leverage the ad-
vantages of static and dynamic analysis.

4.1  Static Analysis-Based Approaches

Grace et al. studied the vulnerability of capability leaks, which belongs to M5 in Fig. 1, 
and developed a static analysis-based detection tool named Woodpecker, which could 

MATCHstmt
p1

MATCHstmt
p1
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discover both explicit and implicit capability leaks (Grace et al., 2012). Woodpecker builds 
CFGs of apps and then leverages the CFGs to determine whether there is privilege leakage. 
Specifically, for the explicit capability leakage, it inspects the preinstalled apps in the system 
by checking whether their components are exposed. If so, it conducts further path analysis to 
determine whether the leakage exists. For the implicit capability leakage, it checks each app’s 
sharedUserId in Manifest. If it is used, this app’s capability in terms of requested permissions 
is exposed to the apps with the shared UID.

Wei et al. proposed and developed Amandroid (Wei et al., 2014), a static analysis frame-
work, for detecting intercomponent communication vulnerabilities, which include those in 
M4 and M17 in Fig. 1. More precisely, given an app, it first turns the Dalvik bytecode into 
intermediate representation (IR) and then constructs the IDFGs (intercomponent data flow 
graph) and DDGs (data dependence graph). After that, Amandroid looks for potential vul-
nerabilities from IDFGs and DDGs, including data leakage, data injection, and APIs misuse. 
Note that when building IDFGs, Amandroid computes the point-to information for all objects 
and fields in order to find the target of intent precisely.

Lu et al. developed CHEX (Lu et al., 2012) to identify component hijacking vulnerabilities, 
which cover those in M4, M5, and M7 in Fig. 1, such as permission disclosure, unauthorized 
data acquisition, intent deception, etc. CHEX employs data flow summaries to model the ex-
ecution of entry points, and utilizes data flow analysis based on data dependency graphs to 
locate hijacking vulnerability. They further enhanced CHEX by proposing AAPL (Lu et al., 
2015) to detect privacy leakage vulnerabilities. AAPL can reduce false positives. It combines 
a variety of static analysis methods, including opportunistic constant evaluation, object or-
igin inference, and joint flow tracking, to detect more invisible data flows. Furthermore, 
AAPL employs a new approach called peer voting to filter out most of the legitimate pri-
vacy disclosures from the results, purifying the detection results for automatic and easy 
interpretation.

Gordon et al. proposed DroidSafe (Gordon et al., 2015) for statically detecting the apps’ 
data stream related vulnerabilities, which include those in M4 in Fig. 1. DroidSafe creates 
models for 117 classes in the Java standard library as well as the Android library, Android 
runtime, and apps hidden state maintained by the Android runtime. It makes global resolu-
tion of Intent and Uri, and traces IntentFilter. By analyzing the sensitive data flows in apps, 
DroidSafe establishes the data flow graphs from sources to sinks. DroidSafe has covered all 
possible forms of communication to ensure a high coverage. Experimental results show that 
compared to other methods, DroidSafe increases the detection rate of sensitive data flow by 
about 10%.

Cao et  al. designed and realized EDGEMINER (Cao et  al., 2015) to address the is-
sue of implicit control flow transitions through the Android framework. It analyzes the 
Android framework and constructs the call graphs to find potential callbacks. By us-
ing backward data flow analysis to identify registration-callback pairs, EDGEMINER 
outputs framework summary and then employs other static analysis tools for further 
analysis of apps.

Fahl et al. developed MalloDroid (Fahl et al., 2012) for studying the MITM vulnerability in 
Android apps. This tool can be integrated into the app market or installed in the user’s mobile 
device. MalloDroid will inspect apps during installation. If it identifies potential SSL MITM 
vulnerability in an app, users will be alerted.
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4.2  Dynamic Analysis-Based Approaches

Xing et al. discovered the severe vulnerability relevant to Android’s upgrading mecha-
nism. In particular, malware that lurks in the lower version system could get privilege rights 
after the system upgrades, then get access to users’ data privacy. To spot such a vulnerabil-
ity, the authors have developed the detection tool named SecUP. It constructs a database for 
saving exploit entry points and has a scanner for vulnerability identification. The detection 
module has constraint rules for determining the existence of vulnerabilities.

Wang et  al. investigated the mobile-end same-origin policy (SOP) bypass vulnerabil-
ity (Wang et al., 2013), and proposed a detection mechanism named Marbs. This system 
marks the source of information for each communication message and strengthen the SOP 
strength. The core of Marbs includes setOriginPolicy and checkOriginPolicy, which are im-
planted into DVM thread. SetOriginPolicy is open to all apps, and checkOriginPolicy is for 
the system kernel.

Wu et al. investigated the security impact of vendor customization on the Android system 
(Wu et al., 2013) and designed a system named SEFA to detect potential vulnerabilities. SEFA 
consists of three parts: including provenance analysis, permission usage analysis, and vulner-
ability analysis. First, it conducts provenance analysis, classifying the system apps into three 
categories, namely AOSP native applications, vendor-specific apps, and third-party apps. 
Then it performs the authorization analysis on the apps in order to check whether sensitive 
permissions are used. Finally, it checks whether there are redelegation vulnerabilities and 
privacy disclosure vulnerabilities.

Schrittwieser et  al. studies the vulnerabilities in mobile messaging and VoIP apps 
(Schrittwieser et al., 2012). By conducting dynamic testing, it found vulnerabilities in VoIP 
and message apps’ authentication mechanisms. The vulnerable apps make the user’s phone 
number as the only certification basis, triggering a series of safety risks, such as account hi-
jacking, spoof sender-IDs, and enumerating subscribers.

Hay et al. examined the IAC (Inter-Application Communication) vulnerability (Hay et al., 
2015) and developed a new system named INTENT-DROID. It triggers sensitive APIs by 
constructing and sending probe intents. The externally observable indications are used to 
validate the test. The experimental result shows that INTENT-DROID can find a lot of IAC 
vulnerabilities in apps.

4.3  Hybrid Approaches

Sounthiraraj et al. investigated the SSL MITM vulnerability (Sounthiraraj et al., 2014). It 
first conducts static analysis to identify apps that may have such a vulnerability by examining 
the implementation of X509TrustManager and HostNameVerifier. More precisely, it identi-
fies key entry points and builds the input function set for the next phase of dynamic trigger 
detection. Then, it applies UI automation to the key entry points of windows for triggering 
HTTPS communications, whose traffic will go through the MITM proxy. At the same time, 
the log of dynamic analysis will be recorded and used to determine whether the SSL MITM 
vulnerability exists.

Bhoraskar et al. developed Brahamstra (Bhoraskar et al., 2014) for detecting third-party 
component vulnerabilities in apps. It addresses the weakness of existing GUI testing tools 
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and can efficiently locate the triggering points of third-party libraries. First, the Execution 
Planner constructs page transition graphs to find execution paths to third-party libraries 
through static analysis. Then, the Execution Engine triggers apps in the simulator following 
the executable paths. Finally, the Runtime Analyzer captures and records running apps’ oper-
ating status to determine whether there are third-party library vulnerabilities. To improve the 
speed of execution engine, Brahmastr rewrites app binaries to insert code that automatically 
invokes the callbacks triggered by the user.

Zhou et al. examined two types of vulnerabilities related to content providers, including 
passive content leakage and content pollution (Zhou and Jiang, 2013). They developed a de-
tection tool named ContentScope. It firstly filters out apps that do not have exported content 
providers. Then, ContentScope determines the vulnerable apps by traversing the path from 
public content provider interface to the low-level database-operating routines in control flow 
graph. It will conduct dynamic analysis to confirm the vulnerability in apps.

5  DISCUSSION

5.1  Limitations in Static Analysis-Based Methods

By analyzing the bytecode instead of executing the app, static analysis may quickly locate 
problematic codes and achieve high code coverage. However, it suffers from several limita-
tions. First, since it does not run the app, it is difficult to investigate codes using dynamic lan-
guage features. For example, Java reflection is widely used in many apps, but it is challenging 
to investigate it in a precise and scalable manner (Smaragdakis et al., 2014). Moreover, apps 
could use dynamic class loading to dynamically extend its functionality. Static analysis can-
not examine the dynamically loaded class if it is on the remote server. Besides using dynamic 
language features, more and more apps will employ the hardening services (or packing ser-
vices) to protect themselves (Zhang et al., 2015b). Note that the dex file in the packed app 
does not contain the app’s major functionalities, thus impeding static analysis.

Second, UI components can be dynamically added, and they will usually react to certain 
events, such as user input. Without executing the app, static analysis may miss such dynamic 
UI components and/or the reactions to certain events (Rountev and Yan, 2014; Shao et al., 
2014). Third, the callback mechanism provided and orchestrated by the Android framework 
introduces challenging issues to static analysis (Cao et al., 2015), such as how to trace the 
information flow through the Android framework, etc. Note that the majority of existing 
studies just focus on apps, and they will be affected by the issues introduced by the Android 
framework. Fourth, there are still many open problems in static program analysis, such as 
pointer analysis, implicit flow analysis, and concurrent program analysis, to name a few 
(Hind, 2001). Moreover, given more than two million apps, how to quickly spot vulnerable 
apps is non-trivial.

5.2  Limitations in Dynamic Analysis-Based Methods

Since dynamic analysis executes apps, it has a high accuracy rate and will not be affected 
by hardening services. However, it also has some limitations. First, the code coverage rate of 
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dynamic analysis is low because it will take a very long time to execute all paths. Second, many 
existing dynamic analysis methods use emulator (e.g., QEMU) for analyzing apps. However, 
emulators may not support all features in a real smartphone, such as various sensors, USB, etc. 
Furthermore, a number of approaches for detecting emulator have been proposed (Jing et al., 
2014), which may render many existing approaches useless. Third, the majority of existing 
approaches do not handle implicit flows. Note that tracking implicit flows could reveal more 
security vulnerabilities. However, it is challenging to track implicit flows (King et al., 2008).

5.3  Future Directions

Based on the above analysis, we list a few future directions to stir up research efforts into 
this important area. First, since static analysis and dynamic analysis have their own advan-
tages and disadvantages, it is a promising approach to combine them together. For example, 
static analysis can quickly locate suspicious codes, guide the fuzzing test, generate GUI test 
cases, etc. Dynamic analysis can track the information flows, handle dynamic language fea-
tures, etc. Second, since more and more apps employ various obfuscation and hardening tech-
niques to protect themselves from being reverse engineered and analyzed, such techniques 
also make the detection of vulnerability more difficult. How to effectively and efficiently re-
cover the original dex file is an interesting research problem. Third, although we summarize 
a number of vulnerabilities, there is a lack of formal approaches to represent them. Moreover, 
methods for discovering new vulnerability patterns are desirable. Leveraging machine learn-
ing techniques and incorporating more information in addition to code (Zhang et al., 2015a) 
would be a promising approach.

6  SUMMARY

In this chapter, we survey the vulnerabilities found in Android apps by collecting vulner-
ability reports from many sources, such as CVE. Besides introducing major vulnerabilities in 
Android apps, we model how to discover them as graph traversals following the definition 
in VulHunter Qian et al. (2015). We also review the approaches for discovering various vul-
nerabilities in apps, which could leverage static analysis, dynamic analysis, or the hybrid 
approach. Moreover, we discuss some limitations in existing approaches and suggest future 
directions of research.
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1  INTRODUCTION

Smartphones are popular for both personal and corporate use, and they are becoming the 
new personal computer due to their portability, ease of use, and functionality (e.g., video 
conferencing, Internet browsing, email correspondence, persistent wireless and data connec-
tivity, worldwide map location services, and countless mobile apps). It is, therefore, not sur-
prising that the number of smartphone devices reached 336 million units worldwide, which 
was an increase of 19.3% in the first quarter of 2015. Continued growth is expected through-
out 2015 and 2016, particularly for devices running Android operating system (OS). The lat-
ter's worldwide market share is 78.9% at the end of the first quarter 2015. With a majority of 
the smartphone market share worldwide, the Android OS also surpassed a billion shipments 
of devices in 2014 (Rivera and Goasduff, 2015; Rivera and van der Meulen, 2015).

Given the flexibility and ease of operation that mobile OS permits, hardware manufac-
turers are able to develop faster and more powerful devices that incorporate a wide range 
of functionalities for everyday use; for example, larger display screens, integrated browsing, 
media support for video, audio and images, a gyroscope and other real-world sensors, access 
to Global System for Mobile Communications (GSM), Enhanced Data for GSM Evolution 
(EDGE), 3G, 4G Long-Term Evolution (LTE) data, Bluetooth, Wi-Fi, a built-in digital camera, 
and Global Positioning System (GPS) components.

Vulnerabilities in hardware and software functionalities can, however, be exploited by crim-
inals. Examples include “phishing” attacks facilitated by mobile apps, such as instant messag-
ing apps (see Chu et al., 2013). Apps can be designed to provide access to sensitive user data 
(e.g., contact lists and geolocation information) should the permissions be granted by the user. 
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Unfortunately, with the openness and widespread adoption of the Android OS, the platform is the 
most targeted of the four popular mobile platforms by malware authors (Symantec Corporation, 
et al., 2014; APWG, 2013). Another recent study of mobile malware, for example, reported that 
“Android devices are currently the most targeted, accounting for 60% of the infections observed 
in the mobile network” (Alcatel-Lucent, 2013, p. 7), and examples of mobile malware targeting 
Android devices including Android.Ackposts, a malicious mobile app (also known as “Battery 
Long”) designed to steal personal data from a compromised device and upload details to a re-
mote server, were detected (Symantec Intelligence, 2012). Other malware includes short message 
service (SMS) Trojan viruses, false advertising modules that contain malware, and sophisticated 
web-based malware that use various exploits in order to gain root access.

In this chapter, we investigate the effectiveness and reliability of 15 popular free antimobile 
malware apps in detecting malware on three Android devices running three different Android 
flavors, namely KitKat (4.4.x), Jelly Bean (4.1.x), and Ice Cream Sandwich (4.0.x). Two newer 
Android flavors were also taken into consideration, specifically Lollipop (5.x), which was re-
leased in late 2014, and Marshmallow (6.0), which was released in late 2015. However, the 
relative number of devices running Lollipop (23.5% distribution) and Marshmallow (distri-
bution not currently available) were considerably lower than that of earlier versions, such 
as KitKat, where distribution is 38.9% (Dashboards as of Oct. 11, 2015, Android Developers 
Dashboards, 2015). Along with higher distribution across multiple devices, KitKat, Jelly Bean, 
and Ice Cream Sandwich demonstrate enough history and stability for this study, whereas 
Lollipop and Marshmallow would have too much flux and unknown variables; thus they 
were not included within this study and are subject to further analysis. This is, to the best of 
our knowledge, the first academic systematic study that has been conducted through a manual 
experiment process of 15 popular free antimalware apps for Android devices. Our findings 
will contribute to a better understanding of the effectiveness and reliability of such apps for 
Android devices, and it potentially serves as a guide for future antimalware app developers.

The chapter is organized as follows: In Section 2, we present an overview of Android OS 
and app security and describe the malware threats and existing countermeasures. Our exper-
iment setup and findings are presented in Sections 3 and 4, respectively. Section 3 outlines the 
experiment process in detail, in which 15 popular free antimalware apps are measured against 
a suit of 15 known malware samples. Each test will be performed manually to replicate a 
day-to-day user who unknowingly installs a malicious app. The results will hopefully demon-
strate the effectiveness and reliability of how well the antimalware app performed. After the 
experiment process, Section 4 outlines the findings of all the test results against their respective 
metric values, which allow for possible analysis of particular performance issues and their 
improvements. The last section concludes this chapter and discusses future research topics.

2  AN OVERVIEW OF ANDROID

2.1  The Android OS

2.1.1  System Framework and Architecture

A major advantage of the Android OS is that it is part of the Open Handset Alliance (OHA) 
consortium, which provides flexibility for device manufacturers and software and app de-
velopers, as the environment has fewer restrictions and compatibility issues across multiple 
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hardware devices. The core building blocks of the Android software platform, which is based 
on the open-source Linux OS and uses the Linux Kernel, have been modified specifically for 
smartphones (Nimodia and Deshmukh, 2012).

The Android OS system architecture comprises five main architecture layers, each with 
its own functionality and benefits for interoperability across different devices (Fig. 1). The 
Linux Kernel is the first layer, residing at the bottom of the architecture. It is considered 
to be the core layer, as it includes all physical-level operations, such as hardware device 
drivers. The remaining layers build on the Linux Kernel and perform their own functions. 
The second layer is Libraries, where native libraries are developed in C/C++ to ensure 
smooth OS functionality when accessing multiple apps at once. Additional features fa-
cilitate Internet-related functions and data storage, such as web browsing (Nimodia and 
Deshmukh, 2012).

The third layer is the Android Runtime (ART). This layer uses Java programming and op-
erates its own virtual environment, Dalvik Virtual Machine (DVM), for developing Android 
apps. Application Framework is the fourth layer and comprises several individual compo-
nents that manage various application frameworks, such as built-in default apps, including 
email and a web browser (e.g., open-source WebKit browser or Chrome in later versions). 
Due to the many components and its functionality, this is one of the main layers within the 
Android system framework (Nimodia and Deshmukh, 2012).

Finally, Applications is the fifth layer. This represents the top of the architecture, and it is 
where app downloads and installs are located (Nimodia and Deshmukh, 2012). These five 
layers make up the overall Kernel, and assist with the operation and functionality of the 
Android OS architecture as a whole.
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FIG. 1  Android OS system architecture. Adapted from Android Platform Security Architecture, Android software stack, 
viewed 28 June 2014. https://source.android.com/devices/tech/security/index.html#android-platform-security-architecture.

https://source.android.com/devices/tech/security/index.html#android-platform-security-architecture
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Although these five underlying layers give Android OS immense development capabili-
ties and allow developers to produce a variety of features and variables in their apps, security 
measures must be considered in order to help protect hardware devices, network resources, 
and software design, such as ensuring the security and privacy of user data and avoiding the 
exploitation of app privileges.

2.1.2  Security Architecture

Within the Linux Kernel, there are a number of security features in place throughout each 
of the five layers that have their own functions but work together by layering on top of each 
other to provide a security model. This enables the Android OS to become more secure and 
restrict access to core file system activities and storage locations, such as root system files. 
Some of these features include the following:

Linux Kernel—The fundamental purpose of the Kernel is a user-based permission model. 
Key security features include device encryption to prevent unauthorized access, inde-
pendently isolating processes, the ability to remove unsecured or unnecessary sections of 
the kernel, and allow integration between the additional system layers. The Linux Kernel 
also refers to file system permissions, which isolate resources from one another; for example, 
preventing User A from altering User B's files. The Linux Kernel also provides an application 
sandbox environment within the libraries and ART layer (Vargas et al., 2012).

Libraries and ART—A primary security feature of the Android OS is the application sand-
box environment, where the Linux Kernel enforces security between apps and the system so 
they are unable to interact with each other. This effectively isolates resources and data files 
from other apps by assigning each installed app a unique user ID (UID) and a group ID (GID). 
As in the example above, User A will not have the level of permission to alter User B's files 
(Vargas et al., 2012). 

Application communication—As the security between apps and resources is isolated by de-
fault, interapp communication is possible by way of the application communication feature 
that uses an Inter-Process Communication (IPC) mechanism. Although there are additional 
functionalities with how IPC interacts, the basic principle is to gather the two main sections 
of information, one from the receiving end and one from where data shall be passed, which 
allows purposeful interaction (Ongtang et al., 2012).

Application permissions: Any installed app must have a digital signature, or security cer-
tificate, that validates the legitimacy of an app and confirms the app developer's details. As 
the user can verify the details of an app and review permissions, this minimizes the security 
risk of downloading and installing fake apps. Essential information about the permissions of 
an app can be found in the AndroidManifest.xml file, which is located in the root directory. 
This is an important security consideration because when an app is downloaded and the user 
accepts the permissions shown on the screen, a check can be made to verify these permissions 
through the AndroidManifest.xml file (Vargas et al., 2012; Pieterse and Olivier, 2012).

Although the Linux Kernel has different security features for each layer, these features 
have not been used in all version releases of the Android OS. New versions are becoming 
more frequent as development continues, contributing to the software improvements out-
lined in Table 1. For example, earlier Android versions, such as 2.3 (Gingerbread), have a 
less advanced security model compared with that of newer versions, such as 4.3 (Jelly Bean). 
Unfortunately, earlier OS versions on older hardware devices will not receive any software 
updates, as a hardware upgrade is required. This is mainly due to improved hardware and 
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TABLE 1  Android Version History as of Oct. 11, 2015 (Amadeo, 2014; Android Developers Dashboards, 2015)

OS Name Version
Release 
Dates

Application 
Programming 
Interface (API) Distribution Key Features and Improvements

n.a. 1.0 Sep. 2008 – – Initial release of Android with full 
handset functionality and features such 
as Android Market, Google Maps/
Calendar/Contacts, Short Message 
Service (SMS)/Multimedia Messaging 
Service (MMS), telephony, web browser, 
email, video, camera, Wi-Fi, and 
Bluetooth capability

n.a. 1.1 Feb. 2009 – – Maintenance release to 1.0 and device 
hardware

Cupcake 1.5 Apr. 2009 – – Uses Linux Kernel 2.6.27; additions 
include screen rotation, various widget 
support, enhanced animation, predictive 
text and soft keyboard, browser update, 
Picasa introduction, and YouTube video 
uploads

Donut 1.6 Sep. 2009 – – Uses Kernel 2.6.29; faster searching, 
picture and video gallery, battery 
indicator, text-to-speech, and new API 
framework

Eclair 2.x Oct. 2006–
Jan. 2010

– – Uses Kernel 2.6.29; introduces the use 
of multiple accounts, Google Maps 
navigation, calendar and contacts 
sync with Gmail/Exchange, HTML5 
support, live wallpaper, additional APIs 
introduced, and optimized hardware

Froyo 2.2.x May 2010–
Nov. 2011

8 0.7% Uses Kernel 2.6.32; improved 
performance, Java process improvement 
in DVM, Chrome, tethering, wireless 
access point (WAP), Adobe Flash, cloud-
to-device messaging (C2DM), data access 
control, and additional user interface 
frameworks

Gingerbread 2.3.x Dec. 2010–
Sep. 2011

10 13.5% Uses Kernel 2.6.35; introduces near field 
communication (NFC), control battery 
usage for apps, front and rear camera, 
SIP telephony, native development 
environment, Google Talk video chat, 
overall enhanced performance for screen, 
video, and audio

Continued
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TABLE 1  Android Version History as of Oct. 11, 2015 (Amadeo, 2014; Android Developers  
Dashboards, 2015)—cont’d

OS Name Version
Release 
Dates

Application 
Programming 
Interface (API) Distribution Key Features and Improvements

Jelly Bean 4.3.x Jul. 2012–
Jul. 2013

18 9.0% Based on Kernel 3.0.31; introduces 
Google Now, keymaps, multiple user 
and onscreen support, Google Cloud 
Messaging (GCM), OpenGL ES 3.0 
support for game graphics, filesystem 
write performance, security and 
performance enhancements, developer 
logging, and analysis

4.2.x 17 19.7%

4.1.x 16 27.8%

KitKat 4.4.x Oct. 2013–
Jun. 2014

19 17.9% Uses Kernel 3.4.0; various user interface 
changes, wireless printing, a new storage 
access framework, more synchronization 
between accounts and Google+, further 
security enhancements, bug fixes, and the 
new runtime virtual machine called ART 
which, although not enabled by default, 
will eventually replace DVM for increased 
performance and battery life

Lollipop 5.0 Oct. 2014 21 15.6% The Dalvik DVM has been replaced 
with a newer ART virtual machine, with 
ahead-of-time (AOT) compilation and 
64-bit processor support. Lock screen 
no longer support widgets but provides 
application and notification support, guest 
and multiple user accounts, Tap and Go 
quick data transfers and migration to new 
devices, device protection improved for 
lost or stolen—device stays locked until 
Google account sign in, even if device has 
been factory reset

5.1 Feb. 2015 22 7.9%

Marshmallow 6.0 Oct. 2016 23 n.a Key features include fingerprint 
authentication, confirm credential 
(time out app protection and password 
authentication based on use), App Linking 
(associate an app with a web domain), 
Auto Backup for Apps (full backups and 
app restores), Direct Share (share data 
with other users through apps, such as 
social media, more intuitively), Voice 
Interactions with apps, Android for Work 
(silent app installs, enterprise owned 
devices, and further control over device 
such as security certificate control)



	 2  An Overview of Android	 173

OS capabilities, where added software and security features have been introduced to support 
changes (Vargas et al., 2012). By not upgrading the hardware, users are unable to upgrade 
their Android OS and therefore become more susceptible to malicious attacks.

Android version history, distribution, and key features and improvements throughout the 
various release dates are represented in Table 1 (Android, Developers Guide, 2014; Android 
Dashboards, 2015).

In addition to the Linux Kernel security architecture, we need to consider environmental 
and physical factors when it comes to the security of an Android OS smartphone. These fac-
tors include the Memory Management Unit (MMU), which is a hardware prerequisite com-
ponent that handles the memory and cache of a smartphone. This means the device needs 
sufficient internal memory to carry out processes. The MMU is important to the Linux Kernel, 
as it assists in the separation of processes and reduces access privileges. Type Safety is a sec-
ond factor to consider. It is a programming language that prevents discrepancies between 
programming variables and enforces a standard code format, therefore preventing conspic-
uous code from being executed. A final factor to consider is the Mobile Carrier/Network 
Operator, where authentication of the Subscriber Identity Module (SIM) and associated pro-
tocols adhere to the mobile network's basic security principles. This helps to avoid intrusion, 
which can target user identification, voice and data charges, and monitoring (Shabtai et al., 
2010). For example, in Sep. 2014, fake mobile phone towers were reportedly discovered in the 
United States that could give those who were in control of the towers “the ability to attack 
mobile phones through eavesdropping and installing spyware” (Sky News, 2014).

2.1.3  Vulnerabilities

Having an open-source OS encourages rapid development because multiple developers 
can identify vulnerabilities in the OS and prepare patches to fix the identified vulnerabilities 
to avoid widespread exploitation of such vulnerable devices.

The core layers for potential vulnerabilities were discussed above (Linux Kernel plat-
form, the open-source OS, and third-party apps), thus emphasizing that understanding the 
Android OS security architecture will assist in mitigating vulnerabilities in core apps and ser-
vices. However, hardware resources may also be affected and include a number of additional 
vulnerabilities. Hardware resources at risk may include battery power, memory and central 
processing unit (CPU) resources, removable storage media, and cameras. For example, the 
contents of a secure digital (SD) card have no security measure in place, thus allowing private 
content to be exploited (Shabtai et al., 2009).

Although the impact of vulnerabilities depends upon the type of threat, a standard (non-
modified and nonrooted) Android OS is typically well protected because the core compo-
nents of the Linux Kernel cannot be replaced. However, source code, such as framework, 
DVM, and the native libraries, can be modified, thus increasing the risks of vulnerabilities. 
For example, previous studies have highlighted a number of poorly designed and insecure 
mobile apps that request excessive and unnecessary permissions and, consequently, increase 
the security risk (Shabtai et al., 2009). In a more recent work, Choo and D’Orazio (2015) iden-
tified vulnerabilities and design weaknesses in the Australian Government Medicare Express 
Plus app for iOS devices, which allows an attacker to expose the device user's sensitive data 
and personally identifiable information (PII) stored on the device. Due to the time lag be-
tween the discovery of a vulnerability and the availability of an update or patch, users of 
affected devices are vulnerable to attacks (Husted et al., 2011).
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2.1.4  Rooted Android Devices

Rooting an Android device is a process that allows a user to obtain root privileges, allow-
ing them to easily interact with the OS and make changes to the device. Such changes include 
interface customizations, unlocking hidden features, installing the latest OS releases, and re-
moving software preinstalled by hardware manufacturers. Rooted devices also allow third-
party app installations that offer additional features not supported by nonrooted Android 
smartphones, such as apps that tweak the battery life, speed, and performance of a smart-
phone (Liebergeld and Lange, 2013).

While the rooting process removes existing restriction and allows more flexibility, it may re-
sult in additional security risks, as malicious apps may be able to bypass the device's built-in 
security measures. For example, third-party apps having root access to the device would be able 
to interact directly with the device and system files and therefore be able to access information on 
the device that includes private and sensitive data. Third-party apps that have root access may 
also modify files and/or disable the device, rendering it unusable (Liebergeld and Lange, 2013).

2.2  Android Application Security

2.2.1  App Permissions

Android is a popular app development platform and offers open-source flexibility in an 
unrestricted marketplace. This has contributed to the growing availability of Android OS 
and also allows for an extensive API, which defines how the app interacts with most areas of 
the hardware functionality, such as user data and phone settings, wireless connectivity, GPS 
system, and built-in digital camera.

The security of app permissions is managed through the Linux Kernel, specifically the 
Libraries and ART layers, and is based on isolating activities and permissions in terms 
of what the app is able to perform and access on the device. As each app has its own 
process and is managed in its own sandbox environment, apps are unable to “talk” to 
each other, which means less information can be shared. App permissions need to be de-
clared in the AndroidManifest.xml file, as mentioned earlier in the Security Architecture. 
If such permissions are not listed within this file, then the Kernel will carry out its task 
of restricting, known as a “runtime exception,” preventing any malicious activity from 
running (Vidas et al., 2011).

According to Vidas et al. (2011), there are close to 130 app-level permissions incorporated 
within the Android framework that are declared before an installation occurs. The user initi-
ates installation and needs to accept such permissions before the installation can occur. This 
allows some control over what permissions are being executed by an app. However, the ma-
jority of users are not aware of how permissions work and what they are intended for. Thus, 
apps may comprise privileged permissions that are not required for the purpose of the app, 
such as location access and network access, which may have an impact on the privacy, secu-
rity, and vulnerability of the device (Vidas et al., 2011).

The development of an Android app is based on four protection levels. The app developer 
can select the appropriate protection level in conjunction with Component Type permissions. 
The four protection levels are Normal, where minimal permissions are needed; Dangerous, 
where a substantial risk is present and therefore more permissions are requested, but only on 
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a user's confirmation; Signature, which allows apps with the same signature permissions to 
talk to each other; and, finally, SignatureOrSystem, which is a signature permission that has 
access to the image file system. As app permission requests are granted, the protection layers 
declare the app's permissions to the user for approval and grant access to the smartphone. In 
the event of permissions being declined, the app will not install (Ongtang et al., 2012).

2.2.2  Component Permissions

To assist in the selection of app permissions and protection levels, predetermined compo-
nent types need to be identified in relation to an app's purpose. There are four component 
types defined by Android to securely identify an app's purpose and what areas of the system 
it will access. The first component type is Activity, which relates to onscreen user functional-
ity. For example, onscreen app activity generally displays only one or two options per screen 
due to the screen size of smartphone devices. Having too many app activities on one screen 
will be hard to read and thus affect option selection by users. The second component type is 
Service, where an app will continue to perform a particular process in the background, even 
if the app has been temporarily closed from onscreen display; for example, downloading a 
music file and returning to the home screen (Enck et al., 2009).

The third component type is Content Provider, which enables the sharing and storing of 
data through a relational database that can describe the content it contains. Finally, the fourth 
component type is Broadcast Receiver, which can be defined as a mailbox for receiving mes-
sages from other internal apps only and with no external interference so that the message can 
then be broadcasted to its intended destination (Enck et al., 2009).

2.2.3  Signing Apps

Before an app can be added to the Android marketplace, the app must be digitally signed 
with a certificate to identify the author. This ensures that both the app code and noncode re-
sources are authenticated. If the app does not have a valid certificate, it will not be packaged 
as an Android application package (APK) file format for distribution. An app can also be self-
signed by the developer and not necessarily through a Certificate Authority (CA), a commercial 
entity that issues digitally signed certificates. The APK is the driving force for app installation 
on an Android device. Therefore if the APK file is not digitally signed, it will be deemed as an 
invalid or unauthenticated file and will not be published. A digital signed app is verified as 
being from a legitimate/trusted source (developer) (Android, Developers Guide, 2013).

2.2.4  Privacy

Apps can be installed quickly and easily without having many options to configure, unlike 
traditional computer system software installations. Although app permissions are presented 
to the user, they are often simply accepted for immediate use without much consideration. In 
a survey of 250 university students and academic staff members, for example, it was found 
that device users would allow app permissions that appeared unnecessary on their mobile 
devices (Imgraben et al., 2014). Once the app has been installed, all included permissions will 
have been given access to parts of the smartphone, and the user will be unable to change, 
modify, or select certain permissions after the installation.

As a result, there may be leaking of personal and sensitive data to third parties (e.g., 
advertisement companies) and sending of SMS/MMS messages, and as well as calls made 
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without the user's knowledge. It may be impossible for users to know what information is 
being captured and how data is gathered and used (Feth and Pretschner, 2012). A developer 
may have legitimate reasons for gathering data, such as user interaction feedback and us-
age statistics, although data transmitted to a third party without the user's knowledge can 
infringe on the user's privacy (Dietz et al., 2011). For example, mobile advertising is usually 
present in free apps, where app developers are financially compensated through a referral 
system when a user generates impressions (clicks) on specific advertisements (Leontiadis 
et al., 2012). Additionally, malicious apps can masquerade as legitimate apps that may inad-
vertently be installed by the user and read their personal data without the user even know-
ing (La et al., 2013).

As the number of mobile apps continue to increase, so will the need for privacy-enhancing 
and monitoring components. One example is the “permissions request” monitoring system 
that allows a user to actively manage and monitor what tasks/data the apps are conduct-
ing/collecting with their approved permissions. A “permissions request” monitoring system 
would also check permission requests at runtime and not at deployment time. For example, 
permitting an app to access the Internet every so often allows control over the runtime of the 
app, rather than accepting all permissions and allowing the app to access the Internet all the 
time without user consent (Feth and Pretschner, 2012).

“Permissions request” monitoring gives the user flexibility and a degree of control over 
app permissions, thus assisting with the protection of personal and sensitive data. If the user 
is uncomfortable with available options after finding out what the permissions are, apps can 
be easily uninstalled by the user's request without question in order to protect data privacy.

2.3  Android Malware Threats and Countermeasures

As smartphones are mostly always on and connected to the Internet through either mobile 
data or wireless home connections, possible attack vectors will make use of such available 
connectivity. Given that a user can allow elevated permissions unknowingly, this generates 
a number of avenues for an attack. By browsing untrusted websites on an Android smart-
phone, the user leaves the door open for drive-by exploitation, which is a common vector 
that spreads malware by identifying and exploiting mobile web browsers. Phishing is an-
other common vector by which information is gathered under false pretences via emails or 
websites that masquerade as official or legitimate. Other than technical attacks, there are also 
human factors to consider such as social engineering, which is an attack vector that targets a 
user by manipulation, coercing them into making a particular decision that will actually help 
the attacker perform its relevant functions.

Threats of this nature make an everyday smartphone a potential target for attacks that can 
compromise private information, steal data, make use of hardware resources, and leave the 
device partially or fully unusable. Not only will this have a huge impact on an individual 
smartphone, potential threats, such as phishing, have the capability to spread and infect other 
smartphones through contacts stored on the device. For example, SMS/MMS messages may 
be distributed unknowingly to stored contacts, which may result in unwanted charges. This 
can also extend to email accounts, social media networks, and cloud-based services.

With the Android OS, there are several security measures in place in the underlying core 
framework and Linux Kernel. Although these areas are protected, it is possible to manipulate 
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the hardware in order to uncover vulnerabilities in the framework, thus allowing root access. 
Therefore rooted devices will be more susceptible to security threats, such as SMS Trojan 
horses (Shabtai et al., 2009). The Android OS also uses various components, such as Java, 
which can also render a smartphone vulnerable to exploitation. As malicious code needs to 
be inserted into Android binaries.dex files, Java code is generally unable to infect class file 
formats to make this adjustment, and the Java code does not have write privileges to any APK 
files (Shabtai et al., 2009).

Malware is a “classic” threat to Android OS. It presents additional concerns as the Android 
OS platform becomes more versatile and the storage of personal data increases, making it an 
ideal target for malware apps. Malware can be designed to capture personal data and control 
a smartphone without the consent of the user by impersonating a useful or legitimate func-
tionality, such as a Trojan or a botnet (La et al., 2013).

Since Android is an open-source platform and the system framework and architecture use 
a sandbox environment, there is an onus on users as they make the choice to download apps 
from the Google Play store or alternative sources, some of which can be untrustworthy.

However, even trusted sources, such as the Google Play store, have had malicious apps, as 
there is no initial review of an app's code before the app is posted. For example, a user may 
see an app they would like to download from a social media network but when they click 
on the link to download the app, they are redirected to an untrusted Android app download 
website and not the Google Play store. The user downloads, accepts, and installs the app, giv-
ing elevated permissions to the Android platform and allowing a potential malicious attack, 
such as phishing, to take place (Delac et al., 2011).

One example of a malware app was Trojan-SMS.AndroidOS.FakePlayer.b, which surfaced 
in 2010 and targeted Android phones by masquerading as a fake music player that users had 
to manually install. This example relates to the app permissions mentioned above. If users are 
not aware of the permissions being granted, they may render their smartphones vulnerable to 
security threats by unknowingly authorizing access. The purpose of this malware was to send 
SMS messages to premium-rate telephone numbers without the user's consent or knowledge. 
In this particular example, the malware app was able to take control of software resources, 
but it is also had further capability to access and manipulate hardware resources, such as 
by changing or deleting memory card data (La et al., 2013). Therefore, having antimalware 
protection in place will help mitigate a potential security threat in order to protect personal 
data and corporate data, particularly as bring your own device (BYOD) policies are becoming 
acceptable in the workplace environment (Wang et al., 2012).

To counteract malware within the Google Play store, Google introduced an automatic sys-
tem named Bouncer in early 2012 that was designed to automatically sweep apps for mali-
cious code. Although Bouncer was responsible for a 40% reduction in malware apps in the 
Google Play store, malware is evolving at such a speed that it will always find new vulnera-
bilities that make automatic systems, such as Bouncer, struggle to keep up to date. Therefore 
being personally aware of what apps are being downloaded and their permissions is a vital 
security measure to prevent any security threat (Hou, 2012).

There is a vast range of apps to download, and malicious apps may leverage this to their 
advantage by conducting an IPC between one another. Apps for the Android platform are 
comprised of four main components that share information and data from the receiving 
components that need to be passed through each one, as introduced in Section 2.2. As each 
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component has its own purpose, the interaction between them may cause a possible threat 
to occur and initiate IPC between two apps that are of a malicious nature. Therefore if one 
component of an app is configured by a developer to attempt contact with a different or same 
component of another app, then personal data could be leaked and shared with external 
sources for later use.

Apps, mobile web browsers, email clients, hardware capability, and access to a wide net-
work of social elements all present different avenues for security threats. Smartphones, with 
increasing connectivity options and data storage, are a consistent source of valuable informa-
tion, making them ideal targets for strategic attack. There are a number of different strategic 
attack actors, which include attempts to capture information over a period of time to explore 
and gain resourcefulness in sensitive information for the purpose of exposing data. Possible 
reasons behind such attack actors may include financial gain, information gathering, or an ex-
posure of truth. For example, a politically motivated threat may relate to wanting deception 
exposed for political gain.

Each attack vector has a method and logic to it. Thus the choice of malware, phishing, so-
cial engineering, or botnet attacks may depend on the intended outcome. For example, mal-
ware may exploit a smartphone to become a botnet (zombie) without the user even knowing. 
This causes the device to perform automated tasks across the Internet without the knowledge 
of the user and with the aim of targeting and compromising confidentiality, integrity, and 
availability of services (Pieterse and Olivier, 2012).

There are a number of countermeasures to such threats, which have been introduced by se-
curity providers. The countermeasures include virus, malware and spyware protection, and 
the ability to wipe the smartphone remotely if it is lost or stolen. However, antivirus/mal-
ware signature repositories need to be constantly updated with the latest definitions in order 
to remain effective as security threats continue to rise (Shabtai et al., 2009).

The various attack vector and actor methods are outlined in Table 2.

2.3.1  Antimalware

Malware apps have the ability to compromise the integrity of personal data to take ad-
vantage of software and hardware functionality. According to the Fortinet Threat Landscape 
Report (2014), for example, a record number of malware families specifically targeting the 
Android OS were detected in 2013, and the Android OS was the most targeted platform OS 
for the majority of attacks. Over 50,000 malware samples were collected per day in the first 
quarter of 2013, and by the end of the fourth quarter, a staggering 450,000 malware samples 
were collected on a daily basis. It was then that the first ransomware malware sample target-
ing the Android OS was discovered, called Locker/SLocker Ransomware (Spreitzenbarth, 
Forensic Blog, 2014), though ransomware is not a new threat to computer-based systems.

Android devices continue to be one of the most targeted mobile devices in the first quarter 
of 2014, with a notable focus on Trojans, which are repackaged apps designed to facilitate 
social engineering and the sending of messages to a premium-rate number without the user's 
knowledge (F-Secure Mobile Threat Report, 2014). It is, therefore, not surprising that Android 
Jelly Bean (v. 4.2) added an option for the user to allow or block suspicious SMS messages 
sent from apps. The report also highlighted the rise of Windows Trojan hops, Tor network 
threats, and Bootkit, targeting older versions of the Android OS, as well as Cryptominer and 
Dendroid toolkits, designed to repackage apps and take advantage of remote access facilities. 



TABLE 2  Example of Android Attack Vectors/Actors and Possible Mitigation Strategies

Potential Attack 
Vector/Actors Description Examples Mitigation Strategies

Mobile network 
services

SMS/MMS, voice 
calls, emails

Messages presented to the user that appear to be 
from a legitimate source, where the user may be sent 
to external untrusted website. Various unknown 
phone calls claiming to be authorized agencies with 
the intention to obtain information verbally, or a user 
is asked to call a number that charges a nominal fee, 
where the user is unaware.

Delete unknown messages, user awareness, do 
not reply or call back, mark unwanted emails 
as spam/block sender, hang up phone call, 
awareness of sharing personal information over 
phone, identification and verification of source, 
call-block features

Mobile Internet  
access

3G/4G services, Wi-Fi Always on and connected, exposing mobile device to 
threats, easy connectivity to public Wi-Fi hotspots, as 
well as untrusted and open wireless networks

Turn off GPS and location options, do not 
access sensitive uniform resource locator (URL) 
links (e.g., banking websites) over public 
Wi-Fi, turn off other connectivity tools if not 
used (also saves battery), be aware of apps 
constantly using data/internet services, install 
antivirus/malware defenses

Social engineering Deception, 
vulnerability aimed 
at the user and social 
surroundings

Includes fake webpages impersonating as trusted 
sources, fraud, scams, hoaxes, tricking the user into 
doing something they should not be doing

Password and change management, two-
factor authentication, physical device security, 
classifying the sensitivity of information 
(what is important to keep safe and not share), 
educating users on identifying legitimacy and 
authenticity, Android apps, Google Play store, 
antivirus/malware defenses

Drive-by and 
WebView 
vulnerability

Exploits vulnerability 
in WebView interface, 
malware automatically 
downloads without 
user's knowledge or 
consent

Information gathering, malicious website gains 
remote shell system access

Affects any device running an Android version 
earlier than 4.2, restricted software patches due 
to carrier, upgrade hardware/new smartphone 
to mitigate risk

Phishing Gathers sensitive 
data, such as login 
credentials and 
personal data

Impersonates an official or legitimate source, such 
as a banking website, fake emails, hoaxes, and web 
links to untrusted websites; this also expands on 
social engineering

Use antivirus/malware defenses to scan device, 
email, and web access regularly; monitor 
attempts to change/access system at the Kernel 
level; user education and awareness is vital; 
encryption of information

Continued



TABLE 2  Example of Android Attack Vectors/Actors and Possible Mitigation Strategies—cont’d

Webpages Trusted or untrusted 
webpages

Pop-up windows, shortened URL links that do not 
clearly show the website URL, users  
can be taken to an unknown website with malicious 
content that tricks users into downloading and 
installing various items

Similar mitigation strategies to phishing, 
monitor webpage port access, runtime analysis, 
clearing browser cache, do not auto save or store 
usernames and passwords for critical websites, 
be aware of clicking on URL links, do not allow 
suspicious installation prompts

Bluetooth Spreading malicious 
content

Paired devices may share and spread malware and 
steal data if user is unaware and accepts transfer 
requests

Do not pair with unknown devices; make sure to 
disconnect/cancel previously connected devices 
as a safety measure; turn off/disable Bluetooth; be 
aware of apps wanting to use Bluetooth channel, 
which can disconnect one channel and connect to 
another; employ a notification system to prompt 
user of unintentional connections to a device

Physical attack/USB/
other peripherals

USB connectivity and 
syncing with external 
sources

Smartphones have a large storage capacity in 
which malicious content can be stored and used to 
spread across multiple devices; data theft involving 
removable SD cards and using them in other devices; 
a more advanced example would involve activating 
the Android Debug Bridge (ADB) feature, configuring 
the device to allow apps to be installed without 
permissions to accept prompts

Activate PIN code to prevent unauthorized 
access, do not leave phone unattended, be 
aware of surroundings, do not plug phone into 
unknown devices, use secondary password 
prompt for installing apps, only the owner can 
install/update, manufacturer firmware and 
security patches

Google Play store Malware-infected apps, 
such as games

Limited verification process,  
lack of app code review

Bouncer, knowing what access is required and 
what permissions the app needs to function 
and why it needs certain access, individual 
permission acceptance, not just accept all

User admin 
permissions

Authorized to accept 
and grant permission  
to device

Allows malicious apps to install and access Android 
system, connects to unprotected networks due to 
admin privileges

User education, second prompt to challenge user 
and awareness of what access is being granted

App permissions New/already installed 
apps request  
permission to install, 
update, or make a 
change; malicious app 
injections; third-party 
apps

IPC; data capture and loss through unencrypted 
transmission; notification pop-ups that are accepted 
but may not be what they seem; unusual permission 
requests, such as a weather app asking for camera 
access (not needed and potential threat); apps may 
have been repackaged as a free version that may 
contain malicious content (Pieterse and Olivier, 2012)

Know what apps are being/have been installed 
and their use, selective app permission 
acceptance, using Google Play instead of random 
untrusted app stores/websites, antivirus/
malware defenses for prevention, introduction of 
a notification and alert system when IPC occurs

Potential Attack 
Vector/Actors Description Examples Mitigation Strategies



Remote app install Various services are  
now available that  
allow apps to be 
installed remotely  
onto a device from an 
external website, such 
as Google Market (not 
official Google Play 
store)

No app permission acceptance or confirmation; an 
app could be installed directly onto a device without 
user intervention from a website offering the service, 
resulting in malicious code being installed alongside 
the app, although updated in v.2.3, older devices 
running lower Android versions are still at risk

Users of older Android devices should use the 
official Google Play store, practice due diligence 
on reputable remote app install websites, 
antivirus/malware defenses, upgrade and start 
using the latest Android OS release/version 
(update of physical handset device required)

Gateway to third-
party workstation

Virtual Private  
Network (VPN) 
solutions, connecting 
to home or corporate 
networks, provided by 
third-party apps such as 
TeamViewer

Additional line into other sensitive networks, 
malicious content can spread

Enterprise Mobile Device Management (MDM) 
solutions, antivirus/malware defenses, close 
connections properly, encryption, latest patches 
and security updates, also relates to mobile 
internet access and physical attack mitigation 
strategies

Internet Relay 
Chat (IRC), instant 
messages apps, P2P 
file sharing networks

Third-party installed 
software

Connect to other devices and services, more  
vulnerable and open to further exploits

Avoid installing bundled unauthorized apps, 
device and port activity monitoring, antivirus/
malware defenses, also relates to webpage 
mitigation strategies

Privacy Manufacturers and  
apps gathering  
user data

Data being gathered includes GPS locations, system 
logs, account information and user interaction with  
the device, which can be used not for financial gain 
but for mass consumer production and research 
development

Turn off GPS through the physical device and 
in-app options, sign out of accounts (such as 
Gmail), create a dedicated and limited profile 
account just for Android use that has less private 
and confidential data exposure

Rooted device Opens additional 
services and 
functionalities, can 
install apps currently 
forbidden by phone 
manufacturer and/
or carrier, will allow 
full system access to 
Android OS

Malicious content can exploit a rooted device and 
gain core system access and control; view all personal 
information; gain access to gateways (e.g., VPNs); 
install Kernel modules, such as rootkits, and render 
them unusable; untrusted device (e.g., DroidKungFu 
threat (Spreitzenbarth, Forensic Blog, 2014))

Do not root device if unsure of consequences, 
analyze app permissions more closely, install 
antivirus/malware defenses
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In addition, a recent report estimated “[w]ith an overall infection rate 0.65 percent [between 
2013 and the first half of 2014], around 15 million mobile devices are infected worldwide at 
any time” (Alcatel-Lucent, 2014, p. 4).

Throughout the past couple of years, potentially unwanted programs (PUP), such as 
malware, have had a significant impact on the Android OS, with a worldwide market share 
of 78.9%, Android continues to be a top target for malicious threats. According to G DATA 
(2015), for example, in the first quarter of 2015, there were 440,267 brand new malware sam-
ples identified, compared to the fourth quarter of 2014, where 413,871 malware samples were 
identified, which is an increase of 6.4%. In relation to the first quarter of 2014, there were 
363,153 malware samples identified, which is an increase of 21% in the first quarter of 2015.

As users are frequently using Android devices for everyday usage, such as taking ad-
vantage of Internet banking and online shopping on the move, there is a tendency for more 
PII information to be shared with various apps. Thus the malware efforts of cybercriminals 
are financially motivated and are targeting such interactions. For example, known Android 
malware identified in the first quarter of 2015 accounted for 50.3% being financially moti-
vated, such as banking Trojans (i.e., Svpeng Trojan, which masquerades as Flash Player and 
includes a malicious combination of financial malware and ransomware) and SMS Trojans, 
where 49.7% were other malware attack vectors (see Table 2; G DATA, 2015).

As malicious apps aim to abuse the possible vulnerabilities in the Android platform, 
apps, and various services, a countermeasure would be to install antimalware software. 
Antimalware configuration is kept up to date by using signature repositories that include 
known malware threats and definitions, which allow antimalware to react quickly when a 
threat is discovered. Thus the speed with which antimalware reacts to the detection of mal-
ware will be based on how up to date the definitions are in the repository, which is similar to 
how antivirus definitions work. Antimalware is designed to scan files, emails, attachments, 
SMS messages, and websites to help protect against Trojans, viruses, worms, and rootkits 
(Shabtai et al., 2009).

Although traditional workstation environments have seen a significant evolution in 
malware detection systems, smartphone devices present a number of unique challenges, 
and traditional detection systems are not easily deployed in a mobile device environment. 
Smartphones are likely to store more sensitive data and PII (e.g., SMS messages, photos, 
and videos taken using the device's camera, as well as geolocation information stored by 
various apps) and therefore pose a greater security and privacy risk to users. The effective-
ness of antimobile malware signature repositories is unclear, as such an approach may offer 
resource-constrained mobile devices limited protection against newer mobile threats, such as 
polymorphic and metamorphic code (Suarez-Tangil et al., 2014).

A study by AV-Test (2014) evaluated 36 Android security apps over a period of 6 months 
with a restricted dataset of approximately 2300 malware samples. Throughout the study, 
eight security apps achieved plausible and optimistic detection results. The security apps 
with positive results included Ahnlab, Avira, BitDefender, Cheetah Mobile (three versions), G 
data, Kaspersky, McAfee, Qihoo, Symantec, TrendMicro, and TrustGo. The findings provide 
an indication of how antimobile malware apps for Android are improving in performance 
and detection rates.

Having antimalware apps perform regular scans and signature updates will have an 
adverse impact on power consumption and the performance of the device. One promising 
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approach is to have cloud-based signature repositories, where the heavy lifting is under-
taken in the cloud rather than the lightweight client app. There are, however, privacy and 
confidentiality concerns about using cloud-based solutions (Suarez-Tangil et al., 2014). For 
example, will cloud-based antimalware providers be able to track the device users?

Awareness of app privileges and the number of permissions requests needed are becoming 
a primary focus point for reasonable protection against malware. For example, if the required 
antimalware app permissions requests are not fully accepted, the app will not be used to the 
best of its ability, thus leaving the smartphone unprotected. If all requested permissions are 
accepted, it would be difficult to fully understand what the permissions are doing or mean. 
The various protection methods available from an antimalware app may include a number of 
different detection and analysis methods, such as type of monitoring, granularity, and iden-
tification, all of which require various permissions granted by the user. This leads to further 
concerns related to privacy and confidentiality (Suarez-Tangil et al., 2014).

Thus new privacy apps for the general user are becoming popular, allowing control over 
permissions that an app is using, such as Privacy App by SnoopWall. Further develop-
ment in regard to app permission control, security, and privacy measures may also include 
enterprise-wide solutions, such as GlobalProtect by Palo Alto Networks, where mobile users 
benefit from enterprise security features by connecting through a VPN connection.

With the increase in the popularity of Android devices and the subsequent growth of mo-
bile malware, we have seen an increase in the number of antimalware apps in recent times. 
Major security companies, such as Intel Security (McAfee Mobile Security), AVG Mobile, 
AVAST, Symantec, and Kaspersky are offering free or paid (in-app purchase) antimalware 
apps. The Google Play install statistics identify that the two most popular downloaded anti-
malware apps are AVG Mobile and AVAST, each reaching between the region of 100,000,000 
and 500,000,000 installs (as of Jul. 20, 2014). There are also new players catering for the Android 
market. For example, CM Security (Cheetah Mobile), and Lookout Security & Antivirus 
(Lookout Mobile Security) reportedly have between 50,000,000 and 100,000,000 downloads 
as of Jul. 20, 2014, and 360 Security (Qihu) and Antivirus Free (Creative Apps) have between 
10,000,000 and 50,000,000 downloads respectively as of Jul. 20, 2014 (Google Play, 2014).

There are, however, challenges faced by Android and other mobile antimalware app de-
signers due to the inherent differences between a mobile device and the “traditional” client 
device, such as a desktop and laptop. For example, mobile devices are typically resource 
constrained due to manufacturer restrictions. Thus timely core OS version and patch updates 
may not be released for older hardware devices. This leaves the devices vulnerable and more 
open to potential security threats and exploits (Husted et al., 2011). Another difference is how 
a user will inherently have higher permissions on a device, where they can unintentionally 
install any number of apps from untrusted sources. Therefore giving the user control over 
accepting all app permission requests that may be a potential risk to both the user and the 
device (Shabtai et al., 2009; Feth and Pretschner, 2012). This raises concerns about the poten-
tial security risks and threats related to interapp and resource communication such as IPC 
interactions (Ongtang et al., 2012). Any newly installed app may contain malicious app injec-
tions that will try to communicate with and affect other apps on the device.

Despite the increased attention to the threat of mobile malware and security companies 
offering both free and paid antimalware apps, the number of downloads is low in compar-
ison to other apps such as games. Research conducted by TrendMicro shows that only 20% 



184	 8.  A study of Android free anti-mobile malware apps

of Android-based devices have security apps installed despite the increase in mobile mal-
ware (TrendMicro, 2012). Similarly, a survey of 250 university students and staff at a South 
Australian university found that the majority of the participants did not install an anti-
malware app (Imgraben et al., 2014). The findings and those of a study by Zhou and Jiang 
(2012, p. 96), which found that mobile malware is “rapidly evolving and existing antimalware 
solutions are seriously lagging behind,” suggested that more needs to be done to protect mo-
bile device users.

The lack of adoption of antimalware apps is, perhaps, due to a lack of user awareness (as 
highlighted by Imgraben et al. (2014)) and the perception that antimalware apps will slow 
device performance and increase battery consumption. In comparison to existing antivirus 
solutions, there is a wider range of anti-malware apps to choose from, which may further 
confuse users. By conducting an evaluation of the top 15 most downloaded free antimalware 
apps, this research will facilitate users to making an informed decision.

2.3.2  Firewall

If configured in the correct manner, firewalls can be an essential part of protecting Android 
smartphone data. With the ability to control and keep a log of all inbound and outbound 
traffic through various connections, firewalls can guard against untrusted network resources 
and attacks to vital services of the OS and core framework. Once the firewall has been con-
figured to monitor and manage communications within a set of access list rules, it will be 
able to detect whether an app is trying to send private and confidential data and block this 
communication (Shabtai et al., 2010).

Although firewalls are an effective solution, they are unable to block all communica-
tions such as SMS messages and attacks via the Internet browser, emails, and Bluetooth. 
Nevertheless, having the ability to manage app permissions and define what access they 
do and do not have is an important part of protecting data and private information (Shabtai 
et al., 2010).

2.3.3  Intrusion Detection System

An Intrusion Detection System (IDS) is a well-established security mechanism that has 
been implemented through information technology (IT) infrastructure and computer sys-
tems. Providing several security features, such as monitoring network and port activity, file 
protection and, notably, identification of suspicious activity, IDS capabilities have also been 
designed for smartphone security protection and monitoring. For IDS to be effective, a num-
ber of approaches are used to complement each other, which include Prevention-, Detection-, 
Anomaly-, and Signature-based approaches (La et al., 2013).

Each approach has a unique function for detecting malicious software or activities that is 
able to learn system behavior and alert the user if a suspicious anomaly is found. This is an 
effective measure if definitions are kept up to date and can identify unknown threats (Shabtai 
et al., 2010).

2.3.4  App Certification

App certification is specifically designed to counteract malware apps, as legitimate apps go 
through stringent testing and review before they are packaged in order to ensure appropriate 
functionality and determine their purpose. CA verifies a trust association, which is checked 
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before an app is installed on a smartphone. Therefore, any malicious app that attempts an in-
stallation without a certification will be detected and removed (Shabtai et al., 2009). However, 
certifications can be a costly exercise for an app developer.

As Android is an open-source platform, there are several third-party app stores available 
where users can freely download any number of apps. This is an additional security threat, 
as apps may have a higher risk of containing malware that can bypass any CA authentication 
(Shabtai et al., 2009).

2.3.5  Selective Access Control

Given that installed apps have been granted certain permissions by the user, it is likely 
that these apps use the granted permissions as and when it suits their purpose. To prevent 
unnecessary granted permissions, it is entirely possible for the package installer to be modi-
fied so that advanced features can be installed to allow control over permissions. In this way, 
the user is fully aware of a request and has the ability to allow or deny the request without 
any interference to the usability of the smartphone or performance. By adding control of app 
permissions, malicious software is prevented from using unknowingly granted permissions 
and data as a whole is protected (Shabtai et al., 2010).

Limiting unnecessary app permissions will harden an Android device and will give the 
user the responsibility of becoming more aware of the functionalities of the device, thus al-
lowing the user more control over what permissions are granted. Selective access control can 
be seen in corporate environments, where BYOD initiatives are managed and enforced by cer-
tain policy restrictions, ultimately protecting the corporate infrastructure, user, and personal 
data (Shabtai et al., 2009).

2.3.6  Context-Aware Security

There are a number of activities a smartphone can carry out in any moment. These include 
contextual activities, such as adjustments in local time, or wireless connections to other de-
vices. Depending on the contextual circumstances, context-aware security is able to restrict 
or allow access based on predefined configurations that learn from the interaction and sur-
roundings of its day-to-day operations based on user activity (Shabtai et al., 2010).

For example, if context awareness detects that a device has changed locations and is in a 
different time zone or country, it may be configured to lock down the smartphone, make it 
inaccessible, and encrypt its data. Although this is not an instant security measure and takes 
time to configure and set up, it does present an interesting method for protecting malicious 
access to resources and services based on predefined settings that help protect confidential 
content (Shabtai et al., 2010).

2.3.7  Data Encryption

Although the prevention of malicious software attacks is important, consideration must 
also be given to personal data protection because smartphones may be lost or stolen. As the 
amount of data being stored on a smartphone increases, data encryption has become a highly 
regarded factor for any event because the user is in control of managing access.

Throughout all Androids platforms, data encryption can include several techniques, 
such as a hardware access passcode, file-level password-based encryption, and a SIM per-
sonal identification number (PIN). Additional measures can include limiting the number of 
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password attempts and locking the smartphone or file when the maximum attempts have 
been reached (Shabtai et al., 2010). Not only is this a reliable internal security measure, but 
such a measure can also be implemented with removable storage, such as an SD card. There 
are also additional features defined within apps themselves; for example, SMS and MMS apps 
may also include a separate passcode that can be set for further protection. With a variety of 
options, implementing data encryption can help prevent the exposure of sensitive and per-
sonal data (Wang et al., 2012).

However, newer releases of Android, namely Lollipop and Marshmallow, include a num-
ber of security enhancements to ensure data encryption to protect users. For example, full 
disk encryption was included, allowing the user to encrypt their device if they so choose. 
Smart Lock features, such as Trusted Face, was a feature released in earlier Android versions 
(Ice Cream Sandwich and above) and has since been updated to include Trusted Places and 
Trusted Devices. Lollipop also introduced multiuser, guest, and restricted profiles, allowing 
more control over the protection and encryption to keep data safe. Additional features within 
Marshmallow include fingerprint authentication and credentials authentication, which uses 
timeout variants based on when the device was last unlocked and used. Such security addi-
tions help to protect and encrypt data where required (Android Security Enhancements, 2015; 
Android Developers Guide, 2015).

Further data encryption and security features include the adaptation of remote device 
wiping and data backup and restore services through additional cloud anti-malware apps. 
Users are able to backup their data to personal cloud storage services and restore their data to 
another device when convenient. Remote device wiping is beneficial when a device is either 
lost or stolen to protect users (Walls and Choo, 2015; Di Leom et al., 2015). Additional data 
encryption and security features ensure data encryption to prevent data leakage.

3  EXPERIMENT SETUP

To determine the effectiveness and reliability of the 15 most popular (by number of installs) 
free antimalware apps available on Google Play store (Table 3).

To ensure the usefulness of this study, we obtained 15 popular Android malware samples 
for analysis by the antimalware apps. The malware samples were collected between Feb. 27 
and Dec. 4, 2014 from the Contagio Mobile (2014) Malware Mini Dump database (Table 4). 
The malware sample SMS Sender (Xxshenqi-A.apk and com.android.Trogoogle.apk) includes 
two datasets from the same malware family, but most malware samples are from different 
malware families.

Three mobile test devices were used, each with their own Android OS (Ice Cream Sandwich, 
Jelly Bean, and KitKat) (Table 5). Each of the 15 antimalware apps will be installed on every 
test device, which will be used to scan against the 15 malware samples and conducted in 675 
individual tests. The experiment process is designed to accommodate a typical day-to-day 
user. Therefore each test was conducted manually, as if a user was unknowingly installing 
a malicious app, which will hopefully give an indication and validate the effectiveness and 
reliability of the apps under examination, as the experiment process has been designed to be 
repeatable. While each individual antimalware app provides various configuration options, 
our study used default configurations as would most users, particularly non-IT-literate users. 



TABLE 3  Antimobile Malware Apps for Android Devices (Information Correct as of Dec. 16, 2014)

Manufacturer Antimalware App

Initial App 
Release 
Date Current Version License Developer Website Source

Number 
of Installs 
(Google Play)

AVG Mobile Antivirus Security 2011 v4.2.212757 Free http://www.avg.com/au-en/
for-mobile#android-tab

100,000,000–
500,000,000

AVAST Software Mobile Security and 
Antivirus

Dec. 2011 4.0.7871 Free http://www.avast.com/en-au/
free-mobile-security

100,000,000–
500,000,000

Cheetah Mobile CM Security and Find My 
Phone

Late 2012 v2.2.5.1040 Free http://www.cmcm.com/en-us/cm-security 50,000,000–
100,000,000

Lookout Mobile 
Security

Lookout Security and 
Antivirus

Nov. 2009 v9.9.1 Free https://www.lookout.com/android 50,000,000–
100,000,000

Doctor Web Ltd Dr. Web v.9 Anti-virus Dec. 2013 v9.02.1(2) Free [14-day 
demo only]

http://download.drweb.com/android 10,000,000–
50,000,000

Qihu 360 Security—Antivirus 
Free

Jun. 2013 v2.1.0.1032 Free http://360safe.com/mobile-security.html 10,000,000–
50,000,000

Creative Apps Antivirus Free 2011 7.3.02.02 Free http://en.nq.com/mobilesecurity 10,000,000–
50,000,000

Norton Mobile Norton Security and 
Antivirus

Jun. 2013 3.8.6.1653 Free [28-day 
demo only]

http://community.norton.com/t5/
Norton-Mobile-Security/bd-p/NMS

10,000,000–
50,000,000

TrustGo Inc. Antivirus and Mobile 
Security

Feb. 2013 1.3.15 Free http://www.trustgo.com/features 5,000,000–
10,000,000

McAfee Mobile 
Security/Intel 
Security

McAfee Free Antivirus and 
Security

Oct. 2011 4.3.0.448 Free https://www.mcafeemobilesecurity.com 5,000,000–
10,000,000

Kaspersky Lab Kaspersky Internet Security Jun. 2011 11.6.4.1190 Free http://www.kaspersky.com/
android-security

5,000,000–
10,000,000

BitDefender Mobile Security and 
Antivirus

Apr. 2013 2.30.625 Free [14-day 
demo only]

http://www.bitdefender.com.au/solutions/
mobile-security-android.html

1,000,000–
5,000,000

MalwareBytes MalwareBytes Antimalware 
Mobile

Oct. 2013 1.05.0.9000 Free http://www.malwarebytes.org/mobile 1,000,000–
5,000,000

Sophos Limited Free Antivirus and Security Jul. 2012 4.0.1433 (12) Free http://www.sophos.com/en-us/products/
mobile-control.aspx

100,000–
500,000

Pablo Software Virus Scan Jun. 2014 1.5.9 Free https://play.google.com/store/apps/
details?id=com.pablosoftware.virusscan

100,000–
500,000

http://www.avg.com/au-en/for-mobile#android-tab
http://www.avg.com/au-en/for-mobile#android-tab
http://www.avast.com/en-au/free-mobile-security
http://www.avast.com/en-au/free-mobile-security
http://www.cmcm.com/en-us/cm-security
https://www.lookout.com/android
http://download.drweb.com/android
http://360safe.com/mobile-security.html
http://en.nq.com/mobilesecurity
http://community.norton.com/t5/Norton-Mobile-Security/bd-p/NMS
http://community.norton.com/t5/Norton-Mobile-Security/bd-p/NMS
http://www.trustgo.com/features
https://www.mcafeemobilesecurity.com
http://www.kaspersky.com/android-security
http://www.kaspersky.com/android-security
http://www.bitdefender.com.au/solutions/mobile-security-android.html
http://www.bitdefender.com.au/solutions/mobile-security-android.html
http://www.malwarebytes.org/mobile
http://www.sophos.com/en-us/products/mobile-control.aspx
http://www.sophos.com/en-us/products/mobile-control.aspx
https://play.google.com/store/apps/details?id=com.pablosoftware.virusscan
https://play.google.com/store/apps/details?id=com.pablosoftware.virusscan


TABLE 4  Experiment Malware Samples

Malware Sample 
Date

Malware Sample 
Name File Name Description

Dec. 4, 2014 Deathring: preloaded 
malware

com.android.
Materialflow.apk

DeathRing is a preloaded malware on brand new smartphones popular in Asia and 
African countries. DeathRing is a Trojan masquerading as a ringtone app that uses 
SMS and Wireless Access Point (WAP) vectors for malicious means. For example, SMS 
content may be used to phish PII data (The Register and Leyden, 2014)

Nov. 20, 2014 Notcompatible.C Com.security.patch.
apk

NotCompatible.C is a sophisticated botnet that used encryption and peer-to-peer 
communication, which has evolved from the earlier NotCompatible.A malware 
threat. NotCompatible.C has a botnet-like nature and is primarily aimed at network 
security, using Android as the attack vector to gain access. The malware can 
compromise vulnerable hosts and exploit exposed data inside the network. With 
such sophistication, NotCompatible.C is an example of how mobile malware has 
significantly matured (Lookout, 2014)

Oct. 30, 2014 Android SMS worm 
Selfmite

selfmite.apk The Android Selftmite vulnerability previously surfaced early Jun. 2014 and was 
called Andr/Slfmite-A. The same vulnerability resurfaced in Oct. 2014, named Andr/
Slfmite-B, and masquerades as a Google Plus app. The vulnerability uses a fake Google 
Plus icon as a botnet-style malware, which collects PII data and decides what to do 
with it. The fake app also installs with device administrator rights, making it difficult 
to uninstall and take over critical aspects of the smartphone, such as SMS and phone. 
The aim for this malware is to make money through affiliate revenue and pay-per-click 
icons (Sophos, 2014)

Oct. 8, 2014 Xsser mRAT 
(Android sample)

code4hk.apk The code4hk malware is an app that exploits PII data from Android and iOS devices. 
The malware uses a fake mobile remote access tool (mRAT) app that claimed to 
coordinate the Occupy Central pro-democratic movement in Hong Kong. The app 
initiates through a link that is sent through a messaging service called Whatsapp, 
which then activates the malicious app if clicked. Activation leads to exploitation and 
extraction of data (Lacoon Security and Bobrov, 2014)

Aug. 3, 2014 SMS Sender Xxshenqi-A.apk The fake SMS Sender malware app is a combination of a worm plus a Trojan. The 
Trojan is effectively packaged within the worm and activated when the APK file has 
been installed, therefore two versions are from the same malware family. Shenqi-A 
malware targets all SMS messages made and received  
(McAfee Labs et al., 2014)

Aug. 3, 2014 SMS Sender com.android.
Trogoogle.apk 
[Torgle-A]

Jun. 23, 2014 Google Cloud 
Messaging Trojan

smsgoogle.apk 
05android (Google 
Cloud Messaging)/
Android.
Mobilespy/
Agent-DBM

The Google Cloud Messaging Trojan prevents an affected user from uninstalling the 
malicious app and exploits PII and hardware informational data, such as IMEI serial 
and device ID. The data is sent to premium numbers via SMS, therefore charging the 
user and capturing data at the same time (F-Secure, 2014)



May 10, 2014 Android Monitor 
Spyware

com.exp.tele.
apk (HGSpy.A/
QlySpy.a)

Android Monitor Spyware comes in various forms of malware, such as HGSpy.A and 
QlySpy.a. The malicious app gains permission for a number of core processes and 
system preferences. Elevated permissions include location, Internet, Wi-Fi control, 
phone, messaging, and phone reboot control (Contagio Mobile, 2014)

May 6, 2014 Android SMS Trojan Google-fake-
installer.
apk FakeInst 
(RuSMS-AH, 
Google.Services.
Framework)

Android SMS Trojan, known as FakeInst, masquerades as an installer for other 
applications. However, this is a malware that sends SMS messages to premium-rate 
numbers or services without knowledge (Contagio Mobile, 2014)

May 6, 2014 Fake AV Se-cure 
MobieAV

Fake-av.apk Se-cure.
Mobieav

FakeAV malware predominantly use visual payloads, enticing users to take action 
and pay a fee to protect their device. Known FakeAV apps do not have the same 
functionality as legitimate AV apps and do not offer the same protection (Contagio 
Mobile, 2014; Spreitzenbarth, Forensic Blog, 2014)

May 6, 2014 Android Samsapo.A android.samsapo.
apk (com.android.
tools. system)

Android Samsapo.A is a worm that tries to hide within the Android system utilities. 
The malware is designed to spread through various means, such as email attachments 
and across a network. Permissions are escalated to exploit SMS, phone calls, and 
alarm settings and act as a downloader for other malware apps from different URLs 
(Contagio Mobile, 2014; Spreitzenbarth, Forensic Blog, 2014)

May 6, 2014 Android Fake Banker fake-banker.
apk (Sparkasse/
Banker-Y)

Android Fake Banker malware is a fake mobile online banking app, which aims to 
exploit PII data. This specific malware sample masquerades as a well-known EU bank 
(Contagio Mobile, 2014)

Mar. 6, 2014 Dendroid.
AndroidSpyware

com.parental.
control.v4.apk

Dendroid is a well-known Android malware that targets a device's camera and audio, 
as well as access GooglePlay. The malware uses a remote-access Trojan to control the 
device and exploit data (Contagio Mobile, 2014)

Feb. 28, 2014 iBanking Android iBanking.ing.apk 
(Security Space)

iBanking Mobile Bot malware masquerades as legitimate banking apps. Once the 
user accepts the permissions, the malicious app is able to capture incoming/outgoing 
calls, redirect numbers, capture audio, and send PII to a remote location. This specific 
malware sample masquerades as a well-known EU bank (Contagio Mobile, 2014)

Feb. 27, 2014 Android Tor Trojan tor.video.mp4.apk 
(com.BaseApp)

Android Tor Trojan targets the Tor network and builds upon the anonymity of its users 
through a fake app (Contagio Mobile, 2014)

Source: Contagio Mobile, 2014. Mobile malware mini dump, viewed 08 August 2014. http://contagiominidump.blogspot.com.au.

http://contagiominidump.blogspot.com.au
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TABLE 5  Specifications of Test Devices

Hardware/
Manufacturer

Android OS  
Version Kernel Version Chipset/Processor Memory Internal Storage

Samsung Galaxy 
Music S6010

Android 4.0.4 Ice 
Cream Sandwich 
(upgradable to 4.1.2 
Jelly Bean)

3.0.15-1150453 850 MHz Cortex-A9 512 MB 4 GB

Samsung Galaxy 
Young NL 3G 850

Android 4.1.2 Jelly 
Bean

3.4.0-1140261 Qualcomm MSM7227A 
Snapdragon with 1 GHz 
Cortex-A5 CPU

768 MB 4 GB

Motorola Moto G 
X1033

Android 4.4 KitKat 3.4.42 Qualcomm Snapdragon 
400 processor with 
1.2 GHz quad-core CPU

1 GB 8 GB

Therefore the detection criterion will be based on antimalware app signature definition up-
dates at the time of experiment (see Section 3.1), not based on behavioral factors. The anti-
malware apps were updated with the most recent signature repositories updates before any 
malware samples were tested and data recorded (see Table 3).

3.1  Experiment Process

To ensure both repeatability and reproducibility, which are key principles in scientific ex-
periments, we outline the flow of our experiments below (Fig. 2):

	 1.	The first step in the flow diagram is Start, which is where the experiment begins.
	 2.	The next step is to create a new or use an existing Google test account and link this account 

to Android test device.
	 3.	The next step in the process is to Sign in to Google Play store and install free antimobile 

malware app on the Android test device. Anti-malware apps will be installed based on their 
popularity (i.e., number of downloads) (see Table 3).

	 4.	The next step is to Confirm antimobile malware app version for Android test device. This step 
is in place to confirm the actual version being tested on each Android test device, as 
some apps have a “varies with device” version release that is not defined in the Google 
Play store.

	 5.	In order to have a consistent approach to testing individual antimalware apps using 
up-to-date signatures, the next step is to Update definitions and perform an initial scan of 
Android test device.

	 6.	To prepare for the malwaresample.apk file transfer, the next step is Connect Android test 
device to personal computer via USB.

	 7.	Using the Contagio Mobile (2014) Malware Mini Dump database, the next step is 
to proceed to Download known malwaresample.apk file to desired location on test personal 
computer.

	 8.	The next step, Decision on how to upload file, is to upload the sample file that is based on 
user preference, which may be:
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FIG. 2  Experiment process.
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a.	 Manual upload: Manually upload sample file to the Downloads folder of the Android 
test device. Note: The plugged-in test device will behave similarly to that of an 
external hard drive.

b.	Enable USB Debugging mode on Android device: On the Android test device, go to the 
home screen, select Menu > Applications > Development, and enable USB Debugging. 
Note: Android OS Jelly Bean and KitKat require “tapping” the About option a few 
times before the Development tab appears.

c.	 Establish Android Debug Bridge (ADB) connection: The Android ADB feature is another 
way of communicating between a personal computer and an Android test device. As 
Android is based on Linux, it allows a terminal-based interface; therefore files can be 
uploaded using command line instead of drag and drop.

	 9.	 Depending on the decision made in Step 8, the next step is Upload malwaresample.apk file 
to Download folder on test Android device for testing the antimalware apps.

10.	Now that the sample file has been uploaded, the next step is to Browse to the Download 
folder on test Android device and install malwaresample.apk file. This will initiate the 
installation of the sample file onto the Android test device, where a digital timer watch 
will be used to record accurate detection time results.

11.	 Once this has been initiated, the next process is On successful install: Start Timer. Being 
extremely attentive and critical in this approach is necessary, as the timer must be started 
precisely upon confirmation that the install has finished. If there is any doubt in starting 
the timer upon a successful install, this step has to be repeated for accuracy.

12.	This step is a defining factor in the overall detection rate and time, where the Malware 
sample auto detected is recorded.
a.	 No—Run manual antimobile malware scan—If the antimalware app did not detect the 

malwaresample.apk file, then a manual scan was run.
b.	Yes—On detection: End Timer—If the malwaresample.apk was detected, the time will be 

recorded.
13.	Following the detection process, the next step is Document results, which involves 

recording the detection type, detection time in seconds, and detection rate (see 
Section 3.2).

14.	No malicious sample files can be left on the device, so the Ensure to factory reset device 
process has been added to keep all Android test devices in the same clean environment.

15.	The process for additional sample files can be repeated in the process named Repeat 
process to test additional malwaresample.apk files.

16.	Finally, the terminal End represents the end of the experiment.

3.2  Metrics

In our study, bar graphs and cumulative distribution function (CDF) will be used across 
the three following areas of malware sample detection principles, which collectively analyze 
the reliability and effectiveness of the antimalware apps used in our experiment.

Type of Scan (Auto [A] or Manual [M]): The type of scan used to identify a malware sample. 
Auto mode refers to the app being able to automatically detect a threat. If there is no automatic 
detection, a manual scan is conducted to thoroughly test the sample malware. A bar graph is 
used to represent the type of scan value. An effective antimalware app should perform a scan 
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automatically for any new app installation, hence a higher percentage of the auto scan type 
will result in a higher scan value percentage. The latter is computed as (number of the type 
of scan, auto or manual)/(total number of test cases performed against the antimalware app).

Detection Time: The time it takes for the malware sample to be detected. For the purposes 
of reporting data, the detection time is recorded in milliseconds. Where a malware sample is 
not detected or an automatic scan does not take place, the detection time is recorded as n.a. 
CDF is used to cumulatively represent all detection time values and displays how the anti-
malware apps are distributed. For example, the detection time values for each app are sorted 
in ascending order (i.e., smallest value to largest value), which in most instances include 45 
data points: 15 malware samples tested on each individual antimalware app across all three 
Android OS; 15 × 3 = 45. The data points in this example are representative of 1/45, which is 
0.0222 (2.22%), up to 1.0 (100%). Each data point is representative of a percentage to deter-
mine the cumulative frequency of the detection time. While most apps have 45 data points, it 
is not true for all of the antimalware apps within this experiment. The apps that result in n.a. 
have fewer data points; however, they will still add up to 100%. Each data point on the graph 
show how results are distributed cumulatively for each antimalware app. Results with n.a. 
will not be included, as a figure is required to plot a result. Thus if any antimalware apps have 
n.a. across all 15 malware samples tested, they will not be shown, as they have no detection 
time due to their manual type of scan. Therefore antimalware apps that automatically detect 
a threat are considered more reliable and effective in detecting the malware samples used 
within this experiment.

Malware Sample Detected (Yes [Y] or No [N]): This identifies whether the tested malware sam-
ple was detected, as a percentage value. A bar graph is used to represent the malware sample 
detection value. A higher percentage means more malware samples were detected, resulting 
in a higher percentage. Malware sample detection percentage is computed as (number of mal-
ware sample detected)/(total number of test cases performed against the antimalware app).

4  FINDINGS

First, we looked at the type of scan results (automatic or manual) to determine and com-
pare antimalware apps (Fig. 3). The way in which the malware samples were detected played 
a vital role in the findings, as the aim of this analysis is to determine the effectiveness and 
reliability of free antimalware apps that are available from the Google Play store.

At the time of research, Android versions used within this experiment (i.e., KitKat, Jelly Bean, 
and Ice Cream Sandwich) are still popular versions throughout the consumer market. For ex-
ample, KitKat currently holds the majority of distribution share across all Android platforms. 
In addition, it is likely no further updates or releases will be provided for KitKat, Jelly Bean, or 
Ice Cream Sandwich due to newer Android versions such as Lollipop and Marshmallow. Any 
new updates will relate to a new version release upgrade and device compatibility factors.

Our experiment conducted within this chapter is relevant, as its focus is on versions of 
Android that are no longer supported but are still widely used, hence the need to protect de-
vices and ensure PII security. It is not uncommon for malware threats to target older Android 
versions, such as Ice Cream Sandwich, Gingerbread, and Froyo, thus learning attack meth-
ods and possibly adapting to newer Android versions. Furthermore, the experiment process 
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is designed to facilitate a manual procedure that is both repeatable and transparent, which 
can be used to test the effectiveness and reliability of any antimalware app across new or 
old Android versions with a range of collected malware samples from various sources (see 
Section 3.1).

Although Lollipop and Marshmallow have recently been released, they still have a lower 
distribution and are somewhat less stable and more in flux than previous Android versions, 
as mentioned previously. Therefore, Lollipop and Marshmallow will be considered in future 
experiments.

The apps with a higher automatic detection of malware samples are more reliable and 
effective in protecting an Android device against malicious threats, thus protecting the user 
intuitively through prompt notification to remove a detected threat. Those with manual 
detection of malware samples require additional user intervention, which may lead to a ma-
licious threat to perform the attack, as it was not detected and mitigated in a timely manner.

With this in mind, the apps that automatically and consistently detected a threat and would 
immediately prompt the user to uninstall received a higher percentage. The top eight anti-
mobile malware apps examined were AVAST Software, Cheetah Mobile, Qihu (360 Security), 
Norton Mobile, McAfee Mobile Security/Intel Security, BitDefender, MalwareBytes, and Sophos 
Limited. All eight antimalware apps received 100% each for automatic detection and removal 
of the malware samples used within this experiment. The results show that all eight apps per-
formed extremely well and show promising signs of Android automatic malware protection.

Following closely at 97.78% was AVG Mobile, where the majority of scans were automatic 
with one manual intervention. A manual scan was needed, as AVG did not detect one of the 
malware samples used within this experiment. The type of scan used correlates with the mal-
ware samples detected, as some malware samples were not detected at all. In this instance, 
a manual scan is used to verify possible detection of the installed malware sample to show 
transparency and accurate findings across all antimalware apps (see Fig. 7).

Lookout Mobile Security (A: 86.67%/M: 13.33%), Creative Apps (A: 33.33%/M: 66.67%), 
and TrustGo Inc. (A: 26.67%/M: 73.33%) required more prompts and more manual interven-
tion. The three remaining apps did not provide automatic detection for the possible removal 
of malware samples used—Doctor Web Ltd (A: 0%/M: 100%), Kaspersky Lab (A: 0%/M: 
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FIG. 3  Type of scan.
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100%), and Pablo Software (A: 0%/M: 100%). Although Doctor Web Ltd provided a free app, 
it was a 14-day trial and did not include automatic scanning. An in-app purchase to upgrade 
to the full version was required to benefit from automatic scanning. Kaspersky Lab and Pablo 
Software had no automatic notification of malicious threats being installed and required 
manual intervention on all malware samples installed. However, Doctor Web Ltd, Kaspersky 
Lab, and Pablo Software performed very differently in the malware samples detected, albeit 
manual intervention was needed, which makes these apps less reliable and effective in pro-
tecting an Android device.

Second, we looked at the cumulative frequency of detection time results across all three 
Android platforms and hardware test devices. During the experiments, we observed that the 
scanning mode (Fig. 3) had a considerable impact on the detection time across the different 
Android platforms and test devices. Antimalware apps that included automatic detection 
received a time value. Those that required a manual scan received no detection time value, 
which impacted the results distributed cumulatively for each tool.

Throughout the experiment, it becomes apparent the detection time for the 15 antimalware 
apps improved across newer Android OS's and hardware devices (Figs. 4–6). An observation 
was that some antimalware apps, such as AVAST, Cheetah, and TrustGo, started a scan of a 
malware sample during install, while other apps started a scan after install. Starting a scan 
during install showed significant improvement in detection time. However, the response in 
prompting for an automatic detection and removal of the malware samples was different 
across each malware sample.

At the time of experiment, Doctor Web scanned apps during install, which prompted a 
threat alert only with no automated process to remove the threat. Although this allowed for 
quicker detection time, the Doctor Web app did not autoprompt the user to uninstall or stop 
the malware sample from being installed; therefore the installed malware sample could be ac-
tivated if opened. In order to remove the malware sample, a manual scan was needed within 
the app itself to activate the removal of the detected malware sample. Qiho also scanned apps 

Detection time in seconds

C
u

m
m

u
la

ti
ve

 f
re

q
u

en
cy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sophos Limited

MalwareBytes

BitDefender

TrustGo Inc.

Norton Mobile

Creative Apps

Qihu

Lookout Mobile Security

Cheetah Mobile

AVAST Software

AVG Mobile

McAfee Mobile Security
/ Intel Security

FIG. 4  Detection time: Android 4.0 (Ice Cream Sandwich).



196	 8.  A study of Android free anti-mobile malware apps

Detection time in seconds

C
u

m
m

u
la

ti
ve

 f
re

q
u

en
cy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Sophos Limited

MalwareBytes

BitDefender

TrustGo Inc.

Norton Mobile

Creative Apps

Qihu

Lookout Mobile Security

Cheetah Mobile

AVAST Software

AVG Mobile

McAfee Mobile Security
/ Intel Security

FIG. 6  Detection time: Android 4.4 (KitKat).

during install and detected all 15 malware samples (Fig. 7). Such an example demonstrates 
how effective and reliable antimalware apps are if they include an automatic response.

Creative Apps varied between malware samples. Throughout some installations, Creative 
Apps started to check malware samples during installation while others were checked im-
mediately after installation. Manual scans were much slower on older devices, where de-
vice specifications are lower than that of newer devices. Device specifications may have a 
direct relation to how quickly malicious apps are detected, meaning better detection time 
overall. Detection time varied considerably over the three difference devices and Android 
OS platforms for Norton, McAfee, and Sophos. The lower specification device had slower 
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detection time overall; the detection time improved through later Android OS and hardware 
devices. Having a new and updated OS device proves to be a more reliable way in detecting 
malicious apps sooner rather than later. Lower detection times can be seen in Fig. 4, and a 
comparison in the improvement of detection time across all 15 anti-malware apps can be 
seen in Figs. 5 and 6.

Although TrustGo only detected four malware samples, the detection time was fairly re-
sponsive, as malware samples were scanned during installation. Once the malware sample 
was installed, a manual scan was run due to the low automatic malware sampled detection 
(Fig. 3). The manual scan adds to the experiment and analysis of the antimalware apps. If an 
automatic detection was missed, a manual scan, in theory, should detect any malicious activ-
ity. In this case, TrustGo did not detect 11 malware samples (Fig. 7).

Automatic scanning of a new app installation is not a feature of the free version of 
Kaspersky. App scanning during install is only available through the paid version, leaving 
vulnerabilities to the Android OS. Detection time was not taken into consideration, as the 
Kaspersky Lab app did not scan the malware samples on install. The malware samples could 
be installed and opened without any automated protection; therefore a manual scan was 
carried out on all malware samples and showed improved results (Fig. 7). Kaspersky did not 
have the option to change the default package installer, but if the option were available, detec-
tion time would increase significantly, as apps will be scanned before an installation begins.

BitDefender detected malware sample APK files on the first device scan, which is an added 
protection because no malware sample was installed. An antimalware app that scans and 
detects malicious APK files before an install has even started will have much higher detec-
tion time. However, this experiment process focuses on malicious threats that are installed. 
BitDefender did not prompt to change default package installer. Detection time improved 
over each test device. For example, older versions of Android and hardware performed 
slower than newer platforms. MalwareBytes detected all malware sample APK files when 
they were transferred to test devices. The detection time also improved over newer hardware 
devices and latest Android platforms (Figs. 4–6).
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Pablo Software Virus scan did not have an automated malware scan for any malware samples 
installed. There were no scans before, during, or after the install of the malicious malware sam-
ples. The app prompted an installation of the newly installed app only and all 15 malware sam-
ples installed without any malware threat detection. A manual scan was conducted after each 
malware sample install; 10 were detected, leaving five malware samples undetected (Fig. 7).

The majority of detection time findings improved throughout newer models of hardware 
and Android OSs. The hardware may be a factor due to the improvement of hardware spec-
ification (Table 5). Android also introduces more app security within Android 4.4 (KitKat), 
such as restricting the installation of apps from other sources than Google Play and allowing 
or disallowing apps through verification (Table 1). However, the user can ignore such options 
and instead choose a suggested responsive antimalware tool.

In order for detection time to be effective and reliable, the app must also be able to remove the 
threat immediately. Our findings demonstrated that although particular apps were able to detect 
the malware samples, they were neither flagged as imminent threats nor removed upon detec-
tion. For example, the antimalware apps not included within the detection time results were Pablo 
Software, Kaspersky Lab, and Doctor Web. Due to a lack of automatic scan capability, no detec-
tion time could be recorded and the apps received a result of n.a (see Section 3.2). Nevertheless, 
the type of scan and malware sample detection results were taken into consideration.

Finally, we looked at the overall malware samples detected (Fig. 7), which include both 
automatic and manual detection across all Android platforms. Impressively, 10 out of the 15 
antimalware apps used in this experiment achieved 100% detection of the malware samples 
used. The 10 top rated antimalware apps are AVAST, Cheetah, Doctor Web, Qihu, Norton, 
McAfee/Intel Security, Kaspersky, BitDefender, MalwareBytes, and Sophos.

With a large number of positive results, up-to-date malware definitions play a key role in 
detecting known malware. As mentioned earlier, malware samples were used from various 
malware families to test accuracy and transparency. Having up-to-date malware definitions 
are the sole responsibility of antimalware companies, which will depend on available infra-
structure resources and technology (see Section 2.3.1). If a wide variety of malware families 
is known, then detection will undoubtedly improve. AVG performed very well and detected 
a very large number of malware samples, receiving 97.78%. Interestingly, the one malware 
sample recorded as not detected for AVG was the most recent sample and on Android 4.0 
(Ice Cream Sandwich); AVG installed on newer Android platforms were able to detect all 
malware samples. Such a result demonstrates the vulnerability in older Android platforms 
and proves that upgrading to newer Android OSs and hardware devices is vital to ensure 
additional security measures (see Section 2.1.2).

Lookout Mobile Security received 86.67% and Pablo Security received 66.67%, which re-
sulted in a large number of malware samples being detected. They showed promising results, 
and the detection would only improve if a wider range of malware families could be in-
cluded in their definition updates. Of the remaining apps, Creative Apps detected 33.33% and 
TrustGo only detected 26.67%; both were unable to detect the majority of malware samples 
used in this experiment and therefore performed the at lowest levels.

A key observation throughout the experiment was how each antimalware app handled the 
detection of the malware sample APK files. As part of the experiment process, the malware sam-
ples (APK files) were manually transferred onto the smartphone devices in order to test each 
one. Antimalware apps such as AVAST, Lookout Security, BitDefender, and MalwareBytes were 
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the only ones to actively detect that malicious APK files (malware samples) were being trans-
ferred onto the device. They also automatically prompted the removal of malicious APK files 
before any installation took place, which is a huge advantage in protecting any Android device. 
If the experiment process expanded the type of scans performed, such antimalware apps would 
have extremely good detection time over other antimalware apps in the Google Play market.

Initially, it seemed that hardware specification potentially had a role in improving detec-
tion times. As the experiment continued, however, this was not always the case, as Android 
4.4 (KitKat) on the Motorola Moto G also presented slower detection times, as did older de-
vices and Android platforms. Possible causes may relate to different Android versions and 
API's integrations.

The Motorola Moto G also has higher hardware specifications; there was a considerable 
difference to the time it took for the malware samples to complete installation. The malware 
samples were much quicker than older devices when installing malware sample APK files 
(Table  5); therefore this may contribute to the improved detection times of those antimal-
ware apps used within this experiment. As the malware samples were installed more quickly, 
the detection of malicious activity would improve. However, this was not always true in all 
experiments. Older devices were able to detect some of the malware samples much more 
quickly. BitDefender and MalwareBytes were representative of this theory, as the detection 
time on newer Android platforms and hardware out-performed their predecessors.

After testing 15 anti-malware mobile apps, the major limitation in the majority of such 
apps tested is the inability to take control of the Google install manager system process. A un-
knowing user can begin the initial installation of a malicious app; once the malicious file has 
completed the installation, only then did the majority of antimalware mobile apps run a scan 
on the newly installed apps and only then were any malicious threats detected. Surprisingly, 
only three apps have an option that prompted to take control of the default Android pack-
age installer—AVAST, Lookout Mobile Security, and Norton Mobile. The Android package 
installer controls how APK files are installed. Having unknown APK files scanned would 
significantly increase the detection of any malicious threat, providing malware definitions are 
up to date. Within this experiment, the option was not selected because not all apps had the 
same option, so it would be an unfair advantage.

The aim of this experiment is to provide transparency between popular free antimalware 
apps by following an experiment process. Throughout this experiment, three vital observa-
tions were identified to significantly improve detection time, including the scanning of any 
APK files that are transferred to a smartphone, an option for changing the default installer 
package, and for a scan to immediately start during an app installation rather than after 
completion. If the antimalware apps used within this experiment have up-to-date malware 
definitions across a wide variety of malware families, all three observations will significantly 
improve malicious app detection times and detection rates.

5  CONCLUSION AND FUTURE WORK

While Android and other mobile devices may be seen by some as an extension of ex-
isting threats to the security and privacy of user data, the mobile threat landscape is an 
extremely fast-moving environment (Choo, 2011; Quick et al., 2013). A 2014 study by 26 
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privacy enforcement authorities in 19 countries examining 1211 popular mobile apps for 
both Android and iOS platforms found that nearly 60% of these apps raised privacy con-
cerns even before they were downloaded, and 85% of the apps were reportedly access-
ing personal data without providing adequate information to users (Leyden, 2014; Privacy 
Commissioner of Canada, 2014). It is essential that users undertake proactive measures such 
as those identified in this chapter; only a decade ago, several criminologists warned that 
“those who fail to anticipate the future are in for a rude shock when it arrives” (Grabosky 
et al., 2004, p. 156).

In this study, we manually examined the 15 most popular antimalware apps installed 
on devices running the three most recent versions of the Android OS. They were evaluated 
against 15 malware samples taken from various malware families from the Contagio Mobile 
Malware Mini Dump database. This is, to the best of our knowledge, the first academic study 
that provides a systematic and transparent evaluation of free antimalware apps for Android 
devices.

Our findings suggested that detection type is paramount in the responsiveness of detect-
ing a malicious threat before, during, or upon immediate completion of a new app installa-
tion, which will prevent any consequent threat activation. Findings also suggested that there 
is a constant race between malware developers and security providers. For example, we iden-
tified that a number of free antimalware apps have outdated signature repositories and fewer 
options to change the default Android package installer. However, having an antimalware 
mobile app with automatic threat detection and removal installed is a significant advantage 
in protecting an Android device against potential malicious threats.

Future work includes:

1.	 Evaluate a wider range of devices in a live environment that would include both known 
and unknown (zero-day) malware samples. For example, users of the test devices would 
click on untrustworthy links and dubious advertisements and download attachments 
from phishing or spam email messages. Such experiment setting could potentially 
uncover additional malware families that have not been detected as part of signature 
repositories. The Android OS includes manual security features that allow or disallow the 
installation of nonmarket-based apps, which is a protective measure against manual app 
installations. For example, options such as “unknown sources and verify apps” are now 
included within Android KitKat and Lollipop, which prevent manual app installations 
taking place if selected. Therefore future work within a live environment will provide  
in-depth analysis into the relationship between malware and the Android OS.

2.	 Survey antimalware app users regarding their perceived effectiveness and reliability of 
the apps and evaluate the perceived effectiveness and reliability against the experiments 
either in a controlled environment (such as ours) or in a real-world deployment.

3.	 The above experiment (see Section 3.1) was conducted manually through a step-by-step 
process, where results were recorded manually on a per millisecond basis. The time 
involved was lengthy due to the precision of following each step of the experiment 
process, therefore limiting the malware sample dataset to 15 across 15 antimalware 
apps. Development of an automated process will enable the experiment to increase the 
malware dataset and include samples from different categories, as well as increase a 
broader range of antimalware apps, gaining further evaluation of their capabilities and 
limitations.



	 REFERENCES	 201

4.	 In addition, a list of prerequisites can be organized that will benchmark a number of 
different features that a user should expect from an antimalware tool. For example, 
does an antimalware app have options to change the default Android package installer? 
What about the ability to locate or lock a smart phone remotely or to notify the user of 
suspicious activity? Additional features would improve the overall effectiveness of an 
antimalware app.
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1  INTRODUCTION

In the last decade, worldwide mobile phone usage has increased dramatically. Globally, 
the number of mobile cellular subscriptions reached 5.3 billion by the end of 2010, reported 
by the International Telecommunication Union (ITU). And vendors shipped 371.8 million 
units in Q1 2011, growing 19.8% year-over-year (IDC) (Wauters, 2011). At the same time, the 
computational power and storage of mobile phones are getting more and more powerful, 
especially the deployment of dual-core CPU and gigabytes of internal memory (Lomas, 2011). 
Due to their mobility and the portability, mobile phones have become second nature to peo-
ple, and as a result are often quite involved in some criminal cases (Mislan, 2010). More se-
riously, the powerful mobile phone can be used as a criminal tool anytime and anywhere. In 
both cases, a lot of digital evidence may be stored inside the mobile phone, and so mobile 
phone forensics techniques are necessary for retrieving and investigating the information 
(Barmpatsalou et al., 2013).

Mobile phone forensics has been studied for quite a long time and there are several 
commercial products for investigating the mobile phones of world leading brands, such as 
Symbian (Mokhonoana and Olivier, 2007), Android (Vidas et al., 2011), Windows (Klaver, 
2010), Blackberry, and iPhone. However, in China, a new category of mobile phone with a 
commonly known brand of “Shanzhai mobile phone” (Shanzhai phone for short) emerged 
from 2007 after China’s government removed the license policy to manufacture mobile 
phones and now it is flooding in the global mobile phone market due to its high cost-
performance ratios (Nanyang, 2010). The Chinese word “Shanzhai” originally means 
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“mountain village,” but now it has another meaning to refer to imitation, low-end and un-
professional brands and goods, particularly electronics. Contrast to the remarkable growth 
of “Shanzhai phone,” there is less published research work related to Shanzhai phone fo-
rensics. The reason may lie in the shortage of the technical documents of Shanzhai phone 
and the great number of Shanzhai phone models. Benefit from the turnkey solution pro-
vided by MediaTek (MTK) (http://www.mediatek.com/en/index.php) and Spreadtrum 
(http://www.Spreadtrum.com) the development period for Shanzhai phone can be short-
ened from over one year to one month. It means that there will be thousands of models 
of Shanzhai phones appearing on the market during a single year. Unfortunately, such a 
quick change becomes a nightmare to researchers to perform digital forensics on Shanzhai 
phone. Since Shanzhai phones are spreading worldwide and there is trend of criminals 
using them as they perpetrate crimes, it is necessary to conduct a deeper investigation on 
Shanzhai phones. As a result, Shanzhai phone forensics unavoidably become more and 
more important.

In this paper, the method for retrieving data from the internal memory of a typical MTK-
based Shanzhai phone is introduced. Data structures of storing call log, phone book, short 
message service (SMS) and some advanced media content are also parsed via reverse engi-
neering. Furthermore, the extracted information is analyzed with historical information to 
reconstruct the sequence of operations for help determine a suspect’s activity.

2  RELATED WORK

There has been some research on mobile phone forensics since the early 2000s. There is 
a wide range of mobile forensics tools developed to acquire data from the flash memory of 
mobile phones (Ayers et al., 2014; McCarthy, 2005). However, most of the tools use com-
mands and response protocols to indirectly access the memory. These commands and proto-
cols depend on the operating system (OS) and actually change the contents of the memory. 
Only data visible to the OS can be recovered. Also, such tools fail to retrieve data from 
dead or faulty mobile phones. Another problem with such tools is that they cannot recover 
deleted data.

Flasher tools are the easiest and noninvasive way to read flash memory data (Breeuwsma 
et  al., 2007), which have been used in quite a few mobile forensics cases (Gratzer and 
Naccache, 2006; Purdue University, 2007). However, these approaches cannot ensure a 
complete dump of the memory and may depend a lot on the OS. Meanwhile, if the data 
connector of the mobile phone is not supported by flasher tools, electronic wiring of the 
communication pins on mobile phone’s Printed Circuit Board (PCB) may be required for 
connection with flasher tools.

The physical extraction approach is to physically remove the internal flash memory chip 
from the mobile phone and read it with a memory reader. This procedure requires profes-
sional engineers because memory chips may be damaged during de-soldering. Joint Test 
Action Group (JTAG) is an embedded test technique to test automatically the functionality 
and quality of the soldered integrated components on PCB, which is a standard test ac-
cess port and boundary-scan architecture. It controls the phone’s microprocessor in debug 
mode to communicate with the memory chip, and dump the memory bit by bit. Therefore, 

http://www.mediatek.com/en/index.php
http://www.Spreadtrum.com
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it ensures the completeness of the forensics binary image and it is OS-independent. A brief 
comparison of these approaches is shown in Table 1.

In this paper, we go for the easier solution of using a flasher tool to obtain the memory 
instead of using JTAG because our focus is more on how the information is stored in the 
memory. Note that using JTAG should provide a lower level picture of the memory.

From the viewpoint of OS, there have been various forensic software or tools aimed at 
dedicated OS, such as Symbian (Mokhonoana and Olivier, 2007), Windows mobile (Klaver, 
2010), Android (Vidas et al., 2011; Hoog, 2011), and iPhone (Hoog and Strzempka, 2011). 
A more detailed survey could be found in Barmpatsalou et al.’s review paper (Barmpatsalou 
et al., 2013). Since these tools are OS-dependent, they cannot be used directly to acquire data 
from Shanzhai phones. There has been some research work on mobile forensics using JTAG 
(Willassen, 2005; Zhang, 2010).

3  DIGITAL EVIDENCE IN SHANZHAI PHONE

In this paper, a typical model of Shanzhai phone is selected to be studied in the exper-
iments. The model is an imitated version of iPhone4. This model is based on one low-end 
processor of MediaTek, MT6253, which is MediaTek’s first monolithic GSM/GPRS hand-
set chip solution that offers the highest level of integration with lowest power consump-
tion and best-in-class features. Most of Shanzhai phone models were developed on this 
platform.

3.1  Physical Data Storage and Logical File System

Inside the Shanzhai phone, a 16M bytes NOR flash chip (Toshiba TC58FYM7T8C) inte-
grated with a 4M bytes RAM is used to work as read-only memory (ROM) for OS and as non-
volatile random access memory (NVRAM) for data storage. As shown in Fig. 1, the 16M bytes 
of NOR flash of the Shanzhai mobile phone is divided into two parts. The first 14M bytes 
(memory address from 0 to 0xDFFFFF) are used to store code and will be kept unchanged 
after the Shanzhai phone is produced. Noted that this is the default configuration in MTK 
development solution.

The remaining 2M bytes (memory address from 0xE00000 to 0xFFFFFF) are further di-
vided logically into two areas. As shown in Fig. 2, both of the two areas can be seen as a 

TABLE 1  Comparison of Three Internal Memory Acquisition Approaches

Desoldering JTAG Flasher Tools

Risk of chip damage High Low Low

Risk of data modification Low Low Medium

Complexity of usage High Medium Low

Electronic soldering High Medium Not required in many cases

Completeness of data High Medium Medium (may not be guaranteed)
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removable drive under Windows OS when the Shanzhai phone is connected to a computer 
via USB data cable. Note that this is the only logical distribution of the two areas. Physically, 
the blocks in flash for the two areas are mixed and not separated as clearly as this figure. 
From the partition information, we know that both drives are formatted in FAT12 format, but 
only the drive (here is drive H:) corresponding to USER area can be accessed via Windows, 
the other one (drive I:) corresponding to SYSTEM area cannot be read, written, or viewed by 
a normal user. In general, the USER area is kept for the Shanzhai phone user as a storage to 
exchange data between the phone and a computer, while the SYSTEM area is kept for the OS 
of the phone as a virtual memory to save the data managed by OS. Note that some of the data 
saved in SYSTEM area can be viewed or edited by the user via the user interface (UI) of the 
Shanzhai phone, such as the settings of the phone, phonebook, call log, SMS, etc.

Code area

FAT area

RAM
RAM
4M

16M
NOR

Flash

14M
ROM

2M

SYSTEM area

USER area

FIG. 1  The NOR flash memory for the Shanzhai phone.

FIG. 2  The directory as viewed from Windows.
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With the help of a flasher tool, the total 16M bytes of raw data in the flash memory 
can be retrieved as a memory dump and can be further investigated in a computer as a 
binary file.

3.2  Extracting Baseline Contents From Flash Dump of Shanzhai Phone

In this section, the flash memory dump of the Shanzhai phone is reverse engineered to 
sort out the format of storing three kinds of baseline contents of mobile phone including the 
phonebook, call log, and SMS.

In the MTK-based platform, the phonebook, call log, SMS and other system-related user 
information are organized as data items and stored as files in NVRAM. A data item manage-
ment system is deployed to manage NVRAM data in the file system and maintains an inter-
nal lookup table to retrieve the data items. Fig. 3 shows the logical relationship between the 
data items and the files in NVRAM.

Usually, phonebook, call log and SMS are saved as data items named “NVRAM_EF_PHB_
LID,” “NVRAM_EF_PHB_LN_ENTRY_LID” and “NVRAM_EF_SMSAL_SMS_LID,” respec-
tively, under the subdirectory “NVD_DATA.” While this high-level information can help us 
to understand the storage mechanism of MTK-based Shanzhai phone, since we cannot di-
rectly access to the file system of the phone, we must try to reverse engineer the binary dump 
to figure out the storing pattern of the data items as following.

Each kind of contents has a different data structure for storage. Phonebook saves the basic 
information of a contact as one entry, which is 86-byte length including 62 bytes for contact’s 

SYSTEM 
area

NVD_DATA

NVD_CORE

NVD_IMEI

NVRAM

NVRAM_EF_PHB_LID

NVRAM_EF_PHB_LN_ENTRY_LID

NVRAM_EF_SMSAL_SMS_LID

Object

Object

Object

FIG. 3  Data items and files stored in NVRAM.
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name and 20 bytes for contact’s phone number in Binary-Coded Decimal coding. An example 
is illustrated in Fig. 4. Note that when one entry in the phonebook is deleted by a user, the 
logical memory space for that entry will be revoked and be filled in with a hexadecimal value 
of “0xFF.”

Data item of call log saves each call event as one 92-byte length entry, including 32 bytes 
for caller’s name, 7 bytes for the time of the call, 41 bytes for caller number and 4 bytes for 
call duration. An example is illustrated in Fig. 5. Note that when one entry in call log is de-
leted by user, the following call log will move one unit forward to replace the memory space 
of the deleted call log, and so on. Finally, all the entries later than the deleted entry will move 
one unit forward as a whole.

The data item of SMS saves each SMS as one 184-byte length entry containing a status 
byte and an 183-byte protocol data unit (PDU). The status byte is used to indicate the 
SMS is “new event,” “read,” “sent” or “draft.” And the PDU part including the num-
ber of SMS Center (SMSC), the time of receiving the SMS (given by SMSC), the phone 
number of the sender and the content of the message. An example is illustrated in Fig. 6.

FIG. 4  Data format of phone book stored in NVRAM.

FIG. 5  Data format of call log stored in NVRAM.
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4  TIMELINE ANALYSIS OF THE DIGITAL EVIDENCE

In this section, we first investigate the recovery of content deleted by user’s operations 
from the flash dump, then we discuss one characteristic of the data management of the MTK-
based Shanzhai phone, with which one previous version of the file for storing data item will 
be kept every time the data item is modified. Based on this property of Shanzhai phone, we 
propose a timeline analysis method to retrace the suspect’s activity.

4.1  Deleted Contents and “Snapshots” in the Flash Dump

In Section  3.2, when one entry in a data item is deleted or modified, or one entry is 
added to the data item, the memory space for storing data item will be modified accord-
ingly. However, this may be still the understanding at the logical level of NVRAM files. 
When we go through the flash dump on the binary level, we find that there are multiple 
copies of data items. Some of them are the previous version of the data item before mod-
ification. This may be due to the fact of the flash file system: when the flash store is to be 
updated, the file system will write a new copy of the changed data to a fresh block, remap 
the file pointers, then erase the old block later when it has time. So, for example, when 
a phonebook entry is updated, the pointer to “NVRAM_EF_PHB_LID” will be changed 
from the gray block in Fig. 7 to the dark block. When a user accesses the phonebook via 
the UI of the phone’s OS, the newest version of phonebook stored in the dark block will be 
displayed, while the previous version of the phonebook is still stored in the original flash 
memory block until the block needs to be recycled. We call the historical version of data 
items as “snapshot.”

FIG. 6  Data format of SMS stored in NVRAM.
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4.2  Timeline Analysis on Phonebook

Since the previous data is just “erased” in the filesystem but not be really wiped from the 
physical storage, the recovery of deleted contents is possible. In our experiments, a tool was 
developed to automatically parse the flash memory dump to extract all versions of the data 
item using pattern matching techniques. An example is illustrated in Fig. 8. In this example, 
nine snapshots were found in the flash memory dump. Snapshot 7 should be the first version 
of phonebook file as it only contains one entry. Recall that one modification on the data item 
will generate one more snapshot. Then Snapshot 6 should be the second version as it only has 
one more operation compared to Snapshot 7 (the operation should be appending “jack1”). 
Following this logistic and comparing the entries in the snapshots, the operation sequence 
can be easily deduced as follows: Snapshot 7–Snapshot 6–Snapshot 5–Snapshot 4–Snapshot 
3–Snapshot 2–Snapshot 1–Snapshot 9–Snapshot 8.

The above example shows a simple case of rebuilding the operation sequence of the 
phonebook. Note that the snapshots are continuous; that is, no snapshot is erased by flash 
recycling mechanism. When the case with some snapshots lost is considered, the situation 
becomes more complicated and algorithm needs to be applied in the analysis to help rebuild 
the timeline.

Next, we carry out an experiment with some snapshots lost and propose an algorithm to 
help analyze the timeline of the user’s activity. First, we manually perform a series of opera-
tions on the Shanzhai phone with the following steps: 

1.	 Add entry named “memory0”
2.	 Add entry named “memory1”
3.	 Add entry named “memory2”
4.	 Add entry named “memory3”
5.	 Add entry named “memory4”
6.	 Delete entry “memory1”
7.	 Delete entry “memory3”
8.	 Add entry named “memory5”
9.	 Add entry named “memory6”

FLash

NVRAM

NVRAM_EF_PHB_LID

FIG. 7  Pointer remapping when data item modified.
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The flash memory is dumped to a computer for investigation after the Step 9 is done. 
Running our tool on this flash dump, all the information of phonebook could be extracted as 
shown in Fig. 9. Note that snapshot 6 is the latest version of the phonebook. We define the 
distance (d) between two Snapshots A and B as the minimum number of operations to change 
A to B. Since one modification operation on the data item will generate one snapshot, the 
more similar the snapshots and the more closer the operations in time sequence. For example, 
in Fig. 9, since Snapshot 1 contains entry “memory0” and Snapshot 2 contains entries {“mem-
ory0,” “memory2,” “memory4,” “memory5” }, changing from Snapshot 1 to Snapshot 2 re-
quires three inserting operations, such that the distance between Snapshots 1 and 2 is three. 
All the distances between any two snapshots in Fig. 9 are calculated and shown in Table 2.

FIG. 8  All snapshots of a phonebook in flash memory.
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From Table 2 and the starting point, Snapshot 6, using the shortest path principle, so we can 
reconstruct the timeline of Snapshot 6, Snapshots 2 and 4, but leave three snapshots that can-
not be determined with the shortest path principle. The partial sequence is shown in Fig. 10.

Since Snapshot 5 contains all three entries which also exist in Snapshot 4, Snapshot 5 should 
be the one nearer to Snapshot 4 than Snapshots 1 and 3. Then the Fig. 10 can be redrawn as 
Fig. 11 with all the sequences determined.

Thus, the timeline of the operations can be rebuilt with this method. Furthermore, the 
other kinds of contents stored in the Shanzhai phone also hold this characteristic and the 
method can be applied to the timeline analysis on the other kinds of contents.

FIG. 9  Snapshots of phonebook in flash memory with several snapshots lost.

TABLE 2  The Distances Between Any Two Snapshots (S)

S6 S5 S4 S3 S2 S1

S6 4 2 4 1 4

S5 4 2 2 3 4

S4 2 2 2 1 2

S3 4 2 2 3 2

S2 1 3 1 3 3

S1 4 4 2 2 3
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5  CONCLUSION

This paper presents work on the investigation of how phone call records and phonebook 
entries are stored in an MTK-based Shanzhai phone. The investigation reveals some import-
ant information on how the system handles the addition/deletion of phonebook entries and 
the phone call records. Although through the interface of OS, only the most recent entries of 
phone calls and phonebook are displayed, if the memory has not yet been overwritten, valu-
able evidence could still be retrieved. Furthermore, a deep analysis will be performed on the 
extracted information and the historical information to construct the corresponding timeline 
array to help determine a suspect’s activity.
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1  INTRODUCTION

The Internet of Things (IoT) has evolved into an important building block for future IT 
visions such as Smart City, Smart Building, Smart Home, Smart Mobility and Industry 4.0. As 
those systems cover a large number of sensors and nodes that communicate frequently with 
each other, design concepts for developing IoT systems must be highly scalable (Atzori et al., 
2010). One approach to fulfilling this requirement is the architectural style of the web known 
as representational state transfer (REST) (Fielding, 2000). REST is a guideline for designing 
large-scale distributed systems. Due to its strength in terms of scalability, interoperability, 
and efficiency, the application of REST has been adopted in areas such as service-oriented 
architecture (SOA) (Erl et al., 2012; Gorski et al., 2014a,b) and cloud computing (Lo Iacono 
and Nguyen, 2015a). Consequently, REST is gaining traction as an approved concept for im-
plementing large-scale IoT systems (Shelby et al., 2014; Urien, 2015). Since IoT services and 
applications share sensible information, security is another prerequisite of paramount im-
portance (Atzori et al., 2010). Hence, REST-Security for IoT-based environments is becoming 
relevant.

This chapter introduces an authentication concept for RESTful IoT protocols, which con-
sider scalability and resource-restrictiveness constraints stemming from the architectural style 
REST and IoT networks and devices. The chapter is organized as follows: The foundations 
of REST are introduced in Section 2. Based on this background, Section 3 briefly introduces 
Constrained Application Protocol (CoAP) (Shelby et al., 2014) and Remote APDU Call Secure 
(RACS) (Urien, 2015), two RESTful protocols for the IoT domain. On the basis of the REST 
foundations and their technical instantiations, Section 4 proposes a methodology for devel-
oping security schemes for REST-based (IoT) systems of any kind. Following this methodol-
ogy, Section 5 extends REST by an integrated authentication (Lo Iacono and Nguyen, 2015b) 
while remaining on the same abstraction level as REST itself. Section 6 utilizes the proposed 
security scheme as a guideline for implementing concrete authentication protocols to CoAP 
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(Nguyen and Lo Iacono, 2015) and RACS. Based on these results, Section 7 concludes this 
chapter with a summary, as well as a future research and development challenges.

2  REST FOUNDATIONS

Roy Fielding introduced the architectural style REST (Fielding, 2000) in his doctoral dis-
sertation. The basic idea behind this concept is to provide a guideline proposing architectural 
constraints for designing highly scalable distributed software systems. These constraints are 
illustrated in Fig. 1.

The communication in REST is based on the client-server and request-response model. 
Therefore it is always the client who initiates the communication by issuing a request ad-
dressing a resource from a server. In the context of REST, a resource is an abstract definition 
of information intended for human interpretation or machine processing. Thus, a resource 
can have multiple representations. Moreover, a resource must be addressable by a unique re-
source identifier. Hence, each request must include a resource identifier. In conjunction with 
the requested action, both data elements define the intention and destination of a request. The 
resource identifier syntax and the request actions must be standardized and predefined by the 
uniform interface so that all components in a REST architecture can understand the purpose of a 

Uniform interface

REST serverREST client

[Intermediate systems]

Resource
processing

Resources

Response

Request (Request processing)

• Create• Action
• Resource identifier
• [Resource representation]
• [Caching]
• [Authentication]
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• Update
• Delete
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• locations

• pictures
• videos
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• ...

• ...

• ...
• ...

State change

FIG. 1  REST constraints and principles (Gorski et al., 2014a).
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request. Fielding does not specify any concrete actions for REST-based systems; the definition 
of a fixed set of actions is rather a matter of the implementation of the uniform interface. REST-
based systems mostly use actions to create, read, update and delete a resource. Depending on 
the action, a request can comprise a resource representation such as that for creating or updat-
ing. In addition to the resource identifier syntax and request action, the uniform interface also 
defines a fixed set of further metadata elements describing, for example, the size and the me-
dia type of a resource representation. Since REST messages are constrained to be stateless and 
cacheable, metadata can also define state information such as authentication or session data and 
caching information. As requests in REST contain all required data elements including the ac-
tion, the resource identifier, state and cache information, and further metadata, their semantics 
are self-descriptive for each server. This means that every server can understand the intention of 
a request without maintaining any particular state and without knowing the client in advance, 
since all requests are self-descriptive and all data elements are standardized.

The stateless and self-descriptive nature of REST messages makes them well suited for in-
termediate processing. Thus in many cases, the communication flow in REST-based systems is 
layered by multiple intermediate systems to ensure efficiency and scalability. For instance, inter-
mediaries are utilized to cache messages, saving a server from replicated processing with the 
aim to reduce communication latency. A load balancer is another prevalent intermediate com-
ponent to distribute workloads across multiple servers in order to provide scalability. Further 
intermediaries can be, for example, security gateways performing authentication, as well as 
access control or cross-protocol proxies encapsulating legacy or other related service systems.

Once a request receives a server, the endpoint returns a response including a response 
meaning informing about the result of a request. As with requests, a response can contain 
further metadata, such as authentication or caching information, and a resource representa-
tion accompanied by resource representation metadata. Moreover, the metadata and resource 
representation of a REST response may contain hypermedia elements defining application 
control information; that is, description of actions to be applied to resource identifiers, which 
are embedded in the metadata and resource representation.

The metadata and resource representation of the returned response triggers a state change 
inside the client. Based on hypermedia information within the response, a client can choose 
the next desired request, or state change, to repeat the described cycle. This kind of applica-
tion control concept is called hypermedia as the engine of application state, one of the key inter-
face constraints of REST.

All of these aforementioned constraints and principles describe a RESTful architecture that 
promotes scalability, generality of interfaces, and independent deployment of components, as 
well as reduces latency, enforces security, and encapsulates legacy and related systems.

Hypertext Transfer Protocol (HTTP) (Fielding and Reschke, 2014) is one protocol that is 
in conformance with the REST constraints and principles, as it is based on the client-server 
and request-response model. Moreover, it specifies a set of request actions (i.e., HTTP meth-
ods) and a set of further metadata such as header fields or status codes. Resources in HTTP 
can be addressed by a standardized resource identifier syntax, namely the URI (Berners-Lee 
et al., 2005) syntax. Also, HTTP messages can include a resource representation such as JSON 
(Crockford, 2006), HTML (Hickson et  al., 2014), or XML (Bray et  al., 2008). The metadata 
and resource representation may contain description on hypermedia relationships (i.e., links 
or resource identifiers) to describe the next possible state changes or requests for the client. 
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Additionally, HTTP messages are stateless and cacheable, so they can be processed in inter-
mediate systems, such as proxies, cache servers, or load balancers, without saving any con-
textual information. HTTP was been originally invented as the technical foundation for the 
web, the world's largest distributed system.

3  RESTful IoT PROTOCOLS

Due to the success of the web and the strengths of REST, SOA, cloud computing, and the 
IoT domain have adopted principles and constraints of this architectural style to implement 
highly scalable service systems. For IoT, which aims at realizing a worldwide distributed and 
interconnected system, CoAP and RACS have been proposed as two RESTful protocols with 
a specified focus on constrained devices and networks.

3.1  RESTful CoAP

CoAP (Shelby et  al., 2014) is binary application protocol based on HTTP. As for HTTP 
messages, CoAP message are divided in two parts: a header comprising metadata and a body 
(payload) containing a resource representation. Each CoAP header begins with a start header 
containing a version number (V), a message type (T), a token length (TKL), a code (C), and 
a message ID (MID). In contrast to HTTP, CoAP defaults to User Datagram Protocol (UDP) 
(Postel, 1980), an unreliable means of transport. To ensure transport reliability, CoAP mes-
sages can be confirmed. Such messages comprise the message type 0 (T = 0). The reception 
of confirmable messages must be approved by an acknowledgement message (ACK), which 
is represented by the message type 2 (T = 2). A receiver can also reject a confirmable message 
by sending a reset message (RST). These messages contain the message number 3 (T = 3). 
Nonconfirmable CoAP messages contain the message number 1 (T=1). The token length de-
scribes the size of the token, which is used to match a response to its corresponding request. 
In case of a request, the code defines the method (i.e., the request action). CoAP provides four 
methods: GET (C = 0.01), POST (C = 0.02), PUT (C = 0.03), and DELETE (C=0.04). These meth-
ods have the same functionality and properties as the methods in HTTP. CoAP responses 
use the code to represent the status code, such as Content (C = 2.05), declaring that the re-
sponse contains a resource representation, while Bad Request (C = 4.00) or Internal Server 
Error (C = 5.00) informs the client about a client-side or server-side error, respectively. The 
message ID concludes the CoAP start header. This ID is an identifier for linking a reset or an 
acknowledgement message to its respective confirmable message. Further metadata can be 
described by CoAP options. Important options for defining the resource identifier in a CoAP 
request are Uri-Path and Uri-Query. The Accept option is another crucial metadata element 
for declaring the desired media type being requested. Another mandatory option for defining 
the media type of a resource representation is content-format. The delimiter to separate the 
CoAP header from the body is 255 (111111112).

Fig. 2 depicts a CoAP request retrieving a resource representation in JSON (denoted by the 
number 50, which represents application/json) from a CoAP server. This request is given a 
so-called piggybacked response, which represents an acknowledgement as well as a response 
message. Such a response contains the same token value and message ID as the corresponding 
request.
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If a server is not able to return a piggybacked response immediately, it can send a plain 
acknowledgement message instead to inform the client about the successful request recep-
tion (Fig. 3). This acknowledgement message contains an empty token value and same the 
message ID as the respective confirmable request. Once a server is able to return a response, 
it sends a confirmable response with the same token value as the corresponding request to 
the client. This so-called separate response contains a new message ID, as it represents a to-be 
confirmed message by itself. A client receiving a separate response must approve the recep-
tion of the message, with the new acknowledgement message containing the message ID of 
the separate response.

Since CoAP is based on HTTP, it contains all the characteristics for being a RESTful 
protocol. The communication in CoAP is stateless and follows the client-server and request-
response models. CoAP requests always include a URI for identifying the requested resource. 
Moreover, CoAP specifies a set of request actions (i.e., CoAP methods) and further metadata 
describing caching information or the media type of the resource representation. In conjunc-
tion with the provided set of standardized metadata and stateless nature of CoAP, messages 
are self-descriptive so that they are optimized to be processed in layered systems.

FIG. 2  CoAP request replied by piggybacked response.

FIG. 3  CoAP request replied by separate response.
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3.2  RESTful RACS

RACS (Urien, 2015) is an application layer protocol designed according to REST. The goal 
of RACS is to remote control Secure Elements (SE) within a Grid of Secure Elements (GoSEs); 
that is, a RACS server. A SE is a tamper-resistant microcontroller, which provides secure stor-
age and cryptographic operations in smart cards. As the name RACS implies, this proto-
col is also intended for transporting remote Application Protocol Data Unit (APDU) (The 
International Organization for Standardization (ISO), 1987) messages. An APDU is an inde-
pendent protocol that specifies and manages the execution of application-oriented operations 
on SEs. RACS is a text-based protocol using the Transmission Control Protocol (TCP) (Postel, 
1981) as means of transport secured by Transport Layer Security (TLS) (Dierks and Rescorla, 
2008), whereas APDU is a binary protocol protected by its own standardized security speci-
fication. As with HTTP and CoAP, RACS uses the URI syntax for identifying resources such 
as GoSEs or SEs. A GoSE can be addressed by an IP address and a TCP port. Each SE within 
a GoSE has a unique identifier Secure Element Identifier (SEID), thus an SE is accessible by 
invoking a request with an URI composed of the IP address, TCP port, and SEID.

Each message in RACS is composed of a set of command lines, which are separated by a 
carriage return and line feed. A command may contain further parameters, which are sepa-
rated by a space character. The first command of each RACS message must be BEGIN and 
the last must be END. The BEGIN command may contain a request identifier as a parameter, 
which can be any kind of string. The request identifier must be echoed by the response in its 
BEGIN command. The RACS protocol defines the following set of request action commands: 
GET-VERSION, SET-VERSION, LIST, RESET, SHUTDOWN, POWERON, ECHO, and APDU. 
A request can comprise multiple request action commands, each of which is in its own com-
mand line. In such a case, the corresponding response must only return the status line of 
the last request action command. To force a server into returning a status line for a distinct 
request action command, APPEND must be added as the last parameter of the request action 
command line.

Each request action command is responded by a status header, which indicates the status 
line. Thus, a RACS response may contain multiple status lines, each returning the process re-
sult of its corresponding request action command. In case of a successful request processing, 
the status line starts with a plus (+). If a request contains an error, then the status line begins 
with a dash (-). The second parameter of the status line is an integer defining the status code. 
This parameter is followed by a number indicating the command line of the request action 
command being processed. A status line may contain further parameters such as a status 
phrase explaining the status code in a human-readable form.

Table 1 depicts some example request-response communications in RACS. The first row 
shows a RACS request comprising one GET-VERSION request action command. This request 
action command is replied by a RACS response containing a successful status code, the com-
mand line of the corresponding request action command, and the requested version number. 
The second example illustrates a request including a request ID and LIST request action com-
mand. This request is given a response containing the corresponding request ID and status 
line expressing the meaning and requested list of SEIDs of the GoSE. In Row 4, a request 
performing one RESET request action command is shown. This request action command 
includes the parameter WARM, which triggers a warm reboot of the SE. The last example 
shows a request, which executes two request action commands. Here, two APDU requests 
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are sent. To inform the server on returning a status line for each request action command, the 
APPEND parameter is added at the end of each line.

RACS also supports an HTTP interface. To perform a RACS request via an HTTP interface, 
a URI with the following syntax must be created:

https://<GoSEAddr:port>/<path>?cmd0=param0,…,<paramN>&cmdN=paramN0…, 
paramNM
The following example shows a request including one RESET request action command, 

which performs a warm reboot.
https://GoSE.org/RACS?BEGIN=myRequestID&RESET=SmartCard1,WARM&END=
The returned HTTP response includes a resource representation, which describes the 

RACS response in an XML document.
<RACS-Response>
  <begin>myRequestID</begin>
  <Cmd-Response>
    <status>+005</status>
    <line>001</line>
    <parameters>
  <parameter>SmartCard1</parameter>
  <parameter>Reset</parameter>
  <parameter>Done</parameter>
</parameters>
</Cmd-Response>
<end></end>
</RACS-Response>
The current stage of the RACS draft specification does not specify which HTTP method 

must be used to perform a RACS request on the HTTP interface. Also, it does not specify the 
to-be returned HTTP status code of the HTTP response, which includes the RACS response. 
Moreover, the current version does not contain all required characteristics for being a RESTful 

TABLE 1  Example RACS Requests and Responses

# RACS Request RACS Response

1 BEGIN
GET-VERSION
END

BEGIN
+002 001 1.0
END

2 BEGIN myRequestID
LIST
END

BEGIN myRequestID
+004 001 <SEID1> <SEID2>
END

3 BEGIN
RESET <SEID> WARM
END

BEGIN
+005 001 <SEID> Reset Done
END

4 BEGIN
APDU <SEID> <APDU Request1> APPEND
APDU <SEID> <APDU Request2> APPEND
END

BEGIN
+006 001 <APDU Response1>
+006 002 <APDU Response2>
END

https://<GoSEAddr:port>/<path>?cmd0=param0,…,<paramN>&cmdN=paramN0…,paramNM
https://<GoSEAddr:port>/<path>?cmd0=param0,…,<paramN>&cmdN=paramN0…,paramNM
https://GoSE.org/RACS?BEGIN=myRequestID&RESET=SmartCard1,WARM&END=
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protocol. The RACS protocol is based on a stateless client-server in addition to a request-
response model and defines a set of predefined request actions, as well as standardized fur-
ther metadata. Additionally, RACS servers and SEs within RACS servers can be addressed by 
an URI. However, RACS does not specify any metadata for caching or transferring resource 
representation. RACS requests can only include APDU calls. The aforementioned missing 
RESTful message properties might not be required for the application domain of RACS, or 
they may be defined in future versions.

4  SECURITY FOR RESTful IoT PROTOCOLS

Security is one fundamental requirement when it comes to design systems in IoT. In REST-
based IoT systems transport-oriented security has been established as the de facto mean to 
secure the message exchange. CoAP uses Datagram TLS (DTLS) (Rescorla and Modadugu, 
2006) for ensuring the confidentiality and integrity of the transport layer. Also, several works 
have been published to optimize DTLS for the deployment in constrained networks and en-
vironments (Park and Kang, 2014; Kang et al., 2015). The RACS protocol requires TLS as the 
mandatory security layer over TCP.

In layered systems, such as that by the adoption of REST, transport security with DTLS 
or TLS alone is, however, not sufficient to cope with requirements in large-scale distributed 
systems (Gorski et al., 2014a). Transport-oriented security protocols can only ensure the in-
tegrity, authenticity, and confidentiality of information during transit. If a message resides in 
an intermediate system, the data is unprotected, leaving the surface vulnerable to man-in-the-
middle attacks (Lo Iacono and Nguyen, 2015b; Nguyen and Lo Iacono, 2015).

For this purpose, a more comprehensive set of security means needs to be developed in or-
der to support software engineers in implementing message-oriented protection mechanisms 
that will supplement transport security. Therefore Gorski et al. (2014a) propose a required 
REST-Security stack comprising security components for REST-based service systems (see 
Fig. 4). This stack is adopted from the mature Simple Object Access Protocol (SOAP) security 
domain.

Besides the required security building blocks for developing a holistic protection of REST-
based systems, this stack also shows the missing and fragmented work in REST-Security. 
Here, only approaches for authorization and message security are available so far. Solutions 
for secure conversation, federation, policy, trust, and privacy are still missing. Moreover, the 
schemes for authorization and message security include much vulnerability, as revealed in 
Lo Iacono and Nguyen (2015b), Nguyen and Lo Iacono (2015), Yang and Manoharan (2013), 
and Sun and Beznosov, 2012, showing that despite using these technologies, man-in-the-
middle attacks are still possible. This indicates that none of them are mature enough to 
be applied in mission- and business-critical environments. Additionally, the available ap-
proaches are only designed for HTTP or CoAP, meaning that no message security technol-
ogies exist for RACS. HTTP, CoAP, and RACS merely represent three possible protocols 
for implementing REST-based systems. With the increased adoption of REST in, for exam-
ple, SOA, microservices, cloud computing, and IoT, more RESTful protocols are expected to 
evolve perspectively. This requires the development of a general REST-Security framework, 
which provides safeguards for all REST-based systems, including current and prospective 
RESTful technologies.
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Based on this finding, this section proposes a methodology for defining REST-Security 
components, which relies on the same idea as REST itself: REST is an abstract model for 
designing large-scale distributed systems. This model can be adopted with suitable technolo-
gies of any kind, such as HTTP, CoAP, or RACS, to build highly scalable service systems such 
as the web, IoT, SOA, or cloud applications (see Fig. 5).

Following this concept, REST-Security schemes should rely on the same abstraction level 
as REST itself. These schemes then form a REST-Security abstract model building a set of 
guidelines for implementing security technologies for RESTful protocols of any kind (see 
Fig. 6), as REST is a guideline for designing high scalable distributed systems with RESTful 
technologies such as HTTP, CoAP, and RACS (see Fig. 5).

Secure
conversation

REST-Security components

Federation

Policy Trust Privacy

REST foundation

Message security

Authorization

FIG. 4  REST-Security stack (Gorski et al., 2014a).

REST

Web services,Cloud services,
Smart-* services,...

IoT services,Smart-* services,
Industry 4.0 services,...

RESTful HTTP RESTful CoAP RESTful RACS RESTful…

Smartcard services,...

FIG. 5  Instantiation of the general REST architecture style to specific RESTful protocols.
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The next section proposes a REST Message Authentication (REMA) scheme, which follows 
this methodology. REMA marks the initial steps towards a REST message security, which build 
the foundation for further REST-Security components of the REST-Security stack (see Fig. 4).

5  REST MESSAGE AUTHENTICATION

A REMA must ensure the authenticity and integrity of the whole REST messages, making 
them immune to all kinds of man-in-the-middle-attacks. Following the introduced method-
ology, this section introduces an approach that augments REST by authentication scheme 
while remaining on the same abstraction level as REST itself. This generic scheme serves as a 
message authentication guideline for adopting a RESTful message authentication to distinct 
RESTful protocols including HTTP, CoAP, RACS, and other prospective protocols (see Fig. 7).

The key idea of REMA is to thwart the man-in-the-middle attacks revealed in Lo Iacono 
and Nguyen (2015b) and Nguyen and Lo Iacono (2015) by protecting the whole message at 
the application layer. To do so, a digital signature over all security-relevant message elements 
is computed. Therefore, a message signature algorithm and a message verification algorithm 
need to be defined. Before being able to sign and verify REST messages, a general policy 
defining what REST message elements to be authenticated is required. Note that this policy 
and this section use the abstract notation for the REST messages of Lo Iacono and Nguyen 

REST-Security

HTTP services security stack,... CoAP services security stack,...

RESTful HTTP
security

RESTful CoAP
security

RESTful RACS
security

RESTful…
security

RACS services security stack,...

FIG. 6  Instantiation of a general REST-Security to specific RESTful protocols.
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FIG. 7  Instantiation of a RESTful message authentication to RESTful protocols.



	 5  REST MESSAGE AUTHENTICATION	 227

(2015b) and Nguyen and Lo Iacono (2015). For further details on these notations, the reader is 
referred to Lo Iacono and Nguyen (2015b) and Nguyen and Lo Iacono (2015).

1.	 A message r RÎ  comprising a resource representation must include at least the two 
resource representation metadata entities, m Mbl bÎ  and m Mbt bÎ , describing the length 
and the media type of the contained resource representation, respectively.

2.	 A request r RcÎ  must contain at least one control data element, m Mca caÎ , and one 
resource identifier, i IÎ , describing the action and the target of the action.

3.	 A response r RsÎ  must contain at least one control data element, m Mcm cmÎ , expressing 
the meaning of the response.

4.	 A read request must contain at least one resource representation metadata element, 
m Mbr bÎ , describing the desired media type being requested. Moreover, this request 
must not include a resource representation.

5.	 A creation request must contain a resource representation.
6.	 An update request must contain a complete or partial resource representation.
7.	 A delete request does not require any additional prerequisite header element until further 

requirements. Moreover, this request must not include a resource representation.

Based on these definitions, this section proposes a generic signature and verification algo-
rithm for REST messages. Further requirements are the matter of technical instantiation of the 
uniform interface and application domain.

5.1  REST Message Signature

Algorithm 1 defines the procedure for signing a REST message. Note that error conditions 
are not made because of readability reasons. This algorithm requires a REST message r, a 
description on application-specific, to-be signed header elements desc and a signature genre-
ration key k as input.

ALGORITHM 1  REST MESSAGE SIGNATURE (LO IACONO 
AND NGUYEN, 2015B)

Input: REST message r, description desc of the application-specific, to-be signed header entries, 
signature generation key k

Output: Signature value sv, time-variant parameter tvp
1: b ← getBody(r)
2: h ← getHeader(r)
3: h� ← getTbsHeaders(h)
4: h� ← h� ||getTbsHeaders(h, desc)
5: tvp ← generateTimeVariantParameter()
6: tbs ← tvp
7: i ← 0
8: while i < | h� | do
9: tbs ← tbs||delimiter||normalize( hi

� )
10: i ← i + 1
11: end while
12: tbs ← tbs||delimiter||hash(b)
13: sv ← sign(k, tbs)
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The first two statements extract the body b and the header h from the message r. The next 
step gathers security-relevant header entries from h and store them to �h , which represents 
the header containing the security-critical header elements defined by the policy. After that, 
the application-specific, security-relevant header entities defined by desc are attached to �h . 
In order to thwart replay attacks, the following step generates a time-variant parameter tvp 
and assigns it to the variable tbs. These two steps must not be omitted even when another 
time-variant is already available in �h  because a considerable time span might exist between 
a message generation and signature generation. In the next step, all security-relevant header 
entries in �h  are normalized and concatenated to tbs. Next, a cryptographic hash of the body b 
is computed and appended to tbs. The final step signs tbs with the signature generation key k. 
The algorithm then returns the signature value sv and time-variant parameter tvp as output.

To guide the receiver in verifying a signed REST message, an authentication control data 
m Mcpa cpÎ  must be created, which contains the signature algorithm name sig, the hash al-
gorithm hash, a key id kid, the time-variant parameter tvp, the signature value sv, and the 
description on application-specific header elements desc. After the creation of mcpa, this meta-
data is included to the header h.

5.2  REST Message Verification

Algorithm  2 describes the process for verifying REST messages, which are signed by 
Algorithm 1. Note that error conditions are not made due to readability reasons; this algo-
rithm requires a signed REST message r as input only. As with Algorithm 1, the first two steps 
of Algorithm 2 extract the body b and header h from the message r. After that mcpa, which 
contains all the information guiding the receiver in verifying the message, can be obtained 
from h. The statement in line 5 constructs �h  according to the policy. The next step appends 

ALGORITHM 2  REST MESSAGE SIGNATURE VERIFICATION 
(LO IACONO AND NGUYEN, 2015B)

Input: Signed REST message r
Output: Boolean signature verification result valid
1: b ← getBody(r)
2: h ← getHeader(r)
3: mcpa ← getAuthenticationControlData(h)
4: (sig, hash, kid, tvp, sv, desc) ← split(mcpa)
5: h�  ← getTbsHeaders(h)
6: h� ← h� ||getTbsHeaders(h, desc)
7: tbs ← tvp
8: i ← 0
9: while i < | h� |do 

10:	 tbs ← tbs||delimiter||normalize( hi
� )

11:	 i ← i + 1
12: end while
13: tbs ← tbs||delimiter||hash(b)
14: verify ← getVerificationAlgorithm(sig)
15: valid ← verify(kid, tbs, sv)



the application-specific header entries specified by desc to �h . After building �h , tvp, all ele-
ments in �h  and a cryptographic of b are concatenated in the same order and manner as in 
Algorithm 1 to tbs. With kid, tbs, and sv, the signed message r can be verified. The result of this 
verification process is then returned as output.

6  RESTful IoT MESSAGE AUTHENTICATION

This section adopts the proposed authentication scheme to CoAP and RACS to show how 
it is implemented in concrete RESTful IoT technologies. Further instantiation to prospective 
RESTful IoT protocols can likewise be conducted.

6.1  RESTful CoAP Message Authentication (RECMA)

The two templates of the following table show the instantiation of the concatenation pro-
cess of Algorithm 1 for building tbs. The left template describes construction rules for CoAP 
request and responses, where a time-variant parameter (tvp), all security-relevant header ele-
ments ( �h ), and the body (b) are concatenated to byte array. The right one defines the concat-
enation process for acknowledgment (ACK) and reset messages (RST). Here, only tvp and �h  
are concatenated to a byte array as both message types do not contain a message body. The 
adopted and extended policy for constructing �h  in CoAP is described in Nguyen and Lo 
Iacono (2015); the reader is referred to this paper for further reference.

Assuming that the following request and acknowledgement message require to be signed:
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tbs Constructing Template for CoAP request and 
responses tbs Constructing Template for CoAP ACK and RST

Tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID
‖Token
‖Options0
…
‖OptionsN
‖hash(body)

tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID

Example CoAP request Example CoAP ACK

POST (V=1,T=0,TKL=1,C=0.02,MID=1)
Token: 10
Uri-Path: “items”
Content-Format: 60
Payload-Length: 15
11111111
{“items”:“pork”}

ACK (V=0,T=2,TKL=0,C=0.00,MID=1)
11111111
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According to the policy of Nguyen and Lo Iacono (2015), the tbs of both messages is con-
structed as follows:

The concatenation order of the items of the CoAP start header follows the order of the 
predefined positions of these header entries. The CoAP are appended according the order 
of option numbers. After constructing both tbs, these two variables are signed by signature 
generation key k.

The last step assigns the computed signature value sv and corresponding authentication 
metadata to newly introduced CoAP options: Signature-Value (sv), Signature-Algorithm (sig), 
Hash-Algorithm (hash), TVP (tvp), and Key-ID (kid). These options represent mcpa and are in-
cluded with the header h.

sv sign k tbs= ( ), 

Signed CoAP request Signed CoAP ACK

POST (V=1,T=0,TKL=1,C=0.02,MID=1)
Token: 10
Uri-Path: “items”
Content-Format: 60
Payload-Length: 15
Signature-Algorithm: 1
Hash-Algorithm: 1
TVP:
Signature-Value: <sv>
Key-ID: <kid>
11111111
{“items”:“pork”}

ACK (V=0,T=2,TKL=0,C=0.00,MID=1)
11111111
Signature-Algorithm: 1
Hash-Algorithm: 1
TVP:
Signature-Value: <sv>
Key-ID: <kid>

tbs of Example CoAP request tbs Constructing Template for CoAP ACK and RST

0x14D14486B51 #tvp
‖0x01 #Version
‖0x00 #Type
‖0x01 #TokenLength
‖0x02 #Code
‖0x01 #Message-ID
‖0x0A #Token
‖0x00 #Uri-Host(3)
‖0x00 #Uri-Port(7)
‖hash(UTF8(“items”)) #Uri-Path(11)
‖0x60 #Content-Format(12)
‖0x00 #Max-Age(14)
‖0x00 #Uri-Query(15)
‖0xF0 #Payload-Length (65001)
‖hash(UTF8({“item”:“pork”})) #Body

0x14D14486B57 #tvp
‖0x01 #Version
‖0x02 #Type
‖0x00 #TokenLength
‖0x00 #Code
‖0x01 #Message-ID
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This CoAP implementation of REMA uses the numbers for declaring the signature 
and hash algorithm name. The number 1 within the Signature-Algorithm options stands 
for an HMAC-SHA256. The same number in the Hash-Algorithm option represents an 
SHA256. The description on application-specific header entries desc is omitted in these 
examples, because ACK and RST messages must not contain CoAP options and the ex-
ample request does intend to include application-specific options to �h . Moreover, this 
RECMA utilizes the Payload-Length option to define the size of the body. This option is 
not standardized metadata element; rather, it is draft specification, which has been ex-
pired yet. Still, RECMA uses this option and declares this metadata entry as an element 
of �h  in order to both avoid man-in-the-middle attacks manipulating the body and to 
comply with transport independence constraint (Fielding, 2000; Nguyen and Lo Iacono, 
2015).

6.2  RESTful RACS Message Authentication (RERMA)

The following table shows two templates for authenticating RACS messages. In contrast 
to CoAP, the RERMA utilizes a string concatenation instead of a byte concatenation, as it is a 
text-based protocol.

The left template describes the concatenation process for requests. According to 
Algorithm 1, the first parameter assigned to tbs is the time-variant parameter (tvp), fol-
lowed by line break (\n). Next, the request ID (rid) with a line break is appended. If the 
request does not include a request ID, an empty string must be added instead. After 
that, each command line containing a request action command separated by a line break 
is appended to tbs. For each command line, the request action command (a) must be 
added first, then the parameters of the corresponding request action command (p) are ap-
pended. Each parameter must be separated by a whitespace. The right template denotes 
the concatenation process for RACS response. tvp and the request ID are added in same 
manner as in the left template. The status code (sc) followed by the processed command 
line of corresponding request action command (cl) and parameters are appended next. 
As the current stage of RACS does not define how to transfer and declare resource repre-
sentation, this part is omitted in the current stage of RERMA. Further work will extend 
RERMA by this missing property, if transferring and declaring resource representation is 
defined in RACS.

tbs Constructing Template for RACS request tbs Constructing Template for RACS request

tvp + “\n” +
rid + “\n” +
a0+ “ ” +p0+ “ ” + … + pN + “\n” +
…
aM + “ ” +pM0+ “ ” + … + pMN + “\n”+

tvp + “\n” +
rid + “\n” +
sc + “ ” + cl0 + “ ” + p0 + “ ” + … + pN + “\n”+
…
sc + “ ” + clM + “ ” + p0 + “ ” + … + pMN + “\n”+
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Assuming that the following two RACS messages require authentication:

Based on Algorithm 1 and the templates in the previous table, the tbs of both messages is 
constructed as follows:

Then both strings are encoded to UTF8 and signed with a key k. As the RACS is a text-
based protocol, the resulting binary signature value must be converted by a Base64 transfor-
mation to a string:

Finally, sv, along with the corresponding authentication metadata (mcpa) is added to the re-
quest as a new command line, starting with the newly defined command action SIGNATURE. 
Note that this command action is considered experimental, as it does not exist in the current 
RACS specification. Therefore the representation of mcpa may change in the future in order 
to be compliant with forthcoming versions of the RACS draft specification. In the RACS re-
sponse, mcpa is included into the status line, which is in conformance with the RACS specifica-
tion, as a status header can contain additional response parameters.

Both messages do not include application-specific metadata elements to be signed. 
Therefore, the fifth parameter of the SIGNATURE command line is defined as null. If addi-
tional header elements need to be signed, a list containing the position number of the param-
eter separated by a comma must be included instead.

sv Base sign k UTF tbs= ( )( )( )64 8,

Signed Example RACS request Signed Example RACS response

BEGIN
APDU SmartCard1 <APDU Request1> APPEND
APDU SmartCard1 <APDU Request2> APPEND
SIGNATURE RSA/SHA256 <kid> 1455190341456 null <sv>
END

BEGIN
+006 001 <APDU Response1>
+006 002 <APDU Response2>
+006 003 SIGNATURE RSA/SHA256 <kid> ↲ 
1455190341556 null <sv>
END

Example RACS request Example RACS response

BEGIN
APDU SmartCard1 <APDU Request1> APPEND
APDU SmartCard1 <APDU Request2> APPEND
END

BEGIN
+006 001 <APDU Response1>
+006 002 <APDU Response2>
END

tbs of Example RACS request tbs of Example RACS response

1455190341456
APDU SmartCard1 Base64(<APDU Request1>) APPEND
APDU SmartCard1 Base64(<APDU Request2>) APPEND

1455190341556
+006 001 Base64(<APDU Response1>)
+006 002 Base64(<APDU Response2>)
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If the HTTP interface is utilized to perform a RACS request, the RESTful HTTP Message 
Authentication (REHMA) (Lo Iacono and Nguyen, 2015b) must be used to authenticate the 
HTTP messages.

7  CONCLUSION AND OUTLOOK

REST has established itself as an important architectural style for developing large-scale 
hypermedia distributed system. In IoT environments, the principles and constraints of REST 
have been adopted by several application domains including CoAP- and RACS-based sys-
tems. Other IoT areas with prospective RESTful protocols will eventually arise likewise. The 
increasing implementation of the REST concept in various technologies, as well as application 
domains, and the insufficient protection of transport-oriented protection demand generic se-
curity approaches augmenting REST on the same abstraction layer.

This chapter therefore proposes an approach that extends REST by an authentication 
scheme while remaining on the same abstraction layer of REST itself. This security scheme 
then serves as a guideline for implementing message authentication for RESTful (IoT) proto-
cols. Based on this guideline, this chapter introduces a REST message authentication scheme 
for two RESTful protocols for the IoT domain, CoAP and RACS, respectively.

REMA, RECMA, and RERMA provide integrity and authenticity, as well as non-
repudiation for REST messages and RESTful protocol when using asymmetric signature 
algorithms in conjunction with an appropriate public key infrastructure. Still, in order to 
approach a comprehensive message security, confidentiality must be considered as well. 
In layered systems, this security service is of specific importance, as many intermediate 
systems, such as cache servers, load balancers or content delivery networks are operated by 
third-party services. If REST messages are not encrypted, those intermediate services have 
plain-text access to traversing messages. This is especially critical for IoT environments, as 
sensitive information is transferred from node to node. Therefore a REST message confi-
dentiality scheme needs to be developed. This scheme must follow the introduced method-
ology by defining a guideline for adopting and implementing confidentiality services for 
RESTful technologies including HTTP, CoAP, RACS, and prospective RESTful protocols 
(see Fig. 8).

REST message
confidentiality

RESTful HTTP
message confidentiality

RESTful CoAP
message confidentiality

RESTful RACS
message confidentiality

RESTful…
message confidentiality

FIG. 8  General RESTful message confidentiality and its instantiation to concrete RESTful protocols.
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Following this methodology, further security components for the REST-Security stack in 
Fig. 4 can be developed. All these steps will be elaborated in further work in order to build a 
generic and robust security framework for mission-critical REST-based (IoT) systems.

References
Atzori, L., Iera, A., Morabito, G., 2010. The Internet of Things: a survey. Comput. Netw. 54, 2787–2805. Available from: 

http://www.sciencedirect.com/science/article/pii/S1389128610001568.
Berners-Lee, T., Fielding, R., Masinter, L., 2005. Uniform Resource Identifier (URI): Generic Syntax. IETF, RFC 3986. 

Available from: https://tools.ietf.org/html/rfc3986.
Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., 2008. Extensible Markup Language (XML) 1.0. 

World Wide Web Consortium (W3C) Recommendation, fifth ed. Available from: http://www.w3.org/
TR/2008/REC-xml-20081126.

Crockford, D., 2006. The Application/json Media Type for JavaScript Object Notation (JSON). IETF, RFC 4627. 
Available from: http://www.ietf.org/rfc/rfc4627.txt.

Dierks, T., Rescorla, E., 2008. The Transport Layer Security (TLS) Protocol Version 1.2. IETF, RFC 5246. Available from: 
https://tools.ietf.org/html/rfc5246.

Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R., 2012. SOA With REST: Principles, Patterns & Constraints for 
Building Enterprise Solutions With REST, first ed. Prentice Hall Press, Upper Saddle River, NJ.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-Based Software Architectures. (Doctoral dissertation). 
In: University of California, Irvine. Available from: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Fielding, R., Reschke, J., 2014. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. IETF, RFC 
7230. Available from: https://tools.ietf.org/html/rfc7230.

Gorski, P.L., Lo Iacono, L., Nguyen, H.V., Torkian, D.B., 2014a. Service security revisited. In: 11th IEEE International 
Conference on Services Computing (SCC).

Gorski, P.L., Lo Iacono, L., Nguyen, H.V., Torkian, D.B., 2014b. SOA-readiness of REST. In: 3rd European Conference 
on Service-Oriented and Cloud Computing.

Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O'Connor, E., Pfeiffer, S., 2014. HTML5—A Vocabulary and 
Associated APIs for HTML and XHTML. W3C Recommendation. Available from: http://www.w3.org/TR/html5/.

Kang, N., Park, J., Kwon, H., Jung, S., 2015. ESSE: efficient secure session establishment for Internet-integrated wire-
less sensor networks. Int. J. Distrib. Sens. Netw. 2015. http://dx.doi.org/10.1155/2015/393754.

Lo Iacono, L., Nguyen, H.V., 2015a. Towards conformance testing of REST-based web services. In: 11th International 
Conference on Web Information Systems and Technologies (WEBIST).

Lo Iacono, L., Nguyen, H.V., 2015b. Authentication scheme for REST. In: International Conference on Future Network 
Systems and Security (FNSS). Springer International Publishing, Switzerland.

Nguyen, H.V., Lo Iacono, L., 2015. REST-ful CoAP Message Authentication. In: International Workshop on Secure Internet 
of Things (SIoT), in Conjunction With the European Symposium on Research in Computer Security (ESORICS).

Park, J., Kang, N., 2014. Lightweight secure communication for CoAP-enabled Internet of Things using delegated 
DTLS handshake. In: International Conference on Information and Communication Technology Convergence 
(ICTC). http://dx.doi.org/10.1109/ICTC.2014.6983078.

Postel, J., 1980. User Datagram Protocol. IETF, RFC 768. Available from: https://tools.ietf.org/html/rfc768.
Postel, J., 1981. Transmission Control Protocol. IETF, RFC 793. Available from: https://tools.ietf.org/html/rfc793.
Rescorla, E., Modadugu, N., 2006. Datagram Transport Layer Security. IETF, RFC 4347. Available from: https://tools.

ietf.org/html/rfc4347.
Shelby, Z., Hartke, K., Borman, C., 2014. The Constrained Application Protocol (CoAP). IETF, RFC 7252. Available 

from: https://tools.ietf.org/html/rfc7252.
Sun, S., Beznosov, K., 2012. The devil is in the (implementation) details: an empirical analysis of OAuth SSO systems. In: 19th 

ACM Conference on Computer and Communications Security (CCS). http://dx.doi.org/10.1145/2382196.2382238.
The International Organization for Standardization (ISO), 1987. Cards Identification—Integrated Circuit Cards With 

Contacts. ISO 7816.
Urien, P., 2015. Remote APDU Call Secure (RACS). IETF, Internet-Draft. Available from: https://tools.ietf.org/html/

draft-urien-core-racs-05.
Yang, F., Manoharan, S., 2013. A security analysis of the OAuth protocol. In: IEEE Pacific Rim Conference on 

Communications, Computers and Signal Processing (PACRIM). http://dx.doi.org/10.1109/PACRIM.2013.6625487.

http://www.sciencedirect.com/science/article/pii/S1389128610001568
https://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.ietf.org/rfc/rfc4627.txt
https://tools.ietf.org/html/rfc5246
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0035
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0035
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc7230
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0050
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0050
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0055
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0055
http://www.w3.org/TR/html5/
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0065
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0065
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0070
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0070
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0075
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0075
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0080
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0080
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0085
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0085
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0085
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc7252
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0110
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0110
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0115
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0115
https://tools.ietf.org/html/draft-urien-core-racs-05
https://tools.ietf.org/html/draft-urien-core-racs-05
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0125
http://refhub.elsevier.com/B978-0-12-804629-6.00010-9/rf0125


Mobile Security and Privacy	 235� © 2017 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-804629-6.00011-0

C H A P T E R

11
An Introduction to Various Privacy 

Models
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The Hong Kong Polytechnic University, Kowloon, Hong Kong

1  INTRODUCTION

Anonymity refers to the absence of identifying information of an individual. In the digital 
age, user anonymity is critically important since computers could be used to infer individ-
uals’ lifestyles, habits, whereabouts, and associations from data collected in different daily 
transactions (Chaum, 1985). However, merely removing explicit identifiers may not provide 
sufficient protection. The preliminary reason is that the released information, when combined 
with publicly available information, can also reveal the identity of an individual. A famous 
example is the Netflix crowdsourcing competition. In 2012, Netflix released a data set of us-
ers and their movie ratings. People could download the data and search for patterns. The 
data contained a fake customer ID, together with movie, customer’s rating of the movie and 
the date of the rating. It is claimed that since customer identifiers have been removed, the 
released information would not breach user privacy. However, Narayanan and Shmatikov 
(2008) showed how customers can be identified when the dataset from Netflix is combined 
with some auxiliary data (such as data from IMDB).

Location privacy is also of great concern in the mobile setting. Here we briefly review a case 
related to the location privacy of a location-based social network (LBSN), namely, WeChat, as 
discussed in (Wang et al., 2015). By using a fake GPS position and mobile phone emulation, it is 
possible to reveal the exact location of any WeChat user with the nearby service turned on (Fig. 1).

The previous example raises a question: what kind of information do we wish to protect when 
we talk about privacy protection? In other words, how do we define privacy? Traditional models 
in dealing with data confidentiality are not applicable in this case, since we have to maintain 
data utility. In the Netflix competition example, the data set is released to the public for min-
ing, while in WeChat Nearby service, the user should be able to obtain the list of users nearby.

Over the years, the research community has developed various privacy models, including 
k-anonymity (Sweeney, 2002) and differential privacy (Dwork, 2006). In this chapter, we dis-
cuss these definitions and implications and the techniques to achieve them.
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1.1  Organizations

This rest of this chapter is organized as follows. In Section 2, we present the definition 
of k-anonymity and discuss its practical implications. In Section 3, we discuss various tech-
niques to achieve the definition. In Section 4, we discuss differential privacy, including its 
definition and implications. A differentially private mechanism that helps supporting differ-
ential privacy is reviewed in Section 5. We conclude in Section 6.

2  DEFINITION OF k-ANONYMITY

k-anonymity, proposed by Sweeney (2002), is a property of protecting released data 
from reidentification. It can be used, for example, when a private corporation such as 
a bank wants to release a version of data concerning clients’ financial information to 

FIG. 1  WeChat nearby people.
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some public organizations for research purpose. Under this circumstance, released data 
should have the property that individual subjects of the data cannot be reidentified so as 
to protect their privacy. In other words, all the records in the released database should 
remain unlinkable to the clients. Clients’ original data from a bank usually contains 
information such as name, address, and telephone number that can directly identify 
clients. One possible way to hide the identity is by directly removing the sensitive in-
formation from the database. However, it cannot guarantee clients’ privacy. Information 
like zip code, gender, age and race, clients’ identities still can be reidentified. Zip code 
provides an approximate location. Through searching by specific age, gender, and race, 
it is still possible to reveal clients’ identities. Another possible way to achieve reidenti-
fication is called linking attack. Apart from attributes like name and address which can 
directly break the anonymity of data, there are also attributes called quasi-identifier 
(QID) which is used to link released data to external data. Gender, age, race and zip code 
is a typical tuple of QIDs and this tuple of QIDs from released data has high probability 
that also appears in some external data. If there are external tables like voter registration 
lists, then by linking the QIDs from released data to voter data, clients’ identities may be 
revealed (Fig. 2).

k-anonymity requires that in the released data, each record can be mapped to at least 
k records in the original data. In another words, each record from the released data will 
have at least k − 1 identical records in the same released data. For example in Table 1, (a) 
is the original data and (b) is the data derived from (a). (b) has k-anonymity where k = 2. 
In Sweeney (2002), Latanya Sweeney presented the principle of k-anonymity and proved 
that if the released data owns the property of k-anonymity, then the linking attack which 
links the released data to other external data and tries to break the data anonymity can be 
defended. Intuitively, this is because each record in released data will have at least k − 1 
same records.

Last
withdrawal date Zip code

Gender

Age

Race

Financial data External data

Name

Address

......

Last
deposit date

Financial
status

FIG. 2  Linking attack between released data and external data.
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3  MECHANISMS THAT SUPPORT k-ANONYMITY

After k-anonymity was proposed, various attempts had been made in designing a good 
algorithm that turns a database into a form that satisfied this definition. The main two tech-
niques used to enforce k-anonymity in released data are generalization and suppression. 
Generalization consists of replacing attributes considered to be QIDs with a more general 
value. In Table 1, the values of gender, age, and zip code from (a) are all substituted by a 
generalized version in (b). Generalization can be applied in levels from a single cell to a tuple 
of attributes to achieve k-anonymity. Suppression consists of removing sensitive attributes to 
reduce the amount of generalization when achieving k-anonymity. Same as generalization, 
suppression can also be applied in cells or whole attributes. The combination of general-
ization and suppression has been used to construct different algorithms to help data satisfy 
k-anonymity. The conventional framework of such an algorithm always starts by suppressing 
several sensitive attributes and then partitions tuples of remaining attributes into groups and 
substituting accurate QIDs’ values into generalized ones for each group, which are also called 
equivalent classes. This kind of generalization is homogeneous generalization and has been 
used to address k-anonymity in Iwuchukwu and Naughton (2007), Ghinita et al. (2007), and 
LeFevre et al. (2008). A property of homogeneous generalization is that if an original record ti 
matches the released record tj′ whose corresponding original record is tj, then tj also matches 
ti′. This property is called reciprocity. The most significant point for homogeneous generaliza-
tion is how to divide the equivalent classes. The partitioning strategy will directly influence 

TABLE 1  Example of k-Anonymity (k = 2)

(a) Original Data

Name Gender Race Age Zip Code

Alice Female White 17 21103

Lucy Female Asian 22 21300

Daniel Male Black 27 21110

Kate Female White 15 21102

Rose Female Black 29 21109

Andy Male Asian 24 21304

(b) Sharing Data Derived From (a)

Gender Race Age Zip Code

F or M White 15–19 211*

F or M Asian 20–24 213*

F or M Black 25–29 211*

F or M White 15–19 211*

F or M Black 25–29 211*

F or M Asian 20–24 213*
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the utility of released data. There are two ways to do the partitioning job: global recording 
(full-domain anonymization) (LeFevre et al., 2005, 2006; El Emam et al., 2009) and local re-
cording (Xu et al., 2006; Aggarwal et al., 2010). Global recording means that within a column, 
the same generalization strategy is applied to the equal value. So if two tuples in the original 
data have identical QID values, then they must have the same released value. However, in 
local recording, two tuples with identical QID values may have different generalized val-
ues. Incognito algorithm proposed in LeFevre et al. (2005) uses dynamic programming and 
is shown to be outperformed by previous algorithms on two real-life databases. The main 
idea of Incognito is that any subset of the tuple of QIDs with k-anonymity should also have 
the property of k-anonymity. Mondrian algorithm presented in LeFevre et al. (2006) uses a 
strategy called multidimensional global recording. In Mondrian, each attribute in the dataset 
represents a dimension and each record represents a point in the space. Instead of partition-
ing each records, Mondrian algorithm partitions the space into several regions and in each 
region, there are at least k points.

Algorithms using local recording may guarantee more anonymity in specific situation 
(Ninghui Li and Su, 2011).

Another generalization method is called nonhomogeneous generalization (Wong et al., 
2010; Xue et al., 2012; Doka et al., 2015). For nonhomogeneous generalization, the property 
of reciprocity does not necessarily hold for all records. In Table 2, (b) is the released data 
derived from (a) using homogeneous generalization, and it is clear that (t1′, t2′, t5′) is an equiv-
alent class and (t3′, t4′) is another . In an equivalent class, all the generalized QID values are 
the same. However, in a nonhomogeneous generalized table (c), t1′, t2′ and t5′ have different 

TABLE 2  Example of k-Anonymity (k = 2) From Homogeneous and Nonhomogeneous Generalization

(a) Original Data

Tuple ID Gender Age Zip Code

t1 Female 17 21103

t2 Male 29 21110

t3 Male 27 21210

t4 Male 15 21202

t5 Female 22 21109

(b) Sharing Data Generated by Homogeneous Generalization

Tuple ID Gender Age Zip Code

t1′ F or M 17–29 211*

t2′ F or M 17–29 211*

t3′ Male 15–27 212*

t4′ Male 15–27 212*

t5′ F or M 17–29 211*

Continued
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generalized QID values. While both table (b) and (c) have 2-anonymity, (c) offers higher 
data utility since the generalized QID ranges in (c) is either smaller or equivalent to the cor-
responding ones in (b). This illustrates that by using nonhomogeneous generalization, one 
may achieve a higher data utility on the released data.

In Wong et al.’s work (Wong et al., 2010), original data and released data are seen as a graph 
and records from data are vertices. To achieve k-anonymity, each vertex from the graph should 
have exactly k matches in the same graph including the vertex itself. If we consider a matching 
between two vertices as an edge, then the former sentence can be rewritten as each vertex in 
the graph should have out degree and in degree k. So in such graph, there are k disjoint assign-
ments can be extracted and each assignment represents a correspondence between vertices. 
Even though Wong et al.’s work use nonhomogeneous generalization, there is still the require-
ment that the generalized graph should form a ring in their strategy which causes redundancy.

Recently Doka et al. (2015) proposed a new algorithm called freeform generalization to im-
plement k-anonymity in a nonhomogeneous way. They defined the problem as how to obtain 
high data utility in k-anonymity and wanted to solve this problem as an assignment problem 
in a bipartite graph that has two parts, namely, original and released. Each vertex from original 
part should have exactly k matches in the released part, and each vertex in the released part 
should also have k matches in the original part. Doka et al. (2015) proposed an approach to 
constructing the bipartite graph which contains k disjoint components. To construct such graph, 
the idea is choosing k different perfect matchings from all the possible matchings including the 
self-matching from original data to released data for vertices. After choosing, each vertex in the 
released graph should have k possible identities. The construction is secure since each disjoint 
assignment has the same probability 1/k to be the true one for an adversary. So, each time 
the adversary wants to find the identities of the released records, he/she will have k possible 
results. In the construction, each edge between two vertices will be assigned a weight based 
on Global Certainty Penalty (GCP). GCP is used to measure the information loss of matching 
an original record to a released record. The released data should keep k-anonymity and data 
utility. So when choosing the k perfect matchings, the total GCP should be kept as small as pos-
sible. Finally, a greedy algorithm was presented in Doka et al. (2015). The input to the greedy 
algorithm is a weighted completed bipartite graph G = (S, T, E), and the output is a perfect 
match with a total weight close to the minimum. S represents vertices in original data and T 
represents in released data. A successful running of the algorithm is called an iteration. In each 

TABLE 2  Example of k-Anonymity (k = 2) From Homogeneous and Nonhomogeneous 
Generalization—cont’d

(c) Sharing Data Generated by Nonhomogeneous Generalization

Tuple ID Gender Age Zip Code

t1′ Female 17–22 2110*

t2′ Male 22–29 211*

t3′ Male 15–27 212*

t4′ Male 15–27 212*

t5′ F or M 17–29 211*
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iteration, the algorithm tries to find perfect matching from S to T with a low total weight. And 
the self-matching from original data to released data with zero GCP will be found out in the 
first iteration. After one iteration, all the selecting edges will be removed from the bipartite 
graph and all the weights (GCP) on the edges will be redefined. After k iterations, k disjoint 
perfect matchings with low GCP will be presented. The algorithm can be used in the real word 
for a practical value k and the complexity for all k iterations is O(kn2), where n is the number of 
records in the original data.

4  DIFFERENTIAL PRIVACY

Since the introduction of k-anonymity, weaknesses of it as a model have been discussed, and 
these weaknesses lead to the proposal of stronger models including ℓ-diversity (Machanavajjhala 
et al., 2007), t-closeness (Li et al., 2007), or β-likeness (Cao and Karras, 2012). In this chapter, we 
do not go into details of these definitions and refer interested readers to the respective papers. 
Informally speaking, the main weakness in k-anonymity is that it does not guarantee proper 
protection of the sensitive attributes. For example, from Table 1(b), an adversary can safely con-
clude that if a target user is of age from 20-29 living in a place with zip code starting with 211, 
the target user is an African American with high probability. Since in the table, only Asians and 
African Americans are of age from 20-29 and all the Asians’ zip codes start with 213.

4.1  Overview

Differential privacy, introduced by Dwork (2006), is an attempt to define privacy from a 
different perspective. This seminal work consider the situation of privacy-preserving data 
mining in which there is a trusted curator who holds a private database D. The curator re-
sponses to queries issued by data analysts. Differential privacy guarantees that the query re-
sults are indistinguishable for two databases that differ only in one entry. From an individual 
point of view, it means that inclusion of one’s information in the private database D would 
not cause noticeable changes in the observed query outcome; thus, privacy is protected. This 
is made possible via adding noise to the query result. The setting is shown in Fig. 3:

Note that it is possible to create a synthetic database by issuing a query that output the 
private database D, as discussed in Chen et al. (2011). However, as pointed out in Clifton and 
Tassa (2013), the utility of this synthetic database maybe too low for it to be useful.

FIG. 3  Privacy-preserving data mining.
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4.2  Definition of Differential Privacy

Now we can recap the definition of differential privacy (Dwork, 2006). We first establish 
the notation. Let  : D R®  be a randomized algorithm with domain D and range R. In con-
crete terms, we can think of   as a mechanism that answers a query to a database. Then we 
can formally define whether or not   provides differential privacy as follows.

Definition 1. A randomized algorithm   is ϵ-differentially private if for all possible sub-
range of  , say S Ì R , and for all databases D1, D2 ∈ D that differs by only one record, the 
probability that   gives the same output on input D1 and D2 with similar probability. More 
formally, 

Pr D S e Pr D S( ( ) ) ( ( ) ).M M1 2Î £ Îε

Here ϵ controls how much information is leaked. For a small ϵ, the answer given by mech-
anism   on two databases that differ by one record is very likely to be the same. In other 
words, whether or not an individual’s information is included in the database would not 
affect the outcome of the query significantly.

Example. Suppose the query we would like to make is whether or not Alice is a smoker. 
Consider mechanism   defined as follows.   first flips a fair coin b ∈ {0, 1}. If b = 0, return 
the true answer. Otherwise, flip another coin b′ = {0, 1}. If b′ = 0, return “yes,” otherwise return 
“no.” Now that there are two possible databases, namely, Alice is a smoker or Alice is not a 
smoker. If Alice is a smoker,   output “yes” with probability 3/4 and “no” with probability 
1/4. If Alice is not a smoker,   output “yes” with probability 1/4 and “no” with probability 
3/4. For any possible outcome, namely, “yes,” or “no,” the probability difference is at most 
three times. In other word,   is (ln 3) differentially private.

Remarks. Perhaps one of the most useful properties of this definition is that differential 
privacy holds during composition. Suppose we have a database D. The data owner releases 
the query result 1( )D . Later, he releases another query result 2 ( )D . If 1  and 2  are 
ϵ1 and ϵ2 differentially private, the outcome of releasing both 1( )D  and 2 ( )D  is (ϵ1 + ϵ2) 
differentially private.

5  LAPLACE MECHANISM TO ACHIEVE DIFFERENTIAL PRIVACY

In general, the more noise we add, the more privacy we can guarantee. However, one 
should bear in mind that one usually aim to get as little noise as possible so as to maintain 
data utility. For query that returns real numbers as response, the Laplace mechanism is one of 
the basic mechanisms to provide differential privacy. We first recall the definition of Laplace 
distribution (Dwork and Roth, 2014).

Definition 2. The Laplace distribution with constant b is defined by the probability density 
function: 

Lap x b
b

e
x
b( | ) .
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=
-1

2

Fig. 4 shows a plot of the Laplace distribution with b = 0.045:
Intuitively, the noise added to the answer should be sufficient to cover the maximum effect 

of a single data on the query outcome. Let F be this value. The Laplace mechanism is defined 
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as follows: if f is the actual query result, return f + noise, where noise is drawn from the Laplace 
distribution with b = F/ϵ. This mechanism is ϵ-differentially private.

Example. Suppose the database contains the grade point average (GPA) of all students. 
Assume the goal is to release the average GPA of the students in the database. We further 
assume that there are 1000 students and that the maximum GPA is 4.5. One could easily see 
that the maximum effect F of one record on the final outcome is 4.5/1000 = 0.0045. Assume we 
would like to guarantee 0.1-differential privacy. We add noise following Laplace distribution 
with b = F/ϵ = 0.0045/0.1 = 0.045. The distribution of the noise is given in Fig. 4.

6  CONCLUSION

In this chapter, we presented various definitions in relation to user privacy protections. We 
also discussed the various mechanisms to support these definitions. For an in-depth treat-
ment of the subject, readers are referred to the book by Dwork and Roth (2014).
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1  INTRODUCTION

Mobile devices such as smartphones, PDAs, and tablets are so popular that they are indis-
pensable to humans these days. Large amounts of digital information are being exchanged 
among the devices. The malicious access or utilization of this information might result in 
financial loss or the loss of other advantages. Particularly, people are concerned about the 
authentication, integrity, and nonrepudiation of the information. Authentication ensures that 
the communicating entity is legitimate, meaning that the entity is the one that he/she claims 
to be. Data integrity ensures that the information being received is the same as the one sent 
by an authorized entity, while nonrepudiation ensures that the parties in a communication 
cannot deny their participations in the process.

Inspired by handwritten signatures, cryptographers invented the term “digital signatures” 
to fulfill the authentication, integrity, and nonrepudiation requirements of digital commu-
nications. As an analogy to handwritten signatures, digital signatures provide a clue to the 
origin of a piece of digital information or a commitment of a piece of digital information by 
the sender (signer). Digital signatures also provide an integrity guarantee of a piece of digital 
information since the piece of digital information is “signed.”

The idea of a “digital signature” first appeared in Diffie and Hellman’s seminal paper, 
“New Directions in Cryptography,” Diffie and Hellman (1976). A signer, say A, would like 
to protect his/her digital information, say m, against threats to authentication, integrity, and 
nonrepudiation. Two keys are being generated, namely a “public key” (pk) and a “private 
key” (sk). sk is kept secretly by A, who uses this key to produce signatures on messages. pk 
is used to verify the validity of a given digital signature σ on m, signed by A. pk is therefore 
accessible by public users. Here, validity refers to two concepts, namely, (1) the signature 
is created by A (authentication and nonrepudiation) and (2) the integrity of the message is 
maintained. The public key is normally derived from the private key and thus, the two keys 
are correlated. However, it is not feasible to derive the private key when only the public key 
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is known. Besides, it is impossible to forge signatures without the knowledge of sk. The study 
of digital signature schemes is an important subfield of public-key cryptography, initiated by 
Rivest et al. (1978). Since the signing key (sk) and the verifying key (pk) are different, this kind 
of cryptosystems is also known as asymmetric cryptosystems. We remark that being asym-
metric is a necessary condition for a cryptosystem to provide nonrepudiation. The reason is 
that for any symmetric cryptosystems, the same key is used for both signing and verification 
processes. Consequently, both the signer and the verifier can be the origin of the signature 
and in this sense, both parties can deny having participated in the process. In other words, the 
signer must hold some “secret” information to achieve nonrepudiation.

One drawback of public-key cryptosystems is that they usually involve computations that 
are relatively heavy (e.g., modular exponentiations). The reason is that the security of these 
schemes relies on the difficulty of solving certain number-theoretic problems. Many digital 
signature schemes in practice fit the description. Well-known examples include the schemes, 
whose difficulties depend on the hardness of the Integer Factorization Problem (e.g., Rabin 
(1979)) and the Discrete Logarithm Problem (e.g., ElGamal (1985), Schnorr (1991), Pointcheval 
and Stern (1996), and DSS (National Institute of Standards and Technology, 1991, 1992)). Such 
intensive computations might not be desirable in mobile devices, in which the computational 
capability and battery capacity are limited.

1.1  Our Contribution

We present a performance analysis of two well-known digital signature schemes from 
pairing-based cryptography on mobile devices with Android (Google, 2016) platform. The 
two schemes are from Boneh et al. (2004b) (BLS) and Paterson and Schuldt (2006) (PS). The 
efficiency of these schemes is evaluated in terms of computation time and energy consump-
tion during signature generation and verification, as well as the time to generate the message 
digest. Various types of information which reflect the practical settings, in terms of size and 
information type, are adopted in our experiments. We present the results and discuss their 
implications.

2  RELATED WORK

Digital signature is the de facto way to ensure the authentication, integrity, and nonrepu-
diation requirements. The Guidelines for Managing the Security of Mobile Devices in the 
Enterprise (Souppaya and Scarfone, 2013), developed by National Institute of Standards and 
Technology (NIST), suggested that digital signatures should be adopted for two purposes, 
namely, to ensure that only applications from trusted entities can be installed and to protect 
the integrity of the codes of these applications. A digital signature variant called mobile sig-
nature was defined by the European Telecommunications Standards Institute (ETSI) (2003). 
A number of models are proposed for the generation of digital signatures in the mobile en-
vironment. Specifically, digital signatures can be generated either on a mobile phone or on a 
SIM card on a mobile phone (Samadani et al., 2010). Digital signatures can be adopted in var-
ious mobile applications, including payment platforms (Wu et al., 2016), file transfer systems 
(Sayantan et al., 2015), and location proofs (Saroiu and Wolman, 2009). A survey of electronic 
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signature solutions in mobile devices was carried out by Ruiz-Martínez et al. (2007), which 
discovered that mobile clients were able to generate digital signatures.

Recently, pairing-based cryptography (Paterson, 2005) has gain considerable attention 
thanks to its efficiency and improved security guarantees. For instance, Boneh et al. (2004a) 
introduced a short signature scheme (BLS) based on the Computational Diffie-Hellman (CDH) 
assumption on certain elliptic and hyper-elliptic curves. The signature length is half the size of 
a DSA signature (National Institute of Standards and Technology, 1992) for a similar level of se-
curity. Paterson and Schuldt (2006) proposed an efficient identity-based signature scheme (PS) 
based on Bilinear Decision Diffie-Hellman (BDDH) and Decision Linear (DL) assumptions 
with short signatures. This scheme enjoys the advantage that it is secure without relying on the 
so-called random oracle assumption (Bellare and Rogaway, 1993). In this chapter, we choose 
to investigate the practicality of these two well-known signature schemes on mobile devices.

3  THE EXPERIMENT

We experimented with the BLS and PS schemes on the Android (Google, 2016) platform. 
We adopted the Java Pairing-Based Cryptography Library (JPBC) (De Caro and Iovino, 2011) 
to develop the performance testing application on the Android platform.

3.1  Cryptographic Settings

In our experiment, we adopted Type A pairings, which is a standard bilinear pairing setup 
for cryptosystems. Type A pairings are constructed on the curve y2 = x3 + x over the field q  
for some large prime q satisfying the constraint that q mod 4 ≡ 3. Both 1  and 2  are group 
of points on the elliptic curve E q( )  having the same group order, say r. It is also required that 
r is a prime factor of q + 1. In other words, q + 1 is divisible by r. For a security level compara-
ble with 1024-bit RSA encryption, q and r should be large prime numbers of 512 and 160 bits, 
respectively. For more information about this setting, please refer to PBC Library (Lynn, 2006).

3.2  Testing Environment

We examined the computation time (in terms of milliseconds) and energy consumption 
(in terms of joules) of information with diverse types and sizes reflecting practical scenarios. 
Table 1 shows the details of the data file being signed in the test application. For each type, 

TABLE 1  Information Type and Size

Type Size (kB)

Text string 0.144

Document (.docx) 14a

Image (.jpg) 2547

Movie (.mp4) 40217

aThis corresponds to a one-page text document of about 400 words on Microsoft Word version 15.22.1.
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we test the time on (1) signature generation, (2) signature verification, and (3) message digest 
generation based on SHA-256 algorithm (NIST FIPS PUB 180-2, 2001). For each test, one of the 
information types (text string, document, image, or movie) was used. Each involved 10 trails, 
and the number presented for each type was the average of these 10 trails.

These tests were carried out on an experimental testbed which measures the computation 
time and energy consumption of two Android devices with specifications shown in Table 2. 
Device 1 has a more powerful hardware configuration in terms of processing power and 
memory than Device 2.

As shown in Fig. 1, the testbed consists of three elements: (1) power monitor, (2) Android 
device, and (3) laptop computer. As a core element, the power monitor (Monsoon FTA22D) 
connects the Android device and the computer laptop (Intel i5-2560M processor, 2.5 GHz, 
3 MB cache, and 4 GB memory). The power monitor provides the DC electrical source with 
3.8 V to the Android device, which avoids the influences of the unstable voltage when the 
battery continuously discharges. It also records the read-time voltage and current of the 
Android device at an interval of 0.2 ms. The power trace, including the time and the in-
stant power, is sent to the laptop computer via USB interface communication in real time. 
A customized software is executed on the laptop computer to calculate the energy compu-
tation according to the measured data from the power monitor and the timestamps from 
applications.

As an integral preparation for the measurement, a testing app is designed to test the BLS 
and PS schemes which supports three processes, signature generation, signature verification, 
and message digest generation, in the sequence of i = 1, 2, 3. The app provides these functions: 
(1) record the beginning time t0 of each test, and simultaneously send a signal packet to the 
laptop, (2) record the beginning time t2i−1 and the ending time t2i of each process, which are 
used to calculate the computation time, (3) sleep for 30 s after each process to make sure that 
the device voltage returns a stable value.

The testing steps are as follows: 

1.	 Carry out one test by executing the testing app after the voltage values of the device are 
stable for 5–10 s.

TABLE 2  Testing Platform Specifications

Device 1 Device 2

Operating system Android OS, v5.0.1 Android OS, v4.1

Chipset Qualcomm MSM8974AC Snapdragon 801 TI OMAP 4470

CPU Quad-core 2.5 GHz Krait 400 Dual-core 1.5 GHz

GPU Adreno 330 PowerVR SGX544

Memory (internal) 32 GB and 2 GB RAM 16 GB and 1 GB RAM

Card slot microSD microSD

Standard voltage 3.8 V 3.8 V

Battery capacity 3000 mAh 2100 mAh

Max energy 41040 J 28728 J
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2.	 Upon receiving the signal packet, the laptop records the current time t0  of the power 
monitor, which is used to synchronize the power trace.

3.	 The app records the timestamps of three processes. The power monitor measures the 
energy trace during the whole test.

4.	 The customized software in the laptop collects the timestamps from the app and the 
power trace from the power monitor. The computation time and energy consumption 
of the device in each process can be calculated after combining the two sets of 
measurements.

First, the computation time Ti of three processes can be obtained by Ti = t2i − t2i−1, i = 1, 2, 3. 
Next, the energy consumption of the device caused by the BLS and PS schemes is obtained 
after eliminating the basic energy consumption, which is caused by the screen and OS. The 
power trace of the device is shown as Fig. 2. Here, the basic power consumption is computed 
as the average of the power values before each test for a few seconds, shown as the red base 
line with 1850 mW in Device 1 (which is 2250 mW in Device 2). Then the energy consumption 
during signature generation/signature verification/message digest generation can be com-
puted from the area between the power curve and the base line during the computation time 
from t t ti2 1 0 0- + -( )  to t t ti2 0 0+ -( ) , i = 1, 2, 3.

3.3  Experiment Results and Observations

The experimental results are shown in Tables 3 and 4. We would like to highlight a few 
observations. 

•	 Signature scheme BLS is more efficient than PS in both signature generation and 
verification. This is natural because BLS assumes the existence of a PKI, while PS is 
purely identity-based. Secondly, PS is proven to be secure in the standard model, while 
BLS’s security analysis relies on the random oracle heuristic.

FIG. 1  Structure of the energy consumption measurement testbed.
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•	 The size of data affects the time in message digest generation but not signature 
generation nor verification. This is because we adopt the common practice that  
the signature is generated and verified with respect to the message digest instead  
of the original message. As the message digest has a constant size (256 bits), the time 
spent on signature generation and verification for all types of data is similar in our 
experiment.

•	 The time required for message digest generation cannot be ignored. For a movie file of 
approximately 40 MB, 4 and 15 s are required in the message digest process in Devices 1 
and 2, respectively. This is reasonable because a message digest is merely the hash value 
of the data while the computation of the hash for large data files is time consuming 
(Sravan Kumar and Saxena, 2011).

•	 We note that signature verification is more expensive than signature generation in 
general. Both devices take more time and energy to complete the process of signature 
verification.

Discussion. It is fair to say mobile devices nowadays possess comparable processing power 
to desktop/laptop computers. Incorporating cryptographic features into mobile applications 
does not impose too much of a burden on the computation time and energy consumption. 
Even though operations like hashing for relatively large files are still time consuming, such 
operations are not frequent for mobile agents. Our experiments show that it is feasible for 
mobile application developers to incorporate cryptographic techniques.

4  CONCLUSION

In this chapter, we provide a performance analysis of two well-known digital signature 
schemes on Android mobile devices. The efficiency of these schemes is evaluated in terms 
of computation time and energy consumption in signature generation and verification, 
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as well as message digest generation. Our experiments involve various types of infor-
mation, including text string, document, image, and movie files, which simulate realistic 
application scenarios. We realize that the main cost in applying digital signatures is in fact 
the generation of the message digest. Nonetheless, we have demonstrated that it is feasi-
ble to execute pairing-based signatures on mobile devices. Therefore we feel comfortable 
concluding that the use of cryptographic techniques in mobile applications is feasible to 
enhance security.

TABLE 3  Testing Results of Device 1

BLS PS

Signature generation (time—millisecond) String 569.5 String 518.1

Document 400.9 Document 395.1

Image 520.5 Image 502.2

Movie 447.7 Movie 428.6

Signature verification (time—millisecond) String 1096.3 String 887

Document 1020 Document 915.8

Image 1143.5 Image 1150.2

Movie 955.6 Movie 932.1

Message digest generation (time—millisecond) String ∼0 String ∼0

Document 1.6 Document 1.8

Image 305.7 Image 291.9

Movie 4057.2 Movie 4186.9

Signature generation (energy consumption—joule) String 0.824 String 0.721

Document 0.766 Document 0.623

Image 0.722 Image 0.648

Movie 0.644 Movie 0.59

Signature verification (energy consumption—joule) String 1.271 String 1.033

Document 1.344 Document 1.214

Image 1.346 Image 1.212

Movie 1.373 Movie 1.263

Message digest generation (energy consumption—joule) String ∼0 String ∼0

Document ∼0 Document ∼0

Image 0.337 Image 0.341

Movie 4.197 Movie 3.988
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