

• Table of Contents
Software Architecture in Practice, Second Edition
By Len Bass, Paul Clements, Rick Kazman

Publisher : Addison Wesley
Pub Date : April 11, 2003

ISBN : 0-321-15495-9
Pages : 560

This award-winning book, substantially updated to reflect
the latest developments in the field, introduces the concepts
and best practices of software architecture-how a software
system is structured and how that system's elements are
meant to interact. Distinct from the details of
implementation, algorithm, and data representation, an
architecture holds the key to achieving system quality, is a
reusable asset that can be applied to subsequent systems,
and is crucial to a software organization's business strategy.

Drawing on their own extensive experience, the authors
cover the essential technical topics for designing, specifying,
and validating a system. They also emphasize the
importance of the business context in which large systems
are designed. Their aim is to present software architecture
in a real-world setting, reflecting both the opportunities and
constraints that companies encounter. To that end, case

http://www.informit.com/safari/author_bio.asp@ISBN=0321154959
http://www.informit.com/safari/author_bio.asp@ISBN=0321154959
http://www.informit.com/safari/author_bio.asp@ISBN=0321154959

studies that describe successful architectures illustrate key
points of both technical and organizational discussions.

Topics new to this edition include:

Architecture design and analysis, including the
Architecture Tradeoff Analysis Method (ATAM)

Capturing quality requirements and achieving them
through quality scenarios and tactics

Using architecture reconstruction to recover
undocumented architectures

Documenting architectures using the Unified Modeling
Language (UML)

New case studies, including Web-based examples and a
wireless Enterprise JavaBeans(TM) (EJB) system
designed to support wearable computers

The financial aspects of architectures, including use of
the Cost Benefit Analysis Method (CBAM) to make
decisions

If you design, develop, or manage the building of large
software systems (or plan to do so), or if you are interested
in acquiring such systems for your corporation or
government agency, use Software Architecture in Practice,
Second Edition, to get up to speed on the current state of
software architecture.

• Table of Contents
Software Architecture in Practice, Second Edition
By Len Bass, Paul Clements, Rick Kazman

Publisher : Addison Wesley
Pub Date : April 11, 2003

ISBN : 0-321-15495-9
Pages : 560

 Copyright
 Preface
 What's New in the Second Edition

 Acknowledgments
 Reader's Guide
 Audience

 Parts and Chapters

 Part One: Envisioning an Architecture

 Part Two: Creating an Architecture

 Part Three: Analyzing an Architecture

 Part Four: Moving from One System to Many

 Case Study Organization

 Threads Through the Book

 Sidebars

 Part One. Envisioning Architecture
 Chapter 1. The Architecture Business Cycle

 Section 1.1. Where Do Architectures Come From?

 Section 1.2. Software Processes and the Architecture Business Cycle

http://www.informit.com/safari/author_bio.asp@ISBN=0321154959
http://www.informit.com/safari/author_bio.asp@ISBN=0321154959
http://www.informit.com/safari/author_bio.asp@ISBN=0321154959

 Section 1.3. What Makes a "Good" Architecture?

 Section 1.4. Summary

 Section 1.5. Discussion Questions

 Chapter 2. What Is Software Architecture?

 Section 2.1. What Software Architecture Is and What It Isn't

 Section 2.2. Other Points of View

 Section 2.3. Architectural Patterns, Reference Models, and Reference
Architectures

 Section 2.4. Why Is Software Architecture Important?

 Section 2.5. Architectural Structures and Views

 Section 2.6. Summary

 Section 2.7. For Further Reading

 Section 2.8. Discussion Questions

 Chapter 3. A-7E Avionics System: A Case Study in Utilizing Architectural
Structures

 Section 3.1. Relationship to the Architecture Business Cycle

 Section 3.2. Requirements and Qualities

 Section 3.3. Architecture for the A-7E Avionics System

 Section 3.4. Summary

 Section 3.5. For Further Reading

 Section 3.6. Discussion Questions

 Part Two. Creating an Architecture
 Chapter 4. Understanding Quality Attributes

 Section 4.1. Functionality and Architecture

 Section 4.2. Architecture and Quality Attributes

 Section 4.3. System Quality Attributes

 Section 4.4. Quality Attribute Scenarios in Practice

 Section 4.5. Other System Quality Attributes

 Section 4.6. Business Qualities

 Section 4.7. Architecture Qualities

 Section 4.8. Summary

 Section 4.9. For Further Reading

 Section 4.10. Discussion Questions

 Chapter 5. Achieving Qualities

 Section 5.1. Introducing Tactics

 Section 5.2. Availability Tactics

 Section 5.3. Modifiability Tactics

 Section 5.4. Performance Tactics

 Section 5.5. Security Tactics

 Section 5.6. Testability Tactics

 Section 5.7. Usability Tactics

 Section 5.8. Relationship of Tactics to Architectural Patterns

 Section 5.9. Architectural Patterns and Styles

 Section 5.10. Summary

 Section 5.11. Discussion Questions

 Section 5.12. For Further Reading

 Chapter 6. Air Traffic Control: A Case Study in Designing for High
Availability

 Section 6.1. Relationship to the Architecture Business Cycle

 Section 6.2. Requirements and Qualities

 Section 6.3. Architectural Solution

 Section 6.4. Summary

 Section 6.5. For Further Reading

 Section 6.6. Discussion Questions

 Chapter 7. Designing the Architecture

 Section 7.1. Architecture in the Life Cycle

 Section 7.2. Designing the Architecture

 Section 7.3. Forming the Team Structure

 Section 7.4. Creating a Skeletal System

 Section 7.5. Summary

 Section 7.6. For Further Reading

 Section 7.7. Discussion Questions

 Chapter 8. Flight Simulation: A Case Study in an Architecture for
Integrability

 Section 8.1. Relationship to the Architecture Business Cycle

 Section 8.2. Requirements and Qualities

 Section 8.3. Architectural Solution

 Section 8.4. Summary

 Section 8.5. For Further Reading

 Section 8.6. Discussion Questions

 Chapter 9. Documenting Software Architectures

 Section 9.1. Uses of Architectural Documentation

 Section 9.2. Views

 Section 9.3. Choosing the Relevant Views

 Section 9.4. Documenting a View

 Section 9.5. Documentation across Views

 Section 9.6. Unified Modeling Language

 Section 9.7. Summary

 Section 9.8. For Further Reading

 Section 9.9. Discussion Questions

 Chapter 10. Reconstructing Software Architectures

 Section 10.1. Introduction

 Section 10.2. Information Extraction

 Section 10.3. Database Construction

 Section 10.4. View Fusion

 Section 10.5. Reconstruction

 Section 10.6. Example

 Section 10.7. Summary

 Section 10.8. For Further Reading

 Section 10.9. Discussion Questions

 Part Three. Analyzing Architectures

 Chapter 11. The ATAM: A Comprehensive Method for Architecture
Evaluation

 Section 11.1. Participants in the ATAM

 Section 11.2. Outputs of the ATAM

 Section 11.3. Phases of the ATAM

 Section 11.4. The Nightingale System: A Case Study in Applying the
ATAM

 Section 11.5. Summary

 Section 11.6. For Further Reading

 Section 11.7. Discussion Questions

 Chapter 12. The CBAM: A Quantitative Approach to Architecture Design
Decision Making

 Section 12.1. Decision-Making Context

 Section 12.2. The Basis for the CBAM

 Section 12.3. Implementing the CBAM

 Section 12.4. Case Study: The NASA ECS Project

 Section 12.5. Results of the CBAM Exercise

 Section 12.6. Summary

 Section 12.7. For Further Reading

 Section 12.8. Discussion Questions

 Chapter 13. The World Wide Web

A Case Study in Interoperability
 Section 13.1. Relationship to the Architecture Business Cycle

 Section 13.2. Requirements and Qualities

 Section 13.3. Architectural Solution

 Section 13.4. Another Cycle through the ABC: The Evolution of Web-
Based E-Commerce Architectures

 Section 13.5. Achieving Quality Goals

 Section 13.6. The Architecture Business Cycle Today

 Section 13.7. Summary

 Section 13.8. For Further Reading

 Section 13.9. Discussion Questions

 Part Four. Moving From One System to Many
 Chapter 14. Software Product Lines: Re-using Architectural Assets

 Section 14.1. Overview

 Section 14.2. What Makes Software Product Lines Work?

 Section 14.3. Scoping

 Section 14.4. Architectures for Product Lines

 Section 14.5. What Makes Software Product Lines Difficult?

 Section 14.6. Summary

 Section 14.7. For Further Reading

 Section 14.8. Discussion Question

 Chapter 15. CelsiusTech: A Case Study in Product Line Development

 Section 15.1. Relationship to the Architecture Business Cycle

 Section 15.2. Requirements and Qualities

 Section 15.3. Architectural Solution

 Section 15.4. Summary

 Section 15.5. For Further Reading

 Section 15.6. Discussion Questions

 Chapter 16. J2EE/EJB: A Case Study of an Industry-Standard Computing
Infrastructure

 Section 16.1. Relationship to the Architecture Business Cycle

 Section 16.2. Requirements and Qualities

 Section 16.3. Architectural Solution

 Section 16.4. System Deployment Decisions

 Section 16.5. Summary

 Section 16.6. For Further Reading

 Section 16.7. Discussion Questions

 Chapter 17. The Luther Architecture: A Case Study in Mobile Applications
Using J2EE

 Section 17.1. Relationship to the Architecture Business Cycle

 Section 17.3. Architectural Solution

 Section 17.4. How Luther Achieved Its Quality Goals

 Section 17.5. Summary

 Section 17.6. For Further Reading

 Section 17.7. Discussion Questions

 Chapter 18. Building Systems from Off-the-Shelf Components

 Section 18.1. Impact of Components on Architecture

 Section 18.2. Architectural Mismatch

 Section 18.3. Component-Based Design as Search

 Section 18.4. ASEILM Example

 Section 18.5. Summary

 Section 18.6. Further Reading

 Chapter 19. Software Architecture in the Future

 Section 19.1. The Architecture Business Cycle Revisited

 Section 19.2. Creating an Architecture

 Section 19.3. Architecture within the Life Cycle

 Section 19.4. The Impact of Commercial Components

 Section 19.5. Summary

 Acronyms

 References

Copyright

Carnegie Mellon Software Engineering
Institute

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie
Mellon, CERT, and CERT Coordination Center are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; CURE; IDEAL;
Interim Profile; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability
Evaluation; Personal Software Process; PSP; SCAMPI; SCAMPI Lead Assessor; SCE;
Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce the following materials is granted by the Software
Engineering Institute:

Software Architecture: An Executive Overview, CMU/SEI-96-TR-003, © 1996
by Carnegie Mellon University.

Playing Detective, Reconstructing Software Architecture from Available
Evidence, CMU/SEI-97- TR-010, © 1997 by Carnegie Mellon University.

Architecture Reconstruction Guidelines, CMU/SEI-2001-TR-026, © 2001 by
Carnegie Mellon University.

Making Architecture Design Decisions: An Economic Approach, CMU/SEI-2002-
TR-035, © 2002 by Carnegie Mellon University.

A Case Study in Successful Product Line Development, CMU/SEI-96-TR-016, ©
1996 by Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers discounts on this book when ordered in quantity for bulk
purchases and special sales. For more information, please contact:

U.S. Corporate and Government Sales / (800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales / (317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Bass, Len.

Software architecture in practice / Len Bass, Paul Clements, Rick Kazman�2nd ed.

p.cm.

Includes bibliographical references and index.

ISBN 0-321-15495-9 (alk. paper)

1. Computer software. 2. Computer architecture. 3. System design I. Clements,
Paul. II. Kazman, Rick. III. Title.

QA76.754.B37 2003

005.1--dc21

2003045300

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of the
publisher. Printed in the United States of America. Published simultaneously in
Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

75 Arlington Street, Suite 300

Boston, MA 02116 / Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10�CRW�0706050403

First printing, April 2003

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Preface
Software architecture is an important field of study that is becoming more important
and more talked about with every passing day. Nevertheless, to our knowledge,
there exists little practical guidance on managing software architecture in a real
software development organization, from both technical and managerial
perspectives. This book has emerged from our belief that the coupling of a system's
software architecture and its business and organizational context has not been well
explored.

Our experience with designing and analyzing large and complex software-intensive
systems has led us to recognize the role of business and organization in the design
of the system and in its ultimate success or failure. Systems are built to satisfy an
organization's requirements (or assumed requirements in the case of shrink-
wrapped products). These requirements dictate the system's performance,
availability, security, compatibility with other systems, and the ability to
accommodate change over its lifetime. The desire to satisfy these goals with
software that has the requisite properties influences the design choices made by a
software architect.

In this book we demonstrate this coupling of software architecture and corporate
context through the use of case studies drawn from real systems. Our examples
include the following situations:

The desire to share documents quickly and easily within an organization, with
a minimum of centralized control, led to the software architecture of the World
Wide Web.

The extreme safety requirements of air traffic control led one company to build
a system around an architecture for achieving ultra-high availability.

The distribution of the subsystems of a flight simulator to remotely located
developers led to an architecture geared to enable smooth integration of these
subsystems.

The need to satisfy simultaneous product deliveries led (in fact, forced) one
company to adopt an architecture that enabled the company to build a set of
complex related software systems as a product line.

The need to standardize architectural approaches across organizations and in
the community at large led to infrastructures such as J2EE and EJB.

These and other case studies show that software architectures flow from the
requirements of organizations and their business models, from the experience of the
organization's architects, as well as from the prevailing design climate.

In addition, we show how architectures themselves can be powerful vehicles for
influencing all of the preceding. A successful product or set of products can influence
the way other products are built. Certainly the case study about the software
underlying the World Wide Web is a good example of this. Before this system
existed, there was far less network awareness, less thought was given to
accessibility of data, and security was the concern of only a few organizations,
typically financial institutions and government agencies.

Our book is aimed at software professionals�the people who design and implement
large software-intensive systems, the managers of software professionals, and the
students who are hoping to become software professionals.

We believe that a software architecture is the development product that gives the
highest return on investment with respect to quality, schedule, and cost. Because its
architecture appears early in a product's lifetime, getting it right sets the stage for
everything to come�the system's development, integration, testing, and
modification. Getting it wrong means that the fabric of the system is wrong, and it
cannot be fixed by weaving in a few new threads or pulling out a few existing ones,
which often causes the entire fabric to unravel. Also, compared to other
development activities, analyzing architectures is inexpensive. Thus, architectures
give a high return on investment because decisions made for the architecture have
substantial downstream consequences and because checking and fixing an
architecture is relatively inexpensive.

We also believe that re-use is achieved best within an architectural context. But
components are not the only artifacts that can be re-used. Re-use of an architecture
leads to the creation of families of systems, which in turn leads to new
organizational structures and new business opportunities.

We devote a large percentage of this book to presenting real architectures that were
designed to solve the real problems of real organizations. We chose the cases
presented here to illuminate the types of choices that architects must make to
achieve their quality goals and to illuminate how organizational goals affect the final
systems.

In addition to the case studies, this book offers a set of techniques for designing,
building, and evaluating software architectures. We look at techniques for
understanding quality requirements in the context of an architecture, and for
building architectures that meet these quality requirements. We look at architecture
representation and reconstruction techniques as a means of describing and
validating software architectures. We look at techniques for analyzing and
evaluating an architecture's fitness for its purpose. Each of these techniques is
derived from our experience, and the experience of our colleagues at the Software
Engineering Institute, with a variety of software systems. These systems range up
to millions of lines of code and are large-team, multi-year development efforts.

Although we discuss business issues throughout the book (for example, an
architecture's effects on an organization's ability to compete in a market or a
product family's time-to-market), we present this material without going into great
depth on the business issues, and without business jargon. We are, after all,
software engineers. We present the technical sections of our book in more depth.

These sections represent current work in the field of software architecture�the point
where research meets practice. The case studies illuminate these technical
foundations, and show how they are realized in practice. To benefit from the lessons
illuminated by the case studies, you will need a reasonable background in computer
science, software engineering, or a related discipline. However, we have written
them in such a way that you will not need expertise in the application domain from
which the case study was drawn. For example, you do need not be a pilot to
understand either the air traffic control system or the flight simulation case studies.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

What's New in the Second Edition

Our goals for this second edition are the same as they were for the first, but the
passage of time since the writing of the first edition has brought new developments
in the field and new understanding of the important underpinnings of software
architecture. We reflect the new developments with new case studies and our new
understanding both through new chapters and through strengthening the existing
chapters. Also, the writing of this second edition has been strongly influenced by
several other books that we have collectively authored since the publication of the
first edition�Documenting Software Architectures, Evaluating Software
Architectures: Methods and Case Studies, and Software Product Lines: Principles
and Practice. The creation of these books, along with other technical and research
activities, has greatly influnced us in developing this book. This second edition
reflects the fact that architecture analysis, design, reconstruction, and
documentation have all had major developments since the first edition.

Architecture analysis has developed into a mature field with industrial-strength
methods�reflected here by a new chapter in Part Three about the Architecture
Tradeoff Analysis Method (ATAMSM). Many industrial organizations have adopted the
ATAM as a technique for evaluating software architectures.

Architecture design has also had major developments since the first edition. The
capturing of quality requirements, their achievement through small-scale and large-
scale architectural approaches (tactics and patterns, respectively), and a design
method that reflects knowledge of how to achieve them are all discussed in various
chapters. Three new chapters treat understanding quality requirements, achieving
qualities, and the Attribute Driven Design Method (ADD).

Architecture reconstruction, or reverse engineering, is an essential activity for
capturing undocumented architectures. It can be used as a portion of a design
project or as an analysis project, or as input into a decision regarding what to use
as a basis for reconstructing a system. In the first edition, we briefly mentioned a
tool set (Dali) and its uses in the re-engineering context, but in this edition the topic
merits its own chapter.

Documenting software architectures is another topic that has matured considerably
in the recent past. When the first edition was published, the Unified Modeling
Language (UML) was just arriving on the scene. Now it is firmly entrenched, a
reality reflected here with all-new diagrams. More important, an understanding of
the kind of information to capture about an architecture, beyond which notation to
use, has emerged. A new chapter covers architecture documentation.

The application of software architecture to enable organizations to efficiently
produce a variety of systems based on a single architecture is summarized in a
totally rewritten chapter on software product lines. This chapter reinforces the link
between architecture and an organization's business goals, in view of the fact that
product lines (based around a software architecture) can enable order-of-magnitude
improvements in cost, quality, and time-to-market.

In addition to the architectural developments, the technology for constructing
distributed and Web-based systems has become prominent in today's economy. We
reflect this trend in our updated chapter on the World Wide Web by using Web-
based examples in the chapter on the ATAM and the chapter on building systems
from components, by replacing the case study on Common Object Request Broker
Architecture (CORBA) with one on Enterprise JavaBeans (EJBs), and by introducing
a case study on a wireless EJB system designed to support wearable computers for
maintenance technicians.

Finally, we have added a chapter that looks more closely at the financial aspects of
architectures. In this chapter, we introduce a method�the Cost Benefit Analysis
Method (CBAM)�for basing architectural decisions on economic criteria, in addition
to the technical criteria that we discussed previously.

As in the first edition, we use the Architecture Business Cycle (ABC) as a unifying
motif. All of the case studies are described in terms of the quality goals that
motivated the system's design and how the system's architecture achieves those
goals.

In writing the second edition, as with the first, we were very aware that our primary
audience is practitioners, and so we have focused on material that has been found
useful in many industrial applications as well as what we expect practice to be in the
near future.

We hope that you enjoy reading this second edition at least as much as we enjoyed
writing it.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Acknowledgments
Without the first edition of this book, there would not be a second edition, and so
we are pleased to continue to acknowledge the people who helped with the earlier
version. Coauthors of chapters were Gregory Abowd, Lisa Brownsword, Jeromy
Carrière, Linda Northrop, Patricia Oberndorf, Mary Shaw, Rob Veltre, Kurt Wallnau,
Nelson Weiderman, and Amy Moormann Zaremski. The many people at the Software
Engineering Institute who helped to make the first edition happen through their
support and encouragement include Linda Northrop, Sholom Cohen, Lisa Lane, Bill
Pollak, Barbara Tomchik, and Barbara White.

We owe a debt of gratitude to our many reviewers, including Felix Bachmann, John
Bennett, Sonia Bot, Lisa Brownsword, Bob Ellison, Larry Howard, Richard Juren,
Philippe Kruchten, Chung-Horng Lung, Joaquin Miller, Linda Northrop, David Notkin,
Patricia Oberndorf, Jan Pachl, Lui Sha, Nelson Weiderman, Amy Moormann
Zaremski, and several anonymous Addison-Wesley reviewers. Commander Rob
Madson of the U.S. Navy provided partial support for the development of graphics.
Peter Gordon of Addison-Wesley kept us grounded in reality.

For this second edition, we owe many thanks to the chapter co-authors: Linda
Northrop, Felix Bachmann, Mark Klein, Bill Wood, David Garlan, James Ivers, Reed
Little, Robert Nord, Judith Stafford, Jeromy Carrière, Liam O'Brien, Chris Verhoef, Jai
Asundi, Hong-Mei Chen, Lisa Brownsword, Anna Liu, Tanya Bass, James Beck, Kelly
Dolan, Cuiwei Li, Andreas Löhr, Richard Martin, William Ross, Tobias Weishäupl,
Gregory Zelesnik, Robert Seacord, and Matthew Bass. As always, our reviewers
deserve much credit for helping us make this book better. We thank Alexander Ran,
Paolo Merson, Matt Bass, Tony Lattanze, Liam O'Brien, and Robert Nord.

Many people contributed to the body of work related to the characterization and
achievement of software quality attributes. We are indebted to John McGregor, Bob
Ellison, Andy Moore, Scott Hissam, Chuck Weinstock, Mario Barbacci, Heather
Oppenheimer, Felix Bachmann, Stefen Kowalewski, and Marko Auerswald.

Special thanks to Mike Moore of NASA's Goddard Space Flight Center for providing
the ECS system that was the subject of the CBAM case study in Chapter 12.

At the SEI, we are indebted to Linda Northrop for her management, commitment,
and contributions to this work; to Bob Fantazier for steadfastly producing the book's
graphics; to Sheila Rosenthal for her research assistance; and to Laura Novacic,
Carolyn Kernan, and Barbara Tomchik for their support.

At Addison-Wesley, Peter Gordon continues to be the taskmaster with the velvet
whip. We thank him and all of the people involved in this book's production.

Len Bass did some of the production work on this book while visiting at the
Commonwealth Scientific Industrial Research Organization in Australia. He would
like to thank them for their support.

And finally, we would like to thank the special people in our lives for their endurance
and encouragement throughout this process.

Reader's Guide
Audience

Parts and Chapters

Part One: Envisioning an Architecture

Part Two: Creating an Architecture

Part Three: Analyzing an Architecture

Part Four: Moving from One System to Many

Case Study Organization

Threads Through the Book

Sidebars

Audience

This book is for software professionals, or students who have knowledge and
experience in software engineering. We anticipate three classes of reader:

Practicing software engineers who wish to understand both the technical basis
of software architecture and the business and organizational forces that are
acting on them.

Technical managers who wish to understand how software architecture can
help them to supervise the construction of systems more effectively and
improve their organizations.

Students of computer science or software engineering who might use this book
as supplemental reading in a first or second software engineering course.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Parts and Chapters

The book is divided into four parts, roughly following a life-cycle perspective, which
we call the Architecture Business Cycle, of how architectures fit into a business:

Envisioning Architecture� Chapters 1�3

Creating an Architecture� Chapters 4�10

Analyzing an Architecture� Chapters 11�13

Moving from One System to Many� Chapters 14�19

The case studies are in Chapters 3, 6, 8, 13, 15, 16 and 17, and are clearly noted in
the chapter titles.

In detail, the parts and chapters cover the following ground.

Part One: Envisioning an Architecture

Chapter 1 � The Architecture Business Cycle

The theme that weaves through this book is that architectures do not exist by
themselves, but are part of a cycle. Architecture is a means toward an end. It is
influenced by the functional and quality goals of both the customer and the
developing organization. It is also influenced by the architect's background and
experiences and by the technical environment. Architecture in turn influences the
system being developed, and it may be a core asset that influences the developing
organization. The system also has an effect on the developing organization; the
architecture; and, potentially, the technical environment. This effect affects the
future goals for the system and its organization. The influences and feedback loops
that surround an architecture form the ABC.

Chapter 2 � What Is Software Architecture?

An architecture is a description of system structures, of which there are several
(module decomposition, process, deployment, layered, etc.). Architecture is the first
artifact that can be analyzed to determine how well its quality attributes are being
achieved, and it also serves as the project blueprint. An architecture serves as the
vehicle for communication, is the manifestation of the earliest design decisions, and
is a re-usable abstraction that can be transferred to new systems. These are the
things we mean when we use the word architecture.

Chapter 3 � A-7E Avionics System: A Case Study in Utilizing
Architectural Structures

The A-7E Avionics System was a project that paid special attention to the
engineering and specification of three distinct architectural structures to achieve
developmental simplicity and modifiability. The chapter shows how (and why) the
structures were designed and documented.

Part Two: Creating an Architecture

Chapter 4 � Understanding Quality Attributes

A motivating factor for all architectures is the desire to achieve particular software
qualities. This chapter discusses software qualities and their implications. It presents
a method for understanding qualities in architectural terms, by characterizing the
stimuli that we apply to systems in order to observe their qualities, and by
characterizing the systems' responses in measurable, observable ways when
manifesting those qualities.

Chapter 5 � Achieving Qualities

Once the desired qualities of a system are known, the problem of designing an
architecture to achieve these qualities remains. This chapter describes a number of
techniques used to achieve development and runtime qualities. The primary
mechanisms are tactics, which are design decisions that influence the control of a
quality attribute. Tactics can be grouped into architectural strategies and
architectural patterns.

Chapter 6 � Air Traffic Control: A Case Study in Designing for
High Availability

A system designed for air traffic control had the quality goal of extremely high
availability. This goal motivated a number of architectural decisions, which are
discussed in this chapter. In addition, this case study emphasizes the interplay of
architectural structures and views (as discussed in Chapter 2) and architectural
tactics (as discussed in Chapter 5), and it shows how they work in concert to
achieve qualities.

Chapter 7 � Creating the Architecture

With the foundational tools in hand (architectural views and structures, expressing
quality attributes, tactics and patterns for achieving them), we are ready to address
creating the architecture. This chapter discusses the role of architecture from the
perspective of a system's overall life cycle. It presents a design method for
producing an early architecture that can be refined and can evolve. Once the
architecture is sketched, it can be used to form the project's team structure and to
create a skeletal system as the basis for incremental development.

Chapter 8 � Flight Simulation: A Case Study in Architecture
for Integrability

This chapter describes an architecture for flight simulation. It shows how careful
attention to the software architecture in a complex domain enabled the construction
of a set of large systems that met their stringent functional and fidelity
requirements, could be understood by a variety of software engineers, were easy to
integrate, and were amenable to downstream modifications.

Chapter 9 � Documenting Software Architectures

An architecture is only as good as its ability to be communicated to and understood
by its stakeholders. This chapter lays out an approach to documenting a software
architecture. Documenting an architecture is a matter of recording the relevant
views and then recording the information that applies across the views. The chapter
provides templates for a view, for cross-view information, and for software
interfaces.

Chapter 10 � Reconstructing Software Architectures

Suppose we have a system but we don't know its architecture. Perhaps the
architecture was never recorded, or was lost, or the system diverged from the
architecture through evolution. How do we maintain such a system? How do we
manage its evolution to maintain the quality attributes that its architecture has
provided for us? Architecture reconstruction is the process where the "as-built"
architecture of an implemented system is obtained from an existing system. This
chapter presents an approach to architecture reconstruction and an example of its
application.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Part Three: Analyzing an Architecture

Chapter 11 � The ATAM: A Comprehensive Method for
Architecture Evaluation

The Architecture Tradeoff Analysis Method is a way to evaluate architectural
decisions in light of specific behavioral and quality attribute requirements. This
chapter describes the ATAM and walks through a comprehensive example of its
application.

Chapter 12 � The CBAM: A Quantitative Approach to
Architecture Design Decision Making

The software architect or project decision maker wishes to maximize the difference
between the benefit derived from a system and the cost of implementing the design.
The Cost Benefit Analysis Method addresses this need for economic decision making
centered on an analysis of architecture. The CBAM builds on the ATAM to model the
costs and the benefits of architectural design decisions and provides a means of
optimizing such decisions. This chapter presents the CBAM and a case where it was
applied.

Chapter 13 � The World Wide Web: A Case Study in
Interoperability

The World Wide Web was created out of a single organization's desire to ex-change
information among its researchers, but it has far outgrown those original goals. This
chapter describes the architecture of the software underlying the Web, how this
architecture has changed to allow the Web to grow, and how that growth, in turn,
has influenced the organizations that use it.

Part Four: Moving from One System to Many

Chapter 14 � Product Lines: Re-using Architectural Assets
within an Organization

One of the most powerful applications of software architecture is its use as the
foundation of a software product line. This chapter presents the basics of software
product line production, highlighting architecture as the keystone for achieving large
improvements in productivity, time-to-market, quality, and cost. The chapter
explores in detail a few of the software engineering development and management
activities that take on a special dimension in a product line context.

Chapter 15 � CelsiusTech: A Case Study in Product Line
Development

CelsiusTech is an organization that successfully implemented a product line based
on an architecture. This chapter describes the architecture of the product line and
shows why this architecture was crucial to CelsiusTech's success. Without this
approach, it would not have been able to build these systems�it simply did not
have adequate personnel. The product line approach brought consequent changes to
the organizational structure and the manner in which it both solicits and contracts
for business.

Chapter 16 � J2EE/EJB: A Case Study of an Industry-Standard
Computing Infrastructure

This chapter presents an overview of Sun Microsystems's Java 2 Enterprise Edition
(J2EE) architecture specification, as well as an important portion of that
specification, the Enterprise JavaBeans (EJBs) architecture specification. The J2EE
specification provides a standard description of how distributed object-oriented
programs written in Java should be designed and developed. The chapter examines
the business drivers that led to the creation of such an industry standard
architecture for building distributed systems, and shows how the J2EE/EJB
architecture addresses such needs.

Chapter 17 � The Luther Architecture: A Case Study in Mobile
Applications Using J2EE

The Luther architecture was designed to provide a general framework to provide
customized solutions in the domain of maintenance or operation of large vehicles or
industrial infrastructure. It is based on J2EE, and so this chapter becomes an

application of the general J2EE/EJB framework discussed in Chapter 16. This case
deals with an environment where the end user is connected over a wireless network
and has a device with limited input/output capabilities, limited computational
capabilities, or both.

Chapter 18 � Building Systems from Off-the-Shelf
Components

Systems are being constructed with more and more off-the-shelf components. The
use of such components changes the design process because the components can
constrain the architecture. Typically, components are chosen to achieve some set of
functionality, but they also embody architectural (and hence quality) assumptions.
This chapter describes a lightweight process to guide an architect in choosing
components that will work well in concert. The chapter includes a demonstration of
the process applied to a recently fielded system.

Chapter 19 � Software Architecture in the Future

We look at the Architecture Business Cycle again and identify some of the yet to be
solved problems associated with software architecture and discuss why more
research is needed.

Case Study Organization

We realize that different readers of the book will want to mine different information
from it, and that most of them will want to read the book at various levels of detail.
To address this need, we have organized the case studies in a consistent fashion
around the following sections:

A brief description of the study, the problems it was solving, and the points
about software architecture it illustrates

A description of how the ABC was realized (or partially realized) in this study

The requirements and qualities that propelled the design

The architectural solution: a detailed discussion that comprises the bulk of
many of the case studies

A summary of the important points made in the chapter

The architectural solution contains most of the detail in the case studies. If you are
interested only in the technical and business environment and a high-level
description of the architectural approach, you can get the gist of a case study by
reading the brief description of it, its requirements and quality goals, and the
summary. For a fuller discussion, you can also read the architectural solution section
of each case.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Threads Through the Book

While the ABC is the primary theme of the book, other conceptual threads run
through it. A reader interested in pursuing a particular aspect of architecture may
wish to concentrate on the chapters that carry one or more of the following threads:

Where do architectures come from?� Chapters 1, 2, 4, 7, 11 and 12

Business issues� Chapters 1, 4, 7, 11, 12, 14, 15 and 18

How qualities derive from architectures� Chapters 4, 5, 11 and 12 and the
case studies

Case studies of qualities deriving from architecture� Chapters 3, 6, 8, 13, 15,
16 and 17

Architecture as a re-usable asset� Chapters 14, 15, 16, 17 and 18

Component-based systems and commercial infrastructures� Chapters 13, 16,
17 and 18

Architectures for real-time systems� Chapters 3, 5, 6, 8 and 15

Architectures for information systems� Chapters 13, 16, 17 and 18

Sidebars

Throughout the book we have located short, signed, visually separated sidebars
written by only one of us. These features are intended to give background or
perspective that is outside the normal flow of the text.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Part One: Envisioning Architecture
Where do architectures come from? They spring from the minds of architects,
of course, but how? What must go into the mind of an architect for an
architecture to come out? For that matter, what is a software architecture? Is
it the same as design? If so, what's the fuss? If it's different, how so and why
is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating�envisioning�the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think
of design as taking the right steps to ensure that the system will perform as
expected�produce the correct answer or provide the expected
functionality�architecture is additionally concerned with much longer-range
issues. The architect is faced with a swarm of competing, if not conflicting,
influences and demands, surprisingly few of which are concerned with getting
the system to work correctly. The organizational and technical environment
brings to bear a weighty set of sometimes implicit demands, and in practice
these are as important as any of the explicit requirements for the software
even though they are almost never written down.

Also surprising are the ways in which the architecture produces a deep
influence on the organization that spawned it. It is decidedly not the case that
the organization produces the architecture, ties it to the system for which it
was developed, and locks it away in that compartment. Instead, architectures
and their developing organizations dance an intricate waltz of influence and
counterinfluence, helping each other to grow, evolve, and take on larger roles.

The Architecture Business Cycle (ABC) is the name we give to this waltz, and it
is the theme of this book and the focus of Chapter 1. Chapter 2 lays the
foundations for the study of software architecture, defines it, places it in the
context of software engineering, and provides some conceptual tools for its
consideration. Chief among the concepts is the notion that architectures
consist of separate coordinated structures and that each structure provides an
engineering leverage point in system development.

Chapter 3 is the first case study in the book. It illustrates how a particular
architecture solved a unique set of requirements�in this case, a real-time
embedded avionics system whose focus was on long-term modifiability�but
also brings home the conceptual points made earlier. Three separate
architectural structures�module decomposition, uses, and process
structures�came together to provide the architectural solution for this system.

With this introduction, we begin our tour of the Architecture Business Cycle.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 1. The Architecture Business Cycle
Simply stated, competitive success flows to the company that manages to
establish proprietary architectural control over a broad, fast-moving,
competitive space.

�C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based
exclusively on the technical requirements. Conceptually, the requirements document
is tossed over the wall into the designer's cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this model
and provide all sorts of feedback loops from designer to analyst. But they still make
the implicit assumption that design is a product of the system's technical
requirements, period.

Architecture has emerged as a crucial part of the design process and is the subject
of this book. Software architecture encompasses the structures of large software
systems. The architectural view of a system is abstract, distilling away details of
implementation, algorithm, and data representation and concentrating on the
behavior and interaction of "black box" elements. A software architecture is
developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2. For
now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between architecture
and other forms of design. For reasons we will see throughout, architecture serves
as an important communication, reasoning, analysis, and growth tool for systems.
Until now, however, architectural design has been discussed in the light that, if you
know the requirements for a system, you can build the architecture for it.

The Swedish Ship Vasa
In the 1620s, Sweden and Poland were at war. The king of Sweden,
Gustavus Adolphus, was determined to put a swift end to it and
commissioned a new warship the likes of which had never been seen
before. The Vasa, shown in Figure 1.1, was to be the world's most
formidable instrument of war: 70 meters long, able to carry 300 soldiers,
and with an astonishing 64 heavy guns mounted on two gun decks.
Seeking to add overwhelming firepower to his navy to strike a decisive
blow, the king insisted on stretching the Vasa's armaments to the limits.

Her architect, Henrik Hybertsson, was a seasoned Dutch shipbuilder with
an impeccable reputation, but the Vasa was beyond even his broad
experience. Two-gun-deck ships were rare, and none had been built of the
Vasa's size and armament.

Figure 1.1. The warship Vasa.

Used with permission of The Vasa Museum, Stockholm, Sweden.

Like all architects of systems that push the envelope of experience,
Hybertsson had to balance many concerns. Swift time to deployment was
critical, but so were performance, functionality, safety, reliability, and cost.
He was also responsible to a variety of stakeholders. In this case, the
primary customer was the king, but Hybertsson also was responsible to
the crew that would sail his creation. Also like all architects, Hybertsson
brought his experience with him to the task. In this case, his experience
told him to design the Vasa as though it were a single-gun-deck ship and
then extrapolate, which was in accordance with the technical environment
of the day. Faced with an impossible task, Hybertsson had the good sense
to die about a year before the ship was finished.

The project was completed to his specifications, however, and on Sunday
morning, August 10, 1628, the mighty ship was ready. She set her sails,
waddled out into Stockholm's deep-water harbor, fired her guns in salute,
and promptly rolled over. Water poured in through the open gun ports,
and the Vasa plummeted. A few minutes later her first and only voyage
ended 30 meters beneath the surface. Dozens among her 150-man crew
drowned.

Inquiries followed, which concluded that the ship was well built but "badly
proportioned." In other words, its architecture was flawed. Today we know
that Hybertsson did a poor job of balancing all of the conflicting

constraints levied on him. In particular, he did a poor job of risk
management and a poor job of customer management (not that anyone
could have fared better). He simply acquiesced in the face of impossible
requirements.

The story of the Vasa, although more than 375 years old, well illustrates
the Architecture Business Cycle: organization goals beget requirements,
which beget an architecture, which begets a system. The architecture
flows from the architect's experience and the technical environment of the
day. Hybertsson suffered from the fact that neither of those were up to
the task before him.

In this book, we provide three things that Hybertsson could have used:

1. Case studies of successful architectures crafted to satisfy demanding
requirements, so as to help set the technical playing field of the day.

2. Methods to assess an architecture before any system is built from it,
so as to mitigate the risks associated with launching unprecedented
designs.

3. Techniques for incremental architecture-based development, so as to
uncover design flaws before it is too late to correct them.

Our goal is to give architects another way out of their design dilemmas
than the one that befell the ill-fated Dutch ship designer. Death before
deployment is not nearly so admired these days.

� PCC

This is short-sighted (see the sidebar The Swedish Ship Vasa) and fails to tell the
whole story. What do you suppose would happen if two different architects, working
in two different organizations, were given the same requirements specification for a
system? Do you think they would produce the same architecture or different ones?

The answer is that, in general, they would produce different ones, which
immediately belies the notion that requirements determine architecture. Other
factors are at work, and to fail to recognize them is to continue working in the dark.

The focusing question is this: What is the relationship of a system's software
architecture to the environment in which the system will be constructed and exist?
The answer to this question is the organizing motif of this book. Software
architecture is a result of technical, business, and social influences. Its existence in
turn affects the technical, business, and social environments that subsequently
influence future architectures. We call this cycle of influences, from the environment
to the architecture and back to the environment, the Architecture Business Cycle
(ABC).

This chapter introduces the ABC in detail and sets the stage for the remainder of the
book. The major parts of the book tour the cycle by examining the following:

How organizational goals influence requirements and development strategy.

How requirements lead to an architecture.

How architectures are analyzed.

How architectures yield systems that suggest new organizational capabilities
and requirements.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

1.1 Where Do Architectures Come From?

An architecture is the result of a set of business and technical decisions. There are
many influences at work in its design, and the realization of these influences will
change depending on the environment in which the architecture is required to
perform. An architect designing a system for which the real-time deadlines are
believed to be tight will make one set of design choices; the same architect,
designing a similar system in which the deadlines can be easily satisfied, will make
different choices. And the same architect, designing a non-real-time system, is likely
to make quite different choices still. Even with the same requirements, hardware,
support software, and human resources available, an architect designing a system
today is likely to design a different system than might have been designed five
years ago.

In any development effort, the requirements make explicit some�but only some�of
the desired properties of the final system. Not all requirements are concerned
directly with those properties; a development process or the use of a particular tool
may be mandated by them. But the requirements specification only begins to tell
the story. Failure to satisfy other constraints may render the system just as
problematic as if it functioned poorly.

We begin building the ABC by identifying the influences to and from architectures.

ARCHITECTURES ARE INFLUENCED BY SYSTEM
STAKEHOLDERS

Many people and organizations are interested in the construction of a software
system. We call these stakeholders: The customer, the end users, the developers,
the project manager, the maintainers, and even those who market the system are a
few examples. Stakeholders have different concerns that they wish the system to
guarantee or optimize, including things as diverse as providing a certain behavior at
runtime, performing well on a particular piece of hardware, being easy to customize,
achieving short time to market or low cost of development, gainfully employing
programmers who have a particular specialty, or providing a broad range of
functions. Figure 1.2 shows the architect receiving helpful stakeholder
"suggestions."

Figure 1.2. Influence of stakeholders on the architect

Having an acceptable system involves properties such as performance, reliability,
availability, platform compatibility, memory utilization, network usage, security,
modifiability, usability, and interoperability with other systems as well as behavior.
Indeed, we will see that these properties determine the overall design of the
architecture. All of them, and others, affect how the delivered system is viewed by
its eventual recipients, and so they find a voice in one or more of the system's
stakeholders.

The underlying problem, of course, is that each stakeholder has different concerns
and goals, some of which may be contradictory. Properties can be listed and
discussed, of course, in an artifact such as a requirements document. But it is a rare
requirements document that does a good job of capturing all of a system's quality
requirements in testable detail. The reality is that the architect often has to fill in
the blanks and mediate the conflicts.

ARCHITECTURES ARE INFLUENCED BY THE DEVELOPING
ORGANIZATION

In addition to the organizational goals expressed through requirements, an
architecture is influenced by the structure or nature of the development
organization. For example, if the organization has an abundance of idle

programmers skilled in client-server communications, then a client-server
architecture might be the approach supported by management. If not, it may well
be rejected. Staff skills are one additional influence, but so are the development
schedule and budget.

There are three classes of influence that come from the developing organization:
immediate business, long-term business, and organizational structure.

An organization may have an immediate business investment in certain assets,
such as existing architectures and the products based on them. The foundation
of a development project may be that the proposed system is the next in a
sequence of similar systems, and the cost estimates assume a high degree of
asset re-use.

An organization may wish to make a long-term business investment in an
infrastructure to pursue strategic goals and may view the proposed system as
one means of financing and extending that infrastructure.

The organizational structure can shape the software architecture. In the case
study in Chapter 8 (Flight Simulation: A Case Study in Architecture for
Integrability), the development of some of the subsystems was subcontracted
because the subcontractors provided specialized expertise. This was made
possible by a division of functionality in the architecture that allowed isolation
of the specialities.

ARCHITECTURES ARE INFLUENCED BY THE BACKGROUND
AND EXPERIENCE OF THE ARCHITECTS

If the architects for a system have had good results using a particular architectural
approach, such as distributed objects or implicit invocation, chances are that they
will try that same approach on a new development effort. Conversely, if their prior
experience with this approach was disastrous, the architects may be reluctant to try
it again. Architectural choices may also come from an architect's education and
training, exposure to successful architectural patterns, or exposure to systems that
have worked particularly poorly or particularly well. The architects may also wish to
experiment with an architectural pattern or technique learned from a book (such as
this one) or a course.

ARCHITECTURES ARE INFLUENCED BY THE TECHNICAL
ENVIRONMENT

A special case of the architect's background and experience is reflected by the
technical environment. The environment that is current when an architecture is
designed will influence that architecture. It might include standard industry practices
or software engineering techniques prevalent in the architect's professional
community. It is a brave architect who, in today's environment, does not at least

consider a Web-based, object-oriented, middleware-supported design for an
information system.

RAMIFICATIONS OF INFLUENCES ON AN ARCHITECTURE

Influences on an architecture come from a wide variety of sources. Some are only
implied, while others are explicitly in conflict.

Almost never are the properties required by the business and organizational goals
consciously understood, let alone fully articulated. Indeed, even customer
requirements are seldom documented completely, which means that the inevitable
conflict among different stakeholders' goals has not been resolved.

However, architects need to know and understand the nature, source, and priority of
constraints on the project as early as possible. Therefore, they must identify and
actively engage the stakeholders to solicit their needs and expectations. Without
such engagement, the stakeholders will, at some point, demand that the architects
explain why each proposed architecture is unacceptable, thus delaying the project
and idling workers. Early engagement of stakeholders allows the architects to
understand the constraints of the task, manage expectations, negotiate priorities,
and make tradeoffs. Architecture reviews (covered in Part Three) and iterative
prototyping are two means for achieving it.

It should be apparent that the architects need more than just technical skills.
Explanations to one stakeholder or another will be required regarding the chosen
priorities of different properties and why particular stakeholders are not having all of
their expectations satisfied. For an effective architect, then, diplomacy, negotiation,
and communication skills are essential.

The influences on the architect, and hence on the architecture, are shown in Figure
1.3. Architects are influenced by the requirements for the product as derived from
its stakeholders, the structure and goals of the developing organization, the
available technical environment, and their own background and experience.

Figure 1.3. Influences on the architecture

THE ARCHITECTURES AFFECT THE FACTORS THAT
INFLUENCE THEM

The main message of this book is that the relationships among business goals,
product requirements, architects' experience, architectures, and fielded systems
form a cycle with feedback loops that a business can manage. A business manages
this cycle to handle growth, to expand its enterprise area, and to take advantage of
previous investments in architecture and system building. Figure 1.4 shows the
feedback loops. Some of the feedback comes from the architecture itself, and some
comes from the system built from it.

Figure 1.4. The Architecture Business Cycle

Here is how the cycle works:

1. The architecture affects the structure of the developing organization. An
architecture prescribes a structure for a system; as we will see, it particularly
prescribes the units of software that must be implemented (or otherwise
obtained) and integrated to form the system. These units are the basis for the
development project's structure. Teams are formed for individual software
units; and the development, test, and integration activities all revolve around
the units. Likewise, schedules and budgets allocate resources in chunks
corresponding to the units. If a company becomes adept at building families of
similar systems, it will tend to invest in each team by nurturing each area of
expertise. Teams become embedded in the organization's structure. This is
feedback from the architecture to the developing organization.

In the software product line case study in Chapter 15, separate groups were
given responsibility for building and maintaining individual portions of the
organization's architecture for a family of products. In any design undertaken
by the organization at large, these groups have a strong voice in the system's
decomposition, pressuring for the continued existence of the portions they
control.

2. The architecture can affect the goals of the developing organization. A
successful system built from it can enable a company to establish a foothold in
a particular market area. The architecture can provide opportunities for the
efficient production and deployment of similar systems, and the organization
may adjust its goals to take advantage of its newfound expertise to plumb the
market. This is feedback from the system to the developing organization and
the systems it builds.

3.

The architecture can affect customer requirements for the next system by
giving the customer the opportunity to receive a system (based on the same
architecture) in a more reliable, timely, and economical manner than if the
subsequent system were to be built from scratch. The customer may be willing
to relax some requirements to gain these economies. Shrink-wrapped software
has clearly affected people's requirements by providing solutions that are not
tailored to their precise needs but are instead inexpensive and (in the best of
all possible worlds) of high quality. Product lines have the same effect on
customers who cannot be so flexible with their requirements. In Chapter 15
(CelsuisTech, A Case Study in Product Line Development), we will show how a
product line architecture caused customers to happily compromise their
requirements because they could get high-quality software that fit their basic
needs quickly, reliably, and at lower cost.

4. The process of system building will affect the architect's experience with
subsequent systems by adding to the corporate experience base. A system
that was successfully built around a tool bus or .NET or encapsulated finite-
state machines will engender similar systems built the same way in the future.
On the other hand, architectures that fail are less likely to be chosen for future
projects.

5. A few systems will influence and actually change the software engineering
culture, that is, the technical environment in which system builders operate
and learn. The first relational databases, compiler generators, and table-driven
operating systems had this effect in the 1960s and early 1970s; the first
spreadsheets and windowing systems, in the 1980s. The World Wide Web is
the example for the 1990s, as we will suggest in its case study in Chapter 13.
J2EE may be the example for the first decade of the twenty-first century, as
we will discuss in Chapter 16. When such pathfinder systems are constructed,
subsequent systems are affected by their legacy.

These and other feedback mechanisms form what we call the ABC, illustrated in
Figure 1.4, which depicts the influences of the culture and business of the
development organization on the software architecture. That architecture is, in turn,
a primary determinant of the properties of the developed system or systems. But
the ABC is also based on a recognition that shrewd organizations can take
advantage of the organizational and experiential effects of developing an
architecture and can use those effects to position their business strategically for
future projects.

1.2 Software Processes and the Architecture Business Cycle

Software process is the term given to the organization, ritualization, and
management of software development activities. What activities are involved in
creating a software architecture, using that architecture to realize a design, and
then implementing or managing the evolution of a target system or application?
These activities include the following:

Creating the business case for the system

Understanding the requirements

Creating or selecting the architecture

Documenting and communicating the architecture

Analyzing or evaluating the architecture

Implementing the system based on the architecture

Ensuring that the implementation conforms to the architecture

ARCHITECTURE ACTIVITIES

As indicated in the structure of the ABC, architecture activities have comprehensive
feedback relationships with each other. We will briefly introduce each activity in the
following subsections.

Creating the Business Case for the System

Creating a business case is broader than simply assessing the market need for a
system. It is an important step in creating and constraining any future
requirements. How much should the product cost? What is its targeted market?
What is its targeted time to market? Will it need to interface with other systems?
Are there system limitations that it must work within?

These are all questions that must involve the system's architects. They cannot be
decided solely by an architect, but if an architect is not consulted in the creation of
the business case, it may be impossible to achieve the business goals.

Understanding the Requirements

There are a variety of techniques for eliciting requirements from the stakeholders.
For example, object-oriented analysis uses scenarios, or "use cases" to embody
requirements. Safety-critical systems use more rigorous approaches, such as finite-
state-machine models or formal specification languages. In Chapter 4
(Understanding Quality Attributes), we introduce a collection of quality attribute
scenarios that support the capture of quality requirements for a system.

One fundamental decision with respect to the system being built is the extent to
which it is a variation on other systems that have been constructed. Since it is a
rare system these days that is not similar to other systems, requirements elicitation
techniques extensively involve understanding these prior systems' characteristics.
We discuss the architectural implications of product lines in Chapter 14 (Software
Product Lines: Re-using Architectural Assets).

Another technique that helps us understand requirements is the creation of
prototypes. Prototypes may help to model desired behavior, design the user
interface, or analyze resource utilization. This helps to make the system "real" in the
eyes of its stakeholders and can quickly catalyze decisions on the system's design
and the design of its user interface.

Regardless of the technique used to elicit the requirements, the desired qualities of
the system to be constructed determine the shape of its architecture. Specific
tactics have long been used by architects to achieve particular quality attributes. We
discuss many of these tactics in Chapter 5 (Achieving Qualities). An architectural
design embodies many tradeoffs, and not all of these tradeoffs are apparent when
specifying requirements. It is not until the architecture is created that some
tradeoffs among requirements become apparent and force a decision on
requirement priorities.

Creating or Selecting the Architecture

In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully and
eloquently that conceptual integrity is the key to sound system design and that
conceptual integrity can only be had by a small number of minds coming together to
design the system's architecture. Chapters 5 (Achieving Qualities) and 7 (Designing
the Architecture) show how to create an architecture to achieve its behavioral and
quality requirements.

Communicating the Architecture

For the architecture to be effective as the backbone of the project's design, it must
be communicated clearly and unambiguously to all of the stakeholders. Developers
must understand the work assignments it requires of them, testers must understand
the task structure it imposes on them, management must understand the
scheduling implications it suggests, and so forth. Toward this end, the architecture's
documentation should be informative, unambiguous, and readable by many people
with varied backgrounds. We discuss the documentation of architectures in Chapter
9 (Documenting Software Architectures).

Analyzing or Evaluating the Architecture

In any design process there will be multiple candidate designs considered. Some will
be rejected immediately. Others will contend for primacy. Choosing among these
competing designs in a rational way is one of the architect's greatest challenges.
The chapters in Part Three (Analyzing an Architecture) describe methods for making
such choices.

Evaluating an architecture for the qualities that it supports is essential to ensuring
that the system constructed from that architecture satisfies its stakeholders' needs.
Becoming more widespread are analysis techniques to evaluate the quality
attributes that an architecture imparts to a system. Scenario-based techniques
provide one of the most general and effective approaches for evaluating an
architecture. The most mature methodological approach is found in the Architecture
Tradeoff Analysis Method (ATAM) of Chapter 11, while the Cost Benefit Analysis
Method (CBAM) of Chapter 12 provides the critical link to the economic implications
of architectural decisions.

Implementing Based on the Architecture

This activity is concerned with keeping the developers faithful to the structures and
interaction protocols constrained by the architecture. Having an explicit and well-
communicated architecture is the first step toward ensuring architectural
conformance. Having an environment or infrastructure that actively assists
developers in creating and maintaining the architecture (as opposed to just the
code) is better.

Ensuring Conformance to an Architecture

Finally, when an architecture is created and used, it goes into a maintenance phase.
Constant vigilance is required to ensure that the actual architecture and its
representation remain faithful to each other during this phase. Although work in this
area is comparatively immature, there has been intense activity in recent years.
Chapter 10 (Reconstructing Software Architectures) will present the current state of
recovering an architecture from an existing system and ensuring that it conforms to
the specified architecture.

1.3 What Makes a "Good" Architecture?

If it is true that, given the same technical requirements for a system, two different
architects in different organizations will produce different architectures, how can we
determine if either one of them is the right one?

There is no such thing as an inherently good or bad architecture. Architectures are
either more or less fit for some stated purpose. A distributed three-tier client-server
architecture may be just the ticket for a large enterprise's financial management
system but completely wrong for an avionics application. An architecture carefully
crafted to achieve high modifiability does not make sense for a throw-away
prototype. One of the messages of this book is that architectures can in fact be
evaluated�one of the great benefits of paying attention to them�but only in the
context of specific goals.

Nevertheless, there are rules of thumb that should be followed when designing an
architecture. Failure to apply any of these does not automatically mean that the
architecture will be fatally flawed, but it should at least serve as a warning sign that
should be investigated.

We divide our observations into two clusters: process recommendations and product
(or structural) recommendations. Our process recommendations are as follows:

The architecture should be the product of a single architect or a small group of
architects with an identified leader.

The architect (or architecture team) should have the functional requirements
for the system and an articulated, prioritized list of quality attributes (such as
security or modifiability) that the architecture is expected to satisfy.

The architecture should be well documented, with at least one static view and
one dynamic view (explained in Chapter 2), using an agreed-on notation that
all stakeholders can understand with a minimum of effort.

The architecture should be circulated to the system's stakeholders, who should
be actively involved in its review.

The architecture should be analyzed for applicable quantitative measures
(such as maximum throughput) and formally evaluated for quality attributes
before it is too late to make changes to it.

The architecture should lend itself to incremental implementation via the
creation of a "skeletal" system in which the communication paths are
exercised but which at first has minimal functionality. This skeletal system can
then be used to "grow" the system incrementally, easing the integration and
testing efforts (see Chapter 7, Section 7.4).

The architecture should result in a specific (and small) set of resource
contention areas, the resolution of which is clearly specified, circulated, and
maintained. For example, if network utilization is an area of concern, the
architect should produce (and enforce) for each development team guidelines
that will result in a minimum of network traffic. If performance is a concern,
the architects should produce (and enforce) time budgets for the major
threads.

Our structural rules of thumb are as follows:

The architecture should feature well-defined modules whose functional
responsibilities are allocated on the principles of information hiding and
separation of concerns. The information-hiding modules should include those
that encapsulate idiosyncrasies of the computing infrastructure, thus insulating
the bulk of the software from change should the infrastructure change.

Each module should have a well-defined interface that encapsulates or "hides"
changeable aspects (such as implementation strategies and data structure
choices) from other software that uses its facilities. These interfaces should
allow their respective development teams to work largely independently of
each other.

Quality attributes should be achieved using well-known architectural tactics
specific to each attribute, as described in Chapter 5 (Achieving Qualities).

The architecture should never depend on a particular version of a commercial
product or tool. If it depends upon a particular commercial product, it should
be structured such that changing to a different product is straightforward and
inexpensive.

Modules that produce data should be separate from modules that consume
data. This tends to increase modifiability because changes are often confined
to either the production or the consumption side of data. If new data is added,
both sides will have to change, but the separation allows for a staged
(incremental) upgrade.

For parallel-processing systems, the architecture should feature well-defined
processes or tasks that do not necessarily mirror the module decomposition
structure. That is, processes may thread through more than one module; a
module may include procedures that are invoked as part of more than one
process (the A-7E case study of Chapter 3 is an example of employing this
principle).

Every task or process should be written so that its assignment to a specific
processor can be easily changed, perhaps even at runtime.

The architecture should feature a small number of simple interaction patterns
(see Chapter 5). That is, the system should do the same things in the same
way throughout. This will aid in understandability, reduce development time,
increase reliability, and enhance modifiability. It will also show conceptual
integrity in the architecture, which, while not measurable, leads to smooth
development.

As you examine the case studies in this book, each of which successfully solves a
challenging architectural problem, it is useful to see how many of them followed
each of these rules of thumb. This set of rules is neither complete nor absolute but
can serve as a guidepost for an architect beginning to make progress on an
architectural design problem.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

1.4 Summary

In this chapter, we showed that architecture is more than the result of the functional
requirements for a system. It is equally the result of the architect's background, the
technical environment within which the architect lives, and the sponsoring
organization's business goals. The architecture in turn influences the environment
that spawned it by adding its presence to the technical environment and by giving
the business new marketing possibilities. We introduced the Architecture Business
Cycle as the motif for this book, but the reader should be aware that the ABC as
described here will be extended in later chapters.

Finally, we posited a set of rules of thumb that generally lead to successful
architectures.

Next, we turn our attention to software architecture, per se.

1.5 Discussion Questions

1: How does the nature of your organization affect the architectures that it
develops? How do the architectures affect the nature of the organization?

2: What kind of business goals drive (or have driven) the creation of the software
architectures of your organization?

3: Who are the stakeholders that exert the most influence over the architecture of
systems in your organization? What are their goals? Do the goals ever conflict?

Chapter 2. What Is Software Architecture?
with Linda Northrop

Note: Linda Northrop is a program director at Carnegie Mellon University's Software
Engineering Institute.

If a project has not achieved a system architecture, including its rationale, the
project should not proceed to full-scale system development. Specifying the
architecture as a deliverable enables its use throughout the development and
maintenance process.

�Barry Boehm [Boehm 95]

In Chapter 1, we explained that architecture plays a pivotal role in allowing an
organization to meet its business goals. Architecture commands a price (the cost of
its careful development), but it pays for itself handsomely by enabling the
organization to achieve its system goals and expand its software capabilities.
Architecture is an asset that holds tangible value to the developing organization
beyond the project for which it was created.

In this chapter we will focus on architecture strictly from a software engineering
point of view. That is, we will explore the value that a software architecture brings
to a development project in addition to the value returned to the enterprise in the
ways described in Chapter 1.

2.1 What Software Architecture Is and What It Isn't

Figure 2.1, taken from a system description for an underwater acoustic simulation,
purports to describe that system's "top-level architecture" and is precisely the kind
of diagram most often displayed to help explain an architecture. Exactly what can
we tell from it?

Figure 2.1. Typical, but uninformative, presentation of a software
architecture

The system consists of four elements.

Three of the elements� Prop Loss Model (MODP), Reverb Model (MODR), and
Noise Model (MODN)�might have more in common with each other than with
the fourth�Control Process (CP)�because they are positioned next to each
other.

All of the elements apparently have some sort of relationship with each other,
since the diagram is fully connected.

Is this an architecture? Assuming (as many definitions do) that architecture is a set
of components (of which we have four) and connections among them (also present),
this diagram seems to fill the bill. However, even if we accept the most primitive
definition, what can we not tell from the diagram?

What is the nature of the elements? What is the significance of their
separation? Do they run on separate processors? Do they run at separate
times? Do the elements consist of processes, programs, or both? Do they
represent ways in which the project labor will be divided, or do they convey a

sense of runtime separation? Are they objects, tasks, functions, processes,
distributed programs, or something else?

What are the responsibilities of the elements? What is it they do? What is their
function in the system?

What is the significance of the connections? Do the connections mean that the
elements communicate with each other, control each other, send data to each
other, use each other, invoke each other, synchronize with each other, share
some information-hiding secret with each other, or some combination of these
or other relations? What are the mechanisms for the communication? What
information flows across the mechanisms, whatever they may be?

What is the significance of the layout? Why is CP on a separate level? Does it
call the other three elements, and are the others not allowed to call it? Does it
contain the other three in an implementation unit sense? Or is there simply no
room to put all four elements on the same row in the diagram?

We must raise these questions because unless we know precisely what the elements
are and how they cooperate to accomplish the purpose of the system, diagrams
such as these are not much help and should be regarded skeptically.

This diagram does not show a software architecture, at least not in any useful way.
The most charitable thing we can say about such diagrams is that they represent a
start. We now define what does constitute a software architecture:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.[1]

[1] This is a slight change from the first edition. There the primary building blocks were called "components," a term that has
since become closely associated with the component-based software engineering movement, taking on a decidedly runtime
flavor. "Element" was chosen here to convey something more general.

"Externally visible" properties are those assumptions other elements can make of an
element, such as its provided services, performance characteristics, fault handling,
shared resource usage, and so on. Let's look at some of the implications of this
definition in more detail.

First, architecture defines software elements. The architecture embodies information
about how the elements relate to each other. This means that it specifically omits
certain information about elements that does not pertain to their interaction. Thus,
an architecture is foremost an abstraction of a system that suppresses details of
elements that do not affect how they use, are used by, relate to, or interact with
other elements. In nearly all modern systems, elements interact with each other by
means of interfaces that partition details about an element into public and private
parts. Architecture is concerned with the public side of this division; private
details�those having to do solely with internal implementation�are not
architectural.

Second, the definition makes clear that systems can and do comprise more than one
structure and that no one structure can irrefutably claim to be the architecture. For
example, all nontrivial projects are partitioned into implementation units; these
units are given specific responsibilities and are frequently the basis of work
assignments for programming teams. This type of element comprises programs and
data that software in other implementation units can call or access, and programs
and data that are private. In large projects, these elements are almost certainly
subdivided for assignment to subteams. This is one kind of structure often used to
describe a system. It is very static in that it focuses on the way the system's
functionality is divided up and assigned to implementation teams.

Other structures are much more focused on the way the elements interact with each
other at runtime to carry out the system's function. Suppose the system is to be
built as a set of parallel processes. The processes that will exist at runtime, the
programs in the various implementation units described previously that are strung
together sequentially to form each process, and the synchronization relations among
the processes form another kind of structure often used to describe a system.

Are any of these structures alone the architecture? No, although they all convey
architectural information. The architecture consists of these structures as well as
many others. This example shows that since architecture can comprise more than
one kind of structure, there is more than one kind of element (e.g., implementation
unit and processes), more than one kind of interaction among elements (e.g.,
subdivision and synchronization), and even more than one context (e.g.,
development time versus runtime). By intention, the definition does not specify
what the architectural elements and relationships are. Is a software element an
object? A process? A library? A database? A commercial product? It can be any of
these things and more.

Third, the definition implies that every computing system with software has a
software architecture because every system can be shown to comprise elements
and the relations among them. In the most trivial case, a system is itself a single
element�uninteresting and probably nonuseful but an architecture nevertheless.
Even though every system has an architecture, it does not necessarily follow that
the architecture is known to anyone. Perhaps all of the people who designed the
system are long gone, the documentation has vanished (or was never produced),
the source code has been lost (or was never delivered), and all we have is the
executing binary code. This reveals the difference between the architecture of a
system and the representation of that architecture. Unfortunately, an architecture
can exist independently of its description or specification, which raises the
importance of architecture documentation (described in Chapter 9) and architecture
reconstruction (discussed in Chapter 10).

Fourth, the behavior of each element is part of the architecture insofar as that
behavior can be observed or discerned from the point of view of another element.
Such behavior is what allows elements to interact with each other, which is clearly
part of the architecture. This is another reason that the box-and-line drawings that
are passed off as architectures are not architectures at all. They are simply box-
and-line drawings�or, to be more charitable, they serve as cues to provide more
information that explains what the elements shown actually do. When looking at the
names of the boxes (database, graphical user interface, executive, etc.), a reader

may well imagine the functionality and behavior of the corresponding elements. This
mental image approaches an architecture, but it springs from the observer's mind
and relies on information that is not present. We do not mean that the exact
behavior and performance of every element must be documented in all
circumstances; however, to the extent that an element's behavior influences how
another element must be written to interact with it or influences the acceptability of
the system as a whole, this behavior is part of the software architecture.

Finally, the definition is indifferent as to whether the architecture for a system is a
good one or a bad one, meaning that it will allow or prevent the system from
meeting its behavioral, performance, and life-cycle requirements. We do not accept
trial and error as the best way to choose an architecture for a system�that is,
picking an architecture at random, building the system from it, and hoping for the
best�so this raises the importance of architecture evaluation (Chapters 11 and 12)
and architecture design (Chapter 7).

2.2 Other Points of View

Software architecture is a growing but still young discipline; hence, it has no single,
accepted definition. On the other hand, there is no shortage of definitions. Most of
those commonly circulated are consistent in their themes�structure, elements, and
connections among them�but they vary widely in the details and are not
interchangeable.

The study of software architecture has evolved by observation of the design
principles that designers follow and the actions that they take when working on real
systems. It is an attempt to abstract the commonalities inherent in system design,
and as such it must account for a wide range of activities, concepts, methods,
approaches, and results. For that reason, other definitions of architecture are
present in the software engineering community, and because you are likely to
encounter some of them, you should understand their implications and be able to
discuss them. A few of the most often heard definitions follow.

Architecture is high-level design. This is true enough, in the sense that a horse
is a mammal, but the two are not interchangeable. Other tasks associated with
design are not architectural, such as deciding on important data structures
that will be encapsulated. The interface to those data structures is decidedly
an architectural concern, but their actual choice is not.

Architecture is the overall structure of the system. This common refrain
implies (incorrectly) that systems have but one structure. We know this to be
false, and, if someone takes this position, it is usually entertaining to ask
which structure they mean. The point has more than pedagogic significance.
As we will see later, the different structures provide the critical engineering
leverage points to imbue a system with the quality attributes that will render it
a success or failure. The multiplicity of structures in an architecture lies at the
heart of the concept.

Architecture is the structure of the components of a program or system, their
interrelationships, and the principles and guidelines governing their design and
evolution over time. This is one of a number of process-centered definitions
that include ancillary information such as principles and guidelines. Many
people claim that architecture includes a statement of stakeholder needs and a
rationale for how those needs are met. We agree that gathering such
information is essential and a matter of good professional practice. However,
we do not consider them part of the architecture per se any more than an
owner's manual for a car is part of the car. Any system has an architecture
that can be discovered and analyzed independently of any knowledge of the
process by which the architecture was designed or evolved.

Architecture is components and connectors. Connectors imply a runtime
mechanism for transferring control and data around a system. Thus, this
definition concentrates on the runtime architectural structures. A UNIX pipe is

a connector, for instance. This makes the non-runtime architectural structures
(such as the static division into responsible units of implementation discussed
earlier) second-class citizens. They aren't second class but are every bit as
critical to the satisfaction of system goals. When we speak of "relationships"
among elements, we intend to capture both runtime and non-runtime
relationships.

At the root of all the discussion about software architecture is a focus on reasoning
about the structural system issues. And although architecture is sometimes used to
mean a certain architectural pattern, such as client-server, and sometimes refers to
a field of study, such as a book about architecture, it is most often used to describe
structural aspects of a particular system. That is what we have attempted to capture
in our definition.

2.3 Architectural Patterns, Reference Models, and Reference
Architectures

Between box-and-line sketches that are the barest of starting points and full-fledged
architectures, with all of the appropriate information about a system filled in, lie a
host of intermediate stages. Each stage represents the outcome of a set of
architectural decisions, the binding of architectural choices. Some of these
intermediate stages are very useful in their own right. Before discussing
architectural structures, we define three of them.

1. An architectural pattern is a description of element and relation types together
with a set of constraints on how they may be used. A pattern can be thought
of as a set of constraints on an architecture�on the element types and their
patterns of interaction�and these constraints define a set or family of
architectures that satisfy them. For example, client-server is a common
architectural pattern. Client and server are two element types, and their
coordination is described in terms of the protocol that the server uses to
communicate with each of its clients. Use of the term client-server implies only
that multiple clients exist; the clients themselves are not identified, and there
is no discussion of what functionality, other than implementation of the
protocols, has been assigned to any of the clients or to the server. Countless
architectures are of the client-server pattern under this (informal) definition,
but they are different from each other. An architectural pattern is not an
architecture, then, but it still conveys a useful image of the system�it imposes
useful constraints on the architecture and, in turn, on the system.

One of the most useful aspects of patterns is that they exhibit known quality
attributes. This is why the architect chooses a particular pattern and not one
at random. Some patterns represent known solutions to performance
problems, others lend themselves well to high-security systems, still others
have been used successfully in high-availability systems. Choosing an
architectural pattern is often the architect's first major design choice.

The term architectural style has also been widely used to describe the same
concept.

2. A reference model is a division of functionality together with data flow between
the pieces. A reference model is a standard decomposition of a known problem
into parts that cooperatively solve the problem. Arising from experience,
reference models are a characteristic of mature domains. Can you name the
standard parts of a compiler or a database management system? Can you
explain in broad terms how the parts work together to accomplish their
collective purpose? If so, it is because you have been taught a reference model
of these applications.

3. A reference architecture is a reference model mapped onto software elements
(that cooperatively implement the functionality defined in the reference
model) and the data flows between them. Whereas a reference model divides
the functionality, a reference architecture is the mapping of that functionality

onto a system decomposition. The mapping may be, but by no means
necessarily is, one to one. A software element may implement part of a
function or several functions.

Reference models, architectural patterns, and reference architectures are not
architectures; they are useful concepts that capture elements of an architure. Each
is the outcome of early design decisions. The relationship among these design
elements is shown in Figure 2.2.

Figure 2.2. The relationships of reference models, architectural
patterns, reference architectures, and software architectures. (The

arrows indicate that subsequent concepts contain more design
elements.)

People often make analogies to other uses of the word architecture, about which
they have some intuition. They commonly associate architecture with physical
structure (buildings, streets, hardware) and physical arrangement. A building
architect must design a building that provides accessibility, aesthetics, light,
maintainability, and so on. A software architect must design a system that provides
concurrency, portability, modifiability, usability, security, and the like, and that
reflects consideration of the tradeoffs among these needs.

Analogies between buildings and software systems should not be taken too far, as
they break down fairly quickly. Rather, they help us understand that the viewer's
perspective is important and that structure can have different meanings depending
on the motivation for examining it. A precise definition of software architecture is
not nearly as important as what investigating the concept allows us to do.

2.4 Why Is Software Architecture Important?

Chapter 1 covered the importance of architecture to an enterprise. In this chapter,
we focus on why architecture matters from a technical perspective. In that context,
there are fundamentally three reasons for software architecture's importantance.

1. Communication among stakeholders. Software architecture represents a
common abstraction of a system that most if not all of the system's
stakeholders can use as a basis for mutual understanding, negotiation,
consensus, and communication.

2. Early design decisions. Software architecture manifests the earliest design
decisions about a system, and these early bindings carry weight far out of
proportion to their individual gravity with respect to the system's remaining
development, its deployment, and its maintenance life. It is also the earliest
point at which design decisions governing the system to be built can be
analyzed.

3. Transferable abstraction of a system. Software architecture constitutes a
relatively small, intellectually graspable model for how a system is structured
and how its elements work together, and this model is transferable across
systems. In particular, it can be applied to other systems exhibiting similar
quality attribute and functional requirements and can promote large-scale re-
use.

We will address each of these points in turn.

ARCHITECTURE IS THE VEHICLE FOR STAKEHOLDER
COMMUNICATION

Each stakeholder of a software system�customer, user, project manager, coder,
tester, and so on�is concerned with different system characteristics that are
affected by the architecture. For example, the user is concerned that the system is
reliable and available when needed; the customer is concerned that the architecture
can be implemented on schedule and to budget; the manager is worried (as well as
about cost and schedule) that the architecture will allow teams to work largely
independently, interacting in disciplined and controlled ways. The architect is
worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns can be
expressed, negotiated, and resolved at a level that is intellectually manageable even
for large, complex systems (see the sidebar What Happens When I Push This
Button?). Without such a language, it is difficult to understand large systems
sufficiently to make the early decisions that influence both quality and usefulness.
Architectural analysis, as we will see in Part Three, both depends on this level of
communication and enhances it.

"What Happens When I Push This Button?"
Architecture as a Vehicle for Stakeholder
Communication
The project review droned on and on. The government-sponsored
development was behind schedule and over budget and was large enough
so that these lapses were attracting Congressional attention. And now the
government was making up for past neglect by holding a marathon come-
one-come-all review session. The contractor had recently undergone a
buyout, which hadn't helped matters. It was the afternoon of the second
day, and the agenda called for the software architecture to be presented.
The young architect�an apprentice to the chief architect of the
system�was bravely explaining how the software architecture for the
massive system would enable it to meet its very demanding real-time,
distributed, high-reliability requirements. He had a solid presentation and
a solid architecture to present. It was sound and sensible. But the
audience�about 30 government representatives who had varying roles in
the management and oversight of this sticky project�was tired. Some of
them were even thinking that perhaps they should have gone into real
estate instead of enduring another one of these marathon let's-finally-get-
it-right-this-time reviews.

The viewgraph showed, in semiformal box-and-line notation, what the
major software elements were in a runtime view of the system. The
names were all acronyms, suggesting no semantic meaning without
explanation, which the young architect gave. The lines showed data flow,
message passing, and process synchronization. The elements were
internally redundant, the architect was explaining. "In the event of a
failure," he began, using a laser pointer to denote one of the lines, "a
restart mechanism triggers along this path when …"

"What happens when the mode select button is pushed?" interrupted one
of the audience members. He was a government attendee representing
the user community for this system.

"Beg your pardon?" asked the architect.

"The mode select button," he said. "What happens when you push it?"

"Um, that triggers an event in the device driver, up here," began the
architect, laser-pointing. "It then reads the register and interprets the
event code. If it's mode select, well, then, it signals the blackboard, which
in turns signals the objects that have subscribed to that event …"

"No, I mean what does the system do," interrupted the questioner. "Does
it reset the displays? And what happens if this occurs during a system
reconfiguration?"

The architect looked a little surprised and flicked off the laser pointer. This
was not an architectural question, but since he was an architect and
therefore fluent in the requirements, he knew the answer. "If the
command line is in setup mode, the displays will reset," he said.
"Otherwise an error message will be put on the control console, but the
signal will be ignored." He put the laser pointer back on. "Now, the restart
mechanism that I was talking about …"

"Well, I was just wondering," said the users' delegate, "because I see from
your chart that the display console is sending signal traffic to the target
location module."

"What should happen?" asked another member of the audience,
addressing the first questioner. "Do you really want the user to get mode
data during its reconfiguring?" And for the next 45 minutes, the architect
watched as the audience consumed his time slot by debating what the
correct behavior of the system was supposed to be in various esoteric
states.

The debate was not architectural, but the architecture (and its graphical
rendition) had sparked debate. It is natural to think of architecture as the
basis for communication among some of the stakeholders besides
architects and developers. Managers, for example, use it to create teams
and allocate resources among them. But users? The architecture is
invisible to users, after all; why should they latch on to it as a tool for
system understanding?

The fact is that they do. In this case, the questioner had sat through two
days of viewgraphs all about function, operation, user interface, and
testing. But even though he was tired and wanted to go home, it was the
first slide on architecture that made him realize he didn't understand
something. Attendance at many architecture reviews has convinced me
that seeing the system in a new way prods the mind and brings new
questions to the surface. For users, architecture often serves as that new
way, and the questions that a user poses will be behavioral. In the sidebar
Their Solution Just Won't Work in Chapter 11, we describe an architecture
evaluation exercise in which the user representatives were much more
interested in what the system was going to do than in how it was going to
do it, and naturally so. Until that point, their only contact with the vendor
had been through its marketers. The architect was the first legitimate
expert on the system to whom they had access, and they didn't hesitate
to seize the moment.

Of course, careful and thorough requirements specifications can
ameliorate this, but for a variety of reasons they are not always created or
available. In their absence, a specification of the architecture often
triggers questions and improves clarity. It is probably more prudent to
recognize this than to resist it. In Chapter 11, we point out that one of the
benefits of an architecture evaluation is the clarification and prioritization
of requirements.

Sometimes such an exercise will reveal unreasonable requirements, whose
utility can then be revisited. A review of this type that emphasizes synergy
between requirements and architecture would have let the young architect
in our story off the hook by giving him a place in the overall review
session to address that kind of information. And the user representative
would not have felt like a fish out of water, asking his question at a clearly
inappropriate moment. Of course, he could always go into real estate.

� PCC

ARCHITECTURE MANIFESTS THE EARLIEST SET OF DESIGN
DECISIONS

Software architecture represents a system's earliest set of design decisions. These
early decisions are the most difficult to get correct and the hardest to change later
in the development process, and they have the most far-reaching effects.

The Architecture Defines Constraints on Implementation

An implementation exhibits an architecture if it conforms to the structural design
decisions described by the architecture. This means that the implementation must
be divided into the prescribed elements, the elements must interact with each other
in the prescribed fashion, and each element must fulfill its responsibility to the
others as dictated by the architecture.

Resource allocation decisions also constrain implementations. These decisions may
be invisible to implementors working on individual elements. The constraints permit
a separation of concerns that allows management decisions to make the best use of
personnel and computational capacity. Element builders must be fluent in the
specification of their individual elements but not in architectural tradeoffs.
Conversely, architects need not be experts in all aspects of algorithm design or the
intricacies of the programming language, but they are the ones responsible for the
architectural tradeoffs.

The Architecture Dictates Organizational Structure

Not only does architecture prescribe the structure of the system being developed,
but that structure becomes engraved in the structure of the development project
(and sometimes, as mentioned in Chapter 1, the structure of the entire
organization). The normal method for dividing up the labor in a large system is to
assign different groups different portions of the system to construct. This is called
the work breakdown structure of a system. Because the system architecture
includes the highest-level decomposition of the system, it is typically used as the
basis for the work breakdown structure, which in turn dictates units of planning,
scheduling, and budget; interteam communication channels; configuration control

and file system organization; integration and test plans and procedures; and even
minutiae such as how the project intranet is organized and how many team picnics
there are. Teams communicate with each other in terms of the interface
specifications to the major elements. The maintenance activity, when launched, will
also reflect the software structure, with teams formed to maintain specific structural
elements.

A side effect of establishing the work breakdown structure is to freeze some aspects
of the software architecture. A group that is responsible for one of the subsystems
will resist having its responsibilities distributed across other groups. If these
responsibilities have been formalized in a contractual relationship, changing them
can become expensive. Tracking progress on a collection of tasks being distributed
also becomes much more difficult.

Once the architecture has been agreed on, then, it becomes almost impossible, for
managerial and business reasons, to modify it. This is one argument (among many)
for carrying out a comprehensive evaluation before freezing the software
architecture for a large system.

The Architecture Inhibits or Enables a System's Quality Attributes

Whether a system will be able to exhibit its desired (or required) quality attributes is
substantially determined by its architecture. Chapter 5 will delve into the
relationship between architectures and quality in more detail, but for now keep the
following in mind:

If your system requires high performance, you need to manage the time-
based behavior of elements and the frequency and volume of inter-element
communication.

If modifiability is important, you need to assign responsibilities to elements
such that changes to the system do not have far-reaching consequences.

If your system must be highly secure, you need to manage and protect inter-
element communication and which elements are allowed to access which
information. You may also need to introduce specialized elements (such as a
trusted kernel) into the architecture.

If you believe scalability will be needed in your system, you have to carefully
localize the use of resources to facilitate the introduction of higher-capacity
replacements.

If your project needs to deliver incremental subsets of the system, you must
carefully manage inter-component usage.

If you want the elements of your system to be re-usable in other systems, you
need to restrict inter-element coupling so that when you extract an element it

does not come out with too many attachments to its current environment to
be useful.

The strategies for these and other quality attributes are supremely architectural. It
is important to understand, however, that architecture alone cannot guarantee
functionality or quality. Poor downstream design or implementation decisions can
always undermine an adequate architectural design. Decisions at all stages of the
life cycle�from high-level design to coding and implementation�affect system
quality. Therefore, quality is not completely a function of architectural design. To
ensure quality, a good architecture is necessary, but not sufficient.

Predicting System Qualities by Studying the Architecture

Is it possible to tell that the appropriate architectural decisions have been made
(i.e., if the system will exhibit its required quality attributes) without waiting until
the system is developed and deployed? If the answer were no, choosing an
architecture would be a hopeless task�random selection would perform as well as
any other method. Fortunately, it is possible to make quality predictions about a
system based solely on an evaluation of its architecture. Architecture evaluation
techniques such as the Architecture Tradeoff Analysis Method of Chapter 11 support
top-down insight into the attributes of software product quality that is made
possible (and constrained) by software architectures.

The Architecture Makes It Easier to Reason about and Manage
Change

The software development community is coming to grips with the fact that roughly
80 percent of a typical software system's cost occurs after initial deployment. A
corollary of this statistic is that most systems that people work on are in this phase.
Many if not most programmers and designers never work on new
development�they work under the constraints of the existing body of code.
Software systems change over their lifetimes; they do so often and often with
difficulty.

Every architecture partitions possible changes into three categories: local, nonlocal,
and architectural. A local change can be accomplished by modifying a single
element. A nonlocal change requires multiple element modifications but leaves the
underlying architectural approach intact. An architectural change affects the
fundamental ways in which the elements interact with each other�the pattern of the
architecture�and will probably require changes all over the system. Obviously, local
changes are the most desirable, and so an effective architecture is one in which the
most likely changes are also the easiest to make.

Deciding when changes are essential, determining which change paths have the
least risk, assessing the consequences of proposed changes, and arbitrating
sequences and priorities for requested changes all require broad insight into
relationships, performance, and behaviors of system software elements. These are

in the job description for an architect. Reasoning about the architecture can provide
the insight necessary to make decisions about proposed changes.

The Architecture Helps in Evolutionary Prototyping

Once an architecture has been defined, it can be analyzed and prototyped as a
skeletal system. This aids the development process in two ways.

1. The system is executable early in the product's life cycle. Its fidelity increases
as prototype parts are replaced by complete versions of the software. These
prototype parts can be a lower-fidelity version of the final functionality, or they
can be surrogates that consume and produce data at the appropriate rates.

2. A special case of having the system executable early is that potential
performance problems can be identified early in the product's life cycle.

Each of these benefits reduces the risk in the project. If the architecture is part of a
family of related systems, the cost of creating a framework for prototyping can be
distributed over the development of many systems.

The Architecture Enables More Accurate Cost and Schedule
Estimates

Cost and schedule estimates are an important management tool to enable the
manager to acquire the necessary resources and to understand whether a project is
in trouble. Cost estimations based on an understanding of the system pieces are,
inherently, more accurate than those based on overall system knowledge. As we
have said, the organizational structure of a project is based on its architecture. Each
team will be able to make more accurate estimates for its piece than a project
manager will and will feel more ownership in making the estimates come true.
Second, the initial definition of an architecture means that the requirements for a
system have been reviewed and, in some sense, validated. The more knowledge
about the scope of a system, the more accurate the estimates.

ARCHITECTURE AS A TRANSFERABLE, RE-USABLE MODEL

The earlier in the life cycle re-use is applied, the greater the benefit that can be
achieved. While code re-use is beneficial, re-use at the architectural level provides
tremendous leverage for systems with similar requirements. Not only code can be
re-used but so can the requirements that led to the architecture in the first place, as
well as the experience of building the re-used architecture. When architectural
decisions can be re-used across multiple systems, all of the early decision
consequences we just described are also transferred.

Software Product Lines Share a Common Architecture

A software product line or family is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way. Chief among these core assets is the architecture that
was designed to handle the needs of the entire family. Product line architects choose
an architecture (or a family of closely related architectures) that will serve all
envisioned members of the product line by making design decisions that apply
across the family early and by making other decisions that apply only to individual
members late. The architecture defines what is fixed for all members of the product
line and what is variable. Software product lines represent a powerful approach to
multi-system development that shows order-of-magnitude payoffs in time to
market, cost, productivity, and product quality. The power of architecture lies at the
heart of the paradigm. Similar to other capital investments, the architecture for a
product line becomes a developing organization's core asset. Software product lines
are explained in Chapter 14, and case studies of product lines are given in Chapters
15 and 17.

Systems Can Be Built Using Large, Externally Developed Elements

Whereas earlier software paradigms focused on programming as the prime activity,
with progress measured in lines of code, architecture-based development often
focuses on composing or assembling elements that are likely to have been
developed separately, even independently, from each other. This composition is
possible because the architecture defines the elements that can be incorporated into
the system. It constrains possible replacements (or additions) according to how they
interact with their environment, how they receive and relinquish control, what data
they consume and produce, how they access data, and what protocols they use for
communication and resource sharing.

One key aspect of architecture is its organization of element structure, interfaces,
and operating concepts. The most significant principle of this organization is
interchangeability. In 1793, Eli Whitney's mass production of muskets, based on the
principle of interchangeable parts, signaled the dawn of the Industrial Age. In the
days before reliable physical measurements, this was a daunting notion. Today in
software, until abstractions can be reliably delimited, the notion of structural
interchangeability is just as daunting and just as significant.

Commercial off-the-shelf components, subsystems, and compatible communications
interfaces all depend on the principle of interchangeability. However, there is much
about software development through composition that remains unresolved. When
the components that are candidates for importation and re-use are distinct
subsystems that have been built with conflicting architectural assumptions,
unanticipated complications can increase the effort required to integrate their
functions. David Garlan and his colleagues coined the term architectural mismatch
to describe this situation.

Less Is More: It Pays to Restrict the Vocabulary of Design
Alternatives

As useful architectural patterns and design patterns are collected, it becomes clear
that, although computer programs can be combined in more or less infinite ways,
there is something to be gained by voluntarily restricting ourselves to a relatively
small number of choices when it comes to program cooperation and interaction.
That is, we wish to minimize the design complexity of the system we are building.
Advantages to this approach include enhanced re-use, more regular and simpler
designs that are more easily understood and communicated, more capable analysis,
shorter selection time, and greater interoperability.

Properties of software design follow from the choice of architectural pattern.
Patterns that are more desirable for a particular problem should improve the
implementation of the resulting design solution, perhaps by making it easier to
arbitrate conflicting design constraints, by increasing insight into poorly understood
design contexts, and/or by helping to surface inconsistencies in requirements
specifications.

System Architecture versus Software
Architecture
Over the past 5 to 10 years, we have had many occasions to give talks on
software architecture. Invariably, a question comes from the audience
along the lines of "Why are you talking about software architecture? Isn't
system architecture just as important?" or "What is the difference
between software architecture and system architecture?"

In fact, there is little difference, as we will see. But we mostly talk about
software architecture because we want to stress the crucial nature of the
software decisions that an architect makes concerning overall product
quality.

In creating a software architecture, system considerations are seldom
absent. For example, if you want an architecture to be high performance,
you need to have some idea of the physical characteristics of the
hardware platforms that it will run on (CPU speed, amount of memory,
disk access speed) and the characteristics of any devices that the system
interfaces with (traditional I/O devices, sensors, actuators), and you will
also typically be concerned with the characteristics of the network
(primarily bandwidth). If you want an architecture that is highly reliable,
again you will be concerned with the hardware, in this case with its failure
rates and the availability of redundant processing or network devices. On
it goes. Considerations of hardware are seldom far from the mind of the
architect.

So, when you design a software architecture, you will probably need to
think about the entire system�the hardware as well as the software. To
do otherwise would be foolhardy. No engineer can be expected to make
predictions about the characteristics of a system when only part of that
system is specified.

But still we persist in speaking about software architecture primarily, and
not system architecture. Why is this? Because most of the architect's
freedom is in the software choices, not in the hardware choices. It is not
that there are no hardware choices to be made, but these may be out of
the architect's control (for example, when creating a system that needs to
work on arbitrary client machines on the Internet) or specified by others
(for reasons of economics, legal issues, or compliance with standards); or
they will likely change over time.

For this reason, we feel justified in focusing on the software portion of
architecture, for this is where the most fundamental decisions are made,
where the greatest freedoms reside, and where there are the greatest
opportunities for success (or disaster!).

� RK

An Architecture Permits Template-Based Development

An architecture embodies design decisions about how elements interact that, while
reflected in each element's implementation, can be localized and written just once.
Templates can be used to capture in one place the inter-element interaction
mechanisms. For instance, a template can encode the declarations for an element's
public area where results will be left, or can encode the protocols that the element
uses to engage with the system executive. An example of a set of firm architectural
decisions enabling template-based development will be discussed in Chapter 8.

An Architecture Can Be the Basis for Training

The architecture, including a description of how elements interact to carry out the
required behavior, can serve as the introduction to the system for new project
members. This reinforces our point that one of the important uses of software
architecture is to support and encourage communication among the various
stakeholders. The architecture is a common reference point.

2.5 Architectural Structures and Views

The neurologist, the orthopedist, the hematologist, and the dermatologist all have a
different view of the structure of a human body. Ophthalmologists, cardiologists,
and podiatrists concentrate on subsystems. The kinesiologist and psychiatrist are
concerned with different aspects of the entire arrangement's behavior. Although
these views are pictured differently and have very different properties, all are
inherently related: Together they describe the architecture of the human body.

So it is with software. Modern systems are more than complex enough to make it
difficult to grasp them all at once. Instead, we restrict our attention at any one
moment to one (or a small number) of the software system's structures. To
communicate meaningfully about an architecture, we must make clear which
structure or structures we are discussing at the moment�which view we are taking
of the architecture.

We will be using the related terms structure and view when discussing architecture
representation. A view is a representation of a coherent set of architectural
elements, as written by and read by system stakeholders. It consists of a
representation of a set of elements and the relations among them. A structure is the
set of elements itself, as they exist in software or hardware. For example, a module
structure is the set of the system's modules and their organization. A module view is
the representation of that structure, as documented by and used by some system
stakeholders. These terms are often used interchangeably, but we will adhere to
these definitions.

Architectural structures can by and large be divided into three groups, depending on
the broad nature of the elements they show.

Module structures. Here the elements are modules, which are units of
implementation. Modules represent a code-based way of considering the
system. They are assigned areas of functional responsibility. There is less
emphasis on how the resulting software manifests itself at runtime. Module
structures allow us to answer questions such as What is the primary functional
responsibility assigned to each module? What other software elements is a
module allowed to use? What other software does it actually use? What
modules are related to other modules by generalization or specialization (i.e.,
inheritance) relationships?

Component-and-connector structures. Here the elements are runtime
components (which are the principal units of computation) and connectors
(which are the communication vehicles among components). Component-and-
connector structures help answer questions such as What are the major
executing components and how do they interact? What are the major shared
data stores? Which parts of the system are replicated? How does data
progress through the system? What parts of the system can run in parallel?
How can the system's structure change as it executes?

Allocation structures. Allocation structures show the relationship between the
software elements and the elements in one or more external environments in
which the software is created and executed. They answer questions such as
What processor does each software element execute on? In what files is each
element stored during development, testing, and system building? What is the
assignment of software elements to development teams?

These three structures correspond to the three broad types of decision that
architectural design involves:

How is the system to be structured as a set of code units (modules)?

How is the system to be structured as a set of elements that have runtime
behavior (components) and interactions (connectors)?

How is the system to relate to nonsoftware structures in its environment (i.e.,
CPUs, file systems, networks, development teams, etc.)?

SOFTWARE STRUCTURES

Some of the most common and useful software structures are shown in Figure 2.3.
These are described in the following sections.

Figure 2-3. Common software architecture structures

Module

Module-based structures include the following.

Decomposition. The units are modules related to each other by the "is a
submodule of " relation, showing how larger modules are decomposed into
smaller ones recursively until they are small enough to be easily understood.
Modules in this structure represent a common starting point for design, as the
architect enumerates what the units of software will have to do and assigns
each item to a module for subsequent (more detailed) design and eventual
implementation. Modules often have associated products (i.e., interface
specifications, code, test plans, etc.). The decomposition structure provides a
large part of the system's modifiability, by ensuring that likely changes fall
within the purview of at most a few small modules. It is often used as the
basis for the development project's organization, including the structure of the
documentation, and its integration and test plans. The units in this structure
often have organization-specific names. Certain U.S. Department of Defense
standards, for instance, define Computer Software Configuration Items
(CSCIs) and Computer Software Components (CSCs), which are units of
modular decomposition. In Chapter 15, we will see system function groups
and system functions as the units of decomposition.

Uses. The units of this important but overlooked structure are also modules, or
(in circumstances where a finer grain is warranted) procedures or resources on
the interfaces of modules. The units are related by the uses relation. One unit
uses another if the correctness of the first requires the presence of a correct
version (as opposed to a stub) of the second. The uses structure is used to
engineer systems that can be easily extended to add functionality or from
which useful functional subsets can be easily extracted. The ability to easily
subset a working system allows for incremental development, a powerful build
discipline that will be discussed further in Chapter 7.

Layered. When the uses relations in this structure are carefully controlled in a
particular way, a system of layers emerges, in which a layer is a coherent set
of related functionality. In a strictly layered structure, layer n may only use the
services of layer n � 1. Many variations of this (and a lessening of this
structural restriction) occur in practice, however. Layers are often designed as
abstractions (virtual machines) that hide implementation specifics below from
the layers above, engendering portability. We will see layers in the case
studies of Chapters 3, 13 and 15.

Class, or generalization. The module units in this structure are called classes.
The relation is "inherits-from" or "is-an-instance-of." This view supports
reasoning about collections of similar behavior or capability (i.e., the classes
that other classes inherit from) and parameterized differences which are
captured by subclassing. The class structure allows us to reason about re-use
and the incremental addition of functionality.

Component-and-Connector

These structures include the following.

Process, or communicating processes. Like all component-and-connector
structures, this one is orthogonal to the module-based structures and deals
with the dynamic aspects of a running system. The units here are processes or
threads that are connected with each other by communication,
synchronization, and/or exclusion operations. The relation in this (and in all
component-and-connector structures) is attachment, showing how the
components and connectors are hooked together. The process structure is
important in helping to engineer a system's execution performance and
availability.

Concurrency. This component-and-connector structure allows the architect to
determine opportunities for parallelism and the locations where resource
contention may occur. The units are components and the connectors are
"logical threads." A logical thread is a sequence of computation that can be
allocated to a separate physical thread later in the design process. The
concurrency structure is used early in design to identify the requirements for
managing the issues associated with concurrent execution.

Shared data, or repository. This structure comprises components and
connectors that create, store, and access persistent data. If the system is in
fact structured around one or more shared data repositories, this structure is a
good one to illuminate. It shows how data is produced and consumed by
runtime software elements, and it can be used to ensure good performance
and data integrity.

Client-server. If the system is built as a group of cooperating clients and
servers, this is a good component-and-connector structure to illuminate. The
components are the clients and servers, and the connectors are protocols and
messages they share to carry out the system's work. This is useful for
separation of concerns (supporting modifiability), for physical distribution, and
for load balancing (supporting runtime performance).

Allocation

Allocation structures include the following.

Deployment. The deployment structure shows how software is assigned to
hardware-processing and communication elements. The elements are software
(usually a process from a component-and-connector view), hardware entities
(processors), and communication pathways. Relations are "allocated-to,"
showing on which physical units the software elements reside, and "migrates-
to," if the allocation is dynamic. This view allows an engineer to reason about
performance, data integrity, availability, and security. It is of particular interest
in distributed or parallel systems.

Implementation. This structure shows how software elements (usually
modules) are mapped to the file structure(s) in the system's development,
integration, or configuration control environments. This is critical for the
management of development activities and build processes.

Work assignment. This structure assigns responsibility for implementing and
integrating the modules to the appropriate development teams. Having a work
assignment structure as part of the architecture makes it clear that the
decision about who does the work has architectural as well as management
implications. The architect will know the expertise required on each team.
Also, on large multi-sourced distributed development projects, the work
assignment structure is the means for calling out units of functional
commonality and assigning them to a single team, rather than having them
implemented by everyone who needs them.

Table 2.1 summarizes the software structures. The table lists the meaning of the
elements and relations in each structure and tells what each structure might be
used for.

Table 2.1. Architectural Structures of a System

Software
Structure Relations Useful for

Decomposition Is a submodule of; shares
secret with

Resource allocation and project
structuring and planning; information
hiding, encapsulation; configuration
control

Uses Requires the correct
presence of

Engineering subsets; engineering
extensions

Layered Requires the correct
presence of; uses the
services of; provides
abstraction to

Incremental development;
implementing systems on top of "virtual
machines" portability

Class Is an instance of; shares
access methods of

In object-oriented design systems,
producing rapid almost-alike
implementations from a common
template

Software
Structure Relations Useful for

Client-Server Communicates with;
depends on

Distributed operation; separation of
concerns; performance analysis; load
balancing

Process Runs concurrently with;
may run concurrently with;
excludes; precedes; etc.

Scheduling analysis; performance
analysis

Concurrency Runs on the same logical
thread

Identifying locations where resource
contention exists, where threads may
fork, join, be created or be killed

Shared Data Produces data; consumes
data

Performance; data integrity;
modifiability

Deployment Allocated to; migrates to Performance, availability, security
analysis

ImplementationStored in Configuration control, integration, test
activities

Work
Assignment

Assigned to Project management, best use of
expertise, management of commonality

Although we often think about a system's structure in terms of its functionality,
there are system properties in addition to functionality, such as physical distribution,
process communication, and synchronization, that must be considered at an
architectural level. Each structure provides a method for reasoning about some of
the relevant quality attributes. The uses structure, for instance, must be engineered
(not merely recorded) to build a system that can be easily extended or contracted.
The process structure is engineered to eliminate deadlock and reduce bottlenecks.
The module decomposition structure is engineered to produce modifiable systems,
and so forth. Each structure provides the architect with a different view into the
system and a different leverage point for design.

RELATING STRUCTURES TO EACH OTHER

Each of these structures provides a different perspective and design handle on a
system, and each is valid and useful in its own right. Although the structures give

different system perspectives, they are not independent. Elements of one will be
related to elements of others, and we need to reason about these relations. For
example, a module in a decomposition structure may be manifested as one, as part
of one, or as several components in one of the component-and-connector
structures, reflecting its runtime alter ego. In general, mappings between structures
are many to many.

Individual projects sometimes consider one structure dominant and cast other
structures, when possible, in terms of it. Often, but not always, the dominant
structure is module decomposition. This is for a good reason: It tends to spawn the
project structure. Scenarios, described in Chapter 4, are useful for exercising a
given structure as well as its connections to other structures. For example, a
software engineer wanting to make a change to the client-server structure of a
system would need to consider the process and deployment views because client-
server mechanisms typically involve processes and threads, and physical distribution
might involve different control mechanisms than would be used if the processes
were colocated on a single machine. If control mechanisms need to be changed, the
module decomposition or layered view would need to be considered to determine
the extent of the changes.

Not all systems warrant consideration of many architectural structures. The larger
the system, the more dramatic the differences between these structures tend to be;
however, for small systems we can often get by with less. Instead of working with
each of several component-and-connector structures, a single one will do. If there is
only one process, then the process structure collapses to a single node and need not
be carried through the design. If there is to be no distribution (that is, if there is
just one processor), then the deployment structure is trivial and need not be
considered further.

Structures represent the primary engineering leverage points of an architecture.
Individual structures bring with them the power to manipulate one or more quality
attributes. They represent a powerful separation-of-concerns approach for creating
the architecture (and, later, for analyzing it and explaining it to stakeholders). And,
as we will see in Chapter 9, the structures that the architect has chosen as
engineering leverage points are also the primary candidates for the basis for
architecture documentation.

WHICH STRUCTURES TO CHOOSE?

We have briefly described a number of useful architectural structures, and there are
many more. Which ones should an architect work on? Which ones should the
architect document? Surely not all of them.

There is no shortage of advice. In 1995, Philippe Kruchten [Kruchten 95] published
a very influential paper in which he described the concept of architecture comprising
separate structures and advised concentrating on four. To validate that the
structures were not in conflict with each other and together did in fact describe a
system meeting its requirements, Kruchten advised using key use cases as a check.
This so-called "Four Plus One" approach became popular and has now been

institutionalized as the conceptual basis of the Rational Unified Process. Kruchten's
four views follow:

Logical. The elements are "key abstractions," which are manifested in the
object-oriented world as objects or object classes. This is a module view.

Process. This view addresses concurrency and distribution of functionality. It is
a component-and-connector view.

Development. This view shows the organization of software modules, libraries,
subsystems, and units of development. It is an allocation view, mapping
software to the development environment.

Physical. This view maps other elements onto processing and communication
nodes and is also an allocation view (which others call the deployment view).

At essentially the same time that Kruchten published his work, Soni, Nord, and
Hofmeister [Soni 95] published an influential paper in which they reported the
structures put into use across many projects by the software architects in their
organization. Their views were conceptual, module interconnection, execution, and
code. Once again, these map clearly to the module, component-and-connector, and
allocation models.

Other authors followed, and the list of available structures grows ever more rich. Of
course, you should not use them all even though most of them will in fact exist in
the system you are building. Instead, consider that one of the obligations of the
architect is to understand how the various structures lead to quality attributes, and
then choose the ones that will best deliver those attributes. This point will be
treated at greater length in Chapter 9, on architectural representation.

2.6 Summary

This chapter defined software architecture and also introduced the related concepts
of reference model, reference architecture, and architectural pattern. We have
explained why architecture is a fundamentally useful concept in software
engineering, in terms of the early insights it provides into the system, the
communication it enables among stakeholders, and the value it provides as a re-
usable asset. All of these themes will be expanded in subsequent chapters.

Our definition of architecture makes clear that systems comprise many structures.
We showed several of the most commonly used structures and explained how each
serves as an engineering leverage point into the design process.

The next chapter is the first case study of the book. Its purpose is to show the utility
of different architectural structures in the design of a complex system.

2.7 For Further Reading

The early work of David Parnas laid much of the conceptual foundation for what
became the study of software architecture (see the sidebar Architecture Déjà Vu). A
quintessential Parnas reader would include his foundational article on information
hiding [Parnas 72] as well as his works on program families [Parnas 76], the
structures inherent in software systems [Parnas 74], and introduction of the uses
structure to build subsets and supersets of systems [Parnas 79]. All of these papers
can be found in the more easily accessible collection of his important papers
[Hoffman 00].

Software architectural patterns have been extensively catalogued in Pattern-
Oriented Software Architecture [Buschmann 96, Schmidt 00].

Early papers on architectural views as used in industrial development projects are
[Soni 95] and [Kruchten 95]. The former grew into a book [Hofmeister 00] that
presents a comprehensive picture of views as used in development and analysis.
The latter grew into the Rational Unified Process, about which there is no shortage
of references, both paper and online. A good one is [Kruchten 00].

A discussion of architectural mismatch can be found in Garlan et al. [Garlan 95].
Barry Boehm [Boehm 95] discusses the process issues surrounding software
architecture.

The Software Engineering Institute's software architecture Web page [SEI ATA]
provides a wide variety of software architecture resources and links, including a
broad collection of definitions of the term.

Paulish [Paulish 02] discusses the relationship of cost and schedule to the existence
of an architecture.

Architecture Déjà Vu
While architecture is undoubtedly a vital part of system development that
is enjoying widespread attention at the moment, it must be pointed out
that the field is plowing old ground in several areas. In many ways we are
"discovering" fundamental principles that were laid out eloquently and
convincingly over a quarter-century ago by Fred Brooks, Edsger Dijkstra,
David Parnas, and others.

In programming, the term architecture was first used to mean a
description of a computer system that applied equally to more than one
system. It still carries this meaning today. In 1969, Fred Brooks and Ken
Iverson called architecture the "conceptual structure of a computer … as
seen by the programmer" [Brooks 69]. A few years later, Brooks (crediting
G. Blaauw for the term) defined architecture as "the complete and
detailed specification of the user interface" [Brooks 75]. A careful

distinction was drawn between architecture and implementation. Quoting
Blaauw, Brooks writes, "Where architecture tells what happens,
implementation tells how it is made to happen." This distinction survives
today, and in the era of object-oriented programming, it thrives.

The term architecture is still used today in some communities to refer to
the user view of a system, but that is not what we mean by software
architecture. The structure(s) contained in a software architecture is
invisible to the system's end user. However, the conceptual separation
between the what and the how applies. Software architecture is not
concerned with how elements do what they do, just as the end user is not
concerned with how the system does what it does. The notion of
architecture as a common description of a class of systems (i.e., an
abstraction, where all the instances are said to exhibit the architecture)
remains at the heart of what we call software architecture today.

Also in 1968, Edsger Dijkstra was telling us to be concerned with how
software is partitioned and structured as opposed to simply programming
to produce a correct result [Dijkstra 68]. He was writing about an
operating system and introduced the idea of a layered structure, in which
programs were grouped into layers and programs in one layer could
communicate only with programs in adjacent layers. Dijkstra pointed out
the elegant conceptual integrity exhibited by such an organization,
resulting in increased ease of development and maintenance.

David Parnas advanced this line of observation with his fundamental
contributions to software engineering in the early 1970s. In his work,
more than anyone else's, is to be found many of the fundamental tenets
and principles behind software architecture, including the following:

A design principle for how to break a system into elements to
increase maintainability and (as we will see in Chapter 5) re-
usability. If architecture has a fundamental principle, it is this one,
which Parnas called information hiding [Parnas 72].

The principle of using an element via its interface only, the
conceptual basis of all object-based design [Parnas 72].

An observation of the various structures to be found in software
systems, with an admonition not to confuse them�a lesson often
forgotten by today's "architecturists" [Parnas 74].

Introduction of the uses structure, a principle for controlling the
connections between elements in order to increase the extensibility
of a system, as well as the ability to field subsets quickly and easily
[Parnas 79].

The principle of detection and handling of errors (now called
exceptions) in component-based systems, which is the underlying

approach of most modern programming languages [Parnas 72, 76].

Viewing every program as a member of a family of programs, with
principles for taking advantage of the commonalities among the
members and ordering the design decisions so that the ones that
need to be the easiest to revise are made last. The coarse
structuring of the program�part of its architecture�comprises the
set of early, family-wide design decisions [Parnas 76].

Recognition that the structure of a system influences the qualities
(such as reliability) of that system [Parnas 76].

Now it is true, and Parnas would agree, that not all of the ideas in his
papers were invented by him from whole cloth. About information hiding,
for example, he has said that he was writing down what good
programmers had been doing for a long time (especially operating
systems programmers writing device drivers). However, taken as a body,
Parnas's work is a coherent statement of the theme of software
architecture: Structure matters. His insights form the backbone of
software architecture as a study area, and no book on the subject would
be complete without acknowledging his fundamental contributions.

Recently a colleague and I had a fine architectural discussion about what
exactly constitutes the interface to a software element; clearly it is much
more than the names of the programs you can call and the parameters
they take. My colleague worked out that it is actually the set of
assumptions that you can safely make about the element, and that these
assumptions vary according to the context of the element's use. I agreed
and pulled out Parnas's paper [Parnas 71] in which he said precisely the
same thing. My friend looked a little crestfallen for a moment and then
said, "Now I know how Scott felt when he reached the South Pole and
found Amundsen's flag already planted. He probably said, 'Oh, damn. And
now I've got to eat my dogs.' "

Parnas's flag is planted deeply, and often, in our field. In the next chapter,
we will present a case study of an architecture created by Parnas to put
his ideas into practical use in a demanding real-world application. Even
though it ran its course long ago, we know of no other single project that
so clearly laid out and faithfully followed architectural principles such as
engineering and maintaining separate structures to achieve quality goals;
strict information hiding to achieve re-usable elements and a re-usable
architecture; and painstaking specification of that architecture, its
elements, and their relationships.

While Parnas and others laid the foundations, the field has taken its own
turns in the interim. Experience with basic ideas leads to the refinement of
those ideas, to embellishments rooted in practicalities, and to entirely new
concepts. Thus, while Parnas wrote about program families a couple of
decades ago, we will see in Chapter 14 that organizational, process, and
managerial concerns predominate in the successful development of

product lines, their conceptual descendant. While Dijkstra wrote about
separation of concerns about a quarter-century ago, objects (the
conceptual descendant) have only fairly recently come into their own as a
standard, widely accepted design approach. And while Brooks and Blaauw
wrote about architecture even longer ago, we've already seen that
architectures cannot be understood except in light of the business issues
that spawned them, and we will see ways to analyze architectures without
waiting for the system to be built.

Today, architecture as a field of study is large and growing larger,
primarily because it has left the realm of deep thinkers and visionaries
and made the transition into practice. The early ideas have been refined
and applied enough so that it is becoming an accepted state-of-the-
practice approach to system building.

� PCC

2.8 Discussion Questions

1:

Software architecture is often compared to building architecture. What are the
strong points of this comparison? What is the correspondence in buildings to
software architecture structures and views? To patterns? What are the
weaknesses of the comparison? When does it break down?

2:
What is the difference between a reference architecture and an architectural
pattern? What can you do with one that you cannot do with the other in terms of
organizational planning and architectural analysis?

3:
Do the architectures in your organization recognize the different views
(structures and relations) inherent in architecture? If so, which ones? If not, why
not?

4:

Is there a different definition of software architecture that you are familiar with?
If so, think about the ways in which this definition supports our acid test of an
architecture: Does it abstract information away from the system and yet provide
enough information to be a basis for analysis, decision making, and risk
reduction?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 3. A-7E Avionics System: A Case Study in
Utilizing Architectural Structures

An object-oriented program's runtime structure often bears little resemblance
to its code structure. The code structure is frozen at compile-time; it consists
of classes in fixed inheritance relationships. A program's runtime structure
consists of rapidly changing networks of communicating objects. In fact, the
two structures are largely independent. Trying to [understand] one from the
other is like trying to understand the dynamism of living ecosystems from the
static taxonomy of plants and animals, and vice versa.

�E. Gamma, R. Helms, R. Johnson, and J. Vlissides [Gamma 95]

In Chapter 2, we stated that software architecture describes elements of a system
and the relations among them. We also emphasized that every system has many
kinds of elements and that different architectural structures are useful, even
necessary, to present a complete picture of the architecture of a system. Each
structure concentrates on one aspect of the architecture.

This chapter will present a case study of an architecture designed by engineering
and specifying three specific architectural structures: module decomposition, uses,
and process. We will see how these structures complement each other to provide a
complete picture of how the system works, and we will see how certain qualities of
the system are affected by each one. Table 3.1 summarizes the three structures we
will discuss.

Table 3.1. The A-7E's Architecural Structures

Structure Elements Relation among
Elements Has Influence Over

Module
Decomposition

Modules
(implementation
units)

Is a submodule of;
shares a secret with

Ease of change

Uses Procedures Requires the correct
presence of

Ability to field subsets and
develop incrementally

Process Processes;
thread of
procedures

Synchronizes with;
shares CPU with;
excludes

Schedulability; achieving
performance goals through
parallelism

3.1 Relationship to the Architecture Business Cycle

Figure 3.1 shows the ABC as it pertains to the A-7E avionics system described in
this chapter. The system was constructed beginning in 1977 for the naval aviators
who flew the A-7E aircraft and was paid for by the U.S. Navy. The developing
organization was the software engineering group at the U.S. Naval Research
Laboratory. The developers were creating the software to test their belief that
certain software engineering strategies (in this case, information hiding and
cooperating sequential processes) were appropriate for high-performance embedded
real-time systems.

Figure 3.1. The ABC as it relates to the A-7E avionics systems

The architects included one of the authors of this book and one of the leaders in the
development of software engineering principles, but the architects had little
experience in the avionics domain, although they did have access to other avionics
systems and to experts in avionics. There was no compiler available for the target
platform.

We will start by explaining the application, what the system does, which qualities
were important to achieve, and the software's role in performing the system's task.

3.2 Requirements and Qualities

Figure 3.2 shows the A-7E Corsair II. It is a single-seat, carrier-based attack aircraft
used by the U.S. Navy throughout the 1960s, 1970s, and 1980s. An earlier version,
the A-7C, was among the very first production aircraft in the world to be equipped
with an onboard computer to help the pilot with navigation and "weapon delivery"
(the military euphemism for attacking a ground target).

Figure 3.2. An A-7E Corsair II.

Used with permission and under copyright of Squadron/Signal Publications,
Inc.

The A-7E's onboard computer is a small, special-purpose IBM machine for which no
compiler exists; programming is in assembly language only. The computer has
special registers connected to analog-to-digital and digital-to-analog converters that
let it receive and send data to almost two dozen devices in the aircraft's avionics
suite.

In broad terms, the A-7E software is responsible for reading sensors and updating
cockpit displays that help the pilot drop weapons on a target. The A-7E software
does not actually fly the aircraft, as more modern avionics systems do.

The following are the primary sensors the software reads and manages:

An air probe that measures barometric pressure and air speed.

A forward-looking radar that can be aimed in azimuth and elevation and
returns the straight-line range to the point on the ground at which it is
pointed.

A Doppler radar that reports ground speed and drift angle (the difference
between the direction in which the aircraft's nose is pointed and the direction

in which it is moving over the ground).

An inertial measurement set (IMS) that reports accelerations along each of
three orthogonal axes. The software must read these accelerations in a timely
manner and integrate them over time to derive velocities, and it must
integrate the velocities over time to derive the aircraft's current position in the
physical world. It also must manage the alignment and compensate for the
drift of the axes to keep them pointed north, east, and vertical, respectively,
so that the measurements accurately correspond to the aircraft's frame of
reference.

An interface to the aircraft carrier's inertial measurement system, through
which the aircraft can compute its current position while on board a ship.

Sensors that report which of the A-7E's six underwing bomb racks hold
weapons and which of more than 100 kinds of weapons in the aircraft's
repertoire they are. The software stores large tables of the parameters for
each weapon type, which let it compute how that weapon moves through the
atmosphere in a free-fall ballistic trajectory.

A radar altimeter that measures the distance to the ground.

The cockpit display devices managed by the software include some that are display
only and some by which the pilot communicates with the software, as follows:

A map display that always shows the aircraft's current location by moving a
back-lit filmstrip as the aircraft travels. The pilot can choose the map's
orientation so that the top corresponds either to the current heading or to true
north.

A heads-up display�a device that projects digital and iconographic information
on a clear window between the pilot and the windscreen. Since the pilot's head
position is assumed fixed and known, the display can be used to overlay
information about the real world, such as the position of the target or a line
showing the aircraft's direction of travel.

A keypad and a trio of small alphanumeric display windows. With the keypad,
the pilot can request approximately a hundred kinds of digital information from
the computer. A bank of switches on the computer control panel allows the
pilot to choose the desired navigation and weapon delivery modes.

Various lights and dials and an audible signal.

The pilot communicates the location of a ground target (or a navigational waypoint)
to the software in a number of ways, including the following:

Keying in its latitude and longitude via the keypad

Slewing the map using a joystick until its coordinates are under the center
crosshairs and then "designating" it by pushing a special button on the control
stick

Aiming the forward-looking radar to the point and designating it

Slewing a special symbol on the heads-up display until it overlays the point of
interest on the ground and then designating it

The software then provides navigational information (direction, distance, time to go)
and directional cues on the heads-up display that take the aircraft to the designated
location.

The pilot can choose from over two dozen navigation modes, based on which
sensors are most reliable under the conditions of the moment. The software has at
least five direct and indirect ways to calculate the aircraft's current altitude,
including a trigonometric scheme using the range and elevation angle of the
forward-looking radar as components of a triangle (see Figure 3.3). There are more
than 20 weapon delivery modes, all demanding in terms of the real-time
calculations (repeated 25 times every second) necessary to maintain the A-7E's
bombing accuracy.

Figure 3.3. Calculation of altitude for the A-7E

A-7Es were retired from active duty in the late 1980s, but current-generation
fighters feature a heads-up display and weapon delivery and navigation modes that

show heavy influence from the Corsair.

The architecture we will present in this chapter is not the architecture for the
original software but that for a redesign project launched by Navy software
engineers using the A-7E as a demonstration project for their ideas (see the sidebar
About the A-7 Project). The qualities that the software system was expected to have
included real-time performance and modifiability for expected changes. Specifically,
the performance requirements were stated in terms of updates per second of the
A7-E's displays and weapon delivery calculations. The modifiability requirements
dealt with making changes to the weaponry, the platform, the symbology on the
display, and the addition of new input through the keypad.

About the A-7 Project
"In the mid-1970s, it was clear to computer scientists at the Naval
Research Laboratory (NRL) in Washington, D.C., that much of the
computer science technology being developed in academia and
laboratories was not being used by the developers of software for Navy
systems." So began a typical description of the Navy's Software Cost
Reduction (SCR) project, or, as it was more popularly known, the A-7
project. Most descriptions went on to say that NRL's response was to
choose a high-fidelity, challenging Navy program (the software for the A-
7E aircraft) and then redesign and reimplement it using that under-utilized
technology. The point was to create a convincing demonstration of the
technology's value in real-world applications.

Between the lines, however, was the fact that those scientists had some
very specific computer science technology in mind: primarily, the use of
information hiding as the design strategy. This is not surprising, because
the impetus behind the A-7 project was the man who first wrote about
information hiding as a design technique, David Parnas. Parnas wanted to
find out whether his ideas (and others, such as cooperating sequential
processes) could be used in a system with inflexible requirements,
demanding memory constraints, and tight time budgets. If not, he wanted
to find out why not and how to improve his ideas so that they could work.
Vague methods demonstrated only on toy problems were clearly not
enough. The idea behind the A-7 project was to leave a complete
engineering model�documentation, design, code, methodology,
principles�that others could emulate, all reported in the open literature.

The project started in 1977 with a couple of people working part-time. It
soon chose the demonstration application: The software for the A-7E was
a hard real-time system (meaning it absolutely had to meet its timing
requirements), it was embedded (having to interface with all sorts of
esoteric hardware devices), it was absolutely authentic, and it was very
tightly constrained by the computer's tiny memory capacity: only 32,000
16-bit words. If the new techniques succeeded in duplicating this
program, they would succeed anywhere.

The first product was a requirements specification for the software. It
hadn't been intended, but when Parnas asked the Navy if he could obtain
the A-7's requirements document, the response was "What requirements
document?" Realizing that they had to have a standard against which to
test and judge when they were done, the software engineers at the NRL
reluctantly set about documenting the requirements for the software. The
team not only produced a requirements document but, more important,
produced a method for producing it. SCR-style requirements documents
are now widely used for real-time embedded software systems.

Then the small team concentrated on designing the interfaces to all of the
modules. The few people working on the project were pioneering what
would today be called object-based design. In designing to accommodate
future changes, they were also building what would today be called a
domain model. In creating a standard, re-usable design, they were
building what would today be called a reference architecture (see Chapter
12). They had to balance their time among inventing new software
engineering approaches, learning the avionics domain, writing papers to
get the word out and, last but hardly least, producing the software.

The project implementation phase was staged by deploying a tiny subset
of the software to demonstrate the ability to generate executable code,
and then deploying two successively larger subsets, and finally the entire
system. The uses structure, one of the three architectural structures
highlighted in the case study, allowed them to define these subsets quickly
and easily to meet their needs. By the time the second of the three
subsets was under way, it was clear to project management that most of
what they had set out to learn had been learned and that slogging
through to the complete reimplementation was not going to be practical
given the small staff size, small budget, and still infantile expertise in the
avionics domain. In 1987, the project demonstrated the successful
completion of the second subset and was completed. The subset was
carefully chosen to include part of every second-level module and to
perform a useful and nontrivial navigation function.

The team concluded that information hiding is not only compatible with
real-time embedded systems but in many ways ideal for it. Careful
attention to module interfaces and module interface specifications paid off
in essentially eliminating integration as a project phase: There were
practically no errors of the type usually associated with the integration
step. The software was able to meet its timing deadlines but could not
compete with years of handcrafted assembly code in terms of memory
efficiency. It is hoped that memory efficiency is now and will remain less
of a concern than it was in 1977.

The architecture we present in this case study is that of the completed
design, the one that led to the subset of 1987. There is no reason to
believe that it would not have also led, unchanged, to the full
reimplementation of the system. In any case, it is a very good example of
paying attention to different architectural structures or views in order to
achieve particular goals, and we present it in that light.

Why, after all this time, is the A-7E still interesting? Because it holds two
lessons. One is that information hiding is a viable and prudent design
discipline�a lesson that has been well heeded by the community. The
second is that carefully engineering different structures of an architecture
yields payoffs in terms of achievable qualities�a lesson not so well
heeded, and so we repeat it in the context of the current interest in
software architecture in the hope that, through repetition, the lesson will
be better absorbed.

� PCC

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

3.3 Architecture for the A-7E Avionics System

The architecture for the A-7E avionics system is centered around three architectural
structures discussed in Chapter 2:

Decomposition, a structure of modules

Uses, a structure of modules

Process, a structure of components and connectors

We will discuss each in turn.

DECOMPOSITION STRUCTURE

Unless a program is small enough to be produced by a single programmer, we must
think how the work will be divided into units that can be implemented separately
and how those modules will interact. The unit of the decomposition structure is, of
course, the module. A module may be thought of as defining a group of procedures,
some public and some private, plus a set of private data structures. The relation
among modules in the decomposition structure is "is-a-submodule-of" or "shares-a-
secret-with."

Prior to 1977, performance was the overriding goal of embedded (as well as most
other) systems. The goal of the A-7E designers was to balance performance with
modifiability and demonstrate that it was possible to achieve modifiability without
compromising performance.

Information Hiding

The A-7E module decomposition is based on information hiding. An architectural
tactic we will revisit in Chapter 5, information hiding works by encapsulating system
details that are likely to change independently in different modules. The interface of
a module reveals only those aspects considered unlikely to change; the details
hidden by the module interface are the module's secrets.

For instance, if a device such as an aircraft altitude sensor is likely to be replaced
over the life of an avionics program, the information-hiding principle makes the
details of interacting with that device the secret of one module. The interface to the
module provides an abstraction of the sensor, consisting perhaps of a single
program that returns the most recent value measured by the sensor, because all
replacement sensors probably share this capability. If the sensor is ever replaced,
only the internal parts of that module need to change; the rest of the software is
unaffected.

Information hiding is enforced by requiring that modules interact only via a defined
set of public facilities�their interfaces. Each module provides a set of access
procedures, which may be called by any other module in the system. The access
procedures provide the only inter-module means for interacting with information
encapsulated in a module.

Of course, this is the philosophy underlying object-based design, with a key
difference: Whereas objects are created from the physical objects inherent in the
application, or conjured up from intuitive insights about the system, information-
hiding modules are derived by cataloging the changes to the software that are
perceived to be likely over the system's lifetime.

A module may consist of submodules, or it may be considered a single
implementation unit. If it contains submodules, a guide to its substructure is
provided. The decomposition into submodules and their design is continued until
each module is small enough to be discarded and begun again if the programmer
assigned to it leaves the project.

Specific goals of module decomposition are as follows:

Each module's structure should be simple enough to be understood fully.

It should be possible to change the implementation of one module without
knowledge of the implementation of other modules and without affecting the
behavior of other modules.

The ease of making a change in the design should bear a reasonable
relationship to the likelihood of the change being needed; it should be possible
to make likely changes without changing any module interfaces; less likely
changes may involve interface changes but only for modules that are small
and not widely used. Only very unlikely changes should require changes in the
interfaces of widely used modules.

It should be possible to make a major software change as a set of independent
changes to individual modules (i.e., except for interface changes,
programmers changing the individual modules should not need to
communicate). If the module interfaces are not revised, it should be possible
to run and test any combination of old and new module versions.

The documentation of the decomposition structure is sometimes called a module
guide. It defines the responsibilities of each of the modules by stating the design
decisions that will be encapsulated by it. Its purpose is to avoid duplication and
gaps, to achieve separation of concerns, and, most of all, to help a maintainer find
out which modules are affected by a problem report or change request.

The guide states the criteria used to assign a particular responsibility to a module
and arranges the modules in such a way that we can find the necessary information
without searching through unrelated documentation. It reflects the tree structure of
the decomposition structure, dividing the system into a small number of modules
and treating each one in the same way until all of them are quite small. Each

nonleaf node in the tree represents a module composed of the modules represented
by its descendants. The guide does not describe any runtime relationship among the
modules: It doesn't talk about how modules interact with each other while the
system is executing; rather, it simply describes a design-time relationship among
the implementation units that constitute the design phase of a project.

Applying this principle is not always easy. It is an attempt to lower the expected
cost of software by anticipating likely changes. Such estimates are necessarily based
on experience, knowledge of the application area, and an understanding of
hardware and software technology. Because a designer might not have had all of the
relevant experience, formal evaluation procedures were used that were designed to
take advantage of the experience of others. Table 3.2 summarizes the role of the
module structure in the A-7E architecture.

Table 3.2. How the A-7E Module Decomposition Structure Achieves
Quality Goals

Goal How Achieved

Ease of change to: weapons,
platform, symbology, input

Information hiding

Understand anticipated
changes

Formal evaluation procedure to take advantage of
experience of domain experts

Assign work teams so that
their interactions were
minimized

Modules structured as a hierarchy; each work team
assigned to a second-level module and all of its
descendants

A-7E Module Decomposition Structure

To describe the A-7E module decomposition structure, and to give an example of
how a module structure is documented, we provide the following excerpts from the
A-7E software module guide. The decomposition tree is described beginning with the
three highest-level modules. These are motivated by the observation that, in
systems like the A-7E, changes tend to come from three areas: the hardware with
which the software must interact, the required externally visible behavior of the
system, and a decision solely under the jurisdiction of a project's software designer.

Hardware-Hiding Module. The Hardware-Hiding Module includes the
procedures that need to be changed if any part of the hardware is replaced by
a new unit with a different hardware/software interface but with the same
general capabilities. This module implements virtual hardware, or a set of

abstract devices that are used by the rest of the software. The primary secrets
of this module are the hardware/software interfaces. The secondary secrets of
this module are the data structures and algorithms used to implement the
virtual hardware. One of the submodules of the Hardware-Hiding Module is the
Extended Computer Module that hides the details of the processor.

Behavior-Hiding Module. The Behavior-Hiding Module includes procedures
that need to be changed if there are changes in requirements affecting the
required behavior. Those requirements are the primary secret of this module.
These procedures determine the values to be sent to the virtual output devices
provided by the Hardware-Hiding Module.

Software Decision Module. The Software Decision Module hides software
design decisions that are based on mathematical theorems, physical facts, and
programming considerations such as algorithmic efficiency and accuracy. The
secrets of this module are not described in the requirements document. This
module differs from the other modules in that both the secrets and the
interfaces are determined by software designers. Changes in these modules
are more likely to be motivated by a desire to improve performance or
accuracy than by externally imposed changes.

The module guide goes on to explain how conflicts among these categories (e.g., is
a required algorithm part of the behavior or a software decision?) are arbitrated by
a complete and unambiguous requirements specification and then provides the
second-level decomposition. The following sections describe how the Software
Decision Module is decomposed.

Application Data Type Module� The Application Data Type Module supplements
the data types provided by the Extended Computer Module with data types
that are useful for avionics applications and do not require a computer-
dependent implementation. Examples of types include distance (useful for
altitude), time intervals, and angles (useful for latitude and longitude). These
data types are implemented using the basic numeric data types provided by
the Extended Computer; variables of those types are used just as if the types
were built into the Extended Computer.

The secrets of the Application Data Type Module are the data representation
used in the variables and the procedures used to implement operations on
those variables. Units of measurement (such as feet, seconds, or radians) are
part of the representation and are hidden. Where necessary, the modules
provide conversion operators that deliver or accept real values in specified
units.

Data Banker Module� Most data are produced by one module and consumed
by another. In most cases, the consumers should receive a value that is as up
to date as practical. The time at which a datum should be recalculated is
determined both by properties of its consumer (e.g., accuracy requirements)
and by properties of its producer (e.g., cost of calculation, rate of change of
value). The Data Banker Module acts as a "middleman" and determines when
new values for these data are computed.

The Data Banker Module obtains values from producer procedures; consumer
procedures obtain data from Data Banker access procedures. The producer
and consumers of a particular datum can be written without knowing when a
stored value is updated. In most cases, neither the producer nor the consumer
need be modified if the updating policy changes.

The Data Banker provides values for all data that report on the internal state
of a module or on the state of the aircraft. The Data Banker also signals events
involving changes in the values that it supplies. The Data Banker is used as
long as consumer and producer are separate modules, even when they are
both submodules of a larger module. The Data Banker is not used if
consumers require specific members of the sequence of values computed by
the producer or if a produced value is solely a function of the values of input
parameters given to the producing procedure, such as sin(x).[1]

[1] The Data Banker Module is an example of the use of the blackboard architectural pattern (see Chapter 5, Achieving
Qualities).

The choice among updating policies should be based on the consumers'
accuracy requirements, how often consumers require the value, the maximum
wait that consumers can accept, how rapidly the value changes, and the cost
of producing a new value. This information is part of the specification given to
the implementor of the Data Banker Module.

Filter Behavior Module� The Filter Behavior Module contains digital models of
physical filters. They can be used by other procedures to filter potentially noisy
data. The primary secrets of this module are the models used for the
estimation of values based on sample values and error estimates. The
secondary secrets are the computer algorithms and data structures used to
implement those models.

Physical Models Module� The software requires estimates of quantities that
cannot be measured directly but can be computed from observables using
mathematical models. An example is the time that a ballistic weapon will take
to strike the ground. The primary secrets of the Physical Models Module are
the models; the secondary secrets are the computer implementations of those
models.

Software Utility Module� The Software Utility Module contains those utility
routines that would otherwise have to be written by more than one other
programmer. The routines include mathematical functions, resource monitors,
and procedures that signal when all modules have completed their power-up
initialization. The secrets of the module are the data structures and algorithms
used to implement the procedures.

System Generation Module� The primary secrets of the System Generation
Module are decisions that are postponed until system generation time. These
include the values of system-generation parameters and the choice among
alternative implementations of a module. The secondary secrets of the System
Generation Module are the method used to generate a machine-executable

form of the code and the representation of the postponed decisions. The
procedures in this module do not run on the onboard computer; they run on
the computer used to generate the code for the onboard system.

The module guide describes a third- (and in some cases a fourth-) level
decomposition, but that has been omitted here. Figure 3.4 shows the decomposition
structure of the A-7E architecture down to the third level. Notice that many of the
Device Interface modules have the same names as Function Driver modules. The
difference is that the Device Interface modules are programmed with knowledge of
how the software interfaces with the devices; the Function Driver modules are
programmed with the knowledge of values required to be computed and sent to
those devices. This suggests another architectural relationship that we will explore
shortly: how the software in these modules cooperates to accomplish work.

Figure 3.4. The module decomposition view of the A-7E software
architecture

But the module decomposition view is not yet complete. Recall from Chapter 2 our
definition of architecture as including the behavioral specification for each of the
elements. Carefully designed language-independent interfaces are crucial for
maintaining portability and achieving interoperability. Here, each module must have
an interface specified for it. Chapter 9 discusses documentation for software
interfaces.

In the previous chapter, we remarked that architectures serve as the blueprint for
the developing project as well as for the software. In the case of the A-7E
architecture, this second-level module decomposition structure became enshrined in
many ways: Design documentation, online configuration-controlled files, test plans,
programming teams, review procedures, and project schedule and milestones all
used it as their unit of reference.

USES STRUCTURE

The second major structure of interest in the A-7E architecture is the uses structure.
The decomposition structure carries no information about runtime execution of the
software; you might make an educated guess as to how two procedures in different
modules interact at runtime, but this information is not in fact in the module
decomposition. Rather, the uses structure supplies the authoritative picture of how
the software interacts.

The Uses Relation

The concept behind the uses structure is the uses relation. Procedure A is said to
use procedure B if a correctly functioning procedure B must be present in order for
procedure A to meet its requirements. In practice this relation is similar to but not
quite the same as the calls relation. Procedure A usually calls procedure B because it
uses it. However, here are two cases where uses and calls are different:

1. Procedure A is simply required to call procedure B in its specification, but the
future computation performed by A will not depend on what B does. Procedure
B must be present in order for procedure A to work, but it need not be correct.
A calls, but does not use, B. B might be an error handler, for example.

2. Procedure B performs its function without being called by procedure A, but A
uses the results. The results might be an updated data store that B leaves
behind. Or B might be an interrupt handler that A assumes exists and
functions correctly. A uses, but does not call, B.

The uses relation allows rapid identification of functional subsets. If you know that
procedure A needs to be in the subset, you also know that every procedure that A
uses must also be there. The transitive closure of this relation defines the subset. It
therefore pays to engineer this structure, to impose a discipline on it, so that every
subset needn't consist of the entire system. This means specifying an allowed-to-
use structure for programmers. After implementation is complete, the actual uses
can be cataloged.

The unit of the uses (or allowed-to-use) structure is the access procedure. By
dictating what procedures are allowed to use which other procedures (and, by
implication, what procedures are not allowed to be used by which other
procedures), the uses structure is defined.

Although the unit of the uses structure is a procedure, in practice all of the
procedures of a module may share usage restrictions. Hence, the name of a module
might appear in the uses structure; if so, it is shorthand for all of the access
procedures in that module.

The uses (allowed-to-use) structure is conceptually documented with a binary
matrix; each row and column lists every procedure in the system. Thus, if element
(m,n) is true, then procedure m uses (is allowed to use) procedure n. In practice,
this is too cumbersome, and a shorthand was introduced in which rules for whole
modules (as opposed to individual procedures within each module) were adopted.

Table 3.3 summarizes the role of the uses structure in the A-7E software
architecture.

Table 3.3. How the A-7E Uses Structure Achieves Quality Goals

Goal How Achieved

Incrementally build and test
system functions

Create "is-allowed-to-use" structure for programmers
that limits procedures each can use

Design for platform change Restrict number of procedures that use platform
directly

Produce usage guidance of
manageable size

Where appropriate, define uses to be a relationship
among modules

The A-7E Uses Structure

Recall that the uses structure is first documented in a specification showing the
allowed-to-use relation; actual uses are extracted after implementation. The
allowed-to-use specification for the A-7E architecture is a seven-page table of which
Table 3.4 is a short excerpt. The two-character preface refers to the second-level
modules. The names to the right of the period refer to submodule names that we
have mostly omitted from this chapter.

Table 3.4. Excerpt from the A-7E Allowed-to-Use Specification

Using procedures: A
procedure in … … is allowed to use any procedure in …

EC: Extended
Computer Module

None

DI: Device Interface
Module

EC.DATA, EC.PGM, EC.IO, EC.PAR, AT.NUM, AT.STE, SU

Using procedures: A
procedure in … … is allowed to use any procedure in …

ADC: Air Data
Computer

PM.ECM

IMS: Inertial
Measurement Set

PM.ACM

FD: Function Driver
Module

EC.DATA, EC.PAR, EC.PGM, AT.NUM, AT.STE, SU,
DB.SS.MODE, DB.SS.PNL.INPUT, DB.SS.SYSVAL, DB.DI

ADC: Air Data
Computer
Functions

DB.DI.ADC, DI.ADC, FB

IMS: IMS
Functions

DB.DI.IMS, DI.IMS

PNL: Panel
Functions

EC.IO, DB.SS.PNL.CONFIG, SS.PNL. FORMAT, DI.ADC,
DI.IMS, DI.PMDS, DI.PNL

SS: Shared Services
Module

EC.DATA, EC.PGM, EC.PAR, AT.NUM, AT.STE, SU

PNL: Panel I/O
Support

DB.SS.MODE, DB.DI.PNL, DB.DI.SWB, SS.PNL.CONFIG,
DI.PNL

AT: Application Data
Type Module

EC.DATA, EC.PGM

NUM: Numeric
Data Types

None additional

STE: State
Transition Events

EC.PAR

Notice the pattern that emerges:

No procedure in the Extended Computer Module is allowed to use a procedure
in any other module, but all other modules are allowed to use (portions of) it.

Procedures in the Application Data Type Module are allowed to use only
procedures in the Extended Computer Module and nothing else.

Procedures in the Device Interface Module (at least the part shown) are
allowed to use only Extended Computer, Application Data Type, and Physical
Models procedures.

Function Driver and Shared Services procedures can use Data Banker,
Extended Computer, Application Data Type, and Device Interface procedures.

No procedure can use any procedure in the Function Driver Module.

Only a Function Driver procedure can use a Shared Services procedure.

What we have is a picture of a system partitioned into layers. The Extended
Computer Module is the bottommost layer, and the Application Data Type Module is
built right on top of it. The two form a virtual machine in which a procedure at a
particular level is allowed to use a procedure at the same or any lower level.

At the high end of the layering come the Function Driver and Shared Services
modules, which have the freedom to use a wide variety of system facilities to do
their jobs. In the middle layers lie the Physical Models, Filter Behavior, and Data
Banker modules. The Software Utilities reside in parallel with this structure and are
allowed to use anything (except the Function Drivers) necessary to accomplish their
individual tasks.

Layered architectures are a well-known architectural pattern and occur in many of
the case studies in this book. Layering emerges from the uses structure, but is not a
substitute for it as layering does not show what subsets are possible. This is the
point of the uses structure�a particular Function Driver Module will use a particular
set of Shared Services, Data Banker, Physical Models, Device Interface, Application
Data Type, and Extended Computer operations. The used Shared Services in turn
use their own set of lower-level procedures, and so forth. The complete set of
procedures derived in this manner constitutes a subset.

The allowed-to-use structure also provides an image of how the procedures of
modules interact at runtime to accomplish tasks. Each Function Driver procedure
controls the output value associated with one output device, such as the position of
a displayed symbol. In general, a Function Driver procedure retrieves data (via Data
Banker procedures) from data producers, applies rules for computing the correct
value of its assigned output, and sends that value to the device by calling the
appropriate Device Interface procedure. Data may come from one of the following:

Device Interface procedures about the state of the world with which the
software interfaces

Physical Models procedures that compute predictive measures about the
outside world (such as where a bomb will strike the earth if released now,
given the aircraft's current position and velocity)

Shared Services procedures about the current mode, the trustworthiness of
current sensor readings, or what panel operations the pilot has requested

Once the allowed-to-use structure is designed, implementors know what interfaces
they need to be familiar with in order to do their work. After implementation is
complete, the actual uses structure can be documented so that subsets can be
fielded. The ability to deploy a subset of a system is an important part of the
Evolutionary Delivery Life Cycle (see Chapter 7, Designing the Architecture). When
budgets are cut (or overrun) and schedules slip, delivering a subset is often the best
way to put a positive face on a bad situation. It is probably the case that more
subsets would be delivered (instead of nothing at all) if the architectural structure
necessary to achieve them�the uses structure�had been carefully designed.

PROCESS STRUCTURE

The third structure of architectural importance to the A-7E is the process structure.
Even though the underlying aircraft computer is a uniprocessor, the Extended
Computer Module presents a virtual programming interface that features
multiprocessing capabilities. This was to plan for if and when the A-7E computer was
replaced with an actual multi-processor. Hence, the software was implemented as a
set of cooperating sequential processes that synchronize with each other to
cooperatively use shared resources. The set was arranged using offline (pre-
runtime) scheduling to produce a single executable thread that is then loaded onto
the host computer.

A process is a set of programming steps that are repeated in response to a
triggering event or to a timing constraint. It has its own thread of control, and it can
suspend itself by waiting for an event (usually by invoking one of the event-
signaling programs on a module's interface).

Processes are written for two purposes in the A-7E. The first is for the function
drivers to compute the output values of the avionics software. They are required to
run periodically (e.g., to continuously update a symbol position on the heads-up
display) or in response to some triggering event (e.g., when the pilot presses the
weapon release button). It is natural to implement these as processes.
Conceptually, function driver processes are structured as follows:

Periodic process: do every 40 milliseconds

- Call other modules' access procedures to gather the values of all
relevant inputs

- Calculate the resulting output value

- Call the appropriate Device Interface procedure to send the output
value to the outside world

End periodic process

Demand process

- Await triggering event

- Calculate the resulting output outcome

- Call the appropriate Device Interface procedure to trigger the action in
the outside world

End demand process

Processes also occur, although less frequently, as a way to implement certain access
procedures. If the value returned by an access procedure is expensive to compute, a
programmer might meet the timing requirements by continuously computing the
value in the background and simply returning the most recent value immediately
when the access procedure is called. For example,

Process: do every 100 milliseconds

- Gather inputs to compute value

- Compute value

- Store in variable most_recent

End process

Procedure get_value(p1)

- p1 := most_recent.

- return

End procedure

The process structure, then, consists of the set of processes in the software. The
relation it contains is "synchronizes-with," which is based on events that one
process signals and one or more processes await. This relation is used as the
primary input to the scheduling activity, which includes deadlock avoidance.

The offline scheduling techniques used in the A-7E software are beyond the scope of
this treatment, but they avoid the overhead of a runtime scheduler, and they would
not have been possible without the information contained in the process structure.
The process structure also allows an optimization trick: merging two otherwise

unrelated processes, which makes scheduling easier in many circumstances and
avoids the overhead of context switching when one process suspends and another
resumes. This technique is invisible to programmers, occurring automatically during
system construction. Table 3.5 summarizes the role of the process structure in the
A-7E architecture.

Table 3.5. How the A-7E Process Structure Achieves Quality Goals

Goal How Achieved

Map input to output Each process implemented as cycle that samples,
inputs, computes, and presents output

Maintain real-time constraints Identify process through process structure and
then perform offline scheduling

Provide results of time-
consuming calculations
immediately

Perform calculations in background and return
most recent value when queried

The process structure emerged after the other structures had been designed.
Function Driver procedures were implemented as processes. Other processes
computed time-consuming calculations in the background so that a value would
always be available.

Two kinds of information were captured in the process structure. The first
documented what procedures were included in the body of each process. This gave
a picture of the threads that ran through the system and also told the implementors
which procedures must be coded to be re-entrant (i.e., able to carry two or more
threads of control simultaneously) by using protected data stores or mutual
exclusion. It also gave designers early insight into which procedures were going to
be invoked most often, suggesting areas where optimization would pay off.

The second kind of information in the process structure documented which
processes (or sequential segments of process threads) could not execute
simultaneously. The actual regions of mutual exclusion were not finalized until the
processes were completely coded, but the early "excludes" relation among
processes let the scheduling team understand some of the quantitative
requirements of the offline scheduler and start planning on areas where automation
would be most helpful.

Success or Failure?

Bob Glass, in his editorial in the November 1998 issue of The Journal of
Systems and Software [Glass 98], argues that the A-7E was a failure
because the software described in this chapter never flew. I have a great
deal of respect for Bob, both personally and professionally, but in this case
he is mistaken. He is evaluating a research system by commercial
standards.

What do I mean by that? The research world and the commercial world
have different cultures and different standards for success. One
manifestation of this difference is how the two worlds "sell" to their
customers. The commercial world prides itself on delivering, on time and
on budget, what is specified. You would justifiably be upset if you went to
your local automotive dealer to purchase a car and it wasn't delivered on
time, at the cost you contracted for, and performing in the fashion you
expected.

The research world "sells" on vision. That is, a research proposal specifies
how the world will be different if the funder supports the proposed
research. The funder should be upset if, at the end of the research, what
is delivered is something that could be purchased at a local commercial
establishment. Usually the funder is quite satisfied if the research
produces new ideas that have the potential to change the world.

While these characterizations are admittedly idealized, they are by and
large accurate. Commercial customers frequently want innovation.
Research customers almost always want deliverables. Also, both camps
must often promise deliverables that cannot be delivered as a means of
securing sales. Still, the heart of this characterization is true.

The goal of the A-7E project described in this chapter was to demonstrate
to a skeptical world that "object-oriented techniques" (although the
terminology was different then) could be used to construct real-time high-
performance software. This is a research objective. The goal was to
change the world as it was seen then. From a research perspective, the
success of the Software Cost Reduction program (of which the A-7E
development was a portion) can be seen in the number of citations it has
been given in the research literature (in the hundreds). It can also be
seen in the general acceptance of much of what was revolutionary at the
time in terms of encapsulation and information hiding.

So the A-7E was a commercial "failure," but it was a research success. To
go back to Bob's argument, the question is Did the Navy get what they
were paying for? This depends on whether the Navy thought it was paying
for a production system or a research effort. Since the effort was housed
in the Naval Research Laboratory, it seems clear that the A-7E was a
research effort and should be judged by research standards.

� LJB

3.4 Summary

This chapter described the architecture of a highly capable avionics system in terms
of three related but quite different structures. A module decomposition structure
describes design-time relations among its components, which are implementation
units that can be assigned to teams. A uses structure describes runtime usage
relations among its components, which are procedures in modules. From it, a
picture of a layered architecture emerges. The process structure describes the
parallelism of the system and is the basis for assignment for the physical hardware.

It is critical to design each structure correctly because each is the key to a different
quality attribute: ease of change, ease of extracting a subset, and increased
parallelism and performance. It is also critical to document each structure
completely because the information about each is duplicated in no other place.

Even though the structures are orthogonal, they are related, in that modules contain
procedures, which use each other and are strung together in processes. Other
architectural structures could have been specified for this system. One, a data flow
view (a component-and-connector view additional to those introduced in Chapter 2),
would have looked something like the one in Figure 3.5. All data comes from the
external world via the Device Interface modules and works its way through
computation and storage modules to the Function Driver modules, which compute
output values to send back to the devices. The A-7E designers never thought data
flow views were useful�what quality attribute do they help achieve that the others
do not?�but other designers might feel different. The point�and the lesson�about
architectural views is that they should enhance understanding of and intellectual
control over the system and its attributes. If a view meets these conditions, it is
probably one you will want to pay attention to.

Figure 3.5. Coarse-grained data flow view for the A-7E software

We also presented the architecture in terms of the qualities the designers wished to
achieve: changeability and understandability. This leads us to the thesis that we
explore in the next two chapters: Architectures reflect a set of desired qualities.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

3.5 For Further Reading

The A7-E avionics project has been documented in [Parnas 85a]. The data collected
about changes to the system was analyzed and described in [Hager 91] and [Hager
89]. Much of the material about the module structure was taken from the A-7E
module guide, which was written by Kathryn Britton and David Parnas [Britton 81].

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

3.6 Discussion Questions

1:

Suppose that a version of the A-7E software were to be developed for
installation on a flight trainer version of the aircraft. This aircraft would carry no
weapons, but it would teach pilots how to navigate using the onboard avionics.
What structures of the architecture would have to change, and how?

2:

Chapter 7 will discuss using the architecture as a basis for incremental
development: starting small and growing the system but having a working
subset at all times. Propose the smallest subset of the A-7E software that still
does something (correctly, in accordance with requirements) observable by the
pilot. (A good candidate is displaying a value, such as current heading on some
cockpit display.) Which modules do you need and which can you do without?
Now propose three incremental additions to that subset and specify the
development plan (i.e., which modules you need) for those.

3:

Suppose that monitors were added to ensure that correct values were being
stored in the Data Banker and computed by the Function Drivers. If the monitors
detected a disparity between the stored or computed values and what they
computed as the correct values, they would signal an error. Show how each of
the A-7E's architectural structures would change to accommodate this design. If
you add modules, state the information-hiding criteria for placing them in the
module hierarchy.

Part Two: Creating an Architecture
Part One of this book introduced the Architecture Business Cycle (ABC) and
laid the groundwork for the study of software architecture. In particular, it set
out the influences at work when an architect begins building a system, and it
pointed out that requirements for particular quality attributes such as
performance or modifiability often originate from the organization's business
goals. How then does an architect create an architecture? That is the focus of
Part Two. Because the achievement of quality attributes is critical to the
success of a system, we begin by discussing quality and how it is achieved
with the contents of the architect's tool box.

Quality is often in the eye of the beholder (to paraphrase Booth Tarkington).
What this means for the architect is that customers may dislike a design
because their concept of quality differs from the architect's. Quality attribute
scenarios are the means by which quality moves from the eye of the beholder
to a more objective basis. In Chapter 4, we explore different types of quality
that may be appropriate for an architecture. For six important attributes
(availability, modifiability, performance, security, testability, and usability), we
describe how to generate scenarios that can be used to characterize quality
requirements. These scenarios demonstrate what quality means for a
particular system, giving both the architect and the customer a basis for
judging a design.

Knowing the quality requirements, of course, only provides a goal for the
architect. In Chapter 5, we list the tools (tactics and patterns) in the
architect's kit that are used to achieve the quality attributes. High availability,
for example, depends on having some form of redundancy in either data or
code, and this redundancy generates additional considerations for the architect
(such as ensuring synchronization among the replicates).

In Chapter 6, we introduce our second case study�a system designed to
support the air traffic control functions of the Federal Aviation Administration.
This system was designed to achieve ultra-high availability requirements (less
than five minutes downtime per year) and illustrates the tactics enumerated in
Chapter 5.

Quality attribute scenarios and architectural tactics are some of the tools
available for the creation of an architecture. In Chapter 7, we discuss how to
apply these tools in designing an architecture and in building a skeletal
system, and how the architecture is reflected in the organizational structure.

In Chapter 8, we present our third case study, of flight simulators. These
systems were designed to achieve real-time performance and to be readily
modified. We show how these goals were achieved.

Once an architecture has been designed, it must be documented. This is a
matter of documenting first the relevant views and then the material that
extends beyond any particular view. Chapter 9 details how to document an
architecture.

Frequently, the architecture for a system is unavailable�because it was never
documented, it has been lost, or the as-built system differs from the designed
system. Chapter 10 discusses recovering the architecture for an existing
system.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 4. Understanding Quality Attributes
with Felix Bachmann and Mark Klein

Note: Felix Bachmann and Mark Klein are senior members of the technical staff at
the Software Engineering Institute.

"Cheshire-Puss," [Alice] began, rather timidly … "Would you tell me, please,
which way I ought to go from here?" "That depends a good deal on where you
want to go to," said the Cat. "Oh, I don't much care where�" said Alice. Then
it doesn't matter which way you go," said the Cat. "�so long as I get
somewhere," said Alice. "Oh, you're sure to do that," said the Cat, "if only you
walk long enough."

�Lewis Carroll, Alice's Adventures in Wonderland.

As we have seen in the Architecture Business Cycle, business considerations
determine qualities that must be accommodated in a system's architecture. These
qualities are over and above that of functionality, which is the basic statement of the
system's capabilities, services, and behavior. Although functionality and other
qualities are closely related, as you will see, functionality often takes not only the
front seat in the development scheme but the only seat. This is short-sighted,
however. Systems are frequently redesigned not because they are functionally
deficient�the replacements are often functionally identical�but because they are
difficult to maintain, port, or scale, or are too slow, or have been compromised by
network hackers. In Chapter 2, we said that architecture was the first stage in
software creation in which quality requirements could be addressed. It is the
mapping of a system's functionality onto software structures that determines the
architecture's support for qualities. In Chapter 5 we discuss how the qualities are
supported by architectural design decisions, and in Chapter 7 we discuss how the
architect can manage the tradeoffs inherent in any design.

Here our focus is on understanding how to express the qualities we want our
architecture to provide to the system or systems we are building from it. We begin
the discussion of the relationship between quality attributes and software
architecture by looking closely at quality attributes. What does it mean to say that a
system is modifiable or reliable or secure? This chapter characterizes such attributes
and discusses how this characterization can be used to express the quality
requirements for a system.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

4.1 Functionality and Architecture

Functionality and quality attributes are orthogonal. This statement sounds rather
bold at first, but when you think about it you realize that it cannot be otherwise. If
functionality and quality attributes were not orthogonal, the choice of function would
dictate the level of security or performance or availability or usability. Clearly
though, it is possible to independently choose a desired level of each. Now, this is
not to say that any level of any quality attribute is achievable with any function.
Manipulating complex graphical images or sorting an enormous database might be
inherently complex, making lightning-fast performance impossible. But what is
possible is that, for any of these functions your choices as an architect will
determine the relative level of quality. Some architectural choices will lead to higher
performance; some will lead in the other direction. Given this understanding, the
purpose of this chapter is, as with a good architecture, to separate concerns. We will
examine each important quality attribute in turn and learn how to think about it in a
disciplined way.

What is functionality? It is the ability of the system to do the work for which it was
intended. A task requires that many or most of the system's elements work in a
coordinated manner to complete the job, just as framers, electricians, plumbers,
drywall hangers, painters, and finish carpenters all come together to cooperatively
build a house. Therefore, if the elements have not been assigned the correct
responsibilities or have not been endowed with the correct facilities for coordinating
with other elements (so that, for instance, they know when it is time for them to
begin their portion of the task), the system will be unable to offer the required
functionality.

Functionality may be achieved through the use of any of a number of possible
structures. In fact, if functionality were the only requirement, the system could exist
as a single monolithic module with no internal structure at all. Instead, it is
decomposed into modules to make it understandable and to support a variety of
other purposes. In this way, functionality is largely independent of structure.
Software architecture constrains its allocation to structure when other quality
attributes are important. For example, systems are frequently divided so that
several people can cooperatively build them (which is, among other things, a time-
to-market issue, though seldom stated this way). The interest of functionality is how
it interacts with, and constrains, those other qualities.

4.2 Architecture and Quality Attributes

Achieving quality attributes must be considered throughout design, implementation,
and deployment. No quality attribute is entirely dependent on design, nor is it
entirely dependent on implementation or deployment. Satisfactory results are a
matter of getting the big picture (architecture) as well as the details
(implementation) correct. For example:

Usability involves both architectural and nonarchitectural aspects. The
nonarchitectural aspects include making the user interface clear and easy to
use. Should you provide a radio button or a check box? What screen layout is
most intuitive? What typeface is most clear? Although these details matter
tremendously to the end user and influence usability, they are not architectural
because they belong to the details of design. Whether a system provides the
user with the ability to cancel operations, to undo operations, or to re-use data
previously entered is architectural, however. These requirements involve the
cooperation of multiple elements.

Modifiability is determined by how functionality is divided (architectural) and
by coding techniques within a module (nonarchitectural). Thus, a system is
modifiable if changes involve the fewest possible number of distinct elements.
This was the basis of the A-7E module decomposition structure in Chapter 3.
In spite of having the ideal architecture, however, it is always possible to make
a system difficult to modify by writing obscure code.

Performance involves both architectural and nonarchitectural dependencies. It
depends partially on how much communication is necessary among
components (architectural), partially on what functionality has been allocated
to each component (architectural), partially on how shared resources are
allocated (architectural), partially on the choice of algorithms to implement
selected functionality (nonarchitectural), and partially on how these algorithms
are coded (nonarchitectural).

The message of this section is twofold:

1. Architecture is critical to the realization of many qualities of interest in a
system, and these qualities should be designed in and can be evaluated at the
architectural level.

2. Architecture, by itself, is unable to achieve qualities. It provides the foundation
for achieving quality, but this foundation will be to no avail if attention is not
paid to the details.

Within complex systems, quality attributes can never be achieved in isolation. The
achievement of any one will have an effect, sometimes positive and sometimes
negative, on the achievement of others. For example, security and reliability often
exist in a state of mutual tension: The most secure system has the fewest points of
failure�typically a security kernel. The most reliable system has the most points of

failure�typically a set of redundant processes or processors where the failure of any
one will not cause the system to fail. Another example of the tension between
quality attributes is that almost every quality attribute negatively affects
performance. Take portability. The main technique for achieving portable software is
to isolate system dependencies, which introduces overhead into the system's
execution, typically as process or procedure boundaries, and this hurts performance.

Let's begin our tour of quality attributes. We will examine the following three
classes:

1. Qualities of the system. We will focus on availability, modifiability,
performance, security, testability, and usability.

2. Business qualities (such as time to market) that are affected by the
architecture.

3. Qualities, such as conceptual integrity, that are about the architecture itself
although they indirectly affect other qualities, such as modifiability.

4.3 System Quality Attributes

System quality attributes have been of interest to the software community at least
since the 1970s. There are a variety of published taxonomies and definitions, and
many of them have their own research and practitioner communities. From an
architect's perspective, there are three problems with previous discussions of
system quality attributes:

The definitions provided for an attribute are not operational. It is meaningless
to say that a system will be modifiable. Every system is modifiable with
respect to one set of changes and not modifiable with respect to another. The
other attributes are similar.

A focus of discussion is often on which quality a particular aspect belongs to.
Is a system failure an aspect of availability, an aspect of security, or an aspect
of usability? All three attribute communities would claim ownership of a
system failure.

Each attribute community has developed its own vocabulary. The performance
community has "events" arriving at a system, the security community has
"attacks" arriving at a system, the availability community has "failures" of a
system, and the usability community has "user input." All of these may
actually refer to the same occurrence, but are described using different terms.

A solution to the first two of these problems (nonoperational definitions and
overlapping attribute concerns) is to use quality attribute scenarios as a means of
characterizing quality attributes. A solution to the third problem is to provide a brief
discussion of each attribute�concentrating on its underlying concerns�to illustrate
the concepts that are fundamental to that attribute community.

QUALITY ATTRIBUTE SCENARIOS

A quality attribute scenario is a quality-attribute-specific requirement. It consists of
six parts.

Source of stimulus. This is some entity (a human, a computer system, or any
other actuator) that generated the stimulus.

Stimulus. The stimulus is a condition that needs to be considered when it
arrives at a system.

Environment. The stimulus occurs within certain conditions. The system may
be in an overload condition or may be running when the stimulus occurs, or
some other condition may be true.

Artifact. Some artifact is stimulated. This may be the whole system or some
pieces of it.

Response. The response is the activity undertaken after the arrival of the
stimulus.

Response measure. When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

We distinguish general quality attribute scenarios (general scenarios)�those that
are system independent and can, potentially, pertain to any system�from concrete
quality attribute scenarios (concrete scenarios)�those that are specific to the
particular system under consideration. We present attribute characterizations as a
collection of general scenarios; however, to translate the attribute characterization
into requirements for a particular system, the relevant general scenarios need to be
made system specific.

Figure 4.1 shows the parts of a quality attribute scenario.

Figure 4.1. Quality attribute parts

Availability Scenario

A general scenario for the quality attribute of availability, for example, is shown in
Figure 4.2. Its six parts are shown, indicating the range of values they can take.
From this we can derive concrete, system-specific, scenarios. Not every system-
specific scenario has all of the six parts. The parts that are necessary are the result
of the application of the scenario and the types of testing that will be performed to
determine whether the scenario has been achieved.

Figure 4.2. Availability general scenarios

An example availability scenario, derived from the general scenario of Figure 4.2 by
instantiating each of the parts, is "An unanticipated external message is received by
a process during normal operation. The process informs the operator of the receipt
of the message and continues to operate with no downtime." Figure 4.3 shows the
pieces of this derived scenario.

Figure 4.3. Sample availability scenario

The source of the stimulus is important since differing responses may be required
depending on what it is. For example, a request from a trusted source may be
treated differently from a request from an untrusted source in a security scenario.
The environment may also affect the response, in that an event arriving at a system
may be treated differently if the system is already overloaded. The artifact that is
stimulated is less important as a requirement. It is almost always the system, and
we explicitly call it out for two reasons.

First, many requirements make assumptions about the internals of the system (e.g.,
"a Web server within the system fails"). Second, when we utilize scenarios within an
evaluation or design method, we refine the scenario artifact to be quite explicit
about the portion of the system being stimulated. Finally, being explicit about the

value of the response is important so that quality attribute requirements are made
explicit. Thus, we include the response measure as a portion of the scenario.

Modifiability Scenario

A sample modifiability scenario is "A developer wishes to change the user interface
to make a screen's background color blue. This change will be made to the code at
design time. It will take less than three hours to make and test the change and no
side effect changes will occur in the behavior." Figure 4.4 illustrates this sample
scenario (omitting a few minor details for brevity).

Figure 4.4. Sample modifiability scenario

A collection of concrete scenarios can be used as the quality attribute requirements
for a system. Each scenario is concrete enough to be meaningful to the architect,
and the details of the response are meaningful enough so that it is possible to test
whether the system has achieved the response. When eliciting requirements, we
typically organize our discussion of general scenarios by quality attributes; if the
same scenario is generated by two different attributes, one can be eliminated.

For each attribute we present a table that gives possible system-independent values
for each of the six parts of a quality scenario. A general quality scenario is
generated by choosing one value for each element; a concrete scenario is generated
as part of the requirements elicitation by choosing one or more entries from each
column of the table and then making the result readable. For example, the scenario
shown in Figure 4.4 is generated from the modifiability scenario given in Table 4.2
(on page 83), but the individual parts were edited slightly to make them read more
smoothly as a scenario.

Concrete scenarios play the same role in the specification of quality attribute
requirements that use cases play in the specification of functional requirements.

QUALITY ATTRIBUTE SCENARIO GENERATION

Our concern in this chapter is helping the architect generate meaningful quality
attribute requirements for a system. In theory this is done in a project's
requirements elicitation, but in practice this is seldom rigorously enforced. As we
said in Chapter 1, a system's quality attribute requirements are seldom elicited and
recorded in a disciplined way. We remedy this situation by generating concrete
quality attribute scenarios. To do this, we use the quality-attribute-specific tables to
create general scenarios and from these derive system-specific scenarios. Typically,
not all of the possible general scenarios are created. The tables serve as a checklist
to ensure that all possibilities have been considered rather than as an explicit
generation mechanism. We are unconcerned about generating scenarios that do not
fit a narrow definition of an attribute�if two attributes allow the generation of the
same quality attribute requirement, the redundancy is easily corrected. However, if
an important quality attribute requirement is omitted, the consequences may be
more serious.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

4.4 Quality Attribute Scenarios in Practice

General scenarios provide a framework for generating a large number of generic,
system-independent, quality-attribute-specific scenarios. Each is potentially but not
necessarily relevant to the system you are concerned with. To make the general
scenarios useful for a particular system, you must make them system specific.

Making a general scenario system specific means translating it into concrete terms
for the particular system. Thus, a general scenario is "A request arrives for a change
in functionality, and the change must be made at a particular time within the
development process within a specified period." A system-specific version might be
"A request arrives to add support for a new browser to a Web-based system, and
the change must be made within two weeks." Furthermore, a single general
scenario may have many system-specific versions. The same system that has to
support a new browser may also have to support a new media type.

We now discuss the six most common and important system quality attributes, with
the twin goals of identifying the concepts used by the attribute community and
providing a way to generate general scenarios for that attribute.

AVAILABILITY

Availability is concerned with system failure and its associated consequences. A
system failure occurs when the system no longer delivers a service consistent with
its specification. Such a failure is observable by the system's users�either humans
or other systems. An example of an availability general scenario appeared in Figure
4.3.

Among the areas of concern are how system failure is detected, how frequently
system failure may occur, what happens when a failure occurs, how long a system is
allowed to be out of operation, when failures may occur safely, how failures can be
prevented, and what kinds of notifications are required when a failure occurs.

We need to differentiate between failures and faults. A fault may become a failure if
not corrected or masked. That is, a failure is observable by the system's user and a
fault is not. When a fault does become observable, it becomes a failure. For
example, a fault can be choosing the wrong algorithm for a computation, resulting
in a miscalculation that causes the system to fail.

Once a system fails, an important related concept becomes the time it takes to
repair it. Since a system failure is observable by users, the time to repair is the time
until the failure is no longer observable. This may be a brief delay in the response
time or it may be the time it takes someone to fly to a remote location in the
mountains of Peru to repair a piece of mining machinery (this example was given by
a person who was responsible for repairing the software in a mining machine
engine.).

The distinction between faults and failures allows discussion of automatic repair
strategies. That is, if code containing a fault is executed but the system is able to
recover from the fault without it being observable, there is no failure.

The availability of a system is the probability that it will be operational when it is
needed. This is typically defined as

From this come terms like 99.9% availability, or a 0.1% probability that the system
will not be operational when needed.

Scheduled downtimes (i.e., out of service) are not usually considered when
calculating availability, since the system is "not needed" by definition. This leads to
situations where the system is down and users are waiting for it, but the downtime
is scheduled and so is not counted against any availability requirements.

Availability General Scenarios

From these considerations we can see the portions of an availability scenario, shown
in Figure 4.2.

Source of stimulus. We differentiate between internal and external indications
of faults or failure since the desired system response may be different. In our
example, the unexpected message arrives from outside the system.

Stimulus. A fault of one of the following classes occurs.

- omission. A component fails to respond to an input.

- crash. The component repeatedly suffers omission faults.

- timing. A component responds but the response is early or late.

- response. A component responds with an incorrect value.

- In Figure 4.3, the stimulus is that an unanticipated message arrives.
This is an example of a timing fault. The component that generated the
message did so at a different time than expected.

Artifact. This specifies the resource that is required to be highly available, such
as a processor, communication channel, process, or storage.

Environment. The state of the system when the fault or failure occurs may
also affect the desired system response. For example, if the system has

already seen some faults and is operating in other than normal mode, it may
be desirable to shut it down totally. However, if this is the first fault observed,
some degradation of response time or function may be preferred. In our
example, the system is operating normally.

Response. There are a number of possible reactions to a system failure. These
include logging the failure, notifying selected users or other systems, switching
to a degraded mode with either less capacity or less function, shutting down
external systems, or becoming unavailable during repair. In our example, the
system should notify the operator of the unexpected message and continue to
operate normally.

Response measure. The response measure can specify an availability
percentage, or it can specify a time to repair, times during which the system
must be available, or the duration for which the system must be available. In
Figure 4.3, there is no downtime as a result of the unexpected message.

Table 4.1 presents the possible values for each portion of an availability scenario.

Table 4.1. Availability General Scenario Generation

Portion of
Scenario Possible Values

Source Internal to the system; external to the system

Stimulus Fault: omission, crash, timing, response

Artifact System's processors, communication channels, persistent storage,
processes

Environment Normal operation;

degraded mode (i.e., fewer features, a fall back solution)

Portion of
Scenario Possible Values

Response System should detect event and do one or more of the following:

record it

notify appropriate parties, including the user and other systems

disable sources of events that cause fault or failure according to
defined rules

be unavailable for a prespecified interval, where interval
depends on criticality of system

continue to operate in normal or degraded mode

Response
Measure

Time interval when the system must be available

Availability time

Time interval in which system can be in degraded mode

Repair time

MODIFIABILITY

Modifiability is about the cost of change. It brings up two concerns.

1. What can change (the artifact)? A change can occur to any aspect of a system,
most commonly the functions that the system computes, the platform the
system exists on (the hardware, operating system, middleware, etc.), the
environment within which the system operates (the systems with which it
must interoperate, the protocols it uses to communicate with the rest of the
world, etc.), the qualities the system exhibits (its performance, its reliability,
and even its future modifications), and its capacity (number of users
supported, number of simultaneous operations, etc.). Some portions of the
system, such as the user interface or the platform, are sufficiently
distinguished and subject to change that we consider them separately. The
category of platform changes is also called portability. Those changes may be
to add, delete, or modify any one of these aspects.

2. When is the change made and who makes it (the environment)? Most
commonly in the past, a change was made to source code. That is, a
developer had to make the change, which was tested and then deployed in a
new release. Now, however, the question of when a change is made is
intertwined with the question of who makes it. An end user changing the

screen saver is clearly making a change to one of the aspects of the system.
Equally clear, it is not in the same category as changing the system so that it
can be used over the Web rather than on a single machine. Changes can be
made to the implementation (by modifying the source code), during compile
(using compile-time switches), during build (by choice of libraries), during
configuration setup (by a range of techniques, including parameter setting) or
during execution (by parameter setting). A change can also be made by a
developer, an end user, or a system administrator.

Once a change has been specified, the new implementation must be designed,
implemented, tested, and deployed. All of these actions take time and money, both
of which can be measured.

Modifiability General Scenarios

From these considerations we can see the portions of the modifiability general
scenarios. Figure 4.4 gives an example: "A developer wishes to change the user
interface. This change will be made to the code at design time, it will take less than
three hours to make and test the change, and no side-effect changes will occur in
the behavior."

Source of stimulus. This portion specifies who makes the changes�the
developer, a system administrator, or an end user. Clearly, there must be
machinery in place to allow the system administrator or end user to modify a
system, but this is a common occurrence. In Figure 4.4, the modification is to
be made by the developer.

Stimulus. This portion specifies the changes to be made. A change can be the
addition of a function, the modification of an existing function, or the deletion
of a function. It can also be made to the qualities of the system�making it
more responsive, increasing its availability, and so forth. The capacity of the
system may also change. Increasing the number of simultaneous users is a
frequent requirement. In our example, the stimulus is a request to make a
modification, which can be to the function, quality, or capacity.

Variation is a concept associated with software product lines (see Chapter 14).
When considering variation, a factor is the number of times a given variation
must be specified. One that must be made frequently will impose a more
stringent requirement on the response measures than one that is made only
sporadically.

Artifact. This portion specifies what is to be changed�the functionality of a
system, its platform, its user interface, its environment, or another system
with which it interoperates. In Figure 4.4, the modification is to the user
interface.

Environment. This portion specifies when the change can be made�design
time, compile time, build time, initiation time, or runtime. In our example, the

modification is to occur at design time.

Response. Whoever makes the change must understand how to make it, and
then make it, test it and deploy it. In our example, the modification is made
with no side effects.

Response measure. All of the possible responses take time and cost money,
and so time and cost are the most desirable measures. Time is not always
possible to predict, however, and so less ideal measures are frequently used,
such as the extent of the change (number of modules affected). In our
example, the time to perform the modification should be less than three hours.

Table 4.2 presents the possible values for each portion of a modifiability scenario.

Table 4.2. Modifiability General Scenario Generation

Portion of
Scenario Possible Values

Source End user, developer, system administrator

Stimulus Wishes to add/delete/modify/vary functionality, quality attribute,
capacity

Artifact System user interface, platform, environment; system that
interoperates with target system

Environment At runtime, compile time, build time, design time

Response Locates places in architecture to be modified; makes modification
without affecting other functionality; tests modification; deploys
modification

Response
Measure

Cost in terms of number of elements affected, effort, money; extent to
which this affects other functions or quality attributes

PERFORMANCE

Performance is about timing. Events (interrupts, messages, requests from users, or
the passage of time) occur, and the system must respond to them. There are a

variety of characterizations of event arrival and the response but basically
performance is concerned with how long it takes the system to respond when an
event occurs.

One of the things that make performance complicated is the number of event
sources and arrival patterns. Events can arrive from user requests, from other
systems, or from within the system. A Web-based financial services system gets
events from its users (possibly numbering in the tens or hundreds of thousands). An
engine control system gets its requests from the passage of time and must control
both the firing of the ignition when a cylinder is in the correct position and the
mixture of the fuel to maximize power and minimize pollution.

For the Web-based financial system, the response might be the number of
transactions that can be processed in a minute. For the engine control system, the
response might be the variation in the firing time. In each case, the pattern of
events arriving and the pattern of responses can be characterized, and this
characterization forms the language with which to construct general performance
scenarios.

A performance scenario begins with a request for some service arriving at the
system. Satisfying the request requires resources to be consumed. While this is
happening the system may be simultaneously servicing other requests.

An arrival pattern for events may be characterized as either periodic or stochastic.
For example, a periodic event may arrive every 10 milliseconds. Periodic event
arrival is most often seen in real-time systems. Stochastic arrival means that events
arrive according to some probabilistic distribution. Events can also arrive
sporadically, that is, according to a pattern not capturable by either periodic or
stochastic characterizations.

Multiple users or other loading factors can be modeled by varying the arrival pattern
for events. In other words, from the point of view of system performance, it does
not matter whether one user submits 20 requests in a period of time or whether two
users each submit 10. What matters is the arrival pattern at the server and
dependencies within the requests.

The response of the system to a stimulus can be characterized by latency (the time
between the arrival of the stimulus and the system's response to it), deadlines in
processing (in the engine controller, for example, the fuel should ignite when the
cylinder is in a particular position, thus introducing a processing deadline), the
throughput of the system (e.g., the number of transactions the system can process
in a second), the jitter of the response (the variation in latency), the number of
events not processed because the system was too busy to respond, and the data
that was lost because the system was too busy.

Notice that this formulation does not consider whether the system is networked or
standalone. Nor does it (yet) consider the configuration of the system or the
consumption of resources. These issues are dependent on architectural solutions,
which we will discuss in Chapter 5.

Performance General Scenarios

From these considerations we can see the portions of the performance general
scenario, an example of which is shown in Figure 4.5: "Users initiate 1,000
transactions per minute stochastically under normal operations, and these
transactions are processed with an average latency of two seconds."

Figure 4.5. Sample performance scenario

Source of stimulus. The stimuli arrive either from external (possibly multiple)
or internal sources. In our example, the source of the stimulus is a collection
of users.

Stimulus. The stimuli are the event arrivals. The arrival pattern can be
characterized as periodic, stochastic, or sporadic. In our example, the stimulus
is the stochastic initiation of 1,000 transactions per minute.

Artifact. The artifact is always the system's services, as it is in our example.

Environment. The system can be in various operational modes, such as
normal, emergency, or overload. In our example, the system is in normal
mode.

Response. The system must process the arriving events. This may cause a
change in the system environment (e.g., from normal to overload mode). In
our example, the transactions are processed.

Response measure. The response measures are the time it takes to process
the arriving events (latency or a deadline by which the event must be
processed), the variation in this time (jitter), the number of events that can be
processed within a particular time interval (throughput), or a characterization
of the events that cannot be processed (miss rate, data loss). In our example,
the transactions should be processed with an average latency of two seconds.

Table 4.3 gives elements of the general scenarios that characterize performance.

Table 4.3. Performance General Scenario Generation

Portion of
Scenario Possible Values

Source One of a number of independent sources, possibly from within
system

Stimulus Periodic events arrive; sporadic events arrive; stochastic events
arrive

Artifact System

Environment Normal mode; overload mode

Response Processes stimuli; changes level of service

Response Measure Latency, deadline, throughput, jitter, miss rate, data loss

For most of the history of software engineering, performance has been the driving
factor in system architecture. As such, it has frequently compromised the
achievement of all other qualities. As the price/performance ratio of hardware
plummets and the cost of developing software rises, other qualities have emerged
as important competitors to performance.

SECURITY

Security is a measure of the system's ability to resist unauthorized usage while still
providing its services to legitimate users. An attempt to breach security is called an
attack[1] and can take a number of forms. It may be an unauthorized attempt to
access data or services or to modify data, or it may be intended to deny services to
legitimate users.

[1] Some security experts use "threat" interchangeably with "attack."

Attacks, often occasions for wide media coverage, may range from theft of money
by electronic transfer to modification of sensitive data, from theft of credit card
numbers to destruction of files on computer systems, or to denial-of-service attacks

carried out by worms or viruses. Still, the elements of a security general scenario
are the same as the elements of our other general scenarios�a stimulus and its
source, an environment, the target under attack, the desired response of the
system, and the measure of this response.

Security can be characterized as a system providing nonrepudiation, confidentiality,
integrity, assurance, availability, and auditing. For each term, we provide a definition
and an example.

1. Nonrepudiation is the property that a transaction (access to or modification of
data or services) cannot be denied by any of the parties to it. This means you
cannot deny that you ordered that item over the Internet if, in fact, you did.

2. Confidentiality is the property that data or services are protected from
unauthorized access. This means that a hacker cannot access your income tax
returns on a government computer.

3. Integrity is the property that data or services are being delivered as intended.
This means that your grade has not been changed since your instructor
assigned it.

4. Assurance is the property that the parties to a transaction are who they
purport to be. This means that, when a customer sends a credit card number
to an Internet merchant, the merchant is who the customer thinks they are.

5. Availability is the property that the system will be available for legitimate use.
This means that a denial-of-service attack won't prevent your ordering this
book.

6. Auditing is the property that the system tracks activities within it at levels
sufficient to reconstruct them. This means that, if you transfer money out of
one account to another account, in Switzerland, the system will maintain a
record of that transfer.

Each of these security categories gives rise to a collection of general scenarios.

Security General Scenarios

The portions of a security general scenario are given below. Figure 4.6 presents an
example. A correctly identified individual tries to modify system data from an
external site; system maintains an audit trail and the correct data is restored within
one day.

Source of stimulus. The source of the attack may be either a human or
another system. It may have been previously identified (either correctly or
incorrectly) or may be currently unknown. If the source of the attack is highly
motivated (say politically motivated), then defensive measures such as "We
know who you are and will prosecute you" are not likely to be effective; in
such cases the motivation of the user may be important. If the source has
access to vast resources (such as a government), then defensive measures are

very difficult. The attack itself is unauthorized access, modification, or denial
of service.

The difficulty with security is allowing access to legitimate users and
determining legitimacy. If the only goal were to prevent access to a system,
disallowing all access would be an effective defensive measure.

Figure 4.6. Sample security scenario

Stimulus. The stimulus is an attack or an attempt to break security. We
characterize this as an unauthorized person or system trying to display
information, change and/or delete information, access services of the system,
or reduce availability of system services. In Figure 4.6, the stimulus is an
attempt to modify data.

Artifact. The target of the attack can be either the services of the system or
the data within it. In our example, the target is data within the system.

Environment. The attack can come when the system is either online or offline,
either connected to or disconnected from a network, either behind a firewall or
open to the network.

Response. Using services without authorization or preventing legitimate users
from using services is a different goal from seeing sensitive data or modifying
it. Thus, the system must authorize legitimate users and grant them access to
data and services, at the same time rejecting unauthorized users, denying
them access, and reporting unauthorized access. Not only does the system
need to provide access to legitimate users, but it needs to support the
granting or withdrawing of access. One technique to prevent attacks is to
cause fear of punishment by maintaining an audit trail of modifications or

attempted accesses. An audit trail is also useful in correcting from a successful
attack. In Figure 4.6, an audit trail is maintained.

Response measure. Measures of a system's response include the difficulty of
mounting various attacks and the difficulty of recovering from and surviving
attacks. In our example, the audit trail allows the accounts from which money
was embezzled to be restored to their original state. Of course, the embezzler
still has the money, and he must be tracked down and the money regained,
but this is outside of the realm of the computer system.

Table 4.4 shows the security general scenario generation table.

Table 4.4. Security General Scenario Generation

Portion of
Scenario Possible Values

Source Individual or system that is

correctly identified, identified incorrectly, of unknown identity

who is

internal/external, authorized/not authorized

with access to

limited resources, vast resources

Stimulus Tries to

display data, change/delete data, access system services, reduce
availability to system services

Artifact System services; data within system

Environment Either

online or offline, connected or disconnected, firewalled or open

Portion of
Scenario Possible Values

Response Authenticates user; hides identity of the user; blocks access to data
and/or services; allows access to data and/or services; grants or
withdraws permission to access data and/or services; records
access/modifications or attempts to access/modify data/services by
identity; stores data in an unreadable format; recognizes an
unexplainable high demand for services, and informs a user or another
system, and restricts availability of services

Response
Measure

Time/effort/resources required to circumvent security measures with
probability of success; probability of detecting attack; probability of
identifying individual responsible for attack or access/modification of
data and/or services; percentage of services still available under
denial-of-services attack; restore data/services; extent to which
data/services damaged and/or legitimate access denied

TESTABILITY

Software testability refers to the ease with which software can be made to
demonstrate its faults through (typically execution-based) testing. At least 40% of
the cost of developing well-engineered systems is taken up by testing. If the
software architect can reduce this cost, the payoff is large.

In particular, testability refers to the probability, assuming that the software has at
least one fault, that it will fail on its next test execution. Of course, calculating this
probability is not easy and, when we get to response measures, other measures will
be used.

For a system to be properly testable, it must be possible to control each
component's internal state and inputs and then to observe its outputs. Frequently
this is done through use of a test harness, specialized software designed to exercise
the software under test. This may be as simple as a playback capability for data
recorded across various interfaces or as complicated as a testing chamber for an
engine.

Testing is done by various developers, testers, verifiers, or users and is the last step
of various parts of the software life cycle. Portions of the code, the design, or the
complete system may be tested. The response measures for testability deal with
how effective the tests are in discovering faults and how long it takes to perform the
tests to some desired level of coverage.

Testability General Scenarios

Figure 4.7 is an example of a testability scenario concerning the performance of a
unit test: A unit tester performs a unit test on a completed system component that
provides an interface for controlling its behavior and observing its output; 85% path
coverage is achieved within three hours.

Figure 4.7. Sample testability scenario

Source of stimulus. The testing is performed by unit testers, integration
testers, system testers, or the client. A test of the design may be performed
by other developers or by an external group. In our example, the testing is
performed by a tester.

Stimulus. The stimulus for the testing is that a milestone in the development
process is met. This might be the completion of an analysis or design
increment, the completion of a coding increment such as a class, the
completed integration of a subsystem, or the completion of the whole system.
In our example, the testing is triggered by the completion of a unit of code.

Artifact. A design, a piece of code, or the whole system is the artifact being
tested. In our example, a unit of code is to be tested.

Environment. The test can happen at design time, at development time, at
compile time, or at deployment time. In Figure 4.7, the test occurs during
development.

Response. Since testability is related to observability and controllability, the
desired response is that the system can be controlled to perform the desired
tests and that the response to each test can be observed. In our example, the
unit can be controlled and its responses captured.

Response measure. Response measures are the percentage of statements that
have been executed in some test, the length of the longest test chain (a
measure of the difficulty of performing the tests), and estimates of the

probability of finding additional faults. In Figure 4.7, the measurement is
percentage coverage of executable statements.

Table 4.5 gives the testability general scenario generation table.

Table 4.5. Testability General Scenario Generation

Portion of
Scenario Possible Values

Source Unit developer

Increment integrator

System verifier

Client acceptance tester

System user

Stimulus Analysis, architecture, design, class, subsystem integration
completed; system delivered

Artifact Piece of design, piece of code, complete application

Environment At design time, at development time, at compile time, at
deployment time

Response Provides access to state values; provides computed values;
prepares test environment

Response
Measure

Percent executable statements executed

Probability of failure if fault exists

Time to perform tests

Length of longest dependency chain in a test

Length of time to prepare test environment

USABILITY

Usability is concerned with how easy it is for the user to accomplish a desired task
and the kind of user support the system provides. It can be broken down into the
following areas:

Learning system features. If the user is unfamiliar with a particular system or
a particular aspect of it, what can the system do to make the task of learning
easier?

Using a system efficiently. What can the system do to make the user more
efficient in its operation?

Minimizing the impact of errors. What can the system do so that a user error
has minimal impact?

Adapting the system to user needs. How can the user (or the system itself)
adapt to make the user's task easier?

Increasing confidence and satisfaction. What does the system do to give the
user confidence that the correct action is being taken?

In the last five years, our understanding of the relation between usability and
software architecture has deepened (see the sidebar Usability Mea Culpa). The
normal development process detects usability problems through building prototypes
and user testing. The later a problem is discovered and the deeper into the
architecture its repair must be made, the more the repair is threatened by time and
budget pressures. In our scenarios we focus on aspects of usability that have a
major impact on the architecture. Consequently, these scenarios must be correct
prior to the architectural design so that they will not be discovered during user
testing or prototyping.

Usability General Scenarios

Figure 4.8 gives an example of a usability scenario: A user, wanting to minimize the
impact of an error, wishes to cancel a system operation at runtime; cancellation
takes place in less than one second. The portions of the usability general scenarios
are:

Source of stimulus. The end user is always the source of the stimulus.

Stimulus. The stimulus is that the end user wishes to use a system efficiently,
learn to use the system, minimize the impact of errors, adapt the system, or
feel comfortable with the system. In our example, the user wishes to cancel an
operation, which is an example of minimizing the impact of errors.

Artifact. The artifact is always the system.

Usability Mea Culpa (or "That's Not
Architectural")
About five years ago a number of respected software engineering
researchers publicly made the following bold statement:

Making a system's user interface clear and easy to use is
primarily a matter of getting the details of a user's interaction
correct … but these details are not architectural.

Sad to say, these researchers were Bass, Clements, and Kazman,
and the book was the first edition of Software Architecture in
Practice. In the intervening five years we have learned quite a lot
about many quality attributes, and none more so than usability.

While we have always claimed that system quality stems primarily
from architectural quality, in the first edition of this book we were, at
times, on shaky ground in trying to substantiate this claim. Still, the
intervening years have done nothing to lessen the basic truth of the
strong relationship between architectural quality and system quality.
In fact, all of the evidence points squarely in its favor, and usability
has proven to be no exception. Many usability issues are
architectural. In fact, the usability features that are the most difficult
to achieve (and, in particular, the most difficult to add on after the
system has been built) turn out to be precisely those that are
architectural.

If you want to support the ability of a user to cancel an operation in
progress, returning to the precise system state in place before the
operation was started, you need to plan for this capability in the
architecture. Likewise, if you want to support the ability of a user to
undo a previous action and if you want to give the user feedback as
to an operation's progress. There are many other examples.

The point here is that it is easy to assume that a quality attribute, or
significant portions of a quality attribute, are not architectural. Not
everything is architectural it's true, but frequently our assumptions of
what is and what is not are based on a superficial analysis of the
problem. Probe more deeply, and significant architectural
considerations pop up everywhere. And woe to the architect (or
architecture writer!) who ignores them.

� RK

Environment. The user actions with which usability is concerned always occur
at runtime or at system configuration time. Any action that occurs before then
is performed by developers and, although a user may also be the developer,

we distinguish between these roles even if performed by the same person. In
Figure 4.8, the cancellation occurs at runtime.

Response. The system should either provide the user with the features needed
or anticipate the user's needs. In our example, the cancellation occurs as the
user wishes and the system is restored to its prior state.

Response measure. The response is measured by task time, number of errors,
number of problems solved, user satisfaction, gain of user knowledge, ratio of
successful operations to total operations, or amount of time/data lost when an
error occurs. In Figure 4.8, the cancellation should occur in less than one
second.

Figure 4.8. Sample usability scenario

The usability general scenario generation table is given in Table 4.6.

Table 4.6. Usability General Scenario Generation

Portion of
Scenario Possible Values

Source End user

Stimulus Wants to

learn system features; use system efficiently; minimize impact of
errors; adapt system; feel comfortable

Portion of
Scenario Possible Values

Artifact System

Environment At runtime or configure time

Response System provides one or more of the following responses:

to support "learn system features"

help system is sensitive to context; interface is familiar to
user; interface is usable in an unfamiliar context

to support "use system efficiently":

aggregation of data and/or commands; re-use of already
entered data and/or commands; support for efficient
navigation within a screen; distinct views with consistent
operations; comprehensive searching; multiple simultaneous
activities

to "minimize impact of errors":

undo, cancel, recover from system failure, recognize and
correct user error, retrieve forgotten password, verify system
resources

to "adapt system":

customizability; internationalization

to "feel comfortable":

display system state; work at the user's pace

Response
Measure

Task time, number of errors, number of problems solved, user
satisfaction, gain of user knowledge, ratio of successful operations to
total operations, amount of time/data lost

COMMUNICATING CONCEPTS USING GENERAL SCENARIOS

One of the uses of general scenarios is to enable stakeholders to communicate. We
have already pointed out that each attribute community has its own vocabulary to
describe its basic concepts and that different terms can represent the same
occurrence. This may lead to miscommunication. During a discussion of

performance, for example, a stakeholder representing users may not realize that the
latency of the response to events has anything to do with users. Facilitating this
kind of understanding aids discussions of architectural decisions, particularly about
tradeoffs.

Table 4.7. Quality Attribute Stimuli

Quality
Attribute Stimulus

Availability Unexpected event, nonoccurrence of expected event

Modifiability Request to add/delete/change/vary functionality, platform, quality
attribute, or capacity

Performance Periodic, stochastic, or sporadic

Security Tries to

display, modify, change/delete information, access, or reduce
availability to system services

Testability Completion of phase of system development

Usability Wants to

learn system features, use a system efficiently, minimize the
impact of errors, adapt the system, feel comfortable

Table 4.7 gives the stimuli possible for each of the attributes and shows a number of
different concepts. Some stimuli occur during runtime and others occur before. The
problem for the architect is to understand which of these stimuli represent the same
occurrence, which are aggregates of other stimuli, and which are independent. Once
the relations are clear, the architect can communicate them to the various
stakeholders using language that each comprehends. We cannot give the relations
among stimuli in a general way because they depend partially on environment. A
performance event may be atomic or may be an aggregate of other lower-level
occurrences; a failure may be a single performance event or an aggregate. For
example, it may occur with an exchange of severalmessages between a client and a
server (culminating in an unexpected message), each of which is an atomic event
from a performance perspective.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

4.5 Other System Quality Attributes

We have discussed the quality attributes in a general fashion. A number of other
attributes can be found in the attribute taxonomies in the research literature and in
standard software engineering textbooks, and we have captured many of these in
our scenarios. For example, scalability is often an important attribute, but in our
discussion here scalability is captured by modifying system capacity�the number of
users supported, for example. Portability is captured as a platform modification.

If some quality attribute�say interoperability�is important to your organization, it
is reasonable to create your own general scenario for it. This simply involves filling
out the six parts of the scenario generation framework: source, stimulus,
environment, artifact, response, and response measure. For interoperability, a
stimulus might be a request to interoperate with another system, a response might
be a new interface or set of interfaces for the interoperation, and a response
measure might be the difficulty in terms of time, the number of interfaces to be
modified, and so forth.

4.6 Business Qualities

In addition to the qualities that apply directly to a system, a number of business
quality goals frequently shape a system's architecture. These goals center on cost,
schedule, market, and marketing considerations. Each suffers from the same
ambiguity that system qualities have, and they need to be made specific with
scenarios in order to make them suitable for influencing the design process and to
be made testable. Here, we present them as generalities, however, and leave the
generation of scenarios as one of our discussion questions.

Time to market. If there is competitive pressure or a short window of
opportunity for a system or product, development time becomes important.
This in turn leads to pressure to buy or otherwise re-use existing elements.
Time to market is often reduced by using prebuilt elements such as
commercial off-the-shelf (COTS) products or elements re-used from previous
projects. The ability to insert or deploy a subset of the system depends on the
decomposition of the system into elements.

Cost and benefit. The development effort will naturally have a budget that
must not be exceeded. Different architectures will yield different development
costs. For instance, an architecture that relies on technology (or expertise with
a technology) not resident in the developing organization will be more
expensive to realize than one that takes advantage of assets already inhouse.
An architecture that is highly flexible will typically be more costly to build than
one that is rigid (although it will be less costly to maintain and modify).

Projected lifetime of the system. If the system is intended to have a long
lifetime, modifiability, scalability, and portability become important. But
building in the additional infrastructure (such as a layer to support portability)
will usually compromise time to market. On the other hand, a modifiable,
extensible product is more likely to survive longer in the marketplace,
extending its lifetime.

Targeted market. For general-purpose (mass-market) software, the platforms
on which a system runs as well as its feature set will determine the size of the
potential market. Thus, portability and functionality are key to market share.
Other qualities, such as performance, reliability, and usability also play a role.
To attack a large market with a collection of related products, a product line
approach should be considered in which a core of the system is common
(frequently including provisions for portability) and around which layers of
software of increasing specificity are constructed. Such an approach will be
treated in Chapter 14, which discusses software product lines.

Rollout schedule. If a product is to be introduced as base functionality with
many features released later, the flexibility and customizability of the
architecture are important. Particularly, the system must be constructed with
ease of expansion and contraction in mind.

Integration with legacy systems. If the new system has to integrate with
existing systems, care must be taken to define appropriate integration
mechanisms. This property is clearly of marketing importance but has
substantial architectural implications. For example, the ability to integrate a
legacy system with an HTTP server to make it accessible from the Web has
been a marketing goal in many corporations over the past decade. The
architectural constraints implied by this integration must be analyzed.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

4.7 Architecture Qualities

In addition to qualities of the system and qualities related to the business
environment in which the system is being developed, there are also qualities directly
related to the architecture itself that are important to achieve. We discuss three,
again leaving the generation of specific scenarios to our discussion questions.

Conceptual integrity is the underlying theme or vision that unifies the design of the
system at all levels. The architecture should do similar things in similar ways. Fred
Brooks writes emphatically that a system's conceptual integrity is of overriding
importance, and that systems without it fail:

I will contend that conceptual integrity is the most important consideration in
system design. It is better to have a system omit certain anomalous features
and improvements, but to reflect one set of design ideas, than to have one
that contains many good but independent and uncoordinated ideas. [Brooks
75]

Brooks was writing primarily about the way systems appear to their users, but the
point is equally valid for the architectural layout. What Brooks's idea of conceptual
integrity does for the user, architectural integrity does for the other stakeholders,
particularly developers and maintainers.

In Part Three, you will see a recommendation for architecture evaluation that
requires the project being reviewed to make the architect available. If no one is
identified with that role, it is a sign that conceptual integrity may be lacking.

Correctness and completeness are essential for the architecture to allow for all of
the system's requirements and runtime resource constraints to be met. A formal
evaluation, as prescribed in Part Three, is once again the architect's best hope for a
correct and complete architecture.

Buildability allows the system to be completed by the available team in a timely
manner and to be open to certain changes as development progresses. It refers to
the ease of constructing a desired system and is achieved architecturally by paying
careful attention to the decomposition into modules, judiciously assigning of those
modules to development teams, and limiting the dependencies between the
modules (and hence the teams). The goal is to maximize the parallelism that can
occur in development.

Because buildability is usually measured in terms of cost and time, there is a
relationship between it and various cost models. However, buildability is more
complex than what is usually covered in cost models. A system is created from
certain materials, and these materials are created using a variety of tools. For
example, a user interface may be constructed from items in a user interface toolbox
(called widgets or controls), and these widgets may be manipulated by a user
interface builder. The widgets are the materials and the builder is the tool, so one
element of buildability is the match between the materials that are to be used in the
system and the tools that are available to manipulate them. Another aspect of

buildability is knowledge about the problem to be solved. The rationale behind this
aspect is to speed time to market and not force potential suppliers to invest in the
understanding and engineering of a new concept. A design that casts a solution in
terms of well-understood concepts is thus more buildable than one that introduces
new concepts.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

4.8 Summary

The qualities presented in this chapter represent those most often the goals of
software architects. Since their definitions overlap, we chose to characterize them
with general scenarios. We saw that qualities can be divided into those that apply to
the system, those that apply to the business environment, and those that apply to
the architecture itself.

In the next chapter, we will explore concrete architectural approaches for following
the path from qualities to architecture.

4.9 For Further Reading

A discussion of general scenarios and the mapping of scenarios discovered during
architectural evaluations to the general scenarios can be found in [Bass 01b].
Further discussion of availability can be found in [Laprie 89] and [Cristian 93].
Security topics can be found in [Ramachandran 02]. The relationship between
usability and software architecture is treated in [Gram 96] and [Bass 01a].

[McGregor 01] discusses testability. [Paulish 02] discusses the percentage of
development costs associated with testing.

The IEEE maintains standard definitions for quality attributes [ISO 91]. [Witt 94]
discusses desirable qualities of architectures (and architects).

4.10 Discussion Questions

1:
For the system you are currently working on, what are the most important
qualities? What are the system-specific scenarios that capture these qualities
and what are the general scenarios they make concrete?

2:

Brooks argues that conceptual integrity is the key to successful systems. Do you
agree? Can you think of successful systems that have not had this property? If
so, what factors made those systems successful anyway? How do you go about
measuring a system to see if it meets Brooks's prescription?

3:
Generate scenarios for the business and architecture qualities enumerated in
Sections 4.4 and 4.5. Have you captured each quality with your scenarios?
Which qualities are difficult to capture with scenarios?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 5. Achieving Qualities
with Felix Bachmann, Mark Klein, and Bill Wood

Note: Felix Bachmann, Mark Klein, and Bill Wood are senior members of the
technical staff at the Software Engineering Institute.

Every good quality is noxious if unmixed.

�Ralph Waldo Emerson

Chapter 4 characterized a number of system quality attributes. That characterization
was in terms of a collection of scenarios. Understanding what is meant by a quality
attribute enables you to elicit the quality requirements but provides no help in
understanding how to achieve them. In this chapter, we begin to provide that help.
For each of the six system quality attributes that we elaborated in Chapter 4, we
provide architectural guidance for their achievement. The tactics enumerated here
do not cover all possible quality attributes, but we will see tactics for integrability in
Chapter 8.

We are interested in how the architect achieves particular qualities. The quality
requirements specify the responses of the software to realize business goals. Our
interest is in the tactics used by the architect to create a design using design
patterns, architectural patterns, or architectural strategies. For example, a business
goal might be to create a product line. A means of achieving that goal is to allow
variability in particular classes of functions.

Prior to deciding on a set of patterns to achieve the desired variation, the architect
should consider what combination of tactics for modifiability should be applied, as
the tactics chosen will guide the architectural decisions. An architectural pattern or
strategy implements a collection of tactics. The connection between quality attribute
requirements (discussed in Chapter 4) and architectural decisions is the subject of
this chapter.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.1 Introducing Tactics

What is it that imparts portability to one design, high performance to another, and
integrability to a third? The achievement of these qualities relies on fundamental
design decisions. We will examine these design decisions, which we call tactics. A
tactic is a design decision that influences the control of a quality attribute response.
We call a collection of tactics an architectural strategy, which we will treat in
Chapter 12. An architectural pattern packages tactics in a fashion that we will
describe in Section 5.8.

A system design consists of a collection of decisions. Some of these decisions help
control the quality attribute responses; others ensure achievement of system
functionality. In this section, we discuss the quality attribute decisions known as
tactics. We represent this relationship in Figure 5.1. The tactics are those that
architects have been using for years, and we isolate and describe them. We are not
inventing tactics here, just capturing what architects do in practice.

Figure 5.1. Tactics are intended to control responses to stimuli.

Each tactic is a design option for the architect. For example, one of the tactics
introduces redundancy to increase the availability of a system. This is one option the
architect has to increase availability, but not the only one. Usually achieving high
availability through redundancy implies a concomitant need for synchronization (to
ensure that the redundant copy can be used if the original fails). We see two
immediate ramifications of this example.

1. Tactics can refine other tactics. We identified redundancy as a tactic. As such,
it can be refined into redundancy of data (in a database system) or
redundancy of computation (in an embedded control system). Both types are
also tactics. There are further refinements that a designer can employ to make
each type of redundancy more concrete. For each quality attribute that we
discuss, we organize the tactics as a hierarchy.

2. Patterns package tactics. A pattern that supports availability will likely use
both a redundancy tactic and a synchronization tactic. It will also likely use
more concrete versions of these tactics. At the end of this section, we present
an example of a pattern described in terms of its tactics.

We organize the tactics for each system quality attribute as a hierarchy, but it is
important to understand that each hierarchy is intended only to demonstrate some

of the tactics, and that any list of tactics is necessarily incomplete. For each of the
six attributes that we elaborated in Chapter 4 (availability, modifiability,
performance, security, testability, and usability), we discuss tactical approaches for
achieving it. For each, we present an organization of the tactics and a brief
discussion. The organization is intended to provide a path for the architect to search
for appropriate tactics.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.2 Availability Tactics

Recall the vocabulary for availability from Chapter 4. A failure occurs when the
system no longer delivers a service that is consistent with its specification; this
failure is observable by the system's users. A fault (or combination of faults) has the
potential to cause a failure. Recall also that recovery or repair is an important aspect
of availability. The tactics we discuss in this section will keep faults from becoming
failures or at least bound the effects of the fault and make repair possible. We
illustrate this in Figure 5.2.

Figure 5.2. Goal of availability tactics

Many of the tactics we discuss are available within standard execution environments
such as operating systems, application servers, and database management
systems. It is still important to understand the tactics used so that the effects of
using a particular one can be considered during design and evaluation. All
approaches to maintaining availability involve some type of redundancy, some type
of health monitoring to detect a failure, and some type of recovery when a failure is
detected. In some cases, the monitoring or recovery is automatic and in others it is
manual.

We first consider fault detection. We then consider fault recovery and finally, briefly,
fault prevention.

FAULT DETECTION

Three widely used tactics for recognizing faults are ping/echo, heartbeat, and
exceptions.

Ping/echo. One component issues a ping and expects to receive back an echo,
within a predefined time, from the component under scrutiny. This can be used
within a group of components mutually responsible for one task. It can also
used be used by clients to ensure that a server object and the communication
path to the server are operating within the expected performance bounds.
"Ping/echo" fault detectors can be organized in a hierarchy, in which a lowest-
level detector pings the software processes with which it shares a processor,
and the higher-level fault detectors ping lower-level ones. This uses less

communications bandwidth than a remote fault detector that pings all
processes.

Heartbeat (dead man timer). In this case one component emits a heartbeat
message periodically and another component listens for it. If the heartbeat
fails, the originating component is assumed to have failed and a fault
correction component is notified. The heartbeat can also carry data. For
example, an automated teller machine can periodically send the log of the last
transaction to a server. This message not only acts as a heartbeat but also
carries data to be processed.

Exceptions. One method for recognizing faults is to encounter an exception,
which is raised when one of the fault classes we discussed in Chapter 4 is
recognized. The exception handler typically executes in the same process that
introduced the exception.

The ping/echo and heartbeat tactics operate among distinct processes, and the
exception tactic operates within a single process. The exception handler will usually
perform a semantic transformation of the fault into a form that can be processed.

FAULT RECOVERY

Fault recovery consists of preparing for recovery and making the system repair.
Some preparation and repair tactics follow.

Voting. Processes running on redundant processors each take equivalent input
and compute a simple output value that is sent to a voter. If the voter detects
deviant behavior from a single processor, it fails it. The voting algorithm can
be "majority rules" or "preferred component" or some other algorithm. This
method is used to correct faulty operation of algorithms or failure of a
processor and is often used in control systems. If all of the processors utilize
the same algorithms, the redundancy detects only a processor fault and not an
algorithm fault. Thus, if the consequence of a failure is extreme, such as
potential loss of life, the redundant components can be diverse.

One extreme of diversity is that the software for each redundant component is
developed by different teams and executes on dissimilar platforms. Less
extreme is to develop a single software component on dissimilar platforms.
Diversity is expensive to develop and maintain and is used only in exceptional
circumstances, such as the control of surfaces on aircraft. It is usually used for
control systems in which the outputs to the voter are straightforward and easy
to classify as equivalent or deviant, the computations are cyclic, and all
redundant components receive equivalent inputs from sensors. Diversity has
no downtime when a failure occurs since the voter continues to operate.
Variations on this approach include the Simplex approach, which uses the
results of a "preferred" component unless they deviate from those of a
"trusted" component, to which it defers. Synchronization among the redundant

components is automatic since they are all assumed to be computing on the
same set of inputs in parallel.

Active redundancy (hot restart). All redundant components respond to events
in parallel. Consequently, they are all in the same state. The response from
only one component is used (usually the first to respond), and the rest are
discarded. When a fault occurs, the downtime of systems using this tactic is
usually milliseconds since the backup is current and the only time to recover is
the switching time. Active redundancy is often used in a client/server
configuration, such as database management systems, where quick responses
are necessary even when a fault occurs. In a highly available distributed
system, the redundancy may be in the communication paths. For example, it
may be desirable to use a LAN with a number of parallel paths and place each
redundant component in a separate path. In this case, a single bridge or path
failure will not make all of the system's components unavailable.

Synchronization is performed by ensuring that all messages to any redundant
component are sent to all redundant components. If communication has a
possibility of being lost (because of noisy or overloaded communication lines),
a reliable transmission protocol can be used to recover. A reliable transmission
protocol requires all recipients to acknowledge receipt together with some
integrity indication such as a checksum. If the sender cannot verify that all
recipients have received the message, it will resend the message to those
components not acknowledging receipt. The resending of unreceived messages
(possibly over different communication paths) continues until the sender
marks the recipient as out of service.

Passive redundancy (warm restart/dual redundancy/triple redundancy). One
component (the primary) responds to events and informs the other
components (the standbys) of state updates they must make. When a fault
occurs, the system must first ensure that the backup state is sufficiently fresh
before resuming services. This approach is also used in control systems, often
when the inputs come over communication channels or from sensors and have
to be switched from the primary to the backup on failure. Chapter 6,
describing an air traffic control example, shows a system using it. In the air
traffic control system, the secondary decides when to take over from the
primary, but in other systems this decision can be done in other components.
This tactic depends on the standby components taking over reliably. Forcing
switchovers periodically�for example, once a day or once a week�increases
the availability of the system. Some database systems force a switch with
storage of every new data item. The new data item is stored in a shadow page
and the old page becomes a backup for recovery. In this case, the downtime
can usually be limited to seconds.

Synchronization is the responsibility of the primary component, which may use
atomic broadcasts to the secondaries to guarantee synchronization.

Spare. A standby spare computing platform is configured to replace many
different failed components. It must be rebooted to the appropriate software
configuration and have its state initialized when a failure occurs. Making a

checkpoint of the system state to a persistent device periodically and logging
all state changes to a persistent device allows for the spare to be set to the
appropriate state. This is often used as the standby client workstation, where
the user can move when a failure occurs. The downtime for this tactic is
usually minutes.

There are tactics for repair that rely on component reintroduction. When a
redundant component fails, it may be reintroduced after it has been corrected.
Such tactics are shadow operation, state resynchronization, and rollback.

Shadow operation. A previously failed component may be run in "shadow
mode" for a short time to make sure that it mimics the behavior of the
working components before restoring it to service.

State resynchronization. The passive and active redundancy tactics require the
component being restored to have its state upgraded before its return to
service. The updating approach will depend on the downtime that can be
sustained, the size of the update, and the number of messages required for
the update. A single message containing the state is preferable, if possible.
Incremental state upgrades, with periods of service between increments, lead
to complicated software.

Checkpoint/rollback. A checkpoint is a recording of a consistent state created
either periodically or in response to specific events. Sometimes a system fails
in an unusual manner, with a detectably inconsistent state. In this case, the
system should be restored using a previous checkpoint of a consistent state
and a log of the transactions that occurred since the snapshot was taken.

FAULT PREVENTION

The following are some fault prevention tactics.

Removal from service. This tactic removes a component of the system from
operation to undergo some activities to prevent anticipated failures. One
example is rebooting a component to prevent memory leaks from causing a
failure. If this removal from service is automatic, an architectural strategy can
be designed to support it. If it is manual, the system must be designed to
support it.

Transactions. A transaction is the bundling of several sequential steps such
that the entire bundle can be undone at once. Transactions are used to
prevent any data from being affected if one step in a process fails and also to
prevent collisions among several simultaneous threads accessing the same
data.

Process monitor. Once a fault in a process has been detected, a monitoring
process can delete the nonperforming process and create a new instance of it,

initialized to some appropriate state as in the spare tactic.

Figure 5.3 summarizes the tactics just discussed.

Figure 5.3. Summary of availability tactics

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.3 Modifiability Tactics

Recall from Chapter 4 that tactics to control modifiability have as their goal
controlling the time and cost to implement, test, and deploy changes. Figure 5.4
shows this relationship.

Figure 5.4. Goal of modifiability tactics

We organize the tactics for modifiability in sets according to their goals. One set has
as its goal reducing the number of modules that are directly affected by a change.
We call this set "localize modifications." A second set has as its goal limiting
modifications to the localized modules. We use this set of tactics to "prevent the
ripple effect." Implicit in this distinction is that there are modules directly affected
(those whose responsibilities are adjusted to accomplish the change) and modules
indirectly affected by a change (those whose responsibilities remain unchanged but
whose implementation must be changed to accommodate the directly affected
modules). A third set of tactics has as its goal controlling deployment time and cost.
We call this set "defer binding time."

LOCALIZE MODIFICATIONS

Although there is not necessarily a precise relationship between the number of
modules affected by a set of changes and the cost of implementing those changes,
restricting modifications to a small set of modules will generally reduce the cost. The
goal of tactics in this set is to assign responsibilities to modules during design such
that anticipated changes will be limited in scope. We identify five such tactics.

Maintain semantic coherence. Semantic coherence refers to the relationships
among responsibilities in a module. The goal is to ensure that all of these
responsibilities work together without excessive reliance on other modules.
Achievement of this goal comes from choosing responsibilities that have
semantic coherence. Coupling and cohesion metrics are an attempt to
measure semantic coherence, but they are missing the context of a change.
Instead, semantic coherence should be measured against a set of anticipated
changes. One subtactic is to abstract common services. Providing common
services through specialized modules is usually viewed as supporting re-use.

This is correct, but abstracting common services also supports modifiability. If
common services have been abstracted, modifications to them will need to be
made only once rather than in each module where the services are used.
Furthermore, modification to the modules using those services will not impact
other users. This tactic, then, supports not only localizing modifications but
also the prevention of ripple effects. Examples of abstracting common services
are the use of application frameworks and the use of other middleware
software.

Anticipate expected changes. Considering the set of envisioned changes
provides a way to evaluate a particular assignment of responsibilities. The
basic question is "For each change, does the proposed decomposition limit the
set of modules that need to be modified to accomplish it?" An associated
question is "Do fundamentally different changes affect the same modules?"
How is this different from semantic coherence? Assigning responsibilities based
on semantic coherence assumes that expected changes will be semantically
coherent. The tactic of anticipating expected changes does not concern itself
with the coherence of a module's responsibilities but rather with minimizing
the effects of the changes. In reality this tactic is difficult to use by itself since
it is not possible to anticipate all changes. For that reason, it is usually used in
conjunction with semantic coherence.

Generalize the module. Making a module more general allows it to compute a
broader range of functions based on input. The input can be thought of as
defining a language for the module, which can be as simple as making
constants input parameters or as complicated as implementing the module as
an interpreter and making the input parameters be a program in the
interpreter's language. The more general a module, the more likely that
requested changes can be made by adjusing the input language rather than by
modifying the module.

Limit possible options. Modifications, especially within a product line (see
Chapter 14), may be far ranging and hence affect many modules. Restricting
the possible options will reduce the effect of these modifications. For example,
a variation point in a product line may be allowing for a change of processor.
Restricting processor changes to members of the same family limits the
possible options.

PREVENT RIPPLE EFFECTS

A ripple effect from a modification is the necessity of making changes to modules
not directly affected by it. For instance, if module A is changed to accomplish a
particular modification, then module B is changed only because of the change to
module A. B has to be modified because it depends, in some sense, on A.

We begin our discussion of the ripple effect by discussing the various types of
dependencies that one module can have on another. We identify eight types:

1. Syntax of

- data. For B to compile (or execute) correctly, the type (or format) of
the data that is produced by A and consumed by B must be consistent
with the type (or format) of data assumed by B.

- service. For B to compile and execute correctly, the signature of
services provided by A and invoked by B must be consistent with the
assumptions of B.

2. Semantics of

- data. For B to execute correctly, the semantics of the data produced by
A and consumed by B must be consistent with the assumptions of B.

- service. For B to execute correctly, the semantics of the services
produced by A and used by B must be consistent with the assumptions of
B.

3. Sequence of

- data. For B to execute correctly, it must receive the data produced by A
in a fixed sequence. For example, a data packet's header must precede
its body in order of reception (as opposed to protocols that have the
sequence number built into the data).

- control. For B to execute correctly, A must have executed previously
within certain timing constraints. For example, A must have executed no
longer than 5ms before B executes.

4. Identity of an interface of A. A may have multiple interfaces. For B to compile
and execute correctly, the identity (name or handle) of the interface must be
consistent with the assumptions of B.

5. Location of A (runtime). For B to execute correctly, the runtime location of A
must be consistent with the assumptions of B. For example, B may assume
that A is located in a different process on the same processor.

6. Quality of service/data provided by A. For B to execute correctly, some
property involving the quality of the data or service provided by A must be
consistent with B's assumptions. For example, data provided by a particular
sensor must have a certain accuracy in order for the algorithms of B to work
correctly.

7. Existence of A. For B to execute correctly, A must exist. For example, if B is
requesting a service from an object A, and A does not exist and cannot be
dynamically created, then B will not execute correctly.

8.

Resource behavior of A. For B to execute correctly, the resource behavior of A
must be consistent with B's assumptions. This can be either resource usage of
A (A uses the same memory as B) or resource ownership (B reserves a
resource that A believes it owns).

With this understanding of dependency types, we can now discuss tactics available
to the architect for preventing the ripple effect for certain types.

Notice that none of our tactics necessarily prevent the ripple of semantic changes.
We begin with discussion of those that are relevant to the interfaces of a particular
module�information hiding and maintaining existing interfaces�and follow with one
that breaks a dependency chain�use of an intermediary.

Hide information. Information hiding is the decomposition of the
responsibilities for an entity (a system or some decomposition of a system)
into smaller pieces and choosing which information to make private and which
to make public. The public responsibilities are available through specified
interfaces. The goal is to isolate changes within one module and prevent
changes from propagating to others. This is the oldest technique for
preventing changes from propagating. It is strongly related to "anticipate
expected changes" because it uses those changes as the basis for
decomposition.

Maintain existing interfaces. If B depends on the name and signature of an
interface of A, maintaining this interface and its syntax allows B to remain
unchanged. Of course, this tactic will not necessarily work if B has a semantic
dependency on A, since changes to the meaning of data and services are
difficult to mask. Also, it is difficult to mask dependencies on quality of data or
quality of service, resource usage, or resource ownership. Interface stability
can also be achieved by separating the interface from the implementation.
This allows the creation of abstract interfaces that mask variations. Variations
can be embodied within the existing responsibilities, or they can be embodied
by replacing one implementation of a module with another.

Patterns that implement this tactic include

- adding interfaces. Most programming languages allow multiple
interfaces. Newly visible services or data can be made available
through new interfaces, allowing existing interfaces to remain
unchanged and provide the same signature.

- adding adapter. Add an adapter to A that wraps A and provides
the signature of the original A.

- providing a stub A. If the modification calls for the deletion of A,
then providing a stub for A will allow B to remain unchanged if B
depends only on A's signature.

Restrict communication paths. Restrict the modules with which a given module
shares data. That is, reduce the number of modules that consume data
produced by the given module and the number of modules that produce data
consumed by it. This will reduce the ripple effect since data
production/consumption introduces dependencies that cause ripples. Chapter 8
(Flight Simulation) discusses a pattern that uses this tactic.

Use an intermediary. If B has any type of dependency on A other than
semantic, it is possible to insert an intermediary between B and A that
manages activities associated with the dependency. All of these intermediaries
go by different names, but we will discuss each in terms of the dependency
types we have enumerated. As before, in the worst case, an intermediary
cannot compensate for semantic changes. The intermediaries are

- data (syntax). Repositories (both blackboard and passive) act as
intermediaries between the producer and consumer of data. The
repositories can convert the syntax produced by A into that assumed by
B. Some publish/subscribe patterns (those that have data flowing
through a central component) can also convert the syntax into that
assumed by B. The MVC and PAC patterns convert data in one formalism
(input or output device) into another (that used by the model in MVC or
the abstraction in PAC).

- service (syntax). The facade, bridge, mediator, strategy, proxy, and
factory patterns all provide intermediaries that convert the syntax of a
service from one form into another. Hence, they can all be used to
prevent changes in A from propagating to B.

- identity of an interface of A. A broker pattern can be used to mask
changes in the identity of an interface. If B depends on the identity of an
interface of A and that identity changes, by adding that identity to the
broker and having the broker make the connection to the new identity of
A, B can remain unchanged.

- location of A (runtime). A name server enables the location of A to be
changed without affecting B. A is responsible for registering its current
location with the name server, and B retrieves that location from the
name server.

- resource behavior of A or resource controlled by A. A resource manager
is an intermediary that is responsible for resource allocation. Certain
resource managers (e.g., those based on Rate Monotonic Analysis in
real-time systems) can guarantee the satisfaction of all requests within
certain constraints. A, of course, must give up control of the resource to
the resource manager.

- existence of A. The factory pattern has the ability to create instances as
needed, and thus the dependence of B on the existence of A is satisfied
by actions of the factory.

DEFER BINDING TIME

The two tactic categories we have discussed thus far are designed to minimize the
number of modules that require changing to implement modifications. Our
modifiability scenarios include two elements that are not satisfied by reducing the
number of modules to be changed�time to deploy and allowing nondevelopers to
make changes. Deferring binding time supports both of those scenarios at the cost
of requiring additional infrastructure to support the late binding.

Decisions can be bound into the executing system at various times. We discuss
those that affect deployment time. The deployment of a system is dictated by some
process. When a modification is made by the developer, there is usually a testing
and distribution process that determines the time lag between the making of the
change and the availability of that change to the end user. Binding at runtime means
that the system has been prepared for that binding and all of the testing and
distribution steps have been completed. Deferring binding time also supports
allowing the end user or system administrator to make settings or provide input that
affects behavior.

Many tactics are intended to have impact at loadtime or runtime, such as the
following.

Runtime registration supports plug-and-play operation at the cost of additional
overhead to manage the registration. Publish/subscribe registration, for
example, can be implemented at either runtime or load time.

Configuration files are intended to set parameters at startup.

Polymorphism allows late binding of method calls.

Component replacement allows load time binding.

Adherence to defined protocols allows runtime binding of independent
processes.

The tactics for modifiability are summarized in Figure 5.5.

Figure 5.5. Summary of modifiability tactics

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.4 Performance Tactics

Recall from Chapter 4 that the goal of performance tactics is to generate a response
to an event arriving at the system within some time constraint. The event can be
single or a stream and is the trigger for a request to perform computation. It can be
the arrival of a message, the expiration of a time interval, the detection of a
significant change of state in the system's environment, and so forth. The system
processes the events and generates a response. Performance tactics control the
time within which a response is generated. This is shown in Figure 5.6. Latency is
the time between the arrival of an event and the generation of a response to it.

Figure 5.6. Goal of performance tactics

After an event arrives, either the system is processing on that event or the
processing is blocked for some reason. This leads to the two basic contributors to
the response time: resource consumption and blocked time.

1. Resource consumption. Resources include CPU, data stores, network
communication bandwidth, and memory, but it can also include entities
defined by the particular system under design. For example, buffers must be
managed and access to critical sections must be made sequential. Events can
be of varying types (as just enumerated), and each type goes through a
processing sequence. For example, a message is generated by one
component, is placed on the network, and arrives at another component. It is
then placed in a buffer; transformed in some fashion (marshalling is the term
the Object Management Group uses for this transformation); processed
according to some algorithm; transformed for output; placed in an output
buffer; and sent onward to another component, another system, or the user.
Each of these phases contributes to the overall latency of the processing of
that event.

2. Blocked time. A computation can be blocked from using a resource because of
contention for it, because the resource is unavailable, or because the
computation depends on the result of other computations that are not yet
available.

- Contention for resources. Figure 5.6 shows events arriving at the
system. These events may be in a single stream or in multiple streams.
Multiple streams vying for the same resource or different events in the

same stream vying for the same resource contribute to latency. In
general, the more contention for a resource, the more likelihood of
latency being introduced. However, this depends on how the contention
is arbitrated and how individual requests are treated by the arbitration
mechanism.

- Availability of resources. Even in the absence of contention,
computation cannot proceed if a resource is unavailable. Unavailability
may be caused by the resource being offline or by failure of the
component or for some other reason. In any case, the architect must
identify places where resource unavailability might cause a significant
contribution to overall latency.

- Dependency on other computation. A computation may have to wait
because it must synchronize with the results of another computation or
because it is waiting for the results of a computation that it initiated. For
example, it may be reading information from two different sources, if
these two sources are read sequentially, the latency will be higher than if
they are read in parallel.

With this background, we turn to our three tactic categories: resource demand,
resource management, and resource arbitration.

RESOURCE DEMAND

Event streams are the source of resource demand. Two characteristics of demand
are the time between events in a resource stream (how often a request is made in a
stream) and how much of a resource is consumed by each request.

One tactic for reducing latency is to reduce the resources required for processing an
event stream. Ways to do this include the following.

Increase computational efficiency. One step in the processing of an event or a
message is applying some algorithm. Improving the algorithms used in critical
areas will decrease latency. Sometimes one resource can be traded for
another. For example, intermediate data may be kept in a repository or it may
be regenerated depending on time and space resource availability. This tactic
is usually applied to the processor but is also effective when applied to other
resources such as a disk.

Reduce computational overhead. If there is no request for a resource,
processing needs are reduced. In Chapter 17, we will see an example of using
Java classes rather than Remote Method Invocation (RMI) because the former
reduces communication requirements. The use of intermediaries (so important
for modifiability) increases the resources consumed in processing an event
stream, and so removing them improves latency. This is a classic
modifiability/performance tradeoff.

Another tactic for reducing latency is to reduce the number of events processed.
This can be done in one of two fashions.

Manage event rate. If it is possible to reduce the sampling frequency at which
environmental variables are monitored, demand can be reduced. Sometimes
this is possible if the system was overengineered. Other times an
unnecessarily high sampling rate is used to establish harmonic periods
between multiple streams. That is, some stream or streams of events are
oversampled so that they can be synchronized.

Control frequency of sampling. If there is no control over the arrival of
externally generated events, queued requests can be sampled at a lower
frequency, possibly resulting in the loss of requests.

Other tactics for reducing or managing demand involve controlling the use of
resources.

Bound execution times. Place a limit on how much execution time is used to
respond to an event. Sometimes this makes sense and sometimes it does not.
For iterative, data-dependent algorithms, limiting the number of iterations is a
method for bounding execution times.

Bound queue sizes. This controls the maximum number of queued arrivals and
consequently the resources used to process the arrivals.

RESOURCE MANAGEMENT

Even though the demand for resources may not be controllable, the management of
these resources affects response times. Some resource management tactics are:

Introduce concurrency. If requests can be processed in parallel, the blocked
time can be reduced. Concurrency can be introduced by processing different
streams of events on different threads or by creating additional threads to
process different sets of activities. Once concurrency has been introduced,
appropriately allocating the threads to resources (load balancing) is important
in order to maximally exploit the concurrency.

Maintain multiple copies of either data or computations. Clients in a client-
server pattern are replicas of the computation. The purpose of replicas is to
reduce the contention that would occur if all computations took place on a
central server. Caching is a tactic in which data is replicated, either on different
speed repositories or on separate repositories, to reduce contention. Since the
data being cached is usually a copy of existing data, keeping the copies
consistent and synchronized becomes a responsibility that the system must
assume.

Increase available resources. Faster processors, additional processors,
additional memory, and faster networks all have the potential for reducing
latency. Cost is usually a consideration in the choice of resources, but
increasing the resources is definitely a tactic to reduce latency. This kind of
cost/performance tradeoff is analyzed in Chapter 12.

RESOURCE ARBITRATION

Whenever there is contention for a resource, the resource must be scheduled.
Processors are scheduled, buffers are scheduled, and networks are scheduled. The
architect's goal is to understand the characteristics of each resource's use and
choose the scheduling strategy that is compatible with it.

A scheduling policy conceptually has two parts: a priority assignment and
dispatching. All scheduling policies assign priorities. In some cases the assignment
is as simple as first-in/first-out. In other cases, it can be tied to the deadline of the
request or its semantic importance. Competing criteria for scheduling include
optimal resource usage, request importance, minimizing the number of resources
used, minimizing latency, maximizing throughput, preventing starvation to ensure
fairness, and so forth. The architect needs to be aware of these possibly conflicting
criteria and the effect that the chosen tactic has on meeting them.

A high-priority event stream can be dispatched only if the resource to which it is
being assigned is available. Sometimes this depends on pre-empting the current
user of the resource. Possible preemption options are as follows: can occur anytime;
can occur only at specific pre-emption points; and executing processes cannot be
pre-empted. Some common scheduling policies are:

1. First-in/First-out. FIFO queues treat all requests for resources as equals and
satisfy them in turn. One possibility with a FIFO queue is that one request will
be stuck behind another one that takes a long time to generate a response. As
long as all of the requests are truly equal, this is not a problem, but if some
requests are of higher priority than others, it is problematic.

2. Fixed-priority scheduling. Fixed-priority scheduling assigns each source of
resource requests a particular priority and assigns the resources in that
priority order. This strategy insures better service for higher-priority requests
but admits the possibility of a low-priority, but important, request taking an
arbitrarily long time to be serviced because it is stuck behind a series of
higher-priority requests. Three common prioritization strategies are

- semantic importance. Each stream is assigned a priority statically
according to some domain characteristic of the task that generates it.
This type of scheduling is used in mainframe systems where the domain
characteristic is the time of task initiation.

- deadline monotonic. Deadline monotonic is a static priority assignment
that assigns higher priority to streams with shorter deadlines. This
scheduling policy is used when streams of different priorities with real-

time deadlines are to be scheduled.

- rate monotonic. Rate monotonic is a static priority assignment for
periodic streams that assigns higher priority to streams with shorter
periods. This scheduling policy is a special case of deadline monotonic
but is better known and more likely to be supported by the operating
system.

3. Dynamic priority scheduling:

- round robin. Round robin is a scheduling strategy that orders the
requests and then, at every assignment possibility, assigns the resource
to the next request in that order. A special form of round robin is a cyclic
executive where assignment possibilities are at fixed time intervals.

- earliest deadline first. Earliest deadline first assigns priorities based on
the pending requests with the earliest deadline.

4. Static scheduling. A cyclic executive schedule is a scheduling strategy where
the pre-emption points and the sequence of assignment to the resource are
determined offline.

For Further Reading at the end of this chapter lists books on scheduling theory.

The tactics for performance are summarized in Figure 5.7.

Figure 5.7. Summary of performance tactics

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.5 Security Tactics

Tactics for achieving security can be divided into those concerned with resisting
attacks, those concerned with detecting attacks, and those concerned with
recovering from attacks. All three categories are important. Using a familiar analogy,
putting a lock on your door is a form of resisting an attack, having a motion sensor
inside of your house is a form of detecting an attack, and having insurance is a form
of recovering from an attack. Figure 5.8 shows the goals of the security tactics.

Figure 5.8. Goal of security tactics

RESISTING ATTACKS

In Chapter 4, we identified nonrepudiation, confidentiality, integrity, and assurance
as goals in our security characterization. The following tactics can be used in
combination to achieve these goals.

Authenticate users. Authentication is ensuring that a user or remote computer
is actually who it purports to be. Passwords, one-time passwords, digital
certificates, and biometric identifications provide authentication.

Authorize users. Authorization is ensuring that an authenticated user has the
rights to access and modify either data or services. This is usually managed by
providing some access control patterns within a system. Access control can be
by user or by user class. Classes of users can be defined by user groups, by
user roles, or by lists of individuals.

Maintain data confidentiality. Data should be protected from unauthorized
access. Confidentiality is usually achieved by applying some form of encryption
to data and to communication links. Encryption provides extra protection to
persistently maintained data beyond that available from authorization.
Communication links, on the other hand, typically do not have authorization
controls. Encryption is the only protection for passing data over publicly
accessible communication links. The link can be implemented by a virtual
private network (VPN) or by a Secure Sockets Layer (SSL) for a Web-based

link. Encryption can be symmetric (both parties use the same key) or
asymmetric (public and private keys).

Maintain integrity. Data should be delivered as intended. It can have
redundant information encoded in it, such as checksums or hash results, which
can be encrypted either along with or independently from the original data.

Limit exposure. Attacks typically depend on exploiting a single weakness to
attack all data and services on a host. The architect can design the allocation
of services to hosts so that limited services are available on each host.

Limit access. Firewalls restrict access based on message source or destination
port. Messages from unknown sources may be a form of an attack. It is not
always possible to limit access to known sources. A public Web site, for
example, can expect to get requests from unknown sources. One configuration
used in this case is the so-called demilitarized zone (DMZ). A DMZ is used
when access must be provided to Internet services but not to a private
network. It sits between the Internet and a firewall in front of the internal
network. The DMZ contains devices expected to receive messages from
arbitrary sources such as Web services, e-mail, and domain name services.

DETECTING ATTACKS

The detection of an attack is usually through an intrusion detection system. Such
systems work by comparing network traffic patterns to a database. In the case of
misuse detection, the traffic pattern is compared to historic patterns of known
attacks. In the case of anomaly detection, the traffic pattern is compared to a
historical baseline of itself. Frequently, the packets must be filtered in order to make
comparisons. Filtering can be on the basis of protocol, TCP flags, payload sizes,
source or destination address, or port number.

Intrusion detectors must have some sort of sensor to detect attacks, managers to
do sensor fusion, databases for storing events for later analysis, tools for offline
reporting and analysis, and a control console so that the analyst can modify
intrusion detection actions.

RECOVERING FROM ATTACKS

Tactics involved in recovering from an attack can be divided into those concerned
with restoring state and those concerned with attacker identification (for either
preventive or punitive purposes).

The tactics used in restoring the system or data to a correct state overlap with those
used for availability since they are both concerned with recovering a consistent state
from an inconsistent state. One difference is that special attention is paid to
maintaining redundant copies of system administrative data such as passwords,
access control lists, domain name services, and user profile data.

The tactic for identifying an attacker is to maintain an audit trail. An audit trail is a
copy of each transaction applied to the data in the system together with identifying
information. Audit information can be used to trace the actions of an attacker,
support nonrepudiation (it provides evidence that a particular request was made),
and support system recovery. Audit trails are often attack targets themselves and
therefore should be maintained in a trusted fashion.

Figure 5.9 provides a summary of the tactics for security.

Figure 5.9. Summary of tactics for security

5.6 Testability Tactics

The goal of tactics for testability is to allow for easier testing when an increment of
software development is completed. Figure 5.10 displays the use of tactics for
testability. Architectural techniques for enhancing the software testability have not
received as much attention as more mature fields such as modifiability,
performance, and availability, but, as we stated in Chapter 4, since testing
consumes such a high percentage of system development cost, anything the
architect can do to reduce this cost will yield a significant benefit.

Figure 5.10. Goal of testability tactics

Although in Chapter 4 we included design reviews as a testing technique, in this
chapter we are concerned only with testing a running system. The goal of a testing
regimen is to discover faults. This requires that input be provided to the software
being tested and that the output be captured.

Executing the test procedures requires some software to provide input to the
software being tested and to capture the output. This is called a test harness. A
question we do not consider here is the design and generation of the test harness.
In some systems, this takes substantial time and expense.

We discuss two categories of tactics for testing: providing input and capturing
output, and internal monitoring.

INPUT/OUTPUT

There are three tactics for managing input and output for testing.

Record/playback. Record/playback refers to both capturing information
crossing an interface and using it as input into the test harness. The
information crossing an interface during normal operation is saved in some
repository and represents output from one component and input to another.
Recording this information allows test input for one of the components to be
generated and test output for later comparison to be saved.

Separate interface from implementation. Separating the interface from the
implementation allows substitution of implementations for various testing
purposes. Stubbing implementations allows the remainder of the system to be
tested in the absence of the component being stubbed. Substituting a
specialized component allows the component being replaced to act as a test
harness for the remainder of the system.

Specialize access routes/interfaces. Having specialized testing interfaces allows
the capturing or specification of variable values for a component through a test
harness as well as independently from its normal execution. For example,
metadata might be made available through a specialized interface that a test
harness would use to drive its activities. Specialized access routes and
interfaces should be kept separate from the access routes and interfaces for
required functionality. Having a hierarchy of test interfaces in the architecture
means that test cases can be applied at any level in the architecture and that
the testing functionality is in place to observe the response.

INTERNAL MONITORING

A component can implement tactics based on internal state to support the testing
process.

Built-in monitors. The component can maintain state, performance load,
capacity, security, or other information accessible through an interface. This
interface can be a permanent interface of the component or it can be
introduced temporarily via an instrumentation technique such as aspect-
oriented programming or preprocessor macros. A common technique is to
record events when monitoring states have been activated. Monitoring states
can actually increase the testing effort since tests may have to be repeated
with the monitoring turned off. Increased visibility into the activities of the
component usually more than outweigh the cost of the additional testing.

Figure 5.11 provides a summary of the tactics used for testability.

Figure 5.11. Summary of testability tactics

5.7 Usability Tactics

Recall from Chapter 4 that usability is concerned with how easy it is for the user to
accomplish a desired task and the kind of support the system provides to the user.
Two types of tactics support usability, each intended for two categories of "users."
The first category, runtime, includes those that support the user during system
execution. The second category is based on the iterative nature of user interface
design and supports the interface developer at design time. It is strongly related to
the modifiability tactics already presented.

Figure 5.12 shows the goal of the runtime tactics.

Figure 5.12. Goal of runtime usability tactics

RUNTIME TACTICS

Once a system is executing, usability is enhanced by giving the user feedback as to
what the system is doing and by providing the user with the ability to issue
usability-based commands such as those we saw in Chapter 4. For example, cancel,
undo, aggregate, and show multiple views support the user in either error correction
or more efficient operations.

Researchers in human�computer interaction have used the terms "user intiative,"
"system initiative," and "mixed initiative" to describe which of the human�computer
pair takes the initiative in performing certain actions and how the interaction
proceeds. The usability scenarios we enumerated in Chapter 4, Understanding
Quality Attributes, combine initiatives from both perspectives. For example, when
canceling a command the user issues a cancel�"user initiative"�and the system
responds. During the cancel, however, the system may put up a progress
indicator�"system initiative." Thus, cancel demonstrates "mixed initiative." We use
this distinction between user and system initiative to discuss the tactics that the
architect uses to achieve the various scenarios.

When the user takes the initiative, the architect designs a response as if for any
other piece of functionality. The architect must enumerate the responsibilities of the
system to respond to the user command. To use the cancel example again: When
the user issues a cancel command, the system must be listening for it (thus, there
is the responsibility to have a constant listener that is not blocked by the actions of

whatever is being canceled); the command to cancel must be killed; any resources
being used by the canceled command must be freed; and components that are
collaborating with the canceled command must be informed so that they can also
take appropriate action.

When the system takes the initiative, it must rely on some information�a
model�about the user, the task being undertaken by the user, or the system state
itself. Each model requires various types of input to accomplish its initiative. The
system initiative tactics are those that identify the models the system uses to
predict either its own behavior or the user's intention. Encapsulating this
information will enable an architect to more easily tailor and modify those models.
Tailoring and modification can be either dynamically based on past user behavior or
offline during development.

Maintain a model of the task. In this case, the model maintained is that of the
task. The task model is used to determine context so the system can have
some idea of what the user is attempting and provide various kinds of
assistance. For example, knowing that sentences usually start with capital
letters would allow an application to correct a lower-case letter in that
position.

Maintain a model of the user. In this case, the model maintained is of the user.
It determines the user's knowledge of the system, the user's behavior in terms
of expected response time, and other aspects specific to a user or a class of
users. For example, maintaining a user model allows the system to pace
scrolling so that pages do not fly past faster than they can be read.

Maintain a model of the system. In this case, the model maintained is that of
the system. It determines the expected system behavior so that appropriate
feedback can be given to the user. The system model predicts items such as
the time needed to complete current activity.

DESIGN-TIME TACTICS

User interfaces are typically revised frequently during the testing process. That is,
the usability engineer will give the developers revisions to the current user interface
design and the developers will implement them. This leads to a tactic that is a
refinement of the modifiability tactic of semantic coherence:

Separate the user interface from the rest of the application. Localizing
expected changes is the rationale for semantic coherence. Since the user
interface is expected to change frequently both during the development and
after deployment, maintaining the user interface code separately will localize
changes to it. The software architecture patterns developed to implement this
tactic and to support the modification of the user interface are:

- Model-View-Controller

- Presentation-Abstraction-Control

- Seeheim

- Arch/Slinky

Figure 5.13 shows a summary of the runtime tactics to achieve usability.

Figure 5.13. Summary of runtime usability tactics

5.8 Relationship of Tactics to Architectural Patterns

We have presented a collection of tactics that the architect can use to achieve
particular attributes. In fact, an architect usually chooses a pattern or a collection of
patterns designed to realize one or more tactics. However, each pattern implements
multiple tactics, whether desired or not. We illustrate this by discussing the Active
Object design pattern, as described by [Schmidt 00]:

The Active Object design pattern decouples method execution from method
invocation to enhance concurrency and simplify synchronized access to objects
that reside in their own thread of control.

The pattern consists of six elements: a proxy, which provides an interface that
allows clients to invoke publicly accessible methods on an active object; a method
request, which defines an interface for executing the methods of an active object;
an activation list, which maintains a buffer of pending method requests; a
scheduler, which decides what method requests to execute next; a servant, which
defines the behavior and state modeled as an active object; and a future, which
allows the client to obtain the result of the method invocation.

The motivation for this pattern is to enhance concurrency�a performance goal.
Thus, its main purpose is to implement the "introduce concurrency" performance
tactic. Notice the other tactics this pattern involves, however.

Information hiding (modifiability). Each element chooses the responsibilities it
will achieve and hides their achievement behind an interface.

Intermediary (modifiability). The proxy acts as an intermediary that will buffer
changes to the method invocation.

Binding time (modifiability). The active object pattern assumes that requests
for the object arrive at the object at runtime. The binding of the client to the
proxy, however, is left open in terms of binding time.

Scheduling policy (performance). The scheduler implements some scheduling
policy.

Any pattern implements several tactics, often concerned with different quality
attributes, and any implementation of the pattern also makes choices about tactics.
For example, an implementation could maintain a log of requests to the active
object for supporting recovery, maintaining an audit trail, or supporting testability.

The analysis process for the architect involves understanding all of the tactics
embedded in an implementation, and the design process involves making a
judicious choice of what combination of tactics will achieve the system's desired
goals.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.9 Architectural Patterns and Styles

An architectural pattern in software, also known as an architectural style, is
analogous to an architectural style in buildings, such as Gothic or Greek Revival or
Queen Anne. It consists of a few key features and rules for combining them so that
architectural integrity is preserved. An architectural pattern is determined by:

A set of element types (such as a data repository or a component that
computes a mathematical function).

A topological layout of the elements indicating their interrelation-ships.

A set of semantic constraints (e.g., filters in a pipe-and-filter style are pure
data transducers�they incrementally transform their input stream into an
output stream, but do not control either upstream or downstream elements).

A set of interaction mechanisms (e.g., subroutine call, event-subscriber,
blackboard) that determine how the elements coordinate through the allowed
topology.

Mary Shaw and David Garlan's influential work attempted to catalog a set of
architectural patterns that they called architectural styles or idioms. This has been
evolved by the software engineering community into what is now more commonly
known as architectural patterns, analogous to design patterns and code patterns.

The motivation of [Shaw 96] for embarking on this project was the observation that
high-level abstractions for complex systems exist but we do not study or catalog
them, as is common in other engineering disciplines.

These patterns occur not only regularly in system designs but in ways that
sometimes prevent us from recognizing them, because in different disciplines the
same architectural pattern may be called different things. In response, a number of
recurring architectural patterns, their properties, and their benefits have been
cataloged. One such catalog is illustrated in Figure 5.14.

Figure 5.14. A small catalog of architectural patterns, organized by
is-a relations

In this figure patterns are categorized into related groups in an inheritance
hierarchy. For example, an event system is a substyle of independent elements.
Event systems themselves have two subpatterns: implicit invocation and explicit
invocation.

What is the relationship between architectural patterns and tactics? As shown
earlier, we view a tactic as a foundational "building block" of design, from which
architectural patterns and strategies are created.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.10 Summary

In this chapter we saw how the architect realizes particular quality attribute
requirements. These requirements are the means by which a system achieves
business goals. Our interest here was in the tactics used by the architect to create a
design using architectural patterns and strategies.

We provided a list of well-known tactics for achieving the six quality attributes
elaborated in Chapter 4: availability, modifiability, performance, security, testability,
and usability. For each we discussed the tactics that are available and widely
practiced.

As we discussed, in relating tactics to patterns the architect's task has only just
begun when the tactics are chosen. Any design uses multiple tactics, and
understanding what attributes are achieved by them, what their side effects are,
and the risks of not choosing other tactics is essential to architecture design.

5.11 Discussion Questions

1:

As in question 3 from Chapter 4, consider a widely used Web site, such as
Amazon or eBay. What tactics would you need to consider when choosing the
architectural patterns or architectural strategies for meeting the performance
requirements you enumerated in that question?

2:
Given the set of tactics you chose in question 1, what tradeoffs with other
quality attributes might you expect from using them (such as security,
availability, and modifiability)?

3:

Usability is not always given due consideration in architecture design, making
usability system goals often difficult to achieve because they are treated as an
afterthought. Think of a system where you are familiar with the architecture and
try to enumerate the usability tactics, if any, it has employed.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

5.12 For Further Reading

Further reading about security can be found in [Ramachandran 02]; about the
relationship between usability and software architectural patterns, in [Bass 01a];
and about availability techniques for distributed systems, in [Jalote 94]. [McGregor
01] is a source of information about testability.

The two-volume reference on architectural patterns, [Buschmann 96] and [Schmidt
00], discusses the MVC and PAC patterns (vol. 1) and pattern-oriented software
architecture (vol. 2).

The Simplex architecture for availability is discussed at
http://www.sei.cmu.edu/simplex/.

[Bachmann 02] discusses the use of tactics as a basis for analysis of modifiability
and performance; [Chretienne 95] discusses various types of scheduling theory; and
[Briand 99] discusses coupling metrics.

The Model-View-Controller pattern is documented in [Gamma 95], the Presentation-
Abstraction-Control pattern in [Buschmann 96], the Seeheim pattern in [Pfaff 85],
and Arch/Slinky, in [UIMS 92].

http://www.sei.cmu.edu/simplex/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 6. Air Traffic Control: A Case Study in
Designing for High Availability

The FAA has faced this problem [of complexity] throughout its decade-old
attempt to replace the nation's increasingly obsolete air traffic control system.
The replacement, called Advanced Automation System, combines all the
challenges of computing in the 1990s. A program that is more than a million
lines in size is distributed across hundreds of computers and embedded into
new and sophisticated hardware, all of which must respond around the clock
to unpredictable real-time events. Even a small glitch potentially threatens
public safety.

�W. Wayt Gibbs [Gibbs 94]

Air traffic control (ATC) is among the most demanding of all software applications. It
is hard real time, meaning that timing deadlines must be met absolutely; it is safety
critical, meaning that human lives may be lost if the system does not perform
correctly; and it is highly distributed, requiring dozens of controllers to work
cooperatively to guide aircraft through the airways system. In the United States,
whose skies are filled with more commercial, private, and military aircraft than any
other part of the world, ATC is an area of intense public scrutiny. Aside from the
obvious safety issues, building and maintaining a safe, reliable airways system
requires enormous expenditures of public money. ATC is a multibillion-dollar
undertaking.

This chapter is a case study of one part of a once-planned, next-generation ATC
system for the United States. We will see how its architecture�in particular, a set of
carefully chosen views (as in Chapter 2) coupled with the right tactics (as in Chapter
5)�held the key to achieving its demanding and wide-ranging requirements.
Although this system was never put into operation because of budgetary
constraints, it was implemented and demonstrated that the system could meet its
quality goals.

In the United States, air traffic is controlled by the Federal Aviation Administration
(FAA), a government agency responsible for aviation safety in general. The FAA is
the customer for the system we will describe. As a flight progresses from its
departure airport to its arrival airport, it deals with several ATC entities that guide it
safely through each portion of the airways (and ground facilities) it is using. Ground
control coordinates the movement of aircraft on the ground at an airport. Towers
control aircraft flying within an airport's terminal control area, a cylindrical section of
airspace centered at an airport. Finally, en route centers divide the skies over the
country into 22 large sections of responsibility.

Consider an airline flight from Key West, Florida, to Washington, D.C.'s Dulles
Airport. The crew of the flight will communicate with Key West ground control to taxi
from the gate to the end of the runway, Key West tower during takeoff and climb-
out, and then Miami Center (the en route center whose airspace covers Key West)
once it leaves the Key West terminal control area. From there the flight will be

handed off to Jacksonville Center, Atlanta Center, and so forth, until it enters the
airspace controlled by Washington Center. From Washington Center, it will be
handed off to the Dulles tower, which will guide its approach and landing. When it
leaves the runway, the flight will communicate with Dulles ground control for its taxi
to the gate. This is an oversimplified view of ATC in the United States, but it suffices
for our case study. Figure 6.1 shows the hand-off process, and Figure 6.2 shows the
22 en route centers.

Figure 6.1. Flying from point A to point B in the U.S. air traffic
control system.

Courtesy of Ian Worpole/Scientific American, 1994.

Figure 6.2. En route centers in the United States

The system we will study is called the Initial Sector Suite System (ISSS), which was
intended to be an upgraded hardware and software system for the 22 en route
centers in the United States. It was part of a much larger government procurement
that would have, in stages, installed similar upgraded systems in the towers and
ground control facilities, as well as the transoceanic ATC facilities.

The fact that ISSS was to be procured as only one of a set of strongly related
systems had a profound effect on its architecture. In particular, there was great
incentive to adopt common designs and elements where possible because the ISSS
developer also intended to bid on the other systems. After all, these different
systems (en route center, tower, ground control) share many elements: interfaces to
radio systems, interfaces to flight plan databases, interfaces to each other,
interpreting radar data, requirements for reliability and performance, and so on.
Thus, the ISSS design was influenced broadly by the requirements for all of the
upgraded systems, not just the ISSS-specific ones. The complete set of upgraded
systems was to be called the Advanced Automation System (AAS).

Ultimately, the AAS program was canceled in favor of a less ambitious, less costly,
more staged upgrade plan. Nevertheless, ISSS is still an illuminating case study
because, when the program was canceled, the design and most of the code were
actually already completed. Furthermore, the architecture of the system (as well as
most other aspects) was studied by an independent audit team and found to be well
suited to its requirements. Finally, the system that was deployed instead of ISSS
borrowed heavily from the ISSS architecture. For these reasons, we will present the
ISSS architecture as an actual solution to an extremely difficult problem.

6.1 Relationship to the Architecture Business Cycle

Figure 6.3 shows how the air traffic control system relates to the Architecture
Business Cycle (ABC). The end users are federal air traffic controllers; the customer
is the Federal Aviation Administration; and the developing organization is a large
corporation that supplies many other important software-intensive systems to the
U.S. government. Factors in the technical environment include the mandated use of
Ada as the language of implementation for large government software systems and
the emergence of distributed computing as a routine way to build systems and
approach fault tolerance.

Figure 6.3. The ABC applied to the ATC system

6.2 Requirements and Qualities

Given that air traffic control is highly visible, with huge amounts of commercial,
government, and civilian interest, and given that it involves the potential loss of
human life if it fails, its two most important quality requirements are as follows:

1. Ultrahigh availability, meaning that the system is absolutely prohibited from
being inoperative for longer than very short periods. The actual availability
requirement for ISSS is targeted at 0.99999, meaning that the system should
be unavailable for less than 5 minutes a year. (However, if the system is able
to recover from a failure and resume operating within 10 seconds, that failure
is not counted as unavailable time.)

2. High performance, meaning that the system has to be able to process large
numbers of aircraft�as many as 2,440�without "losing" any of them.
Networks have to be able to carry the communication loads, and the software
has to be able to perform its computations quickly and predictably.

In addition, the following requirements, although not as critical to the safety of the
aircraft and their passengers, are major drivers in the shape of the architecture and
the principles behind that shape:

Openness, meaning that the system has to be able to incorporate
commercially developed software components, including ATC functions and
basic computing services such as graphics display packages

The ability to field subsets of the system, to handle the case in which the
billion-dollar project falls victim to reductions in budget (and hence
functionality)�as indeed happened

The ability to make modifications to the functionality and handle upgrades in
hardware and software (new processors, new I/O devices and drivers, new
versions of the Ada compiler)

The ability to operate with and interface to a bewildering set of external
systems, both hardware and software, some decades old, others not yet
implemented

Finally, this system is unusual in that is must satisfy a great many stakeholders,
particularly the controllers, who are the system's end users. While this does not
sound unusual, the difference is that controllers have the ability to reject the system
if it is not to their liking, even if it meets all its operational requirements. The
implications of this situation were profound for the processes of determining
requirements and designing the system, and slowed it down substantially.

The term sector suite refers to a suite of controllers (each sitting at a control
console like the one in Figure 6.4) that together control all of the aircraft in a
particular sector of the en route center's airspace. Our oversimplified view of ATC is

now enhanced by the fact that aircraft are handed off not only from center to center
but also from sector to sector within each center. Sectors are defined in ways unique
to each center. They may be defined to balance the load among the center's
controllers; for instance, less-traveled sectors may be larger than densely flown
areas.

Figure 6.4. Controllers at a sector suite.

Courtesy of William J. Hughes Technical Center; FAA public domain photo.

The ISSS design calls for flexibility in how many control stations are assigned to
each sector; anywhere from one to four are allowed, and the number can be
changed administratively while the system is in operation. Each sector is required to
have at least two controllers assigned to it. The first is the radar controller, who
monitors the radar surveillance data, communicates with the aircraft, and is
responsible for maintaining safe separations. The controller is responsible for
managing the tactical situation in the sector. The second controller is the data
controller, who retrieves information (such as flight plans) about each aircraft that is
either in the sector or soon will be. The data controller provides the radar controller
with the information needed about the aircraft's intentions in order to safely and
efficiently guide it through the sector.

ISSS is a large system. Here are some numbers to convey a sense of scale:

ISSS is designed to support up to 210 consoles per en route center. Each
console contains its own workstation-class processor; the CPU is an IBM
RS/6000.

ISSS requirements call for a center to control from 400 to 2,440 aircraft tracks
simultaneously.

There may be 16 to 40 radars to support a single facility.

A center may have from 60 to 90 control positions (each with one or several
consoles devoted to it).

The code to implement ISSS contains about 1 million lines of Ada.

In summary, the ISSS system must do the following:

Acquire radar target reports that are stored in an existing ATC system called
the Host Computer System.

Convert the radar reports for display and broadcast them to all of the
consoles. Each console chooses the reports that it needs to display; any
console is capable of displaying any area.

Handle conflict alerts (potential aircraft collisions) or other data transmitted by
the host computer.

Interface to the Host for input and retrieval of flight plans.

Provide extensive monitoring and control information, such as network
management, to allow site administrators to reconfigure the installation in real
time.

Provide a recording capability for later playback.

Provide graphical user interface facilities, such as windowing, on the consoles.
Special safety-related provisions are necessary, such as window transparency
to keep potentially crucial data from being obscured.

Provide reduced backup capability in the event of failure of the Host, the
primary communications network, or the primary radar sensors.

In the next section, we will explore the architecture that fulfilled these
requirements.

6.3 Architectural Solution

Just as an architecture affects behavior, performance, fault tolerance, and
maintainability, so it is shaped by stringent requirements in any of these areas. In the
case of ISSS, by far the most important driving force is the extraordinarily high
requirement for system availability: less than 5 minutes per year of downtime. This
requirement, more than any other, motivated architectural decisions for ISSS.

We begin our depiction of the ISSS architecture by describing the physical environment
hosting the software. Then we give a number of software architecture views (as
described in Chapter 2), highlighting the tactics (as described in Chapter 5) employed by
each. During this discussion, we introduce a new view not previously discussed: fault
tolerance. After discussing the relationships among views, we conclude the architecture
picture for ISSS by introducing a refinement of the "abstract common services" tactic for
modifiability and extensibility, namely, code templates.

ISSS PHYSICAL VIEW

ISSS is a distributed system, consisting of a number of elements connected by local area
networks. Figure 6.5 shows a physical view of the ISSS system. It does not show any of
the support systems or their interfaces to the ISSS equipment. Neither does it show any
structure of the software. The major elements of the physical view and the roles its
elements play are as follows:

The Host Computer System is the heart of the en route automation system. At
each en route center there are two host computers, one primary and the other
ready to take over should there be some problem with the primary one. The Host
provides processing of both surveillance and flight plan data. Surveillance data is
displayed on the en route display consoles used by controllers. Flight data is
printed as necessary on flight strip printers, and some flight data elements are
displayed on the data tags associated with the radar surveillance information.

Common consoles are the air traffic controller's workstations. They provide displays
of aircraft position information and associated data tags in a plan view format (the
radar display), displays of flight plan data in the form of electronic flight strips,[1]

and a variety of other information displays. They also allow controllers to modify
the flight data and to control the information being displayed and its format.
Common consoles are grouped in sector suites of one to four consoles, with each
sector suite serving the controller team for one airspace control sector.

[1] A flight strip is a strip of paper, printed by the system that contains flight plan data about an aircraft currently in or about to
arrive in a sector. Before ISSS, these flight strips were annotated by hand in pencil. ISSS was to provide the capability to manipulate
strips onscreen.

The common consoles are connected to the Host computers by means of the Local
Communications Network (LCN), the primary network of ISSS. Each Host is
interfaced to the LCN via dual LCN interface units (each called LIU-H), which act as
a fault-tolerant redundant pair.

The LCN is composed of four parallel token ring networks for redundancy and for
balancing overall loading. One network supports the broadcast of surveillance data
to all processors. One processor is used for point-to-point communications between
pairs of processors; one provides a channel for display data to be sent from the
common consoles to recording units for layer playback; and one is a spare. Bridges
provide connections between the networks of the access rings and those of the
backbone. The bridges also provide the ability to substitute the spare ring for a
failed ring and to make other alternative routings.

The Enhanced Direct Access Radar Channel (EDARC) provides a backup display of
aircraft position and limited flight data block information to the en route display
consoles. EDARC is used in the event of a loss of the display data provided by the
host. It provides essentially raw unprocessed radar data and interfaces to an ESI
(External System Interface) processor.

The Backup Communications Network (BCN) is an Ethernet network using TCP/IP
protocols. It is used for other system functions besides the EDARC interface and is
also used as a backup network in some LCN failure conditions.

Both the LCN and the BCN have associated Monitor-and-Control (M&C) consoles.
These give system maintenance personnel an overview of the state of the system
and allow them to control its operation. M&C consoles are ordinary consoles that
contain special software to support M&C functions and also provide the top-level or
global availability management functions.

The Test and Training subsystem provides the capability to test new hardware and
software and to train users without interfering with the ATC mission.

The central processors are mainframe-class processors that provide the data
recording and playback functions for the system in an early version of ISSS.

Figure 6.5. ISSS physical view

Each common console is connected to both the LCN and the BCN. Because of the large
number of common consoles that may be present at a facility (up to 210), multiple LCN
access rings are used to support all of them. This, then, is the physical view for ISSS,
highlighting the hardware in which the software resides.

MODULE DECOMPOSITION VIEW

The module elements of the ISSS operational software are called Computer Software
Configuration Items (CSCIs), defined in the government software development standard
whose use was mandated by the customer. CSCIs correspond largely to work
assignments; large teams are devoted to designing, building, and testing them. There is
usually some coherent theme associated with each CSCI�some rationale for grouping all
of the small software elements (such as packages, processes, etc.) that it contains.

There are five CSCIs in ISSS, as follows:

1. Display Management, responsible for producing and maintaining displays on the
common consoles.

2. Common System Services, responsible for providing utilities generally useful in air
traffic control software�recall that the developer was planning to build other
systems under the larger AAS program.

3. Recording, Analysis, and Playback, responsible for capturing ATC sessions for later
analysis.

4. National Airspace System Modification, entailing a modification of the software that
resides on the Host (outside the scope of this chapter).

5. The IBM AIX operating system, providing the underlying operating system
environment for the operational software.

These CSCIs form units of deliverable documentation and software, they appear in
schedule milestones, and each is responsible for a logically related segment of ISSS
functionality.

The module decomposition view reflects several modifiability tactics, as discussed in
Chapter 5. "Semantic coherence" is the overarching tactic for allocating well-defined and
nonoverlapping responsibilities to each CSCI. The Common System Services Module
reflects the tactic of "abstract common services." The Recording, Analysis, and Playback
CSCI reflects the "record/playback" tactic for testability. The resources of each CSCI are
made available through carefully designed software interfaces, reflecting "anticipation of
expected changes," "generalizing the module," and "maintaining interface stability."

PROCESS VIEW

The basis of concurrency in ISSS resides in elements called applications. An application
corresponds roughly to a process, in the sense of Dijkstra's cooperating sequential
processes, and is at the core of the approach the ISSS designers adopted for fault
tolerance. An application is implemented as an Ada "main" unit (a process schedulable
by the operating system) and forms part of a CSCI (which helps us define a mapping
between the module decomposition view and this one). Applications communicate by
message passing, which is the connector in this component-and-connector view.

ISSS is constructed to operate on a plurality of processors. Processors (as described in
the physical view) are logically combined to form a processor group, the purpose of
which is to host separate copies of one or more applications. This concept is critical to
fault tolerance and (therefore) availability. One executing copy is primary, and the others
are secondary; hence, the different application copies are referred to as primary address
space (PAS) or standby address space (SAS). The collection of one primary address
space and its attendant standby address spaces is called an operational unit. A given
operational unit resides entirely within the processors of a single processor group, which
can consist of up to four processors. Those parts of the ISSS that are not constructed in
this fault-tolerant manner (i.e., of coexisting primary and standby versions) simply run
independently on different processors. These are called functional groups and they are
present on each processor as needed, with each copy a separate instance of the
program, maintaining its own state.

In summary, an application may be either an operating unit or a functional group. The
two differ in whether the application's functionality is backed up by one or more
secondary copies, which keep up with the state and data of the primary copy and wait to

take over in case the primary copy fails. Operational units have this fault-tolerant
design; functional groups do not. An application is implemented as an operational unit if
its availability requirements dictate it; otherwise, it is implemented as a functional
group.

Applications interact in a client-server fashion. The client of the transaction sends the
server a service request message, and the server replies with an acknowledgment. (As
in all client-server schemes, a particular participant�or application in this case�can be
the client in one transaction and the server in another.) Within an operational unit, the
PAS sends state change notifications to each of its SASs, which look for time-outs or
other signs that they should take over and become primary if the PAS or its processor
fails. Figure 6.6 summarizes how the primary and secondary address spaces of an
application coordinate with each other to provide backup capability and give their
relationship to processor groups.

Figure 6.6. Functional groups (FG), operational units, processor
groups, and primary/standby address spaces

When a functional group receives a message, it need only respond and update its own
state as appropriate. Typically, the PAS of an operational unit receives and responds to
messages on behalf of the entire operational unit. It then must update both its own state
and the state of its SASs, which involves sending the SASs additional messages.

In the event of a PAS failure, a switchover occurs as follows:

1. A SAS is promoted to the new PAS.

2.

The new PAS reconstitutes with the clients of that operational unit (a fixed list for
each operational unit) by sending them a message that means, essentially: The
operational unit that was serving you has had a failure. Were you waiting for
anything from us at the time? It then proceeds to service any requests received in
response.

3. A new SAS is started to replace the previous PAS.

4. The newly started SAS announces itself to the new PAS, which starts sending it
messages as appropriate to keep it up to date.

If failure is detected within a SAS, a new one is started on some other processor. It
coordinates with its PAS and starts receiving state data.

To add a new operational unit, the following step-by-step process is employed:

Identify the necessary input data and where it resides.

Identify which operational units require output data from the new operational unit.

Fit this operational unit's communication patterns into a systemwide acyclic graph
in such a way that the graph remains acyclic so that deadlocks will not occur.

Design the messages to achieve the required data flows.

Identify internal state data that must be used for checkpointing and the state data
that must be included in the update communication from PAS to SAS.

Partition the state data into messages that fit well on the networks.

Define the necessary message types.

Plan for switchover in case of failure: Plan updates to ensure complete state.

Ensure consistent data in case of switchover.

Ensure that individual processing steps are completed in less time than a system
"heartbeat."

Plan data-sharing and data-locking protocols with other operational units.

This process is not for novices, but can be navigated straightforwardly by experienced
team members. A tactic discussed in a section that follows�code templates�was used
to make the process more repeatable and much less error prone.

The process view reflects several availability tactics, including "state resynchronization,"
"shadowing," "active redundancy," and "removal from service."

CLIENT-SERVER VIEW

Because the applications in the process view interact with each other in client-server
fashion, it is reasonable to show a client-server view of ISSS as well, although the
behavior it describes largely mirrors that captured by the process view shown earlier. For
completeness, Figure 6.7 shows a client-server view of the system.

Figure 6.7. Applications as clients and servers

The clients and servers were carefully designed to have consistent (as opposed to ad
hoc) interfaces. This was facilitated by using simple message-passing protocols for
interaction. The result reflects the modifiability tactics of "maintaining interface stability,"
"component replacement," and "adherence to defined protocols."

CODE VIEW

One view not discussed in Chapter 2 but which sometimes appears in architectures of
large systems is the code view. A code view shows how functionality is mapped to code
units.

In ISSS, an Ada (main) program is created from one or more source files; it typically
comprises a number of subprograms, some of which are gathered into separately
compilable packages. The ISSS is composed of several such programs, many of which
operate in a client-server manner.

An Ada program may contain one or more tasks, which are Ada entities capable of
executing concurrently with each other. These are the code-view corollary of the
processes described in the process view. Because Ada tasks are managed by the Ada
runtime system, ISSS also employs a mapping of Ada tasks onto UNIX (AIX) processes,
which means that all individual threads of control (whether separate Ada programs or
tasks within a single Ada program) are independent AIX processes operating
concurrently.

Applications (i.e., operational units and functional groups) are decomposed into Ada
packages, some of which include only type definitions and some of which are re-used
across applications. Packaging is a design activity intended to embody abstraction and
information hiding, and it is carried out by an operational unit's chief designer.

LAYERED VIEW

Underlying the operation of the ATC application programs on the ISSS processors system
is a commercial UNIX operating system, AIX. However, UNIX does not provide all the
services necessary to support a fault-tolerant distributed system such as ISSS.
Therefore, additional system services software was added. Figure 6.8 shows as a set of
layers the overall software environment in a typical ISSS processor.[2]

[2] Strictly speaking, Figure 6.8 is an overlay between a layered view and a component-and-connector view, because it shows runtime
connections between the submodules in the layers. In two cases, AAS Services and Other Device Driver, the connections among these and
other submodules within the layered view are not shown, because there are so many that it would clutter the diagram. These services are
freely used by most of the layered system. The actual connections would be listed in the supporting documentation for this view.

Figure 6.8. ISSS software architecture layers. The associations show
data and/or control flow, making this an overlay of layers and a

component-and-connector view.

The lowest two rows of elements above AIX represent extensions to AIX that run within
the AIX kernel's address space. Because of performance requirements and for
compatibility with the AIX operating system, these extensions are generally small
programs written in the C language. Since they run within the kernels' address space,
faults in these programs can potentially damage AIX itself; hence, they must be
relatively small, trusted programs reflecting the "limit exposure" tactic, discussed in
Chapter 5. Although the tactic is security based�namely, to prevent denial of service�in

ISSS it is used to enhance availability, which is a complementary goal. Happily,
sometimes tactics serve multiple quality attributes well.

The Atomic Broadcast Manager (ABM) plays a key role in the communication among the
Local Availability Manager modules within a sector suite to manage the availability of
suite functions. The Station Manager provides datagram services on the LCN and serves
as the local representative of the LCN network management services. The Network
Interface Sublayer provides a similar function for the point-to-point messages, sharing
its network information with the Station Manager.

The next two layers represent operating system extensions that execute outside the AIX
kernel's address space and therefore cannot directly damage AIX if they contain faults.
These programs are generally written in Ada.

Prepare Messages handles LCN messages for application programs. Prepare BCN
Messages performs a similar function for messages to be sent on the BCN. One function
of these programs is to determine which of the multiple redundant copies of an
application program within a sector suite is the primary and thus is to receive messages.
The Local Availability Manager provides the control information needed to make this
determination.

The top layer is where the applications reside. The Local Availability Manager and the
Internal Time Synchronization programs are application-level system services. The Local
Availability Manager is responsible for managing the initiation, termination, and
availability of the application programs. It communicates with each address space on its
own processor to control its operation and check its status. It also communicates with
the Local Availability Manager on the other processors within its sector suite to manage
the availability of suite functions, including switching from a primary to a backup copy of
an application program when appropriate. The Local Availability Manager communicates
with the Global Availability Management application that resides on the M&C consoles to
report status and to accept control commands. The Internal Time Synchronization
program synchronizes the processor's clock with that of the other ISSS processors,
which is crucial to the operation of the availability management functions. (See the fault
tolerance view, in Figure 6.9.)

Figure 6.9. ISSS component-and-connector view for fault tolerance

A NEW VIEW: FAULT TOLERANCE

As we said, the views listed in Chapter 2 are not exhaustive. In fact, there is no
exhaustive list of views that constitute the complete software architecture for all systems
or for any system. A welcome trend in software architecture is the recognition of the
importance of architecture in achieving quality attributes, and therefore the importance
of explicitly stating the quality attributes that the architecture is to provide. Toward this
end, architects often produce views that show how the architecture achieves a particular
quality attribute: a security view, for example. For runtime qualities, these views are in
the component-and-connector category, showing runtime element interactions. For non-
runtime qualities, these views are in the module category, showing how the
implementation units are designed to achieve (for example) modifiability.

The high availability requirements for ISSS elevated fault tolerance to an important role
in the design of the system. For one thing, a cold system restart in the event of a failure
was out of the question. Immediate (or at least rapid) switchover to a component on

standby seemed the best approach. As design progressed and this idea became clearer,
a new architectural structure emerged: the fault-tolerant hierarchy (Figure 6.9). This
structure describes how faults are detected and isolated and how the system recovers.
Whereas the PAS/SAS scheme traps and recovers from errors that are confined within a
single application, the fault-tolerant hierarchy is designed to trap and recover from
errors that are the result of cross-application interaction.

The ISSS fault-tolerant hierarchy provides various levels of fault detection and recovery.
Each level asynchronously

Detects errors in self, peers, and lower levels.

Handles exceptions from lower levels.

Diagnoses, recovers, reports, or raises exceptions.

Each level is meant to produce another increment in system availability above that
produced by the lower levels. The levels are as follows:

Physical (network, processor, and I/O devices)

Operating system

Runtime environment

Application

Local availability

Group availability

Global availability

System monitor and control

Fault detection and isolation are performed at each level in the hierarchy. Fault detection
is by built-in tests, event time-outs, network circuit tests, group membership protocol,
and, as a last resort, human reaction to alarms and indicators.

Fault recovery is performed at each level in the software hierarchy and can be automatic
or manual. For the Local, Group, and Global Availability managers, the recovery methods
are table driven. In a PAS, there are four types of recovery from failure. The type of
recovery used depends on the current operational status and is determined by the Local
Availability Manager using decision tables, as follows:

In a switchover, the SAS takes over almost immediately from its PAS.

A warm restart uses checkpoint data (written to nonvolatile memory).

A cold restart uses default data and loses state history.

A cutover is used to transition to new (or old) logic or adaptation data.

Redundancy is provided by network hardware (LCN, BCN, and associated bridges),
processor hardware (up to four processors per processor group, redundant recording),
and software (multiple address spaces per operational unit).

In addition to the availability tactics already seen with the process view, the fault
tolerance view adds "ping/echo" and "heartbeat" as ways to detect failures, exception to
percolate errors to the appropriate place for correction, and spare to perform recovery.

RELATING THE VIEWS TO EACH OTHER

During the preceding discussion, the elements in one view made "guest appearances" in
other views. Although views form the backbone of understanding a system, deeper
insight is often gained by examining the relations the views have to each other and, in
particular, from examining mappings from view to view. This imparts a more holistic
view of the architecture.

In ISSS, CSCIs are elements in the module decomposition view. They are composed of
applications, which in turn are elements in the process view and the client-server view.
Applications are implemented as Ada programs and packages, shown in the code view,
which in turn map to threads, which are elements in the concurrency view (not shown).
The layered view describes the functionality assigned to the modules in the
decomposition view in a way that shows what they are allowed to use. Finally, a
specialized view focusing on the achievement of a particular runtime quality
attribute�the fault tolerance view�uses the elements of the process, layer, and module
views.

Chapter 9, which covers how to document a software architecture, will prescribe a
special place in the documentation package for capturing view relationships. For ISSS,
that mapping would include tables that list the elements from the various views and
show how they correspond to each other as described above.

ADAPTATION DATA

ISSS makes extensive use of the modifiability tactic of "configuration files," which it calls
adaptation data. Site-specific adaptation data tailors the ISSS system across the 22 en
route centers in which it was planned to be deployed, and so-called preset adaptation
data tailors the software to changes that arise during development and deployment but
which do not represent site-specific differences. Adaptation data represents an elegant
and crucial shortcut to modifying the system in the face of site-specific requirements,
user-or center-specific preferences, configuration changes, requirements changes, and
other aspects of the software that might be expected to vary over time and across
deployment sites. In effect, the software has been designed to read its operating
parameters and behavioral specifications from input data; it is therefore completely
general with respect to the set of behaviors that can be represented in that data
(reflecting the "generalize the module" tactic). For example, a requirements change to

split the data in one ATC window view into two separate windows�a nontrivial change in
many systems�could be accomplished by changing the adaptation data and a few lines
of code.

The negative side is that adaptation data presents a complicated mechanism to
maintainers. For example, although it is trivial (from an operational point of view) to add
new commands or command syntax to the system, the implementation of this flexibility
is in fact a complicated interpretive language all its own. Also, complicated interactions
may occur between various pieces of adaptation data, which could affect correctness,
and there are no automated or semiautomated mechanisms in place to guard against
the effects of such inconsistencies. Finally, adaptation data significantly increases the
state space within which the operational software must correctly perform, and this has
broad implications for system testing.

REFINING THE "ABSTRACT COMMON SERVICES" TACTIC: CODE
TEMPLATES FOR APPLICATIONS

Recall that the primary�secondary address space scheme described earlier relies on
redundancy to achieve fault tolerance: Copies of the software are stored on different
processors. While the primary copy is executing, it sends state information from time to
time to all of the secondary copies so that they can take up execution when called on.
The implementation plan for these copies called for both to come from true copies of the
same source code. Even though the primary and secondary copies are never doing the
same thing at the same time (the primary is performing its duty and sending state
updates to its backups, and the secondaries are waiting to leap into action and accepting
state updates), both programs come from identical copies of the same source code. To
accomplish this, the contractor developed a standard code template for each application;
the template is illustrated in Figure 6.10.

The structure is a continuous loop that services incoming events. If the event is one that
causes the application to take a normal (non-fault-tolerant-related) action, it carries out
the appropriate action, followed by an update of its backup counterparts' data so that
the counterpart can take over if necessary. Most applications process between 50 and
100 normal events. Other events involve the transfer (transmission and reception) of
state and data updates. The last set of events involves both the announcement that this
unit has become the primary address space and requests from clients for services that
the former (now failed) primary address space did not complete.

This template has architectural implications: It makes it simple to add new applications
to the system with a minimum of concern for the actual workings of the fault-tolerant
mechanisms designed into the approach. Coders and maintainers of applications do not
need to know about message-handling mechanisms except abstractly, and they do not
need to ensure that their applications are fault tolerant�that has been handled at a
higher (architectural) level of design.

Code templates represent a refinement of the "abstract common services" tactic; the
part of each application that is common is instantiated in the template. This tactic is
related to several other tactics for modifiability. It reflects an "anticipation of expected
changes" in the parts it leaves variable and it gives the processes a "semantic
coherence," because they all do the same thing when viewed abstractly. The template
lets programmers concentrate on the details of their application, leading to "generalizing

the module." And by making the interfaces and protocols part of the template, they
"maintain interface stability" and achieve "adherence to defined protocols."

Figure 6.10 Code structure template for fault-tolerant ISSS
applications

terminate:= false
initialize application/application protocols

ask for current state (image request)
Loop
 Get_event
 Case Event_Type is

 -- "normal" (non-fault-tolerant-related) requests to perform actions;
 -- only happens if this unit is the current primary address space
 when X=> Process X
 Send state data updates to other address spaces
 when Y=>Process Y
 Send state data updates to other address spaces
 ...
 when Terminate_Directive => clean up resources; terminate := true

 when State_Data_Update => apply to state data
 -- will only happen if this unit is a secondary address space, receiving
 -- the update from the primary after it has completed a "normal" action

 -- sending, receiving state data
 when Image_Request => send current state data to new address space
 when State_Data_Image => Initialize state data

 when Switch_Directive => notify service packages of change in rank

 -- these are requests that come in after a PAS/SAS switchover; they
 -- report services that they had requested from the old (failed) PAS
 -- which this unit (now the PAS) must complete. A,B, etc. are the names
 -- of the clients.
 when Recon_from_A=>reconstitute A
 when Recon_from_B=>reconstitute B
 ...
 when others=>log error
 end case
exit when terminate
end loop

Table 6.1 summarizes the approaches and tactics by which the ISSS software
architecture met its quality goals.

Table 6.1. How the ATC System Achieves Its Quality Goals

Goal How Achieved Tactic(s) UsedGoal How Achieved Tactic(s) Used

High
Availability

Hardware redundancy
(both processor and
network); software
redundancy (layered fault
detection and recovery)

State resynchronization; shadowing; active
redundancy; removal from service; limit
exposure; ping/echo; heartbeat; exception;
spare

High
Performance

Distributed
multiprocessors; front-end
schedulability analysis,
and network modeling

Introduce concurrency

Openness Interface wrapping and
layering

Abstract common services; maintain interface
stability

Modifiability Templates and table-
driven adaptation data;
careful assignment of
module responsbilities;
strict use of specified
interfaces

Abstract common services; semantic
coherence; maintain interface stability;
anticipate expected changes; generalize the
module; component replacement; adherence
to defined procotols; configuration files

Ability to Field
Subsets

Appropriate separation of
concerns

Abstract common services

Interoperability Client-server division of
functionality and message-
based communications

Adherence to defined protocols; maintain
interface stability

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

6.4 Summary

Like all of the case studies in this book, ISSS illustrates how architectural solutions
can be the key to achieving the needs of an application. Table 6.1 summarized the
key approaches used. Because of its projected long life, high cost, large size,
important function, and high visibility, ISSS was subject to extraordinary change
pressures over and above its demanding operational requirements.
Human�computer interfaces, new hardware, new commercial components,
operating system and network upgrades, and capacity increases were not just likely
but foregone conclusions. The architecture, by using a wide range of fault tolerance
mechanisms (and code templates), including hardware and software redundancy
and layered fault detection, and by using distributed multiprocess computing with
client-server message passing, was able to satisfy its complex, wide-ranging
operational requirements.

A footnote to our story is the intensive software audit that was carried out on the
ISSS architecture by a blue-ribbon panel of experts when the U.S. government was
considering abandoning ISSS in favor of a simpler, less expensive solution. The audit
assessed the architecture's ability to deliver the required performance and
availability and included modifiability exercises that walked through several change
scenarios, including the following:

Making major modifications to the M&C position's human�computer interface

Importing third-party-developed air traffic applications into the ISSS system

Adding new ATC views to the system

Replacing the RS/6000 processors with a chip of similar capability

Deleting electronic flight strips from the requirements

Increasing the system's maximum capacity of flight tracks by 50 percent

In every case, the audit found that the ISSS software architecture had been
designed so that the modifications would be straightforward and, in some cases,
almost trivial. This is a tribute to its careful design and its explicit consideration of
quality attributes and the architectural tactics to achieve them.

6.5 For Further Reading

The saga of the FAA's attempts to upgrade its air traffic control software has been
written about extensively; for example, by [Gibbs 94]. The effort to audit the ISSS
system for salvageability was reported by [Brown 95]. In these papers,
maintainability is treated as a dual quality related not only to the properties of the
system but also to the capabilities of the organization slated to perform the
maintenance. This important aspect of maintainability�the necessary fit between
the maintenance that a system needs and the maintenance that an organization is
prepared to provide for it�is not usually discussed.

6.6 Discussion Questions

1:

High availability was a main impetus behind the architecture presented in this
chapter. How were other quality attributes, such as performance, affected by
this requirement? How might the architecture change if this requirement were
removed?

2: How many architectural patterns can you recognize in the architecture for ISSS?

3:
Construct quality attribute scenarios, as described in Chapter 4, for as many of
the requirements given in Section 6.2 as you can. Where necessary information
is missing, propose reasonable substitutions.

Chapter 7. Designing the Architecture
with Felix Bachmann

We have observed two traits common to virtually all of the successful object-
oriented systems we have encountered, and noticeably absent from the ones
that we count as failures: the existence of a strong architectural vision and the
application of a well-managed iterative and incremental development cycle.

�Grady Booch [Stikeleather 96]

Up to this point, we have laid the foundations for creating an architecture by
presenting a broad set of basic concepts and principles, principally the business
aspects of architecture (Chapter 1), architectural views and structures (Chapter 2),
quality attributes (Chapter 4), and architectural tactics and patterns for achieving
them (Chapter 5). Chapters 3 and 6 presented case studies to cement the concepts
presented so far.

We now turn our attention to the design of an architecture and what you can do as
it starts to come into being. This chapter will cover four topics:

Architecture in the life cycle

Designing the architecture

Forming the team structure and its relationship to the architecture

Creating a skeletal system

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

7.1 Architecture in the Life Cycle

Any organization that embraces architecture as a foundation for its software
development processes needs to understand its place in the life cycle. Several life-
cycle models exist in the literature, but one that puts architecture squarely in the
middle of things is the Evolutionary Delivery Life Cycle model shown in Figure 7.1.
The intent of this model is to get user and customer feedback and iterate through
several releases before the final release. The model also allows the adding of
functionality with each iteration and the delivery of a limited version once a
sufficient set of features has been developed. (For more about this life-cycle model,
see For Further Reading.)

Figure 7.1. Evolutionary Delivery Life Cycle

WHEN CAN I BEGIN DESIGNING?

The life-cycle model shows the design of the architecture as iterating with
preliminary requirements analysis. Clearly, you cannot begin the design until you
have some idea of the system requirements. On the other hand, it does not take
many requirements in order for design to begin.

An architecture is "shaped" by some collection of functional, quality, and business
requirements. We call these shaping requirements architectural drivers and we see
examples of them in our case studies. The architecture of the A-7E discussed in
Chapter 3 is shaped by its modifiability and performance requirements. The
architecture for the air traffic control system discussed in Chapter 6 is shaped by its
availability requirements. In the flight simulator software presented in Chapter 8, we
will see an architecture shaped by performance and modifiability requirements. And
so on.

To determine the architectural drivers, identify the highest priority business goals.
There should be relatively few of these. Turn these business goals into quality
scenarios or use cases. From this list, choose the ones that will have the most
impact on the architecture. These are the architectural drivers, and there should be
fewer than ten. The Architecture Tradeoff Analysis Method of Chapter 11 uses a
utility tree to help turn the business drivers into quality scenarios.

Once the architectural drivers are known, the architectural design can begin. The
requirements analysis process will then be influenced by the questions generated
during architectural design�one of the reverse-direction arrows shown in Figure
7.1.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

7.2 Designing the Architecture

In this section we describe a method for designing an architecture to satisfy both
quality requirements and functional requirements. We call this method Attribute-
Driven Design (ADD). ADD takes as input a set of quality attribute scenarios and
employs knowledge about the relation between quality attribute achievement and
architecture in order to design the architecture. The ADD method can be viewed as
an extension to most other development methods, such as the Rational Unified
Process. The Rational Unified Process has several steps that result in the high-level
design of an architecture but then proceeds to detailed design and implementation.
Incorporating ADD into it involves modifying the steps dealing with the high-level
design of the architecture and then following the process as described by Rational.

ATTRIBUTE-DRIVEN DESIGN

ADD is an approach to defining a software architecture that bases the decomposition
process on the quality attributes the software has to fulfill. It is a recursive
decomposition process where, at each stage, tactics and architectural patterns are
chosen to satisfy a set of quality scenarios and then functionality is allocated to
instantiate the module types provided by the pattern. ADD is positioned in the life
cycle after requirements analysis and, as we have said, can begin when the
architectural drivers are known with some confidence.

The output of ADD is the first several levels of a module decomposition view of an
architecture and other views as appropriate. Not all details of the views result from
an application of ADD; the system is described as a set of containers for
functionality and the interactions among them. This is the first articulation of
architecture during the design process and is therefore necessarily coarse grained.
Nevertheless, it is critical for achieving the desired qualities, and it provides a
framework for achieving the functionality. The difference between an architecture
resulting from ADD and one ready for implementation rests in the more detailed
design decisions that need to be made. These could be, for example, the decision to
use specific object-oriented design patterns or a specific piece of middleware that
brings with it many architectural constraints. The architecture designed by ADD may
have intentionally deferred this decision to be more flexible.

There are a number of different design processes that could be created using the
general scenarios of Chapter 4 and the tactics and patterns of Chapter 5. Each
process assumes different things about how to "chunk" the design work and about
the essence of the design process. We discuss ADD in some detail to illustrate how
we are applying the general scenarios and tactics, and hence how we are "chunking"
the work, and what we believe is the essence of the design process.

We demonstrate the ADD method by using it to design a product line architecture
for a garage door opener within a home information system. The opener is
responsible for raising and lowering the door via a switch, remote control, or the

home information system. It is also possible to diagnose problems with the opener
from within the home information system.

Sample Input

The input to ADD is a set of requirements. ADD assumes functional requirements
(typically expressed as use cases) and constraints as input, as do other design
methods. However, in ADD, we differ from those methods in our treatment of quality
requirements. ADD mandates that quality requirements be expressed as a set of
system-specific quality scenarios. The general scenarios discussed in Chapter 4 act
as input to the requirements process and provide a checklist to be used in
developing the system-specific scenarios. System-specific scenarios should be
defined to the detail necessary for the application. In our examples, we omit several
portions of a fully fleshed scenario since these portions do not contribute to the
design process.

For our garage door example, the quality scenarios include the following:

The device and controls for opening and closing the door are different for the
various products in the product line, as already mentioned. They may include
controls from within a home information system. The product architecture for
a specific set of controls should be directly derivable from the product line
architecture.

The processor used in different products will differ. The product architecture
for each specific processor should be directly derivable from the product line
architecture.

If an obstacle (person or object) is detected by the garage door during
descent, it must halt (alternately re-open) within 0.1 second.

The garage door opener should be accessible for diagnosis and administration
from within the home information system using a product-specific diagnosis
protocol. It should be possible to directly produce an architecture that reflects
this protocol.

Beginning ADD

We have already introduced architectural drivers. ADD depends on the identification
of the drivers and can start as soon as all of them are known. Of course, during the
design the determination of which architectural drivers are key may change either
as a result of better understanding of the requirements or as a result of changing
requirements. Still, the process can begin when the driver requirements are known
with some assurance.

In the following section we discuss ADD itself.

ADD Steps

We begin by briefly presenting the steps performed when designing an architecture
using the ADD method. We will then discuss the steps in more detail.

1. Choose the module to decompose. The module to start with is usually the
whole system. All required inputs for this module should be available
(constraints, functional requirements, quality requirements).

2. Refine the module according to these steps:

a. Choose the architectural drivers from the set of concrete quality
scenarios and functional requirements. This step determines what is
important for this decomposition.

b. Choose an architectural pattern that satisfies the architectural drivers.
Create (or select) the pattern based on the tactics that can be used to
achieve the drivers. Identify child modules required to implement the
tactics.

c. Instantiate modules and allocate functionality from the use cases and
represent using multiple views.

d. Define interfaces of the child modules. The decomposition provides
modules and constraints on the types of module interactions. Document
this information in the interface document for each module.

e. Verify and refine use cases and quality scenarios and make them
constraints for the child modules. This step verifies that nothing
important was forgotten and prepares the child modules for further
decomposition or implementation.

3. Repeat the steps above for every module that needs further decomposition.

1 Choose the Module to Decompose

The following are all modules: system, subsystem, and submodule. The
decomposition typically starts with the system, which is then decomposed into
subsystems, which are further decomposed into submodules.

In our example, the garage door opener is the system. One constraint at this level is
that the opener must interoperate with the home information system.

2.a Choose the Architectural Drivers

As we said, architectural drivers are the combination of functional and quality
requirements that "shape" the architecture or the particular module under
consideration. The drivers will be found among the top-priority requirements for the
module.

In our example, the four scenarios we have shown are architectural drivers. In the
systems on which this example is based, there were dozens of quality scenarios. In
examining them, we see a requirement for real-time performance,[1] and
modifiability to support product lines. We also see a requirement that online
diagnosis be supported. All of these requirements must be addressed in the initial
decomposition of the system.

[1] A 0.1-second response when an obstacle is detected may not seem like a tight deadline, but we are discussing a mass market
where using a processor with limited power translates into substantial cost savings. Also, a garage door has a great deal of inertia and
is difficult to stop.

The determination of architectural drivers is not always a top-down process.
Sometimes detailed investigation is required to understand the ramifications of
particular requirements. For example, to determine if performance is an issue for a
particular system configuration, a prototypical implementation of a piece of the
system may be required. In our example, determining that the performance
requirement is an architectural driver requires examining the mechanics of a garage
door and the speed of the potential processors.

We will base our decomposition of a module on the architectural drivers. Other
requirements apply to that module, but, by choosing the drivers, we are reducing
the problem to satisfying the most important ones. We do not treat all of the
requirements as equal; the less important requirements are satisfied within the
constraints of the most important. This is a significant difference between ADD and
other architecture design methods.

2.b Choose an Architectural Pattern

As discussed in Chapter 5, for each quality there are identifiable tactics (and
patterns that implement these tactics) that can be used in an architecture design to
achieve a specific quality. Each tactic is designed to realize one or more quality
attributes, but the patterns in which they are embedded have an impact on other
quality attributes. In an architecture design, a composition of many such tactics is
used to achieve a balance between the required multiple qualities. Achievement of
the quality and functional requirements is analyzed during the refinement step.

The goal of step 2b is to establish an overall architectural pattern consisting of
module types. The pattern satisfies the architectural drivers and is constructed by
composing selected tactics. Two main factors guide tactic selection. The first is the
drivers themselves. The second is the side effects that a pattern implementing a
tactic has on other qualities.

For example, a classic tactic to achieve modifiability is the use of an interpreter.
Adding an interpreted specification language to a system simplifies the creation of
new functions or the modification of existing ones. Macro recording and execution is
an example of an interpreter. HTML is an interpreted language that specifies the
look-and-feel of Web pages. An interpreter is an excellent technique for achieving
modifiability at runtime, but it has a strong negative influence on performance. The
decision to use one depends on the relative importance of modifiability versus

performance. A decision may be made to use an interpreter for a portion of the
overall pattern and to use other tactics for other portions.

If we examine the available tactics from Chapter 5 in light of our architectural
drivers, we see performance and modifiability as the critical quality attributes. The
modifiability tactics are "localize changes," "prevent the ripple effect," and "defer
binding time." Moreover, since our modifiability scenarios are concerned primarily
with changes that will occur during system design, the primary tactic is "localize
changes." We choose semantic coherence and information hiding as our tactics and
combine them to define virtual machines for the affected areas. The performance
tactics are "resource demand" and "resource arbitration." We choose one example of
each: "increase computational efficiency" and "choose scheduling policy." This yields
the following tactics:

Semantic coherence and information hiding. Separate responsibilities dealing
with the user interface, communication, and sensors into their own modules.
We call these modules virtual machines and we expect all three to vary
because of the differing products that will be derived from the architecture.
Separate the responsibilities associated with diagnosis as well.

Increase computational efficiency. The performance-critical computations
should be made as efficient as possible.

Schedule wisely. The performance-critical computations should be scheduled
to ensure the achievement of the timing deadline.

Figure 7.2 shows an architectural pattern derived from the combination of these
tactics. This is not the only pattern that can be derived, but it is a plausible one.

Figure 7.2. Architectural pattern that utilizes tactics to achieve
garage door drivers

2.c Instantiate Modules and Allocate Functionality Using Multiple
Views

In the preceding section, we discussed how the quality architectural drivers
determine the decomposition structure of a module via the use of tactics. As a
matter of fact, in that step we defined the module types of the decomposition step.
We now show how those module types will be instantiated.

Instantiate modules

In Figure 7.2, we identified a non-performance-critical computation running on top
of a virtual machine that manages communication and sensor interactions. The
software running on top of the virtual machine is typically an application. In a
concrete system we will normally have more than one module. There will be one for
each "group" of functionality; these will be instances of the types shown in the
pattern. Our criterion for allocating functionality is similar to that used in
functionality-based design methods, such as most object-oriented design methods.

For our example, we allocate the responsibility for managing obstacle detection and
halting the garage door to the performance-critical section since this functionality
has a deadline. The management of the normal raising and lowering of the door has
no timing deadline, and so we treat it as non-performance-critical section. The
diagnosis capabilities are also non-performance critical. Thus, the non-performance-
critical module of Figure 7.2 becomes instantiated as diagnosis and raising/lowering
door modules in Figure 7.3. We also identify several responsibilities of the virtual
machine: communication and sensor reading and actuator control. This yields two
instances of the virtual machine that are also shown in Figure 7.3.

Figure 7.3. First-level decomposition of garage door opener

The result of this step is a plausible decomposition of a module. The next steps
verify how well the decomposition achieves the required functionality.

Allocate functionality

Applying use cases that pertain to the parent module helps the architect gain a
more detailed understanding of the distribution of functionality. This also may lead
to adding or removing child modules to fulfill all the functionality required. At the
end, every use case of the parent module must be representable by a sequence of
responsibilities within the child modules.

Assigning responsibilities to the children in a decomposition also leads to the
discovery of necessary information exchange. This creates a producer/consumer
relationship between those modules, which needs to be recorded. At this point in
the design, it is not important to define how the information is exchanged. Is the
information pushed or pulled? Is it passed as a message or a call parameter? These
are all questions that need to be answered later in the design process. At this point
only the information itself and the producer and consumer roles are of interest. This
is an example of the type of information left unresolved by ADD and resolved during
detailed design.

Some tactics introduce specific patterns of interaction between module types. A
tactic using an intermediary of type publish-subscribe, for example, will introduce a
pattern, "Publish" for one of the modules and a pattern "Subscribe" for the other.
These patterns of interaction should be recorded since they translate into
responsibilities for the affected modules.

These steps should be sufficient to gain confidence that the system can deliver the
desired functionality. To check if the required qualities can be met, we need more
than just the responsibilities so far allocated. Dynamic and runtime deployment
information is also required to analyze the achievement of qualities such as
performance, security, and reliability. Therefore, we examine additional views along
with the module decomposition view.

Represent the architecture with views

In Chapter 2, we introduced a number of distinct architectural views. In our
experience with ADD, one view from each of the three major groups of views
(module decomposition, concurrency, and deployment) have been sufficient to begin
with. The method itself does not depend on the particular views chosen, and if there
is a need to show other aspects, such as runtime objects, additional views can be
introduced. We now briefly discuss how ADD uses these three common views.

Module decomposition view. Our discussion above shows how the module
decomposition view provides containers for holding responsibilities as they are
discovered. Major data flow relationships among the modules are also
identified through this view.

Concurrency view. In the concurrency view dynamic aspects of a system such
as parallel activities and synchronization can be modeled. This modeling helps
to identify resource contention problems, possible deadlock situations, data
consistency issues, and so forth. Modeling the concurrency in a system likely
leads to discovery of new responsibilities of the modules, which are recorded
in the module view. It can also lead to discovery of new modules, such as a
resource manager, in order to solve issues of concurrent access to a scarce
resource and the like.

The concurrency view is one of the component-and-connector views. The
components are instances of the modules in the module decomposition view,
and the connectors are the carriers of virtual threads. A "virtual thread"
describes an execution path through the system or parts of it. This should not
be confused with operating system threads (or processes), which implies other
properties like memory/processor allocation. Those properties are not of
interest on the level at which we are designing. Nevertheless, after the
decisions on an operating system and on the deployment of modules to
processing units are made, virtual threads have to be mapped onto operating
system threads. This is done during detailed design.

The connectors in a concurrency view are those that deal with threads such as
"synchronizes with," "starts," "cancels," and "communicates with." A
concurrency view shows instances of the modules in the module
decomposition view as a means of understanding the mapping between those
two views. It is important to know that a synchronization point is located in a
specific module so that this responsibility can be assigned at the right place.

To understand the concurrency in a system, the following use cases are
illuminating:

- Two users doing similar things at the same time. This helps in
recognizing resource contention or data integrity problems. In our
garage door example, one user may be closing the door remotely while
another is opening the door from a switch.

- One user performing multiple activities simultaneously. This helps to
uncover data exchange and activity control problems. In our example, a
user may be performing diagnostics while simultaneously opening the
door.

- Starting up the system. This gives a good overview of permanent
running activities in the system and how to initialize them. It also helps
in deciding on an initialization strategy, such as everything in parallel or
everything in sequence or any other model. In our example, does the
startup of the garage door opener system depend on the availability of
the home information system? Is the garage door opener system always
working, waiting for a signal, or is it started and stopped with every door
opening and closing?

- Shutting down the system. This helps to uncover issues of cleaning up,
such as achieving and saving a consistent system state.

- In our example, we can see a point of synchronization in the
sensor/actuator virtual machine. The performance-critical section must
sample the sensor, as must the raising/lowering door section. It is
plausible that the performance-critical section will interrupt the
sensor/actuator virtual machine when it is performing an action for the
raising/lowering door section. We need a synchronization mechanism for
the sensor/actuator virtual machine. We see this by examining the
virtual thread for the performance-critical section and the virtual thread
for the raising/lowering door section, and observing that these two
threads both involve the sensor/actuator virtual machine. The crossing of
two virtual threads is an indication that some synchronization
mechanism should be employed.

Concurrency might also be a point of variation, discussed in Chapter 14
on software product lines. For some products a sequential initialization
will work well, while for others everything should be done in parallel. If
the decomposition does not support techniques to vary the method of
initialization (e.g., by exchanging a component), then the decomposition
should be adjusted.

Deployment view. If multiple processors or specialized hardware is used in a
system, additional responsibilities may arise from deployment to the
hardware. Using a deployment view helps to determine and design a
deployment that supports achieving the desired qualities. The deployment
view results in the virtual threads of the concurrency view being decomposed
into virtual threads within a particular processor and messages that travel
between processors to initiate the next entry in the sequence of actions. Thus,
it is the basis for analyzing the network traffic and for determining potential
congestion.

The deployment view also helps in deciding if multiple instances of some
modules are needed. For example, a reliability requirement may force us to
duplicate critical functionality on different processors. A deployment view also
supports reasoning about the use of special-purpose hardware.

The derivation of the deployment view is not arbitrary. As with the module
decomposition and concurrency views, the architecture drivers help determine
the allocation of components to hardware. Tactics such as replication offer a
means to achieve high performance or reliability by deploying replicas on
different processors. Other tactics such as a real-time scheduling mechanism
actually prohibit deployment on different processors. Functional considerations
usually guide the deployment of the parts that are not predetermined by the
selected tactics.

The crossing of a virtual thread from one processor to another generates
responsibilities for different modules. It indicates a communication requirement
between the processors. Some module must be responsible for managing the
communication; this responsibility must be recorded in the module decomposition
view.

In our example, deployment issues are found in the division of responsibilities
between the door opener system and the home information system. Which is
responsible for authenticating a remote request, and what is the communication
protocol between the two?

2.d Define Interfaces of the Child Modules

For purposes of ADD, an interface of a module shows the services and properties
provided and required. This is different from a signature. It documents what others
can use and on what they can depend.

Analyzing and documenting the decomposition in terms of structure (module
decomposition view), dynamism (concurrency view), and runtime (deployment
view) uncovers the interaction assumptions for the child modules, which should be
documented in their interfaces. The module view documents

producers/consumers of information.

patterns of interaction that require modules to provide services and to use
them.

The concurrency view documents

interactions among threads that lead to the interface of a module providing or
using a service.

the information that a component is active�for example, has its own thread
running.

the information that a component synchronizes, sequentializes, and perhaps
blocks calls.

The deployment view documents

the hardware requirements, such as special-purpose hardware.

some timing requirements, such as that the computation speed of a processor
has to be at least 10 MIPS.

communication requirements, such as that information should not be updated
more than once every second.

All this information should be available in the modules' interface documentation.

2.e Verify and Refine Use Cases and Quality Scenarios as
Constraints for the Child Modules

The steps enumerated thus far amount to a proposal for a module decomposition.
This decomposition must be verified and the child modules must be prepared for
their own decomposition.

Functional requirements

Each child module has responsibilities that derive partially from considering
decomposition of the functional requirements. Those responsibilities can be
translated into use cases for the module. Another way of defining use cases is to
split and refine the parent use cases. For example, a use case that initializes the
whole system is broken into the initializations of subsystems. This approach has
traceability because an analyst can follow the refinement.

In our example, the initial responsibilities for the garage door opener were to open
and close the door on request, either locally or remotely; to stop the door within 0.1
second when an obstacle is detected; and to interact with the home information
system and support remote diagnostics. The responsibilities are decomposed into
the following functional groups corresponding to the modules:

User interface. Recognize user requests and translate them into the form
expected by the raising/lowering door module.

Raising/lowering door module. Control actuators to raise or lower the door.
Stop the door when it reaches either fully open or fully closed.

Obstacle detection. Recognize when an obstacle is detected and either stop the
descent of the door or reverse it.

Communication virtual machine. Manage all communication with the home
information system.

Sensor/actuator virtual machine. Manage all interactions with the sensors and
actuators.

Scheduler. Guarantee that the obstacle detector will meet its deadlines.

Diagnosis. Manage the interactions with the home information system devoted
to diagnosis.

Constraints

Constraints of the parent module can be satisfied in one of the following ways:

The decomposition satisfies the constraint. For example, the constraint of
using a certain operating system can be satisfied by defining the operating
system as a child module. The constraint has been satisfied and nothing more
needs to be done.

The constraint is satisfied by a single child module. For example, the constraint
of using a special protocol can be satisfied by defining an encapsulation child
module for the protocol. The constraint has been designated a child. Whether
it is satisfied or not depends on what happens with the decomposition of the
child.

The constraint is satisfied by multiple child modules. For example, using the
Web requires two modules (client and server) to implement the necessary
protocols. Whether the constraint is satisfied depends on the decomposition
and coordination of the children to which the constraint has been assigned.

In our example, one constraint is that the communication with the home information
system is maintained. The communication virtual machine will recognize if this
communication is unavailable, so the constraint is satisfied by a single child.

Quality scenarios

Quality scenarios also have to be refined and assigned to the child modules.

A quality scenario may be completely satisfied by the decomposition without
any additional impact. It can then be marked as satisfied.

A quality scenario may be satisfied by the current decomposition with
constraints on child modules. For example, using layers might satisfy a specific
modifiability scenario, which in turn will constrain the usage pattern of the
children.

The decomposition may be neutral with respect to a quality scenario. For
example, a usability scenario pertains to portions of the user interface that are
not yet a portion of the decomposition. This scenario should be assigned to
one of the child modules.

A quality scenario may not be satisfiable with the current decomposition. If it
is an important one, then the decomposition should be reconsidered.
Otherwise, the rationale for the decomposition not supporting this scenario
must be recorded. This is usually the result of a tradeoff with other, perhaps
higher-priority scenarios.

In our example, the quality scenarios we identified as architectural drivers are met
or refined in the following fashion:

The devices and controls for opening and closing the door are different for
different products in the product line. They may include controls from within a
home information system. This scenario is delegated to the user interface
module.

The processor used in different products will differ. The product-specific
architecture for each product should be directly derivable from the product line
architecture. This scenario is delegated to all of the modules. Each module
becomes responsible for not using processor-specific features not supported
by standard compilers.

If an obstacle (person or object) is detected by the garage door during
descent, the door must halt (alternately re-open) within 0.1 second. This
scenario is delegated to the scheduler and the obstacle detection module.

The garage door opener should be accessible for diagnosis and administration
from within the home information system using a product-specific diagnosis
protocol. This scenario is split between the diagnosis and communication
modules. The communication module is responsible for the protocol used for
communicating with the home information system, and the diagnosis module
is responsible for managing the other interactions involving diagnosis.

At the end of this step we have a decomposition of a module into its children, where
each child module has a collection of responsibilities; a set of use cases, an
interface, quality scenarios, and a collection of constraints. This is sufficient to start
the next iteration of decomposition.

Notice from the example how much (or little) progress is made in a single iteration:
We have a vocabulary of modules and their responsibilities; we have considered a
variety of use cases and quality scenarios and understand some of their
ramifications. We have decided the information needs of the modules and their
interactions. This information should be captured in the design rationale, as we
discuss in Chapter 9, Documenting Software Architectures. We have not decided on
most of the details yet. We do not know the language for communication between
the user interface module and the raising/lowering modules. We do not know the
algorithm for performing obstacle detection. We do not know, in any detail, how the
performance-critical section communicates with the non-performance-critical
section.

What we have done is defined enough so that if we are designing a large system,
we can allocate work teams and give them their charges. If we are designing a
small system (such as the garage door opener), we can directly proceed to the next
iteration and decide on answers for these questions.

7.3 Forming the Team Structure

Once the first few levels of the architecture's module decomposition structure are
fairly stable, those modules can be allocated to development teams. The result is
the work assignment view discussed in Chapter 2. This view will either allocate
modules to existing development units or define new ones.

As long ago as 1968, the close relationship between an architecture and the
organization that produced it was a subject of comment. [Conway 68, 29] makes
the point as follows:

Take any two nodes x and y of the system. Either they are joined by a branch
or they are not. (That is, either they communicate with each other in some
way meaningful to the operation of the system or they do not.) If there is a
branch, then the two (not necessarily distinct) design groups X and Y which
designed the two nodes must have negotiated and agreed upon an interface
specification to permit communication between the two corresponding nodes
of the design organization. If, on the other hand, there is no branch between x
and y, then the subsystems do not communicate with each other, there was
nothing for the two corresponding design groups to negotiate, and therefore
there is no branch between X and Y.

Conway was describing how to discern organizational structure (at least in terms of
communication paths) from system structure, but the relationship between
organizational and system structures is bidirectional, and necessarily so.

The impact of an architecture on the development of organizational structure is
clear. Once an architecture for the system under construction has been agreed on,
teams are allocated to work on the major modules and a work breakdown structure
is created that reflects those teams. Each team then creates its own internal work
practices (or a system-wide set of practices is adopted). For large systems, the
teams may belong to different subcontractors. The work practices may include items
such as bulletin boards and Web pages for communication, naming conventions for
files, and the configuration control system. All of these may be different from group
to group, again especially for large systems. Furthermore, quality assurance and
testing procedures are set up for each group, and each group needs to establish
liaisons and coordinate with the other groups.

Thus, the teams within an organization work on modules. Within the team there
needs to be high-bandwidth communications: Much information in the form of
detailed design decisions is being constantly shared. Between teams, low-bandwidth
communications are sufficient and in fact crucial. (Fred Brooks's contention is that
the overhead of inter-team communication, if not carefully managed, will swamp a
project.) This, of course, assumes that the system has been designed with
appropriate separation of concerns.

Highly complex systems result when these design criteria are not met. In fact, team
structure and controlling team interactions often turn out to be important factors
affecting a large project's success. If interactions between the teams need to be

complex, either the interactions among the elements they are creating are
needlessly complex or the requirements for those elements were not sufficiently
"hardened" before development commenced. In this case, there is a need for high-
bandwidth connections between teams, not just within teams, requiring substantial
negotiations and often rework of elements and their interfaces. Like software
systems, teams should strive for loose coupling and high cohesion.

Why does the team structure mirror the module decomposition structure?
Information hiding, the design principle behind the module decomposition structure
of systems, holds that modules should encapsulate, or hide, changeable details by
putting up an interface that abstracts away the changeable aspects and presents a
common, unified set of services to its users (in this case, the software in other
system modules). This implies that each module constitutes its own small domain;
we use domain here to mean an area of specialized knowledge or expertise. This
makes for a natural fit between teams and modules of the decomposition structure,
as the following examples show.

The module is a user interface layer of a system. The application programming
interface that it presents to other modules is independent of the particular
user interface devices (radio buttons, dials, dialog boxes, etc.) that it uses to
present information to the human user, because those might change. The
domain here is the repertoire of such devices.

The module is a process scheduler that hides the number of available
processors and the scheduling algorithm. The domain here is process
scheduling and the list of appropriate algorithms.

The module is the Physical Models Module of the A-7E architecture (see
Chapter 3). It encapsulates the equations that compute values about the
physical environment. The domain is numerical analysis (because the
equations must be implemented to maintain sufficient accuracy in a digital
computer) and avionics.

Recognizing modules as mini-domains immediately suggests that the most effective
use of staff is to assign members to teams according to their expertise. Only the
module structure permits this. As the sidebar Organizational and Architecural
Structures discusses, organizations sometimes also add specialized groups that are
independent of the architectural structures.

The impact of an organization on an architecture is more subtle but just as
important as the impact of an architecture on the organization (of the group that
builds the system described by the architecture). Suppose you are a member of a
group that builds database applications, assigned to work on a team designing an
architecture for some application. Your inclination is probably to view the current
problem as a database problem, to worry about what database system should be
used or whether a home-grown one should be constructed, to assume that data
retrievals are constructed as queries, and so on. You therefore press for an
architecture that has distinct subsystems for, say, data storage and management,
and query formulation and implementation. A person from the telecommunications

group, on the other hand, views the system in telecommunication terms, and for
this person the database is a single (possibly uninteresting) subsystem.

Organizational and Architectural Structures
We had just written Section 7.3, about the relationship between
organizational structure and architectural structure, when someone who
has experience in the telecommunications area proposed a counter-
example. The organization he described is committed to responding
quickly to customer complaints and requests for changes. In this scheme,
every customer-generated change request is assigned to an individual to
implement the change. Any particular change may require modifications to
a variety of architectural components, and so the individuals on the
customer response team make modifications to the whole system and
must be outside of any team responsible for any particular group of
components. For this reason, an organizational structure aligned only with
the architectural structure is not adequate.

At first blush, this counter-example made us nervous, but on further
probing we discovered that the organization in question actually made
each modification twice: once by the customer service organization to
provide quick response to the customer and once by the organizational
entity that owned the components affected. Any other possibility would
result in rapid degradation of any architecture that is not based strictly on
separate components to implement each end-user function.

To explore the argument somewhat: an architecture, as we have
emphasized repeatedly, must satisfy many conflicting demands. An
architecture that is based on a separate component to implement each
end-user function is very good with respect to the modifiability of these
functions as long as the modification is not based on a physical element
that affects other functions. In the maintenance phase, as in the counter-
example, this architecture enables modifications to a particular function to
be limited to a single component. Of course, such a function-based
architecture does not allow re-use of components or sharing of data and is
not very efficient with respect to implementation.

The organization under discussion, in fact, had an architecture that
attempted to maximize re-use and had organizational units that mirrored
component structure. Because modifications would (potentially) involve
separate organizational units and the activities of these units had to be
coordinated (read this as saying that the reaction time of organizations is
slow when multiple units are involved), a separate rapid response unit was
established at the cost of making each modification twice.

� LJB

We discussed in Chapter 1 how organizational issues, prior experience, and a desire
to employ or develop certain skills will have an effect on the architecture. The
scenario above is a concrete example of how that effect might be manifested. As an
organization continues to work in a particular domain, it develops particular artifacts
to use as a means of obtaining work, and it has organizational groups whose
purpose is to maintain these artifacts. We will see this in Chapters 14 and 15, where
we discuss software product lines.

7.4 Creating a Skeletal System

Once an architecture is sufficiently designed and teams are in place to begin
building to it, a skeletal system can be constructed. The idea at this stage is to
provide an underlying capability to implement a system's functionality in an order
advantageous to the project.

Classical software engineering practice recommends "stubbing out" sections of code
so that portions of the system can be added separately and tested independently.
However, which portions should be stubbed? By using the architecture as a guide, a
sequence of implementation becomes clear.

First, implement the software that deals with the execution and interaction of
architectural components. This may require producing a scheduler in a real-time
system, implementing the rule engine (with a prototype set of rules) to control rule
firing in a rule-based system, implementing process synchronization mechanisms in
a multi-process system, or implementing client-server coordination in a client-server
system. Often, the basic interaction mechanism is provided by third-party
middleware, in which case the job becomes ones of installation instead of
implementation. On top of this communication or interaction infrastructure, you may
wish to install the simplest of functions, one that does little more than instigate
some rote behavior. At this point, you will have a running system that essentially
sits there and hums to itself�but a running system nevertheless. This is the
foundation onto which useful functionality can be added.

You can now choose which of the elements providing functionality should be added
to the system. The choice may be based on lowering risk by addressing the most
problematic areas first, or it may be based on the levels and type of staffing
available, or it may be based on getting something useful to market as quickly as
possible.

Once the elements providing the next increment of functionality have been chosen,
you can employ the uses structure (from Chapter 2) to tell you what additional
software should be running correctly in the system (as opposed to just being there
in the form of a stub) to support that functionality.

This process continues, growing larger and larger increments of the system, until it
is all in place. At no point is the integration and testing task overwhelming; at every
increment it is easy to find the source of newly introduced faults. Budgets and
schedules are more predictable with smaller increments, which also provide
management and marketing with more delivery options.

Even the stubbed-out parts help pave the way for completion. These stubs adhere
to the same interfaces that the final version of the system requires, so they can help
with understanding and testing the interactions among components even in the
absence of high-fidelity functionality. These stub components can exercise this
interaction in two ways, either producing hardcoded canned output or reading the
output from a file. They can also generate a synthetic load on the system to
approximate the amount of time the actual processing will take in the completed

working version. This aids in early understanding of system performance
requirements, including performance interactions and bottlenecks.

According to Cusumano and Selby, the Evolutionary Delivery Life Cycle is the basis
for the strategy that Microsoft uses. In Microsoft's version of this approach, a
"complete" skeletal system is created early in a product's life cycle and a "working,"
but low-fidelity, version is rebuilt at frequent periods�often nightly. This results in a
working system for which the features can, at any time, be judged sufficient and the
product rolled out. One problem to guard against, however, is that the first
development team to complete a portion of the system gets to define the interface
to which all subsequent subsystems must conform. This effectively penalizes the
complex portions of the system, because they will require more analysis and hence
will be less likely to have their interfaces defined first. The effect is to make the
complex subsystems even more complex. Our recommendation is first to negotiate
the interfaces in the skeletal subsystem and then to use a process that rewards
development efficiency.

7.5 Summary

Architecture design must follow requirements analysis, but it does not need to be
deferred until requirements analysis is completed. In fact, architecture design can
begin once the critical architectural drivers have been determined. When a sufficient
portion of the architecture has been designed (again, not necessarily completely
designed), a skeletal system can be developed. This skeletal system is the
framework on which iterative development (with its associated ability to deliver at
any point) is performed.

The quality scenarios and tactics that we presented in Chapters 4 and 5 are critical
to architecture design. ADD is a top-down design process based on using quality
requirements to define an appropriate architectural pattern and on using functional
requirements to instantiate the module types given by that pattern.

Architecture determines some level of organizational structure through determining
the necessary communication paths. Existing organizational structure influences
architecture as well by providing organizational units with specialized expertise and
vested interests.

Where Do Standards Come From?
An interesting discussion flowed around the Usenet a couple of years ago
about how the U.S. rail gauge standard became set at the strange-
sounding figure of 4 feet, 8-1/2 inches. The discussion has implications for
standards in any technology area.

It turns out that the standard was set for two reasons: backward
compatibility with legacy systems and the experience of the railroad
architects. To be precise, the early creators of the American rail system
were trained in Great Britain and had British tools and rolling stock. Of
course, this just pushes the question down one level. Why did the British
use this strange gauge?

As the story goes, the British built their railroads using this gauge for
precisely the same two reasons of legacy compatibility and architects'
experience: The trams (which existed before the railroads) used this
gauge, and the builders of the new railroad were converted tram builders,
initially using tram-building tools.

Of course, trams did not appear without their historical baggage. Early
trams were modeled after wagons, and so the early tram builders used
the same jigs and tools they had previously used for wagon building. But
this still begs the original question: Why did wagons use a wheel spacing
of 4 feet, 8-1/2 inches?

They used it because they were constrained by their environment, the
environment that had been created by the technology of the day. More
plainly, any other spacing would have caused their wheels to break
because the ruts on the roads in Great Britain at the time were this
distance apart.

The roads were another kind of technological legacy, a standard that
constrained innovation and determined this important feature of the
wagons. This time, however, the legacy came from Rome. The earliest
long-distance roads in Great Britain were built by the Romans, in the first
four centuries a.d. And, of course, the Romans built these roads the size
that they did because this was the size that fit their war chariots. So, the
gauge of trains in the United States today is attributable to the design of
Roman war chariots built two millennia earlier.

But it doesn't end here.

The spacing of wheels on the Roman war chariot was dictated by the
width of the yoke that attached the chariot to the horse. The yoke was
made this width to keep the wheel ruts clear of the horse. Thus, the
gauge of a modern rail car in the United States, it can be reasonably
assumed, was determined by following a set of standards, each of which
was dictated by a combination of technical factors, constraints from legacy
systems, and the experience of the architects. These factors, combined,
mean that the gauge of the U.S. rails was determined by the width of the
standard Roman warhorse's derriere.

Although this sounds silly, consider the consequences of ignoring the
constraints of existing standards. When Napoleon attacked Russia, his
armies made much slower progress than anticipated once they reached
eastern Europe because the ruts on the roads there were not to Roman
gauge. Because they made slower time than planned, they were caught in
the Russian winter. We all know what happened after that.

� RK

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

7.6 For Further Reading

The Evolutionary Delivery Life Cycle is cited as the "best of breed" of various
software development life-cycle models in [McConnell 96]. It is intended to support
organizations that have time-to-market pressures with prioritized functionality, as it
allows any iteration of a product to be a release. When combined with the
construction of a skeletal system and attention to the uses structure, the features in
a product release can be implemented so as to maximize market impact.

Christopher Alexander's seminal and innovative work on design patterns for
architecture (the house-building kind) served as the basis for the work on software
design patterns. [Alexander 77] is essential reading to gain an intuitive
understanding of what design patterns are all about. (They are also useful if you
plan to build a house one day.)

The most often cited authors on software design patterns are the so-called gang of
four [Gamma 95]. [Buschmann 96] documents a set of architectural styles as
design patterns, thus bridging these two important conceptual areas.

The Mythical Man-Month [Brooks 95] is required reading for any software engineer,
and his revised version discusses the virtues and advantages of architecture-based
iterative development, especially as practiced by Microsoft.

[Bosch 00a] provides an architectural design method that differs from ADD by first
considering division to achieve functionality and then transforming this division to
achieve other qualities.

The Rational Unified Process is described in [Kruchten 00]. [Cusumano 95] provides
a detailed description of Microsoft's development practices.

7.7 Discussion Questions

1:

Architectures beget the teams that build the modules that compose the
architectures. The architectural structure usually reflected in the teams is
modular decomposition. What would be the advantages and disadvantages of
basing teams around components of some of the other common architectural
structures, such as process?

2:

ADD provides one method for "chunking" requirements. Architectural drivers are
satisfied and other requirements have to be satisfied in the context of the design
developed for the drivers. What other chunking methods are there for a
decomposition design strategy? Why can't all requirements be satisfied with a
single decomposition?

3:
What other techniques can you think of for creating an initial version of a
software or system architecture. How do these techniques address functional,
business, and quality attribute requirements?

4:
How does ADD compare to an ad hoc approach to design in terms of the outputs
and the time and resources required to run the method? When would ADD be
appropriate and when would ad hoc design be appropriate?

Chapter 8. Flight Simulation: A Case Study in an
Architecture for Integrability

The striking conclusion that one draws … is that the information processing
capacity of [flight simulation computation] has been increasing approximately
exponentially for nearly thirty years. There is at this time no clear indication
that the trend is changing.

�Laurence Fogarty [Fogarty 67]

Modern flight simulators are among the most sophisticated software systems in
existence. They are highly distributed, have rigorous timing requirements, and must
be amenable to frequent updates to maintain high fidelity with the ever-changing
vehicles and environment they are simulating. The creation and maintenance of
these large systems presents a substantial software development challenge in
designing for the following:

Hard real-time performance

Modifiability, to accommodate changes in requirements and to the simulated
aircraft and their environments

Scalability of function, a form of modifiability, needed to extend these systems
so that they can simulate more and more of the real world and further
improve the fidelity of the simulation

But, as the title of this chapter makes clear, an overriding concern was designing for
integrability�a system quality attribute not covered in Chapter 4 but often arising
as a driving concern in large systems, especially those developed by distributed
teams or separate organizations. Integrability refers to the ease with which
separately developed elements, including those developed by third parties, can be
made to work together to fulfill the software's requirements. As with other quality
attributes, architectural tactics can be brought to bear to achieve integrability (some
of which are also aimed at modifiability). These tactics include keeping interfaces
small, simple, and stable; adhering to defined protocols; loose coupling or minimal
dependencies between elements; using a component framework; and using
"versioned" interfaces that allow extensions while permitting existing elements to
work under the original constraints.

This chapter will discuss some of the challenges of flight simulation and discuss an
architectural pattern created to address them. The pattern is a Structural Model,
and it emphasizes the following:

Simplicity and similarity of the system's substructures

Decoupling of data- and control-passing strategies from computation

Minimizing module types

A small number of system-wide coordination strategies

Transparency of design

These principles result in an architectural pattern that, as we will see, features a
high degree of integrability as well as the other quality attributes necessary for flight
simulation. The pattern itself is a composite of more primitive patterns.

8.1 Relationship to the Architecture Business Cycle

The segment of the Architecture Business Cycle (ABC) that connects desired
qualities to architecture is the focus of this case study. Figure 8.1 shows the ABC for
Structural-Model-based flight simulators. The simulators discussed in this chapter
are acquired by the U.S. Air Force. Their end users are pilots and crews for the
particular aircraft being simulated. Flight simulators are used for pilot training in the
operation of the aircraft, for crew training in the operation of the various weapons
systems on board, and for mission training for particular missions for the aircraft.
Some simulators are intended for standalone use, but more and more are intended
to train multiple crews simultaneously for cooperative missions.

Figure 8.1. Initial stages of the ABC for the flight simulator

The flight simulators are constructed by contractors selected as a result of a
competitive bidding process. The simulator systems are large (some as large as 1.5
million lines of code), have long lifetimes (the aircraft being simulated often have
lifetimes of 40 years or longer), and have stringent real-time and fidelity
requirements (the simulated aircraft must behave exactly like the real aircraft in
situations such as normal flight, emergency maneuvers, and equipment failures).

The beginning of the Structural Model pattern dates from 1987 when the Air Force
began to investigate the application of object-oriented design techniques. Electronic
flight simulators had been in existence since the 1960s, and so this investigation
was motivated by problems associated with the existing designs. These included
construction problems (the integration phase of development was increasing

exponentially with the size and complexity of the systems) and life-cycle problems
(the cost of some modifications was exceeding the cost of the original system).

The Structural Model pattern was able to overcome these problems, as we will see.
It has been used in the development of the B-2 Weapons System Trainer, the C-17
Aircrew Training System, and the Special Operations Forces family of trainers,
among others.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

8.2 Requirements and Qualities

There are three roles involved in a flight training simulator. The first is that of the
crew being trained. They sit inside a motion platform surrounded by instruments
intended to replicate exactly the aircraft being simulated, and look at visuals that
represent what would be seen outside an actual aircraft. We are not going to
describe the specifics of either the motion platform or the visual display generator in
this chapter. They are driven by special-purpose processors and are outside the
scope of the architecture we describe here. The purpose of a flight simulator is to
instruct the pilot and crew in how to operate a particular aircraft, how to perform
maneuvers such as mid-air refueling, and how to respond to situations such as an
attack on the aircraft. The fidelity of the simulation is an important element in the
training. For example, the feel of the controls when particular maneuvers are
performed must be captured correctly. Otherwise, the pilot and crew are being
trained incorrectly and the training may be counter-productive.

The second role associated with a flight simulator is that of the environment.
Typically, the environment is a computer model, although with multi-aircraft training
exercises it can include individuals other than the pilot and crew. It comprises the
atmosphere, threats, weapons, and other aircraft. For example, if the purpose of the
training is to practice refueling, the (simulated) refueling aircraft introduces
turbulence into the (modeled) atmosphere.

The third role associated with a flight training simulator is that of the simulation
instructor. Usually, a training exercise has a specific purpose and specific
circumstances. During the exercise, the instructor is responsible for monitoring the
performance of the pilot and crew and for initiating training situations. Sometimes
these situations are scripted in advance, and other times the instructor introduces
them. Typical situations include malfunctions of equipment (e.g., landing gear that
does not deploy correctly), attacks on the aircraft from foes, and weather conditions
such as turbulence caused by thunderstorms. The instructor has a separate console
to monitor the activities of the crew, to inject malfunctions into the aircraft, and to
control the environment. Figure 8.2 shows a typical collection of modern flight
simulators.

Figure 8.2. Modern flight simulators.

Courtesy of the Boeing Company.

USE OF MODELS

The models used in the aircraft and the environment are capable of being simulated
to almost arbitrary fidelity. As an example of the range of fidelity, consider the
modeling of the air pressure affecting the aircraft. A simple model is that the air
pressure is affected only by the aircraft altitude. Somewhat more complicated is a
model in which the air pressure is affected by altitude and local weather patterns.
Modeling local weather patterns takes more computational power but allows
consideration of updrafts and downdrafts. An even more complicated model with
additional computational requirements is that the air pressure is affected by
altitude, local weather patterns, and the behavior of nearby aircraft. One source of
turbulence is an aircraft that has recently passed through the airspace of the aircraft
being simulated.

A consequence of the capability to simulate the aircraft or the environment to
almost arbitrary fidelity is that training simulators in the past always stressed the
limits of computational power (and may always do so in the future). Since crew
simulator training is an important portion of overall flight training, there are always
strong arguments that slightly more fidelity will improve the training and hence the
skill set of the crews being trained. Performance, therefore, is one of the important
quality requirements for a flight simulator.

STATES OF EXECUTION

A flight simulator can execute in several states.

Operate corresponds to the normal functioning of the simulator as a training
tool.

Configure is used when modifications must be made to a current training
session. For example, suppose the crew has been training in a single-aircraft
exercise and the instructor wishes to switch to mid-air refueling. The simulator
is then placed into a configure state.

Halt stops the current simulation.

Replay uses a journal to move through the simulation without crew interaction.
Among other functions, it is used to demonstrate to the crew what they have
just done, because the crew may get caught up in operating the aircraft and
not reflect on their actions. "Record/playback" was identified in Chapter 5
(Achieving Qualities) as an architectural tactic for testing. Here we find it used
as a portion of the training process.

The simulators we discuss in this chapter are characterized by the following four
properties:

1. Real-time performance constraints. Flight simulators must execute at fixed
frame rates that are high enough to ensure fidelity. For those not familiar with
frame rates, an analogy to motion pictures might be helpful. Each frame is a
snapshot in time. When a sufficient number of frames are taken sequentially
within a time interval, the user sees or senses continuous motion. Different
senses require different frame rates. Common simulator frame rates are 30 Hz
or 60 Hz �one-thirtieth or one-sixtieth of a second. Within each frame rate, all
computations must run to completion.

All portions of a simulator run at an integral factor of the base rate. If the base
rate is 60 Hz, slower portions of the simulation may run at 30, 20, 15, or 12
Hz, and so on. They may not run at a nonintegral factor of the base rate, such
as 25 Hz. One reason for this restriction is that the sensory inputs provided by
a flight simulator for the crew being trained must be strictly coordinated. It
would not do to have the pilot execute a turn but not begin to see or feel the
change for even a small period of time (say, one-tenth of a second). Even for
delays so small that they are not consciously detectable, a lack of coordination
may be a problem. Such delays may result in a phenomenon known as
simulator sickness, a purely physiological reaction to imperfectly coordinated
sensory inputs.

2. Continuous development and modification. Simulators exist to train users
when the equivalent training on the actual vehicle would be much more
expensive or dangerous. To provide a realistic training experience, a flight
simulator must be faithful to the actual air vehicle. However, whether civilian
or military, air vehicles are continually being modified and updated. The
simulator software is therefore almost constantly modified and updated to
maintain verisimilitude. Furthermore, the training for which the simulators are
used is continually extended to encompass new types of situations, including
problems (malfunctions) that might occur with the aircraft and new

environmental situations, such as a military helicopter being used in an urban
setting.

3. Large size and high complexity. Flight simulators typically comprise tens of
thousands of lines of code for the simplest training simulation and millions of
lines of code for complex, multi-person trainers. Furthermore, the complexity
of flight simulators, mapped over a 30-year period, has shown exponential
growth.

4. Developed in geographically distributed areas. Military flight simulators are
typically developed in a distributed fashion for two reasons, one technical and
one political. Technically, different portions of the development require
different expertise, and so it is common practice for the general contractor to
subcontract portions of the work to specialists. Politically, high-technology
jobs, such as simulator development, are political plums, so many politicians
fight to have a piece of the work in their district. In either case, the
integrability of the simulator�already problematic because of the size and
complexity of the code�is made more difficult because the paths of
communication are long.

In addition, two problems with flight simulators caused the U.S. Air Force to
investigate new simulator designs.

1. Very expensive debugging, testing, and modification. The complexity of flight
simulation software, its real-time nature, and its tendency to be modified
regularly all contribute to the costs of testing, integrating, and modifying the
software typically exceeding the cost of development. The growth in
complexity (and its associated growth in cost) thus caused an emphasis for
the architecture on integrability and modifiability.

One of the consequences of the growth in complexity was the increased cost of
integration. For example, a large completed Air Force system (1.7 million lines
of code) had greatly exceeded its budget for integration. Systems 50% larger
were in concept, and they would have been prohibitively expensive. Hence,
integrability emerged as a driving architectural concern.

2. Unclear mapping between software structure and aircraft structure. Flight
simulators have traditionally been built with runtime efficiency as their primary
quality goal. This is not surprising given their performance and fidelity
requirements and given that simulators were initially built on platforms with
extremely limited memory and processing power. Traditional design of flight
simulator software was based on following control loops through a cycle.
These, in turn, were motivated by the tasks that caused the loop to be
activated. For example, suppose the pilot turns the aircraft left. The pilot
moves the rudder and aileron controls, which in turn moves the control
surfaces, which affects the aerodynamics and causes the aircraft to turn. In
the simulator, a model reflects the relationship between the controls, the
surfaces, the aerodynamics, and the orientation of the aircraft. In the original
flight simulator architecture, this model was contained in a module that might
be called Turn. There might be a similar module for level flight, another for
takeoff and landing, and so forth. The basic decomposition strategy was based

on examining the tasks that the pilot and crew perform, modeling the
components that perform the task, and keeping all calculations as local as
possible.

This strategy maximizes performance since any task is modeled in a single
module (or a small collection of modules) and thus the data movement
necessary to perform the calculations is minimized. The problem with this
architecture is that the same physical component is represented in multiple
models and hence in multiple modules. The extensive interactions among
modules cause problems with both modifiability and integration. If the module
that controls turning is integrated with the module that controls level flight,
and a problem is discovered in the data being provided to the turning module,
that same data is probably being accessed by the level flight module. For
these reasons, there were many coupling effects to be considered during
integration and maintenance.

The architectural pattern, called Structural Modeling, that resulted from the
reconsideration of the problems of flight simulators will be discussed for the
remainder of this chapter. In brief, the pattern includes an object-oriented design to
model the subsystems and controller children of the air vehicle. It marries real-time
scheduling to this object-oriented design as a means of controlling the execution
order of the simulation's subsystems so that fidelity can be guaranteed.

8.3 Architectural Solution

Figure 8.3 shows a reference model for a flight simulator. The three roles we
identified earlier (air vehicle, environment, and instructor) are shown interacting
with the crew and the various cueing systems. Typically, the instructor is hosted on
a different hardware platform from the air vehicle model. The environment model
may be hosted either on a separate hardware platform or with the instructor station.

Figure 8.3. Reference model for flight simulator

The logical division between the instructor station and the other two portions is
clear. The instructor station supports the instructor's control and monitoring of the
actions of the crew. The other two portions perform the simulation. The division
between the air vehicle and the environment is not as clear. For example, if an
aircraft launches a weapon, it is logically a portion of the air vehicle until it leaves
the vehicle, at which point it becomes a portion of the environment. Upon firing, the
aerodynamics of the weapon are influenced initially by the proximity of the aircraft.
Thus, any modeling of the aerodynamics must remain, at least initially, tightly
coupled to the air vehicle. If the weapon is always considered a portion of the
environment, its modeling involves tight coordination between the air vehicle and
the environment. If it is modeled as a portion of the air vehicle and then handed off

to the environment when fired, control of the weapon needs to be handed from one
to the other.

TREATMENT OF TIME IN A FLIGHT SIMULATOR

Recall from Chapter 5 that resource management is a category of tactics to achieve
performance goals. In a real-time simulator, the most important resource to manage
is time itself. A flight simulator is supposed to reflect the real world, which it does by
creating time-based real-world behaviors. Thus, when the pilot in a simulator
activates a particular control, the simulator must provide the same response in the
same time as the actual aircraft would. "In the same time" means both within an
upper bound of duration after the event and within a lower bound of duration.
Reacting too quickly is as bad for the quality of the simulation as reacting too slowly.

There are two fundamentally different ways of managing time in a flight
simulator�periodic and event-based�and both of these are used. Periodic time
management is used in portions that must maintain real-time performance (such as
the air vehicle), and event-based time management is used in portions where real-
time performance is not critical (such as the instructor station).

Periodic Time Management

A periodic time-management scheme has a fixed (simulated) time quantum based
on the frame rate. That is the basis of scheduling the system processes. This
scheme typically uses a non-pre-emptive cyclic scheduling discipline, which
proceeds by iterating through the following loop:

Set initial simulated time.

Iterate the next two steps until the session is complete.

1. Invoke each of the processes for a fixed (real) quantum. Each process
calculates its internal state based on the current simulated time and
reports it based on the next period of simulated time. It guarantees to
complete its computation within its real-time quantum.

2. Increment simulated time by quantum.

A simulation based on the periodic management of time will be able to keep
simulated time and real time in synchronization as long as each process is able to
advance its state to the next period within the time quantum allocated to it.

Typically, this is managed by adjusting the responsibilities of the individual
processes so that they are small enough to be computed in the allocated quantum.
It is the designer's responsibility to provide the number of processors needed to

ensure sufficient computational power to enable all processes to receive their
quantum of computation.

Event-Based Time Management

An event-based time-management scheme is similar to the interrupt-based
scheduling used in many operating systems. The schedule proceeds by iterating
through the following loop:

Add a simulated event to the event queue.

While there are events remaining in the event queue,

- choose the event with the smallest (i.e., soonest) simulated time.

- set the current simulated time to the time of the chosen event.

- invoke a process for the chosen event. This process may add events to
the event queue.

In this case, simulated time advances by the invoked processes placing events on
the event queue and the scheduler choosing the next event to process. In pure
event-based simulations, simulated time may progress much faster (as in a war
game simulation) or much slower (as in an engineering simulation) than real time.

Mixed-Time Systems

Returning now to the scheduling of the three portions of the flight simulator, the
instructor station is typically scheduled on an event basis�those events that
emanate from the instructor's interactions�and the air vehicle model is scheduled
on a periodic basis. The environment model can be scheduled using either regime.
Thus, the coupling between the air vehicle and the environment may involve
matching different time regimes.

Flight simulators must marry periodic time simulation (such as in the air vehicle
model) with event-based simulation (such as in the environment model, in some
cases) and with other event-based activities that are not predictable (such as an
interaction with the instructor station or the pilot setting a switch). Many scheduling
policies are possible from the perspective of each process involved in this marriage.

A simple policy for managing events within a periodically scheduled processor is that
periodic processing must occur immediately after a synchronization step and
complete before any aperiodic processing. Aperiodic processing proceeds within a
bounded interval, during which as many messages as possible will be retrieved and
processed. Those not processed during a given interval must be deferred to
subsequent intervals, with the requirement that all messages be processed in the
order received from a single source.

Communication from the portions of the system managed on an event basis to the
portions managed using periodic scheduling appears as aperiodic and is scheduled
as just discussed. Communication from the portions of the system managed using
periodic schedule appears as events to the portions managed on an event basis.

Given this understanding of managing time in a flight simulator, we can now present
the architectural pattern that handles this complexity. This pattern is for the air
vehicle, and so the time management discussion is from the air vehicle's
perspective.

THE STRUCTURAL MODEL ARCHITECTURAL PATTERN

Structural Model is an architectural pattern, as we defined it in Section 2.3. That is,
it consists of a collection of element types and a configuration of their coordination
at runtime. In this section, we present the Structural Model pattern and discuss the
considerations that led to its design. Recall that the air vehicle model itself may be
spread over several processors. Thus, the elements of the air vehicle structural
model must coordinate internally across processors as well as with the environment
model and the instructor portions of the simulation running on (potentially) different
processors.

The constituents of the Structural Model architectural pattern are, at the coarsest
level, the executive and the application.

The executive portion handles coordination issues: real-time scheduling of
subsystems, synchronization between processors, event management from
the instructor�operator station, data sharing, and data integrity.

The application portion handles the computation of the flight simulation:
modeling the air vehicle. Its functions are implemented by subsystems and
their children.

First we will discuss the air vehicle's executive modules in detail and then return to
a discussion of its application modules.

MODULES OF THE AIR VEHICLE MODEL EXECUTIVE

Figure 8.4 shows the air vehicle structural model with the executive pattern given in
detail. The modules in the executive are the Timeline Synchronizer, the Periodic
Sequencer, the Event Handler, and the Surrogates for other portions of the
simulator.

Figure 8.4. The Structural Modeling pattern of an air vehicle
system processor with focus on the executive

Timeline Synchronizer

The timeline synchronizer is the base scheduling mechanism for the air vehicle
model. It also maintains the simulation's internal notion of time. The other three
elements of the executive�the periodic sequencer, the event handler, and the
surrogates�all must be allocated processor resources. The timeline synchronizer
also maintains the current state of the simulation.

The timeline synchronizer passes both data and control to the other three elements
and receives data and control from them. It also coordinates time with other
portions of the simulator. This can include other processors responsible for a portion
of the air vehicle model which have their own timeline synchronizers. Finally, the
timeline synchronizer implements a scheduling policy for coordinating both periodic
and aperiodic processing. For the sake of continuity, precedence is given to the
periodic processing.

Periodic Sequencer

The periodic sequencer is used to conduct all periodic processing performed by the
simulation's subsystems. This involves invoking the subsystems to perform periodic
operations according to fixed schedules.

The periodic sequencer provides two operations to the timeline synchronizer. The
import operation requests that the periodic sequencer invoke subsystems to
perform their import operation. The update operation requests that the periodic
sequencer invoke subsystems' update operations.

To conduct its processing, the periodic sequencer requires two capabilities. The first
is to organize knowledge of a schedule. By schedule we mean the patterns of
constituent invocations that represent the orders and rates of change propagation
through the simulation algorithms realized by the constituents. The enactment of
these patterns essentially represents the passage of time within the air vehicle
simulation in its various operating states. The second capability is to actually invoke
the subsystems through their periodic operations by means of some dispatching
mechanism.

Event Handler

The event handler module is used to orchestrate all aperiodic processing performed
by subsystems. This involves invoking their aperiodic operations.

The event handler provides four operations to the timeline synchronizer: configure
(used to start a new training mission, for example), constituent_ event (used
when an event is targeted for a particular instance of a module), get_outbound_msg
(used by the timeline synchronizer to conduct aperiodic processing while in system
operating states, such as operate, that are predominantly periodic), and send (used
by subsystem controllers to send events to other subsystem controllers and
messages to other systems).

To perform its processing, the event handler requires two capabilities. The first
capability is to determine which subsystem controller receives an event, using
knowledge of a mapping between event identifiers and subsystem instances. The
second capability is to invoke the subsystems and to extract required parameters
from events before invocation.

Surrogate

Surrogates are an application of the "use an intermediary" tactic and are responsible
for system-to-system communication between the air vehicle model and the
environment model or the instructor station. Surrogates are aware of the physical
details of the system with which they communicate and are responsible for
representation, communication protocol, and so forth.

For example, the instructor station monitors state data from the air vehicle model
and displays it to the instructor. The surrogate gathers the correct data when it gets
control of the processor and sends it to the instructor station. In the other direction,
the instructor may wish to set a particular state for the crew. This is an event
received by the surrogate and passed to the event processor for dispatching to the
appropriate subsystems.

This use of surrogates means that both the periodic scheduler and the event handler
can be kept ignorant of the details of the instructor station or the platform on which
the environment model is operating. All of the system-specific knowledge is
embedded in the surrogate. Any change to these platforms will not propagate
further than the surrogate in the air vehicle model system.

MODULES OF THE AIR VEHICLE MODEL APPLICATION

Figure 8.5 shows the module types that exist in the application subpart of the air
vehicle structural model. There are only two: the Subsystem Controller and the
Controller Child. Subsystem controllers pass data to and from other subsystem
controller instances and to their children. Controller children pass data only to and
from their parents, not to any other controller children. They also receive control
only from their parents and return it only to their parents. These restrictions on data
and control passing preclude a controller child from passing data or control even to
a sibling. The rationale for this is to assist integration and modifiability by
eliminating coupling of a child instance with anything other than its parent. Any
effect of modification or integration is mediated by the parent subsystem controller.
This is an example of the use of the "restrict communication" tactic.

Figure 8.5. The application module types

Subsystem Controller

Subsystem controllers are used to interconnect a set of functionally related children
to do the following:

Achieve the simulation of a subsystem as a whole.

Mediate control and aperiodic communication between the system and
subsystems.

They are also responsible for determining how to use the capabilities of their
children to satisfy trainer-specific functionality such as malfunctions and the setting
of parameters.

Because the Structural Model pattern restricts communication among controller
children, a subsystem controller must provide the capability to make logical
connections between its children and those of other subsystems. Inbound
connections supply inputs produced outside of the subsystem that the subsystem's
children need for their simulation algorithms. Outbound connections satisfy similar
needs of other subsystems and of surrogates. These connections appear as sets of
names by which a subsystem controller internally refers to data considered to be
outside of itself. When such a name is read or written, the appropriate connections
are assumed to be made. How the connections are actually made is determined
later in the detailed design and is a variation point of the pattern (see Chapter 14,
Product Lines, for a discussion of variation points). In addition to making
connections between its children and those of other subsystems, the subsystem
controller also acts as an intermediary among its own children since restricting
communication means that they are not allowed to directly communicate among
themselves.

As we mentioned, a flight simulator can be in one of several states. This is
translated through the executive to a particular executive state. The executive then
reports its current state to the subsystem controller. The two states that are
relevant here are operate and stabilize. The operate state instructs the subsystem
controller to perform its normal computations relevant to advancing the state of the
simulation. The stabilize state tells the subsystem controller to terminate its current
computation in a controlled fashion (to prevent the motion platform from harming
the crew through uncontrolled motion) as follows:

Retrieve and locally store the values of inbound connections under the direct
control of an executive. Such a capability addresses issues of data consistency
and time coherence.

Stabilize the simulation algorithms of its children under the control of
executive instances and report whether it considers the subsystem as a whole
to be currently stable.

Subsystem controllers must be able to do the following:

Initialize themselves and each of their children to a set of initial conditions in
response to an event.

Route requests for malfunctions and the setting of simulation parameters to
their children based on knowledge of child capabilities.

Finally, subsystem controllers may support the reconfiguration of mission
parameters such as armaments, cargo loads, and the starting location of a training
mission. Subsystem controllers realize these capabilities through periodic and
aperiodic operations made available to the periodic sequencer and event handler,
respectively.

Subsystem controllers must support the two periodic operations�update and
import�and may support two others (which are aperiodic)�process_event and
configure.

Update

The update operation causes the subsystem controller to perform periodic
processing appropriate to the current system operating state, which is provided as
an input parameter. In the operate state, the update operation causes the
subsystem controller to retrieve inputs needed by its children by means of inbound
connections, to execute operations of its children in some logical order so that
changes can be propagated through them, and to retrieve their outputs for use in
satisfying another's inputs or the subsystem's outbound connections. More than just
a sequencer, this algorithm provides a logical "glue" that cements the children into
some coherent, aggregate simulation. This glue may include computations as well
as data transformations and conversions.

In the stabilize state, the update operation is used to request that the subsystem
controller perform one iteration of its stabilization algorithm, and to determine
whether locally defined stability criteria are satisfied. The update operation provides
one output parameter, indicating whether the subsystem controller considers the
subsystem to be currently stable. This assumes that such a determination can be
made locally, which may not be valid in all circumstances.

Subsystem controllers may provide the capability to do the following tasks.

Import

The import operation is used to request that the subsystem controller complete
certain of its inbound connections by reading their values and to locally store their
values for use in a subsequent update operation.

There are two aperiodic operations provided by subsystem controllers:
process_event and configure.

Process_event

The process_event operation is used in operating states that are predominantly
periodic, such as operate, to ask the subsystem controller to respond to an event.
The event is provided by an input parameter to the operation. Several events from

the instructor�operator station fall into this category, such as
process_malfunction, set_parameter, and hold_parameter.

Configure

The configure operation is used in system operating states, like initialize, in which
the processing is predominantly aperiodic. This operation is used to establish a
named set of conditions such as some training device configuration or training
mission. The information the subsystem controller needs to establish the condition
may be provided as an input parameter on the operation, as a location in a memory
on secondary storage, or in a database where the information has been stored for
retrieval. To complete the operation, the subsystem controller invokes operations of
its children that cause the children to establish the conditions.

Controller Children

Air vehicle model controller children may be simulations of real aircraft components,
such as a hydraulic pump, an electrical relay, or a fuel tank. They can support
simulator-specific models such as forces and moments, weights and balances, and
the equations of motion. They can localize the details of cockpit equipment, such as
gauges, switches, and displays. No matter what specific functionality they simulate,
controller children are all considered to be of the same module type.

In general, controller children support the simulation of an individual part, or object,
within some functional assembly. Each child provides a simulation algorithm that
determines its own state based on the following:

Its former state

Inputs that represent its connections with logically adjacent children

Some elapsed time interval

A child makes this determination as often as it is requested to do so by its
subsystem controller, which provides the required inputs and receives the child's
outputs. This capability is called updating.

A child can support the capability of producing abnormal outputs, reflecting a
malfunction condition. In addition to potentially modeling changes in normal
operating conditions, such as wear and tear, which can result in malfunctions over
time, children can be told to start and stop malfunctioning by their subsystem
controller.

A controller child can also support the setting of a simulation parameter to a
particular value. Simulation parameters are external names for performance
parameters and decision criteria used in the controller child's simulation algorithm.

Each child can initialize itself to some known condition. Like other child capabilities,
parameter setting and initialization must be requested by the subsystem controller.

The updating, malfunctioning, parameter setting, and initializing capabilities differ in
the incidence of their use by the subsystem controller. The child is requested to
update on a periodic basis, effecting the passage of time within the simulation.
Requests for the other capabilities are made only sporadically.

Controller children support these capabilities through a set of periodic and aperiodic
operations made available to the subsystem controller. update is the single periodic
operation and is used to control the periodic execution of the simulation algorithm.
The child receives external inputs and returns its outputs through parameters on the
operation. Two aperiodic operations are provided by the children: process_event
and configure.

All logical interactions among children are mediated by the subsystem controller,
which is encoded with knowledge of how to use the child operations to achieve the
simulation requirements allocated to the subsystem as a whole. This includes the
following:

Periodically propagating state changes through the children using their update
operations

Making logical connections among children using the input and output
parameters on these operations

Making logical connections among children and the rest of the simulation using
the subsystem's inbound and outbound connections

Controller child malfunctions are assumed to be associated with abnormal operating
conditions of the real-world components being modeled. Therefore, the presence
and identities of these malfunctions are decided by the child's designer and made
known to the subsystem controller's designer for use in realizing subsystem
malfunction requests. Subsystem malfunctions need not correspond directly to those
supported by the children, and certain of them can be realized as some aggregation
of more primitive failures supported by children. It is the subsystem controller's
responsibility to map between low-level failures and subsystem-level malfunctions.

Likewise, the presence and identities of simulation parameters are decided by the
controller child's designer based on the characteristics of the child's simulation
algorithm. They are made known to the subsystem controller's designer for use in
realizing subsystem requests or for other purposes for which they are intended or
are suitable to support.

SKELETAL SYSTEM

What we have thus far described is the basis for a skeletal system, as defined in
Chapter 7. We have a structural framework for a flight simulator, but none of the

details�the actual simulator functionality�have been filled in. This is a general
simulation framework that can be used for helicopter and even nuclear reactor
simulation. The process of making a working simulation consists of fleshing out this
skeleton with subsystems and controller children appropriate to the task at hand.
This fleshing out is dictated by the functional partitioning process, which we will
discuss next.

It is rather striking that an entire flight simulator, which can easily comprise millions
of lines of code, can be completely described by only six module types: controller
children, subsystem controllers, timeline synchronizer, periodic sequencer, event
handler, and surrogate. This makes the architecture (comparatively) simple to build,
understand, integrate, grow, and otherwise modify.

Equally important, with a standard set of fundamental patterns one can create
specification forms, code templates, and exemplars that describe those patterns.
This allows for consistent analysis. When the patterns are mandated, an architect
can insist that a designer use only the provided building blocks. While this may
sound draconian, a small number of fundamental building blocks can, in fact, free a
designer to concentrate on the functionality�the reason that the system is being
built in the first place.

ALLOCATING FUNCTIONALITY TO CONTROLLER CHILDREN

Now that we have described the architectural pattern with which the air vehicle
model is built, we still need to discuss how operational functionality is allocated to
instances of the modules in that pattern. We do this by defining instances of the
subsystem controllers, to detail the specifics of the aircraft to be simulated. The
actual partitioning depends on the systems on the aircraft, the complexity of the
aircraft, and the types of training for which the simulator is designed.

In this section, we sketch a sample partitioning. We begin with a desire to partition
the functionality to controller children based on the underlying physical aircraft. To
accomplish this we use an object-oriented decomposition approach, which has a
number of virtues, as follows:

It maintains a close correspondence between the aircraft partitions and the
simulator, and this provides us with a set of conceptual models that map
closely to the real world. Our understanding of how the parts interact in the
aircraft helps us understand how the parts interact in the simulator. It also
makes it easier for users and reviewers to understand the simulator because
they are familiar with the aircraft (the problem domain) and can easily transfer
this familiarity to it (i. e., the solution domain).

Experience with past flight simulators has taught us that a change in the
aircraft is easily identifiable with aircraft partitions. Thus, the locus of change
in the simulator corresponds to analogous aircraft partitions, which tends to
keep the simulator changes localized and well defined. It also makes it easier
to understand how changes in the aircraft affect the simulator, therefore

making it easier to assess the cost and time required for changes to be
implemented.

The number and size of the simulator interfaces are reduced. This derives from
a strong semantic cohesion within partitions, placing the largest interfaces
within partitions instead of across them.

Localization of malfunctions is also achieved as they are associated with
specific pieces of aircraft equipment. It is easier to analyze the effects of
malfunctions when dealing with this physical mapping, and the resulting
implementations exhibit good locality. Malfunction effects are readily
propagated in a natural fashion by the data that the malfunctioning partition
produces. Higher-order effects are handled the same as first-order effects. For
example, a leak in a hydraulic connection is a first-order effect and is directly
modeled by a controller child. The manifestation of this leak as the inability to
manipulate a flight control is a higher-order effect but it happens naturally as
a result of the propagation of simulation data from child to subsystem
controller and from one subsystem to another.

In breaking down the air vehicle modeling problem into more manageable units, the
airframe becomes the focus of attention. Groups exist for the airframe, the forces on
it, the things outside it, and the things inside it but ancillary to its operation. This
typically results in the following specific groups:

Kinetics. Elements that deal with forces exerted on the airframe

Aircraft systems. Parts concerned with common systems that provide the
aircraft with various kinds of power or that distribute energy within the
airframe

Avionics. Things that provide some sort of ancillary support to the aircraft but
that are not directly involved in the kinetics of the air vehicle model, the
vehicle's control, or operation of the basic flight systems (e.g., radios)

Environment. Things associated with the environment in which the air vehicle
model operates

GROUP DECOMPOSITION

The coarsest decomposition of the air vehicle model is the group. Groups
decompose into systems, which in turn decompose into subsystems. Subsystems
provide the instances of the subsystem controllers. Groups and systems are not
directly reflected in the architecture� there is no group controller�and exist to
organize the functionality assigned to the various instances of subsystem
controllers. This decomposition is managed via a process using n-square charts.

n-Square Charts

One method of presenting information about the interfaces in a system is n-square
charts. We will make use of this presentation method to illustrate how the partitions
we selected relate to each other. Because some of the factors we consider in making
partitioning decisions are based on the partition interfaces, n-square charts are
useful in evaluating those decisions. They are a good method for capturing the input
and output of a module and can illustrate the abstractions used in various parts of
the design.

An example of an n-square chart is shown in Figure 8.6. The boxes on the main
diagonal represent the system partitions. Their inputs are found in the column in
which the partition lies; their outputs are shown in the corresponding row. The full
set of inputs to a partition is thus the union of all the cell contents of the partition's
column. Conversely, the full set of outputs is the union of all the cell contents in the
row in which the partition resides. The flow of data from one partition to another is
to the right, then down, to the left, and then up.

Figure 8.6. The n-square chart

Figure 8.7 shows an n-square chart depicting the interfaces between the groups
identified above. Interfaces external to the air vehicle model have been omitted for
simplicity. These interfaces terminate in interface subsystems. The data elements
shown on this chart are aggregate collections of data to simplify the presentation.
The interfaces are not named here; nor are they typed. As we investigate partitions,
looking at more limited sets of elements, the information presented becomes more
detailed. Systems engineers can use this approach to the point where all of the
primitive data objects in the interfaces are shown. During detailed design, the
interface types and names will be determined.

Figure 8.7. Air vehicle model domain n-square for groups

Not all of the air vehicle models will correspond to aircraft structure. The
aerodynamics models are expressions of the underlying physics of the vehicle's
interaction with the environment. There are few direct analogs to aircraft parts.
Partitioning this area means relying on the mathematical models and physical
entities that describe the vehicle's dynamics. Partitioning correctly based on
mathematical models that affect the total aircraft is more difficult than partitioning
based on the aircraft's physical structure.

DECOMPOSING GROUPS INTO SYSTEMS

The next step is to refine groups into systems. A system and a group can be units of
integration: The functionality of a system is a relatively self-contained solution to a
set of simulation problems. These units are a convenient focus for testing and
validation. Group partitions exist as collections of code modules implemented by one
engineer or a small group of engineers. We can identify systems within the groups
we have defined. We will look briefly at the kinetics group systems as an example.

Systems in the Kinetics Group

These systems consist of elements concerned with the kinetics of the vehicle.
Included in this group are elements directly involved in controlling the vehicle's
motion and modeling the interaction of the vehicle and its control surfaces with the
environment. The systems identified in this group are:

Airframe

Propulsion

Landing gear

Flight controls

All of the subsystems in the propulsion system shown in Figure 8.8 deal with the
model of the aircraft's engines. Multiple engines are handled by creating multiple
sets of state variables and duplicate instances of objects, where appropriate. This
system's principal purpose is to calculate engine thrust, moments caused by rotation
of engine parts, and the forces and moments caused by mass distribution of fuel.

Figure 8.8. A propulsion subsystem

The aircraft's fuel system is grouped here because its primary interface is to the
engines. It calculates the forces acting on the airframe from the movement of the
fuel within the tanks as well as the gravitational effect of the fuel mass.

At this point we have identified the division of functionality, its allocation to
subsystems and subsystem controllers, and the connections among subsystems. To
complete the architecture, we need to do the following:

Identify the controller children instances for the propulsion subsystem.

Similarly decompose the other groups, their systems, and their subsystems.

To summarize, we decomposed the air vehicle into four groups: kinetics, aircraft
systems, avionics, and environment. We then decomposed the kinetics group into
four systems: airframe, propulsion, landing gear, and flight controls. Finally, we
presented a decomposition of the propulsion system into a collection of subsystems.

8.4 Summary

In this chapter, we described an architecture for flight simulators that was designed
to achieve the quality attributes of performance, integrability, and modifiability. And
projects were able to achieve these results with cost savings.For example, onsite
installation teams were 50% of the size previously required because they could
locate and correct faults more easily. The design achieves those qualities by
restricting the number of module type configurations in the Structural Model
architectural pattern, by restricting communication among the module types, and by
decomposing the functionality according to anticipated changes in the underlying
aircraft.

The improvements in these simulators have principally accrued from a better
understanding of, and adherence to, a well-analyzed and well-documented software
architecture. Chastek and Brownsword describe some of the results achieved
through the use of this pattern [Chastek 96, 28]:

In a previous data-driven simulator of comparable size (the B-52),
2000�3000 test descriptions (test problems) were identified during factory
acceptance testing. With their structural modeling project, 600�700 test
descriptions were reported. They found the problems easier to correct; many
resulted from misunderstandings with the documentation… . Staff typically
could isolate a reported problem off-line rather than going to a site… . Since
the use of structural modeling, defect rates for one project are half that found
on previous data-driven simulators.

At the start of this chapter we identified three quality goals of the Structural Model
pattern: performance, integrability, and modifiability for operational requirements.
Here, we recap how the pattern achieves these goals. Table 8.1 summarizes this
information.

Table 8.1. How the Structural Modeling Pattern Achieves Its Goals

Goal How Achieved Tactics Used

Performance Periodic scheduling strategy using time budgets Static scheduling

Integrability Separation of computation from coordination

Indirect data and control connections

Restrict communication

Use intermediary

Goal How Achieved Tactics Used

Modifiability Few module types

Physically based decomposition

Restrict communication

Semantic coherence

Interface stability

PERFORMANCE

A key quality goal of the Structural Model pattern is real-time performance. This is
achieved primarily through operation of the executive and use of a periodic
scheduling strategy. Each subsystem invoked by the executive has a time budget,
and the hardware for the simulator is sized so that it can accommodate the sum of
all time budgets. Sometimes this involves a single processor; other times, multiple
processors. Given this scheduling strategy, the achievement of real-time
performance comes from requiring the sum of the times allocated to the subsystems
involved in the control loops to be within one period of the simulator. Thus, real-time
performance is guaranteed by a combination of architectural patterns (the executive
module configurations) and the functional decomposition (how the instances are
invoked).

INTEGRABILITY

In the Structural Model pattern, both the data connections and the control
connections between two subsystems are deliberately minimized. First, within a
subsystem the controller children can pass neither control nor data directly to any
sibling. All data and control transfers occur only through mediation by the
subsystem controller. Thus, integrating another controller child into a subsystem
requires that the data in the subsystem controller be internally consistent and that
the data transferred between the subsystem controller and the controller children be
correct. This is a much simpler process than if a new child communicated with other
children because all of them would be involved in the integration. That is, achieving
integration has been reduced to a problem that is linear, rather than exponential, in
the number of children.

When integrating two subsystems, none of their children interact directly and so the
problem is again reduced to ensuring that the two subsystems pass data
consistently. It is possible that the addition of a new subsystem will affect several
other subsystems, but because the number of subsystems is substantially less than
the number of controller children, this problem is limited in complexity.

In the Structural Model, therefore, integrability is simplified by deliberately
restricting the number of possible connections. The cost of this restriction is that the
subsystem controllers often act purely as data conduits for the various controller
children, and this adds complexity and performance overhead. In practice, however,

the benefits far outweigh the cost. These benefits include the creation of a skeletal
system that allows incremental development and easier integration. Every project
that has used structural modeling has reported easy, smooth integration.

MODIFIABILITY

Modifiability is simplified when there are few base module configurations for the
designer and maintainer to understand and when functionality is localized so that
there are fewer subsystem controllers or controller children involved in a particular
modification. Using n-square charts helps to reduce connections.

Furthermore, for subsystems that are physically based, the decomposition follows
the physical structure, as do modifications. Those subsystems that are not
physically based, such as the equations of motion, are less likely to be changed.
Users of structural modeling reported that side effects encountered during
modifications were rare.

8.5 For Further Reading

For an historical introduction to the computation and engineering involved in
creating flight simulators, see [Fogarty 67], [Marsman 85], and [Perry 66].

The Structural Modeling pattern has evolved since 1987. Some of the early writings
on this pattern can be found in [Lee 88], [Rissman 90], and [Abowd 93]. A report
on results of using the pattern can be found in [Chastek 96].

The reader interested in more details about the functional decomposition used in
example flight simulators is referred to [ASCYW 94].

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

8.6 Discussion Questions

1:

The strong relationship between the structure of the system being simulated and
the structure of the simulating software is one of the things that makes the
Structural Modeling pattern so flexible with respect to mirroring the modeled
system in the event of change, extension, or contraction. Suppose the
application domain were something other than simulation. Would the Structural
Modeling pattern still be a reasonable approach? Why or why not? Under what
circumstances would it or would it not be?

2:
The data and control flow constraints on subsystem controllers and controller
children are very stringent. As a designer and implementor, do you think you
would welcome these constraints or find them too restrictive?

3: How does the use of a skeletal system restrict the designer? How is this
beneficial and how is it detrimental?

Chapter 9. Documenting Software Architectures
with Felix Bachmann, David Garlan, James Ivers, Reed Little, Robert Nord, and
Judith Stafford

Note: Felix, James, Reed, and Robert are members of the SEI technical staff; David
is an associate professor at Carnegie Mellon University's School of Computer
Science; and Judith is an assistant professor at Tufts University's Department of
Computer Science.

Books are the bees which carry the quickening pollen from one to another
mind.

�James Russell Lowell

As we have seen over and over, the software architecture for a system plays a
central role in system development and in the organization that produces it. The
architecture serves as the blueprint for both the system and the project developing
it. It defines the work assignments that must be carried out by design and
implementation teams and it is the primary carrier of system qualities such as
performance, modifiability, and security�none of which can be achieved without a
unifying architectural vision. Architecture is an artifact for early analysis to make
sure that the design approach will yield an acceptable system. Moreover,
architecture holds the key to post-deployment system understanding, maintenance,
and mining efforts. In short, architecture is the conceptual glue that holds every
phase of the project together for all of its many stakeholders.

Documenting the architecture is the crowning step to crafting it. Even a perfect
architecture is useless if no one understands it or (perhaps worse) if key
stakeholders misunderstand it. If you go to the trouble of creating a strong
architecture, you must describe it in sufficent detail, without ambiguity, and
organized in such a way that others can quickly find needed information. Otherwise,
your effort will have been wasted because the architecture will be unusable.

This chapter will help you decide what information about an architecture is
important to capture, and it will discuss guidelines for capturing it. It will also
discuss notations that are available, including UML.

9.1 Uses of Architectural Documentation

The architecture for a system depends on the requirements levied on it, so too does
the documentation for an architecture depend on the requirements levied on it�that
is, how we expect it will be used. Documentation is decidedly not a case of "one size
fits all." It should be sufficiently abstract to be quickly understood by new
employees but sufficiently detailed to serve as a blueprint for analysis. The
architectural documentation for, say, security analysis may well be different from the
architectural documentation we would hand to an implementor. And both of these
will be different from what we put in a new hire's familiarization reading list.

Architecture documentation is both prescriptive and descriptive. That is, for some
audiences it prescribes what should be true by placing constraints on decisions to be
made. For other audiences it describes what is true by recounting decisions already
made about a system's design.

All of this tells us that different stakeholders for the documentation have different
needs�different kinds of information, different levels of information, and different
treatments of information. We should not expect to produce one architectural
document and have every consumer read it in the same way. Rather, we should
produce documentation that helps a stakeholder quickly find the information that
stakeholder is interested in, with a minimum of information that is irrelevant (to
that stakeholder) standing in the way.

This might mean producing different documents for different stakeholders. More
likely, it means producing a single documentation suite with a roadmap that will help
different stakeholders navigate through it.

One of the most fundamental rules for technical documentation in general, and
software architecture documentation in particular, is to write from the point of view
of the reader. Documentation that was easy to write but is not easy to read will not
be used, and "easy to read" is in the eye of the beholder�or in this case, the
stakeholder.

Understanding who the stakeholders are and how they will want to use the
documentation will help us organize it and make it accessible to and usable for
them. Back in Chapter 2, we said that a primary purpose of architecture was to
serve as a communication vehicle among stakeholders. Documentation facilitates
that communication. Some examples of architectural stakeholders and the
information they might expect to find in the documentation are given in Table 9.1.

In addition, each stakeholders come in two varieties: seasoned and new. A new
stakeholder will want information similar in content to what his seasoned
counterpart wants, but in smaller and more introductory doses. Architecture
documentation is a key means for educating people who need an overview: new
developers, funding sponsors, visitors to the project, and so forth.

Perhaps one of the most avid consumers of architectural documentation is none
other than the architect at some time in the project's future�either the same
person or a replacement but in either case someone guaranteed to have an enor

mous stake in it. New architects are interested in learning how their predecessors
tackled the difficult issues of the system and why particular decisions were made.

Documentation as an Introduction to Software
Architecture
I had just finished my presentation on the Attribute Driven Design (ADD)
method (see Chapter 7). The customer, a group within a business unit of a
large manufacturing company, had seen most of our wares: ATAM
(Chapter 11), reconstruction (Chapter 10), and our overall product line
pitch (Chapter 14). I sat back, satisfied, and waited expectantly.

The customer had a problem however. They wanted to do architecture-
based development, but they had a small development group and it would
take several years to internalize all that we had shown them. In the
meantime, they had products to make and contracts to meet. They just
did not have the resources to do all of what they had seen. We needed
something to let them get started on the architecture path without having
to understand everything involved.

The discussion turned to documentation and the book we were writing on
documenting software architecture. The customer was interested in
documentation as a means of maintaining corporate knowledge about
their products. We ended this meeting agreeing to do an exercise in
architectural reconstruction and to document the results according to the
principles described in this chapter.

I had always thought of documentation as the tail end of the design and
development process. It is necessary for all of the reasons that
architecture is necessary (communication, analysis, and education), but it
is a derivative, not a driver.

The customer had a different perspective. They viewed documenting the
software architecture as an ideal training vehicle for their developers.
They had to do documentation in any case, so giving them a template for
what to document was squarely in the corporate culture. In the process of
filling in the templates, they would have to document different views (part
of the engagement was for us to define the views useful to them), they
would need to argue about how the artifact they were designing satisfied
different quality goals, and, in general, they could learn about
architectural concepts in the process of documentation.

This use of documentation as a training vehicle was a new one to me, but
it has a great deal of power. For someone enmeshed in the details of the
bits, thinking about architecture and architectural issues is a big jump.
Understanding the mindset involved in software architecture through
documentation seems to be a very good educational tool without a great
deal of overhead for the consumer.

� LJB

Even if the future architect is the same person, that architect will use the
documentation as a repository of thought, as a storehouse of detailed design
decisions too numerous and intertwined to be reproducible from memory alone.

Table 9.1. Stakeholders and the Communication Needs Served by
Architecture

Stakeholder Use

Architect and
requirements
engineers
who
represent
customer(s)

To negotiate and make tradeoffs among competing requirements

Architect and
designers of
constituent
parts

To resolve resource contention and establish performance and other
kinds of runtime resource consumption budgets

Implementors To provide inviolable constraints (plus exploitable freedoms) on
downstream development activities

Testers and
integrators

To specify the correct black-box behavior of the pieces that must fit
together

Maintainers To reveal areas a prospective change will affect

Designers of
other
systems with
which this
one must
interoperate

To define the set of operations provided and required, and the
protocols for their operation

Stakeholder Use

Quality
attribute
specialists

To provide the model that drives analytical tools such as rate-
monotonic real-time schedulability analysis, simulations and
simulation generators, theorem provers, verifiers, etc. These tools
require information about resource consumption, scheduling policies,
dependencies, and so forth. Architecture documentation must contain
the information necessary to evaluate a variety of quality attributes
such as security, performance, usability, availability, and modifiability.
Analyses for each attributes have their own information needs.

Managers To create development teams corresponding to work assignments
identified, to plan and allocate project resources, and to track
progress by the various teams

Product line
managers

To determine whether a potential new member of a product family is
in or out of scope, and if out by how much

Quality
assurance
team

To provide a basis for conformance checking, for assurance that
implementations have been faithful to the architectural prescriptions

Source: Adapted from [Clements 03]

9.2 Views

Perhaps the most important concept associated with software architecture
documentation is the view. Recall from Chapter 2 that we defined a software
architecture for a system as "the structure or structures of the system, which
comprise elements, the externally visible properties of those elements, and the
relationships among them." And we said that a view is a representation of a
coherent set of architectural elements, as written by and read by system
stakeholders. A structure is the set of elements itself, as they exist in software or
hardware.

Also in Chapter 2 we discussed a software architecture as a complex entity that
cannot be described in a simple one-dimensional fashion. The analogy with building
architecture, if not taken too far, proves illuminating. There is no single rendition of
a building architecture but many: the room layouts, the elevation drawings, the
electrical diagrams, the plumbing diagrams, the ventilation diagrams, the traffic
patterns, the sunlight and passive solar views, the security system plans, and many
others. Which of these views is the architecture? None of them. Which views convey
the architecture? All of them.

The concept of a view, which you can think of as capturing a structure, provides us
with the basic principle of documenting software architecture:

Documenting an architecture is a matter of documenting the relevant views
and then adding documentation that applies to more than one view.

This principle is useful because it breaks the problem of architecture documentation
into more tractable parts, which provide the structure for the remainder of this
chapter:

Choosing the relevant views

Documenting a view

Documenting information that applies to more than one view

9.3 Choosing the Relevant Views

Recall that we introduced a set of structures and views in Chapter 2. What are the
relevant views? This is where knowing your stakeholders and the uses they plan to make
of the documentation will help you construct the documentation package they need. The
many purposes that architecture can serve�as a mission statement for implementors, as
the starting point for system understanding and asset recovery, as the blueprint for
project planning, and so forth�are each represented by a stakeholder wanting and
expecting to use the documentation to serve that purpose. Similarly, the quality
attributes of most concern to you and the other stakeholders in the system's
development will affect the choice of what views to document. For instance, a layered
view will tell you about your system's portability. A deployment view will let you reason
about your system's performance and reliability. And so it goes. These quality attributes
are "spoken for" in the documentation by analysts (perhaps even the architect) who need
to examine the architecture to make sure the quality attributes are provided.

In short, different views support different goals and uses. This is fundamentally why we
do not advocate a particular view or a collection of views. The views you should
document depend on the uses you expect to make of the documentation. Different views
will highlight different system elements and/or relationships.

Table 9.2 shows a representative population of stakeholders and the kind of views they
tend to find useful. You should use it to help you think about who your stakeholders are
and what views might serve them well. Which views are available from which to choose?
Chapter 2 listed a set of views, some of which are reflected in Table 9.2. Chapter 2
divided views into these three groups: module, component-and-connector (C&C), and
allocation. This three-way categorization reflects the fact that architects need to think
about their software in at least three ways at once:

1. How it is structured as a set of implementation units

2. How it is structured as a set of elements that have runtime behavior and
interactions

3. How it relates to non-software structures in its environment

Table 9.2. Stakeholders and the Architecture Documentation They
Might Find Most Useful

 Module Views C&C
Views

Allocation
Views

Stakeholder DecompositionUses Class LayerVarious Deployment Implementation

Project
Manager

s s

s

d

 Module Views C&C
Views

Allocation
Views

Stakeholder DecompositionUses Class LayerVarious Deployment Implementation

Member of
Development
Team

d d d d d s s

Testers and
Integrators

d d

s s s

Maintainers d d d d d s s

Product Line
Application
Builder

d s o s s s

Customer

s o

End User

s s

Analyst d d s d s d

Infrastructure
Support

s s

s

s d

New
Stakeholder

x x x x x x x

Current and
Future
Architect

d d d d d d s

Key: d = detailed information, s = some details, o = overview information, x = anything

Source: Adapted from [Clements 03].

Other views are available. A view simply represents a set of system elements and
relationships among them, so whatever elements and relationships you deem useful to a
segment of the stakeholder community constitute a valid view. Here is a simple three-
step procedure for choosing the views for your project.

1. Produce a candidate view list. Begin by building a stakeholder/view table, like Table
9.2, for your project. Your stakeholder list is likely to be different from the one in
the table, but be as comprehensive as you can. For the columns, enumerate the
views that apply to your system. Some views (such as decomposition or uses) apply
to every system, while others (the layered view, most component-and-connector
views such as client-server or shared data) only apply to systems designed that
way. Once you have the rows and columns defined, fill in each cell to describe how
much information the stakeholder requires from the view: none, overview only,
moderate detail, or high detail.

2. Combine views. The candidate view list from step 1 is likely to yield an impractically
large number of views. To reduce the list to a manageable size, first look for views
in the table that require only overview depth or that serve very few stakeholders.
See if the stakeholders could be equally well served by another view having a
stronger constituency. Next, look for views that are good candidates to be
combined�that is, a view that gives information from two or more views at once.
For small and medium projects, the implementation view is often easily overlaid
with the module decomposition view. The module decomposition view also pairs
well with uses or layered views. Finally, the deployment view usually combines well
with whatever component-and-connector view shows the components that are
allocated to hardware elements�the process view, for example.

3. Prioritize. After step 2 you should have an appropriate set of views to serve your
stakeholder community. At this point you need to decide what to do first. How you
decide depends on the details specific to your project, but remember that you don't
have to complete one view before starting another. People can make progress with
overview-level information, so a breadth-first approach is often the best. Also, some
stakeholders' interests supersede others. A project manager or the management of
a company with which yours is partnering demands attention and information early
and often.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

9.4 Documenting a View

There is no industry-standard template for documenting a view, but the seven-part
standard organization that we suggest in this section has worked well in practice.
First of all, whatever sections you choose to include, make sure to have a standard
organization. Allocating specific information to specific sections will help the
documentation writer attack the task and recognize completion, and it will help the
documentation reader quickly find information of interest at the moment and skip
everything else.

1. Primary presentation shows the elements and the relationships among them
that populate the view. The primary presentation should contain the
information you wish to convey about the system (in the vocabulary of that
view) first. It should certainly include the primary elements and relations of
the view, but under some circumstances it might not include all of them. For
example, you may wish to show the elements and relations that come into
play during normal operation, but relegate error handling or exceptional
processing to the supporting documentation.

The primary presentation is usually graphical. In fact, most graphical notations
make their contributions in the form of the primary presentation and little else.
If the primary presentation is graphical, it must be accompanied by a key that
explains, or that points to an explanation of, the notation or symbology used.

Sometimes the primary presentation can be tabular; tables are often a superb
way to convey a large amount of information compactly. An example of a
textual primary presentation is the A-7E module decomposition view illustrated
in Chapter 3. A textual presentation still carries the obligation to present a
terse summary of the most important information in the view. In Section 9.6
we will discuss using UML for the primary presentation.

2. Element catalog details at least those elements and relations depicted in the
primary presentation, and perhaps others. Producing the primary presentation
is often what architects concentrate on, but without backup information that
explains the picture, it is of little value.[1] For instance, if a diagram shows
elements A, B, and C, there had better be documentation that explains in
sufficient detail what A, B, and C are, and their purposes or the roles they
play, rendered in the vocabulary of the view. For example, a module
decomposition view has elements that are modules, relations that are a form
of "is part of," and properties that define the responsibilities of each module. A
process view has elements that are processes, relations that define
synchronization or other process-related interaction, and properties that
include timing parameters.

[1] To emphasize that it is but a sketch of the complete picture, we call a primary presentation by itself an architectural cartoon.

In addition, if there are elements or relations relevant to the view that were
omitted from the primary presentation, the catalog is where those are
introduced and explained.

The behavior and interfaces of elements are two other aspects of an element
catalog; these will be discussed shortly.

3. Context diagram shows how the system depicted in the view relates to its
environment in the vocabulary of the view. For example, in a component-and-
connector view you show which component and connectors interact with
external components and connectors, via which interfaces and protocols.

4. Variability guide shows how to exercise any variation points that are a part of
the architecture shown in this view. In some architectures, decisions are left
unbound until a later stage of the development process, and yet the
architecture must still be documented. An example of variability is found in
software product lines where the product line architecture is suitable for
multiple particular systems (discussed in Chapter 14). A variability guide
should include documentation about each point of variation in the architecture,
including

- the options among which a choice is to be made. In a module view, the
options are the various versions or parameterizations of modules. In a
component-and-connector view, they might include constraints on
replication, scheduling, or choice of protocol. In an allocation view, they
might include the conditions under which a software element would be
allocated to a particular processor.

- the binding time of the option. Some choices are made at design time,
some at build time, and others at runtime.

5. Architecture background explains why the design reflected in the view came to
be. The goal of this section is to explain to someone why the design is as it is
and to provide a convincing argument that it is sound. An architecture
background includes

- rationale, explaining why the decisions reflected in the view were made
and why alternatives were rejected.

- analysis results, which justify the design or explain what would have to
change in the face of a modification.

- assumptions reflected in the design.

6. Glossary of terms used in the views, with a brief description of each.

7. Other information. The precise contents of this section will vary according to
the standard practices of your organization. They might include management
information such as authorship, configuration control data, and change
histories. Or the architect might record references to specific sections of a
requirements document to establish traceability. Strictly speaking, information
such as this is not architectural. Nevertheless, it is convenient to record it
alongside the architecture, and this section is provided for that purpose. In
any case, the first part of this section must detail its specific contents.

Figure 9.1 summarizes the parts of the documentation just described.

Figure 9.1. The seven parts of a documented view

DOCUMENTING BEHAVIOR

Views present structural information about the system. However, structural
information is not sufficient to allow reasoning about some system properties.
Reasoning about deadlock, for example, depends on understanding the sequence of
interactions among the elements, and structural information alone does not present
this sequencing information. Behavior descriptions add information that reveals the
ordering of interactions among the elements, opportunities for concurrency, and
time dependencies of interactions (at a specific time or after a period of time).

Behavior can be documented either about an element or about an ensemble of
elements working in concert. Exactly what to model will depend on the type of
system being designed. For example, if it is a real-time embedded system, you will
need to say a lot about timing properties and the time of events. In a banking
system, the sequence of events (e.g., atomic transactions and rollback procedures)
is more important than the actual time of events being considered. Different
modeling techniques and notations are used depending on the type of analysis to be
performed. In UML, sequence diagrams and statecharts are examples of behavioral
descriptions. These notations are widely used.

Statecharts are a formalism developed in the 1980s for describing reactive systems.
They add a number of useful extensions to traditional state diagrams such as
nesting of state and "and" states, which provide the expressive power to model
abstraction and concurrency. Statecharts allow reasoning about the totality of the
system. All of the states are assumed to be represented and the analysis techniques
are general with respect to the system. That is, it is possible to answer a question
such as Will the response time to this stimulus always be less than 0.5 seconds?

A sequence diagram documents a sequence of stimuli exchanges. It presents a
collaboration in terms of component instances and their interactions and shows the
interaction arranged in time sequence. The vertical dimension represents time and
the horizontal dimension represents different components. Sequence diagrams allow
reasoning based on a particular usage scenario. They show how the system reacts
to a particular stimulus and represent a choice of paths through the system. They
make it possible to answer a question such as What parallel activities occur when
the system is responding to these specific stimuli under these specific conditions?

DOCUMENTING INTERFACES

An interface is a boundary across which two independent entities meet and interact
or communicate with each other. Our definition of software architecture in Chapter 2
made it clear that elements' interfaces�carriers of the properties externally visible
to other elements�are architectural. Since you cannot perform analyses or system
building without them, documenting interfaces is an important part of documenting
architecture.

Documenting an interface consists of naming and identifying it and documenting its
syntactic and semantic information. The first two parts constitute an interface's
"signature." When an interface's resources are invokable programs, the signature
names the programs and defines their parameters. Parameters are defined by their
order, data type, and (sometimes) whether or not their value is changed by the
program. A signature is the information that you would find about the program, for
instance, in an element's C or C++ header file or in a Java interface.

Signatures are useful (for example, they can enable automatic build checking), but
are only part of the story. Signature matching will guarantee that a system will
compile and/or link successfully. However, it guarantees nothing about whether the
system will operate successfully, which is after all the ultimate goal. That

information is bound up in the semantics to the interface, or what happens when
resources are brought into play.

An interface is documented with an interface specification, which is a statement of
element properties the architect chooses to make known. The architect should
expose only what is needed to interact with the interface. Put another way, the
architect chooses what information is permissible and appropriate for people to
assume about the element, and what is unlikely to change. Documenting an
interface is a matter of striking a balance between disclosing too little information
and disclosing too much. Too little information will prevent developers from
successfully interacting with the element. Too much will make future changes to the
system more difficult and widespread and make the interface too complicated for
people to understand. A rule of thumb is to focus on how elements interact with
their operational environments, not on how they are implemented. Restrict the
documentation to phenomena that are externally visible.

Elements that occur as modules often correspond directly to one or more elements
in a component-and-connector view. The module and component-and-connector
elements are likely to have similar, if not identical, interfaces and documenting them
in both places would produce needless duplication. To avoid that, the interface
specification in the component-and-connector view can point to the interface
specification in the module view, and only contain the information specific to its
view. Similarly, a module may appear in more than one module view�such as the
module decomposition or uses view. Again, choose one view to hold the interface
specification and refer to it in the others.

A Template for Documenting Interfaces

Here is a suggested standard organization for interface documentation. You may
wish to modify it to remove items not relevant to your situation, or add items
unique to it. More important than which standard organization you use is the
practice of using one. Use what you need to present an accurate picture of the
element's externally visible interactions for the interfaces in your project.

1. Interface identity. When an element has multiple interfaces, identify the
individual interfaces to distinguish them. This usually means naming them.
You may also need to provide a version number.

2. Resources provided. The heart of an interface document is the resources that
the element provides. Define them by giving their syntax, their semantics
(what happens when they are used), and any restrictions on their usage.
Several notations exist for documenting an interface's syntax. One is the
OMG's Interface Definition Language (IDL), used in the CORBA community. It
provides language constructs to describe data types, operations, attributes,
and exceptions. The only language support for semantic information is a
comment mechanism. Most programming languages have built-in ways to
specify the signature of an element. C header (.h) files and Ada package
specifications are two examples. Finally, using the <<interface>> stereotype
in UML (as shown in Figure 9.4) provides the means for conveying syntactic

information about an interface. At a minimum, the interface is named; the
architect can also specify signature information.

Resource syntax. This is the resource's signature. The signature includes
any information another program will need to write a syntactically
correct program that uses the resource. The signature includes the
resource name, names and logical data types of arguments (if any), and
so forth.

Resource semantics. This describes the result of invoking the resource. It
might include

- assignment of values to data that the actor invoking the resource
can access. It might be as simple as setting the value of a return
argument or as far-reaching as updating a central database.

- events that will be signaled or messages that will be sent as a
result of using the resource.

- how other resources will behave in the future as the result of
using this resource. For example, if you ask a resource to destroy
an object, trying to access that object in the future through other
resources will produce quite a different outcome (an error).

- humanly observable results. These are prevalent in embedded
systems; for example, calling a program that turns on a display in
a cockpit has a very observable effect: The display comes on.

In addition, the statement of semantics should make it clear
whether the resource execution will be atomic or may be
suspended or interrupted. The most widespread notation for
conveying semantic information is natural language. Boolean
algebra is often used to write down preconditions and
postconditions, which provide a relatively simple and effective
method for expressing semantics. Traces are also used to convey
semantic information by writing down sequences of activities or
interactions that describe the element's response to a specific use.

Resource usage restrictions. Under what circumstances may this
resource be used? Perhaps data must be initialized before it can be read,
or a particular method cannot be invoked unless another is invoked first.
Perhaps there is a limit on the number of actors that can interact via this
resource at any instant. Perhaps only one actor can have ownership and
be able to modify the element whereas others have only read access.
Perhaps only certain resources or interfaces are accessible to certain
actors to support a multi-level security scheme. If the resource requires
that other resources be present, or makes other assumptions about its
environment, these should be documented.

Figure 9.4. Interfaces in UML

3. Data type definitions. If any interface resources employ a data type other than
one provided by the underlying programming language, the architect needs to
communicate the definition of that data type. If it is defined by another
element, then a reference to the definition in that element's documentation is
sufficient. In any case, programmers writing elements using such a resource
need to know (a) how to declare variables and constants of the data type; (b)
how to write literal values in the data type; (c) what operations and
comparisons may be performed on members of the data type; and (d) how to
convert values of the data type into other data types, where appropriate.

4. Exception definitions. These describe exceptions that can be raised by the
resources on the interface. Since the same exception might be raised by more
than one resource, it is often convenient to simply list each resource's
exceptions but define them in a dictionary collected separately. This section is
that dictionary. Common exception-handling behavior can also be defined
here.

5. Variability provided by the interface. Does the interface allow the element to
be configured in some way? These configuration parameters and how they
affect the semantics of the interface must be documented. Examples of
variability include the capacities of visible data structures and the performance
characteristics of underlying algorithms. Name and provide a range of values
for each configuration parameter and specify the time when its actual value is
bound.

6. Quality attribute characteristics of the interface. The architect needs to
document what quality attribute characteristics (such as performance or
reliability) the interface makes known to the element's users. This information
may be in the form of constraints on implementations of elements that will
realize the interface. Which qualities you choose to concentrate on and make
promises about will depend on context.

7. Element requirements. What the element requires may be specific, named
resources provided by other elements. The documentation obligation is the
same as for resources provided: syntax, semantics, and any usage

restrictions. Often it is convenient to document information like this as a set of
assumptions that the element's designer has made about the system. In this
form, they can be reviewed by experts who can confirm or repudiate the
assumptions before design has progressed too far.

8. Rationale and design issues. As with rationale for the architecture (or
architectural views) at large, the architect should record the reasons for an
element's interface design. The rationale should explain the motivation behind
the design, constraints and compromises, what alternative designs were
considered and rejected (and why), and any insight the architect has about
how to change the interface in the future.

9. Usage guide. Item 2 and item 7 document an element's semantic information
on a per resource basis. This sometimes falls short of what is needed. In some
cases semantics need to be reasoned about in terms of how a broad number
of individual interactions interrelate. Essentially, a protocol is involved that is
documented by considering a sequence of interactions. Protocols can represent
the complete behavior of the interaction or patterns of usage that the element
designer expects to come up repeatedly. If interacting with the element via its
interface is complex, the interface documentation should include a static
behavioral model such as a statechart, or examples of carrying out specific
interactions in the form of sequence diagrams. This is similar to the view-level
behaviors presented in the previous section, but focused on a single element.

Figure 9.2 summarizes this template which is an expansion of section 2.C from
Figure 9.1.

Figure 9.2. The nine parts of interface documentation

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

9.5 Documentation across Views

We now turn to the complement of view documentation, which is capturing the
information that applies to more than one view or to the documentation package as
a whole. Cross-view documentation consists of just three major aspects, which we
can summarize as how-what-why:

1. How the documentation is laid out and organized so that a stakeholder of the
architecture can find the information he or she needs efficiently and reliably.
This part consists of a view catalog and a view template.

2. What the architecture is. Here, the information that remains to be captured
beyond the views themselves is a short system overview to ground any reader
as to the purpose of the system; the way the views are related to each other;
a list of elements and where they appear; and a glossary that applies to the
entire architecture.

3. Why the architecture is the way it is: the context for the system, external
constraints that have been imposed to shape the architecture in certain ways,
and the rationale for coarse-grained large-scale decisions.

Figure 9.3 summarizes these points.

Figure 9.3. Summary of cross-view documentation

HOW THE DOCUMENTATION IS ORGANIZED TO SERVE A
STAKEHOLDER

Every suite of architectural documentation needs an introductory piece to explain its
organization to a novice stakeholder and to help that stakeholder access the
information he or she she is most interested in. There are two kinds of "how"
information:

A view catalog

A view template

View Catalog

A view catalog is the reader's introduction to the views that the architect has chosen
to include in the suite of documentation.

When using the documentation suite as a basis for communication, it is necessary
for a new reader to determine where particular information can be found. A catalog
contains this information. When using the documentation suite as a basis for
analysis, it is necessary to know which views contain the information necessary for a
particular analysis. In a performance analysis, for example, resource consumption is
an important piece of information, A catalog enables the analyst to determine which
views contain properties relevant to resource consumption.

There is one entry in the view catalog for each view given in the documentation
suite. Each entry should give the following:

1. The name of the view and what style it instantiates

2. A description of the view's element types, relation types, and properties

3. A description of what the view is for

4. Management information about the view document, such as the latest version,
the location of the view document, and the owner of the view document

The view catalog is intended to describe the documentation suite, not the system
being documented. Specifics of the system belong in the individual views, not in the
view catalog. For instance, the actual elements contained in a view are listed in the
view's element catalog.

View Template

A view template is the standard organization for a view. Figure 9.1 and the material
surrounding it provide a basis for a view template by defining the standard parts of
a view document and the contents and rules for each. The purpose of a view
template is that of any standard organization: It helps a reader navigate quickly to a
section of interest, and it helps a writer organize the information and establish
criteria for knowing how much work is left to do.

WHAT THE ARCHITECTURE IS

This section provides information about the system whose architecure is being
documented, the relation of the views to each other, and an index of architectural
elements.

System Overview

This is a short prose description of what the system's function is, who its users are,
and any important background or constraints. The intent is to provide readers with a
consistent mental model of the system and its purpose. Sometimes the project at
large will have a system overview, in which case this section of the architectural
documentation simply points to that.

Mapping between Views

Since all of the views of an architecture describe the same system, it stands to
reason that any two views will have much in common. Helping a reader of the
documentation understand the relationships among views will give him a powerful
insight into how the architecture works as a unified conceptual whole. Being clear
about the relationship by providing mappings between views is the key to increased
understanding and decreased confusion.

For instance, each module may map to multiple runtime elements, such as when
classes map to objects. Complications arise when the mappings are not one to one,
or when runtime elements of the system do not exist as code elements at all, such
as when they are imported at runtime or incorporated at build or load time. These
are relatively simple one- (or none-) to-many mappings. In general, though, parts
of elements in one view can map to parts of elements in another view.

It is not necessary to provide mappings between every pair of views. Choose the
ones that provide the most insight.

Element List

The element list is simply an index of all of the elements that appear in any of the
views, along with a pointer to where each one is defined. This will help stakeholders
look up items of interest quickly.

Project Glossary

The glossary lists and defines terms unique to the system that have special
meaning. A list of acronyms, and the meaning of each, will also be appreciated by
stakeholders. If an appropriate glossary already exists, a pointer to it will suffice
here.

WHY THE ARCHITECTURE IS THE WAY IT IS: RATIONALE

Similar in purpose to the rationale for a view or the rationale for an interface design,
cross-view rationale explains how the overall architecture is in fact a solution to its
requirements. One might use the rationale to explain

the implications of system-wide design choices on meeting the requirements
or satisfying constraints.

the effect on the architecture when adding a foreseen new requirement or
changing an existing one.

the constraints on the developer in implementing a solution.

decision alternatives that were rejected.

In general, the rationale explains why a decision was made and what the
implications are in changing it.

9.6 Unified Modeling Language

We have concentrated on the kind of information that should be included in
architecture documentation. Architecture in some sense expresses what is essential
about a software system, and that essence is independent of languages and
notations to capture it. Nevertheless, today the Unified Modeling Language (UML)
has emerged as the de facto standard notation for documenting a software
architecture. However, it must be said that UML makes its main contribution in a
view's primary presentation, and its secondary contribution in the behavior of an
element or group of elements. It is up to the architect to augment the UML pictures
with the necessary supporting documentation (the element catalog, the rationale,
and so forth) that a responsible job requires. UML provides no direct support for
components, connectors, layers, interface semantics, or many other aspects of a
system that are supremely architectural.

Still, in most cases we can use the constructs that UML does offer to achieve
satisfactory effects, at least in crafting the primary presentations of architectural
views. We begin by discussing module views.

MODULE VIEWS

Recall that a module is a code or implementation unit and a module view is an
enumeration of modules together with their interfaces and their relations.

Interfaces

Figure 9.4 shows how module interfaces can be represented in UML. UML uses a
"lollipop" to denote an interface, which can be appended to classes and subsystems,
among other things.

UML also allows a class symbol (box) to be stereotyped as an interface; the open-
headed dashed arrow shows that an element realizes an interface. The bottom of
the class symbol can be annotated with the interface's signature information:
method names, arguments, argument types, and so forth. The lollipop notation is
normally used to show dependencies from elements to the interface, while the box
notation allows a more detailed description of the interface's syntax, such as the
operations it provides.

Modules

UML provides a variety of constructs to represent different kinds of modules. Figure
9.5 shows some examples. UML has a class construct, which is the object-oriented
specialization of a module. Packages can be used in cases where grouping of
functionality is important, such as to represent layers and classes. The subsystem
construct can be used if a specification of interface and behavior is required.

Figure 9.5. Examples of module notations in UML

Figure 9.6 shows how the relations native to module views are denoted using UML.
Module decomposition relies on the "is-part-of" relation. The module uses view
relies on the dependency relation, and the module class view relies on the
generalization, or "is-a" relation (also called "inheritance").

Figure 9.6. Examples of relation notations in UML. Module B is part
of module A, module D depends on module C, and module F is a

type of module E.

Aggregation

In UML, the subsystem construct can be used to represent modules that contain
other modules; the class box is normally used for the leaves of the decomposition.
Subsystems are used both as packages and as classifiers. As packages, they can be
decomposed and hence are suitable for module aggregation. As classifiers, they
encapsulate their contents and can provide an explicit interface. Aggregation is
depicted in one of three ways in UML:

Modules may be nested (see Figure 9.7 left).

Figure 9.7. Decomposition in UML with nesting. The aggregate
module is shown as a package (left); decomposition in UML

with arcs (right).

A succession of two diagrams (possibly linked) can be shown, where the
second is a depiction of the contents of a module shown in the first.

An arc denoting composition is drawn between the parent and the children
(see Figure 9.7 right).

In UML, composition is a form of aggregation with implied strong ownership�that is,
parts live and die with the whole. If module A is composed of modules B and C, then
B or C cannot exist without A, and if A is destroyed at runtime, so are B and C.
Thus, UML's composition relation has implications beyond the structuring of the
implementation units; the relation also endows the elements with a runtime
property. As an architect, you should make sure you are comfortable with this
property before using UML's composition relation.

Generalization

Expressing generalization is at the heart of UML in which modules are shown as
classes (although they may also be shown as subsystems). Figure 9.8 shows the
basic notation available in UML.

Figure 9.8. Documenting generalization in UML with two line styles

The two diagrams in Figure 9.8 are semantically identical. UML allows an ellipsis (…)
in place of a submodule, indicating that a module can have more children than
shown and that additional ones are likely. Module Shape is the parent of modules
Polygon, Circle, and Spline, each of which is a subclass, child, or descendant of
Shape. Shape is more general, while its children are specialized versions.

Dependency

The basic notation for dependency was shown in Figure 9.6. The most
architecturally significant manifestation of dependency is found in layers. Sadly, UML
has no built-in primitive corresponding to a layer. However, it can represent simple
layers using packages, as shown in Figure 9.9. These are general-purpose
mechanisms for organizing elements into groups. UML has predefined packages for
systems and subsystems. We can introduce an additional package for layers by
defining it as a package stereotype. A layer can be shown as a UML package with
the constraints that it groups modules together and that the dependency between
packages is "allowed to use." We can designate a layer using the package notation
with the stereotype name <<layer>> preceding the layer name, or introduce a new
visual form, such as a shaded rectangle.

Figure 9.9. A simple representation of layers in UML

COMPONENT-AND-CONNECTOR VIEWS

There is no single preferred strategy to document component-and-connector (C&C)
views in UML, but a number of alternatives. Each alternative has its advantages and
disadvantages. One natural candidate for representing component-and-connector
types begins with the UML class concept.

Figure 9.10 illustrates the general idea using a simple pipe-and-filter system. Here,
the filter architectural type is represented as the UML class Filter. Instances of
filters, such as Splitter, are represented as corresponding objects in an object
instance diagram. To provide a namespace boundary, we enclose the descriptions in
packages. The representation of MergeAndSort, denoted Details, would be shown
as another package elsewhere.

Figure 9.10. Types as classes, and instances as objects,
exemplified with a simple pipe and filter

We now take a closer look at this strategy.

Components

The type/instance relationship in architectural descriptions is a close match to the
class/object relationship in a UML model. UML classes, like component types in
architectural descriptions, are first-class entities and are rich structures for
capturing software abstractions. The full set of UML descriptive mechanisms is
available to describe the structure, properties, and behavior of a class, making this
a good choice for depicting detail and using UML-based analysis tools. Properties of
architectural components can be represented as class attributes or with
associations; behavior can be described using UML behavioral models; and
generalization can be used to relate a set of component types. The semantics of an
instance or type can also be elaborated by attaching one of the standard
stereotypes; for example, the «process» stereotype can be attached to a
component to indicate that it runs as a separate process. Note that the relationship
between MergeAndSort and its substructure is indicated using a dependency
relation.

Interfaces

Interfaces to components, sometimes called ports, can be shown in five ways, as
shown in Figure 9.11, described in increasing order of expressiveness. However, as
expressiveness rises so does complexity, so you should pick the first strategy that
will serve your purposes.

Option 1: No explicit representation. Leaving out interfaces leads to the
simplest diagrams but suffers from the obvious problem that there is no way
to characterize the names or the properties of the interfaces in the primary
presentation. Still, this choice might be reasonable if the components have
only one interface, if the interfaces can be inferred from the system topology,
or if the diagram is refined elsewhere.

Option 2: Interfaces as annotations. Representing interfaces as annotations
provides a home for information about them, although annotations have no
semantic value in UML so cannot be used as a basis for analysis. Again, if the
detailed properties of an interface are not of concern, this approach might be
reasonable.

Option 3: Interfaces as class/object attributes. Treating interfaces as attributes
of a class/object makes them part of the formal structural model, but they can
have only a simple representation in a class diagram�essentially, a name and
a type. This restriction limits the expressiveness of this option.

Option 4: Interfaces as UML interfaces. The UML lollipop notation provides a
compact description of an interface in a class diagram depicting a component
type. In an instance diagram, a UML association role, corresponding to an
interface instance and qualified by the interface type name, provides a
compact way to show that a component instance is interacting through a
particular interface instance. This approach provides visually distinct depictions
of components and interfaces, in which interfaces can clearly be seen as
subservient.

However, this strategy provides no means to depict the services required from
a component's environment, often a key part of an interface. Furthermore, it is
meaningful for a component type to have several instances of the same
interface type, but it is not meaningful to say that a class realizes several
versions of one UML interface. For example, there is no easy way to define a
Splitter filter type that has two output ports of the same "type" using this
technique. Finally, unlike classes, UML interfaces do not have attributes or
substructure.

Option 5: Interfaces as classes. Describing interfaces as classes contained by a
component type overcomes the lack of expressiveness of the previous
alternatives: We can now represent interface substructure and indicate that a
component type has several interfaces of the same type. A component
instance is modeled as an object containing a set of interface objects.
However, by representing interfaces as classes, we not only clutter the
diagram but also lose clear visual discrimination between interfaces and
components. We could use a notational variation in which the interfaces are

contained classes, as shown in the lower part of option 5 in Figure 9.11.
Indicating points of interaction is counterintuitive, however, as containment
usually indicates that a class owns other classes whose instances may or may
not be accessible through instances of the parent class.

Figure 9.11. Five ways to represent interfaces to components
(ports)

Connectors

There are three reasonable options for representing connectors. Again, the choice is
between expressiveness and semantic match on the one hand and complexity on
the other.

Option 1: Connector types as associations and connector instances as links. In
an architectural box-and-line diagram of a system, the lines between
components are connectors. One tempting way to represent connectors in UML
is as associations between classes or links between objects. This approach is
visually simple, provides a clear distinction between components and
connectors, and uses the most familiar relationship in UML class diagrams:
association. Moreover, associations can be labeled, and a direction associated
with the connector can be indicated with an arrow. Unfortunately, connectors
and associations have different meanings. A system in an architectural
description is built up by choosing components with behavior exposed through
their interfaces and connecting them with connectors that coordinate their
behaviors. A system's behavior is defined as the collective behavior of a set of
components whose interaction is defined and limited by the connections
between them.

In contrast, although an association, or link, in UML represents a potential for
interaction between the elements it relates, the association mechanism is
primarily a way of describing a conceptual relationship between two elements.
In addition, an association is a relationship between UML elements, so it
cannot stand on its own in a UML model. Consequently, a connector type
cannot be represented in isolation. Instead, you must resort to naming
conventions or to stereotypes whose meanings are captured by description in
UML's object constraint language. Further, the approach does not allow you to
specify a connector's interfaces.

Option 2: Connector types as association classes. One solution to the lack of
expressiveness is to qualify the association with a class that represents the
connector type. In this way, the connector type or connector attributes can be
captured as attributes of a class or object. Unfortunately, this technique still
does not provide any way of explicitly representing connector interfaces.

Option 3: Connector types as classes and connector instances as objects. One
way to give connectors first-class status in UML is to represent connector types
as classes and connector instances as objects. Using classes and objects, we
have the same four options for representing roles as we had for interfaces: not
at all, as annotations, as interfaces realized by a class, or as child classes
contained by a connector class. Given a scheme for representing interfaces, an
attachment between a component's interface and a connector's interface may
be represented as an association or a dependency.

Systems

In addition to representing individual components and connectors and their types,
we also need to encapsulate graphs of components and connectors: systems. Three
options are available.

Option 1: Systems as UML subsystems. The primary UML mechanism for
grouping related elements is the package. In fact, UML defines a standard
package stereotype, called «subsystem», to group UML models that represent
a logical part of a system. The choice of subsystems is appropriate for any
mapping of components and connectors, and it works particularly well for
grouping classes. One of the problems with using subsystems, as defined in
UML 1.4, is that, although they are both a classifier and a package, the
meaning is not entirely clear. Some have argued that we should be able to
treat a subsystem as an atomic class-like entity at certain stages in the
development process and later be able to refine it in terms of a more detailed
substructure. Having the ability to do this would make the subsystem
construct more appropriate for modeling architectural components.

Option 2: Systems as contained objects. Object containment can be used to
represent systems. Components are represented as instances of contained
classes, and connectors are modeled using one of the options outlined earlier.
Objects provide a strong encapsulation boundary and carry with them the

notion that each instance of the class has the associated "substructure."
However, this approach has problems, the most serious being that
associations, used to model connectors, between contained classes are not
scoped by the class. That is, it is not possible to say that a pair of classes
interacts via a particular connector, modeled as an association, only in the
context of a particular system. So, for example, indicating that two contained
classes interact via an association is valid for instances of classes used
anywhere else in the model.

Option 3: Systems as collaborations. A set of communicating objects
connected by links is described in UML using a collaboration. If we represent
components as objects, we can use collaborations to represent systems. A
collaboration defines a set of participants and relationships that are meaningful
for a given purpose, which in this case is to describe the runtime structure of
the system. The participants define classifier roles that objects play, or
conform to, when interacting. Similarly, the relationships define association
roles that links must conform to.

Collaboration diagrams can be used to present collaborations at either the
specification or the instance level. A specification-level collaboration diagram
shows the roles, defined within the collaboration, arranged in a pattern to
describe the system substructure. An instance-level collaboration diagram
shows the objects and links conforming to the roles at the specification level
and interacting to achieve the purpose. Therefore, a collaboration presented at
the instance level is best used to represent the runtime structure of the
system.

Figure 9.12 illustrates this approach. The Filter architectural type is
represented as previously. Instances of filters and pipes are represented as
corresponding classifier roles�for example, /Splitter indicates the Splitter
role�and association roles. The objects and links conforming to those roles are
shown in the collaboration diagram at the instance level, indicated by
underscored names.

Figure 9.12. Systems as collaborations

Although this is a natural way to describe runtime structures, it leaves no way
to explicitly represent system-level properties. There is also a semantic
mismatch; a collaboration describes a representative interaction between
objects and provides a partial description, whereas an architectural
configuration is meant to capture a complete description.

ALLOCATION VIEWS

In UML, a deployment diagram is a graph of nodes connected by communication
associations. Figure 9.13 provides an example. Nodes may contain component
instances, which indicates that the component lives or runs on the node.
Components may contain objects, which indicates that the object is part of the
component. Components are connected to other components by dashed-arrow
dependencies (possibly through interfaces). This indicates that one component uses
the services of another; a stereotype may be used to indicate the precise
dependency if needed. The deployment type diagram may also be used to show
which components may run on which nodes, by using dashed arrows with the
stereotype «supports».

Figure 9.13. A deployment view in UML

A node is a runtime physical object that represents a processing resource, generally
having at least a memory and often processing capability as well. Nodes include
computing devices but also human or mechanical processing resources. Nodes may
represent types of instances. Runtime computational instances, both objects and
components, may reside on node instances.

Nodes may be connected by associations to other nodes. An association indicates a
communication path between them. The association may have a stereotype to
indicate the nature of the communication path (for example, the kind of channel or
network).

The nesting of symbols within the node symbol signifies a composition association
between a node class and constituent classes or a composition link between a node
object and constituent objects.

9.7 Summary

An architecture is worthless if nobody can understand what it is or how to use it.
Documenting an architecture is the crowning step in creating it, freeing the architect
from having to answer hundreds of questions about it and serving to capture it for
current and future stakeholders.

You must understand the stakeholders of the architecture and how they expect to
use the documentation. Treat the task of documenting an architecture as
documenting the set of relevant views and then supplementing that with cross-view
information. Use the stakeholders to help choose the relevant views.

Box-and-line diagrams, whether rendered in an informal notation or in something
like UML, tell only a small part of the story. Augment them with supporting
documentation that explains the elements and relationships shown in the primary
presentation. Interfaces and behavior are important parts of the architecture
picture.

This chapter presented a prescriptive organization for documenting software
architectures. You may ask why we have not strictly adhered to it in the
architectural case studies in this book. A fundamental principle of technical
documentation of any kind, and software architecture documentation in particular, is
to write so that the material is of the most use to the anticipated readers. Here, the
reader wants an overview of the system, its motivations, and how it meets its
quality goals�the reader isn't going to analyze it or build to it. Thus, the
descriptions that we provide are less formal and less detailed than what we would
recommend for construction or analysis. In that spirit, we use primary presentations
(cartoons) to convey general information; however, in lieu of a formal element
catalog to fill in the detail, we give a narrative description.

9.8 For Further Reading

Much of the material in this chapter was adapted from [Clements 03]. For a more
comprehensive treatment of architectural documentation, the interested reader
should look there. The reader is also referred to [IEEE 00] for a communitywide
standard for architectural documentation that is both consistent with this chapter
and gives slightly different terminology.

Finally, there are many good references for the UML. However, the first, and the
standard [Rumbaugh 99], still serves as a useful and comprehensive introduction.
The Object Management Group is currently generating a version of UML intended to
better enable the representation of the software architecture of a system. You can
follow the progress of this effort at http://www.omg.org/uml/.

http://www.omg.org/uml/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

9.9 Discussion Questions

1: What views from this chapter are pertinent to a system you are currently
working on? What views have you documented? Why is there a difference?

2: You are a new hire to a project. Lay out a sequence of documentation you would
like to have to acquaint you with your new position.

3: What documentation would you need to do performance analysis?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 10. Reconstructing Software Architectures
with Jeromy Carrière, Liam O'Brien, and Chris Verhoef

Note: Jeromy Carrière is an associate at Microsoft; Liam O'Brien is a member of the
SEI team; Chris Verhoef is employed by Free University in Amsterdam.

One veil hangs over past, present, and future, and it is the province of the
historian to find out, not what was, but what is.

�Henry David Thoreau

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

10.1 Introduction

Throughout this book we have treated architecture as something largely under your
control and shown how to make architectural decisions (and, as we will see in Part
Three, how to analyze those decisions) to achieve the goals and requirements in
place for a system under development. But there is another side to the picture.
Suppose we have a system that already exists, but we do not know its architecture.
Perhaps the architecture was never recorded by the original developers. Perhaps it
was recorded but the documentation has been lost. Or perhaps it was recorded but
the documentation is no longer synchronized with the system after a series of
changes. How do we maintain such a system? How do we manage its evolution to
maintain the quality attributes that its architecture (whatever it may be) has
provided for us?

This chapter is about a way to answer these questions using architecture
reconstruction, in which the "as-built" architecture of an implemented system is
obtained from an existing system. This is done through a detailed analysis of the
system using tool support. The tools extract information about the system and aid in
building and aggregating successive levels of abstraction. If the tools are successful,
the end result is an architectural representation that aids in reasoning about the
system. In some cases, it may not be possible to generate a useful representation.
This is sometimes the case with legacy systems that have no coherent architectural
design to recover (although that in itself is useful to know).

Architecture reconstruction is an interpretive, interactive, and iterative process
involving many activities; it is not automatic. It requires the skills and attention of
both the reverse engineering expert and the architect (or someone who has
substantial knowledge of the architecture), largely because architectural constructs
are not represented explicitly in the source code. There is no programming language
construct for "layer" or "connector" or other architectural elements that we can
easily pick out of a source code file. Architectural patterns, if used, are seldom
labeled. Instead, architectural constructs are realized by many diverse mechanisms
in an implementation, usually a collection of functions, classes, files, objects, and so
forth. When a system is initially developed, its high-level design/architectural
elements are mapped to implementation elements. Therefore, when we reconstruct
those elements, we need to apply the inverses of the mappings. Coming up with
those requires architectural insight. Familiarity with compiler construction
techniques and utilities such as grep, sed, awk, perl, python, and lex/yacc is also
important.

The results of architectural reconstruction can be used in several ways. If no
documentation exists or if it is out of date, the recovered architectural
representation can be used as a basis for redocumenting the architecture, as
discussed in Chapter 9. This approach can also be used to recover the as-built
architecture, to check conformance against an "as-designed" architecture. This
assures us that our maintainers (or our developers, for that matter) have followed
the architectural edicts set forth for them and are not eroding the architecture,
breaking down abstractions, bridging layers, compromising information hiding, and
so forth. The reconstruction can also be used as the basis for analyzing the

architecture (see Chapters 11 and 12) or as a starting point for re-engineering the
system to a new desired architecture. Finally, the representation can be used to
identify elements for re-use or to establish an architecture-based software product
line (see Chapter 14).

Architecture reconstruction has been used in a variety of projects ranging from MRI
scanners to public telephone switches and from helicopter guidance systems to
classified NASA systems. It has been used

to redocument architectures for physics simulation systems.

to understand architectural dependencies in embedded control software for
mining machinery.

to evaluate the conformance of a satellite ground system's implementation to
its reference architecture .

to understand different systems in the automotive industry.

THE WORKBENCH APPROACH

Architecture reconstruction requires tool support, but no single tool or tool set is
always adequate to carry it out. For one thing, tools tend to be language-specific
and we may encounter any number of languages in the artifacts we examine. A
mature MRI scanner, for example, can contain software written in 15 languages. For
another thing, data extraction tools are imperfect; they often return incomplete
results or false positives, and so we use a selection of tools to augment and check
on each other. Finally, the goals of reconstruction vary, as discussed above. What
you wish to do with the recovered documentation will determine what information
you need to extract, which in turn will suggest different tools.

Taken together, these have led to a particular design philosophy for a tool set to
support architecture reconstruction known as the workbench. A workbench should
be open (easy to integrate new tools as required) and provide a lightweight
integration framework whereby tools added to the tool set do not affect the existing
tools or data unnecessarily.

An example of a workbench, which we will use to illustrate several of the points in
this chapter, is Dali, developed at the SEI. For Further Reading at the end of the
chapter describes others.

RECONSTRUCTION ACTIVITIES

Software architecture reconstruction comprises the following activities, carried out
iteratively:

1.

Information extraction. The purpose of this activity is to extract information
from various sources.

2. Database construction. Database construction involves converting this
information into a standard form such as the Rigi Standard Form (a tuple-
based data format in the form of relationship <entity1> <entity2>) and
an SQL-based database format from which the database is created.

3. View fusion. View fusion combines information in the database to produce a
coherent view of the architecture.

4. Reconstruction. The reconstruction activity is where the main work of building
abstractions and various representations of the data to generate an
architecture representation takes place.

As you might expect, the activities are highly iterative. Figure 10.1 depicts the
architecture reconstruction activities and how information flows among them.

Figure 10.1. Architecture reconstruction activities. (The arrows
show how information flows among the activities.)

The reconstruction process needs to have several people involved. These include the
person doing the reconstruction (reconstructor) and one or more individuals who are
familiar with the system being reconstructed (architects and software engineers).

The reconstructor extracts the information from the system and either manually or
with the use of tools abstracts the architecture from it. The architecture is obtained
by the reconstructor through a set of hypotheses about the system. These
hypotheses reflect the inverse mappings from the source artifacts to the design
(ideally the opposite of the design mappings). They are tested by generating the
inverse mappings and applying them to the extracted information and validating the
result. To most effectively generate these hypotheses and validate them, people
familiar with the system must be involved, including the system architect or

engineers who have worked on it (who initially developed it or who currently
maintain it).

In the following sections, the various activities of architecture reconstruction are
outlined in more detail along with some guidelines for each. Most of these guidelines
are not specific to the use of a particular workbench and would be applicable even if
the architecture reconstruction was carried out manually.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

10.2 Information Extraction

Information extraction involves analyzing a system's existing design and
implementation artifacts to construct a model of it. The result is a set of information
placed in a database, which is used in the view fusion activity to construct a view of
the system.

Information extraction is a blend of the ideal�what information do you want to
discover about the architecture that will most help you meet the goals of your
reconstruction effort�and the practical�what information can your available tools
actually extract and present. From the source artifacts (e.g., code, header files,
build files) and other artifacts (e.g., execution traces), you can identify and capture
the elements of interest within the system (e.g., files, functions, variables) and their
relationships to obtain several base system views. Table 10.1 shows a typical list of
the elements and several relationships among them that might be extracted.

Table 10.1. Typical Extracted Elements and Relations

Source
Element Relation Target

Element Description

File "includes" File C preprocessor #include of one file by
another

File "contains" Function Definition of a function in a file

File "defines_var" Variable Definition of a variable in a file

Directory "contains" Directory Directory contains a subdirectory

Directory "contains" File Directory contains a file

Function "calls" Function Static function call

Function "access_read" Variable Read access on a variable

Function "access_write" Variable Write access on a variable

Each of the relationships between the elements gives different information about the
system. The calls relationship between functions helps us build a call graph. The
includes relationship between the files gives us a set of dependencies between
system files. The access_read and access_write relationships between functions
and variables show us how data is used. Certain functions may write a set of data
and others may read it. This information is used to determine how data is passed
between various parts of the system. We can determine whether or not a global
data store is used or whether most information is passed through function calls.

If the system being analyzed is large, capturing how source files are stored within
the directory structure may be important to the reconstruction process. Certain
elements or subsystems may be stored in particular directories, and capturing
relations such as dir_contains_file and dir_contains_dir is useful when trying
to identify elements later.

The set of elements and relations extracted will depend on the type of system being
analyzed and the extraction support tools available. If the system to be
reconstructed is object oriented, classes and methods are added to the list of
elements to be extracted, and relationships such as class is_subclass_of_ class
and class_contains_method are extracted and used.

Information obtained can be categorized as either static or dynamic. Static
information is obtained by observing only the system artifacts, while dynamic
information is obtained by observing how the system runs. The goal is to fuse both
to create more accurate system views. (View fusion is discussed in Section 10.4.) If
the architecture of the system changes at runtime (e.g., a configuration file is read
in by the system at startup and certain elements are loaded as a result), that
runtime configuration should be captured and used when carrying out the
reconstruction.

To extract information, a variety of tools are used, including these:

Parsers (e.g., Imagix, SNiFF+, CIA, rigiparse)

Abstract syntax tree (AST) analyzers (e.g., Gen++, Refine)

Lexical analyzers (e.g., LSME)

Profilers (e.g., gprof)

Code instrumentation tools

Ad hoc (e.g., grep, perl)

Parsers analyze the code and generate internal representations from it (for the
purpose of generating machine code). Typically, however, it is possible to save this
internal representation to obtain a view. AST analyzers do a similar job, but they
build an explicit tree representation of the parsed information. We can build analysis

tools that traverse the AST and output selected pieces of architecturally relevant
information in an appropriate format.

Lexical analyzers examine source artifacts purely as strings of lexical elements or
tokens. The user of a lexical analyzer can specify a set of code patterns to be
matched and output. Similarly, a collection of ad hoc tools such as grep and perl can
carry out pattern matching and searching within the code to output some required
information. All of these tools�code-generating parsers, AST-based analyzers,
lexical analyzers, and ad hoc pattern matchers�are used to output static
information.

Profiling and code coverage analysis tools can be used to output information about
the code as it is being executed, and usually do not involve adding new code to the
system. On the other hand, code instrumentation, which has wide applicability in
the field of testing, involves adding code to the system to output specific
information while the system is executing. These tools generate dynamic system
views.

Tools to analyze design models, build files, makefiles, and executables can also be
used to extract further information as required. For instance, build files and
makefiles include information on module or file dependencies that exist within the
system and may not be reflected in the source code.

Much architecture-related information may be extracted statically from source code,
compile-time artifacts, and design artifacts. Some architecturally relevant
information, however, may not exist in the source artifacts because of late binding.
Examples of late binding include the following:

Polymorphism

Function pointers

Runtime parameterization

The precise topology of a system may not be determined until runtime. For
example, multi-process and multi-processor systems, using middleware such as
J2EE, Jini, or .NET, frequently establish their topology dynamically, depending on the
availability of system resources. The topology of such systems does not live in its
source artifacts and hence cannot be reverse engineered using static extraction
tools.

For this reason, it may be necessary to use tools that can generate dynamic
information about the system (e.g., profiling tools). Of course, this requires that
such tools be available on the platform on which the system executes. Also, it may
be difficult to collect the results from code instrumentation. Embedded systems
often have no way to output such information.

GUIDELINES

The following are some practical considerations in applying this step of the method.

Use the "least effort" extraction. Consider what information you need to
extract from a source corpus. Is this information lexical in nature? Does it
require the comprehension of complex syntactic structures? Does it require
some semantic analysis? In each case, a different tool could be applied
successfully. In general, lexical approaches are the cheapest to use, and they
should be considered if your reconstruction goals are simple.

Validate the information you have extracted. Before starting to fuse or
manipulate the various views obtained, make sure that the correct view
information has been captured. It is important that the tools being used to
analyze the source artifacts do their job correctly. First perform detailed
manual examination and verification of a subset of the elements and relations
against the underlying source code, to establish that the correct information is
being captured. The precise amount of information that needs to be verified
manually is up to you. Assuming that this is a statistical sampling, you can
decide on a desired confidence level and choose the sampling strategy to
achieve it.

Extract dynamic information where required, such as where there is a lot of
runtime or late binding and the architecture is dynamically configurable.

10.3 Database Construction

The extracted information is converted into a standard format for storage in a
database during database construction. It is necessary to choose a database model.
When doing so, consider the following:

It should be a well-known model, to make replacing one database
implementation with another relatively simple.

It should allow for efficient queries, which is important given that source
models can be quite large.

It should support remote access of the database from one or more
geographically distributed user interfaces.

It supports view fusion by combining information from various tables.

It supports query languages that can express architectural patterns.

Checkpointing should be supported by implementations, which means that
intermediate results can be saved. This is important in an interactive process
in that it gives the user the freedom to explore with the comfort that changes
can always be undone.

The Dali workbench, for example, uses a relational database model. It converts the
extracted views (which may be in many different formats depending on the tools
used to extract them) into the Rigi Standard Form. This format is then read in by a
perl script and output in a format that includes the necessary SQL code to build the
relational tables and populate them with the extracted information. Figure 10.2
gives an outline of this process.

Figure 10.2. Conversion of the extracted information to SQL format

An example of the generated SQL code to build and populate the relational tables is
shown in Figure 10.3.

When the data is entered into the database, two additional tables are generated:
elements and relationships. These list the extracted elements and relationships,
respectively.

Here, the workbench approach makes it possible to adopt new tools and techniques,
other than those currently available, to carry out the conversion from whatever
format(s) an extraction tool uses. For example, if a tool is required to handle a new
language, it can be built and its output can be converted into the workbench format.

In the current version of the Dali workbench, the POSTGRES relational database
provides functionality through the use of SQL and perl for generating and
manipulating the architectural views (examples are shown in Section 10.5).
Changes can easily be made to the SQL scripts to make them compatible with other
SQL implementations.

Figure 10.3 Example of SQL code generated in Dali

create table calls(caller text, callee text);

create table access(func text, variable text);

create table defines_var(file text, variable text);

...

insert into calls values('main', 'control');

insert into calls values('main', 'clock');

...

insert into accesses values('main', 'stat 1');

GUIDELINES

When constructiong the database, consider the following.

Build database tables from the extracted relations to make processing of the
data views easier during view fusion. For example, build a table that stores the
results of a particular query so that the query need not be run again. If the
results are required, you can access them easily through the table.

As with any database construction, carefully consider the database design
before you get started. What will the primary (and possibly secondary) key
be? Will any database joins be particularly expensive, spanning multiple
tables? In reconstruction the tables are usually quite simple�on the order of
dir_contains_dir or function_calls_function�and the primary key is a
function of the entire row.

Use simple lexical tools like perl and awk to change the format of data that
was extracted using any tools into a format that can be used by the

workbench.

10.4 View Fusion

View fusion involves defining and manipulating extracted information (now stored in
a database) to reconcile, augment, and establish connections between the
elements. Different forms of extraction should provide complementary information.
Fusion is illustrated using the examples given in the following sections.

IMPROVING A VIEW

Consider the two excerpts shown in Figure 10.4, which are from the sets of methods
(each shown preceded by its respective class) extracted from a system implemented
in C++. These tables include static and dynamic information about an object-
oriented segment of code. We can see from the dynamic information that, for
example, List::getnth is called. However, this method is not included in the static
analysis because the static extractor tool missed it. Also, the calls to the constructor
and destructor methods of InputValue and List are not included in the static
information and need to be added to the class/method table that reconciles both
sources of information.

Figure 10.4. Static and dynamic data information about the
class_contains_method relation

In addition, the static extraction in this example shows that the PrimitiveOp class
has a method called Compute. The dynamic extraction results show no such class,
but they do show classes, such as ArithmeticOp, AttachOp, and StringOp, each of
which has a Compute method and is in fact a subclass of PrimitiveOp. PrimitiveOp
is purely a superclass and so never actually called in an executing program. But it is
the call to PrimitiveOp that a static extractor sees when scanning the source code,
since the polymorphic call to one of PrimitiveOp's subclasses occurs at runtime.

To get an accurate view of the architecture, we need to reconcile the PrimitiveOp
static and dynamic information. To do this, we perform a fusion using SQL queries
over the extracted calls, actually_calls, and has_subclass relations. In this
way, we can see that the calls to PrimitiveOp::Compute (obtained from the static
information) and to its various subclasses (obtained from the dynamic information)
are really the same thing.

The lists in Figure 10.5 show the items added to the fused view (in addition to the
methods that the static and dynamic information agreed upon) and those removed
from it (even though included in either the static or the dynamic information).

Figure 10.5. Items added to and omitted from the overall view

DISAMBIGUATING FUNCTION CALLS

In a multi-process application, name clashes are likely to occur. For example,
several processes might have a procedure called main. It is important that clashes
be identified and disambiguated within the extracted views. Once again, by fusing
information that can be easily extracted, we can remove this potential ambiguity. In
this case, we need to fuse the static calls table with a "file/function containment"
table (to determine which functions are defined in which source files) and a "build
dependency" table (to determine which files are compiled to produce which
executables). The fusion of these information sources allows potentially ambiguous
procedure or method names to be made unique and hence unambiguously referred
to in the architecture reconstruction process. Without view fusion, this ambiguity
would persist into the architecture reconstruction.

GUIDELINES

The following are some practical considerations in applying this step of the method.

Fuse tables when no single extracted table provides the needed information.

Fuse tables when there is ambiguity within one of them, and it is not possible
to disambiguate using a single table.

Consider different extraction techniques to extract different information; for
example, you can use dynamic and static extraction. Or you might want to use
different instances of the same technique, such as different parsers for the
same language, if you feel that a single instance might provide erroneous or
incomplete information.

10.5 Reconstruction

At this point, the view information has been extracted, stored, and refined or
augmented to improve its quality. The reconstruction operates on views to reveal
broad, coarse-grained insights into the architecture. Reconstruction consists of two
primary activities: visualization and interaction and pattern definition and
recognition. Each is discussed next.

Visualization and interaction provides a mechanism by which the user may
interactively visualize, explore, and manipulate views. In Dali, views are presented
to the user as a hierarchically decomposed graph of elements and relations, using
the Rigi tool. An example of an architectural view is shown in Figure 10.6.

Figure 10.6. An architectural view represented in Dali

Pattern definition and recognition provides facilities for architectural reconstruction:
the definition and recognition of the code manifestation of architectural patterns.
Dali's reconstruction facilities, for example, allow a user to construct more abstract

views of a software system from more detailed views by identifying aggregations of
elements. Patterns are defined in Dali, using a combination of SQL and perl, which
we call code segments. An SQL query is used to identify elements from the Dali
repository that will contribute to a new aggregation, and perl expressions are used
to transform names and perform other manipulations of the query results. Code
segments are retained, and users can selectively apply and re-use them.

Based on the architectural patterns that the architect expects to find in the system,
the reconstructor can build various queries. These queries result in new
aggregations that show various abstractions or clusterings of the lower-level
elements (which may be source artifacts or abstractions). By interpreting these
views and actively analyzing them, it is possible to refine the queries and
aggregations to produce several hypothesized architectural views that can be
interpreted, further refined, or rejected. There are no universal completion criteria
for this process; it is complete when the architectural representation is sufficient to
support analysis and documentation.

Suppose that our database contains the subset of elements and relations shown in
Figure 10.7. In this example variables a and b are defined in function f; that is, they
are local to f. We can graphically represent this information as shown in Figure
10.8.

Figure 10.7. Subset of elements and relationships

Figure 10.8. Graphical representation of elements and
relationships

An architectural reconstruction is not interested in the local variables because they
lend very little insight into the architecture of the system. Therefore, we can
aggregate instances of local variables into the functions in which they occur. An
example of the SQL and perl code to accomplish this is shown in Figure 10.9.

The first code portion updates the visual representation by adding a "+" after each
function name. The function is now aggregated together with the local variables
defined inside it. The SQL query selects functions from the elements table, and the
perl expression is executed for each line of the query result. The $fields array is
automatically populated with the fields resulting from the query; in this case, only
one field is selected (tName) from the table, so $fields[0] will store its value for
each tuple selected. The expression generates lines of the form:

Figure 10.9 SQL and perl to aggregate local variables to the
function in which they are defined

#Local Variable aggregation

SELECT tName
 FROM Elements
 WHERE tType='Function';
print ''$fields[0]+ $fields[0] Function\n'';

SELECT d1.func, d1.local_variable
 FROM defines_var d1;
print ''$fields[0] $fields[1] Function\n'';

<function>+ <function> Function

this specifies that the element <function> should be aggregated into <function>+,
which will have the type Function.

The second code portion hides the local variables from the visualization. The SQL
query identifies the local variables for each function defined by selecting each tuple
in the defines_var table. Thus in the perl expression, $fields[0] corresponds to
the func field and $fields[1] corresponds to the local_ variable field. So the
output is of the form:

<function>+ <variable> Function

That is, each local variable for a function is to be added to that function's
<function>+ aggregate. The order of execution of these two code segments is not
important, as the final results of applying both of these queries is sorted.

The result of applying the code segments is represented graphically in Figure 10.10.

Figure 10.10. Result of applying the code segment in Figure 10.9

The primary mechanism for manipulating the extracted information is inverse
mappings. Examples include the following:

Identify types

Aggregate local variables into functions

Aggregate members into classes

Compose architecture-level elements

An example of a query that identifies an architectural element is shown in Figure
10.11. This query identifies the Logical_Interaction architectural element, and
says that if the class name is Presentation, Bspline, or Color, or if the class is a
subclass of Presentation, it belongs in the Logical_Interaction element.

Code segments are written in this way for abstracting from the lower-level
information to generate architecture-level views. The reconstructor builds these
segments to test hypotheses about the system. If a particular segment does not
yield useful results, it can be discarded. The reconstructor iterates through this
process until useful architectural views have been obtained.

Figure 10.11 Query to identify the Logical_Interaction element

SELECT tSubclass
 FROM has_subclass
 WHERE tSuperclass='Presentation';
print ''Logical_Interaction $fields[0]'';

SELECT tName
 FROM element
 WHERE tName='Presentation'
 OR tName='BSpline'

 OR tName='Color';
print ''Logical_Interaction $fields[0]'';

GUIDELINES

The following are some practical considerations in applying this step of the method.

Be prepared to work with the architect closely and to iterate several times on
the architectural abstractions that you create. This is particularly so in cases
where the system has no explicit, documented architecture. (See the sidebar
Playing "Spot the Architecture.") In such cases, you can create architectural
abstractions as hypotheses and test these hypotheses by creating the views
and showing them to the architect and other stakeholders. Based on the false
negatives and false positives found, the reconstructor may decide to create
new abstractions, resulting in new Dali code segments to apply (or perhaps
even new extractions that need to be done).

Figure 10.12 Example of a bad code segment that relies on the
explicit listing of elements of interest

SELECT tName
 FROM element
 WHERE tName='vanish-xforms.cc'
 OR tName='PrimativeOp'
 OR tName='Mapping'
 OR tName='MappingEditor'

 OR tName='InputValue'
 OR tName='Point'
 OR tName='VEC'
 OR tName='MAT'
 OR ((tName ~ 'Dbg$' OR tName ~ 'Event$')
 AND tType='Class');
print ''Dialogue $fields[0]'';

When developing code segments, try to build ones that are succinct and that
do not list every source element. The code segment shown in Figure 10.11 is
an example of a good segment; an example of a bad one in this regard, is
shown in Figure 10.12. In the latter, the source elements comprising the
architectural element of interest are simply listed; this makes the segment
difficult to use, understand, and re-use.

Code segments can be based on naming conventions, if the naming
conventions are used consistently throughout the system. An example is one
where all functions, data, and files that belong to the Interface element begin
with i_.

Code segments can be based on the directory structure where files and
functions are located. Element aggregations can be based on these directories.

Architecture reconstruction is the effort of redetermining architectural
decisions, given only the result of these decisions in the actual artifacts (i.e.,
the code that implements them). As reconstruction proceeds, information
must be added to re-introduce the architectural decisions which introduces
bias from the reconstructor and thus reinforces the need for a person
knowledgeable in the architecture to be involved.

Playing "Spot the Architecture"
Beginning the process of recovering a "lost" architecture can be daunting.
The architecture recovery team begins with a blank slate, from which they
need to reconstruct an architecture that is, hopefully, both representative
of what is actually there and useful for reasoning about the system,
maintaining it, evolving it, and so forth.

But you would not embark on an architectural reconstruction project
unless the architectural documentation was either lost completely or at
least muddied by time and many revisions by many hands. So, how to
begin?

In our first few architectural reconstruction efforts this was not our
starting point. We had created Dali and needed some examples to test it
on, so we chose a couple of systems that we had architected and built
ourselves. We had created these systems with explicit architectures in
mind, and so recovering them was not too difficult. Still, the process was
not without surprises. We discovered architectural violations even in the
relatively small systems we had designed and coded. This encouraged us,
for if even our own small and conscientiously architected systems had
problems, how bad would large, long-lived commercial systems be? We
were emboldened by our successes and eager to tackle such a system.

Our chance came in the form of a large, complex physics simulation. This
system had been in development for about six years. It was written in two
languages, had no formal architectural documentation, and had not been
created with a formal architecture design effort. However, the chief
architect felt that there was in fact an architecture in there and that we
could recover it with a bit of digging. The system had about 300,000 lines
of code, but was probably the most complex system that I had ever seen,
and that remains true to this day.

In advance of the architect working with us we were able to get a copy of
the code base, from which we extracted many useful low-level relations
(such as function_calls_function and function_defines_global_
variable). We loaded the database with these tables.

We then sat down with the architect. He sketched out his view of what the
architecture was, and we turned that view into a set of SQL queries, ran
these over the database, and visualized the result. It was a mess, with
thousands of unclassified elements and thousands of relations going
everywhere. Viewing this, the architect thought some more and then
proposed a different organization. We again turned this into a set of SQL
queries, reorganized the database along these lines and visualized the
result. The result was once again a mess.

We continued this for the rest of the day and did more the next day. At
the end of that time we finally arrived at an architecture that the architect
was reasonably happy with, but it always remained somewhat messy.

What is the moral of this story? First, your initial guesses as to the
structure of the architecture may be wrong. You may be required to
iterate a number of times before you get something that approaches a
rational looking structure. Second, if a product was not created with an
architecture in mind, chances are that no amount of post-facto
organization will create one for you. You can play "spot the architecture"
all you like, but there may in fact be no coherent architecture to spot.

� RK

10.6 Example

To illustrate the process of reconstruction, we will walk through a typical set of code
segments created in Dali to reconstruct the architecture for UCMEdit, a system for
creating and editing Buhr-style use case maps. We will show how the reconstructor
moved from the raw data of a set of extracted views to a simple, elegant picture of
the software architecture.

INFORMATION EXTRACTION

Table 10.2 shows the elements and relations initially extracted from the UCMEdit
source code. Variable accesses are not included; that is, there are no
function_reads_variable or function_assigns_variable relations. However,
since these relations might be important for determining architectural coupling, a
second extraction is engineered to capture them. Additionally, file depends_on
file relations are extracted by processing the output from running the GNU make
utility on the application's makefile.

Table 10.2. Elements and Relations Extracted from UCMEdit

 Source Element Target Element

Relation Element Type Element Name Element Type Element Name

calls Function tCaller

Function tCallee

contains File tContainer Function tContainee

defines File tFile Class tClass

has_subclass Class tSuperclass Class tSubclass

has_friend Class tClass Class tFriend

defines_fn Class tDefined_by Function tDefines

has_member Class tClass Member variable tMember

 Source Element Target Element

Relation Element Type Element Name Element Type Element Name

defines_var Function tDefiner Local variable tVariable

has_instance Class tClass Variable tVariable

defines_global File tDefiner Global variable tVariable

Once the views of interest are extracted, functions thought to be "uninteresting" are
filtered out, among them built-in functions, such as return, and standard C library
functions, such as scanf and printf.

DATABASE CONSTRUCTION

Next, an SQL database is populated with the extracted relations. As mentioned in
Section 10.3, two additional database tables are constructed to catalog the
elements and relationships�one identifies all defined elements; the other lists all
identified relation types. The elements table has a field (called type) that stores the
element's type (file, function, etc.).

VIEW FUSION AND RECONSTRUCTION

Figure 10.13 shows the raw extracted model of those elements and relations,
containing 830 nodes and 2,507 relations. At this point, the first order of business is
to begin applying code segments to search for order within the chaos.

Figure 10.13. A raw set of extracted elements and relations: white
noise

A reliable first step is to aggregate a function and all of the local variables that it
defines into a new composite element. After the code segment shown in Figure 10.9
is applied, the models for UCMEdit still appear as an inscrutable web of nodes and
arcs, but it is simpler than the extracted views of Figure 10.13 prior to the
application of the function aggregation code segments. The UCMEdit model now
shows 710 nodes and 2,321 relations.

We know that UCMEdit is an object-oriented system, and the next low-level code
segment applied takes advantage of that knowledge. Similar in nature to that for
collapsing functions, this code segment collapses together classes and their member
variables and functions, representing them as a single class node. The resulting
model was shown in Figure 10.5; it contains 233 nodes and 518 arcs�a significant
visual simplification, although still not tractable.

But there are still many elements remaining that are unrelated to any extracted
class. Hence, we have exposed either a deficiency in the extractors applied or ways
in which these systems deviate from pure object-oriented design. In fact, both of
these cases obtain.

Closer examination reveals that false positives are generated by the extraction code
segments in the form of apparent calls to global functions that are actually calls to
member functions. Moreover, several functions are indeed global, belonging to no
class defined in the system. Of course, some global functions, in the form of system
calls or windowing system primitives, are necessary. How these "leftover" cases are
separated from the rest of the architecture is discussed next.

The model for UCMEdit is now a collection of files, classes, leftover functions, and
global variables. Local variables have been aggregated into the functions in which
they are defined, and member functions and member variables have been
aggregated into their associated classes. At this point we can compose global
variables and functions into the files in which they are defined, in much the same
manner as functions and classes were composed. The resulting models, shown in
Figure 10.14, contain three separate groups of elements: files, classes, and the
remaining leftover functions. Again, a significant visual improvement but still not
tractable.

Figure 10.14. The UCMEdit model showing (from top to bottom)
classes, files, and "leftover" functions (arcs are hidden)

Until now, each code segment applied has been application independent but specific
to the extraction techniques and to the domain of C++ software. The next code
segment sets to be applied use expert knowledge of the UCMEdit architecture. Here

the reconstruction process diverges from a rote analysis, where we apply off-the-
shelf code segments, into opportunistic pattern recognition and definition,
leveraging the kinds of information that a designer or experienced system
programmer should know about a specific system's architecture.

The first application-specific knowledge that we apply to our sample system is as
follows:

It is an interactive, graphical application.

It attempts to encapsulate access to the underlying windowing and graphics
subsystem within a layer.

The functions comprising the graphics libraries used (Xlib, XForms, and Mesa)
have characteristic naming conventions.

These observations lead us to expect architectural patterns�the existence of
subsystems, perhaps, or certain patterns of interaction. These expectations are in
effect hypotheses, and to test them we check for the existence of the patterns. If
the result simplifies the picture and matches our expectations, then our hypothesis
is confirmed. We have likely discovered what the architect had in mind. Even if not,
we have discovered a reasonable and useful handle with which to understand the
system.

In the code segments shown in Figure 10.15, which are intended to identify the
graphics subsystem, those external functions provide rendering and interaction
functionality to the application. Consider the first code segment: It constructs a new
table from the elements table by filtering out all functions that are members of
classes (those that appear as the tDefines field in a tuple of the defines_fn
relation). Then it selects from this new table all functions called by functions defined
by subclasses of the Presentation class. Note that this code segment references
subclasses of Presentation. In doing so, it implicitly identifies the layer that the
original designers created to encapsulate accesses to the graphics subsystem. This
information will be leveraged further. The second, third, and fourth code segments
in this sequence identify functions defined by the Mesa, XForms, and Xlib libraries,
respectively, by specifying code segments over the function names.

Figure 10.15 Code segments for the UCMEdit graphics subsystem

1: Identify calls from graphics access layer.
 DROP TABLE tmp;
 SELECT * INTO TABLE tmp
 FROM elements;
 DELETE FROM tmp
 WHERE tmp.tName=defines_fn.tDefines;
 SELECT t1.tName
 FROM tmp t1, calls c1, defines_fn d1,
 has_subclass s1, has_subclass s2
 WHERE t1.tName=c1.tCallee AND c1.tCaller=d1.tDefines

 AND d1.tDefined_by=s1.tSubclass
 AND s1.tSuperclass='Presentation';

print "Graphics $fields[0]+ null\n";

2: Identify calls to Mesa functions.
SELECT tName
 FROM elements
 WHERE tType='Function' AND tName LIKE 'gl%';

print "Graphics $fields[0]+ null\n";

3: Identify calls to XForms functions.
SELECT tName
 FROM elements
 WHERE tType='Function' AND tName LIKE 'fl_%';

print "Graphics $fields[0]+ null\n";

4: Identify calls to Xlib functions.
DROP TABLE tmp;
 SELECT * INTO TABLE tmp
 FROM elements;
 DELETE FROM tmp
 WHERE tmp.tName=defines_fn.tDefines;
 SELECT c1.tName
 FROM tmp c1
 WHERE tType='Function'
 AND tName LIKE 'X%';

print "Graphics $fields[0]+ null\n";

Code segments 2, 3, and 4 collectively identify an architectural element, Graphics,
which does not exist in the extracted information but does exist in the as-designed
architecture. This is an example of relating the as-implemented and as-designed
architectures through a cumulative series of code segment applications. The results,
in UCMEdit model, are shown in Figure 10.16.

Figure 10.16. UCMEdit model showing the graphics subsystem,
classes, files, and remaining functions (arcs are hidden)

Note that the names of the elements to be aggregated into the Graphics element
include the '+' that was appended by the code segments in the figure. This
technique thus refers to previously constructed composite elements without the
code segments explicitly querying the database for them.

Examining Figure 10.16, we see that there are only two leftover functions
remaining: fabs and []; the latter is obviously an extraction error while the former
is a math library function that should have been filtered out along with standard C
library and built-in functions. Regardless, neither is of interest and so they can be
pruned from the model.

Of course, the determination of which functions are "interesting" or "uninteresting"
depends on the goals of the reconstruction. A reconstructor interested in a different
aspect of the system, such as how its subsystems depend on platform-specific or
operating-system-specific libraries, would not have pruned these functions from the
concrete model, but would more likely have aggregated them into a layer to analyze
how they are used by the rest of the application. We are interested in constructing
an architectural representation of the application-specific part of the system, so we
remove these functions.

A second common application-based code segment takes advantage of knowledge
about the relationship between classes and files in the example applications. First, a
source (.cc) file will contain functions for at most one class; second, a header (.h)
file will contain a definition for at most one class. This makes it possible to define a
unique containment relationship: A class can include the header file in which it is

defined and the source file that contains its functions. The code segment that
generates these aggregations is shown in Figure 10.17.

Figure 10.17 Code segments for class/file containment

SELECT DISTINCT tDefined_by
 FROM defines_fn;

print "$fields[0]+ $fields[0]+ Class $fields[0]++\n";

SELECT DISTINCT d1.tDefined_by, c1.tContainer
 FROM defines_fn d1, contains c1
 WHERE c1.tContainee=d1.tDefines;

print "$fields[0]+ $fields[1]+ Class\n";

SELECT d1.tClass, d1.tFile
 FROM defines d1;

print "$fields[0]+ $fields[1] Class\n";

We see one additional feature of these specifications in this example: The last field
in the perl expression associated with the first code segment ($fields[0]++)
specifies a renaming of the element being aggregated. In this code segment, we are
aggregating classes (named with trailing '+'s because of the class-collapsing code
segments of Section 10.4) into new composite elements. The names of the new
composites are <class>+; the original class composites are renamed <class>++.
The results are shown in Figure 10.18.

Figure 10.18. The UCMEdit model after application of common code
segments

UCMEdit was constructed as a prototype intended to demonstrate the advantages of
computer-based editing of use case maps. Since over-arching architectural design of
the application was not considered at the start of development, identification of
architectural elements from the concrete model must be guided by an
understanding of the application's structure as it stands at the completion of
development. Our understanding of the application will be imposed on the model via
direct manipulation, as follows.

First, we know (and can tell by observation of the model) that callbacks.cc is
central to the structure of the application, containing all of the system's event
handlers and the bulk of the user interface implementation. Second, we can observe
the obvious relationships between the two remaining files and the classes to which
they are connected�interpolate.cc is associated exclusively with BSpline, and
fisheye.cc is used only by Box and Component. Third, we may now reapply our
knowledge of the structure of the system's graphics encapsulation, or presentation,
layer; it is embodied in the Presentation class and its subclasses. Fourth, we can
make the observation that the List, ListItem, and ListIterator classes are
functionally related to one another and are used by almost all of the other classes.

We realize the above observations by

identifying the callbacks.cc file with an architectural element, Interaction.

aggregating interpolate.cc into the BSpline element.

aggregating the Presentation class and its subclasses into a Presentation
element.

aggregating the List, ListItem, and ListIterator classes into a List
element and hiding it, treating it as a "utility layer."

The results of these changes to the model are shown in Figure 10.19.

Figure 10.19. UCMEdit model after application-specific direct
manipulation

At this point, we need to carefully consider how we may further simplify this model.
Automatic clustering based on graph-theoretic properties, such as interconnection
strength, does not provide any insight. Another option is to attempt to build layers
based on the organization generated by the graph layout algorithm, as shown in
Figure 10.19, but this approach results in little functional consistency within the

layers. In other words, these two hypotheses did not seem to be confirmed by the
system, and so we did not pursue them. Considering the domain of use case maps,
however, will suggest another hypothesis.

After looking at concepts from use case maps, we identified two broad categories of
elements: those related to components and those related to paths, these being the
two primary constructs comprising a use case map. DynamicArrow, Path, Point,
Responsibility, Segment, Stub, and BSpline are related to paths; Box,
Component, Dependent, Handle, and fisheye.cc are related to components. Figure
10.20 shows the effect of clustering these elements into two architectural elements:
Path and Component.

Figure 10.20. UCMEdit model after clustering based on application
domain

In probing the connections among elements, we find that there are still a large
number of interrelationships. While this is not necessarily harmful in itself, it
suggests that UCMEdit's architecture lacks functional consistency within the
elements and their connections.

Unfortunately, there are no significant improvements we can make to the UCMEdit
model. The system was not well designed in that the mapping from functionality to
software structure is complex. This makes the abstraction of functionally coherent
high-level elements within UCMEdit's architecture impossible. However, we can take
advantage of what we have learned to suggest improvements and to document
what we know. The latter is especially important since we have discovered that
UCMEdit lacks the conceptual integrity that often brings about intuitive
understanding.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

10.7 Summary

Because architectures are intangible, they often become lost or eroded over a
system's lifetime. That is why we need techniques to recover or extract an
architecture from a legacy system. This chapter provided an overview of a standard
architecture reconstruction and showed an extended example of its application.

The mapping between architectures and source-code-level system artifacts is
complex, and this makes architecture reconstruction a complex process that works
best when it engages available human knowledge about the system under
consideration. Tools are invaluable, especially when arrayed in a lightweight
workbench ensemble, but human knowledge and insight are even more invaluable
to guide the reconstruction process.

10.8 For Further Reading

There are several reconstruction workbenches in existence. The Software
Engineering Institute (SEI) has developed Dali [Kazman 99a]. Other examples
include Sneed's reengineering workbench [Sneed 98], the software renovation
factories of Verhoef and associates [Brand 97], and the rearchitecting tool suite by
Philips Research [Krikhaar 99].

The Rigi Standard Form is discussed in [Müller 93]. The Rigi tool is described in
[Wong 94].

[Bowman 99] outlines a method similar to Dali for extracting architectural
documentation from the code of an implemented system. In one example, they
reconstructed the architecture of the Linux system, analyzing source code using a
cfx program (c-code fact extractor) to obtain symbol information from the code and
generating a set of relations between the symbols. Then they manually created a
tree-structured decomposition of the Linux system into subsystems and assigned
the source files to them. Next, they used the grok fact manipulator tool to
determine relations between the identified subsystems, and the lsedit visualization
tool to visualize the extracted system structure. Refinement of the resultant
structure was carried out by moving source files between subsystems.

Harris and associates outline a framework for architecture reconstruction using a
combined bottom-up and top-down approach [Harris 95]. The framework consists of
three parts: the architecture representation, the source code recognition engine and
supporting library of recognition queries, and a "bird's-eye" program overview
capability. The bottom-up analysis uses the bird's-eye view to display the system's
file structure and source elements and to reorganize information into more
meaningful clusters. The top-down analysis uses particular architectural patterns to
define elements that should be found in the software. Recognition queries are then
run to determine if the expected elements exist.

[Guo 99] outlines the semi-automatic architecture recovery method called ARM, for
systems that are designed and developed using patterns. It consists of four main
steps: (1) develop a concrete pattern recognition plan, (2) extract a source model,
(3) detect and evaluate pattern instances, and (4) reconstruct and analyze the
architecture. Case studies have been presented showing the use of the ARM method
to reconstruct systems and check their conformance against their documented
architectures.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

10.9 Discussion Questions

1:
Suppose you believed that the architecture for a system was layered. What
information would you want to extract from the source code to confirm or refute
this hypothesis?

2:
Suppose you believed that the architecture for a system followed a shared
repository style. What information would you want to extract from the source
code to confirm or refute this hypothesis?

3: For each use of reconstruction mentioned in Section 10.1, specify the
architectural views you would want to reconstruct.

4:

Chapter 6 described a code template used to provide a consistent approach to
high availability across the ISSS air traffic control system. Suppose you wanted
to confirm that developers and maintainers had remained faithful to this
template over the lifetime of the system. Describe the reconstruction process
you would undertake.

Part Three: Analyzing Architectures
Our tour of the ABC has gotten us to the stage where an architect has
designed and documented an architecture. This leads us to discuss how to
evaluate or to analyze the architecture to make sure it is the one that will do
the job. That is the focus of Part Three, which we begin by answering some
basic questions about architectural evaluations�why, when, cost, benefits,
techniques, planned or unplanned, preconditions, and results.

Why

One of the most important truths about the architecture of a system is that
knowing it will tell you important properties of the system itself�even if the
system does not yet exist. Architects make design decisions because of the
downstream effects they will have on the system(s) they are building, and
these effects are known and predictable. If they were not, the process of
crafting an architecture would be no better than throwing dice: We would pick
an architecture at random, build a system from it, see if the system had the
desired properties, and go back to the drawing board if not. While architecture
is not yet a cookbook science, we know we can do much better than random
guessing.

Architects by and large know the effects their design decisions will have. As we
saw in Chapter 5, architectural tactics and patterns in particular bring known
properties to the systems in which they are used. Hence, design choices�that
is to say, architectures�are analyzable. Given an architecture, we can deduce
things about the system, even if it has not been built yet.

Why evaluate an architecture? Because so much is riding on it, and because
you can. An effective technique to assess a candidate architecture�before it
becomes the project's accepted blueprint�is of great economic value. With the
advent of repeatable, structured methods (such as the ATAM, presented in
Chapter 11), architecture evaluation has come to provide relatively a low-cost
risk mitigation capability. Making sure the architecture is the right one simply
makes good sense. An architecture evaluation should be a standard part of
every architecture-based development methodology.

When

It is almost always cost-effective to evaluate software quality as early as
possible in the life cycle. If problems are found early, they are easier to
correct�a change to a requirement, specification, or design is all that is
necessary. Software quality cannot be appended late in a project, but must be
inherent from the beginning, built in by design. It is in the project's best
interest for prospective candidate designs to be evaluated (and rejected, if
necessary) during the design phase, before long-term institutionalization.

However, architecture evaluation can be carried out at many points during a
system's life cycle. If the architecture is still embryonic, you can evaluate
those decisions that have already been made or are being considered. You can
choose among architectural alternatives. If the architecture is finished, or
nearly so, you can validate it before the project commits to lengthy and
expensive development. It also makes sense to evaluate the architecture of a
legacy system that is undergoing modification, porting, integration with other
systems, or other significant upgrades. Finally, architecture evaluation makes
an excellent discovery vehicle: Development projects often need to understand
how an inherited system meets (or whether it meets) its quality attribute
requirements.

Furthermore, when acquiring a large software system that will have a long
lifetime, it is important that the acquiring organization develop an
understanding of the underlying architecture of the candidate. This makes an
assessment of their suitability possible with respect to qualities of importance.

Evaluation can also be used to choose between two competing architectures
by evaluating both and seeing which one fares better against the criteria for
"goodness."

Cost

The cost of an evaluation is the staff time required of the participants. AT&T,
having performed approximately 300 full-scale architecture reviews on
projects requiring a minimum of 700 staff-days, reported that, based on
estimates from individual project managers, the average cost was 70 staff-
days. ATAM-based reviews require approximately 36 staff-days.[1] If your
organization adopts a standing unit for carrying out evaluations, then costs for
supporting it must be included, as well as time to train the members.

[1] These figures are for the evaluation team. The ATAM also requires participation from project stakeholders and decision
makers, which adds to the total.

Benefits

We enumerate six benefits that flow from holding architectural inspections.

1. Financial. At AT&T, each project manager reports perceived savings from
an architecture evaluation. On average, over an eight-year period,
projects receiving a full architecture evaluation have reported a 10%
reduction in project costs. Given the cost estimate of 70 staff-days, this
illustrates that on projects of 700 staff-days or longer the review pays for
itself.

Other organizations have not publicized such strongly quantified data,
but several consultants have reported that more than 80% of their work
was repeat business. Their customers recognized sufficient value to be
willing to pay for additional evaluations.

There are many anecdotes about estimated cost savings for customers'
evaluations. A large company avoided a multi-million-dollar purchase
when the architecture of the global information system they were
procuring was found to be incapable of providing the desired system
attributes. Early architectural analysis of an electronic funds transfer
system showed a $50 billion transfer capability per night, which was only
half of the desired capacity. An evaluation of a retail merchandise system
revealed early that there would be peak order performance problems
that no amount of hardware could fix, and a major business failure was
prevented. And so on.

There are also anecdotes of architecture evaluations that did not occur
but should have. In one, a rewrite of a customer accounting system was
estimated to take two years but after seven years the system had been
reimplemented three times. Performance goals were never met despite
the fact that the latest version used sixty times the CPU power of the
original prototype version. In another case, involving a large engineering
relational database system, performance problems were largely
attributable to design decisions that made integration testing impossible.
The project was canceled after $20 million had been spent.

2. Forced preparation for the review. Indicating to the reviewees the focus
of the architecture evaluation and requiring a representation of the
architecture before the evaluation is done means that reviewees must
document the system's architecture. Many systems do not have an
architecture that is understandable to all developers. The existing
description is either too brief or (more commonly) too long, perhaps
thousands of pages. Furthermore, there are often misunderstandings
among developers about some of the assumptions for their elements.
The process of preparing for the evaluation will reveal many of these
problems.

3. Captured rationale. Architecture evaluation focuses on a few specific
areas with specific questions to be answered. Answering these questions
usually involves explaining the design choices and their rationales. A
documented design rationale is important later in the life cycle so that
the implications of modifications can be assessed. Capturing a rationale
after the fact is one of the more difficult tasks in software development.
Capturing it as presented in the architecture evaluation makes invaluable
information available for later use.

4. Early detection of problems with the existing architecture. The earlier in
the life cycle that problems are detected, the cheaper it is to fix them.
The problems that can be found by an architectural evaluation include
unreasonable (or expensive) requirements, performance problems, and
problems associated with potential downstream modifications. An
architecture evaluation that exercises system modification scenarios can,
for example, reveal portability and extensibility problems. In this way an
architecture evaluation provides early insight into product capabilities
and limitations.

5. Validation of requirements. Discussion and examination of how well an
architecture meets requirements opens up the requirements for
discussion. What results is a much clearer understanding of the
requirements and, usually, their prioritization. Requirements creation,
when isolated from early design, usually results in conflicting system
properties. High performance, security, fault tolerance, and low cost are
all easy to demand but difficult to achieve, and often impossible to
achieve simultaneously. Architecture evaluations uncover the conflicts
and tradeoffs, and provide a forum for their negotiated resolution.

6. Improved architectures. Organizations that practice architecture
evaluation as a standard part of their development process report an
improvement in the quality of the architectures that are evaluated. As
development organizations learn to anticipate the questions that will be
asked, the issues that will be raised, and the documentation that will be
required for evaluations, they naturally pre-position themselves to
maximize their performance on the evaluation. Architecture evaluations
result in better architectures not only after the fact but before the fact as
well. Over time, an organization develops a culture that promotes good
architectural design.

In sum, architecture evaluations tend to increase quality, control cost, and
decrease budget risk. Architecture is the framework for all technical decisions
and as such has a tremendous impact on product cost and quality. An
architecture evaluation does not guarantee high quality or low cost, but it can
point out areas of risk. Other factors, such as testing or quality of
documentation and coding, contribute to the eventual cost and quality of the
system.

Techniques

The ATAM and CBAM methods discussed in the next two chapters are
examples of questioning techniques. Both use scenarios as the vehicle for
asking probing questions about how the architecture under review responds to
various situations. Other questioning techniques include checklists or
questionnaires. These are effective when an evaluation unit encounters the
same kind of system again and again, and the same kind of probing is
appropriate each time. All questioning techniques essentially rely on thought
experiments to find out how well the architecture is suited to its task.

Complementing questioning techniques are measuring techniques, which rely
on quantitative measures of some sort. One example of this technique is
architectural metrics. Measuring an architecture's coupling, the cohesiveness
of its modules, or the depth of its inheritance hierarchy suggests something
about the modifiability of the resulting system. Likewise, building simulations
or prototypes and then measuring them for qualities of interest (here, runtime
qualities such as performance or availability) are measuring techniques.

While the answers that measuring techniques give are in some sense more
concrete than those questioning techniques provide, they have the drawback

that they can be applied only in the presence of a working artifact. That is,
measuring techniques have to have something that exists that can be
measured. Questioning techniques, on the other hand, work just fine on
hypothetical architectures, and can be applied much earlier in the life cycle.

Planned or Unplanned

Evaluations can be planned or unplanned. A planned evaluation is considered a
normal part of the project's development cycle. It is scheduled well in
advance, built into the project's work plans and budget, and follow-up is
expected. An unplanned evaluation is unexpected and usually the result of a
project in serious trouble and taking extreme measures to try to salvage
previous effort.

The planned evaluation is ideally considered an asset to the project, at worst a
distraction from it. It can be perceived not as a challenge to the technical
authority of the project's members but as a validation of the project's initial
direction. Planned evaluations are pro-active and team-building.

An unplanned evaluation is more of an ordeal for project members, consuming
extra project resources and time in the schedule from a project already
struggling with both. It is initiated only when management perceives that a
project has a substantial possibility of failure and needs to make a mid-course
correction. Unplanned evaluations are reactive, and tend to be tension filled.
An evaluation's team leader must take care not to let the activities devolve
into finger pointing.

Needless to say, planned evaluations are preferable.

Preconditions

A successful evaluation will have the following properties:

1. Clearly articulated goals and requirements for the architecture. An
architecture is only suitable, or not, in the presence of specific quality
attributes. One that delivers breathtaking performance may be totally
wrong for an application that needs modifiability. Analyzing an
architecture without knowing the exact criteria for "goodness" is like
beginning a trip without a destination in mind. Sometimes (but in our
experience, almost never), the criteria are established in a requirements
specification. More likely, they are elicited as a precursor to or as part of
the actual evaluation. Goals define the purpose of the evaluation and
should be made an explicit portion of the evaluation contract, discussed
subsequently.

2. Controlled scope. In order to focus the evaluation, a small number of
explicit goals should be enumerated. The number should be kept to a
minimum�around three to five�an inability to define a small number of
high-priority goals is an indication that the expectations for the
evaluation (and perhaps the system) may be unrealistic.

3. Cost-effectiveness. Evaluation sponsors should make sure that the
benefits of the evaluation are likely to exceed the cost. The types of
evaluation we describe are suitable for medium and large-scale projects
but may not be cost-effective for small projects.

4. Key personnel availability. It is imperative to secure the time of the
architect or at least someone who can speak authoritatively about the
system's architecture and design. This person (or these people) primarily
should be able to communicate the facts of the architecture quickly and
clearly as well as the motivation behind the architectural decisions. For
very large systems, the designers for each major component need to be
involved to ensure that the architect's notion of the system design is in
fact reflected and manifested in its more detailed levels. These designers
will also be able to speak to the behavioral and quality attributes of the
components. For the ATAM, the architecture's stakeholders need to be
identified and represented at the evaluation. It is essential to identify the
customer(s) for the evaluation report and to elicit their values and
expectations.

5. Competent evaluation team. Ideally, software architecture evaluation
teams are separate entities within a corporation, and must be perceived
as impartial, objective, and respected. The team must be seen as being
composed of people appropriate to carry out the evaluation, so that the
project personnel will not regard the evaluation as a waste of time and
so that its conclusions will carry weight. It must include people fluent in
architecture and architectural issues and be led by someone with solid
experience in designing and evaluating projects at the architectural level.

6. Managed expectations. Critical to the evaluation's success is a clear,
mutual understanding of the expectations of the organization sponsoring
it. The evaluation should be clear about what its goals are, what it will
produce, what areas it will (and will not) investigate, how much time and
resources it will take from the project, and to whom the results will be
delivered.

Results

The evaluation should produce a report in which all of the issues of concern,
along with supporting data, are described. The report should be circulated in
draft form to all evaluation participants in order to catch and correct any
misconceptions and biases and to correlate elements before it is finalized.
Ideally, the issues should be ranked by their potential impact on the project if
left unaddressed.

Information about the evaluation process itself should also be collected. The
aggregated output from multiple evaluations leads to courses, training, and
improvements to system development and the architecture evaluation
processes. Costs and benefits of the evaluation should be collected. Estimates
of the benefits are best collected from the manager of the development. The
information about the evaluation should be retained by the reviewing

organization and used both to improve future evaluations and to provide
cost/benefit summaries to the managers of the reviewing organization.

This part has three chapters. The ATAM (discussed in Chapter 11) is a
structured method for evaluating architectures. It results in a list of risks that
the architecture will not meet its business goals. The CBAM (discussed in
Chapter 12) is a method of determining which risks to attack first. In a large
system, the number of risks found can be very high. Deciding which to attack
first is a matter of balancing the costs of modifying the architecture to reduce
the risk against the benefits of removing that risk. The CBAM provides a
structure for dealing with this organizational and economic question. Chapter
13 is another case study, which describes systems that support the World Wide
Web and how their evolution is an example of several cycles of the ABC.

For Further Reading

The material in this introduction was derived from [Abowd 96] "Recommended
Best Industrial Practice for Architecture Evaluation," which grew out of a series
of workshops organized by the authors and others at the Software Engineering
Institute. These workshops were attended by representatives of eight
industrial and consulting organizations.

Architectural evaluations based on checklists or questionnaires are a form of
active design review as described in [Parnas 85b]. An active design evaluation
is one in which the participants take an active part by using the documentation
to answer specific questions prepared in advance. This is as opposed to an
opportunistic or unstructured evaluation in which the participants are merely
asked to report any anomalies they might discover.

[Cusumano 95] treats the use of metrics to uncover places of likely change.
Some of AT&T's rich experience with performing architectural evaluations is
documented in [AT&T 93].

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 11. The ATAM: A Comprehensive Method for
Architecture Evaluation
with Mark Klein

We evaluate the services that anyone renders to us according to the value he
puts on them, not according to the value they have for us.

�Friedrich Nietzsche

In this chapter, we will introduce the Architecture Tradeoff Analysis Method (ATAM),
a thorough and comprehensive way to evaluate a software architecture. The ATAM is
so named because it reveals how well an architecture satisfies particular quality
goals, and (because it recognizes that architectural decisions tend to affect more
than one quality attribute) it provides insight into how quality goals interact�that is,
how they trade off.

Evaluating an architecture for a large system is a complicated undertaking. First, a
large system will have a comparably large architecture that will be difficult to
understand in a limited amount of time. Second, according to Nietzsche and the
Architecture Business Cycle (ABC), a computer system is intended to support
business goals and the evaluation will need to make connections between those
goals and the technical decisions. Finally, a large system usually has multiple
stakeholders and acquiring their different perspectives in a limited amount of time
requires careful management of an evaluation process. As you can see from this set
of difficulties, managing the limited time for an architecture evaluation is a central
problem.

Note: Mark Klein is a senior member of the technical staff at the Software
Engineering Institute.

The ATAM is designed to elicit the business goals for the system as well as for the
architecture. It is also designed to use those goals and stakeholder participation to
focus the attention of the evaluators on the portion of the architecture that is central
to the achievement of the goals.

This chapter will introduce the steps of the ATAM and discuss them in light of their
intended purpose. It will also presents an ATAM case study (based on one of our
applications of the method).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.1 Participants in the ATAM

The ATAM requires the participation and mutual cooperation of three groups:

1. The evaluation team. This group is external to the project whose architecture
is being evaluated. It usually consists of three to five people. Each member of
the team is assigned a number of specific roles to play during the evaluation.
(See Table 11.1 for a description of these roles, along with a set of desirable
characteristics for each.) The evaluation team may be a standing unit in which
architecture evaluations are regularly performed, or its members may be
chosen from a pool of architecturally savvy individuals for the occasion. They
may work for the same organization as the development team whose
architecture is on the table, or they may be outside consultants. In any case,
they need to be recognized as competent, unbiased outsiders with no hidden
agendas or axes to grind.

2. Project decision makers. These people are empowered to speak for the
development project or have the authority to mandate changes to it. They
usually include the project manager, and, if there is an identifiable customer
who is footing the bill for the development, he or she will be present (or
represented) as well. The architect is always included�a cardinal rule of
architecture evaluation is that the architect must willingly participate. Finally,
the person commissioning the evaluation is usually empowered to speak for
the development project; even if not, he or she should be included in the
group.

3. Architecture stakeholders. Stakeholders have a vested interest in the
architecture performing as advertised. They are the ones whose ability to do
their jobs hinges on the architecture promoting modifiability, security, high
reliability, or the like. Stakeholders include developers, testers, integrators,
maintainers, performance engineers, users, builders of systems interacting
with the one under consideration, and others. Their job during an evaluation is
to articulate the specific quality attribute goals that the architecture should
meet in order for the system to be considered a success. A rule of thumb�and
that is all it is�is that you should expect to enlist the services of twelve to
fifteen stakeholders for the evaluation.

Table 11.1. ATAM evaluation team roles

Role Responsibilities Desirable characteristics

Role Responsibilities Desirable characteristics

Team
Leader

Sets up the evaluation; coordinates
with client, making sure client's needs
are met; establishes evaluation
contract; forms evaluation team; sees
that final report is produced and
delivered (although the writing may be
delegated)

Well-organized, with
managerial skills; good at
interacting with client; able to
meet deadlines

Evaluation
Leader

Runs evaluation; facilitates elicitation of
scenarios; administers scenario
selection/prioritization process;
facilitates evaluation of scenarios
against architecture; facilitates onsite
analysis

Comfortable in front of
audience; excellent facilitation
skills; good understanding of
architectural issues; practiced
in architecture evaluations;
able to tell when protracted
discussion is leading to a
valuable discovery or when it is
pointless and should be re-
directed

Scenario
Scribe

Writes scenarios on flipchart or
whiteboard during scenario elicitation;
captures agreed-on wording of each
scenario, halting discussion until exact
wording is captured

Good handwriting; stickler
about not moving on before an
idea (scenario) is captured; can
absorb and distill the essence
of technical discussions

Proceedings
Scribe

Captures proceedings in electronic form
on laptop or workstation, raw scenarios,
issue(s) that motivate each scenario
(often lost in the wording of the
scenario itself), and resolution of each
scenario when applied to
architecture(s); also generates a
printed list of adopted scenarios for
handout to all participants

Good, fast typist; well
organized for rapid recall of
information; good
understanding of architectural
issues; able to assimilate
technical issues quickly;
unafraid to interrupt the flow of
discussion (at opportune times)
to test understanding of an
issue so that appropriate
information is captured

Timekeeper Helps evaluation leader stay on
schedule; helps control amount of time
devoted to each scenario during the
evaluation phase

Willing to interrupt discussion
to call time

Role Responsibilities Desirable characteristics

Process
Observer

Keeps notes on how evaluation process
could be improved or deviated from;
usually keeps silent but may make
discreet process-based suggestions to
the evaluation leader during the
evaluation; after evaluation, reports on
how the process went and lessons
learned for future improvement; also
responsible for reporting experience to
architecture evaluation team at large

Thoughtful observer;
knowledgeable in the
evaluation process; should
have previous experience in
the architecture evaluation
method

Process
Enforcer

Helps evaluation leader remember and
carry out the steps of the evaluation
method

Fluent in the steps of the
method, and willing and able to
provide discreet guidance to
the evaluation leader

Questioner Raise issues of architectural interest
that stakeholders may not have thought
of

Good architectural insights;
good insights into needs of
stakeholders; experience with
systems in similar domains;
unafraid to bring up
contentious issues and pursue
them; familiar with attributes
of concern

Source: Adapted from [Clements 02a].

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.2 Outputs of the ATAM

An ATAM-based evaluation will produce at least the following outputs:

A concise presentation of the architecture. Architecture documentation is often
thought to consist of the object model, a list of interfaces and their signatures,
or some other voluminous list. But one of the requirements of the ATAM is that
the architecture be presented in one hour, which leads to an architectural
presentation that is both concise and, usually, understandable.

Articulation of the business goals. Frequently, the business goals presented in
the ATAM are being seen by some of the development team for the first time.

Quality requirements in terms of a collection of scenarios. Business goals lead
to quality requirements. Some of the important quality requirements are
captured in the form of scenarios.

Mapping of architectural decisions to quality requirements. Architectural
decisions can be interpreted in terms of the qualities that they support or
hinder. For each quality scenario examined during an ATAM, those architectural
decisions that help to achieve it are determined.

A set of identified sensitivity and tradeoff points. These are architectural
decisions that have a marked effect on one or more quality attributes.
Adopting a backup database, for example, is clearly an architectural decision
as it affects reliability (positively), and so it is a sensitivity point with respect
to reliability. However, keeping the backup current consumes system resources
and so affects performance negatively. Hence, it is a tradeoff point between
reliability and performance. Whether this decision is a risk or a nonrisk
depends on whether its performance cost is excessive in the context of the
quality attribute requirements of the architecture.

A set of risks and nonrisks. A risk is defined in the ATAM as an architectural
decision that may lead to undesirable consequences in light of stated quality
attribute requirements. Similarly, a nonrisk is an architectural decision that,
upon analysis, is deemed safe. The identified risks can form the basis for an
architectural risk mitigation plan.

A set of risk themes. When the analysis is complete, the evaluation team will
examine the full set of discovered risks to look for over-arching themes that
identify systemic weaknesses in the architecture or even in the architecture
process and team. If left untreated, these risk themes will threaten the
project's business goals.

The outputs are used to build a final written report that recaps the method,
summarizes the proceedings, captures the scenarios and their analysis, and catalogs

the findings.

There are secondary outputs as well. Very often, representations of the architecture
will have been created expressly for the evaluation and may be superior to whatever
existed before. This additional documentation survives the evaluation and can
become part of the project's legacy. Also, the scenarios created by the participants
are expressions of the business goals and requirements for the architecture and can
be used to guide the architecture's evolution. Finally, the analysis contained in the
final report can serve as a statement of rationale for certain architectural decisions
made (or not made). The secondary outputs are tangible and enumerable.

There are intangible results of an ATAM-based evaluation. These include a palpable
sense of community on the part of the stakeholders, open communication channels
between the architect and the stakeholders, and a better overall understanding on
the part of all participants of the architecture and its strengths and weaknesses.
While these results are hard to measure, they are no less important than the others
and often are the longest-lasting.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.3 Phases of the ATAM

Activities in an ATAM-based evaluation are spread out over four phases.

In phase 0, "Partnership and Preparation," the evaluation team leadership and the key
project decision makers informally meet to work out the details of the exercise. The
project representatives brief the evaluators about the project so that the team can be
supplemented by people who possess the appropriate expertise. Together, the two groups
agree on logistics, such as the time and place of meetings, who brings the flipcharts, and
who supplies the donuts and coffee. They also agree on a preliminary list of stakeholders
(by name, not just role), and they negotiate on when the final report is to be delivered
and to whom. They handle formalities such as a statement of work or nondisclosure
agreements. They work out delivery to the evaluation team of whatever architectural
documentation exists and may be useful. Finally, the evaluation team leader explains
what information the manager and architect will be expected to show during phase 1, and
helps them construct their presentations if necessary.

Phase 1 and phase 2 are the evaluation phases, where everyone gets down to the
business of analysis. By now the evaluation team will have studied the architecture
documentation and will have a good idea of what the system is about, the overall
architectural approaches taken, and the quality attributes that are of paramount
importance. During phase 1, the evaluation team meets with the project decision makers
(usually for about a day) to begin information gathering and analysis. For phase 2, the
architecture's stakeholders join the proceedings and analysis continues, typically for two
days. The exact steps of phase 1 and phase 2 are detailed in the next section.

Phase 3 is follow-up in which the evaluation team produces and delivers a written final
report. The essence of this phase, however, is team self-examination and improvement.
During a post-mortem meeting, the team discusses what went well and what didn't. They
study the surveys handed out to participants during phase 1 and phase 2, and the process
observer makes his or her report. Team members look for improvements in how they
carry out their functions so that the next evaluation can be smoother or more effective.
The team catalogs how much effort was spent during the evaluation, on the part of each
of the three participating groups. After an appropriate number of months, the team leader
contacts the evaluation client to gauge the long-term effects of the exercise so that costs
and benefits can be compared.

Table 11.2 shows the four phases of the ATAM, who participates in each one, and an
approximate timetable.

Table 11.2. ATAM Phases and Their Characteristics

Phase Activity Participants Typical Duration

0 Partnership
and
preparation

Evaluation team leadership and
key project decision makers

Proceeds informally as required,
perhaps over a few weeks

Phase Activity Participants Typical Duration

1 Evaluation Evaluation team and project
decision makers

1 day followed by a hiatus of 2
to 3 weeks

2 Evaluation
(continued)

Evaluation team, project decision
makers, and stakeholders

2 days

3 Follow-up Evaluation team and evaluation
client

1 week

Source: Adapted from [Clements 02a].

STEPS OF THE EVALUATION PHASES

The ATAM analysis phases (phase 1 and phase 2) consist of nine steps. Steps 1 through 6
are carried out in phase 1. In phase 2, with all stakeholders present, those steps are
summarized and steps 7 through 9 are carried out.

The analysis steps are nominally carried out in sequential order according to a set
agenda, but sometimes there must be dynamic modifications to the schedule to
accommodate personnel availability or architectural information. Every evaluation is
unique, and there may be times when the team returns briefly to an earlier step, jumps
forward to a later step, or iterates among steps, as the need dictates.

Step 1�Present the ATAM

The first step calls for the evaluation leader to present the ATAM to the assembled project
representatives. This time is used to explain the process that everyone will be following,
to answer questions, and to set the context and expectations for the remainder of the
activities. Using a standard presentation, the leader will describe the ATAM steps in brief
and the outputs of the evaluation.

Step 2�Present Business Drivers

Everyone involved in the evaluation�the project representatives as well as the evaluation
team members�needs to understand the context for the system and the primary
business drivers motivating its development. In this step, a project decision maker
(ideally the project manager or the system's customer) presents a system overview from
a business perspective. The presentation should describe the following:

The system's most important functions

Any relevant technical, managerial, economic, or political constraints

The business goals and context as they relate to the project

The major stakeholders

The architectural drivers (that is, the major quality attribute goals that shape the
architecture)

Step 3�Present Architecture

Here, the lead architect (or architecture team) makes a presentation describing the
architecture at an appropriate level of detail. The "appropriate level" depends on several
factors: how much of the architecture has been designed and documented; how much
time is available; and the nature of the behavioral and quality requirements.

In this presentation the architect covers technical constraints such as operating system,
hardware, or middleware prescribed for use, and other systems with which the system
must interact. Most important, the architect describes the architectural approaches (or
patterns, if the architect is fluent in that vocabulary) used to meet the requirements.

To make the most of limited time, the architect's presentation should have a high signal-
to-noise ratio. That is, it should convey the essence of the architecture and not stray into
ancillary areas or delve too deeply into the details of just a few aspects. Thus, it is
extremely helpful to brief the architect beforehand about the information the evaluation
team requires. A template such as the one in Figure 11.1 can help the architect prepare
the presentation. Depending on the architect, a dress rehearsal can be included as part of
the phase 1 activities.

FIGURE 11.1 Example of a template for the
architecture presentation Source: Adapted from
[Clements 02a].
Architecture Presentation (~20 slides; 60 minutes)

Driving architectural requirements, the measurable quantities you associate
with these requirements, and any existing standards/models/approaches for
meeting these (2�3 slides)

Important Architectural Information (4�8 slides)

- Context diagram�the system within the context in which it will exist.
Humans or other systems with which the system will interact.

- Module or layer view�the modules (which may be subsystems or layers)
that describe the system's decomposition of functionality, along with the
objects, procedures, functions that populate these, and the relations
among them (e.g., procedure call, method invoca-tion, callback,
containment).

- Component-and-connector view�processes, threads along with the
synchronization, data flow, and events that connect them.

- Deployment view�CPUs, storage, external devices/sensors along with
the networks and communication devices that connect them.Also shown
are the processes that execute on the various processors.

Architectural approaches, patterns, or tactics employed, including what quality
attributes they address and a description of how the approaches address those
attributes (3�6 slides)

- Use of commercial off-the-shelf (COTS) products and how they are
chosen/integrated (1�2 slides)

- Trace of 1 to 3 of the most important use case scenarios. If possible,
include the runtime resources consumed for each scenario (1�3 slides)

- Trace of 1 to 3 of the most important change scenarios. If possible,
describe the change impact (estimated size/difficulty of the change) in
terms of the changed modules or interfaces (1�3 slides)

- Architectural issues/risks with respect to meeting the driving
architectural requirements (2�3 slides)

- Glossary (1 slide)

As may be seen in the presentation template, we expect architectural views, as described
in Chapter 2, to be the primary vehicle for the architect to convey the architecture.
Context diagrams, component-and-connector views, module decomposition or layered
views, and the deployment view are useful in almost every evaluation, and the architect
should be prepared to show them. Other views can be presented if they contain
information relevant to the architecture at hand, especially information relevant to
achieving important quality attribute goals. As a rule of thumb, the architect should
present the views that he or she found most important during the creation of the
architecture.

During the presentation, the evaluation team asks for clarification based on their phase 0
examination of the architecture documentation and their knowledge of the business
drivers from the previous step. They also listen for and write down any architectural
tactics or patterns they see employed.

Step 4�Identify Architectural Approaches

The ATAM focuses on analyzing an architecture by understanding its architectural
approaches. As we saw in Chapter 5, architectural patterns are useful for (among other
reasons) the known ways in which each one affects particular quality attributes. A layered
pattern tends to bring portability to a system, possibly at the expense of performance. A
data repository pattern is usually scalable in the number of producers and consumers of
data. And so forth.

By now, the evaluation team will have a good idea of what patterns and approaches the
architect used in designing the system. They will have studied the architecture
documentation, and they will have heard the architect's presentation in step 3. During
that step, the architect is asked to explicitly name the patterns and approaches used, but
the team should also be adept at spotting ones not mentioned.

In this short step, the evaluation team simply catalogs the patterns and approaches that
are evident. The list is publicly captured by the scribe for all to see and will serve as the
basis for later analysis.

Step 5�Generate Quality Attribute Utility Tree

An architecture is either suitable or unsuitable with respect to its ability to deliver
particular quality attributes to the system(s) built from it. The highest-performance
architecture may be totally wrong for a system in which performance is not nearly as
important as, say, security. The important quality attribute goals for the architecture
under consideration were named in step 2, when the business drivers were presented, but
not to any degree of specificity that would permit analysis. Broad goals such as
"modifiability" or "high throughput" or "ability to be ported to a number of machines"
establish important context and direction, and provide a backdrop against which
subsequent information is presented. However, they are not specific enough to let us tell if
the architecture suffices. Modifiable in what way? Throughput that is how high? Ported to
what machines?

In this step, the quality attribute goals are articulated in detail via a mechanism known as
the utility tree. Here, the evaluation team works with the project decision makers to
identify, prioritize, and refine the system's most important quality attribute goals, which
are expressed as scenarios. The utility tree serves to make the requirements concrete,
forcing the architect and customer representatives to define precisely the relevant quality
requirements that they were working to provide.

A utility tree begins with utility as the root node. Utility is an expression of the overall
"goodness" of the system. Quality attributes form the second level because these are the
components of utility. Quality attributes named in the business drivers presentation in
step 2 make up the initial or seed set of this second level. Typically, performance,
modifiability, security, usability, and availability are the children of utility, but participants
are free to name their own. Sometimes different stakeholder groups use different names
for the same ideas (for example, some stakeholders prefer to speak of "maintainability").
Sometimes they introduce quality attribute names that are meaningful in their own
culture but not widely used elsewhere, such as "flextensibility." Any names the
stakeholders introduce are fine as long as they are able to explain what they mean
through refinement at the next levels. (See the sidebar What's in a Name?)

Under each of these quality attributes are specific quality attribute refinements. For
example, performance might be decomposed into "data latency" and "transaction
throughput." This is a step toward refining the attribute goals into quality attribute
scenarios that are concrete enough for prioritization and analysis. Data latency might be
further refined into "Lower storage latency on customer database to 20 ms." and "Deliver
20 frame/second video in real time" because both kinds of data latency are relevant to
the system.

Scenarios (as described in Chapter 4) are the mechanism by which broad (and
ambiguous) statements of desired qualities are made specific and testable. They form the

leaves of the utility tree, grouped by the quality attributes they express. Their six-part
form, as shown in Chapter 4, is simplified for purposes of evaluation. ATAM scenarios
consist of three parts: stimulus (what condition arrives at a system, who generated it, and
what system artifact it stimulates), environment (what is going on at the time), and
response (system's reaction to the stimulus expressed in a measurable way).

Now we have something tangible against which to evaluate the architecture. In fact, the
analysis steps of the ATAM consist of choosing one scenario at a time and seeing how well
the architecture responds to, or achieves, it. More on that in the next step.

Some scenarios might express more than one quality attribute and so might appear in
more than one place in the tree. That is not necessarily a problem, but the evaluation
leader should guard against scenarios that try to cover too much diverse territory because
they will be difficult to analyze. Try to split such scenarios into constituents that each
attach smaller concerns.

Not only does the team need to understand the precise goals levied on the architecture,
but it also needs to understand their relative importance. A utility tree can easily contain
fifty scenarios at its leaves, and there will not be time during the evaluation meeting to
analyze them all. Hence, utility tree generation also includes a prioritization step. By
consensus, the decision makers assign a priority to each scenario. This prioritization may
be on a 0 to 10 scale or use relative rankings such as high, medium, and low. (We prefer
the high/medium/low approach because it works well with diverse groups and takes less
time than assigning precise numbers.)

After that, scenarios are prioritized a second time, using a different criterion. The
architect is asked to rank each scenario by how difficult he or she believes it will be for
the architecture to satisfy. Again, a simple high/medium/low scheme works well here.

What's in a Name?
The architecture evaluation methods in this book use scenarios as a way to
capture quality attributes because quality attributes by themselves are too
vague for analysis. And yet the ATAM's utility tree uses quality attribute names
as an organizing vehicle. Is that a contradiction? In fact, it is not because we
do not care what qualities the stakeholders choose. As long as it stimulates
their thinking, they are free to choose any quality attribute names they like. For
instance, in the utility tree shown in Table 11.5 later in this chapter, you might
argue that "configurability" and "modularity" are special kinds of "modifiability"
and therefore should appear as a refinement of it. I would probably agree with
you. But at that particular evaluation the stakeholders felt they were different
enough to warrant their own categories in the utility tree, and so we
accommodated them. What really matters is the scenarios at the leaves, not
the structure of the branches.

We almost never see the same quality attribute names from evaluation to
evaluation. One organization's "maintainability" is another organization's
"changeability." Sometimes "portability" is a kind of modifiability, but many
times the stakeholders stand it on its own. Reliability and availability are often
interchanged, and we have also seen some esoteric quality attribute names
that had well-known meaning within the organizations we were visiting:
"deployability" and "sellability," for example. What did those mean? We did not

know precisely, but it is a happy property of the ATAM that we never need to
spend valuable time haggling over definitions. The scenarios provided the
operational meaning. What mattered was that the terms meant something to
the stakeholders who brought them up, who were then able to use them to
conjure up scenarios articulating the concerns for which they stood.

In one ATAM exercise we ran, the developing organization had a very real
concern about attracting talented personnel to its headquarters in a small,
quiet city in the American Midwest. This business driver actually led to an
architectural concern�that the architecture employ sufficiently interesting and
state-of-the-art software technology so as to make people want to come work
with it.

You will not find "Iowa-bility" in any list of IEEE, ISO, or ANSI standard quality
attribute names, but it found its way into one of our ATAM utility trees, where it
served as a means to stimulate thinking about scenarios to express the
concern.

� PCC

Now each scenario has an associated ordered pair: (H,H), (H,M), (H,L), and so forth. The
scenarios that are the most important and the most difficult will be the ones where
precious analysis time will be spent and the remainder will be kept as part of the record.
A scenario that is considered either unimportant (L,*) or very easy to achieve (*,L) is not
likely to receive much attention.

The output of utility tree generation is a prioritized list of scenarios that serves as a plan
for the remainder of the ATAM evaluation. It tells the ATAM team where to spend its
(relatively limited) time and, in particular, where to probe for architectural approaches
and risks. The utility tree guides the evaluators toward the architectural approaches for
satisfying the high-priority scenarios at its leaves.

At this point in the evaluation, all of the information necessary for analysis is on the table:
the important qualities expected of the architecture that came from step 2's business
drivers and step 5's utility tree, and the architecture in place as captured in step 3's
architecture presentation and step 4's catalog of approaches used. An example of a utility
tree, shown in tabular form (omitting the root utility node) is given in Table 11.5.

Step 6�Analyze Architectural Approaches

Here the evaluation team examines the highest-ranked scenarios one at a time; the
architect is asked to explain how the architecture supports each one. Team
members�especially the questioners�probe for the architectural approaches that the
architect used to carry out the scenario. Along the way, the team documents the relevant
architectural decisions and identifies and catalogs their risks, nonrisks, sensitivity points,
and tradeoffs. For well-known approaches, the team asks how the architect overcame
known weaknesses in the approach or how the architect gained assurance that the
approach sufficed. The goal is for the evaluation team to be convinced that the
instantiation of the approach is appropriate for meeting the attribute-specific
requirements for which it is intended.

For example, the number of simultaneous database clients will affect the number of
transactions that a database can process per second. Thus, the assignment of clients to
the server is a sensitivity point with respect to the response as measured in transactions
per second. Some assignments will result in unacceptable values of this response�these
are risks. When it turns out that an architectural decision is a sensitivity point for more
than one attribute, it is designated as a tradeoff point.

The scenario walkthrough leads to a discussion of possible risks, nonrisks, sensitivity
points, or tradeoff points. These, in turn, may catalyze a deeper analysis, depending on
how the architect responds. For example, if the architect cannot characterize the number
of clients and cannot say how load balancing will be achieved by allocating processes to
hardware, there is little point in a sophisticated queuing or rate-monotonic performance
analysis. If such questions can be answered, the evaluation team can perform at least a
rudimentary, or back-of-the-envelope, analysis to determine if these architectural
decisions are problematic vis-à-vis the quality attribute requirements they are meant to
address. The analysis is not meant to be comprehensive. The key is to elicit sufficient
architectural information to establish some link between the architectural decisions that
have been made and the quality attribute requirements that need to be satisfied.

Figure 11.2 shows a form for capturing the analysis of an architectural approach for a
scenario. As shown, based on the results of this step the evaluation team can identify and
record a set of sensitivity points and tradeoff points, risks and nonrisks. All sensitivity
points and tradeoff points are candidate risks. By the end of the ATAM exercise, all of
them should be categorized as either one or the other. The risks, nonrisks, sensitivity
points, and tradeoff points are gathered in separate lists. The numbers R8, T3, S4, N12,
and so forth, in Figure 11.2 are simply pointers into these lists.

Figure 11.2. Example of architectural approach analysis

Source: Adapted from [Clements 02a].

At the end of this step, the evaluation team should have a clear picture of the most
important aspects of the entire architecture, the rationale for key design decisions, and a
list of risks, nonrisks, sensitivity points, and tradeoff points.

Hiatus and Start of Phase 2

At this point, phase 1 is concluded. The evaluation team retreats to summarize what it
has learned and interacts informally (usually by phone) with the architect during a hiatus
of a week or two. More scenarios might be analyzed during this period, if desired, or
questions of clarification can be resolved.

When the project's decision makers are ready to resume and the stakeholders are
assembled, phase 2 commences. This phase is enacted by an expanded list of participants
with additional stakeholders attending. First, step 1 is repeated so that the stakeholders
understand the method and the role they are to play. Then the evaluation leader recaps

the results of steps 2 through 6, and shares the current list of risks, nonrisks, sensitivity
points, and tradeoff points. Now the stake holders are up to speed with the evaluation
results so far, and the remaining three steps can be carried out.

Step 7�Brainstorm and Prioritize Scenarios

While utility tree generation is used primarily to understand how the architect perceived
and handled quality attribute architectural drivers, the purpose of scenario brainstorming
is to take the pulse of the larger stakeholder community. Scenario brainstorming works
well in larger groups, creating an atmosphere in which the ideas and thoughts of one
person stimulate others' ideas. The process fosters communication and creativity, and
serves to express the collective mind of the participants. The prioritized list of
brainstormed scenarios is compared with those from the utility tree exercise. If they
agree, it indicates good alignment between what the architect had in mind and what the
stakeholders actually wanted. If additional driving scenarios are discovered, this may itself
be a risk showing that there was some disagreement in goals between the stakeholders
and the architect.

In this step, the evaluation team asks the stakeholders to brainstorm scenarios that are
operationally meaningful with respect to the stakeholders' individual roles. A maintainer
will likely propose a modifiability scenario, for example, while a user will probably come
up with a scenario that expresses useful functionality or ease of operation.

Utility tree scenarios that have not been analyzed are fair game. Stakeholders are free to
put them into the brainstorm pool, which gives them the opportunity to revisit scenarios
from step 5 and step 6 that they might feel received too little attention.

Once the scenarios have been collected, they must be prioritized, for the same reasons
that the scenarios in the utility tree needed to be prioritized: The evaluation team needs
to know where to devote its limited analytical time. First, stakeholders are asked to merge
scenarios they feel represent the same behavior or quality concern. Then they vote for
those they feel are most important. Each stakeholder is allocated a number of votes equal
to 30% of the number of scenarios,[1] rounded up. So, if there were twenty scenarios
collected, each stakeholder would be given six votes. These votes can be allocated in any
way that the stakeholder sees fit: all six votes for one scenario, one vote for each of the
six, or anything in between.

[1] This is a common facilitated brainstorming technique.

Each stakeholder casts his or her votes publicly; our experience tells us it is more fun that
way and builds unity among the participants. Once the votes are tallied, the evaluation
leader orders the scenarios by vote total and looks for a sharp drop-off in the number of
votes. Scenarios "above the line" are adopted and carried forth to subsequent steps. So
for example, a team might consider only the top five scenarios.

Step 8�Analyze Architectural Approaches

After the scenarios have been collected and prioritized, the evaluation team guides the
architect in the process of carrying out the highest ranked scenarios from step 7. The
architect explains how relevant architectural decisions contribute to realizing each one.

Ideally this activity will be dominated by the architect's explanation of scenarios in terms
of previously discussed architectural approaches.

In this step the evaluation team performs the same activities as in step 6, mapping the
highest-ranked, newly generated scenarios onto the architectural artifacts uncovered thus
far.

Step 9�Present Results

Finally, the collected information from the ATAM needs to be summarized and presented
once again to stakeholders. This presentation typically takes the form of a verbal report
accompanied by slides, but it might be accompanied by a more comprehensive written
report delivered subsequent to the ATAM evaluation. In this presentation the evaluation
leader recapitulates the steps of the ATAM and all the information collected in the steps of
the method, including the business context, driving requirements, constraints, and
architecture. Then the following outputs are presented:

The architectural approaches documented

The set of scenarios and their prioritization from the brainstorming

The utility tree

The risks discovered

The nonrisks documented

The sensitivity points and tradeoff points found

These outputs are all uncovered, publicly captured, and cataloged during the evaluation.
In step 9, however, the evaluation team adds value by grouping risks into risk themes,
based on some common underlying concern or systemic deficiency. For example, a group
of risks about inadequate or out-of-date documentation might be grouped into a risk
theme stating that documentation is given insufficient consideration. A group of risks
about the system's inability to function in the face of various hardware and/or software
failures might lead to a risk theme about insufficient attention to backup capability or
providing high availability.

For each risk theme, the evaluation team identifies which of the business drivers listed in
step 2 are affected. Identifying risk themes and then relating them to specific drivers
brings the evaluation full circle by relating the final results to the initial presentation, thus
providing a satisfying closure to the exercise. As important, it elevates the risks that were
uncovered to the attention of management. What might otherwise have seemed to a
manager like an esoteric technical issue is now identified unambiguously as a threat to
something the manager is on record as caring about.

Table 11.3 summarizes the nine steps of the ATAM and shows how each step contributes
to the outputs the ATAM delivers after an evaluation. A "**" means that the step is a
primary contributor to the output; a "*" means that it is a secondary contributor.

Table 11.3. Steps and ATAM Outputs, Correlated

 ATAM Outputs

Steps

Prioritized
Statement of
Quality
Attribute
Requirements

Catalog of
Architectural
Approaches
Used

Approach-
and
Quality
Attribute-
Specific
Analysis
Questions

Mapping of
Architectural
Approaches
to Quality
Attributes

Risks
and
Non-
risks

Sensitivity
and
Tradeoff
Points

1. Present
ATAM

2. Present
business
drivers

*[a]

*[b]

3. Present
architecture

**

*[c] *[d]

4. Identify
architectural
approaches

** **

*[e] *[f]

5. Generate
quality
attribute
utility tree

**

6. Analyze
architectural
approaches

*[g] ** ** ** **

7.
Brainstorm
and
prioritize
scenarios

**

8. Analyze
architectural
approaches

* ** ** ** **

 ATAM Outputs

9. Present
results

Source: Adapted from [Clements 02a].

[a] The business drivers include the first, coarse description of the quality attributes.

[b] The business drivers presentation might disclose an already identified or long-standing risk that should be captured.

[c] The architect may identify a risk in his or her presentation.

[d] The architect may identify a sensitivity of tradeoff point in his or her presentation.

[e] Many architectural approaches have standard associated risks.

[f] Many architectural approaches have associated standard sensitivities and quality attribute tradeoffs.

[g] The analysis steps might reveal one or more architectural approaches not identified in step 4, which will then produce new approach-specific
questions.

USING THE LIMITED TIME OF AN EVALUATION EFFECTIVELY

In the introduction, we identified limited time as one of the main problems in conducting
an architectural evaluation. Now we can see how the ATAM solves that problem. The
business goals are used as motivation for the collection of scenarios that represent the
utility tree. Other scenarios are prioritized, essentially, as a bottom-up check on the top-
down scenario generation of the utility tree. Only the high-priority and difficult scenarios
are analyzed. The evaluators are guided to these important but problematic areas of the
architecture by the steps of the method. These are the areas that will yield the most
important results.

Their Solution Just Won't Work
The steps of the ATAM might suggest that the stakeholders' role is merely to
help craft the statement of goals for the architecture and then help articulate
the scenarios. However, their presence at the presentation and evaluation of
the architecture has been vital on more than one occasion. Only the
stakeholders have the depth of knowledge necessary to tell when the
architecture�or its presenter�is glossing over an important issue. For
example, in the evaluation of a financial management system, the ATAM-ites
were not expert in the application area of financial management systems.
Hence, several exchanges took place during the evaluation, such as the
following:

ATAM-ITE: Okay, let's move to the next scenario. Does your system
provide that capability?

VENDOR (smiling kindly): Oh, yes, it sure does. All the user has to do is
enter the account number, bring up the accounts receivable table, and
transfer the results to the sponsor alert file.

ATAM-ITE (nodding, checking "non-risk" for that scenario, and thinking
that this evaluation was going to be easier than he thought): Okay, great.
Now the next scenario… .

SYSTEM USER 1 (indignantly): Wait a minute! You mean there's no way to
automatically transfer that data? You're telling me I have to type it all in
to each alert file?

VENDOR (looking a little nervous): Um, well …

SYSTEM USER 1 (sensing vulnerability): Do you know how many sponsors
a major university like this has?

VENDOR (tugging at his collar): A lot?

SYSTEM USER 1 (now it's her turn to smile kindly): Yes. A lot.

SYSTEM USER 2: And what if I don't know the account number to enter?
That was the whole reason to initiate this transaction in the first place,
right? Because otherwise, you'd just open a payout update voucher.

SYSTEM USER 1 (to the ATAM-ITES): Their solution just won't work.

ATAM-ITE (trying to remember what a sponsor alert file was, wondering if
he had ever heard of a payout update voucher, and discreetly erasing his
previous check mark): OK, well, this sure sounds like we might have a
risk here. Now what would you have to change … ?

The point is that expert stakeholders are required to sniff out a problem that
outsiders might not catch.

� PCC

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.4 The Nightingale System: A Case Study in Applying the
ATAM

This section will describe the ATAM in practice using a case study based on an actual
evaluation. Identifying information has been changed to protect the client's
confidentiality.

PHASE 0: PARTNERSHIP AND PREPARATION

The client or organization for the evaluation, which had approached us after reading
about the ATAM on our Web site, was a major producer of health care systems
software, aimed at the hospital, clinic, and HMO markets. The system under
consideration was called Nightingale. We learned that it was a large system
expected to comprise several million lines of code and that it was well into
implementation. Nightingale already had its first customer, a hospital chain with
forty-some hospitals throughout the southwestern United States.

Why, we wanted to know, was our client interested in an architecture evaluation
when the system was already well on its way to being fielded and sold? There were
two reasons. First, if the architecture was fundamentally flawed in any way, it was
much better to discover it sooner rather than later; second, the organization had
strong ambitions to sell the system to many other customers, but recognized that it
would have to tailor it specifically to the needs, applications, and regulatory
environments of each one. Hence, while the architecture might be adequate for the
first, kickoff customer, the client wanted to make sure that it was sufficiently robust
and modifiable to serve as the basis for an entire product family of health care
management systems.

The system would serve as the information backbone for the health care institutions
in which it was installed. It would provide data about patients' treatment history as
well as track their insurance and other payments. And it would provide a data-
warehousing capability to help spot trends (such as predictors for relapses of certain
diseases). The system would produce a large number of on- demand and periodic
reports, each tailored to the institution's specific needs. For those patients making
payments on their own, it would manage the work flow associated with initiating
and servicing what amounts to a loan throughout its entire life. Further, since the
system would either run (or at least be accessible) at all of the health care
institution's facilities, it had to be able to respond to a specific office's configuration
needs. Different offices might run different hardware configurations, for instance, or
require different reports. A user might travel from one site to another, and the
system would have to recognize that user and his or her specific information needs,
no matter the location.

Negotiations to sign a statement of work took about a month�par for the course
when legalities between two large organizations are involved�and when it was
complete we formed an evaluation team of six people,[2] assigning roles as shown in
Table 11.4.

[2] Six is a large team. As we mentioned earlier, teams are usually three to five people and four is average. In this case, two of the
team members were new to the ATAM process and were added to give them experience.

Table 11.4. Evaluation Team Role Assignments

Member Role

1 Team leader, evaluation leader, questioner

2 Evaluation leader, questioner

3 Timekeeper, questioner

4 Scenario scribe, questioner, data gatherer

5 Questioner, process enforcer

6 Proceedings scribe, process observer

For this exercise, we assigned two evaluation leaders who would take turns
facilitating the proceedings. We have found this scheme markedly helpful in
reducing fatigue and stress, and it makes for better results. We chose our
questioners based on their familiarity with performance and modifiability. We also
chose people with experience in integrating COTS products, since our client told us
early on that Nightingale employed a few dozen commercial software packages.
Happily, one of our questioners also had experience working in the health care
industry.

We held a one-day kickoff meeting attended by the evaluation team, the project
manager, the lead architect, and the project manager for Nightingale's first
customer. The last three constituted the decision makers for Nightingale. At the
meeting, we heard more about Nightingale's capabilities and requirements, received
a catalog of available architectural documentation (from which we chose those we
wanted to examine), and compiled a list of stakeholders to attend phase 2. We
agreed on a schedule for the phase 1 and phase 2 meetings and for the delivery of
the final report. Finally, we went over the presentations that the project manager
and the architect, respectively, would be requested to make for steps 2 and 3 of
phase 1, and made sure they were clear on the information we would want to see.

Later, before phase 1, our team met for two hours. The team leader went over the
role assignments once again and made sure everyone knew his or her duties. Also,
we walked through the architecture documentation we had received, making note of
the patterns and tactics it indicated. This pre-meeting helped the team arrive at the

evaluation somewhat knowledgeable about the architecture (thus increasing
everyone's confidence), and it laid the groundwork for step 4, in which patterns and
approaches would be cataloged.

In the Nightingale evaluation, the meeting also raised a red flag about the
documentation, which was incomplete and unclear. Whole sections had not yet been
written, and by and large the architecture was presented as a set of inadequately
defined box-and-line diagrams. We felt that, were we to begin phase 1 at this point,
we would not be on a firm conceptual footing. So we telephoned the architect and
asked him to verbally fill in some of the blanks. Then, though we knew there were
still gaps in our knowledge, at least we felt comfortable enough to begin the
evaluation. We made a note that inadequate documentation was a risk that we
needed to catalog.

PHASE 1: EVALUATION

As called for in phase 1, the evaluation team met with the project's decision makers.
In addition to those who had attended the kickoff meeting (the project manager, the
lead architect, and the project manager for Nightingale's kickoff customer), two lead
designers participated.

Step 1: Present ATAM

The evaluation leader used our organization's standard viewgraph package that
explains the method. The hour-long presentation lays out the method's steps and
phases, describes the conceptual foundations underlying the ATAM (such as
scenarios, architectural approaches, sensitivity points, and the like), and lists the
outputs that will be produced by the end of the exercise.

The decision makers were already largely familiar with ATAM, having heard it
described during the phase 0 discussions, so this step proceeded without a hitch.

Step 2: Present Business Drivers

At the evaluation, the project manager for the client organization presented the
business objectives for the Nightingale system from the development organization,
as well as from organizations they hoped would be customers for the system. For
the development organization, Nightingale addressed business requirements that
included

support for their kickoff customer's diverse uses (e.g., treatment tracking,
payment histories, trend spotting, etc.).

creation of a new version of the system (e.g., to manage doctors' offices) that
the development organization could market to customers other than the
kickoff customer.

The second business driver alerted us to the fact that this architecture was intended
for an entire software product line (see Chapter 14), not just one system.

For the kickoff customer, Nightingale was to replace the multiple existing legacy
systems, which were

old (one was more than 25 years old).

n based on aging languages and technology (e.g., COBOL and IBM assembler).

difficult to maintain.

unresponsive to the current and projected business needs of the health care
sites.

The kickoff customer's business requirements included

the ability to deal with diverse cultural and regional differences.

the ability to deal with multiple languages (especially English and Spanish) and
currencies (especially the U.S. dollar and Mexican peso).

a new system at least as fast as any legacy system being replaced.

a new single system combining distinct legacy financial management systems.

The business constraints for the system included

a commitment to employees of no lost jobs via retraining of existing
employees.

the adoption of a "buy rather than build" approach to software.

recognition that the customer's marketplace (i.e., number of competitors) had
shrunk.

The technical constraints for the system included

use of off-the-shelf software components whenever possible.

a two-year time frame to implement the system with the replacement of
physical hardware occurring every 26 weeks.

The following quality attributes were identified as high priority:

Performance. Health care systems require quick response times to be
considered useful. The 5-second transaction response time of the legacy
system was too slow, as were the legacy response times for online queries and
reports. System throughput was also a performance concern.

Usability. There was a high turnover of users of the system, so retraining was
an important customer issue. The new system had to be easy to learn and
use.

Maintainability. The system had to be maintainable, configurable, and
extensible to support new markets (e.g., managing doctors' offices), new
customer requirements, changes in state laws and regulations, and the needs
of the different regions and cultures.

The manager identified the following quality attributes as important, but of
somewhat lower priority:

Security. The system had to provide the normal commercial level of security
(e.g., confidentiality and data integrity) required by financial systems.

Availability. The system had to be highly available during normal business
hours.

Scalability. The system had to scale up to meet the needs of the largest
hospital customers and down to meets the needs of the smallest walk-in
clinics.

Modularity. The developing organization was entertaining the possibility of
selling not just new versions of Nightingale but individual components of it.
Providing this capability required qualities closely related to maintainability and
scalability.

Testability and supportability. The system had to be understandable by the
customer's technical staff since employee training and retention was an issue.

Step 3: Present Architecture

During the evaluation team's interactions with the architect, before as well as during
the evaluation exercise, several views of the architecture and the architectural
approaches emerged. Key insights included the following:

Nightingale consisted of two major subsystems: OnLine Transaction Manager
(OLTM) and Decision Support and Report Generation Manager (DSRGM). OLTM
carries interactive performance requirements, whereas DSRGM is more of a
batch processing system whose tasks are initiated periodically.

Nightingale was built to be highly configurable.

The OnLine Transaction Manager subsystem was strongly layered.

Nightingale was a repository-based system; a large commercial database lay
at its heart.

Nightingale relied heavily on COTS software, including the central database, a
rules engine, a work flow engine, CORBA, a Web engine, a software
distribution tool, and many others.

Nightingale was heavily object oriented, relying on object frameworks to
achieve much of its configurability.

Figure 11.3 shows a layered view of OLTM rendered in the informal notation used by
the architect. Figure 11.4 depicts how OLTM works at runtime by showing the major
communication and data flow paths among the parts of the system deployed on
various hardware processors. We present these figures basically as we were given
them to give you a better understanding of the reality of an ATAM evaluation. Note
that they do not cleanly map; that is, in Figure 11.3 there is a transaction manager
and CORBA, but these do not occur in Figure 11.4. This type of omission is typical of
many of our ATAM evaluations, and one of the activities that occurs during step 3 is
that the evaluators ask questions about the inconsistencies in the diagrams in an
attempt to come to some level of understanding of the architecture. Figure 11.5
shows a similar runtime view of OLTM in which a transaction can be traced
throughout the system, again with similar inconsistencies and, in this case, without
a description of the meaning of the arrows. We determined that these arrows also
represented data flow.

Figure 11.3. Layered view of the OLTM in the the architect's
informal notation

Figure 11.4. A view showing communication, data flow, and
processors of the OLTM

Figure 11.5. Data flow architectural view of the OLTM

All of these views of the Nightingale are equally legitimate and carry important
information. Each shows an aspect relevant to different concerns, and all were used
to carry out the analysis steps of the ATAM exercise.

Step 4�Catalog Architectural Approaches

After the architecture presentation, the evaluation team listed the architectural
approaches they had heard, plus those they had learned about during their pre-
evaluation review of the documentation. The main ones included

layering, especially in OLTM.

object orientation.

use of configuration files to achieve modifiability without recoding or
recompiling.

client-server transaction processing.

a data-centric architectural pattern, with a large commercial database at its
heart.

These and other approaches gave the evaluation team a conceptual footing from
which to begin asking probing questions when scenario analysis began.

Step 5�Generate Quality Attribute Utility Tree

Table 11.5 shows the utility tree generated during the Nightingale ATAM exercise.
Notice that all of the quality attributes identified during step 2 appear and that each
is refined into one or more specific meanings.

A few of the quality attribute refinements have no scenarios associated with them.
That often happens and it is not a problem. People are sometimes able to think of a
reasonable-sounding refinement for a quality attribute, but, when pressed to
instantiate it in the context of their own system, discover that it does not really
apply.

To capture the utility tree for all to see, the proceedings scribe used a flipchart page
for each quality attribute and taped it to the wall. Then, as that quality attribute was
refined and instantiated with scenarios, she captured the information on that
flipchart or on continuation flipcharts taped underneath.[3]

[3] We have also experimented with capturing the utility tree online in a table like Table 11.5 and projecting it directly from the
computer. This makes the tree easier to build and modify but the participants can see only one screen's worth at any time. Seeing the
whole utility tree helps stimulate thinking and identify gaps. Collaborative-work software systems would seem to be ideal here, but it is
hard to beat flipcharts and masking tape for simplicity, reliability, and economy.

The scenarios in Table 11.5 are annotated with the priority rankings assigned by the
decision makers present. The first of each ordered pair indicates the importance of
the capability; the second indicates the architect's estimation of the difficulty in
achieving it.

Table 11.5. Tabular Form of the Utility Tree for the Nightingale
ATAM Exercise

Quality
Attribute

Attribute
Refinement Scenarios

Quality
Attribute

Attribute
Refinement Scenarios

Performance Transaction
response time

A user updates a patient's account in response to a
change-of-address notification while the system is
under peak load, and the transaction completes in
less than 0.75 second. (H,M)

A user updates a patient's account in response to a
change-of-address notification while the system is
under twice the current peak load, and the
transaction completes in less than 4 seconds. (L,M)

Throughput At peak load, the system is able to complete 150

normalized transactions per second. (M,M)

Generating
reports

No scenarios suggested.

Usability Proficiency
training

A new hire with two or more years experience in the
business becomes proficient in Nightingale's core
functions in less than 1 week. (M,L)

A user in a particular context asks for help, and the
system provides help for that context. (H,L)

Normal
operations

A hospital payment officer initiates a payment plan
for a patient while interacting with that patient and
completes the process without the system introducing
delays. (M,M)

Configurability

A hospital increases the fee for a particular service.
The configuration team makes the change in 1
working day; no source code needs to change. (H,L)

Maintainability

A maintainer encounters search- and response-time
deficiencies, fixes the bug, and distributes the bug
fix. (H,M)

A reporting requirement requires a change to the
report-generating metadata. (M,L)

Quality
Attribute

Attribute
Refinement Scenarios

The database vendor releases a new version that
must be installed in a minimum amount of time.
(H,M)

Extensibility Adding new
product

A product that tracks blood bank donors is created.
(M,M)

Security ConfidentialityA physical therapist is allowed to see the part of a
patient's record dealing with orthopedic treatment,
but not other parts nor any financial information.
(H,M)

Integrity The system resists unauthorized intrusion. (H,M)

Availability

The database vendor releases new software, which is
hot-swapped into place. (H,L)

The system supports 24/7 Web-based account access
by patients. (L,L)

Scalability Growing the
system

The kickoff customer purchases a health care
company three times its size, requiring a partitioning
of the database. (L,H)

The kickoff customer divests a business unit. (L,M)

The kickoff customer consolidates two business units.
(L,M)

The developing organization wants to sell components
of Nightingale. (M,L)

Modularity Functional
subsets

Build a system that can function autonomously with
core functionality. (M,L)

Flexibility to
replace COTS
products

Replace the commercial database with one by another
vendor. (H,M)

Quality
Attribute

Attribute
Refinement Scenarios

Replace the operating system. (H,M)

Replace the database portability layer. (H,M)

Replace the transaction manager. (H,M)

Replace the work flow engine. (H,M)

Replace the commercial accounting package. (H,M)

Replace Solaris on the Sun platforms that host the
database. (H,M)

Replace the rules engine. (H,M)

Interoperability

Build a system that interfaces with the
epidemiological database at the National Centers for
Disease Control. (M,M)

Testability

Supportability

Notice that some of the scenarios are well formed according to our earlier
discussion, others have no stimulus, and still others have no responses. At this
stage, the imprecision in scenario specification is permissible as long as the
stakeholders understand the meaning. If the scenarios are selected for analysis,
then the stimulus and response must be made explicit.

Step 6�Analyze Architectural Approaches

The utility tree exercise produced no scenarios ranked (H,H), which indicates high-
importance, high-difficulty scenarios that merit high analytical priority. So we looked
for (H,M) scenarios, a cluster of which appeared under "Modularity," hypothesizing
the replacement of various COTS products in the system. Although extensive use of
COTS was a purposeful strategy to reduce development risk, it was also worrisome
to the project's management because it was felt that the system (and the customers

to whom it was sold) would be at the mercy of a large number of COTS vendors.
Therefore, achieving architectural flexibility to swap out COTS products was of keen
interest.

We walked through each of the scenarios with the architect. Each consumed, on
average, about a half hour.[4] Since these were scenarios about changes, we asked
about the range and impact of the changes. We learned the following.

[4] .In evaluation after evaluation, the first scenario analyzed invariably takes the most time, perhaps as much as three times the
average.

Replacing the commercial database with a database supplied by another
vendor would be difficult. A dialect of SQL (a superset of ANSI-standard SQL)
specific to the current database vendor was used throughout Nightingale, as
were several vendor-specific tools and components. The architect considered
replacing the database as highly unlikely and so was not concerned that
shifting to another system would be very expensive. This was news to the
project manager, however, who was not so sure that the scenario was out of
the question. We recorded our first analysis-based architectural risk: "Because
Nightingale uses vendor-specific tools, components, and an SQL dialect not
supported by or compatible with databases supplied by other vendors,
replacing the database would be extremely difficult and expensive, requiring
several staff-years of effort." The architectural decision to wed the architecture
to the database was also recorded as a sensitivity point, negatively affecting
modifiability.

Replacing one operating system with another would be a reasonably
straightforward change. On the server side, the operating system was
insulated by a layer, which would confine the necessary changes to a small
portion. However, OLTM relies on NT authentication facilities directly, and a
replacement operating system would have to provide something similar for the
change to be straightforward. On the DSRGM side, all operating system
dependencies had already been eliminated in the source code; DSRGM was
developed on a Windows NT platform but deployed on UNIX, providing
compelling evidence that it was already independent of the operating system.
Here we recorded our first nonrisk: "Because operating system dependencies
have been localized or eliminated from OLTM and DSRGM, replacing the
operating system with another one would require only a small modification."
Encapsulating operating system dependencies was recorded as a sensitivity
point, positively affecting modifiability.

Changing the rules engine raised several issues of concern. This scenario was
not a farfetched one, because we learned that there were associated
performance and maintainability concerns associated with using the rules
engine. The likely scenario would be to remove, not replace, the rules engine
and then implement the rules directly in C++. Since forward chaining among
the rules had been disallowed (specifically�and wisely�to keep this option
open), the rules were effectively procedural and could be compiled. Such a
change would have several serious effects:

- It would likely improve performance (although this question had not yet
been answered authoritatively).

- It would obviate the need for personnel trained in the rules language
and knowledgeable about the rules engine.

- It would deprive the development team of a useful rules development
and simulation environment.

- It would lead to the possibility that the rules could become "buried" in
the rest of the C++ code and make it easier for them to become
entangled in functional code not strictly related to rules, and hence
harder to recognize and maintain.

- It would remove the possibility that the rules could reference some
object that in fact did not exist, a possibility that exists today and
represents an error that could conceivably survive past testing and into a
production system. Writing the rules in C++ would eliminate this error at
compile time.

To facilitate this change, a rule-to-C++ code generator would need to be
written, a development effort of significant scope and unknown difficulty.
For this scenario, we recorded as a risk the major effort needed to
remove the rules engine. We also recorded using a rules engine (as
opposed to C++ code) as a tradeoff point in the architecture. This made
development easier and changes to the rule base easier; however, these
benefits came at the cost of decreased performance, specially trained
developers, and more difficult testing.

And so forth. We continued this scenario, investigating replacement of the
commercial Web-hosting engine, the commercial accounting package, the work flow
engine, and the Solaris operating system on the Sun platforms.

At this point, the phase 1 meeting ended. We had recorded six sensitivity points,
one tradeoff point, four risks, and five nonrisks.

PHASE 2: EVALUATION (CONTINUED)

The phase 2 meeting commenced after a hiatus of two weeks. During the break, the
evaluation team wrote up those parts of the final report that could be completed:
the business drivers, the presented architecture, the list of approaches, the utility
tree, and the phase 1 analysis. We also interacted via telephone with the architect
to check our understanding of some technical points, and with the project manager
to make sure that a good stakeholder representation would be present for phase 2.

For phase 2, we had nine stakeholders present in addition to the project decision
makers present during phase 1. They included developers, maintainers,
representatives from the kickoff customer, and two end users.

The first activities of phase 2 were to repeat step 1 (describing the ATAM) for the
new participants, and then recap the results of phase 1 to bring everyone up to
speed. After that, steps 7, 8, and 9 were carried out.

Step 7�Brainstorm and Prioritize Scenarios

The stakeholders were a productive group, contributing a total of 72 scenarios
during this step. More than a dozen of those scenarios were found at the leaves of
step 5's utility tree but were not analyzed during phase 1. This was not only proper
but encouraged. In this way, the stakeholders were expressing the view that some
scenarios deserved more attention than they had received during phase 1.

Table 11.6 contains a selection of some of the more interesting scenarios that
emerged during step 7. Notice that many of them are not particularly well
structured, and some are downright cryptic. This reflects the spontaneous nature of
a brainstorming exercise in which everyone is actively engaged. Rather than spend
several minutes structuring and wordsmithing each scenario as it arises, we like to
concentrate on capturing thoughts while they are fresh in people's minds. If a
scenario's meaning needs to be polished before voting occurs or before it is
analyzed, then we are happy to spend the necessary time doing so (with the help of
the person who proposed it).

Table 11.6. Brainstormed Scenarios

Number Scenario

1 Previously public data is made private, and access is adjusted accordingly.

2 Data in the information hub is replicated to a branch clinic, and
performance is degraded.

3 A rule in the rule engine fires, and data access is too slow.

4 A user posts a patient's payment at a busy time, and response is slow (in
a testing environment).

5 A user in one business unit needs to perform actions on behalf of other
business units.

6 Decide to support German.

Number Scenario

7 Add an epidemiologist role and supporting functionality.

8 Sell Nightingale to a five-person doctor's office and have it support their
business.

9 A user requests a new field for asynchronous queries.

10 In response to a complaint, a hospital discovers it has been incorrectly
charging for bedpans for six months.

11 A hospital needs to centralize the record maintenance process across
multiple affiliates; associated business process is re-engineered.

12 A manager wants a report on historical payment delinquency rates for
people who were treated for cuts and lacerations.

13 "What-if" scenario: A proposed law change is applied to an account.

14 A defect corrupts data and is not detected until the next reporting cycle.

15 Nightingale is installed in a hospital, and the hospital's existing database
must be converted.

16 An error in the replication process causes a transaction database to be out
of sync with the backup database.

17 An error in the system causes all payments to accounts in Arizona to be
unpostable.

18 A transaction log audit trail fails for three days (how to recover?).

19 An affiliate redefines a business day and month.

20 Receive payment post information from an insurance company's database
system, given its metadata definition.

Number Scenario

21 Introduce a new work flow process for patient check-in and check-out.

22 Batch processes are initiated based on time and events.

23 Main communication to branch clinics from the information hub goes down.

24 A branch clinic database server fails to boot.

25 A report needs to be generated using information from two hospitals that
use different configurations.

26 A remittance center submits the same batch of payments twice, and
activity occurs after the second submission.

27 A rehabilitation therapist is assigned to another hospital, but needs read-
only access to the treatment histories of his or her former patients.

28 Distribute a set of changes to a set of health care sites consistently (forms
and configurations).

29 A fire in the data center forces the information hub to be moved to a new
location.

30 One hospital sells a large number of accounts payable to another business
unit.

31 Change the rules for generating a warning about conflicting medications.

32 A user in a hospital's finance office wants to change output from paper to
online viewing.

33 The phone company changes an area code.

34 A malicious account administrator has slowly transferred small amounts
into various accounts of his friends. How to discover and determine
extent?

After merging a few almost-alike scenarios, the stakeholders voted. We assigned 22
votes to each stakeholder (72 scenarios times 30%, rounded up to the nearest even
integer), which they cast in two passes. We tallied the votes and spent a half-hour
with the group placing the dozen or so highest-priority scenarios in the utility tree
created during step 5. For this exercise, all of the high-priority step 7 scenarios were
straightforwardly placed as new leaves of existing branches in the utility tree. This
suggested that the architect was thinking along the same lines as the stakeholders
in terms of important quality attributes.

After reconciling the new scenarios with the utility tree, we began analyzing the
scenarios that received the most votes.

Step 8�Analyze Architectural Approaches

During step 8, we analyzed seven additional scenarios, a number slightly above
average for an ATAM exercise. In deference to space limitations, the Scenario 15
sidebar summarizes the analysis for just one of them.

Step 9�Present Results

Step 9 is a one- to two-hour presentation summarizing the results and findings of
the exercise. It begins with a boilerplate set of slides that contains a method recap
and blank template slides that can be filled in with the business drivers summary,
the architecture summary, the list of approaches, the utility tree, the scenario
analysis, and the list of analysis outputs.

The evaluation team meets during the evenings of phase 2 to compile all the results
gathered so far. The phase 2 agenda also contains a block of time before step 9
when the team can caucus and complete the package.

In addition to the risks, nonrisks, sensitivity points, and tradeoff points, the team
presents risk themes that seem to systematically underlie the problematic areas of
the architecture, if any. This is the only part of the results that the participants will
not have already seen (and, for that matter, helped to identify). For each one, we
also state why it matters in terms that will be meaningful to the client: We identify
the stated business drivers that each risk theme jeopardizes.

Scenario 15: Nightingale is installed in a
hospital and the hospital's existing database
must be converted.
Not surprisingly, the architect had given this scenario a lot of thought,
since carrying it out successfully was essential to the success of
Nightingale. There was a documented procedure in place, which the
architect drew for us on the whiteboard.

It often happens that a scenario leads to a deeper understanding of the
architecture than was present before. Here, the architect had the
information, but (reasonably) did not include it in the step 3 presentation,
considering it ancillary.

Walking through the migration process convinced the evaluation team that
a well-thought-out procedure was in place, with known strengths and
reasonable limitations. It did not surprise us that the architect did not
mention the process during his presentation of step 3. What did surprise
us was that we saw nothing about it in the documentation package we
received and reviewed prior to phase 1. When pressed about this, the
architect admitted that the procedure was not yet documented, which we
recorded as a risk. Offsetting this risk, however, was a nonrisk that we
recorded: "The architecture supports a straightforward and effective data
conversion and migration facility to support Nightingale installation."

For Nightingale, we identified three risk themes:

1. Over-reliance on specific COTS products. Here we cited the difficulties in
swapping out the database, in removing the rules engine, and in relying on an
old and possibly no-longer-supported version of the database portability layer.
This risk theme threatened the business driver of a system that is
maintainable.

2. Error recovery processes were not fully defined. The customer's knowledge of
available tools was incomplete. Several scenarios dealt with discovering errors
in the database and backing them out. While the architecture supported those
procedures well enough, it was clear that the architects and designers were
thinking about some of them for the first time. The representatives of the
kickoff customer reported that they had no procedures in place (either of their
own or inherited from the developing organization) for making such error
corrections. This risk theme threatened the business driver of usability and
support for the customer's enterprise.

3. Documentation issues. The state of documentation on the Nightingale project
was inadequate. The team began to realize this as far back as the pre-phase 1
meeting, and several scenarios analyzed during phase 2 reinforced this
opinion. While a large volume of detailed documentation (such as that
produced via UML and the Rose model) existed, there was almost no
introductory or overview documentation of the architecture, which is critical for
training, adding people to the project, maintenance, and guiding development
and testing. The extensive rule base that governed the behavior of Nightingale
was undocumented, as was the data conversion and migration procedure.
Lacking such documentation, the system would be unmaintainable by the
kickoff customer, who was on the verge of inheriting it, thus jeopardizing one
of the key business drivers for Nightingale�support for the customer's
enterprise.

PHASE 3: FOLLOW-UP

The tangible output of the ATAM is a final report that contains a list of risks,
nonrisks, sensitivity points, and tradeoff points. It also contains a catalog of
architectural approaches used, the utility tree and brainstormed scenarios, and the
record of analysis of each selected scenario. Finally, the final report contains the set
of risk themes identified by the evaluation team and an indication of which business
drivers are jeopardized by each one.

Like the presentation of results, we use a boilerplate template that has many of the
standard sections (such as a description of the ATAM) completed and templates for
other sections ready to be filled in. We also write some of the final report�for
instance, the utility tree and step 6 analysis�during the hiatus between phases 1
and 2. Preparation pays off; whereas it used to take about two weeks to produce a
final report for an ATAM client, we can now produce a high-quality comprehensive
report in about two days.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.5 Summary

The ATAM is a robust method for evaluating software architectures. It works by
having project decision makers and stakeholders articulate a precise list of quality
attribute requirements (in the form of scenarios) and by illuminating the
architectural decisions relevant to carrying out each high-priority scenario. The
decisions can then be cast as risks or nonrisks to find any trouble spots in the
architecture.

In addition to understanding what the ATAM is, it is also important to understand
what it is not.

The ATAM is not an evaluation of requirements. That is, an ATAM-based
evaluation will not tell anyone whether all of the requirements for a system will
be met. It will discern whether gross requirements are satisfiable given the
current design.

The ATAM is not a code evaluation. Because it is designed for use early in the
life cycle, it makes no assumptions about the existence of code and has no
provision for code inspection.

The ATAM does not include actual system testing. Again because the ATAM is
designed for use early in the life cycle, it makes no assumptions of the
existence of a system and has no provisions for any type of actual testing.

The ATAM is not a precise instrument, but identifies possible areas of risk
within the architecture. These risks are embodied in the sensitivity points and
the tradeoffs. The ATAM relies on the knowledge of the architect, and so it is
possible that some risks will remain undetected. In addition, risks that are
detected are not quantified. That is, there is no attempt to say that a
particular sensitivity point will have a particular dollar value if not corrected.
This final point will be addressed in Chapter 12 when we discuss the Cost
Benefit Analysis Method (CBAM).

We have participated in a large number of evaluations using the ATAM and taught
and observed others performing them. In virtually every case, the reaction among
the technical people being evaluated is amazement that so many risks can be found
in such a short time. The reaction among management is that now they can
understand why a particular technical issue threatens the achievement of their
business goals. The ATAM has proven itself as a useful tool.

11.6 For Further Reading

As this book was going to press, an initial draft of a training course on the ATAM was
being tested. Details can be found on SEI's architecture tradeoff analysis Web site
http://www.sei.cmu.edu/ata/ata-init.html. For a more comprehensive treatment of
the ATAM, including a case study of applying it to a NASA satellite data system, see
[Clements 02a].

[Chung 00] is an interesting treatment of quality attribute requirements and their
relationship to design decisions. It refers to [Boehm 76], which presents a tree of
software quality characteristics very similar to the utility trees used in the ATAM.

To understand the historical roots of the ATAM, and to see a second (simpler)
architecture evaluation method, you can read about the software architecture
analysis method (SAAM) in [Kazman 94].

http://www.sei.cmu.edu/ata/ata-init.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

11.7 Discussion Questions

1:

Think of an important software system in your organization. Could you present
the business drivers or discuss the architecture using the template given in this
chapter? If not, what information is missing? Could you sketch a utility tree for
the system?

2:
If you were going to evaluate the architecture for this system, who would you
want to participate? What would be the stakeholder roles and who could you get
to represent those roles?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 12. The CBAM: A Quantitative Approach to
Architecture Design Decision Making
with Jai Asundi and Mark Klein

Note: Jai Asundi teaches at the University of Texas, Dallas; Mark Klein is on the
technical staff at the Software Engineering Institute.

A billion here, a billion there, pretty soon it adds up to real money.

�U.S. Senator Everett Dirksen (1896�1969)

As we saw in Chapter 11, the Architecture Tradeoff Analysis Method (ATAM) provides
software architects a means of evaluating the technical tradeoffs faced while
designing or maintaining a software system. In the ATAM, we are primarily
investigating how well the architecture�real or proposed�has been designed with
respect to the quality attributes that its stakeholders have deemed important. We
are also analyzing architectural tradeoffs�the places where a decision might have
consequences for several quality attributes simultaneously.

However, the ATAM is missing an important consideration: The biggest tradeoffs in
large, complex systems usually have to do with economics. How should an
organization invest its resources in a manner that will maximize its gains and
minimize its risk? In the past, this question primarily focused on costs, and even
then these were primarily the costs of building the system in the first place and not
the long-term costs through cycles of maintenance and upgrade. As important, or
perhaps more important than costs, are the benefits that an architectural decision
may bring to an organization.

Given that the resources for building and maintaining a system are finite, there
must be a rational process that helps us choose among architectural options, during
both an initial design phase and subsequent upgrade periods. These options will
have different costs, will consume differing amounts of resources, will implement
different features (each of which brings some benefit to the organization), and will
have some inherent risk or uncertainty. To capture these aspects we need economic
models of software that take into account costs, benefits, risks, and schedule
implications.

To address this need for economic decision making, we have developed a method of
economic modeling of software systems, centered on an analysis of their
architectures. Called the Cost Benefit Analysis Method (CBAM), it builds on the ATAM
to model the costs and the benefits of architectural design decisions and is a means
of optimizing such decisions. The CBAM provides an assessment of the technical and
economic issues and architectural decisions.

12.1 Decision-Making Context

The software architect or decision maker wishes to maximize the difference between
the benefit derived from the system and the cost of implementing the design. The
CBAM begins where the ATAM concludes and, in fact, depends upon the artifacts
that the ATAM produces as output. Figure 12.1 depicts the context for the CBAM.

Figure 12.1. Context for the CBAM

Because architectural strategies have technical and economic implications, the
business goals of a software system should influence the strategies used by
software architects or designers. The direct economic implication is the cost of
implementing the system. The technical implications are the characteristics of the
system�namely, the quality attributes. In turn the quality attributes have economic
implications because of the benefits that can be derived.

Recall that when an ATAM has been applied to a software system, we have as a
result a set of artifacts documented on completion. They are:

A description of the business goals that are crucial to the success of the
system

A set of architectural views that document the existing or proposed
architecture

A utility tree that represents a decomposition of the stakeholders' goals for the
architecture, starting with high-level statements of quality attributes and
ending with specific scenarios

A set of risks that have been identified

A set of sensitivity points (architectural decisions that affect some quality
attribute measure of concern)

A set of tradeoff points (architectural decisions that affect more than one
quality attribute measure, some positively and some negatively)

The ATAM identifies the set of key architectural decisions relevant to the quality
attribute scenarios elicited from the stakeholders. These decisions result in some
specific quality attribute responses�namely, particular levels of availability,
performance, security, usability, modifiability, and so forth. But each architectural
decision also has associated costs. For example, using redundant hardware to
achieve a desired level of availability has a cost; checkpointing to a disk file has a
different cost. Furthermore, both of these architectural decisions will result in
(presumably different) measurable levels of availability that will have some value to
the organization developing the system. Perhaps the organization believes that its
stakeholders will pay more for a highly available system (a telephone switch or
medical monitoring software, for example) or that it will be sued if the system fails
(for example, the software that controls anti-lock brakes in an automobile).

The ATAM uncovers the architectural decisions made in the system and links them to
business goals and quality attribute response measures. The CBAM builds on this
base by eliciting the costs and benefits associated with these decisions. Given this
information, the stakeholders can then decide whether to use redundant hardware,
checkpointing, or some other tactic to achieve the system's desired availability. Or
they can choose to invest their finite resources in some other quality
attribute�perhaps believing that higher performance will have a better benefit-to-
cost ratio. A system always has a limited budget for creation or upgrade, so every
architectural choice is, in some sense, competing with every other one for inclusion.

The CBAM does not make decisions for the stakeholders, just as a financial advisor
does not tell you how to invest your money. It simply aids in the elicitation and
documentation of the costs, benefits, and uncertainty of a "portfolio" of architectural
investments and gives the stakeholders a framework within which they can apply a
rational decision-making process that suits their needs and their risk aversion.

To briefly summarize, the idea behind the CBAM is that architectural strategies (a
collection of architectural tactics) affect the quality attributes of the system and
these in turn provide system stakeholders with some benefit. We refer to this
benefit as utility. Each architectural strategy provides a specific level of utility to the
stakeholders. Each also has cost and takes time to implement. Given this
information, the CBAM can aid the stakeholders in choosing architectural strategies
based on their return on investment (ROI)�the ratio of benefit to cost.

12.2 The Basis for the CBAM

We now describe the key ideas that form the basis for the CBAM. The practical
realization of these ideas as a series of steps will be described in Section 12.3. Our
goal here is to develop the theory underpinning a measure of ROI for various
architectural strategies in light of scenarios chosen by the stakeholders.

We begin by considering a collection of scenarios generated either as a portion of an
ATAM or especially for the CBAM evaluation. We examine how they differ in the
values of their projected responses and then assign utility to those values. The
utility is based on the importance of each scenario being considered with respect to
its anticipated response value. We next consider the architectural strategies that
lead to the various projected responses. Each strategy has a cost, and each impacts
multiple quality attributes. That is, an architectural strategy could be implemented
to achieve some projected response, but while achieving that response it also
affects some other quality attributes. The utility of these "side effects" must be
taken into account when considering a strategy's overall utility. It is this overall
utility that we combine with the project cost of an architectural strategy to calculate
a final ROI measure.

UTILITY

Utility is determined by considering the issues described in the following sections.

Variations of Scenarios

The CBAM uses scenarios as a way to concretely express and represent specific
quality attributes, just as in the ATAM. Also as in the ATAM, we structure scenarios
into three parts: stimulus (an interaction with the system), environment (the
system's state at the time), and response (the measurable quality attribute that
results). However, there is a difference between the methods: The CBAM actually
uses a set of scenarios (generated by varying the values of the responses) rather
than individual scenarios as in the ATAM. This leads to the concept of a utility-
response curve.

Utility-Response Curves

Every stimulus-response value pair in a scenario provides some utility to the
stakeholders, and the utility of different possible values for the response can be
compared. For example, a very high availability in response to failure might be
valued by the stakeholders only slightly more than moderate availability. But low
latency might be valued substantially more than moderate latency. We can portray
each relationship between a set of utility measures and a corresponding set of
response measures as a graph�a utility-response curve. Some examples of utility-
response curves are shown in Figure 12.2. In each, points labeled a, b, or c

represent different response values. The utility-response curve thus shows utility as
a function of the response value.

Figure 12.2. Some sample utility-response curves

The utility-response curve depicts how the utility derived from a particular response
varies as the response varies. As seen in Figure 12.2, the utility could vary
nonlinearly, linearly, or even as a step-function. For example, graph (c) portrays a
steep rise in utility over a narrow change in a quality attribute response level, such
as the performance example stated above. The availability example might be better
characterized by graph (a), where a modest change in the response level results in
only a very small change in utility to the user.

Eliciting the utility characteristics from the stakeholders can be a long and tedious
process. To make it practical we have chosen to elicit only rough approximations of
these curves from the stakeholders, using five values of the quality attribute
response for the scenario. We now explain the four of these values that can be
derived without consideration of any architectural strategy. The fifth value depends
on the architectural strategy used, and we discuss this later.

To build the utility-response curve, we first determine the quality attribute levels for
the best-case and worst-case situations. The best-case quality attribute level is that

above which the stakeholders foresee no further utility. For example, a system
response to the user of 0.1 second is perceived as instantaneous, so improving it
further so that it responds in 0.03 second has no utility. Similarly, the worst-case
quality attribute level is a minimum threshold above which a system must perform;
otherwise it is of no use to the stakeholders. These levels�best-case and worst-
case�are assigned utility values of 100 and 0, respectively.

We must then determine the current and desired utility levels for the scenario. The
respective utility values (between 0 and 100) for the current and desired cases are
elicited from the stakeholders, using the best-case and worst-case values as
reference points (e.g., we are currently half as good as we would like to be, but if
we reach the desired quality attribute level, we will have 90% of the maximum
utility; hence, the current utility level is set to 50 and the desired utility level is set
to 90). In this manner the curves are generated for all of the scenarios.

Priorities of Scenarios

Different scenarios within a given system have different levels of importance to the
stakeholders and hence different utilities. To characterize the relative importance of
each scenario, a weight is assigned through a two-step voting exercise. In the first
step the stakeholders vote on the scenarios to establish an ordering among them.
This voting is based on each scenario's "expected" response value. The stakeholders
then assign a weight of 1 to the highest-rated scenario and a fractional amount to
the other scenarios based on their relative importance.

If, at some future date, additional scenarios need to be added, they can be assigned
a weight. The stakeholders, through consensus, can make sure that the scenarios
weights accord with their intuition.

Architectural Strategies

It is the job of the architect, or architects, to determine the architectural strategies
for moving from the current quality attribute response level to the desired or even
best-case level. A portion of the CBAM is devoted to this task. For each strategy, we
can derive

the expected value of the response in each scenario. The utility of the
expected value is calculated using interpolation from the four values already
elicited from the stakeholders.

the effect of the architectural strategy on other attributes of interest.

a cost estimate for implementing the architectural strategy.

Side effects

Each architectural strategy will impact not only the quality attribute from the
scenario being considered currently but will typically also affect other quality
attributes (this is why there are architectural tradeoffs!). It is important to
determine the utility of these additional side effect attribute responses that arise as
a result of applying the architectural strategy. In the worst case, we must create a
new version of the scenario for the side effect attribute and determine its utility-
response curve. However, in practice, if the quality attribute is important to the
stakeholders, then it has occurred in one of the other scenarios and the utility-
response curve has already been constructed for that response. In this case, the
only thing left to determine is the expected utility associated with that quality
attribute for the given architectural strategy. Notice that it is possible that the
expected utility for a particular attribute may be negative if the architectural
strategy is designed to emphasize an attribute in conflict with the one whose utility
we are currently calculating.

Once this additional information has been elicited we can calculate the benefit of
applying an architectural strategy by summing its benefits to all relevant quality
attributes.

Determining benefit and normalization

We calculate the overall utility of an architectural strategy across scenarios from the
utility-response curves by summing the utility associated with each one (weighted
by the importance of the scenario). For each architectural strategy, i, we calculate a
benefit, Bi as follows:

where bi,j is the benefit accrued to strategy i due to its effect on scenario j and Wj
is the weight of scenario j. Referring to Figure 12.2, each bi,j is calculated as the
change in utility brought about by the architectural strategy with respect to this
scenario: bi,j = Uexpected � Ucurrent; that is, the utility of the expected value of
the architectural strategy minus the utility of the current system relative to this
scenario. The effect of multiplying the weight, Wj, is to normalize this utility value
by the relative importance of the various scenarios, as already described.

CALCULATING ROI

The ROI value for each architectural strategy is the ratio of the total benefit, Bi, to
the Cost, Ci, of implementing it. The cost is calculated using a model appropriate for
the system and the environment being developed.

Using this ROI score, the architectural strategies can be rank-ordered; this rank
ordering can then be used to determine the optimal order for implementation of the
various strategies.

Consider curves (a) and (b) in Figure 12.2. Curve (a) "flattens out" as the quality
attribute response improves. In this case, it is likely that a point is reached past
which ROI decreases as the quality attribute response improves. In other words,
spending more money will not yield a significant increase in utility. On the other
hand, consider curve (b), for which a small improvement in quality attribute
response can yield a very significant increase in utility. There an architectural
strategy whose ROI is too low might rank significantly higher with a modest
improvement in its quality attribute response.

The Importance of Cost Modeling
Random visitor: You're supposed to know something about availability,
aren't you?

Len Bass: I know something, but I'm not a real expert.

RV: Well, maybe you can help me. I have a problem with how much
availability to put into my system. My boss tells me, whenever I have a
problem, to look at the Big Stock Broker Company's Web site to get ideas.

LB: Well, they have millions of customers and certainly have rigid
availability requirements.

RV: That's exactly my problem. The system I'm building will have a couple
hundred users who are probably happy with five days a week, ten hours a
day availability. How do I convince my boss he's going way overboard?

So far we have presented many techniques for achieving particular
qualities, but we have not presented any method for keeping management
expectations under control. Our assumption has been that there is a
business case for the system under construction. This business case
begets particular requirements, and the architect's job is to satisfy them
to the extent possible. What is the architect to do when this assumption is
false and the requirements are overkill for the business goals of the
system?

After giving the matter some thought, the best I could come up with is
that the main weapon the architect has to combat overengineered
requirements is the argument of cost. It is the same reason I do not drive
a fancy luxury car�I do not want to pay the price.

Maintaining high availability requires a high level of redundancy with a
rollover capability. Developing this capability takes time and personnel.

Personnel cost money, as do purchasing highly available software and
adapting it for particular needs.

In software engineering, cost is estimated using cost models. A cost
model makes certain assumptions about the character of the system being
constructed, environmental parameters, and personnel expertise, and
then produces an estimate based on historical data.

Cost models (especially early in the life cycle) are imperfect for a wide
variety of reasons, but they are the only tools available to constrain
requirements. As such, they are invaluable to the architect.

� LJB

12.3 Implementing the CBAM

Turning the foundations for the CBAM into a set of practical steps involves taking the
bases we discussed in the previous section and performing them in a fashion that
minimizes the work that is needed. Part of being "practical" involves limiting the size
of the decision space.

STEPS

A process flow diagram for the CBAM is given in Figure 12.3. The first four steps are
annotated with the relative number of scenarios they consider. That number steadily
decreases, ensuring that the method concentrates the stakeholders' time on the
scenarios believed to be of the greatest potential in terms of ROI.

Step 1: Collate scenarios. Collate the scenarios elicited during the ATAM
exercise, and give the stakeholders the chance to contribute new ones.
Prioritize these scenarios based on satisfying the business goals of the system
and choose the top one-third for further study.

Step 2: Refine scenarios. Refine the scenarios output from step 1, focusing on
their stimulus-response measures. Elicit the worst-case, current, desired, and
best-case quality attribute response level for each scenario.

Step 3: Prioritize scenarios. Allocate 100 votes to each stakeholder and have
them distribute the votes among the scenarios, where their voting is based on
the desired response value for each scenario. Total the votes and choose the
top 50% of the scenarios for further analysis. Assign a weight of 1.0 to the
highest-rated scenario; assign the other scenarios a weight relative to the
highest rated. This becomes the weighting used in the calculation of a
strategy's overall benefit. Make a list of the quality attributes that concern the
stakeholders.

Step 4: Assign utility. Determine the utility for each quality attribute response
level (worst-case, current, desired, best-case) for the scenarios from step 3.

Step 5: Develop architectural strategies for scenarios and determine their
expected quality attribute response levels. Develop (or capture already
developed) architectural strategies that address the chosen scenarios and
determine the "expected" quality attribute response levels that will result from
them. Given that an architectural strategy may have effects on multiple
scenarios, we must perform this calculation for each scenario affected.

Step 6: Determine the utility of the "expected" quality attribute response
levels by interpolation. Using the elicited utility values (that form a utility
curve), determine the utility of the expected quality attribute response level

for the architectural strategy. Do this for each relevant quality attribute
enumerated in step 3.

Step 7: Calculate the total benefit obtained from an architectural strategy.
Subtract the utility value of the "current" level from the expected level and
normalize it using the votes elicited in step 3. Sum the benefit due to a
particular architectural strategy across all scenarios and across all relevant
quality attributes.

Step 8: Choose architectural strategies based on ROI subject to cost and
schedule constraints. Determine the cost and schedule implications of each
architectural strategy. Calculate the ROI value for each as a ratio of benefit to
cost. Rank-order the architectural strategies according to the ROI value and
choose the top ones until the budget or schedule is exhausted.

Step 9: Confirm results with intuition. For the chosen architectural strategies,
consider whether these seem to align with the organization's business goals. If
not, consider issues that may have been overlooked while doing this analysis.
If there are significant issues, perform another iteration of these steps.

Figure 12.3. Process flow diagram for the CBAM

12.4 Case Study: The NASA ECS Project

We now apply the CBAM to a real-world system as an example of the method in
action.

The Earth Observing System is a constellation of NASA satellites that gathers data
for the U.S. Global Change Research Program and other scientific communities
worldwide. The Earth Observing System Data Information System (EOSDIS) Core
System (ECS) collects data from various satellite downlink stations for further
processing. ECS's mission is to process the data into higher-form information and
make it available to scientists in searchable form. The goal is to provide both a
common way to store (and hence process) data and a public mechanism to
introduce new data formats and processing algorithms, thus making the information
widely available.

The ECS processes an input stream of hundreds of gigabytes of raw environment-
related data per day. The computation of 250 standard "products" results in
thousands of gigabytes of information that is archived at eight data centers in the
United States. The system has important performance and availability requirements.
The long-term nature of the project also makes modifiability important.

The ECS project manager had a limited annual budget to maintain and enhance his
current system. From a prior analysis, in this case an ATAM exercise, a large set of
desirable changes to the system was elicited from the system stakeholders,
resulting in a large set of architectural strategies. The problem was to choose a
(much) smaller subset for implementation, as only 10% to 20% of what was being
proposed could actually be funded. The manager used the CBAM to make a rational
decision based on the economic criterion of return on investment.

In the execution of the CBAM described next, we concentrated on analyzing the
Data Access Working Group (DAWG) portion of the ECS.

STEP 1: COLLATE SCENARIOS

Scenarios from the ATAM were collated with a set of new scenarios elicited from the
assembled ECS stakeholders. Because the stakeholders had been through an ATAM
exercise, this step was relatively straightforward.

A subset of the raw scenarios put forward by the DAWG team were as shown in
Table 12.1. Note that they are not yet well formed and that some of them do not
have defined responses. These issues are resolved in step 2, when the number of
scenarios is reduced.[1]

[1] In the presentation of the DAWG case study, we only show the reduced set of scenarios.

Table 12.1. Collected Scenarios in Priority Order

ScenarioScenario Description

1Reduce data distribution failures that result in hung distribution requests
requiring manual intervention.

2Reduce data distribution failures that result in lost distribution requests.

3Reduce the number of orders that fail on the order submission process.

4Reduce order failures that result in hung orders that require manual
intervention.

5Reduce order failures that result in lost orders.

6There is no good method of tracking ECSGuest failed/canceled orders
without much manual intervention (e.g., spreadsheets).

7Users need more information on why their orders for data failed.

8Because of limitations, there is a need to artificially limit the size and
number of orders.

9Small orders result in too many notifications to users.

10The system should process a 50-GB user request in one day, and a 1-TB
user request in one week.

STEP 2: REFINE SCENARIOS

The scenarios were refined, paying particular attention to precisely specifying their
stimulus-response measures. The worst-case, current-case,desired-case, and the
best-case response goals for each scenario were elicited and recorded, as shown in
Table 12.2.

Table 12.2. Response Goals for Refined Scenarios

 Response Goals

ScenarioWorst Current Desired Best

 Response Goals

ScenarioWorst Current Desired Best

110% hung 5% hung 1% hung 0% hung

2> 5% lost < 1% lost 0% lost 0% lost

310% fail 5% fail 1% fail 0% fail

410% hung 5% hung 1% hung 0% hung

510% lost < 1% lost 0% lost 0% lost

650% need help 25% need help 0% need help 0% need help

710% get
information

50% get
information

100% get
information

100% get
information

850% limited 30% limited 0% limited 0% limited

91/granule 1/granule 1/100 granules 1/1,000 granules

10< 50% meet goal 60% meet goal 80% meet goal > 90% meet goal

STEP 3: PRIORITIZE SCENARIOS

In voting on the refined representation of the scenarios, the close-knit team
deviated slightly from the method. Rather than vote individually, they chose to
discuss each scenario and arrived at a determination of its weight via consensus.
The votes allocated to the entire set of scenarios were constrained to 100, as shown
in Table 12.3. Although the stakeholders were not required to make the votes
multiples of 5, they felt that this was a reasonable resolution and that more
precision was neither needed nor justified.

Table 12.3. Refined Scenarios with Votes

 Response Goals

ScenarioVotesWorst Current Desired Best

 Response Goals

ScenarioVotesWorst Current Desired Best

1 1010% hung 5% hung 1% hung 0% hung

2 15> 5% lost < 1% lost 0% lost 0% lost

3 1510% fail 5% fail 1% fail 0% fail

4 1010% hung 5% hung 1% hung 0% hung

5 1510% lost < 1% lost 0% lost 0% lost

6 1050% need help 25% need help 0% need help 0% need help

7 510% get
information

50% get
information

100% get
information

100% get
information

8 550% limited 30% limited 0% limited 0% limited

9 101/granule 1/granule 1/100 granules 1/1000 granules

10 5< 50% meet
goal

60% meet goal 80% meet goal > 90% meet
goal

STEP 4: ASSIGN UTILITY

In this step the utility for each scenario was determined by the stakeholders, again
by consensus. A utility score of 0 represented no utility; a score of 100 represented
the most utility possible. The results of this process are given in Table 12.4.

Table 12.4. Scenarios with Votes and Utility Scores

 Utility Scores

Scenario Votes Worst Current Desired Best Utility Scores

Scenario Votes Worst Current Desired Best

1 10 10 80 95 100

2 15 0 70 100 100

3 15 25 70 100 100

4 10 10 80 95 100

5 15 0 70 100 100

6 10 0 80 100 100

7 5 10 70 100 100

8 5 0 20 100 100

9 10 50 50 80 90

10 5 0 70 90 100

STEP 5: DEVELOP ARCHITECTURAL STRATEGIES FOR
SCENARIOS AND DETERMINE THEIR EXPECTED QUALITY
ATTRIBUTE RESPONSE LEVELS

Based on the requirements implied by the preceding scenarios, a set of 10
architectural strategies was developed by the ECS architects. Recall that an
architectural strategy may affect more than one scenario. To account for these
complex relationships, the expected quality attribute response level that each
strategy is predicted to achieve had to be determined with respect to each relevant
scenario.

The set of architectural strategies, along with the determination of the scenarios
they address, is shown in Table 12.5. For each architectural strategy/scenario pair,

the response levels expected to be achieved with respect to that scenario are shown
(along with the current response, for comparison purposes).

Table 12.5. Architectural Strategies and Scenarios Addressed

StrategyName Description Scenarios
Affected

Current
Response

Expected
Response

1Order
persistence
on
submission

Store an order as soon as
it arrives in the system.

3

5

6

5% fail

<1% lost

25% need
help

2% Fail

0% lost

0% need
help

2Order
chunking

Allow operators to
partition large orders into
multiple small orders.

830%
limited

15%
limited

3Order
bundling

Combine multiple small
orders into one large
order.

9

10

1 per
granule

60% meet
goal

1 per 100

55% meet
goal

4Order
segmentation

Allow an operator to skip
items that cannot be
retrieved due to data
quality or availability
issues.

45% hung 2% hung

5Order
reassignment

Allow an operator to
reassign the media type
for items in an order.

15% hung 2% hung

6Order retry Allow an operator to retry
an order or items in an
order that may have
failed due to temporary
system or data problems.

45% hung 3% hung

StrategyName Description Scenarios
Affected

Current
Response

Expected
Response

7Forced order
completion

Allow an operator to
override an item's
unavailability due to data
quality constraints.

15% hung 3% hung

8Failed order
notification

Ensure that users are
notified only when part of
their order has truly
failed and provide
detailed status of each
item; user notification
occurs only if operator
okays notification; the
operator may edit
notification.

625% need
help

20% need
help

750% get

information
90% get
information

9Granule
level-order
tracking

An operator and user can
determine the status for
each item in their order.

625% need
help

10% need
help

750% get

nformation
95% get
information

10Links to user
information

An operator can quickly
locate a user's contact
information. Server will
access SDSRV
information to determine
any data restrictions that
might apply and will
route orders/order
segments to appropriate
distribution capabilities,
including DDIST, PDS,
external subsetters and
data processing tools,
etc.

750% get
information

60% get
information

STEP 6: DETERMINE THE UTILITY OF THE "EXPECTED"
QUALITY ATTRIBUTE RESPONSE LEVELS BY
INTERPOLATION

Once the expected response level of every architectural strategy has been
characterized with respect to a set of scenarios, their utility can be calculated by
consulting the utility scores for each scenario's current and desired responses for all
of the affected attributes. Using these scores, we may calculate, via interpolation,
the utility of the expected quality attribute response levels for the architectural
strategy/scenario pair applied to the DAWG of ECS.

Table 12.6. Architectural Strategies and Their Expected Utility

StrategyStrategy Scenarios
Affected

Current
Utility

Expected
Utility

1Order persistence on
submission

3

5

6

70

70

80

90

100

100

2Order chunking 820 60

3Order bundling 9

10

50

70

80

65

4Order segmentation 480 90

5Order reassignment 180 92

6Order retry 480 85

7Forced order completion 180 87

8Failed order notification 6

7

80

70

85

90

9Granule level order
tracking

6

7

80

70

90

95

StrategyStrategy Scenarios
Affected

Current
Utility

Expected
Utility

10Links to user information 770 75

The results of this calculation are shown in Table 12.6, for the architectural
strategy/scenario pairs presented in Table 12.5.

STEP 7: CALCULATE THE TOTAL BENEFIT OBTAINED FROM
AN ARCHITECTURAL STRATEGY

Based on the information collected, as represented in Table 12.6, the total benefit of
each architectural strategy can now be calculated, following the equation on page
313. This equation calculates total benefit as the sum of the benefit that accrues to
each scenario, normalized by the scenario's relative weight. The total benefit scores
for each architectural strategy are given in Table 12.7.

Table 12.7. Total Benefit of Architectural Strategies

StrategyScenario
Affected

Scenario
Weight

Raw
Architectural
Strategy
Benefit

Normalized
Architectural
Strategy Benefit

Total
Architectural
Strategy
Benefit

1 3 15 20 300

1 5 15 30 450

1 6 10 20 200 950

2 8 5 40 200 200

3 9 10 30 300

3 10 5 -5 -25 275

4 4 10 10 100 100

StrategyScenario
Affected

Scenario
Weight

Raw
Architectural
Strategy
Benefit

Normalized
Architectural
Strategy Benefit

Total
Architectural
Strategy
Benefit

5 1 10 12 120 120

6 4 10 5 50 50

7 1 10 7 70 70

8 6 10 5 50

8 7 5 20 100 150

9 6 10 10 100

9 7 5 25 125 225

10 7 5 5 25 25

STEP 8: CHOOSE ARCHITECTURAL STRATEGIES BASED ON
ROI VALUE SUBJECT TO COST CONSTRAINTS

To complete the analysis, the team estimated cost for each architectural strategy.
The estimates were based on experience with the system, and a return on
investment for each architectural strategy was calculated. Using the ROI, we were
able to rank each strategy. This is shown in Table 12.8. Not surprisingly, the ranks
roughly follow the ordering in which the strategies were proposed: strategy 1 has
the highest rank; strategy 3 the second highest. Strategy 9 has the lowest rank;
strategy 8, the second lowest. This simply validates stakeholders' intuition about
which architectural strategies were going to be of the greatest benefit. For the ECS
these were the ones proposed first.

Table 12.8. ROI of Architectural Strategies

Strategy Cost Total Strategy Benefit Strategy ROI Strategy Rank

Strategy Cost Total Strategy Benefit Strategy ROI Strategy Rank

1 1200 9500.79 1

2 400 2000.5 3

3 400 2750.69 2

4 200 1000.5 3

5 400 1200.3 7

6 200 500.25 8

7 200 700.35 6

8 300 1500.5 3

9 1000 2250.22 10

10 100 250.25 8

12.5 Results of the CBAM Exercise

The most obvious results of the CBAM are shown in Table 12.8: an ordering of
architectural strategies based on their predicted ROI. However, just as for the ATAM
method, the benefits of the CBAM extend beyond the qualitative outcomes. There
are social and cultural benefits as well.

Just as important as the ranking of architectural strategies in CBAM is the discussion
that accompanies the information-collecting and decision-making processes. The
CBAM process provides a great deal of structure to what is always largely
unstructured discussions, where requirements and architectural strategies are freely
mixed and where stimuli and response goals are not clearly articulated. The CBAM
process forces the stakeholders to make their scenarios clear in advance, to assign
utility levels of specific response goals, and to prioritize these scenarios based on
the resulting determination of utility. Finally, this process results in clarification of
both scenarios and requirements, which by itself is a significant benefit.

12.6 Summary

The CBAM is an iterative elicitation process combined with a decision analysis
framework. It incorporates scenarios to represent the various quality attributes. The
stakeholders explore the decision space by eliciting utility-response curves to
understand how the system's utility varies with changing attributes. The consensus
basis of the method allows for active discussion and clarification amongst the
stakeholders. The traceability of the design decision permits updating and
continuous improvement of the design process over time.

Elicitation of information from real-world projects is difficult. As researchers, we are
charged with creating methods that are usable by real-world engineers in real
projects. These methods need to produce useful results quickly and at a reasonable
"price," in terms of the stakeholders' time. As we have discovered in our
experiences with the CBAM, solving a problem in theory and in practice are very
different. We have already modified the CBAM considerably as a result of several
applications of this method to NASA's ECS.

In spite of the practical difficulties, we believe that the application of economic
techniques is inherently better than the ad hoc decision-making approaches that
projects (even quite sophisticated ones) employ today. Our experience with the
CBAM tells us that giving people the appropriate tools to frame and structure their
discussions and decision making is an enormous benefit to the disciplined
development of a complex software system.

12.7 For Further Reading

Early work on the CBAM can be found in [Kazman 01] and [Asundi 01]. Cost
modeling is discussed in [Boehm 81] and [Jones 99]. The evaluation of the ECS
architecture using the ATAM is described in [Clements 02a].

12.8 Discussion Questions

1:

One of the novel aspects of the CBAM is the creation of utility-response curves.
Consider the curve styles shown in Figure 12.2. What are the circumstances
under which you can imagine each of those curves elicited from the
stakeholders? What situations does each of these curves represent?

2:
Determination of costs and benefits is fraught with uncertainty. What sources of
uncertainty do you typically have to deal with and how would you go about
characterizing, measuring, and minimizing them?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 13. The World Wide Web
A Case Study in Interoperability
with Hong-Mei Chen

Note: Hong-Mei Chen is an associate professor at the University of Hawaii's
Department of Information Technology Management.

Flexibility was clearly a key goal. Every specification that was needed to
ensure interoperability constrain[s] the Web's implementation. Therefore,
there should be as few specifications as possible … and the necessary
specifications should be made independently… . This would let you replace
parts of the design while preserving the basic architecture.

�Tim Berners-Lee [Berners-Lee 96b]

In the not-too-distant future, anybody who doesn't have their own home page
on the World Wide Web will probably qualify for a government subsidy for the
home-pageless.

�Scott Adams, creator of Dilbert

Possibly the most dramatic example of the workings of the Architecture Business
Cycle (ABC) can be found in the way in which the goals, business model, and
architecture of the World Wide Web have changed since its introduction in 1990. No
one�not the customers, the users, or the architect (Tim Berners-Lee)�could have
foreseen the explosive growth and evolution of the Web. In this chapter, we
interpret the Web from the point of view of the ABC and observe how changes in its
architecture reflect the changing goals and business needs of the various players.
We first look at the Web's origins in terms of its original requirements and players
and then look at how its server-side architecture has changed as a result of the
ABC.

13.1 Relationship to the Architecture Business Cycle

The original proposal for the Web came from Tim Berners-Lee, a researcher with the
European Laboratory for Particle Physics (CERN), who observed that the several
thousand researchers at CERN formed an evolving human "web." People came and
went, developed new research associations, lost old ones, shared papers, chatted in
the hallways, and so on, and Berners-Lee wanted to support this informal web with
a similar web of electronic information. In 1989, he created and circulated
throughout CERN a document entitled Information Management: A Proposal. By
October of 1990 a reformulated version of the project proposal was approved by
management, the name World Wide Web was chosen, and development began.

Figure 13.1 shows the elements of the ABC as they applied to the initial proposal
approved by CERN management. The system was intended to promote interaction
among CERN researchers (the end users) within the constraints of a heterogeneous
computing environment. The customer was CERN management, and the developing
organization was a lone CERN researcher. The business case made by Berners-Lee
was that the proposed system would increase communication among CERN staff.
This was a very limited proposal with very limited (and speculative) objectives.
There was no way of knowing whether such a system would, in fact, increase
communication. On the other hand, the investment required by CERN to generate
and test the system was also very limited: one researcher's time for a few months.

Figure 13.1. The original ABC for the Web

The technical environment was familiar to those in the research community, for
which the Internet had been a mainstay since its introduction in the early 1970s.
The net had weak notions of central control (volunteer committees whose
responsibilities were to set protocols for communication among different nodes on
the Internet and to charter new newsgroups) and an unregulated, "wild-west" style
of interaction, primarily through specialized newsgroups.

Hypertext systems had had an even longer history, beginning with the vision of
Vannevar Bush in the 1940s. Bush's vision had been explored throughout the 1960s
and 1970s and into the 1980s, with hypertext conferences held regularly to bring
researchers together. However, Bush's vision had not been achieved on a large scale
by the 1980s: The uses of hypertext were primarily limited to small-scale
documentation systems. That was to change.

CERN management approved Berners-Lee's proposal in October 1990. By November
he had developed the first Web program on the NeXT platform, which meant he
clearly had begun working on the implementation before receiving formal
management approval. This loose coupling between management approval and
researcher activity is quite common in research organizations in which small initial
investments are required. By their nature, research organizations tend to generate
projects from the bottom up more often than commercial organizations do, because
they are dependent on the researchers' originality and creativity and allow far more
freedom than is typical in a commercial organization.

The initial implementation of a Web system had many features that are still missing
from more recent Web browsers. For example, it allowed users to create links from
within the browser, and it allowed authors and readers to annotate information.
Berners-Lee initially thought that no user would want to write HyperText Markup
Language (HTML) or deal with uniform resource locators (URLs). He was wrong.
Users have been willing to put up with these inconveniences to have the power of
publishing on the Web.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

13.2 Requirements and Qualities

The World Wide Web, as conceived and initially implemented at CERN, had several
desirable qualities. It was portable, able to interoperate with other types of
computers running the same software, and was scalable and extensible. The
business goals of promoting interaction and allowing heterogeneous computing led
to the quality goals of remote access, interoperability, extensibility, and scalability,
which in turn led to libWWW, the original software library that supported Web-based
development and a distributed client-server architecture. The realization of these
properties in the original software architecture created an infrastructure that
effectively supported the Web's tremendous growth (see Table 13.1). libWWW
embodies strict separation of concerns and therefore works on virtually any
hardware and readily accepts new protocols, new data formats, and new
applications. Because it has no centralized control, the Web appears to be able to
grow without bounds.

Table 13.1. Web Growth Statistics

Date Number of Web Sites Percentage of .com Sites Hosts per Web Server

6/93 130 1.5 13,000

12/93 623 4.6 3,475

6/94 2,738 13.5 1,095

12/94 10,022 18.3 451

6/95 23,500 31.3 270

1/96 100,000 50.0 94

6/96 252,000 68.0 41

1/97 646,162 62.6 40

1/98 1,834,710

16.2

Date Number of Web Sites Percentage of .com Sites Hosts per Web Server

1/99 4,062,280

10.6

1/00 9,950,491

7.3

1/01 27,585,719 54.68 4.0

Source: Used with permission of Matthew Gray of the Massachusetts Institute of
Technology.

We will deal with these core requirements, and others, in more detail now, returning
to the structure of libWWW later in Section 13.3. There is no explicit requirement for
ease of use in the original requirements, and it was not until the development of
point-and-click browsers that the Web began its tremendous growth. On the other
hand, the requirement for portability and the heterogeneous computing
environment led to the introduction of the browser as a separate element, thereby
fostering the development of more sophisticated browsers.

THE ORIGINAL REQUIREMENTS

The initial set of requirements for the Web, as established in the original project
proposals, were as follows:

Remote access across networks. Any information had to be accessible from
any machine on a CERN network.

Heterogeneity. The system could not be limited to run on any specific
hardware or software platform.

Noncentralization. In the spirit of a human web and of the Internet, there
could not be any single source of data or services. This requirement was in
anticipation that the Web would grow. The operation of linking to a document,
in particular, had to be decentralized.

Access to existing data. Existing databases had to be accessible.

Ability for users to add data. Users should be able to "publish" their own data
on the Web, using the same interface used to read others' data.

Private links. Links and nodes had to be capable of being privately annotated.

Bells and whistles. The only form of data display originally planned was display
on a 24 x 80 character ASCII terminal. Graphics were considered optional.

Data analysis. Users should be able to search across the various databases
and look for anomalies, regularities, irregularities, and so on. Berners-Lee
gave, as examples, the ability to look for undocumented software and
organizations with no people.

Live links. Given that information changes all the time, there should be some
way of updating a user's view of it. This could be by simply retrieving the
information every time the link is accessed or (in a more sophisticated fashion)
by notifying a user of a link whenever the information has changed.

In addition to these requirements, there were a number of nonrequirements
identified. For example, copyright enforcement and data security were explicitly
mentioned as requirements that the original project would not deal with. The Web,
as initially conceived, was to be a public medium. Also, the original proposal
explicitly noted that users should not have to use any particular markup format.

Other criteria and features that were common in proposals for hypertext systems at
the time but that were missing from the Web proposal are as follows:

Controlling topology

Defining navigational techniques and user interface requirements, including
keeping a visual history

Having different types of links to express differing relationships among nodes

Although many of the original requirements formed the essence of what the Web is
today, several were not realized, were only partially realized, or their impact was
dramatically underestimated. For example, data analysis, live links, and private link
capabilities are still relatively crude to this day. These requirements have gone
largely unfulfilled.

Adaptation and selective postponement of requirements are characteristic of
unprecedented systems. Requirements are often lists of desirable characteristics,
and in unprecedented systems the tradeoffs required to realize these requirements
are often unknown until a design exists. In the process of making the tradeoffs,
some requirements become more important and others less so.

The effect of one of the requirements turned out to have been greatly
underestimated. Namely, the "bells and whistles" of graphics dominate much of
today's Web traffic. Graphics today carry the bulk of the interest and consume the
bulk of the Internet traffic generated by the Web. And yet Berners-Lee and CERN
management did not concern themselves with graphics in the initial proposal, and
the initial Web browser was line oriented. Similarly, the original proposal eschewed
any interest in multimedia research for supporting sound and video.

Some nonrequirements, as the ABC has been traversed, have also become
requirements. Security, for one, has proven to be a substantial issue, particularly as
the Web has become increasingly dominated by commercial traffic. The security
issue is large and complex, given the distributed, decentralized form of the Internet.
Security is difficult to ensure when protected access to private data cannot be
guaranteed�the Web opens a window onto your computer, and some uninvited
guests are sure to crawl through.

This has become even more relevant in recent years as e-commerce has begun to
drive the structure and direction of the Web and a large number of ad hoc
mechanisms have been created to facilitate it. The most obvious is simple
encryption of sensitive data, typically via SSL (Secure Sockets Layer), seen in Web
browsers as HTTPS (HyperText Transfer Protocol Secure). But this protocol only
decreases the likelihood of others snooping on your private data while it is being
transmitted over a public network. Other solutions�such as Microsoft's
Passport�have you prove that you are who you say you are. (Chapter 4 discussed
the various aspects of security, and Chapter 5 presented a set of tactics to achieve
it.)

REQUIREMENTS COME AND GO

No one could have foreseen the tremendous growth of the Web, or of the Internet,
over the past few years. According to recent statistics, the Web has been doubling in
size every three to six months, from about 130 sites in mid-1993 to more than
230,000 sites in mid-1996 to 27 million in early 2001 (see Table 13.1). Figure 13.2
shows how the base communication paths for the Internet blanket the United
States. Similarly, the number of Internet hosts�at least as counted by registered
Internet Protocol (IP) addresses�grew from 1.3 million in 1993 to 9.5 million in
early 1996.

Figure 13.2. Internet backbones in the United States.

Copyright 1996 by Donna Cox and Robert Patterson; produced at the
National Center for Supercomputing Applications, University of Illinois at

Urbana-Champaign. Used with permission.

Both the Web and the Internet have grown, but the Web has grown much faster as
a whole. This can be seen in the final column of Table 13.1, where we see that the
ratio of Internet hosts to Web servers keeps decreasing. This means that an ever-
greater proportion of Internet hosts are becoming Web servers.

In addition to its enormous growth, the nature of the Web has changed, as indicated
by the third column of Table 13.1. Although its beginnings were in the research
community, it is increasingly dominated by commercial traffic (as indicated by
Internet hosts whose names end in ".com"). The percentage of .com sites has
leveled out at around 55%, but this is due mainly to the rise of other domains, such
as .net and .biz, rather than to any decline in commercial activity.

The advent of easy, widespread access to the Web has had an interesting side
effect. Easy access to graphics in a distributed, largely uncontrolled fashion has
spawned the "cyberporn" industry, which has led to a new requirement: that content
be labeled and access to content be controllable. The result is the platform for
Internet content selection (PICS) specification, an industry-wide set of principles,
and vendor implementations of them, that allows the labeling of content and flexible
selection criteria. In this way, content producers are not limited in what they
provide, but content consumers can tailor what they view or what they permit
others to view according to their own tastes and criteria. For example, a parent can
prevent a child from viewing movies other than those suitably rated, and an
employer can prevent an employee from accessing non-business-related sites
during business hours.

To see how far and how fast the Web has diverged from its original concept, imagine
that Berners-Lee had proposed a requirement for restriction of content to prevent
children from accessing pornography. The management of CERN would have tossed

out his proposal without discussion. We return to this point about changing
stakeholder concerns when we revisit the ABC for the WWW in Section 13.5.

13.3 Architectural Solution

The basic architectural approach used for the Web, first at CERN and later at the
World Wide Web Consortium (W3C), relied on clients and servers and a library
(libWWW) that masks all hardware, operating system, and protocol dependencies.
Figure 13.3 shows how the content producers and consumers interact through their
respective servers and clients. The producer places content that is described in
HTML on a server machine. The server communicates with a client using the
HyperText Transfer Protocol (HTTP). The software on both the server and the client
is based on libWWW, so the details of the protocol and the dependencies on the
platforms are masked from it. One of the elements on the client side is a browser
that knows how to display HTML so that the content consumer is presented with an
understandable image.

Figure 13.3. Content producers and consumers interact through
clients and servers

We now go into more detail about both the libWWW and the client-server
architecture used as the basis for the original Web and that still largely pervades
Web-based software. Section 13.4 will discuss how the architecture of the Web and
Web-based software have changed in response to the e-commerce revolution.

MEETING THE ORIGINAL REQUIREMENTS: libWWW

As stated earlier, libWWW is a library of software for creating applications that run
on either the client or the server. It provides the generic functionality that is shared
by most applications: the ability to connect with remote hosts, the ability to
understand streams of HTML data, and so forth.

libWWW is a compact, portable library that can be built on to create Web-based
applications such as clients, servers, databases, and Web spiders. It is organized

into five layers, as shown in Figure 13.4.

Figure 13.4. A layered view of libWWW

The generic utilities provide a portability layer on which the rest of the system rests.
This layer includes basic building blocks for the system such as network
management, data types such as container classes, and string manipulation utilities.
Through the services provided by this layer, all higher levels can be made platform
independent, and the task of porting to a new hardware or software platform can be
almost entirely contained within the porting of the utilities layer, which needs to be
done only once per platform.

The core layer contains the skeletal functionality of a Web application�network
access, data management and parsing, logging, and the like. By itself, this layer
does nothing. Rather, it provides a standard interface for a Web application to be
built upon, with the actual functionality provided by plug-in modules and call-out
functions that are registered by an application. Plug-ins are registered at runtime
and do the actual work of the core layer�sending and manipulating data. They
typically support protocols, handle low-level transport, and understand data
formats. Plug-ins can be changed dynamically, making it easy to add new
functionality or even to change the very nature of the Web application.

Call-out functions provide another way for applications to extend the functionality
provided in the core layer. They are arbitrary application-specific functions that can
be called before or after requests to protocol modules.

What is the relationship between the generic utilities and the core? The generic
utilities provide platform-independent functions, but they can be used to build any
networked application. The core layer, on the other hand, provides the abstractions
specific to building a Web application.

The stream layer provides the abstraction of a stream of data used by all data
transported between the application and the network.

The access layer provides a set of network-protocol-aware modules. The standard
set of protocols that libWWW originally supported are HTTP�the underlying protocol
of the World Wide Web; Network News Transport Protocol (NNTP)�the protocol for
Usenet messages; Wide Area Information Server (WAIS)�a networked information
retrieval system; File Transfer Protocol (FTP), TELNET, rlogin, Gopher, local file
system, and TN3270. Many of these are becoming rare, but others, such as HTTPS
(HTTP Secure) have been added. It is relatively simple to add new protocol modules
because they are built upon the abstractions of the lower layers.

The uppermost layer, consisting of the Web application modules, is not an actual
application but rather a set of functionality useful for writing applications. It includes
modules for common functionality, such as caching, logging, and registering proxy
servers (for protocol translation) and gateways (for dealing with security firewalls,
for example); history maintenance, and so on.

LESSONS FROM libWWW

As a result of building libWWW and the many applications that rest on it, several
lessons have been learned. These lessons have derived in part from the developers'
experience in trying to meet the requirements that we listed in Section 13.2�that
Web-based tools be heterogeneous, support remote access across networks, be
noncentralized, and so forth. However, the requirement that turned out to be the
most challenging was supplying unforeseen bells and whistles. That is, allowing the
features of Web-based applications to grow has driven many decisions in libWWW
and has led to the following lessons:

Formalized application programming interfaces (APIs) are required. These are
the interfaces that present the functionality of libWWW to the programs built
on top of it. For this reason, APIs should be specified in a language-
independent fashion because libWWW is meant to support application
development on a wide variety of platforms and in many languages.

Functionality and the APIs that present it must be layered. Different
applications will need access to different levels of service abstraction, which
are most naturally provided by layers.

The library must support a dynamic, open-ended set of features. All of these
features must be replaceable, and it must be possible to make replacements
at runtime.

Processes built on the software must be thread safe. Web-based applications
must support the ability to perform several functions simultaneously,
particularly because operations such as downloading large files over a slow
communication link may take a considerable amount of real time. This requires
the use of several simultaneous threads of control. Thus, the functionality
exposed by the APIs must be safe to use in a threaded environment.

It turns out that libWWW does not support all of these goals as well as it might. For
example, the libWWW core makes some assumptions about essential services, so
not all features can be dynamically replaced. Furthermore, libWWW is meant to run
on many different platforms, and so it can not depend on a single-thread model.
Thus, it has implemented pseudothreads, which provide some, but not all, of the
required functionality. Finally, most current Web applications do not support dynamic
feature configuration; they require a restart before new services can be registered.

AN EARLY CLIENT-SERVER ARCHITECTURE USING libWWW

In Figure 13.5 we show a deployment view of a typical Web client-server that was
built using libWWW services. A module decomposition view is also shown for the
HTTP client and server components of the deployment view. The figure makes a few
points about libWWW. First, not all parts of a client-server are built from it. For
example, the user interface is independent. Second, the names of the managers do
not directly correspond to the names of the layers: Although the access manager,
protocol manager, and stream manager are clearly related to the access and stream
layers, the cache manager uses the services of the application layer. The stream
managers in the client-server pair manage the low-level communications, thus
ensuring transparent communication across a network for the other parts of the
system.

Figure 13.5. Deployment view of a Web client-server with a module
decomposition view of the HTTP client and server components

The user interface (UI) manager handles the look-and-feel of the client's user
interface. However, given the open-ended set of resources that a WWW system can
handle, another element, the presentation manager, can delegate information
display to external programs (viewers) to view resources known by the system but
that the UI manager does not directly support. For example, most Web viewers use
an external program to view PostScript or .pdf files. This delegation is a compromise
between the competing desires of user interface integration (which provides for a
consistent look-and-feel and hence better usability) and extensibility.

The UI manager captures a user's request for information retrieval in the form of a
URL and passes the information to the access manager. The access manager
determines if the requested URL exists in cache and also interprets history-based
navigation (e.g., "back"). If the file is cached, it is retrieved from the cache manager
and passed to the presentation manager for display to either the UI or an external
viewer. If it is not cached, the protocol manager determines the type of request and
invokes the appropriate protocol suite to service it. The client stream manager uses
this protocol for communicating the request to the server. Once it receives a
response from the server in the form of a document, this information is passed to
the presentation manager for appropriate display. The presentation manager
consults a static view control configuration file (mimerc, mailcap, etc.) to help it
map document types to external viewers.

The HTTP server ensures transparent access to the file system�the source of the
documents that the Web exists to transfer. It does this either by handling the access
directly (for known resource types) or through a proxy known as common gateway
interface (CGI). CGI handles resource types that a native server cannot handle and

handles extension of server functionality, as will be discussed next. Before these
extensions, the available WWW servers implemented a subset of defined HTTP
requests, which allowed for the retrieval of documents, the retrieval of document
meta-information, and server-side program execution via CGI.

When a request is received by the server stream manager, its type is determined
and the path of the URL is resolved via the path resolver. The HTTP server consults
an access list to determine if the requesting client is authorized for access. It might
initiate a password authentication session with the client to permit access to secured
data. Assuming authentication, it accesses the file system (which is outside the
server boundary) and writes the requested information to the output stream. If a
program is to be executed, a process is made available (either new or polled)
through CGI and the program is executed, with the output written by the server
stream manager back to the client.

In either case, CGI is one of the primary means by which servers provide
extensibility, which is one of the most important requirements driving the evolution
of Web software. CGI became such an important aspect of Web-based applications
that we now discuss this topic at greater length.

COMMON GATEWAY INTERFACE

Most information returned by a server is static, changing only when modified on its
home file system. CGI scripts, on the other hand, allow dynamic, request-specific
information to be returned. CGI has historically been used to augment server
functionality: for input of information, for searches, for clickable images. The most
common use of CGI, however, is to create virtual documents�documents that are
dynamically synthesized in response to a user request. For example, when a user
looks for something on the Internet, the search engine creates a reply to the user's
search request; a CGI script creates a new HTML document from the reply and
returns it to the user.

CGI scripts show the flexibility of early architectures which were based on libWWW.
In Figure 13.5, CGI is shown as external to the HTTP server. CGI scripts are written
in a variety of languages, some of which are compiled (C, C++, Fortran) and some
of which are interpreted (perl, VisualBasic, AppleScript, etc.). These scripts allow a
developer to extend a server's functionality arbitrarily and, in particular, to produce
information that the server will return to the user.

However, because scripts may contain any functionality written in C, perl, and so on,
they represent an enormous security hole for the system on which they are
installed. For example, a script (which runs as a process separate from the server)
might be "tricked" into executing an arbitrary command on the host system on
behalf of a remote user. For this reason, server-side scripts such as CGI have led to
a new requirement for increased security. The use of HTTPS to address this
requirement will be described in the next section.

Probably the most important additional feature that CGI brought to the Web
architecture is that it allows users to "put" information into the Web, in contrast to
the "get" operation that servers normally provide. Although the requirement to put

in information was listed in the original World Wide Web project requirements, it has
not been fully achieved. CGI allows users to put information only in application-
specific ways, such as adding it to a database by filling out a form.

CGI solved many problems inherent in the original design of libWWW�principally
because it provided much needed server extensibility to handle arbitrary resources,
allowed users to put data in limited ways�it also had several substantial
shortcomings. The security issue was one; another was portability. CGI scripts
written in VisualBasic, AppleScript, and C Shell work on Windows, Macintosh, and
UNIX, respectively. These scripts cannot be (easily) moved from one platform to
another.

ACHIEVING INITIAL QUALITY GOALS

Table 13.2 describes how the Web achieved its initial quality goals of remote access,
interoperability, extensibility, and scalability.

Table 13.2. How the WWW Achieved Its Initial Quality Goals

Goal How Achieved Tactics Used

Remote Access Build Web on top of Internet Adherence to
defined
protocols

Interoperability Use libWWW to mask platform details Abstract
common
services

Hide
information

Extensibility of
Software

Isolate protocol and data type extensions in
libWWW; allow for plug-in components (applets and
servlets)

Abstract
common
services

Hide
information

Replace
components

Configuration
files

Goal How Achieved Tactics Used

Extensibility of
Data

Make each data item independent except for
references it controls

Limit possible
options

Scalability Use client-server architecture and keep references
to other data local to referring data location

Introduce
concurrency

Reduce
computational
overhead

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

13.4 Another Cycle through the ABC: The Evolution of Web-
Based E-Commerce Architectures

The incredible success of the Web has resulted in unprecedented interest from
business and hence unprecedented pressure on the architecture, via the ABC.
Business requirements have begun to dominate Web architecture. Business-to-
business and business-to-consumer Web sites have fueled most of the innovation in
Web-based software.

The original conception of the Web was as a web of documents, in keeping with its
hypertext roots. E-commerce, however, views the Web as a web of data, and these
different views have led to some tensions. For example, "pushing" data to a user is
difficult; the most common technique for updating data is to reload it at specified
periods rather than to rely on the change of data to force a screen update. Another
is the back button on a browser, which in certain circumstances may result in stale
data being displayed on a screen.

The new requirements of e-commerce are stringent and quite different from the
original requirements presented in Section 13.2:

High performance. A popular Web site will typically have tens of millions of
"hits" per day, and users expect low latency from it. Customers will not
tolerate the site simply refusing their requests.

High availability. E-commerce sites are expected to be available "24/7." They
never close, so must have minimal downtime�perhaps a few minutes per year.

Scalability. As Web sites grow in popularity, their processing capacity must be
able to similarly grow, to both expand the amount of data they can manage
and maintain acceptable levels of customer service.

Security. Users must be assured that any sensitive information they send
across the Web is secure from snooping. Operators of Web sites must be
assured that their system is secure from attack (stealing or modifying data,
rendering data unusable by flooding it with requests, crashing it, etc.).

Modifiability. E-commerce Web sites change frequently, in many cases daily,
and so their content must be very simple to change.

The architectural solution to these requirements is more about system architecture
than simply software architecture. The components that populate the system come
from the commercial marketplace: Web servers and Web clients of course, but also
databases, security servers, application servers, proxy servers, transaction servers,
and so forth.

A typical reference architecture for a modern e-commerce system is shown in Figure
13.6. The browser/user interaction function is usually fulfilled by a Web browser (but

it could be a kiosk, a legacy system with a Web connection, or some other Web-
enabled device). The business rules and applications function is typically fulfilled by
application servers and transaction servers. The data services layer is typically
fulfilled by a modern database, although connections to legacy systems and legacy
databases are also quite common. This scheme is often referred to as an n-tier
architecture (here, n = 3). A tier is a partitioning of functionality that may be
allocated to a separate physical machine.

Figure 13.6. An e-commerce reference architecture

A typical implementation of an e-commerce system architecture consists of a
number of tiers, each consisting of a coherent grouping of software (typically
customized commercial components) and hardware. Such a configuration is given in
Figure 13.7, which shows how software is allocated to hardware.

Figure 13.7. A typical e-commerce system

The figure is annotated with the functional elements from Figure 13.6 to reinforce
the notion that a single function in the reference architecture may map to multiple

tiers in a typical e-commerce architecture. The two parts of Figure 13.5 occur here
as elementary components: the Web browsers (clients) and the Web servers,
respectively, reflecting the evolution toward component-based systems in which the
internal component structure is less relevant.

We will now discuss each of the elements in Figure 13.7, along with the qualities
that each helps to achieve.

WEB BROWSERS FOR MODIFIABILITY

An end user typically initiates a request for information by interacting with a Web
browser. Modern Web browsers support user interface modifiability in a wide variety
of ways, the most obvious of which has not changed from the inception of the Web:
The user interface that the browser supports is not hardwired but it is specified via
HTML. At least, it used to be. Nowadays there are many other technologies for
creating sophisticated user interfaces. XML, Flash, ActiveX, and Java applets are just
a few of the methods by which the standard palette of Web interactors (graphics
and hot spots) are widened to provide fully programmable interactive interfaces via
browsers.

HTTPS FOR SECURITY

Once the user has submitted a request, it must be transmitted to a target Web site.
This transmission may be via HTTP or, for sensitive information such as credit card
or identification numbers, HTTPS (HTTP Secure). HTTPS uses Netscape's Secure
Sockets Layer as a subprotocol underneath HTTP. It uses a different port (443
instead of the standard port 80 that HTTP uses) to request TCP/IP services in an
encrypted form. SSL uses a 128-bit public/private key pair to encrypt the data, and
this level of encryption is considered adequate for the exchange of small amounts of
commercial information in short transactions.

PROXY SERVERS FOR PERFORMANCE

Requests from individual browsers may first arrive at a proxy server, which exists to
improve the performance of the Web-based system. These servers cache frequently
accessed Web pages so that users may retrieve them without having to access the
Web site. (Caches carry out the tactic of "multiple copies.") They are typically
located close to the users, often on the same network, so they save a tremendous
amount of both communication and computation resources. Proxy servers are also
used by companies that want to restrict their employees' access to certain Web
sites. In this case the proxy server is acting somewhat like a firewall.

ROUTERS AND FIREWALLS FOR SECURITY

Requests from the browser (or proxy server) then arrive at a router, located on the
e-commerce provider's network, that may include a firewall for security. (Alternately
the router may pass HTTP requests on to a separate firewall.) The router may
implement network address translation (NAT), which translates an externally visible
IP address into an internal IP address. The IP address for any return traffic from the
Web server is translated so that it appears to have originated from the externally
visible site, not from the internal IP address. NAT is one of the techniques used in
load balancing, as we will discuss shortly.

The purpose of the firewall is to prevent unauthorized information flows or accesses
from the outside world, an example of the "limit access" tactic. There are several
types of firewall, the most common being packet filters and application proxies.
Packet filters examine the TCP and IP headers of each incoming packet and, if any
bad behavior is detected (such as an attempt to connect via an unauthorized port or
to send nonconforming file types), the packet is rejected. Packet filter firewalls are
appropriate for Web-based communication because they examine each packet in
isolation�there is no attempt to maintain a history of previous communication.

Application proxy firewalls are, as their name suggests, application specific. They
typically understand application protocols and hence can filter traffic based on
known patterns of behavior. An application proxy may, for example, refuse an HTTP
response unless an HTTP request was recently sent to that site. These firewalls can
be much slower than packet filter firewalls because they rely on keeping a certain
amount of history information on hand and their processing tends to be more
complex.

LOAD BALANCING FOR PERFORMANCE, SCALABILITY, AND
AVAILABILITY

A load-balancing component is an integral part of any important e-commerce Web
site, because it supports performance, scalability, and availability. The job of the
load balancer is to distribute the "load"�incoming HTTP and HTTPS
requests�among a pool of computers running Web servers. (Recall from Chapter 5
that load balancing follows from the tactic of "introducing physical concurrency.")
The load balancer may simply (and transparently) redirect the request to another
computer, or it may respond to the Web client and instruct it to redirect the request
to a different server. While this redirection is transparent to the end user, it results
in an additional roundtrip of communication.

In choosing which computer to redirect the traffic to, the load balancer may select in
a round-robin fashion, or its choices may be based on known processing or load
characteristics of each computer to which it is connected. Because the load balancer
is acting as a proxy for the pool of computers, we can add to that pool without
changing any external interface. In this way the load balancer supports performance
scalability, known as horizontal scaling (adding more instances of a given resource).

In addition, the load balancer may monitor the liveness of each of its computers
and, if one of them goes down, simply redirect traffic to the others in the pool. In
this way it supports availability.

WEB SERVERS FOR PERFORMANCE

Next the HTTP or HTTPS request reaches the Web server. Early Web servers, such as
those described in Figure 13.5, were typically single threaded. Modern versions are
multithreaded, utilizing a pool of threads, each of which can be dispatched to handle
an incoming request. A multithreaded server is less susceptible to bottlenecks (and
hence long latency) when a number of long-running HTTP or HTTPS requests (such
as credit card validations) arrive because other threads in the pool are still available
to serve incoming requests. This is the performance tactic of "introduce
concurrency."

Vertical scaling (adding more powerful instances of a given resource) can be
accomplished by replacing existing servers with more powerful machines that will
run more threads simultaneously.

Upon analyzing the request, the Web server will send it to an application server that
can respond, typically using the services of a database to do so.

Chapter 16 will discuss Enterprise JavaBeans, a modern implementation approach
for Web servers.

APPLICATION SERVERS FOR MODIFIABILITY,
PERFORMANCE, AND SCALABILITY

From the Web server the request is forwarded to an application server. "Application
server" is a broad (some would say ill-defined) term for a class of applications that
run in the "middle" of the n-tier architecture�business rules and applications. These
servers implement business logic and connectivity, which dictate how clients and
servers interact. The trend toward application servers has allowed significant
portions of functionality to be moved from old-style "fat" clients into the middle tier.
Also, they have allowed databases to concentrate on the storage, retrieval, and
analysis of data without worrying about precisely how that data will be used.

Application servers at the low end typically offer an integrated development
environment (IDE) and runtime server. IDEs support a programming model, such as
COM (or, more recently, .NET), CORBA, or J2EE (discussed in Chapter 16). Many
application servers also support a set of commonly used services for quickly creating
business and e-commerce applications, such as billing, inventory, work flow, and
customer relations management. At the upper end in terms of cost, complexity, and
functionality are transaction processing and transaction monitoring. Transaction
monitors and processors interact with databases and manage tasks like distributed
transactions (including combining data from multiple sources), queuing, transaction
integrity, and workload balancing (much like the load balancer mentioned earlier).

DATABASES FOR PERFORMANCE, SCALABILITY, AND
AVAILABILITY

Finally, the request for service arrives at the database, where it is converted into an
instruction to add, modify, or retrieve information. Modern database architectures
share many of the qualities of the entire e-commerce system presented in Figure
13.7. They frequently use internal replication for performance, scalability, and high
availability. They may use caching for faster performance.

13.5 Achieving Quality Goals

Together the elements we have described allow the Web-based e-commerce system
to achieve its stringent quality goals of security, high availability, modifiability,
scalability, and high performance. How they do this is shown in Table 13.3.

Table 13.3. How the Web e-Commerce Architecture Achieves Its
Quality Goals

Goal How Achieved Tactics

High
Performance

Load balancing, network address
translation, proxy servers

Introduce concurrency; increase
resources; multiple copies

High
Availability

Redundant processors, networks,
databases, and software; load
balancing

Active redundancy; transactions;
introduce concurrency

Scalability Allow for horizontal and vertical
scaling; load balancing

Abstract common services;
adherence to defined protocols;
introduce concurrency

Security Firewalls; public/private key
encryption across public networks

Limit access; integrity; limit
exposure

Modifiability Separation of browser functionality,
database design, and business logic
into distinct tiers

Abstract common services;
semantic coherence;
intermediary; interface stability

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

13.6 The Architecture Business Cycle Today

If we look at the current state of the Web after several cycles through the ABC, we
see a number of phenomena.

Several types of organizations provide the technical environment. They can be
divided into service providers and content providers. Service providers produce
the software that makes the Web�browsers, servers, databases, application
servers, security technologies (such as firewalls), transaction servers,
networks, and routers. Content providers produce the data for the Web. There
is heavy competition in all of these areas.

A number of open-source projects, aside from the W3C, have come to
prominence in the development of the Web, particularly the Apache project.

CERN has had no special role in the evolution of the Web.

Web-enabled languages, particularly Java, are changing the way functionality
is developed and delivered over the Web. (See Chapter 18 for an example of
how Web-based applications are built using Enterprise JavaBeans.)

The emergence of the Web as a distributed development environment has
given rise to several new organizations and products. For example, UDDI
(Universal Description, Discovery, and Integration) provides distributed Web-
based registries of Web services. These services can be used as building blocks
for distributed Web-based applications.

Figure 13.8 shows the ABC for the Web today.

Figure 13.8. The current ABC for the Web

The customers are the software server and browser providers and the service and
content providers. The end users are the people of the world. The architect's role is
provided by the W3C and other consortia such as UDDI, the Apache project, and
several influential companies�Sun, Microsoft, and AOL/Netscape. The remainder of
the ABC is the same except that the technical environment now includes the Web
itself, which adds an upward compatibility requirement to the qualities.

We discussed the return cycle of the ABC in Section 1.1. The existence of a system
creates new business opportunities for both the developing organization and its
customers. In the World Wide Web case, the developing organization, CERN,
decided that nuclear research, not Web activity, was its main business, so the
business opportunities created by the return loop of the ABC were filled by other
organizations.

13.7 Summary

The Web has been so successful because of the manner in which the desired
qualities were realized in its architectural structures, and in how these structures
have been reinvented in the face of dramatic new requirements. The success of the
Web has meant that the ABC has been traversed multiple times in just a few years,
with each traversal creating new business opportunities, new requirements, and new
technical challenges.

How the Web Has Changed the Business
World: A Look at Amazon.com
When Amazon.com opened its virtual doors in 1995, it was already an
order of magnitude bigger than the average bookstore, carrying more
than 1 million titles. It was not like "brick-and-mortar" bookstores in other
ways as well, and these differences all stemmed from the fact that
Amazon was an e-business, delivering the message and products via the
Web.

Being an e-store meant that Amazon could change the world (at least, the
business world). For example, it meant that Amazon could sell books
created by small, independent writers and publishers since it did not bear
the costs of publishing. It meant that it could change the ways in which
people bought books, with online user reviews, synopses, personal
recommendation services, e-mail notifications of new books by a user's
favorite author, and so forth. It also meant that Amazon could keep its
prices low since it avoided most of the costs of traditional retail operations
by outsourcing the majority of its operations.

A shopper at Amazon.com receives customized, personalized service such
as suggestions for books similar to those the customer has browsed or
purchased. Amazon can do this only because of its enormous IT
infrastructure and data-mining ability.

Rather than a simple purchaser and reseller of books, Amazon is a
"middle-man" and an information broker. It has succeeded in creating a
loyal and ever-growing community of sellers and buyers, not just of
books. Amazon is a hub, collecting a percentage of every sale made and
receiving commissions on referrals to other Web sites.

Ultimately Amazon's IT infrastructure has little to do with books. Amazon
realized this early on and was able to transform itself into a retailer of
toys, cell phones, drugs, cameras, software, car parts, pet
supplies�virtually anything that could be sold to the public and shipped
around the world. None of this would have been possible without the
Web's infrastructure.

Today, Amazon.com claims to be the world's largest online store serving
customers in more than 220 countries. It has five international Web sites
and approximately 20 million registered customers (almost the population
of Canada!). Repeat business is 70%, which is unheard of in retailing. At
the time of this writing, Amazon hasn't made an annual profit, but it
expects to be profitable in 2003 and beyond.

Although it is far from the only one, Amazon is perhaps the most dramatic
example of how the Web has changed the world (at least the world of
retailing).

� RK

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

13.8 For Further Reading

Readers interested in discovering more about hypertext should see [Bush 45] and
the special issue of the CACM devoted to hypertext [CACM 88].

Information on the Web's history and growth can be found primarily on the Web. We
used [Berners-Lee 96a], [Gray (http://www.mit.edu/people/mkgray/net)], and
[Zakon (http://www.zakon.com/robert/internet/timeline)].

Much of the detail about libWWW comes from the W3C Reference Library at
http://www.w3.org/pub/WWW/Library.

For a good general discussion of network security issues and cryptography, including
all aspects of Web security, see [Stallings 99]. A good discussion of performance
issues in e-commerce systems may be found in [Menasce 00].

The architectural style used in Web-based applications is treated in [Fielding 96]. A
comparison of modern Web server patterns may be found in [Hassan 00], from
which we adapted the client-server architecture shown in Figure 13.5.

Netcraft's May 2001 survey of Web server usage can be found at
http://www.netcraft.com/survey/.

http://www.mit.edu/people/mkgray/net
http://www.zakon.com/robert/internet/timeline
http://www.w3.org/pub/WWW/Library
http://www.netcraft.com/survey/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

13.9 Discussion Questions

1:

We have identified a number of qualities that made the WWW successful:
interoperability, portability, remote access, extensibility, and scalability. Which of
these do you think contributed most substantially to the Web's success? If any of
these qualities had been sacrificed, would the Web still have been successful?
What tradeoffs did these quality goals entail in the architecture of applications
based upon libWWW?

2:
The Web did not have performance as one of its early quality goals, which is
unusual for a successful system. Why do you think the system was successful
anyway? What, if anything, does this say about the future of computing?

3: What patterns and tactics can you discern in the portions of the architecture
shown in Figures 13.4, 13.5 and 13.7?

Part Four: Moving From One System to Many
Part Four continues our tour of the Architecture Business Cycle. Parts One,
Two, and Three Three took us from the architect to a reviewed architecture.
Part Four focuses on the construction of multiple systems from that
architecture, discussing, and giving examples of system product lines. It does
this from five perspectives: that of the technology underlying a product line,
that of a single company that built a product line of naval vessel fire-control
systems, that of an industry-wide architecture, that of a single company
producing products based on the industry-wide architecture, and that of an
organization building systems from commercial components.

Software product lines have the potential to re-use everything from
requirements to test plans to personnel. The key to this re-use is architecture.
Chapter 14 focuses on defining and developing an architecture for a product
line. We deal with organizational issues here since, as you should be well
aware of by now, there is a strong relationship between architecture and
organizations.

Chapter 15 is our first case study. It is the story of a Swedish company,
CelsiusTech, that constructed a product line of fire-control systems for naval
vessels. We discuss the architecture here, but we also discuss in some detail
how its organizational structure and culture changed as a result of adopting a
product line.

CelsiusTech was a single organization building an architecture for multiple
products. However, industries also have supporting architectures. For example,
Java 2 Enterprise Edition/Enterprise JavaBeans (J2EE/EJB), an architectural
specification designed for Web-based information systems, acts as a base
architecture for products developed by many companies. Chapter 16 discusses
J2EE/EJB's architectural decisions and the tradeoffs that are possible within it.

One of the companies building products based on J2EE/EJB is Inmedius, which
produces solutions for frontline workers, such as maintenance technicians,
who cannot sit in front of a desktop and rarely use a laptop but instead rely on
a variety of mobile platforms. How Inmedius architected a solution based on
wireless technology and wearable and handheld computers is the subject of
Chapter 17.

Chapter 18 discusses constructing a single system when given an architecture
and a collection of commercial components. We will see if there was anything
left to design and build.

Finally, we end by engaging in our favorite pastime�predicting the future of
software architecture. Chapter 19 presents our guesses (and they are no more
than that) as to what might be in store.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 14. Software Product Lines: Re-using
Architectural Assets
with Linda Northrop

Note: Linda Northrop is a member of the technical staff at the Software Engineering
Institute.

In 1969, McIlroy first recognized the need for an industry of re-usable
software components, but since then, this has continued to be an elusive goal
for the software community. It is therefore fair to ask the question: If the
benefits of re-usable software components are so overwhelming, why doesn't
this practice already pervade the whole of computer science?

�Grady Booch [Booch 94]

14.1 Overview

A software architecture represents a significant investment of time and effort,
usually by senior talent. So it is natural to want to maximize the return on this
investment by re-using an architecture across multiple systems. Architecturally
mature organizations tend to treat their architectures as valuable intellectual
property and look for ways in which that property can be leveraged to produce
additional revenue and reduce costs. Both are possible with architecture re-use.

This chapter is about the explicit, planned re-use of a software architecture (and
other assets as well) across a family of related systems. When an organization is
producing multiple similar systems and re-using the same architecture (and
elements associated with that architecture), it enjoys substantial benefits that
include reduced cost of construction and reduced time to market. This is the lure of
the software product line, defined as

a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way. [Clements 02b, 5]

The vision is of a set of re-usable assets that includes a base architecture and the
common, perhaps tailorable, elements that populate it. It also includes designs and
their documentation, user manuals, project management artifacts such as budgets
and schedules, and software test plans and test cases. As we will see, achieving this
vision depends critically on establishing the correct scope for the product line.

When a product line has been successfully established, each re-usable asset is
saved in a core asset base because it can be applied to more than one system and
because re-using it will be cheaper than re-inventing it. Core assets ideally are
designed with variation points�that is, places where they can be quickly tailored in
preplanned ways. Within a successful product line, system building becomes
accessing the appropriate assets, tailoring them as required for the system at hand,
and then assembling that system. Any software developed for an individual product,
if needed at all, tends to account for less than 20% of the total software. Integration
and testing replace design and coding as the predominant activities.

Product lines are, of course, nothing new in manufacturing. Many historians trace
the concept to Eli Whitney's use of interchangeable parts to build rifles in the early
1800s, but earlier examples also exist. Today, Boeing has one, as do Ford, Dell, and
even McDonald's. Each company exploits commonality in different ways. Boeing, for
example, developed the 757 and 767 transports in tandem, and the parts lists of
these two very different aircraft overlap by about 60%.

Software product lines based on inter-product commonality represent an innovative,
growing concept in software engineering. Every customer has its own requirements,
which demand flexibility on the part of the manufacturers. Software product lines
simplify the creation of systems built specifically for particular customers or
customer groups.

The improvements in cost, time to market, and productivity that come with a
successful product line can be breathtaking. Consider:

Nokia is able to produce 25 to 30 different phone models per year (up from 4
per year) because of the product line approach.

Cummins, Inc., was able to reduce the time it takes to produce the software
for a diesel engine from about a year to about a week.

Motorola observed a 400% productivity improvement in a family of one-way
pagers.

Hewlett-Packard reported a time to market reduced by a factor of seven and a
productivity increase of a factor of six in a family of printer systems.

With a family of satellite ground control systems it commissioned, the U.S.
National Reconnaissance Office reports the first product requiring 10% the
expected number of developers and having 90% fewer defects.

Creating a successful product line depends on a coordinated strategy involving
software engineering, technical management, and organization management. Since
this is a book on software architecture, we focus on the software architectural
aspects of software engineering, but all aspects must work together for an
organization to successfully create a product line.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

14.2 What Makes Software Product Lines Work?

The essence of a software product line is the disciplined, strategic re-use of assets
in producing a family of products. What makes product lines succeed so
spectacularly from the vendor or developer's point of view is that the commonalities
shared by the products can be exploited through re-use to achieve production
economies. The potential for re-use is broad and far-ranging, including:

Requirements. Most of the requirements are common with those of earlier
systems and so can be re-used. Requirements analysis is saved.

Architectural design. An architecture for a software system represents a large
investment of time from the organization's most talented engineers. As we
have seen, the quality goals for a system�performance, reliability,
modifiability, and so forth�are largely allowed or precluded once the
architecture is in place. If the architecture is wrong, the system cannot be
saved. For a new product, however, this most important design step is already
done and need not be repeated.

Elements. Software elements are applicable across individual products. Far and
above mere code re-use, element re-use includes the (often difficult) initial
design work. Design successes are captured and re-used; design dead ends
are avoided, not repeated. This includes design of the element's interface, its
documentation, its test plans and procedures, and any models (such as
performance models) used to predict or measure its behavior. One re-usable
set of elements is the system's user interface, which represents an enormous
and vital set of design decisions.

Modeling and analysis. Performance models, schedulability analysis,
distributed system issues (such as proving absence of deadlock), allocation of
processes to processors, fault tolerance schemes, and network load policies all
carry over from product to product. CelsiusTech (as discussed in Chapter 15)
reports that one of the major headaches associated with the real-time
distributed systems it builds has all but vanished. When fielding a new product
in the product line, it has extremely high confidence that the timing problems
have been worked out and that the bugs associated with distributed
computing�synchronization, network loading, deadlock�have been
eliminated.

Testing. Test plans, test processes, test cases, test data, test harnesses, and
the communication paths required to report and fix problems are already in
place.

Project planning. Budgeting and scheduling are more predictable because
experience is a high-fidelity indicator of future performance. Work breakdown
structures need not be invented each time. Teams, team size, and team
composition are all easily determined.

Processes, methods, and tools. Configuration control procedures and facilities,
documentation plans and approval processes, tool environments, system
generation and distribution procedures, coding standards, and many other
day-to-day engineering support activities can all be carried over from product
to product. The overall software development process is in place and has been
used before.

People. Because of the commonality of applications, personnel can be fluidly
transferred among projects as required. Their expertise is applicable across
the entire line.

Exemplar systems. Deployed products serve as high-quality demonstration
prototypes as well as high-quality engineering models of performance,
security, safety, and reliability.

Defect elimination. Product lines enhance quality because each new system
takes advantage of the defect elimination in its forebears. Developer and
customer confidence both rise with each new instantiation. The more
complicated the system, the higher the payoff for solving vexing performance,
distribution, reliability, and other engineering issues once for the entire family.

Software product lines rely on re-use, but as revealed by this chapter's opening
quotation, re-use has a long but less than stellar history in software engineering,
with the promise almost always exceeding the payoff. One reason for this failure is
that until now re-use has been predicated on the idea that "If you build it, they will
come." A re-use library is stocked with snippets from previous projects, and
developers are expected to check it first before coding new elements. Almost
everything conspires against this model. If the library is too sparse, the developer
will not find anything of use and will stop looking. If the library is too rich, it will be
hard to search. If the elements are too small, it is easier to rewrite them than to
find them and carry out whatever modifications they might need. If the elements
are too large, it is very difficult to determine exactly what they do in detail, which in
any case is not likely to be exactly right for the new application. In most re-use
libraries, pedigree is hazy at best. The developer cannot be sure exactly what the
element does, how reliable it is, or under what conditions it was tested. And there is
almost never a match between the quality attributes needed for the new application
and those provided by the elements in the library.

In any case, it is likely that the elements were written for a different architectural
model than the one the developer of the new system is using. Even if you find
something that does the right thing with the right quality attributes, it is doubtful
that it will be the right kind of architectural element (if you need an object, you
might find a process), that it will have the right interaction protocol, that it will
comply with the new application's error-handling or failover policies, and so on.

Software product lines make re-use work by establishing a very strict context for it.
The architecture is defined; the functionality is set; the quality attributes are known.
Nothing is placed in the re-use library�or "core asset base" in product line

terms�that was not built to be re-used in that product line. Product lines work by
relying on strategic or planned, not opportunistic, re-use.

14.3 Scoping

The scope of a product line defines what systems are in it, and what systems are
out. Put less bluntly, a product line's scope is a statement about what systems an
organization is willing to build as part of its line and what systems it is not willing to
build. Defining a product line's scope is like drawing a doughnut in the space of all
possible systems, as shown in Figure 14.1. The doughnut's center represents the
systems that the organization could build, would build, because they fall within its
product line capability. Systems outside the doughnut are out of scope, ones that
the product line is not well equipped to handle. Systems on the doughnut itself
could be handled, but with some effort, and require case-by-case disposition as they
arise. To illustrate, in a product line of office automation systems a conference room
scheduler would be in; a flight simulator would be out. A specialized intranet search
engine might be in if it could be produced in a reasonable time and if there were
strategic reasons for doing so (such as the likelihood that future customers would
want a similar product).

Figure 14.1. The space of all possible systems is divided into areas
within scope (white), areas outside of scope (speckled), and areas

that require case-by-case disposition (black).

Adapted from [Clements 02b].

The scope represents the organization's best prediction about what products it will
be asked to build in the foreseeable future. Input to the scoping process comes from
the organization's strategic planners, marketing staff, domain analysts who can
catalog similar systems (both existing and on the drawing board), and technology
experts.

A product line scope is a critical factor in the success of the product line. Scope too
narrowly (the products vary in a small number of features) and an insufficient
number of products will be derived to justify the investment in development. Scope
too broadly (the products vary in kind as well as in features) and the effort required
to develop individual products from the core assets is too great to lead to great
savings. Scope can be refined during the initial establishment of the product line or
opportunistically depending on the product line adoption strategy (see the section
Adoption Strategies).

The problem in defining the scope is not in finding commonality�a creative architect
can find points of commonality between any two systems�but in finding
commonality that can be exploited to substantially reduce the cost of constructing
the systems that an organization intends to build.

When considering scope, more than just the systems being built should be
considered. Market segmentation and types of customer interactions assumed will
help determine the scope of any product line. For example, Philips, a Dutch
manufacturer of consumer electronics, has distinct product lines for home video
electronic systems and digital video communication. Video is the common thread,
but one is a mass market, where the customer is assumed to have very little video
sophistication, and the other is a much smaller market (in terms of number of
customers), where the customer is assumed to be very knowledgeable. The
products being developed reflect these assumptions about the sophistication of
customers and the amount of care each customer will receive. These differences
were sufficient to keep Philips from attempting to develop a single product line for
both markets.

Narrowly scoped product lines offer opportunities to build specialized tools to
support the specification of new products, for example:

FAST is a process for product line development based on developing a domain-
specific language and associated compiler. The compiler is one of the core
assets. When product variations are captured in a domain-specific language,
the runtime library for the code generated through the compiler becomes an
additional core asset.

GM Powertrain makes a product out of product line assets based on contracts
stored in a database. Each element has well-defined interfaces and possible
variation points. A tool searches the database based on desired features and
assembles the product.

Broadly scoped product lines tend to be developed as frameworks or as collections
of services, for example:

An automotive supplier's product line of navigation systems is geared to
automotive manufacturers, each of which insists on its own user interface and
set of features. The supplier designed the architecture as a collection of
frameworks. The development of each product consists of constructing the
user interface and instantiating the frameworks for the specified features.

The Luther system (see Chapter 17) is a product line constructed on top of
J2EE (a framework). The development of each product consists of building the
user interface and implementing some application support modules.

That Silver Lining Might Have A Cloud

The software product line paradigm is a powerful way to leverage an
investment in architecture (and other core assets) into a family of related
systems and thus see order-of-magnitude improvements in time to
market, quality, and productivity.

These results are possible and have been demonstrated by companies
large and small in many different domains. The effects are real. Further,
data from many sources and companies confirms with astonishing
consistency that to make the investment pay off, an organization needs to
build only about three products. This is the minimum number we would
expect to have in a product line anyway.

It must be pointed out, however, that other results are possible as well,
and a spectacular crash-and-burn is not out of the question when trying to
adopt this approach. Product line practice, like any new technology, needs
careful thought given to its adoption, and a company's history, situation,
and culture must be taken into account.

These factors can contribute to product line failure:

Lack of a champion in a position of sufficient control and visibility

Failure of management to provide sustained and unwavering support

Reluctance of middle managers to relinquish autocratic control of
projects

Failure to clearly identify business goals for adopting the product line
approach

Abandoning the approach at the first sign of difficulty

Failure to adequately train staff in the approach and failure to
explain or justify the change adequately

Fortunately, there are strategies for overcoming most of these factors.
One good strategy is to launch a small but visible pilot project to
demonstrate the quantitative benefits of software product lines. The pilot
can be staffed by those most willing to try something new while the
skeptics go about their business. It can work out process issues, clarify
roles and responsibilities, and in general work out the bugs before the
approach is transitioned to a wider setting.

Joe Gahimer of Cummins, Inc. (the purveyor of a very successful software
product line chronicled in [Clements 02b], tells the story of two features in
his organization's products whose owners pleaded uniqueness. A tailshaft
governor, they said, was nothing at all like a cruise control governor. Yes,
they both controlled speed, but that was where the similarity ended. The
core asset group patiently worked with both sides to capture the details of

the two applications, and at the end of the exercise it turned out that the
two features were not only similar but in fact functionally identical,
modulo a numeric constant.

When adopting a product line approach, perseverance pays off. In fact, it
is the best remedy for most of the failure causes enumerated here. The
single most effective factor is often a champion who (by definition)
perseveres in touting the product line approach, overcoming skepticism,
and instilling the will to overcome hurdles.

� PCC

14.4 Architectures for Product Lines

Of all of the assets in a core asset repository, the software architecture plays the
most central role. The essence of building a successful software product line is
discriminating between what is expected to remain constant across all family
members and what is expected to vary. Software architecture is ready-made for
handling this duality, since all architectures are abstractions that admit a plurality of
instances; a great source of their conceptual value is, after all, that they allow us to
concentrate on design essentials within a number of different implementations. By
its very nature an architecture is a statement about what we expect to remain
constant and what we admit may vary. In a software product line, the architecture is
an expression of the nonvarying aspects.

But a product line architecture goes beyond this simple dichotomy, concerning itself
with a set of explicitly allowed variations, whereas with a conventional architecture
almost any instance will do as long as the (single) system's behavioral and quality
goals are met. Thus, identifying the allowable variations is part of the architecture's
responsibility, as is providing built-in mechanisms for achieving them. Those
variations may be substantial. Products in a software product line exist
simultaneously and may vary in terms of their behavior, quality attributes, platform,
network, physical configuration, middleware, scale factors, and so forth.

A product line architect needs to consider three things:

Identifying variation points

Supporting variation points

Evaluating the architecture for product line suitability

IDENTIFYING VARIATION POINTS

Identifying variation is an ongoing activity. Because of the many ways a product can
vary, variants can be identified at virtually any time during the development
process. Some variations are identified during product line requirements elicitation;
others, during architecture design; and still others, during implementation.
Variations may also be identified during implementation of the second (and
subsequent) products as well.

The variations discovered during the requirements process can include features,
platforms, user interfaces, qualities, and target markets. Some are interdependent.
For example, the user interface may be tied to the platform to be used, which may
in turn be tied to a particular target market.

The variation points discovered during the architecture design process will be either
options for implementing the variations identified during the requirements process

or normal variations during design because particular decisions are deferred until
more information is available. In any case, it is now appropriate to speak of
"variation points" since there are places in the architecture that we can point to that
capture the variation.

SUPPORTING VARIATION POINTS

In a conventional architecture, the mechanism for achieving different instances
almost always comes down to modifying the code. But in a software product line,
architectural support for variation can take many forms:

Inclusion or omission of elements. This decision can be reflected in the build
procedures for different products, or the implementation of an element can be
conditionally compiled based on some parameter indicating its presence or
absence.

Inclusion of a different number of replicated elements. For instance, high-
capacity variants might be produced by adding more servers�the actual
number should be unspecified, as a point of variation. Again, a build file would
select the number appropriate for a particular product.

Selection of versions of elements that have the same interface but different
behavioral or quality attribute characteristics. Selection can occur at compile
or build time or, in some cases, even runtime. Two selection mechanisms are
static libraries, which contain external functions linked to after compilation
time, and dynamic link libraries, which have the flexibility of static libraries but
defer the decision until runtime based on context and execution conditions. By
changing the libraries, we can change the implementation of functions whose
names and signatures are known.

These mechanisms produce wholesale changes at the architectural level. Other
mechanisms can be introduced that change aspects of a particular element.
Changing the source code falls into this category. More sophisticated techniques
include the following:

In object-oriented systems, specializing or generalizing particular classes can
achieve variation. Classes can be written to admit a variety of specializations
that can be written for various products as necessary.

Building extension points into the element's implementation. This is a place
where additional behavior or functionality can be safely added.

Variation can be accomplished by introducing build-time parameters to an
element, a subsystem, or a collection of subsystems, whereby a product is
configured by setting a collection of values.

Reflection is the ability of a program to manipulate data on itself or its
execution environment or state. Reflective programs can adjust their behavior
based on their context.

Overloading is a means of re-using a named functionality to operate on
different types. Overloading promotes code re-use, but at the cost of
understandability and code complexity.

Of course, there must be documentation (see Chapter 9) for the product line
architecture as it resides in the core asset base and for each product's architecture
(to the extent that it varies from the product line architecture). The documentation
for the product line architecture should clearly show its variation points and a
rationale for each (probably using the scope definition as justification). It should
also describe the architecture's instantiation process�that is, how its variation
points are exercised. Theoretically, each variation point could be described
separately, but in practice not all variations are allowed. Some combinations may be
unused or (worse) result in an error, and so the documentation needs to explain
valid and invalid variation bindings.

The documentation for an individual product's architecture can be written in terms
of deltas from or binding of variation points. For example, the architecture for
product #16 might require three servers, sixty-four client workstations, two
databases, the high-speed low-resolution version of the graphics element, and null
encryption in the message generator.

EVALUATING A PRODUCT LINE ARCHITECTURE

Like any other, the architecture for a software product line should be evaluated for
fitness of purpose. In fact, given the number of systems that will rely on it,
evaluation takes on an even more important role for a product line architecture.

The good news is that the evaluation techniques described earlier in this book work
well for product line architectures. The architecture should be evaluated for its
robustness and generality, to make sure it can serve as the basis for products in the
product line's envisioned scope. It should also be evaluated to make sure it meets
the specific behavioral and quality requirements of the product at hand. We begin by
focusing on the what and how of the evaluation and then turn to when it should take
place.

What and How to Evaluate

The evaluation will have to focus on the variation points to make sure they are
appropriate, that they offer sufficient flexibility to cover the product line's intended
scope, that they allow products to be built quickly, and that they do not impose
unacceptable runtime performance costs. If your evaluation is scenario based,
expect to elicit scenarios that involve instantiating the architecture to support
different products in the family. Also, different products in the product line may have

different quality attribute requirements, and the architecture will have to be
evaluated for its ability to provide all required combinations. Here again, try to elicit
scenarios that capture the quality attributes required of family members.

Often, some of the hardware and other performance-affecting factors for a product
line architecture are unknown to begin with. In this case, evaluation can establish
bounds on the performance that the architecture is able to achieve, assuming
bounds on hardware and other variables. The evaluation can identify potential
contention so that you can put in place the policies and strategies to resolve it.

When to Evaluate

An evaluation should be performed on an instance or variation of the architecture
that will be used to build one or more products in the product line. The extent to
which this is a separate, dedicated evaluation depends on the extent to which the
product architecture differs in quality-attribute-affecting ways from the product line
architecture. If it does not differ, the product line architecture evaluation can be
abbreviated, since many of the issues normally be raised in a single product
evaluation will have been dealt with in the product line evaluation. In fact, just as
the product architecture is a variation of the product line architecture, the product
architecture evaluation is a variation of the product line architecture evaluation.
Therefore, depending on the evaluation method used, the evaluation artifacts
(scenarios, checklists, etc.) will have re-use potential, and you should create them
with that in mind. The results of evaluation of product architectures often provide
useful feedback to the product line architects and fuel architectural improvements.

When a new product is proposed that falls outside the scope of the original product
line (for which the architecture was presumably evaluated), the product line
architecture can be re-evaluated to see if it will suffice for it. If it does, the product
line's scope can be expanded to include the new product or to spawn a new product
line. If it does not, the evaluation can determine how the architecture will have to
be modified to accommodate the new product.

The product line and product architectures can be evaluated not only to determine
architectural risks but also, using the CBAM (see Chapter 12), to determine which
products will yield the most return.

14.5 What Makes Software Product Lines Difficult?

It takes a certain maturity in the developing organization to successfully field a
product line. Technology is not the only barrier to this; organization, process, and
business issues are equally vital to master to fully reap the benefits of the software
product line approach.

The Software Engineering Institute has identified twenty-nine issues or "practice
areas" that affect an organization's success in fielding a software product line. Most
of these practice areas are applied during single-system development as well, but
take on a new dimension in a product line context. Two examples are architecture
definition and configuration management.

Architecture definition is an important activity for any project but, as we saw in the
previous section, it needs to emphasize variation points in a software product line.
Configuration management is also an important activity for any project but is more
complex for a software product line because each product is the result of binding a
large number of variations. The configuration management problem for product lines
is to reproduce any version of any product delivered to any customer, where
"product" means code and supporting artifacts ranging from requirement specs and
test cases to user manuals and installation guides. This involves knowing what
version of each core asset was used in a product's construction, how every asset
was tailored, and what special-purpose code or documentation was added.

Examining every facet of product line production is outside the scope of this book,
but the next section will examine a few of the key areas to give a flavor of the
qualitative difference between product line and single-system development. These
are issues that an organization will have to face when considering whether to adopt
a product line approach for software development.

ADOPTION STRATEGIES

Getting an organization to adopt the product line approach is in many regards like
any other technology insertion problem. How to solve it depends on the
organization's culture and context.

Top-down adoption comes when a manager decrees that the organization will use
the approach. The problem here is to get employees in the trenches to change the
way they work. Bottom-up adoption happens when designers and developers
working at the product level realize that they are needlessly duplicating each other's
work and begin to share resources and develop generic core assets. The problem
here is finding a manager willing to sponsor the work and spread the technique to
other parts of the organization. Both approaches work; both are helped enormously
by the presence of a strong champion�someone who has thoroughly internalized
the product line vision and can share that compelling vision with others.

Orthogonal to the issue of in which direction the technology will grow is the question
of how the product line itself grows. Here there are two primary models.[1]

[1] These models were identified by Charles Krueger at a recent Dagstuhl workshop on software product lines (www.dagstuhl.de).

In a proactive product line, an organization defines the family using a
comprehensive definition of scope. They do this not with a crystal ball but by taking
advantage of their experience in the application area, their knowledge about the
market and technology trends, and their good business sense. The proactive model
is the most powerful of the two product line growth models, because it allows the
organization to make the most far-reaching strategic decisions. Explicitly scoping
the product line allows you to look at areas that are underrepresented by products
already in the marketplace, make small extensions to the product line, and move
quickly to fill the gap. In short, proactive product line scope allows an organization
to take charge of its own fate.

Sometimes an organization does not have the ability to forecast the needs of the
market with the certainty suggested by the proactive model. Perhaps the domain is
a new one. Perhaps the market is in flux. Or perhaps the organization cannot afford
to build a core asset base that will cover the entire scope all at once. In this
situation, a reactive model is more likely. Here an organization builds the next
member or members of the product family from earlier products. With each new
product, the architecture and designs are extended as needed and the core asset
base is built up from what has turned out to be common�instead of what was
preplanned to be common. The reactive model puts much less emphasis on upfront
planning and strategic direction setting. Rather, the organization lets itself be taken
where the market dictates.

Knowing the various adoption models can help an organization choose the one that
is right for it. The proactive model requires an initial investment but less rework
than the reactive model. The reactive model relies exclusively on rework with little
initial investment. Which model should act as a guide for a particular organization
depends very much on the business situation.

CREATING PRODUCTS AND EVOLVING A PRODUCT LINE

An organization that has a product line will have an architecture and a collection of
elements associated with it. From time to time, the organization will create a new
member of the product line that will have features both in common with and
different from those of other members.

One problem associated with a product line is managing its evolution. As time
passes, the product line�or, in particualr, the set of core assets from which products
are built�must evolve. That evolution will be driven by both external and internal
sources:

1. External sources

- New versions of elements in the line will be released by their vendors,
and future products will need to be constructed from them.

- Externally created elements may be added to the product line. Thus,
for example, functions that were previously performed by internally

http://www.dagstuhl.de/default.htm

developed elements may now be performed by elements acquired
externally, or vice versa. Or future products will need to take advantage
of new technology, as embodied in externally developed elements.

- Features may be added to the product line to keep it responsive to user
needs or competitive pressures.

2. Internal sources

- It must be determined if new functions added to a product are within
the product line's scope. If so, they can simply be built anew from the
asset base. If not, a decision must be made: Either the enhanced
product spins off from the product line, following its own evolutionary
path, or the asset base must be expanded to include it. Updating the
product line may be the wisest choice if the new functionality is likely to
be used in future products, but this capability comes at the cost of the
time necessary to update the core assets.

- If the product line assets are changed, even if the organization is in a
position to issue a "recall," replacing old products with ones built from
the most up-to-date version of the asset base does not mean that it
should do so. Keeping products compatible with the product line takes
time and effort. But not doing so may make future upgrades more time
consuming, because either the product will need to be brought into
compliance with the latest product line elements or it will not be able to
take advantage of new functions added to the line.

ORGANIZATIONAL STRUCTURE

An asset base on which products depend, but which has its own evolutionary path,
requires an organization to decide how to manage both it and product development.
Jan Bosch [Bosch 00b] has studied product line organizational models and has
identified four types.

1. Development department. All software development is concentrated in a single
unit. Each unit member is expected to be a jack-of-all-trades in the product
line, doing domain engineering or application engineering when and as
appropriate. This model appears in small organizations and those that provide
consulting services. Although it is simple, with short communication paths,
having a single unit has a number of distinct drawbacks. Bosch wrote that it
probably works only for units of up to 30 people (and that sounds high to us)
but in very small organizations whose product lines are commensurately small,
it can be a viable starting-out approach.

2. Business units. Each business unit is responsible for a subset of the systems in
the product family, which are clustered by similarity. Shared assets are
developed by the units that need them and made available to the community;
collaboration across business units to develop new assets is possible. This
model has variations depending on how flexible a business unit can be in
developing (or modifying a shared asset). With no constraints, the products

tend to diverge on their own evolutionary paths, negating the product line
approach. Responsibility for particular assets is assigned to specific business
units, which must maintain their assets for use by the entire product line.
Other business units are required to make use of these assets. Bosch
estimates that this model could apply to organizations with between 30 and
100 employees. It suffers from the obvious risk that a business unit will focus
on its own product(s) first and the good of the product line will take a back
seat.

3. Domain engineering unit. A special unit is given responsibility for the
development and maintenance of the core asset base, from which business
units build the products. Bosch writes that when organizations exceed 100
employees, communication channels among separate business units become
untenable and a focusing channel to a central shared asset unit becomes
necessary. In this model, a strong and disciplined process becomes much more
important to manage the communication and to ensure that the overall health
of the product line is the goal of all parties.

4. Hierarchical domain engineering units. It may pay to regard hierarchically a
product line that is very large and/or very complex. That is, the product line
may consist of subgroups that have more in common with each other than
with other members of the product line. In this case, a domain engineering
unit may turn out shared assets for the product line at large, and another
domain engineering unit may turn out shared assets for the specialized
subgroup. This example is of two levels, but the model could be extended
indefinitely if the subgroups have specialized sub-subgroups, and so forth.
Hierarchical domain units work for very large product lines, built by very large
organizations. Their main disadvantage is the tendency to bloat, reducing the
organization's responsiveness to new needs.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

14.6 Summary

This chapter presented an architecture-based development paradigm known as
software product lines. The product line approach is steadily climbing in popularity
as more organizations see true order-of-magnitude improvements in cost, schedule,
and quality from using it.

Like all new technologies, however, this one holds some surprises for the unaware.
Architecturally, the key is identifying and managing commonalities and variations,
but nontechnical issues must be addressed as well, including how the organization
adopts the model, structures itself, and maintains its external interfaces.

14.7 For Further Reading

[Anastasopoulos 00] presents a nice list of variability techniques. [Jacobson 97] and
[Svahnberg 00] also list these techniques.

[Clements 02a] is a comprehensive treatment of software product lines. It includes
a number of case studies as well as a discussion of product line practice areas.

Organizational models are treated in [Bosch 00b].

The FAST process is from [Weiss 00]. The Philips example comes from [America 00].
Finally, the GM Powertrain example is taken from [Bass 00].

14.8 Discussion Question

1:

Suppose a company builds two similar systems using a large set of common
assets, including an architecture. Clearly these two systems form a product line.
If they shared only an architecture but no elements, would they still be a
product line? Suppose they shared only a single element. Suppose that all they
shared was the same operating system and programming language runtime
libraries. Suppose that the shared asset was the team of developers. Would they
be a product line then?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 15. CelsiusTech: A Case Study in Product
Line Development
with Lisa Brownsword

Note: Lisa Brownsword is a member of the technical staff at the Software
Engineering Institute, Carnegie Mellon University.

We trained hard, but it seemed that every time we were beginning to form up
into teams, we would be reorganized. I was to learn later in life that we tend
to meet any new situation by reorganizing; and a wonderful method it can be
for creating the illusion of progress while producing confusion, inefficiency, and
demoralization.

�Petronius Arbiter, 210 B.C.

This chapter relates the experience of CelsiusTech AB, a Swedish naval defense
contractor that successfully adopted a product line approach to building complex
software-intensive systems. Called Ship System 2000 (SS2000), their product line
consists of shipboard command-and-control systems for Scandinavian, Middle
Eastern, and South Pacific navies.

This case study illustrates the entire Architecture Business Cycle (ABC), but
especially shows how a product line architecture led CelsiusTech to new business
opportunities. Figure 15.1 shows the roles of the ABC stakeholders in the
CelsiusTech experience.

Figure 15.1. The ABC as applied to CelsiusTech

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

15.1 Relationship to the Architecture Business Cycle

CelsiusTech has long been known as a leading supplier of command-and-control
systems within Sweden's largest, and one of Europe's leading, defense industry
groups, which also includes Bofors, Kockums, FFV Aerotech, and Telub. At the time
they developed the systems that are the subject of this chapter, CelsiusTech was
composed of three companies: CelsiusTech Systems (advanced software systems),
CelsiusTech Electronics (defense electronics), and CelsiusTech IT (information
technology systems). It employed approximately 2,000 people and had annual sales
of 300 million U.S. dollars. Their main site is near Stockholm, with subsidiaries
located in Singapore, New Zealand, and Australia.

This study focuses on CelsiusTech Systems (CelsiusTech for short), whose focus
includes command, control, and communication (C3) systems, fire control systems,
[1] and electronic warfare systems for navy, army, and air force applications. The
organization has undergone several changes in ownership and name since 1985
(see Figure 15.2). Originally Philips Elektronikindustrier AB, the division was sold to
Bofors Electronics AB in 1989 and reorganized into NobelTech AB in 1991. It was
purchased by CelsiusTech in 1993. Although senior management changed with each
transaction, most of the mid-and lower-level management and the technical staff
remained, thus providing continuity and stability.

[1] The term fire control refers to firing a gun at a moving target, from a platform that is itself moving with 6 degrees of freedom and
flexing as well.

Figure 15.2. CelsiusTech Systems' corporate evolution

THE SHIP SYSTEM 2000 NAVAL PRODUCT LINE

CelsiusTech's naval product line, known as Ship System 2000 (internally as Mk3),
provides an integrated system that unifies all weapons, command-and-control, and
communication systems on a warship. Typical system configurations include 1
million to 1.5 million lines of Ada code distributed on a local area network (LAN)
with 30 to 70 microprocessors.

A wide variety of naval systems, both surface and submarine, have been or are
being built from the same product line. These include the weapons, command-and-
control, and communications portions of the following:

Swedish Göteborg class coastal corvettes (KKV) (380 tons)

Danish SF300 class multi-role patrol vessels (300 tons)

Finnish Rauma class fast attack craft (FAC) (200 tons)

Australian/New Zealand ANZAC frigates (3,225 tons)

Danish Thetis class ocean patrol vessels (2,700 tons)

Swedish Gotland class A19 submarines (1,330 tons)

Pakistani Type 21 class frigates

Republic of Oman patrol vessels

Danish Niels Juel class corvettes

The Naval Systems division has sold more than 50 of its Mk3 naval systems to
seven countries.

Figure 15.3 shows a Royal Swedish Navy multi-role corvette of the Göteborg class
during a visit to Stockholm harbor. On top is the C/X-band antenna of the
surveillance and target indication radar. Forward and aft of this, on top of the
superstructure, are the two fully equipped fire control radar and optronic directors
from CelsiusTech.

Figure 15.3. Swedish multi-role Corvette of the Göteborg class
featuring a CelsiusTech command-and-control system.

Photo from Studio FJK; reproduced with permission.

Systems built from the product line vary greatly in size, function, and armaments.
Each country requires its own operator displays on different hardware and in
different presentation languages. Sensors and weapons systems, and their
interfaces to the software, also vary. Submarines have different requirements than
surface vessels. Computers in the product line include 68020, 68040, RS/6000, and
DEC Alpha platforms. Operating systems include OS2000 (a CelsiusTech product),
IBM's AIX, POSIX, Digital's Ultrix, and others. The SS2000 product line supports this
range of possible systems through a single architecture, a single core asset base,
and a single organization.

ECONOMICS OF PRODUCT LINES: AN OVERVIEW OF
CELSIUSTECH'S RESULTS

In this section we discuss CelsiusTech's results in building complex software-intense
systems.

Shrinking Schedules

Figure 15.4 shows the status and schedules for later systems under development
from the CelsiusTech product line. Ships A and B were contracted for at the same
time and, as we will see, caused CelsiusTech to move to a product line approach.
System A is the basis of the product line. Customer project A ran almost nine years,
although functional releases were running on the designated ship by late 1989.
System B, the second of the two original projects, required approximately seven
years to complete and is similar to the previous non-product-line Mk2.5 system. It
was built in parallel with system A, validating the product line. While neither system
individually showed greater productivity, CelsiusTech was able to build both (and the
product line) with roughly the same number of staff as for a single project.

Figure 15.4. Product schedules

Systems C and D were started after much of the product line existed, with a
correspondingly shortened completion time. Systems E and F show a dramatic
schedule reduction because they are fully leveraging the product line assets.
CelsiusTech reports that the last three ship systems were all predictably on
schedule.

Code Re-use

While the production schedules show time to market for a product, they do not
indicate how well the systems use a common asset base. Figure 15.5 shows the
degree of commonality across the CelsiusTech naval systems. On average, 70% to
80% consist of elements used verbatim (i.e., checked out of a configuration control
library and inserted without code modification).

Figure 15.5. Commonality across CelsiusTech naval systems

Using Core Assets to Expand the Business Area

CelsiusTech has expanded its business into a related area that takes advantage of
the architecture and other core assets that were originally developed for naval uses.
STRIC, a new air defense system for the Swedish Air Force, embraces the
abstraction that a ground platform is a ship whose location does not change very
often and whose pitch and roll are constantly zero. Because of the flexibility
(amenability to change) of the SS2000 architecture and product line, CelsiusTech
was able to quickly build STRIC, lifting 40% of its elements directly from the
SS2000 asset base. (See the sidebar Mastering Abstraction at CelsiusTech.) This
demonstrates one of the feedback links in the ABC: The existence of the SS2000
product line and its architecture enabled new business opportunities.

Mastering Abstraction at CelsiusTech
Studying software product lines holds two particular fascinations for me.
The first is discovering what all successful product line organizations have
in common. Early in our study of product lines, the list of what I thought
was required to be successful was fairly long. As we discovered and
analyzed more examples, each brought with it a new dimension of
experience and each seemed to whittle away at my list of organizational
must-haves.

One common aspect still remains, however, and that is a product line
mindset. A successful product line organization considers its business to
be the care, nurturing, and growth of its software product line, singular,
particularly its core asset base. This is in stark contrast to immature or
unsuccessful product line organizations that see their enterprise as
churning out a set of products, plural, that have some things in common.

The distinction is subtle but palpable. A product-based organization talks
about its products and subjugates long-term product line goals to satisfy
short-term product deadlines. Such an organization will, for example,
reward workers for heroic measures to get a product out the door, even if
it means performing a late night clone-and-own on a core asset. In
contrast, a product-line-based organization talks about the product line
and its health almost as if individual members of the family are
coincidental byproducts. This singular mindset helps a product-line-based
organization make strategic moves quickly and nimbly and as a unified
whole.

The second fascination for me is what a successful product line
organization can do, at the enterprise level, with this powerful capability.
With an innate understanding of the product line's scope�that is, an
articulated definition of what systems are within the product line's
capability to build and what systems are not�an enterprise can make a
conscious decision to "drive" its capability around the neighborhood and
pick up business in nearby under-utilized markets.

At CelsiusTech, both of these points were made eloquently by a cartoon I
saw on a developer's bulletin board during our visit to gather information
for this chapter. I wish I had asked for a photocopy of it, but it looked
something like this:

At about the time of our visit, CelsiusTech had announced a new project to
build a product line of air defense systems�that is, ground-based anti-
aircraft guns. The company estimated that on the day they made the
announcement, fully 40% of the new product family was in place because
it was based on Ship System 2000.

The developer's cartoon made the point that an air defense system is just
a simplified ship on land that does not pitch or roll much and stays
stationary most of the time. It told me that the CelsiusTech staff had a
firm grasp of the concept of abstraction, but it also told me that they had
the product line mindset. This cartoon was not about the production of an
air defense system but a celebration of what their beloved product line

was about to become. It succinctly depicted the company's enterprise-
level foray into a whole new business area via its product line capability.
That cartoon was a magnificent exhibition of one organization's product
line sophistication.

� PCC

WHAT MOTIVATED CELSIUSTECH?

To understand why CelsiusTech made the decision to develop a product line and
what actions were required, it is important to know where it began. Prior to 1986,
the company developed more than 100 systems, in 25 configurations, ranging in
size from 30,000 to 700,000 source lines of code (SLOC) in the fire control domain.

From 1975 to 1980, CelsiusTech shifted its technology base from analog to 16-bit
digital, creating the so-called Mk2 systems. These tended to be small, real-time,
and embedded. The company progressively expanded both system functionality and
expertise with real-time applications in the course of building and delivering 15
systems.

From 1980 to 1985, customer requirements were shifting toward the integration of
fire control and weapons with command and control, thus increasing the size and
complexity of delivered systems. The Mk2 architecture was expanded to provide for
multiple autonomous processing nodes on point-to-point links, resulting in Mk2.5.
Mk2.5 systems were substantially larger, in both delivered code (up to 700,000
SLOC) and number of developers (300 engineer-years over 7 years).

Conventional development approaches were used for Mk2.5. These had served the
company well on the smaller Mk2 systems, but difficulties in predictable and timely
integration, cost overruns, and schedule slippage resulted. Such experiences were
painful, but they were important lessons for CelsiusTech. The company gained useful
experience in the elementary distribution of real-time processes onto autonomous
links and in the use of a high-level, real-time programming language (in this case,
the Pascal-like RTL/2). Figure 15.6 shows the systems built by CelsiusTech prior to
1985.

Figure 15.6. Systems built by CelsiusTech prior to 1985

In 1985, a defining event for CelsiusTech (then Philips) occurred. The company was
awarded two major contracts simultaneously�one for the Swedish Navy and one for
the Danish Navy. Requirements for both ships indicated the need for systems larger
and more sophisticated than the Mk2.5s, which had suffered from schedule and
budget difficulties. Having to build two even larger systems, let alone in parallel,
presented management and senior technical staff with a severe dilemma. Clearly,
the development technologies and practices applied on the Mk2.5 system would not
be sufficient to produce the new systems with any reasonable certainty of schedule,
cost, and required functionality. Staffing requirements alone would have been
prohibitive.

This situation provided the genesis of a new business strategy that recognized the
potential business opportunity of selling and building a series, or family, of related
systems rather than some number of specific systems. Thus began the SS2000
product line. Another business driver was the recognition of a 20-to 30-year lifespan
for naval systems. During that time, changes in threat requirements and in
technology advances would have to be addressed. The more flexible and extensible
the product line, the greater the business opportunities. These business drivers or
requirements forged the technical strategy.

The technical strategy would need to provide a flexible and robust set of building
blocks to populate the product line from which new systems could be assembled
with relative ease. As new system requirements arose, new building blocks could be
added to the product line to sustain its business viability.

In defining the technical strategy, an assessment of the Mk2.5 technology
infrastructure indicated serious limitations. A strategic decision was made to create
a new-generation system (the Mk3) that would include new hardware and software
and a new supporting development approach. This would serve as the infrastructure
for new systems development for the next decade or two.

EVERYTHING WAS NEW

CelsiusTech's decision to convert its business strategy to a product line approach
coincided with a time of high technology flux. This meant that, to implement the
technical strategy for the SS2000 product line, virtually all aspects of the hardware,
the software, and development support would have to change. Thus, the hardware
shifted from VAX/VMS minicomputers to Motorola 68000-series microcomputers.
Whereas the Mk2.5 systems consisted of a small number of processors on point-to-
point links, the SS2000 products have a large number of highly distributed
processors with fault-tolerant requirements. The software life-cycle approach shifted
from RTL/2-based structured analysis/design and waterfall development to Ada83
with more object-based and iterative development processes. Development support
migrated from custom, locally created and maintained development tools to a large,
commercially supplied environment. The major technical differences are
summarized in Figure 15.7.

Figure 15.7. Changing technical infrastructures

ANALYSIS OF THE BUSINESS CONTEXT

The CelsiusTech experience reveals several factors that played an important role in
the establishment of the SS2000 product line, some of which were advantages,
some inhibitors.

Ownership Changes

While it is routine to buy, sell, and restructure companies, the impact on an
organization attempting to adopt significantly different business and technical
strategies can be devastating. Typically, management changes associated with
company ownership transactions are sufficient to stop any transition or

improvement efforts under way (as observed by Petronius Arbiter over two millennia
ago). That this did not happen at CelsiusTech can be attributed either to strong and
far-sighted top management or to top management's preoccupation with the other
issues. Since CelsiusTech changed hands several times during this period, the latter
explanation is more likely. It is clear that middle management had a strong
commitment to a product line and were allowed to proceed unfettered by top
management, who might otherwise have been hesitant to approve the necessary
upfront investments. Normally a reorganization disrupts the entire organization. In
the CelsiusTech case, the effects of the reorganizations and changes of ownership
were buffered by middle management.

Necessity

The award of two major naval contracts in 1986, ostensibly a reason for celebration,
was regarded as a crisis by CelsiusTech. Management immediately realized that they
had neither the technical means nor the personnel resources to simultaneously
pursue two large development efforts, each pioneering new technologies and
application areas. Since all CelsiusTech contracts are fixed price, large-scale failure
meant large-scale disaster. Indeed, less challenging systems had been over budget,
past schedule, hard to integrate, and impossible to predict.

CelsiusTech was driven to the product line approach by circumstances; they were
compelled to attempt it because their viability was clearly at stake. The fact that this
period was also one of major technological change made it much more difficult to
separate the costs associated with product line changes from those associated with
adopting new technology.

Technology Changes

In 1986, all the chosen technologies were immature, with limited use in large
industrial settings. Big, real-time, distributed systems making extensive use of Ada
tasks and generics were envisioned but at the time were unprecedented. Moreover,
object-based development for Ada was still a theoretical discussion. From 1986 to
1989, then, CelsiusTech was coping with the following:

The maturation of technologies, such as Ada and object technology

The maturation of supporting technology, such as networking and distribution

The maturation of infrastructure technology, such as development
environments and tools to assist in the automation of development processes

The learning curve of the company, both technical and managerial, in the use
of new technologies and processes inherent in the product line approach

The learning curve of customers, who did not fully understand the contractual,
technical, and business approaches of product lines

The management of similar requirements across several customers

These maturation issues significantly increased the time required to create the
product line. An organization making the same development paradigm shift today
would be in a much better position, with microcomputers, networks, portable
operating systems, open systems standards, object-based development methods,
Ada (or other programming languages appropriate to the domain and platforms),
performance engineering, distributed systems technology, real-time operating
systems, real-time analysis tools, large-project support environments, and large-
project process assistants. These technologies are all either mature or at least
usable and readily available. Also, much more is known about building and fielding
software product lines (see Chapter 14). CelsiusTech estimates that up to one-third
of its initial technology investment was spent building assets that can now be
purchased commercially.

CELSIUSTECH'S ORGANIZATIONAL STRUCTURE

CelsiusTech's organizational structure and practices did not remain constant over the
ten-year period covered here, but migrated through several distinct structures. The
kind of knowledge and skills required of the staff also changed.

Project Organization Prior to 1986

The naval command-and-control system (Mk2.5) development was headed by a
project manager who used the services of various functional areas, such as weapons
or C3, to develop major segments of system capability. Figure 15.8 shows the
organizational structure for the Mk2.5 project. Each functional area (command-and-
control, tracking, etc.) was led by a project manager who had direct authority for
staff resources and for all system development activities through release to system
integration.

Figure 15.8. Mk2.5 project organization, 1980�1985

CelsiusTech found that this compartmentalized arrangement fostered a mode of
development characterized by the following:

Assignment of major system segments to their respective functional areas as
part of system analysis

Requirements and interfaces allocated and described in documents, with
limited communication across functional area boundaries, resulting in
individual interpretation of requirements and interfaces throughout design,
implementation, and test

Interface incompatibilities typically not discovered until system integration,
resulting in time wasted in assigning responsibility and protracted, difficult
integration and installation

Functional area managers with little understanding of areas other than their
own

Functional area managers with limited incentives to work as a team to resolve
program-level issues

SS2000 Organization Late 1986 to 1991

With the introduction of the SS2000 product line in late 1986 came a number of
organizational changes from the Mk2.5 project organization. Figure 15.9 shows the
organizational structure CelsiusTech used from late 1986 until 1991. A general
program manager designated to lead the program was responsible for both creation
of the product line and delivery of customer systems built from it. CelsiusTech
sought to remedy the problems associated with the compartmentalized structure of
the past by creating a strong management team focused on product line

development as a company asset rather than on "empire building." To this end,
functional area managers now reported directly to the general program manager.
Developers were assigned to functional areas�weapons, C3, or human�computer
interface (HCI), common services (used by the functional areas), and the interface
to the various hardware and operating systems (called the Base System).

Figure 15.9. SS2000 organization, 1987�1991

A small, technically focused architecture team with total ownership and control was
created, reporting directly to the general program manager. CelsiusTech determined
that the success of a product line hinged on a stable yet flexible architecture, one
that was visible throughout the organization and vested with authority from the
highest levels of management. In this way, the company reorganized itself to take
advantage of the ABC: Architecture had to be at the heart of their new approach,
and the architecture in turn changed important aspects of the organization.

The coordinated definition and management of multiple releases was central to the
creation of a product line. To better support their release management, CelsiusTech
combined software system integration and configuration management into a new
group, reporting directly to the general program manager. Both the architecture
team and the integration�configuration management group were novel approaches
for CelsiusTech and were instrumental in the creation of the SS2000 product line.

The architecture team was responsible for the initial development and continued
ownership and control of the product line architecture. This ensured design
consistency and design interpretation across all functional areas. Specifically, the
architecture team had responsibility and authority for the following:

Creation of product line concepts and principles

Identification of layers and their exported interfaces

Interface definition, integrity, and controlled evolution

Allocation of system functions to layers

Identification of common mechanisms or services

Definition, prototyping, and enforcement of common mechanisms such as
error handling and interprocess communication protocols

Communication to the project staff of the product line concepts and principles

The first iteration of the architecture was produced in two weeks by two senior
engineers with extensive domain experience. It remains the framework for the
existing product line, containing organizing concepts, layer definition, identification
of approximately 125 system functions (out of the current 200 or so) and their
allocation to specified layers, and the principal distribution and communication
mechanisms. After completion of the first iteration, the architecture team took on
the lead designers from each of the functional areas. The full team, now comprising
ten senior engineers, continued to expand and refine the architecture. This was in
sharp contrast to the past, when functional area leaders had autonomy for the
design and interfaces for their respective areas.

The combined integration and configuration management team was responsible for
the following:

Development of test strategies, plans, and test cases beyond unit test

Coordination of all test runs

Development of incremental build schedules (in conjunction with the
architecture team)

Integration and release of valid subsystems

Configuration management of development and release libraries

Creation of the software delivery medium

SS2000 Organization 1992 to 1998

From 1992 to 1994, CelsiusTech's emphasis increasingly shifted from the
development of the architecture and product line elements to the composition of
new customer systems from the product line. This trend increased the size and
responsibilities of the customer project management group. CelsiusTech modified its
organizational structure to assign the development staff to one of the following:

Component projects that develop, integrate, and manage product line
elements. The production was distributed across component project areas
consisting of the functional areas (weapons, C3, and HCI), common services,
and the operating system and network elements. Component project
managers were rotated regularly, providing middle management with a
broader understanding of the product line. The elements were provided to the
customer projects.

Customer projects responsible for all financial, scheduling and planning, and
requirements analysis through system integration/test/delivery. Each
customer system built from the product line was assigned a project manager
responsible for all interactions and negotiations with the customer.

As CelsiusTech completed the basic product line and gained further experience using
it, it looked for more efficient ways to produce systems and evolve the product line
to take advantage of newer technology and changing customer needs. This was a
feedback effect of the ABC, where the architecture caused the organization to
continually reinvent itself, resulting in the organizational structure shown in Figure
15.10.

Figure 15.10. SS2000 organization, 1992�1998

Each major application domain (naval and air defense) became its own business unit
with its own manager. Each business unit had a marketing group, a proposal group,
a customer projects group, and a systems definition group. The business unit was
responsible for its software elements and its customer project managers. Each unit's
operations were guided by a Marketing Plan, a Product Plan, and a
Technical�Architecture Plan. The marketing group was responsible for the Marketing
Plan that assessed the opportunities and value of each market segment. The
Product Plan described the products the business unit sold and was owned by the
proposal group. The Product Plan implemented the Marketing Plan. The system
definition group was responsible for the Technical�Architecture Plan for their
business unit. In turn the Technical�Architecture Plan implemented the Product
Plan, outlining the evolution of the business unit's architecture. New project
proposals took into account the business unit's Product and Technical�Architecture
Plans. This approach kept the projects aligned with the product line.

Modules were supplied by the Development Group. Any customer-specific tailoring
or development was managed from the business unit customer project using
Development Group resources. The business unit's Systems Definition Group was
responsible for the architecture. It owned and controlled the evolution of the
architecture and major interfaces and mechanisms. For the Naval Business Unit, the
Systems Definition Group was small (typically six members), consisting of senior
engineers with extensive knowledge of the naval product line. It was responsible for
overall arbitration of customer requirements and their impact on the product line.

The Naval Business Unit sponsored an SS2000 Product Line Users Group to serve as
a forum for shared customer experiences with the product line and to provide
direction for its evolution. The Users Group included representatives from all
SS2000 customers.

The Development Group provided developer resources to all business units.
Integration, configuration management, and quality assurance were also
Development Group resources, matrixed to the business units as required. To
further optimize creation of new systems from the product line, a Basic SS2000
Configuration Project was formed to create a basic, preintegrated core configuration
of approximately 500K SLOC, complete with documentation and test cases that
would become the nucleus of a new customer system.

The Technical Steering Group (TSG) was responsible for identifying, evaluating, and
piloting potential new technology beneficial to any of CelsiusTech's business areas.
It was headed by the vice president of technology and staffed by senior technical
personnel from the naval and air defense business units, the Development Group,
and the R&D Group. The TSG ensured that each Systems Definition Group created
and evolved its architecture and technology plan.

Staffing Late 1986 to 1991

As shown in Figure 15.11, the project staffing levels ranged from an initial 20 to 30
to a peak of more than 200, with an average of 150. During the early stages of the
program, while product line concepts and architecture were being defined,
CelsiusTech found the staff levels too high. There was confusion among developers
because concepts and approaches were in a state of flux.

Figure 15.11. Approximate software staff profiles

The architecture team was responsible for creating the framework for the product
line. Team members needed solid domain and customer knowledge combined with
engineering skills and an ability to find relevant common mechanisms or product
line elements. Communication and teaming skills were also mandatory. Developers
needed to understand the framework, the building codes, and how their respective
modules should fit. During the product line's formative period, the development staff
required skills in the use of Ada, object-based design, and their software
development environment, including the target testbed. In addition, they had to
have broad knowledge of product line concepts, SS2000 architecture and
mechanisms, creation of re-usable modules, incremental integration, and at least
one functional area domain.

With much of the necessary technology immature, the management team (and
senior technical staff) was operating largely on faith in the achievement of a shared
ultimate capability. A key focus of their responsibilities included "selling" the
business need and the desired future state to their teams.

Organizations that attempt to install immature technology encounter resistance as
inevitable problems arise. Key to sustaining the early phases of such installations is
strong, solutions-oriented management. At CelsiusTech, the general program
manager focused on finding solutions rather than finding fault with the various
immature technologies, their suppliers, or the development team. Managed
experimentation was encouraged, not penalized, and technical innovations were
supported. The general program manager thus became a role model for other
managers.

During the formative years of the product line, managers were required to have
extensive knowledge of product line concepts and business motivation. In addition,
they needed strong skills in planning, communication, and innovative problem
solving.

Management also had to cope with the inevitable discontent and resistance
associated with a new business paradigm and its attendant technology. Substantial
effort was made to help personnel understand the new business strategy and
rationale. People who did not subscribe to or could not grasp the product line
approach either left the company or found assignments on maintenance or other
projects. This caused a loss of domain knowledge that took time to regain.

Staffing 1992 to 1998

By the end of 1991, four customer systems were under way, and a sufficient
number of re-usable modules not only existed but had been delivered as part of the
original two systems. The core of the product line was maturing rapidly so that,
rather than all new modules, systems were now routinely composed from existing
modules. Designers were needed less and were reassigned to other projects within
the company. Howerer, with the increase in parallel customer projects, more
integrators were needed, although the average of three to five per customer system
remained steady. Because of the increasing number of projects during this period,
the number of management staff did not decrease.

From 1994 to 1998, the staffing profile continued to change. As the product line and
its use matured, CelsiusTech used fewer designers, developers, and integrators for
the two latest customer systems in that period. Ever fewer designers were needed,
potentially moving between business units. The downward trend was most notable
in integration, given that CelsiusTech budgeted for an integration staff of one or two
per system. Continuing system composition optimizations, such as the Basic SS2000
Configuration project, were expected to further reduce development-related staff
levels. With the continued increase in parallel customer projects, the number of
management staff remained constant.

With greater emphasis on the composition of systems from the product line,
developers needed stronger domain and SS2000 knowledge than during product line
creation. The use of Ada, object technology, and their development environment
had become more routine. The integration group's focus turned to the integration
and release management of many parallel systems. Increasing emphasis was placed
on re-using test plans and data sets across customer systems.

The architecture team needed to maintain a solid knowledge of the product line and
factor in growing current and approaching customer needs. Communication with
customer project managers (for negotiation of multiple customer needs) and
developers (desiring to optimize major interfaces and mechanisms) continued to be
extremely important. Engineering skill to balance new needs yet preserve overall
architectural integrity was vital for team members as they continually evolved the
architecture and its major interfaces and mechanisms. The architecture team was
involved in technical evaluations, prototype development of new interfaces (both for
the external user and for application developers), and assessing the impact of the
new technologies on the product line.

Less emphasis on technology maturation and training was required of management
as more of the product line became available. With a larger set of customer systems
existing, coordination of changing customer requirements across multiple customers
emerged as a major management priority. Requirements negotiation involved not
only customers but also other customer project managers and the product line
architecture team. Customer project managers required increasing skill in
negotiation and greater knowledge of the existing and anticipated future directions
of the product line.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

15.2 Requirements and Qualities

For new products to be derived from an organizational repository, they must be
structured so that they can share modules. As we discussed in Chapter 14, this
means that there must be a standard set of modules, with agreements about
individual module's responsibility, behavior, performance, interface, locality of
function, communication and coordination mechanisms, and other properties. This
familywide structure, the modules it comprises, and the properties about each that
are constant across all members of the product line constitute the product line
architecture.

As we have seen throughout this book, the primary purpose of an architecture is to
acheive a system that meets its behavioral and quality requirements. The
architecture for each SS2000 product line member was no exception. The most
important of these requirements were:

Performance. Command-and-control systems must respond in real time to
continuously arriving sensor inputs and be able to control weapons under tight
deadlines.

Modifiability. The architecture needs to be robust with respect to computing
platforms, operating systems, addition or replacement of sensor and weapon
systems, human�computer interface requirements, communication protocols,
and the like.

Safety, reliability, and availability. The system must be available when needed,
provide the correct data and commands to weapon systems, and fire only
under the correct conditions.

Testability. Each system must be integrable and testable so that errors (if any)
are quickly found, isolated, and corrected.

Besides these single-system requirements, the SS2000 architecture carried the
additional burden of application to an entire class of systems. Thus its requirements
included the ability to replace one module with another tailored to a particular
system without disrupting the rest of the architecture.

OPERATING ENVIRONMENT AND PHYSICAL ARCHITECTURE

The requirements of modern shipboard systems influence design solutions in
profound ways. Sensors and weapons systems are deployed all over the ship; crew
members interact with them via a multitude of separately housed workstations. The
HCI must be highly tuned to facilitate rapid information flow and command
acceptance and must be tailored to the operational mission of the vessel and the
cultural idiosyncrasies of its crew. The likelihood of component failure dictates a
fault-tolerant design.

Figure 15.12 is a physical view of a typical system. A redundant LAN is the
communications backbone, connecting from 30 to 70 different, cooperating
processors. Nodes on the LAN can total around 30. A node is the end of a
communication run and may correspond to a crew station, a weapons platform, or a
sensor suite, all located in various parts of the ship and widely dispersed. It may
host up to six processors. The LAN is a dual Ethernet. Device-interface modules
send and receive data to and from the system's peripherals, primarily sensors, and
the weapons systems being controlled.

Figure 15.12. Typical physical architecture of an SS2000 product

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

15.3 Architectural Solution

We describe the architecture using three views�the process view so that we can
explain how distribution was accomplished; the layered view as a basis for
discussing how Ship System 2000 achieves a separation of concerns; and a module
decomposition view to show assignment of responsibilities to different large-scale
elements of the system, called system functions and system function groups. After
presenting the architecture in terms of these three views, we discuss some of the
issues that arose at CelsiusTech that are specific to the maintenance and use of a
product line.

THE PROCESS VIEW: MEETING REQUIREMENTS FOR
DISTRIBUTION AND PRODUCT LINE SUPPORT

Each CPU runs a set of Ada programs; each Ada program runs on at most one
processor. A program may consist of several Ada tasks. Systems in the SS2000
product line can consist of up to 300 Ada programs.

The requirement to run on a distributed computing platform has broad implications
for the software architecture. First, it necessitates building the system as a set of
communicating processes, bringing the process view into play. Having a process
view at all means that the performance tactic "introduce concurrency" has been
applied. Distributed systems also raise issues of deadlock avoidance, communication
protocols, fault tolerance in the case of a failed processor or communications link,
network management and saturation avoidance, and performance concerns for
coordination among tasks. A number of conventions are used to support the
distribution. These respond to the distributed requirements of the architecture as
well as its product line aspects. The tasks and intercomponent conventions include
the following:

Communication among components is by the passing of strongly typed
messages. The abstract data type and the manipulating programs are provided
by the component passing the message. Strong typing allows compile-time
elimination of whole classes of errors. The message as the primary interface
mechanism between components allows components to be written
independently of each other's (changeable) implementation details with
respect to data representation.

Inter-process communication is the protocol for data transport between Ada
applications that supports location independence, allowing communication
between applications regardless of their residence on particular processors.
This "anonymity of processor assignment" allows processes to be migrated
across processors, for pre-runtime performance tuning and runtime
reconfiguration as an approach to fault tolerance, with no accompanying
change in source code.

Ada task facilities are used to implement the threading model.

A producer of data does its job without knowing who the consumer of that data is.
Data maintenance and update are conceptually separate from data usage. This is an
application of the tactic "introduce an intermediary" to achieve modifiability, which
the designers accomplished using a blackboard pattern. The main consumer of the
data is the HCI component. The component that contains the repository is called the
common object manager (COOB).

Figure 15.13 illustrates the role of the COOB at runtime. It shows not only the data
flow that uses the COOB but also the data flows that bypass the COOB for reasons
of performance. Track information (the positional history of a target), carried in a
large data structure, is passed directly between producer and consumer, as is
trackball information because of its very high update frequency.

Figure 15.13. Using (and bypassing) the COOB

Data-producing conventions include the following:

Data is sent only when altered. This prevents unnecessary message traffic
from entering the network.

Data is presented as object-oriented abstractions in order to insulate programs
from changing implementations. Strong typing allows compile-time detection
of variable misuse errors.

Components own the data they alter and supply access procedures that act as
monitors. This eliminates race conditions because each piece of data is
accessed directly only by the component that owns it.

Data is accessible to all interested parties at all nodes in a system. Assignment
to a particular node does not affect the data a component can access.

Data is distributed so that response time to a retrieval request is short.

Data is kept consistent within the system over the long term. Short-term
inconsistencies are tolerable.

Network-related conventions include the following:

Network load is kept low by design� that is, considerable design effort goes
into managing the data flow on the network, ensuring that only essential
information is transmitted.

Data channels are error resistant. Applications resolve errors internally as
much as possible.

It is acceptable for an application to "miss" an occasional data update. For
instance, because a ship's position changes continuously, a position update
may be missed but interpolated from surrounding updates.

Miscellaneous conventions include the following:

Heavy use is made of Ada generics for re-usability.

Ada standard exception protocols are used.

Many of these conventions (particularly those regarding abstract data types, IPC,
message passing, and data ownership) allow a module to be written independently
of many changeable aspects over which it has no control. In other words, the
modules are more general and hence more directly usable in different systems.

THE LAYERED VIEW

The architecture for SS2000 is layered, as follows:

The grouping of modules is roughly based on the type of information they
encapsulate. Modules that must be modified if hardware platform, underlying
LAN, or internode communication protocols are changed form one layer.
Modules that implement functionality common to all members of the family
form another. Modules specific to a particular customer product form a layer
also.

The layers are ordered, with hardware-dependent layers at one end of the
relation and application-specific layers at the other.

The layering is "strict," meaning that interactions among layers are restricted.
A module residing in one layer can only access modules in its own or the next
lower layer.

In SS2000, the bottom layer is known as Base System 2000; it provides an
interface between operating system, hardware, and network on the one hand and
application programs on the other. To applications programmers, Base System 2000
provides a programming interface with which they can perform intercomponent
communication and interaction without being sensitive to the particular underlying
computing platforms, network topologies, allocation of functions to processors, and
so on. Figure 15.14 illustrates the architectural layers of SS2000.

Figure 15.14. SS2000 layered software architecture

THE MODULE DECOMPOSITION VIEW: SYSTEM FUNCTIONS
AND SYSTEM FUNCTION GROUPS

As we mentioned in Chapter 2, an organization often has its own terms for the
modules it introduces in a module decomposition view. CelsiusTech's modules were
called system functions and system function groups.

System functions are the primary element of module decomposition in SS2000. A
system function is a collection of software that implements a logically connected set
of requirements. It is composed of a number of Ada code units. A system function
group comprises a set of system functions and forms the basic work assignment for
a development team. SS2000 consists of about 30 system function groups, each
comprising up to 20 or so system functions. They are clustered around major
functional areas, including the following:

Command, control, and communications

Weapons control

Fundamentals� facilities for intrasystem communication and interfacing with
the computing environment

Human� computer interface

Figure 15.15 illustrates the relationship between the various module types.

Figure 15.15. Units of software in the module decomposition view

System function groups may (and do) contain system functions of more than one
layer. They correspond to bigger pieces of functionality that are more appropriately
developed by a large team. For example, a separate software requirements
specification is written for each system function group.

System functions and system function groups, not the Ada code units, are the basic
units of test and integration for the product line. This is crucial because it allows a
new member of the product line to be treated as the composition of a few dozen
high-quality, high-confidence modules that interact in controlled, predictable ways,
as opposed to thousands of small units that must be regression-tested with each
change. Assembly of large pretested elements was a key to making re-use work at
CelsiusTech.

APPLYING THE SS2000 ARCHITECTURE

Table 15.2 summarizes the architectural goals for SS2000 and the approaches and
tactics (from Chapter 5) used to achieve them. This section concludes the
presentation of the architecture by discussing four important issues that arose in
building and maintaining the architecture and in building a family of systems from it.

Table 15.2. SS2000 Requirements and How the Architecture
Achieved Them

Requirement How Achieved Related
Tactic(s)

Performance Strict network traffic protocols; software is written
as a set of processes to maximize concurrency and
written to be location independent, allowing for
relocation to tune performance; COOB is by-passed
for high-data-volume transactions; otherwise, data
sent only when altered and distributed so response
times are short

Introduce
concurrency

Reduce demand

Multiple copies

Increase
resources

Reliability,
Availability,
and Safety

Redundant LAN; fault-tolerant software; standard
Ada exception protocols; software written to be
location independent and hence can be migrated in
case of failure; strict ownership of data prevents
multi-writer race conditions

Exceptions

Active
redundancy

State
resynchronization

Transactions

Requirement How Achieved Related
Tactic(s)

Modifiability
(including
ability to
produce new
members of
the SS2000
family)

Strict use of message-based communication
provides interface isolated from implementation
details; software written to be location
independent; layering provides portability across
platforms, network topologies, IPC protocols, etc.;
data producers and consumers unaware of each
other because of COOB; heavy use of Ada
generics; heavy use of element parameterization;
system functions and system function groups
provide semantic coherence

Semantic
coherence

Anticipate
expected
changes

Generalize
modules

Abstract common
services

Interface stability

Intermediary

Configuration
files

Component
replacement

Adherence to
defined protocols

Testability Interfaces using strongly typed messages push a
whole class of errors to compile time; strict data
ownership, semantic coherence of elements, and
strong interface definitions simplify discovery of
responsibility

Separate
interface from
implementation

Architecture as the Foundation

Although this case study emphasizes that technical solutions in a product line are
insufficient without taking into account business and organizational issues as well, it
remains a fact that the SS2000 architecture was the means for achieving a product
line. Toward this end, abstraction and layering were vital. Abstraction allowed
creation of modules that encapsulated changeable decisions within the boundaries of
their interfaces. When a module is used in multiple products, the changeable
decisions are instantiated whenever possible by parameterization. When the
modules change across time as new requirements are accommodated, the
changeable decisions held inside the module ensure that wholesale changes to the
asset base are not needed.

The size and complexity of this architecture and the modules that populate it make
clear that a thorough understanding of the application domain is required if a
system is to be partitioned into modules that can be developed independently, are
appropriate for a product line whose products are as widely varied as those in
SS2000, and can accommodate evolution with ease.

Maintaining the Asset Base as New Systems Are Produced

As we discussed, the enduring product at CelsiusTech is not an individual ship for a
specific customer, or even the set of systems deployed so far. Rather, the central
task is viewed as maintaing the product line itself. Maintaining the product line
means maintaining the re-usable assets in such a way that any previous member of
the product line can be regenerated (they change and evolve and grow, after all, as
their requirements change) and future members can be built. In a sense,
maintaining the product line means maintaining a capability, the capability to
produce products from the assets. Maintaining this capability means keeping re-
usable modules up to date and general. No product is allowed to evolve in isolation
from the product line. This is one approach to solving the problem, which we
identified in Chapter 14, of keeping the evolution of the product line synchronized
with the evolution of the variants.

Not every module is used in every member of the product line. Cryptologic and
human interface requirements differ so widely across nationalities, for instance, that
it makes more sense to build modules that are used in a few systems than to
attempt a more general solution. In a sense, this yields product lines within the
major product line: a Swedish set of products, a Danish set of products, and so on.
Some modules are used only once but even these are maintained as product line
assets, designed and built to be configurable and flexible, in case a new product is
developed that can make use of them.

Externally, CelsiusTech builds ship systems. Internally, they evolve and grow a
common asset base that provides the capability to turn out ship systems. This
mentality�which is what it is�might sound subtle, but it manifests itself in the
configuration control policies, the organization of the enterprise, and the way that
new products are marketed.

Maintaining Large Pre-integrated Chunks

In the classic literature on software re-use repositories, the unit of re-use is typically
either a small fine-grained module (such as an Ada package, a subroutine, or an
object) or a large-scale independently executing subsystem (such as a tool or a
commercial standalone product). In the former case, the small modules must be
assembled, integrated, configured, and tested after checking out; in the latter case,
the subsystems are typically not very configurable or flexible.

CelsiusTech took an intermediate approach. Their unit of re-use is a system
function, a thread of related functionality that comprises modules from different
layers in the architecture. System functions are pre-integrated�that is, the modules

they comprise have been assembled, compiled together, tested individually, and
tested as a unit. When the system function is checked out of the asset repository, it
is ready for use. In this way, CelsiusTech is not only re-using modules but also re-
using the integration and test effort that would otherwise have to be repeated for
each application.

Parameterized modules

Although modules are re-used with no change in code in most cases, they are not
always re-used entirely without change. Many of the elements are written with
symbolic values in place of absolute quantities that may change from system to
system. For example, a computation within some module may be a function of how
many processors there are; however, that number need not be known when the
module is written; therefore, the module may be written with the number of
processors as a symbolic value�a parameter�the value of which is bound as the
system is integrated. The module works correctly at runtime but can be used
without code change in another version of the system that features a different
number of processors.

Parameters are a simple, effective, and time-honored means to achieve module re-
use. However, in practice they tend to multiply at an alarming rate. Almost any
module can be made more general via parameterization. The modules for SS2000
feature 3,000 to 5,000 parameters that must be individually tuned for each
customer system built from the product line. CelsiusTech had no way to tell that a
certain combination of parameter values, when instantiated into a running system,
would not lead to some sort of illegal operating state.

The fact that there were so many parameters undermined some of the benefits
gained from treating large system functions and system function groups as the basic
units of test and integration. As parameters are tuned for a new version of the
system, they in fact produce a version that has never been tested. Moreover, each
combination of parameter values may theoretically take the system into operating
states that have never been experienced, let alone exhaustively tested.

Only a small proportion of the possible parameter combinations will ever occur.
However, there is a danger that unwillingness to "try out" a new parameter
combination could inhibit exploiting the built-in flexibility (configurability) of the
elements.

In practice, the multitude of parameters seems to be mostly a bookkeeping worry;
there has never been any incorrect operation that could be traced back solely to a
set of parameter specifications. Often, a large module is imported with its parameter
set unchanged from its previous utilization.

15.4 Summary

Between 1986 and 1998 CelsiusTech evolved from a defense contractor providing
custom-engineered point solutions to essentially a vendor of commercial off-the-
shelf naval systems. They found the old ways of organizational structure and
management insufficient to support the emerging business model. They also found
that achieving and sustaining an effective product line was not simply a matter of
the right software and system architecture, development environment, hardware, or
network. Organizational structure, management practices, and staffing
characteristics were also dramatically affected.

The architecture served as the foundation of the approach, both technically and
culturally. In some sense, it became the tangible thing whose creation and
instantiation were the ultimate goal. Because of its importance, the architecture was
highly visible. A small, elite architecture team had the authority as well as the
responsibility for it. As a consequence, the architecture achieved the "conceptual
integrity" cited by [Brooks 95] as the key to any quality software venture.

Defining the architecture was only the first step in building a foundation for a long-
term development effort. Validation through prototyping and early use was also
essential. When deficiencies were uncovered, the architecture had to evolve in a
smooth, controlled manner throughout initial development and beyond. To manage
this natural evolution, CelsiusTech's integration and architecture teams worked
together to prevent any designer or design team from changing critical interfaces
without the architecture team's explicit approval.

This approach had the full support of project management, and it worked because of
the architecture team's authority. The team was a centralized design authority that
could not be circumvented, which meant that conceptual integrity was maintained.

The organization necessary to create a product line is different from that needed to
sustain and evolve it. Management needs to plan for changing personnel,
management, training, and organizational needs. Architects with extensive domain
knowledge and engineering skill are vital to the creation of viable product lines.
Domain experts remain in demand as new products are envisioned and product line
evolution is managed.

CelsiusTech's turnaround from one-at-a-time systems to a product line involved
education and training on the part of management and technicians. All of these are
what we mean by the return cycle of the ABC.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

15.5 For Further Reading

There are two reports about CelsiusTech's conversion to a product line. One is from
the Software Engineering Institute [Brownsword 96] and is the basis for this
chapter. The other is a thesis from Sweden's Linkoping University [Cederling 92].

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

15.6 Discussion Questions

1:
Could the CelsiusTech architecture have been used for the air traffic control
system of Chapter 6? Could CelsiusTech have used that architecture? What are
the essential differences?

2:

CelsiusTech changed management structures several times during its
development of the SS2000. Consider the implications of these changes, given
our recommendation in Chapter 7 that product structure should mirror project
structure.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 16. J2EE/EJB: A Case Study of an Industry-
Standard Computing Infrastructure
with Anna Liu

Note: Anna Liu is a senior research engineer at the Software Architecture and
Technologies Group, CSIRO, Sydney, Australia. She is also an adjunct senior
academic at the University of Sydney.

Write Once, Run Everywhere

�Sun Microsystems's mantra for Java

Write Once, Test Everywhere

�Cynical Java programmers

This chapter presents an overview of Sun Microsystems's Java 2 Enterprise Edition
(J2EE) architecture specification, as well as an important portion of that
specification, Enterprise JavaBeans (EJB). J2EE provides a standard description of
how distributed object-oriented programs written in Java should be designed and
developed and how the various Java components can communicate and interact. EJB
describes a server-side component-based programming model. Taken as a whole,
J2EE also describes various enterprise-wide services, including naming,
transactions, component life cycle, and persistence, and how these services should
be uniformly provided and accessed. Finally, it describes how vendors need to
provide infrastructure services for application builders so that, as long as
conformance to the standard is achieved, the resultant application will be portable
to all J2EE platforms.

J2EE/EJB is one approach to building distributed object-oriented systems. There are,
of course, others. People have been building distributed object-oriented systems
using the Object Management Group's (OMG) Common Object Request Broker
Architecture (CORBA) during the last decade. In the CORBA model, an object
request broker (ORB) allows objects to publish their interfaces and allows client
programs (and perhaps other objects) to locate these remote objects anywhere on
the computer network and to request services from them. Microsoft, too, has a
technology, .NET, for building distributed systems. The .NET architecture has similar
provisions for building distributed object systems for Windows-based platforms.

We will start the chapter by looking at the business drivers that led to the creation
of an industry standard architecture for distributed systems. Then we will discuss
how the J2EE/EJB architecture addresses such needs. We will look at the typical
quality requirements of Web-based applications and see how the J2EE/EJB
architecture fulfills them.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

16.1 Relationship to the Architecture Business Cycle

In the 1980s, the price/performance ratio for personal computers was gradually
dovetailing with that of high-end workstations and "servers." This newly available
computing power and fast network technology enabled the widespread use of
distributed computing.

However, rival computer vendors kept producing competing hardware, operating
systems, and network protocols. To an end-user organization, such product
differentiation presented problems in distributed computing. Typically, organizations
invested in a variety of computing platforms and had difficulty building distributed
systems on top of such a heterogeneous environment.

The Object Management Group's Common Object Request Broker Architecture was
developed in the early 1990s to counter this problem. The CORBA model provided a
standard software platform on which distributed objects could communicate and
interact with each other seamlessly and transparently. In this case, an ORB allows
objects to publish their interfaces, and it allows client programs to locate them
anywhere on the computer network and to request services from them.

However, CORBA was not the only viable distributed object technology for very long.
Sun Microsystems soon pushed the Java programming language, which supports
remote method invocation (RMI) and so, in effect, builds Java-specific object
request broker functionality into every Java Virtual Machine (JVM). Java has the
appeal of portability. Once a Java application is developed, its code is portable
across all JVMs, which have implementations on most major hardware platforms.

Sun Microsystems did not stop with Java. J2EE was developed in the late 1990s
using Java RMI as an underlying communication infrastructure. It became an
industry-standard specification for the software community to more easily build
distributed object systems using the Java programming language. J2EE soon
gathered momentum as software vendors rushed to implement it; Java
programmers around the world showed great enthusiasm in developing e-commerce
applications in "Internet time" using the J2EE framework. J2EE thus competed
directly against CORBA as well as against the proprietary Microsoft technologies.

The ABC for J2EE/EJB is shown in Figure 16.1.

Figure 16.1. The ABC as it pertains to Sun Microsystems and
J2EE/EJB

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

16.2 Requirements and Qualities

What are some of the goals of Sun Microsystems in developing the J2EE/EJB
specification? How are these goals reflected in the qualities of the J2EE/EJB
architecture?

THE WEB AND J2EE

In response to the increasing demands of Internet-enabled business systems, more
and more enterprise information systems are constructed using distributed object
technology. These systems require scalability, high performance, portability, and
security. They need to handle large volumes of requests generated by the Internet
community and must be able to respond to these requests in a timely fashion.

For many e-business organizations, the most challenging thing right now is a
successful Web site. Successful sites attract large volumes of hits, and large
volumes of hits stress the site software, as mentioned in Chapter 13. On the
Internet, it is not uncommon for sites to receive millions or many millions of
accesses daily. Such numbers might not be too frightening if user requests are
spread out evenly during the day, but this is often not the case. Requests often
arrive in bursts, which place greater demands on Web site software.

In fact, industry folklore is rife with stories of e-business sites failing under
unexpected client surges. For example, the Wimbledon Tennis tournament
experienced almost 1 billion Web accesses in 1999, with 420,000 hits per minute
(7,000 per second) during one match. Bear in mind, that the Internet is currently
used by only a small portion of the globe's population; things have just started.

In this sense, then, the Internet has forever changed the requirements for
enterprise software systems. The very nature of the Internet brings new pressures
to bear on applications that are not commonly experienced by traditional networked
information systems. The impact of quality attribute requirements, such as
manageability, scalability, security, and availability, are radically increased when
applications are exposed to potentially limitless numbers of concurrent users. Table
16.1 describes the quality requirements that any Web-based application must fulfill.

Table 16.1. Typical Web-Based Application Quality Attribute
Requirements

Quality Requirement

Quality Requirement

Scalability System should support variations in load without human
intervention

Availability/
Reliability

System should provide 24/7 availability with very small downtime
periods

Security System should authenticate users and protect against
unauthorized access to data

Usability Different users should be able to access different content in
different forms

Performance Users should be provided with responsive systems

Sun Microsystems, in developing J2EE, aimed to provide a basis for technology that
supports the construction of such systems. In particular, as part of the J2EE
specification, EJB aims to

provide a component-based architecture for building distributed object-
oriented business applications in Java. EJBs make it possible to build
distributed applications by combining components developed with tools from
different vendors.

make it easier to write applications. Application developers do not have to deal
with low-level details of transaction and state management, multi-threading,
and resource pooling.

More specifically, the EJB architecture does the following:

Addresses the development, deployment, and runtime aspects of an enterprise
application's life cycle

Defines the contracts that enable tools from multiple vendors to develop and
deploy components that can interoperate at runtime

Interoperates with other Java APIs

Provides interoperability between enterprise beans and non-Java applications

Interoperates with CORBA

J2EE makes it possible to re-use Java components in a server-side infrastructure.
With appropriate component assembly and deployment tools, the aim is to bring the
ease of programming associated with GUI-builder tools (like Visual Basic) to building
server applications. And, by providing a standard framework for J2EE products
based on a single language (Java), J2EE component-based solutions are, in theory
at least, product independent and portable between the J2EE platforms provided by
various vendors.

Thus, in addition to the core requirements given in Table 16.1, Sun added a set of
requirements that address the activities of a programming team. These additional
quality attribute requirements are listed in Table 16.2.

Table 16.2. Sun's Quality Attribute Requirements for J2EE

Quality
Attribute Requirement

Portability J2EE should be able to be implemented with minimal work on a
variety of computing platforms

Buildability Application developers should be provided with facilities to manage
common services such as transactions, name services, and security

Balanced
Specificity

Detailed enough to provide meaningful standard for component
developers, vendors, and integrators, but general enough to allow
vendor-specific features and optimizations

Implementation
Transparency

Provide complete transparency of implementation details so that
client programs can be independent of object implementation
details (server-side component location, operating system, vendor,
etc.)

Interoperability Support interoperation of server-side components implemented on
different vendor implementations; allow bridges for interoperability
of the J2EE platform to other technologies such as CORBA and
Microsoft component technology

Evolvability Allow developers to incrementally adopt different technologies

Extensibility Allow incorporation of relevant new technologies as they are
developed

16.3 Architectural Solution

Sun Microsystem's approach to satisfying the quality attributes discussed in the
previous section is through the specification of two major architectures: J2EE and
the EJB. J2EE describes the overall multi-tier architecture for designing, developing,
and deploying component-based, enterprise-wide applications. EJB is a key part of
J2EE technology, reflecting the deeper technical requirements of buildability,
extensibility, and interoperability. Both J2EE and EJB reflect balanced
specificity�that is, the ability for competitors to develop differentiation on the
offerings while building them on a common base.

The major features of the J2EE platform are

A multi-tiered distributed application model

A server-side component model

Built-in transaction control

A simple deployment view of the J2EE multi-tier model is given in Figure 16.2. The
elements of this architecture are further described in Table 16.3.

Figure 16.2. Deployment view of the J2EE multi-tier architecture

Table 16.3. Summary of J2EE Technology Components and Services

Component/Service Description

Enterprise JavaBeans
(EJB) Architecture

Specification defines an API that allows developers to create,
deploy, and manage enterprise-strength server-side
component-based applications

JavaServer Pages
(JSP)

Provides a method for creating dynamic Web content

Java Servlet Provides Web application developers with a mechanism for
extending the functionality of a Web server

Component/Service Description

Java Messaging
Service (JMS)

Provides J2EE applications with support for asynchronous
messaging using either point-to-point (one-to-one) or
publish-subscribe (many to many) styles of interaction;
messages can be configured to have various qualities of
service associated with them, ranging from best effort to
transactional

Java Naming and
Directory Interface
(JNDI)

J2EE's directory service allows Java client and Web-tier
servlets to retrieve references to user-defined objects such as
EJBs and environment entries (e.g., location of a JDBC
driver)

Java Transaction
Service (JTS)

Makes it possible for EJBs and their clients to participate in
transactions; updates can be made to a number of beans in
an application, and JTS makes sure all changes commit or
abort at the end of the transaction; relies on JDBC-2 drivers
for support of the XA protocol and hence the ability to
perform distributed transactions with one or more resource
managers

J2EE Connector
Architecture (JCA)

Defines a standard architecture for connecting the J2EE
platform to heterogeneous Enterprise Information Systems,
including packaged applications such as Enterprise Resource
Planning (ERP) and Customer Relationship Management
(CRM) systems

Client Access Services
COM Bridge

Allows integration between COM and J2EE applications across
a network; allows access to J2EE server-side components by
COM-enabled client applications

RMI over IIOP Provides developers with an implementation of Java RMI API
over the OMG's industry-standard Internet Inter-ORB
Protocol (IIOP); developers can write remote interfaces
between clients and servers and implement them using Java
technology and the Java RMI APIs

Java Database
Connectivity (JDBC)

Provides programmers with a uniform interface to a wide
range of relational databases and provides a common base
on which higher-level tools and interfaces can be built

The role of each tier is as follows.

Client tier. In a Web application, the client tier comprises an Internet browser
that submits HTTP requests and downloads HTML pages from a Web server. In
an application not deployed using a browser, standalone Java clients or applets
can be used; these communicate directly with the business component tier.
(See Chapter 17 for an example of using J2EE without a browser.)

Web tier. The Web tier runs a Web server to handle client requests and
responds to these requests by invoking J2EE servlets or JavaServer Pages
(JSPs). Servlets are invoked by the server depending on the type of user
request. They query the business logic tier for the required information to
satisfy the request and then format the information for return to the user via
the server. JSPs are static HTML pages that contain snippets of servlet code.
The code is invoked by the JSP mechanism and takes responsibility for
formatting the dynamic portion of the page.

Business component tier. The business components comprise the core
business logic for the application. They are realized by EJBs (the software
component model supported by J2EE). EJBs receive requests from servlets in
the Web tier, satisfy them usually by accessing some data sources, and return
the results to the servlet. EJB components are hosted by a J2EE environment
known as the EJB container, which supplies a number of services to the EJBs it
hosts including transaction and life-cycle management, state management,
security, multi-threading, and resource pooling. EJBs simply specify the type of
behavior they require from the container at runtime and then rely on the
container to provide the services. This frees the application programmer from
cluttering the business logic with code to handle system and environmental
issues.

Enterprise information systems tier. This typically consists of one or more
databases and back-end applications like mainframes and other legacy
systems, which EJBs must query to process requests. JDBC drivers are
typically used for databases, which are most often Relational Database
Management Systems (RDBMS).

THE EJB ARCHITECTURAL APPROACH

The remainder of this chapter focuses on the Enterprise JavaBeans architecture,
which defines a standard programming model for constructing distributed object-
oriented server-side Java applications. Because this programming model is
standard, many beans that prepackage useful functionality can be (and have been)
written. The EJB programmer's job is to bundle these packages with any application-
specific functionality to create a complete application.

Not unlike J2EE, EJBs aim at realizing one of Java's major design principles�the oft-
quoted "Write Once, Run Anywhere" mantra. The JVM allows a Java application to
run on any operating system. However, server components require additional
services that are not supplied directly by the JVM, such as transaction and security
services. In J2EE and EJB, these services are supplied through a set of standard

vendor-independent interfaces that provide access to the additional supporting
infrastructure, which together form the services available in an application server.

A J2EE-compliant application server provides an EJB container to manage the
execution of application components. In practical terms, a container provides an
operating system process that hosts one or (usually) more EJB components. Figure
16.3 shows the relationship between an application server, a container, and the
services provided. In brief, when a client invokes a server component the container
automatically allocates a thread and invokes an instance of the component. The
container manages all resources on the component's behalf and manages all
interactions between the component and the external systems.

Figure 16.3. Example deployment view of the EJB architecture

The EJB component model defines the basic architecture of an EJB component,
specifying the structure of its interfaces and the mechanisms by which it interacts
with its container and other components. The model also provides guidelines for
developing components that can work together to form a larger application.

The EJB version 1.1 specification defines two main types of components: session
beans and entity beans.

Session beans typically contain business logic and provide services for clients.
The two types of session bean are known as stateless and stateful.

- A stateless session bean is defined as not being conversational with
respect to its calling process. This means that it does not keep any state
information on behalf of any client. A client will get a reference to a state

less session bean in a container and can use it to make many calls on an
instance of the bean. However, between each successive service
invocation, a client is not guaranteed to bind to any particular stateless
session bean instance. The EJB container delegates client calls to
stateless session beans as needed, so the client can never be certain
which bean instance it will actually talk to. This makes it meaningless to
store client-related state in a stateless session bean.

- A stateful session bean is said to be conversational with respect to its
calling process and therefore can maintain state information about the
conversation. Once a client gets a reference to a stateful session bean,
all subsequent calls to the bean using this reference are guaranteed to
go to the same bean instance. The container creates a new, dedicated
stateful session bean for each client that creates a bean instance. Thus,
clients can store any state information they wish in the bean and can be
assured that it will still be there the next time they access that bean. EJB
containers assume responsibility for managing the life cycle of stateful
session beans. The container writes out a bean's state to disk if it has
not been used for a while and automatically restores the state when the
client makes a subsequent call on the bean. This mechanism is known as
passivation and activation of the stateful bean. We will discuss
passivation in more detail later.

Entity beans are typically used for representing business data objects. The
data members in an entity bean map directly to some data items stored in an
associated database. Entity beans are usually accessed by a session bean that
provides business-level client services. There are two types of entity bean,
container-managed persistence and bean-managed persistence. Persistence in
this context refers to the way in which a bean's data (usually a row in a
relational database table) is read and written.

- With container-managed persistence entity beans, the data the bean
represents is mapped automatically to the associated persistent data
store (e.g., a database) by the container. The container is responsible for
loading the data to the bean instance and writing changes back to the
persistent data storage at appropriate times, such as the start and end of
a transaction. Container-managed persistence relies on container-
provided services and requires no application code�the container in fact
generates the data access code so it is easy to implement.

- With bean-managed persistence entity beans, the bean code itself is
responsible for accessing the persistent data it represents, typically using
handcrafted JDBC calls. Bean-managed persistence gives the bean
developer the flexibility to perform persistence operations that are too
complicated for the container or to use a data source not supported by
the container�for example, a custom or legacy database. While bean-
managed persistence requires more programmer effort to implement, it
can some times provide opportunities to optimize data access and, in
such cases, may provide better performance than container-managed
persistence.

Table 16.4 summarizes how the EJB architecture supports Sun's key quality
attribute requirements for the overall J2EE architecture. An example deployment
view of the J2EE/EJB architecture is illustrated in Figure 16.4.

Figure 16.4. An example J2EE/EJB-compliant implementation

Table 16.4. How EJB Supports Sun's J2EE Quality Attribute
Requirements

Goal How Achieved Tactics Used

Availability/Reliability J2EE-compliant systems provide ready-to-use
transaction services that enhance availability
and reliability of the application by providing
built-in failure recovery mechanisms

Heartbeat

Transactions

Passive
redundancy

Goal How Achieved Tactics Used

Balanced Specificity EJB services specified in terms of Java APIs,
effectively defer implementation decisions to
EJB application server implementers; detailed
enough to provide a meaningful standard for
component developers, vendors and
integrators, but general enough to allow
vendor-specific features and optimizations

Anticipate
expected
changes

Abstract
common
services

Hide
information

Buildability EJB application servers provide many ready-to-
use services for building server-side Java
applications, including transactions,
persistence, threading, and resource
management; developer is thus freed from low-
level distribution details; Sun Microsystems
provides a reference J2EE implementation;
application server vendors also participate in
the J2EE specification process

Abstract
common
services

Maintain
interfaces

Hide
information

Evolvability Specification partitioned into separately
evolvable subcategories; the Java Community
Process coordinates Java specification requests
and responses

Semantic
coherence

Hide
information

Extensibility Component-based approach to the EJB
specification allows for future extensions;
message-driven beans are a feature introduced
in later versions of the EJB specification and
workable with existing EJB systems; J2EE
describes stable core technologies, such as EJB,
JMS, JNDI, JTS, etc., needed by most
component developers; over time, extensions,
such as JCA, are gradually incorporated

Anticipate
expected
changes

Goal How Achieved Tactics Used

Implementation
Transparency

Home and Remote interface specifications
encourage decoupling of interface specification
and implementation. Implementation decisions
can thus be deferred, and are transparent to
the client; provide complete transparency of
implementation details so that client programs
can be independent of object implementation
details (server-side component location,
operating system, vendor, etc.)

Maintain
existing
interfaces

Semantic
coherence

Interoperability Supports interoperation of server-side
components implemented on different vendor
implementations; also allow bridges for
interoperability of the J2EE platform to other
technologies such as CORBA and Microsoft
component technology

Adherence to
defined
protocols

Performance Distributed-component approach to J2EE/EJB
allows performance tuning across multiple
systems

Configuration
files

Load
balancing

Maintain
multiple
copies

Portability Contracts between EJBs and containers ensure
application components are portable across
different EJB containers; J2EE describes roles
for application component providers,
assemblers, deployers, EJB server providers,
EJB container providers, and system
administrators, as well as precise contracts
between various J2EE components and
application components; application component
(in theory) is thus portable across different
J2EE containers; J2EE is based on a language
that contains its own virtual machine and is
available on most major platforms

Maintain
existing
interfaces

Generalize
modules

Abstract
common
services

Goal How Achieved Tactics Used

Scalability J2EE multi-tiered architecture and component-
based EJB architecture has built-in mechanisms
for expanding the number of servers available
in a configuration and to load balance among
servers

Load
balancing

Security J2EE-compliant systems provide declarative,
role-based security mechanisms and
programmatic security mechanisms that are
ready to use

Authentication

Authorization

Data
confidentiality

Usability J2EE-compliant systems provide Java
technologies, such as JSP and servlets, that
enable the rendering of content to suit different
users

Separate user
interface

EJB PROGRAMMING

An EJB depends on its container for all external information. If an EJB needs to
access a JDBC connection or another bean, it uses container services. Accessing the
identity of its caller, obtaining a reference to itself, and accessing properties are all
accomplished through container services. This is an example of an "intermediary"
tactic. The bean interacts with its container through one of three mechanisms:
callback methods, the EJBContext interface, and the Java Naming and Directory
Interface (JNDI).

To create an EJB server-side component, the developer must provide two interfaces
that define a bean's business methods, plus the actual bean implementation class.
The two interfaces, remote and home, are shown in Figure 16.5. Clients use them to
access a bean inside an EJB container. They expose the capabilities of the bean and
provide all the methods needed to create the bean and update, interact with, or
delete it.

Figure 16.5. EJB package diagram

The two interfaces have different purposes. Home contains the life-cycle methods of
the EJB, which provide clients with services to create, destroy and find bean
instances. In contrast, remote contains the business methods offered by the bean.
These methods are application specific. To use them in the bean's remote interface,
clients must use the bean's home interface to obtain a reference to the remote
interface.

A simple home interface is shown in Figure 16.6. It must inherit from EJBHome and,
in this example, contains a method to create an EJB of type Broker. Figure 16.7
shows the remote interface for the Broker EJB.

Remote interfaces must extend the EJBObject interface, which contains a number of
methods that the container uses to manage an EJB's creation and life cycle. A
programmer may wish to provide bean-specific behavior for the EJB, or may simply
accept the default, inherited behavior. The client then uses public interfaces to
create, manipulate, and remove beans from the EJB server. The implementation
class, normally known as the bean class, is instantiated at runtime and becomes an
accessible distributed object. Some sample client code, simplified, is shown in Figure
16.8.

Figure 16.6 A simple home interface

public interface BrokerHome extends EJBHome
 {
 /*
 * This method creates the EJB Object.
 *
 * @return The newly created EJB Object.
 */
 Broker create() throws RemoteException, CreateException;
 }

Figure 16.7 The Broker remote interface

public interface Broker extends EJBObject
{
 // Return the newly created account number
 public int newAccount(String sub_name, String sub_address, int
 sub_credit) throws RemoteException, SQLException;
 public QueryResult queryStockValueByID(int stock_id)
 throws RemoteException, SQLException;
 public void buyStock(int sub_accno, int stock_id, int amount)
 throws RemoteException, SQLException, TransDenyException;
 public void sellStock(int sub_accno, int stock_id, int amount)
 throws RemoteException, SQLException, TransDenyException;
 public void updateAccount(int sub_accno, int sub_credit)
 throws RemoteException, SQLException;
 public Vector getHoldingStatement(int sub_accno,int start_
 stock_id) throws RemoteException, SQLException;
}

EJB clients may be standalone applications, servlets, applets, or even other EJBs, as
we will see shortly. All clients use the server bean's home interface to obtain a
reference to an instance of the server bean. This reference is associated with the
class type of the server bean's remote interface; so the client interacts with the
server bean entirely through the methods defined in its remote interface.

In this next example, the Broker bean is acting as a stateless session bean that
handles all client requests. Internally, it uses the services of a number of entity
beans to perform the business logic. A sample of one of the Broker methods,
updateAccount, is shown in Figure 16.9.

The updateAccount method uses an entity bean called Account, which encapsulates
all of the detailed manipulation of the application's data�in this case, exactly how
an account record is updated. The code in updateAccount uses an entity bean
finder method called findByPrimaryKey, which is provided by the Account bean in
its home interface. This method takes the primary key for the account and accesses
the underlying database. If an account record is found in the database with this
primary key, the EJB container creates an Account entity bean. The entity bean
methods�in this example update-can then be used to access the data in the
account record. The home and remote interfaces for Account are shown in Figure
16.10.

Figure 16.8 Simplified example EJB client code

Broker broker =null;

// find the home interface
Object _h = ctx.lookup("EntityStock.BrokerHome");
BrokerHome home = (BrokerHome)
 javax.rmi.PortableRemoteObject.narrow(_h, BrokerHome.class);
// Use the home interface to create the Broker EJB Object
broker = home.create();
// execute requests at the broker EJB

broker.updateAccount(accountNo, 200000);
broker.buyStock(accountNo, stockID, 5000);

//we're finished ...
broker.remove();

Figure 16.9 The Broker bean's updateAccount method

public void updateAccount(int sub_accno, int sub_credit)
 throws RemoteException
{
 try {
 Account account = accountHome.findByPrimaryKey
 (new AccountPK(sub_accno));
 account.update(sub_credit);
 }
 catch (Exception e) {
 throw new RemoteException(e.toString());
 }
}

The bean class for the entity bean implements the remote methods. The code for
the update method is shown in Figure 16.11. It is very simple�in fact, a single line
of executable Java code. This simplicity is due to the entity bean's use of container-
managed persistence. The EJB container "knows" (we will see how soon) that there
is a correspondence between the data members in the Account bean and the fields
in an account table in the database the application is using.

Using this information, the container tools can generate the SQL queries needed to
implement the finder method, and the queries needed to automatically read/write
the data from/to the entity bean at the beginning/end of a transaction. In this
example, at the end of the Broker session bean's updateAccount method, the data
items in the Account entity bean are written back to the database, making the
changes to the sub_credit field persistent. All of this is done without explicit
control from the programmer, which contributes to the buildability of EJB-based
systems.

Figure 16.10 The Account bean's home and remote interfaces

public interface AccountHome extends EJBHome
{
 /*
 * This method creates the EJB Object.
 *
 * @param sub_name The name of the subscriber
 * @param sub_address The address of the subscriber
 * @param sub_credit The initial credit of the subscriber
 *
 * @return The newly created EJB Object.

 */
 public Account create(String sub_name, String sub_address,
 int sub_credit) throws CreateException, RemoteException;
 /*
 * Finds an Account by its primary Key (Account ID)
 */
 public Account findByPrimaryKey(AccountPK key)
 throws FinderException,RemoteException;
}

public interface Account extends EJBObject
{
 public void update(int amount) throws RemoteException;
 public void deposit(int amount) throws RemoteException;
 public int withdraw(int amount) throws AccountException,
 RemoteException;
 // Getter/setter methods on Entity Bean fields
 public int getCredit() throws RemoteException;
 public String getSubName() throws RemoteException;
 public void setSubName(String name) throws RemoteException;
}

Figure 16.11 The Account bean's update method

public class AccountBean implements EntityBean
{
 // Container-managed state fields
 public int sub_accno;
 public String sub_name;
 public String sub_address;
 public int sub_credit;

 // lots missing ...
 public void update(int amount)
 {
 sub_credit = amount;
 }
}

DEPLOYMENT DESCRIPTORS

One of the major attractions of the EJB model is the way it achieves a separation of
concerns between the business logic and the infrastructure code, an example of the
"semantic coherence" tactic. This separation refers to the fact that EJBs are
primarily concerned with pure business logic while the EJB container handles
environmental and infrastructure issues such as transactions, bean life-cycle
management, and security. This makes the bean components simpler�they are not
littered with code to handle these additional complexities.

A bean tells the container which of the provided services it requires through a
deployment descriptor. This is an XML document associated with an EJB. When a
bean is deployed in a container, the container reads the deployment descriptor to
find out how transactions, persistence (for entity beans), and access control should
be handled. In this way the descriptor provides a declarative mechanism for how
these issues are handled�an example of the "defer binding time" tactic.

The beauty of this mechanism is that the same EJB component can be deployed with
different descriptors suited to different application environments. If security is an
issue, the component can specify its access control needs. If security is not an
issue, no access control is specified. In both cases the code in the EJB is identical.

A deployment descriptor has a predefined format that all EJB-compliant beans must
use and that all EJB-compliant servers must know how to read. This format is
specified in an XML Document Type Definition, or DTD. The deployment descriptor
describes the type of bean (session or entity) and the classes used for remote,
home, and the bean class. It also specifies the transactional attributes of every
method in the bean, which security roles can access each method (access control),
and whether persistence in the entity beans is handled automatically by the
container or performed explicitly by the bean code.

The deployment descriptor for the Broker bean shown before is given in Figure
16.12. In addition to the attributes described, the deployment descriptor specifies
that this is a stateless session bean and that a container-managed transaction is
required to execute each of its methods (in the figure these attributes are in
boldface for ease of reading). For example, if we simply change the <session-type>
field in the XML to read stateful, the container will manage the bean very
differently. Figure 16.13 shows the deployment descriptor for the Account entity
bean. As well as the deployment attributes we have already seen, it tells the
container the following:

That it must manage persistence for beans of this type

Where to find the JDBC data source for the database

What primary key and data items must be mapped between the database and
the entity bean

Figure 16.12 Deployment description for the Broker bean

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>EntityStock.BrokerHome</ejb-name>
 <home>j2ee.entitystock.BrokerHome</home>
 <remote>j2ee.entitystock.Broker</remote>
 <ejb-class>j2ee.entitystock.BrokerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>EntityStock.BrokerHome</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Figure 16.13 Deployment description for the Account entity bean

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>EntityStock.AccountHome</ejb-name>
 <home>j2ee.entitystock.AccountHome</home>
 <remote>j2ee.entitystock.Account</remote>
 <ejb-class>j2ee.entitystock.AccountBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>j2ee.entitystock.AccountPK</prim-key-class >
 <reentrant>False</reentrant>
 <cmp-field>
 <field-name>sub_accno</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>sub_name</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>sub_address</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>sub_credit</field-name>
 </cmp-field>
 <resource-ref>
 <res-ref-name>jdbc/sqlStock_nkPool</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>EntityStock.AccountHome</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

In Table 16.2, we presented Sun's quality attribute requirements for J2EE. In Table
16.5, we describe how some of these requirements are achieved by deployment
descriptors.

Table 16.5. How Deployment Descriptors Support Sun's J2EE
Quality Attribute Requirements

Goal How Achieved Tactics
Used

Portability Common code base can be developed for multiple
target platforms; multiple versions of deployment
descriptor can be configured at deployment time to
suit different target platforms, making the developed
application component portable across multiple target
environments

Semantic
coherence,
generalize
modules,
configuration
files

Buildability Deployment descriptors enable separation of
concerns: development of code and deployment
configuration options

Semantic
coherence,
configuration
files,
generalize
module

Balanced
Specificity

Deployment descriptors in XML format, providing a
meaningful standard format for encoding
configuration options, but general enough for vendors
to extend deploy-ment descriptors with vendor-
specific features

Configuration
files,
generalize
module

Implementation
Transparency

Details of deployment descriptor used by server-side
components are transparent to the clients of the
components

Use an
intermediary

16.4 System Deployment Decisions

What we have described thus far is J2EE/EJB as it was created by Sun. However,
when deploying a J2EE/EJB system, there are a number of implementation issues
that the architect needs to consider. The EJB component model is a powerful way to
construct server-side applications. And although the interactions between the
different parts of the code are a little daunting at first, with some exposure and
experience with the model, it becomes relatively straightforward to construct EJB
applications. Still, while code construction is not difficult, a number of complexities
remain, including the following.

The EJB model makes it possible to combine components in an application in
many different architectural patterns. Which are the best, and what does
"best" mean in a given application?

The way beans interact with the container is complex and has a significant
effect on the performance of an application. In the same vein, all EJB server
containers are not equal�product selection and product-specific configuration
are important aspects of the application development life cycle.

In this final section, we present some of the key design issues involved in
architecting and constructing highly scalable EJB applications.

STATE MANAGEMENT�AN OLD DESIGN ISSUE IN A NEW
CONTEXT

There are two service models that can be adopted in developing the EJB server
tier�stateless and stateful models, implemented by stateless and stateful session
beans.

We will take an online bookshop as an example. In the stateful version, an EJB can
be used to remember customer details and to manage the items the customer is
placing in an online shopping cart. Hence, the EJB stores the state associated with
the customer's visit to the site. By maintaining this conversational state in the bean,
the client is relieved from the responsibility of keeping track of it. The EJB monitors
potential purchases and processes them in a batch when a confirmation method is
invoked.

To make better use of limited system memory, stateful session beans are passivated
when not used by the client, meaning that a bean's conversational state is written to
secondary storage (typically disk) and its instance is removed from memory. The
client's reference to the bean is not affected by passivation, but remains alive and
usable. When the client invokes a method on a bean that is passivated, the
container activates the bean by instantiating a new instance and populating its state
with the information written to secondary storage.

This passivation strategy has great implications for scalability. If there is a
requirement for large numbers of stateful session bean instances to service
individual clients, passivation and activation may prove to be too high an overhead
in terms of application performance.

Alternatively, a stateless session bean does not maintain conversational state on
behalf of the client. The client must inform the server of session information, such
as customer details and shopping cart contents, with each service request, because,
for each request, the container may assign a different stateless session bean
instance. This is only possible because of the pure stateless service model. Figure
16.14 shows usage of both stateful and stateless session beans.

Figure 16.14. Clients' static bindings to stateful session bean
instances and dynamic bindings to stateless session bean

instances.

To summarize, the advantages of stateless session beans include the following:

There is no performance overhead in passivating and activating session beans
that involve expensive disk reads and writes.

Dynamic request routing means that requests can be routed to the least
loaded server.

If one session instance goes down, the request can be easily rerouted to
another one.

The only disadvantage to the stateless approach is that more information needs to
be passed between the client and the EJB on each request. Assuming that the
amount of data is not prohibitively large, the stateless session bean will most likely
better support high system scalability.

Entity Beans�To Use or Not to Use?

A common EJB design pattern is to provide a wrapper session bean that exposes
services to the client and, at the same time, accesses the business data
encapsulated in the entity bean to fulfill a client request. This represents a clean
object-oriented programming model. Business data, usually represented in a
relational format in a database, is now encapsulated in an object-oriented format
(entity beans). The various get and set methods defined for entity beans make it
easy for session beans to access this data. Additionally, if container-managed
persistence is used for entity beans, the developer need not explicitly develop the
database access code.

The risk here is a considerable performance penalty. Testing results show that, for a
typical e-commerce system with an 85% read-only and 15% update transaction
mix, the application architecture using entity beans achieves roughly half the
system throughput compared to an architecture utilizing session beans only. The
performance degradations have the following causes:

The entity beans introduce an additional indirection layer rather than session
beans directly accessing the business object in the database. Depending on
which container implementation is used, the container may not automatically
optimize calls to entity beans (from session beans) to a local call. In this case,
the additional RMI call is expensive.

The life-cycle management of entity beans in this additional layer can be
expensive. Activation is equivalent to at least a single database/disk-read
operation, and passivation is a database/disk-write operation.

Additional beans participate in the transaction.

Of course, it is up to the application architect to decide if the benefits of entity
beans outweigh the likely loss in system throughput.

DISTRIBUTION AND SCALING ISSUES

With the popularity of Web-enabled enterprise systems, businesses are finding their
back-end systems unable to cope with the volume of incoming Internet traffic. There
are two ways of increasing the processing power in the server tier:

Scaling up, or "vertical" scaling, refers to the addition of computational and
system resources�for example, adding memory to a single machine. This form
of scaling relies on the application server having no inherent bottlenecks in its
internal architecture. If this is the case, given more system resources and
processor power, the application server software should be able to fully utilize
the additional resources and increase system throughput as a result.

Scaling out, or "horizontal" scaling, means that, instead of replacing an
existing machine with a more powerful model, the server application is
distributed across more than one machine. This should increase overall system
resources and processing power by making additional machines available to
the application.

Scaling out is usually regarded as more difficult to implement than scaling up,
because it requires more complex configuration and system management. The
application server must also provide load-balancing mechanisms to make sure that
the additional resources on different machines are fully utilized by clients.

Nevertheless, a system that runs on multiple machines does provide some benefits
over one running a single large machine:

Increased redundancy. If one machine fails, there are others that can take
over the work. Machines might fail because of power or network outages,
operating system crashes, application server failures, or even bugs in the
application code itself.

Cost efficiency. A network of smaller machines may have a better price/
performance ratio than a single large machine has.

Many application products provide clustering services to enable the scaling out of
applications. Again, though, clustering products vary considerably, and architects
need to explore these differences carefully.

Distributed Transactions

Many EJB servers can coordinate transactions that involve multiple objects residing
in various processes in a distributed system. Distributed transaction processing

using the two-phase commit protocol is often essential in building enterprise-wide
systems.

An architect designing an EJB system needs to consider carefully whether
distributed transactions are necessary. This is because of the overhead involved in
managing them, which increases as the number of transaction participants
increases. If there is no need to coordinate the transaction across multiple resource
managers (or databases), there is no need for the two-phase commit protocol.

Further, the transaction coordination and commit processes may involve several
remote calls that pass over the network. These may be between the EJB server or
container and an external transaction management process. If the distributed
transaction implementation provided by the EJB server incurs additional remote calls
in coordinating transactions, using distributed transactions can slow down an EJB
system considerably, inhibiting overall system scalability.

Experience with various object technology management and J2EE implementations
indicates large variations in distributed transaction management performance. This
makes it important for application architects to fully understand the configuration
and deployment options available with a given transaction service.

RESOURCE POOLING

Application resources, such as database connections and sockets, must be carefully
managed in a distributed system. Resource pooling exploits the fact that not all
clients need exclusive access to a resource at all times. With EJBs, not every bean
needs a database connection for its exclusive use. It is much more efficient to
configure a system so that database connections can be pooled and re-used for
different client transactions.

When a database connection pool is used, the resulting connections required will be
far less than the number of EJB components in a deployed system. Because
database connections are expensive to create and manage, this architecture
increases the overall application scalability. Furthermore, connections to the
databases do not need to be reestablished continuously, thus improving application
performance.

Resource pooling can be applied to other resources as well, such as socket
connections and threads. Pooling of components simply means that a dedicated
resource for each client is not necessary. Typical configurable parameters include
container threads, session beans instances, entity bean cache size, and database
connection pool size. All of these need to be configured appropriately to exhibit fast
response times and high overall system throughput.

DEPENDENCE ON JAVA VIRTUAL MACHINE PERFORMANCE

In any Java application, the JVM is an important factor in performance tuning.
Hence, to develop and deploy high-performing EJB server-side applications, several

JVM configuration and performance tuning activities need to be considered.

JVM heap size is one important setting. The heap is a repository for Java objects and
free memory. When the JVM runs out of memory in the heap, all execution in it
ceases while a garbage collection algorithm goes through memory and frees space
that is no longer required. This is an obvious performance hit because application
code blocks during garbage collection. Thus, in an EJB application no server-side
work can be done.

If heap size is huge, garbage collection will be infrequent; when it does kick in,
however, it will take a much longer time, possibly long enough to disrupt normal
system operations. Garbage collection can slow down (and sometime completely
stop) server processing, giving the impression that the server is slow and
unresponsive.

To appropriately set the JVM heap size, it is necessary to monitor the paging
activities on the server machine. Paging is an expensive performance overhead and
therefore should be avoided on application servers by increasing the JVM heap size
to match the application's needs. Another way is to watch the garbage collector by
using the -gcverbose compiler option. If incremental garbage collection is an
option, it is almost always best to turn it on.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

16.5 Summary

The creation of the J2EE multi-tier architecture was motivated by the business
needs of Sun Microsystems. These business needs were influenced by the lessons of
the CORBA model and by the competitive pressures of other proprietary distributed
programming models, such as COM+ from Microsoft. J2EE features a server-side
component framework for building enterprise-strength server-side Java applications,
namely, Enterprise JavaBeans.

The J2EE/EJB specification is constantly expanding. Its ready-to-use services
currently include transactions, security, naming, persistence, and resource
management. These services enable the J2EE/EJB application programmer to focus
on developing the business logic, thus removing the need to worry about low-level
distribution details. J2EE/EJB achieves portability by using a common, portable
language (Java) and by having precise contracts between components. It achieves
performance and performance scalability via a number of mechanisms, including
distributing applications across many processors (horizontal scaling), stateless
session beans, and resource pools.

Despite the seeming simplicity of the J2EE/EJB programming model, there are many
application-level architectural decisions that need to be carefully made. The various
architectural tradeoffs must be analyzed and compared to derive an optimal design
with respect to application quality requirements.

16.6 For Further Reading

There is an abundance of information about the J2EE/EJB architecture and
specification. This includes Sun Microsystems's home page
(http://java.sun.com/j2ee), which offers easy-to-follow tutorial material on J2EE,
various white papers, and the J2EE/EJB specification itself. There are also numerous
active forums focusing on the J2EE architecture and technology space, including one
sponsored by The Middleware Company (http://www.theserverside.com).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/FILES/j2ee
http://www.theserverside.com/default.htm

16.7 Discussion Questions

1:

An addition to the EJB component model version 2.0 is "message-driven beans."
These are enterprise beans that allow J2EE applications to process messages
asynchronously. What are some of the uses of such a component? What sort of
new enterprise architecture possibilities do message-driven beans open up?

2:
The J2EE/EJB specification uses many techniques that are actually just
implementations of the "use an intermediary" tactic. Find as many distinct
realizations of these instances as you can.

3:
Consider the CelsiusTech case study presented in Chapter 15. Would J2EE/EJB
be a good infrastructure choice for implementing this system? Justify your
answer.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 17. The Luther Architecture: A Case Study in
Mobile Applications Using J2EE
with Tanya Bass, James Beck, Kelly Dolan, Cuiwei Li, Andreas Löhr, Richard Martin,
William Ross, Tobias Weishäupl, and Gregory Zelesnik

Note: All of this chapter's contributors work for Inmedius Corporation in Pittsburgh.

God is in the details.

�Ludwig Mies van der Rohe

Workers involved in the maintenance or operation of large vehicles (such as tanks
and aircraft) or portions of the industrial infrastructure (such as bridges and oil rigs)
have great difficulty using computers to support their tasks. Because the object
being maintained or operated is large, work on it must be in situ, outdoors or in
special structures, neither of which is conducive to desktop computing. In particular,
a computer solution usually involves a wireless infrastructure and either a handheld
or a hands-free computing device.

Inmedius is a company that was established in 1995 as an outgrowth of Carnegie
Mellon University's Wearable Project (see the sidebar History of Wearable
Computing) to provide support for front-line maintenance and operation workers.
Initially producing one-of-a-kind solutions for its customers, as the company grew it
realized the necessity for general solutions that could be quickly tailored to a
customer's needs.

The front-line worker does not work alone but requires a great deal of back-office
support. Problem reports must be collected and work must be scheduled to enable
repairs to be made, replacement parts must be taken from inventory and re-
ordered, and maintenance records must be analyzed. All of this work-flow
management requires integrating the front-line worker with the back-office worker
who has access to a desktop computer.

The Luther architecture was designed to provide a general framework within which
Inmedius could provide customized solutions for the maintenance problems of its
customers. It is based on the Java 2 Enterprise Edition (J2EE) architecture, so
becomes an application of the general J2EE/EJB framework (discussed in Chapter
16) to an environment where the end user is connected over a wireless network and
has a device with limited input/output capabilities, limited computational
capabilities, or both.

History of Wearable Computing
Arguably, the first wearable computer was the wristwatch. It was invented
around 1900 and at first was unable to compete with the pocket watch.

Why would someone wear a watch on his wrist when his existing pocket
watch kept good time and could be accessed quite freely? However, during
World War I, the British Army issued wristwatches to its troops so that
they could synchronize attacks while keeping their hands free for
weapons. Suddenly, it became fashionable in Britain to show support for
the "boys in the trenches" by wearing wristwatches. Now, of course, you
rarely see a pocket watch.

By the early 1990s, technology had begun to support the wearing of
digital, full-function computing devices. One organization investigating the
use of these devices was the Wearable Group of Carnegie Mellon
University headed by Dan Siewiorek. They viewed a wearable computer as
a tool to support workplace functions, with the workplace epitomized by
locales where aircraft and other large vehicles were maintained�out of
doors or within large buildings such as hangars or railroad roundhouses.

The focus on use in a workplace meant that ease of use and design
sophistication were primary. The Wearable group conducted experiments
with computers designed and constructed by students in actual
workplaces. The success of these experiments created the demand that
Inmedius was organized to exploit.

A second group, operating at the same time and centered at the Media
Laboratory of the Massachusetts Institute of Technology, styled
themselves "borgs." They viewed the wearable computer as a consumer
product designed to change the lives of those who wore it. They wore
their computers all of the time and were interested in innovative uses of
them and in memory support applications. One example was using the
conductivity of the skin as a network medium and having two computers
exchange business cards when their wearers shook hands.

By the late 1990s, the two groups were collaborating to make wearable
computers a viable academic discipline. Various commercial companies
had begun to offer computers and head-mounted displays, and large
commercial concerns had begun to show interest. Now, with the
increasing miniaturization of hardware and the increasing sophistication of
software (as evidenced by this chapter), wearable computing can only
become more prevalent.

� LJB

17.1 Relationship to the Architecture Business Cycle

Figure 17.1 shows the Architecture Business Cycle (ABC) as it pertains to Inmedius
and the Luther architecture. The quality goals of re-usability, performance,
modifiability, flexibility of the end user device, and interoperability with standard
commercial infrastructures are driven, as always, by the business goals of the
customer and the end user.

Figure 17.1. The ABC as it pertains to Inmedius and Luther

INFLUENCES ON THE ARCHITECTURE

The next sections elaborate on the things that influence the Luther architecture.

End Users

Inmedius's business is providing computer support for front-line workers. Figure
17.2 shows such a worker utilizing one of the hardware configurations supported by
Luther applications. The worker is performing an industrial process, the steps of
which are displayed on the head-mounted display apparatus that he is wearing. The
computer is worn on the user's chest and uses a dial as its primary input device.
The process is described in a manual stored on the back-office computers, and the
manual pages are served to the worker as various steps of the process are

completed, which can number more than 500. The worker reports the results of
portions of the process to the back office via the system. A part may be replaced,
for example, and the part number is reported so that the inventory can be adjusted
and any quality-control ramifications analyzed.

Figure 17.2. A field service worker using the Inmedius solution.
Courtesy of Inmedius Corporation.

The workers may need to use one or both hands to perform the process, so those
hands are not available for computer input. Further, workers may need to be mobile
to carry out the tasks.

Different processes and customers may require different hardware configurations
because requirements, such as mobility and the number of hands available for
computer input, can vary.

Developing Organization

If the Luther architecture can facilitate the development of complex enterprise
solutions in a fraction of the time they take to develop as standalone, "stovepipe"
systems, Inmedius gains a significant competitive advantage. To achieve this, the
company must meet increasingly shorter time-to-market for enterprise solutions.
The development cycles for these solutions have to be in the low single-digit months
for Inmedius to remain competitive in its target markets.

Solution development must be performed quickly and frugally by a few tens of
engineers. The quality of the delivered solution must be high to ensure customer
satisfaction. Also, the delivered software artifacts must be easily modifiable so that

corrections and enhancements require little effort by Inmedius and do not
compromise the integrity of the original solution's architecture.

Technology Environment

Luther has been influenced by developments in both software and hardware. As we
discussed in Chapter 16, J2EE provides enterprise solutions for commercial
organizations. It was a good fit with the Luther requirement to interoperate with
back-office processes. J2EE also facilitates the packaging of domain-specific
application capabilities into re-usable components that can be combined in different
ways.

In addition to software influences, emerging hardware technology has influenced
Luther�specifically, in the need to support small wireless computers with voice input
capabilities and high-resolution, head-mounted displays. On the other hand,
differing environments may require different types of devices, each with its own set
of capabilities. This imposes a requirement that Luther be flexible with respect to
the types of user interfaces supported.

INFLUENCES ON THE ORGANIZATION

The influences of Luther on the organization are in the areas of organizational
structure, software developers' experience, and business approach.

Organizational Structure

Prior to Luther, Inmedius was a solution factory, with each solution developed as a
stovepipe application for a specific customer. Organizationally, the Solution Group
was the largest engineering group in the company. Luther's development created
the need for a Products Group (containing a Component Development Group) to
engineer and maintain the domain-specific component capabilities the Solution
Group uses to create its solutions for customers. The Product Group is concerned
with generalized capabilities for markets, whereas the Solution Group is concerned
with specific applications for individual customers. This is an instance of a two-part
organizational structure for software product lines, as described in Chapter 14 and
illustrated by CelsiusTech case study in Chapter 15.

Software Developers' Experience

Prior to Luther, Inmedius was staffed with experienced and sophisticated software
developers, who nonetheless had a number of new criteria to satisfy in Luther's
development:

Learning the Java programming language

Becoming Sun Java Programmer Certified

Learning the J2EE application architecture

Learning how to package capabilities as J2EE/EJBs

Learning how to create Java servlets and JavaServer Pages

Learning how to use the various J2EE services provided by J2EE
implementations

Business Approach

The Luther architecture has had a dramatic effect on the way Inmedius does
business. As we said in Chapter 14, single-system solutions require a large amount
of resources, and this resource drain and the stovepipe ,mentality associated with
single system development inhibits global thinking. The move to a product line
based on Luther enabled Inmedius to begin thinking about product lines instead of
focusing on individual systems. Furthermore, as we saw with CelsiusTech, new
markets became available to Inmedius that could be seen as generalizations of
existing markets, not only in a business sense but also in a technical sense.

17.2 Requirements and Qualities

The Luther architecture was designed to meet two sets of complementary
requirements. The first set governs the applications to be built�namely, enterprise
applications for field service workers. These requirements are directly visible to
customers, since failure to meet them results in applications that do not perform
according to expectations�for instance, an application that may work correctly but
perform poorly over a wireless network. The second set of requirements involves
introducing a common architecture across products. This reduces integration time,
brings products to market faster, increases product quality, eases introduction of
new technologies, and brings consistency across products.

Overall, the requirements can be separated into six categories:

Wireless access

User interface

Device type

Existing procedures, business processes, and systems

Building applications

Distributed computing

Wireless Access

Field service workers must move about while performing their tasks. Furthermore,
they must move about in an environment rich in machines, hazards, and other
people. In order to interact with back-office systems, the devices used by workers
must access remote servers and data sources without being tethered by a landline
to a local area network. Because of the variety of Inmedius customers, these
wireless networks may need to be of varying capacity and availability.

User Interface

Part of the Inmedius competitive advantage is its high-fidelity user interfaces, which
allow a worker to focus on the task at hand without being hindered by the interface
or the access device. Different devices have different screen footprints, and the
Luther architecture must facilitate the display of meaningful information on each of
them. This does not mean constructing a single user interface and adapting it to all
device types. Instead, Luther must support the rapid construction of interfaces that
filter, synthesize, and fuse information in ways that are displayable on a particular
device and useful to its user.

Variety of Devices

Field service workers use a variety of computing devices in the field. No one device
will suffice for all field applications, and each has limitations that must be addressed
by the Luther architecture. Inmedius must engineer performance-enhancing
solutions to run on all of these devices, which include:

Personal data assistant (PDA) devices such as Palm Pilot, Handspring Visor,
vTech Helio, IBM WorkPad, and Apple's Newton and MessagePad 2000

Pocket PC devices such as Compaq iPAQ, Casio EM500, HP Jornada, and
Phillips Nino

Handheld, pen-based tablets running Windows CE such as Fujitsu Stylistic and
PenCentra and Siemens SIMpad SL4

Handheld Windows CE PC devices with pen and keyboard such as Vadem Clio,
HP Jornada 700 series, NEC MobilePro, Intermec 6651 Pen Tablet Computer,
and Melard Sidearm

Wearable computing devices such as Xybernaut MA-IV, Via family of products,
and Pittsburgh Digital Greenhouse's Spot

Different classes of device have different memory footprints, processor speeds, and
user input devices that can radically affect a user's interaction style from one class
to another. For example, a wearable computer can bring the power of the desktop
computer into the field, making client applications as sophisticated there as they are
in the office. Users in this case also have a plethora of input devices to choose from,
including keyboard, voice, pen, and custom devices.

On the other hand, the processor speeds, memory footprints, and available input
devices for the PDA class are severely limited, which means that user interactions
that can be engineered for these devices are also constrained. Still, PDAs are
extremely important in the various contexts in which field service workers perform
their tasks. The Luther architecture must address the variability of the users'
interaction styles, which are limited by differences in hardware capability among the
device classes.

Existing Procedures, Business Processes, and Systems

Field service workers are only one part of most enterprises. Information gathered by
them must be stored in the back office; instructions for them come, partially, from
outside the field; and many applications already support existing business
processes.

To respond to these needs, the Luther architecture must intergrate its functions with
a worker's existing procedures and processes, enable applications to be hosted on
servers and databases from many vendors, and simplify the integration of
applications with legacy systems

Building Applications

Enabling faster construction of applications is one of the main motivations for
Luther. There are a number of aspects to this goal, including:

Encouraging software re-use and making it easier for applications to work
together. This avoids wasting valuable resources to "re-invent the wheel."

Enabling a build-first, buy-later strategy for enterprise functions (e.g., work
flow).

Providing a stable platform for adoption of new features and emerging
technologies that span applications, such as location sensing, automatic
detection and identification of nearby physical objects and services, and
advanced user interface features like synthetic interviewing.

Distributed Computing

The Luther architecture must provide enterprise application developers with a
framework and infrastructure that even out the differences in client device
capabilities and provide application servers with the following distributed application
features.

Scalability. The Luther server framework must facilitate scalability with no
impact on performance. That is, the addition of any number of domain-specific
components over time must have no impact on the performance of the
application software, nor must it cause the re-engineering of client
applications. In addition, client applications must be easily reconfigurable to
make use of added capability. The framework must also support the ability of
applications to discover new capability and to dynamically reconfigure
themselves to make use of it.

Load balancing. The Luther architecture must support load balancing in a
distributed environment. Most of the computation in its applications will be
performed on the server side, with the results sent to the client. As more and
more clients access the capability from a given server, the application server
infrastructure will have to detect heavy loads on a given server and offload
processing to application server components located on different server nodes
within the enterprise. Similarly, the enterprise environment application must
be able to detect a node failure and shift to another application server in the
enterprise to continue execution. In both cases, load balancing must be
transparent to the user, and in the first case it must also be transparent to the
client application.

Location independence. To support load balancing, domain-specific application
capability must be distributed, and the Luther architecture must support this.
To be able to change locations dynamically, applications must be location
independent.

Portability. Enterprise application environments invariably comprise a set of
heterogeneous server hardware platforms. The Luther architecture framework
will have to allow the software to run on myriad platforms in order for
enterprise applications to work.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

17.3 Architectural Solution

The main architectural decision made in response to requirements was that Luther
would be constructed on top of J2EE, which has the following advantages:

It is commercially available from a variety of vendors. Components, such as
work-flow management, that may be useful in Luther are being widely
developed.

HTTP becomes the basis of communication because it is layered on top of the
TCP/IP protocol, which in turn is supported by a variety of commercial wireless
standards, such as the IEEE 802.11b. Any Web-based client can be made
mobile given the appropriate wireless LAN infrastructure. Most of the devices
that must be supported by Luther can support HTTP.

It separates the user interface and allows the user experience paradigm to be
implemented. This paradigm proposes that the computer and its application be
another, noninvasive, tool for the field service worker. It must be a natural
extension of the way that tasks are performed, yet provide performance-
enhancing benefits for both the field service worker and the organization.

The paradigm goes on to say that multiple views of an enterprise application
should be developed, each for a particular field service worker's role. A view is
tailored to that role to enhance performance and job satisfaction, and filters,
fuses, synthesizes, and displays the appropriate information for it. The view
includes the use of role-appropriate input devices.

For example, if a keyboard is not appropriate, perhaps voice input can be
used. If the environment is too noisy, perhaps a custom input device like a dial
is used, which a user can turn (the dial is mounted on the user's uniform as
shown in Figure 17.2) to navigate through links, buttons, radio buttons, and
other similar UI widgets in the client application to make them hot. In the
middle of the device, the user can tap an "enter" key to select the link, click
the button, and so forth. This device can be used in the most rugged
environments, for example, even when a worker is wearing thick gloves.

"Separating the user interface" is a tactic we saw for usability in Chapter 5. In
Luther it brings the flexibility to change the user interface and adapt it to
different devices and needs as well, which is a kind of modifiability. Again we
see that some tactics apply to achieving more than one kind of quality
attribute.

It supports the separation and abstraction of data sources. The user
experiences require the filtering, fusion, synthesis, and display of data that
comes from multiple, disparate data sources. Some of these data sources are
database management systems, others are legacy applications built on
enterprise resource planning systems that encapsulate corporate data.
Inmedius realized that by abstracting and separating data sources from the

applications that use them and by providing them with well-defined, standard
interfaces, the applications remain true to their defined abstractions and thus
are re-usable. Additionally, some interfaces are industry standards, such as
JDBC/ODBC, which allow the data sources themselves to be treated as
abstract components that can be swapped in and out of the enterprise
application at will.

Figure 17.3 shows how a Luther application interacts with its environment. (It does
not show the J2EE elements; we will discuss the mapping of the application to J2EE
shortly.) First, note the (n:1:m) relationship among user interfaces, applications,
and what Inmedius calls "components," that is, building blocks for application
functionality. A Luther application is thin; much of its business logic is assembled
from existing components, and it is not tied to any specific user interface.
Essentially, the application code contains these three things:

Session state definition and management

Application-specific (i.e., nonreusable) business logic

Logic that delegates business requests to an appropriate sequence of
component method invocations

Figure 17.3. Deployment view of a Luther application

The application does not have a main method; it has an application programming
interface (API), which represents the features and functions available from the
application to its user interfaces. The user interface is independent of the
application. It may expose any subset of features appropriate for the target
interface device. For instance, if a user interface is created for a device with a

microphone and speaker but no display, it does not expose features of the
application that require graphics.

Now we turn to an in-depth discussion of the three main elements shown in Figure
17.3: the user interface (UI), the application, and the components.

USER INTERFACE

The strategy for developing user interfaces in the Luther architecture is as follows.
First, a combination of domain experts, cognitive psychologists, and graphic artists
work with a client to understand the various workers' tasks and roles, the work
environments, and the necessary interface characteristics of the desired access
devices. Next, they craft the user experience based on these constraints, with the
result being a storyboard, screen shots, and a prototype. The point is that the result
of the design process must be a high-quality, high-fidelity user experience, as
described before. This is essential, since the application is meant to augment the
user's existing work procedures and be a natural extension of the work
environment. Consequently, the task of developing the user experience is delegated
to the people best suited for it�domain experts who understand the task and the
work environment; cognitive psychologists who understand how people think,
reason, and absorb information; and graphic artists who are skilled at presenting
information in an effective and appealing manner.

The next step is to take the output of the design process�the storyboard, screen
shots, and prototype�and quickly convert this to a working user interface on real
devices. Here, the architecture must support the integration of custom user
experiences. Integration must be rapid, and it should enable creation of common
portions and re-use of software to the greatest extent possible, all the while
preserving the integrity and fidelity of the original user experience design.

Turning a user experience design into a working user interface is complicated by
many factors. First, a variety of client devices must be supported. This includes an
assortment of mobile devices with varying screen sizes, operating systems, and
input devices. A user interface that performs well on a desktop PC is severely
limited by the smaller screen, less memory, and less functional support on a mobile
device. Some mobile devices, for example, have no keyboard or mouse support,
rendering user interfaces that require them useless. A second factor is the
limitations introduced by technology. For instance, certain types of user interaction
or information display are cumbersome over HTTP and may lead to poor
performance.

In the end, there may be multiple client devices and user interfaces for any given
application. The software architecture must be flexible enough to deal with multiple
clients that differ greatly from one another. In Figures 17.4 and 17.5, the two types
of user interface implementation supported by Luther are shown�namely, browser-
based clients (Figure 17.4) and custom, Web-based clients (Figure 17.5). Figure
17.6 refines the view given in Figure 17.3 and illustrates the structure of each type.

Figure 17.4. Browser interface for maintenance procedure

Figure 17.5. Custom Web-based user interface

Figure 17.6. User interface as a C&C view overlaid onto a
deployment view

Browser-Based Clients

Browser-based user interface clients correspond simply to browser-based clients in
J2EE. They are not restricted to Web browsers, however, but equally support other
forms of markup such as a Wireless Markup Language (WML) over a Wireless
Application Protocol (WAP) for cellular phones. While the markup language is
different in this case (i.e., WML), the same mechanisms for delivering the content
can still be employed�that is, a combination of servlets and JavaServer Pages
(JSPs).

Browser-based clients use standardized methods for the exchange of information
(i.e., commercial Web browsers on the client side, HTTP over TCP/IP as the network
protocol, and JSPs and Java servlets on the server side), and use common data
formats (i.e., hypertext documents and style sheets). To make the client thin, most
of the presentation logic is implemented on the server, which increases the chance
of creating an interface that is portable across browser vendors and versions.

Browser-based clients are primarily intended for

devices that support browsers and have traditional input devices such as pens,
keyboards, and mice.

applications that display content easily representable with markup languages
and renderable by a browser, perhaps augmented with plug-ins.

Browsers were originally designed for desktop computers�making PCs their
optimum target device�but today's mobile devices also support them.

Certain restrictions limit the use of browser-based interfaces. In design, for
instance, they do not always make the best use of valuable resources, such as the
available screen real estate, and the browser model supports only limited types of
user interactions built around the HTTP request/response cycle. Also, browser-based
interfaces are not suitable for all mobile devices because no browsers exist for
certain ones; when they do, they may lack support for essential features such as
frames, graphics, and JavaScript.

Custom Web-Based Clients

Custom Web-based user interfaces are more complex. This type is different from a
custom client, which in J2EE is a standalone program that implements all of the
presentation logic and uses the remote invocation method (RMI) over the Internet
Inter-ORB Protocol (IIOP) to interact directly with the business logic (i.e., EJBs). A
custom Web-based client is also a standalone program but, unlike a custom J2EE
client, it uses HTTP to communicate with the server and interacts with Web-tier
entities, such as servlets and JSPs, in the same way as a browser-based client does.

Custom Web-based clients are written in a native development environment for a
specific device or class of devices. Since the user interface is a standalone program,
this gives the UI designers the most freedom in terms of user interactions that can
be supported, and can lead to the best use of resources such as screen real estate.
The downside is higher cost of development.

The Luther architecture has tried to minimize the amount of native code that must
be written to create a custom, Web-based client, with a client framework that
supports interfaces of this type, as shown in Figure 17.6. Basically, the framework
standardizes elements that are needed across applications, including session
management, authentication, and support for creating and sequencing presentation
logic on the client, the Web container, or both. In essence, the client is a thin,
standalone program that creates and lays out the native UI widgets. It also
implements a small portion of the presentation logic such as input validation and
sorting of tabular displays. Just as with browser-based clients, the bulk of the
presentation logic is implemented on the Web tier in components managed by the
client framework.

Custom, Web-based clients have advantages over other types of custom user
interfaces. First, they are thin. In other words, compared to a fat client (i.e., a
custom program where all of the presentation logic is implemented in the client
tier), they are smaller, easier to maintain, and easier to port across devices. Second,
they use HTTP to interact with the Web tier, unlike J2EE custom clients that use RMI
over IIOP. This makes them more appropriate for non-Java implementations and
simpler to implement over wireless networks.

Creating a custom, native user interface for each application on each device is too
costly, even for a small number of devices. This is avoided by sorting interface
devices into classes by characteristics. For each device class, a high-fidelity interface
is designed and implemented as described previously. The client framework eases
the burden of implementing this interface across a device class. Likewise, by
implementing a significant portion of the presentation logic in the Web tier, client
devices in the same class can use this software and thus share a significant portion
of their implementation. Finally, the client framework introduces features that allow
a device to advertise its interface characteristics. This information is made available
to the presentation logic on the Web tier so that small adaptations can be made to
the content before it is delivered to the client.

APPLICATIONS

In the Luther architecture, the application is responsible for uniting the system into
a single functional entity and exposing an API for interacting with it. The user
interfaces call into this API to provide these features to an end user.

Applications reside between any number of user interfaces and any number of
components. An application ties together m components and exposes the
aggregated "application" functionality to n user interfaces. The applications are
"user interface agnostic," meaning that they expose functionality that any user
interface can use. Each interface can expose all or a subset of this functionality as
appropriate. For example, a user interface running on a mobile client like a Windows
CE device cannot expose the administrative features you would expect to find in a
desktop version. The idea is to expose all functions that can be performed in the
system; each user interface decides which of these functions to expose to the user
and how to expose them.

The requirement for rapid development and deployment leads to designing the
application to be as thin as possible. This is achieved by delegating the bulk of the
business work to components (discussed in the next section). The criterion for
moving application code into a component is simple: Is the functionality re-usable?
If so, it should be generalized (to increase re-usability) and implemented as a
component. On the other hand, if a piece of functionality is not likely to be re-used,
it is incorporated into the application.

The essential elements of an application include the following:

Application programming interface. A façade for the functions exposed by the
system to the user interfaces. Note that data passed through the API is
generic (e.g., XML) rather than presentation specific (e.g., HTML).

Session state. Initialized when a user authenticates, a session state exists until
the client program terminates. J2EE simplifies state management, since the
containers support authentication and authorization along with storage and
retrieval of the session state. The application simply determines what data

needs to be persisted across requests and makes the appropriate calls to store
and to retrieve it.

Application-specific business logic. Any logic that is unique to this application
and that cannot be re-used in other applications.

Delegation to components. Code for delegating work to components. In
general, this is achieved via the Business Delegate design pattern.[1]

[1] A business delegate acts as a façade for a component�it locates the component and makes its functions available to the
rest of the application. In this way, only the business delegate need be concerned with how to locate and access the
component, hiding these details from the rest of the application. For instance, if a component is implemented as an EJB, the
business delegate performs the necessary Java Naming Directory Interface (JNDI) look-ups and narrows the EJB remote
interface; the fact that the component is implemented as an EJB remains hidden. The application is not responsible for
component life-cycle management because the J2EE containers perform this function. However, since it does the delegating,
it has to choose which component(s) to use. The application also includes logic that manages component interactions and
inter-relationships. Clearly such logic belongs in the application. Following this rule simplifies the implementation of the
components and minimizes inter-dependencies.

These elements result from application of the "anticipate expected changes" tactic
and the associated "separate user interface" tactic for modifiability.

A new user interface can be created without changing the application layer or
components at all. A new implementation of a component can be integrated into the
system without affecting the application layer or the user interfaces. New
functionality can be added to the system by incorporating another component,
adding the necessary API methods to the application layer, and adding (or not) new
features to each user interface to expose the new functions.

COMPONENTS

The intention behind a component is that it represent an element for re-use. The
strategy is therefore to create a library of components from which applications can
be easily and quickly synthesized to create specialized solutions for customers. The
library contains core components related to the client and server frameworks;
domain-specific components for domains, such as maintenance, repair, and
overhaul; and generalized capability (i.e., utility) components that applications
might need to round out functionality, such as security, authorization, and user
management.

Inmedius's strategy is to evolve a large library of core, domain-specific, and
generalized capability components for the Luther architecture framework and for
specific customer domains. Application development therefore becomes an exercise
in creating business logic that composes the necessary set of capability components
into a customized solution for the customer.

Crafting common components is a central theme in the construction of software
product lines and represents an intense application of the "abstract common
services" tactic for modifiability�in this case, the ability to produce new solutions.

Component Design

The strategy for designing components is to use design standards, wherever
possible, for the component's API and behaviors. For example, the Inmedius work-
flow component (described later) is an instantiation of the Workflow Management
Coalition's specification for work-flow functionality and behavior. This design
strategy allows Inmedius to replace its own components with any other vendor's
components that adhere to the same capability specifications. It facilitates the
expansion of the Inmedius component library to include such components.

Capability Partitioning

It may be that the library does not contain a capability component required by a
given application under development. A decision must be made as to whether to
design and implement the capability as part of the application itself or as a new, re-
usable component.

The key design heuristic is whether the capability is a part of the application's
business logic for this specific solution or an instance of a more general capability
that might be used in other applications.

Component Packaging

Any application in Luther uses the J2EE environment and its services. Given this
constraint, components in that environment can be packaged as EJBs; Java bean
components; individual Java class libraries, applets, servlets, or some combinations
of these. In other words, a component is not synomous with an EJB, but rather can
be packaged in a variety of ways.

The strategy for packaging a given capability depends on the J2EE services used as
well as the tradeoffs among a number of key factors (e.g., frequency of inter-object
communication, location of object instances, and need for J2EE services such as
transactions and persistence of object state over multiple user sessions). For
example, communication with an EJB is via RMI, a heavyweight communication
mechanism. In some J2EE containers, communication with EJBs is optimized (into
local method calls) if the communication is within the same Java Virtual Machine
(JVM). However, since optimization is not required of a J2EE container,
communication between EJBs always has the potential of being costly, so must not
be taken lightly if performance is an issue. An alternative is to create a Java class
library to avoid the need (and overhead) for RMI. However, this also forces the
component to take on additional responsibilities previously handled by the container,
such as creation and deletion of component instances.

Objects associated with a component must be made accessible to a user for the
extent of a session. They may change during that time but the data must persist
and be consistent across sessions. Consequently, components often require
transactions. Multiple users may be accessing the same objects simultaneously,
potentially for the same purpose, and this has to be handled gracefully. Supporting
transactions also makes graceful recovery from failure easier by leaving the
database in a consistent state.

As described in Chapter 16, the EJBs model supports several bean types, including
entity beans, session beans, and stateless session beans. The different types are
intended to support different forms of business logic, and they are handled
differently by the container. For instance, an entity bean allows the choice of
managing persistence yourself via callbacks supported by the container (i.e., bean-
managed persistence) or having the container do it for you (i.e., container-managed
persistence). In either case, a significant amount of overhead is involved, which
limits the practical use of an entity bean to long-lived business entities characterized
by coarse-grained data accesses.

What the J2EE Container Provides

There are several capabilities that applications require, such as transaction support,
security, and load balancing. These capabilities are very complex (indeed, many
corporations organize their entire business around offering them) and are outside
the scope of a given application or application domain. One of the main drivers in
Inmedius's decision to build Luther using J2EE was the fact that commercially
available J2EE-compliant containers provide these features, so Inmedius does not
have to implement them.

Many of these capabilities can be configured for an individual EJB at application
deployment time, or they are provided to the EJB transparently by the J2EE
container. In either case, the EJB developer does not have to embed calls to them
directly into the code, so they can be easily configured for a given customer. This
not only facilitates the creation of application-independent EJB components but also
guarantees that the components will successfully run within all J2EE- compliant
containers.

The EJB container provides transaction support both declaratively and
programmatically. The component developer can programmatically interact
with the container to provide fine-grained, hard-coded EJB transaction
support. The developer may also declaratively specify, via the deployment
descriptor, how EJB methods should behave within transactions. This allows
transactions to behave differently in different applications without the EJB
having to implement or configure them directly in the code.

J2EE provides an integrated security model that spans both Web and EJB
containers. Like transaction support, security features can be used either
declaratively or programmatically. If methods are written to include definitions
of the permissions required to execute them, the developer can specify which
users (or groups of users) are allowed method access in the deployment
descriptor. Otherwise, entries in the deployment descriptor can be used to
declaratively associate access rights with methods. Again, this allows the
component methods to have arbitrary permissions determined by the
application, without having to rewrite the component.

The EJB container also provides transparent load balancing. EJB instances are
created and managed by the container at runtime; that is, they are created,

activated, passivated, and removed, as necessary. If an EJB has not been
accessed recently, it may be passivated, meaning that its data will be saved to
persistent storage and the instance removed from memory. In this way, the
container effectively performs load balancing across all of the instances in the
container to manage resource consumption and to optimize system
performance.

What the Component Developer Provides

The component developer provides the client view, or API, of the component, as
well as the component implementation. With a simple EJB, this amounts to writing
only three classes: the home interface, the remote interface, and the
implementation class.

The component developer also provides definitions of the data types exposed to
clients through the API. These are implemented as additional classes, and often take
the form of value objects that are passed back and forth to an EJB through the API.

EXAMPLE OF A RE-USABLE COMPONENT: WORK FLOW

In this section, we will look at one of the re-usable capability components developed
for the Inmedius component library, the issues it raised, and the decisions made.
The work-flow component, the largest of the capability components thus far created,
is an example of the how a generalized capability is engineered and packaged for
inclusion in the Luther architecture.

Design Rationale

The primary responsibility of the work-flow component is to allow a client to model a
work flow and then move digital artifacts through it. The component must also allow
clients to define resources and assign them to work-flow activities. Naturally, the
component must be highly re-usable and extendable, which means that it should
provide general work-flow capabilities; provide a clear but generic model of
operation to the applications that will use it; and be agnostic with respect to the
digital artifacts that may move through a particular work-flow instance. The creation
of a full-functionality work-flow component requires complex idioms such as
branching, merging, and looping. Generally implementing a work-flow capability is a
very large, complex task.

Inmedius faced a dilemma in that there was a legitimate need for work-flow
capabilities in its applications but many factors, such as the following, prevented
their complete implementation:

The size and complexity of a complete work-flow capability was beyond
Inmedius's resources.

Complete work-flow capability was not a core business objective or a core
competency.

Other companies had built far more complete solutions.

The long-term solution was to form alliances with organizations that provide
componentized work-flow capability for J2EE applications. Until that happened,
however, Inmedius had to implement a subset of capability in order to deploy
solutions.

Thus, the strategy was to design a component that could be easily swapped with a
more complete one from another organization at a later time. This created the need
for a standardized work-flow component interface. Notice how the ABC works in this
case. The design of the Luther architecture opened up a new business opportunity
(work-flow management) and Inmedius had to make an explicit business decision to
enter this market. Inmedius decided that it was outside its core competence.

The Workflow Management Coalition has developed of a set of functional and
behavioral work-flow specifications that have been recognized by the work-flow
community. Inmedius architects built its component to those specifications, yet
implemented only the functionality that is necessary for use by the current
applications.

This strategy leveraged the knowledge and experience of the work-flow community
and all of its activities. The community had already defined business objects and
relationships between objects, so Inmedius did not have to reinvent them. Second,
by adhering to Workflow Management Coalition specifications, Inmedius could now
replace its work-flow component with that of another vendor, with minimal effort if a
customer required a certain degree of functionality not provided in the Inmedius
component.

Two Workflow Management Coalition specifications describe the two primary
elements: the definition of a work-flow model and the representation of its runtime
instances (see Figure 17.7). The work-flow model definition is made up of one or
more process definitions, each of which consists of activity definitions and
transitions between those activities and all participating resources. In each process
definition, a process manager oversees all runtime instances of a specific process
definition; each runtime instance maintains state as to which activities have been
completed, which are active and who is assigned them, and context data that the
work-flow component needs to make decisions while the process is active.

Figure 17.7. Class diagram for the work-flow component

One issue of concern to Inmedius was concurrency. Should more than one user be
permitted to modify a work-flow model definition at one time? If active runtime
instances exist, should a user be permitted to modify a work-flow model definition?
Should a user be permitted to start a new work flow if its definition is being
modified? Given the implementation, a yes answer to any of these questions posed
a significant problem because of the relationship between a definition and its
runtime instances. As a result, any solution would have to prohibit these situations
from occurring.

Because the underlying problem in each of the situations described before revolved
around modifying the work-flow model definition, the solution was to associate a
lock with it. In order to modify a definition, a user must obtain a lock. Only one lock
can exist for a given definition and it cannot be obtained if the definition has any
associated active runtime instances. In addition, a new runtime instance cannot be
started if the work-flow model definition is locked.

Packaging

The work-flow component is packaged as two EJBs: a stateless session bean for
managing instances of work-flow model definitions and a single entity bean for
managing the definition itself (see Figure 17.8). The decision to package the
component this way was based strongly on the characteristics of the different EJBs.

Figure 17.8. Work-flow component packaging diagram

Entity EJBs implement abstractions in an application that represent shared
resources, where persistent object data is shared among many components and
users. The work-flow model definition represents just such a single shared
resource�namely, a definition of a process that can be instantiated many times. In
Inmedius applications, any user in any location can start a new process based on
this single work-flow model definition and participate in its activities.

Session EJBs model state and behavior. The definition of new work-flow models, the
creation of work-flow model instances, the creation of activities, the assignment of
resources to activities, and the completion of activities, for example, are all services
provided to users over the course of a work-flow instance life cycle or session.
Therefore, work-flow instances are most naturally implemented by session EJBs.

Once it was decided to make the work-flow instance manager a session EJB, a
decision had to be made as to whether to make the session EJB stateful or stateless.
This depended on the characteristics of the state to be maintained. Typically, a
stateful session EJB maintains state for a single client with whom it is having a
dialog. However, the state of a runtime work-flow instance is not manipulated by
just a single client but is updated by many clients, including those who participate in
the actual work-flow process and managers who want to monitor the process and
analyze its results. As a result, the work-flow instance manager was implemented as
a stateless session EJB, which is more lightweight and scalable than a stateful
session EJB and which persists the state in a database on behalf of a given client,
where all the other clients have access to it.

Another design tradeoff concerned how to package the individual objects within a
work-flow model definition. Should they be packaged as entity EJBs, or should they
comprise Java classes packaged using some other structure, such as a library?
Because these objects interact with and are dependent on each other, to package
them as entity EJBs would constantly require locating and retaining multiple EJB
handles in the application, creating much overhead. In addition, recall that any
method invocation on an EJB is essentially an RMI call and can be quite costly. While
most J2EE containers can determine if the method invocation is in the same Java
Virtual Machine and therefore optimize it into a local method call, this is not
guaranteed. For these reasons, the design decision was to create entity EJBs for
coarse-grained abstractions in the application, such as the work-flow model
definition, and to implement the finer-grained abstractions in the entity EJB itself as
libraries of Java classes�all to reduce the overhead associated with the heavyweight
entity EJB relationships.

An example of this type of design decision in the work-flow component was deciding
where to locate the logic that determines whether to grant a request for a lock on
the work-flow model definition. Originally, that logic was placed inside the entity EJB
implementing the work-flow model definition. A request to lock the definition would
be made directly to the entity EJB, which would determine if the lock could be
granted (and, if so, lock it).

A problem became apparent when it came time to enhance the business logic so
that a lock could be granted only if no active runtime work-flow instances existed.
The methods that provided runtime work-flow instance information were defined on
the stateless session EJB, the object interacting with the entity EJB. It did not seem
right to pass a reference to the stateless session EJB into the entity EJB�first,
because the entity EJB would be aware of the environment in which it exists (thus,
hampering re-use); second, because any method invocations made by the entity
EJB on the stateless session EJB would be RMI calls.

Another option was to use the data access objects of the entity EJB directly in order
to retrieve the necessary information from the database. However, this would break
the abstraction implemented by the entity EJB, forcing it to be responsible for
something that it should not be responsible for and that is already the responsibility
of another object. Lastly, there would be a duplication of code that would create
maintainability problems.

The solution was to place the logic (i.e., that determines whether a request for a
lock on the work-flow model definition is granted) in the stateless session EJB. The
entity EJB now simply knows how to persist and retrieve locks to and from the
database. When a request for a lock is received, the stateless session EJB
determines if it can be granted and, if so, instructs the entity EJB to lock the work-
flow model definition. This solution maintains the integrity of the abstractions
implemented by the objects and eliminates unnecessary inter-EJB relationships.

Distributed and Detached Operations

When designing the component to support distributed and detached operations, a
number of interesting issues arose, primarily about whether to support distributed

concurrency of work-flow activities. Consider a scenario in which a work-flow model
definition and its runtime instances are located across multiple servers. While J2EE
transaction support can guarantee that no two users can violate work-flow rules if
they access the same data in the same database, it cannot guarantee that rules will
not be violated if two users access replicated data for the same work flow in
different databases.

In this scenario, one user could lock a work-flow model definition in one location for
the purpose of modifying it while another user was creating a new runtime instance
of the same definition in another location. During data replication and
synchronization among the distributed servers, conflicts might arise that could
corrupt the work-flow data in the enterprise environment if not resolvable. To
guarantee that work-flow rules would not be violated across multiple databases,
additional functionality would be needed to resolve every type of conflict.
Implementing this level of functionality was outside the scope of Inmedius's initial
release. To meet the requirement, distributed and detailed operation scenarios had
to be supported.

The system architecture and environment dictated the two scenarios of distributed
and detached operations initially supported. In a distributed operation, a common
repository is shared that itself supports transactions (e.g., a database). In other
words, multiple instances of the application server may exist in several locations but
each must access the same data repository that contains the work-flow model
definitions and runtime instances. This is because the information used by the
application server to determine whether work-flow rules have been violated is stored
in the data repository. In detached operations, one installation (i.e., application
server and data repository) is designated as the master installation and all others as
subordinate instances. The work-flow model definition must be created and defined
via the master and then replicated to all subordinates. Once a definition is
distributed, it cannot change other than specifying who can participate in the
defined activities. As runtime work-flow instances at the subordinate installations
are created and eventually closed, these are replicated back to the master for
historical purposes.

RAMIFICATIONS OF USING J2EE

This section discusses the rationale for several Luther decisions regarding the use of
J2EE.

Decisions Made by Design versus Those Dictated by J2EE

When designing a system using the J2EE runtime environment, some decisions are
left up to the designer and others are constrained by the J2EE rules and structure.
For example, J2EE mandates where servlets, JSPs, and EJBs reside within a
container�servlets and JSPs in the Web tier and EJBs in the EJB tier.

However, the Java 2 Enterprise Edition environment also provides the designer with
some flexibility�for example, in implementing security (declarative versus

programmatic), transaction support (declarative versus programmatic), and data
access (container-managed versus bean-managed).

When designing a component, the designer has total control over functionality to
allocate to a servlet, JSP, or EJB, and here the obvious choices might not always be
the best. For instance, one of Inmedius's components supports collaboration
between two or more users. Since this component represents re-usable business
logic, the rules of component selection specify that it should be packaged as an EJB.
Unfortunately, further analysis proved that this was not the correct design.
Additional factors must be considered when determining how to map a component
design onto the four logical tiers provided by J2EE, as shown in Figure 16.2.

Issues Introduced by the Multiple Tiers in the J2EE

One issue is performance. A major contributor to poor performance is the number of
calls made from one J2EE entity (e.g., servlet, EJB) to another within a given
transaction. Technically, each EJB method call is an RMI call, which can be very
expensive. The implementation of coarse-grained EJBs and the elimination of inter-
entity EJB relationships are two ways to address this issue and thereby ensure good
component performance.

Another issue is transactions, which may be managed programmatically or
declaratively. Obviously, managing transactions declaratively is somewhat easier
because code does not have to contain begin and end transaction statements.
However, developers must be mindful of how their J2EE entity will be used. The easy
course is to require transactions for all methods. Unfortunately, this creates unnec
essary runtime overhead if transactions are not truly needed. Another problem
arises when methods on a J2EE entity do not require transaction support and the
deployment descriptor enforces this. If another container involved in a transaction
uses the J2EE entity, the transaction it has created will fail. Instead, the deployment
descriptor should declare that the method supports transactions. Careful thought
must be given to what aspects of a component require transactions to ensure
correct operation, and these decisions must be mapped to a combination of the
declarative and programmatic mechanisms supported by J2EE.

17.4 How Luther Achieved Its Quality Goals

All but one of Luther's quality requirements came from its customers: wireless
access; flexibile user interfaces and devices; support for existing procedures,
business processes, and systems; and for distributed computing. The only one that
came from Inmedius was ease of building applications.

The primary decision in achieving these requirements was to use J2EE, but only in a
particular fashion. The user interface was clearly and cleanly separated from the
applications, standards were used whenever possible, and a re-usable library of
components was to be constructed opportunistically. Table 17.1 shows the strategies
and tactics used in this effort.

Table 17.1. How Strategy Achieves Goals

Goal Strategy Tactics

Wireless Access Use standard wireless
protocols

Adherence to defined protocols

Flexible User
Interface

Support both browser-
based and custom
interfaces through HTTP

Semantic coherence; separate user
interface; user model

Support Multiple
Devices

Use standard protocols Anticipate expected changes;
adherence to defined protocols

Integration with
Existing Business
Processes

Use J2EE as an
integration mechanism

Abstract common services; component
replacement

Rapid Building of
Applications

Use J2EE as a basis for
Luther and construct re-
usable components

Abstract common services; generalize
module (in this case, J2EE represents
the generalized module)

Distributed
Infrastructure

Use J2EE and standard
protocols

Generalize module; runtime registration

17.5 Summary

Inmedius develops solutions for field service workers. Such workers require high
mobility with untethered access to computers. These computers are typically highly
portable�sometimes with hands-free operation. In each case, systems require
integration with back-office operations.

Luther is a solution that Inmedius constructed to support the rapid building of
customer support systems. It is based on J2EE. A great deal of attention has been
given to developing re-usable components and frameworks that simplify the addition
of various portions, and its user interface is designed to enable customer- as well as
browser-based solutions.

Reliance on J2EE furthered the business goals of Inmedius but also introduced the
necessity for additional design decisions in terms of what was packaged as which
kind of bean (or not). This is an example of the backward flow of the ABC,
emphasizing the movement away from stovepipe solutions toward common
solutions.

17.6 For Further Reading

The reader interested in wearable computers is referred to [Barfield 01] as well as
the proceedings of the annual IEEE-sponsored International Symposium on
Wearable Computers (http://iswc.gatech.edu/).

The business delegate pattern used in Luther can be found in [Alur 01]. The
Workflow Management Coalition reports its activities on http://www.wfmc.org.

http://iswc.gatech.edu/default.htm
http://www.wfmc.org/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

17.7 Discussion Questions

1:

Many of the case studies in this book feature architectures that separate the
producers of data within a system from the consumers of data. Why is that
important? What kind of tactic is it? Compile a list of the tactics or design
approaches used to achieve separation, beginning with the ones shown in this
chapter.

2:
A great deal of attention has been given to separating the user interface from
the remainder of the application both in Luther and in our other case studies.
Why is this such a pervasive tactic?

Chapter 18. Building Systems from Off-the-Shelf
Components
with Robert C. Seacord and Matthew Bass

Note: Robert C. Seacord is a senior member of the technical staff at the Software
Engineering Institute; Matthew Bass is a member of the technical staff at the
Software Engineering Institute.

It's so beautifully arranged on the plate�you just know someone's fingers
have been all over it.

�� Julia Child, on nouvelle cuisine

Throughout this book we have emphasized the connection between desired quality
attributes and architecture. Our underlying assumption has been that control over
system design means control over the qualities achieved. Increasingly this is not
true. Systems are being constructed with more and more off-the-shelf components,
for economic reasons and because the expertise needed in many technical areas is
so specialized. Components change the design process; they can also constrain the
architecture. Although typically chosen to achieve some set of functionality,
components also embody architectural (and hence quality) assumptions. The
architect must ensure that these assumptions are the right ones and that they are
compatible.

Operating systems impose certain solutions and have since the 1960s. Database
management systems have been around since the early 1970s. Because of the
ubiquity of computers the possibility of using externally developed components to
achieve some system goals has been increasing dramatically. Even the availability of
components may not cause you to use or keep them (see the sidebar Quack.com),
but you certainly need to understand how to incorporate them into your system.

For systems built from off-the-shelf (OTS) components, component selection
involves a discovery process, which seeks to identify assemblies of compatible
components, understanding how they can achieve the desired quality attributes, and
deciding whether they can be integrated into the system being built.

Quack.com
The beginning:

The Quack.com company was founded in late 1998 by two former
SEI colleagues (Jeromy Carriére and Steve Woods), as well as
University of Hawaii professor Alex Quilici. Their goal was to make
only commerce and content available over the telephone. They built

http://quack.com/default.htm
http://quack.com/default.htm

a demo, and by late summer 1999 had convinced a few "angels" and
venture capitalists to give them funding. They understood the
importance of a sound architecture and built their "real" system as a
voice portal on top of a speech-application publishing platform and
toolkit. This allowed them to quickly build and maintain a wide
variety of applications and potentially be the underlying platform for
a whole new industry. Nine months after acquiring their first funding,
they released a preliminary Web-based consumer voice portal. It
allowed people to access information about weather, movies, stocks,
and so forth using a telephone. On August 31, 2000, America Online
acquired Quack. A short time later, October 25, 2000, AOL released
AOLbyPhone, which had been built by Quack's team; it used their
platform and toolkit.

The story of Quack.com is instructive in terms of the roles and limitations
of off-the-shelf components. As can be inferred, Quack was under severe
time-to-market pressure to demonstrate a voice portal. Other startups
were also active in this space, some of them better funded. Quack
searched for as many available components as they could locate, and
constructed their architecture to accommodate them. This played a
significant part in their ability to get to market nine months after they first
acquired external funding.

Quack's first portal was important to their success and useful in its own
right, but they never had a broad user base for it. Once they were
acquired by AOL, however, their business focus changed. With its
34,000,000 subscribers, AOL quickly elevated availability and performance
as primary business drivers. Quack.com was now subject to much more
intense use and more stringent availability requirements.

Their response was to rewrite the components. Their architecture was
flexible enough to allow scaling up to the expected number of users and to
support the required availability, but they did not know how the
components would respond. By rewriting them (in the order of their
criticality), they gained control of the performance and availability of the
whole system.

This experience is echoed in other systems we have seen. We recently
visited a small startup company launching a software product line. The
people there knew that there is no second chance to make a first
impression, and so reliability and scalability led their list of architectural
concerns. As their architect told us, "If the function is unimportant, COTS
will do. If there's an actual or de facto standard for some aspect of the
system, then COTS will do, as there is likely to be a choice of more than
one vendor that meets the standard. But when in doubt, with no practical
workarounds available, we will not hesitate to build the components in-
house." Before coming to this small start- up, this architect helped build a
major Web search engine and content provider. In four years, he watched
usage go from 45,000 to 45,000,000 page views per day. With millions of
people using the system, he learned very quickly to do what it takes to

http://quack.com/default.htm
http://quack.com/default.htm

avoid being awakened in the middle of the night with a business-
threatening problem.

Off-the-shelf components fill an important role in providing large amounts
of functionality in quickly available packaging. However, they also can
prevent the architect from having total control over the quality attributes
that the system displays. Like so much in software engineering,
components are extremely useful but they are not the silver bullet that
they are sometimes portrayed to be.

� LJB and PCC

This chapter describes a lightweight, common-sense process that can guide
component selection. The process begins by hypothesizing what it means for the
components you have chosen to "work," building some simple prototypes to test
those hypotheses, evolving what works, and keeping a backup plan in case your
guess is wrong. The key insight here is that choosing and selecting single
components is not enough. You need to choose and test assemblies of components
that will work in concert.

The chapter includes a demonstration of the process that was applied to a recently
fielded system.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

18.1 Impact of Components on Architecture

Consider the following situation. You are producing software to control a chemical
plant. Within chemical plants, specialized displays keep the operator informed as to
the state of the reactions being controlled. A large portion of the software you are
constructing is used to draw those displays. A vendor sells user interface controls
that produce them. Because it is easier to buy than build, you decide to purchase
the controls�which, by the way, are only available for Visual Basic.

What impact does this decision have on your architecture? Either the whole system
must be written in Visual Basic with its built-in callback-centered style or the
operator portion must be isolated from the rest of the system in some fashion. This
is a fundamental structural decision, driven by the choice of a single component for
a single portion of the system.

The use of off-the-shelf components in software development, while essential in
many cases, also introduces new challenges. In particular, component capabilities
and liabilities are a principle architectural constraint.

All but the simplest components have a presumed architectural pattern that is
difficult to violate. For example, an HTTP server assumes a client-server
architectural pattern with defined interfaces and mechanisms for integrating back-
end functionality. If the architecture you design conflicts with the architecture
assumed by an HTTP server component, you may find yourself with an exceptionally
difficult integration task.

The fact that components assume an architectural pattern makes it difficult to select
an architecture prior to understanding the component assembly that has been
selected (or is under consideration) for the system under design. The architectural
assumptions inherent in these components, and the mechanisms for successfully
integrating them, are often dictated or at least strongly influenced by component
selections. This means that an understanding of components and their interactions
must be established before an architecture can be finalized.

18.2 Architectural Mismatch

Not all components work together�even if they are commercial products that claim
compatibility. Components are often "almost compatible," where "almost" is a
euphemism for "not." More insidious is the case where components appear to work
together�the assembled code compiles and even executes�but the system
produces the wrong answer because the components do not work together quite as
expected. The errors can be subtle, especially in real-time or parallel systems in
which the components might rely on seemingly innocuous assumptions about the
timing or relative ordering of each other's operations.

In short, components that were not developed specifically for your system may not
meet all of your requirements�they may not even work with the components you
pair them with. Worse, you may not know if they are suitable or not until you buy
them and try them because component interfaces are notoriously poor at specifying
their quality attributes: How secure is the compiler you are using right now? How
reliable is the mail system on your desktop? How accurate is the math library that
your applications depend on? And what happens when you discover that the answer
to any of these questions is "not enough"?

Garlan, Allen, and Ockerbloom coined the term architectural mismatch to describe
this impediment to successfully integrating component-based systems. They state
the problem as a mismatch between assumptions embodied in separately developed
components, which often manifests itself architecturally, such as when two
components disagree about which one invokes the other. Architectural mismatch
usually shows up at system integration time�the system will not compile, will not
link, or will not run.

Architectural mismatch is a special case of interface mismatch, where the interface
is as Parnas defined it: the assumptions that components can make about each
other. This definition goes beyond what has, unfortunately, become the standard
concept of interface in current practice: a component's API (for example, a Java
interface specification). An API names the programs and their parameters and may
say something about their behavior, but this is only a small part of the information
needed to correctly use a component. Side effects, consumption of global resources,
coordination requirements, and the like, are a necessary part of an interface and are
included in a complete interface specification. Interface mismatch can appear at
integration time, just like architectural mismatch, but it can also precipitate the
insidious runtime errors mentioned before.

These assumptions can take two forms. Provides assumptions describe the services
a component provides to its users or clients. Requires assumptions detail the
services or resources that a component must have in order to correctly function.
Mismatch between two components occurs when their provides and requires
assumptions do not match up.

What can you do about interface mismatch? Besides changing your requirements so
that yesterday's bug is today's feature (which is often a viable option), there are
three things:

Avoid it by carefully specifying and inspecting the components for your
system.

Detect those cases you have not avoided by careful qualification of the
components.

Repair those cases you have detected by adapting the components.

The rest of this section will deal with techniques for avoiding, detecting, and
repairing mismatch. We begin with repair.

TECHNIQUES FOR REPAIRING INTERFACE MISMATCH

To date, mismatch correction (or "component/interface repair") has received little
systematic attention. Terms such as "component glue" are evocative of the
character of the integration code and reflect the second-class status we assign to its
development. Often repairing interface mismatches is seen as a job for hackers (or
sometimes junior programmers) whose sense of aesthetics is not offended by the
myriad "hacks" involved in integrating off-the-shelf components. However, as is
often the case, the weak link in a chain defines the chain's strength. Thus, the
quality of component repair may be directly responsible for achieving�or failing to
achieve�system-wide quality attributes such as availability and modifiability.

A first step toward a more disciplined approach to interface repair is to categorize
the basic techniques and their qualities. One obvious repair method is to change the
code of the offending component. However, this is often not possible, given that
commercial products seldom arrive with their source code, an old component's
source code may be lost, or the only person who understood it may be lost. Even if
possible, changing a component is often not desirable. If it is used in more than one
system�the whole premise of component use�it must now be maintained in
multiple versions if the change to make it work renders it unusable for some of the
old systems.

The alternative to changing the code of one or both mismatched components is to
insert code that reconciles their interaction in a way that fixes the mismatch. There
are three classes of repair code: wrappers, bridges, and mediators.

Wrappers

The term wrapper implies a form of encapsulation whereby some component is
encased within an alternative abstraction. It simply means that clients access the
wrapped component services only through an alternative interface provided by the
wrapper. Wrapping can be thought of as yielding an alternative interface to the
component. We can interpret interface translation as including:

Translating an element of a component interface into an alternative element

Hiding an element of a component interface

Preserving an element of a component's base interface without change

As an illustration, assume that we have a legacy component that provides
programmatic access to graphics-rendering services, where the programmatic
services are made available as Fortran libraries and the graphics rendering is done
in terms of custom graphics primitives. We wish to make the component available to
clients via CORBA, and we wish to replace the custom graphics primitives with X
Window System graphics.

CORBA's interface description language (IDL) can be used to specify the new
interface that makes the component services available to CORBA clients rather than
through linking with Fortran libraries. The repair code for the "provides
assumptions" interface is the C++ skeleton code automatically generated by an IDL
compiler. Also included in the repair code is hand-written code to tie the skeleton
into component functionality.

There are various options for wrapping the component's "requires assumptions"
interface to accomplish the switch from custom graphics to the X system. One is to
write a translator library layer whose API corresponds to the API for the custom
graphics primitives; the implementation of this library translates custom graphics
calls to X Window calls.

Bridges

A bridge translates some requires assumptions of one arbitrary component to some
provides assumptions of another. The key difference between a bridge and a
wrapper is that the repair code constituting a bridge is independent of any particular
component. Also, the bridge must be explicitly invoked by some external
agent�possibly but not necessarily by one of the components the bridge spans. This
last point should convey the idea that bridges are usually transient and that the
specific translation is defined at the time of bridge construction (e.g., bridge compile
time). The significance of both of these distinctions will be made clear in the
discussion of mediators.

Bridges typically focus on a narrower range of interface translations than do
wrappers because bridges address specific assumptions. The more assumptions a
bridge tries to address, the fewer components it applies to.

Assume that we have two legacy components, one that produces PostScript output
for design documents and another that displays PDF (Portable Document Format)
documents. We wish to integrate these components so that the display component
can be invoked on design documents.

In this scenario, a straightforward interface repair technique is a simple bridge that
translates PostScript to PDF. The bridge can be written independently of specific
features of the two hypothetical components�for example, the mechanisms used to

extract data from one component and feed it to another. This brings to mind the use
of UNIX filters, although this is not the only mechanism that can be used.

A script could be written to execute the bridge. It would need to address
component-specific interface peculiarities for both integrated components. Thus, the
external agent/shell script would not be a wrapper, by our definition, since it would
address the interfaces of both end points of the integration relation. Alternatively,
either component could launch the filter. In this case, the repair mechanism would
include a hybrid wrapper and filter: The wrapper would involve the repair code
necessary to detect the need to launch the bridge and to initiate the launch.

Mediators

Mediators exhibit properties of both bridges and wrappers. The major distinction
between bridges and mediators, however, is that mediators incorporate a planning
function that in effect results in runtime determination of the translation (recall that
bridges establish this translation at bridge construction time).

A mediator is also similar to a wrapper insofar as it becomes a more explicit
component in the overall system architecture. That is, semantically primitive, often
transient bridges can be thought of as incidental repair mechanisms whose role in a
design can remain implicit; in contrast, mediators have sufficient semantic
complexity and runtime autonomy (persistence) to play more of a first-class role in
a software architecture. To illustrate mediators, we focus on their runtime planning
function since this is the key distinction between mediators and bridges.

One scenario that illustrates mediation is intelligent data fusion. Consider a sensor
that generates a high volume of high-fidelity data. At runtime, different information
consumers may arise that have different operating assumptions about data fidelity.
Perhaps a low-fidelity consumer requires that some information be "stripped" from
the data stream. Another consumer may have similar fidelity requirements but
different throughput characteristics that require temporary buffering of data. In
each case, a mediator can accommodate the differences between the sensor and its
consumers.

Another scenario involves the runtime assembly of sequences of bridges to integrate
components whose integration requirements arise at runtime. For example, one
component may produce data in format D0, while another may consume data in
format D2. It may be that there is no direct D0 D2 bridge, but there are separate
D0 D1 and D1 D2 bridges that can be chained. The mediator would thus
assemble the bridges to complete the D0 D2 translation. This scenario covers the
mundane notion of desktop integration and the more exotic runtime adaptive
systems.

TECHNIQUES FOR DETECTING INTERFACE MISMATCH

In order to repair mismatches, we must first detect or identify them. We present the
process of identifying mismatches as an enhanced form of component qualification.

The term component qualification has been used to describe the process of
determining whether a commercial component satisfies various "fitness for use"
criteria. Some component qualification processes include prototype integration of
candidate components as an essential step in qualifying a component. This
integration step discovers subtle forms of interface mismatch that are difficult to
detect, such as resource contention. The need for this step is a tacit
acknowledgment of our poor understanding of component interfaces.

Carrying out this evaluation starts with the observation that, for each service offered
by a component, a set of requires assumptions must be satisfied in order to provide
that service. A service is just a convenient way of describing how component
functionality is packaged for use by clients. Qualification, then, is the process of

discovering all of the requires assumptions of the component for each of the
services that will be used by the system.

making sure that each requires assumption is satisfied by some provides
assumption in the system.

To illustrate these ideas more concretely, consider the qualification of a component
that provides primitive data management services for multi-threaded applications.
One service it provides is the ability to write a data value into a specified location
(possibly specified by a key). In order to provide a multithreaded storage service,
the component might require various resources from an operating system�for
example, a file system and locking primitives. This listing of the component's
requires assumptions might be documented by a component provider, or it might
need to be discovered by the component evaluator. In either case, this particular
mapping would be useful for determining whether an upgrade of the operating
system will have any impact on this particular integration relation. That is, did the
new operating system change the semantics of fwrite or flock?

The list may include additional assumptions; for example, a provides assumption
may stipulate that a CORBA interface be provided to the storage service. Depending
on which implementation of the object request broker is used, this may or may not
imply an additional provides assumption concerning the existence of a running
object request broker process on the host machine that executes the storage
service.

The assumptions list may reveal more interesting dependencies. For example, the
same hypothetical component may allow a variable, but defined, number of clients
to share a single data manager front-end process, with new processes created to
accommodate overflow clients. This form of assumption can be crucial in predicting
whether a component will satisfy system resource constraints.

TECHNIQUES FOR AVOIDING INTERFACE MISMATCH

One technique for avoiding interface mismatch is to undertake, from the earliest
phases of design, a disciplined approach to specifying as many assumptions about a
component's interface as feasible. Is it feasible or even possible to specify all of the
assumptions a component makes about its environment, or that the components
used are allowed to make about it? Of course not. Is there any evidence that it is
practical to specify an important subset of assumptions, and that it pays to do so?
Yes. The A-7E software design presented in Chapter 3 partitioned the system into a
hierarchical tree of modules, with three modules at the highest level, decomposed
into about 120 modules at the leaves. An interface specification was written for each
leaf module that included the access programs (what would now be called methods
in an object-based design), the parameters they required and returned, the visible
effects of calling the program, the system generation parameters that allowed
compile-time tailoring of the module, and a set of assumptions (about a dozen for
each module).

Assumptions stated assertions about the sufficiency of the services provided by each
module and the implementability of each service by identifying resources necessary
to the module. Specific subject areas included the use of shared resources, effects
of multiple threads of control through a module's facilities, and performance. These
assumptions were meant to remain constant over the lifetime of the system, whose
main design goal was modifiability. They were used by module designers to reassure
themselves that they had appropriately encapsulated all areas of change within each
module, by domain and application experts as a medium for evaluation, and by
users of the modules to ensure suitability. Participants on the A-7 project felt that
careful attention to module interfaces effectively eliminated integration as a step in
the life cycle of the software. Why? Because architectural mismatch was avoided by
careful specification, including the explicit assumptions lists that were reviewed for
veracity by application and domain experts.

The notion of an interface as a set of assumptions, not just an API, can lead to a
richer understanding of how to specify interfaces for components that work together
in a variety of contexts. Private interfaces make visible only those provides and
requires assumptions from a component's base interface that are relevant to its
integration requirements in a particular system, or even to particular components in
it. The idea is to suppress information about facilities that are not needed and
whose presence may needlessly complicate the system.

There are advantages to different interfaces for the same component rather than a
single omnibus base interface. The finer control over inter-component dependencies
makes certain kinds of system evolution more tractable�for example, predicting the
impact of upgrading a commercial component to a new version. Wrappers can be
thought of as a repair strategy for introducing privacy. Additionally, architectural
patterns can provide canonical forms that satisfy the provides and requires
assumptions for the interface so that the number of distinct derivatives of a base
interface may be relatively small in a system based on an architectural pattern that
defines a small set of component types.

A parameterized interface is one whose provides and requires assumptions can be
changed by changing the value of a variable before the component service is
invoked. Programming languages have long possessed semantically rich
parameterization techniques (e.g., Ada generics, ML polymorphism) that tailor a

component's interface between the time it was designed and coded and the time its
services are invoked. Commercial products also frequently provide some degree of
customization via product parameterization (e.g., resource files or environment
variables). Parameterized interfaces result in adaptation code that is both external
to the component, where the values of the parameters are set, and within the
component (to accommodate different parameter values).

Just as a mediator is a bridge with planning logic, a negotiated interface is a
parameterized interface with self-repair logic. It may auto-parameterize itself, or it
may be parameterized by an external agent. Self-configuring software can be
thought of as involving negotiated interfaces, where the negotiation is a one-way
"take-it-or-leave-it" dialog between component-building software and a host
platform. Alternatively, products, such as modems, routinely use protocols to
establish mutually acceptable communication parameters at runtime (rather than at
install time).

Like wrappers, which can be used as a repair strategy to introduce translucency,
mediators can be used as a repair strategy to introduce negotiated interfaces into a
nonnegotiating component.

18.3 Component-Based Design as Search

Since component capabilities and liabilities are a principle source of architectural
constraint in system development, and since systems use multiple components,
component-based system design becomes a search for compatible ensembles of off-
the-shelf components that come the closest to meeting system objectives. The
architect must determine if it is feasible to integrate the components in each
ensemble and, in particular, to evaluate whether an ensemble can live in the
architecture and support system requirements.

In effect, each possible ensemble amounts to a continued path of exploration. This
exploration should initially focus on the feasibility of the path to make sure there are
no significant architectural mismatches that cannot be reasonably adapted. It must
also take into account the feasibility of the repair and the residual risk remaining
once the repair is completed.

Of course, the simultaneous exploration of multiple paths is expensive. As we show
in our example, it is more likely that the focus will be on a primary path with
additional paths treated as secondary. The important point is to view the selection of
components in terms of ensembles rather than singly and to keep in mind that a
particular path constitutes a hypothesis to be verified rather than a definitive
design.

"How is it possible for one to achieve system quality attributes when dealing with
component-dominated architectures?" The first answer may be that one does not. In
many cases, the ability to use an existing off-the-shelf package to deploy greater
functionality in a short time may outweigh performance, security, or other system
requirements. Using OTS components sometimes blurs the line between
requirements and system design. Evaluating components often causes modification
of system requirements, adding to expectations about capabilities that may be
deployed while forcing other "requirements" to be reconsidered.

Some flexibility in system requirements is beneficial in the integration of
component-based systems, but it is also important to recognize when a requirement
is essential to the success of the system and to not allow these requirements to be
compromised. How, then, do we ensure that essential qualities are maintained in
our component-dominated architecture?

In the previous section, we mentioned that component integration was a principal
risk area and that the system architect must determine the feasibility of integrating
a component ensemble such that the system is functionally complete and meets its
quality attribute requirements. Ensembles then, must be evaluated to ensure not
only that the components can be successfully integrated but also that they can
support quality attribute objectives. To evaluate the feasibility of a component
ensemble, including its ability to support the system's desired quality attributes, we
use model problems.

Narrowly defined, a model problem is a description of the design context, which
defines the constraints on the implementation. For example, if the software under

development must provide a Web-based interface that is usable by both Netscape's
Navigator and Microsoft's Internet Explorer, this part of the design context
constrains the solution space. Any required quality attributes are also included in the
design context.

A prototype situated in a specific design context is called a model solution. A model
problem may have any number of model solutions, depending on the severity of risk
inherent in the design context and on the success of the model solutions in
addressing it.

Model problems are normally used by design teams. Optimally, the design team
consists of an architect who is the technical lead on the project and makes the
principal design decisions, as well as a number of designers/engineers who may
implement a model solution for the model problem.

An illustration of the model problem work flow is shown in Figure 18.1. The process
consists of the following six steps that can be executed in sequence:

1. The architect and the engineers identify a design question. The design
question initiates the model problem, referring to an unknown that is
expressed as a hypothesis.

2. The architect and the engineers define the starting evaluation criteria. These
criteria describe how the model solution will support or contradict the
hypothesis.

3. The architect and the engineers define the implementation constraints. The
implementation constraints specify the fixed (inflexible) part of the design
context that governs the implementation of the model solution. These
constraints might include such things as platform requirements, component
versions, and business rules.

4. The engineers produce a model solution situated in the design context. The
model solution is a minimal application that uses only the features of a
component (or components) necessary to support or contradict the
hypothesis.

5. The engineers identify ending evaluation criteria. Ending evaluation criteria
include the starting set plus criteria that are discovered as a by-product of
implementing the model solution.

6. The architect performs an evaluation of the model solution against the ending
criteria. The evaluation may result in the design solution being rejected or
adopted, but often leads to new design questions that must be resolved in
similar fashion.

Figure 18.1. Model problem work flow

In the remainder of this chapter we introduce an example and illustrate the
application of these steps in the development of a Web-based application called
ASEILM.

"O ATAM, Where Art Thou?"
This chapter is about finding out if a chosen ensemble of components can
meet the quality and behavioral requirements of a system in which they
are to be used. This is clearly an architectural question. Why, then, are we
not using an architecture evaluation method, such as the ATAM, to answer
it? After all, the ATAM's whole purpose is to evaluate architectural
decisions (such as the decision to use certain components "wired"

together in particular ways) in light of a system's quality and behavioral
requirements. Why not simply say, "Perform an ATAM-based evaluation
here" and be done with it?

The answer is that the process we describe in this chapter is less about
evaluating the results of a packaged set of architectural decisions, and
more about activities to help you make those decisions in the first place.
The activities more resemble prototyping than analytical evaluation.

The ASEILM example shows how many very detailed issues of
compatibility have to be resolved before developers can even begin to
think about how the resulting ensemble provides various quality
attributes. Just putting the ensemble together is a challenge. And while
we are dealing with one ensemble, another one is waiting in the wings in
case the first one does not work out. The process lets us manage the
juggling act between candidate ensembles, and it lets us make a choice
among them in a reasoned way by laying out small, practical, common-
sense steps.

Each candidate ensemble implies several hypotheses that assert that you
know what you are doing. You proceed in semi-parallel, wiring ensembles
to each other and to the rest of your system until you discover that you do
not know what you are doing. Then you try to wire them together
differently, or you jump to plan B (the next ensemble). Typically, the
quality attributes come in because you discover that what you do not
know is how the ensembles manage quality attributes.

In order to do an ATAM evaluation you need to know something about the
components you are using. The point of the process we describe here is
that it is not yet clear what you know.

We have wrapped the process in a method's clothing to make it more
repeatable and learnable, but it is pretty much just common sense. You
make an informed guess at what components you want to use, build
prototypes to test them and their interactions, evolve what works, and
keep a backup plan in case your guess is wrong. The key insight is that
you want to do this with an ensemble, not one component at a time.

Once an ensemble has been validated in this way, can it (and its
encompassing system's architecture) still be the subject of an ATAM-based
or other architecture evaluation? Absolutely.

� LJB and PCC

18.4 ASEILM Example

Our example centers around a Web-based information system developed at the
Software Engineering Institute (SEI) for automating administrative interactions
between SEI and its transition partners. The Automated SEI Licensee Management
(ASEILM) system was created with the following objectives:

To support the distribution of SEI-licensed materials, such as courses and
assessment kits, to authorized individuals

To collect administrative information for assessments

To graphically present revenue, attendance, and other information about SEI
licensed materials

To track course attendance and royalties due to SEI

ASEILM must support the following multiple user types, each with varying
authorization to perform system functions:

Course instructors can input course attendee lists, maintain contact
information, and download course materials.

Lead assessors can set up assessments, input assessment information, and
download assessment kits.

SEI administrators can maintain lists of authorized instructors and lead
assessors, as well as view or edit any information maintained by the system.

Table 18.1. Quality Attribute Requirements

Quality
Attribute Requirement

Functionality Provide Web-based access to a geographically dispersed customer
base

Performance Provide adequate performance to users running overseas on low-
bandwidth connections (i.e., download times in tens of minutes, not
hours)

Quality
Attribute Requirement

Compatibility Support older versions of Web browsers including Netscape 3.0 and
Internet Explorer 3.0

Security Support multiple classes of users and provide an identification and
authorization scheme to allow users to identify themselves

Security Provide commercial-grade secure transfer of data over the Internet

Based on an initial analysis, the developers were able to generate a list of system
requirements, many of which mapped directly to the qualities of the system being
developed (see Table 18.1).

The normal give and take of requirements negotiation is different with off-the-shelf
components. You may expect both more and less from them�more in the sense
that more functionality is provided by these components "for free," less in the sense
that this functionality may not precisely meet your organization's needs, and
changing it may be difficult or impossible.

MIVA EMPRESSA ENSEMBLE

Building systems from off-the-shelf components is viewed by management as a
simplification of the development process, requiring less experienced programmers
than standard custom development. In fact, the opposite is almost always true:
Development is typically more difficult, at least new development, with a new set of
components. Extensive experience is often necessary to identify components that
can be used to achieve a design; to understand compatibilities between these
components and others; and to determine the tradeoffs between requirements, the
use of specific components, and the overall costs. In the absence of this experience,
a time-consuming search and qualification process must be undertaken.

In our example, the development team already had some familiarity with the Miva
Empressa application server and preferred to use it as part of their initial
hypothesis. Miva Empressa is an extension of Microsoft's Internet Information
Server (IIS) that runs XML-based Miva Script. Miva Script applications running under
Miva Empressa execute within IIS and can carry out complex computations,
including database access. They are embodied in the "custom component" shown in
Figure 18.2. Note that this was the only component developed from scratch by the
ASEILM team.

Figure 18.2. Miva Empressa ensemble

The ASEILM ensemble used several off-the-shelf components in addition to the Miva
Empressa application server:

Microsoft Access as a database management system

Visual Mining's ChartWorks product to graph revenue, attendance, and other
related information

Microsoft IIS as an HTTP server

Windows NT 4.0 as the operating system on the server platform

A client could be represented by any number of potential platforms and browsers.
The initial ensemble included the Netscape 3.0 browser and the Windows 98
operating system. Netscape 3.0 represented an older browser version, with limited
capabilities, but it was used by many lead assessors (one kind of ASEILM user).
Windows 98 was used extensively in the ASEILM user base.

The definition of an ensemble is a pre-condition to the model-process work flow.
This ensemble then, served as the basis for the initial model solution illustrated in
Figure 18.2. In the following sections, we illustrate the model problem process using
as the primary hypothesis that the Miva Empressa ensemble would be a satisfactory
solution.

Step 1: Identify a Design Question

The first step in the model problem process is to formulate one or more hypotheses,
as use cases or scenarios, that test the design to see if the ensemble is a feasible
solution. The following hypotheses were derived from the system quality attributes
given in Table 18.1:

Hypothesis 1. The ensemble can provide Web-based access to data maintained
within the Access database, and display this data graphically using bar charts
and other business graphics.

Hypothesis 2. Communication between the Web browser and the HTTP server
can be encrypted using HTTPS.

Hypothesis 1 was established primarily to test the functionality of the system and
the ability to integrate the required components. Hypothesis 2 was established to
prove the feasibility of meeting one of the stated security quality objectives for
ASEILM: providing secure transfer of data over the Internet.

Proving both hypotheses does not, in this case, prove the feasibility of the overall
ensemble, but it does allow progress toward a demonstration of feasibility by
evaluating its additional required qualities. At the same time, evaluation of these
hypotheses allows increased understanding of the components and their interactions
within the ensemble.

Step 2: Define the Starting Evaluation Criteria

Evaluation criteria are necessary to determine if the model solution supports or
disproves the initial hypotheses.

Criterion 1. The model solution can display a chart in the browser using data
stored in the Access database.

Criterion 2. Secure data can be transferred between the HTTP server and the
Web browser over an HTTPS connection.

It is important that the success of the evaluation criteria be verifiable. For example,
in the case of criterion 2, the security of data transfer can usually be established by
observing the presence of the lock icon in the Web browser. Proper testing
procedures must be used, however, to ensure that data being displayed in the Web
browser actually originated in the database and was not "cached" somewhere along
the route.

Step 3: Identify Implementation Constraints

The constraints define inflexible elements in the design context. They make sure
that the design solution is valid for the system under development. In this example,
there were no implementation constraints other than those already identified.

Step 4: Produce a Model Solution

After the model problem had been fully defined, the development team began
implementing the model solution�that is, the minimal application necessary to
support or contradict the hypothesis. During implementation, it is permissible and
beneficial to identify additional criteria that must be satisfied to demonstrate the
feasibility of the ensemble.

In the model solution for this example, ChartWorks is used to graph revenue,
attendance, and other related information. The developers first attempted a
straightforward solution that had the browser sending IIS an HTML statement to be
forwarded to ChartWorks. The statement contained a query that identified the data
to be graphed. They discovered two problems, however: coupling the labels of the
graph to the data in it and maintaining a secure connection.

Coupling labels and data

ChartWorks uses the chart description language (CDL) to describe the chart,
including how information would be extracted from the database (in this case,
Access) and integrated into it. In this ensemble, chart labels and chart data needed
to be extracted from the Access database, which required two different CDL
statements. Unfortunately, CDL does not provide any mechanisms that could be
used to pair the information generated as a result of different statements. This
prevented its use to query the database directly. Instead, Miva was used to query
the Access database and to create a text file that combined the label and the data
information. A CDL statement was created to retrieve data from this file instead of
communicating directly with the database.

Although this approach worked, it introduced significant complexity. For example, it
was necessary to keep track of multiple intermediate files for different user sessions
and to make sure these were not confused.

Secure communication

The HTML statement processed by IIS specifies the retrieval of an image generated
by ChartWorks. Thus, IIS is constrained to use the ChartWorks APIs. ChartWorks
provides an API for HTTP but not for HTTPS. This prevents a secure connection from
being established between ChartWorks and the browser. To work around this
problem, the team experimented with removing the HTTPS connection between IIS
and ChartWorks. Since they are located on the same processor, security is enforced
through access to the processor, not through the communication protocol.
Unfortunately, this did not work either because there were both secure and insecure
elements in a single Web page and the browser either did not allow the display of

the page or informed the user of an insecure portion of a transmission. Neither
option was acceptable.

To repair these problems, the team created a perl proxy server that sits between IIS
and ChartWorks. They were then able to establish a secure connection between IIS
and the proxy server so that the proxy server could communicate with ChartWorks
using an HTTP connection. This solution is illustrated in Figure 18.3. The HTML
statement was modified to invoke the perl proxy server.

Figure 18.3. Introduction of Proxy server

Step 5: Identify Ending Evaluation Criteria

Additional evaluation criteria were identified during implementation of the Miva
model solution; in particular, new quality attribute requirements were identified.
During implementation, it was observed that the graphical presentation elements of
the solution were highly intertwined with back-end logic. This made it difficult for
graphic designers to help develop the system's user interface because they were
unfamiliar with general-purpose programming. The following evaluation criterion
thus joined the model problem:

Criterion 3. Presentation logic must be maintained separately from back-end
business and database logic, and communicated through well-defined

interfaces.

It was also discovered that the Access database did not support remote connections.
Although communication with the database from the Miva application server through
the ODBC interface was possible, the database had to be co-located on the same
platform as the IIS server. Since IIS had to be located outside the SEI firewall to be
available to the user community, the database had to be outside as well. This
constraint was unacceptable, leading to the addition of a fourth criterion:

Criterion 4. The database must be located in a secure location, behind the
firewall.

Step 6: Evaluate the Model Solution

Once the model solution had been implemented, and the additional evaluation
criteria identified, the architect could evaluate the solution against the criteria.

Through the use of repair mechanisms, both of the initial criteria could have been
satisfied. Not surprisingly, however, neither of the new criteria could have been
satisfied. Because there were no obvious remedies for either problem, this ensemble
was judged to be infeasible.

JAVA SERVLET ENSEMBLE

In addition to the primary ensemble based on Miva Empressa, an alternative, based
on Java servlets, was identified. Miva Empressa was selected as the primary
ensemble to investigate because of the existence of component expertise within the
ASEILM development team; therefore, it received the most project resources.
However, a limited effort was also devoted to evaluating the Java servlet ensemble.
This exploration was the second time through the model problem work flow, so
three steps could be saved:

Step 1� The design question was unchanged.

Step 2� The beginning evaluation criteria included all four criteria.

Step 3� The constraints were unchanged.

The new evaluation was able to start with step 4, which involves building a model
solution, as pictured in Figure 18.4.

Figure 18.4. JavaServer Pages ensemble

This solution was able to satisfy the first two criteria using the same processes
implemented in the Miva Empressa ensemble. As ChartWorks was a part of the Java
ensemble, the developers continued using adapters to repair the HTTP/S mismatch.

The use of Java servlets allows separation of the presentation aspects of the system
from the business and database logic. The presentation logic was restricted to HTML

pages while the business and database logic was moved to servlets and Java beans
executing in the Tomcat application server, satisfying criterion 3. Also, by replacing
the Access database with SQL Server, the developers were able to use a remote
connection to host the database behind the firewall, satisfying criterion 4.

In the process of developing a model solution for the new ensemble, the following
four things happened:

The initial criteria were shown to be insufficient, as already discussed.

Portions of the design did not meet the initial criteria. In particular,

- Criterion 2. Secure data can be transferred between the HTTP server
and Web browser over an HTTPS connection.

was insufficient to ensure the security of the system for reasons to be
discussed shortly.

Additional requirements surfaced from the stakeholders.

The new Java ensemble introduced additional concerns.

We now discuss the last three items.

Security

In addition to securing the transfer of data over the wire, the authentication model
needed revisiting. Users were authenticated by placing a unique identifier, in the
form of a cookie, on the client machine and mapping it to a session. The developers
learned that, if the client machine was compromised, the user could be spoofed and
the system compromised. To protect against this, the IP address of the machine that
logged on was mapped to a unique identifier and checked with each subsequent
request.

An additional technique, called "cross-side scripting," is sometimes used by hackers.
In this case, the Web form is saved on the hacker's machine and is altered in some
malicious way. The form is then submitted, potentially causing the server to crash
and displaying code or some other unintended information to the client machine.
ASEILM's solution was to define exceptions to guard against this kind of attack.

Additional requirements

During development, another group became aware of ASEILM and wished to
integrate their data with its data. It was not immediately clear what data needed to
be integrated or for what purpose. Nor was the structure of the data to be
integrated clear. During investigation, it became apparent that many people kept

their own copy of data that pertained in some way to the data that ASEILM was
meant to track. To minimize the effect on ASEILM of supporting additional data
types, the team needed to separate the data abstraction layer in the custom
components from the business logic. This would allow the system to function
without knowledge of the source or structure of the data store(s). The layers of the
custom component are shown in Figure 18.5.

Figure 18.5. Layers of custom component

Concurrency

While the Java ensemble satisfied criteria that the Miva ensemble was unable to, it
also introduced new concerns about concurrency management. Through the
development of the model solution the team realized that (unlike the Miva
ensemble) the Java ensemble did not manage concurrency.

Tomcat documentation did not discuss concurrency. To determine whether this was
in fact a concern, the team had to discover the thread model for this ensemble. In
particular, they had to learn how IIS and Tomcat related to each other and what
effect this would have on the system. They analyzed the thread model and
hypothesized that every user login created a distinct thread. This suggested three
cases:

Two users access the system simultaneously and use different data. When the
custom component was divided into business logic and data abstraction layers,
the decision was made to cache the appropriate data within the data
abstraction layer. That is, on initialization the data is retrieved by the business
logic from the database through the data abstraction layer and maintained
within the business logic. The developers took no special actions to make the
business logic thread safe. Thus, in the case of two users simultaneously

accessing the business logic, they chose to treat the business logic as a critical
section and to make access to all of it sequential by user. Since all relevant
data is memory resident, satisfying each request is a fast operation and the
wait for each user becomes intolerable only if there are many simultaneous
users. In the environment of use, only a few simultaneous users are expected.

Two users access the system simultaneously and use the same data. One
aspect of this case�ensuring consistent data within the database�is a by-
product of the solution for case 1. Since access to the business logic is kept
sequential, each update is based on consistent data. A second aspect of this
case�that a user may be viewing and operating on stale data�is a
manifestation of the problem of "pushing" data to the user using HTTP. The
team decided to build periodic reloading of the current Web page into the
generated HTML, and thus the data being viewed and operated on is
guaranteed to be current within a set tolerance. This is not an optimal
solution, but it was easy to implement and, based on expectations of user
load, probably adequate.

A single user with two simultaneous sessions. The team simply disallowed this
option.

The team evaluated this solution against the ending evaluation criteria, which were
unchanged from the initial experiment with Miva. The Java servlet ensemble met the
criteria, and implementation was continued.

The Java servlet ensemble solution turned out to be suitable for the project's needs,
and the ASEILM system was fielded early in 2002. It is still too early to know if the
assumptions about usage patterns with respect to concurrency are correct, but early
indications are positive. Note, however, that this solution is not expected to scale
well.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

18.5 Summary

Quality attributes can be maintained in a system, even if that system is largely
integrated from off-the-shelf components whose design and interaction mechanisms
are not under the architect's control. However, achieving quality attributes in this
type of system requires significantly different practices than for custom-developed
code. The requirements process needs to be more flexible, allowing what is available
in the marketplace to modify requirements to provide a better overall business
solution. Essential requirements need to be identified and introduced as a critical
constraint in the evaluation of feasible component ensembles. Multiple contingencies
need to be considered, and as essential requirements increase in number and
difficulty, custom development must be considered as a fallback.

18.6 Further Reading

This chapter contained techniques and processes excerpted from [Wallnau 02].
Issues in COTS adoption, including qualification, risk, and migration are covered at
http://www.sei.cmu.edu/cbs/.

Architectural mismatch and techniques for recovering from it are explained in more
detail in [Garlan 95].

http://www.sei.cmu.edu/cbs/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Chapter 19. Software Architecture in the Future
Prediction is very difficult, especially about the future.

�Niels Bohr

The history of programming can be viewed as a succession of ever-increasing
facilities for expressing complex functionality. In the beginning, assembly language
offered the most elementary of abstractions: exactly where in physical memory
things resided (relative to the address in some base register) and the machine code
necessary to perform primitive arithmetic and move operations. Even in this
primitive environment programs exhibited architectures: Elements were blocks of
code connected by physical proximity to one another or knitted together by
branching statements or perhaps subroutines whose connectors were of branch-
and-return construction. Early programming languages institutionalized these
constructs with connectors being the semicolon, the goto statement, and the
parameterized function call. The 1960s was the decade of the subroutine.

The 1970s saw a concern with the structuring of programs to achieve qualities
beyond correct function. Data-flow analysis, entity-relation diagrams, information
hiding, and other principles or techniques formed the bases of myriad design
methodologies, each of which led to the creation of subroutines or collections of
them whose functionality could be rationalized in terms of developmental qualities.
These elements were usually called modules. The connectors remained the same,
but some module-based programming languages became available to enhance the
programmer's ability to create them. Abstractions embedded in these modules
became more sophisticated and substantial, and for the first time re-usable modules
were packaged in a way so that their inner workings could theoretically be ignored.
The 1970s was the decade of the module.

In the 1980s, module-based programming languages, information hiding, and
associated methodologies crystallized into the concept of objects. Objects became
the components du jour, with inheritance adding a new kind of (non-runtime)
connector.

In the 1990s, standard object-based architectures, in the form of frameworks,
started appearing. Objects have given us a standard vocabulary for elements and
have led to new infrastructures for wiring collections of elements together.
Abstractions have grown more powerful along the way; we now have computing
platforms in our homes that let us treat complex entities, such as spreadsheets,
documents, graphical images, audio clips, and databases, as interchangeable black-
box objects that can be blithely inserted into instances of each other.

Architecture places the emphasis above individual elements and on the arrangement
of the elements and their interaction. It is this kind of abstraction, away from the
focus on individual elements, that makes such breathtaking interoperability possible.

In the current decade, we see the rise of middleware and IT architecture as a
standard platform. Purchased elements have security, reliability, and performance

support services that a decade ago had to be added by individual project
developers. We summarize this discussion in Figure 19.1.

Figure 19.1. Growth in the types of abstraction available over time

This is where we are today. There is no reason to think that the trend toward larger
and more powerful abstractions will not continue. Already there are early generators
for systems as complex and demanding as database management and avionics, and
a generator for a domain is the first sign that the spiral of programming language
power for that domain is about to start another upward cycle. The phrase systems
of systems is starting to be heard more commonly, suggesting an emphasis on
system interoperability and signaling another jump in abstraction power.

In this chapter, we will revisit the topics covered in the book. Heeding Niels Bohr,
our vision will be not so much predictive as hopeful: We will examine areas of
software architecture where things are not as we would wish and point out areas
where the research community has some work to do.

We begin by recapping what we have learned about the Architecture Business Cycle
(ABC) and then discuss the process of creating an architecture, how architecture fits
within the life cycle, and how we see components and component frameworks
changing the tasks of an architect.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

19.1 The Architecture Business Cycle Revisited

In Chapter 1, we introduced the ABC as the unifying theme of this book. We
exemplified and elaborated this cycle throughout the book and have tried to convey
some of the principles of architectural creation, representation, evaluation, and
development along the way. If the study of software architecture is to have stamina,
there must be areas of research that create a more mature field, with results that
can be transitioned into practice. In this context, we can now identify and discuss
four different versions of the ABC that appear to have particular promise in terms of
future research:

The simplest case, in which a single organization creates a single architecture
for a single system

One in which a business creates not just a single system from an architecture
but an entire product line of systems that are related by a common
architecture and a common asset base

One in which, through a community-wide effort, a standard architecture or
reference architecture is created from which large numbers of systems flow

One in which the architecture becomes so pervasive that the developing
organization effectively becomes the world, as in the case of the World Wide
Web

Each of these ABCs contains the same elements as the original: stakeholders, a
technical environment, an existing experience base, a set of requirements to be
achieved, an architect or architects, an architecture or architectures, and a system
or systems. Different versions of the ABC result from the business environment, the
size of the market, and the goals pursued.

We believe that future software cost and benefit models, of which CBAM is an early
version, will incorporate all of these versions of the ABC. In particular, they will take
into account the upfront cost that architecture-based development usually entails,
and they will be able to predict the quantitative benefits that architectures yield.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

19.2 Creating an Architecture

In all of our case studies, we emphasized the quality requirements for the system
being built, the tactics used by the architect, and how these tactics were manifested
in the architecture. Yet this process of moving from quality requirements to
architectural designs remains an area where much fruitful research can be done.
The design process remains an art, and introducing more science into the process
will yield large results.

Answers to the following questions will improve the design process:

Are the lists of quality attribute scenarios and tactics complete? We presented
lists for six different quality attributes. Almost certainly they should be
augmented with additional tactics and scenarios. Also, additional attributes
should have scenarios and tactics created for them. Interoperability and
buildability are two quality attributes that may be as important as the six we
wrote about.

How are scenarios and tactics coupled? With what we have presented, the
coupling is at the attribute level. That is, a scenario is generated according to
the generation table for a particular attribute�performance, say. Then the
tactics are examined to determine those most likely to yield the desired result.
Surely, we can do better. Consider the performance scenario from our garage
door opener example in Chapter 7: Halt the door in 0.1 second when an
obstacle is detected. A series of questions can be asked that yield more insight
into the choice of tactics. Can the obstacle be detected and the door halted in
0.1 second if there is nothing else going on in the system? If the answer is no,
the tactic "increase computational efficiency" should be applied to the
obstacle-detection algorithm. If the answer is yes, other questions regarding
contention can be asked that should lead to the type of scheduler we choose in
our design. Finding a systematic method for coupling scenarios and possible
tactics would be an important research result.

How can the results of applying a tactic be predicted? A holy grail of the
software engineering community is to be able to predict the qualities of a
system prior to its construction. One approach to this problem is to predict the
effect of applying a tactic. Tactics are motivated by analytic models (formal
and informal) of various attributes. For some, it is possible to predict the
results of applying them. For example, a modifiability tactic is to use a
configuration file managed by the end user. From a modifiability perspective,
the result of applying that tactic is to reduce the time of changing and
deploying a configuration item from (essentially) the deployment time if the
modification is performed by a developer to near zero (in the worst case, the
time to reboot a system). This is a predictable result. Developing the same
type of predictions (and understanding the parameters to which a prediction
applies) is a large step toward constructing systems with predictable qualities.

How are tactics combined into patterns? In our garage door example, tactics
were chosen and then, almost magically, combined into a pattern. Again, there
should be a systematic method for this combination that maintains the
predictability of quality responses as well. Since each tactic is associated with
a predictable change in a quality attribute, tradeoffs in quality attributes can
be considered within patterns. How these predictions are represented and
combined becomes an open research question once tactics become combined
into patterns.

What kind of tool support can assist in the design process? We are forecasting
a world with larger building blocks having progressively more functionality and
associated quality attributes. What are its implications on tool support? Can
tactics and their combination into patterns be embedded into an expert design
assistant, for example?

Can tactics be "woven" into systems? Aspect-oriented software development is
an effort to develop methods and tools to deal with so-called "cross-cutting"
requirements. A cross-cutting requirement applies to a variety of objects.
Supporting diagnosis in an automobile, for example, is a requirement that
applies to all of the automobile components and thus cross-cuts the
requirements for the individual components. Quality attributes provide cross-
cutting requirements, and tactics are methods for achieving particular
responses. Can tactics, then, be treated as other cross-cutting requirements,
and will the methods and tools developed by the aspect-oriented community
apply?

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

19.3 Architecture within the Life Cycle

Although we have argued that architecture is the central artifact within the life
cycle, the fact remains that a life cycle for a particular system comprises far more
than architecture development. We see several areas ripe for research about
architecture within the life cycle:

Documentation within a tool environment. In Chapter 9, we discussed
architecture documentation but not how this documentation is generated.
Ideally, knowledge of a system's architecture is embedded in a tool, from
which documentation can be generated automatically or semi-automatically.
The generation of documentation from a tool assumes that the tool has
knowledge of architectural constructs. Not only does it have this knowledge,
but it provides a method for moving from one view to another. This, in turn,
assumes that there is a method for specifying the mapping between views.

The mapping between views comes with problems of its own: maintaining
consistency across views�a change that is made in one view is automatically
reflected in other views�and maintaining constraints both within and across
views. For example, you should be able to specify that a process has no more
than three threads (constraint within a view) and that particular modules
should be bound into the same process (constraint across views).

Software architecture within configuration management systems. One reason
software architecture reconstruction exists is to determine whether the as-built
architecture conforms to the as-designed architecture. Suppose a
configuration management system knows about the designed architecture and
can verify that consistency when a new or revised code module is checked in.
In that case, there is no need for architecture conformance testing since
conformance is guaranteed by the configuration management system. In that
way, one motivation for architectural reconstruction disappears.

Moving from architecture to code. Whenever there are multiple
representations of a system, there is the problem of keeping these
representations consistent, whether they are design models or architecture or
code. The representation maintained becomes the correct one and the other
representation degrades over time. If there is no tight coupling between the
architecture and the code within some tool environment, then two problems
exist. The first is moving from an architectural specification to code, since
architecture design precedes coding. The second is maintaining the
architecture in the face of system evolution, since code, not architecture,
typically becomes the representation kept up to date.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

19.4 The Impact of Commercial Components

As we said in Chapter 18, the capabilities and availability of commercial components
are growing rapidly. So too are the availability of domain-specific architectures and
the frameworks to support them, including the J2EE for information technology
architectures. The day is coming when domain-specific architectures and
frameworks will be available for many of today's common domains. As a result,
architects will be concerned as much with constraints caused by the chosen
framework as by green-field design.

Not even the availability of components with extensive functionality will free the
architect from the problems of design, however. The first thing the architect must do
is determine the properties of the used components. Components reflect
architectural assumptions, and it becomes the job of the architect to identify them
and assess their impact on the system being designed. This requires either a rich
collection of attribute models or extensive laboratory work, or both. Consumers of
components will want a trusted validation agency, such as Underwriters
Laboratories, to stand behind the predictions.

Determination of the quality characteristics of components and the associated
framework is important for design using externally constructed components. We
discussed a number of options with J2EE/EJB in Chapter 16 and the performance
impact of each. How will the architect know the effect of options that the framework
provides, and, even more difficult, the qualities achieved when the architect has no
options? We need a method of enumerating the architectural assumptions of
components and understanding the consequences of a particular choice.

Software Architecture in Education
In this chapter, we focused on the technical future of software architecture
and how we believe it is going to evolve. But what about the future of
architecture in software engineering education? The discerning reader will
have noticed that three members of the Bass family contributed to this
book. I received a BA in mathematics in 1964, Tanya received a BS in
computer science in 1991, and Matt received a BS in computer science in
2000. I will use our experiences to draw some general conclusions.

When I received my degree, I had seen one computer (we took a tour just
to see it) and had absolutely no knowledge of programming or how
computers worked. Of course, I was immediately hired as a programmer.
The world was different then.

Given that you are going to spend thirty or forty years in your career, the
clear message is that what you learn in school ages quickly and you need
to keep current in order to remain on the leading edge of the field.

Tanya graduated having learned a variety of programming languages,
including C but not C++, without being exposed to object-oriented
concepts. Matt graduated having learned a different set of programming
languages, including C++ and Java. He also learned about object-oriented
design.

Within nine years, curricula evolved to include object-oriented languages
and techniques. Although Matt did not take a course in architecture, by
the time he graduated software architecture courses were common in
graduate programs and in existence in undergraduate programs.

The education that Matt received included more elements of abstraction
and design than the education that Tanya received, and this trend is only
going to continue. Thus, my prediction for the year 2010 is that
undergraduate curricula will routinely include courses in software
architecture with some universities offering more than one course at that
level. At the graduate level, software architecture as an area of
specialization should be common.

We hope that this book foreshadows what will be in curricula in 2010 and
that it leads the way for the other courses in software architecture that
will be appearing.

� LJB

Finally, components and their associated frameworks must be produced and the
production must be designed to achieve desired qualities. Their designers must
consider an industry-wide set of stakeholders rather than those for a single
company. Furthermore, the quality attribute requirements that come from the many
stakeholders in an industry will likely vary more widely than the requirements that
come from the stakeholders of a single company.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

19.5 Summary

Where are the study and practices of software architecture going? Our clairvoyance
is no more powerful than anyone else's, but, as with everyone else, that does not
prevent us from indulging in some predictions. In addition to more powerful design
techniques, an evolution of life-cycle tools to include more architectural information,
and more sophisticated component building blocks for systems, we offer a prediction
for the future where architecture is concerned.

Fred Brooks was once asked what made his book, The Mythical Man-Month, so
timeless. He replied that it was not a book about computers but rather a book about
people. Software engineering is like that. Dave Parnas says that the difference
between programming and software engineering is that programming is all you need
for single-person, single-version software, but if you expect other people to ever
look at your system (or expect to look at it yourself later on), you need to employ
the discipline of software engineering. Architecture is like that, as well. If all we
cared about was computing the right answer, a trivial monolithic architecture would
suffice. Architecture is brought to bear when the people issues are exposed: making
the system perform well, building the system within cost constraints, achieving
desired benefits, letting teams work cooperatively to build the system, helping the
maintainers succeed, letting all the stakeholders understand the system.

With this in mind, we can offer our safest prediction. Architecture will continue to be
important as long as people are involved in the design and development of software.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

Acronyms

AAS Advanced Automation System, the name given to the planned complete
overhaul of the U.S. air traffic control system

ABC Architecture Business Cycle

ABM Atomic Broadcast Manager

ADD Attribute Driven Design method

API application programming interface

ASEILM Automated SEI Licensee Management

AST Abstract syntax tree

ATAM Architecture Tradeoff Analysis Method

ATC air traffic control

BCN Backup Communications Network

CBAM Cost Benefit Analysis Method

C&C component-and-connector, a category of views

CDL Chart description language

CERN European Laboratory for Particle Physics

CGI common gateway interface

COCOMO constructive cost modeling

COOB common object manager

CORBA Common Object Request Broker Architecture

COSE common operating system environment

COTS commercial off-the-shelf, referring to software or other components that
can be readily purchased

CPU central processing unit

CSC Computer Software Components

CSCI Computer Software Configuration Item, a component of software

CSCW Computer Supported Cooperative Work

C3 command, control, and communications

DAWG Data Access Working Group

DBMS database management systems

DMZ demilitarized zone

DSRGM Decision Support and Report Generation Manager

ECS Earth Core System

EDARC Enhanced Direct Access Radar Channel within the ISSS

EFC EDARC format conversion, an application within Display Management

EIS EDARC interface software, an application within Common System
Services

EJB Enterprise JavaBeans

EOS Earth Observing System

EOSDIS Earth Observing System Data System Information System

ESI External System Interface

ESIP ESI processor

FAA Federal Aviation Administration, the customer for ISSS

FAR Federal Acquisition Regulations

FG functional group, an application that is not fault tolerant (i.e., is not an
operational unit) for the ISSS

FIFO first-in/first-out

FTP File Transfer Protocol

GIOP General Inter-ORB Protocol

GUI graphical user interface

HCI human-computer interface

HCIS Host computer interface software, an application within Common System
Services of the ISSS

HCS Host Computer System, the central ATC computer

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

I/O input/output

IAPR interactive architecture pattern recognition

IDE integrated development environment

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IIOP Internet Inter-ORB Protocol

IMS inertial measurement system

IP Internet Protocol

ISO International Organization for Standardization

ISSS Initial Sector Suite System, the system intended to be installed in the en
route air traffic control centers, and the subject of the case study in
Chapter 6

ISV independent software vendor

IT information technology

JDBC Java Database Connectivity

JMS Java Messaging Service

JNDI Java Naming and Directory Interface

JSP JavaServer Pages

J2EE Java 2 Enterprise Edition

JTS Java Transaction Service

JVM Java Virtual Machine

KSLOC thousands of source lines of code, a standard measure of a computer
program's static size

KWIC keyword in context

LAN local area network

LCN Local Communications Network

LGSM local/group SMMM, an application within Common System Services

LIU LCN interface unit

M&C Monitor and Control, a type of console in ISSS

MIFT manage internal facility time, an application within Common System
Services for the ISSS

MIPS million instructions per second

MODN Noise Model

MODP Prop Loss Model

MODR Reverb Model

MRI magnetic resonance imaging

MVC Model-View-Controller

NASA National Aeronautics and Space Administration

NASM national airspace system modification, one of the CSCIs of ISSS

NAT network address translation

NISL network interface sublayer within the ISSS

NIST National Institute of Standards and Technology

NNTP Network News Transport Protocol

NRL Naval Research Laboratory

OLE object linking and embedding

OLTM OnLine Transaction Manager

OMA object management architecture

OMG Object Management Group

ORB object request broker

PAC Presentation-Abstraction-Control pattern

PAS primary address space, the copy of an application that does actual work
for the ISSS; see also SAS

PCTE portable common tools environment

PDF Portable Document Format

PICS platform for Internet content selection

PMS prepare messages, an application within Common System Services for
the ISSS

RCS Revision Control System

RISC reduced instruction set chip

RMI Remote Method Invocation

ROOM real-time object-oriented modeling

RPC remote procedure call

RUP Rational Unified Process

SAAM Software Architecture Analysis Method

SAR system analysis and recording, a function of ISSS; also an application
within the recording, analysis, and playback function

SAS standby, or secondary, address space, a backup copy of an application
ready to take over if the corresponding PAS fails within the ISSS

SCR Software Cost Reduction

SEI Software Engineering Institute

SIMD single instruction, multiple data

SLOC source lines of code

SMMM system monitor and mode management

SQL Structured Query Language

SSL Secure Sockets Layer

TAFIM Technical Architecture for Information Management

TARGET Theater-Level Analysis, Replanning and Graphical Execution Toolbox

TCA Terminal Control Area

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

UDDI Universal Description, Discovery, and Integration

UI user interface

UML Unified Modeling Language

URL Uniform Resource Locator

VPN virtual private network

W3C World Wide Web Consortium

WAIS Wide Area Information Service

WAP Wireless Application Protocol

WIMP window, icon, mouse, pointer

WWW World Wide Web

XML eXtensible Markup Language

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

References
[Abowd 93] Abowd, G., Bass, L., Howard, L., Northrop, L. "Structured Modeling: An
O-O Framework and Development Process for Flight Simulators," CMU/SEI-1993-TR-
14. Software Engineering Institute, Carnegie Mellon University, 1993.

[Abowd 96] Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremski,
A. "Recommended Best Industrial Practice for Software Architecture Evaluation,"
Technical Report CMU/SEI-96-TR-025. Software Engineering Institute, Carnegie
Mellon University, 1996.

[Alur 01] Alur, D., Crupi, J., Malks, D. Core J2EE Patterns: Best Practices and Design
Strategies. Sun Microsystems Press, 2001.

[Alexander 77] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-
King, I., Angel, S. A Pattern Language. Oxford University Press, 1977.

[America 00] America, P., Obbink, H., van Ommering, R., van der Linden, F. "CoPAM:
A Component-Oriented Platform Architecture Method Family for Product Family
Engineering," in Software Product Lines: Experience and Research Directions (P.
Donohoe, ed.). Kluwer, 2000.

[Anastasopoulos 00] Anastasopoulos, M., Gacek, C. "Implementing Product Line
Variability," IESE report 89.00/E, v. 1.0. Fraunhofer Institut Experimentelles
Software Engineering, 2000.

[ASCYW 94] ASCYW. Structural Modeling Handbook. Air Force Aeronautical Systems
Command, 1994.

[Asundi 01] Asundi, J., Kazman, R., Klein, M. "Using Economic Considerations to
Choose amongst Architecture Design Alternatives, CMU/SEI-2001-TR 035. Software
Engineering Institute, Carnegie Mellon University, 2001.

[AT&T 93] AT&T. "Best Current Practices: Software Architecture Validation." Internal
report, copyright 1991. AT&T, 1993.

[Bachmann 02] Bachmann, F., Bass, L., Klein, M. "Illuminating the Fundamental
Contributors to Software Architecture Quality," SEI/CMU-2002-TR-025. Software
Engineering Institute, Carnegie Mellon University, 2002.

[Barfield 01] Barfield, W., Caudell, T. (eds.). Fundamentals of Wearable Computers
and Augmented Reality. Lawrence Erlbaum Associates, 2001.

[Bass 00] Bass, L., Clements, P., Donohoe, P., McGregor, J., Northrop, L. "Fourth
Product Line Practice Workshop Report," CMU/SEI-2000-TR-002. Software
Engineering Institute, Carnegie Mellon University, 2000.

[Bass 01a] Bass, L., John, B., Kates, J. "Achieving Usability through Software
Architecture," CMU/SEI-2001-TR-005. Software Engineering Institute, Carnegie
Mellon University, 2001.

[Bass 01b] Bass, L., Klein, M., Moreno, G. "Applicability of General Scenarios to the
Architecture Tradeoff Analysis Method," CMU/SEI-2001-TR-014. Software
Engineering Institute, Carnegie Mellon University, 2001.

[Berners-Lee 1996a] Berners-Lee, T. WWW Journal 3
(http://www.w3.org/pub/WWW/Journal), 1996.

[Berners-Lee 1996b] Berners-Lee, T. "WWW: Past, Present, Future," IEEE Computer,
October 1996.

[Boehm 76] Boehm, B., Brown, J., Lipow, M. "Quantitative Evaluation of Software
Quality," Proceedings of the Second International Conference on Software
Engineering. IEEE Computer Society, 1976.

[Boehm 81] Boehm, B. Software Engineering Economics. Prentice Hall, 1981.

[Boehm 95] Boehm, B. "Engineering Context," Proceedings of the First International
Workshop on Architectures for Software Systems. Available as CMU-CS-TR-95-151
from the School of Computer Science, Carnegie Mellon University, April 1995.

[Booch 94] Booch, G. Object-Oriented Design with Applications, Second Edition.
Benjamin-Cummings, 1994.

[Bosch 00a] Bosch, J. Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach. Addison-Wesley, 2000.

[Bosch 00b] Bosch, J. "Organizing for Software Product Lines," Proceedings of the
Third International Workshop on Software Architectures for Product Families.
Springer LNCS, 2000.

[Bowman 99] Bowman, T., Holt, R., Brewster, N. "Linux as a Case Study: Its
Extracted Software Architecture," Proceedings of the Second International
Conference on Software Engineering. ACM Press, 1999.

[Brand 97] van den Brand, M., Sellink, M., Verhoef, C. "Generation of Components
for Software Renovation Factories from Context-Free Grammars," Proceedings of the
Fourth Working Conference on Reverse Engineering. ACM Press, 1997.

[Briand 99] Briand, L., Daly, J., Wust, J. "A Unified Framework for Coupling
Measurements in Object-Oriented Systems," IEEE Transactions of Software
Engineering 25(1), 1999.

[Britton 81] Britton, K., Parnas, D. "A-7E Software Module Guide," NRL
Memorandum Report 4702, December 1981.

[Brooks 69] Brooks, F., Iverson, K. Automatic Data Processing (System 360 Edition).
John Wiley, 1969.

[Brooks 75] Brooks, F. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, 1975.

[Brooks 95] Brooks, F. The Mythical Man-Month: Essays on Software Engineering
(Anniversary Edition). Addison-Wesley, 1995.

http://www.w3.org/pub/WWW/Journal

[Brown 95] Brown A., Carney, D., Clements, P. "A Case study in Assessing the
Maintainability of a Large, Software-Intensive System," Proceedings of the
International Symposium on Software Engineering of Computer-Based Systems.
IEEE Computer Society, 1995.

[Brownsword 96] Brownsword, L., Clements, P. "A Case Study in Successful Product
Line Development," CMU/SEI-96-TR-016. Software Engineering Institute, Carnegie
Mellon University, 1996.

[Buschmann 96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.
Pattern-Oriented Software Architecture: A System of Patterns. John Wiley, 1996.

[Bush 45] Bush, V. "As We May Think," Atlantic Monthly, July 1945.

[CACM 88] Special Issue: HyperText Systems. Communications of the ACM, July
1988.

[Cederling 92] Cederling, U. "Industrial Software Development: A Case Study,"
thesis. Linkoping University (Linkoping, Sweden), 1992.

[Chastek 96] Chastek, G., Brownsword, L. "A Case Study in Structural Modeling,"
CMU/SEI-1996-TR-35, ESC-1996-TR-025. Software Engineering Institute, Carnegie
Mellon University, 1996.

[Chretienne 95] Chretienne, P., Lenstra, J., Coffman, E. (eds.). Scheduling Theory
and Its Applications. John Wiley, 1995.

[Chung 00] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-Functional Requirements
in Software Engineering. Kluwer, 2000.

[Clements 02a] Clements, P., Kazman, R., Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley, 2002.

[Clements 02b] Clements, P., Northrop, L. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[Clements 03] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, 2003.

[Conway 68] Conway, M. "How Do Committees Invent?" Datamation 14(4), 1968.

[Cristian 93] Cristian, F. "Understanding Fault-Tolerant Distributed Systems"
(ftp.cs.ucsd.edu/pub/tech-reports/understandingftsystems.ps.Z), 1993.

[Cusumano 95] Cusumano, R., Selby, R. Microsoft Secrets: How the World's Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages
People. The Free Press, 1995.

[Dijkstra 68] Dijkstra, E. "The Structure of the 'T.H.E.' Multiprogramming System,"
Communications of the ACM 18(8), 1968.

ftp://ftp.cs.ucsd.edu/pub/tech-reports/understandingftsystems.ps.z

[Fielding 96] Fielding, R., Whitehead, E., Anderson, K., Bolcer, G., Oreizy, P., Taylor,
R. "Software Engineering and the WWW: The Cobbler's Barefoot Children,
Revisited," Technical Report 96-53. Department of Information and Computer
Science, University of California, Irvine, November, 1996.

[Fogarty 67] Fogarty, L. "Survey of Flight Simulation Computation Methods,"
Proceedings of the Third International Simulation and Training Conference. Society
for Computer Simulation, 1967.

[Gamma 95] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Garlan 95] Garlan, D., Allen, R., Ockerbloom, J. "Architectural Mismatch: Or Why
It's Hard to Build Systems out of Existing Parts," Proceedings of the Seventeenth
International Conference on Software Engineering. ACM Press , 1995.

[Gibbs 94] Gibbs, W. "Software's Chronic Crisis," Scientific American, September
1994.

[Glass 98] Glass, R., "Editorial," Journal of Systems and Software (Elsevier Science)
43(3): 161-163, 1998.

[Gram 96] Gram, C., Cockton, G. Design Principles for Interactive Software.
Chapman & Hall, 1996.

[Guo 99] Guo, G., Atlee, J., Kazman, R. "A Software Architecture Reconstruction
Method," Report No. WICSA1. Proceedings of the First Working IFIP Conference on
Software Architecture. Kluwer, 1999.

[Hager 89] Hager, J. "Software Cost Reduction Methods in Practice," IEEE
Transaction on Software Engineering 15, 1989.

[Hager 91] Hager, J. "Software Cost Reduction Methods in Practice: A Post-Mortem
Analysis," Journal of Systems Software 14, 1991.

[Harris 95] Harris, D., Reubenstein, H., Yeh, A. "Reverse Engineering to the
Architectural Level," Proceedings of the Seventeenth International Conference on
Software Engineering. ACM Press, 1995.

[Hassan 00] Hassan, A., Holt, R. "A Reference Architecture for Web Servers,"
Proceedings of the Working Conference on Reverse Engineering. IEEE Computer
Society, 2000.

[Hoffman 00] Hoffman, D., Weiss, D. (eds). Software Fundamentals: Collected
Papers by David L. Parnas. Addison-Wesley, 2001.

[Hofmeister 00] Hofmeister, C., Nord, R., Soni, D. Applied Software Architecture.
Addison-Wesley, 2000.

[IEEE 00] The Institute of Electrical and Electronics Engineers Standards Board.
Recommended Practice for Architectural Description of Software-Intensive Systems,
IEEE-Std-1471- 2000, September 2000.

[ISO 91] International Standard ISO/IEC 9126. Information Technology: Software
Product Evaluation�Quality Characteristics and Guidelines for Their Use.
International Organization for Standardization/International Electrotechnical
Commission, Geneva, 1991.

[Jacobson 97] Jacobson, I., Griss, M., Jonsson, P. Software Reuse: Architecture,
Process, and Organization for Business Success. Addison-Wesley, 1997.

[Jalote 94] Jalote, P. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.

[Jones 99] Jones, T. Capers. Estimating Software Costs. McGraw-Hill, 1999.

[Kazman 94] Kazman, R., Bass, L., Abowd, G., Webb, M. "SAAM: A Method for
Analyzing the Properties of Software Architectures," Proceedings of the Sixteenth
International Conference on Software Engineering. ACM Press, 1994.

[Kazman 99a] Kazman, R., Carrière, S. "Playing Detective: Reconstructing Software
Architecture from Available Evidence," Journal of Automated Software Engineering
6(2), April 1999.

[Kazman 99b] Kazman, R., Barbacci, M., Klein, M., Carrière, S., Woods, S.
"Experience with Performing Architecture Tradeoff Analysis," Proceedings of the
Twenty-First International Conference on Software Engineering. ACM Press, 1999.

[Kazman 01] Kazman, R., Asundi, J., Klein, M. "Quantifying the Costs and Benefits
of Architectural Decisions," Proceedings of the Twenty-Third International
Conference on Software Engineering. IEEE Computer Society, 2001.

[Krikhaar 99] Krikhaar, R. Software Architecture Reconstruction. Ph.D. thesis,
University of Amsterdam, 1999.

[Kruchten 95] Kruchten, P. "The 4+1 View Model of Architecture," IEEE Software
12(6), 1995.

[Kruchten 00] Kruchten, P. The Rational Unified Process: An Introduction, Second
Edition. Addison-Wesley, 2000.

[Laprie 89] Laprie, J. Dependability: A Unifying Concept for Reliable Computing and
Fault Tolerance (T. Anderson, ed.). Blackwell Scientific, 1989.

[Lee 88] Lee, K., Rissman, M., D'Ippolito, R., Plinta, C., van Scoy, R. An OOD
Paradigm for Flight Simulators, Second Edition, CMU/SEI-1988-TR-30. Software
Engineering Institute, Carnegie Mellon University, 1988.

[Marsman 85] Marsman, A. "Flexible and High-Quality Software on a Multi-Processor
Computer System Controlling a Research Flight Simulator," AGARD Conference
Proceedings No. 408: Flight Simulation 9(1), 1985.

[McCabe 00] McCabe & Associates. "IQ2" (an integrated set of products and
processes), http://www.mccabe.com, 1996.

[McConnell 96] McConnell, S. Rapid Development: Taming Wild Software Schedules.
Microsoft Press, 1996.

http://www.mccabe.com/default.htm

[McGregor 01] McGregor, J., Sykes, D. A Practical Guide for Testing Object-Oriented
Software. Addison-Wesley, 2001.

[Menasce 00] Menasce, D., Almeida, V. Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall, 2000.

[Morris 93] Morris, C., Fergubor, C. "How Architecture Wins Technology Wars,"
Harvard Business Review, 71(March-April): 86-96, 1993.

[Müller 93] Müller, H., Mehmet, O., Tilley, S., Uhl, J. "A Reverse Engineering
Approach to System Identification," Journal of Software Maintenance: Research and
Practice 5(4), 1993.

[Parnas 71] Parnas, D. "Information Distribution Aspects of Design Methodology,"
Proceedings of the 1971 IFIP Congress, North Holland, 1971.

[Parnas 72] Parnas, D. "On the Criteria for Decomposing Systems into Modules,"
Communications of the ACM 15(12), 1972.

[Parnas 74] Parnas, D. "On a 'Buzzword': Hierarchical Structure," Proceedings of the
1974 IFIP Congress. Kluwer, 1974.

[Parnas 76] Parnas, D. "On the Design and Development of Program Families," IEEE
Transactions on Software Engineering, SE-2(1), 1976.

[Parnas 79] Parnas, D. "Designing Software for Ease of Extension and Contraction,"
IEEE Transactions on Software Engineering SE-5(2), 1979.

[Parnas 85a] Parnas, D., Clements, P., Weiss, D. "The Modular Structure of Complex
Systems," Proceedings of the Seventh International Conference on Software
Engineering. Reprinted in IEEE Transactions on Software Engineering SE-11, 1985.

[Parnas 85b] Parnas D., Weiss, D. "Active Design Reviews: Principles and Practices,"
Proceedings of the Eighth International Conference on Software Engineering, 1985.

[Paulish 02] Paulish, D. Architecture-Centric Software Project Management.
Addison-Wesley, 2002.

[Perry 66] Perry, D., Warton, L., Welbourn, C. "A Flight Simulator for Research into
Aircraft Handling Characteristics," Report No. 3566. Aeronautical Research Council
Reports and Memoranda, 1966.

[Pfaff 85] Pfaff, G. (ed.). User Interface Systems. Eurographics Seminars, Springer-
Verlag, 1985.

[Ramachandran 02] Ramachandran, J. Designing Security Architecture Solutions.
John Wiley, 2002.

[Rissman 90] Rissman, M., D'Ippolito, R., Lee, K., Steward, J. "Definition of
Engineering Requirements for AFECO: Lessons from Flight Simulators," CMU/SEI-
1990-TR-25. Software Engineering Institute, Carnegie Mellon University, 1990.

[Rumbaugh 99] Rumbaugh, J., Jacobson, I., Booch, G. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[Schmidt 00] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F. Pattern-Oriented
Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley, 2000.

[Seacord 99] Seacord, R., Wallnau, K., Robert, J., Comella-Dorda, S., Hissam, S.
"Custom vs. Off-the-Shelf Architecture," Proceedings of the Third International
Enterprise Distributed Object Computing Conference, 1999.

[SEI ATA] See http://www.sei.cmu.edu/ata/ata_init.html.

[Shaw 96] Shaw, M., Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[Sneed 98] Sneed, H. "Architecture and Functions of a Commercial Software
Reengineering Workbench," Proceedings of the Second Euromicro Conference on
Maintenance and Reengineering. IEEE Computer Society, 1998.

[Soni 95] Soni, D., Nord, R., Hofmeister, C. "Software Architecture in Industrial
Applications," Proceedings of the Seventeenth International Conference on Software
Engineering. ACM Press, 1995.

[Stallings 99] Stallings, W. Cryptography and Network Security: Principles and
Practice, Third Edition. Prentice Hall, 1999.

[Stonebraker 90] Stonebraker, M., Rowe, L., Hirohama, M. "The Implementation of
POSTGRES," IEEE Transactions on Knowledge and Data Engineering 2(1), 1990.

[Svahnberg 00] Svahnberg, M., Bosch, J. "Issues Concerning Variability in Software
Product Lines," Proceedings of the Third International Workshop on Software
Architectures for Product Families. Springer LNCS, 2000.

[UIMS 92] UIMS Tool Developers Workshop. "A Metamodel for the Runtime
Architecture of an Interactive System," SIGCHI Bulletin 24(1), 1992.

[Wallnau 02] Wallnau, K., Hissam, S., Seacord, R. Building Systems from
Commercial Components. Addison-Wesley, 2002.

[Weiss 00] Weiss, D., Lai, C. Software Product Line Engineering: A Family-Based
Software Development Process. Addison-Wesley, 2000.

[Witt 94] Witt, B., Baker, F., Merritt, E. Software Architecture and Design. Van
Nostrand Reinhold, 1994.

[Wong 94] Wong, K., Tilley, S., Muller, H., Storey, M. "Programmable Reverse
Engineering," International Journal of Software Engineering and Knowledge
Engineering 4(4), December 1994.

http://www.sei.cmu.edu/ata/ata_init.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_vlyo95/0nkfqx_pdf_out/0321154959_20011533.html

	Main Page
	Table of content
	Copyright
	Preface
	What's New in the Second Edition

	Acknowledgments
	Reader's Guide
	Audience
	Parts and Chapters
	Part One : Envisioning an Architecture
	Part Two : Creating an Architecture
	Part Three : Analyzing an Architecture
	Part Four : Moving from One System to Many
	Case Study Organization
	Threads Through the Book
	Sidebars

	Part One: Envisioning Architecture
	Chapter 1. The Architecture Business Cycle
	1.1 Where Do Architectures Come From?
	1.2 Software Processes and the Architecture Business Cycle
	1.3 What Makes a 'Good' Architecture?
	1.4 Summary
	1.5 Discussion Questions

	Chapter 2. What Is Software Architecture?
	2.1 What Software Architecture Is and What It Isn't
	2.2 Other Points of View
	2.3 Architectural Patterns, Reference Models, and Reference Architectures
	2.4 Why Is Software Architecture Important?
	2.5 Architectural Structures and Views
	2.6 Summary
	2.7 For Further Reading
	2.8 Discussion Questions

	Chapter 3. A-7E Avionics System: A Case Study in Utilizing Architectural Structures
	3.1 Relationship to the Architecture Business Cycle
	3.2 Requirements and Qualities
	3.3 Architecture for the A-7E Avionics System
	3.4 Summary
	3.5 For Further Reading
	3.6 Discussion Questions

	Part Two: Creating an Architecture
	Chapter 4. Understanding Quality Attributes
	4.1 Functionality and Architecture
	4.2 Architecture and Quality Attributes
	4.3 System Quality Attributes
	4.4 Quality Attribute Scenarios in Practice
	4.5 Other System Quality Attributes
	4.6 Business Qualities
	4.7 Architecture Qualities
	4.8 Summary
	4.9 For Further Reading
	4.10 Discussion Questions

	Chapter 5. Achieving Qualities
	5.1 Introducing Tactics
	5.2 Availability Tactics
	5.3 Modifiability Tactics
	5.4 Performance Tactics
	5.5 Security Tactics
	5.6 Testability Tactics
	5.7 Usability Tactics
	5.8 Relationship of Tactics to Architectural Patterns
	5.9 Architectural Patterns and Styles
	5.10 Summary
	5.11 Discussion Questions
	5.12 For Further Reading

	Chapter 6. Air Traffic Control: A Case Study in Designing for High Availability
	6.1 Relationship to the Architecture Business Cycle
	6.2 Requirements and Qualities
	6.3 Architectural Solution
	6.4 Summary
	6.5 For Further Reading
	6.6 Discussion Questions

	Chapter 7. Designing the Architecture
	7.1 Architecture in the Life Cycle
	7.2 Designing the Architecture
	7.3 Forming the Team Structure
	7.4 Creating a Skeletal System
	7.5 Summary
	7.6 For Further Reading
	7.7 Discussion Questions

	Chapter 8. Flight Simulation: A Case Study in an Architecture for Integrability
	8.1 Relationship to the Architecture Business Cycle
	8.2 Requirements and Qualities
	8.3 Architectural Solution
	8.4 Summary
	8.5 For Further Reading
	8.6 Discussion Questions

	Chapter 9. Documenting Software Architectures
	9.1 Uses of Architectural Documentation
	9.2 Views
	9.3 Choosing the Relevant Views
	9.4 Documenting a View
	9.5 Documentation across Views
	9.6 Unified Modeling Language
	9.7 Summary
	9.8 For Further Reading
	9.9 Discussion Questions

	Chapter 10. Reconstructing Software Architectures
	10.1 Introduction
	10.2 Information Extraction
	10.3 Database Construction
	10.4 View Fusion
	10.5 Reconstruction
	10.6 Example
	10.7 Summary
	10.8 For Further Reading
	10.9 Discussion Questions

	Part Three: Analyzing Architectures
	Chapter 11. The ATAM: A Comprehensive Method for Architecture Evaluation
	11.1 Participants in the ATAM
	11.2 Outputs of the ATAM
	11.3 Phases of the ATAM
	11.4 The Nightingale System: A Case Study in Applying the ATAM
	11.5 Summary
	11.6 For Further Reading
	11.7 Discussion Questions

	Chapter 12. The CBAM: A Quantitative Approach to Architecture Design Decision Making
	12.1 Decision-Making Context
	12.2 The Basis for the CBAM
	12.3 Implementing the CBAM
	12.4 Case Study: The NASA ECS Project
	12.5 Results of the CBAM Exercise
	12.6 Summary
	12.7 For Further Reading
	12.8 Discussion Questions

	Chapter 13. The World Wide Web'A Case Study in Interoperability
	13.1 Relationship to the Architecture Business Cycle
	13.2 Requirements and Qualities
	13.3 Architectural Solution
	13.4 Another Cycle through the ABC: The Evolution of Web-Based E-Commerce Architectures
	13.5 Achieving Quality Goals
	13.6 The Architecture Business Cycle Today
	13.7 Summary
	13.8 For Further Reading
	13.9 Discussion Questions

	Part Four: Moving From One System to Many
	Chapter 14. Software Product Lines: Re-using Architectural Assets
	14.1 Overview
	14.2 What Makes Software Product Lines Work?
	14.3 Scoping
	14.4 Architectures for Product Lines
	14.5 What Makes Software Product Lines Difficult?
	14.6 Summary
	14.7 For Further Reading
	14.8 Discussion Question

	Chapter 15. CelsiusTech: A Case Study in Product Line Development
	15.1 Relationship to the Architecture Business Cycle
	15.2 Requirements and Qualities
	15.3 Architectural Solution
	15.4 Summary
	15.5 For Further Reading
	15.6 Discussion Questions

	Chapter 16. J2EE/EJB: A Case Study of an Industry-Standard Computing Infrastructure
	16.1 Relationship to the Architecture Business Cycle
	16.2 Requirements and Qualities
	16.3 Architectural Solution
	16.4 System Deployment Decisions
	16.5 Summary
	16.6 For Further Reading
	16.7 Discussion Questions

	Chapter 17. The Luther Architecture: A Case Study in Mobile Applications Using J2EE
	17.1 Relationship to the Architecture Business Cycle
	17.3 Architectural Solution
	17.4 How Luther Achieved Its Quality Goals
	17.5 Summary
	17.6 For Further Reading
	17.7 Discussion Questions

	Chapter 18. Building Systems from Off-the-Shelf Components
	18.1 Impact of Components on Architecture
	18.2 Architectural Mismatch
	18.3 Component-Based Design as Search
	18.4 ASEILM Example
	18.5 Summary
	18.6 Further Reading

	Chapter 19. Software Architecture in the Future
	19.1 The Architecture Business Cycle Revisited
	19.2 Creating an Architecture
	19.3 Architecture within the Life Cycle
	19.4 The Impact of Commercial Components
	19.5 Summary

	Acronyms
	References

