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Preface

Recent years have seen the widespread application of Natural Computing algo-
rithms (broadly defined in this context as computer algorithms whose design
draws inspiration from phenomena in the natural world) for the purposes of fi-
nancial modelling and optimisation. A related stream of work has also seen the
application of learning mechanisms drawn from Natural Computing algorithms
for the purposes of agent-based modelling in finance and economics. In this book
we have collected a series of chapters which illustrate these two faces of Natural
Computing. The first part of the book illustrates how algorithms inspired by the
natural world can be used as problem solvers to uncover and optimise financial
models. The second part of the book examines a number agent-based simulations
of financial systems.

This book consists of ten chapters each of which was selected following a rig-
orous, peer-reviewed, selection process. The chapters illustrate the application
of a range of cutting-edge natural computing and agent-based methodologies in
computational finance and economics. While describing cutting edge applica-
tions, the chapters are written so that they are accessible to a wide audience.
Hence, they should be of interest to academics, students and practitioners in the
fields of computational finance and economics.

The inspiration for this book was due in part to the success of EvoFIN 2008,
the 2nd European Workshop on Evolutionary Computation in Finance and Eco-
nomics. EvoFIN 2008 took place in conjunction with Evo* 2008 in Naples, Italy
(26-28 March 2008). Evo* is an annual collection of European conferences and
workshops broadly focused on Evolutionary Computation, and is the largest Eu-
ropean event dedicated to this field of research. Some of the chapters presented
in this book are extended versions of papers presented at EvoFIN 2008, which
have also undergone the same rigorous, peer-reviewed, selection process as the
other chapters.

This book follows on from Natural Computing in Computational
Finance (Volume 100 in Springer’s Studies in Computational Intelligence series)
which in turn arose from the success of EvoFIN 2007, the very first European



VIII Preface

Workshop on Evolutionary Computation in Finance & Economics held in Valen-
cia, Spain in April 2007.

We would like to thank all the authors for their high-quality contributions and
the reviewers who generously gave of their time to peer-review all submissions.
We also extend our thanks to Dr. Thomas Ditzinger of Springer-Verlag and to
Professor Janusz Kacprzyk, editor of this book series, for their encouragement
of, and their support during, the preparation of this book.

Dublin Anthony Brabazon
November 2008 Michael O’Neill



Contents

1 Natural Computing in Computational Finance (Volume 2):
Introduction
Anthony Brabazon, Michael O’Neill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Financial Modelling

2 Statistical Arbitrage with Genetic Programming
Philip Saks, Dietmar Maringer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Finding Relevant Variables in a Financial Distress
Prediction Problem Using Genetic Programming and
Self-organizing Maps
E. Alfaro-Cid, A.M. Mora, J.J. Merelo, A.I. Esparcia-Alcázar,
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1

Natural Computing in Computational Finance

(Volume 2): Introduction

Anthony Brabazon1,2 and Michael O’Neill1,3

1 Natural Computing Research & Applications Group,

Complex & Adaptive Systems Laboratory,

University College Dublin, Ireland

{anthony.brabazon,m.oneill}@ucd.ie
2 School of Business, University College Dublin, Ireland
3 School of Computer Science and Informatics, University College Dublin, Ireland

1.1 Introduction

Natural computing (NC) can be broadly defined as the development of computer pro-

grams and computational algorithms using metaphorical inspiration from systems and

phenomena that occur in the natural world. A growing community of researchers are

engaged in the application of NC methodologies in computational finance and agent-

based modelling. The scale of NC applications in finance is illustrated by Chen & Kuo

[4] who list nearly 400 papers that had been published by 2001 on the use of evolu-

tionary computation alone in computational economics and finance. Since then several

hundred additional papers have been published illustrating the continued growth in this

application area (see also [2, 3, 9, 10] for additional examples of NC applications in fi-

nance). Examples of the many conferences, workshops and special sessions in this area

include the annual track on evolutionary computation in finance & economics at the

IEEE Congress on Evolutionary Computation, the IEEE symposium on Computational

Intelligence for Financial Engineering (CIFEr), the annual international conference on

Computational Intelligence in Economics & Finance (CIEF), and the European work-

shop on Evolutionary Computation in Finance (EvoFIN) held annually as part of Evo*.

This book consists of ten chapters each of which was selected following a rigor-

ous, peer-reviewed, selection process. The chapters illustrate the application of a range

of cutting-edge natural computing and agent-based methodologies in computational fi-

nance and economics. In the first half of this book, we see a series of applications of

natural computing algorithms for financial modelling (including forecasting, algorith-

mic trading, portfolio optimisation, risk management and derivative modelling), and

the second part illustrates a series of applications of agent-based models to gain insight

into financial markets and other economic phenomena. In the process, we expose a num-

ber of natural computing algorithms drawn from a number of the sub-fields of Natural

Computing, including, Genetic Programming, Self-Organising Maps, Ant Colony Opti-

misation, Genetic Algorithms, Multi-layer perceptrons, and examples of hybridisations

of these methods.

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 1–5.
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2 A. Brabazon and M. O’Neill

The rest of this chapter is organised as follows. Sect. 1.2 briefly overviews of some

key families of NC methods. The individual chapters in the book are then introduced in

Sect. 1.3.

1.2 Natural Computing

Natural computing (NC) algorithms can be clustered into different groups depending

on the aspects of the natural world upon which they are based. The main clusters are

illustrated in Fig.1.1.

Natural Computing

Neurocomputing

Evolutionary Computing

Social Computing

Immunocomputing

Physical ComputingDevelopmental & 
Grammatical Computing

Fig. 1.1. An overview of the main families of Natural Computing Algorithms

Neurocomputing (or artificial neural networks) typically draws inspiration from the

workings of the human brain / nervous system. ANNs can be characterised by a set of

neurons, the network structure describing the pattern of connectivity between neurons,

and the learning approach used. The predominant neurocomputing paradigms include

multi-layer perceptrons, radial basis function networks, self-organising maps, and adap-

tive resonance theory.

Evolutionary Computation (EC) is based upon neo-Darwinian principles of evo-

lution. A population-based search process is used, whereby better (fitter) members of

the population are preferentially selected for reproduction and modification, leading to

a new population of individuals increasingly adapted to their environment. The main

streams of EC are genetic algorithms, evolution strategies, evolutionary programming

and genetic programming.

Social Computing adopts a swarm metaphor and includes algorithms inspired by

the flocking and schooling behaviour of birds and fish, and the behaviours observed

in social insects such as ants. The characteristics of these social systems facilitate self-

organisation, flexibility, robustness, and direct/indirect communication among members

of the population. Examples of social computing include ant colony, particle swarm and

bacterial foraging algorithms.

Immunocomputing encompasses a family of algorithms inspired by the complex and

adaptive biological immune system of vertebrates. The natural immune system repre-

sents an intricate network of specialised chemicals, cells, tissues and organs with the

ability to recognise, destroy and remember an almost unlimited number of foreign bod-

ies, and to protect the organism from misbehaving cells.

Physical Computing draws inspiration from the physical processes of the natural

world, such as simulated annealing and quantum mechanics.
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Developmental and Grammatical Computing borrows from both a developmen-

tal and a grammar metaphor. Grammatical computing adopts concepts from linguis-

tic grammars, where generative grammars are used to construct a sentence(s) in the

language specified by the grammar. This process is metaphorically similar to the de-

velopmental process in biology where ‘rules’ govern the production of a multi-cellular

organism from a single cell. An example is Grammatical Evolution (GE), which is a

grammatical variant of genetic programming.

These families of natural computing algorithms provide a rich set of tools for the

development of quality optimisation and model induction applications, and all have

seen applications in finance. Readers requiring detailed information on these algorithms

are referred to [1, 5, 6].

Agent-based Modelling

Agent-based modelling (ABM) has become a fruitful area of financial and economic

research in recent years. ABM allows the simulation of markets which consist of het-

erogeneous agents, with differing risk attitudes, and with differing expectations to fu-

ture outcomes. This contrasts with traditional assumptions in financial economics of

investor homogeneity and rational expectations. The essence of ABM lies in the no-

tion of autonomous agents whose behaviour evolves endogenously, producing complex,

emergent, system dynamics which are not predictable from the behaviours of individual

agents. In designing agent-based models of financial markets, NC methods can be used

to model information processing and adaptive learning by the agents.

A key output from the ABM literature is that it illustrates that complex system be-

haviour can arise from the interaction of relatively simple agents. When carefully con-

structed and validated, agent-based models can increase our understanding of market

processes and can potentially provide insights for policy makers and regulators. Read-

ers requiring a detailed introduction to agent-based modelling are referred to [7, 8].

1.3 Chapters

A wide variety of natural computing methodologies have been applied for optimisation

and model induction purposes in finance. The next five chapters illustrate the applica-

tion of a selection of NC methods for the purposes of developing models for financial

trading, risk management, option pricing and interest rate modelling.

Chap. 2 (Statistical Arbitrage with Genetic Programming by Philip Saks and Dietmar

Maringer) uses genetic programming to discover statistical arbitrage strategies for a

portfolio of banking stocks within the Euro Stoxx index. Unlike most prior applications

of GP for trading purposes, the study examines the use of a dual tree structure where

two decision trees are generated and the evaluation is contingent on the current market

position. Hence, buy and sell rules are co-evolved for long and short positions.

Risk management is an important area in finance. One strand of this work is the

assessment of the financial stability of a company. Although many studies in this area

focus on the prediction of corporate failure, commonly, companies will display a ‘tra-

jectory’ towards financial distress for several years. Indicators of this typically include

mounting financial losses and an associated loss of liquidity. Chap. 3 (Finding Rele-

vant Variables in a Financial Distress Prediction Problem Using Genetic Programming
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and Self-organizing Maps by E. Alfaro-Cid, A.M. Mora, J.J. Merelo, A.I. Esparcia-

Alcázar and K. Sharman) looks at the prediction of book losses and uses GP as a model-

induction tool to uncover a suitable prediction model. Kohonen’s self organizing maps

(SOMs) are used to assist with data pre-processing in order to reduce the dimensionality

of the search space.

Ant colony optimisation (ACO) has been used extensively for combinatorial optimi-

sation across a range of application areas but as yet has seen relatively little application

in finance. Chap. 4 (Ant Colony Optimization for Option Pricing by Sameer Kumar,

Ruppa K. Thulasiram and Parimala Thulasiraman) illustrates a novel application of

ACO for option pricing purposes. While the primary focus of this chapter is concerned

with the pricing of vanilla options, the methods developed offer the prospect of devel-

oping quality pricing systems for exotic options.

Chap. 5, (A Neuro-evolutionary Approach for Interest Rate Modelling by Robert

Bradley, Anthony Brabazon and Michael O’Neill) presents an application of a neuro-

evolutionary methodology for the purposes of the intraday trading of German govern-

ment bond futures.

The final chapter in this section, chap. 6 (Who’s smart and who’s lucky? Inferring

trading strategy, learning and adaptation in Financial Markets through Data Mining

by Christopher R. Stephens, José Luis Gordillo and Enrique Martinéz Miranda) pro-

vides a thought-provoking examination of some of the problems facing designers of

trading systems, focussing in particular on the difficulty of performance measurement.

In other words, how can we determine whether the result produced by a trading strategy

occurred as a result of luck or because the strategy is “superior’?

The second section of this book includes five chapters that adopt an ABM approach.

In chap. 7, (Financial Bubbles: A Learning Effect Modelling Approach by Tsung-Han

Hsieh, Youwei Li, and Donal G. McKillop) ABM is used to examine the formation

of financial bubbles. The study examines the impact of learning and feedback effects

in a market of heterogeneous investors, and examines how these contribute to price

multiplicity and market demand.

A comprehensive overview of artificial financial markets is provided in chap. 8 (Evo-

lutionary Computation and Artificial Financial Markets by S. Martinez-Jaramillo and

E. P. K. Tsang). The chapter also introduces a software platform called Co-evolutionary,

Heterogeneous Artificial Stock Market (CHASM); which allows the authors to perform

a series of experiments with the purpose of identifying the aspects that could be re-

sponsible for the statistical properties (stylized facts) of financial prices. The artificial

agents (technical traders in this study) are represented as genetic programming (GP)

based agents which co-evolve in the market forecasting price changes on the basis of

technical indicators.

In chap. 9, (Classical and Agent-Based Evolutionary Algorithms for Investment

Strategies Generation by Rafał Dreżewski, Jan Sepielak, Leszek Siwik) an agent-based

co-evolutionary system is introduced and is employed for the purposes of generating

investment strategies. The results from this system are compared with those of a classic

GP-based system in terms of investment return and strategy diversity.

The final two chapters in the book are drawn from an agent-based computational

economics perspective, exploring lottery markets and the emergence of new technology
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markets respectively. Chap. 10 (Classical and Agent-Based Evolutionary Algorithms

for Investment Strategies Generation by Shu-Heng Chen, Bin-Tzong Chie, Hui-Fen

Fan and Tina Yu) describes an ABM simulation of a lottery market. The agents in the

model are potential lottery buyers, whose characteristics are described by three features:

the percentage of income spent on the lottery, the preferences among lottery numbers

selected and the aversion to regret. This model is used to investigate the impact of

income distribution on lottery expenditures in Taiwan.

The final chapter (The Emergence of a Market: What Efforts can Entrepreneurs

Make? by Shuyuan Wu and Anthony Brabazon) constructs an agent-based model in

order to gain insight as to how entrepreneurs create markets for new, disruptive, tech-

nologies through an effectuation process. Starting from dispersed knowledge compo-

nents held by both the demand and supply sides, a market emerges from the interactive

learning behaviours of entrepreneurs and potential customers. The results indicate that

the process of market creation is significantly impacted by factors including exploration

tendency, alertness, and participant prior knowledge.
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Statistical Arbitrage with Genetic Programming

Philip Saks1 and Dietmar Maringer2

1 Centre for Computational Finance and Economic Agents (CCFEA), University of Essex, UK
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2 University of Basel, Switzerland

dietmar.maringer@unibas.ch

Summary. This chapter employs genetic programming to discover statistical arbitrage strategies

for a portfolio of banking stocks within the Euro Stoxx index. Binary decision rules are evolved

using two different representations. The first is the classical single tree approach, where one de-

cision tree for buy and sell orders is developed. The second version uses a dual tree structure

where two decision trees are generated and the evaluation is contingent on the current market

position. Hence, buy and sell rules are coevolved for long and short positions. Both single and

dual trees are capable of discovering significant statistical arbitrage strategies, even in the pres-

ence of realistic market impact. This implies the existence of market inefficiencies within the

chosen universe. However, the performance of the successful strategies deteriorate over time and

the inefficiencies have disappeared in the second half of the out-of-sample period. The advantage

of the dual trees, however, becomes apparent when transaction costs are increased and a clear

asymmetric response between the two methodologies emerges. Naturally, increased costs have a

negative impact on performance, but the dual trees are much more robust and can adapt to the

changed environment, whereas the single trees cannot.

2.1 Introduction

During recent decades the Efficient Markets Hypothesis (EMH) has come increasingly

under attack. Cognitive psychology has produced a large body of evidence against the

rational agent model, which is a basic premise for efficient markets. Specifically, it has

been shown that people rely on heuristics to simplify decision problems. This is both

useful and necessary in everyday life, but in certain situations it can lead to biases such

as base rate neglect, sample size neglect, insensitivity to predictability, effectiveness

of a search set and insufficient adjustment [23]. What is more important is that these

biases manifest themselves as anomalies and puzzles in the markets when viewed from

an EMH perspective [3].

Where agents are heterogeneous and boundedly rational the market clearing price

cannot be be determined formally, since agents need to form expectations about other

agents’ expectations. This causes an infinite regress in subjectivity, such that expecta-

tions cannot be formed by deductive means. Thus, perfect rationality is not well-defined

[2]. The Adaptive Markets Hypothesis (AMH) views the markets as ecosystems driven

by evolutionary principles. Efficiency in this context is an emergent phenomenon driven

by competition between agents, but it is not there by construction [17]. In such a world

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 9–29.
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10 P. Saks and D. Maringer

it is indeed sensible to develop expectational models beyond traditional equilibrium

analysis. In this paper, such models are built using genetic programming (GP).

The empirical literature has produced mixed results in this field. A classical contri-

bution by Allen and Karjalainen [1] do not significantly outperform the buy-and-hold

strategy on a daily frequency in the period from 1928 to 1995. In contrast, Becker and

Seshadri [4] come to a positive conclusion by using monthly data, a reduced function

set and more derived indicators. Moreover, buy and sell rules are coevolved separately.

In foreign exchange markets, Neely, Weller, and Dittmar [18] generate significant ex-

cess returns using daily data until 1995, but a later study suggests that performance

has since deteriorated [20]. There is a general consensus that significant inefficiencies

existed in the high-frequency intraday domain in the early nineties [14, 5]. However,

another result suggests that this has later changed [19].

In this chapter, we consider GP for statistical arbitrage. Arbitrage in the traditional

sense is concerned with identifying situations where a self-funding portfolio is gener-

ated that will provide only non-negative cash flows at any point in time. Obviously,

such portfolios are possible only in out-of-equilibrium situations. Statistical arbitrage

is a wider concept where, again, self-funding portfolios are sought where one can ex-

pect non-negative pay outs at any point in time. Here one accepts negative pay-outs

with a small probability as long as the expected positive payouts are high enough and

the probability of losses is small enough; ideally this shortfall probability converges to

zero. In practice, such a situation can occur when price processes are closely linked. In

the classical story of Royal Dutch and Shell, the pair of stocks are cointegrated due to

their fundamental link via their merger in 1907 [8]. In most cases, however, such links

are not as obvious, but that does not eliminate the possibility that such relationships

might exist and can be detected by statistical analysis. In this study, stocks within the

same industry sector are considered, since it can be argued that these stocks are exposed

to many of the same risk factors and should therefore have similar behavior.

As mentioned previously, an arbitrage portfolio is constructed by using the proceed-

ings from short selling some stocks to initiate long positions in other stocks. More

formally, the cumulative discounted value (vt) of a statistical arbitrage strategy has to

satisfy the following conditions [10]

v0 = 0 (2.1)

lim
t→ ∞

E(vt) > 0 (2.2)

lim
t→ ∞

prob(vt < 0) = 0 (2.3)

lim
t→ ∞

Var(vt)

t
= 0 if prob(vt < 0) > 0 ∀ t < ∞ (2.4)

This means that it has to have zero initial cost and be self-financing (2.1); a positive

discounted value (2.2); and a probability of loss converging to zero (2.3). Condition

(2.4) states that a statistical arbitrage produces riskless incremental profits in the limit.

By taking relative value bets between highly correlated stocks from the same industry,

much of the market uncertainty is hedged away. Hence, profits made from this strategy

are virtually uncorrelated with the market index. Furthermore, by modeling the relation-

ships between stocks, the attention is focused in a direction where more stable patterns
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should exist rather than making specific predictions about future developments. This

statement defies the EMH in its weakest form, that no trading system based on histori-

cal price and volume information should generate excess returns [6].

The rest of the chapter is organized as follows. Sect. 2.2 gives a brief introduction

to GP. Sect. 2.3 introduces the data, model and framework. Results are presented in

Sect. 2.4, where trading is associated with realistic frictions. Sect. 2.5 contains a sen-

sitivity analysis and stress testing where the effects of increasing transaction costs are

investigated. Finally, Sect. 2.6 concludes and gives pointers to possible future research.

2.2 Genetic Programming

Genetic programming (GP) was pioneered by Koza [15] and is often seen as a derivative

of genetic algorithms (GA). The GA was invented by Holland [11] in his ambitious quest

to understand the principles of adaptive systems in a broad sense. An obvious inspiration

came from biology, where the success of natural adaptive systems rests on competition

and innovation in order to survive in changing and uncertain environments.

The GA is a population based search method, where the individuals (in the canonical

version of the GA) are fixed length binary strings, known as genotypes or chromosomes

[24]. Generally, this representation requires an encoding which is problem specific. For

example if the binary GA is used for real-valued parameter optimization, then it is

necessary to discretize the search space, where the resolution depends on the number

of bits chosen to represent a given variable.

GAs work as follows. To begin with an initial population of M individuals is gener-

ated randomly in generation zero. Hereafter, the fitness of each individual is calculated

according to the pre-specified objective function. Then a new population is created by

selecting between the operators, reproduction, crossover and mutation according to the

probabilities pr, pc and pm, respectively. Each of these operators selects individuals

from the parent population, such that better solutions are favored. A popular mecha-

nism for doing this is tournament selection, in which a fixed number of individuals are

chosen uniformly from the parent population, and the fittest individual wins the tour-

nament and is selected. By controlling the tournament size it is possible to regulate the

selection pressure. The reproduction operator simply copies the selected string to the

new population. For the crossover operation, two individuals are selected from the par-

ent population. Hereafter a position or index is uniformly selected within the bit-string

and genetic material from the two parents are simply swapped around this point. The

two resulting offspring are then inserted into the new population. The mutation oper-

ator simply selects a random element within an individual and negates the value, i.e.,

zero becomes one and vice versa. An advantage of the mutation operator is that it can

introduce diversity into a population, but usually mutation is only invoked with a small

probability. When the population size of the new population is equal to M, the algorithm

has completed one generation and the process repeats itself until a termination criteria

has been satisfied, e.g., until a maximum number of generations is reached.

Genetic programming is basically a GA operating on hierarchical computer pro-

grams instead of binary strings. Any problem that is concerned with finding an optimal

mapping from a set of inputs to a set of outputs, can be reformulated as a search for
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S2 S1

Fig. 2.1. Examples of a single (left) and dual tree (right), constructed using Boolean operators.

The root node of the single tree is XOR, while the root nodes for the dual tree are OR and AND.

an optimal computer program. GP provides the means to search the space of possible

programs. It is therefore a much more direct approach to problem solving than GAs,

that are heavily dependent on problem encoding. In practice the individuals in GP are

computer programs represented as tree structures. The programs are constructed from

functions and terminals, where by definition the former take arguments and the latter do

not. The sets of available functions and terminals for a given problem is known as the

function set and terminal set. Traditionally, GP uses single trees to represent programs;

for a general introduction to GP, see Koza [15]. Additionally, this paper considers a

dual tree approach [16, 22]. Fig. 2.1 gives examples of a single and dual tree program

constructed using Boolean operators.

2.3 Framework

2.3.1 Data

The data comprises of Volume-Weighted Average Prices (VWAP) and volume, sam-

pled at an hourly frequency for stocks in the Euro Stoxx index. VWAP is widely used

in industry, and it allows for a more precise estimation of transaction costs. It covers

the time period from 01-Apr-2003 to 29-Jun-2007, corresponding to a total of 8648

observations. We only consider stocks from the same industry sector, namely Banking.

It is frequently argued that stocks within the same industry sector are exposed to many

of the same risk factors and should therefore have similar behavior. This should also

increase the chances of discovering statistical arbitrage opportunities. Due to missing

data, a portfolio of 30 out of 48 assets is considered. The components and summary

statistics are documented in Table 2.4 and the VWAP prices are depicted in Fig. 2.2. In

order to extract information from the raw data, a number of indicators are constructed

via preprocessing.

When analyzing high frequency data it is important to take intraday effects into ac-

count, e.g., the intraday volume is higher after open and before close than during the

middle of the day [12]. In the context of trading rule induction it is important to re-

move this bias, which is basically a proxy for the time of day, and prohibits sensible
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Fig. 2.2. Hourly VWAP prices for banking stocks within the Euro Stoxx index

conditioning on intraday volume. A volume indicator is constructed that removes the

intraday bias. Specifically, we take the logarithm of the ratio between the realized and

expected volume, where this ratio has been hard limited in the range between 0.2 and 5.

The return series for each stock is standardized with respect to its volatility, estimated

using simple exponential smoothing.

Since the main focus is on cross-sectional relationships between stocks, rather than

their direction, we subtract the cross-sectional average from the normalized returns and

volume series for each stock. Based on these series, we calculate the moving averages

over the last 8, 40 and 80 periods; at an hourly frequency this corresponds to one day, a

week and two weeks, respectively. All indicators are scaled in the range between zero

and one.

2.3.2 Model

The strategies evolved in this study, return Boolean values corresponding to long and

short positions. As mentioned previously, the focus of this study is on arbitrage port-

folios, where the purchase of stocks is financed by short selling others. Naturally, a

precondition for this is that not all the forecasts across the 30 stocks are the same. For

example if the trading rule takes a bullish view across the board, then short-selling

opportunities have not been identified and proper arbitrage portfolios cannot be con-

structed. In this case no stocks are held. However, when forecasts facilitate portfolio

construction, long and short positions are taken, respectively. In this case, the portfolio

weights are adjusted for the stocks’ volatilities.

More technically, let oi
t ∈ {−1,1} denote the forecast on stock i at time t, such that

-1 and 1 corresponds to a bearish and bullish view, respectively. Then the holding is

given by
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hi
t = oi

t ·

1

σi
t

∑n
j=1

1

σ
j
t

· I
{o

j
t=oi

t}

(2.5)

where σt is the volatility, n is the number of stocks in the universe, and I
{o

j
t=oi

t}
is an in-

dicator variable that ensures that forecasts are normalized correctly, i.e., it discriminates

between long and short positions. By construction the long and short positions sum to

-1 and 1, respectively. By down weighting more volatile stocks the portfolio becomes

more stable.
n
∑

j=1

h
j
t I
{h

j
t>0}
= 1

n
∑

j=1

h
j
t I
{h

j
t<0}
= −1 (2.6)

We employ two different methods for solving the binary decision problem. The first

uses a standard single tree structure, while the second considers a dual tree structure in

conjunction with cooperative coevolution [4]. In both methods, the trees return boolean

values.

For the dual tree structure, program evaluation is contingent on the current market

position for that particular stock, i.e., the first tree dictates the long entry, while the

second enters a short position. In other words, which of these two trees is evaluated,

depends on the previous position; if stock i at time t was in a short position (oi
t−1
< 0),

then tree k = 1 is evaluated and dictates if a long position should be initiated. Alterna-

tively, tree k = 2 is evaluated to decide whether to enter a short position. Let b
k,i
t ∈ {0,1}

be the truth value for tree k on stock i at time t, whether or not to switch positions, then

b
1,i
t = 1 (b2,i

t = 1) indicates to enter a long (short) position, while b
1,i
t = 0 (b2,i

t = 0) leaves

the current position unchanged. Then the new forecast is given as

oi
t =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 ·b1,i
t −1 if oi

t−1
< 0

−2 ·b2,i
t +1 otherwise

(2.7)

All trees are constructed from the same grammar, which in addition to type constraints

also introduces semantic restrictions. This improves the search efficiency significantly,

since computational resources are not wasted on nonsensical solutions [5]. We consider

a fairly restricted grammar, which is documented in Table 2.1. It consists of numeric

comparators, boolean operators and if-then-else statements (ITE). Furthermore, a spe-

cial function BTWN has been introduced, that takes three arguments and evaluates if the

first is between the second and third. The terminals comprise of the six return and vol-

ume indicators introduced in Sect. 2.3.1. A distinction is made between return (qrtn)

and volume (qvol) information. Additionally, the terminal set includes numerical real-

valued constants (qconst) ranging from 0 to 1. The parsimonious grammar reduces the

risk of overfitting, and enhances interpretability of the evolved solutions.

The choice of a suitable objective function is essential in evolutionary computation.

Previous studies suggest that a risk-adjusted measure improves out-of-sample perfor-

mance when compared to an absolute return measure [5]. In this context, the ratio be-

tween the average profits and their volatility would be an obvious candidate. However,
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Table 2.1. Statistical arbitrage grammar, where BTWN checks if the first argument is between the

second and third. ITE represents the if-then-else statement.

Function Arguments Return Type

<, > (qrtn, qconst) bool

<, > (qvol, qconst) bool

BTWN (qrtn, qconst, qconst) bool

BTWN (qvol, qconst, qconst) bool

AND, OR, XOR (bool, bool) bool

NOT (bool) bool

ITE (bool, bool, bool) bool

under this measure strategies might evolve that do extremely well only on a subset of

the in-sample data and mediocre on the remainder; from a practical point of view, this

can lead to additional vulnerability to market timing as the overall success might de-

pend more on the entry and exit points than on the overall time. Instead, the t-statistic

of the linear fit between cumulated profits and time is employed, since it maximizes the

slope while minimizing the deviation from the ideal straight line performance graph.

This measure favors a steady increase in wealth.

2.3.3 Parameter Settings

In the following computational experiments a population of 250 individuals is initial-

ized using the ramped half-and-half method. It evolves for a maximum of 51 genera-

tions, but is stopped after 15 generations if no new elitist (best-so-far) individual has

been found. A normal tournament selection is used with a size of 5, and the crossover

and mutation probabilities are 0.9 and 0.1, respectively. Moreover, the probability of se-

lecting a function node during reproduction is 0.9, and the programs are constrained to

a maximum complexity of 50 nodes. Again, this constraint is imposed to minimize the

risk of overfitting, but also to facilitate interpretability. If the models lose tractability, it

defies the purpose of GP as a knowledge discovery tool.

The data is split into a training and test set. The former contains 6000 samples and

covers the period from 01-Apr-2003 to 10-Mar-2006, and the latter has 2647 samples

in the period from 13-Mar-2006 to 29-Jun-2007.

2.4 Empirical Results

In practice, trading is associated with market impact, in particular on a high frequency

level in a market with continuous auctions. The slippage depends on the order size

relative to the liquidity of the stock and the time horizon over which the VWAP is

executed. It is a common assumption in the industry that a good execution algorithm is

capable of targeting the VWAP within one basis point for moderate order sizes.

Trading on the VWAP differs from a traditional market order, where a trade is exe-

cuted at the current observed price. The VWAP is a backward looking measure, and it

is therefore not possible to trade on the observed VWAP at time t. Instead the execution
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Fig. 2.3. In-sample (top) and out-of-sample cumulated profits (bottom) of the ten strategies, as-

suming a market impact of 1bp. The thick solid line is average performance and the 95% and

99% confidence intervals are constructed using the stationary bootstrap procedure. Single trees

(left column) and dual trees (right column).
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Fig. 2.4. Annualized in-sample versus out-of-sample profits with the 45◦-line. Single trees (left)

and dual trees (right).

occurs gradually between t and t + 1, resulting in the VWAP at t + 1. In summary, a

trading decision is formed based on the VWAP at time t, the entry price is observed at

time t+1 and the one period profit is evaluated at t+2.

We perform 10 experiments using both the single and dual tree method, according

to the settings outlined in Sect. 2.3.3. For each experiment, the best-so-far individual is

evaluated on the training and test set. The self-financing property of a statistical arbitrage
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Table 2.2. Strategy performance statistics of single trees under 1bp market impact. The following

abbreviations are used; TF – t-statistic fitness, AP – annualized profits, PRR – profit-risk ratio,

MDD – maximum drawdown, TO – average daily turnover.

In-sample Out-of-sample

Strategy TF AP PRR MDD TO TF AP PRR MDD TO

1. 1324 0.250 2.64 -0.089 3.91 256 0.166 1.54 -0.089 3.75

2. 1368 0.254 2.68 -0.072 4.51 198 0.107 1.00 -0.088 4.36

3. 1257 0.300 2.45 -0.082 5.37 55 0.003 0.03 -0.157 5.07

4. 979 0.215 2.67 -0.060 3.03 177 0.036 0.40 -0.076 2.95

5. 1065 0.225 2.36 -0.085 3.65 259 0.215 2.02 -0.077 3.71

6. 909 0.168 2.60 -0.053 2.94 227 0.127 1.95 -0.053 2.81

7. 1349 0.221 2.69 -0.078 4.08 219 0.144 1.56 -0.051 4.05

8. 963 0.190 1.97 -0.114 3.18 288 0.127 1.11 -0.101 3.03

9. 909 0.168 2.60 -0.053 2.94 227 0.127 1.95 -0.053 2.81

10. 1205 0.224 2.38 -0.098 4.18 286 0.091 0.89 -0.073 4.10

Aggregate 1651 0.221 3.12 -0.073 2.98 274 0.114 1.48 -0.058 2.88

Out-of-sample, 1st half Out-of-sample, 2nd half

Strategy TF AP PRR MDD TO TF AP PRR MDD TO

1. 181 0.278 2.28 -0.059 4.04 81 0.053 0.58 -0.089 3.45

2. 170 0.256 2.17 -0.058 4.53 35 -0.042 -0.45 -0.088 4.20

3. 20 0.071 0.46 -0.157 5.27 -15 -0.064 -0.57 -0.082 4.88

4. 67 0.035 0.35 -0.043 2.90 82 0.038 0.46 -0.076 3.00

5. 316 0.385 3.56 -0.048 3.90 79 0.044 0.43 -0.077 3.52

6. 235 0.206 3.01 -0.053 2.86 38 0.047 0.77 -0.046 2.75

7. 228 0.233 2.22 -0.048 4.21 51 0.054 0.70 -0.051 3.88

8. 98 0.186 1.65 -0.073 3.24 107 0.067 0.58 -0.101 2.82

9. 235 0.206 3.01 -0.053 2.86 38 0.047 0.77 -0.046 2.75

10. 96 0.114 1.02 -0.056 4.41 103 0.067 0.74 -0.073 3.78

Aggregate 214 0.197 2.41 -0.038 3.00 82 0.031 0.44 -0.058 2.76

portfolio implies that its return in the strict sense is not well defined: The return of an

investment is the ratio of terminal to initial wealth (vt/v0 − 1), but by definition v0 = 0

for statistical arbitrage portfolios. Instead of the returns, the log-profits are evaluated at

each time period

pt =

n
∑

i=1

ri
t ·h

i
t (2.8)

where ri
t is the log-return of stock i at time t. Due to the constraint (2.6), the log-profit

approximates the money amount made from investing one currency unit on both the

long and short side of the portfolio. In the subsequent analysis profits and wealth, refers

to log-profits and log-wealth unless otherwise specified.

Fig. 2.3 shows the growth in wealth for the evolved trading strategies, and Tables 2.2

and 2.3 provide more detailed performance statistics such as the t-statistic fitness (TF),

annualized profits (AP), profit-risk ratios (PRR; ratio between profits and their standard

deviation), maximum draw down (MDD) and turnover (TO). Casual inspection of the
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Table 2.3. Strategy performance statistics of dual trees under 1bp market impact. The following

abbreviations are used; TF – t-statistic fitness, AP – annualized profits, PRR – profit-risk ratio,

MDD – maximum drawdown, TO – average daily turnover.

In-sample Out-of-sample

Strategy TF AP PRR MDD TO TF AP PRR MDD TO

1. 439 0.140 2.14 -0.050 1.16 237 0.120 1.77 -0.036 1.11

2. 821 0.148 2.25 -0.059 1.30 105 0.058 0.85 -0.077 1.24

3. 824 0.209 2.05 -0.084 2.58 249 0.161 1.45 -0.058 2.41

4. 289 0.062 0.96 -0.086 2.38 141 0.087 1.39 -0.074 2.41

5. 1775 0.223 2.86 -0.049 1.31 128 0.071 0.95 -0.076 1.08

6. 379 0.056 0.72 -0.099 3.03 26 0.016 0.22 -0.074 2.96

7. 827 0.096 1.53 -0.067 0.70 43 0.022 0.34 -0.071 0.61

8. 802 0.128 1.91 -0.062 1.66 352 0.243 3.56 -0.045 1.63

9. 1219 0.143 2.31 -0.046 0.68 311 0.122 1.95 -0.040 0.65

10. 1320 0.148 2.46 -0.043 0.46 476 0.175 2.76 -0.030 0.42

Aggregate 1143 0.135 3.02 -0.038 1.19 263 0.107 2.41 -0.026 1.13

Out-of-sample, 1st half Out-of-sample, 2nd half

Strategy TF AP PRR MDD TO TF AP PRR MDD TO

1. 139 0.162 2.16 -0.036 1.08 103 0.077 1.31 -0.028 1.14

2. 132 0.118 1.56 -0.042 1.21 -0 -0.002 -0.04 -0.076 1.27

3. 123 0.222 1.88 -0.046 2.45 9 0.100 0.96 -0.058 2.38

4. 169 0.142 2.12 -0.038 2.53 2 0.032 0.56 -0.074 2.29

5. 193 0.196 2.49 -0.038 1.08 -19 -0.054 -0.78 -0.076 1.07

6. 23 0.010 0.13 -0.060 2.92 4 0.022 0.31 -0.068 3.01

7. 36 0.008 0.13 -0.052 0.63 32 0.036 0.56 -0.052 0.59

8. 155 0.267 3.54 -0.045 1.57 122 0.219 3.64 -0.022 1.69

9. 124 0.158 2.30 -0.040 0.64 124 0.086 1.55 -0.031 0.66

10. 199 0.196 2.77 -0.030 0.41 174 0.153 2.79 -0.027 0.42

Aggregate 208 0.148 3.03 -0.023 1.14 95 0.067 1.67 -0.026 1.13

in-sample results reveal that the t-statistic measure works as intended, since all strate-

gies have steady increasing wealth over time. The values range between 909 and 1368

for the single trees, and 379 and 1775 for the dual trees. The annualized profits range

between 0.168 and 0.254 with an average of 0.221 for the single trees, and 0.056, 0.223

and 0.135 are the equivalent statistics for the dual trees.

In practice, a statistical arbitrage strategy requires a margin deposited in a risk-free

account. By taking additional exposure in the self financing risky strategy relative to

the margin the profits can be scaled to suit investor utility. Hence, they are merely a

function of leverage. The PRR which is leverage invariant is therefore a more descrip-

tive measure. Here the range is between 1.97 and 2.69 for the single trees, and 0.72

and 2.86 for the dual trees. Due to the stochastic nature of GP, the evolved rules are

generally different and it is therefore possible to improve the performance due to di-

versification. The aggregated holdings are simply the average of the holdings for the

ten individual strategies. Under aggregation, the PRRs increase to 3.12 and 3.02, for

the single and dual trees, respectively. Unfortunately, aggregation or bagging destroys
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any simple structure of the model, or in other words it, “a bagged tree is no longer a

tree” [9]. Consequently, interpretability is lost, which is clearly a drawback. However,

by bagging the evolved strategies it is possible to make general inferences about their

properties. In this study all ten evolved strategies are aggregated, but one could employ

various schemes to improve out-of-sample performance. Generally, this requires the use

of additional validation sets, but since data is limited this is problematic. Moreover, ag-

gregating all strategies is clearly the conservative approach and is therefore preferred.

The worst in-sample drawdowns are 0.114 and 0.099 for the single and dual trees, re-

spectively. Under aggregation they fall to 0.073 and 0.038.

Another important statistic is the average daily turnover, which measures the extent

to which the portfolio holdings (Eq. (2.5)) are changing. Formally it is defined as

τ =
1

T

T
∑

t=1

n
∑

i=1

∣

∣

∣∆hi
t

∣

∣

∣ ∆hi
t = hi

t −hi
t−1 hi

0 = 0 (2.9)

where T is the number of time periods. For the single trees it ranges between 2.94 to

5.37, whereas the turnover for the dual trees is much lower, 0.46 to 3.03.

Naturally, the value of a trading strategy is not dictated by its in-sample performance

but is assessed out-of-sample. A drawback of the t-statistic measure is that it is not

sample-size invariant, hence out-of-sample and in-sample results are not comparable.

On an aggregate level the TF is 274 and 263 for the single and dual trees, respectively.

The annualized profits for the single trees range between 0.003 and 0.215 with an aver-

age of 0.114, while for the dual trees the numbers are 0.022, 0.243 and 0.107. Likewise,

the PRRs vary between 0.03 and 2.02 for the single trees and, 0.22 and 3.56 for the dual

trees.

To investigate the strategies market timing capabilities confidence intervals are con-

structed using the stationary bootstrap method, which is a superior alternative to well

known block bootstrap procedure [21]. Instead of using a fixed block size, it varies

probabilistically according to a geometric distribution. With a probability parameter of

p = 0.01, it generates blocks with an expected length of 100 samples. Thus, sampling

with replacement is performed from the strategy holdings, and statistics are gathered

from 500 runs. For the single tree method eight out of ten (8/10) strategies exceed the

99% upper confidence limit at the end of the out-of-sample period, while only 5/10 do

amongst the dual trees.

Despite good overall out-of-sample performance, Fig. 2.3 reveals that it is deterio-

rating as a function of time. To examine this in more detail, Tables 2.2 and 2.3 report

the out-of-sample performance statistics on two sub-periods, from 13-Mar-2006 to 02-

Nov-2006 and from 02-Nov-2006 until 29-Jun-2007. In the first half, both the single

and dual trees generalize extremely well obtaining average annualized profits of 0.197

and 0.148, where the latter actually exceeds its in-sample performance. Moreover, the

TF of the aggregated dual trees is considerably higher than the average TF for the indi-

vidual strategies. In the second period, however, the single trees fare poorly, and make

on average 0.031, while the performance of the dual trees halved to 0.067. A similar

conclusion is reached by analyzing the profit-risk ratios.

Positive out-of-sample performance need not imply market inefficiency. Tradition-

ally, this is investigated by comparing the trading strategy to the buy-and-hold strategy,
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i.e., a passive long only portfolio. This, however, is not a suitable benchmark for statis-

tical arbitrage strategies. This is mainly because a statistical arbitrage is self-financing

and the buy-and-hold is not. Obviously one could short the risk-free asset and invest in

the proceeds in an equally weighted portfolio of the underlying stocks. This benchmark

has an annualized profit of 0.045, and a PRR of 0.35 in the out-of-sample period. How-

ever, this is a naive approach contingent on a specific equilibrium model. In benchmark-

ing this gives rise to the joint hypothesis problem, that abnormal returns need not imply

market inefficiency, but can be due to misspecification of a given equilibrium model [7].

Another benchmark which closer to the spirit of the statistical arbitrage application pre-

sented in this paper, is based on the idea that stocks exhibit momentum [13]. Based on

the in-sample returns, a portfolio is formed by selling (buying) the bottom (top) quin-

tile with respect to performance. In the out-of-sample period this portfolio generates

an annualized profit of 0.069 and has a PRR of 0.61, but its maximum drawdown is a

substantial 0.157. This is clearly inferior to both the single and dual trees.

A better alternative to these types of benchmarks is to employ a special statistical

test for statistical arbitrage strategies, which circumvents the joint hypothesis problem

[10]. The profits are made from investing one currency unit in both the long and short

positions, but they are not compounded, instead they are invested in a risk-free account.

Hence, proportionally less are invested in the risky strategy over time. As a discount

rate we employ the 1-month LIBOR rate for the Eurozone. The constant mean version

of the test assumes that the discounted incremental profits satisfy

∆vi = µ+σiλzi i = 1,2, . . . ,n (2.10)

where zi ∼ N(0,1). The joint hypothesis, H1 : µ > 0 and H2 : λ < 0 determines the pres-

ence of statistical arbitrage. The p-values for the joint hypothesis are obtained via the

Bonferroni inequality, prob(
⋃n

i=1 Ai) ≤
∑n

i=1 prob(Ai). The Bonferroni inequality pro-

vides an upper bound for the likelihood of the joint event, by simply summing the

probabilities for the individual events without subtracting the probabilities of their in-

tersections.

Tables 2.5 and 2.6 provide the statistics for the statistical arbitrage test [10]. For entire

out-of-sample period, 2/10 single trees and 5/10 dual trees reject the null hypothesis

at a 0.05 level of significance. Likewise, both aggregate models constitute significant

statistical arbitrage strategies. For the first half of the out-of-sample period, 4/10 single

trees and 7/10 dual trees are significant. During the second half none of the strategies are

significant. Based on these observations it must be concluded that the markets are not

efficient in this high frequency domain. However, it also holds that these inefficiencies

disappear over time, or rather, that a static model can only be expected to have a limited

lifespan in a dynamic market.

2.5 Sensitivity Analysis

2.5.1 Decomposition and Timing

A unique feature of statistical arbitrage strategies is the equity market neutral constraint,

i.e., the long and short positions balance out each other. To gain further understanding
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Fig. 2.5. Decomposition of long and short position profits. The thick dashed line is the aggregate

strategy performance and the thick solid line is the cumulated returns of an equally weighted

portfolio of banking stocks. Single trees (left column) and dual trees (right column).

of the portfolios it is instructive to decompose the profits from the long and the short

side. Fig. 2.5 shows this decomposition. During the in-sample period the market has

a phenomenal bull run and appreciates by approximately 90%, which implies that the

short positions are loss making for both the single and dual trees. The long side, how-

ever, outperforms the market by up to 50%. Naturally, in this scenario financing via the

riskless asset would a better option than short selling the stocks. The problem is that

this strategy requires knowledge about the market direction ex ante.

The out-of-sample period contains the crash of May 2006, during which the short

side makes money and prevents a large drawdown which would otherwise have oc-

curred with cash financing. By hedging the long side using highly correlated stocks

within the same industry sector the majority of market uncertainty disappears, which

results in strategies with higher profit-risk ratios.

On the individual stock level, the graphs in Fig. 2.6 show the conditional distribution

of the long positions for the bagged models in the out-of-sample period. Specifically,

for each stock all the positive holdings are summed over time, and are then normalized

by the total sum of the positive holdings for all stocks. As expected there are variations

across stocks, but all of them are held at some point. The dual tree holdings appear

slightly more uniform. However, there is a strong positive correlation (0.81) between

the holdings of the two methods. The correlation between the out-of-sample returns for

the bagged models is 0.59, which indicates that similar dynamics are discovered. The

previous bootstrap exercise suggests that many of the strategies have significant market
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Fig. 2.6. Conditional distribution of long positions across stocks. Single trees (left) and dual trees

(right).
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Fig. 2.7. Lead-lag performance of bagged models. Single trees (left) and dual trees (right).

timing capabilities. For practical purposes it is important to realize just how sensitive

the performance is with respect to timing. This is especially true in the field of high

frequency finance. To assess the temporal robustness the lead-lag performance is con-

sidered. In this analysis, the holdings of the bagged models are shifted in time relative

to the VWAP returns, and the annualized strategy returns are evaluated. In Fig. 2.7 the

lead-lag performance is calculated up to one week prior and after signal generation,

and some very interesting results emerge. For both the single and dual trees, leading

the signal results in significantly negative performance, contrary to intuition where de-

cision making based on future information should improve results dramatically. This,

however, is not the case for mean reverting signals. Consider a scenario where a stock

has a large relative depreciation, after which speculators believe it is undervalued and

therefore buy it, causing the price to appreciate in the subsequent time period. Had the

buy decision been made one period earlier, it would have resulted in a great loss, due to

the large initial depreciation.

When the holdings are lagged, the performance deteriorates gradually. For the sin-

gle trees it has disappeared after 8 hours, i.e., a trading day, while the effect persists

for the dual trees up to four days. We suspect this can be attributed to different ways,

in which the two methods capture the underlying dynamics of the system. The single

trees attempt to classify whether a stock is in a relative bull or bear regime, while the
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Fig. 2.8. Annualized returns (top), Sharpe ratios (center top), average daily turnover (center bot-

tom) and shrinkage (bottom) as a function of market impact. Single trees (left column) and dual

trees (right column).
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dual trees have implicit knowledge of the current regime, and therefore models regime

changes. The latter method has more information which probably enables better and

more robust decision making. In passing, note that a single tree can be expressed as

a dual tree with two equivalent trees, such that decision making independent from the

current market position.

2.5.2 Stress Testing

Naturally, trading cost has an adverse effect on performance. In the presence of 1bp

market impact both methods have similar out-of-sample performance, however they

react quite differently when the trading cost is increased, as illustrated in Fig. 2.8. At

only 2bp market impact, the single trees break down, yielding an average annualized

profit of -0.040. The dual trees are much more robust and have positive out-of-sample

performance up to 4bp with an annualized profit of 0.039. However they capitulate

at 5bp, resulting in a negative average performance of -0.013. A similar conclusion is

reached by analyzing the profit-risk ratios. Thus, it can be inferred that the volatilities of

the portfolios are fairly orthogonal to changes in transaction costs. This is not surprising,

since the portfolio holdings are constructed on a volatility adjusted basis.

The turnover provides an explanation to the asymmetric impact on performance for

the two methods. Fig. 2.8 demonstrates how the average daily turnover decreases as

a function of market impact. Under the assumption of frictionless trading, the median

daily turnover is 4.15 and 11.65, for the single and dual trees, respectively. Obviously,

this is not viable when market impact is introduced and for the dual trees the turnover

is greatly reduced to a median value of 1.17 at 1bp cost. For the single trees the effect is

less pronounced and the median changes to 3.73. As the transaction costs are increased

further, the median turnover of the dual trees continue to fall, while for the single trees it

stagnates at a value slightly below one. This is clearly a manifestation of different ways

in which the two models capture the underlying dynamics of the system as discussed

previously.

From a generalization perspective, there is also substantial asymmetric impact due

to trading costs. As a proxy for generalization, it is instructive to consider the shrinkage

which is defined, ψ = (Xtrain−Xtest)/Xtrain, where X is an arbitrary performance mea-

sure [5]. The bottom panel in Fig. 2.8 shows the shrinkage based on annualized profits

as a function of cost. At 2bp market impact the single trees have a median shrinkage

above one, whereas the dual trees do not exceed that value even at 5bp. The shrink-

age is only evaluated from models with positive in-sample performance, since that is a

minimum requirement for out-of-sample application.

The poor generalization of the single trees can also be explained via the turnover.

They simply cannot evolve portfolios with sufficiently low turnover, and therefore suffer

more when transaction costs increase.

2.6 Conclusion

In this chapter genetic programming is employed to evolve trading strategies for statis-

tical arbitrage. This is motivated by the fact that stocks within the same industry sector
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should be exposed to the same risk factors and should therefore have similar behav-

ior.Traditionally there has been a gap between financial academia and the industry. This

also applies to statistical arbitrage, an increasingly popular investment style in practice,

but to the authors’ knowledge little formal research has been undertaken within this

field. This chapter addresses this imbalance and aims to narrow this gap. We consider

two different representations for the trading rules. The first is a traditional single tree

structure, while the second is a dual tree structure in which evaluation is contingent

on the current market position. Hence, buy and sell rules are coevolved. Both methods

evolve models with substantial market timing, but what is more important significant

statistical arbitrage strategies are uncovered even in the presence of realistic market im-

pact. Using a special statistical arbitrage test [10] this leads to the conclusion of the

existence of market inefficiencies within the chosen universe. However, it should be

mentioned that during the second half of the out-of-sample period the performance de-

teriorates and any statistical arbitrage there might have been seems to have disappeared.

Does this imply that the chosen universe have become efficient? We do not believe this

is the case, rather the deterioration in performance is the manifestation of using a static

model in a dynamic environment. This is consistent with the Adaptive Markets Hypoth-

esis [17]. A natural avenue for future research is therefore to investigate the effects of

adaptive retraining of the strategies.

A unique feature in statistical arbitrage is that long and short positions within the

portfolio balance out each other. By decomposing the profits it is found that both sides

of the portfolio are essential to the performance. The in-sample period is a massive bull

market, during which more profits could have been generated using the risk-free asset

for borrowing. This approach, however, is not viable. Firstly it requires the knowledge

of market direction ex ante, and second, it defies the essence of statistical arbitrage

where the “market” is effectively hedged out.

In the final part of the chapter the impacts of increased transaction costs are inves-

tigated. Not surprisingly performance deteriorates for both the single and dual trees.

The impacts on the two methods are highly asymmetric. As transaction costs increase,

the single trees are not capable of reducing their turnover sufficiently and consequently

they suffer greatly out-of-sample. The dual trees, however, have implicit knowledge of

the previous market position and can effectively adapt to the changed environments.
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A Appendix

Table 2.4. Annualized returns and volatilities for banking stocks within the Euro Stoxx index

Name Return Volatility

1. ABN AMRO Holding NV 26.6 18.8

2. Alliance & Leicester PLC 13.6 17.6

3. Allied Irish Banks PLC 14.3 17.9

4. Barclays PLC 19.0 20.2

5. Bradford & Bingley PLC 11.9 19.7

6. Bank of Ireland 13.8 18.8

7. Banca Monte dei Paschi di Siena SpA 23.7 19.0

8. BNP Paribas 24.1 19.9

9. Credit Agricole SA 21.5 19.9

10. Commerzbank AG 41.5 26.9

11. Natixis 25.1 20.5

12. Capitalia SpA 43.2 24.3

13. UniCredito Italiano SpA 19.3 15.2

14. Deutsche Bank AG 26.8 20.8

15. Depfa Bank PLC 29.0 24.4

16. Dexia SA 26.3 17.2

17. Erste Bank 31.3 20.5

18. Fortis 28.0 19.2

19. HBOS PLC 13.2 17.9

20. HSBC Holdings PLC 12.0 12.4

21. Lloyds TSB Group PLC 18.9 18.9

22. National Bank of Greece SA 49.0 24.3

23. Nordea Bank AB 29.3 17.5

24. Northern Rock PLC 9.9 18.2

25. Banca Popolare di Milano Scarl 30.0 20.4

26. Royal Bank of Scotland Group PLC 10.1 17.2

27. Skandinaviska Enskilda Banken AB 29.7 19.3

28. Svenska Handelsbanken AB 15.3 15.2

29. Societe Generale 29.0 20.3

30. Standard Chartered PLC 23.1 18.8
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Table 2.5. Out-of-sample statistical arbitrage test results for single trees under 1bp market impact

Out-of-sample

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 0.7090 3.8864 -1.4343 0.0556 0.0000 0.0556

2. 0.8319 5.5430 -2.4060 0.1738 0.0000 0.1738

3. -0.0932 23.0714 -4.8673 0.5226 0.0000 0.5226

4. 0.8296 4.5428 -3.1347 0.2932 0.0000 0.2932

5. 5.5094 2.3301 0.4183 0.0067 1.0000 1.0067

6. 3.5796 3.2687 -4.3740 0.0151 0.0000 0.0151

7. 4.3059 19.4080 -9.8599 0.0542 0.0000 0.0542

8. 5.2725 4.6709 0.2396 0.0851 0.9661 1.0512

9. 5.3695 4.9030 -6.5609 0.0151 0.0000 0.0151

10. 4.3570 22.1748 -11.1114 0.1513 0.0000 0.1513

Aggregate 0.6456 0.6537 -0.6220 0.0233 0.0000 0.0233

Out-of-sample, 1st half

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 1.4027 1.5993 -0.6343 0.0292 0.0000 0.0292

2. 2.5672 3.7179 -1.6253 0.0361 0.0000 0.0361

3. 1.1144 11.7142 -2.9947 0.3431 0.0000 0.3431

4. 0.9082 3.0801 -1.5716 0.3523 0.0000 0.3523

5. 9.6970 2.0578 1.3027 0.0016 1.0000 1.0016

6. 6.1911 3.7696 -4.9463 0.0063 0.0000 0.0063

7. 8.3920 2.9048 1.4888 0.0306 1.0000 1.0306

8. 8.2825 15.5883 -7.4196 0.0639 0.0000 0.0639

9. 9.2866 5.6544 -7.4195 0.0063 0.0000 0.0063

10. 5.8946 16.6138 -8.1364 0.1912 0.0000 0.1912

Aggregate 1.1082 0.6270 -0.5279 0.0129 0.0000 0.0129

Out-of-sample, 2nd half

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 0.4878 0.1051 1.0554 0.1818 1.0000 1.1818

2. 0.1644 0.1533 2.6634 0.4395 1.0000 1.4395

3. -0.5132 0.2623 4.5488 0.6053 1.0000 1.6053

4. 1.7130 0.2092 5.6897 0.1814 1.0000 1.1814

5. 3.4272 0.1224 11.6530 0.1006 1.0000 1.1006

6. 1.7482 0.3956 4.8485 0.2142 1.0000 1.2142

7. 2.8709 0.6345 6.4806 0.1874 1.0000 1.1874

8. 5.4380 0.1808 20.3875 0.1202 1.0000 1.1202

9. 2.6223 0.5934 7.2727 0.2142 1.0000 1.2142

10. 5.4774 0.8301 12.1285 0.1479 1.0000 1.1479

Aggregate 0.4813 0.0332 1.5544 0.1175 1.0000 1.1175
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Table 2.6. Out-of-sample statistical arbitrage test results for dual trees under 1bp market impact

Out-of-sample

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 0.5616 1.3266 -1.3337 0.0225 0.0000 0.0225

2. 0.4357 2.1637 -2.3541 0.2206 0.0000 0.2206

3. 2.4700 5.9105 -2.6596 0.0388 0.0000 0.0388

4. 1.6000 3.0816 -4.1689 0.0639 0.0000 0.0639

5. 1.5022 2.9575 -2.9591 0.1703 0.0000 0.1703

6. 0.4801 2.7877 -2.4133 0.4009 0.0000 0.4009

7. 0.8946 1.5847 -0.5873 0.3227 0.0000 0.3227

8. 9.5990 10.3110 -10.3717 0.0000 0.0000 0.0000

9. 5.5076 6.5143 -9.0015 0.0098 0.0000 0.0098

10. 8.4098 14.2737 -14.8195 0.0007 0.0000 0.0007

Aggregate 0.5510 0.4109 -1.0776 0.0017 0.0000 0.0017

Out-of-sample, 1st half

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 0.8301 0.7644 -0.8357 0.0333 0.0000 0.0333

2. 1.1584 0.7101 -0.4012 0.1038 0.0000 0.1038

3. 3.7076 9.2456 -3.7302 0.0386 0.0000 0.0386

4. 2.9040 2.7992 -3.8099 0.0356 0.0000 0.0356

5. 4.8148 2.5767 -2.1679 0.0221 0.0000 0.0221

6. 0.2698 2.1389 -0.8768 0.4624 0.0000 0.4624

7. 0.4799 1.5110 -0.0939 0.4325 0.3113 0.7438

8. 10.9036 6.6737 -7.1572 0.0014 0.0000 0.0014

9. 7.3459 3.4537 -3.7681 0.0252 0.0000 0.0252

10. 9.8926 5.8844 -7.1353 0.0106 0.0000 0.0106

Aggregate 0.7882 0.2712 -0.6919 0.0040 0.0000 0.0040

Out-of-sample, 2nd half

Strategy µ (·10−4) σ (·10−5) λ (·10−1) H1 H2 H1+H2

1. 0.3994 0.0765 0.6293 0.1310 1.0000 1.1310

2. 0.3352 0.0632 2.6392 0.3139 1.0000 1.3139

3. 0.8956 0.3228 3.7711 0.3125 1.0000 1.3125

4. 0.6556 0.5499 0.5441 0.3213 1.0000 1.3213

5. -0.8630 0.1888 7.2044 0.6653 1.0000 1.6653

6. 0.7175 0.9314 2.2604 0.3914 1.0000 1.3914

7. 1.1606 0.5307 5.3785 0.3332 1.0000 1.3332

8. 7.7866 0.4188 7.6383 0.0032 1.0000 1.0032

9. 3.8859 0.2989 10.6625 0.0934 1.0000 1.0934

10. 7.6731 1.1616 1.8053 0.0108 1.0000 1.0108

Aggregate 0.3783 0.0280 0.8117 0.0590 1.0000 1.0590
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Summary. This chapter illustrates the usefulness of Kohonen’s self organizing maps (SOMs)

and genetic programming (GP) for identifying relevant variables in a financial distress predic-

tion problem. The approach presented here uses GP as a classification/prediction tool to produce

models that can predict if a company is going to have book losses in the future. In addition, the

analysis of the resulting GP trees provides information about the relevance of certain variables

when solving the prediction model. This analysis in combination with the conclusions yielded

using a SOM allowed us to significantly reduce the number of variables used to solve the book

losses prediction problem while improving the error rates obtained.

3.1 Introduction

The prediction of financial distress is one of the best instruments for making decisions

in an enterprise environment; this makes it a worthwhile research pursuit that does not

lack difficulties. To begin with, it is a difficult problem to solve because there are lots

of variables to take into account and, besides, there are many relationships (visible or

hidden) among them which contradicts the requirements of usual statistical techniques.

If we look at the history of this subject, it can be seen that the path of the studies

moves from accurate but difficult to implement approaches like univariate statistical

analysis [3, 5]; to more generic (less restrictive) tools, like the application of artificial

neural networks (ANN) [6, 8, 9, 10, 13, 14, 21] and recently, genetic programming (GP)

[7, 16, 17, 23].

The problem of using statistical techniques is the requirement of a functional relation

between dependent and independent variables in order to get good results. In addition,

these methods generalize badly because they are very sensitive to exceptions. On the

other hand, soft-computing techniques are more flexible, as was illustrated in our initial

papers on the topic [4, 9].

In this chapter we use GP to create a model from a data set of more than 400 com-

panies that predicts book losses. The database used (which is the same that was previ-

ously employed for the prediction of bankruptcy [2, 1]) includes not only financial data

from the companies but also general company information that can be relevant when

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 31–49.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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predicting failure. One of the factors that was found to be key for the successful appli-

cation of GP to the bankruptcy prediction problem was the reduction of the number of

variables. Usually bankruptcy prediction models are based on less than ten economic

ratios [3, 28]. In our earlier work [2, 1], in order to handle the amount of data in the

database and in order to ensure that the GP generated models which were understand-

able, the prediction was done in two steps. First of all, GP was run with all the available

variables and then it was used to identify which data was relevant for solving the prob-

lem. This could be done since GP creates analytical models as a final result. Then, the

prediction models were evolved using only those variables that had been identified as

important in the first stage. The results in [2, 1] showed that reducing the number of

variables not only simplifies the the structures of the GP classifier but also improves the

classification rates.

In this study a self-organizing map (SOM) [15] is applied to reduce the dimen-

sionality of the book losses prediction problem. SOMs are able to highlight non-

linear relationships among variables. This method is usually employed as a cluster-

ing/classification tool, or to find unknown relationships between data. For instance, in

[19] a Kohonen’s SOM was used for surveying the financial status of Spanish com-

panies. From the map, the authors inferred which were the most relevant variables so

that a fast diagnosis on the status of a company could be reached. Thus, we decided

to consider some of the conclusions yielded in that work to choose a set of variables

which may be significant to predict the book losses for a company. We demonstrate that

the combination of the ability of SOMs for highlighting relevant data clusters and the

key variables in each one, and the capability of GP for building understandable models

leads to the generation of efficient and simple classifier structures for the prediction of

book losses.

The prediction of book losses is interesting since there is a direct relationship be-

tween continued book losses and legal bankruptcy [22]. Moreover, book losses usually

happen at a stage prior to insolvency so predicting book losses gives the management

of a company more time to react and find a solution to the problem (if there is one).

The remainder of this chapter is organized as follows. Sect. 3.2 describes the dataset

used to make the study; the methods used to process the samples are introduced in Sect.

3.3. Sect. 3.4 shows the results yielded by these methods, and the related conclusions

are reported in Sect. 3.5.

3.2 Dataset and Problem Description

The data used in this work was extracted from the Infotel database (bought from

http://infotel.es). The dataset is composed of data from about 470 companies.

170 of these companies had continuous book losses during the years 2001-2003, and

the remaining 300 companies presented good financial health. Data of these companies

from years 1998, 1999 and 2000 was used to for training and testing.

Table 3.1 shows the independent variables, their description and type. As can be seen,

the variables can take values from different numerical ranges: real, integer and binary.

Also, some of the non-financial data take categorical values; these are the size of the

company, the type of company and the auditor’s opinion. Usually, company size is a

http://infotel.es
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Table 3.1. Independent Variables

Financial Variables Description Type

Debt Structure Long-Term Liabilities /Current Liabili-

ties

Real

Debt Cost Interest Cost/Total Liabilities Real

Leverage Liabilities/Equity Real

Cash Ratio Cash Equivalent /Current Liabilities Real

Working Capital Working Capital/ Total Assets Real

Debt Ratio Total Assets/Total Liabilities Real

Operating Income Margin Operating Income/Net Sales Real

Debt Paying Ability Operating Cash Flow/Total Liabilities Real

Return on Operating Assets Operating Income/Average Operating

Assets

Real

Return on Equity Net Income/Average Total Equity Real

Return on Assets Net Income/Average Total Assets Real

Asset Turnover Net Sales/Average Total Assets Real

Receivable Turnover Net Sales/Average Receivables Real

Stock Turnover Cost of Sales/Average Inventory Real

Current Ratio Current Assets/Current Liabilities Real

Acid Test (Cash Equivalent + Marketable Securi-

ties + Net receivables) /Current Liabili-

ties

Real

Non-financial Variables Description Type

Size Small/Medium/Large Categorical

Type of company Categorical

Auditor’s opinion Categorical

Audited If the company has been audited Binary

Delay If the company has submitted its annual

accounts on time

Binary

Linked to a group If the company is part of a group hold-

ing

Binary

Number of partners Integer

Number of employees Integer

Age of the company Integer

Number of changes of location Integer

Number of incidences in court Number of times the company was sued

last year

Integer

Historic number of Since the company was created Integer

incidences in court

Historic number of Such as strikes, accidents... Integer

serious incidences

Amount of money spent on Last year Real

incidences in court

Historic amount of money Since the company was created Real

spent on incidences in court
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real variable but in this case the companies are grouped in three separated categories

according to their turnover. Each categorical variable can take 3 different values. To

work with them they have been transformed into 3 binary variables each. For example,

if we have the variable size, with 3 possible values, ‘1’, ‘2’ or ‘3’, we can create three

new variables size1, size2 and size3. Each one will have a value of ‘1’ if the old value of

size, was ‘1’, ‘2’ or ‘3’, respectively, and a value of ‘0’ otherwise. Therefore, after this

modification the available data set for each company includes 37 independent variables:

18 real, 7 integer and 12 binary variables. To perform the experiments the data was

divided into training and testing sets. The training set comprised 70% of the available

data. The remaining 30% was used for testing the evolved solutions.

3.3 Methodology

In this section we briefly describe the SOM algorithm and the GP framework that we

have used to predict book losses.

3.3.1 Self-organizing Map

The Self-Organizing Map (SOM) was introduced by Teuvo Kohonen in 1982 (see [15]

for details and [27] for a recent review). It is a non-supervised neural network that

tries to imitate the self-organization done in the sensory cortex of the human brain,

where neighbouring neurons are activated by similar stimulus. It is usually employed

either as a clustering/classification tool or as a method to find unknown relationships

among a set of variables that describe a problem. The main property of the SOM is that

it makes a nonlinear projection from a high-dimensional data space (one dimension

per variable) to a regular, low-dimensional (usually 2D) grid of neurons (see Fig. 3.1),

and, from the self-organization process, the projection preserves the topologic relations

while simultaneously creating a dimensional reduction of the representation space (the

transformation is made in a topologically ordered way, though this is not guaranteed in

advance and must be assessed during the training process).

The SOM processes a set of input vectors (samples or patterns), which are composed

by variables (features) typifying each sample. It then creates an output topological net-

work where each neuron is also associated to a vector of variables (model vector) which

Fig. 3.1. SOM Grid structure. There is an input layer (to which the vectors in the training set are

submitted) and a process layer (where the neurons of the network are) which takes a grid shape.
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is representative of a group of the input vectors. Note in Fig. 3.1 that each neuron of the

network is completely connected to all the nodes of the input layer. So, the network rep-

resents a feed-forward structure with only one computational layer. There are four main

steps in the processing of the SOM. Apart from the first one, the others are repeated

until a stop criterion is met.

1. Initialization of model vectors: It is usually made by assigning small random val-

ues to their variables, but there are some other possibilities such as an initialization

using random input samples.

2. Competitive process: For each input pattern X, all the neurons (model vectors) V

“compete” using a similarity function in order to identify the one most similar or

closest to the sample vector. Usually, the similarity function is a distance measure

(such as an Euclidean distance). The winner neuron is called the best matching unit

(BMU).

3. Cooperative process: The BMU determines the centre of a topological neighbour-

hood where those neurons inside it (the model vectors) will be updated to be even

more similar to the input pattern. A neighbourhood function is used to determine

the neurons to consider. If the lattice where the neurons are is rectangular or hexag-

onal, it is possible to consider as neighbourhood functions rectangles or hexagons

with the BMU as centre. However, it is more usual to use a Gaussian function to

assure that the farther the neighbour neuron is, the smaller the updating to its asso-

ciated vector is. In this process, all the neurons within a neighborhood cooperate to

learn.
4. Learning process: In this step the variables of the model vectors within the neigh-

bourhood are updated to be closer to those of the input vector. It means making the
neuron more similar to the sample. The learning rule used to update the vector (V)
for every neuron i in the neighbourhood of the BMU is

V t
i = V t−1

i +αt ·Nt
BMU (i) · (X−V t−1

i ) (3.1)

Where t is the current iteration of the algorithm, X is the input vector, NBMU is

the neighbourhood function for the BMU, which returns a high value (in [0,1]) if

the neuron i is in the neighbourhood and close to the BMU (1 if i = BMU), and a

small value otherwise (0 if i is not located inside the neighbourhood); and α is the

learning rate (in (0,1]). Both neighbourhood and learning rate depend on t, since it

is usual to decrease the radius of the first one and the value of the second in order

to impose a higher updating rate at the beginning of the process and almost none in

the final iterations.

The recurrent application of Eq. 3.1, and the update of the neighbourhood function, has

the effect of ‘moving’ the model vectors, V j from the winning neuron towards the input

vector Xi. That is, the model vectors tend to follow the distribution of the input vectors.

Consequently, the algorithm leads to a topological arrangement of the characteristic

map of the input space, in the sense that adjacent neurons in the network tend to have

similar weight vectors.

The SOM is further processed using Ultsch’s method [25], the Unified distance ma-

trix (U-Matrix). It uses SOM’s code vectors (vectors of variables of the problem) as
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a data source and generates a matrix where each component is a distance measure

between two adjacent neurons. This matrix is represented as a lattice with one cell per

neuron in the map, and one additional node is placed between every pair of neurons,

which represents the distance between them. This distance is showed using a colour

code (usually blue means near or little distance, and red far or large distance). Each

cell corresponding to one neuron in the map may be labeled with the related tag of the

pattern which it represents. It allows us to visualize any multi-variated dataset in a two-

dimensional display, so we can detect topological relations among neurons and infer

about the input data structure. High values in the U-matrix represent a frontier region

between clusters, and low values represent a high degree of similarities among neurons

in that region, i.e. clusters.

Therefore, looking at the output of a SOM and its corresponding U-Matrix, it is

possible to recognize some clusters as well as the metric-topological relations of the

data items (vectors of variables of the problem) and the outstanding variables.

Although Kohonen’s SOMs are not as accurate as other tools at the task of classifi-

cation, they can be applied to many different types of data, yielding a visualization of

natural structures in the data and their relations, as well as the natural groupings that

could be among them. In addition, SOMs facilitate the identification of the variables

that have more influence on these groupings, via the so-called planes analysis. Other

statistical and soft computing tools can also be used for this purpose, but Kohonen’s

SOMs offer a visual way of doing it which is much more intuitive.

SOMs have been successfully applied to financial problems. A standard reference in

the field would be the paper by Serrano-Cinca [24]. In this work the author develops a

complete decision support system for financial diagnosis based on SOMs.

3.3.2 Genetic Programming

Genetic Programming (GP) is based on the idea that in nature structure undergoes adap-

tation. The structure created over a period of time is the outcome of natural selection

and sexual reproduction. Thus, GP is a structural optimisation technique (as opposed

to a parametric optimisation technique). The individuals in GP are represented as hi-

erarchical structures (typically tree structures) and the size and shape of the solutions

are not defined a priori as in other methods from the field of evolutionary computation,

but they evolve along the generations. The flow of a GP algorithm is the same as any

other evolutionary technique: a population is created at random, each individual in the

population is evaluated using a fitness function, the individuals that performed better in

the evaluation process have a higher probability of being selected as parents for the new

population than the rest and a new population is created once the individuals are subject

to the genetic operators of crossover and mutation with a certain probability. The loop

is run until a certain termination criterion is met.

In this section we briefly describe the GP framework that we have used for repre-

senting systems for financial distress prediction. Basically, the GP algorithm must find

a structure (a function) which can, once supplied with the relevant data from the com-

pany, decide if this company is going to have book losses or not. In short, it is a binary

classification problem.
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Classification

The classification works as follows. Let X = {x0, . . . , xN} be the vector comprising the

data of the company undergoing classification. Let f (X) be the function defined by a GP

tree structure. We can apply X as the input to the GP tree and calculate the output f (X).

Once the numerical value of f (X) has been calculated, it will give us the classification

result according to

f (X) > 0, X ∈ L (3.2)

f (X) ≤ 0, X ∈ L (3.3)

where L represents the class to which companies with book losses belong and L rep-

resents the class to which healthy companies belong. The task of GP is to find the

function f (X).

Fitness Evaluation

Since the database is unbalanced in the sense that only 170 companies have book losses

versus 300 healthy companies, we have modified the cost associated to misclassifying

the positive and the negative classes to compensate for the imbalanced ratio of the two

classes as proposed in [12]. For example, if the imbalance ratio is 1:10 in favor of the

negative class, the penalty for misclassifying a positive example should be 10 times

greater. Basically, it rewards the correct classification of examples from the small class

over the correct classification of examples from the over-sized class. It is a simple but

efficient solution. Therefore, the fitness function to be maximized is

Fitness =

n
∑

i=1

ui (3.4)

where

ui =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 : incorrect classification
nh

nl
: company with losses classified correctly

1 : healthy company classified correctly

nl is the number of companies with book losses and nh is the number of healthy com-

panies.

GP Implementation

The GP implementation used is based on ECJ (http://cs.gmu.edu/∼eclab/

projects/ecj), a research evolutionary computation system developed at George Ma-

son University’s Evolutionary Computation Laboratory (ECLab). Table 3.2 shows the

main parameters used during evolution.

The mutation, crossover and bloat control operator rates were chosen according to

the results obtained in a comparison study of bloat control methods in [2]. Several

combinations of the bloat control operator rate and the crossover rate were tested and in

this present work the best combination was used. The population size and the number of

generations were chosen by trial and error. Elitism was included because its inclusion

improved the results. All the other parameter settings are the default in ECJ.

http://cs.gmu.edu/~eclab/projects/ecj
http://cs.gmu.edu/~eclab/projects/ecj
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Table 3.2. GP parameters

Initialization method Ramped half and half

Replacement operator Generational with elitism (0.2%)

Selection operator Tournament selection

Tournament group size 7

Cloning rate 0.1

Crossover operator Bias tree crossover

Internal node selection rate 0.9

Crossover rate 0.4

Mutation rate 0.1

Bloat control operator rate 0.4

Tree maximum initial depth 7

Tree maximum depth 18

Population size 1000

Termination criterion 250 generations

As a method of bloat control we have used a genetic operator. This operator imple-

ments a bloat control approach described in [11] and inspired in the “prune and plant”

strategy used in agriculture. It is used mainly for fruit trees and it consists of pruning

some branches of trees and planting them in order to grow new trees. The idea is that

one of the branches of the selected tree will be “pruned” and substituted by a terminal.

The pruned branch will be then “planted” as a new tree in the population. This way both

offspring trees will be of smaller size than the ancestor, effectively reducing bloat.

Strong Typing

Strongly typed GP (STGP) [18] is an enhanced version of GP that enforces data-type

constraints, since standard GP is not designed to handle a mixture of data types. In

STGP, each function node has a return-type, and each of its arguments also have as-

signed types. STGP permits crossover and mutation of trees only with the constraint

that the return type of each node matches the corresponding argument type in the node’s

parent.

A STGP has been implemented in order to ensure that in the resulting classifying

models the functions operate on appropriate data types so that the final model has a

physical meaning. That is, the objective is to avoid results that operate on data which

Table 3.3. Function set

Functions Number of Arguments Return

arguments type type

+, -, *, / 2 real real

If arg1 ≤ arg2 then arg3 else arg4 4 real real

arg1 is a boolean
If arg1 then arg2 else arg3 3

arg2,arg3 are real
real

If arg1 ≤ int then arg2 else arg3 arg1 is an integer

(int is randomly chosen)
3

arg2,arg3 are real
real
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are not compatible, for instance, models which add up the liabilities and the age of

a company. The terminal set used consists of 38 terminals: the independent variables

from Table 3.1 plus Koza’s ephemeral random constant. Table 3.3 shows the function

set used and the chosen typing.

3.4 Experiments and Results

In this section we initially present the results obtained using the SOM in a previous

paper [19]. After that, the experiments performed for GP (considering the conclusions

reached with SOM) and the results of these experiments are shown.

3.4.1 SOM Experiments

In [19], the SOM was applied to the same dataset as in this work, and the same prepro-

cessing was performed in order to ‘transform’ categorical variables into numerical ones.

After this step, a normalization process was carried out. It is a necessary pre-processing

in order to prevent the differences in the values of some variables from dominating the

map organization. Values of ‘-1’ and ‘1’ were assigned to those independent variables

which took values of ‘0’ and ‘1’ (old categorical ones). The rest of independent vari-

ables were also normalized by using the method of variance, so all their values were

located in the range [-1,1] except those which were outstanding. For these experiments,

Matlab 6.5 along with SOM Toolbox [26], Version 2.0 beta were used. The parameters

used for training are shown in Table 3.4.

The SOM was trained using all the sample data, corresponding to the accounting

periods 1998-2000. After training and post-processing, the U-Matrix graph [25] was

obtained. The samples were labeled in that graph with a ‘P’ when they corresponded to

a firm with continued losses, otherwise the unit was labeled with a ‘n’. The variables are

named with capitals excepting the new non-categorical ones obtained by transforming

their categorical counterparts.

In this case, the SOM was not trained with the ideal amount of data in order to dif-

ferentiate companies of both classes (maybe there were not enough data or maybe the

samples used were similar), therefore there was not a clear boundary between clusters

of failed companies (which have had continued losses) and those of successful compa-

nies. Looking at the U-Matrix graph (see Fig. 3.2), only 3 clusters stand out: a general

cluster, formed by dark gray color (blue in color images), that is associated to vectors

representing companies close to each other; a warm spot at the lower right corner, and

a hot spot at the upper right corner; these spots represent clusters of companies whose

Table 3.4. SOM Parameters

Map Grid Size 8x8

Map Lattice hexagonal

Size of Vectors 37

Normalization Var (in [-1,1])

The rest of parameters take the default values in SOM Toolbox.
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Fig. 3.2. U-Matrix graph (1998-2000 data). There are three main clusters: a warm spot

at the lower right corner, a hot spot at the upper right side and a general and central

one (For a color and better-quality image you can visit: http://geneura.ugr.es/∼amorag/som/

finan/UMatrix 98 00.bmp).

features stand out against the rest. There is also a small cluster in the 3rd hexagon from

the right in the top row.

Every subplot in Fig. 3.3 represents the values of one particular variable in every

vector (or neuron) that constitutes the trained self-organizing map. The color code used

is as follows: bluish tones represent that the variable takes small values and reddish

tones represent that the variable takes large values within the range of that variable.

The most representative variables (or key variables) of a cluster can be identified by

visual inspection of the figure. They are those which take a distinctive value (usually

very small or very large) in the area of the map where the cluster has been discovered.

So, looking at Fig. 3.3, the key variables identified in each cluster are: those which take

completely different (usually very high or very low) values from the rest of the variables

in the zones of the map corresponding to each one of the clusters. So, in summary we

have

• Warm spot: large companies (size3 (tamano3) set to 1), which have been audited

(5th component, AUDITADA), with type of company1 set to 1 (cod formasoc1,

6th component), with a favorable auditor’s opinion (5th component starting by the

last one, opi auditoria1), high acid test (TEST ACI), high current ratio (SOLVEN-

CIA), delay in reporting the annual accounts (RETRASO), high leverage (NIV END)

and belonging to a group (last component, VINC GRUPO). There are more failed
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Fig. 3.3. SOM Plane Analysis (1998-2000 data) (For a color and better-quality image you can

visit: http://geneura.ugr.es/∼amorag/som/finan/SOM 98 00.bmp)

companies in this cluster than successful ones, so the cluster probably corresponds

to old members of company conglomerates, big-sized, which are conveniently

closed without incurring big losses.

• Hot spot: successful companies, with small size (size1 (tamano1) set to 1) and most

economic indicators in a healthy shape.

• Small spot: most companies with losses with type of company3 (cod formasoc3) set

to 1 and no other distinctive value.

3.4.2 GP Experiments

In these experiments, the conclusions yielded by the previously commented work are

considered. But firstly we present the results obtained using GP without considering

SOM results. The mean and standard deviation for 30 runs was calculated. Table 3.5

shows the results obtained using all variables available for prediction. Note that the re-

ported error figures are calculated as the percentage of misclassifications. The fitness

function in Eq. 3.4 is only used during the optimisation process to deal with the unbal-

anced ratio of the two classes.

The results show the difficulty of predicting book losses, since the same GP strategy

obtained better classification rates when using the database for predicting bankruptcy

[2, 1]. Book losses happen a time prior to bankruptcy and do not lead always to it. For

instance, if a company is linked in a group, it may suffer book losses for a long time

without being forced to close down. Therefore, predicting book losses is a more difficult

problem.
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Table 3.5. Average results for the prediction of book losses using all variables

Training error Testing error

22.58 ± 2.18 34.32 ± 2.11

Table 3.6. Percentage of final trees that use each variable in the first set of GP results

Variable % Trees Variable % Trees

Debt Structure (DS) 60.00 size1 (s1) 13.33
Debt Cost (DC) 83.33 size2 (s2) 23.33
Leverage (L) 96.67 size3 (s3) 16.67
Cash Ratio (CR) 60.00 type of company1 (tc1) 30.00
Working Capital (WC) 56.67 type of company2 (tc2) 20.00
Debt Ratio (DR) 70.00 type of company3 (tc3) 10.00
Operating Income Margin (OIM) 73.33 auditor’s opinion 1 (ao1) 0.00
Debt Paying Ability (DPA) 60.00 auditor’s opinion 2 (ao2) 13.33
Return on Operating Assets (ROA) 73.33 auditor’s opinion 3 (ao3) 20.00
Return on Equity (RE) 86.69 Audited (A) 26.67
Return on Assets (RA) 70.00 Delay (D) 20.00
Asset Turnover (AT) 66.67 Linked in a group (LG) 6.67
Receivable Turnover (RT) 60.00 Number of partners (NoP) 23.33
Stock Turnover (ST) 80.00 Number of employees (NoE) 23.33
Current Ratio (CuR) 66.67 Age of the company (Age) 16.67
Acid Test (AcT) 53.33 No. changes of location (NoL) 13.33
Number of judicial incidences (NJI) 13.33
Historic number of judicial incidences (HNJI) 26.67
Historic number of serious incidences (HNSI) 30.00
Amount of money spent on judicial incidences (MJI) 46.67
Historic amount of money spent on judicial incidences (HMJI) 56.67
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Fig. 3.4. Graphical representation of the percentage of final trees that use each variable in the first

set of GP results. The six variables used more frequently are marked in black.
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Fig. 3.5. Cumulative number of variables used in the final trees

Table 3.7. Variables used most frequently in the GP trees

Variable Type Variable Type

Debt Cost Real Return on Operating Assets Real

Operating Income Margin Real Return on Equity Real

Leverage Real Stock Turnover Real

Table 3.8. Average results for the prediction of book losses using the variables used most fre-

quently by GP

Training error Testing error

23.61 ± 1.53 35.85 ± 1.21

The success of our proposal is based on what follows. As a first approach we used GP

to reduce the number of independent variables, since this method yielded good results

in previous work [2, 1]. We analyzed the final 30 tree structures the GP algorithm con-

verged to in the previous experimental runs (we run the optimisation 30 times and we

kept the best tree in the final generation of each run). See Table 3.6 and Fig. 3.4 for the

percentage of trees in this group that used each variable. In addition, Fig. 3.5 shows the

cumulative number of variables that appear in more than a given percentage of final trees.

For instance, there are 18 variables that are used in more than 30% of the final trees, that

is, each of these variables is used in, at least, more than 9 trees out of the final 30 trees.

From these results we observed that there are 6 variables that were used more fre-

quently than others (in more than 70% of the final trees). We then ran a second set

of experiments considering only these variables. In Table 3.7 the variables used in the

second set of experiments are presented.



44 E. Alfaro-Cid et al.

Table 3.9. Variables identified as relevant by the SOM

Variable Type Variable Type

size1 Binary Audited Binary

size3 Binary Delay Binary

type of company1 Binary Leverage Real

type of company3 Binary Acid Test Real

auditor opinion1 Binary Current Ratio Real

Linked in a group Binary

Table 3.10. Average results for the prediction of book losses using the variables identified as

relevant by the SOM

Training error Testing error

21.94 ± 1.39 32.79 ± 1.33

Table 3.11. Average results for the prediction of book losses obtained in each set of experiments

Training error Testing error

All variables 22.58 ± 2.18 34.32 ± 2.11

GP subset 23.61 ± 1.53 35.85 ± 1.21

SOM+GP subset 21.94 ± 1.39 32.79 ± 1.33

Table 3.8 shows the numerical results obtained when solving the prediction problem

using the reduced set of variables. This method for reducing the number of variables

yielded good results for the bankruptcy prediction problem [2, 1] but it has not worked

well in this case. Both the average training and testing errors have increased.

Given that the results obtained using GP for reducing the variables are not good, we

have used a SOM to fulfill the task. In the previous subsection the identified clusters

and key variables have been shown. These variables are summarized in Table 3.9.

Thus, a third set of experiments was run where the book losses prediction problem

was solved using the variables identified by the SOM as relevant plus two other vari-

ables that the GP algorithm used in more than 80% of the final trees: return on equity

and debt cost.

Table 3.10 shows the error rates obtained in this third set of experiments, which are

smaller than when using all the variables, and Table 3.11 summarizes the error rates

obtained in each set of runs for comparison purposes. Kruskal-Wallis tests were used

to compare the results. When comparing the latter results with those obtained using all

variables, no significant differences were found between training error rates. However,

differences in the testing error rate were significant to level 95%. If the comparison is

made between the results obtained using the subset of variables identified by the SOM
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and those obtained using the subset of variables identified by GP, the differences are

significant for both training and testing test with confidence levels of 99%.

Fig. 3.6 presents an example of a GP tree obtained for the classification [20]. This

particular tree was chosen because it is an ‘average’ tree with a classification error very

close to the mean. In the figure, x5 represents the binary variable type of company1,

x9 is the debt cost, x14 is the leverage, x17 is the return on equity, x22 is the current

ratio, x23 is the acid test, x32 represents the binary variable auditor opinion1 and x36

represents the binary variable linked to a group. If y > 0 the company is classified as

in financial distress, otherwise the company is considered healthy. This tree achieves a

classification error of 32.75%.

We are going to analyze what happens in the resulting tree when a company is not

attached to a group (i.e. x36 = 0). This assumption simplifies considerably the analysis

and more of 97% of the companies in the database satisfy this condition; however, it

is interesting to note that if the value of that variable is true, the company would be in

the warm spot we mentioned before, which would mean it is very likely a company that

will be in financial distress. Under this assumption we can express y0 (see right hand

side of Fig. 3.6) as two nested conditional clauses

y0 = if x5 = 1 (3.5)

then x14x22

else if x17 ≤ x23

then x23
2

else −20.6x23

And the overall output would be

y = x14− if y0 ≤ x17 then x14 else x17 (3.6)

Therefore,

if y0 ≤ x17 (3.7)

then y = x14− x14 = 0 ⇒ healthy company

else y = x14 − x17 =

{

> 0 ⇒ company with losses

≤ 0⇒ healthy company

Basically it predicts that if y0 ≤ x17 the company is healthy. Otherwise, that is, assuming

y0 > x17, the company will have losses if the leverage is greater than the return on equity,

while if the return on equity (ROE) can compensate the leverage the company will be

healthy. Given that leverage= liabilities
equity

and ROE= net income
equity

, the previous statement

could be rewritten as: assuming y0 > x17, the company will have losses if the liabilities

are greater than the net income, while if the net income can compensate the liabilities

the company will be healthy. Let us analyze the inequality y0 ≤ x17. The variable y0 can

take 3 different values

y0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x14x22 : if x5 = 1

x23
2 : if x5 = 0 and x17 ≤ x23

−20.6x23 : if x5 = 0 and x17 > x23

(3.8)
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If x5 = 0 and x17 ≤ x23 then y0 takes the value x23
2 which yields y0 ≤ x17 being false.

That is, for a company type 2 or 3, the prediction is that if the acid test value is greater

than the return on equity, the company will have losses if the liabilities are greater than

the net income, otherwise the company will be healthy.

On the other hand if x5 = 0 and x17 > x23 then y0 takes the value −20.6x23 which

yields y0 ≤ x17 being true if x23 > 0 (which happens in around 98% of the companies

in the database). That means that for a company of type 2 or 3 if the acid test value is

positive and smaller than the return on equity the company is healthy.

The last possible case is that the company is of type 1. Then y0 takes the value

x14x22. Again, leverage = liabilities
equity

and ROE = net income
equity

, so the condition could be

expressed as: if the product of the liabilities and the current ratio is smaller than the

net income the company will be healthy otherwise the prediction depends on whether

the liabilities are greater than the net income or not. Regarding the condition that the

multiplication of the liabilities and the current ratio must be smaller than the net income

for a type 1 company to be healthy, it penalizes high current ratios that may indicate

that the firm has too many assets tied up in current assets and is not making efficient use

of them.

Thus, in general the prediction of financial distress for companies not linked to a

group in this GP tree is based on the comparison of two values: liabilities and net in-

come. If the liabilities are greater than the net income the company will suffer losses,

otherwise the company will not. If the companies in the testing set are classified ac-

cording to this rule the classification error is 34.75%. In addition the GP has detected

two groups that do not follow the rule, improving the classification error to 32.75%.

Therefore, if a company is of type 1 and the multiplication of the liabilities and the

current ratio is smaller than the net income or if a company is of type 2 or 3 and its acid

test value is positive and smaller than the return on equity, the company is predicted

as healthy.

3.5 Conclusions

In this study we present an improved method for prediction of financial distress using

GP and SOMs. It is based on work carried out in [2, 1], where the importance of variable

selection when applying GP to the financial failure problem was emphasized. We have

merged our results with those obtained by [19] employing Kohonen’s Self-Organizing

Maps on the same database. As a result, we have got a set of variables that are signif-

icant for the book losses prediction problem. Considering this set of variables and the

previously tested GP approach, the classification (prediction) rates have improved.

So, reducing the dimensionality of the prediction of financial distress problem can

not only simplify the understanding of the resulting classifiers, but also improve the

prediction error rates. On the other hand, the analysis of the resulting GP trees, which

in previous work provided enough information for reducing the number of variables,

has not yielded satisfactory results in this case, given that the error rates increased.

However, when the variables used more frequently in the resulting GP trees have been

combined with those variables identified by the SOM as more relevant, the error rates

have decreased. Thus, the application of SOM to the analysis of variables has allowed
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an improvement in the prediction rates and a reduction of the number of variables from

37 to 13.

As future work we plan to use the same technique for other financial prediction prob-

lems such as bankruptcy prediction. We also plan to compare the results obtained with

other methods used frequently in classification/prediction such as logistic regression or

support vector machines. We want also test our method with a larger financial database,

so that it includes more companies and further information from each company.
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Summary. Option pricing is one of the fundamental problems in finance. This chapter proposes a

novel idea for pricing options using a nature inspired meta-heuristic algorithm called Ant Colony

Optimization (ACO). ACO has been used in many NP-hard combinatorial optimization problems

and most recently in self-organized environments in dynamic networks such as ad hoc and sen-

sor networks. The dynamic changes in financial asset prices poses greater challenges to exercise

the option at the right time. The dynamic nature of the option pricing problem lends itself very

easily in using the ACO technique to the solution of computing option prices. ACO is as intuitive

as other techniques such as binomial lattice approach. ACO searches the computational space

eliminating areas that may not provide a profitable solution. The computational cost, therefore,

tends to decrease during the execution of the algorithm. There has been no study reported in

the literature on the use of ACO for pricing financial derivatives. We first study the suitability

of ACO in finance and confirm that ACO could be applied to financial derivatives. We propose

two ACO based algorithms to apply to derivative pricing problems in computational finance.

The first algorithm, named Sub-optimal Path Generation is an exploitation technique. The sec-

ond algorithm named the Dynamic Iterative Algorithm captures market conditions by using an

exploration and exploitation technique. We analyze the advantages and disadvantages of both the

algorithms. With both the algorithms we are able to compute the option values and we find that

the sub-optimal path generation algorithm outperforms the binomial lattice method. The dynamic

iterative algorithm can be used on any random graph and the uncertainties in the market can be

captured easily but it is slower when compared to the sub-optimal path generation algorithm.

4.1 Introduction

Computational Finance is a cross-disciplinary area that relies on mathematics, statistics,

finance and computational algorithms to make critical decisions. One of the core tasks

in this area is to analyze and measure the risk component that a financial portfolio

would create. A portfolio would generally comprise of stocks, bonds and other financial

instruments such as options.

4.1.1 Basic Terminology

An option is a contract in which the buyer (holder of an option) has the right but not

the obligation to buy (with call option) or sell (with put option) an underlying asset (for

example, a stock) at a predetermined price (strike price) on or before a specified date

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 51–73.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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(expiration date). The seller (also known as writer) has the obligation to honor the terms

specified in the option contract (option). The holder pays a premium to the writer (see,

for example, [23, 27]). In option pricing, the object is to find the price F(S , t,T,r, σ ,K)

at time t of an option (call or put) on stock (the underlying asset of the option), given

the following information: S=the current stock price; T=time to expiration of the option

contract; r=risk–free rate of interest; σ =the volatility of stock prices; and K=the strike

price of the option.

The following paragraph illustrates a simple example of a call option. Suppose that

the price of a particular stock today is $20. An investor enters a call option to buy

this stock at $21 six months from today. On the expiry date, assume the stock price is

$30. The holder of the option can exercise the option and buy the stock at $21; and by

immediately selling it in the open market at $30 the holder can therefore have a profit

of $9. If the stock price on the expiry date is $15, the holder is not obligated to buy this

(why buy something at a higher price when the same is available at a lower cost in the

open market?). The option expires worthless.

There are various styles of options including European options (which can be exer-

cised only at the maturity date), American options (which can be exercised any time

prior to the maturity date), barrier options (looking for first stopping time), Bermudan

options (which have multiple exercise points during the contract period), and Russian

options (the date of option expiration is floating).

Option pricing is one of the fundamental problems in finance which has led to two

Nobel prize awards. In 1997, Myron S. Scholes and Robert C. Merton shared the Nobel

prize for the Black-Scholes-Merton model [1]. Recently, Engle received a Nobel prize

in 2003 for his Auto-Regressive Conditional Heteroskedasticity (ARCH) model [17].

The generalized ARCH (GARCH) model has been a subject of intense research and

use in option pricing (see for example [15, 16]). Based on the fundamental concepts in

these models, there are many numerical techniques proposed in the literature for option

pricing.

4.1.2 Nature Inspired Algorithms in Finance

One of the current trends in science and engineering research is the introduction of na-

ture inspired algorithms. Nature inspired algorithms [13], including evolutionary and

swarm algorithms, have been used to solve many combinatorial optimization problems,

including problems in telecommunications [3, 4] and dynamic networks such as mobile

ad hoc networks [20]. Swarm intelligence is an artificial intelligence technique inspired

by animal societies such as bees [31, 34], termites [30], and ants [11]. These creatures

live in a hostile, decentralized environment and communicate with one another through

stigmergy to accomplish their tasks such as finding the food source. Ant Colony Op-

timization (ACO) is one such swarm intelligence technique inspired by real ants. The

ants communicate with one another by depositing pheromone (scent) on the ground to

attract their fellow ants to follow their trail, one of the stigmergic approaches in the

animal world.

The feasibility of evolutionary algorithms in the field of finance has gained im-

portance and is being explored [2]. These algorithms have prospects in many areas

of finance such as to evolve trading rules, diagnosis of company’s future etc. A key
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Table 4.1. Similarities between ACO and the real market

ACO Market

Meta-heuristic search technique Investors look for best time to buy or sell

Based on the collective behavior of de-

centralized ants; self-organized systems

Based on the collective behavior of de-

centralized traders, investors etc.; self-

organized systems

No centralized control structure No central control among investors

Local interactions between agents lead

to the emergence of global behavior

Interaction between investors lead to

emergence of market behavior

The agents follow very simple

rules which leads to very complex

rules/algorithms at the global level

Investors follow simple rules that lead

complex nature for the market

advantage of using evolutionary algorithms to design a trading process is that these al-

gorithms can simultaneously evolve good rules and good parameters for such trading

processes [2].

We found many similarities between the ACO and the real market (see Table 4.1).

These similarities acted as motivation for the current study i.e. to apply ACO to the

option pricing problem. For option pricing, the solution space consists of a large number

of price nodes, each representing a time and price of the underlying asset during the

option contract period. The ants are basically agents of an investor. They have a large

bounded space of price nodes to search, in deciding the best time (node) to exercise

the option. The nodes within the search space are dispersed in many locations and are

connected in some random manner. The collective goal of the ants is to find the best

node to exercise the option to help the investor in making an informed decision. This

can be achieved by directing a path to the node, thereby allowing other agents to quickly

arrive at the node. ACO is a probabilistic method. The underlying search space modeled

as a graph is unstructured. Therefore, ACO allows flexibility by distributing the nodes

randomly and thereby capturing the real marketplace.

The current study is a proof of concept using ACO for derivative pricing. We use

American options as they are computationally challenging. To the best of our knowl-

edge there is little if any prior literature on pricing options using ACO. We believe

that ACO can be used for option pricing problem as (i) ACO is as intuitive as other

techniques; (ii) other techniques and approaches (for example, binomial lattice) need

to compute the entire solution space before an option value is calculated; and (iii) the

computing cost could be smaller for ACO when compared to other techniques since the

solution space explored can be restricted towards certain directions based on the local

optimum solution.

We divide the rest of the chapter as follows. In the next section, we provide some

background information on option pricing with a detailed description of one of the

common and classical techniques, the binomial lattice approach. We start Sect. 4.3 with

a description of the ACO algorithm and then highlight some related work in general

finance that uses other nature inspired algorithms. We describe the sub-optimal path

generation and dynamic iterative algorithms in Sect. 4.4 . In Sect. 4.5 we present the
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implementation details. We provide results and discussion in Sect. 4.6, and some im-

portant conclusions and future work in Sect. 4.7.

4.2 Binomial Lattice Option Pricing Model

Derivative pricing is the backbone of many major financial problems such as value at

risk and portfolio optimization. Derivative products have become so complex that even

the writers themselves do not always understand how they behave in the market and

therefore pricing options has become a complicated, challenging and computationally

intensive problem in finance.

One of the early models for option pricing is the Nobel prize-winning Black-Scholes-

Merton (BSM) model [1, 26]. Black-Scholes developed a model to alleviate risk in-

volved in financial investments. Merton [26] augmented it with stochastic calculus re-

sulting in a stochastic partial differential equation (PDE) for the option. This model is

valid for simple European options and a major assumption was that the underlying stock

would have constant volatility. A closed-form solution is available only for simplified

BSM model with many assumptions, especially since numerical techniques for solving

PDE were not popular in the finance community at that time. This scenario changed

in 1979 when first discrete time approach was proposed by Cox-Ross-Rubinstein

(CRR) [6]. The CRR binomial model is a simple and intuitive numerical technique

developed for pricing options. The binomial option pricing model has proved over time

to be the most flexible, and popular approach to price options. If constructed assum-

ing the same initial conditions, binomial model agrees asymptotically with the Black-

Scholes model. Moreover, the binomial model can be used for pricing American style

options. The standard binomial option pricing model assumes that the binomial tree

is recombining with constant volatility, constant risk-less return and constant payout

return. However, these assumptions could be relaxed unlike those of the BSM Model.

The binomial model uses a binomial tree structure to price options. In this approach,

we divide the time between valuation (current) date and expiration date into a certain

number of time steps. Each node in the tree represents a possible price of the stock

(underlying asset) at a particular time. In binomial method, knowing the asset price is

the basis for computing the option value. The valuation of the binomial tree is iterative.

After building the tree with asset price distribution it starts from the leaf nodes and

works backwards towards the root node, which represents the valuation date. The option

price at the valuation date is calculated by pricing option at all the intermediate nodes

between the expiration date and the valuation date.

Computing option prices using this iterative method involves three steps: (1) Price

tree generation (2) Computing option price (local pay-off) at each leaf node (3) Iterative

computation of option values at earlier nodes using a discounting factor. The value at

the root node is the value of the option. Some of the variables and parameters that are

required to price an option are: Asset Price: S ; Strike Price: K; Time to Maturity: T ;

Interest Rate: r; Number of Steps: N; Interval time between 2 steps: ∆ t; Volatility: σ;

Probability: p; Upward Movement: u; Downward Movement: d.
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Binomial Tree

The prices at each node is computed by working forward through the tree from valuation

date (current date) to expiration date. An example of the binomial price tree is shown

in Fig. 4.1. At each step (or level) of the tree, the price of underlying asset can increase

or decrease by a factor of u or d respectively, where u and d are generally 10% or

20% change. If S is the current price of the underlying asset, then the price at the next

step will be either S u = S × u or S d = S × d. Asset price computation is repeated until

the expiration date is reached. The value of the increase (u) or decrease (d) factor is

computed using the volatility σ of the underlying asset and the interval time between

two steps [6] as follows: u = eσ
√
∆t d = e−σ

√
∆t = 1

u
. It is easy to notice that the down

movement is assumed to be inversely proportional to the up movement.

Option Value at the Expiration Date

The computation of the option value starts at the leaf nodes (maturity date) of the bino-

mial tree. The value of the option at the leaf nodes is simply its local pay off, which is

defined as follows. For a call option it is = Max[(S −K),0] and for a put option it is =

Max[(K−S ),0].

Option Value at Intermediate Nodes

Once the value of the option is computed at the leaf nodes, working backward (Fig. 4.2)

towards the root node (valuation date) gives the value of the option. The option value

at a node is computed using the option values of the two children nodes (optionup and

optiondown) weighted by respective probabilities, optionup is multiplied by p, which

is generally understood (interpreted) as the probability of underlying asset to move up

and optiondown is multiplied by (1− p), which is the probability that the price of the

underlying asset will decrease. The value of p is given by [6] p = e(r−q)∆T−d
u−d

and the

Fig. 4.1. Binomial Price Tree Fig. 4.2. Backward Computation of Option

Prices
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option value is given by OptionValue = e−r∆T (p× optionup+ (1− p)× optiondown)

where the e−r∆T is the discount factor. In other words, the option value at a node is the

discounted value of the weighted sum of option values at a future time due to increases

or decreases in the value of the underlying asset.

For European options, the value at each node is simply the option value computed

using the above formula. The value at the root node is the value of the option on the

valuation day. For an American option, the value at each node is

Max[option value based on discounting, local pay-o f f ]

where the local pay off is max(S −K,0) for a call option or max(K − S ,0) for a put

option. This allows us to identify the best possible time to exercise the American option.

Thulasiram et al. [33] have designed and developed a parallel, multithreaded algo-

rithm for the binomial lattice model. Thulasiram and Bondarenko [32] have developed

a parallel algorithm for multidimensional option pricing problem. Huang has extended

these studies to Asian options [21, 22]. A list of other related works using a binomial

lattice approach can be obtained from the references of these papers. Other approaches

for pricing options include Monte-Carlo simulation, fast Fourier transform, neural net-

works etc.

4.3 Ant Colony Optimization (ACO)

Swarm Intelligence is an approach to solve complex problems based on the social be-

haviors of some insects and animals. Ant Colony Optimization (ACO) [9, 11] falls un-

der the banner of natural computing and is a guided, stochastic, search technique. The

ACO approach is based on the foraging behavior of some species of ants. Many stud-

ies have shown interest in finding how ants are able to find the shortest paths between

their nest and food sources. Research in this area has discovered that ants use indirect

communication to communicate with other ants. This indirect communication involves

modifying their environment, and is called stigmergic communication. In stigmergic

communication, the ants move to a food source away from their nest, depositing on

the path (ground) a chemical substance excreted from their body known as pheromone.

Other ants can sense and perceive these pheromones and tend to follow the path with

highest pheromone concentration. Using this communication, ants are able to forage

and collect their food in an efficient way.

ACO involves a number of artificial ants to build solutions to an optimization prob-

lem. These ants exchange information about their own solutions to other ants using a

communication scheme similar to the one used by real ants [14].

4.3.1 Foraging Behavior of Ants

In Fig. 4.3a the ants move from node A (the nest) to node E (the food source). We

introduce an obstacle which obstructs the path between A and E. Ants have to make

a decision whether to turn right or left at position B or D depending on whether they

are coming from A to E or E to A respectively (Fig. 4.3b). The decision or choice of

an ant is based on the intensity of the pheromone on the trails. The first ant reaching
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Fig. 4.3. Ants facing obstacle in their path

point B or D has the same probability to turn right or left, as there is no pheromone on

either of the two alternative paths. The ants following the shorter path will travel to and

from the food source more quickly than ants following the longer path. In the example,

the path BCD is shorter than the path BHD (Fig. 4.3c). Therefore, the number of ants

following the path BCD per unit time will be higher than the number of ants following

BHD assuming all ants move at the same speed. This causes the pheromone levels on

the path BCD to be higher than on path BHD. The ants approaching point B choose path

BCD because of higher pheromone levels, thereby, following a shorter path to the food

source E [12]. As time progresses, the pheromone along the longer paths evaporates

leaving the ants to converge along shorter paths.

The objective of ACO in most applications is to find the shortest path. However, in

option pricing, the primary interest is not in finding the shortest path, rather in finding

the best node that allows the investor to exercise the option. Therefore, the general

purpose ACO algorithm has to be altered to handle this problem.

4.3.2 Various ACO Algorithms

In the literature many types of ACO algorithms have been proposed. The first algorithm

based on the behavior of ants was Ant System (AS) [12]. This paper introduced an

optimization technique based on ant behavior and proposed a method for solving the

Traveling Salesman Problem (TSP). In the TSP ACO implementation, an ant is placed

at each city and it travels from current city, visiting other cities only once and returning

to the original or initial city at the end of the tour. The ants communicate by depositing

pheromones on edges connecting the cities. Eventually, the pheromone concentration

on the shortest path increases due to more tours by ants. The pheromone on unused

edges gradually evaporates completely in absence on any reinforcement of pheromone.

Ant System work led to a development of number of ACO algorithms with good results

in many applications.

4.3.3 Applications of ACO

Dorigo [9, 12] proposed ACO which involves distributed computation, positive feed-

back and a greedy heuristic to solve a given problem. Distributed computing helps in
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searching a wide area of the problem domain, positive feedback helps in finding good

solutions and a greedy heuristic is needed to find solutions in early stages. ACO has

found many applications and successful implementation has been applied to a number

of different combinatorial optimization problems. Some examples of ACO being ap-

plied to static optimization problems are: Traveling Salesman Problem, Quadratic As-

signment Problem, Job-shop Scheduling Problem, Shortest Common Super-sequence

Problem, Graph Coloring Problem, Vehicle Routing Problem, Routing in ad hoc net-

works and Sequential Ordering Problem. The following section provides a brief review

of the related work on ACO in finance.

4.3.4 Applications of ACO in Finance

To the best of our knowledge, there is no work reported in the literature on the use

of ACO for the option pricing problem. In this section we briefly outline the litera-

ture related to the use of ACO on other problems and applications, including finance

though not option pricing. In finance, knowing the volatility of a financial instrument

is important for many financial engineering strategies. However, predicting the volatil-

ity of an instrument, say a stock price, is a daunting task and is a research area by

itself. Researchers and practitioners, using historical data have developed methods for

predicting historical volatility (see [28] for a discussion on volatility). By its nature,

historical volatility only reflects past price events and the accuracy of stock prices pre-

dicted based on historic volatility is questionable. There have been considerable efforts

to develop quality methods to measure volatility accurately. Implied volatility measures

the intrinsic dependence of past stock prices not only with time but with other factors

affecting the price over a period of time. Keber and Schuster [24] used generalized

ant programming to derive analytical approximations to determine the implied volatil-

ity for American put options. They used experimental data and validation data sets for

computing the implied volatility. Their results outperformed any other approximations.

Generalized ant programming is a new method inspired by genetic programming ap-

proach (introduced by Koza [25]) and Ant Colony System (ACS) [10, 18].

4.4 ACO for Option Pricing

In this section we develop two algorithms based on ACO for the option pricing prob-

lem. We use the following terminologies in this work. Our first algorithm is known as

sub-optimal path generation algorithm spans the solution space like the binomial tree

approach. Our second algorithm is known as the dynamic iterative algorithm where we

shed the natural progression of the spanning of the solution space. Nodes in this algo-

rithm are more random than in the sub-optimal path generation algorithm. A node in

the graph is a possible price that the underlying asset could take. A path is a route that

ants could take in moving towards an optimum solution (node). Moving from a node to

another node means the ants progressing in time towards an optimum solution.

4.4.1 Sub-optimal Path Generation Algorithm

There are several components in this algorithm. (1) The algorithm starts by inject-

ing ants from the valuation date (root). Ants can explore any path based on random
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behavior. (2) Individual ants compute the payoff at each node based on an expression

Vde f ≤ X − S ≤ Vopt. As soon as an ant finds a value between the predefined values in

the expression it updates (increasing) the pheromone density leading to the node. (3)

Updating the pheromone on the path which has a good node (that satisfies the expres-

sion in the previous step) helps in making the path more attractive for other ants to

explore more in the neighboring areas. However, ants still keep going on other paths

to explore the whole search space. (4) If ants find a better node then pheromone values

are updated to make the path to the newly found node more attractive. (5) The process

continues until the optimum node is found or until the constraint how far (how close to

expiration date) the user wants to search in a graph is exceeded.

Fig. 4.4. The figures capture the ant movement at various times of the execution of the algorithm

4.4.2 Dynamic Iterative Algorithm

The elements of this algorithm are as follows. (1) In the solution space the source is the

current date and the destination can be any node in the solution space. Destination is

how far (future date) ants will search. The destination can be updated with a better node

after some time to help us explore the whole search space. Here, “some time” refers to

the computational time needed to find the optimal node for a source and a destination.

(2) The algorithm starts by injecting ants at the source, and the ants explore random

paths to reach the destination. (3) Each ant while traveling to the destination identifies

the best node throughout the journey which is computed using a predetermined expres-

sion (for example, in case of put option X − S , where X is the strike price and S is the

asset price). (4). The ant updates the pheromone density (locally) on the path. The local

pheromone update is done while looking for solutions. On the other hand, the global

pheromone update is done after all ants have found a solution. The purpose of the local

pheromone update rule is to make the visited nodes less and less attractive as they are

visited by ants, indirectly favoring the exploration of not yet visited nodes. The pur-

pose of the global pheromone update rule is to promote ants to search for nodes in the

neighborhood of the best node found so far. (5) Once all ants have updated their local

pheromone values, the best nodes from all the paths explored by the ants are compared

and the best node is identified. Now pheromone density is updated globally so that more

ants follow the path which leads to the best node. The reason is to attract more ants so

we can explore all possibilities from the identified node. However, to avoid a local
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minima, pheromone gets exhausted (by local update and evaporation) after some time

which forces ants to explore other areas in the solution space. Here some time refers

to the computational time taken by ants to slowly lower the pheromone value to initial

value. (6) We keep sending more ants from the source. Ants will follow the paths that

have higher concentrations of pheromones compared to random behavior, that was seen

initially. (7) The algorithm keeps finding better solutions until the best node is found.

We generate a random acyclic graph. A certain number of vertices (nodes) are con-

nected to each other using edges (paths) randomly. The reason for not using a cyclic

graph is that in real world it is not possible for investor to go back in time and have the

same choices again. Ants can wander on these paths moving from node to node. Each

node stores an asset price and each edge represents the transition from one stock value

to another.

In the algorithm, ants deposit pheromone on the paths while walking and follow paths

based on probability of pheromones deposited previously. Initially, all the paths have

initial pheromone τ 0 on them so ants choose random paths. After a brief transitory time,

the difference between the amounts of pheromones will differ. So the new ants coming

from the nest will prefer in probability to choose the path with higher pheromone. We

have taken the probability expression from ACS [10] and modified to it suit the appli-

cation. The following expression gives the probability an ant k at node r chooses to go

to node s

Pk(r, s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[τ(r,s)][η(r,s)]β
∑

u∈Jk(r)[τ(r,s)][η(r,s)]β
if s ∈ Jk(r)

0 otherwise
(4.1)

where τ is the pheromone, η is the difference between the stock values of (r, s), Jk(r)

is the set of nodes that ant k has still to visit and β is a measure to determine relative

importance of pheromone versus difference between the stock values. In this algorithm,

the ant with the best value globally deposits the pheromone. The probability equations

are intended to make search more directed meaning ants mostly search in the neighbor-

hood of the best node found by the algorithm. Global updates are performed after all

ants have reported their own best node. The best ant (globally) is identified based on the

best values reported by all ants. The pheromone level is updated by this globally best

ant by update rule

τ(r, s)← (1−α)τ(r, s)+α∆τ(r, s) (4.2)

where ∆τ(r, s) =

{

(Vgb)−1 if (r, s) ∈ global best node

0 otherwise
(4.3)

where α (0< α < 1)is the pheromone decay parameter and Vgb is the difference between

the initial stock price and the best node globally. This is intended to provide greater

amount of pheromone for more profitable nodes. While searching for the solution, the

ants visit paths and alter their pheromone by applying a local pheromone update

τ(r, s)← (1−ρ)τ(r, s)+ρ∆τ(r, s) (4.4)

where 0 < ρ < 1.
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Some Observations

The ants in the natural world try to find a shortest path from nest to a food source.

The idea from natural world put forth in ACO algorithm is is improved for the finance

application as follows

• The option pricing application requires finding the best time for exercising the op-

tion. That means the ‘food’ consumption is going to happen only once (exercise of

option). That single best node would become the destination where the option is ex-

ercised. In other words, the first major modification is that we relax the requirement

of the shortest path for the ants to follow.

• The local optimum values are used to direct more ants to explore further in the

solution space from the local optimum node.

• ACO has not been used to price options. Designing and implementing naive algo-

rithm acted as a feasibility study for the current work. ACO only generates and

evaluates a subset of the paths unlike binomial lattice model where all paths and

nodes are exhaustively evaluated. This would address memory issues and explore

the best time to exercise the option in an efficient way.

4.5 Implementation Details

In the literature on parallelizing combinatorial optimization problems such as TSP [29]

and scheduling problems [7], where the graph is static, the implementation has been

done on parallel computers using the distributed memory machine [19] or shared mem-

ory machines [5]. When the problem is communication intensive, shared memory ma-

chines are preferred. In ACO, the ants move from one node to another node, which

may translate to moving from one processor to another, thereby, increasing communi-

cation. Shared memory machines have shown [8] to produce better performance results

for ACO algorithms. In applications such as mobile ad hoc networks, where the graph

is dynamic and mobility needs to be incorporated, a simulator has been used for the

implementation. Since, the option pricing problem considers a static graph (solution

space), we implement our algorithms on a shared memory machine using OpenMP.

With call and put options we expect the underlying asset’s price to go one direction,

up for call and down for put. We can utilize this fact in channeling the ants in a particular

direction towards the best node in the solution space. That is, when an initial set of ants

move in one direction more ants follows in this direction. These ants are reactive ants,

which we use in our sub-optimal path algorithm.

In another scenario, ants can explore the entire solution space for a best node both

for call and put options. This is useful when there are both styles of options issued

for the same underlying asset. The ants explore the solution space proactively on their

own without any direction by the investor. While few of the proactive ants explore the

solution space independently, others follow earlier ants just like in reactive case.

In our implementation, ants are agents for a single investor. In the current scenario

all the agents are working for a single investor in finding a solution for the option prices

that helps the investor in making an informed decision for entering the option contract.

A node is a price point at a given time. Moving from a node to a node in the future
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time, there could be various possible prices for the asset. The future time could be the

next second, minute, hour, day or week. Each thread in the system represents an ant

which can randomly move around the solution space. For ease of implementation, we

have limited the number of nodes. We limit the number of nodes for implementation

because of memory constraints. The primary goal of the algorithms is to find any good

node (right time to exercise the option) rather than finding the shortest path leading

to that node in minimum time. More nodes means more sampling, which is better, in

general. However, sampling by minutes or every 10 minutes or even every 30 minutes

may not yield much better results (in terms of accuracy) in pricing. Further, higher

frequency sampling would result in a heavier computational load and hence a higher

computational cost. Hence, we restrict the solution space to a reasonable number of

steps. However, for some options it might be necessary for a very small step size for ac-

curacy purposes in which case the number of nodes in the solution space would increase

exponentially and finding the best node to exercise the option becomes a daunting task.

Parallel computing will be useful for the problem in such a situation. In this study,

we are not exploring very large graph, still we employ parallel computing with future

problem size in mind.

4.5.1 Sub-optimal Path Generation Implementation

We compare the results obtained from the sub-optimal path generation algorithm with

binomial lattice results with same set of parameters (strike price, asset price, etc.) used

in the sub-optimal path generation algorithm implementation. We use synthetic test data

to compare the proposed algorithms with the binomial model. The synthetic data used

can easily be mapped to a real world stock.

The algorithm starts by sending ants randomly on each path (in the solution space)

from an initial node. Once an ant reaches the next node it computes the local pay-off

for a put option as (X−S ), where X is the strike price and S is the asset price at the new

node. Once the solution satisfies either of the boundary conditions

X−S ≥ Y (4.5)

or

(n ∗∆t) > a prede f ined time during contract period (4.6)

where Y and prede f ined time are user-defined parameters, the option price computed is

the optimum value. We have conducted experiments to price American put option using

the proposed algorithms. We have experimented by varying the parametric conditions:

initial stock price, strike price, volatility, time to maturity and number of time steps. The

algorithm provides the optimal solution based on the user defined boundary conditions.

The primary goal is to find the optimum node rather than finding it in shortest path or

in minimum time. The measure of comparison is the pay-off an investor will get by

exercising the option.

4.5.2 Dynamic Iterative Implementation

As an example, Figs 4.5 (Graph 1) and 4.6 (Graph 2) show two random acyclic graphs

used in the experiments with 15 and 30 nodes respectively. Here, Vx : A, refers to vertex
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Fig. 4.5. Graph 1 (15 nodes)

Fig. 4.6. Graph 2 (30 nodes)

Vx representing asset price A. For example in Fig. 4.5, V7 : 15 refers to vertex 7 with

asset price 15. We applied the dynamic iterative algorithm to these random graphs. The

measure of comparison is the pay-off an investor will get by exercising the option. In

other words, the time to exercise the option which gives us the highest profit. In all our

experiments the numeric parameters are set to the following values: β = 2,α = 0.1,ρ =

0.1 and τ0 = 0.1.
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4.6 Results and Discussion

The experiments were done on an eight node shared memory machine with memory

and hard disk of 7.5 GB and 36 GB respectively. To compare and validate the results

obtained from the ACO we independently implemented the binomial lattice algorithm

for different data sets used in the ACO study and gathered both timing and pricing

results. The pricing results from both the algorithms agree with results from binomial

method.

4.6.1 Sub-optimal Path Generation Algorithm

We use a structured graph for the implementation of this algorithm, The graph is anal-

ogous to a binomial or trinomial tree. The contract period for our experiments is six

months and the number of time steps varies between 2000 (amounts to about 30 minutes

interval) to 5000 (amounts to about 11 minutes interval). That is, in some experiments

ants compute option prices for changes in the asset price happening every 11 minutes

and in other experiments ants compute option prices for changes in the asset price hap-

pening every 30 minutes. In Table 4.2 and in Fig. 4.7, we set the desired profit level

between $10 and $25 at $5 intervals to determine how quickly one can achieve such

profits. We set the number of time steps to be 2000. As the profit level increases, the

execution time also increases. The reason for this is that for better profitability the ants

would have to search more solution space and do more computation, hence increasing

the execution time.

Table 4.3 and Fig. 4.8 show the execution time for various time steps at a desired

profit of $15. As the time steps increase, with constant profit level, the execution time

also increases. This is because increasing the number of time steps implies increasing

Table 4.2. Desired Profit vs Execution Time with Time Steps 2000

Parameters Value1 Value2 Value3 Value4

Desired Profit 10 15 20 25

Execution Time (secs) 0.049 0.106 0.515 1.269

Fig. 4.7. Chart for Desired Profit vs Execution Time with 2000 Time Steps
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Table 4.3. Time Steps vs. Execution Time with $15 Profit

Parameters Value1 Value2 Value3 Value4

Time Steps 2000 3000 4000 5000

Execution Time 0.106 0.123 0.203 0.213

Fig. 4.8. Chart for Time Steps vs. Execution Time with $15 Profit

Table 4.4. Comparison between Binomial method and sub-optimal path generation algorithm

Timesteps Binomial Method (Secs) Sub-optimal Path Generation (Secs)

10000 3 0.37

20000 13 1.44

40000 67 2.38

70000 220 7.46

100000 451 11.71

the number of nodes in the solution space. Since the solution space is analogous to a

binomial tree, the number of nodes can be of the order of 2L (for a binomial tree), where

L is the number of time steps. However, as can be seen from Table 4.3, the increase

in time is negligible. We compared the sub-optimal algorithm to the binomial lattice

method (Table 4.4). Our algorithm performed better than the binomial lattice method

in terms of speed. The performance of sub-optimal algorithm is better because in the

ACO algorithm we do not generate all the nodes at each time steps as in binomial lattice

method. Our algorithm only generates and computes price on nodes which are needed

to price the option.

Since the ants search the solution space in various directions we observed a pro-

portional increase of the execution time with higher desired profit. This happens due

to structured search by the leading ants. This proportionality caught our attention to

have a close look at the algorithm. Though the ants were allowed to search the solu-

tion space, there was a controlled exploration. We allowed only a limited number of

ants in a smaller region of the solution space to reach a sub-optimal solution at a node

from which more ants were allowed to search in an orderly fashion. This is the nature

of the algorithm. One set of ants searching and dragging more ants to the sub-optimal
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solution. That is, most of the ants are reacting to the first few ants. In other words,

the reactive ants are exploiting the paths generated by few leading ants and hence they

are more exploiting than exploring. Therefore, it is expected that with proactive ants,

which explore the solution space, we would expect better results, which is studied in

the dynamic iterative algorithm.

Also, note that in the sub-optimal algorithm, we have a structured graph. The reason

for this is that we initially wanted a fair comparison between the binomial lattice method

and our ACO method. In the dynamic iterative algorithm, we do not restrict the structure

of the graph. The data structure for the solution space is not necessarily trees. They are

random graphs used to capture real market movements.

4.6.2 Dynamic Iterative Algorithm

We applied the dynamic iterative algorithm to both the graphs shown in Figs. 4.5

and 4.6. Fig. 4.9 gives the initial graph for Fig. 4.5 (Graph 1). The graph is repre-

sented by an adjacency list. For example, Vx(A) : Vy(p1)Vz(p2) means vertex (Vx) has

an asset price of A and is connected to vertex Vy with pheromone p1 and vertex Vz with

pheromone p2. In Fig. 4.9, 1(15): 6(0.1000) 5(0.1000) represents vertex V1 with asset

price 15 connected to vertex V6 and vertex V5 with pheromone level 0.1 at both nodes.

Applying ACO to the initial graph shown in Fig. 4.5 (Graph 1), we reach the final graph

shown in Fig. 4.10. The best vertex or node to exercise the option is V14 with an asset

price of 3. The path to the best node is V0→ V1→ V6→ V11→ V13→ V14. Also, note

the changed pheromone levels by which ants are guided to the best solution.

Similar results for Fig. 4.6 (Graph 2) are also shown in Figs. 4.11 and 4.12. Fig. 4.11

shows the list of vertices and how they are connected to other vertices in the graph. It

Fig. 4.9. Initial Graph 1
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Fig. 4.10. Final Graph 1

also captures the initial pheromone level (i.e. 0.1) on the edges between the vertices.

We apply our algorithm to Graph 2 and determine that the best node is vertex V27 with

asset price 12. The algorithm also computes the path of the ants followed to reach this

best node. The path is V0→ V4→ V11→ V17→ V15→ V20→ V27.

For verification of our pricing results, we have done the following during our imple-

mentation. We opened a counter to store the asset prices from nodes when we generate

the graph. We compared the asset price from a node as we generate the node with the

asset value in the counter. For a put option, the counter price value is replaced with the

asset price at a new node if the price at the new node is smaller than the counter price

value (for a call option, the counter price is replaced with a larger node price). This

information tells us beforehand where to expect the best option price among various

nodes generated. We use this to verify the best node computed by the dynamic itera-

tive algorithm. This is only for verification purposes. In all our experiments, dynamic

iterative algorithm worked well in computing the best node to exercise the option.

Table 4.5, shows that the execution time increases as the number of nodes is in-

creased. Note that unlike the sub-optimal algorithm we do not fix a constant profit

because the graph is random and we do not restrict the limit on the gain. In other words,

we make the boundary open. From Table 4.5, it can be seen for 10 nodes, the execution

time is 3 seconds while for a larger graph (10000) it is 9.14 seconds. The overhead in-

curred in local and global pheromone updates, is predominantly attributed to the larger

time needed for a smaller graph.

The market is full of uncertainties. We generally do not know what is going to happen

tomorrow. In the binomial lattice algorithm the price change happens at a given node

only in two different ways: up or down, and generally by a fixed factor. Similarly in



68 S. Kumar, R.K. Thulasiram, and P. Thulasiraman

Fig. 4.11. Initial Graph 2

Table 4.5. Number of Nodes vs Execution Time

Parameters Value1 Value2 Value3 Value4

Number of Nodes 10 100 1000 10000

Execution Time (in secs) 3.06 4.90 7.01 9.14

trinomial lattice it happens three different ways. One advantage of using ants for find-

ing paths is that we can relax the restriction on price movements by letting the ants

explore many different possible paths naturally. This physically means ants can capture

day-to-day changes of the volatility in the market place. Therefore, unlike the other

numerical approaches we do not have to specify volatility of the underlying asset, and

therefore we have one less parameter to handle in the implementation. For simulation

purposes, we restrict the number of different possible links that an ant can have. In our

implementations, we have case studies with number of links between 5 and 20 as shown

in Table 4.6. A single link between a node in a given time step to a node in the future

(next time step) means the asset is stable. An experiment with 5 links means that an ant

can have a maximum of five links going from one time step (node) to the nodes in the
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Fig. 4.12. Final Graph 2

Table 4.6. Number of Maximum Links vs. Execution Time

Parameters Value1 Value2 Value3 Value4

Number of Maximum Links 5 10 15 20

Execution Time (in secs) 4.48 7.01 9.13 12.3

next time steps. That is, five different possible price changes are captured going from

one node to the next. It need not have all five links. If there are all five links present

from a node to the next time step, it implies that the underlying asset is highly volatile.

In other words, we are able to capture the volatility of the underlying asset. Similarly,

the presence of 20 links at a node implies that the asset price is highly volatile. In

Table 4.6 it can be seen that as we increase the maximum number of links (or volatil-

ity), the execution time increases. This is because an increase in volatility increases the

computational intensity of the problem.
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4.6.3 Various Features of Sub-optimal and Dynamic Iterative Algorithm

The performance of the sub-optimal algorithm is far better than the dynamic iterative

algorithm in terms of speed. This is due to the structure of the graph, we use graphs that

are analogous to binomial & trinomial trees. In one of our experiments, we compared

the execution time for both the algorithms for 10,000 nodes. The sub-optimal algorithm

took less than one millisecond whereas the dynamic took 4.5 seconds (for maximum

of 5 links). However, it should be noted that the sub-optimal algorithm will not be able

to find a good pricing solution in a dynamic environment in which dynamic iterative

algorithm works. This is because we do not use the parameters such as evaporation

criteria and local pheromone update that are used in the dynamic iterative algorithm.

The evaporation criteria allows ACO to converge towards a better solution by providing

a means of exploring many different good paths, while at the same time eliminating the

paths leading to bad nodes. The sub-optimal algorithm produces faster results because

we are exploiting the solution space generated by few initial ants. The algorithm mainly

relies on the exploitation of already-discovered paths and nodes. This is good for a given

style of option, call or put by channeling the ants and it is expected that both local and

global optimal solution will be available in the same neighborhood. Dynamic iterative

algorithm is exploration as well as exploitation. Since it is advantageous to both styles

of options call and put, it spends more time exploring. Also, by doing so, it finds the

global optimal solution. Dynamic iterative algorithm converges more slowly than the

static algorithm because of the use of local pheromone update and evaporation.

4.6.4 Comparison between Sub-optimal and Dynamic Iterative Algorithms with

Binomial Lattice

We compared our algorithms to the binomial lattice model. The sub-optimal algorithm

and binomial lattice model gave us the same pricing results, that is the best time to ex-

ercise the option. The sub-optimal algorithm is faster than the binomial model because

the binomial model exhaustively prices option for all the nodes in the tree, whereas

the sub-optimal algorithm does not have to price options at all the nodes. The dynamic

iterative algorithm is not compared with the binomial model as the dynamic iterative

algorithm works in a more complex and volatile environment than the environment in

which binomial and sub-optimal algorithms work. For the dynamic iterative algorithm,

the structure of the solution space is random and the volatility parameter need not be

specified unlike the binomial and sub-optimal algorithm. In other words, this algorithm

could handle underlying assets that are represented with varying volatility models. In

sub-optimal and binomial lattice algorithms these volatility models would pose large

computational challenges.

4.7 Conclusions

Pricing of options is a challenging problem. This work proposed a novel idea of using

a nature inspired meta-heuristic algorithm called Ant Colony Optimization (ACO) to

price options. We designed and implemented two new ACO-based algorithms to apply

to a derivative pricing problem in computational finance. The first algorithm, named
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sub-optimal path generation, generates various paths and identifies the best node in the

solution space for exercising the option. In this algorithm, ants follow the paths gener-

ated by some leading ants to find better solutions as we search the solution space leading

to an exploitation technique. The sub-optimal path generation algorithm outperformed

the binomial lattice model. The second algorithm named the dynamic iterative algo-

rithm, where few ants explore the solution space incrementally dragging more ants on

the better path and eventually reaching the best node to exercise the option. This al-

gorithm captures the real market place and finds the best time to exercise the option

using exploration and exploitation techniques. Though the dynamic iterative algorithm

converges more slowly than the sub-optimal path generation algorithm, the dynamic

iterative algorithm can be executed on any random graph. The dynamic iterative algo-

rithm is a better choice when dealing with the dynamic and highly volatile market place.

4.7.1 Future Work

In this chapter our study was limited to vanilla options. In future work, we would like

to apply ACO to exotic options such as the pricing of Asian options. In our dynamic

iterative algorithm, the ants keep track of the price values at each node along a path. We

can easily use this price information to compute an average price so that we can apply

this algorithm to price an Asian option. We intend to this in the near future. Similarly,

the nature of our algorithms help us to price barrier option, where it is required to find

the first stopping time, that is, earliest node to exercise the option. This can also be

extended to Bermudan option.

We also intend to look into the possibility of using digital pheromones. Digital

pheromones are data structures inspired by the insect model. In our application, we can

allow ants to communicate more information amongst each other such as asset price,

length of the path etc. using digital pheromones.

Bio-inspired algorithms such as ACO are gaining importance in many areas of fi-

nance such as to evolve trading rules, diagnosis of company’s future etc. This work is

the forerunner for more research to be done in future in financial applications using

ACO algorithms.
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Summary. This chapter presents a novel application of a neuro-evolutionary methodology for

the purposes of intraday trading of German government bond futures. This market is very liquid,

is the focus of substantial trading activity, and hence, quality trading systems for this market

have considerable practical implication. To date, few studies have examined the potential utility

of computational intelligence methodologies for the purpose of trading on this market and none

have adopted a neuro-evolutionary approach. Our results suggest that structure in the time series

of bond futures prices can be uncovered and that this information can be used to trade with some

success. A number of future extensions of this study are also indicated.

5.1 Introduction

Bond markets play a significant role in capital allocation in developed economies. As

an illustration of the scale of these markets, the total value of outstanding marketable

bond debt in the US was approximately $29.2 trillion [1] as at the 30 September 2007.

In comparison, the total amount of marketable equity of all US companies on the same

date was approximately $22.3 trillion [1]. Multiple issuers use bond markets to raise

funding including companies, financial institutions, government agencies and central

government. Given the scale and liquidity of bond markets they attract substantial trad-

ing interest.

Germany is regarded as a stable and powerful economy making German government

debt an attractive investment. The demand for this debt has been particularly evident in

recent times as the sub prime financial crisis has seen portfolio managers move capital

into the relative safety of the highest quality bonds such as those issued by the German

government (a “flight to quality”). The demand for German government bonds carries

through to the Eurex derivatives market where the Euro-Schatz, Euro-Bobl, and Euro-

Bund German Bond Futures are the most heavily traded fixed income futures in the

world.

The construction of an intraday trading system for bond futures is a difficult task as

the time series of prices from this market is quite volatile (see Fig. 5.5) and we do not

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 75–93.
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have strong theory to describe the exact nature of the price-generation process. This

suggests that a model-induction methodology such as a multi-layer perceptron may

have utility in uncovering this process from the underlying data. In this chapter, we test

whether this is in fact the case and assess the utility of the resulting model by examining

whether it can be used to successfully trade bond futures.

A practical difficulty in developing a multi-layer perceptron is that the creation of

a quality network for a specific application can be time-consuming. Hence, there has

been significant interest in the possibility of automating some or all of this development

process by means of evolving neural net structures. A key issue in doing this efficiently

is the matching of the design of the diversity-generating operator(s) to the choice of

representation for the neural network. This is not a trivial task and a diverse range of

approaches have been suggested. In this study we adopt the NEAT methodology [4–6]

which adopts a principled approach to this issue.

5.1.1 Structure of Chapter

The rest of this chapter is organised as follows. The next section provides a concise

overview of the bond futures market followed by a short introduction to the NEAT

methodology. We then outline the experimental methodology adopted and the results

obtained. We conclude this chapter by suggesting a number of avenues for future work.

5.2 Trading Bond Futures

A futures contract is a standardised agreement between two counter-parties where the

buyer (seller) agrees to take delivery of (deliver) a specific quantity of the underlying

(for example, a financial security, a foreign currency or a commodity etc.) on a specific

date in the future (called the maturity date), for a price agreed upon now. Futures can, for

example, be used by producers and consumers in order to hedge their respective future

income and exposures by providing assurance as to the future price they will receive/pay

for some item. This is essential for businesses when trying to manage projected cash

flows and associated risks. Traders in financial markets can also use futures to hedge

certain exposures in their portfolio. For example, a Fixed Income dealer might want

to protect a portfolio of government bonds from adverse changes in interest rates by

purchasing, or selling, bond futures. Futures can also be used by speculators who want

to express a view on the direction of the market. In the case of fixed income futures the

underlying is a fixed income product such as a government bond. The future’s market

price is quoted in the same way as the underlying bond, i.e., as a percentage of the face

value of the bond.

German Government Bond Futures

In this chapter we look at three particular fixed income futures which derive their

value from German government bonds and which are traded on Eurex; the Euro-Schatz

(FGBS), Euro-Bobl (FGBM), and Euro-Bund (FGBL) Bond Futures. All three futures

trade the next 4 maturities in a quarterly (March, June, September, December) delivery

cycle and expire on the 10th day of the delivery month. At maturity of the future, the

party which is required to deliver the bond can opt to deliver any German federal bond



5 A Neuro-Evolutionary Approach for Interest Rate Modelling 77

Table 5.1. Eurex Bond Futures

Contract Nominal value Tick Maturity Window Coupon (%) Eurex code

Euro-Schatz EUR 100,000 0.005 1.75 to 2.25 years 6.00 FGBS

Euro-Bobl EUR 100,000 0.005 4.5 to 5.5 years 6.00 FGBM

Euro-Bund EUR 100,000 0.010 8.5 to 10.5 years 6.00 FGBL

Euro-Buxl EUR 100,000 0.020 24 to 35 years 6.00 FGBX

which satisfies certain constraints. For example, the holder of a short Euro-Schatz posi-

tion at maturity must deliver a German bond which has a remaining time to maturity in

the range 1.75 to 2.25 years.

Table 5.1 shows the contract specifications for four German bond futures. The nom-

inal value is the sum that the holder of the bond redeems when the bond matures. The

tick size is the minimum move a bond future price can make in the market. The Euro-

Bund trades full ticks, where a tick is a one basis point move. For example, a one tick up

in the Euro-Bund, from 99.65 to 99.66 for example, is worth 10 euro per contract, which

is calculated by multiplying the nominal value by the move, which is .01×100,000 in

this case. The Euro-Schatz, and Euro-Bobl futures are priced similarly, although they

move in half ticks, with a value of 5 euro per future, i.e., .005×100,000. When a bond is

issued a coupon rate is decided upon based on the market rates at the time of issue. This

coupon rate decides on the percentage of the nominal value that is to be paid annually

to the holder on the bond.

The bond futures price quoted in the market is called the clean price and trades at a

percentage of the face value of the contract. This clean price does not include accrued

interest from the last coupon payment. The future is said to be trading at par value if it

is at 100, at a premium if the price is above 100, and at a discount if it is below. This

price quotation system is the same as that used in the underlying cash bond market.

Deliverable Bonds

At the maturity of a futures contract any bond which has a remaining time to maturity

which falls inside the maturity window as specified in Table 5.1 is deliverable. Dur-

ing the lifetime of the future, the party on the short side of the position must disclose

the basket of deliverable bonds which satisfy the aforementioned constraints. When

trading on Eurex your counter-party is the Eurex Clearing House and the Eurex web-

site maintains a list of deliverable bonds for all maturities currently being traded. The

components of these baskets depend on various parameters and can change during the

future’s lifetime. At delivery the holder of the short side of the position can choose

which of the deliverable bonds to deliver. As expected, they will choose the bond from

the set of deliverable bonds which is cheapest for them to deliver. The actual delivery

price is calculated by multiplying the final settlement price of the future by a conversion

factor (described below) and adding any accrued interest since the last coupon payment

on the underlying bond.

The components of the basket of deliverable bonds may, and usually will, have differ-

ent values for their respective parameters including coupon rate and time to maturity. As

the Eurex Bond Futures are based on a notional bond with a 6% coupon, a calculation is
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Table 5.2. Euro-Schatz deliverable bonds

ISIN Coupon (%) Maturity Date Conversion Factor

DE0001137230 4.00 10/09/2010 0.967456

DE0001141471 2.50 08/10/2010 0.940976

DE0001135168 5.25 04/01/2011 0.985709

necessary to adjust the futures price to correct this. Eurex displays a conversion factor

for each deliverable bond. Table 5.2 shows the deliverable bonds for the Euro-Schatz

December 08 expiry as of 23/09/2008, including their conversion factors.

The theoretical future price (T FP) is calculated as the underlying bonds market

price, plus the financing costs, minus the income received on the cash bond position

(Eq. 5.1)

T FP =
1

CF

[

Ct +

(

Ct + c
t− t0

365

)

×t rc ×
T − t

360
− c×

T − t

365

]

(5.1)

where CF is the conversion factor, Ct is the market price of the bond, c is the coupon

rate, T − t is the time to expiry on the futures contract, t0 is the coupon date, t is the

value date, and trc is the 12 month Euribor money market rate.

An Example

The following demonstrates the calculation of the theoretical future price for the Euro-

Schatz December 08 expiring on Monday 22nd September 2008 (data is taken from

Table 5.3).

T FP =
1

0.967456

[

100.03+ (100.03+0.13)×0.0544×
79

360
−4.00×

79

365

]

= 103.386

(5.2)

At maturity of the future contract the actual delivery price is calculated as follows

Delivery price = Future’s Final Settlement Price

× Conversion factor + accrued interest
(5.3)

The final delivery price is calculated for each bond in the basket of deliverable bonds.

The conversion factor makes unrealistic assumptions about the shape of the yield curve,

Table 5.3. Theoretical future price example

Value date 22/09/2008

Bond 4.00% coupon, maturity 10/09/2010

Bond price 100.03

Future delivery date 10/12/2008

Accrued interest 4.00 *(12/365) = 0.13

Conversion factor 0.967456

Euribor 12m 5.44%
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and this creates a bias toward certain bonds in the basket of deliverable bonds. At ma-

turity the deliverable bond which is Cheapest To Deliver (CTD) is actually delivered.

5.3 NEAT

In this study we employ the neuro-evolution of augmenting topologies (NEAT) method-

ology to evolve multi-layer perceptrons (MLP) for the purposes of developing a trading

system for the German bond market. NEAT was developed in 2002 by Stanley and

Miikkulainen [4–6] and attempts to overcome the problems of evolving MLPs using a

direct encoding of an MLP structure. NEAT simultaneously evolves both MLP topology

and weights. Proponents of NEAT claim that it

1. applies a principled method of crossover (i.e., attempts to overcome the permutation

problem),

2. protects structural innovations (i.e., attempts to overcome noisy fitness problem),

and

3. grows MLPs from a minimal structure (i.e., attempts to ensure that final MLP is no

more structurally complex than necessary).

In order to achieve this NEAT uses three mechanisms, a novel MLP encoding which

allows for ‘sensible crossover’, a speciation concept which offers some protection for

structural innovations, and a seeding process whereby all initial MLP structures are

of minimal size. Algorithm 5.1 provides an overview of NEAT. The workings of the

algorithm are described in more detail in the following sections.

Algorithm 5.1. NEAT Algorithm

Generate an initial population of n (identical) genotypes of minimal structure;

Decode one genotype into a MLP structure and assess fitness of all members of the

population;

repeat
Select a random member of each species to represent that species;

for Each genotype in turn do
Calculate shared fitness of genotype;

end

for Each species in turn do
Calculate number of members of that species in the next generation;

Insert best current member of that species automatically into the next generation;

Select best x% of each species for mating pool;

repeat
Randomly select parents from the mating pool and apply crossover to obtain a

child;

Apply mutation to newly-created child;

Assign new child to an existing or a new species;

until required number of children are generated ;

end

until terminating condition ;
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5.3.1 Representation in NEAT

The genetic encoding used in NEAT is illustrated in Fig. 5.1. Each gene encodes an in-

dividual connection between two nodes, therefore the genotype encodes an entire MLP

structure and associated weights. Each connection gene has four pieces of information,

the index number of the input and output nodes for that connection, the connection’s

real-valued weight, an indicator as to whether that connection is ‘enabled’ (on) or ‘dis-

abled’ (off), and the innovation number for the connection. Innovation numbers are

assigned in sequence when a new connection is first created in the population of geno-

types (when two nodes are linked for the first time), and all subsequent instances of that

connection in the population have the same innovation number. Hence, a connection

gene between (say) node 1 and 4, will have the same innovation number for all mem-

bers of the population of genotypes. The innovation number helps ensure that genotypes

can be lined up sensibly during crossover.
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Fig. 5.1. A genotype in NEAT. This genotype has six connection genes (one of which is disabled)

and encodes an MLP with two hidden layer nodes.

5.3.2 Diversity Generation in NEAT

As in canonical ECs, new generations of genotypes are created using a select, reproduce

and replace cycle. Each of these processes are described in the following sections.

Crossover in NEAT

The crossover operation in NEAT is based on the idea that nature only allows sensible,

not random, crossover during reproduction. In contrast to the random crossover process

in primitive neuro-evolutionary algorithms, NEAT encodes and uses information on the
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genotype’s historical development (via its innovation numbers) in order to allow proper

pairing of parent genotypes for crossover of their MLP structures.

Each connection gene representing a connection between two specified nodes will

have the same innovation number for all genotypes in the population. Hence, genotypes

can be lined up, and their common connection genes identified. The parents may also

have disjoint and / or excess genes (genes which occur either inside or outside the over-

lapping range of the two parent’s sets of innovation numbers), where one parent has a
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Fig. 5.2. Crossover in NEAT. Parent 2 is assumed to be the fitter, hence all its excess genes are

inherited by the child. Stochastically, the connection between node 2 and 3 is turned on in the

child, despite it being disabled in parent 2.



82 R. Bradley, A. Brabazon, and M. O’Neill

connection gene which the other does not. Fig. 5.2 provides an illustration of the match-

ing process highlighting matching and excess genes between two parent genotypes.

During the crossover process, the child genotype inherits all connection genes which

are common to both parents with the weight value being randomly selected from one

of the parents. Disjoint and excess genes are inherited from the fitter parent. If a gene

is enabled in one parent and disabled in the other, it is stochastically enabled/disabled

in the child. A relatively strong selection pressure is applied in NEAT whereby the top

40% in each species (see Sect. 5.3.3) are placed in a mating pool with random selection

from this pool in order to select parents. In generating children, a 25% cloning and a

75% crossover rate is suggested by [4].

One item of note in the operation of crossover in NEAT is that it does not usually

play as significant a role as mutation in generating structural diversity in the popula-

tion. As children inherit all the disjoint and excess genes from the fitter parent, their

basic structure will resemble that of the fitter parent. Hence, crossover primarily acts

as a search of weight space around fitter parent. In contrast, crossover in “traditional”

neuro-evolution, while running into the issue of competing conventions, does generate

substantial structural diversity (akin to macro-mutation). Consequently, the true impor-

tance of crossover in NEAT is unclear as mutation does much of the work in generating

structural diversity.
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Fig. 5.3. An add connection mutation. Here a new connection is added between nodes 2 and 3

and a corresponding connection gene is inserted in the genotype.
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Fig. 5.4. An add node mutation. Here a new node is inserted between nodes 2 and 4 resulting in

the addition of two new connection genes to the genotype.

Mutation in NEAT

Three types of mutation are possible in NEAT, mutation of a real-valued connection

weight, an ‘add connection’ mutation and an ‘add node’ mutation. In an add connection

mutation, a new connection gene is appended to a genotype which creates a connection

between two existing nodes in a network. The weight for this new connection is gen-

erated randomly (Fig. 5.3). In the case of an add node mutation, a randomly selected

existing connection is broken and a new node is placed at the break point. The connec-

tion into this new node is given a weight of 1 and the connection out of the node retains

the old weight from the broken connection (Fig. 5.4). Typically, the weight mutation

rate is higher than that for connection or node additions. Over time, the mutation pro-

cess will tend to produce longer genotypes and hence more complex MLP structures.

5.3.3 Speciation

In evolving MLP structures, newly created topologies will often have limited fitness as

their connection weights are not optimised when the new structure is initially created.

Hence the new structures may be promptly deselected before they have a chance to

optimise.

To overcome this problem, NEAT uses speciation [3] in order to help protect new

structures. The concept is similar to that of speciation in nature where species compete

in different ecological niches and the most direct competition for resources is between

members of the same species. In NEAT speciation is undertaken using the structural
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information contained in each genotype. The object is to determine which genotypes are

most “similar” and therefore should be considered to belong to the same species. The

degree of similarity between two genotypes is determined by looking at their connection

genes, how many genes match, how many excess and disjoint genes are there, and what

is the degree of similarity in the connection weights on the matching genes? A metric

is calculated using
c1E

N
+

c2D

N
+ c3W (5.4)

where N is the number of genes in larger of two chromosomes being compared, E

and D are the number of excess and disjoint genes respectively, W is average weight

differences of matching genes, and c1,c2,c3 are the relative weights on each element of

the metric.

When a new child genotype is created, the value of the above metric is calculated by

comparing the similarity of the new genotype to a randomly chosen member of each

species in the last generation of the NEAT algorithm. The new child is then assigned to

the first species where the calculated distance is within a predetermined threshold value

δ. If no species is found to be within this threshold distance, the genotype finds a new

species.

Fitness-sharing

In the selection step in NEAT, a fitness-sharing mechanism is used in order to encour-

age diversity in the population of genotypes. The use of fitness-sharing is driven by

the observation that individuals within a species compete for the same resources and

each species occupies a niche in the wider ecological environment. Shared fitness is

calculated using

f ′ (i) =
f (i)

n
∑

j=1
s(d(i, j))

(5.5)

where f (i) represents the original (unadjusted) fitness of genotype i and f ′ (i) represents

the shared (reduced) fitness of genotype i. The sharing function s provides a measure

of the density of other species members within a given neighbourhood of a specific

genotype i. For any pair of genotypes (i, j), the sharing function returns a value of ‘0’

if (i, j) are more than a specified distance (‘t’) apart. In NEAT a simple neighbourhood

definition is used, being the number of members of the species to which genotype i

belongs. Hence, the shared fitness of a species member is its original fitness divided by

the population size of that species. The use of fitness-sharing makes it difficult for any

species to “take over” the population and helps protect and promote structural diversity.

The size of individual species alter over time depending on whether the adjusted

fitness of individuals in that species are higher or lower than the populational average

fitness. The number of individuals in each species changes from one generation to the

next according to

N
′

j =

∑N j

i=1
fi j

f
(5.6)
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where N
′

j
and N j are the new and old number of individuals in species j, fi j is the

adjusted fitness of individual i in species j and f is the average adjusted fitness of the

entire population. An elitist selection process is also used whereby the best individual

in each species survives into the next generation, once the population has at least five

members. Species can become extinct, either where the the number of new individuals

in the species falls below 1, or if there is no change in the fitness of the best member of

the species over multiple generations.

5.3.4 Incremental Evolution

NEAT begins with a uniform population of networks which have no hidden layer nodes

and where all inputs are connected to the output node(s). Additional complexity in the

form of hidden layer nodes or new connections is introduced as necessary via structural

mutations. This approach implies that in earlier generations of the evolutionary process,

search and optimisation is performed on small MLP structures which makes weight

optimisation within those structures easier.

Of course, a variety of other methods of initialisation could be used and the above

approach will need to be altered for cases where the problem has a large number of input

and/or output nodes. For example, using the above approach, a problem with 40 inputs

and 10 output nodes would require 400 connections, resulting in a high-dimensional

search space. In contrast, initialisation of the population using say a hidden layer with

3 nodes would reduce the number of connections to 150.

5.4 Experiments

In this section, we describe the experimental methodology employed in our study. Ini-

tially we describe the dataset and explore some features of the data.

5.4.1 Data

The dataset used in this study consists of 5,000 five minute bars of intraday data for

the three German bond futures mentioned in Sect. 5.2; the Euro-Schatz, Euro-Bobl, and

Euro-Bund. A bar contains a value for the open, high, low, and close prices for the

interval, and also the number of contracts traded in the 5 minute period (i.e. volume).

Fig. 5.5 shows the time series of closing prices for the three futures. The series exhibit

a variety of price behaviours, including bullish, bearish, and choppy periods. This varied

behaviour poses a difficult learning environment for NEAT.

The Cheapest To Deliver (CTD) bonds for the three futures have varying values for

coupon rate, time to maturity, and price. To compare the return on these bonds we can

calculate the yield to maturity (YTM) for each bond, which gives the percentage return

the holder would receive if (s)he held the bond until maturity. The yield curve (cash

curve), which is a plot of the YTM values, can be plotted against the yield curve derived

from the three futures. The future yield curve can be seen as the market’s estimate as to

where the cash curve will be at maturity of the future contracts. Fig. 5.6 illustrates the

relationship between the yield curve derived from the CTD bonds and the bond futures.
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Table 5.4. Volume statistics measured in number of contracts traded per 5 min block

Schatz Bobl Bund

Total 15,186,286 14,432,952 24,057,734

Mean 3,037 2,887 4,812

Std 3,817 3,146 5,367

Max 59,738 40,240 57,818

Min 1 1 1

Table 5.5. First difference of closing price in five minute blocks

Schatz Bobl Bund

Mean 0.0099 0.0208 0.0274

Std. Dev 1.1825 2.6142 3.5879

Max Up 11.5000 24.5000 22.0000

Max Down -8.5000 -24.0000 -34.0000

It is evident from the graph that the futures market is expecting yields to fall before the

maturity of the futures contracts.

The bond futures market is one of the most active fixed income markets. Table 5.4

shows a number of basic statistics on the volume of activity (volume of contracts traded)

on the market for the period 13/06/2008 to 25/07/2008. The Bund tends to be more

volatile, and more heavily traded, than the Schatz and Bobl. Total volume for the given

period of trading in the Schatz is over 15 million contracts, compared to the Bund

where over 24 million contracts were traded. The average number of contracts per trade

ranges from 2,887 (Bobl) to 4,812 (Bund). Each of these corresponds to a bond with

a face value of Euro 100,000 and hence represents a substantial ‘gross’ position in the

underlying (bond) instrument.

A move in a bond future price from 99.31 to 99.32 corresponds to a full ‘tick’. As

already noted, the Bund moves in full ticks, but the Schatz and Bobl contracts move in

half ticks. Table 5.5 describes the behavior of the first differences of the closing price

data. The volatility varies across contracts, with the Bund being the most volatile with

an average move of 0.274 of a tick between each 5 minute block. As can be seen, the

standard deviation of the number of tick changes between five minute blocks is quite

high relative to the mean, illustrating the volatile nature of price changes in even short

time periods for these futures.

5.4.2 Experimental Parameters

In setting the parameters for the NEAT system used to generate the MLPs, we con-

sidered parameter settings reported in prior applications of NEAT and supplemented

this with some trial and error experimentation. We have not attempted to optimise the

parameter settings but experimentation indicated that the results obtained were not hy-

persensitive to small changes in these settings.

Table 5.6 lists the key parameter settings we employed. The elitism proportion pa-

rameter was set to 20% which means that the top 20% of the population are passed on
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Table 5.6. Experimental Parameters

Parameter Value

Pop size 500

Mutate weights .1

Add neuron .01

Add connection .05

Crossover .9

Elitism Proportion .2

Min species threshold 6

Max species threshold 10

Complexity threshold 100

to the next generation without being altered by genetic operators. This ensures that the

population does not lose high-performing individuals from one generation to the next.

Speciation, as described in section 5.3.3, allows networks to evolve within a sub pop-

ulation. This ensures that offspring are given a chance to optimise without being killed

off prematurely by more mature individuals. The “min/max species threshold” settings

allow the user to keep the number of species within a certain range. The upper limit was

set to 10 and the lower limit was set to 6.

As the population evolves the number of neurons and connections in the average

network increases according to the mutation probabilities in Table 5.6. Over time the

structural complexity of MLPs in the population can increase to a level which results

in significant computational overhead. To combat this problem the average level of

structural complexity is tracked in the population, and once it exceeds a predetermined

threshold, a pruning process is initiated. Pruning reduces the population’s average com-

plexity until it falls below the specified threshold (100 in our case). This is achieved by

randomly removing nodes and edges from more complex individuals.

5.4.3 Trading Simulator

In this study we concentrate on inputs which are developed from the time series of the

futures’ prices. A total of 15 inputs are available for use by the MLPs being evolved.

These are the open, high, low, close, and volume first differences (between two suc-

ceeding five minute blocks) for each of the three bond futures.

The networks are all initialised with a bias node and one randomly chosen input from

the 15 available, connected to a single output node, as in Fig. 5.7. Thus, the population

of MLPs are initialised with minimal complexity. This leaves evolution to decide which

of the other inputs should be switched on and the number of hidden nodes that should

be added.

The evolved MLPs output a value between 0 and 1 which is post-processed using

y =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if a ≥ 0.6

0 if 0.3 < a < 0.6

−1 if a ≤ 0.3
(5.7)
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where y is the final network output and a is the MLP output before postprocessing. The

resulting value of y is then input to the trading simulator. The trading simulator is used

to evaluate the performance of a network over a given dataset. The simulator accepts

three signals; buy (1), sell (-1), and do nothing (0). At any point in time the system

is either long or short 1 future contract. If the trade position is long and we get a sell

signal, the long position is closed out at the current market price, and a short position is

initiated. Conversely, if we are short and get a buy signal we close out the short position

and initiate a long position. This behaviour results in a simple trading strategy which is

always in the market. The maximum position is limited to a single future to make post

trade analysis of results easier. Table 5.7 outlines the logic of this signalling system.

The trading simulator records the state of the system at the end of each five minute

interval. A number of state variables are recorded including the realised profit and loss,

Fig. 5.7. Initial basic network

Table 5.7. Trading Signal Logic

Signal Previous State New State

0 Flat Flat

0 Long Long

0 Short Short

1 Flat Long

1 Long Long

1 Short Long

-1 Flat Short

-1 Long Short

-1 Short Short
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the position (long/short), and any trade executed. Upon reaching the end of the dataset

the simulator prints the state vector to a csv file for further analysis.

In training the MLPs, a moving window approach is adopted. This allows the pop-

ulation of MLPs to adapt over time, allowing the uncovering of new relationships in

the data (i.e. the data generating process is not assumed to be static). The moving win-

dow is implemented as follows. The population is trained for G generations on the first

W observations of the dataset. The best individual is then tested out of sample on the

next S observations. The training window of size W is then incremented by S . The

population is then trained for g < G generations which gives the population a chance

to incorporate the new data. The best individual is tested out of sample on the next S

intervals, and the window is moved forward by S again. This process is repeated until

the moving window reaches D−S , where D is the size of the dataset. The total number

of generations in a run can be calculated using Eq. 5.8

Gens =G+

(

D−W −S

S
×g

)

(5.8)

where G is the number of generations over the initial training period, D is the size of the

dataset, W is the size of the training window, S is the size of the window increments,

and g is the number of generations at each window increment. The window retraining

system is desirable for a number of reasons. Firstly, each window shift results in a

partially new environment which challenges the population’s ability to generalise and

efficiently incorporate new information. Secondly, the moving window system yields

out of sample results for the entire dataset (apart from the initial training period).

5.5 Results

5.5.1 In-sample

Fig. 5.8 shows the in-sample fitness value for the population’s average and best net-

works over the entire training run of 450 generations. A window shift occurs at gener-

ations 100, 150, 200, 250, 300, 350, and 400. As expected, mean populational fitness

falls each time the window is shifted. However, the population shows an ability to adapt

to the new data environment with performance improvements occurring after the win-

dow is moved. Thus, NEAT shows promise in a dynamic, financial, environment. Fig.

5.8 also suggests that the evolutionary process discovers a network with good generali-

sation capabilities early on and only replaces this network a small number of times over

the run.

One of the nice features of the NEAT algorithm is gradual complexification of the

population of MLPs being evolved. The idea is that it is desirable to limit the search

space and exhaust the search for an optimal solution at each level of network complex-

ity before increasing complexity. This results in simpler networks which theoretically

should be better at generalising than very complex networks, which may be prone to

overfit. Fig. 5.9 illustrates this process. The number of neurons and connections in-

creases steadily for the first 160 generations of the training period. At this point the

complexity threshold parameter is breached, triggering the algorithm to switch to prun-

ing mode. This results in a pull back in the average complexity below the threshold
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and a return to complexification mode. The threshold is breached again at generation

345, again triggering the pruning process. This system of pruning keeps the average

complexity in a tight range.

5.5.2 Out of Sample

The best network, which can change throughout the training period, is tested out of

sample on the futures price dataset. Fig. 5.10 shows the performance (including realistic

transaction costs) plotted against a random buy/sell strategy. The random series is an

average of 30 simulations where a future was randomly bought/sold at each interval.
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Fig. 5.10. Out of sample equity curve vs equity curve from random trading strategy

5.6 Conclusions

This chapter presents a novel application of a neuro-evolutionary methodology for the

purposes of the intraday trading of German government bond futures. To date few stud-

ies have examined the potential utility of computational intelligence methodologies for

the purpose of trading on this market and none have adopted a neuro-evolutionary ap-

proach.

In spite of restricting attention to a very concise set of potential inputs, the results

suggest that the resulting model is capable of uncovering structure in the time series of

bond futures prices and is capable of using this information to trade with some success.

Of course, no conclusive assessment of the utility of this methodology can be made on

the basis of the limited experiments we have undertaken in this initial study and we

intend to pursue multiple avenues to further extend this work. For example, the current

trading simulator only uses a limited range of inputs and its power could be further

enhanced by use of established filter rules for price data such as technical indicators. We

also note that we adopt a simple trading strategy in this study, whereby the simulator can
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only go long or short one contract in response to a buy/sell signal. We intend to refine

this in order to allow the system to build up a larger long / short position in response to

successive buy/sell signals and also to allow the system to buy/sell varying numbers of

contracts depending on the strength of the signal generated by the system. At present,

the fitness of the trading system is assessed using a simple return-risk metric (total

return - maximum drawdown). Future work will explore the application of a range of

fitness metrics in order to examine the impact of choice of fitness metric on the trading

characteristics of the resulting system. We also intend to investigate the application of

grammar-based GP for trading this market.
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Summary. Trading “profits” can be obtained by luck or by the implementation of a superior

trading strategy. In this chapter we discuss the difficulties of distinguishing between the two.

First, a suitable characterization of profit that distinguishes between trading gains and market

gains is required. Secondly, one needs to be able to characterize trading “strategies”. To achieve

this, we introduce the notion of a genotype-phenotype map to finance, where the genotype is as-

sociated with the information set and associated decision rules that lead to a given set of trading

decisions for a given trader, while the phenotype is described by the set of observable trading de-

cisions themselves. In AI based systems, such as agent-based markets, a strategy is implemented

algorithmically and so the genotype is explicitly known. In real markets however, the genotypic

trading strategy of one trader is hidden from the rest. The phenotype however, is, in principle,

observable. A microscopic description at the level of the set of individual trades, however, is not

sufficient to understand or characterize the strategies at a more macroscopic and intuitive one. By

introducing a set of coarse grained variables that can be used to classify strategy types, we show

how these variables can then be data mined to understand what differs between an intelligent and

a lucky strategy. We show that these variables can be used to distinguish between different strat-

egy types and can be further used to infer the presence of learning and adaptation in the market.

We illustrate all of the above using data from an experimental political market.

6.1 Introduction

For many people, including quite a number of scientists, predicting financial markets

is a modern day equivalent of the medieval alchemist’s quest to turn base metal into

gold. Why do some scientists think they can make money by predicting markets? There

is probably some bias in this that stems from thinking of a market as a “mechanical”

system, whereby if we only but knew the mechanical laws that govern it then it would

be possible to predict its behaviour. In this case it would not matter if the system were

stochastic or not, as this just implies that there is an underlying probability distribution

that governs the dynamics. Computer scientists as opposed to physicists probably think

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 95–114.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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of the market as “algorithmic” rather than mechanical. The underlying bias is similar

however, in that if we but understood the algorithm we’d be able to predict.

Markets, however, are not mechanical, nor algorithmic, at least not in the sense

of a fixed algorithm. Evolution, adaptation and learning are much more appropriate

paradigms [1, 2, 3] for financial markets. Indeed, these paradigms underlie the con-

struction of agent-based artificial financial markets [4, 5, 6]. Such markets, as with real

markets, are based on the concept of a trading strategy, and in this artificial setting these

strategies are represented algorithmically.

The question then is one of whether or not in an ecology of competing strategies

there are “winning” ones that preferentially survive as being the fittest. This requires

two elements: a notion of a strategy and another of winning. In the context of artificial

markets, the strategy element is fairly clear, as only strategies that are algorithmically

representable can be entertained. However, this is not the case in a real market. Who

knows what strategy the proprietary traders of Goldman-Sachs are using? The other

subtlety is what does it mean to make money in a financial market? This might seem

like a stupid question at first sight. The question is perhaps better put as: How does

one know a strategy is winning through being more intelligent as opposed to just dumb

luck?

These issues are, in fact, at the heart of the debate about market efficiency [7, 8] as

the Efficient Markets hypothesis implies that in an efficient market there cannot exist

trading strategies that make excess profits systematically. This begs the question, of

course, of excess relative to what? As we will see, it is, in fact, possible for even zero-

intelligence traders to make profits relative to a benchmark such as a risk free interest

market. But this is by luck. To distinguish skill from luck it is necessary to be able to

distinguish between market gains, those that accrue from general market trends, and

trading gains - those due to a particular trading strategy [9] in the market. An empirical

measure that achieves that [10, 11] allows one to determine market efficiency empiri-

cally by determining if there is any trading strategy that is making profits in excess of a

dynamic buy and hold portfolio, i.e., one that gets recalibrated every trade.

So, one may identify a winning strategy if one knows the strategy used in order to

be able to follow its performance. As mentioned, unfortunately, in a real market we do

not know what strategies are being used. All we could hope to see is the imprint of that

strategy in the pattern of buys and sells from a particular trader. This begs the question:

Is it possible to characterize a strategy only from this pattern of buys and sells? This

is analogous to trying to characterize an organism and/or its survival strategy through

the phenotype rather than the genotype and must be done by statistical inference. An

appropriate vehicle for such inference is data mining and so, in this chapter, we show

how a data mining philosophy can be used to characterize winning trading strategies

and build a predictive model based on their “phenotypic” profiles.

The content of this chapter will be as follows: First we we will discuss the problem of

measuring profits, discussing a measure that makes a clean separation between trading

gains and market gains. In Sect. 6.3 we will then discuss the problem of relating profits

to a trading strategy, introducing the concept of a genotype-phenotype map into finance.

We will also discuss the problem of realizing profits using a particular trading strategy.

In Sect. 6.4 we will show how data mining techniques may be used to characterize
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trading strategies. We illustrate all these points in the context of a particular experimen-

tal market [12]. In Sect. 6.5 we present the results of this study showing first, how the

market is inefficient, in that certain traders make systematic, excess profits. We then use

data mining techniques to characterize the strategies of these successful traders and then

show how these techniques allow one to infer the existence of learning and adaptation

in the market. Finally, in Sect. 6.6 we draw some conclusions.

6.2 The Problem of Measuring Profits

The standard way to evaluate if you are making “profits” or not is to measure the value

of your portfolio against some benchmark. The idea then is that you are winning if your

profits are “excess” relative to this benchmark. A standard one is the risk-free interest

rate. Really, what we are doing there is to compare two strategies over a certain period

of time. Your actual strategy of buying and selling versus just leaving all your money

in a “risk-free” asset such as a treasury bill. A quantitative measure of this is the well

known Sharpe ratio

S (X) =
(R(X)−R f )

σ(X)
(6.1)

where R(X) is the average return on an investment X, R f is the risk-free interest rate

and σ(X) is the standard deviation of the returns. These returns can be measured with

respect to different frequencies - daily, weekly, monthly, annually etc. The Sharpe ratio

not only takes into account the rate of return of your investment but also how risky it

is, as proxied by the volatility of the returns. Most people would accept this measure as

being a very fair one.

In Figs. 6.1 and 6.2 we see a subset of trader portfolio values and the price series

from a pair of simulated markets. In both cases the economic universe consists of one

risky asset and one risk free asset, and that is all. Each market consisted of 20 traders

executing trades according to a particular trading strategy. Only the portfolio values of

ten randomly chosen traders are shown for legibility. In both cases the net proportion

of traders with positive Sharpe ratio, where a risk free annual interest rate of 4% was

chosen, is greater than 50%. Clearly, markets, in this sense, are not a zero sum game.

What were the successful, and therefore by implication “intelligent”, trading strate-

gies that were used by the successful agents? What went into these markets? Well,

Fig. 6.1 shows the results for a random subgroup of ten traders from a group of 20

“zero-intelligence” traders that flipped a fair coin to decide whether to buy or sell. So,

how come they’re all making money and have a positive Sharp ratio? Luck! The coin

tossing realises a stochastic process. Over a given period of time, fluctuations in supply

and demand and the limit prices set by the traders sometimes cause the market to go

up and sometimes to go down. In this particular realisation it went up. In another it

might well have gone down. However, a real financial market is a single realisation of a

stochastic process. We cannot rerun the market many times over to see if someone who

is successful with a given strategy will be successful again given the same conditions.

Normally, we try to get around this by considering the time dimension: Are someone’s

profits “systematic”? i.e., is the person making excess profits over a long period of time.
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For the zero-intelligence traders, if we single out a particular one and follow it in time

we will see that the net returns over a long period of time are, indeed, vanishingly small.

So, what about Fig. 6.2? There the traders also tossed a coin, but, this time, a biased

one, where the probability to buy was 52% instead of 50%. The same biased coin was

used for all. This means that there is an excess demand as more want to buy than sell

and so the price tends to go up. Now, all of the traders have significant profits with

corresponding Sharpe ratios of about 4-5! Fantastic, now a particular trader can think

about cashing in his stock after making a handsome profit and head to the shops. How-

ever, this is a one asset economic universe. There are no other assets, such as Ferraris,

diamonds, Van Goghs etc. In this sense, by trying to cash in their stock the trader is

simply penalising himself by changing to an asset (cash) whose value is static while

that of the other asset keeps on increasing due to the avid buying of the other traders,

and so the trader would lose by cashing in. On the other hand, if the trader keeps on

trying to buy with the same probability as the rest then, although on average he won’t

lose relative to the others, neither will he win.

These two examples give one pause in thinking what does it mean to make money.

How does one distinguish between making money by luck and making it through an

intelligent trading strategy? Also, what sense does it make to say you’re winning against

a benchmark when you’re losing relative to everyone else in the market? In other words,

how does one distinguish between trading returns, associated with an intelligent trading

strategy, versus market returns, associated with general movement in the market.

So, we can ask: Is there some other measure for making money that overcomes these

problems? Yes, it is called “excess trading profit” [10, 11]. The idea is that you’re only

as good as your last trading decision. In other words, each trading decision is measured

relative to a benchmark of not having done anything. Thus, between one trade and an-

other we can ask how much your portfolio value increased due to that particular trading

decision relative to not having made that decision. So, for example, at a particular time,

t1, you buy 5,000 shares of Federal Screw. At any subsequent time you can evaluate

how much your portfolio value has increased compared to having done nothing, i.e.,

“buy and hold”. You might think this is standard procedure, to measure relative to a

buy and hold strategy. However, here, the buy and hold benchmark is reset every time

a trade is carried out. So, if you start off with 10,000 shares at t0, buy 5,000 at t1 and

buy another 5,000 at t2 your buy and hold reference point for the trade at t2 is 15,000

shares not 10,000. This simple mechanism of measuring profit relative to a moving tar-

get when considered in the context of a suitable statistic solves both the above problems

of deciding whether a strategy is intelligent or not and also of getting confused between

“absolute” and relative profit.

Specifically, one defines the excess trading profit for an agent j using a trading strat-

egy i at time t associated with a transaction at time t′ as

ei j(t, t
′) = ∆p(t, t′)∆n(t, t′) (6.2)

where ∆n(t, t′) is the change in portfolio holding due to the transaction and ∆p(t, t′) is

the change in price since the transaction. So, unless there is a change in price and you

change holding there is no excess profit. In this way only active decisions count. The

excess trading profit associated with a series of trading decisions is then
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Ei j(t, t
′) =

k=t
∑

k=t′+1

ei j(k,k−1) (6.3)

If several agents, N j, all use the same trading strategy, then the average profit for that

strategy is Ei(t, t
′) = (1/N j)

∑

j Ei j(t, t
′).

As excess profits are taken to be a sign of an inefficient market our two examples

above would also seem to be at first sight inefficient. To test this, the empirical measure

we use for inefficiency, based on the concept of excess trading profits, is

Ii j(t, t
′) =

(Ei(t, t
′)−E j(t, t

′))
(

σ2
i
(t,t′)

Ni
+
σ2

j
(t,t′)

N j

)1/2
(6.4)

where σ2
i
(t, t′) is the variance in the excess trading profits of the ith trading strat-

egy/group. Essentially, Ii j is a t-test for the difference in mean excess trading profits of

two trading strategies/groups. In the denominator is the standard error, so, this measure

informs us of the statistical significance of the difference of the means and therefore on

the probability of whether it is luck or an intelligent strategy that leads to such a profit

distribution. Typically, if |Ii j|> 2 then the relative Inefficiency between strategies i and j

is statistically significant. Using this measure one can determine that both our examples

above are, in fact, “efficient” [10] in that no trader is making excess profits relative to

another. This is, in fact, a hallmark of markets with homogeneous trading strategies.

6.3 The Problem of Relating Profits to Strategies

Having decided how to measure profits in a way that distinguishes between luck and

intelligence we now encounter the problem of trying to characterise a trading strategy

so that we can apply our profits measure to it. What is a trading strategy in the first

place? Abstractly, it is a rule, F, that maps a set of input variables, X = (X1,X2, . . . ,XN),

to a trading decision, D, such as buy 5,000 shares of Federal Screw with a market

order, or place a limit order to sell at a price of $13.33 etc. Thus, a strategy is D =

F(X). Sounds conceptually simple doesn’t it? It’s not. How does one establish the input

set X for instance? What sounds logical is when a rule is very algorithmic, such as

IF(price > 1 month moving average) THEN (Buy). In fact, this is how artificial financial

markets work, and also how trading, using AI type tools, such as GP or GAs, becomes

a rules-based algorithm. The problem is that human beings aren’t algorithms. One can

imagine, for instance, that traders who were involved in particularly stressful personal

relationships or in financial difficulties had poorer trading performance than those who

weren’t. Does that mean that X568 should represent relationship difficulties = YES/NO?

Just like finger prints, no two humans will have exactly the same trading strategy F.

There are just too many variables that enter decisions. Worse, many of the variables can’t

be put into a form that could be modelled algorithmically. This is, in fact, a deep problem

of efficient markets theory when thought of in terms of information. Each trader has a

unique information set and we don’t know how to map it to a trading strategy. Basically,

efficient markets theory tries to circumvent this by assuming that information is common
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property, the type of information that is common depending on which formulation of

the efficient markets hypothesis one takes - Weak, Semi-strong or Strong - and that

investors are rational and therefore will act on this information rationally.

6.3.1 The Genotype-Phenotype Map in Finance

To use an analogy familiar in Evolutionary Computation we can place the above discus-

sion in the context of imagining that a given trader has a “genotype” and a correspond-

ing “phenotype”. The genotype in this sense corresponds to the trading strategy of the

trader as characterized by the map between the information set of the trader and the ac-

tual set of buys and sells. Of course, in the real world this genotype is hidden, although

efficient markets theory would claim that the genotype, at least for a rational investor,

leaves its mark on price and therefore, in principal at least, can be inferred. Inferred

through what information? Instead of trying to infer the genotype we will here think

more of trying to see how the phenotype of the strategy manifests itself in the market.

By phenotype we mean a set of phenotypic characteristics that should be observable.

What would these characteristics be? Well, let’s think of some simple examples: a

momentum-based strategy, for instance, should manifest itself in the fact that transac-

tions are carried out in accordance with the formation of tendencies in the price. A

contrarian strategy on the other hand might manifest itself through buys when a stock is

low and sells when it is high. A stock picking strategy could manifest itself by buys/sells

only in particular stocks using a portfolio that is quite distinct to the market portfolio.

A market making strategy on the other hand might be identified by frequent changes in

position at or near the best prices in the market as the trader tries to make money trading

the spread.

In deciding which phenotypic characteristics are the most useful, observationally

we will assume that we have access to {D}, the set of trading decision, on which to

construct them. This will mean that we have access to the individual trades and quotes

of each trader. Of course, the actual available information set may be less than this.

For example, the identity of the trading parties is usually confidential. However, in

principle one has a data set that contains the price, type and identity (which could be

anonymized) of every order placed in the market. In principle, one could take {D}as

the phenotype. Obviously, the genotype-phenotype map in this case may be degenerate,

as there might be many different genotypic trading strategies that lead to the same set

of trading decisions, especially if the set is small. For instance, there are many possible

trading strategies that lead someone to buy 1,000 shares of Federal Screw at a given

time. On the other hand the full set of trading decisions{D}will be too fine grained and

not allow one to see commonalities. For instance, two sets of trading decisions may be

distinct but both be associated with a momentum strategy on a particular stock. What is

required is a set of coarse grained variables that summarize different dimensions of the

fine grained {D}. In Sect. 6.4 we will see just such a possible set.

6.3.2 The Problem of Realizing Profits Using a Trading Strategy

Most work done in applying AI techniques and in particular EC to algorithmic trading

is essentially “paper trading”; i.e., past data is taken, a model created and the model

then “tested” on another, separate set of past data. What “tested” means here is that
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the trading decision of the algorithm is derived and then it is assumed that the trading

decision is implementable and, moreover, that the net profit of the decision can be read

off from the subsequent evolution of the market. These assumptions have two potential

pitfalls: firstly, it may be that the trade was not realizable; and, secondly, it may be

that the trade affected the subsequent evolution of the market so that the real profit if

the decision had been implemented would have been quite different to the expected

profit in the approximation that the trade did not affect the subsequent evolution of the

market. The first assumption is essentially an assumption about liquidity available in the

market, while the second is associated with the problem of market impact. Essentially,

the assumptions will be less problematic in the limit that the implemented trade is in a

very liquid situation and does not move the market much. For instance, its a good bet

that you can buy 100 shares of Microsoft at any time and without moving the price.

Buying 100,000 shares of a stock with an Average Daily Volume of 50,000 shares is a

completely different matter.

6.4 Inferring the Trading Strategy Phenotype by Data Mining

Faced with the problem of not being able to characterize the trading strategy genotypi-

cally we have to decide how to characterize it phenotypically. Of course, to be useful in

this sense, the phenotypic traits of the strategy must be observable. The question then

is what set of observable traits to use? If we think of the transactions and quotes that a

trader participates in, one has available the type of order placed, the price of the order

or transaction, the size of the order or transaction, in what asset and at what time. From

those fundamental degrees of freedom: order type, price, volume, time and asset one

can of course construct a large number of derived characteristics. Below, we list a use-

ful subset that we will later use in a concrete demonstration of how the these phenotypic

variables can be used to characterize trading strategies.

• Number of transactions

• Number of buys

• Percentage buys

• Number of sells

• Percentage sells

• Number of position changes (buy to sell or vice versa)

• Percentage of position changes

• Number of stocks transacted

• Number of counterparties

• Total volume

• Volatility of volume

• Average volume per transaction

• Total excess trading profits

• Volatility of excess profits

• Average profit per transaction

• Sharpe ratio for excess trading profits

• Percentage of correct decisions

• Total number of transactions with profits/losses
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Of course, we not only need to determine a potential set of phenotypic traits on which

to base a comparison but we also need to be able to determine if the difference between

two sequences of trading decisions is statistically significant in terms of any one of

these variables. There are various statistics are are adequate to the task. Later, we will

illustrate the comparison using the following statistic

ε
′ =
< x > 1 − < x > 2
(
σ2

1
n1
+
σ2

2
n2

)1/2
(6.5)

where < x >i is the mean value of the variable x for trading strategy i and ni is the

number of traders associated with that strategy. The denominator is just the standard

error so the statistic is just determining to what extent the difference in means for a given

phenotypic trait for the two strategies is just due to chance. If we imagined that the two

strategies are drawn from two different normal distributions then standard hypothesis

testing would tell us that if |ε ′| > 2 then the two strategies are distinguishable at the 95%

confidence level.

How might different trading strategies manifest themselves in terms of these phe-

notypic characteristics? Well, with the examples mentioned in the previous section, a

momentum-based strategy, for instance, should manifest itself in the fact that there is

an excess of buys or sells in accordance with the formation of tendencies in the price. A

stock picking strategy could manifest itself by buys/sells only in particular stocks using

a portfolio that is quite distinct to the market portfolio. A market making strategy on the

other hand might be identified by frequent changes in position at or near the best prices

in the market and trading with many counter-parties.

As an example of this thinking we will consider the case of a “political” experimental

market [12] that ran between the middle of August and the middle of September 2004

and was based on parliamentary elections in the German state of Brandenburg. In this

case the “stocks” are eight political parties and the price of the stock is the expected

share of the vote for that party. There were 108 participants in the market and each

participant started off with a fixed amount of money and shares.1 The market structure

was that of a continuous double auction where traders could place limit orders of market

orders. The order book for the market was partially open as the traders had access to

the three best buy and sell quotes.

6.5 Results

We wish to determine first of all whether there are any traders that systematically make

excess trading profits. We then wish to determine if they, or, rather, their trading strategy,

can be characterized phenotypically. In terms of determining whether they are making

excess profits systematically we first divide the market temporally into two periods with

roughly the same number of trades in each period. We then rank the agents according

to their excess trading profits in the first period of the market. From this ranked list of

108 agents we form 10 groups, starting from the agent with the most excess trading

1 There was no investment of real money in the market.
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profits: 3 groups of 11 agents; 3 groups of 10 (that did not trade in the first period);

3 groups of 11 and, finally, one group of 12 corresponding to those traders with the

biggest systematic losses.

6.5.1 Is It an Efficient Market?

In Figs. 6.3 and 6.4 we see the relative Inefficiency between different trading groups

for the first and second periods of the market respectively. In Fig. 6.3, the solid curve

is the relative Inefficiency of the group with highest profits in the first period relative

to that of the rest of the market. The dotted curve is the excess profits of the highest

profits group in the first period against the lowest. Both these curves show that group

1 is clearly making a statistically significant amount of excess profits relative to the

rest of the market in the first period and, even more so, relative to the group of biggest

losers. The dashed curve in Fig. 6.3 is the relative Inefficiency in the first period of the

market between two groups of 11 traders chosen randomly. What can be seen, as is to

be expected, is that there is no statistically significant Inefficiency between these two

groups as having been chosen randomly they cannot be associated with any common

trading behaviour and hence cannot share the same strategy.

The three corresponding curves in Fig. 6.4 represent the relative inefficiencies be-

tween the same groups as just mentioned, but now considering the excess trading prof-

its for these groups in the second period of the market. Once again, group 1 is making

excess trading profits relative to the rest of the market as a whole and with respect

to group 10, though, now, the relative inefficiency with group 10 is at the same level

as with the rest of the market. So, we can establish that the market has inefficiencies

with the associated inference that one group is making profits in a way that cannot be
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Fig. 6.4. Graph of Inefficiency against time for different trader groups for second period of the

market

attributed to luck. However, we see that the market was much more inefficient in the

first period than in the second.

6.5.2 Why Is It Inefficient?

So, we can ask: what are the winners doing that makes them so successful? A first

question is: Who are they trading with? Are they making profits across all trader groups

or are they having more success with some traders versus others? The second ques-

tion is: Why is the market much more efficient in the second period? Did the intelli-

gent/unintelligent traders stop being intelligent/unintelligent? In Table 6.1 we see the

excess trading profits of the different trader groups in the two halves of the market. As

a matrix this table is antisymmetric as the net profit of a group with itself has to be

zero. Note that in the first period more than 60% of group 1’s profits come from trading

with group 10 while over 70% of group 10’s losses come from trades with group 1.

Given that the market was anonymous however, how did the winning traders that enter

in group 1 identify losing traders from group 10?

In the second period of the market, when compared to the first period, we see a rad-

ical change. Group 1 continues to make a significant amount of excess trading profits,

but now the percentage of their profits that come from group 10 is only about 10%, in

stark contrast to the 60% figure from the first period. In fact, about 60% of group 1’s

profits now come from trading with three groups - 4, 5 and 6 - that did not even par-

ticipate in the first period. Notice also that the total profits of group 1 falls from about

25 million in the first period to about 18 in the second. On the contrary, the losses of

group 10, which amounted to about 22 million in the first period were reduced to only

3 million in the second!
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Table 6.1. Profits and losses in millions between trader groups for the two periods of the market

First Period

Group 1 2 3 4 5 6 7 8 9 10

1 0 0.054 0.857 0 0 0 0.061 1.145 7.332 16.455
2 -0.054 0 -0.043 0 0 0 0.355 0.033 0.721 4.460
3 -0.857 0.043 0 0 0 0 0.724 0.671 0.562 0.326
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 -0.061 -0.355 -0.724 0 0 0 0 -0.162 0.475 0.228
8 -1.145 -0.033 -0.671 0 0 0 0.162 0 0.054 -0.052
9 -7.332 -0.721 -0.562 0 0 0 -0.475 -0.054 0 0.826

10 -16.455 -4.460 -0.326 0 0 0 -0.228 0.052 -0.826 0

Second Period

Group 1 2 3 4 5 6 7 8 9 10

1 0 -0.068 0.544 10.616 1.737 1.042 2.281 -1.020 1.430 2.236
2 0.068 0 0.008 0.000 0.062 0.173 -0.100 -0.019 0.005 -0.017
3 -0.544 -0.008 0 0.053 0.117 -0.097 0.181 0.007 -0.089 0.300
4 -10.616 0.000 -0.053 0 0.173 -0.295 0.143 0.027 0.107 0.229
5 -1.737 -0.062 -0.117 -0.173 0 0.156 0.016 -0.227 0.193 0.148
6 -1.042 -0.173 0.097 0.295 -0.156 0 0.139 0.616 -0.151 -0.045
7 -2.281 0.100 -0.181 -0.143 -0.016 -0.139 0 0.272 0.040 -0.059
8 1.020 0.019 -0.007 -0.027 0.227 -0.616 -0.272 0 0.677 0.083
9 -1.430 -0.005 0.089 -0.107 -0.193 0.151 -0.040 -0.677 0 -0.022

10 -2.236 0.017 -0.300 -0.229 -0.148 0.045 0.059 -0.083 0.022 0

In Table 6.2 we see a table that represents a matrix whose elements are the percentage

of trades transacted between one group and another. We see that almost 50% of group

1’s trades in the first half were with traders from group 10. In fact, both groups constitute

more than 60% of the total liquidity in the market in the first period. However, just

because the two groups are responsible for most of the trading does not imply that one

should be systematically winning against the other. In contrast, in the second period

only 15% of group 1’s trades are with group 10 traders.

So what else is going on? In Fig. 6.5 and we see a list of all the trades carried out

by group 1 in the first period ranked by excess trading profit. What is immediately

noticeable is that basically all profits come from only a relatively small number of

trades. In fact, more than 90% of group 1’s profits come from only about 5% of trades.

On the contrary, the vast majority of trades lead to very small profits/losses. In fact,

about 40% of trades led to no profit/loss at all due to the fact that there was no price

movement relative to the previous trade. In contrast, we can see in Fig. 6.5 that for group

10 about 90% of their losses comes from about 5% of trades. The extreme heterogeneity

in the losses of group 10 is, in fact, a mirror of the profits of group 1. As with group 1,

with about 40% of trades there was no price movement and hence no profit/loss.

With these results in hand we can start to see how and why group 1 is winning. As

mentioned, given that the market is anonymous, group 1 traders cannot identify group

10 traders per se. However, what is clear is that they are “intelligent” enough to identify

good trading opportunities. These trading opportunities are such that a trader, princi-

pally from group 10, places a limit order at a very exaggerated price - very low for a

sell and very high for a buy - in a limit order book with no other orders, otherwise the

order would cross the spread and execute against an already existing limit order on the
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Table 6.2. Percentage of transactions executed between different trader groups in the two periods

First Period

Group 1 2 3 4 5 6 7 8 9 10

1 17.12 4.36 9.96 0 0 0 3.42 5.81 10.63 48.70

2 23.60 4.49 16.01 0 0 0 4.78 6.18 11.52 33.43

3 32.27 9.58 9.75 0 0 0 7.23 6.72 5.38 29.08

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 25.10 6.46 16.35 0 0 0 3.04 7.22 11.41 30.42

8 23.48 4.61 8.39 0 0 0 3.98 10.06 6.92 42.56

9 30.42 6.08 4.75 0 0 0 4.45 4.90 7.42 41.99

10 37.31 4.73 6.87 0 0 0 3.18 8.07 11.24 28.61

Second Period

1 18.47 3.54 9.36 5.57 10.94 9.93 10.94 9.87 5.88 15.50

2 32.75 1.17 11.11 2.92 5.26 9.94 8.77 8.19 2.34 17.54

3 20.76 2.66 14.59 4.77 10.66 8.70 8.56 11.08 4.49 13.74

4 22.22 1.26 8.59 7.58 8.08 9.34 13.13 7.58 6.06 16.16

5 29.08 1.51 12.77 5.38 6.05 13.11 5.04 11.93 1.85 13.28

6 23.64 2.56 9.34 5.57 11.75 13.25 9.04 8.58 3.16 13.10

7 28.36 2.46 10.00 8.52 4.92 9.84 3.28 14.10 3.44 15.08

8 23.89 2.14 12.10 4.59 10.87 8.73 13.17 5.51 2.60 16.39

9 35.09 1.51 12.08 9.06 4.15 7.92 7.92 6.42 3.02 12.83

10 26.34 3.23 10.54 6.88 8.49 9.35 9.89 11.51 3.66 10.11

other side. An alert trader from group 1 notices the opportunity and places a market

order which executes against the limit order. After the trade, limit orders are placed at

prices that are more in line with the past history of the asset and then only relatively

small profits/losses are again available. In other words, group 1 traders are alert en-

trepreneurs that time their trades according to how appropriate market conditions are

- in this case an inappropriately placed limit order at variance with previous market

expectations. The number of these badly placed orders, that are far out of line with

previous expectations of the price, is relatively few. However, they are predominantly

placed by group 10 traders, while group 1 traders are the most adept at taking advantage

of them.

Considering the same curves in the second period in Figs. 6.7 and 6.8 we see that,

although, as in the first period, there is a great deal of heterogeneity in the relative prof-

its of the different trades, it is now much reduced for group 10. The biggest loss from a

single trade for group 10 is about 0.7 million, compared to 2.6 million in the first period.

This indicates that group 10’s price expectations are much more in line with those of the

rest of the market in the second period. Interestingly, group 1 seems to show even more

heterogeneity in the second period. As we can see though this is due to one extremely

large trade that was three times bigger than any trade in the first period. Apart from that
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Fig. 6.5. Ranked list of transactions by excess trading profits for Group 1 in the first period

Fig. 6.6. Ranked list of transactions by excess trading profit for Group 10 in the first period

one single trade, which was with a counter-party from group 4 that, remember, had no

trades in the first period, the degree of heterogeneity is substantially less than in the first

period.
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Fig. 6.7. Ranked list of transactions by excess trading profits for Group 1 in the second period

Fig. 6.8. Ranked list of transactions by excess trading profit for Group 10 in the second period

6.5.3 Characterizing Trading Strategies

So, we see that there are significant differences between different trader groups in terms

of their profits. We have also seen that these differences are related to who is trading
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Table 6.3. Values of ε′ for feature values by group

Group Trades Buys Sells D Partner Volume Volume Mean

1 Standard Volume

vs. Deviation per Trade

First Period

2 3.60 3.72 3.19 1.76 3.69 4.25 -0.16 -0.50
3 2.69 2.60 2.61 3.35 3.09 3.51 1.64 -0.39
7 3.83 3.92 3.50 0.63 4.64 4.05 0.20 -0.48
8 3.25 3.42 2.78 2.09 3.09 2.95 1.50 0.83
9 2.62 2.40 2.56 0.76 2.77 2.98 -0.21 -0.51
10 -0.44 0.47 -0.75 -0.37 -0.39 0.32 1.00 0.53

Second Period

2 2.36 2.30 1.81 2.91 3.12 2.84 3.04 2.13
3 1.17 1.09 1.02 2.87 1.62 1.49 2.40 1.60
4 1.73 1.67 1.45 -0.10 2.03 2.04 0.28 0.16
5 1.23 1.71 0.44 0.98 1.76 1.38 -0.36 -0.04
6 1.33 1.67 0.45 -0.22 1.04 1.44 1.53 1.00
7 1.49 1.33 1.39 1.83 1.86 1.83 2.23 1.71
8 1.43 1.72 0.54 0.85 1.57 1.72 2.36 1.62
9 2.21 2.18 1.66 -1.01 2.55 2.29 0.30 0.11
10 1.10 0.99 0.94 -0.39 1.08 1.53 1.35 0.69

with who, with the group of biggest winners directly taking advantage of a group of

traders that have inferior trading strategies in that their expectations about price are at

times in violent disagreement with the rest of the market. The question now is: Can

we characterize the trading strategies of the different groups as outlined in section 6.4?

In Table 6.3 we see the values of ε′, introduced in Sect. 6.4, where strategy 1 refers

to group 1 and strategy 2 refers to one of the other nine groups. In other words, ε′

is determining if there is any statistically distinguishable difference in the strategy of

group 1 relative to those of other groups in terms of the phenotypic traits considered.

Considering the phenotypic profiles from the first period, we see that group 1’s strategy

is very distinguishable from those of group 3, 7, 8 and 9 (groups 4, 5 and 6 are omitted

as they did not trade in the first period). Group 1’s strategy is distinguishable from these

others in that group 1 transacted more trades, both buys and sells, traded with more

counter-parties and operated significantly larger volumes.

Comparing with group 10 however, we see that group 1’s strategy is not that distin-

guishable from that of group 10, with no statistically significant differences between any

of the measured phenotypic traits. What this is telling us is that the small subset of phe-

notypic traits we are considering is enough to distinguish between those who win/lose a

lot versus those who do not win/lose much but not enough to distinguish between large

profits versus large losses. This, of course, is not overly surprising. If it were so easy

to distinguish a winning versus a losing strategy using such simple variables then we

would be using it to trade and not publishing it in an academic forum!

Considering now the second period, we can see that the statistical signal that differ-

entiates group 1 from other groups is now much weaker. Group 1 is still associated with

more trading, both buy and sell, but now the statistical significance of the differences is

substantially less. In particular we can see that the profile of group 1 relative to that of

group 10 is different in the second period with the latter being now more distinguishable

from the former.
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Table 6.4. Trader groups with associated Sharpe Ratio and Score rankings in the two periods

First Period Second Period

Group Agents Sharpe Ratio Score Sharpe Ratio Score

Rank Rank Rank Rank

mammutfam 1 1 1 4
hanni1982 2 5 34 16

famfan 3 6 14 34
saladin 4 4 5 1
gruener 5 3 12 12

1 zigzag 6 7 4 10
Wahlaal 7 22 19 75
rapper 8 20 39 88

kaufunger 9 16 21 40
truck676 10 30 10 18
cezanne 11 23 37 56

Traurig 97 26 82 37
Geoman 98 41 81 107

Tishimdorf 99 21 108 19
Progno 100 19 17 38
briutt 101 18 75 45

10 Tob11 102 43 33 56
Camporesi 103 14 74 65
fischmob 104 8 6 9
Rodrigues 105 17 96 24
Mauritius 106 11 86 15

BAYERNP 107 2 102 11
Angelo 108 12 69 105

An important aspect of this identification of phenotypic traits that characterize a

particular trading group is that it allows for the creation of a predictive model based on

these features. A robust and useful model is to use the Naive Bayes approximation [13]

on these traits to create a score model where the chosen class is that of the top decile of

traders with respect to the Sharpe ratio of excess trading profits, i.e., group 1. The idea

is that the first period is used to specify a score S (C|X), where C is the top decile of

traders ranked with regard to the Sharpe ratio and X is a feature vector, which serves as

a predictive model with which to phenotypically characterize the trading strategy of this

winning group. In the second period this model is then applied to the traders and one

observes to what extent this model is capable of predicting the most successful traders.

In Table 6.4 we see the relative ranking of the traders associated with groups 1 and 10.

What can we glean from this table? Clearly there is a high degree of correlation

(coefficient of correlation 0.88) between the score and Sharpe ratio ranks in the first

period for group 1. This is not overly surprising given that the model was created on

the data of period 1 to predict the class of group 1 traders. For group 10 there is a

strong anticorrelation. This is because group 10 traders also have a high score as the

model is predominantly picking up predictability of big winners/losers versus small

winners/losers. In other words the chief source of false positives for predicting mem-

bership of the group with the most profits is precisely the group with the biggest losses.

In the second half there is also a substantial correlation (coefficient of correlation 0.71)

between Sharpe ratio and score ranks. This is gratifying that it shows that, out of sam-

ple, the model is predicting well in that score is a good predictor of Sharpe ratio rank.

The most interesting aspect though is to consider the change between the first and sec-

ond periods. The average Sharpe ratio rank for group 1 in the first period is 6, while
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the average score rank is 12. In the second period, the average Sharpe ratio rank of the

traders who gained the most in the first period is 18. In other words, performance has

deteriorated substantially. The average score rank in the second period is 32. What this

implies is that the profile of the traders and the consequent score is a good predictor

of relative performance, in that a decrease in the score is associated with a decrease in

performance.

6.5.4 Adaptation and Learning

We now turn to the question of what changes between the first and second period that

gives rise to such noticeable differences in performance of the traders who were in

groups 1 and 10 in the first period? Remember, that in the first period, we characterized

group 1 traders as alert entrepreneurs who identify the important trading opportunities

when they arise that are being offered by group 10 traders. We saw that these trading

opportunities were relatively few but led to the vast majority of profits of group 1,

and also to the vast majority of losses of group 10. Both sets of traders had similar

phenotypic profiles, the main difference between them being due to the price and order

type associated with those trades that led to large profits/losses.

In the second period we saw that the trading characteristics of the traders of groups

1 and 10 were quite different to those exhibited in the first period. This was seen at

the level of their profits and losses and in terms of the percentage of trades carried out

between these two groups. Given that the scores for the two groups are quite distinct

between the first and second periods then, taking the score components and the associ-

ated phenotypic traits as a proxy for the trading strategy used, it is clear that the groups

are using quite distinct trading strategies in the second period compared to the first.

Why is this? Why would group 1 change a winning strategy? The answer is that they

did not have any option. Their strategy was changed for them by the actions of others. In

the first period, groups 1 and 10 were involved in 1,928 and 2,517 trades respectively,

while in the second period these numbers were 1,581 trades for group 1 and only 930

for group 10! Group 10 traders incurred large losses using the trading strategy that

they implemented in period one and so, learning from their mistakes, adapted. This

adaptation took the form of a withdrawal from the market. If you don’t trade you can’t

lose. There was also learning in the sense that the number of orders placed at prices

that were far from market expectations was smaller. This learning and adaptation in the

strategy of group 10 manifested itself in the fact that the score components diminished

in the second period. In this sense, adaptation and learning are manifest in the score and

the associated phenotypic profile as representations of the trading strategy.

How does this answer why group 1 changed their strategy? The strategy of group

1 would clearly be to keep on identifying profitable trading opportunities. The total

number of trades they carried out was not so different in the second period compared

to the first. However, who they traded with was quite different. In the first period group

10 offered group 1, anonymously of course, profitable trading opportunities. Group 1

traders, as alert entrepreneurs, gladly accepted them. In the second period, these trading

opportunities from group 10 dried up to a large extent. Group 1 therefore had to look

for new opportunities by trading, once again anonymously, with other traders. However,

these other trader groups did not generally offer the same profit opportunities, being
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pegged to more realistic price scenarios. Group 4 was the exception to this rule, but

group 4 was a “novice” group in the second period not having traded in the first.

6.6 Conclusions

Financial markets can be appropriately thought of as consisting of ecologies of com-

peting trading strategies. In fact, artificial agent-based financial markets are predicated

on this concept. A goal then is to understand which strategies are the most appropriate

at a given time, leading to the most profits. In this chapter we have shown that there

are important and deep subtleties associated with determining what a strategy is and,

furthermore, whether it is winning by luck or by skill. Normally, in artificial financial

markets, or in applications of Evolutionary Computation techniques to markets, a trad-

ing strategy is defined algorithmically, usually in a very simple fashion. In this sense,

there is no ambiguity. With an appropriate definition of trading profits one can then

determine whether such a strategy is superior as opposed to just lucky. However, such

strategies are almost inevitably tested in paper trading where neither the feasibility of

the strategy is tested nor its impact in the market.

As markets are intrinsically adaptive and traders learn this is a very strong caveat

when trying to evaluate potential performance in real market trading. A particular trad-

ing strategy has to compete against others. One that performs well may well have the

undesired effect of causing others to change their strategy so that the profits disappear.

This is, in fact, the conceptual underpinning of efficient markets theory. So, it is impor-

tant to be able to have an idea for how a given strategy might influence others. However,

we do not have access to the trading strategy of others.

To circumvent this problem we introduced the notion of a genotype-phenotype map

to finance, wherein the hidden “genotype” of the strategy was proxied using a set of

coarse grained variables associated with the “phenotype”, i.e., the observable set of buys

and sells of the strategy. We showed how data mining techniques could be used to char-

acterize trading strategies and also provide a predictive model for winning strategies.

We illustrated all of this in the context of a controlled experimental market. We showed

that the market was inefficient, in that certain traders made excess trading profits at the

expense of others in a way that was not attributable to luck. We then characterized the

winning trading strategy and created a predictive model. We saw that losing traders in

the market learned from their experience and adapted by changing their trading strategy

accordingly. This was manifest in the fact that the phenotypic characterization of their

strategy changed radically as a function of time. We also saw that this had a knock-on

effect in that the winning strategy of the most profitable traders was now no longer im-

plementable as they could no longer rely on the cooperation of the counter-parties from

whom they had previously been making profits. It takes two to tango!

We believe that the potential for reverse engineering trading strategies in financial

markets as we have shown here is an important potential application for data mining

techniques. We also believe that these results should be taken as a cautionary tale for

those who would like to believe that finding winning trading strategies by paper trading

is an indication of how well the strategy will perform in a real market.
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Summary. This chapter studies financial bubbles by incorporating a learning effect into the co-

ordination game model which was articulated by Ozdenoren and Yuan [36]. Monte Carlo simula-

tion is then utilised to analyse how the addition of a learning effect impacts upon the investment

decision of informed investors as well as the formation of the aggregate investment. The simula-

tion exercise demonstrates that both the learning effect and the feedback effect contribute to price

multiplicity with price multiplicity observed when informed investors have more precise private

information. The analysis emphasises that the learning effect is stronger in situations where in-

formed investors act counter to the price signal and the actions of uninformed investors.

7.1 Introduction

A financial bubble (or bubble, hereafter) occurs when a set of assets are traded at higher

prices than their fundamental values and in larger volume for a period of time with a

price and volume crash then ensuing. An example of a bubble occurred in the Internet

sector during the 1998 to 2000 period. NASDAQ listed Internet stocks rose by a factor

of 3 between January 1999 and February 2000, volume also increased three-fold during

this period. Internet stocks crashed in February 2000 with volume and prices falling by

30 percent in a few days. From start to finish the Internet bubble lasted approximately

14 months. Not unexpectedly such phenomena attract many studies seeking to explain

what contributes to these price and volume patterns and how factors interplay with each

other.

Kindleberger and Aliber [28, pp. 33–46] argue that bubbles occur due to the exces-

sive optimism of speculative investors. In the past this excessive optimism is fuelled

by the self-fulfilling effects of investors’ beliefs (Flood and Garber [17]). The start of

a bubble is brought about by optimistic investors believing in a prosperous future due

to the discovery of a new market, the invention of a new technology or other similar

positive information suggesting that significantly higher returns can be made relative to

that available from contemporary investments. Such positive expectations encourage in-

creases in both price and volume. When prices subsequently falter a mass exodus from

the market ensues resulting in both a price and trading volume crash. Kindleberger and

Aliber [28] suggest that bubbles tend to be associated with laxity of credit standards

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 117–135.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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and ethical restraints and ‘the implosion of an asset price bubble always leads to the

discovery of frauds and swindles’. This then begs the question why do bubbles emerge

and grow without investor fear?

Morris and Shin [30] took the view that self-fulfilling beliefs’ studies were of limited

benefit to policy makers as this explanation of financial bubbles does not provide an

answer to the question of how beliefs are formulated. They argue that price-multiplicity,

which happens whenever multiple equilibrium prices occur with a given market supply,

in traditional equilibrium models is too simple as it does not explain the role played

by information in forming the crises. On the other hand, coordination game theory in

which the participants benefit most when taking the same actions or not at all, might be

helpful as an explanation of such circumstances (see Cooper [9]). Morris and Shin [30],

too, address the issue of price multiplicity and combine findings from the coordination

of market participants by Carlsson and van Damme [7] and the rational expectation

equilibrium model of Grossman and Stiglitz [20] and Hellwig [22] to formulate a global

game theoretical model. Studies, including Angeletos and Werning [2] and Ozdenoren

and Yuan [36], have applied and extended this model to analyse bubble-like investor

behaviours in different situations, such as the foreign exchange markets and in the case

of bank runs.

A general observation in markets is that informed investors tend to take the actions

and indeed manipulate the actions of uninformed investors when the former make in-

vestment decisions. Such manipulation may lead uninformed investors to overestimate

market sentiment and make incorrect investments. A situation such as this may occur

in scenarios in which insider trading or other facets of corporate misconduct are preva-

lent. By augmenting the baseline model formulated by Ozdenoren and Yuan [36], we

demonstrate how investor decision making and market equilibrium can be affected by

corporate misconduct.

From our simulation analysis of investing behaviour, we find that the market is more

volatile when informed investors are more pessimistic about the investment intentions

of uninformed investors and also in the situation where informed investors are more

confident about the precision of their information.

The remainder of this chapter is organised as follows. In Sect. 2, the finance literature

pertaining to bubbles is discussed. In Sect. 3 the proposed modelling approach with

rational expectation equilibrium (REE) is explained. In this section we also present a

rational expectation model with a learning effect extension (REE-LE) where informed

investors learn from the behaviour of other investors. Based upon the baseline model

of Ozdenoren and Yuan [36] we develop a new model which describes how informed

investor’s rational guess at the demand of uninformed investors affects market demand.

In Sect. 4 the simulation results of the learning effect extension are presented. Sect. 5

concludes the chapter.

7.2 Literature Review

Several attempts at defining financial bubbles have been made. For instance, Kindle-

berger [27, p.16] defines a bubble as a rising price movement over a period of time which

then explodes. Shiller [40] concludes that the term is best thought of as referring to
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a situation in which news of price increases spurs investor enthusiasm which

spreads by psychological contagion from person to person, in the process am-

plifying stories that might justify the price increase and bringing in a larger

and larger class of investors, who, despite doubts about the real value of the

investment, are drawn to it partly though envy of other’s successes and partly

through a gambler’s excitement.

However, empirical research on bubbles tends to focus upon a certain bubble or disas-

ter and in consequence a precise definition may not be critical. Duckenfield [15] and

Kindleberger and Aliber [28] provide an overview on a wide range of bubbles and sub-

sequent crashes from a historical perspective.

Various explanations are put forward as to the cause of bubbles. For example, rational

expectation bubbles (Blandhard and Watson [3], and Flood and Garber [16]), sunspot

(or external uncertainty) (Cass and Shell [8]), irrational speculation (or famously ‘ir-

rational exuberance’) (Shiller [37, 40]), risk-shifting between financial institutions and

agents (Allen and Gale [1]), government conspiracy (Thompson and Hickson [42]),

self-fulfilling effects (Cutler et al. [10], Flood and Hodrick [18], Subrahmanyam and

Titman [41], and Morris and Shin [30]), herd behaviour (Camerer [5], De Long et al.

[14], and Shiller [39]), feedback effects from price to return (Shiller [38, 40]), variation

in stock supply (Hong et al. [25] and Ofek and Richardson [35]), information asymme-

try (Grossman [19] and Grossman and Stiglitz [20]), and coordination (Angeletos and

Werning [2], Camerer [5], Morris and Shin [30, 33], and Ozdenoren and Yuan [36]).

It must, however, be stressed that each explanation as to the cause of bubbles tends to

have resonance for specific kinds of bubbles and may not offer a general explanation

for all. Camerer [5] classifies bubbles under three headings

1. fundamental bubbles,

2. fads, and

3. information bubbles.

The fundamental viewpoint, as articulated by Blanchard and Watson [3], Flood and

Garber [16], and Hahn [21], analysed bubbles by assuming that assets and agents have

unlimited life. However, in the real world, the life time of assets and agents are not

infinite. Sunspot theory attempted to explain fundamental bubbles in terms of external

uncertainties. Hong et al. [25] and Ofek and Richardson [35] argue that the Internet

bubble was an example of a fundamental bubble and was caused by variation in stock

supply. They maintain that the expiry of the insider lockup period of Internet companies

flooded NASDAQ with excess stocks from insiders. It must be emphasised, however,

that this branch of research tends to be focused on a specific bubble. More specifically,

stock supply variation can help explain the Internet bubble but may not have general

applicability for all bubbles. Hong and Stein [26] take the view that the Internet bubble

might well be better classified as a ‘fad’. They suggest that the increase supply of Inter-

net stocks occurred because of a change in the confidence of investors which to some

extent was triggered by their heterogeneous beliefs. Information bubbles may also be

caused by the heterogenous beliefs of investors which in turn may cause prices to de-

viate from their fundamental value. One example of an information bubble in action is
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that of a rumour significantly impacting upon price with price eventually returning to a

fundamental value when the rumour is proved unfounded.

In response to the causes of fads and information bubbles feedback effect, that is

where the expected cash flows are affected by its market price (Subrahmanyam and

Titman [41]), attracts significant attention. Feedback effects are seen in economics, for

example, between income and anticipated saving (Campbell [6]), Keynes’ general the-

ory assumes this relationship to be linear. Feedback effects have also been demonstrated

to exist in stock markets (De Long et al. [14], Hirshleifer et al. [24], and Subrahmanyam

and Titman [41]), and in currency and futures markets (Cutler et al. [10]). The feedback

effect has been analysed in terms of the role of speculative informed investors, unin-

formed investors and irrational investors.

In stock markets, the feedback effect contributes to high volatility (Shiller [40]) and

forms a backward-bending demand curve (Yuan [44]). Moreover, feedback usually oc-

curs in conjunction with herd behaviour (Camerer [5]). Subrahmanyam and Titman [41]

regard the feedback effect as a network externality or complementarity (Bulow et al. [4])

among stakeholders, because higher return can be attained when more investors are in-

volved. Moreover, self-fulfilling beliefs, which lead to coordination, between investors

are attached to the formation of the feedback effect (Cutler et al. [10], Morris and Shin

[30, 32], and Subrahmanyam and Titman [41]). It is intuitively easy to understand that

people act based on their beliefs and the investment decision is the best indicator of

the beliefs of investors. With network externalities, the more investors coordinate the

more they benefit from their investment (Camerer [5], De Long et al. [14], and Subrah-

manyam and Titman [41]) and thus in our examination of feedback effects we should

concentrate on the coordination behaviour of investors.

With insight from coordination game theory, in which players in a game benefit most

from investment simultaneously, Carlsson and van Damme [7] developed global game

theory by introducing a noise term into the payoff structure. The noise in their model is

a random variable drawn from a given set of incidents and it seems that the situation is

more relevant to the real world. Moreover, Morris and Shin [31, 32, 33] argue that the

uncertainty of beliefs and multi-equilibrium can be seen as a result of two modelling

assumptions in traditional models. The two assumptions are a common knowledge of

fundamentals and that economic agents are certain about the behaviour of other agents

in equilibrium. In this way, Morris and Shin extend the global game by making the in-

complete information spread over a distribution, for instance, the normal distribution.

This body of work has been further developed and extended by authors such as Angele-

tos and Werning [2], Morris and Shin [34], and Ozdenoren and Yuan [36].

An important element to the feedback effect is that of a learning effect. Observation

suggests that informed investors may learn or guess the aggregate demand of uninformed

investors according to experience (Tversky and Kahneman [43]) or learning (Morris

[29]) from historical information. The learning effect in conjunction with the feedback

effect within the coordination game can cause price to deviate from its fundamental value

as in Daniel et al. [11]. In this study, the lagged response was due to an irrational invest-

ment decision centred around a failure to respond immediately to price changes. Taking

these factors together, our objective is to answer the question ‘to what extent does in-

vestor behaviour affect the feedback effect and the equilibrium in a bubble’.
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7.3 Rational Expectation Equilibrium with Learning Effect

(REE-LE)

In this section, by applying the feedback modelling approach with the coordination

game of Ozdenoren and Yuan [36] we propose a Rational Expectation Equilibrium

model with learning effect (or REE-LE, hereafter) to describe how informed investors’

rational guess at the demand of uninformed investors affects the market demand. In this

model, uninformed investors behave innocently, while the informed determine their

investment based on their private information, the fundamental value of the innovation,

and an expectation of the demand of the uninformed.

Based on the Rational Expectation Equilibrium (REE) model of Grossman and

Stiglitz [20] and Hellwig [22] as well as the global game theory developed by Carlsson

and van Damme [7] and Morris and Shin [30, 31, 32, 33], Ozdenoren and Yuan [36]

create a one-stage model to explain how information affects the equilibrium of a mar-

ket composed of informed and uninformed investors. In the model setting of REE, two

kinds of assets and two types of traders are introduced. The informed investors who

have private information about the return on the risky asset which then enables them

to have an advantage over uninformed investors. The information technology, i.e. pri-

vate information, used by the informed traders comes with noise and makes the price

of the risky asset follow a normal distribution over a certain range. Investors are as-

sumed to maximise their expected trading utility which is assumed to have a coefficient

of absolute risk aversion identified as ρ (see, for instance, Hirshleifer and Riley [23, pp.

83–88]). On the other hand, uninformed investors receive public information, i.e. the

market price, as their investment guidance.

In a global game, the decision making of players is correlated which makes the pay-

offs of every player depend on the decision of other participants (Carlsson and van

Damme [7]). Morris and Shin improve the global game model by injecting a noise into

the game and make the payoff of each participant in a game distribute over a range.

Through calculating the indifference curve, or the signal function, of the decision mak-

ers, the individual and market demand curves can be derived.

The signal setting of Ozdenoren and Yuan [36] is based on the work of Angeletos and

Werning [2] and Morris and Shin [34]. Angeletos and Werning [2] have introduced an

endogenous public signal into a global game model and find price multiplicity is robust

in a separate market. Morris and Shin [34] find that private signals carry more infor-

mation than public signals. However, Ozdenoren and Yuan [36] found that the trade-off

between cost and incentive of coordination moderates the strategic complementarities.

The effect of strategic complementarities is further debilitated by the prediction be-

haviour of informed investors in our model.

We introduce the investor learning effect as an adjustment to the baseline model of

Ozdenoren and Yuan [36]. Whenever an informed investor has a motivation to earn

a learning premium (Morris [29]), she would like to guess or predict the behaviour

of uninformed investors before making any decision. So, it makes sense to model the

informed investor as having a ‘rational guess’ about the demand of the uninformed and

the aggregate demand can be determined by adding the demand of the two parties. Our

simulation results show that no matter whether the prediction is correct or not, this

behaviour reduces both price multiplicity and strategic complexities.
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7.3.1 Assets

Consider an economy with one risk-free bond and one risky asset. The risk-free bond

works as a numéraire and its price is always one and the risk-free rate is zero. The risky

asset has an aggregate supply of M > 0 and its risky terminal payoff is

Ṽ + f (X, θ̃).

In the payoff function, Ṽ stands for the payoff from the regular operation of the com-

pany without R&D. We let Ṽ equal V̄ +σvǫ̃v, where σv is a positive constant, and ǫ̃v
is standard normal (with zero mean and unit standard deviation). In this study, we de-

fine V̄ = 0 for convenience. It should be noted that our results can be extended to cases

whenever V̄ � 0. f (X, θ̃) denotes the stochastic payoff from innovation, where X is the

amount invested by informed investors in the risky asset and θ̃ is the fundamental value

of the innovation with a uniform distribution over a range of real numbers. We assume

f (X, θ̃) is positively related to X and θ.

The feedback effect from the demand to the terminal value is captured in f (X, θ̃). As

highlighted by Ozdenoren and Yuan [36] ‘if managers learn from informed investors in

making real investment decisions, then their decisions, and in turn the terminal value

of the risky asset, will be affected by the investment from informed investors, X, which

aggregates heterogenous private information from informed investors’.

7.3.2 Investors

There are two types of investors, namely, informed and uninformed investors. Informed

investors belong to a measure-one continuum, indexed by i ∈ [0,1]. They employ an in-

formation technology: s̃i = θ̃+ βE[L]+σsǫi, where s̃i is the noisy private signal being

observed at time 0 about θ̃, β is the learning factor informed investors rationally guess

of the demand of uninformed investors, which is denoted by L, and ǫ̃i is assumed to be

uniformly distributed on [−1,1] with density h, and σs is a standard normal distribu-

tion with mean 0 and precision 1. The learning effect is assumed to be linear to signal

for simplicity. Conditional on θ̃, noisy private signals, s̃, are independently identically

distributed across informed investors.

The amounts traded of the informed investment is assumed to be restricted to x(i) ∈

[0,z], where z is a fixed number and z ≥ 1. This position limit is adapted to represent

the fact that informed investors may face capital or borrowing constraints. The utility

of informed investors from buying k ∈ [0,z] units of the asset is k
(

f (X, θ̃)− P
)

, where

f (X, θ̃) is the dividend payoff from the asset and P is the price of the asset. As informed

investors are risk neutral, they invest either up to the position limit of z or zero. The

aggregate demand of the informed investor, X, is the sum of the position of all informed

investors, that is: X =
∫ 1

0
x(i)di. Uninformed investors belong to a measure-w continuum

and apply a mean-variance strategy with risk aversion parameter, ρ. Their demand is

L(P) =
w(E[Ṽ]−P)

ρVar(Ṽ)

=
E[Ṽ]−P

λ
, (7.1)
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where λ is the slope of this uninformed demand curve. Finally, the noisy demand is

assumed to be σyy and represents a noisy shock in the market. This shock represents

the information aggregation process and prevents the market-clearing price from fully

revealing the fundamentals (Grossman and Stiglitz [20]). In the noisy shock, σy > 0 and

ỹ is a standard normal random variable independent of ǫ̃v, θ̃, and ǫ̃i for every i.

7.3.3 Equilibrium

The market equilibrium is defined as:

Definition 7.1 (Equilibrium). An equilibrium includes: (1) a price function: P(θ̃, ỹ),

(2) strategies: π(s̃i,P) : R→ [0,1], and (3) the corresponding aggregate demands, L(P)

and X(P, θ̃), such that:

· Informed investor i: π(s̃i,P) ∈ argmaxπ zπE[ f
(

X(P, θ̃), θ̃
)

−P|s̃i = si,P]

· Uninformed investor: L(P) = ω(E[Ṽ ]−P)

ρVar(Ṽ)
=

E[Ṽ ]−P
λ

· The market clearing condition: X(P, θ̃)+ L(P)+σyỹ = M

The information technology which enables informed investors to learn is s̃i = θ̃ +

βE(L)+σsǫ̃i, where ǫ̃i is uniformly distributed on [−1,1]. Informed investors react to

the potential aggregate demand of uninformed investors by increasing their threshold

by βE(L), where E(L) is the estimate of L by informed investors adjusted by a parameter

β. The monotone equilibrium with cutoff strategies is met when π(s̃i,P) = 1 if s̃i ≥ g(P)

for some function g(P), and π(s̃i,P) = 0 otherwise. The investment of the informed in-

vestor i occurs only when her private signal, s̃i is greater than or equal to a specific

threshold, g(P), and vice versa. M is the supply of the risky asset.

Assuming that all informed investors conform to a cutoff strategy; in other words, they

purchase iff s̃i = θ̃+ βE(L)+σs ǫ̃i ≥ g(P), or equivalently, ǫ̃i ≥
(

g(P)− θ̃− βE(L)
)

/σs.

According to the relative strength of s̃i and g(P), there are three possible positions an

informed investor might hold. First, all informed investors will hold a position z when

the signal received is definitely stronger than their cutoff strategy, i.e. θ̃+βE(L) > g(P)+

σs. Second, investors will withdraw when the signal is too weak, when θ̃+ βE(L) <

g(P)−σs. Finally, when g(P)−σs ≤ θ̃+ βE(L) ≤ g(P)+σs, the proportion of invested

investors with position z is
(

1−
(

g(P)− θ̃−βE(L)
)

/σs

)

/2. The monotone equilibrium of

informed investors with learning is

X
(

P, θ̃
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 if θ̃+βE(L) < g(P)−σs

z
2

(

1−
g(P)−θ̃−β(L)

σs

)

if g(P)−σs ≤ θ̃+βE(L) ≤ g(P)+σs.

z if θ̃+βE(L) > g(P)+σs

(7.2)

Uninformed investors’ aggregate demand L(P) is substituted into the market clearing

condition. Under the assumption of REE, E(L) = L, the price becomes

P = λX+λσyỹ−λM, (7.3)

where λ = (ρVar(Ṽ))/w is the price impact of a marginal aggregate demand change.

Substitute Eq. 7.3 into Eq. 7.2, and the market clearing prices become
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P =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λσyỹ−λM if θ̃ < g(P)−σs−βL
2σs

zβ+2σs

( zλ
2 (1−

g(P)−θ̃
σs

)+λσyỹ−λM
)

if g(P)−βL−σs ≤ θ̃ ≤

g(P)−βL+σs

λz+λσyỹ−λM if g(P)+σs−βL < θ̃

(7.4)

In the second part of Eq. 7.4, a statistic of θ̃ can be derived

τ ≡
(2σs+β

zλ
P+

2σs

z
M+g(P)−σs

)

= θ̃+
2σyσs

z
ỹ, (7.5)

which is a normal distribution with mean θ and standard deviation 2σyσs/y.

The statistic τ is a public signal the same as the statistics in Ozdenoren and Yuan

[36] with the same precision and mean. This means that τ is endogenous and is not

affected by private information or the expectation of informed investors. With τ and

the following monotone equilibrium condition, we can derive the cutoff strategy of in-

formed investors. The cutoff strategy can be characterised by the following proposition

as in Ozdenoren and Yuan [36].

Proposition 7.1 (The Monotone Equilibrium of Informed Investors). The equilib-

rium described in Definition 1 can be characterised as:

· informed participants’ unique monotone equilibrium strategy: there is a unique

function g : R→ R such that informed investors’ equilibrium strategies are given by

π(s̃i,P) = 1 if si ≥ g(P)

· informed investors’ aggregate demand, X(P, θ̃), can be uniquely determined by Eq.

7.2 and uninformed investors’ demand can be uniquely defined by L(P) =
(

E[Ṽ]−P
)

/λ,

given a market clearing price P and any monotone equilibrium

· the market equilibrium price P(θ̃, ỹ) satisfies Eq. 7.4.

Proposition 1 identifies the uniqueness of the demand at a given price from informed

investors based on a given fundamental situation. The multiplicity of equilibrium prices

only occurs when Eq. 7.4 has multiple solutions at a given demand investment. This

region is the backward-bending region, in which higher stock price attracts more in-

vestment, in Ozdenoren and Yuan [36]. The next subsection details the equilibrium of

the cutoff strategy and the aggregate demand of a linear payoff-demand-risk relation-

ship.

7.3.4 The Cutoff Strategy and the Aggregate Demand

The cutoff strategy function must be determined before the aggregate demand can be

calculated. To demonstrate the effect of the learning factor on the equilibrium demand

and on the feedback effect without losing generality, the dividend function with feed-

back effect is defined as f (X, θ̃) = αX + θ. The following lemma, as detailed in Ozde-

noren and Yuan [36] describes informed investors’ equilibrium strategy.

Lemma 7.1 (Equilibrium Cutoff Strategy of Informed Investors). The equilibrium

cutoff strategy, g(P), is unique in the region when the fundamental cannot determine the

equilibrium with dividend payoff function f (X, θ̃) = αX+ θ, is:
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g(P) = P+σs− (α+
2σs

z
)
(P

λ
+

(1− z)βP

2λσs

+M−

σyE[u|
P
λ
+M+

(1−z)βP
2λσs

− z

σy

≤ u ≤

P
λ
+M+

(1−z)βP
2λσs

σy

]
)

. (7.6)

From Eq. 7.6, the aggregate demand can be detailed as follows.

Lemma 7.2 (Aggregate Demand with Learning Effect). The aggregate demand with

signal in Lemma 1 can be calculated by adding the aggregate demands of informed

investors, X(P, θ̃), and uninformed investors, L(P), as:

AD
(

P, θ̃
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− P
λ

if θ̃+βE(L) < g(P)−σs

z
2

(

1−
g(P)−θ̃+

βP
λ

σs

)

− P
λ

if g(P)−σs ≤ θ̃+βE(L) ≤ g(P)+σs.

z− P
λ

if θ̃+βE(L) > g(P)+σs

(7.7)

7.4 The Simulation Results

This section presents the simulation results of the learning effect extension. The learning

effect simulations are conducted using the Monte Carlo technique with both 50 and 200

repetitions. Simulation results are obtained for both and are similar, hence we only

report result for 50 repetitions.

The Learning Effect Equilibrium

Ozdenoren and Yuan [36] define the cut-off strategy as the situation where the informed

investor is indifferent between making the investment decision and deciding not to in-

vest. Based on Eq. 7.6 and Eq. 7.7, the cutoff functions and the aggregate demands with

learning effect are simulated. The experiment results of cutoff functions are depicted in

Fig. 7.1 and the aggregate demands in Fig. 7.2.

In Fig. 7.1, the valid range of the cutoff function expands and becomes flatter as β in-

creases. This implies that the more confident informed investors are that the uninformed

will follow their investment strategy, then the smaller is the required signal variation to

encourage informed investors to make the investment decision. In essence, this empha-

sises that informed investors are more optimistic about market outcomes and take more

aggressive investment decisions when they expect more uninformed investors to follow

the same strategy. Of course, the contrary also applies with informed investors being

more cautious and needing more precise information when they expect the uninformed

not to follow their actions, i.e. β is smaller.

As depicted in the signal function, aggregate demand decreases and price falls as

β increases. In Fig. 7.2 the aggregate demand shrinks and becomes more elastic with

higher values of β. When the expectation of informed investors is that demand by unin-

formed investors is likely to be higher then the aggregate demand for the stock will be

lower at each and every price. Having made this point, it is also evident from Fig. 7.2

that the price multiplicity range is largest when β is negative. This implies that when
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Fig. 7.1. Equilibrium cutoff strategies with learning effect. This figure shows that the cutoff strat-

egy values with different private signals under β ∈ {−1,−0.75,−0.5,−0.25,0,0.25,0.5,0.75,1}.

The signals of informed investor are more precise (σs = 20), less precise (σs = 60), and very

noisy (σs = 600), respectively. The parameters are σy = 4,α = 2,z = 20,λ = 1, and M = 1. The

above diagrammatic representations illustrate that the cutoff strategy curve expands as β gets

larger. The signal strength ranges of the cut-off strategy are more condensed as the precision of

private information increases. The X-axes represent the price of the risky asset and the Y-axes are

the signal strength. Note that the signal range is from -200 to 200.
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Fig. 7.2. Aggregate demand with learning effect. The simulated demand curves are depen-

dent upon the learning factor β ∈ {−1,−0.75,−0.5,−0.25,0,0.25,0.5,0.75,1} and three differ-

ent precision values of the private signal available to informed investors, that is more precise

(σs = 20), less precise (σs = 60), and very noisy (σs = 600), respectively. The parameters are

σy = 4,α = 2,z = 20,λ = 1, and M = 1. The diagrammatic representation demonstrates that price

multiplicity is more apparent the smaller the value of β. The demand curves also expands and

becomes flatter as β increases.
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informed investors are less confident of the actions of uninformed investors there is a

greater spread of potential equilibrium prices. It is also the case that when the private

signal, s̃i, is more precise, price multiplicity is more pronounced. This finding shows

that a bubble, which happens when the economy is more prosperous with price multi-

plicity, is more prominent when informed investors act counter to uninformed investors.

The Feedback Effect

On the other hand, the range of cutoff signals expands as σs increases as less precise

private information makes it difficult for the informed investor to make a decision based

on private information. Ozdenoren and Yuan [36] argue that when private information is

precise, the information effect on the stock price will be more pronounced. This makes

market demand more volatile and in consequence there are multiple market equilibrium

prices for any given level of investment.

7.5 Conclusion

Financial bubbles exist when demand in the market is high and there is a high proba-

bility of price multiplicity. From the above discussion, we find that both the learning

effect and the feedback effect contribute to price multiplicity. The manner in which

they impact upon price multiplicity is, however, different. Price multiplicity is observed

when informed investors have a higher feedback effect, that is when informed investors

have more precise private information. However, the learning effect characterised by

β is strong when informed investors act counter to the price signal. An example is

the situation where informed investors endeavour to profit by manipulating price in an

opposite direction to that suggested by the private information available to them, unin-

formed investors follow their actions, prices rise and the informed offload the stock and

make profit at the expense of the uninformed investor. On the other hand, the aggregate

demand is higher when private information is more precise and the learning effect is

negative.

The experiments also show that the learning effect makes the market depressed when

the learning effect is very prominent, especially when the private information obtained

by informed investors is with higher precision. This could be due to a stronger substi-

tute effect mitigating the learning effects and the feedback effects (Ozdenoren and Yuan

[36]). Another explanation for the less persuasive impact of the learning effect might be

that of investor coordination where all members can profit by adopting the same invest-

ment strategy. This is similar to the scenario where all investors can make a profit in a

period of high confidence and prosperity. However, as the market supply is not elastic in

our model, the aggregate demand is not able to reflect the corresponding coordination

effect.

The cross-effect between the learning effect and the feedback effect is not considered

in this analysis, however, this may be an important future development as it may provide

insight to phenomena such as the relationship between feedback and herd behaviour. A

further extension of the model may be found within the general area of behavioural fi-

nance. For instance, Shiller [39] maintained that group thinking and irrational behaviour

may cause bubbles. De Bondt [12, 13] suggest that under- and over-reaction contributes
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to information bubbles. De Bondt argues that investors tend to overreact when making

a decision based on their own belief but under-react to immediate and large price fluc-

tuations. Incorporating insights from the work of these authors in behavioural finance

coupled with the learning effect introduced in the present model may result in improved

models and consequently a better understanding of financial bubbles.
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A Appendix

A.1 Proof of Proposition 1

In the proof of this proposition, the notation θ refers to θ̃, and L to L(P). To check

the monotonicity of the informed strategy, the informed conditional expectation with

learning of the risky asset’s dividend payoff is expressed as the equation

∫ ∞

−∞
f
(

X(P, θ), θ
)

h(θ|s,P)dθ = (7.8)

∫ g(P)−σs−βL

−∞

f
(

X(P, θ), θ
)

h(θ|s,P)dθ+

∫ g(P)+σs−βL

g(P)−σs−βL

f
(

X(P, θ), θ
)

h(θ|s,P)dθ̃+

∫ ∞

g(P)+σs−βL

f
(

X(P, θ), θ
)

h(θ|s,P)dθ,

where s is the private signal with learning parameter β, price P, and the density function

h(θ|s,P) of θ̃ conditional on s̃ = s and P. First, the first term on the right hand side of

the Eq. 7.8 can be broken into the following equation by Bayes rules
(

i.e. f (x,y) =

f (x|y) f (y)
)

∫ g(P)−σs−βL

−∞
f
(

X(P, θ), θ
)

h(θ|s,P)dθ

= Pr
(

θ < g(P)−σs−βL|s,P
)

∫ g(P)−σs−βL

−∞
f
(

X(P, θ), θ
)

h
(

θ|s,P, θ < g(P)−σs−βL
)

dθ.

As θ ∈ [s−σs, s+σs],

Pr
(

θ < g(P)−σs−βL|s,P
)

=
min{s+σs,g(P)−σs−βL}− (s−σs)

2σs

,

under the assumption that g(P) > s−σs. Furthermore, price is uninformative about θ in

this range by Eq. 7.4, the posterior is uniform, and the pdf is

h
(

θ|s,P, θ < g(P)−σs−βL
)

=
1

min{s+σs,g(P)−σs−βL}− (s−σs)

Then,

∫ g(P)−σs−βL

−∞
f
(

X(P, θ), θ
)

h(θ|s,P)dθ

=
1

2σs

∫ min(s+σs ,g(P)−σs−βL)

s−σs
f
(

X(P, θ), θ
)

dθ.

With the same rule, the second term in Eq. 7.8 can be expressed as
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∫ g(P)+σs−βL

g(P)−σs−βL
f
(

X(P, θ), θ
)

h(θ|s,P)dθ

= Pr
(

g(P)−σs−βL ≤ θ ≤ g(P)+σs−βL|s,P
)

∫ g(P)+σs−βL

g(P)−σs−βL
f
(

X(P, θ), θ
)

h
(

θ|s,P,g(P)−σs−βL ≤ θ ≤ g(P)+σs−βL
)

dθ.

Let

τ ≡
(2σs+β

zλ
P+

2σs

z
M+g(P)−σs

)

.

As in Eq. 7.5, τ = θ+ (2σsσy/z)y is a sufficient statistic for the clearing price, P. Then

the density function in this area is

h
(

θ|s,P,g(P)−σs−βL ≤ θ ≤ g(P)+σs−βL
)

= h
(

θ|s, τ,g(P)−σs−βL ≤ θ ≤ g(P)+σs−βL
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ( θ−τ
2σsσy/z

) z
2σsσy

∫

[s−σs ,s+σs]∩[g(P)−σs−βL,g(P)+σs−βL]
φ( θ−τ

2σsσy/z
) z

2σsσy
dθ

if θ ∈ [s−σs, s+σs]∩

[g(P)−σs−βL,g(P)+

σs −βL]

0 otherwise

So,
∫ g(P)+σs−βL

g(P)−σs−βL
f (X(P, θ), θ)h(θ|s,P)dθ

=
‖[s−σs ,s+σs]∩[g(P)−σs−βL,g(P)+σs−βL]‖

2σs

∫

[s−σs ,s+σs ]∩[g(P)−σs−βL,g(P)+σs−βL]
f (X,θ)φ( θ−τ

2σsσy/z
)( z

2σsσy
)dθ

∫

[s−σs ,s+σs ]∩[g(P)−σs−βL,g(P)+σs−βL]
φ( θ−τ

2σsσy/z
)( z

2σsσy
)dθ

.

Finally, the third term on the right hand side of Eq. 7.8 is
∫ ∞

g(P)+σs−βL
f
(

X(P, θ), θ
)

h(θ|s,P)dθ

=
1

2σs

∫ s+σs

max
(

s−σs,g(P)+σs−βL
) f
(

X(P, θ), θ
)

dθ.

To solve the cutoff strategy, we assume that s = g(P) is the cutoff signal a agent feels

indifferent in investing or not. To this agent, the first term in the right hand side of Eq.

7.8 is

−
1

2σs

∫ s−σs

s−σs−βL

f
(

X(P, θ), θ
)

dθ, (7.9)

and the third term in the same equation is

1

2σs

∫ s+σs

s+σs−βL

f
(

X(P, θ), θ
)

dθ. (7.10)
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Since risky returns should be positive so that the dividend payoff ( f ) is monotonic

increasing, and the summation of Eq. 7.9 and 7.10 is positively related to βL. However,

fundamental value largely determines the investment strategy in these two areas such

that Eq. 7.9 and 7.10 is small and can be neglected.

The indifference condition in the second term in Eq. 7.8 becomes

P
′
=

∫ g(P)+σs−βL
g(P)−σs−βL

f
( z

2 (1− g(P)−θ−βL
σs

), θ
)

φ( θ−τ
2σsσy/z

)dθ
∫ g(P)+σs−βL

g(P)−σs−βL
φ( θ−τ

2σsσy/z
)dθ

,

where P
′ ≃ P when the magnitude of Eq. 7.9 and 7.10 is small and they are monotonic.

Assume that a value of κ = g(P)−βL satisfies the indifference condition, such that

P
′
=

∫ κ+σs

κ−σs
f
( z

2 (1− κ−θ
σs

), θ
)

φ
( θ−κ− 2σs+β

λz P− 2σs
z M−βL+σs

2σsσy/z

)

dθ

∫ κ+σs

κ−σs
φ
( θ−κ− 2σs+β

λz P− 2σs
z M−βL+σs

2σsσy/z

)

dθ

.

With a change of variables, x = θ−κ
σs

, the above equation becomes

P
′
=

∫ 1

−1
f ( z

2 (1+ x), κ+σsx)φ(
x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

∫ 1

−1
φ(

x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

. (7.11)

According to the definition of the payoff function, f (X, θ) is increasing in θ. This func-

tion is also increasing in κ for a given P, such that the right hand side of the Eq. 7.11 is

increasing in κ if only if

∫ 1

−1

φ(
x− 2P

λz
− βP

λzσs
− 2M

z
− βL
σs
+1

2σy/z
)dx > 0,

which is definitely true according to the definition of a normal distribution. We have

shown that in the uncertain region of the investing strategy, for a given P, there exists

a unique signal, κ, which makes investors indifferent between investment or not. Fur-

thermore, as the payoff function, f (X, θ), is increasing in the fundamental value, θ, f is

strictly positive when s > κ and strictly negative if s < κ. Hence, an informed investor

purchase only when she receives a signal exceeding g(P).

A.2 Proof of Lemma 1

At first, we ignore the first and the third region in Eq. 7.8 and ignore the difference

between P and P′ in the first stage for simplicity, then take these two conditions into

consideration afterwards. Substitute f (X, θ) = αX + θ = (αz
2 +σs)x+ αz

2 + κ as the same

change of variable in Eq. 7.11, we obtain

P
′
=

∫ 1

−1
(αz

2 +σs)xφ(
x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

∫ 1

−1
φ(

x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

+ (
αz

2
+ κ).
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After rearranging the terms, the cutoff strategy function becomes

g(P) = κ+βL = P′−
αz

2
+βL−

∫ 1

−1
(αz

2 +σs)xφ(
x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

∫ 1

−1
φ(

x− 2P
λz −

βP
λzσs
− 2M

z −
βL
σs
+1

2σy/z
)dx

.

With a change of variables u =
2P′

λz +
βP′

λσsz+
2M

z +
βL
σs
−1−x

2σy/z
, and rearrange the above equation

to obtain the cutoff strategy

g(P) = P′−
αz

2
+βL− (7.12)

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

(αz
2 +σs)(

2P′

λz
+
βP′

λzσs
+

2M
z
+
βL

σs
−1−

2uσy

z
)φ(u)du

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

φ(u)du

= P′+σs +βL− (
αz

2
+σs) (7.13)

(
2P′

λz
+
βP′

λzσs

+
2M

z
+
βL

σs

−

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

2uσy

z
φ(u)du

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

φ(u)du

)

= P′+σs +βL− (α+
2σs

z
) (7.14)

(
P′

λ
+
βP′

2λσs

+M+
zβL

2σs

−σy

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

uφ(u)du

∫

P′

λ
+
βP′

2λσs
+M+

βzL
2σs

σy

P′

λ
+
βP′

2λσs
+M+

βzL
2σs
−z

σy

φ(u)du

)

= P′+σs +βL− (α+
2σs

z
)(

P′

λ
+
βP′

2λσs

+M+
zβL

2σs

−

σyE[u|

P′

λ
+M+

βP′

2λσs
+
βzL

2σs
− z

σy

≤ u ≤

P′

λ
+M+

βP′

2λσs
+
βzL

2σs

σy

]). (7.15)

If the two extreme regions are taken into consideration, with the assumption of ratio-

nal expectation that market equilibrium equals the asset’s dividend payoff and Eq. 7.8

becomes
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P =
1

2σs

(

∫ s+σs

s+σs−βL

(αX+ θ)dθ−

∫ s−σs

s−σs−βL

(αX+ θ)dθ
)

+P
′

, (7.16)

when f
(

X(P, θ), θ
)

= αX+ θ. Then Eq. 7.16 is rearranged as

P =
1

2σs

(βLαX−βLαX+
1

2
θ2 |

s+σs

s+σs−βL
−

1

2
θ2|

s−σs

s−σs−βL
)+P

′

=
1

4σs

(

(s+σs)
2− (s+σs−βL)2− (s−σs)

2
+ (s−σs−βL)2)

+P′

=
1

4σs

(

(s+σs− s−σs+βL)(s+σs+ s+σs−βL)−

(s−σs− s+σs+βL)(s−σs+ s−σs−βL)
)

+P′

=
1

4σs

(4σsβL)+P
′

= βL+P
′

(7.17)

After adjusting Eq. 7.15 by applying Eq. 7.17, a change of variables u =
2P
λz +

βP
λσsz+

2M
z +

βL
σs
−1−x

2σy/z
, and the equilibrium condition L = − P

λ
, we obtain

g(P) = P(
λ+β

λ
)−
αz

2
−
βP

λ
−

∫

P
λ
+
βP

2λσs
+M+

βzL
2σs

σy

P
λ
+
βP

2λσs
+M+

βzL
2σs
−z

σy

(αz
2 +σs)(

2P
λz
+
βP

λzσs
+

2M
z
+
βL

σs
−1−

2uσy

z
)φ(u)du

∫

P
λ
+
βP

2λσs
+M+

βzL
2σs

σy

P
λ
+
βP

2λσs
+M+

βzL
2σs
−z

σy

φ(u)du

= P+σs− (α+
2σs

z
)
(P

λ
+

(1− z)βP

2λσs

+M−

σyE[u|

P
λ
+M+

(1−z)βP
2λσs

− z

σy

≤ u ≤

P
λ
+M+

(1−z)βP
2λσs

σy

]
)

. (7.18)
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Summary. It is essential not only for investors but for regulators to understand the mechanisms

that govern financial markets. However, financial markets are constantly evolving and are becom-

ing more complex and as a consequence more difficult to analyze and understand. Traditional

analytical methods cannot explain some of the phenomena which are present in real markets

and some of the assumptions that had to be made for the sake of tractability in such models

are over-simplistic. This opens the field to alternative methods that allow us to relax some of

the most unrealistic assumptions in order to gain a better understanding of such complex sys-

tems. Agent-based computational economics (ACE) offers a suitable alternative for the study of

financial markets. In this chapter we develop a software platform called Co-evolutionary, Hetero-

geneous Artificial Stock Market (CHASM); which allows us to perform a series of experiments

with the purpose of identifying the aspects that could be responsible for the statistical properties

(stylized facts) of financial prices. In CHASM, we model different types of traders: technical, fun-

damental and noise traders. However, we focus our research on technical traders represented as

genetic programming (GP) based agents which co-evolve in the market forecasting price changes

on the basis of technical indicators. We perform a detailed exploration of the market’s features

in order to identify the conditions under which the stylized facts emerge. Moreover, we develop

a behavioral constraint inspired by the Red Queen evolutionary principle to model endogenously

the competitive pressure of the market.

8.1 Introduction

Financial markets are essential for financial systems. Such markets represent one of the

most efficient ways to allocate financial resources into companies. However, bubbles

and crashes are recurrent phenomena and have enormous repercussions for the global

economy. In fact, nowadays we can see as never before that a crash in one market could

lead to a worldwide slump on most of the remaining stock markets. Moreover, crises in

financial markets can directly affect other aspects of the (real) economy; for example,

interest rates, inflation, unemployment, etc. These effects in turn could cause even more

instability in financial markets.

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 137–179.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Financial markets are a very important part of our everyday lives. For example, ev-

erybody suffers the consequences of a stock market crash, like the international market

crash in 1987. Moreover, this phenomena (market crashes) occur with a higher fre-

quency than is predicted by standard economic theory.

One of the most important research issues in financial markets is the explanation

of the process that determines asset prices, and as a result the rate of return. There

are many models that can be used to explain this process, including the Capital Asset

Pricing Model (CAPM), the Arbitrage Pricing Theory (APT) and the Black-Scholes

Option Pricing model.

The complexity of financial markets represents a big challenge to specialists in the

area. The traditional way of analysing such markets is via analytical models. However,

these models present some difficulties and this has led to the development of alternative

methods for the analysis of such markets. The emerging fields of Agent-based Com-

putational Economics (ACE) [101] and Computational Finance [102], provide some

means to tackle some of the limitations of analytical models in economics and finance.

The ACE approach has been successfully applied in several economic studies, varying

from macroeconomic models and payment cards markets [1, 5, 7, 54, 55]. The study

of financial markets using ACE has caught the attention of an increasing number of

researchers.

Agent-based financial markets of different characteristics have been developed for

the study of such markets in the last decade since the influential Santa Fe Artificial

Market1 [11, 63]. Some of them differ from the original Santa Fe market in the type

of agents used [23, 46, 78, 99, 110] or in the design of their market mechanisms

[12, 46, 99, 110]. Other studies borrow ideas from statistical mechanics [65, 66, 72].

Some important research has been done modeling stock markets inspired on the Mi-

nority Game2 including [17] and [20]. There are financial simulated markets in which

several stocks are traded such as [26]. However, there are some criticisms of this ap-

proach due to the problem of calibration of the numerous parameters needed for the

simulation program, the complexity of the simulation, etc.

The contradictions between existing theory and empirical properties of the stock

market returns are the main driving force for some researchers to develop and use differ-

ent approaches to study financial markets. An additional aspect on the study of financial

markets is the complexity of the analytical models of such markets. Previous to the de-

velopment of some new simulation techniques, very important simplifying (unrealistic)

assumptions had to be made in order to ensure the tractability of developed theoretical

models.

Artificial intelligence, and in particular evolutionary computation, has been used in

the past to study financial and economic problems. However, the development of a

well established community of what is now known as the Agent-based Computational

1 The Santa Fe Artificial Stock Market is a simulated stock market developed at the Santa Fe

Institute by a multi-disciplinary group of researchers including Brian Arthur, John Holland,

Blake Lebaron, Richard G. Palmer and Paul Talyer.
2 The Minority Game was first proposed by Yi-Cheng Zhang and Damien Challet [19] inspired

by El Farol bar problem introduced by Brian Arthur [10].
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Economics community facilitates the study of phenomena in financial markets that was

not possible in the past.

The influential work of Arthur [11] and previously the development of the concept

of bounded rationality [8, 96, 97, 98] and [10], changed the way in which we think of

economic agents. No longer do we think of agents as being fully rational or as being

homogeneous in their expectations and information symmetry.

Our approach to the modeling of artificial stock markets is different to the above

mentioned approaches mainly with regard to the strategic behavior of the agents. We

use a very simple market mechanism and sophisticated agents, given that our aim is to

study the co-evolution of a group of genetic programming-based agents and the con-

sequences of price changes on the agents’ strategic behavior. We are also interested in

finding the conditions under which the statistical behavior of the endogenously gen-

erated price series resembles the behavior of real market prices. The market reported

in this work is composed of different types of traders: technical traders, fundamental

traders, and noise traders. Additionally, with the purpose of investigating the role of

heterogeneity in artificial financial markets, we have developed a flexible software plat-

form with sophisticated traders and an evolutionary-inspired constraint.

The rest of the chapter is organized as follows: Sect. 8.2 deals with the definition

of some basic concepts. Sect. 8.3 provides a review of the state of the art on artificial

financial markets. In Sect. 8.4 some of the main criticisms of the agent-based approach

in economics and finance are outlined. Sect. 8.5 gives all the details of our simulated

stock market and reviews the most relevant features of the model. Sect. 8.6 describes

in detail the forecasting mechanism of the technical traders and provides examples of

how learning benefits the agents during the trading phase of the simulation. Sect. 8.7

provides the details of the simulation and gives a full account of the different param-

eters of the model. In Sect. 8.8 we provide the results for the first set of experiments,

exploring the different aspects of the model without learning taking place. Sect. 8.9 in-

troduces the Red Queen principle, and presents the results of a series of experiments

designed to investigate the impact that this principle has on prices. Sect. 8.10 presents

the conclusions and outlines possible avenues of future research.

8.2 Preliminary Concepts

In this section we review briefly some of the basic concepts which are necessary for the

understanding of artificial financial markets. Concepts like market efficiency and the

statistical properties of stock returns are described later in this section.

8.2.1 Market Efficiency

“I’d be a bum in the street with a tin cup if the markets were efficient.” (Warren Buffett)

The concept of market efficiency [35, 36] has ruled the research agenda in Financial

Economics in previous decades. It is considered one of the most important concepts

in finance and for some years has been at the centre of a debate. There exist different

forms of efficiency. However, we are interested just in what is known as informational

efficiency. Markets are said to be informationally efficient if prices fully reflect available
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information [35]. One must be careful to interpret such a definition of efficiency, the last

part of the phrase refers to the “available information”. This implies that the definition

of market efficiency depends on the information set. Furthermore, we can now derive

an alternative definition of market efficiency. A market is efficient with respect to a

particular information set φ if it is impossible to make abnormal profits by using this set

of information to formulate buying and selling decisions. It is helpful to link the type

of efficiency with the information set in the following definitions of different market

efficiencies

• Weak Form Efficiency in this case, the relevant information set comprises all current

and past prices.

• Semi-Strong Form Efficiency asserts that the asset market is efficient relative to all

publicly available information.

• Strong Form Efficiency asserts that the market for an asset is efficient relative to all

information including private information.

Market efficiency has been associated in the past with the concept of “random walk”

[76]. However, it is now a well known fact that the price changes do not follow a random

walk [69]. Moreover, it is commonly accepted that there are certain variables that posses

some predictability power in respect of future price changes [37]. Beyond the debate

of market efficiency or the joint hypothesis test3 our work pretends to shed some light

on the way in which such efficiency is achieved or at least to explain the origins of the

behaviour of financial prices.

8.2.2 Statistical Properties of Stock Prices

The statistical analysis of the price time series is usually performed on the continuously

compounded return or log return. The log returns are defined in the following way

rt ≡ log
Pt

Pt−1
= pt − pt−1 (8.1)

where pt ≡ log Pt. Some of the advantages of such returns are first, that the continuously

compounded multi-period return is the sum of continuously compounded single period

returns, and second, that it is easier to derive the time-series properties of additive pro-

cesses than multiplicative processes.

Time series of stock returns exhibit interesting statistical features which seem to be

common to a wide range of markets and time-periods. Such statistical properties are

known as “stylized facts” and have been reported for several types of financial data,

and their presence seems to be ubiquitous in all sorts of financial markets [29, 72, 73].

The “stylized facts” have become a very important benchmark for the researchers of

artificial financial markets. They are often seen as the first verification criteria when

3 In [18] the authors state: “First, any test of efficiency must assume an equilibrium model that

defines normal security returns. If efficiency is rejected, this could be because the market

is truly inefficient or because an incorrect equilibrium model has been assumed. This joint

hypothesis problem means that market efficiency as such can never be rejected.”
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building a simulated financial market [62]. Moreover, some artificial markets try to

explain the origins of such stylized facts [71].

We will not report all of the stylized facts in our experiments, mainly because of

the frequency of our generated prices (which we will interpret as daily closing prices).

Therefore, we will describe briefly the facts that we will be reporting in later sections, as

described by Cont in [29]. The stylized facts that we are going to test are the following

1. Lack of autocorrelations: (linear) autocorrelations of returns are usually insignifi-

cant. However, this is not true for small intra-day time scales.

2. Volatility clustering: different measures of volatility display a positive autocorrela-

tion over several days, which quantifies the fact that high-volatility events tend to

cluster in time. As noted by Mandelbrot in [77], “large changes tend to be followed

by large changes, of either sign, and small changes tend to be followed by small

changes”.

3. Slow decay of autocorrelation in absolute returns: the autocorrelation function of

absolute returns decays slowly as a function of the time lag, roughly as a power

law with an exponent β∈[0.2,0.4]. This is sometimes interpreted as a sign of long-

range dependence.

4. Heavy tails: The distribution of daily and higher frequency returns displays a heavy

tail with positive excess kurtosis. The tail index is finite, higher than two and less

than five for most assets, exchange rates and indexes.

5. Conditional heavy tails: even after correcting returns for volatility clustering (e.g.

via GARCH-type models), the residual time series still exhibit heavy tails. How-

ever, the tails are less heavy than in the unconditional distribution of returns.

6. Non Gaussianity: the stock returns on a weekly, daily and higher frequencies fail to

be normally distributed.

Fig. 8.1 illustrates the daily closing prices 1(a) and log returns 1(b) for the FTSE 100

index and for Barclays bank’s share 1(c) and 1(d) from the 2nd of January 1998 to the

31st of December 2004.

In order to verify that our endogenously generated price series mimics some of the

statistical properties above described, we will perform different sorts of tests. For the

first property, we will report the autocorrelations of the log returns, the absolute log

returns and the squared log returns for different time lags. The autocorrelation of the

absolute and squared log returns will allow us to investigate the phenomenon known

as volatility clustering [77]. Empirical studies in various stock indices and stock prices

have shown that the autocorrelation function of the squared returns remains positive and

decays slowly over several days. The autocorrelation function can be defined as

C(τ) = corr(rt,rt+τ) (8.2)

where τ is the time lag. If the first property holds, it should be observed that the log

returns’ autocorrelations for different lags should be around zero. In Fig. 8.2 we can

observe that the log returns’ autocorrelation is effectively around zero for the FTSE 100

index and Barclays bank’s share. However, we can see in the same figure, that such

lack of autocorrelations does not happen for the absolute or squared log returns, which

is a quantitative signature of the phenomenon known as volatility clustering (property

number two).
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Fig. 8.1. Price and log returns for the FTSE 100 (a) and (b); and Barclays bank’s share (c) and (d)
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Fig. 8.2. Autocorrelations for different lags of the log returns, absolute log returns and squared

log returns on the FTSE 100 (a) and on Barclays bank’s share (b)

Property number three can be also verified in Fig. 8.2. We can see there that the

autocorrelation of the absolute and squared log returns decays until it is practically zero

for lags larger than eighty days.

The distribution of financial time series displays “fat tails”. The term “fat tails” refers

to higher density on the tails of a distribution in comparison to the tails’ density under
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Table 8.1. Statistics for the log returns FTSE100 and Barclays

Statistics FTSE100 Barclays

Mean -0.0000340558 0.00020352

Median 0 0

Minimum -0.0588534 -0.0898057

Maximum 0.0590256 0.0937403

Std. Dev. 0.0124598 0.0233416

GARCH coefficient 0.899999 0.899536

ARCH coefficient 0.0895644 0.0899882

Skewness -0.133266 0.113409

Kurtosis 5.13829 4.62582

J-B Test H value 1 1

Corr. coefficient -0.00831591 0.085004

AlphaHill 1 % 5.05533 6.7913

AlphaHill 2.5 % 3.96377 4.89301

AlphaHill 5 % 3.24536 3.35794

AlphaHill 10 % 2.61432 2.26481

AlphaHill 15 % 1.97705 1.94232

the normal distribution. In order to be able to determine the shape of the tail one must

estimate the shape parameter (α) or the tail index (τ). The Hill tail index [48] is an

estimator of the α parameter and it could be considered as the standard tool for the

study of tail behaviour of economic data due to its good performance and simplicity.

However, one of the main problems on the application of this index is that it is necessary

to define a priori the size of the tail. To overcome such limitation, the fourth property is

going to be tested by calculating and reporting the Hill tail index for different tail sizes

(0.1%, 0.5%, 1%, 2.5%, 5%, 10% and 15%). Additionally, we will report the returns’

kurtosis. For a normal distribution the kurtosis is three. However, it has been found that

in financial data kurtosis is typically larger than three. This phenomenon is known as

excess kurtosis and is an indication of fat tails.

The fifth property is going to be tested by reporting the ARCH and GARCH coeffi-

cients. Both coefficients should be less than one. Property number six is examined using

the Jacque-Bera test, which indicates whether the sampled data is drawn from a Nor-

mal distribution or not. Table 8.1, shows some basic statistics (including, GARCH and

ARCH coefficients, skewness, kurtosis, the Jacque-Bera H value, the correlation coef-

ficient with lag one and different Hill tail indexes for various tail sizes) for the FTSE

100 and Barclays. Sample kurtosis is a valuable indicator of departure from normality

(it has a value of three for the Normal distribution). Typical values for sample kurtosis

in exchange rates, indexes and high frequency data are much larger than three.

We can observe in Table 8.1 values for kurtosis of 5.13829 and 4.62582 respectively.

The values for the Hill tail index vary from 6.7913 to 1.94232. Another interesting

value is that of the Jacque-Bera test, which in the two reported cases rejects the null

hypothesis that the sampled data is drawn from a normal distribution.
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8.3 Survey of Artificial Financial Markets Research

The area of Artificial Financial Markets has witnessed a sustained increase in the num-

ber of papers published related to this field. We can see all different sorts of artificial

markets made by researchers from very dissimilar disciplines like Economics, Finance,

Computer Science, Physics, Psychology, etc. Although they all differ in the assump-

tions made, methodology and tools; these markets share the same essence: the macro

behaviour of the market (usually the price) emerges endogenously as a result of the

micro-interactions of the (heterogeneous) market participants. This approach is in con-

trast with the traditional techniques being used in Economics and Finance. Moreover,

in [74] Lux and Ausloos declare

“Unfortunately, standard modeling practices in economics have rather tried to

avoid heterogeneity and interaction of agents as far as possible. Instead, one

often restricted attention to the thorough theoretical analysis of the decisions

of one (or a few) representative agents”

In [53], Kirman criticizes the representative individual approach in economics. Despite

the existence of different works around the same time (early 1990s), we can assert that

the most influential work is the Santa Fe Artificial Stock Market [11]. This market

was developed by a number highly reputed researchers, among them John Holland, the

inventor of genetic algorithms [49].

In order to understand the different approaches of the variety of artificial (simulated)

financial markets we will describe the different types of markets on the basis of the

framework proposed in [58]. The main design issues identified in [58] are

• Agents

• Market Mechanism

• Assets

• Learning

• Calibration

• Time

In addition to the description of the different approaches in artificial financial markets

by using the above described framework, we will describe some other related works that

were not commented in LeBaron’s survey. Although, we consider such framework suf-

ficient for our needs, there is a fairly detailed extension of it in [47] that is worth looking

at. In this work the basic design issues proposed in [58] are extended and detailed. The

main goal that we pursue in this section of the chapter is to describe some of the classic

works on Artificial Financial Markets within the frameworks of [58] and [47].

8.3.1 Agents’ Trading Strategies: From “Zero Intelligence” to Artificial

Intelligence

The decision of which type of agents will be used in the artificial financial market is

by far the most important one and the different options that exist range from basic zero

intelligence agents [26, 46, 99] to genetic programming based agents [23, 24, 32, 81].

There are several design issues regarding the agents as described in [47]: the decision
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making process, the objective function that drives their decision making, heterogeneity

and learning. Learning is discussed in more detail below.

The Decision-making Process

In relation to the decision making process, there are several routes to follow when we

face the decision of the design of the agents that will participate in the market. The most

obvious approach is to model the agents to reflect the strategies that are used in real life.

However, these rule based agents are strongly criticized by traditional economists in the

sense that such agents might lack of a well defined objective (utility) function. Another

criticism is related to the dynamics of interactions. In real life people can change their

mind, and as a consequence, change their investment strategies.

Examples of static ruled based agents are [46, 99]. Gode and Sunder propose what

they called “zero intelligence” agents. Such agents’ behaviour is ruled by a simple

budget constraint. Nevertheless, such agents generate efficient trading behaviour when

they are placed in a realistic market mechanism. This research aims to demonstrate the

importance of the market mechanism. These agents fit into the same category as the

agents previously mentioned regarding the learning mechanism, this means that these

agents do not learn. There are agents that are able to adapt to the new market conditions

by changing their investment rules such as [6, 11, 23, 78, 81]. This class of agents

use a variety of artificial intelligence techniques to model the constant change of the

strategies. Some related problems to this approach are

1. the complexity of the resulting model that incorporates sophisticated agents,

2. the limitations on the search space caused by the assumptions and design of the

agents, and

3. the complexity of the evolved strategies.

In [47] in addition to the rule-based agents, there is a further classification of agents

to include forecasting agents. Within such classification, the agents can be divided into

econometric based forecasters and forecasters based on cognitive systems. Examples of

the former can be found in [59, 110]. Examples of the later include [6, 11, 23, 32, 78,

81, 111]. The main difference between the two approaches is that forecasting agents

do not consider the semantic specifications of the cognitive process. This raises an

important aspect of the agents’ modelling as it was stated in [34]: it is important to

represent the cognitive process in a way that helps to understand the things that we

model, we should be careful in the selection of the technique that we use to represent

the agents’ behaviour and avoid just taking an algorithm designed with another original

purpose.

A different approach to the design of the agents, is the one followed in works like

[2, 3, 12, 30, 54, 71, 72]. In these models the agents make their decisions taking into

account the decisions made by the other agents. The purpose of such works is to model

herding behaviour among the agents. Such phenomena is thought to be present in finan-

cial markets and it is believed that such behaviour could partially be the responsible for

the appearance of the heavy tails in the distribution of stock price changes.
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The Objective Function

In relation to the objective function, there are two main ways to design this element

of the agents. The objective function could be modeled implicitly or explicitly on the

agents decision making process. In the case of an implicit objective function, the deci-

sion making incorporates indirectly the objective of the agents. For example, in the case

where the agents are equipped with real life trading strategies, the goal of such strate-

gies is profit maximization; however, it is not explicitly incorporated into the agent’s

trading strategy. In [39] we can find an example of this type of objective function.

The case of an explicitly modeled objective function is present in the majority of

agents that participate in simulated markets. Within this type of objective function, util-

ity maximization and profit maximization objective functions can be found. The first

type of objective function can be found in works that base the agents’ decision on the

concept of Constant Absolute Risk Aversion (CARA). These utility functions can be

found in [11, 23, 60, 84, 110]. Modifications or enhancements of the CARA concept

can be found in works like [15, 25]. The second form of objective function can be found

in works like [78, 81, 112].

Other Relevant Aspects on the Design of Agents

There are several sources of heterogeneity on the design of agents for artificial financial

markets. There could be heterogeneity on the type of agents used for the simulation

(fundamental, chartists, noise traders, etc.). The information and the parameter settings

could be also a source of heterogeneity. Finally, there could also be heterogeneity on the

learning capabilities and on type of adaptation and learning used by the agents (ANN,

GA, GP, LCS, etc.). The discussion regarding the adaptation and learning mechanism

is a whole topic in itself and is going to be discussed later in this chapter. Summarizing,

the design of the agents is the single most important aspect on the modeling of agent-

based markets. Some of the most important design issues include

• decision making (rule based, econometric forecasters and cognitive based agents)

• objective function (explicit, implicit, utility maximization and profit maximization)

• heterogeneity (types of agents, information basis, parameter settings and learning)

• learning (from zero intelligence to genetic programming)

Grothmann [47] provides a detailed description of each of the above mentioned design

issues.

8.3.2 Market Mechanism

This is the second most important design decision that the researcher must make in order

to build up an artificial financial market. Again, there are a wide range of possibilities

on this front. There are three main ways to solve this design problem: the easiest is to

create a simple price response to the excess demand with a simple clearing mechanism,

an alternative is to create a simple market where a local equilibrium can easily be found

and last, a continuous double auction-like mechanism can be explicitly implemented.

One of the main advantages of this area of research is that different market mechanisms

can be compared in order to contrast them in specific issues that the researcher might

be interested to study.
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In the first type of market mechanism we can find an earlier version of the Santa

Fe Artificial Stock Market [84]. Additionally, there are markets using a similar market

mechanism, some examples of such models are [23, 30, 39, 78, 81]. In addition to the

above described mechanism, there are some works that incorporate a market maker to

deal with the excess demand [38].

The second type of mechanism defines a market structure that allows the discovery

of a temporal equilibrium price. This method requires the definition of a market with

more economic structure than in the previous case. Among some examples of markets

with such type of mechanism are [11, 66].

The third way of modeling the market mechanism is to implement a fairly realistic

market. For example, a continuous double auction mechanism with limit orders and

some other realistic features. Some examples of such models are [22, 46, 110]. More

recently, some new research has been done in modeling the decision making process

made by a market maker by means of reinforcement learning [21].

An alternative to all of the above mentioned market mechanisms is to model a styl-

ized mechanism that does not resemble any real trading mechanism. However, such

mechanism should bring some advantages, like in the case of the Minority Game (MG),

as the basis for the modeling of a simulated financial market. For such game, there ex-

ists an analytical solution to the problem and can be used to gain understanding of its

rich collective behaviour. There is a fairly important group of researchers working on

the MG as the basic framework to model financial markets, like [17, 20, 51, 79].

8.3.3 Assets

The assets that are going to be traded on the market are an important aspect of every

artificial financial market. Modeling this aspect of the market can be separated into

three different decisions concerning the: number of assets, types of assets and asset

properties.

Regarding the first case, the vast majority of the research done in this area so far has

involved the trading of two different assets: a risk free asset and a risky asset. This has

been done for the sake of tractability, otherwise the complexity involved in the simu-

lation and the analysis of a multiple assets market could be impossible. Nevertheless,

some recent works have carried out such challenging task and have produced markets

in which multiple assets are traded [26, 108, 112].

The aspect related to the types of assets traded in the market refers to the different

possibilities of financial instruments that are going to be considered available to the

agents. Again, in the majority of the available markets, the agents can choose from a

risk free asset (mostly cash or bonds) or a risky asset (a stock, a currency or a security).

Some more interesting extensions along this line could include markets of financial

derivatives.

In relation to the third aspect of the traded assets, we can observe that in the majority of

the markets, the agents can choose between a risk free asset or a risky one. The properties

of each of the assets may vary in the following way: the risk free asset could be cash or

a bond that pays an interest rate in each period of the simulation; on the other hand, the

risky asset could be linked to a fundamental value that could be modeled by an exogenous

fundamental process like in [39, 81], a stream of dividends like in [23, 84, 85] or even
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a constant value like in [72]. Another way of modeling the fundamental process can be

found in [68], where each fundamental trader perceives an individual fundamental value.

Finally, let us consider the case of the approach in [22], where the authors propose a

market in which there is a stream of dividends for each individual agent.

8.3.4 Learning

Learning is a crucial element of the design of an Artificial Financial Market. Several

design issues arise when deciding the way in which the agents will update their trading

strategies. One of these issues is the rule generation mechanism, the rule transformation

over time (if any) and the fitness evaluation criteria for these rules. In [14], Brenner

provides an overview of the learning models that have been used by the economists

in recent decades. Additionally, in this paper there is an extensive discussion on how

to design the learning process for economic models and he provides some very useful

advice.

On the design of the learning mechanism it is possible to follow the line originally

developed in [46] in which they make use of zero-intelligence agents with a budget

constraint in a double auction like market. Despite the low level of intelligence, they

are able to get a remarkable allocation efficiency that could be comparable with the

efficiency obtained in experiments with humans. In this study Gode and Sunder state

“Adam Smith’s invisible hand may be more powerful than some may have

thought; it can generate aggregate rationality not only from individual rational-

ity but also from individual irrationality.”

In [40] Farmer, Patelli and Zovko by using zero intelligence agents, arrive to almost the

same conclusion of Gode and Sunder: ... it appears that the price formation mechanism

strongly constrains the statistical properties of the market, playing a more important

role than the strategic behavior of agents.

Our position regarding such conclusions is that, in our opinion, “intelligence” and

adaptation are very important mechanisms in the modeling of the agents’ behaviour.

The experimental results we obtain in this study, point in a different direction to the

above mentioned research. We believe that, as it has been clearly explained in [27], the

results in [46] are a consequence of the experimental setting and more sophistication is

needed to test the behaviour of humans in different conditions and markets.

The following discussed agents’ adaptation mechanism is considered to be similar to

reinforcement learning and it is a very interesting mechanism that has been intensively

used by some researchers in modeling of financial markets. We are referring to the so

called “Minority Game” a simplification of the problem introduced by Brian Arthur in

[9]. Such problem was inspired by the bar El Farol in Santa Fe and the basic idea in such

problem is to attend to the bar when there is less than 60% of the possible attendees.

There are some works that are based on the Minority Game to develop simulated fi-

nancial markets, including [17, 20, 51, 79, 80]. Despite the limitations of the MG as the

basic element of an artificial market, its analytical tractability makes it very attractive for

the study of financial markets as complex adaptive systems of many interacting units.

Another possibility in designing the agents’ learning mechanism is to model the

agents behaviour by using Artificial Intelligence techniques, like genetic algorithms [7];
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or as it has been proposed in [50] by Holland and Miller, by using learning classifier

systems [11, 63, 91, 92]; or by using artificial neural networks [110, 111]; or genetic

programming like in [23, 24, 32, 33, 81]; or using reinforcement learning [21].

From the soup of different Artificial Intelligence techniques to select from, some

questions arise like

• Which technique to use?

• Which one is the best?

• Which one is most realistic?

• Which technique is most efficient in computational terms

The answer to all these questions obviously depends on the type of agent being mod-

elled. Another important issue is the computational effort that is needed to implement

each of the above listed techniques. Depending on the computational resources avail-

able, one specific technique might be better than another because of its computational

efficiency. In addition to the reasons outlined in [32], in our opinion GP is a suitable

computational technique to model agent behaviour for the following reasons

• It is a technique that has proven to be successful in financial forecasting.

• It is a very flexible technique.

• Its expressional power can allow the researcher to build up very sophisticated be-

haviours.

• There are several techniques that allow complexity control on the evolved individu-

als.

• GP shares with other similar techniques the possibility of making it easy to embed

domain knowledge and information processing mechanisms.

Despite all the advantages on using artificial intelligence techniques in the design of

the agents trading strategy; is important to never forget that decisions should be made

considering the modeling of a realistic behaviour and cognition process [34].

8.3.5 Calibration and Validation

Validation is an important issue in Agent-Based Computational Economics and in par-

ticular in Artificial Financial Markets [45, 58, 60]. Validation is a basic demand to the

agent-based markets as it is pointed out in [60]. Simulated markets should be able to

replicate realistic quantitative features of the real market with a reasonable calibration.

Another important aspect that we would expect from simulated markets is that the mod-

eling of bounded rationality should be modeled in a fairly simple and transparent way.

Finally, the trading mechanism should be a truthful representation of a real trading sit-

uation.

Due to the way in which simulated markets are designed, multiple parameters need

to be user-defined and that gives the researcher several degrees of freedom. Despite this

issue, the researchers in this area can perform several things in order to overcome this

problem [58]. Among such things, one is to create a useful benchmark in which the

behaviour of the market is well defined. Another approach is to use parameters in the

simulated market derived from experimental or real markets.
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The selection of the market parameters is by no means a simple task. However, it is

very important to explore the changes on the behaviour of the market due to changes on

such parameters. This has been recognized in [58] by LeBaron

“... understanding exactly where the parameter boundaries are between simple

and complex behaviors is crucial to understanding the mechanisms that drive

agent based markets.”

We can find some interesting works in which an analysis of such parameters has been

made, like [15, 25, 44, 72]. The approach of incorporating parameters borrowed from

either, real or experimental markets, can be found in works like [13, 60, 81, 111, 112].

8.3.6 Time

The timing in the context of artificial financial markets refers to the order in which the

relevant events take place (synchronization), the length of the past history considered

by the agents and the frequency in which such agents update their behavioural rules.

The vast majority of agent-based financial markets have synchronous models of

trading. The most important assumption in these models is that trading happens be-

tween two discrete points in time. Examples of such trading synchronization are:

[11, 39, 66, 78, 81, 111]. This sort of synchronization mechanism is one of the main

criticisms to this methodology as clearly such assumption is unrealistic. More effort is

needed to implement realistic asynchronous agent-based models. There are some mod-

els that contemplate (even if in a limited way) asynchronous trading. Examples of a

more realistic simulation synchronicity can be found in [88].

In relation to the memory span of the agents in [59, 63], LeBaron studies the changes

on the statistical properties of the price due to changes on the memory of the agents.

Regarding the frequency of the updating of the agents’ behavioural rules, there are

essentially three options: updating with a fixed periodicity, like in [11, 59], updating

with a notion of rank, like in [23] or updating in an endogenous way, as it is proposed

in [75, 78, 81].

8.4 Limitations

It is always a challenge to convince a person that uses or believes in the traditional

methods in economics and finance of the validity of the Agent-Based approach to study

financial markets. Surely, many of us have faced such difficulties when talking to some

of our fellow researchers. Particularly, the mention of the lack of realism of some of

the most important assumptions in economics (like homogeneous expectations or full

rationality) generates always a debate with passionate positions on each side [35, 36,

84, 93, 94].

In this section we will mention some of the most important and frequent criticisms

that the Agent-based approach to the study of financial markets faces. We think that

some of such criticisms are justifiable and the people that believe in the validity of this

field should work in trying to tackle them in order to gain further acceptance from the

critics of this approach.
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One of the main criticisms to the ACE approach and by extension to the Artificial

Financial Markets field is the calibration of the models and the necessary tuning of the

parameters’ constellation [45, 58, 60, 61, 109]. Some of the critics of this approach argue

that a lot of work is needed to choose the right parameters for the simulation to make

sense. Moreover, how could we justify the values taken by some of such parameters?

Another important criticism is that some of such artificial markets lack of a ratio-

nal, optimizer, utility maximizer representative economic agent. The more traditional

economists are very reluctant to accept an approach in which there is not a rational

expectations type of agent, where instead there are inductive boundedly rational hetero-

geneous agents [9, 96, 97]. Nevertheless, we are convinced that people have bounded

rationality. To justify our opinion we will cite Herbert Simon: “boundedly rational

agents experience limits in formulating and solving complex problems and in process-

ing (receiving, storing, retrieving, transmitting) information”

More objections to the Agent-Based models come from the complexity of such sim-

ulations. There exist many artificial financial markets that achieve realistic prices that

reproduce the stylized facts present in financial time series. However, due to the com-

plexity of the simulations, it is not clear which aspect is responsible of the generation

of such statistical properties.

The assumption of the synchronicity of some of the events in the artificial financial

markets and more generally in the agent-based models is one of the most unrealistic

assumptions as it was seen in the previous section. Although, some progress has been

made more work is needed in order to implement more realistic models on the synchro-

nization of the trading events.

8.5 CHASM

The Co-evolutionary Heterogeneous Artificial Stock Market (CHASM) is a software

platform that allows a user to experiment with different market scenarios. In CHASM, a

user may create markets with different combinations of traders, including fundamental,

technical, noise or hybrid traders. In this section we provide an overview of the model

and its main characteristics. For a more detailed description of the model please refer

to [81].

8.5.1 Overview of the Model

The market is populated by traders that interact with each other by buying and selling

some assets. Any market participant i will be able to hold at any time t two different

types of assets

• a risky asset, denoted by hi(t) or

• cash, denoted by ci(t).

The market is composed of technical, fundamental and noise traders. We define NT as

the number of technical traders, NF as the number of fundamental traders, NN as the

number of noise traders and N as the total number of traders in the market. The stock

price at time t will be denoted by P(t).
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At the beginning, all the agents are endowed with a certain number of shares and a

certain quantity of cash, both specified by the investigator. Their position on each of the

assets might change as a result of the agents’ decision to sell or buy a certain quantity

of the risky asset.

The market mechanism is described in detail in [81], we will not give the full details

of the model in order to avoid making this chapter too long.

Defining all the different sorts of traders that intervene in a financial market is a

complex task. Nevertheless, there are some well accepted classes of traders that are

commonly used in the literature. In this work we will limit such classes to three basic

types: technical traders, fundamental traders, and noise traders. None of them follows

rational expectations and their means of interaction will be through the price. In the

artificial financial markets literature we will find mostly these three types of traders,

although the specific mechanisms and implementations can vary widely.

8.5.2 Important Features in CHASM

In this section we will describe briefly some of the most important features of CHASM.4

The implications of changes in such important aspects of our model are explored

through experimentation and the results are reported below.

Market and Limit Orders

When a person, a professional trader, a market maker or a corporation is trading on a

stock market, there are different ways of doing so. After the decision-making process

of any of such entities, an order must be submitted to a broker (or the representant that

is trading on behalf of them). There are two main types of orders5

1. Market orders

2. Limit orders.

Fundamental trading

In addition to the incorporation into the market of fundamental traders, CHASM allows

us to incorporate fundamental-like behavior on top of the technical traders. This char-

acteristic of the technical traders in our model can be justified by arguing that in real

life some traders do use technical analysis in conjunction with fundamental analysis.

These traders know that the price of a certain stock is well beyond a reasonable value

(fundamental value); however, they still follow the trend a little longer (short time hori-

zon) in order to make a profit out of it. In [100] the authors report that more than 90

percent of dealers in the foreign exchange market use some form of technical analysis,

and in short time horizons technical analysis predominates over fundamental analysis.

4 More detail is provided in [81].
5 There is a number of other types of orders but it is beyond the scope of this paper to give a full

account of them.
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Indicators

The indicators used by the technical traders to forecast increases or decreases in the

price are a very important aspect of our market. Such indicators can make a substantial

difference to the behavior of the endogenously generated price.

The indicators used for the current work consist of technical, momentum and volatil-

ity indicators. The indicators that were used and their periods are: The price moving

average delta of the last 12 and 50 days, the trading breakout rule of the last 5 and 50

days, the filter rule of the last 5 and 63 days, the price volatility of the last 12 and 50

days, the momentum of the last 10 and 60 days and the momentum-moving average of

the last 10 and 60 days. We used both short and long horizon indicators because that

is the way in which they are used by practitioners of technical analysis. We chose such

indicators mainly because they proved to be useful in forecasting rises and drops of

the price in previous work such as [16, 67, 103, 104, 105, 106], and [42]. Nothing pre-

vents us from using other information such as more sophisticated technical indicators,

information from the limit order book, market microstructure information, fundamental

information, etc. We performed a form of normalization on the data in order to limit

their ranges, which in turn limit the size of the search space.

Desired Return and Time Horizon

The technical traders will be organized in groups that will share some common charac-

teristics, as previously described. Among such characteristics we have the desired rate

of return and the corresponding time horizon to achieve such a rate of return. These

two characteristics (parameters) prove to be of central importance in the behavior of the

market, since our GP agents work as classifiers.

The majority of the simulated markets possess agents that do not consider multi-

period preferences, and, furthermore, the agents share the same planning, forecasting

and decision-making horizon [58]. CHASM is different to most of the previously de-

signed models in the forecasting mechanism and the heterogeneity of time horizons.

The GP forecasting mechanism of our agents works by classifying the training cases

into three different classes: buy, sell or hold. Such classification depends on the time

horizon provided, as the mechanism will verify for each data point if, in the near future

(time horizon), effectively there was a rise (drop) in the price by more (less) than the

desired rate of return.

If the selection of such quantities is unreasonable, it will cause the classifier to be

biased towards a certain class, Thus creating unrealistic (unreasonable) investment rules

and having an unrealistic price and statistical properties of the returns as a result.

Trading Proportion

The trading proportion is a parameter of the market that controls the proportion of the

asset or cash that the traders would commit on each of the operations that they will

perform during the trading rounds. The trading proportion is a quantity that we can use

to model the degree of cautiousness of the agents in our market.

The trading proportion proved to be of central importance in our simulations as the

prices exhibited different behavior for different values of g. The implications of this



154 S. Martinez-Jaramillo and E.P.K. Tsang

important feature of our market will be tested experimentally and described in the next

section.

8.6 Learning to Forecast Investment Ppportunities

In this section we explain the main forecasting mechanism, which is the core of the

decision-making process of the technical traders. Genetic programming is at the heart

of this mechanism and it has been used in the past to perform technical analysis by

several research groups, for example [31, 42, 82]. The modeling of the learning process

by the agents is a central part of our research agenda. With regard to the agents’ learning

process, we consider of extreme importance what Lucas wrote in [70]

In general terms, we view or model an individual as a collection of decision

rules (rules that dictate the action to be taken in given situations) and a set

of preferences used to evaluate the outcomes arising from particular situation-

action combinations. These decision rules are continuously under review and

revision; new decision rules are tried and tested against experience, and rules

that produce desirable outcomes supplant those that do not.

For the modeling of the learning process described above we will use genetic program-

ming. This technique has been previously described as a suitable way to model eco-

nomic learning in [14]. The learning process that we used to model our agents’ behavior

will be described further in this section.

8.6.1 Forecasting with EDDIE

We use the architecture for EDDIE, explained in [103] and [67], for the elaboration

of the agents’ decision rules which recommend whether to buy, hold or sell. As is

standard with genetic programming,indexgenetic programming each agent is assigned

an initial population of randomly generated decision rules. These include well known

fundamentals-based forecasting rules or trend-following, moving average-based tech-

nical rules. Candidate individuals are selected randomly, biased by their fitness, to gen-

erate members of the next generation. General mechanisms (referred to as genetic op-

erators, e.g. selection, crossover, mutation) are used to combine or change the selected

candidate individuals to generate offspring, which will form the population in the next

generation.

In EDDIE, an individual is represented by a decision tree. The basic elements of

such decision trees are rules and forecast values. A single rule consists of one useful

indicator for prediction, one relational operator such as “greater than”, or “less than”,

etc, and a threshold (real value). Such a single rule interacts with other rules in one

decision tree through logic operators such as “Or”, “And”, “Not”, and “If-Then-Else”.

Forecast values in this model are directions of price movements – either a positive trend

(suggesting that positive x percentage return within a specified time interval can be

achievable) or a negative trend (suggesting that negative x percentage return within a

specified time interval can be achievable).

Fig. 8.3 shows an example of one possible decision tree. In this figure we can see

that the root node is always an If-Then-Else node, the left child an If-Then-Else node



8 Evolutionary Computation and Artificial Financial Markets 155

Fig. 8.3. Example of a decision tree

1 If ((MA 12 = 0.98)AND(NOT (T RB 5 < 0.25))) Then

2 Buy

3 Else

4 If(VOL 12 > 0.56) Then

5 Sell

6 Else

7 Hold

8 End if

9 End if

Fig. 8.4. Example of a decision rule interpreted from a decision tree

is a “condition” node. Additionally, there are two right children which could be either a

“decision” node or another If-Then-Else node.

One of the conditions of the previous expression that specifies that the moving aver-

age of the past twelve days should be equal to 0.98 in fact is verified in a range around

such value. It would be extremely unlikely that a randomly generated number could be

matched exactly by the evolution process and for that reason a range is used instead.

The type of node is going to become relevant when applying the crossover and mu-

tation genetic operators because it is precise to maintain the tree consistency. For ex-

ample, in the case that a mutation operation is going to take place and the selected

node where such mutation is going to happen is a “condition” node; then, the randomly

generated mutation must be a “condition” like node. The same should happen for the

crossover operation: there must be compatibility between the subtrees that are going to

be exchanged by the parents.

Recommendation to BUY at t follows from the prediction of a price rise (positive

trend) over a given period, recommendation to do nothing (HOLD) follows from the
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Table 8.2. A contingency table for three-class classification/prediction problem

Predicted Predicted Predicted

price rise no inf. price drop

(PBs) (PHs) (PSs)

BUY HOLD SELL

Actual # of True # of Actual Buy # Actual Buy

price rise Buys Predicted Hold Predicted Sell

(ABs)

BUY (TB) (ABPH) (ABPS)

Actual # of Actual Hold # of True # of Actual Hold

no inf. Predicted Buy Holds Predicted Sell

(AHs)

HOLD (AHPB) (TH) (AHPS)

Actual # of Actual Sell # of Actual Sell # of True

price drop Predicted Buy Predicted Hold Sells

(ASs)

SELL (ASPB) (ASPH) (TS)

fact that there is no evidence of a price rise or a price drop and recommendation to

SELL follows from the prediction of a price fall (x% negative trend). Note different

returns thresholds and horizons exist for different classes of traders. Since decision trees

are used to predict directions of price changes and make recommendations for trade, the

success or failure of recommendations can be categorized as a three-class classification

problem. Each prediction point for every decision tree can be classified into either a

positive position, a holding position or a negative position. For each decision tree, we

define RC (Rate of Correctness), and RF (Rate of Failure) as its prediction performance

criteria. Formula for each criterion is given through a contingency table in Table 8.2.

Let’s define: RC as the Rate of Correctness; and RF as the Rate of Failure.

RC =
T B+T H+TS

ABs+AHs+AS s
(8.3)

RF =
AHPB+AS PB

PBs
+

ABPH+AS PH

PHs
+

ABPS +AHPS

PS s
(8.4)

Each agent selects the decision tree which constitute trading strategy to buy or sell that

maximizes the fitness function

Γ(1) = ϕ(rc)RC−ϕ(r f )RF (8.5)

The fitness function involves two performance values, i.e. RC and RF, each of which

is assigned a different weight ϕ(rc) or ϕ(r f ) respectively. While the fitness function

can guard against loss making positions, the population of decision trees from which

agents conduct their search may lead to investment income under-performance. One

important advantage of genetic programming is that we can bias the search mechanism

by using different values for such weights. However, we used a value of zero for the
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weight ϕ (r f ). In other words, we used just the rate of correctness as the performance

criteria to drive the evolutionary mechanism.

We implemented a very efficient method to avoid bloat and to speed up our simula-

tion (see [87]). Bloat happens during the evolutionary process when the trees grow in

size but there is no improvement in fitness (see [57]). Essentially, this means that there

are some branches of the trees that are redundant or, even worse, they reduce the fitness

of the individual. We considered the control of bloat to be important because it was

necessary for us to generate realistic investment rules. It would have been very difficult

for us, or indeed anyone, to justify very complex rules being used by the agents.

8.6.2 Learning

Learning is a key factor in our simulation and as we were investigating the repercussions

of the type of learning frequency on the endogenously generated price, we had to verify

that the learning process was beneficial. To be more precise, learning should enable

individuals to improve their wealth in relation to other traders. Technical traders are the

only type of traders that are able to learn during the simulation of the market.

To investigate this issue, we performed several experiments as follows: in each ex-

periment we replicated one trader (technical) and followed both traders’ wealth (the

original and the replicated one) throughout the whole simulation. We set the replicated

trader to be able to retrain every 1000 steps of the simulation. We can see clearly in Fig.

8.5 that after the execution of the GP mechanism with the endogenously generated price,

the replicated trader improved its wealth in comparison with the original trader. We exe-

cuted these experiments several times with different traders from different groups and in
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Fig. 8.5. Examples of wealth evolution with and without learning
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the vast majority of cases the replicated traders did better than the original ones. We al-

lowed the replicated trader to retrain every 1000 periods of trading because we wanted

to give the original trader the opportunity to improve during that period and even to

perform better than the retrained agent, as we can see in Fig. 8.5(a). Additionally, we

wanted to avoid changing too many things simultaneously, which would make analysis

impossible.

During the retraining phase, the GP mechanism is executed with the same conditions

as per the initial training. This is done with the objective of preserving what we perceive

as a realistic and competent forecasting mechanism. It is worth mentioning that the rate

of correctness of the agents during the initial trading is above sixty percent.

It is important to note that, in our case, the fitness measure used to drive the evolution

process was the rate of correctness. Other fitness criteria, such as the profitability of the

agents’ trading strategies, could have been used. The rate of correctness does not equate

to profitability. However, it has a direct impact on the agent’s wealth.

8.7 The Simulation

The market will operate as if each trading round is one day. This is due to the fact that

our technical traders were trained with daily closing prices. However, there is nothing

to prevent us from interpreting the time in another scale or from training the agents with

high frequency data. The market participants will be able to trade on every single round

of the market, with some exceptions to be explained next.

Noise traders will take a decision to buy, sell or do nothing based on the probabilities

assigned for each decision. They will be able to participate in the market on every single

iteration of the simulation program.

The fundamentalists enter on a buying (selling) cycle if there is a difference between

the stock’s price and the fundamental value beyond certain threshold value T . They will

stay in this cycle until the difference is smaller than another threshold value τ. After

the return of the stock’s price to the fundamental value, this type of traders will review

again whether there exists a difference between the market price and fundamental value.

The technical traders can change their position on each trading round based on their

forecasts, unless they have some pending limit orders to execute. Once they have com-

pleted the round trip (the investment decision and the exit strategy), they can take an-

other decision based on the generated rules.

Once all the market participants make their bids and offers, we calculate the excess

demand and then the price can be updated. Afterwards, each agent’s orders are partially

satisfied by a proportion that clears the market considering the new price. Finally, the

holdings of the risky asset and cash are updated for each of the traders that participated

in the trading round.

After all the above steps are executed, each technical trader reviews its retraining

condition. In the model there exist two types of conditions for retraining: in fixed time

intervals and in an endogenous way, known as Red Queen retraining.

In the case that the retraining periodicity is set as fixed time intervals, the trader

launches the GP mechanism creating the initial population of rules with half of their

current population and the other half randomly generated.
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The case of the Red Queen retraining is more complex: retraining for a certain agent

will take place as soon as the agent’s wealth falls below the average wealth. This agent

will not be retrained until it gets enough evidence that its investment rule fails to achieve

above-average wealth. The agent’s initial population for each retraining process is gen-

erated in the same way as was described for retraining with fixed periodicity.

8.7.1 Parameters

We have created a flexible model in which has a large number of parameters for us to

explore enabling us to analyze different phenomena in financial markets. These param-

eters are going to be divided mainly into two different classes: market parameters and

traders’ parameters. For more details regarding the parameters of the simulation please

refer to [81].

8.8 Experiments

This section describes the experiments performed in CHASM with the aim of generat-

ing realistic price series. We seek to discover the minimal conditions under which “styl-

ized facts” emerge. It is worth emphasizing that finding such conditions in a complex

system is non-trivial. To our knowledge, this is the first successful attempt in identifying

minimal sets of conditions in an endogenous model under which realistic price dynam-

ics emerge. The complexity of some artificial markets usually prevents researchers from

knowing which aspects of their model are responsible for the emergence of stylized

facts.

With regard to the exploration of the parameters and main features, we performed

a full exploration of each of the parameters involved on the simulation. For example,

in the case of the trading proportion parameter we scaled it from one percent to one

hundred percent. In the case of the limit orders, their exploration was easier as there are

only eight possible variations on this feature. In the case of the fundamental behavior,

we turned this on and off for every single group of the technical traders. We proceeded

in the same fashion for all the mentioned parameters and features. Nevertheless, we will

only present the results of the most relevant cases.

8.8.1 Parameters and Feature Exploration

In the previous section we described the most important features and parameters of

CHASM. Due to the many possible combinations of such features and parameters, a

systematic approach is necessary to search for conditions under which the price dynam-

ics exhibit the desirable properties. We will first describe the characteristics of what we

call the Base Case, and then describe the experimental results of changes on the other

features and parameters of the model.

8.8.2 The Base Case

A large number of controlled experiments were conducted before obtaining a price

series that resembled the dynamics present in real prices. In this section, we present the
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results of a parameter setting which reproduces statistical properties of stock returns.

This setting will be used as a base case for studying the effects of changing the model

along the individual dimensions listed in the previous section. The Base Case has the

following parameters and characteristics

• Seven different groups of technical traders.

• The groups have different indicators.

• The groups share the same desired rate of return (5.5%) and time horizon (14 days).

• The agents trade 8% of their current holdings or use 8% of their cash to buy more

shares.

• The agents generate both types of limit orders.

• The groups have the same computing power.

• There is no learning taking place.

• Group number seven of technical traders behave like value traders under certain

circumstances.

Besides the set of indicators used by each group of traders and the fundamental behavior

exhibited just by one group, the remaining conditions are the same for all the different

groups. The indicators were assigned in the following way: group one was assigned the

two moving average delta indicators, group two was able to use the trading breakout

indicators, group three had the filter indicators, group four used the volatility, group

five used the momentum indicator, group six used a moving average of the momentum

indicator and finally group seven used all of the indicators. For the experiments reported

in this paper, the number of agents in each group is typically three.

In Fig. 8.6 we can see the price and the log returns of the Base Case. We can see

that the price resembles the dynamics of the prices in real markets and the log returns

capture the well known phenomenon of volatility clustering. This phenomenon can be

investigated quantitatively and in Fig. 8.7 it is possible to see the autocorrelation for

different lags of the log returns, the absolute log returns and the squared log returns.

We can observe in Fig. 8.7 that the autocorrelation of log returns is around zero, as it

should be. Additionally, we can see that for the absolute and squared log returns there

is a positive autocorrelation that decays slowly but remains positive even for lags larger

than eighty. However, such positive autocorrelation is never close to zero as we saw in

the case of the FTSE 100, Fig. 8.2.
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Fig. 8.6. Price and log returns for the Base Case
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Fig. 8.7. Autocorrelations for different lags of the log returns, absolute log returns and squared

log returns on the Base Case

8.8.3 Limit Orders

Our agents were equipped with a powerful forecasting mechanism (EDDIE). However,

even if EDDIE is reliable, all it does is to help the agent that uses it to pick up invest-

ment opportunities. Profit is only realized when the agent sells the assets. Therefore,

we decided to equip the agents in CHASM with a more complete investment strategy,

which includes an exit strategy. This exit strategy will be modeled by two different types

of limit orders: profit-taking limit orders and stop-loss limit orders. In order to test the

relevance and the impact of the inclusion of limit orders on the agents’ trading strate-

gies, we designed some experiments in which we turned on and off the use of either

type of limit order. We departed from the base case by not generating both limit orders

but everything else remained the same.

8.8.4 Fundamental Trading

Fundamental behavior is modeled in most Artificial Financial Markets. It is an impor-

tant mechanism, in our experience, in order to prevent the price from behaving in a

simplistic fashion. Before including such characteristic in our market, we had prices

that were either always increasing or decreasing until they collapsed. We modeled the

fundamental behavior as it was designed in [39], on top of the technical trading be-

havior. This means that the agents will behave like a technical traders until the price

departs from what they consider to be the fundamental value of the risky asset by a

given threshold.

In order to test the impact of triggering the fundamental behavior, we performed

some experiments in which we activated or deactivated such behavior in just one of

the groups. Departing from the Base Case, we turned on and off the fundamental-like

behavior in all the groups except for group seven. We did not impose such a mechanism

on all the groups for two reasons: first, we wanted to have certain heterogeneity and

second, we wanted to prevent the endogenously generated price following too closely

the exogenous fundamental value.
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8.8.5 Indicators

The indicator set used by each of the different groups of agents is one of the most

relevant factors that we identified in order to reproduce stylized facts. We used the

indicator set to model information asymmetries on the different groups of agents.

We took two different possible approaches: firstly, as described for the Base Case,

we equipped each group of traders with a subset of indicators, except one group which

is equipped with all the indicators. Secondly, every group is given all the available

indicators for building their decision rules. The former is taken as the Base Case.

8.8.6 Desired Return and Time Horizon

The desired rate of return and the time horizon are two very important aspects of our

model. In fact, these two parameters will rule the creation of investment rules during

the evolutionary process.

In order to test the impact of such parameters on the behavior of the price, we per-

formed several experiments in which we either had homogeneity among the different

groups (like in the Base Case) or we had heterogeneity in those two parameters. We

have to stress the importance of a careful selection of both parameters. For example, if,

for a particular group, we programmed them to ask for a large desired return on their

investment, then it would be unreasonable to assign them a small time horizon. Such

unreasonable selection of both parameters could lead to unreasonable behavior of the

agents, like agents that buy all the time or agents that do nothing most of the time. In

other words, let’s assume that we want to get a 20% return. Clearly this is very diffi-

cult to observe in real markets. However, if we want to achieve this in five days it is

almost impossible to observe. The result of such selection would generate training data

in which the class that would have the majority is the “Do Nothing” class.6

8.8.7 Trading Proportion

The trading proportion parameter could be used to model how cautious or aggressive

the agents are in trading. If we want to model rather conservative agents, the trading

proportion parameter would be close to 1%. On the other hand, if we want to model

aggressive trading, the parameter would be close to 100%.

In the base case the trading proportion is 8%. From there we varied the trading pro-

portion parameter in order to test its impact on the market dynamics. When this param-

eter is reduced below 8%, no difference was observed in the price dynamics. Conse-

quently, our analysis focusses on increases in this value. However, we must stress that

changes in this parameter are closely related to the parameter market depth7 on the price

determination equation.

6 Remember that the agents are trying to classify each price point to belong to the classes:

“Buy”, “Sell” and “Do Nothing”.
7 Market depth is related to the size of an order that is necessary to change the price in the

market.
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8.8.8 Discussion

In this section we describe the conditions under which some of the statistical proper-

ties of the endogenously generated price resembles those of the real financial markets.

In CHASM we can change several parameters and features of the model. A system-

atic experimental investigation of changes in such parameters and characteristics was

necessary. In this section we report the results of such experiments from which we can

extract the following main conclusions

• The generation of limit orders proved to be an important factor to obtain realistic

price dynamics. Such limit orders were incorporated as part of a more complete

investment strategy of the agents.

• The inclusion of the fundamental behaviour in one of the groups of agents was an

important factor to obtain a realistic price. We must stress that even when just one

of the groups has activated this behaviour, the obtained price improves dramatically

in terms of the desirable properties that we were looking for.

• The indicators and the heterogeneity on their assignment to the different groups of

agents is an important factor in our aim to obtain stylized facts. The assignment of

such indicators allowed us to model asymmetries on the information used by the

agents.

• Heterogeneity in the computational capability assigned to the groups of agents

proved to be of no utility in our aim to get realistic price dynamics. We attribute

this to the fact that the sort of investment rules generated by stupid agents are far

from realistic and as consequence, the behaviour of such agents is unrealistic as

well.

• The desired rate of return and time horizon parameters, proved a key factor first to

generate realistic investment rules within the agent’s minds and second the hetero-

geneity on the assignment of such parameters favored the behaviour of the endoge-

nously generated price.

• The trading proportion parameter can be considered as a parameter that possesses an

important impact on the resulting price. Nevertheless, we must stress that changes in

such parameter should be accompanied by reasonable changes on the market depth

parameter on the price determination equation.

Additionally, with the objective of making a clear distinction of which scenarios and

the reported experiments are the ones that bear most similarity to real prices, we will

present a resume in a tabular form. The criteria that we used for our experiments to

determine if a price is or not (in our opinion) realistic are the following ones

C1) GARCH and ARCH coefficients. Both coefficients and their addition must be less

than one.

C2) Kurtosis. The kurtosis of the price generated on the reported experiment should

be larger than three, which is the kurtosis of a normal distribution.

C3) Jacque-Bera Test H value. It is also necessary that the hypothesis that the gener-

ated price is drawn from a normal distribution is rejected.

C4) Alpha Hill estimator. It is required that the Hill estimator is between five and two

for different tail sizes.
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C5) Autocorrelation I. The autocorrelation of the logarithmic returns should be around

zero, even for different lags.

C6) Autocorrelation II. A positive autocorrelation for lags close to zero and autocor-

relation decay for larger lags should be observed for the absolute and squared

logarithmic returns.

C7) Atypical behaviour. The prices generated under the evaluated scenario must not

show cyclical or another forms of atypical behaviour like huge changes or mono-

tonicity.

In Table 8.3 we report whether the experiment passes or fails each individual criterion.

In the table, on each row we report the analysis for a price generated under one of the

scenarios described on this section and each column represents one of the criteria. We

can see that the two most successful experiments are: the one in which we provided the

groups with different time horizons and expected returns, and the one in which we used

a trading proportion of 30%. Interestingly, criterion number six seems to be the most

difficult to satisfy and none of our experiments was able to reproduce this behaviour.

From the controlled exploration of the relevant aspects of our simulation model, we

have found promising areas of the market parameters where the endogenously generated

price reproduces to a certain extent the statistical properties of real financial markets.

We have explored aspects such as the generation of limit orders, the inclusion of funda-

mental behavior on the traders’ investment strategies, homogeneity or heterogeneity on

the information set, etc. Nevertheless, there is still another dimension to explore in our

artificial market.

The experiments described in this section do not contemplate adaptation (learning)

to the new conditions of the market by the agents. The decision on the type of learning

mechanism used for the agents is by no means a simple one. Furthermore, once this de-

cision has been taken, there is another very important decision to make: How frequently

Table 8.3. Evaluation criteria on stock prices for each group of experiments

C1 C2 C3 C4 C5 C6 C7

Base Case ✓ ✓ ✓ ✓ ✓ ✗ ✗

Limit Orders ✓ ✓ ✓ ✓ ✗ ✗ ✗

No Fundamental ✓ ✓ ✓ ✓ ✓ ✗ ✗

Homo. Information ✓ ✓ ✓ ✗ ✓ ✗ ✗

Heter. Computation ✓ ✓ ✓ ✓ ✓ ✗ ✗

Heter. Time and Return ✓ ✓ ✓ ✓ ✓ ✗ ✓

Trading Proportion 10% ✓ ✓ ✓ ✗ - - -

Trading Proportion 20% ✓ ✓ ✓ ✓ - - ✗

Trading Proportion 30% ✓ ✓ ✓ ✓ ✓ ✗ ✓

Trading Proportion 40% ✓ ✓ ✓ ✓ - - ✗

Trading Proportion 50% ✓ ✓ ✓ ✗ - - ✗

Trading Proportion 60% ✓ ✓ ✓ ✗ - - ✗

Trading Proportion 70% ✓ ✓ ✓ ✓ - - ✗

Trading Proportion 80% ✓ ✓ ✓ ✗ - - ✗

Trading Proportion 90% ✓ ✓ ✓ ✓ ✓ ✗ ✗

Trading Proportion 100% ✓ ✓ ✓ ✗ ✓ ✗ ✗
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should the agents review their belief systems? Lucas [70] suggested that human traders

revise their beliefs when such beliefs do not match reality. Performance evaluation on

financial markets crucially involves the other traders’ performance [58]. However, it is

very unlikely that the endogenous revision mechanism is as complicated as the one pro-

posed in [23]. Inspired mainly by the above mentioned works, we propose a simple and

plausible endogenous mechanism for the agents to update their belief systems. In the

next section we will report the results of four groups of controlled experiments under

three different scenarios of the adaptation (learning) process

1. No learning taking place for all the agents

2. Learning with fixed periodicity

3. Learning under the Red Queen constraint

8.9 Co-evolution and the Red Queen principle in CHASM

Co-evolution is said to take place when two or more lineages have an impact on each

other’s selection mechanism and cause changes to each other that increase fitness. This

mutual adaptation happens whenever certain ecological interaction has fitness effects

for all the participants. Co-evolution in Evolutionary Computation, and in particular in

GP, is an important area of study in Computer Science and has been used for modeling

independent agents in the past [56]. Moreover, the notion of competitively evolving

populations, and in particular decision trees, has been intensively studied in [4, 52]

and [95].

We aim to model traders in real markets. Therefore, we consider co-evolution to be

of central importance in our work because in real life traders certainly have an influence

on each other’s trading strategies. Additionally, it is common for them to change their

strategy if they are not performing well in relation to other market participants. There-

fore, in our opinion it is necessary to include in our market model the co-evolution of

the agents’ trading strategies. In our market the co-evolution of such strategies will be

modeled by using two different mechanisms

1. The endogenous generation of the risky asset’s price.

2. The regeneration of the technical trader’s “strategies”. In CHASM, this can be done

in a fixed or endogenous way.

In our market, the population of investment rules of each trader co-evolves through the

price. The effectiveness of each rule (its forecasting precision) determines the proba-

bility of it being selected to be part of the population of the next generation during the

evolutionary process. The precision of a certain rule belonging to a particular trader

depends on the rules of the other traders because they will have to change their rules if

their performance on the market is not good. Therefore, it affects the trader’s fitness.

With regard to the learning process, in CHASM the user can model the agents so

that they are able to adapt to the new conditions of the market, either periodically (with

a user defined periodicity) or with a periodicity that is endogenously generated by a

behavioral constraint known as the Red Queen constraint. CHASM allows those two

different conditions to trigger learning because we want to contrast both ways, although

we believe that learning in an endogenous way is more realistic.
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Adaptation of the market participants with fixed periodicity has been used in previous

works, eg. [11]. However, we consider it unrealistic since in real life the traders do

not change their investment strategies (at least not the totality) in a strictly fixed way.

Moreover, the findings reported in [63] are very revealing about the importance of the

learning periodicity. In [63], the authors reported the differences in the price properties

due to changes in the frequency of the retraining procedure and the memory length of

the agents.

The condition to trigger the learning process endogenously has been modeled in

previous works. For example, the notion of self realization was modeled in [23] which

is based on a notion of rank. However, we believe that the traders’ decision to change

their strategy must be motivated by their performance in the market in terms of wealth.

It is very likely that this decision is strongly related to the other market participants’

performance. This was recognized as an important aspect in artificial financial markets

by LeBaron in [58].

To summarize, we believe that the modeling of co-evolution in simulated markets

is important. Therefore, we make it a key feature in CHASM. It is possible to model

the way in which learning is triggered in two different ways: with fixed periodicity or

endogenously. In CHASM we are able to model such forms of adaptation and we will

report the results of some experiments later in this section.

8.9.1 The Red Queen in CHASM

In our research we have a market populated by a co-evolving population of agents,

each attempting to enhance their fitness relative to others. This is inspired by the Red

Queen principle, based on the observation made to Alice by the Red Queen in Lewis

Caroll’s Through the Looking Glass: “in this place it takes all the running you can do

to keep in the same place”. The Red Queen principle was originally proposed by the

evolutionary biologist Leigh van Valen in [107] as a metaphor for a co-evolutionary

arms race between species. In cases where the competition for scarce resources rules

the behavior of the participants, the important performance measure is relative to the

other individuals involved in the arms race.

The Red Queen principle has been studied in Computer Science, more specifically

in competitive co-evolution [83, 86]. In particular, in [28] the authors propose some

means to measure the progress in computer simulated co-evolution. The Red Queen

effect has also been studied in the context of Economics. In [89] the author claims

that the evolution of intelligence itself is hypothesized to arise as a Red Queen-type

arms race giving rise to Machiavellian behavior in social interactions. In [90] the author

describes the relation between the evolution of complex organisms, the reasons behind

sexual reproduction, the emergence of high intelligence and the Red Queen effect. In

competitive co-evolution, the Red Queen principle entails constraints on performance

enhancement of all individuals if each is to maintain status quo in relative fitness.

In CHASM, the Red Queen principle will be modeled through the Red Queen con-

straint. Such a behavioral constraint will force traders to search for new investment

rules whenever they are being “left behind”. More specifically, a trader will launch
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a GP mechanism considering the most recent information (the most recent price his-

tory and the relevant indicators) whenever its wealth is below the population’s average

wealth. As recognized in [58] by LeBaron: “A trader’s performance depends critically

on the behavior of others”.

8.9.2 Experimental Design

To experimentally test the impact of the Red Queen principle, we designed a set of ex-

periments in which the agents retrained in a fixed or endogenous way. Then we observed

the differences in the statistical properties of the stock returns and the agents’ wealth

distribution. In these experiments we defined some study cases which we considered

to be interesting. This was taking into account the experience gained from the experi-

ments described in the previous section. These study cases were different variations of

the factors that we identified as important in the previous phase of experimentation.

We first executed the simulation with the parameters that we consider to be appro-

priate to get realistic statistical behavior of the log returns. Afterwards, we observed

the price behavior and we performed a series of statistical tests to identify if the price

presented stylized facts. In case the stylized facts were not replicated, we tried another

parameter constellation and so on until we got the desired properties. After obtaining

the appropriate parameters, we executed the market with the same setting but allowing

the agents to learn with fixed periodicity. Next, we reported the statistics of this execu-

tion. For the experiments reported in this chapter, learning with fixed periodicity was

triggered every one thousand trading periods.

Using the same configuration of the two previous experiments, we allowed the agents

to retrain in an endogenous way, i.e. we enabled the Red Queen constraint. Then we ob-

served the price and the statistical properties of the logarithmic returns. For the exper-

iments, the Red Queen constraint was implemented by retraining the agents whenever

their wealth was below the total population’s average wealth.

8.9.3 Case Studies and Results

To explore the model described in the previous section, we developed a series of exper-

iments by changing key features and parameters that were identified to be important.

We had different base cases in which the statistical properties of the price were reported

for different parameters. After tuning the parameters under each case of study to obtain

interesting prices and statistics, the simulation was repeated with learning taking place.

This allowed us to observe the changes on the statistical properties of price due to the

different types of learning.

In the previous phase of experimentation, the following three features were found to

be important for producing stylized facts: (i) Computing Power, (ii) Information, and

(iii) Time Horizon and desired Rate of Return. With each of these three features being

either homogeneous or heterogeneous, there are eight possible combinations, one of

which is our base case

• Homogeneous Computing Power, Heterogeneous Information and Homogeneous

Time Horizon and Return.
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We studied three out of the remaining seven combinations. The excluded cases were as

follows

• Heterogeneous Computing Power, Heterogeneous Information and Heterogeneous

Time Horizon and Return.

• Heterogeneous Computing Power, Heterogeneous Information and Homogeneous

Time Horizon and Return.

• Heterogeneous Computing Power, Homogeneous Information and Homogeneous

Time Horizon and Return.

• Homogeneous Computing Power, Homogeneous Information and Homogeneous

Time Horizon and Return.

The reason for the exclusion of the first three cases is that our previous results showed

that heterogeneity on the computational capabilities proved to be counterproductive in

our quest for reproducing stylized facts. In all the experiments that we performed with

heterogeneous computational capabilities, the results were similar in the sense that the

price did not resemble by any means prices in real financial markets. The reason for the

exclusion of the last case is that we detected that complete homogeneity was not good.

The results of the last case (not reported here) showed a monotonous price (always

increasing or always decreasing), i.e., there was a sort of consensus and a self-fulfilling

behavior of the price. We believe that this was mainly caused by the homogeneity of

agents in the important features that we detected.

For each of the experiments’ log returns we will report: basic descriptive statistics,

the result of the Jarque-Bera Test, the GARCH and ARCH coefficients, the skewness

and kurtosis, the correlation coefficient, and the Hill estimator for the 0.1%, 0.5%, 1%,

2.5%, 5%, 10% and 15% most extreme log returns of the experiment’s respective data

series. The basic statistics reported here are the mean, median, minimum, maximum

and the standard deviation.

Case 1: Heterogeneous Computing Power, Homogeneous Information and Hetero-

geneous Time Horizon and Return

In this study case we have seven groups of technical traders with heterogeneous com-

puting capabilities, homogeneous information, heterogeneous desired return and time

horizon.

The purpose of testing and analyzing this specific case was to verify the impact that

the asymmetry in computational power (in terms of the GP mechanism) has on the mar-

ket. In other words, heterogeneity in computing power refers to two of the GP param-

eters assigned to the agents: population size and number of generations. We identified

these two parameters as the most relevant ones for measuring the computational capa-

bilities of the agents. In this experiment, the first group of agents was provided with the

smallest number of generations and population size (10 and 50 respectively), the sec-

ond group had a bigger number of generations and population size than the first group

(50 and 100 respectively), the third had bigger numbers (75 and 250 respectively), the

fourth was the best endowed of all the groups (100 generations and 500 population

size) and then we started to reduce the population size and number of generations for

the remaining three groups.
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The obtained prices were the least successful in replicating the stylized facts in com-

parison to the other cases. We expected such results to a certain extent because it is very

important that the behavior of the agents is closer to reality and thus we need competent

traders to participate in our market. Otherwise, the price and its statistical properties do

not resemble real data. We found very unrealistic behavior of the price even with learn-

ing taking place; in fact the price behavior is worst when learning happens.

Case 2: Homogeneous Computing Power, Heterogeneous Information and Homo-

geneous Time Horizon and Return

In this case we have seven groups of technical traders with homogeneous computing

capabilities, heterogeneous information, homogeneous desired return and time horizon.

This configuration is the same as for the base case reported in subsection 8.8.2.

The purpose of setting up this case was to study the role that the information, mod-

eled here by the different indicators, plays with regard to the price formation and wealth

distribution. For this purpose, the computational capabilities of the agents will be homo-

geneous and the same will happen with the desired return and time horizon. Therefore,

the only difference between the trader groups is the information set they will use to

create the investment rules. For example, the agents in the first group will use just the

moving average delta indicators to create decision rules, the second group of agents

will use the trading breaking rules to do the same, the third group will use filter rules,

the forth group will use volatility, the fifth will use a momentum indicator, the sixth a

moving average indicator based on the momentum and the last group will use all the

indicators.

Case 3: Homogeneous Computing Power, Homogeneous Information and Hetero-

geneous Time Horizon and Return

In this case we have seven groups of technical traders with homogeneous comput-

ing capabilities, homogeneous information and heterogeneous desired return and time

horizon.

The purpose of this experiment was to verify the importance of the heterogeneity in

the agents’ time horizon and desired rate of return in reproducing the statistical proper-

ties in real financial markets. In this experiment, for the first group of agents, we chose

a small time horizon and a desired rate of return that made sense for such a time horizon

(otherwise we would have experienced the same problems that we had at the beginning

of our research). For the second group we chose a slightly longer time horizon and ad-

justed the rate of return to an achievable level within such a time horizon. We increased

the time horizon and chose the respective desired rate of return for the remaining five

groups. With this organization, we had the first groups with small time horizon and rate

of return and the last groups with the parameters taking bigger values.

Case 4: Homogeneous Computing Power, Heterogeneous Information and Hetero-

geneous Time Horizon and Return

In this case we have seven groups of technical traders with homogeneous comput-

ing capabilities, heterogeneous information and heterogeneous desired return and time

horizon.
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The purpose of this experiment is to explore the impact on the price of the het-

erogeneity in information, desired return and time horizon. This case would allow us to

clarify the importance of the heterogeneity in our market. We expected the price dynam-

ics in this case to be the best of all of our basic cases. Benefitting from the experience

of the previous cases, we decided not to make the traders different in terms of the GP

mechanism (computational capability). The sources of heterogeneity were: the indica-

tors, the desired rate of return and the time horizon. We assigned the indicators to the

different groups in the same way that was described in Case 2. In the case of the time

horizon and desired rate of return we proceeded in the same way that was described in

the study Case 3.

Discussion

In this section we observed the implications that learning has on the statistical properties

of the endogenously generated price and the repercussions of learning on the wealth

distribution of the agents and on the different groups of traders.

We described the way in which we implemented what we called the Red Queen Con-

straint, inspired on previous works describing the relevance of the Red Queen Principle

in Economics. Before we experimentally tested our interpretation of such principle, we

performed a series of experiments in which the agents retrained with fixed periodicity

determined in an exogenous way. But which is the right periodicity? Moreover, how do

we justify such decision? We argue that the agents’ decision to retrain should be taken

endogenously and for that reason we propose the Red Queen Constraint as the way in

which the traders should update their beliefs. As a result, we observed that the price

dynamics and the statistical properties of the log returns were closer to the dynamics

and properties of the real financial time series.

We observed that the wealth distribution of different groups of traders was different

in different executions of CHASM: Generally speaking, the traders that take decisions

with higher frequency end up better off than those that do not. Interestingly, asking

the agents to review their beliefs in an endogenous way, resulted in a very unequal

distribution of wealth in the final trading round of the market. This result is a very

interesting one, since we are just asking to the population of traders to do the best they

can to preserve their status quo in the market. Nevertheless, it seems that such arms race

causes the majority of the traders to end up with a small amount of wealth, while very

few agents end up with most of the population’s wealth. Additionally, we observed

that heterogeneity does help in general terms to obtain realistic statistical properties.

However, having heterogeneity in computing capability between the agents proved to be

harmful to our intentions of reproducing realistic market dynamics (Case 1). This point

is important for us due to the fact that we believe that simulations of Artificial Financial

Markets should be done with agents capable enough to imitate human behavior. In our

experience, having agents with not good enough investment decision rules, creates a

very different type of market dynamics.

Information proved to be an interesting source of heterogeneity in our market (Case

2). The impact of the time horizon and desired rate of return was beneficial (Case 3).

The combination of heterogeneity in both information and investment preferences did

not lead to the best results in terms of reproducing the stylized facts (Case 4).
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Table 8.4. Evaluation criteria on stock prices for each group of experiments

C1 C2 C3 C4 C5 C6 C7

Case 1 with no learning ✓ ✓ ✓ ✗ ✓ ✗ ✗

Case 1 with fixed learning ✓ ✓ ✓ ✗ ✗ ✗ ✗

Case 1 with Red Queen constraint ✓ ✓ ✓ ✓ ✗ ✗ ✗

Case 2 with no learning ✓ ✓ ✓ ✓ ✓ ✗ ✗

Case 2 with fixed learning ✓ ✓ ✓ ✓ ✓ ✗ ✗

Case 2 with Red Queen constraint ✓ ✓ ✓ ✓ ✓ ✗ ✗

Case 3 with no learning ✓ ✓ ✓ ✓ ✓ ✗ ✓

Case 3 with fixed learning ✓ ✓ ✓ ✓ ✓ ✗ ✓

Case 3 with Red Queen constraint ✓ ✓ ✓ ✓ ✓ ✓ ✗

Case 4 with no learning ✓ ✓ ✓ ✓ ✓ ✗ ✓

Case 4 with fixed learning ✓ ✓ ✓ ✓ ✓ ✗ ✗

Case 4 with Red Queen constraint ✓ ✓ ✓ ✓ ✓ ✗ ✗

In real life, the traders are likely to have different time horizons (due to budget con-

straints or simple preferences), return considerations and they tend to look in different

ways the same information (or even they might use different sources of information).

Nevertheless, it is unlikely that there is a big difference in computing capability among

the main players (small investors and the rest of us are just noise).

We should emphasize at this point that despite the fact that our market is capable

of modelling fundamental behavior, in this four study cases we are not making use of

it. This means that we are able to mimic to a certain extent the statistical properties of

log returns without an explicit-exogenous fundamental mechanism. We consider this to

be very important for the study of Artificial Financial Markets because so far we have

always seen a sort of fundamental mechanism in any of the important works in this

field. The exception to this rule are the works of [17, 41] and [43]. In [17] the authors

arrive at a conclusion that is very much related to ours:

“This suggests that the statistics we observe in real markets is mainly due to

the interaction among speculators trading on technical grounds, regardless of

economic fundamentals”

Finally, we assume in the same way as it was done on Section 8.8, the criteria that we

used to differentiate the results of the experiments reported on this section. We use the

same criteria also defined on the previous section. In Table 8.4, we can observe which

of the individual criteria are satisfied by each study case. We can see that the cases that

satisfy the most of the criteria are: the three experiments of Case 3 and the experiment

in which learning does not take place of the Case 4. Case 3 is the most successful of

all the study cases and it is the only case in which the price satisfies C6. In Case 4

we can observe that in the experiment with the Red Queen Constraint the non-linear

autocorrelations decay to zero. However, in the case of the absolute log returns, such

autocorrelation becomes negative for lags close to 100.
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8.10 Conclusions

Agent-based economic models in general, and artificial financial markets in particular,

seem to have achieved acceptance as a method to understand and analyze economic

systems and financial markets respectively. However, the future success of the field

depends on how closely such models can reproduce what happens in real life and on the

simplicity of them. From our experience and from the evidence gathered in this work

we can formulate the following conclusions.

It is very important to pay attention to the way in which the agents’ initial population

of rules are generated. We could have highly unbalanced training and testing data which

in turn could cause biased behavior of the agents.

The learning mechanism should be tested in order to prove that it is doing properly

the task which was designed for: improving the agent’s wealth on the market. Our re-

sults show that the learning mechanism that we designed improves the agent’s wealth

even in a changing environment. Additionally, in the environment that we defined, the

rate of correctness of the GP mechanism is a suitable fitness function which derives into

an improvement of the agent’s wealth.

Heterogeneity is an important feature of our market in order to obtain realistic prices.

We tested different sources of heterogeneity like information, computational capability,

desired return and time horizon, etc. Our results show that heterogeneity has an impor-

tant impact on the statistical properties of the endogenously generated price.

The periodicity in which the agents’ update their beliefs has enormous repercussions

on the price. The decision on how frequently the agents should update their beliefs is

not and easy one and for that purpose we propose an endogenous behavioral constraint

inspired on the Red Queen evolutionary principle.

8.10.1 Future Work

One way in which this work can be extended is to compare different (probably more

complex) market mechanisms. Despite the success that we had on reproducing some of

the statistical properties of financial prices, there are some other statistical properties

which we did not test like the gain/loss asymmetry.

Market microstructure is another possible area of future work in which we could

answer some of the most relevant questions in finance. Additionally, a richer set of

market participants could be incorporated like market makers.

It is not clear yet which is the best way to model economic learning and very im-

portant questions are waiting to be answered. Despite the fact that GP seems to be an

appropriate tool to model economic learning, there is still a passionate debate on ratio-

nality and on the way in which economic agents are being modelled by the agent-based

community. However, we are convinced that GP is a suitable flexible and transparent

tool to be used in such work.

Financial markets are probably the most competitive, dynamic and complex of all the

markets. Automatic trading has increased dramatically in recent years and we still need

to know the implications of such intensive trading on the prices and more importantly

on the likelihood of financial crashes. We are convinced that there is a lot of relevant
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research waiting to be done which will be impossible to perform only by analytical

means or as it was put by Markowitz on the introduction of the book [64] by Levy et al:

“Levy, Solomon and Levy’s Microscopic Simulation of Financial Markets points us

towards the future of financial economics. If we restrict ourselves to models which can

be solved analytically, we will be modeling for our mutual entertainment, not to maxi-

mize explanatory or predictive power.”

Evolutionary computation is at the center of such efforts to overcome the limitations

of analytical methods as it is a powerful, expressive, flexible and transparent paradigm

in the artificial intelligence area.
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Summary. In this chapter an evolutionary system for generating investment strategies is pre-

sented. The algorithms used in the system (evolutionary algorithm, co-evolutionary algorithm,

and agent-based co-evolutionary algorithm) are verified and compared on the basis of the results

coming from experiments carried out with the use of real-life stock data. The conclusions drawn

from the results of experiments are such that co-evolutionary and agent-based co-evolutionary

techniques better maintain population diversity and generate more general investment strategies

than evolutionary algorithms.

9.1 Introduction

Investing on the stock market requires the analysis of a great number of possible strate-

gies (which securities should be chosen, when they should be bought and when sold).

The majority of investment decisions are based on analyzing present and historical data

since it allows for predicting future trends. The problem however is that the anticipa-

tion of future trends depends on many assumptions, parameters and conditions. As a

result, the investor or the analyst is able to analyze only the small subset of all possible

strategies, so the optimal investment strategy is usually not found [15].

The set of the strategies which consists of indicator function is infinite because the

complexity of the strategy can be unlimited. Formulas of the given strategy are func-

tions of hundreds (or thousands) of parameters. Complexity of the problem makes it

impossible to use direct search methods and instead of it a heuristic approach has to be

used. For instance evolutionary algorithms can be applied here.

Evolutionary algorithms are optimization and search techniques, which are based

on the Darwinian model of evolutionary processes [2]. One of the branches of evolu-

tionary algorithms are co-evolutionary algorithms [12]. The most important difference

between them is the way in which the fitness of the individual is evaluated. In the case

of evolutionary algorithms the fitness of the individual depends only on how “valu-

able” is the solution of the given problem encoded within its genotype. In the case of

co-evolutionary algorithms the fitness of the individual depends on the values of other

individuals’ fitness. The value of fitness is usually based on the results of tournaments,

in which the given individual and some other individuals from the population are en-

gaged. Co-evolutionary algorithms are generally applicable in the cases in which it is

difficult or even impossible to formulate an explicit fitness function. Co-evolutionary

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 181–205.
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interactions between individuals have also other positive effects—for example main-

taining population diversity [6]. Population diversity is especially important in the case

of multi-modal optimization problems, multi-objective optimization problems, and dy-

namic environments.

Agent-based (co-)evolutionary algorithms have been proposed as the result of re-

search on decentralized models of evolutionary computations. The basic idea of such an

approach is the realization of evolutionary processes within a multi-agent system, which

leads to very interesting class of systems: (co-)evolutionary multi-agent systems—

(Co)EMAS [5]. Such systems have some features which radically differ them from

“classical” evolutionary algorithms. The most important of them are the following:

synchronization constraints of the computations are relaxed because the evolutionary

processes are decentralized (individuals are agents), there exists the possibility of de-

veloping hybrid systems using many different soft-computing techniques within one

single, coherent agent architecture, and finally there is the possibility of introducing

new evolutionary and social mechanisms, which were hard or even impossible to in-

troduce in the case of classical evolutionary algorithms. (Co)EMAS systems have been

already applied to solving multi-modal and multi-objective optimization problems [7].

Another area of applications is the modeling and simulation of social and economical

phenomena.

In the case of financial and economical computations (and also financial and econom-

ical modeling and simulation) we have to deal with dynamic environments and compet-

ing or co-operating economical and social agents. As it was said before, co-evolutionary

techniques help maintaining population diversity, and agent-based co-evolutionary sys-

tems maintain the diversity even better. What is more, agent-based approach allows us

to easily model social and economical agents and relations between them.

In the chapter the component-based system for generating investment strategies is

presented. In the system three algorithms were implemented: a “classical” evolutionary

algorithm, a co-evolutionary algorithm, and an agent-based co-evolutionary algorithm.

These algorithms were assessed and compared during the series of experiments and

these results are reported in this chapter. The chapter is then concluded with some av-

enues of future work being suggested.

9.2 Previous Research on Evolutionary Algorithms for Generating

Investment Strategies

In recent years there has been a growing interest in applying biologically inspired al-

gorithms to solving economic and financial problems [3, 4]. Below, a sample of appli-

cations of evolutionary algorithms in systems supporting investment-related decision

making are presented. To the best of the authors’ knowledge, there have been no prior

attempt to apply agent-based co-evolutionary algorithms in such systems.

S. K. Kassicieh, T. L. Paez and G. Vora used the genetic algorithm in constructing

an investment decision-support system [10]. The tasks of the algorithm included select-

ing which companies to invest in. The time series of the considered companies were

given. In their system some logical operations were carried out on the data. The genetic
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algorithm was used to determine, which logical operators should be applied in a given

situation.

O. V. Pictet, M. M. Dacorogna, R. D. Dave, B. Chopard, R. Schirru and M. Tomassini

[11] presented the genetic algorithm for the automatic generation of trading models

which used financial indicators. Three algorithms were implemented: a genetic algo-

rithm (it converged to local minima and revealed a poor generalization capability), a

genetic algorithm with fitness sharing [16] (it explored the search space more effec-

tively and revealed better abilities to find diverse optima), and a genetic algorithm with

a fitness sharing technique developed by authors themselves in order to prevent the

concentration of the individuals around “peaks” of fitness function (it revealed the best

capability of generalization). The proposed algorithms selected parameters for technical

indicators and combined them to create new, more complex, ones.

F. Allen and R. Karjalainen [1] used genetic programming to finding trading rules for

the S&P 500 index. Their algorithm was able to select the structures and parameters for

rules. Each rule was composed of a function organized into a tree and a returned value

(signal), which indicated whether stocks should be bought or sold at a given price.

Components of the rules were the following: functions operating on historical data,

numerical or logical constants, logical functions which allowed for the combination of

individual blocks in order to build more complicated rules. The root function always

returned a logical value which ensured the correctness of the strategy and the fitness

measure was based on excess return from the buy-and-hold strategy. However the return

did not take into consideration the transaction cost.

9.3 Evolutionary System for Generating Investment Strategies

In this section both the architecture of the component-based system for generating in-

vestment strategies as well as three algorithms (evolutionary algorithm, co-evolutionary

algorithm, and agent-based co-evolutionary algorithm) used as computational compo-

nents are presented and discussed.

9.3.1 The Architecture of the System

In Fig. 9.1 the high-level architecture of the system is presented. As can be seen, the

system consists of the following basic components

• DataSource—this component supplies the data to the strategy generator. Historical

stock data is used.

• Functions—it contains all classes which are necessary for creating formulas of

strategies. It includes constructs which can carry out basic operations on formulas

i.e.: initialization, exchange of single functions, adding new functions or removing

existing ones. Formulas can be tested on data and, in such a case, the results will be

returned.

• SystemTester—this component allows for testing of proposed strategies. It is able

to prepare reports concerning the transactions and containing the information about

the gained profit. It is used by the generation algorithms to estimate the fitness of

the developed trading strategies.
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Fig. 9.1. The architecture of the system used in experiments

Fig. 9.2. Package diagram for generation strategies algorithms

• GenerationAlgorithms—contains the implementation of three algorithms respon-

sible for generating strategies: evolutionary algorithm (EA), co-evolutionary algo-

rithm (CCEA) and co-evolutionary multi-agent system (CoEMAS). This compo-

nent includes the mutation and recombination operators as well as the fitness esti-

mation mechanisms. Implementation of this subsystem was divided into packages

shown in Fig. 9.2:

– algorithm package—it is the most general package containing classes, which

are the basis for implementation of other algorithms responsible for investment

strategy generation.

– EA package—it contains implementation of evolutionary algorithm.

– CCEA package—it contains implementation of co-evolutionary algorithm.

– CoEMAS package—it contains implementation of agent-based co-evolutionary

algorithm.

• Presentation—it contains definitions of GUI forms responsible for instance for re-

sults presentation, algorithm monitoring etc.

9.3.2 Data Representation

In all three algorithms implemented in this chapter, a strategy consists of a pair of

formulae. The first formula indicates when one should enter the market and the second



9 Classical and Agent-Based EAs for Investment Strategies Generation 185

Fig. 9.3. Tree of sample formula

indicates when one should exit the market. Each formula can be represented as a tree

in which the leaves and nodes are functions performing some operations. Each tree has

a root and a number of child nodes. The root of the tree always returns a logical value.

Fig. 9.3 shows the tree corresponding to the formula: S T E(WillR(20),30)> 10.0. When

treating this expression as entry formula, the system will generate “buy” signal when

the value of Standard Error indicator (STE) from 30 days and for data from Williams’

%R indicator for percentage period equal to 20, is greater than 10.0.

A formula tree is represented in memory as a tree. The root node is an object con-

taining references to the functions and references to parameters. These parameters are

also the same objects as the root. Leaves of the tree are objects which do not contain

parameters. When a formula is executed recursive calls occur. In the beginning, the root

requires values of all parameters needed to invoke its function. Then the control flows to

objects of the parameters. Objects representing parameters behave in the same way as

the root object. Leaves do not contain parameters, so they can return the value required

by the parent node. Functions (which formulas are composed of) were divided into four

categories

• Functions returning data arrays (see Table 9.1). There are 6 such functions.

• Mathematical functions (for example Abs—each value in the returned data array is

absolute value of corresponding element from the data array passed as an argument,

Cos—calculates cosine for values from the data array passed as an argument, etc.)

There are 40 such functions.

• Tool functions (for example ProjBandBot—returns the data array with values of the

bottom Projection Band, STEBandBot—returns the data array with values of the

bottom Standard Error Band, etc.) There are 33 of them.

• Indicator functions (see Table 9.2). There are 14 of them.

There are 93 functions altogether.

Implemented functions accept the following types of parameters: constants (integer,

float or enum), arrays of constant float values, and values returned by other function

(arrays of logical values or arrays of float values).

Classes containing implementations of the above-mentioned functions are presented

in Fig. 9.4. A FunctionBase class contains meta-data concerning all functions defined in

descendent classes. To those meta-data belong for instance feasible values of functions

arguments. SecurityData class contains session data of single stock. It supplies data

to indicator functions. It also accumulates errors from formulas runs (e.g. division by

zero, attempt of computing logarithm of negative value, etc.) and allows reporting of
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Table 9.1. Data array functions

Function name Description

Close Returns closing prices.

ConstArray Returns array of constants passed as argument.

High Returns daily high prices.

Low Returns daily low prices.

Open Returns open prices.

Volume Returns volumes.

Table 9.2. Indicator functions

Function name Description

AD Returns the data array with values of the Accumulation/Distribution in-

dicator.

ADX Returns the data array with values of Average Directional Movement

indicator.

BBandBot Returns the data array with values of the Bollinger Band Bottom indi-

cator.

BBandTop Returns the data array with values of the Bollinger Band Top indicator.

LinearReg Returns the data array with values of the Linear Regression indicator.

Mov Returns the data array with values of diverse moving averages.

ROC Returns the data array with values of the Rate of Change indicator.

RSI Returns the data array with values of the Relative Strength Index indi-

cator.

STE Returns the data array with values of the Standard Error indicator.

Stdev Returns the data array with values of the Standard Deviation indicator.

TSF Returns the data array with values of the Time Series Forecast indicator.

Var Returns the data array with values of the Variance indicator.

WillR Returns the data array with values of the Williams’ %R indicator.

Zig Returns the data array with values of the Zig Zag indicator.

these when it is required. Other classes contain implementation of indicator functions

belonging to the categories mentioned earlier.

9.3.3 Evolutionary Algorithm (EA)

In the evolutionary algorithm, a genetic programming approach was used. The class di-

agram presented in Fig. 9.5 shows that each individual has simultaneously (in its geno-

type) two formula trees which represent formulas for entering and exiting the market.

The process computeFitness is used to estimate fitness of an individual and this value

is obtained using getFitness. It is also possible to get all components of fitness such

as profit, average length of trades, and average complexity of formulas. An object of

FormulaTree class contains the root of tree and the cached object of the formula, which

is created from the tree using createFormula.
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Fig. 9.4. Hierarchy of classes with functions used to build formulae

Fig. 9.5. Individual in EA and its genotype

Estimation of the fitness value of the strategies is carried out using historical stock

price data. Two tables of logical values are created as a result of execution of the for-

mulae. The first one relates to the purchase action (entering the market) and the second

one relates to the sale action (exiting the market). The algorithm determines when a

purchase and a sale occurs and computes the resulting profit/loss. Entering the market

occurs when a system is outside the market and there is the value of “true” in the entry

table. Exiting the market occurs when the system is in the market and there is value

of “false” in the exit table. In other cases no operation is performed (hence, no short-

selling is allowed). When applying this algorithm, the system cannot enter the market

more than once. In other words, after a sale—a purchase action must take place, and

after a buy—a sale must occur. The profit/loss from the transaction is estimated when

exiting the market and it is accumulated. The cost of each transaction is included—the

commission is calculated by subtracting a certain constant from the transaction value.

Apart from the profit/loss there are also other criteria which are included in the fit-

ness estimation. The first one is formula complexity. Formulae which are too complex

increase computational effort and can produce overfit. The complexity of the formulas

is determined by summing up of all component functions. The second criteria is the

length of the transaction. This depends on the preference of the investor.
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Recombination

Three kinds of recombination operators are used: returned value recombination, ar-

guments recombination, and function recombination. Returned value recombination is

performed when there are two functions with different arguments but the same returned

values within the formula tree. These functions are exchanged between individuals

(functions are moved with their arguments).

For example, let us consider two formulae

• Pro jBandBot(34)< LLV(Pro jBandBot(7),7) (see Fig. 9.6), and

• Pro jBandTop(7)> S T EBandBot(High(),7,7) (see Fig. 9.7),

Fig. 9.6. Parent 1 for returned value recombination

Fig. 9.7. Parent 2 for returned value recombination

Fig. 9.8. Descendant 1 after returned value recombination

Fig. 9.9. Descendant 2 after returned value recombination
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where Pro jBandBot is function which calculates the bottom Projection Band indicator,

Pro jBandTop calculates the top Projection Band indicator, LLV (Lowest Low Value)

is indicator, which calculates the lowest value in the data array over the preceding pe-

riod, and S T EBandBot calculates the bottom Standard Error Band indicator. Functions

Pro jBandBot and S T EBandBot have different arguments, but the types of their return

values are the same (they both return double values). As a result two new formulae will

be created

• Pro jBandBot(34)< S T EBandBot(High(),7,7) (see Fig. 9.8), and

• Pro jBandTop(7)> LLV(Pro jBandBot(7),7) (see Fig. 9.9).

Arguments recombination occurs when there are two functions with the same argu-

ments within the parents. These arguments are exchanged between individuals during

the recombination. For example, let us consider two parents

• BBandBot(Close(),10,Triangular,4.3) (see Fig. 9.10), and

• BBandTop(Open(),3,S imple,2.9) (see Fig. 9.11),

where BBandBot and BBandTop calculate respectively bottom and top Bollinger Band

indicator. Functions BBandBot and BBandTop have the same arguments. After ex-

changing these arguments two new descendants will be created

• BBandBot(Open(),3,S imple,2.9) (see Fig. 9.12), and

• BBandTop(Close(),10,Triangular,4.3) (see Fig. 9.13).

Fig. 9.10. Parent 1 for arguments recombination

Fig. 9.11. Parent 2 for arguments recombination

Fig. 9.12. Descendant 1 after arguments recombination
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Fig. 9.13. Descendant 2 after arguments recombination

Fig. 9.14. Descendant 1 after function recombination

Fig. 9.15. Descendant 2 after function recombination

Fig. 9.16. Carrying out a single recombination

Function recombination can take place when two functions have the same arguments

and the same returned values. Let us consider two parents from the previous exam-

ple. Functions BBandBot, BBandTop, Close and Open fulfill the assumption which
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requires return values and parameters to be the same. As a result of applying function

recombination two new individuals will be created

• BBandTop(Open(),10,Triangular,4.3) (see Fig. 9.14), and

• BBandBot(Close(),3,S imple,2.9) (see Fig. 9.15).

Only one kind of recombination can be used to create an offspring in each iteration but

the type of recombination (from the three possibilities) selected is governed by a prob-

ability distribution. The parameter reproduction factor determines how many offspring

are generated. The size of population is multiplied by this coefficient. The outcome

defines the number of offspring which are created.

During the recombination stage, in the first place, the type of recombination is chosen

using RecombinationArray class. Next, parents are chosen using tournament selection.

When two parents are selected, the selected type of recombination is performed. A

sequence diagram for a single recombination is presented in Fig. 9.16.

Mutation

Two types of mutation were used: function arguments mutation and function mutation.

In function argument mutation the argument of the function must be a constant value.

This constant value is exchanged with the other one drawn from the allowed range.

For instance, having a function Add(1,2) operator can modify it to Add(5,2). There are

three variants of the function mutation

1. If a given function should be mutated, a list of the functions taking the same argu-

ments is found. If such functions exist, the exchange is performed. If there are no

such functions, mutation is not carried out. For instance And(a,b) can be changed

to Or(a,b).

2. A given function can be exchanged with another, completely new one, regardless

of arguments—but the returned types must match. Arguments of such function are

created randomly. For instance:

• BBandTop(Month(),13,E,4.714)—before mutation,

• BBandTop(HHV(Close(),3),13,E,4.714)—after mutation.

The Month function returns day of the month, which data came from, and the HHV

function calculates the highest value in the data array over the preceding period.

The function Month was exchanged for HHV , and its arguments were created ran-

domly.

3. Similarly as in (2), but, if it is possible, parameters of the replaced function are

copied to a new one. For instance, there is Mod(Low(),AD())—before mutation,

and S T E(Low(),14)—after mutation. The Mod function (which calculates modu-

lus) was exchanged for the S T E function and the parameter Low was moved. The

second parameter had to be created randomly because S T E function requires an

integer constant as an argument. It was named as the partial function mutation.

The probability of mutation depends on the depth in the formula tree. If it is closer

to leaves the mutation probability is greater. Thanks to this, there is a greater chance

that the mutation will cause small changes in the genotype (locality). Mutation factors

are used while calculating mutation probability. These coefficients let the user specify
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Fig. 9.17. Carrying out mutation of single formula element

how the likelihood of mutation changes as the depth in a formula of the mutated ele-

ment changes. If such coefficient is greater than 1, then greater depth results in greater

mutation probability. But if coefficient is in the range [0,1] then greater depth reduces

mutation probability.

Fig. 9.17 shows the mutation sequence for a single formula element. The process

Mutate from Mutation class is carried out on the genotype of an individual. Next, the

HandleInvoker process is invoked on each function of genotype. Particular mutations

are performed with a probability specified by the user.

Selection

Tournament selection ([2]) was used in the EA algorithm. In tournament selection, a

group of N individuals (N ≥ 2) is selected. The individual which has the highest fitness

is chosen from this group.

After creating the offspring, it is added to the population of parents (the reinsertion

mechanism). From such enlarged population the new base population was chosen also

with the use of a tournament mechanism.

Algorithm 9.1 shows the scheme of the evolutionary algorithm. At the beginning

the population is created randomly and evaluated. Next, reproduction, recombination

and mutation are performed in each generation. When the individuals are created, their

fitness value is estimated. Afterwards, a new population is selected by applying tourna-

ment reinsertion on the parent and child individuals.
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Algorithm 9.1. Scheme of evolutionary algorithm (EA)
gen← 0;

random initialization of population Pop(gen);

evaluate Pop(gen);

while not stop condition do

Pop1(gen)← reproduction Pop(gen);

Pop2(gen)← recombination Pop1(gen);

Pop3(gen)←mutation Pop2(gen);

evaluate Pop3(gen);

Pop(gen+1)← reinsertion (Pop3(gen)∪Pop(gen));

gen← gen+1;
end

9.3.4 Co-Evolutionary Algorithm (CCEA)

Co-evolution is the process of the mutual adaptation of a set of individuals which inter-

act with each other [8]. When an individual becomes better adapted, other individuals

also have the opportunity to improve their fitness.

All evolutionary and co-evolutionary algorithms consist of the searching of a popu-

lation of solutions in accordance with the concept of natural selection. Co-evolutionary

algorithms however, differ from ordinary evolutionary algorithms. Individuals in the

population may interact with other individuals. Partners of interactions may be members

of the same (sub)population, or may belong to different (sub)populations, depending on

the nature of the problem being solved.

Many real problems are difficult to solve using standard evolutionary techniques.

However, such problems can sometimes be decomposed into many sub-problems, with

the solution to these sub problems producing a solution to the initial problem. Co-

operative co-evolution is designed to solve the problem X through co-evolving solutions

for sub-problems which X was decomposed into [8].

While developing a co-evolutionary algorithm for generating investment strategies,

a co-operative approach was proposed by M. A. Potter and K. A. De Jong ([14]). There

are two species in the implemented algorithm: individuals representing entering the

market strategies and individuals representing exiting the market strategies. Interactions

between these species rely on co-operation.

The class diagram presented in Fig. 9.18 shows that each individual has in its geno-

type one formula tree representing the formula for entering or exiting the market de-

pending on population to which the individual belongs. To estimate the fitness, the

Fig. 9.18. Individual in CCEA and its genotype
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formula is obtained using getFormula method and passed to an object of FitnessCCEA

class. In setFitness method—fitness value and its elements are taken from the Fitness-

CCEA object.

During the fitness estimation process individuals are paired to form a complete so-

lution. In the first generation, for each evaluated individuals from the first species a

partner for co-operation from the second species is chosen randomly. For the complete

solution created in this way, the fitness is computed and assigned to the individual that

is being evaluated.

In the next generations, the best individual from the opposite species from the previ-

ous generation is chosen for the evaluated individual. For instance, if second generation

has finished then at the beginning of third generation reproduction starts. After recom-

bination and mutation new individuals are created and then they can be evaluated. To

do this the best individual from the second generation of the exit the market popula-

tion is retrieved. Then pairs of previously selected individual and each individual from

third generation from the enter the market population are created. Fitnesses from such

formed pairs are assigned to individuals which came from the enter the market pop-

ulation. In the similar manner fitnesses of individuals from the second population are

established. The best individual from second generation of the enter the market popula-

tion is selected. Pairs composed of this individual and each individual from the exit the

market population (from third generation) are created. Estimated fitnesses are assigned

to individuals from the exit the market population.

Algorithm 9.2 shows the scheme of the co-evolutionary algorithm. At the start of

the algorithm, populations of two species are created randomly and fitness of each in-

dividual is estimated. Next, reproduction, recombination and mutation are applied on

both species in each iteration. When offspring individuals are created, fitness estimation

occurs. Both species interact at the stage of fitness computing . After that, reinsertion is

performed and a single step of CCEA is finished. The pairs of individuals gaining the

best profit are the final output of the algorithm.

Algorithm 9.2. Scheme of co-evolutionary algorithm (CCEA) [13]
gen← 0;

foreach species s do
random initialization of population Pops(gen);

evaluate Pops(gen);
end

while not stop condition do

foreach species s do

Pop1
s(gen)← reproduction Pops(gen);

Pop2
s(gen)← recombination Pop1

s(gen);

Pop3
s(gen)← mutation Pop2

s(gen);

evaluate Pop3
s(gen);

Pops(gen+1)← reinsertion (Pop3
s(gen)∪Pops(gen));

end

gen← gen+1;
end
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9.3.5 Co-evolutionary Multi-agent System (CoEMAS)

The Co-evolutionary multi-agent system used in this study is an agent-based realization

of the co-evolutionary algorithm. Its general principles of functioning are in accordance

with the general model of co-evolution in multi-agent systems [5]. The CoEMAS sys-

tem is composed of the environment (which include computational nodes—islands—

connected with paths) and agents, which can migrate within the environment. The selec-

tion mechanism is based on the resources, which are defined in the system. The general

rule is such, that in the each time step the environment gives more resources to “better”

agents and less resources to “worse” agents. The agents use the resources to perform

each activity, like migration, reproduction, and so on. Each time step (the agents can

live for more than one generation), individuals lose some constant amount of their re-

sources, which is given back to the environment. The agents make all their decisions

independently—especially those concerning reproduction and migration. They can also

communicate with each other and observe the environment.

In the CoEMAS algorithm realized in the system for generating investment strate-

gies, each co-evolutionary algorithm (CCEA) is an agent which is located on one of the

islands. The population of each co-evolutionary algorithm also consists of the agents

(there are two species of agents within each population, like in the case of CCEA).

Genetic operators and fitness estimation mechanism are the same as in the case of

previously described algorithms. The selection mechanism is different—it works on

the basis of resources (the agent possessing the greater amount of resource wins the

tournament).

On the basis of the amount of the possessed resource, each individual decides

whether it is ready for the reproduction. Reproduction occurs when the level of its

resource is greater or equal to r
rep,γ

min
(see Algorithm 9.2). Parents are chosen using a

tournament. At the mutation stage the amount of resource does not change. During the

recombination process, parents give their offspring certain amount of their resources.

The tournament during the reinsertion phase is also based on the resources—the

agent that possesses more resources wins the tournament. At the reinsertion stage better

individuals receive more resources from the environment and the worse ones receive

less. If an agent’s level of resources drops below r
γ

die
, it dies.

The possibility of migration of agent-individuals from one population to another was

added as well. During migration the resources possessed by a given agent are reduced

by a constant amount.

The reproduction factor parameter in CoEMAS determines only the maximum num-

ber of offspring to be created. Practically, the amount of created individuals is smaller

and depends on how many individuals have sufficient resources to reproduce. If it turns

out that there are no such individuals, reproduction stops.

Individuals die when they possess too few resources. However, this approach is in-

sufficient because after a few generations there will be many individuals in population

which vegetate (do nothing and do not give back resource to environment) and therefore

their existence is useless. For that reason, when individuals pass to new generation they

give back a certain percent of their resources to environment.

The number of individuals in the population depends on the amount of resources

in environment, and the initial size of population is specified by the user. If the
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Fig. 9.19. Allocation of resou rce at initialization stage (a), and in consecutive generations (b)

environment has more resources, then more individuals can exist. If there is a small

quantity of resources and these are shared between too many individuals, then many

individuals will be killed at the reinsertion stage.

Each population lives in a certain environment (island). The environment possesses

a specified amount of resources which circulates between the environment and agents.

The resources of population can change only through migration (individuals which mi-

grate take their resources to the another population). The amount of resources in the

system is constant. In the first stage resources are allocated proportionally to fitness:

the greater fitness the greater amount of resource allocated to an individual. The en-

tire population receives resources (apart from individuals with non-positive fitness).

Fig. 9.19a shows the manner of resource allocation at the initialization stage.

In the consecutive generations—in order to increase selection pressure—only the

part of population receives resources. Resources are not allocated proportionally to the

fitness value. The fitness value is raised to the power specified by the user and the

resource is allocated on the basis of such modified fitness. The manner of resource

allocation after initialization is shown in Fig. 9.19b.

9.4 The Experiments

In order to examine the generalization capabilities of the system and compare the pro-

posed algorithms, strategies which earn the largest trading profit per year were sought.

An attempt was made to determine which algorithm generalizes best and what quantity

of stocks should be used for strategy generation so that the system would not overfit.

It is also interesting to assess which algorithm generates the best strategies and has the

smallest convergence.

9.4.1 Plan of the Experiments

The presented results of the experiments comparing the quality of the generated strate-

gies and convergence properties of the considered algorithms are average values from

30 runs of each the algorithm. Each algorithm was run for 500 generations on the data

of 10 randomly chosen stocks. The session stock data came from the WIG index ([9])
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and the period of 5 years was chosen (from 2001-09-29 to 2006-09-29). The size of

the population in all the algorithms was equal to about 40 individuals (the CoEMAS

approach uses variable-size populations).

All experiments were made with the use of optimal values of the parameters. These

values were found during consecutive experiments. The algorithms were run 10 times

for each parameter value coming from the established range and average results were

computed—on this basis the set of best parameter values were chosen. While comparing

all algorithms three approaches were used

• on-line efficiency: 1
T

∑T
t=1 f (t), where T is the number of generations algorithm

worked through, and f (t) is fitness of the best individual in generation t.

• off-line efficiency: 1
T

∑T
t=1 f ∗(t), where f ∗(t) =max{f (1), f (2), . . . , f (t)}

• the best value in the last generation: maxi=1,...,N fi(T ), N is the number of individuals

in the last generation, and fi is fitness of i-th individual.

While examining the generalization capabilities, each algorithm generated a trading

strategy for for n random stocks (stage 1). Then n different stocks were chosen ten

times at random and the profit was calculated using the best strategy obtained in the

stage 1. Then, the average of these profits was counted. These calculations were carried

out four times for n = 3,5,7,10.

Like in the first type of experiments (when the quality of the solutions and the conver-

gence properties were compared), populations had similar sizes in the case of all three

algorithms. All experiments were carried out on a machine with one AMD Sempron

2600+ processor.

9.4.2 Parameter Value Selection

Table 9.3 and Table 9.4 show optimal parameter values which were determined using

back to back experiments. Table 9.3 concerns all three algorithms. All algorithms have

the same values of these parameters. Table 9.4 concerns only CoEMAS algorithm. Pa-

rameters in this table refer to migration and resources which occur only in CoEMAS.

In some cases, when changing values of parameters, no regularity of influence on

efficiency changes was found. But there were some exceptions.

In Fig. 9.20 there is presented the influence of agent’s minimal resource level on

CoEMAS efficiency. In the beginning, with the growth of this parameter the value of

efficiency slightly increases. But when resource amount exceeds 10 units it systemati-

cally decreases.

Fig. 9.21 presents the influence of the percent of resource obtained by a child after

recombination in CoEMAS on its efficiency. It indicates that giving a lot of resource

causes a decrease in efficiency of the algorithm. Whereas giving a small amount of

resource causes the increase of system’s efficiency.

Fig. 9.22 presents dependency between the amount of resource which individuals

give back to environment at migration stage and CoEMAS performance. At the begin-

ning when the amount of resource which is given back grows, efficiency grows too (the

best individual achieved a fitness of about 430 units). Optimum is at about 14 units.

Then, the increase in returned resource causes performance decrease.
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Table 9.3. Optimal values of parameters for all three algorithms

Parameter Parameter value

Fitness function

Price for entering the market Open

Price for exiting the market Close

Entry commissions 0.0

Exit commissions 1.0

Kind of got commissions Points ($)

Transaction length weight 0.1

Profit weight 1.0

Formula complexity weight 0.2

Initialization

Initial formula depth 4

Mutation

Entire function mutation probability 0.3

Entire function mutation—if probability depends on depth true

Entire function mutation factor 2.0

Partial function mutation probability 0.1

Partial function mutation probability—if probability depends on depth true

Partial function mutation factor 1.5

Function mutation probability 0.03

Function arguments mutation probability 0.03

Formula depth change probability 0.01

Recombination

Arguments recombination—usage probability 0.4

Arguments recombination—argument change probability 0.3

Function recombination—usage probability 0.4

Function recombination—function change probability 0.3

Return value recombination—usage probability 0.7

Return value recombination—function change probability 0.2

Population

Population size 40

Reproduction

Tournament size during reproduction 5

Reproduction factor 0.8

Reinsertion

Tournament size during reinsertion 3

Fig. 9.23 presents influence of migration probability on CoEMAS efficiency. Only

probability smaller than 0.15 causes high performance (the best individual achieved

fitness of about 400 units). Efficiency decreases when probability is greater than 0.15.

9.4.3 Comparison of Algorithms

In EA and CCEA the size of populations during evolution is constant and is adjusted

by the parameter specified by the user. Admittedly, the population size increases at
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Table 9.4. Optimal values of additional parameters for CoEMAS

Parameter Parameter value

Migration

Number of generation from which mutation is started 5

Mutation probability 0.05

Resources

Amount of resource required to reproduction 20.0

Amount of resource given back at migration 14.0

Minimal amount of agent’s resource to survive 10.0

Initial amount of environment resource 980.0

Percent of resource received from parents 20.0

Percent of resource which environment loses at reinsertion 100.0

Percent of resource taken back at ageing 3.0

Percent of population which receives energy 20.0

Exponent of pow function at reinsertion 4.0
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Fig. 9.20. The influence of minimal amount of resource for individuals to survive on results

obtained by CoEMAS (each point is the average of 10 values)

recombination step, but after reinsertion becomes again the same as before the recom-

bination. Different behavior can be observed in CoEMAS—as the size of the population

varies during evolution.

Fig. 9.24 presents population size in CoEMAS during the evolutionary process. It

shows that at the initial population is small (about 47 individuals) but after three steps

it grows to 56 individuals. This is caused by the appearance of some very good individ-

uals in populations. They receive a lot of resources from environment and create many

equally good individuals in the reproduction stage. Because the quantity of the off-

spring is greater than the quantity of dead individuals, the size of population increases.

When the ability of the algorithm to find better and better individuals diminishes, the
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Fig. 9.21. The influence of the percent of resource obtained by a child after recombination on

results obtained by CoEMAS (each point is the average of 10 values)
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Fig. 9.22. The influence of the amount of resource given back at migration stage on results ob-

tained by CoEMAS (each point is the average of 10 values)

size of population also decreases. When the algorithm no longer finds new and much

better solutions (after about 100 generations) then, the population size does not change

significantly.

Fig. 9.25 shows the average fitness (from 30 experiments) of the best individuals for

each generation. The comparative results show that the evolutionary algorithm achieved

the best results, outperforming the co-evolutionary algorithm. The quality of the solu-

tion generated by the CoEMAS was close to that of the CCEA.
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Fig. 9.23. The influence of the migration probability on results obtained by CoEMAS (each point

is the average of 10 values)
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Fig. 9.24. Population size in CoEMAS during evolution

Fig. 9.26 presents a plot of solution convergence during the algorithm. It is mani-

fested by the occurrence of multiple pairs of identical solution individuals in the pop-

ulation. In the case of convergence the evolutionary algorithm had the worst results.

Convergence commenced early in the runs and from generation 200 it was typically in

the range from 50% to 60%. The co-evolutionary algorithm exhibited less convergence,

with CoEMAS displaying the least convergence.

Table 9.5 provides a comparison of the efficiency, run time and convergence of

all three algorithms. The evolutionary algorithm had the best efficiency and the worst
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Fig. 9.25. Fitness of the best individuals (average values from 30 experiments)
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Fig. 9.26. Convergence values for three compared algorithms (average from 30 experiments)

results in the case of convergence, whereas the agent-based co-evolutionary algorithm

was always better than the co-evolutionary algorithm with the exception of run time.

The agent-based co-evolutionary algorithm had better off-line efficiency than the evolu-

tionary algorithm because it found good solutions faster, however, those solutions were

not good enough for the on-line efficiency to be better. Considering the run times of all

algorithms, both evolutionary and co-evolutionary algorithms came off quite well. The

co-evolutionary algorithm is somewhat worse because it processes two populations.

The agent-based co-evolutionary algorithm has a run time six times longer than other

algorithms. This arises as it is necessary to process two co-evolutionary algorithms in
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Table 9.5. Comparison of efficiency, run time and convergence of all three algorithms

Algorithm On-line ef-

ficiency

Off-line ef-

ficiency

The best fit-

ness in last

generation

On-line con-

vergence

Convergence

in last genera-

tion

Algorithm

run time

(m:s)

EA 229.888 230.229 238.369 48.807 51.910 1:47.574

CCEA 213.069 213.071 217.629 19.145 27.147 1:50.213

CoEMAS 214.744 238.741 226.170 8.851 14.785 9:29.872

Table 9.6. Generalization capabilities of the algorithms

Algorithm No. of
stocks in
the group

Profit (%) per
year (stocks from
the group)

Profit (%) per year for buy
& hold strategy (stocks
from the group)

Profit (%) per
year (random
stocks)

Profit (%) per year for
buy & hold strategy
(random stocks)

EA

3 133.24 86.24 8.79 34.81
5 89.15 28.85 1.8 33.62
7 68.32 21.43 13.74 23.72
10 87.57 24.29 20.81 26.07

CCEA

3 115.63 46.12 3.29 21.07
5 64.82 8.83 7.39 31.36
7 85.75 45.24 14.69 24.64
10 69.06 26.37 20.75 25.14

CoEMAS

3 87.39 12.64 3.97 30.28
5 66.97 7.64 -1.93 20.72
7 86.93 39.48 19.01 34.47
10 46.67 18.67 24.6 24.98

two threads (computations were carried out on a machine with one processor). But the

agent-based co-evolutionary algorithm can be easily distributed because of the decen-

tralized nature of agent-based computations.

The generalizability of the strategies uncovered by each algorithm is examined in

Table 9.6. The results show that while generating a strategy, at least 7 stocks should

be used (see Table 9.6). If there are more stocks used during the strategy generation,

the profit will be greater in the case of random stocks. For random stocks, when there

was 3 or 5 of them in the group, the profits are unstable. For this reason it is difficult

to compare implemented algorithms with a buy and hold strategy. It is not so, when the

number of stocks in the group is 7 or 10. In the case of the random stocks, buy and

hold strategy was always better (on average 2.67 times) than the strategies generated

by all three evolutionary algorithms, but for the stocks from the learning set generated

strategies were always better (on average 1.45 times) than a buy and hold strategy.

9.5 Summary and Conclusions

Generating investment strategies is a difficult problem because there exist many as-

sumptions, parameters, conditions and objectives which impact on reported results. In

the case of such problems finding the globally optimal solution is impossible in most

cases and a sub-optimal solution is usually quite sufficient for the decision maker. In

such cases some (meta-)heuristic algorithms like biologically inspired techniques and

methods can be used. In this chapter a system for generating investment strategies which
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uses three types of evolutionary algorithms was presented. The system can generate

strategies with the use of a “classical” evolutionary algorithm, a co-evolutionary al-

gorithm, and an agent-based co-evolutionary algorithm. These algorithms were tested

using real-life data drawn from the WIG index.

The results obtained show that a classic evolutionary algorithm (GP) generated the

individual (strategy) with the best fitness, followed by the best strategy generated by

an agent-based co-evolutionary algorithm, and finally, the best strategy generated by a

co-evolutionary algorithm. If population diversity (convergence) is examined, the re-

sults reverse: the best was CoEMAS, the second CCEA, and the worst results were

reported in the case of EA. Such observations generally confirm that co-evolutionary

and agent-based co-evolutionary algorithms maintain population diversity much bet-

ter than “classical” evolutionary algorithms. This can lead to stronger abilities of such

populations of solutions to “escape” from local minima. High population diversity is

also a very desirable property in the case of dynamic environments (such as financial

environments).

When we consider the generalization capabilities (profit gained from 7 and 10 ran-

dom stocks during one year) of the strategies generated with the use of each evolution-

ary algorithm, the best results were obtained by CoEMAS (21.8% profit on the average),

followed by CCEA (on the average 17.7%), and the worst results were obtained by the

classic EA (17.3% on the average). The three algorithms provide better results than a

buy and hold strategy for stocks from the learning set and worse results in the case of

the random stocks.

Future research could concentrate on additional testing of the developed algo-

rithms, and on the implementation and testing of other co-evolutionary mechanisms—

especially in the case of the most promising technique: CoEMAS. Also, the imple-

mentation of the distributed version of the agent-based algorithm is included in future

research plans.
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Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, pp. 314–323. Springer, Heidelberg

(2003)
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Summary. We investigate the impact of income distribution on lottery expenditures in Taiwan,

using an agent-based model developed in [2, 3]. The agents in the model are potential lottery

buyers, whose characteristics are described by three features: the percentage of income spent on

the lottery, the preferences among lottery numbers selected and the aversion to regret. We used

a genetic algorithm to drive the model simulation under agents with different incomes, based

on household income data in Taiwan from 1979 to 2003. The simulation results indicated that

the impact of income distribution on lottery sales is not significant. This might be due to the

Taiwan economy having a minor degree of income variation which has a low effect on lottery

expenditures.

10.1 Introduction

Lotteries are pervasive phenomena worldwide. Most modern lottery games are vari-

ations of the pari-mutuel “lotto” design: players select a set of numbers in a given

range and win prizes according to how many numbers are guessed correctly. The win-

ning prizes come from a proportion of the lottery sales (the pay-out) and the remaining

portion (the take-out) is used to administer the game, pay the ticket outlets and cover

tax liabilities and other charges. In many countries, lottery taxes have become a major

source of charity and educational funds. In order to maximize tax revenues and min-

imize the negative social impact of gambling, governments consider socio-economic

variables and demographic information in regulating lottery policies.

In Taiwan, the first lottery game, Lotto, was launched in January 2002, with a pay-out

rate of 60%. The remaining 40% (take-out) is spent in two areas: 13.25% for administra-

tion expenses and 26.75% for government tax. Compared to the rest of the world, where

lottery take-out rates vary between 68.4% and 40% (Data source: La Fleur’s Lottery

World, U.S. Lotteries’ Unaudited FY00 Sales by Games. http://www.lafleurs.com/),

Lotto has a relatively low take-out rate.

As the lottery market continues to grow, the Taiwanese government has become con-

cerned about the determinants of the lottery expenditures, including income and soico-

economic variables such as age, sex, and education, which might give rise to a “demo-

graphic” burden of the implicit lottery tax. As an initial effort to address these issues,

this research investigates income distribution and its impact on lottery sales. This is an

important subject as there have been many studies reporting the regressivity of lottery

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 207–223.
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tax: lotteries are disproportionately consumed by the poor, who become the heavy bear-

ers of the implicit lottery tax [4, 5, 15]. The situation will become even worse if eco-

nomic inequality also plays a role in lottery expenditures. In this research, we adopt an

agent-based simulation approach to study this issue.

The lottery market is a dynamic entity whose macro behaviors are influenced by

many factors, such as the size of jackpot rollover and the psychology of lottery players.

While various mathematical models, such as multiple linear regression, have been used

to study the socio-economic variables related to lottery expenditures [14, 15], these

models do not capture the dynamic nature of the market. By contrast, agent-based

models simulate the lottery market behaviors by designing agents as lottery players

and implement various market scenarios in a systematic manner. The simulation results

hence allow us to analyze the cause and effect of market phenomena that are difficult to

trace using the traditional models. The agent-based simulation approach is becoming a

promising alternative in conducting economic analysis [13].

The remainder of this chapter is organized as follows. Sect. 10.2 introduces the con-

cept of income distribution and explains the lottery market’s operations. Sect. 10.3 de-

scribes our design of a lottery market model using an agent-based system. In Sect. 10.4,

the genetic algorithm used to drive the model’s simulation is presented. We provide the

experimental setups in Sect. 10.5. Based on the simulation results, we analyze the rela-

tionship between income distribution and lottery sales in Sect. 10.6. The tax revenues

under different tax rates are evaluated in Sect. 10.7. In Sect. 10.8, we discuss rollover

and its impact on lottery sales. Finally, Sect. 10.9 concludes the chapter with a brief

outline of future work.

10.2 Background

Income distribution provides an indication of the economic inequality of a society.

There are several metrics used by economists to measure income equality. This work

has adopted two methods: the 5-range ratio and the Gini coefficient [9]. In the 5-range

ratio approach, the household income observations are divided into 5 groups from the

lowest 20% to the highest 20%. The average income of the 80th percentile is then di-

vided by the average income of the 20th percentile. A larger ratio means a higher degree

of income inequality.

The Gini coefficient is derived from the Lorenz curve. To plot a Lorenz curve, the in-

come observations are ranked from the lowest to the highest. The cumulative proportion

of the population is plotted on the x-axis and the cumulative proportion of the income

is plotted on the y-axis. Fig. 10.1 gives an example of a Lorenz curve. The diagonal line

represents perfect equality. The greater the deviation of the Lorenz curve from this line,

the greater the inequality. To calculate the Gini coefficient ratio, we have used the area

between the Lorenz curve and the diagonal line as the numerator and the area under

the diagonal line as the denominator. Thus, a low Gini coefficient ratio indicates high

income equality. When the ratio is 0, it means perfect equality (everyone having exactly

the same income). When the ratio is 1, it indicates perfect inequality (where one person

has all the income, while everyone else has zero income). The Gini coefficient requires

that no one has a negative net income or wealth.
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Fig. 10.3. Lotto sales volume (in $NT) in 2002

Fig. 10.2 gives the household income distribution in Taiwan from 1964 to 2004, mea-

sured by the 5-range ratio and the Gini coefficient (Data source: http://fies2.tpg.

gov.tw/doc/result/93/211/Year04.doc). The 5-range ratio from 1964 to 1971

ranged between 5.33 and 4.17. After that, the ratio first increased then started decreas-

ing after 2001. The Gini coefficient index has a similar trend. The highest Gini index

was 0.35 in 2001, which is still below the international standard of inequality thresh-

old of 0.4. This indicates that the Taiwan economy has minor income variation. This

research will study lottery sales in Taiwan based on this set of income data.

The two major lotteries sold in Taiwan are Lotto and Big Lotto. Lotto was first issued

in January 2001. A Lotto player picks 6 out of 42 numbers to match the 6 winning num-

bers. If the picked numbers match all 6 winning numbers, the player wins the jackpot.

If nobody wins the jackpot, the prize is rolled over to the next draw. In 2005, the rule

was changed to pick 6 out of 38 numbers to promote sales. After the rule change, the

odds of winning the jackpot was increased from 1.90629×10−7 to 3.62229×10−7.

In 2004, a new game Big Lotto was introduced. This game has the same rules as that

of the Lotto game except that the game player picks 6 out of 49 numbers. The odds of

winning its jackpot is about 0.715×10−7. When nobody wins the jackpot, the rollover

frequently increases the sales of the next draw. Fig. 10.3 gives the Lotto sales volume
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(in NT$) in 2002. It is clear that during the rollover draws, such as issues 91006, 91012,

91020 and 91031, the sales increased dramatically. We will incorporate this market

phenomenon to design the agents in our agent-based lottery market model, which is

described in the following section.

10.3 An Agent-Based Model of Lottery Markets

An agent-based model typically has two parts: the environment and agent engineering.

The environment is described by a set of rules governing the interactions of agents in

the model while agent engineering involves the design of agents’ representative char-

acteristics. This research used the lottery market model built in [2, 3] to conduct the

simulation. In this model, the following x+4-tuple vector is used to describe the lottery

market environment:

M = (x,X, τ, s0, ..., sx) (10.1)

where x is the number of picks that a lottery player has to make from a total of X num-

bers. Depending on the number of matches between a player’s picks and the winning

numbers, different prizes are awarded.

Let y denote the number of matches, where y= 0,1, ..., x, and S y is its prize. The prize

with the highest amount is called the Jackpot. Each prize, S y, is shared by all players

who picked the numbers that matched the winning numbers. In the event when nobody

wins a particular prize S y, the amount is added to the next draw. When the jackpot prize

is added to the next draw, it is referred to as a rollover. Rollovers usually attract more

participants in the next draw, called the rollover draw.

The amount of monetary rewards to the lottery winners is governed by the lottery

tax rate, τ. Let S be the total lottery sales, the pay-out rate is 1−τ and the total amount

of monetary rewards is (1− τ)× S . This amount is distributed among different prizes

with rates s0 . . . sx, such that
∑x

y=0 sy = 1. In other words, S y = sy(1− τ)×S . Normally,

sy increases as y (the number of matches) increases.

The second part of the lottery market model is agent design. In a lottery market

model, agents are potential lottery buyers. What motivates an individual to gamble?

How much does one bet? We do not think there is a unique answer to these questions

nor a single approach to address these issues. Among many possible ways of designing

the agents, we focus on three features that capture the “stylized facts” of lottery markets:

participation level, conscious selection and aversion to regret.

10.3.1 Participation Level

Participation level α is defined as the percentage of an individual’s income I that is spent

on the lottery. When considering the reasons why someone wants to buy lottery tickets,

we perceive two types of possible influences: external and internal. The most notice-

able external influence is the size of the jackpot. In Section 10.2, we have observed

from the empirical data that the lottery sales increased during the rollover draws. We

have therefore used the size of the jackpot as a factor that influences an agent’s lottery

participation. Another possible influence on individuals’ decisions to purchase lottery

tickets is their own internal subjective belief (probability) that they will win the jackpot.
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We have also implemented this subjective belief of lottery winning as an alternative way

to determine α. The simulation results from the two different implementations will be

compared and discussed.

Lottomania and the Halo Effect

Lottomania refers to the phenomenon that sales following a rollover are higher than

those of normal draws. Lottomania is mostly created by the media to arouse gamblers’

desires to play the lottery. This effect may last for a few draws after the rollover draw [1].

Another related observation is that lottery sales are unexpectedly high right after a large

jackpot prize is won. In the lottery industry, this is called the halo effect [7, 11].The

following equation defines an agent’s lottery participation level based on the jackpot

prize

α = ρ(J) (10.2)

where ρ is the participation function, α is the participation level, and J is the jackpot

prize. This work assumes that agents base their decisions on some heuristics, and hence

uses an if-then rule to represent ρ and approximate Equation (10.2). One example of a

rule is “if the jackpot is unusually high, then I will spend 10% of my income to buy

lottery tickets.” The linguistic term unusually high in this rule is a common form of

human reasoning. We have used fuzzy sets [16] to define linguistic terms and describe

the value range of J in the if-then rule.

In this work, J is mapped into 4 linguistic terms (Low, Medium, High and Huge) by 4

different membership functions. A membership function decides the degree of member-

ship of a value to a particular fuzzy set. For example, if the fuzzy set High and Medium

are defined as

Medium = { jackpot|500,000< jackpot < 1,200,000}
High = { jackpot|1,000,000< jackpot < 2,000,000}

The jackpot prize of 1,500,000 belongs to High 100%, while the prize 900,000 belongs

to High, maybe 90% and Medium 10%. The degree of membership of a value to a par-

ticular fuzzy set is decided by the membership function associated with that fuzzy set.

In this study, we have adopted triangular-shape membership functions for simplicity. A

triangular-shaped membership function is defined by two base points: left leg and right

leg. They in turn give the peak of the triangle point (see Fig. 10.4).
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Fig. 10.4. Four triangular-shaped membership functions for the Jackpot prize



212 S.-H. Chen et al.

The four membership functions are not fixed but change over time depending on the

historical jackpot prizes. In other words, the definitions of “Low”, “Medium”, “High”

and “Huge” of a jackpot prize differ every day. On day t, the jackpot prizes from day

0 to day t-1 are analyzed based on their frequency under different prize ranges. The

prize ranges with lower frequency normally have high values and are very motivating

in terms of lottery purchasing. By contrast, those jackpot prizes with high frequency are

normally with low values and are unattractive to lottery buyers. After arranging the prize

ranges according to their frequency, we divided the entire jackpot prize ranges evenly

into 3 partitions. (Q1, Q2, Q3), which in turn give the base points of the four member-

ship function. Fig. 10.4 shows this scheme of membership function design. The degree

of membership to the four fuzzy sets is represented as a vector −→µ = {µ1,µ2,µ3,µ4},
where µ1 is the degree of membership to “Low”, µ2 is the degree of membership to

“Medium”, µ3 is the degree of membership to “High” and µ4 is the degree of member-

ship to “Huge”. For example, the jackpot prize 900,000 has −→µ = {0,0.1,0.9,0.0}.
An individual view of the significance of a jackpot prize differs from one person to

another. To customize the membership functions for each agent, an individual weight

vector −→a = {a1,a2,a3,a4} is used, where each ai is between 0 and 1. This vector is

applied on the right-hand side of the if-then rule when calculating the participation

level αi for agent i

αi = ai1µ1 +ai2µ2+ai3µ3 +ai4µ4 (10.3)

This gives αi a value between 0 and 1. While the value of −→µ changes over time as the

jackpot prizes change, each agent’s weight vector −→a also evolves. The adaptation of −→a
is carried out by a genetic algorithm, which will be described in Sect. 10.4.

Subjective Belief

The second implementation of an agent’s lottery participation level is the agent’s sub-

jective belief [3]. Let pi be agent i’s subjective belief (probability) that he/she will win

the jackpot. Assume the agents are risk-averse with the log utility function u(c) = logc.

It can be shown that the optimal participation level α∗
i

is

α∗i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ii−(
Ii

Jpi
)

1
1−pi

I
, i f logIi ≤ pi logJ+(1− pi) log(Ii−e),

0, otherwise.

(10.4)

where Ii is the income of agent i and e is the unit cost of the lottery ticket. Eq. (10.4)

shows that both the size of jackpot (J) and the agent’s subjective belief (pi) have a

positive impact on the participation level α∗. However, the impact of income (Ii) on α∗,
can not be analyzed easily. Do poor people spend a larger portion of their incomes on

the lottery or it is the other way round? Research work on this issue has given rise to

mixed reports [6, 14] and the answer to that question is inconclusive.

10.3.2 Conscious Selection

Despite the fact that the lottery winning numbers are generated randomly, lottery play-

ers tend to believe that one can predict the future winning numbers by analyzing the
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winning numbers in the past, and hence choose numbers in a non-random manner. This

is called conscious selection [8].

We implemented an agent’s conscious selection using an X-dimensional vector
−→
b

whose elements take either “0” or “1” (recall X is the total number of possible selections

that a lottery player can make). For a number z, where 1 ≤ z ≤ X, if the zth element in
−→
b is “1”, the number z is consciously selected by the agent, while “0” indicates the

opposite. Therefore,
−→
b gives a list of numbers which are consciously selected by the

agent. If
−→
b has exactly x 1s, there is only one possible combination and that combination

is used by the agent to purchase the lottery ticket(s). If
−→
b has more than x 1s, there is

more than one combination. The agent will randomly select one of them to purchase

the ticket(s). Finally, if
−→
b has less than x 1s, some random numbers will be generated

to make up a total of x numbers for the lottery tickets.

10.3.3 Aversion to Regret

Regret aversion arises because of peoples’ desire to avoid the pain of regret resulting

from a poor decision. In the case of lottery purchases, the regret refers to the cost of not

gambling after knowing somebody has won the lottery. Lottery promoters capitalize

on the aversion to regret to encourage lottery buyers to keep on buying [12]. We have

incorporated an agent’s aversion to regret θ using the following equation

ri =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−θiIi, i f α∗
i
= 0 and Nx > 0,

θiIi, i f α∗
i
= 0 and Nx = 0,

0, otherwise.

(10.5)

where θi denotes how regretful agent i, who did not purchase lottery (α∗
i
= 0), felt after

knowing someone had won the jackpot, i.e., the number of winners of the jackpot is

positive (Nx > 0). In the case when the jackpot is not drawn (Nx = 0), agent i may also

derive pleasure from the gamblers’ misfortune, and hence has a positive ri value. If an

agent did engage in lottery purchases, however, then there would be no such regretful

effect, and ri is 0. In summary, an agent i in the lottery market model is described by

the following 3 characteristics

• participation level: αi under lottomania implementation or α∗
i

under subjective be-

lief implementation.

• conscious selection:
−→
b i;

• aversion to regret: θi;

These agent properties evolve during the simulations using a genetic algorithm, which

is explained in the following section.

10.4 Genetic Algorithms

Genetic algorithms (GAs) [10] start with a population of randomly generated individu-

als. With a defined fitness criterion, individuals are evaluated and selected for reproduc-

tion. The two most commonly used reproduction methods are crossover and mutation.



214 S.-H. Chen et al.

The generated offspring then form a new generation of population. This process of eval-

uation, selection and reproduction is repeated many times until a termination criterion

is met. We will describe the implementation of our GA in the following sub-sections.

10.4.1 Representation

In the lottery market model, the population consists of a group of agents, each of which

has the 3 characteristics, α/α∗,
−→
b and θ, as described in the previous section. These three

characteristics are represented using a linear chromosome. As given in Eq. (10.3), α is

decided by two vectors −→u , which is calculated from the historical jackpot prizes, and
−→a , which is an agent’s individual weight vector. We encode −→a in the GA representation

using 4 binary bits for each of the four elements in the vector. The total number of bits

representing −→a is therefore 16. Each of the four binary bits is decoded to a real value

between 0 and 1 using the following equation

a =

∑4
j=1 c j2

j−1

24−1
(10.6)

where c j is the jth bit value counted from the right. For example, 0011 is decoded as
20+21

24−1
= 3

15 = 0.2; 1001 is decoded as 0.6; 1100 is decoded as 0.8 and 1111 is decoded as

1.0. Assume −→a = {0.2,0.6,0.8,1.0} and −→µ = {0,0,0.25,0.75}. According to Eq. (10.3),

the agent would invest α = 0.95 of his income to purchase lottery tickets.

When the participation level is determined using subjective belief, the probability p

is coded as a real number in the GA representation. This only takes one gene space.

Based on the p, we can calculate α∗ using Eq. (10.4). The coding of
−→
b (conscious

selection vector) is straightforward: it is a binary string of length X. Fig. 10.5 gives an

example of the case where X = 20. The consciously selected numbers are 1, 6, 9, 11

and 12.

Aversion to regret, θ, is also a real number between 0 and 1. When the participa-

tion level (α) is decided using a fuzzy rule, θ is coded with a 4-bits binary string, so

that the entire chromosome is a binary string, which is easier for genetic operation. Eq.

(10.6) is used to decode the 4-bits binary string to a real number. In the case where the

participation level (α∗) is decided by the agent’s subjective belief (p), θ is coded as a

real number taking one gene space in the chromosome. The value θ is used to calcu-

late r using Equation (10.5), which is used to calculate the agent’s fitness (see Section

10.4.2). In summary, when the agent’s participation level is decided by a fuzzy rule,

its representation contains (−→a ,−→b , θ), which takes 20+X bits. If the agent’s participation

02
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Fig. 10.5. An example of the selected lottery numbers
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level is decided by its own subjective belief, its representation contains (p,
−→
b , θ), which

has length 2+X.

10.4.2 Fitness Function

Each agent is provided with different income, based on the Taiwan income data (see

Table 10.2). The fitness of agent i is

Fi = Ii−Gi+πi+ ri (10.7)

where Ii is agent i’s income, Gi is the amount of money spent on the lottery (calculated

from αi), πi is the prize won and ri is the aversion to regret, per Eq. (10.5).

10.4.3 Genetic Operators

The genetic production starts from the selection of a mating pool. There are several

different selection schemes in GA. However, to have a better focus, only tournament

selection will be tried in this paper. By tournament selection, each individual in the

mating pool is determined as follows. We first randomly select ϕ chromosomes without

replacement, and then take the best two of them. The parameter ϕ is known as the

tournament size, and it is also the mating pool size.

Given the mating, two genetic operators, crossover and mutation, are applied to the

winning pair to generate two offspring. Since each chromosome contains three charac-

teristics of an agent, crossover is restricted to swapping only the same characteristics

between the two parent agents. We first randomly determine which one of the three

characteristics of the crossover will take place. If it is on the bit-strings −→a ,
−→
b or θ, the

one-point crossover is applied with probability Pc. If it is on the real-valued p or θ, the

arithmetic crossover is applied with the same probability Pc. The arithmetic crossover

works by averaging the two parents’ gene values as the gene value of the offspring.

After crossover, each of the two offspring has a probability of Pm to be mutated. For

bit-strings −→a ,
−→
b and θ, we apply bit mutation, i.e., 0 is flipped to 1 and 1 is flipped to 0.

For the real-valued p and θ, we apply an arithmetic mutation, which is designed to be

an equivalent of the bit-mutation shown in Eq. (10.8)

vnew = vold +

16
∑

i=1

BPm(
1

2
)i · (−1)

B 1
2 , (10.8)

where vold and vnew are the gene values before and after the mutation. BPm and B 1
2

are

the Bernoulli random variables with a success probability of Pm, and a mutation rate

of one half, respectively. In this way, the arithmetic mutation size, denoted by σ, is
∑16

i=1 BPm( 1
2 )i · (−1)

B 1
2 . When all offspring are produced, they replace the entire popula-

tion and become the new generation for another evolutionary cycle [2].

10.5 Experimental Setup

The agent-based lottery market is defined by two sets of parameters; one is associated

with the market (the top half of Table 10.1), and the other is associated with the GA
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Table 10.1. Parameter values for the agent-based lottery market

Market parameters

Pick x from X (x/X) 5/16

Lottery Tax Rate (τ) 10%,. . . 90%

Prize Distribution Rate (s0,s1, . . . s5) 0%,0%,35%,15%,12%,38%

Drawing Period (w) 3 days

Number of Agents (N) 5,000

Agent Income (I) see Table 10.2

GA parameters

pi value range [0,0.003] (for α∗)
Crossover Rate (Pc) 90%

Mutation Rate (Pm) 0.1%

Arithmetic Mutation Size (σ) in Equation (10.8)

Population Size 5,000

Tournament Size (ϕ) 200

Number of Generations 500

Number of runs (lottomania implementation) 25

Number of runs (subjective belief implementation) 50

(the bottom half of Table 10.1). In this lottery game, a player picks 5 out of 16 possible

numbers. Players with 0 or 1 matching numbers will not receive any prize. 35% of

the total prize pool is given to players with 3 matching numbers. The largest prize

is the jackpot which receives 38% of the total prize pool. Note that the 2-matching-

number winners receive a larger proportion of the total prize pool than the 3-matching-

number and 4-matching-number winners. This is because the number of 2-matching-

number winners is large, and hence a larger proportion of the prize pool is allocated

to that prize. After the prize is divided among all winners, the individual prize for a

2-matching-number winner is still smaller than that for a 3-matching-number or a 4-

matching-number winner.

The prize pool is the total lottery sales after the deduction of tax. Various lottery tax

rates (τ) from 0% to 90% are implemented to investigate whether there is an optimal

tax rate for the government to receive the maximum lottery tax revenue in this lottery

market model.

The drawing period is the number of days between two draws. In this model, each

period is 3 days long. On the first day, each agent is assigned with a different income

(explained later in this section). During the 3-day period, all agents can purchase lottery

tickets as desired. The lottery sales are added to the prize pool. At the end of the 3rd

day, the winning numbers are drawn and the prizes are distributed. All prizes that are

not won are rolled over to the next period.

After the prize distribution, the fitness of each agent in the population can be calcu-

lated using Eq. (10.7). Based on this fitness, selection and reproduction take place to

generate a new generation of agents. This ends the current period and all new agents

are allocated with new income to start a new period. This also means that each GA

generation is equivalent to one period and is 3 days long.
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Table 10.2. Average household income of Taiwan from 1979 to 2003

Year First Second Third Fourth Highest The High-Low Gini

20% 20% 20% 20% 20% Ratio coefficient

1979-1983 87.12 137.55 175.66 227.33 372.34 4.27 0.2201

1984-1988 82.30 135.45 175.21 228.13 378.91 4.60 0.2286

1989-1993 74.81 132.66 175.64 231.83 385.07 5.15 0.2399

1994-1998 72.33 129.37 174.55 232.87 390.89 5.40 0.2469

1999-2003 68.05 124.96 171.82 232.15 403.01 5.92 0.2590

Fix Income 200 200 200 200 200 1.00 0.0000

Each agent is assigned with a different income using the data in Table 10.2. From

the Taiwan income data, we selected 5 periods from 1979 to 2003 where income dis-

tributions have different degrees of variation. Each period is 5 years long. Their Gini

coefficients lie between 0.22 to 0.26 and their 5-range ratios range from 4.27 to 5.92.

For each of the periods, the household incomes are partitioned into 5 groups, from the

lowest 20% to the highest 20%. The average incomes of each of the 5 groups are as-

signed to the agent population uniformly. We also conduct an extra set of experiments

where all agents have the same income (200). This allows us to compare lottery sales

under any income distribution that varies and with perfect distribution. For each of the 6

different income distribution setups, we conduct 25 simulation runs for the lottery mar-

ket model under lottomania implementation and 50 runs for the lottery market model

under subjective belief implementation. The average results are used in the analysis and

discussion.

10.6 Lottery Sales vs. Income Distribution Analysis

We apply two statistical tests on the simulation data to determine whether the lot-

tery sales are different under the 6 different income distributions. The first test is the

Kolmogorov-Smirnov (KS) test and the second one is the Mann-Whitney-Wilcoxon

(MWW) test. Both tests are non-parametric or distribution free methods as they do not

assume that the data are drawn from a given probability distribution. The procedures

for the two-sample KS-test are as follows

1. Calculate the cumulative frequency for the first data set S 1(X);

2. Calculate the cumulative frequency for the second data set S 2(X);

3. Find the greatest discrepancy between the two frequencies, which is called the “D-

statistic”, Ds = Max|S 1(X)−S 2(X)|.
4. Compare this against the critical D-statistic (D) for that sample size.

5. If D > Ds, reject the null hypothesis that the two data sets are distributions of the

same form.

The KS-test is more accurate when the sample size is small. Since our data series are

collected from GA runs of 500 generations, the data size is considered to be large.

We therefore use a second statistical test, MWW, to validate the first test results. The

procedures for the MWW-test are as follows:
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1. Combine the data from both data sets and rank each value;

2. Take the ranks for the first data set and sum them as W1

3. Take the ranks for the second data set and sum them as W2

4. Calculate u1 = n1n2+
n1(n1+1)

2 −W1; u2 = n1n2 +
n2(n2+1)

2 −W2, where n1 is the size

of the first data set and n2 is the size of the second data set.

5. U = min(u1,u2);

6. Calculate Z =
U−E(u)√

V(u)
, where E(u) =

n1n2
2 and V(u) =

n1n2(n1+n2+1)
12 ;

7. Compare Z against the critical Z-statistic (Zs) for that sample size.

8. If Z > Zs, reject the null hypothesis that the two data sets are distributions of the

same form.

The 6 sets of simulation data from the 6 different income distributions setups under the

50% lottery tax rate (τ = 0.5) are paired to carry out the 2 statistical tests. Table 10.3

gives the test results for the lottery market model under lottomania implementation and

Table 10.4 gives the test results for the model with subjective belief implementation.

The entries whose p-values are less than 0.05 are marked with an ∗.
The tests show that only income distribution in 1984 under the model with lottomania

implementation results in lottery sales that are different from the sales under income

with equal distribution (200): both of the p− values of the null hypothesis, based on

Ds and Z, are almost nil. All other income distributions produce lottery sales that are

not significantly different from each other. There are also a number of entries in the

tables whose p-values are < 0.05 (with ∗). However, these entries do not demonstrate

any consistent trend, and hence no conclusion can be drawn from them.

Table 10.3. Lottery market model with lottomania implementation

K-S test statistic (τ = 0.5) M-W test statistic (τ = 0.5)

Y 1979 1984 1989 1994 1999 1979 1984 1989 1994 1999

200 0.2370 0.0000* 0.1236 0.0258* 0.0590 0.4971 0.0000* 0.0232* 0.1073 0.1073

1979 0.0013* 0.2370 0.8774 0.4141 0.0041* 0.2216 0.4377 0.4263

1984 0.0258* 0.0258* 0.0104* 0.0625 0.0344* 0.0397*

1989 0.8774 0.6485 0.6554 0.4971

1994 0.8774 0.9536

Table 10.4. Lottery market model with subject belief implementation

K-S test statistic (τ = 0.5) M-W test statistic (τ = 0.5)

Y 1979 1984 1989 1994 1999 1979 1984 1989 1994 1999

200 0.3584 0.5077 0.3584 0.2408 0.0951 0.5649 0.4100 0.7020 0.4380 0.4628

1979 0.8409 0.8409 0.9541 0.6779 0.0076* 0.9862 0.7174 0.6766

1984 0.8409 0.9541 0.8409 0.7801 0.9478 0.9478

1989 0.8409 0.8409 0.7277 0.7485

1994 0.9541 0.9423



10 Income Distribution and Lottery Expenditures in Taiwan 219

One possible reason why agents with different income distributions produce similar

lottery sales is the low income variations of the data sets: the Gini indexes are very close

to each other, between 0.22 and 0.26. We will perform simulations on data from other

countries with a higher income inequality to verify this hypothesis.

10.6.1 Lottery Sales vs. Tax Rates

We also examine the lottery sales under different tax rates (τ) and income distributions.

As shown in Figs. 10.6 and 10.7, the sales volume is the lowest when all agents have the

same income of 200. In addition, the general trend is that the sales volume decreases

as the tax rate (τ) increases. However, there are a couple of exceptions. For example,

1984 data have an increased sales volume when τ increased from 40% to 50%. Another

important observation is that, under all income distribution data, the sales volume ex-

hibits a sharp decline when the tax rates are higher than 80%. This indicates that lottery

sales are strongly influenced by tax rates. We will analyze lottery tax revenues under

different tax rates in the following section.
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Fig. 10.6. Lottery sales vs. tax rates: lottoma-

nia implementation
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Fig. 10.7. Lottery sales vs. tax rates: subject

belief implementation

10.7 Lottery Tax Revenue vs. Tax Rates Analysis

Lottery tax revenue (R) is affected by two factors: lottery sales volume (S ) and the tax

rate (τ) (see Eq. (10.9)). The two factors generate two counter-balancing forces, which

are described in Eq. (10.10).

R = τS = τ(αI) (10.9)

∂TR

∂τ
= S
︸ ︷ ︷ ︸

+

+τ
∂α

∂τ
︸ ︷ ︷ ︸

−

I (10.10)

The positive force is characterized by the plus sign in Eq. (10.10), which says that

given the sales volume S , the higher the lottery tax rate τ, the higher the tax revenue R.

Meanwhile, we also expect a negative co-relation between lottery participation α and

the tax rate τ, i.e., ∂α
∂τ
< 0. The second term in Eq. (10.10) hence has a negative value.

To plot the Laffer curves to depict the relationship between tax revenue (R) and the

tax rate (τ), we first transform our simulation data in the following ways. For each of
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the simulation runs, there are 500 generations, i.e., 500 lottery draws. At each draw

t, tax revenue Rt is collected. The tax revenue for each simulation run is therefore a

time series {Rt}500
t=1

. We normalize the revenue series by dividing R by the total income

(
∑n

i=0 Ii, where n is the number of agents and Ii is the income of agent i) and call this new

series {rt}500
t=1

. Notice that the normalized tax revenue rt can be interpreted as the effective

tax rate or the tax revenue. To avoid the possible initialization biases, we removed the

first 100 data points from the series and calculated the average of the rest of the 400

data points, r̄. Since we made 25 runs for each tax rate, the median values are used to

plot the Laffer curves in Figs. 10.8 and 10.9.
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Fig. 10.8. Laffer curves: lottomania imple-

mentation
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Fig. 10.9. Laffer curves: subjective belief im-

plementation

As analyzed in Eqs. 10.9 and 10.10, the (normalized) tax revenue r̄ first increases

with the lottery tax rate τ, and then decreases with it. The curves also show that un-

der different income distributions, there are different optimal tax rates τ that give the

optimal tax revenue r̄. Under lottomania implementation, the optimal τ is between

40% and 60% which generates an r̄ of between 10% and 19%. Under subjective be-

lief implementation, the optimal τ is between 30% and 40% which generates an r̄ of

between 6% and 8%.

We also evaluate the uncertainty of r̄ using box-whisker plots. Since the plot pattern

is similar for all simulation results from the 6 different income distribution data, we

only show two of them, one for the lottomania implementation (Fig. 10.10) and one

for the subjective belief implementation (Fig. 10.11). In a box-whisker plot, the box

in the middle covers 50% of the simulated tax revenue. The longer the box, the more

uncertain the tax revenue is. The two box-whisker plots show that the tax revenue is

relatively low and stable when the tax rate is at its two extremes (τ = 10%, 90%). The

box starts to inflate when the tax rate is moving toward the center, which signifies the

growing uncertainty in tax revenue. The degree of uncertainty is further compounded by

the enlarging whiskers, which extend the box to the frontier of the sample distribution.

The high degree of uncertainty makes it unclear if there exists an optimum tax rate τ

that gives the maximum revenues.

10.8 Discussion on Rollovers and Sales

Many researchers have reported that a large size of rollover would make the lottery more

attractive and increase sales [1, 7]. A previous work applying statistical tests to lottery
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Fig. 10.10. Box-whisker plot: lottomania im-

plementation
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Fig. 10.11. Box-whisker plot: subject belief im-

plementation

sales data from 7 countries also supports this proposition [2]. In this study, we have

applied the same statistical tests to the simulation data generated from our experiments

to examine if the same phenomenon appears in our lottery market model.

For each experimental run, we collected the sales from each draw. The data that

were from rollover draws and from the regular draws were then separated into two

data sets. Next, we conducted statistical tests to evaluate whether the two data sets

were significantly different one from the other. Fig. 10.12 and Fig. 10.13 provide the

t-statistics.
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Fig. 10.12. Rollover vs. sales: lottomania im-

plementation
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Fig. 10.13. Rollover vs. sales: subjective belief

implementation

All t-statistics on data from the simulation runs under 6 different income distributions

and 10 different tax rates have negative values. This means that the lottery sales for

the rollover draws have a decreased volume, which is the opposite of what has been

observed in the real lottery markets. A similar result was reported previously using

the same agent-based modeling system under agents with equal income [2, 3]. The

explanation presented there can be applied to our case.

In general, GA learning favors agents who win the lottery and who propagate those

winning agents’ characteristics (αi,
−→
b i, θi) to the following generations. However, most

gamblers do not win the prizes, and hence will end up with less money than the non-

gamblers. In other words, the rank of the agents based on the money they have after the

draws is as follows: winning gamblers, non-gamblers, and losing gamblers. During the

rollover draw, there was no jackpot winner in the last draw. All winning gamblers won

small prizes. The non-gamblers’ agents hence have good chances to be propagated from
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the last draw (generation) to the rollover draw (generation). With these non-gambler

agents, the lottery sales in the current draw (rollover draw) are reduced. However, if

there is a jackpot winner in the previous draw, the situation is completely reversed. The

jackpot winner’s characteristics would be greatly propagated to the current generation,

since the winner has very high fitness (the amount of money after the draw). Conse-

quently, the lottery sale in the current draw (the draw after the jackpot winning draw) is

increased.

10.9 Concluding Remarks

While the lottery has been widely adopted in many countries to raise charity and edu-

cational funds, there are concerns about its side-effects, such as the regressivity of the

lottery tax and the addiction to gambling. Various studies have been devoted to identi-

fying these side-effects so that the government can regulate related policies.

This chapter presents a study on the impact of income distribution on lottery ex-

penditures in Taiwan based on the simulation of an agent-based model. The simulation

results show that the impact is not significant enough for the government to raise any

concerns. Although the lottery market model is simple and does not reflect the real mar-

ket perfectly, it provides a vehicle to study the issues that are difficult to investigate us-

ing traditional models such as regression. We will continue this research by improving

the model with more sophisticated agent design and incorporating different algorithms

to drive the simulation. Meanwhile, we plan to investigate other socio-economic issues

related to lottery expenditures based on the newer model.
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Summary. This chapter, using a complex adaptive systems (CAS) approach, models how en-

trepreneurs create markets for a new, disruptive, technology through an effectuation process.

Starting from dispersed knowledge components held by both the demand and supply sides, a

market emerges from the interactive learning behaviours of entrepreneurs and potential cus-

tomers. The CAS approach enables investigation of both system-level emergence and the process

of dynamic co-evolution at the individual level. The results indicate that the process of market

creation is significantly impacted by factors including exploration tendency, alertness, and partic-

ipant prior knowledge.

11.1 Introduction

Complex and adaptive systems have interacting components whose individual be-

haviours and interactions lead to system-level emergent phenomena [49]. Economies,

and individual firms within economies, present a rich ecology of interacting processes.

Schumpeter [42] pictures an economy as a complex system with existing and emerg-

ing industries undergoing creative destruction leading to continual adaptation within

the economy. Adopting a firm-level unit of analysis, Penrose [35] presents the firm as

a system of wealth production and knowledge application, with the firm’s productive

resources being the components of this system. In a general sense, organisational scien-

tists have long treated firm-level organizations as complex adaptive systems, the com-

ponents of which are internal decision-making mechanisms [8, 54]. To investigate firm-

level organisational changes, simulation models have been developed to treat strategic

adaptation and punctuated equilibrium as results of subsystem interactions via basic

learning processes [5, 26, 27]. This study takes a similar approach to examine the cre-

ation of markets.

Markets entail the interaction of multiple buyers and suppliers with each influenc-

ing the behaviour of the other. For a market to exist, the demand side has perceive

that there is value in the suppliers offering and in turn, this requires that the suppliers

have some understanding of customers’ needs. In this sense we can see a market as a

body of knowledge, having converged from the two sides. The supply side configures a

value proposition, a combination of technology and other components which promise

A. Brabazon, M. O’Neill (Eds.): Natural Computing in Computational Finance, Vol. 2, SCI 185, pp. 225–243.
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to satisfy customers’ needs; on the demand side, customer perceived value (CPV), the

customers’ assessment of a solution’s overall capacity to meet their needs, comes as a

composite of multidimensional concerns and evaluations [25]. Knowledge components

originate from both sides and evolve in an entangled way. For example, the creation of

a telephone which is ‘mobile’ and ‘wireless’ was realised by supply side decisions on

combining the enabling technology components - wireless communication, microelec-

tronics, telephony, to name just a few. Meanwhile the concept of a ‘mobile-phone’ was

perceived as providing value by customers as they evaluate and compromise between

various issues in concern, including, for example, sound quality, the size and weight of

the handset, battery life etc.

Knowledge ‘never exists in concentrated or integrated form, but solely as the dis-

persed bits of incomplete and frequently contradictory knowledge which all the sepa-

rate individuals possess’ ([20], p. 519). No matter which side initiates it, the innovation

or market creation journey is a process by which the social needs and technological

possibilities meet and shape each other to converge [3, 56]. From the perspective of a

supply-side firm starting its market creation journey with a new technology, answering

the question of what values to propose and for whom involves critical decisions under

uncertainty. As what the end-solution should be is unknowable to both the supply and

demand sides, the answer is to be agreed through an effectuation process, ‘a process

that continually transforms existing realities into possible markets’ ([40], p. 544). This

process occurs through the commitments of individuals to networking [39] so that tech-

nical possibilities and needs are reconfigured and refined through social interactions. So

in general, market creation is the collective learning process of solution-formation.

To combine dispersed and incomplete knowledge components, of what is needed

with what is possible, into an end-solution a decision-maker from either the demand or

supply side starts the learning process with what she currently knows and has, involves

other stakeholders whose knowledge components are recognised as relevant, and with

them (collectively) bounds the uncertainty out in the environment ‘by deeming irrele-

vant a wide variety of information that may be available’ ([40], p. 534). So individuals

and firms from the demand and supply sides commit to the effectuation process, learn-

ing about and from each other in order to create a market as an institution of bounded

cognition under uncertainty [40]. Such a community temporarily agrees on what needs

are most relevant and how this need is to be satisfied [39]. The construct of such insti-

tutions or communities takes interactive learning and transformation.

Sarasvathy and Dew [40] describe the emergence of a new market as setting a thin in-

terface (an artefact) between two hierarchical levels of complex adaptive systems ([40],

p. 550)

The new market, however, gets fabricated, not through the designs of any one

person, but as a chain of interactive commitments that form the interface be-

tween the inner environment of the effectual network [of committed members

forming the community], and the outer environment ...

To create a ‘market’ as bounded cognition - an artefact to which the firm and its cus-

tomers are committed, the effectuation process from the point of view of a supply-side

firm is a learning process: learning to expand knowledge and to converge constraints
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[40]. By involving and interacting with the demand side, an option of what value to

create, and for whom to create it, is taken by suppliers.

This chapter investigates how a new technology competes with its older predecessor,

and how a market is created for the new technology via an effectuation process in-

volving potential customers. This process brings about a technological disruption when

new effectuation networks emerge, producing a new system attractor, as suggested by

Rosenkopf and Tushman ([38], p. 404)

This community of organizations evolves as new organizations introduce tech-

nological discontinuities, as coalitions form around technological substitutes,

as incumbent organizations resist these efforts as substitution, and as interor-

ganizational processes of compromise and accommodation affect a dominant

design.

CAS provides a set of tools and frameworks for investigating emergent phenomena.

Unlike for example, laboratory-based sciences, it is not possible to ‘rerun’ the creation

of a real-world market under different circumstances in order to assess the influence

of different variables or different market structures. Indeed, the emergent nature of the

process of market creation would render such attempts at ‘understanding’ problematic.

Hence, a simulation Agent-based Modelling (ABM) approach provides a good method-

ology in or attempts to understand the complex process of market creation.

We investigate the emergence new markets, by modelling the behaviour of a popu-

lation of individual learning agents (suppliers and users). These agents can learn from

each other and we can examine the outcome of these interactions - the emergence of a

viable market. An artificial fifty dimensional (50D) problem space is generated within

which the agents can interact. The traits and behaviours of the agents are modelled

by synthesizing concepts from bounded cognition, individual learning processes and

marketing. In the simulations we will observe how the agents can co-evolve so as to

combine their knowledge components in new ways leading to a new (higher) customer

perceived value (CPV). The constructed ABM simulator is used to test the influence

of some fundamental factors on market emergence, including: individual learners’ ex-

ploitation and exploration tendency; their alertness in searching for relevant informa-

tion; and their prior knowledge.

The remaining sections in the chapter are organized as follows. We initially review

the literature of organisational learning and technology entrepreneurship to identify and

synthesize key factors influencing the cognitive behaviours. The construction of our

simulator and the implementation of individuals’ learning behaviours in this simulator

are then reported. Next we provide the simulation results and discuss these. Finally, we

conclude the chapter.

11.2 The Building Blocks and Propositions

A complex phenomenon at any level can only be explained by studying the entities

and their interactions at one level down the hierarchy (components or subsystems). To

understand how a machine or living body works, we study its component parts and

investigate how they interact. Likewise, to understand how a market is created, we need
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to see how learners from the potential demand-side and supply-side come to understand

each other. To understand how the CPV of a radically new technology emerges, we

need to study the sub-product level knowledge components to see how they are brought

together.

From the point of view of individual actors or components, the future of any com-

plex adaptive system is unpredictable as the path to the future is stochastic. However,

system level order emerges from individuals’ actions and interactions [52, 53]. An en-

trepreneurial firm with a new technology as its core resource, the customers whose

needs are satisfied by what the firm offers, and competitors offering similar solutions

constitute a market or technological community

The lags (temporal or otherwise) between any invention and the creation of

new economic welfare enabled by it, require not only the ability and alertness

to recognize, and the perception and perseverance to discover opportunities for

the achievement of pre-determined goals such as increasing profits and larger

market shares, but also necessitate decisions and actions based often only on

human imagination, and human aspirations, that may or may not in time lead

to new products, firms and markets. ([41], p. 159)

Widget X

A technology entrepreneurial firm begins its effectuation journey from the local re-

ality of its initial conditions - its technology core - and some prior knowledge about

established markets and the customers within them. Sarasvathy and Dew [40] illus-

trate the uncertainty of market creation for new technologies with Goodman’s ([16])

grue paradox.1

The effectuation process starts with some knowledge component(s) - or ‘widget X’.

In general, widget X can be any component of a future market including demand side

elements (such as needs and wants), or supply side components (such as inventions,

ideas about product and/or service, as well as institutional structures of a market such as

channel, regulatory infrastructure, or standards bodies) ([40], p. 547). Using the ‘grue’

paradox as an analogy, future grass cannot be predicted to be green or blue. Widget X

can be further developed into either green or blue (or for that matter, any other colours)

end-products and thus ‘the history of technological invention is full of unanticipated

economic consequences’ ([41], p. 142). To the extent that end product from (any) wid-

get X is unformed and negotiable, the market is not to be ‘discovered’ but rather will

emerge through transformation. The entire process is driven by interactions, with stake-

holders learning about the existence of ‘relevant’ components and negotiating on what

the end-product from widget X’s should be like.

When an effectual network or technological community is being formed around

providers of key components for the development of widget X, an opportunity is created

1 The Grue paradox flows from the observation that multiple hypotheses could be supported

by any set of empirical data. Goodman illustrated this paradox with the sample hypothesis

that ‘All emeralds are green.’ A physical examination of a sample of emeralds will, of course,

support this hypothesis. However, consider an alternative hypothesis that ‘All emeralds are

grue’ where grue is defined as being green before (say) the year 2200 and blue after that

date. Obviously, this hypothesis cannot be disproved by examining the colour of a sample of

emeralds today!
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and a market emerges. With the new artefact having been set, the behaviors of suppliers,

customers and related institutions are ‘boxed’ within this inner environment, until the

next gale of creative destruction enters to shake and reshape the system(s). The vital

point of new artefact formation, as Simon ([48], p. 12) puts it

is the possession of relevant skill and knowledge, and at certain key periods

in the history of science and of other domains, the relevant knowledge comes

from a field other than the one to which it is applied

Critical to new market creation seeded by widget X, then, is the capability of capturing,

evaluating, and utilizing ‘outside’ knowledge components. An entrepreneurial owner of

a knowledge component (widget X) needs to learn about other relevant knowledge com-

ponents, in order to make decisions on what and how to combine them into a commer-

cially successful solution. Through the interactive learning activities of entrepreneurs

and their potential customers, novel combinations of technical components are devel-

oped into vehicles of customer values, and thus new paradigms for wealth generation

are set [11, 42].

To commit to and negotiate a green or blue widget X, the two parties (customers

and entrepreneurs) have to sense the existence of each other, learn about the widget

X’s that each one carries, recognise one another as relevant or not, and commit to ne-

gotiations (interactive learning). Given the complex and uncertain environments that

entrepreneurs are required to navigate through, they need to possess, at a minimum,

essential individual characteristics that deal with and benefit from information asym-

metries: prior knowledge endowments, the level of alertness to distant knowledge, and

some tendency for exploration in face of uncertainties.

Prior Knowledge

Prior knowledge enables connections to unfamiliar domains and hence influences the

generation and nature of the business ideas [43, 46]. Shane [43] suggests that prior

knowledge about

1. the potential market(s),

2. the way to serve the market, and

3. customer problems, enables entrepreneurial alertness.

Shane and Khurana [45] hypothesized that prior knowledge accumulated through ca-

reers of entrepreneurs are important not only for forming social ties [18], but also as

a means of learning. It provides a framework that can be used to process information

[13, 21]. Cohen and Levinthal [9] emphasize that learning is self-reinforcing by nature,

and thus the ability to absorb new knowledge is a function of the breadth of current

knowledge stock. The broader the prior knowledge stored, the easier it is for a learner

to evaluate and acquire new ’relevant’ knowledge components. Newly acquired compo-

nents may not be well utilized for a while, until the appropriate contextual knowledge

is obtained. Simon [48] suggests that the possession of relevant knowledge ’chunks’

is the precondition for learning, innovating, and problem-solving. These chunks give

rise to insights or intuitions necessary for the evaluation and further application of new

knowledge. Therefore we propose
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H1. Prior knowledge equips technology entrepreneurs to capture new knowl-

edge components and thus positively influences the emergence of a new

market.

Alertness Coefficient

When seeking relative information to form solutions, alert learners are ‘quick’ in rec-

ognizing relevant knowledge components, and are quick in transforming and applying

them. Within this context, scholars have postulated that the level of entrepreneurial ac-

tivity within an organization is a function of available information and entrepreneurial

alertness [12, 33, 45]. Ray and Cardozo [36] see alertness as a state of awareness or

a propensity to notice and to be sensitive to information about objects, incidents, and

patterns of behavior in the environment, with special sensitivity to problems, unmet

needs and interests, and novel combinations of resources. Minniti [33] conceptualizes

alertness as a parameter that controls how well different learners can take advantage of

information asymmetry. In other words, alertness is the extent to which a learning entity

makes use of its current knowledge endowment to acquire new knowledge. Equipped

with the same prior knowledge, different learners may have different levels of alertness

which leads to different learning performances. The different alertness coefficients of

agents in a market underscores the proposition that all cannot be explained by prior

knowledge endowments. Entrepreneurs not only need to possess the basic endowments

of their prior knowledge but also need to take advantage of the information asymmetries

[33]. The alertness coefficient thus may be an important predictor of the market creation

performance of technology entrepreneurs

H2. Higher level of alertness leads to better market creation performance.

While prior knowledge and alertness combine to create alert learners, these learners

need to be bold enough to commit to the learning journeys under uncertainties and this

is considered in our next hypothesis.

Exploration vs. Exploitation

Market creation and development require aspiration for explorative learning. An organi-

zation or individual person with a tendency towards exploration searches for new ideas

and conducts experimentation to deliver novelty, while exploitative learners focus on

tweaking existing knowledge [30]. Of course, bold exploration in a sea of uncertainty

may not produce profit, with March [31] noting that often, bold learners’ explorations

are driven by ‘the heroism of fools and the blindness of true believers’. Similarly, [27]

observe that the acquisition and processing of distant knowledge components ‘takes

place in a relatively costly process of search, frequently conducted under conditions

of ambiguity.’ ([27], p. 48). So, to achieve organisational changes, convergence and

reorientation, exploration is necessary and through the process of experimentation the

organisation recognises new goals or means to achieve goals, finds new ways of as-

sembling responses or connecting stimuli to responses, and integrates ‘new constructs

into existing cognitive structures.’ ([27], p. 49). In contrast, exploitation, or first-order

learning is ‘a routine, incremental conservative process that serves to maintain stable

relations and sustain existing rules’. We examine the significance of Exploration Ten-

dency (ET) for the process of market creation.
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H3. ET motivates commitments to new knowledge acquisition under uncer-

tainty and positively influences market creation performance.

Hence, the above hypotheses are examining whether learning activities are initiated by

alertness, informed by prior knowledge and motivated by ET. The hypotheses are tested

using our simulation model. The following section explains the simulation model in

detail.

11.3 Methodology

To simulate the behavioral processes leading to changes in complex systems, an ABM

simulator [19] generates agents, endows them with various traits including specifying

the simple rules their behaviours follow, and observes them interacting with one an-

other. The behaviour of the system arises out of the interactions among these individual

agents. For example, a modeller can specify the rules of behaviours of thousands of in-

dividual ants and then observe the resulted colony-level patterns. The emergence of any

new colony-level structure (system level emergence) is not designed or programmed,

but can be observed [37]. On observing the emergence of a new system structure, the

researcher may check who among the individual agents initiated and/or benefited from

the structural changes, and even trace the individuals’ journeys to investigate what fea-

tures and/or contingencies have led to such ‘successes’. At this stage, statistical analysis

can also be used to study whether there are factors significantly influencing the individ-

ual performance and system behavior. In this sense, an ABM simulator may also be

seen as a special data generator for longitudinal case survey. When a theoretical focus

is longitudinal, nonlinear, and processual (as is technological disruption, or the emer-

gence of a new CPV), simulation modelling provides a robust method for theory de-

velopment [10]. Particularly for studies on multiple interdependent processes operating

simultaneously [19] collecting large scale empirical data may be impossible. In such

cases, simulation may be a rigorous alternative to generate data for theory development

through statistical analysis.

In this study, a simulation methodology is used for data generation to test the proposi-

tions that predict a pattern of market emergence. A set of agents representing individuals

or organisations from both the demand and supply sides of the market are generated.

Their activities are governed by simple rules of learning and differences among their

(individual) features are governed by a probability distribution [27, 32].

11.3.1 Simulator Construction

In this model, new market(s) will emerge endogenously as a combination of the knowl-

edge components initially owned (but not initially shared) by agents from the demand

and supply sides. As knowledge is shared, a new CPV (or body of shared knowledge),

is built and agreed concerning individuals’ needs and how these needs can be satisfied.

A CPV as shared knowledge emerges in the 50 dimensional space when a new effec-

tuation network is being formed around a technology-based entrepreneur and poten-

tial customers committed to developing their individual ‘widget X’s’. Therefore, at the
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system level, we expect to observe agents from different subpopulations converging to-

gether on their shared knowledge. The market creation performance of an entrepreneur

is measured by counting the customers who are committed to further developing her

widget X. Specific details of the simulator construction are reported below.

The Space for System-Level Emergence

Customers require a solution to ‘get a job done’ and a valuable solution has a set of

specifications. It is believed that for any given job (e.g., transportation, cutting wood,

or growing corn), customers collectively apply 50 to 150 metrics to measure the per-

formance of a technical solution [55]. We model the ‘knowledge space’ for emergent

customer-values as having 50 dimensions: supply-side technology possibilities and the

demand side concerns on which customer values are to be perceived. In this 50D space

of knowledge, an agent’s coordinates represent its ‘knowledge-profile’, represented as

a 50 dimensional vector bearing the agent’s level of knowledge on each individual di-

mension. Individual agents initially have knowledge on their widget X’s one core di-

mension but possess little information on the remaining dimensions. However, they will

typically build up knowledge about other dimensions during the effectuation journey.

In this sense, each of the agents is in an open and evolving world and this reflects the

real-world impact of information asymmetries, or bounded rationality.

Agents carrying knowledge-components move around in the knowledge space, and

can potentially sense the existence of other agents, decide whether other agent’s knowl-

edge is relevant and learn from/about each other. Knowledge about a new dimension,

once captured, is taken into an agent’s updated knowledge-profile (it’s 50D vector).

Dispersed knowledge components from various agents can therefore be integrated to

finally create a market [20].

Among the 50 dimensions of possible future customer values, some are connected

with others. So knowledge on one dimension may lead to the recognition of the exis-

tence of other dimensions. For example, the weight of a laptop computer, its memory

capacity and its computation speed are all interconnected features and hence customers’

perceived value about these features comes as a compromise. The interconnections

among the dimensions actually make this 50D space a twisted torus, somewhat similar

to an N-K landscape [5, 22, 28]. In other words, adding a new dimension to a possible

solution may activate or change the agent’s knowledge about another K dimensions. If

customers, for example, start to believe that a mobile-phone handset should have a cam-

era function as an improvement, they then expect new applications and specifications

such as a large data storage space and on-line picture-sharing.

Scales on the Dimensions

Goldstein and Gigerenzer [15] suggest that there are three levels of knowledge. First,

one may have no knowledge of an issue at all, so the existence of such a dimension has

been ignored or unrecognized. At the second level, knowledge about some dimensions/

issues is merely recognized based on prior knowledge. At the third level of knowledge,

one can provide all sorts of additional information about an issue - a dimension on

which one has deep expertise. An example of the latter in this simulation is the infor-

mation that each agent initially possesses on their knowledge core (their widget X).

For this study, we use 0, 1, and 2 to denote respectively the three levels of knowledge

(ignorance, some prior knowledge, and the knowledge core). At any point in time, the
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location of an agent in the 50D space reveals its knowledge profile. At the starting point

of learning, agents carry partial and dispersed knowledge components of some (poten-

tially) enabling technologies (supply side) or demand-side customer problems/concerns

(demand-side). Each agent’s knowledge is limited to a few dimensions known to it. For

example, an individual technology-based entrepreneur (denoted as a ‘techie’ in the rest

of this chapter) (’techie 31’ from the simulator) has a knowledge profile as (2 2 0 0 2

0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0). This means that this technology-based entrepreneur has expertise on dimensions 1,

2, and 5 (e.g., cooking expertise the cook possesses as her widget X [40]); prior knowl-

edge about some potential market domains on dimensions 7, 11, 16, 17, and 23 (e.g.,

knowledge about a grocery store owned by a friend with whom this cook might start a

deli business; or, about a popular media for whom she might produce cooking videos

(Sarasvathy and Dew 2005)). In the meantime, other dimensions are unknown to this

techie; in other words, her point of view is one from a little corner of the 50D space.

Taking an example from the demand side, one of the 200 customers, Customer 7, is

initially located at (0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 2 0 0 0 1 0 2 0 0 2 0 0 2 2 0 0 0

0 0 1 0 0 0 0 0 0 1 2 0 2 0 0) sharing little knowledge with techie 31.

An incumbent organization (denoted as incum in the remainder of this chapter) (for

example, organisation 2) at (0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 2 0 2 1 2 0 2 2 0) is an established supplier in an extant market, and it

has more dimensions of expertise, some of which respond to customers’ existing needs.

Although initial conditions are critical to agents, none of the agents can predict a priori

what/how the future is to be, which dimensions from the unknown may occur to them

and to be agreed on. Yet the future is reachable through transformation and effectuation.

Boundary-Spanning Organizations

To make it possible for agents to learn distant knowledge, we randomly planted in

the 50D space 50 boundary-spanning organizations (denoted as Spanners). For new

technologies, boundary-spanning organizations could be ‘research labs, patent agen-

cies, regulatory bodies, professional societies, trade associations, consortia, and other

types, depending on technological and political contexts’ ([38], p. 411). Rosenkopf and

Tushman [38, 39] believe that boundary-spanning actors (which are composed of rep-

resentatives from multiple organizations) create cognitive linkages across organizations

in different technological communities. Dosi [11] (p. 229) suggested that these bridg-

ing institutions may have a key influence on the early stage of innovations. From the

supply-side point of view, [50] suggest that firms, in order to overcome the tyranny of

served markets, build cognitive ties broadly with suppliers, businesses in different in-

dustries, consultants, universities, and government agencies. In this simulator, Spanners

are set to have various levels of knowledge randomly, for example, one (Spanner 52)

stands at the point (0 0 0 0 0 2 1 1 2 1 0 2 2 2 2 0 1 1 1 2 2 1 0 1 1 1 0 0 2 0 0 0 1 0

0 0 0 0 0 0 0 0 0 2 0 2 1 2 1 0). All the spanners are randomly planted as such in the

knowledge space.

Behaviours of the Learning Agents

In the 50D knowledge space, an agent’s location denotes its current knowledge-profile

and its movements are learning activities as time goes by. At each time-step (tick) of
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the algorithm, learners are displaced from their current positions by applying a velocity

vector to them [23]

Xi(t+1) = Xi(t)+Vi(t) (11.1)

The magnitude and direction of an agent’s velocity at each step are determined by sim-

ple rules: whom a learner decides to move toward (learn from), and how large this step

can be. The simple rules for each population of agents are as follows:

Techies: May move towards the closest spanner and/or a tentatively identified lead user

(a customer close enough in the knowledge space to it, thanks to their prior knowledge

on the same dimensions, or indirectly, through some bridging spanners);

Incums: If they are sufficiently ‘explorative’, they may learn from distant customers

(customers whose needs have not been identified/served). If they are not explorative,

they stay with committed customers to elaborate on current solutions based on shared

knowledge;

Customers: Learn about a supplier, a techie or an incum, having sensed its existence;

and/or having learnt from a close neighbor, if the neighbor is happier (having more

dimensions of its needs served).

In a natural ecosystem, predators have to make foraging decisions with little, if any,

knowledge of present resource distribution and availability. The likelihood of a learner

to sense distant knowledge elements is similar to the encounter rates with prey in het-

erogeneous natural environments [47]. We model this likelihood as a decreasing expo-

nential function of the distance [56]

C = Ae−bD (11.2)

where D is the Euclidean distance in the knowledge space between the locations of an

agent and the source of the knowledge element to be recognized. The alertness coeffi-

cient, b, represents the extent to which such a distance obstructs the learning activity -

in other words, the extent to which an agent can take advantage of information asym-

metry. For an alert learner, b<1. Since the ‘intelligence was guided by will towards

the solution of envisaged problems’ ([40], p. 535), A is ET, the exploration tendency,

or the ‘will’ of committing to new learning under uncertainty. For the implementation

of ET concept, we adopt a 5 point scale, with 1 being the lowest in ET and 5 the high-

est. Combining Eq. (1) and (2), the learning behaviours of the three types of agents are

expressed by the following equations

Techies:

Vi(t+1) = Aie
−biDi(leaduser(t)−Xi(t))+Aie

−biD
∗
i (Pclosest(t)−Xi(t))

Di = EuclideanD(leaduser(t),Xi(t))

D∗i = EuclideanD(Spanner(closest),Xi(t)) (11.3)

Incums:

Vi(t+1) = (1−Aie
−biDi)(customer(t)−Xi(t))+Aie

−biDi(leaduser(t)−Xi(t)) (11.4)
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Customers:

Vi(t+1) = α(lbest(t)−Xi(t))+Aie
−biDi (heard(t)−Xi(t)) (11.5)

where α is random number drawn from U(0,1) representing a customer’s exploitation

tendency (its tendency to learning only from close neighbours in the 50D space); lbest

is a neighbour customer who is recognized as being happier (having more dimensions

of need served); and heard is either a techie or an incum, whose existence has been

recognized by this customer.

If an agent has ‘0’ level of knowledge on a dimension before making a step of move-

ment, it may after learning from others, flip the knowledge to ‘1’. This is governed by

S igmoid(V) =
1

1+ e−|V |
(11.6)

When the sigmoid function of the velocity on a dimension is larger than a random

number U(0,1), knowledge on that dimension flips from ‘0’ to ‘1’ [4]. After recognizing

a dimension as relevant, the knowledge-gain along the dimension is cumulative from ‘1’

to ‘2’. An agent can ‘unlearn’ (or forget) about a dimension by unloading its knowledge

from ‘2’ continuously down to ‘1’, but not from ‘1’ back to ‘0’. After recognizing the

existence of a dimension, one cannot be ignorant of its existence any more. Taking into

account the interconnectedness of dimensions, if a learner’s knowledge level on one

dimension is higher than 1, there is a chance for this learner to recognise the existence

of other K dimensions.

If customers and supplier(s) (either incum or techie) have built sufficient shared

knowledge to come close to each other, a new effectuation network emerges in the

50D space. Customers whose needs are satisfied by an incum will paint their shared

patches green whereas those who are happy with a techie’s widget X (and are willing to

commit further to its development) paint their patches blue. Normally, as incums have

initially more shared dimensions of knowledge with customers, some green patches

emerge very early in the simulation. These become extant markets in the disruptive

techies’ eyes. Still, we are unable to predict the colour of future patches (therefore all

markets are ‘grue’).2 From running the simulation model, the emergence of green or

blue patches can be observed. Simulation experiments are conducted to collect data for

testing the hypotheses on individual learning behaviours of the agents and their market

creation performance.

11.3.2 Model Validation

To simulate means to build a likeness. The validation issue of a simulation model ad-

dresses the question of how accurate that likeness is [24]. Although there are arguably

diverse approaches through which a researcher can validate a simulation model [24],

empirical validation- comparing generated data with longitudinal case studies is the

most direct approach [10]. Alternatively, staying in accordance with ‘expert opinion

and professional acceptance can be as good validation’ ([24], pp. 1089-1090). As we

have to leave empirical validation for future studies, the current model construction

2 The NetLogo code is available from the authors on request. Please contact Shuyuan Wu.
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complies with the widely accepted principles for building agent-based models. Each

agent has strategic choices in making its movements in the knowledge space for each

time step. Specifically, to test whether the model renders a reasonably wide array of

behaviors, we draw a sample of 104 technology-based learners randomly by running

the simulator in various system conditions such as different levels of prior knowledge,

different involvement with boundary spanning organizations, and different levels of ex-

plorative behaviours of the incumbent organizations.

11.4 Simulation Results

This section presents the simulation results. We initially describe the results of this

simulator by demonstrating the system level emergence and secondly, we examine the

behaviours and performance of individual agents.

System-Level Emergence: Markets are Grue

Fig. 11.1 shows a simulator snapshot of the development of green and blue patches

within the system. It was captured after 300 ticks (iterations) of one run of the simulator.

In this figure, green patches are technological communities around green solutions de-

veloped from the widget X’s of incums. On the blue patches are effectuation networks

created by techies together with their committed customers. White patches represent

mature markets developed from green or blue patches). Yellow figures represent cus-

tomers, red circles with dots are spanners, blue happy faces are techies, and grey pillars

are incums. The picture shows the emergence of blue and green patches, as the results

of the commitments of agents in their learning journeys.

Fig. 11.1 demonstrates the existence of blue or green patches that have emerged

from the learning activities of the agents. From this figure, we can observe the results

of the movements and commitments of the agents in creating a new markets for/from

their ‘widget X’s’. Within this landscape, a variety of markets are created. We find that

 

Fig. 11.1. Markets are Grue
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Fig. 11.2. The emergence of blue patches. The blue line crosses the green line after approx.

79 iterations and remains above the green line thereafter. The x-axis (ticks) are iterations of the

simulation, whereas the y-axis denotes the number of green and blue patches respectively.

there are established markets (green patches which are set earlier by incums and their

customers during the running of simulation, new markets (blue patches showing where

previously unsatisfied customers have interacted with techies to create new markets

for their new-to-the-world widget X’s), and well developed markets (when the blue or

green solutions have been well refined and accepted and those markets are maturing).

Fig. 11.2 shows dynamically the technological disruption. We can observe that green

patches appear at iteration 5 (very early on in the running of simulation). Sharing more

dimensions of knowledge with customers at the starting point, incums are able to in-

teract and negotiate with customers to establish solutions to their needs quite quickly.

However the green line up to 303 iterations shows that the number of green patches and

mature markets from them (markets for the former technology) tend to stay fairly con-

stant over the running of the simulation, indicating that extant markets of established

solutions continually attract, retain, and sometimes lose customers. This can be con-

trasted with the emerging blue patches, which began to become noticeable at iteration

62. As can be seen from Fig. 11.2, the number of blue patches increases steadily after

iteration 62. This indicates that more and more customers are committed to develop

new solutions together with techies as their shared knowledge expands. At iteration 79,

the number of blue patches overtakes the number of green patches indicating that the

new markets have begun to overtake existing markets. This indicates the success of dis-

ruptive technologies [1, 6, 7]. In creating its markets, a new disruptive technology at its

inception is inferior to mainstream solutions along the recognized dimensions of per-

formance. Therefore at that stage their early development only serves niche segments

which value their non-standard performance attributes, however, subsequently along

their development, these technologies are able to raise the performance attributes such

that they begin to involve more and more customers. Fig. 2 graphically displays the

competition between green and blue solutions being developed, the result of which was

the emergence and dominance of blue widgets (or blue markets being created). At itera-

tion 303 (the end of the simulation experiment), customers with techies have created 82
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blue patches, while there were 39 green patches in comparison (i.e. the new technology

is dominating).

The system-level emergence demonstrates a number of issues of significance for

theory advancement in market creation. Firstly, the results of the system-level emer-

gence in the simulation provide evidence that markets are indeed grue. Technology

entrepreneurs need not know the future in order for new markets to emerge. Rather,

the collective learning and interactions of entrepreneurial entities, customers and others

give rise to opportunities for market creation. The various agents within a system work

through commitments to exchange and combine their knowledge components without

a complete knowledge about the future. These results demonstrate the importance of

learning and transformation (the accumulation and sharing of knowledge resources)

that entrepreneurs and customers are required to commit to in order to create new CPV.

Our second theoretical insight is the emergence and dominance of disruptive inno-

vations. While preliminary at this stage, the results of our simulation suggest that the

success of disruptive innovations is due to the combination of knowledge, and inter-

active learning activities with customers [6, 14, 17]. However, in order to examine the

complex and adaptive behaviours of this system level emergence, we need to examine

the micro-level interactions of the entrepreneurial agents.

What Efforts Can a Techie Make?

Individual agent’s movements are recorded automatically during the running of the sim-

ulator. With this data we can trace the learning journey of individual agents and also test

the influence of each individual’s traits on their performance. Longitudinal cases can be

drawn from the datasets as abstract versions of market creation journeys. Each can be

compared with market-creation case examples of technology-based entrepreneurs that

began with new-to-the-world ‘widget Xs’ (for example, molecules such as Kevlar [51]

and Surlyn [34] invented by Du Pont).

In general, the learning journey for individual techies is uncertain. They go through

a stochastic process of expanding resources (the techie’s knowledge, in this model) and

converging on constraints constructed together by the supply and demand sides [40].

Most of the techies end up having no customers staying with them, even if they at-

tracted customers at times during the simulation run. This parallels the high failure rate

for real-world product development. Some succeed in having more and more customers

committed to their widget X because of their strong wills to make use of what they

know and push the boundary of the unknown. They ‘move’ actively, even after being

frustrated during earlier time steps and they are alert to identify distant knowledge ele-

ments so that they expand knowledge resources to realise a shared body of CPV together

with customers.

The journey to success is not smooth. It is difficult to sense the existences of potential

customers and attract their attentions to new widget X’: on average it takes more than 45

iterations to observe blue patches showing up. It seems even harder to keep customers’

commitment because there are multiple competing widget X’s being developed at the

same time. For example, we traced an alert and extremely bold (exploratory) techie,

‘techie 4’ with b = 0.5 and A = 5. Being narrowly specialised in its expertise and having

only 3 dimensions of prior knowledge, it had no potential customer within mind-sight

range. It learned about a few dimensions from Spanner 225, then Spanner 241, and
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hence after 3 iterations saw Customer 70. However, Customer 70 , committed to a green

widget X with Incum 10, did not pay any attention to Techie 4. Techie 4 continued

expanding its knowledge, learning from Spanner 441 and identified Customer 137 as

a lead-user at iteration 9, but this customer decided not to go together with it either.

At iteration 15, Customer 70 who had been involved with Incum 10 and then Techie

2 updated its knowledge-profile (on what is important to satisfy her needs) and the

update took it closer to Techie 4. However, the first ‘transaction’ between these two did

not happen till iteration 38, when Customer 70 felt happy to paint its patch blue, after

a negotiation lasting 23 iterations. As a result of these, customer 70’s need-profile was

updated to [1 1.23 1.48 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0

0 0 1 1 0 1 1 1 1 1 0 1 1 1] and the knowledge of techie 4 arrived at [1 2 2 2 0 1 1.4 1

1.18 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1].

Until iteration 63, techie 4 had only been trading with customer 70, without expand-

ing its knowledge resources at all and unfortunately Customer 70 left it during iteration

63. Afterwards, techie 4 learned from Spanner 241, Spanner 215, and Customer 102 to

recognize dimension 17 and 22 so that it involved Customer 102 and recaptured Cus-

tomer 70. By iteration 66 customer number has increased to 5 after Techie 4 took into

its knowledge-profile dimension 5 and dimension 34.

The market kept expanding as Techie 4 learnt more about the needs of lead users,

Customer 70, 102, and 137, and meanwhile potential customers were learning from

each other. By iteration 96 it had involved 10 committed customers and the (sub)market

size increased to 35 customers at iteration 121. Within 10 iterations the number of cus-

tomers had increased to 66. The count of committed customers as the market creation

performance of techie 4 reached 95 (47.5% of the customer population) at iteration 134

when we ended our observation on it.

In order to examine the importance of the three parameters in our model, we collected

data from the simulator by running it under a variety of conditions. This dataset includes

104 techies and their market creation performances (counts of customers who are com-

mitted together with individual techies to develop future solutions). Multiple regression

analysis tested the relationship between the number of customers involved (Customers)

with a focal techie as its performance and the techie’s exploration tendency (ET), alert-

ness coefficient (Alertness), and the breadth of prior knowledge (PriorKw). The results

show that ET, alertness, PriorKw together explained 20.7% (the R2) of the variance in

market-creation performances. The ANOVA analysis confirms the significance of this

model, with p-value smaller than 1%. This means that the success of market creation

was not totally by chance, but can be attributed to the individual traits of each techie

agent, even though future is not predictable from initial conditions. PriorKw was posi-

tively correlated with the performance, with the coefficient being 0.56 (p < 0.00). This

is consistent with hypothesis 1 that prior knowledge plays a highly significant part in the

creation and development of CPV. Support for hypothesis 2 is also found as the alert-

ness coefficient, b, was found to be negatively correlated (due to the implementation of

the alertness concept in the simulator, the higher b is, the less alert an agent is) with

techies’ market creation performances. The effect is strongly significant (B = −1.542,

p < 0.001). ET has a correlation of 0.5 at the significance level of 95% (p < 0.05) with

the market creation performance, suggesting support for hypothesis 3. The result from
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our simulations supports an assertion that information asymmetries impact on the mar-

ket creation process of technology entrepreneurs [43]. The ability to create markets is

a function of the interaction of prior knowledge and alertness. Also ET, the aspiration

to create future through commitments under uncertainties, is significantly important for

the success.

The emergence of CPV is a function of the system in which individual agents inter-

act and expand their knowledge. Entrepreneurs and customers act within their worlds

of bounded cognition, partial knowledge and uncertainty [40]. During the effectuation

process, stakeholders come together to commit to transforming extant realities into a

new market. Therefore to a great extent, the creation of an effectuation network (and

the eventual development of a market) is largely dependent on the interactions of who

and what components have been seen as ‘relevant’ and hence has come on board during

the process. In short, chance plays a large role.

11.5 Conclusions

This study shows that the interactive behavioral processes of market creation can be

realized through computer simulation so that researchers can analyze both system-level

behavior and the influence of individual factors on performance.

Taking the CAS approach, we simulate the market creation process for disruptive

technologies. New markets emerge from the interactions between entrepreneurs and

their potential customers. Starting with limited and dispersed knowledge components,

these individual agents converge at artefacts of shared knowledge (CPV) on what is

needed and how that need is to be satisfied. In expanding their knowledge profiles and

negotiating their constraints, individual learners sense each other’s existence, recognise

relevant components, and learn about/from each other through commitments. The result

showed that individual entrepreneurial traits including prior knowledge endowments,

alertness, and exploration tendency are significantly influential in the market creation

performance. However, because the effectuation process of individual agents is highly

stochastic and complex, individuals’ traits together explained only 21 percent of the

variance of market creation performance.

It is not possible in a single set of simulation experiments to exhaustively examine ev-

ery possible combination of settings for each parameter in the simulation model. Future

work will extend the range of settings examined and will include further development

of the simulator.
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Dreżewski, Rafa�l 181

Esparcia-Alcázar, A.I. 31
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